
The two-nucleon and
three-nucleon systems in three

dimensions

Kacper Topolnicki

PHD thesis written under the supervision of prof. Jacek Golak
at the Jagiellonian University, Faculty of Physics, Astronomy

and Applied Computer Science, Kraków,
Friday 14th March, 2014

2

Contents

1 Preface 3

2 Text organization 7

3 Units and Notation 9

4 Introduction 13

4.1 Degrees of freedom . 13

4.2 The transition operator and 2N scattering 17

4.3 Equations for the 2N and 3N bound states 21

4.4 Numerical realization of 2N and 3N states and operators 23

5 Decomposition of the 2N potential operator 29

5.1 Practical implementation . 30

6 Calculation of the 2N bound state in three dimensions 35

7 Calculation of the 2N transition operator in three dimensions 41

7.1 Positive energies . 45

7.2 Negative energies . 50

8 Deuteron electro-disintegration 55

8.1 Single nucleon current in three dimensions 56

8.2 2N currents in three dimensions 58

8.3 Putting everything together . 59

8.4 Results . 60

9 Muon induced deuteron disintegration 65

10 Calculation of the 3N bound state in three dimensions 71

11 Summary and Outlook 85

A Numerical methods 87

A.1 Dealing with large linear operators 87

A.2 Arnoldi iteration scheme . 89

A.3 Implementation on a large computing cluster 92

3

B The util1N2N3N.m package 95

B.1 Loading the package . 95
B.2 Getting information on the package 95
B.3 Scalar products, vector products and spin (isospin) operators . . 96
B.4 Permutations . 98
B.5 Other useful definitions and examples 100

C The FunctionArray.m package 103

C.1 Loading the package . 103
C.2 A simple function . 103
C.3 A more complicated example . 107
C.4 One more example . 108
C.5 Final remarks . 109

D Code organization 111

D.1 Building blocks for the deuteron bound state calculations 111
D.2 Building blocks for 3N bound state calculations 113
D.3 Building blocks for transition operator calculations 116
D.4 Building blocks for current operators 117

E Other details 121

E.1 Reference tables for the different basis vectors 121
E.2 Expansion functions for the Bonn B potential 123
E.3 Scalar coefficients for the deuteron bound state equation 125
E.4 Scalar coefficients for the 2N Lippmann - Schwinger equation . . 127
E.5 Link to partial wave states . 129

E.5.1 Two nucleons . 129
E.5.2 Three nucleons . 129
E.5.3 Connection with our three-dimensional calculations 131

List of Figures 133

Bibliography 135

4

Abstract

In this thesis we explore various aspects of a three dimensional treatment of
the two- and three-nucleon systems. Starting from a very elementary descrip-
tion of few-nucleon degrees of freedom we work our way up to more complicated
calculations. The deuteron bound state and nucleon-nucleon transition oper-
ator are treated using a general form of the two-nucleon force. Calculations
involving nuclear current operators employ a formalism that allows an exten-
sion of these calculations to describe electro-weak processes. The three-nucleon
bound state calculations that are discussed in the final chapters utilize, in ad-
dition to a two-nucleon force, an operator form of a three-nucleon potential.
The presented results have been verified and published [15, 20, 21, 35]. A lot
of attention is paid to the practical numerical realization of our calculations.
For this purpose, attached to the thesis, are a number of Mathematica R© [38]
notebooks and packages containing tools useful in building a FORTRAN imple-
mentation. Additionally, the notation used in the text, especially when defining
large linear operators, is specifically chosen to make the translation to codes
straightforward.

2

Chapter 1

Preface

Writing this thesis was a chance to gather in one place the descriptions of the
various tools that were used in our three dimensional treatment of two- and
three-nucleon systems. The mathematical foundations that govern our treat-
ment of few-nucleon systems are not very complicated. We use non-relativistic
quantum mechanics and the isospin formalism to describe the proton and the
neutron. However, in order to perform practical computations, complicated
analytical expressions resulting (in only a couple steps) from the fundamental
equations (Schrödinger, Lippmann-Schwinger, Faddeev) had to be treated in a
consistent way. This is where the Mathematica R© packages and notebooks that
were developed in our group and are supplied with this thesis play an important
role. We hope that, together with our Mathematica R© tools, this text will be a
practical guide to our calculations that will allow other researchers not only to
reproduce our results but also to apply our tools to other problems.

We work in the momentum space, without resorting to partial wave de-
composition (PWD). Instead we use three-dimensional momentum eigenstates
directly. A very good overview of this three-dimensional (3D) treatment can be
found in our paper [1]. We decided to repeat the most important points from
this paper below as a part of the introduction.

· · ·

Nucleon-nucleon scattering was treated without PWD already more than
twenty years ago. In [2, 3] the time-dependent Schrödinger equation was solved
eventually for a one-boson exchange potential. It is worth mentioning that in
the latter paper the general form of the potential between two spin-1/2 particles
was used to simplify the calculations.

Later in [4] quasielastic electron scattering was investigated and the final-
state interaction was taken into account by evaluating the two-body t-matrix
directly in 3D for the Malfliet-Tjon (MT III) local spin independent force [5].
More systematically the angular and momentum dependence of the t-matrix was
studied in the same 3D approach on as well as off the energy shell in [6], both
for positive and negative two-nucleon (2N) energies. In this very informative
paper the behaviour of the t-matrix in the vicinity of bound-state pole and
resonance poles in the second energy sheet were also investigated for different
Malfliet-Tjon-type potentials.

3

Another alternative to the usual PWD technique was outlined in [7]. There
the two-body Lippmann-Schwinger equation was written in a numerically solv-
able form using helicity theory and taking advantage of the symmetries of the
NN interaction. The numerical examples were based on the Bonn OBEPR po-
tential [8]. The helicity formalism was also used in [9] (with slightly modified
final equations) for two quite different NN potentials, the Bonn B [10] and the
Argonne V18 [36]. The same helicity approach was subsequently used by S.
Bayegan et al. [11] in 3D calculations of NN bound and scattering states with a
chiral N3LO potential [37]. In all these works an excellent agreement with the
results based on standard PWD was reported.

Inclusion of the Coulomb interaction on top of a local spin-dependent short-
range interaction in two-body scattering was carried out in [12]. The calculations
are not performed for the NN system but their implications are important for
all results, where the screening and renormalization approach is used to treat
the Coulomb interaction.

Parallel to the above mentioned nonrelativistic studies, 3D formulations of
the scattering equations were studied also for the relativistic equations. In [13]
this was outlined in the case of pion-nucleon and NN scattering treated via
the Bethe-Salpeter equation. In [14] a numerical method, based on the Padé
summation, was introduced to solve the covariant spectator equation without
partial wave decomposition, and applied to the NN system.

Last but not least we would like to mention calculations of the NN t-matrix,
which employ directly momentum vectors and use spin-momentum operators
multiplied by scalar functions of the momentum vectors. This approach stems
from the fact that a general NN force being invariant under time-reversal, par-
ity, and Galileo transformations can depend only on six linearly independent
spin-momentum operators. The representation of the NN potential using spin-
momentum operators leads to a system of six coupled equations of scalar func-
tions (depending on momentum vectors) for the NN t-matrix, once the spin-
momentum operators are analytically calculated by performing suitable trace
operations. This treatment, formulated in [15], can be considered as a natural
extension for two spin-1/2 particles of the calculations described in [6], In [15]
numerical examples for the Bonn B [10] and chiral N2LO potentials [37, 16, 17]
were presented. Later in [15] the same approach (with a modified choice of
the basis spin-momentum operators) was applied to the Argonne V18 potential
[36]. Further variations of this method and inclusion of the Coulomb force can
be found in [19, 20]. Finally, the application of this operator based approach to
the deuteron electro-disintegration process was discussed in [21].

Next we give an overwiev of calculations related to the bound state of the
two- and three-nucleon systems. We start with the deuteron representations
formulated without any resort to PWD. In [22] the helicity representation de-
veloped previously for NN scattering [23] was applied to the 2N bound state
and the deuteron eigenvalue equation in the helicity basis was solved with the
Bonn B potential [10]. In the same paper the deuteron wave function in the
so-called (momentum space) operator form was also derived. In this representa-
tion the whole information about the deuteron is given by two scalar functions,
φ1(p) and φ2(p) (p is the magnitude of the relative momentum between the
two nucleons) , which are closely related to the standard S and D components
of the deuteron. The direct set of two coupled equations for φ1(p) and φ2(p)
was derived only later in [23]. That derivation included simple trace operations,

4

which helped eliminate spin degrees of freedom and led to analytically given sets
of scalar functions depending on momentum vectors only. Numerical examples
for the Bonn B [10] and chiral N2LO potentials [37, 16, 17] were published in
[15]. Corresponding three dimensional calculations of 2N binding energies with
chiral N3LO potentials [37] performed in the helicity formalism were reported
in [11].

As already mentioned, the work on NN scattering has very often a prepara-
tory character and further application of the t-matrices are usually planned.
This is true also in the case of the 3D calculations. Results of [6] were later
used in [24] three-body bound-state calculations without PWD with Malfliet-
Tjon-type NN potentials, neglecting spin and isospin degrees of freedom. In
the subsequent paper [25] the scheme from [24] was extended to include scalar
two-meson exchange three-body forces.

The Teheran group published several papers dealing with 3D solutions of
the three-nucleon (3N) and even four-nucleon (4N) bound states [26, 27, 28,
29, 30, 31, 32, 33]. They started with a formulation, which neglected the spin-
isospin degrees of freedom [26] and introduced step by step improved dynamical
ingredients to their framework, performing calculations with more realistic NN
potentials (like the Bonn B one in [27, 28]) and including additionally a 3N force
(for example the Tucson-Melbourne 3N potential in [30]). The 3D t-matrices -
an input to the systems of coupled equations - were obtained with the helicity
representation of [9].

Finally, we list publications dealing with the 3D treatment of the 3N bound
state which relies on the general form of the 2N t-matrix and the operator
form of the 3N bound state introduced in [34]. The latter consists of eight
operators built from scalar products of relative momentum and spin vectors,
which are applied to a pure 3N spin 1/2 state. Each of the operators is multiplied
by a scalar function of the relative momentum vectors. In [23] one Faddeev
equation for identical bosons was replaced by a finite set of coupled equations
for scalar functions which depend only on three variables. The inclusion of a
3N force into this 3D Faddeev framework was also discussed. Further elements
of this formalism, for example the construction of the full wave function from
the Faddeev amplitude, and first numerical results for chiral 2N and 3N N2LO
nuclear forces were provided in [35].

· · ·

A big advantage of our three-dimensional approach is a very explicit way of
performing computations. The computing time that is used in PWD calcula-
tions is, with the current state of technology, not typically a limiting factor. The
cost of human labor that is needed to prepare a numerical realization of PWD
calculations is however very significant. The three dimensional approach that is
described in the following text requires a larger amount of computing resources
but, due to being very direct (and thanks to our Mathematica R© [38] toolkit),
greatly reduces the human workload. Using three dimensional states can make
economic sense especially with the exponential growth of available computing
power. The cost of erecting and running a new supercomputer is becoming
a rival to the cost of raising, training and maintaining a team of physicists.
This can be observed when considering that the latter requires decades of heavy
investments from the parents and society. We expect that the overall cost of

5

this process will remain constant and the cost of computing time will tend to
decrease, at least into the near future. If we are correct, our three dimensional
approach will become more and more economically feasible and might even come
to replace classical PW calculations.

Preparing the code for three dimensional calculations with the tools that
are described in this thesis is very straightforward. Our methods allow the
programmer to almost directly implement the algebraic expressions that follow
directly from the Schrödinger, Faddeev or Lippmann-Schwinger equations and
conceal the complicated (but not very interesting) details of the calculation in
automatically generated FORTRAN codes. The linear operators constructed
from these automatically generated expressions can be used to calculate the
two-nucleon transition operator and bound state with a very general form of
the two-nucleon force and the three-nucleon bound state with a very general
operator form of the two- and three-nucleon potentials. As was mentioned, the
computing resources necessary to perform the three dimensional calculations
are large. This is a consequence of the size of linear operators involved. The
final parts of this thesis describe methods that can be used in the numerical
treatment of large linear operators by reducing the size of the problems.

In the literature one can find a great number of publications that introduce
effective two- and three-nucleon potentials. The older ones, for example the two
nucleon Bonn B potential - [10] - and the three-nucleon Tucson-Melbourne force
- [39, 40, 41, 42] - were based on the one-boson exchange picture. Recently two-
nucleon and three-nucleon forces are derived by various groups within the chiral
effective field theory approach. For example, the chiral 2N and 3N potentials
[17], [43] are derived at different orders of the chiral expansion. The growing
number of models is another important motivator for the development of our
tools - our methods can be quickly applied to new potentials and provide pre-
dictions based on these forces. The growing accuracy of these potentials makes
them a great tool in trying to understand the physics of few-nucleon systems.
Using classical non-relativistic quantum mechanics also gives a rare opportunity
to gain an intuitive understanding of underlying phenomena - this is possible
because all calculations can, in only a few steps, be linked to the fundamental
equations. This is often difficult when dealing with the complexity of quantum
field theory. The flexibility of our calculations and the possibility to extend
them to describe new phenomena was a great additional reward in itself.

6

Chapter 2

Text organization - please
read this

Here we will give a brief summary of the contents of the thesis. This chapter can
serve as a reading guide since some chapters can be approached independently.
We strongly recommend going through the few following paragraphs.

Chapter 4 introduces the physical meaning of equations that will be the
subject of our computations. The treatment of those equations will be discussed
in more detail in further parts of the text. First we give a short description of the
degrees of freedom of the two-nucleon (2N) and three-nucleon (3N) systems in
section 4.1 and introduce the set of 2N and 3N states which will be fundamental
to our calculations. In section 4.2 we give a very elementary introduction to
the calculations involving the transition operator followed by an introduction
to the 2N and 3N bound state equations in section 4.3. These two parts give
only a very basic outline of the problems extracted from the references given
in the text. Section 4.4 contains a more detailed description of the numerical
realization of 2N and 3N degrees of freedom and basic operators. The remaining
parts of this Chapter contain additional information that might come in handy
when working with our formalism.

Chapters 6, 7, 10 concentrate on discussing each of the main equations in-
troduced in Chapter 4 separately with an emphasis on the numerical realization
of the calculations. All these chapters are fairly self-contained and can be read
independently after going through Chapter 5, where we discuss the general form
of the 2N potential operator in the momentum space. After some mathematical
manipulations and the incorporation of additional constraints on the operator
form of the transition operator as well as on the 2N and 3N bound states, it will
turn out that all calculations boil down to large linear problems. In these linear
equations operators will act on scalar functions that describe the transition op-
erator, 2N and 3N bound states when the latter are written in their respective
operator forms. In Chapter 3 we establish a notation that is meant to make the
creation of the numerical implementations of these operators straightforward.
This notation is natural when working with a practical implementation of scalar
functions (where they will typically be represented by multidimensional arrays
inside a computer) and allows for an almost literal translation of the operator
definitions to codes. We strongly recommend reading Chapter 3 first, before

7

continuing to the remaining text. Our strategy is to provide expressions for
the operators in a way that is convenient for the programmer and to provide
tools to create the most complicated parts of the implementation separately.
This is taken care of by our Mathematica R© tools that create FORTRAN codes
automatically.

In Chapter 8 we apply the results of the previous sections (deuteron and
transition operator calculations) to a description of the e +2 H → e + p + n
reaction. A detailed description of the treatment of electromagnetic currents
within our framework is presented. The muon induced deuteron disintegration
process is treated in a very similar way in Chapter 9.

In the numerical realization of the calculations the scalar functions have to
be discretized over a lattice which effectively turns them into finite dimensional
vectors. Ideally we would like to be able to create a direct matrix representation
of the operators in each case. This is not a straightforward task and is available
only for the transition operator and the deuteron bound state. Another problem
is the dimension of vectors and operators involved in the calculations. For
example, in order to describe the 3N bound state with a reasonable accuracy,
1000000 (or more) dimensional vectors are needed and the calculations would
have to involve 1000000×1000000 matrices. Appendix A describes our solution
to this problem of large linear operators. We can reduce the 1000000× 1000000
problem to a simple (say) 40×40 matrix linear equation with the help of Krylov
subspace methods. What’s more, when using these methods, we do not need to
know the direct matrix representation of the relevant operators. Our procedures
require only the calculation of the action of the linear operator on a vector and
the computation of a scalar product.

Appendix B contains a description of the util1N2N3N.m Mathematica R©

package that was created to be used with our calculations and is supplied with
this thesis. It contains a set of definitions that together with the FunctionAr-

ray.m package can be used to calculate all building blocks of our calculations.
These building blocks are created automatically and often contain very com-
plicated (but otherwise not very interesting) analytical expressions that result
from the fundamental equations, thus freeing the physicist to focus on more in-
teresting aspects of the calculations. The FunctionArray.m package is described
in detail in Appendix C. We suggest reading Appendixes B and C before going
on to read Chapters 5 and higher. In this way the reader will be able to use the
attached notebooks parallel to reading the text.

Finally, in Apendix D we give a list of Mathematica R© notebooks that are
provided with this thesis and create FORTRAN implementations of all neces-
sary building blocks. The resulting code is documented and can be used to
construct a working numerical realization. We do not include the full code only
the building blocks because they can be documented in more detail. Addition-
ally, the building blocks can be used more universally with different programing
paradigms (on single and parallel machines, using different styles of program-
ming).

8

Chapter 3

Units and Notation

Calculations presented in this thesis are all based on a set of well defined degrees
of freedom of the two and three-nucleon systems (this is described in more detail
in section 4.1). It is therefore very convenient to establish a notation that will
be used consistently throughout the text.

We adopt the following notation:

1. Operators will be denoted using the ” ˇ ” symbol, for instance 1̌ is the
identity operator.

2. Vectors will be denoted using bold face. For instance p , p̌ will denote
the momentum vector and the momentum vector operator respectively.

3. Unit vectors will be denoted using the ” ˆ ” symbol as in p̂ .

4. Vector spin operators acting in the space of particle i will be denoted
as ~

2 σ̌(i) (where ~ is the reduced Planc constant) and are typically

represented using Pauli matrices. ~

2 σ̌(i)µ will be used to mark the µ
component of the spin operator. For cartesian coordinates µ = 1, 2, 3
or µ = x̂, ŷ, ẑ . For spherical coordinates µ = +1,−1, 0 .

5. Vector isospin operators acting in the space of particle i will be denoted
using 1

2 τ̌ (i) and are also represented using Pauli matrices. 1
2 τ̌ (i)µ

will be used to mark the µ component of the isospin operator.

6. Operators and vectors can be placed inside square brackets [. . .] to mark
or remind the reader that their numerical realization is achieved by using a
matrix representation. All operators inside [. . .] can be implemented as
matrices using our util1N2N3N.m Mathematica R© [38] package, described
in Appendix B. A FORTRAN implementation of the resulting Mathemat-

ica R© expressions is available through the FunctionArray.m package. This
package provides implementations compatible both with the free and fixed
form of FORTRAN syntax. Both packages are described in the final chap-
ters of this thesis and can be used to quickly piece together a numerical
realization of most calculations discussed in the text. In some cases, usu-
ally when introducing a new operator, superscripts [. . .]

x×y
or [. . .]

x

are used to give additional information on the size of the matrix (x×y) or

vector (x). Optionally [. . .]
1N

, [. . .]
2N

, [. . .]
3N

, [. . .]
1Nspin(isospin)

,

9

[. . .]
2Nspin(isospin)

, [. . .]
3Nspin(isospin)

can be used to mark that the ma-
trix representation is in the basis from tables E.1, E.2, E.3, E.4, E.5 or
E.6, respectively. The tables are located in Appendix E and details on the
matrix representation of states and operators will be given in section 4.4.

7. Symbol ⊗ will denote the tensor product. If this symbol is surrounded

by expressions inside [. . .], for example
[

Ǎ
]2×2 ⊗

[

B̌
]2×2

, then it has an
implementation in the util1N2N3N.m package. The matrix representation
of the tensor product of the two operators Ǎ and B̌ is created using the
Kronecker product inside Mathematica R© . The tensor product of two
vectors [a]⊗ [b] also has a natural implementation inside util1N2N3N.m.
More information on this representation can be found in section 4.4.

8. If not stated otherwise, the capital letter K will be used to denote the
total momentum of a system of nucleons. The momenta of individual
particles will be referred to using lower-case k1 , k2 , For example
K = k1+k2 is the total momentum and p = 1

2 (k1 − k2) is the relative
momentum of a 2N system.

9. Functions and operators:

• Curly brackets as in t{γ}

i ({E} , |p′|, {|p|} , x′) are used to mark that
for any values of the quantities inside {} there exists an indepen-
dent equation, in this case for t. This information can significantly
improve the numerical realization of the calculation by reducing the
size (and therefore memory requirements) of the (typically large lin-
ear) problem.

• Many parts of the text will introduce linear operators acting on func-
tions of momentum magnitudes, angles etc. We will use notation
(

Ǎt
){γ}

i
({E} , |p′|, {|p|} , x′) to mark that operator Ǎ acts on a

scalar function t and we take the resulting function value for a given
set of arguments. Additionally, as mentioned above, this notation in-
forms that for each value of γ,E, |p| there exists an independent
set of linear equations and the dimension of the operator Ǎ for each
subspace is smaller (Ǎ is constructed using automatically generated
FORTRAN implementations with the use of the util1N2N3N.m and
FortranFunctionArray.m packages).

At first glance this type of notation might seem a little convoluted. We
chose this way of writing operators with the programmer in mind. When
creating a numerical implementation, functions will typically be replaced
by multidimensional arrays and taking the value of a function will be re-
placed by looking up an index in a multidimensional array. The definitions
of the operators will be in a form similar to for example (Ǒf)i(x, {y}) =
. . .
∫

. . .
∑

j . . . Aijfj(x, {y}), making the conversion to multidimensional
arrays natural. Additional information in {y} means that f does not need
to be discretized over the different values of y.

We chose a unit system in which:

~c = 1 [~ c] = 197.33 [MeVfm] ,

10

the conversion between units of energy, momentum and mass is done according
to:

[energy] = [MeV] =
1

197.33

[

~ c

fm

]

,

[momentum] =

[

MeV

c

]

=
1

197.33

[

~

fm

]

,

[mass] =

[

MeV

c2

]

=
1

197.33

[

~

c fm

]

and typically set ~ = c = 1.

Obtaining the code

We would be happy to share our experience with other researchers. The codes
can be obtained on request from

kacper.topolnicki@uj.edu.pl.

We reserve the right to distribute only parts of our software.
The complete package (or parts of the codes) will be compressed in a zip

file. Please do not redistribute this archive. The current version is available
through the e-mail adress given above and contains the latest updates.

The archive contains the master directory

PHD TOPOLNICKI.

Inside there are two subdirectories: TEXT contains a hyper-linked PDF with
this thesis and PROGRAMS contains the Mathematica R© notebooks and codes.
Any file paths that might appear in the text are relative to the PROGRAMS
directory. For instance, the full path to

PROGRAMS/util1N2N3N.m

is

<path to PHD TOPOLNICKI >/PROGRAMS/util1N2N3N.m.

If our code is found to be useful, please give us credit in any resulting publi-
cations. This can be done by citing one of the following papers: [21, 20, 15, 35].
For example: ”...this paper uses Mathematica R© and FORTRAN software devel-
oped at the Jagiellonian University, the same software was also used in [21]...”.

11

12

Chapter 4

Introduction

In section 4.1 we discuss the degrees of freedom of the two-nucleon (2N) and
three-nucleon (3N) systems. The concept of the nucleon is introduced along
with the momentum space representation of the quantum mechanical systems
and the form of the free Hamiltonian operators. This chapter is not meant to
give a full description, a more complete discussion can be found in section 4.4.

Next section (4.2) deals with the scattering problem and introduces the Lipp-
mann - Schwinger equation for the transition operator. Section 4.3 introduces
equations governing two and three-particle bound state calculations. At the
end of these two parts, the physical meaning of our numerical calculations from
Chapters 6, 7 and 10 should be clear.

The final parts of this chapter give a detailed description of the numerical
realization of states and operators discussed earlier. Much attention will be paid
to the momentum - isospin - spin representation of the permutation operator
which is crucial in the construction of the 3N bound state and 3N scattering
calculations.

It should be noted that all calculations in this thesis are done within the
realm of classical, non-relativistic quantum mechanics. Because of this, limita-
tions have to be placed on the energies of the 2N and 3N systems considered in
our discussions. These energy constraints are not a significant issue when deal-
ing with the bound states, but have to be taken into account when performing
scattering calculations.

4.1 Degrees of freedom

The calculations presented in the remaining chapters of this thesis benefit greatly
from a well defined set of degrees of freedom (DOF). This well defined set is the
subject of this section. Used within the framework of non-relativistic quantum
mechanics it allowed us to start all our calculations directly from the most fun-
damental (Schrödinger, Faddeev and Lippman-Schwinger) equations. Starting
from the fundamentals served as a beautiful reminder of how our computations
are rooted in reality, this reminder was a great motivator for our work.

Another advantage of using this well defined set of DOF is the possibil-
ity of constructing the calculations semi-automatically with the help of sym-
bolic programming. We again remind that Appendixes B and C describe the

13

util1N2N3N.m and FunctionArray.m Mathematica R© [38] packages that can be
used to encapsulate the complicated details of the calculation in automatically
generated FORTRAN codes. As a result of using these tools it was possible
to construct a numerical realization of our calculations by an almost direct im-
plementation of simple expressions (resulting in only a couple steps from the
fundamental equations) in FORTRAN. After reading this section and section
4.4 the reader is encouraged to go to Appendixes B and C before reading the
remainder of the text. After following the simple tutorials presented there it
should be possible to easily construct working FORTRAN implementations of
mathematical expressions that make up the bound state and transition operator
calculations in parallel to the text. Additionally, a number of notebooks that
create FORTRAN implementations of most of the basic building blocks of our
computations are distributed with this thesis.

For our purposes we will use a picture in which the proton and the neu-
tron are two different charge states of the same particle - the nucleon. This
idea proved to be effective in systems with strong interactions and has roots
in the work of Heisenberg. It stems from the observed close similarity of the
proton and the neutron properties: they are both spin 1

2 particles and have sim-

ilar masses (proton mass: Mp = 938.272046(21)
[

MeV
c2

]

, neutron mass: Mn =

939.565378(21)
[

MeV
c2

]

). We will in our later calculations neglect the small dif-
ference in their masses and use instead the ”nucleon mass”, m = 1

2 (Mn +Mp).
What follows is a description of states and basic operators that will be used in
the text.

The proton and the neutron belong to the isospin doublet and both have
isospin 1

2 . The positively charged proton has the isospin projection + 1
2 and the

neutron has the isospin projection − 1
2 . For example, a system in which the first

particle is a proton and the second particle is a neutron can be considered as
the following isospin state of the two-nucleon system:

| 1

2

1

2
〉⊗ | 1

2
− 1

2
〉. (4.1)

The general spin (isospin) state of any 2N system can be written as a linear
combination of the 4 possible tensor product basis states:

| 1

2
ν1〉⊗ |

1

2
ν2〉, (4.2)

where ν1, ν2 are the projections of the spin (isospin) of particles 1, 2. A similar
basis can be created for the 3N system:

| 1

2
ν1〉⊗ |

1

2
ν2〉⊗ |

1

2
ν3〉, (4.3)

with ν3 being the spin (isospin) projection of the third particle.
A detailed discussion of the practical realization of (4.2) and (4.3) with the

use of the Kronecker product will be given in section 4.4. This realization allows
for a straightforward construction of isospin and spin states and (isospin, spin)
operators in the form of vectors and matrices and is crucial in the numerical
realization of our calculations.

The classical Hamiltonian for two non-interacting particles with masses M1,
M2 has the form:

H2N
0 =

k2
1

2M1
+

k2
2

2M2
(4.4)

14

where k1, k2 denote momenta conjugate to the positions x1, x2 of individual
particles. The introduction of a different set of coordinates:

r = x1 − x2,

R =
M1x1 +M2x2

M1 +M2
, (4.5)

and their conjugate momenta:

p =
M2k1

M1 +M2
− M1k2

M1 +M2
,

K = k1 + k2, (4.6)

leads to a new form of the free Hamiltonian:

H2N
0 =

K2

2 (M1 +M2)
+

(M1 +M2)p2

2M1M2
. (4.7)

In the above equation, the reduced mass of the two particle system µ = M1M2

M1+M2

is immediately recognizable.
Following the quantization procedure, operators ř, p̌ and Ř, Ǩ for quantities

from (4.5) and (4.6) will fulfill the standard commutation relations for position
and momenta. The free Hamiltonian operator of the two particle system can be
written using (4.7) in the form:

Ȟ2N
0 =

ǩ
2

1

2M1
+

ǩ
2

1

2M2

=
Ǩ

2

2 (M1 +M2)
+

(M1 +M2) p̌2

2M1M2

=
p̌2

m
+

Ǩ
2

4m
, (4.8)

where (for the 2N system) Mi is either Mp or Mn and in the last line we used
our approximation about the identical masses of the proton and neutron (Mp =
Mn = m). As a consequence we get p̌ = 1

2

(

ǩ1 − ǩ2

)

for the relative momentum

operator of the two-nucleons and Ǩ = ǩ1+ǩ2 for the total momentum operator.
We introduce the following complete set of 2N momentum states that will be
used in further calculations:

| pK〉 (4.9)

States (4.9) obey:
p̌ | pK〉 = p | pK〉, (4.10)

Ǩ | pK〉 = K | pK〉 (4.11)

together with the completeness relation:
∫

d3p d3K | pK〉〈pK |= 1̌ (4.12)

and the normalization condition:

〈p′K ′ | pK〉 = δ3(p′ − p)δ3(K ′ −K). (4.13)

15

Finally, the link to single particle momentum eigenstates is given by:

〈k1k2 | pK〉 = δ3
(

p− 1

2
(k1 − k2)

)

δ3 (K − (k1 + k2)) . (4.14)

The classical Hamiltonian for three non-interacting particles with masses
M1, M2, M3 has the form:

H3N
0 =

k2
1

2M1
+

k2
2

2M2
+

k2
3

2M3
, (4.15)

where k1, k2, k3 denote momenta conjugate to the positions of individual par-
ticles x1, x2, x3. The introduction of a different set of coordinates (see for
example [44]):

rp = x2 − x1,

rq = x3 −
1

M1 +M2
(M1x1 +M2x2) ,

R =
M1x1 +M2x2 +M3x3

M1 +M2 +M3
(4.16)

and their conjugate momenta (referred to as the Jacobi momenta):

p =
M1k2

M1 +M2
− M2k1

M1 +M2

q =
(M1 +M2)k3 −M3 (k1 + k2)

M1 +M2 +M3

K = (k1 + k2 + k3) (4.17)

again leads to a new form of the Hamiltonian:

H3N
0 =

K2

2 (M1 +M2 +M3)
+

(M1 +M2)p2

2M1M2
+

(M1 +M2 +M3) q2

2 (M1 +M2)M3
. (4.18)

As before, the quantization procedure leads to operators řp, p̌ and řq, q̌ and
Ř, Ǩ for (4.16) and (4.17) that follow the standard commutation relations for
position and momenta. The free Hamiltonian of the 3N system can be written
using (4.18) in the form:

Ȟ3N
0 =

ǩ
2

1

2M1
+

ǩ
2

2

2M2
+

ǩ
2

3

2M3

=
Ǩ

2

2 (M1 +M2 +M3)
+

(M1 +M2) p̌2

2M1M2
+

(M1 +M2 +M3) q̌2

2 (M1 +M2)M3

=
p̌2

m
+

3q̌2

4m
+

Ǩ
2

6m
, (4.19)

where in the last line we again make the approximation about the masses of the
proton and neutron (Mp = Mn = m). As a consequence we get Ǩ = ǩ1+ǩ2+ǩ3

for total momentum operator (for the 3N system) and p̌ and q̌ for the Jacobi
momentum operators. Jacobi momenta can actually be defined in three ways
(using different permutations of x1, x2, x3 from (4.16)) see for example [45, 46]:

p̌1 =
1

2

(

ǩ2 − ǩ3

)

, (4.20)

16

q̌1 =
2

3

(

ǩ1 −
1

2

(

ǩ2 + ǩ3

)

)

, (4.21)

p̌2 =
1

2

(

ǩ3 − ǩ1

)

, (4.22)

q̌2 =
2

3

(

ǩ2 −
1

2

(

ǩ3 + ǩ1

)

)

, (4.23)

p̌3 =
1

2

(

ǩ1 − ǩ2

)

, (4.24)

q̌3 =
2

3

(

ǩ3 −
1

2

(

ǩ1 + ǩ2

)

)

. (4.25)

We introduce the complete set of 3N momentum states that will be used in our
calculations:

| pqK〉i, (4.26)

that follow:
p̌i | pqK〉i = pi | pqK〉i, (4.27)

q̌i | pqK〉i = qi | pqK〉i, (4.28)

Ǩ | pqK〉i = K | pqK〉i. (4.29)

Typically we will be using i = 1 with particle 1 being the spectator. From now
on we will assume that whenever Jacobi momenta are used and this index is not
specified, they are given by (4.20) and (4.21). The states obey the completeness
relation:

∫

d3p d3q d3K | pqK〉〈pqK |= 1̌ (4.30)

and the normalization condition:

〈p′q′K ′ | pqK〉 = δ3(p′ − p)δ3(q′ − q)δ3(K ′ −K). (4.31)

Finally, the link between Jacobi momentum states and single particle momen-
tum states is given by (see for example [45, 46]):

〈k1k2k3 | pqK〉 =

= δ3
(

p1 −
1

2

(

ǩ2 − ǩ3

)

)

δ3
(

q1 −
2

3

(

ǩ1 −
1

2

(

ǩ2 + ǩ3

)

))

δ3 (K − (k1 + k2 + k3)) . (4.32)

4.2 The transition operator and 2N scattering

This section is written to give a very basic introduction to the quantum me-
chanical description of the 2N scattering process. It contains a short, simplified
sketch of the derivations in [45, 46] that were modified to be consistent with
4.1. These two references can be consulted for more information or to fill any
gaps in our discussion. We introduce equations that will be the subject of our
three dimensional calculations in Chapter 7. The discussion presented here is
limited to 2N systems. The transition to more complex systems of three or
more particles is described for example in [47], which gives a detailed descrip-
tion of the possible 3N scattering processes and a way to include 3N forces into

17

the calculations. We would like to again stress that the following discussion is
simplified and does not strive to be complete; a good place to look for a better
understanding of the underlying physics is [45, 46].

In a typical experimental setup, the initial state of the 2N system is, to
some extent, under control. This means that initially the system is prepared
to be a wave packet and we can safely assume that the time evolution of this
initial (non-interacting) quantum mechanical system is governed by the time
dependent Schrödinger equation:

i~∂t | ψ(t)〉 = Ȟ0 | ψ(t)〉 (4.33)

with the free Hamiltonian Ȟ0 (for the case of 2N systems (4.8) is used). More
specifically, at some time t0:

| ψ(t0)〉 =

∫

d3p | p〉f(p) (4.34)

where for 2N systems relative momentum eigenstates | pK = 0〉 ≡| p〉 from
(4.9) are used (we separate the CM motion from the relative motion of the
two nucleons since the total momentum of the system is conserved) and f(p)
is the momentum space representation of | ψ(t0)〉. Each | p〉 separately is an
eigenstate of the free Hamiltonian:

Ȟ0 | p〉 = E | p〉 (4.35)

to energy E = p2

m .
This simple picture breaks down after we allow the particles to interact. The

time propagation of the interacting state is then governed by:

i~∂t | Ψ(t)〉 =
(

Ȟ0 + V̌
)

| Ψ(t)〉 ≡ Ȟ | Ψ(t)〉 (4.36)

with a 2N potential V̌ . In a typical experimental setup, where the initial non-
interacting state of the system is (to some extent) known it is necessary to make
predictions about the interacting state with the potential V̌ .

It is shown in [45] that a sufficient condition that links the non-interacting
state governed by (4.33) - | ψ0(t)〉 and the interacting state - | Ψ(+)(t)〉 governed
by (4.36) is:

lim
t→−∞

‖ | Ψ(+)(t)〉− | ψ0(t)〉‖ = 0 (4.37)

where ‖ | ψ〉‖ ≡
√

〈ψ | ψ〉.
Condition (4.37) can be reformulated using the unitarity of time propagation

operators (exp
(

iȞ(t− t0)
)

exp
(

−iȞ(t− t0)
)

= 1̌ , ~ = 1) [45]:

‖ | Ψ(+)(t)〉− | ψ0(t)〉‖ =

‖ exp
(

−iȞ(t− t0)
)

| Ψ(+)(t0)〉 − exp
(

−iȞ0(t− t0)
)

| ψ0(t0)〉‖ =

‖ | Ψ(+)(t0)〉 − exp
(

iȞ(t− t0)
)

exp
(

−iȞ0(t− t0)
)

| ψ0(t0)〉‖ =

(4.38)

to:

| Ψ(+)(t0)〉 =

(

lim
τ→−∞

exp
(

iȞτ
)

exp
(

−iȞ0τ
)

)

| ψ0(t0)〉

≡ Ω̌(+) | ψ0(t0)〉. (4.39)

18

This result is a link at time t0 between the interacting state | Ψ(+)(t0)〉 (sat-
isfying (4.36) with V̌) and the non-interacting state | ψ0(t0)〉 (satisfying (4.33)
without V̌). The interacting state can be calculated with the use of the Möller
wave operator Ω̌(+). This link is crucial because it allows the calculation of
scattering observables.

Combining (see for example [45]):

lim
τ→−∞

g(τ) = lim
ǫ→0+

ǫ

∫ 0

−∞
dτeǫtg(t)

with the assumption (4.35), the Möller wave operator in (4.39) can be rewritten
as:

Ω̌(+) =

∫

d3pf(p)Ω̌
(+)

E= p2

m

| p〉〈p | . (4.40)

In this equation we introduce a new operator:

Ω̌
(+)
E = lim

ǫ→0+
iǫ
(

E + iǫ− Ȟ
)−1

(4.41)

with the energy index E to indicate that we work with free Hamiltonian eigen-
states. Additionally from now on it is assumed that whenever ǫ is encountered,
the limit ǫ→ 0+ is to be taken and the symbol of the limit will be dropped.

Introducing two new definitions for the resolvent operators:

Ǧ(z) =
(

z − Ȟ
)−1

, (4.42)

Ǧ0(z) =
(

z − Ȟ0

)−1
(4.43)

we arrive at [46]:

Ǧ0(z)−1 − Ǧ(z)−1 = z − Ȟ0 − z + Ȟ = V̌

Ǧ0(z)
(

Ǧ−1
0 (z)− Ǧ−1(z)

)

Ǧ(z) = Ǧ0(z)V̌ Ǧ(z) = Ǧ(z)− Ǧ0(z)

Ǧ(z) = Ǧ0(z) + Ǧ0(z)V̌ Ǧ(z). (4.44)

Equation (4.41) can now be rewritten using (4.44) as:

Ω̌
(+)
E = 1̌ + iǫ

(

E + iǫ− Ȟ0

)−1
V̌
(

E + iǫ− Ȟ
)−1

. (4.45)

When applied to the free state this yields:

| p(+)〉 = Ω̌
(+)
E | p〉

= | p〉+ Ǧ0(E + iǫ)V̌
(

iǫǦ(E + iǫ) | p〉
)

= | p〉+ Ǧ0(E + iǫ)V̌ | p(+)〉 (4.46)

where | p(+)〉 is an interacting state generated from the free state | p〉 and in
the final line we used (4.41). With a new definition of the transition operator
ť(E):

V̌ | p(+)〉 ≡ ť(E) | p〉 (4.47)

equation (4.46) takes a very simple form useful for describing scattering experi-
ments and allows the calculation, at time t0, of an interacting state | p(+)〉 from
a non-interacting state | p〉 (satisfying (4.35)):

| p(+)〉 =
(

1̌ + Ǧ0(E + iǫ)ť(E)
)

| p〉 (4.48)

19

For the general non-interacting state (4.34) equation (4.48) takes on the
form:

| Ψ(+)(t)〉 =

∫

d3pf(p) exp

(

−ip
2

m
(t− t0)

)

(

1̌ + Ǧ0(
p2

m
+ iǫ)ť(E =

p2

m
)

)

| p〉, (4.49)

where we explicitly added the time dependence. This expression can be used to
construct the interacting state for the 2N system.

The equation for the ť(E) operator can be found by applying V̌ to both sides
of (4.46) (see for example [46]):

V̌ | p(+)〉 = V̌ | p〉+ V̌ Ǧ0(E + iǫ)V̌ | p(+)〉,

ť(E) | p〉 =
(

V̌ + V̌ Ǧ0(E + iǫ)ť(E)
)

| p〉.
This is generalized for any | p〉, we can write down an equation for ť(E):

ť(E) = V̌ + V̌ Ǧ0(E + iǫ)ť(E) (4.50)

Relation (4.50) is called the Lippmann-Schwinger equation (LSE) and will be the
object of our three dimensional calculations. Further considerations involving
ť can lead to expressions for the cross section and other observables. This
discussion will not be presented here, the reader is referred to [45] for more
information.

The transition operator can also be asociated with an infinite series. It is
a simple task to check that the following infinite expansion follows equation
(4.50):

ť(E) = V̌ + V̌ Ǧ0(E + iǫ)V̌ + V̌ Ǧ0(E + iǫ)V̌ Ǧ0(E + iǫ)V̌ + (4.51)

We will later encounter this series when constructing the bound state of the
three-nucleon system. The series (4.51) known as the Neumann series is not
always convergent.

It is important to consider the case of the three-nucleon system with only 2N
interactions. In such systems we will typically split the problem and consider a
subset with two particles separated from the third ”spectator particle”. This will
allow us to use the 2N transition operator for 3N calculations. For a general 3N
system (with states from (4.26) and a non zero total momentum K) we define
ť3N (E3N) as:

〈p′q′K ′ | ť3N(E3N) | pqK〉 =

δ(q′ − q)δ(K ′ −K)〈p′ | ť(E2N = E3N −
3

4m
q2 − 1

6m
Ǩ2) | p〉, (4.52)

where E3N(2N) is the energy of the 3N (2N) system. For 3N systems with only
two interacting particles series (4.51) can also be associated with t3N (E3N).
This observation will lead us to identify the transition operator in 3N bound
state calculations. Most of the discussion in this chapter dealt with free states
that have the energy E2N > 0 and with the transition operator that is linked
to this energy. For bound states however, we will have to consider cases when

20

E2N < 0 and matrix elements of the transition operator between states with
various energies.

The discussion presented here is, as was mentioned at the beginning, meant
only to give an overall meaning of equations used in our further discussions. A
more complete introduction to quantum mechanical scattering can be found in
[45, 46, 47]. In order to solve the LSE additional constraints have to be put on
the operator form of the 2N potential, Chapter 7 discusses this in detail. The
resulting equations constitute a liner system. Due to the large dimensions of
operators involved, special methods have to be used. Appendix A introduces
algorithms used in our numerical treatment of large linear operators.

4.3 Equations for the 2N and 3N bound states

This chapter introduces the basic constituents of bound state calculations. We
start with a discussion for two particles and then go on to the different forms
of bound state integral equations for the three particle system. We will use 2N,
3N to mark two-nucleon and three-nucleon calculations.

The bound state equation for the two-particle system has the familiar form:
(

Ȟ0 + V̌
)

| Ψ2N 〉 = E | Ψ2N 〉, (4.53)

with | Ψ2N 〉 being the two-particle wave function, Ȟ0 being the free Hamiltonian
(for example (4.8)), V̌ being the 2N potential (invariant under the exchange of
the particles) and E < 0 being the bound state energy. Equation (4.53) can be
written in an integral form:

| Ψ2N 〉 =
(

E − Ȟ0

)−1
V̌ | Ψ2N 〉 (4.54)

or in a more compact form using the free propagator introduced earlier (4.43):

| Ψ2N 〉 = Ǧ0(E)V̌ | Ψ2N 〉 (4.55)

The solution to (4.55) can be found by considering a similar eigen equation:

Ǎ(E) | Ψ〉 = λ | Ψ〉 (4.56)

with Ǎ(E) = Ǧ0(E)V̌ and | Ψ〉 =| Ψ2N 〉. If a solution of (4.56) - | Ψ2N
bound〉 is

found for an energy E = E2N
bound < 0 such that λ = 1 then this solution it is also

a solution of (4.53) and (4.55). This method of calculating the bound state is
going to be used also for three particle calculations but with a different form of
Ǎ(E).

The bound state equation for the 3N system has the form:
(

Ȟ0 +

3
∑

i=1

V̌i

)

| Ψ3N 〉 = E | Ψ3N 〉 (4.57)

where | Ψ3N 〉 is the three particle wave function, E < 0 is the bound state
energy and H0 is the free Hamiltonian (for example (4.19)). Finally V̌i are
the two-nucleon potential operators (that are symmetric under the exchange of
particles j and k such that i 6= j 6= k 6= i). Equation (4.57) can be rewritten:

| Ψ3N 〉 = (E − Ȟ0)−1
3
∑

i=1

V̌i | Ψ3N 〉 ≡
3
∑

i=1

| ψ3N
i 〉 (4.58)

21

where | ψ3N
i 〉 is a Faddeev component of the wave function. With the definition

of the free propagator (4.43) the Faddeev component satisfies:

| ψ3N
i 〉 ≡ Ǧ0(E)V̌i | Ψ3N 〉. (4.59)

Using the symmetries of V̌i and considering identical particles it can easily be
checked that it has the following symmetry properties (see for example [45, 46]):

| ψ3N
2 〉 = P̌12P̌23 | ψ3N

1 〉 (4.60)

| ψ3N
3 〉 = P̌13P̌23 | ψ3N

1 〉 (4.61)

where P̌ij is a permutation operator exchanging particles i and j.
Equations (4.60) and (4.61) can be used to rewrite equation (4.59) for a

single Faddeev component:

| ψ3N 〉 = Ǧ0(E)V̌
(

| ψ3N 〉+ P̌12P̌23 | ψ3N 〉+ P̌13P̌23 | ψ3N 〉
)

≡ Ǧ0(E)V̌
(

1̌ + P̌
)

| ψ3N 〉 (4.62)

where the 1 in | ψ3N
1 〉 and V̌1 was dropped and we introduce the permutation

operator:
P̌ = P̌12P̌23 + P̌13P̌23. (4.63)

The solution to (4.62) can be found considering (4.56) with with

Ǎ(E) = Ǧ0(E)V̌
(

1̌ + P̌
)

and | Ψ〉 =| ψ3N 〉. If a solution | ψ3N
Faddeev〉 is found for an energy E = E3N

bound < 0
such that λ = 1 then this solution it is also a solution of (4.59) and the full bound
state of the 3N system can be obtained using:

| Ψ3N
bound〉 =

(

1̌ + P̌
)

| ψ3N
Faddeev〉 (4.64)

The introduction of 3N forces (or three particle forces) transforms the bound
state equation:

(

Ȟ0 +

3
∑

i=1

V̌i +

3
∑

i=1

V̌ (i)

)

| Ψ3N 〉 = E | Ψ3N 〉 (4.65)

where V̌ (i) is that part of the 3NF that is symmetric under the exchange of
particles j and k such that i 6= j 6= k 6= i. Symmetry considerations used in
the case without the 3NF can be repeated and result in a new equation for the
Faddeev component:

| ψ3N 〉 = Ǧ0(E)V̌
(

1̌ + P̌
)

| ψ3N 〉+ Ǧ0(E)V̌ (1)
(

1̌ + P̌
)

| ψ3N 〉 (4.66)

The solution to (4.66) can be found using (4.56) with Ǎ(E) = Ǧ0(E)V̌ (1̌+ P̌)+
Ǧ0(E)V̌ (1)(1̌ + P̌).

An alternative approach to finding the bound state of the three particle
system utilizes the transition operator. This approach is not explored in this
thesis but was described in [35]. Equation (4.57) can be written as:

| ψ3N 〉 =
(

1̌− Ǧ0(E)V̌
)−1

Ǧ0(E)V̌ P̌ | ψ3N 〉 (4.67)

22

The right side of this equation can be expanded:

(

1̌− Ǧ0(E)V̌
)−1

Ǧ0(E)V̌ =
(

1̌ + Ǧ0(E)V̌ + Ǧ0(E)V̌ Ǧ0(E)V̌ + . . .
)

Ǧ0(E)V̌ =

Ǧ0(E)
(

V̌ + V̌ Ǧ0(E)V̌ + V̌ Ǧ0(E)V̌ Ǧ0(E)V + . . .
)

≡
Ǧ0(E)ť3N (E) (4.68)

We identify in (4.68) the same expansion as in (4.51), because we are dealing
with the first Faddeev component (particle 1 is the spectator) we substitute
ť3N (E) from (4.52) in the last line. In this case however, there is no guarantee
that the energy argument of the two-nucleon transition operator from (4.52) will
be positive. The transition operator satisfying the LSE (4.50) will be calculated
for a negative value of E (see for example [45, 46]), this will in some cases lead
to singularities (see for example [46]). Equation (4.67) can be rewritten using
ť3N :

| ψ3N 〉 = Ǧ0(E)ť3N (E)P̌ | ψ3N 〉 (4.69)

and solved using (4.56) with A(E) = Ǧ0(E)ť3N (E)P̌ .
The introduction of the three-nucleon force (3NF) into the time independent

Schrödinger equation leads to additional terms in (4.69):

| ψ3N 〉 = Ǧ0(E)ť3N (E)P̌ | ψ3N 〉+
(

1̌− Ǧ0(E)V̌
)−1

Ǧ0(E)V̌ (1)(1̌ + P̌) | ψ3N 〉
(4.70)

Using an expansion similar to (4.68) we arrive at the following version of the
bound state equation, with the transition operator:

| ψ3N 〉 = Ǧ0(E)ť3N (E)P̌ | ψ3N 〉+
(

1̌ + Ǧ0(E)ť3N (E)
)

Ǧ0(E)V (1)(1̌+P̌) | ψ3N 〉
(4.71)

In the above equations for the 3N bound state, the transition operator acts
in the three particle space. It is however, constructed entirely from two particle
operators and a relation between the 3N and 2N representations of the transition
operator can easily be worked out (see for example [45, 46]) and is shown in
Chapter 7.

Equations (4.55) , (4.62) and (4.66) will be the basic constituents of our
three dimensional calculations. We will not explore equations (4.69) and (4.71)
for the bound state calculations that involve the transition operator - this path
is described for example in [35]. In order to solve the equations additional
constraints have to be put on the operator form of the bound state (both for
the 2N and 3N system) - Chapters 6 and 10 discuss this in detail. The resulting
equations (similarly as in the case of the transition operator) will constitute a
liner system, more precisely a linear eigen system. The dimensions of operators
involved will make it necessity to use Krylov subspace methods from Appendix
A in order to construct a numerical realization.

4.4 Numerical realization of 2N and 3N states
and operators

Having introduced the basic equations governing scattering and bound state
calculations, we now consider in detail the matrix representation of the relevant

23

states and operators. As described in Chapter 4.1 the proton and the neutron
are assumed to be two different charge states of the same particle - the nucleon.
We introduced the general basis isospin (spin) states for the 2N and 3N system
in equations (4.2) and (4.3). For 2N systems there are 4 possible spin and 4
possible isospin basis states arising from the different values of the spin and
isospin projections ν1 and ν2 of the two particles. This allows us to write the
full isospin - spin state of the 2N system as a linear combination of 4× 4 = 16
tensor product basis states and the full 3N state as a combination of 64 basis
states. States and operators in the joined isospin - spin state space can therefore
be implemented as 16 or 64 dimensional vectors and matrices respectively.

This matrix representation can be constructed with the use of the Kronecker
Product (KP). The description of this operator can be found in most linear
algebra textbooks. For a set of two operators

[

Ǎ
]

,
[

B̌
]

, the KP can be used
to construct the matrix representation of the tensor product of two operators
[

Ǎ⊗ B̌
]

. If
[

Ǎ
]

=

(

A11 A12

A21 A22

)

acts in a space spanned by the two dimensional basis:

[

ê
A
1

]

=

(

1
0

)

[

ê
A
2

]

=

(

0
1

)

(4.72)

and
[

B̌
]

=

(

B11 B12

B21 B22

)

acts in a space spanned by the two dimensional basis:

[

ê
B
1

]

=

(

1
0

)

[

ê
B
2

]

=

(

0
1

)

(4.73)

then

[

Ǎ⊗ B̌
]

=









A11B11 A11B12 A12B11 A12B12

A11B21 A11B22 A12B21 A12B22

A21B11 A21B12 A22B11 A22B12

A21B21 A21B22 A22B21 A22B22









(4.74)

acting in the space:

[

ê
A⊗B
1

]

=









1
0
0
0









≡
[

ê
A
1 ⊗ ê

B
1

] [

ê
A⊗B
2

]

=









0
1
0
0









≡
[

ê
A
1 ⊗ ê

B
2

]

[

ê
A⊗B
3

]

=









0
0
1
0









≡
[

ê
A
2 ⊗ ê

B
1

] [

ê
A⊗B
4

]

=









0
0
0
1









≡
[

ê
A
2 ⊗ ê

B
2

]

(4.75)

is the matrix representation of the tensor product of operators Ǎ and B̌. Tensor
product states can be constructed in a similar matter. Let

[x] =

(

x1
x2

)

24

be a vector in (4.72) and

[y] =

(

x1
x2

)

be a vector in (4.73) then

[x⊗ y] =









x1y1
x1y2
x2y1
x2y2









.

is the matrix representation of the tensor product of x and y in the basis (4.75).
It can be seen how this can be used to construct (4.75) from (4.72) and (4.73).

In some cases it is better to consider only subsets of the full 2N, 3N isospin-
spin state. For the 2N and 3N systems we can create a number of different sets
of basis states using the KP. We would use a different basis when considering
only the spin space of a 2N system such as the deuteron and a different basis
when considering the full 3N state with isospin and spin. Different choices for
the sets of basis states are listed in the Appendix in tables E.1, E.2, E.3, E.4,
E.5, E.6 and will be referred to when necessary. These tables can serve as a
template to check the matrix form of operators and states, a useful tool because
the KP is sensitive to the order of its operands.

Additional definitions for the scalar and vector products together with the
built in Mathematica R© [38] definitions for the KP or Clebsch-Gordan coefficients
made it possible to create a simple tool that can be used to construct all isospin
- spin operators and states that are used in this thesis. Appendix B contains
a description of the tools in the util1N2N3N.m Mathematica R© [38] package
(supplied with this thesis), this chapter contains a simple tutorial.

Two operators deserve special attention due to their frequent presence in
our calculations. The first one is the permutation operator, exchanging two
particles. The second operator - the projection operator - will be important
when considering the disintegration of the deuteron.

The permutation operator can not be constructed using the KP because it
acts simultaniously on the degrees of freedom of all the particles. In isospin
(spin) space we will write out its matrix form explicitly (all the following defi-
nitions can be obtained using util1N2N3N.m). For the 2N system in basis from
table E.5 the operator exchanging particles 1 and 2 has the following matrix
representation:

[

P̌12

]2Nspin
=
[

P̌12

]2Nisospin
=









1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1









(4.76)

For the 3N system we have three permutation operators, in the basis from table

25

E.6 they can be impemented as:

[

P̌12

]3Nspin
=
[

P̌12

]3Nisospin
=

























1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

























(4.77)

[

P̌23

]3Nspin
=
[

P̌23

]3Nisospin
=

























1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1

























(4.78)

[

P̌13

]3Nspin
=
[

P̌13

]3Nisospin
=

























1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0
0 1 0 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1

























(4.79)

The permutation operators should act simultaneously on the spin and isospin
of the 2N and 3N systems. 16 and 64 dimensional matrices acting in the joined
isospin - spin basis from tables E.2 and E.3 can be constructed using the KP
because permutations do not mix isospin and spin degrees of freedom.

The action of the permutation operator in momentum space of the 2N system
is straightforward. The exchange of two particles transforms single particle
momentum eigenstates (4.14) in the following manner:

P̌12 | k1k2〉 =| k2k2〉 (4.80)

It follows that for relative and total momentum eigenstates (4.9):

P̌12 | pK〉 =| −pK〉. (4.81)

For 3N systems the action of the permutation operators on single particle mo-
mentum eigenstates is still simple:

P̌12 | k1k2k3〉 =| k2k2k3〉, (4.82)

P̌23 | k1k2k3〉 =| k1k3k2〉, (4.83)

P̌13 | k1k2k3〉 =| k3k2k1〉. (4.84)

26

With Jacobi momentum states the problem is more complicated. For the first
set in (4.20), (4.21):

P̌12 | pqK〉1 =| 1

4
(2p + 3q) p− q

2
〉1, (4.85)

P̌23 | pqK〉1 =| −p q〉1, (4.86)

P̌13 | pqK〉1 =| 1

4
(2p− 3q) − p− q

2
〉1. (4.87)

For the second set in (4.22), (4.23):

P̌12 | pqK〉2 =| 1

4
(2p− 3q) − p− q

2
〉2, (4.88)

P̌23 | pqK〉2 =| 1

4
(2p + 3q) p− q

2
〉2, (4.89)

P̌13 | pqK〉2 =| −p q〉2. (4.90)

For the third set in (4.24), (4.25):

P̌12 | pqK〉3 =| −p q〉3, (4.91)

P̌23 | pqK〉3 =| 1

4
(2p− 3q) − p− q

2
〉3, (4.92)

P̌13 | pqK〉3 =| 1

4
(2p + 3q) p− q

2
〉3. (4.93)

Package util1N2N3N.m contains definitions for all the three sets of Jacobi mo-
menta permutations. Interesting examples with the use of these definitions can
be found in Appendix B.

The projection operator Čγ =| γ〉〈γ | onto one of the 4 possible 2N isospin
states:

| γ1〉 = | J = 0,M = 0〉,
| γ2〉 = | J = 1,M = −1〉,
| γ3〉 = | J = 1,M = 0〉,
| γ4〉 = | J = 1,M = 1〉 (4.94)

(with the isospin of the two particles coupled to a total isospin J with projection
M) will be useful for our few-body calculations. In order to construct a matrix
representation of Č it is necessary to first introduce the 4× 4 orthogonal basis
change matrix [β]

4×4
whose rows are simply matrix representations of [| γ1...4〉]4:

[β]
4×4

=









[| J = 0,M = 0〉]
[| J = 1,M = −1〉]
[| J = 1,M = 0〉]
[| J = 1,M = 1〉]









=









0 1√
2
− 1√

2
0

0 0 0 1
0 1√

2
1√
2

0

1 0 0 0









(4.95)

and the cast 4× 4 matrix [M(i)]
4×4

that is zero everywhere except on the (i, i)
position on its diagonal. The matrix representation of Čγ in isospin basis (E.5)
is then:

[

Č(γi)
]2Nisospin

= [β†][M(i)][β]. (4.96)

27

In particular:

[

Čγ1

]2Nisospin
=









0 0 0 0
0 1

2 − 1
2 0

0 − 1
2

1
2 0

0 0 0 0









[

Čγ2

]2Nisospin
=









0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1









[

Čγ3

]2Nisospin
=









0 0 0 0
0 1

2
1
2 0

0 1
2

1
2 0

0 0 0 0









[

Čγ4

]2Nisospin
=









1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0









.

The Č(γ) operator can also be written in the joined isospin-spin basis from
table E.2. It will be an identity operator (1̌) in spin space. The 16× 16 matrix
representation can be constructed using the KP:

[C(γi)]
2N

= [C(γi)]
2Nisospin ⊗ [1]

2Nspin
(4.97)

from two 4×4 matrices using the Mathematica R© definitions from util1N2N3N.m.
In a similar fashion using the KP, a representation in the full 3N isospin-spin
space can be created.

What remains is to find a momentum space representation of the free prop-
agator Ǧ0 from 4.43. With the definitions from equations (4.8) and (4.19) we
can directly write out the matrix elements for the 2N system:

〈p′K ′ | Ǧ0(E) | pK〉 = δ3(p′ − p)δ3(K ′ −K)
1

E − p2

m − K2

4m

(4.98)

and for the 3N system:

〈p′q′K ′ | Ǧ0(E) | pqK〉 =

δ3(p′ − p)δ3(q′ − q)δ3(K ′ −K)
1

E − p2

m −
3q2

4m − K2

6m

. (4.99)

At this point we would like to again suggest that the reader skip to the final
parts of this thesis (Appendixes B and C). The simple tutorials contained in
those chapters are aimed to familiarize the reader with the util1N2N3N.m and
FunctionArray.m Mathematica R© [38] packages that are supplied with this thesis.
The packages can be used to produce working FORTRAN implementations of
the building blocks of the calculations that are the subject of the remainder of
this thesis and the example notebooks in

PROGRAMS/

28

Chapter 5

Decomposition of the 2N
potential operator

It can be shown [48] that the isospin projected, momentum space matrix ele-
ments of the 2N potential (which are still operators in the 2N spin space) can be
written as a linear combination of six operators w̌i(p

′,p) and scalar functions
vtmt

i :

[

〈p′ | V̌ | p〉
]2Nspin

=

6
∑

i=1

vtmt

i (|p′|, |p|, p̂′ · p̂) [w̌i(p
′,p)]

2Nspin
, (5.1)

where the w̌i operators are defined as follows:

w̌1(p′,p) = 1̌,

w̌2(p′,p) = σ̌(1) · σ̌(2),

w̌3(p′,p) = i(σ̌(1) + σ̌(2)) · (p̂× p̂
′),

w̌4(p′,p) = σ̌(1) · (p̂× p̂
′) σ̌(2) · (p̂× p̂

′),

w̌5(p′,p) = σ̌(1) · (p̂′ + p̂) σ̌(2) · (p̂′ + p̂),

w̌6(p′,p) = σ̌(1) · (p̂′ − p̂) σ̌(2) · (p̂′ − p̂) (5.2)

and the tmt index indicates that the transition operator matrix element is taken
between states in which the individual isospins are coupled to the total isospin
t with the projection mt (the 2N potential operator does not allow isospin
mixing). This decomposition (5.2) is not unique and stems from the necessity
for the potential to follow the usual symmetries of pairity, time reversal and
charge conjugation. The set (5.2) will be used throughout this thesis. A matrix
implementation of these operators is available in util1N2N3N.m Mathematica R©

package.
The decomposition given in (5.1) and especially the scalar functions that

fully determine the potential serve as a basic input for most of our calculations.
For this reason an algorithm is sometimes needed to turn potential operators
given in the form of operators into a set of six scalar functions from (5.1).
The basic idea behind our method of decomposition is to turn (5.1) into a
typical linear problem that can be solved using a matrix representation. In
the unmodified form equation (5.1) has operators on both sides. Each operator

29

acts in the 2N spin space and is an element of a vector space spanned by 16
operators. If the matrix representation of these 16 operators is chosen to be:









1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0









,









0 1 0 0
0 0 0 0
0 0 0 0
0 0 0 0









, . . . ,









0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1









(5.3)

then the coordinates of any operator from (5.1) in this 16 dimensional basis can
be obtained by flattening out the its matrix representation. For example, if

[

〈p′ | V̌ | p〉
]2Nspin

=









a b c d
e f g h
i j k l
m n o p









then the coordinates of the potential in (5.3) are:

(a, b, c, d, e, f, g, h, i, j, k, l,m, n, o, p).

With this simple observation, in order to perform the decomposition, all we
need to deal with is a straightforward 16 dimensional linear problem.

5.1 Practical implementation

We will present the decomposition procedure using an example but the following
method can be used with any potential in operator form of this type. We tried
very hard to keep the discussion of Mathematica R© code limited to the final
chapters of the text. For the present moment, however, we will not adhere to
this goal. If the reader is not familiar with Mathematica R© and the packages
that are described in the final parts of this thesis, he can feel free to skip this
section and come back to it later. For our illustration we will be using the Bonn
B potential from Appendix D in [15] and definitions from the util1N2N3N.m

package. Details on this package along with a short tutorial are available in
Appendix B. It is recommended that Appendix B be read before continuing to
analyze our decomposition procedure.

The full Bonn B potential is a combination of expressions arising from the
exchange of pseudo-scalar (ps), scalar and vector mesons. For demonstration
purposes we will use the ps part of the potential. The matrix element in mo-
mentum space of this fragment is a spin operator in the 2N spin space and has
the form:

[

〈p′ | V̌ps | p〉
]2Nspin

=
g2ps

(2π)34m2

√

m

E′

√

m

E

F 2
ps[(p

′ − p)2]

(p′ − p)2 +m2
ps

[

Ǒps

]2Nspin

W ′W
,

(5.4)
with the only non-scalar object in this expression being

[

Ǒps

]

, it is a tensor
product of two spin operators acting in the spaces of the two individual particles:

[

Ǒ
]

ps
= 4m2W ′W

[

ˇ̄u(p′)γ5ǔ(p)
]1Nspin ⊗

[

ˇ̄u(−p′)γ5ǔ(−p)
]1Nspin

. (5.5)

In this context γ are the Dirac matrices. Operator (5.5) with E =
√

m2 + p2,

E′ =

√

m2 + p′2, W = m+E, W ′ = m+E′ and m being the mass of the nucleon

30

will be the subject of our decomposition. Notation used here will be consistent
with [49]. Note however that in our definition of ǔ the two-dimensional spinors
χs are stripped off:

ǔ(p) =

√

E +m

2m

(

[

1̌
]2Nspin

[

σ·p
2m

]2Nspin

)

. (5.6)

In this way ǔ becomes a spin operator. As usual, the adjoint operator is:

ˇ̄u = ǔ†γ0. (5.7)

Codes for the decomposition procedure are available in

PROGRAMS/decomposition/nb/decomposition.nb.

At this point in the text we strongly suggest skipping to the final Appendixes
B and C. The simple tutorials that they present can be used to understand the
following procedure.

At the start, basic definitions are evaluated in consistency with [49]. Most
importantly the spinor u[p] is defined using the SIGMA1N and id1N definitions
from util1N2N3N.m (see Appendix B). SIGMA1N is a vector, with its components
being Pauli matrices and id1N is the two dimensional identity matrix. We also
give definitions for the metric g, α and γ matrices that can be used to check the
properties of u[p].

31

Next additional definitions useful when using Mathematica R© [38] simplifica-
tion procedures are evaluated. It is useful to set the components of P , Q and the
normalization WP , WQ as real. This is achieved by changing the $Assumptions

variable, when Mathematica R© attempts to evaluate FullSimplify on an ex-
pression it will look at this variable and use its definition in the simplification.

The first step of the decomposition consists of the construction of the matrix

representation of
[

Ǒps

]2Nspin
and the set of six operators [w̌i(p

′,p)]
2Nspin

. This
is a simple task with the definitions from the util1N2N3N.m package as can be
seen below:

W2N gives the matrix representation of [w̌] and the potential matrix represen-
tation is defined with Ops. The resulting matrices are flattened creating from
4× 4 matrices 16 dimensional vectors. Flattening the matrices allows the con-
struction of a linear system [W]

16×6
[x]

6
= [V]

16
for the 6 scalar coefficients of

(5.1) in [x], here [W] (symbol Wtable) is a matrix created from the 6 columns
- flattened [w̌i(q,p)] matrices and [V] (in Mathematica R© Ops//Flatten) is the
flattened

[

Ǒps

]

matrix.

32

The resulting set of linear equations can be solved:

giving, in agreement with [15], the final result. An additional advantage of using
this type of procedure is the automatic test of the symmetries of the potential. If
the potential does not have the appropriate symmetries (parity, time reversal)
then the system of equations does not have a solution and Mathemaica will
throw an error message.

The remaining parts of the Bonn B potential are decomposed in

PROGRAMS/decomposition/nb/fulldecomposition.nb.

This notebook contains definitions for all the parts of the Bonn B potential and
uses the FunctionArray.m package to create FORTRAN code with the scalar
coefficients. The scalar coefficients for the Bonn B potential from [15] are also
gathered in Appendix E.

Equation (5.1) neglects the isospin degrees of freedom of the 2N system. In
a more general case this decomposition has the form:

[

〈p′ | V̌ | p〉
]2N

=
6
∑

i=1

4
∑

γ=1

vγi (|p′|, |p|, p̂′ · p̂) [w̌γ
i (p′,p)]

2N
(5.8)

with the [w̌γ
i]

2N
operators acting in the full isospin - spin space of the 2N system

and γ is one of the 4 possible 2N isospin states (with the isospin of the two

33

particles coupled to a total isospin t with projection mt):

| γ1〉 =| t = 0,mt = 0〉,
| γ2〉 =| t = 1,mt = −1〉,
| γ3〉 =| t = 1,mt = 0〉,
| γ4〉 =| t = 1,mt = 1〉. (5.9)

The isospin part of [w̌γ
i]

2N
is a cast operator from (4.96):

[w̌γi

i (p′,p)]
2N

=
[

Č(γi)
]2Nisospin ⊗ [w̌i(p

′,p)]
2Nspin

(5.10)

The form of (5.8) allows for isospin dependence and enables us to consider each
isospin case separatly (| γ1〉 - neutron, proton; | γ3〉 - neutron, proton; | γ2〉 -
neutron, neutron and | γ4〉 - proton, proton).

Typically the operator form of 2N potentials is given in literature in a way
that makes it easy to project out an appropriate isospin part. When this in not
obvious, the decomposition procedure described earlier can still be used. This
will require the use of 16×16 dimensional matrices and 256 dimensional flattened
vectors instead of the earlier 4×4 matrices and 16 dimensional flattened vectors.
Due to the much higher order of the linear equations it can be expected that
the time of the computation in Mathematica R© and memory requirements will
grow substantially.

34

Chapter 6

Calculation of the 2N
bound state in three
dimensions

Additional constraints (taking into account, along with other properties, the
positive parity of the deuteron) on the deuteron wave function can be used
to turn equation (4.55) into a form that can directly be used in numerical
calculations. The deuteron bound state wave function in the CM (center of
mass) reference frame can be written in an operator form (see for example [22]):

| Ψ(md)〉 =

=

∫

d3p

(

φ1(|p|)
[

1̌
]2Nspin

+ φ2(|p|)
[

σ̌(1) · pσ̌(2) · p− 1

3
p21̌

]2Nspin
)

| pK = 0〉 ⊗ [| 1md〉]2Nspin

≡
∫

d3p

2
∑

k=1

φk(|p|)
[

b̌k(p)
]

| pK = 0〉 ⊗ [| 1md〉] , (6.1)

where | 1md〉 is a two-nucleon spin state in which the spins of the two nucleons
are coupled to the total spin 1 with a projection md, p is the relative momen-
tum of the two nucleons (the total momentum K is zero), φ1(|p|) , φ2(|p|)
are scalar functions of the relative deuteron momentum magnitude and

[

b̌k(p)
]

are operators acting in the spin space of the two nucleons. In the last line of
equation (6.1) we introduce the definitions for spin operators b̌1(p) and b̌2(p).
The isospin state of this system is 0 and in the following discussion this in-
formation will be suppressed. All operators acting in the spin space of the
two particles together with the two particle spin states in (6.1) can easily be
implemented as 4 × 4 matrices and 4 dimensional vectors with the use of the
util1N2N3N.m Mathematica R© package (appendix B gives a description of this
package). Further details on notebooks that are supplied with this thesis and
that create FORTRAN code that can be used in the numerical realization of
deuteron calculations can be found in Appendix D.

Finding a solution to (4.55) for the deuteron bound state is equivalent to
calculating the form of φ1, φ2 functions. In order to arrive at the equations for

35

these scalar functions it is necessary to remove the spin dependencies with the
use of (5.1). Equation (4.55) rewritten using (6.1) and (5.1) has the following
form:

2
∑

k′=1

φk′(|p|)
[

b̌k′(p)
]

[| 1md〉] =

∫

d3p′
2
∑

k′′=1

6
∑

j=1

1

Ed − p2

m

φk′′(|p′|)v00j (|p|, |p′|, p̂ · p̂′) [w̌j(p,p
′)]
[

b̌k′′(p′)
]

[| 1md〉] (6.2)

where Ed is the deuteron binding energy (because the binding energy is negative
the limit of ǫ → 0+ can be safely carried out). The spin dependency in (6.2)
can be removed by projecting from the left with [〈1md |]

[

b̌k(p)
]

and summing
over md. With the introduction of two new functions:

Ad
k′k(p) =

1
∑

md=−1

[〈1md |]
[

b̌k′(p)
] [

b̌k(p)
]

[| 1md〉] (6.3)

and

Bd
k′jk(p,p′) =

1
∑

md=−1

[〈1md |]
[

b̌k′(p)
]

[w̌j(p,p
′)]
[

b̌k(p′)
]

[| 1md〉] , (6.4)

equation (6.2) turns into (see also [15]):

2
∑

k′=1

Ad
kk′(p)φk′(|p|) =

1

Ed − p2

m

∫

d3p′
6
∑

j=1

v00j (|p|, |p′|, p̂ · p̂′)

2
∑

k′′=1

Bd
kjk′′(p,p′)φk′′(|p′|) . (6.5)

This can be rewritten in a more compact form:

φq(|p|) =

1

Ed − p2

m

∫

d3p′
6
∑

j=1

v00j (p,p′)
2
∑

k′′=1
(

∑

k

(

Ad(p)
)−1

qk
Bd

kjk′′(p,p′)

)

φk′′(|p′|) (6.6)

where
(

Ad(p)
)−1

qk
is defined such that:

∑

k

(

Ad(p)
)−1

qk
Ad

kk′(p) ≡ δqk′ (6.7)

or in the operator form:

φq(|p|) = ((Ǎd)−1B̌(Ed)φ)q(|p|) ≡ (Ǩd(Ed)φ)q(|p|). (6.8)

36

Expressions for Ad
k′k(p), Bd

k′jk(p,p′) and
(

Ad(p)
)−1

qk
from equations (6.3),(6.4)

and (6.7) have a FORTRAN implementation that is supplied with this thesis
and described in section D.1.

Relation (6.8) is a linear eigenequation (in the space of scalar functions of
one real variable) for φ1(|p|) and φ2(|p|) of the type discussed in (4.56) with the
operator Ǎ(Ed) = Ǩd(Ed) defined by the way it acts on the scalar functions:

(

Ǩd(Ed)φ
)

q
(|p|) =

1

Ed − p2

m

∫

d3p′
6
∑

j=1

v00j (p,p′)

2
∑

k′′=1

(

∑

k

(

Ad(p)
)−1

qk
Bd

kjk′′(p,p′)

)

φk′′(|p′|), (6.9)

The realization that in the above equations we use only linear operators
is important because Krylov subspace methods, such as the Arnoldi iteration
procedure described in section A.2 can be used. For larger problems this will lead
to a dramatic decrease in the dimension of the problem. If we were to discretize
φ1, φ2 over a grid of, say, 100 points |p|, then in order to solve (6.2) we would
have to work with 200 dimensional vectors. After the Arnoldi procedure we can
reduce this dimension to, say 40. Clearly, in the case of the deuteron bound
state, this reduction is not necessary. The 200 linear equations can easily be
solved using a modern personal computer and we used this calculation as a test
of the Arnoldi iteration scheme. In the case of the 3N bound state, with the
dimension of the discretized function-vectors defining the bound state of the
order 106 a reduction of the problem to, say 40 dimensions is very valuable and
allows the use of classical algorithms for linear algebra problems (gathered for
example in the LAPACK library). Another advantage of using Krylov methods
is that an explicit matrix representation of linear operators is not necessary. For
the deuteron and the transition operator such a representation is available, for
the three-nucleon bound state the possibility to construct the implementation
of the linear operators directly from sums and integrals is crucial as the task of
finding the matrix representation is very difficult.

As mentioned before, one way to approach

φ = Ǩd(Ed)φ (6.10)

is to construct a Krylov subspace projection of Ǩd. Using the Arnoldi algorithm
described in A.2 we can reduce (6.6) to a (say) 40×40 matrix eigenequation that
can be solved using classical methods of linear algebra. Numerous equations (in
the from from equation (4.56) - Ǩd(E)φ = λφ) are constructed for different
values of E, when a solution with λ sufficiently close to 1 is found, E is an
approximation of the bound state energy.

Additional speed up of the calculation can be achieved by considering the
following parametrization of vectors in Ǩd(Ed) from equation (6.9):

p = |p|(0, 0, 1)

p′ = |p′|(cos(Φ)
√

1− x2, sin(Φ)
√

1− x2, x) (6.11)

37

with Φ ∈ (0, 2π) and x ∈ (−1, 1). Using (6.11) the integral over p′ turns into:

∫

d3p′ →
∫ ∞

0

d|p′||p′|2
∫ 2π

0

dΦ

∫ 1

−1

dx. (6.12)

The integral over Φ can be done immediately as there is no Φ dependence in
the integrated function - all arguments depend on p · p′ = x. Furthermore the
integral over x can be done beforehand and stored in a table - φk′′(|p′|) does
not depend on x.

In our calculations we use a chiral NNLO 2N potential [37] with Λ =
600[MeV] and Λ̃ = 700[MeV] , the operator form of this potential can be found
in Appendix C of [15]. Figure 6.1 contains a plot of the eigenvalues closest to
1 for different test values of Ed. It can be concluded from the calculations that
the bound state energy for the deuteron system is −2.2001[MeV]. Figures 6.2
contain plots of scalar functions φ1(|p|) and φ2(|p|) for different values of the
relative momentum magnitude.

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

-2.4 -2.3 -2.2 -2.1 -2.0

0.985

0.990

0.995

1.000

1.005

1.010

1.015

Ed @MeVD

Λ

Figure 6.1: Values of λ from equation (4.56) for different values of Ed. The cal-
culations were performed for the chiral NNLO potential [37] with Λ = 600[MeV]
and Λ̃ = 700[MeV]. The circles mark points used in the calculation, the solid
line is interpolated from these points.

38

ææ

æ

æ

æ

æ

æ

æ

æ

æ
æ
æ æ æ æ æ æ æ æ æ ææææææ æ æ

0.0 0.5 1.0 1.5 2.0

-3.5

-3.0

-2.5

-2.0

-1.5

-1.0

-0.5

0.0

ÈpÈ@1�fmD

Φ
1
HÈ
pÈ
L@

fm
3�

2
D

ææ

æ

æ

æ

æ

æ

æ

æ

æ
æ
æ æ æ æ æ æ æ æ æ ææææææ æ æ

0.0 0.5 1.0 1.5 2.0
0.0

0.5

1.0

1.5

ÈpÈ@1�fmD

Φ
2
HÈ
pÈ
L@

fm
-

1�
2
D

Figure 6.2: φ1, φ2 for Ed = −2.2001[MeV]. The calculations were performed
for the chiral NNLO potential [37] with Λ = 600[MeV] and Λ̃ = 700[MeV]. The
circles mark points used in the calculation, the solid line is interpolated from
these points.

We also performed calculations with the older Bonn B one-boson-exchange
potential from [10]. The results differ slightly from the NNLO case, the calcu-
lated energy is lower at −2.2242[MeV]. The range of the potential is larger but
the resulting scalar functions are very similar to the NNLO case as can be seen
in Figure 6.3.

æ
æ

æ

æ

æ

æ

æ

æ

æ
æ

æ æ æ æ æ æ

0.0 0.5 1.0 1.5 2.0

-3.5

-3.0

-2.5

-2.0

-1.5

-1.0

-0.5

0.0

ÈpÈ@1�fmD

Φ
1
HÈ
pÈ
L@

fm
3�

2
D

ææ

æ

æ

æ

æ

æ

æ

æ
æ æ æ æ æ æ æ

0.0 0.5 1.0 1.5 2.0
0.0

0.5

1.0

1.5

ÈpÈ@1�fmD

Φ
2
HÈ
pÈ
L@

fm
-

1�
2
D

Figure 6.3: φ1, φ2 for Ed = −2.2242[MeV]. The calculations were performed
for the one-boson-exchange Bonn B potential [10]. The circles mark points used
in the calculation, the solid line is interpolated from these points.

The scalar functions φ1, φ2 are directly related to the s (ψ0) and d (ψ2)
wave component of the deuteron wave function. The relation is [22]:

ψ0(|p|) =
√

4πφ1(|p|), (6.13)

ψ2(|p|) =
4
√

2|p|2
3

φ2(|p|). (6.14)

Using this information in Figures 6.4 and 6.5 we compare the three dimensional
approach that was the subject of this chapter with partial wave results. A very
good agreement is observed between both methods.

39

 0

 2

 4

 6

 8

 10

 12

 14

 0 0.5 1 1.5 2

 ψ
0

(p
)

[fm
3/

2]

 p [fm-1]

-0.25

-0.2

-0.15

-0.1

-0.05

 0

 0 1 2 3 4

 ψ
2

(p
)

[fm
3/

2]

 p [fm-1]

Figure 6.4: The s (left) and d (right) wave component of the deuteron wave
function as a function of the relative momentum. Crosses are results obtained
using the three-dimensional approach and the solid line represents results ob-
tained using the standard partial wave approach. For this case the chiral NNLO
potential [37] was used. Results reprinted from our paper [15].

 0

 2

 4

 6

 8

 10

 12

 14

 0 0.5 1 1.5 2

 ψ
0

(p
)

[fm
3/

2]

 p [fm-1]

-0.25

-0.2

-0.15

-0.1

-0.05

 0

 0 1 2 3 4

 ψ
2

(p
)

[fm
3/

2]

 p [fm-1]

Figure 6.5: The s (left) and d (right) wave component of the deuteron wave
function as a function of the relative momentum. Crosses are results obtained
using the three-dimensional approach and the solid line represents results ob-
tained using the standard partial wave approach. For this case the Bonn B [10]
was used. Results reprinted from our paper [15].

40

Chapter 7

Calculation of the 2N
transition operator in three
dimensions

The transition operator ť is, as was shown in section 4.2, an important element
of nucleon - nucleon scattering calculations. All relevant observables in the 2N
scattering process can be linked to the transition operator (see for example [45]).
In some cases, for example when constructing 3N bound state calculations (3N
bound state calculations that involve the transition operator are discussed in
[23, 35]) there is a need to calculate the 3N matrix elements of the transition
operator acting within a 2N system and assuming only 2N interactions (the
third particle being a ”spectator”). The 3N projected transition operator can
be related to the 2N subsystem ť operator. This relation is not hard to work
out (see for example [46]), the matrix element in momentum space (operator in
isospin - spin space) will have the form in equation (4.52):

〈p′q′K ′ | ť3N(E) | pqK〉 =

δ(q′ − q)δ(K ′ −K)〈p′ | ť(E − 3

4m
q2 − 1

6m
Ǩ2) | p〉, (7.1)

where ť(E − 3
4mq2 − 1

6mǨ
2) is the 2N transition operator calculated for the

energy of the two particle subsystem in CM.

Looking at the form of the Lippman Schwinger equation (4.50) we can expect
the 2N transition operator to follow a decomposition similar to (5.8):

[

〈p′ | ť(E) | p〉
]2N

=

4
∑

γ=1

6
∑

i=1

tγi (E, |p′|, |p|, p̂′ · p̂)
[

Č(γ)⊗ w̌i(p
′,p)

]2N
, (7.2)

where we used the projection Č(γ) operator and isospin states (γ = 1, 2, 3, 4)
from (4.96) and assumed that the transition operator does not mix isospin states.
In this form the transition operator is fully determined by the 6 × 4 scalar
functions

tγi (E, |p′|, |p|, p̂′ · p̂)

41

and the Lippman-Schwinger equation can be written in full detail:

6
∑

j=1

tγj (E, |p′|, |p|, p̂′ · p̂) [w̌j(p
′,p)]

2Nspin
=

6
∑

j=1

vγj (|p′|, |p|, p̂′ · p̂) [w̌j(p
′,p)]

2Nspin
+

∫

d3p′′
6
∑

j=1

6
∑

j′=1

1

E − |p′′|2
m + iǫ

vγj (|p′|, |p′′|, p̂′ · p̂′′)tγj′(E, |p′′|, |p|, p̂′′ · p̂)

[w̌j(p
′,p′′)]

2Nspin
[w̌j′(p

′′,p)]
2Nspin

(7.3)

where we inserted the full form of the operators in 2N space with the additional
assumption about the total momentum of the particles K = 0. Additionally we
use the property Č(γ)Č(γ′) = δγγ′Č(γ) to separate one isospin case. Remov-
ing spin dependencies can be achieved by acting from the left with [w̌k(p′,p)]
and taking a trace over all 2N spin states. With the introduction of two new
functions:

Akj(p
′,p;p′,p) =

1
∑

s=0

s
∑

ms=−s

[〈sms |] [w̌k(p′,p)] [w̌j(p
′,p)] [| sms〉] (7.4)

Bkjj′(p
′,p;p′,p′′;p′′,p) =

1
∑

s=0

s
∑

ms=−s

[〈sms |] [w̌k(p′,p)] [w̌j(p
′,p′′)] [w̌j′(p

′′,p)] [| sms〉] (7.5)

(state | sms〉 has the spin of both particles coupled to a total spin s with
projection ms, both functions have a simple implementation that can be created
using the util1N2N3N.m package and is discussed in section D.3) equation (7.3)
takes on the form:

6
∑

j=1

Akj(p
′,p;p′,p)tγj (E, |p′|, |p|, p̂′ · p̂) =

6
∑

j=1

Akj(p
′,p;p′,p)vγj (|p′|, |p|, p̂′ · p̂) +

∫

d3p′′
6
∑

j=1

6
∑

j′=1

1

E − |p′′|2
m + iǫ

vγj (|p′|, |p′′|, p̂′ · p̂′′)tγj′(E, |p′′|, |p|, p̂′′ · p̂)

Bkjj′(p
′,p;p′,p′′;p′′,p). (7.6)

Additional simplification can be achieved by using the rotation invariance of
expressions in (7.6). This is utilized by limiting our calculations to the following
class of vectors:

p = |p|(0, 0, 1)

p′ = |p′|(
√

1− x′2, 0, x′)

p′′ = |p′′|(
√

1− x′′2 cosφ′′,
√

1− x′′2 sinφ′′, x′′) (7.7)

42

(with x′ ∈ (−1, 1), x′′ ∈ (−1, 1), φ′′ ∈ (0, 2π)) and turns (7.6) into:

6
∑

j=1

Akj(|p′|, |p|, x′)tγj (E, |p′|, |p|, x′) =

6
∑

j=1

Akj(|p′|, |p|, x′)vγj (|p′|, |p|, x′) +

∫ +∞

0

d|p′′|
∫ 1

−1

dx′′
∫ 2π

0

dφ′′

6
∑

j=1

6
∑

j′=1

|p′′|2

E − |p′′|2
m + iǫ

vγj (|p′|, |p′′|,
√

1− x′2
√

1− x′′2 cosφ′′ + x′x′′)tγj′(E, |p′′|, |p|, x′′)
Bkjj′(|p′|, |p|, x′, |p′′|, x′′, φ′′). (7.8)

Analyzing the form of (7.8) it can be concluded that for any value of E, γ,
|p| there exists an independent integral equation for t{γ}

k ({E} , |p′|, {|p|} , x′). We
will use the curly brackets to mark independent variables. With this notation
t{γ}

k ({E} , |p′|, {|p|} , x′) should be treated as a function of k, |p′|, x′ and the other
quantities E, γ, |p| are to be used to label for the equation that the function
satisfies. It is also worth noting that the integral over φ′′ and sum over j can be
done beforehand in the numerical realization and stored in a table for further
use as t{γ}

j′ ({E} , |p′′|, {|p|} , x′′) does not depend on φ′′ or j.
Functions t and v in (7.8) are vectors and are acted upon with linear oper-

ators. The left hand side of equation (7.8) is the definition of linear operator
Ǎ:

(

Ǎt
){γ}

k
({E} , |p′|, {|p|} , x′) =

6
∑

j=1

Akj(|p′|, {|p|} , x′)t{γ}

j ({E} , |p′|, {|p|} , x′),

(7.9)
and the right hand side of this equation is the definition of operator B̌:

(

B̌t
){γ}

k
({E} , |p′|, {|p|} , x′) =

∫ +∞

0

d|p′′|
∫ 1

−1

dx′′
∫ 2π

0

dφ′′
6
∑

j=1

6
∑

j′=1

|p′′|2

{E} − |p′′|2
m + iǫ

v{γ}

j (|p′|, |p′′|,
√

1− x′2
√

1− x′′2 cosφ′′ + x′x′′)

Bkjj′(|p′|, {|p|} , x′, |p′′|, x′′, φ′′)t{γ}

j′ ({E} , |p′′|, {|p|} , x′′). (7.10)

In this notation Ǎt is the result of applying operator Ǎ on the scalar function t

and
(

Ǎt
){γ}

k
({E} , |p′|, {|p|} , x′) means that we take the resulting function value

for arguments {γ}

k ({E} , |p′|, {|p|} , x′). This is a natural way of writing operators
if we keep in mind that they will be implemented in FORTRAN where taking
the value of a function for a set of arguments is typically replaced by taking the
value of an array for a set of indexes.

The inverse of operator Ǎ can also be constructed such that:

(

Ǎ−1Ǎt
){γ}

k
({E} , |p′|, {|p|} , x′) = t{γ}

k ({E} , |p′|, {|p|} , x′), (7.11)

(

Ǎ−1Ǎv
){γ}

k
(|p′|, {|p|} , x′) = v{γ}

k (|p′|, {|p|} , x′) (7.12)

43

with:

(

Ǎ−1t
){γ}

k
({E} , |p′|, {|p|} , x′) =

6
∑

r=1

A−1
kr (|p′|, {|p|} , x′)t{γ}

r ({E} , |p′|, {|p|} , x′) (7.13)

and
6
∑

r=1

A−1
kr (|p′|, {|p|} , x′)Ari(|p′|, {|p|} , x′) = δki. (7.14)

This can be combined with the B̌ operator:

(

Ǎ−1B̌t
){γ}

k
({E} , |p′|, {|p|} , x′) ≡

(

B̌t
){γ}

k
({E} , |p′|, {|p|} , x′) =

∫ +∞

0

d|p′′|
∫ 1

−1

dx′′
∫ 2π

0

dφ′′
6
∑

j=1

6
∑

j′=1

|p′′|2

{E} − |p′′|2
m + iǫ

v{γ}

j (|p′|, |p′′|,
√

1− x′2
√

1− x′′2 cosφ′′ + x′x′′)
(

6
∑

r=1

A−1
kr (|p′|, {|p|} , x′)Brjj′(|p′|, {|p|} , x′, |p′′|, x′′, φ′′)

)

t{γ}

j′ ({E} , |p′′|, {|p|} , x′′)

≡
∫ +∞

0

d|p′′|
∫ 1

−1

dx′′
∫ 2π

0

dφ′′
6
∑

j=1

6
∑

j′=1

|p′′|2

{E} − |p′′|2
m + iǫ

v{γ}

j (|p′|, |p′′|,
√

1− x′2
√

1− x′′2 cosφ′′ + x′x′′)

Bkjj′(|p′|, {|p|} , x′, |p′′|, x′′, φ′′)
t{γ}

j′ ({E} , |p′′|, {|p|} , x′′) (7.15)

and it turns out that the analytical computation of the sum over the products
of

6
∑

r=1

A−1
kr (|p′|, {|p|} , x′)Brjj′(|p′|, {|p|} , x′, |p′′|, x′′, φ′′) ≡

Bkjj′(|p′|, {|p|} , x′, |p′′|, x′′, φ′′) (7.16)

and combining the action of Ǎ−1 and B̌ in B̌ as opposed to the numerical com-
putation of B̌t and then (Ǎ)−1B̌t - leads to a more stable numerical performance
(the 36 A−1 coefficients are gathered in Appendix E.4).

Finally the Lippman-Schwinger equation for the transition operator can be
written in compact form:

t = v + (Ǎ)−1B̌t ≡ v + B̌t (7.17)

or

t{γ}

k ({E} , |p′|, {|p|} , x′) =

v{γ}

k ({E} , |p′|, {|p|} , x′) +
(

B̌t
){γ}

k
({E} , |p′|, {|p|} , x′). (7.18)

44

With independent equations for different values of γ, E, |p|, the calculation can
be split into a number of smaller problems. Even with this information the size
of linear operators in the numerical realization of the calculations is large. In
section A.1 we give a brief description of Krylev methods that allow for a drastic
reduction of the size of the problem. In section A.2 we will give a more detailed
description of the Arnoldi algorithm that was used in our calculations.

7.1 Positive energies

Many ways of solving the resulting linear equations have been explored. Of
particular difficulty is the calculation of the transition operator for energies
E < 0, it can be worked out that the 2N transition operator will have singular
behavior around the deuteron binding energy (see for ex. [46]). In the positive
energy range we have to deal with the singularity in the denominator of the
propagator (7.15), this can be fixed by using the identity:

∫ ȳ

0

dy
y2

y20 − y2 + iǫ
f(y) =

∫ ȳ

0

dy
y2f(y)− y20f(y0)

y20 − y2
+

1

2
y0f(y0)

(

ln

(

ȳ + y0
ȳ − y0

)

− iπ
)

. (7.19)

The validity of this relation can easily be checked by choosing an appropriate
contour for complex integration. For the limit ǫ → 0+ in a region close to y0
the integration should follow an arc in the lower half of the complex plane. The
limit then corresponds to taking the radius of this arc equal to 0. Equation
(7.19) is used to simplify our calculations (see for example [15]). In our case we
introduce a cut-off value for the |p′′| integral, p̄, and substitute:

ȳ → p̄,

y0 → p0({E}),

y → |p′′|,
f(y)→ (f̌(|p′′|)t){γ}

k ({E} , |p′|, {|p|} , x′), (7.20)

with m being the nucleon mass, {E} ≡ p2
0({E})
m and the f̌ operator defined as:

(f̌(|p′′|)t){γ}

k ({E} , |p′|, {|p|} , x′) =

m

∫ 1

−1

dx′′
∫ 2π

0

dφ′′
6
∑

j=1

6
∑

j′=1

v{γ}

j (|p′|, |p′′|,
√

1− x′2
√

1− x′′2 cosφ′′ + x′x′′)

Bkjj′(|p′|, {|p|} , x′, |p′′|, x′′, φ′′)
t{γ}

j′ ({E} , |p′′|, {|p|} , x′′). (7.21)

45

With (7.19), (7.20) and (7.21) the B̌ operator for positive energies, can be writ-
ten as:

(

B̌t
){γ}

k
({E} , |p′|, {|p|} , x′) =

∫ p̄

0

d|p′′| 1

p20({E})− |p′′|2
(|p′′|2(f̌(|p′′|)t){γ}

k ({E} , |p′|, {|p|} , x′)−
p20({E})(f̌(p0({E}))t){γ}

k ({E} , |p′|, {|p|} , x′)) +

1

2
p0({E})(f̌(p0({E}))t){γ}

k ({E} , |p′|, {|p|} , x′)

(

ln

(

p̄+ p0({E})

p̄− p0({E})

)

− iπ
)

(7.22)

Unlike (7.15), (7.22) is ready for numerical realization. For negative energies
the limit ǫ→ 0 in (7.15) can be taken directly for |p′′| = p0({E}), except for the
special case E = Ed - deuteron binding energy. Looking at (7.15) or (7.22) it
can be observed that the integral over φ′′ and the sum over j can be prepared
beforehand and stored in a table for future use. This can greatly reduce the
time of the computation, as in the numerical realization the operators will be
applied many times.

One strategy of solving equation (7.17) with the use of (7.22) involves con-
structing the matrix representation of B̌ explicitly. This can be done separately
for each independent case with different values of γ, E, |p| and this approach
(among others) was explored in [20]. The complexity of (7.22) makes the task
of writing down the explicit matrix representation very difficult, we will not
explore this approach here. Another downside of this strategy is the large com-
putational cost. Calculating one independent case can take several hours on
a standard PC - this is not acceptable if we require calculating the transition
operator for numerous values of the 2N energy.

Another possibility is the use of Krylov subspace methods such as the Arnoldi
algorithm described in Appendix A. In this approach a (say) 40 × 40 dimen-

sional matrix representation of the
[

B̌
]40×40

operator is constructed. No explicit
matrix representation is necessary for the construction. All that is required is
the calculation of the action of B̌ on a scalar function t and the computation
of a scalar product. The eigenvalues of this matrix correspond to the most ex-
treme eigenvalues of the original operator. This makes the small matrix a good
representation of B̌ that can be used in solving the original equation (7.17). Fi-
nally we end up with a 40 dimensional linear equation that can be solved using
standard linear solvers (for example LAPACK or Mathematica R© linear solvers).

The results presented at the end of this chapter contain a comparison of
different methods for calculating the transition operator that were discussed in
detail in [20]. From the point of view of this text, the most important are the
iterative results - iterative schemes (like the Arnoldi scheme described in the
Appendix) can be directly applied to (7.17). Nonetheless, it is interesting to see
how the iterative results compare to other methods, especially the inversion of
the explicit matrix representation of B̌.

In order to provide an example of how the formalism developed in this chap-
ter can be used to describe a physical situation, we will be showing results for
nucleon-nucleon scattering. An additional complication arises when calculat-
ing the on-shell t-matrix. In this scenario the spin operators corresponding to
different scalar functions ti(|p|, |p|, x) are not linearly independent. One of the

46

operators can be expressed in terms of a linear combination of the other 5 and
the on-shell transition operator is typically described by using 5 Wolfenstein
parameters. Calculating the transition from ti to the 5 Wolfenstein parameters
a, c, g, h, m is a simple exercise (for example see [45] or [20]). Results for the
NNLO potential can be seen in Figure 7.1.

The road from Wolfenstein parameters to physical observables is straightfor-
ward. Expressions for the general spin cross-sections can be found in [45] and
are functions of the parameters. Observables are then constructed from these
cross-sections, selected examples can be seen in Figure 7.2.

47

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100 120 140 160 180

 a
 [f

m
]

 Θc.m. [deg]

-0.3
-0.2
-0.1

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8

 0 20 40 60 80 100 120 140 160 180
 Θc.m. [deg]

-0.05

 0

 0.05

 0.1

 0.15

 0.2

 0 20 40 60 80 100 120 140 160 180

 c
 [f

m
]

 Θc.m. [deg]

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0 20 40 60 80 100 120 140 160 180
 Θc.m. [deg]

-0.4

-0.3

-0.2

-0.1

 0

 0.1

 0.2

 0 20 40 60 80 100 120 140 160 180

 g
 [f

m
]

 Θc.m. [deg]

-0.1

-0.05

 0

 0.05

 0.1

 0.15

 0 20 40 60 80 100 120 140 160 180
 Θc.m. [deg]

-0.4

-0.3

-0.2

-0.1

 0

 0.1

 0.2

 0 20 40 60 80 100 120 140 160 180

 h
 [f

m
]

 Θc.m. [deg]

-0.02
 0

 0.02
 0.04
 0.06
 0.08

 0.1
 0.12
 0.14
 0.16

 0 20 40 60 80 100 120 140 160 180
 Θc.m. [deg]

-0.4

-0.3

-0.2

-0.1

 0

 0.1

 0.2

 0.3

 0 20 40 60 80 100 120 140 160 180

 m
 [f

m
]

 Θc.m. [deg]

-0.02
-0.01

 0
 0.01
 0.02
 0.03
 0.04
 0.05
 0.06
 0.07

 0 20 40 60 80 100 120 140 160 180
 Θc.m. [deg]

Figure 7.1: Wolfenstein parameters calculated for laboratory kinetic energy
300[MeV] as a functions of the CM angle θc.m. using the NNLO potential [16]
for the neutron-proton scattering. Left panel: real part, right panel: imaginary
part. Crosses, dashed and solid lines correspond to different methods of solving
the three dimensional problem (iterative, via k-matrix and using matrix inver-
sion). These methods are described in detail in [20]. From the point of view of
this thesis, the iterative results are most important. Results reprinted from our
paper [20].

48

 46.2

 46.4

 46.6

 46.8

 47

 47.2

 47.4

 47.6

 47.8

 0 20 40 60 80 100 120 140 160 180

 σ
 [m

b/
sr

]

 Θc.m. [deg]

 57

 58

 59

 60

 61

 62

 63

 0 20 40 60 80 100 120 140 160 180
 Θc.m. [deg]

-0.1
-0.09
-0.08
-0.07
-0.06
-0.05
-0.04
-0.03
-0.02
-0.01

 0

 0 20 40 60 80 100 120 140 160 180

 R

 Θc.m. [deg]

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 20 40 60 80 100 120 140 160 180
 Θc.m. [deg]

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0 20 40 60 80 100 120 140 160 180

 A

 Θc.m. [deg]

-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

 0

 0 20 40 60 80 100 120 140 160 180
 Θc.m. [deg]

-0.05

-0.04

-0.03

-0.02

-0.01

 0

 0.01

 0.02

 0.03

 0 20 40 60 80 100 120 140 160 180

 D

 Θc.m. [deg]

 0.82

 0.84

 0.86

 0.88

 0.9

 0.92

 0.94

 0.96

 0 20 40 60 80 100 120 140 160 180
 Θc.m. [deg]

Figure 7.2: Left panel: observables for neutron-neutron scattering, right panel:
observables for neutron-proton scattering. Calculations for laboratory kinetic
energy 13[MeV] as a functions of the CM angle θc.m. using the NNLO potential
[16]. Crosses, dashed and solid lines correspond to different methods of solving
the three dimensional problem (iterative, via k-matrix and using matrix inver-
sion). These methods are described in detail in [20]. This thesis describes how
to obtain the results based on iterations. Results reprinted from our paper [20].

49

7.2 Negative energies

Calculating the bound state of the 3N system with the use of the transition
operator, as is described in [23] and equations (4.69) and (4.71), will reveal the
necessity to calculate the 2N transition operator for E < 0. For the case where
the energy is negative and far from the deuteron binding energy Eb we can use
the simpler version of (7.18) with B̌ obtained directly from equation (7.15). For
this case, the integrated function does not have singular behavior resulting from

{E} − |p′′|2
m + iǫ, since the energy is negative.

This simple scheme will break down when energies are close to the deuteron
binding energy. A more detailed explanation of this problem can be found in
[46]; here we repeat only the most important points. As a reminder we rewrite
the iterative LSE equation (4.51) below:

ť(E) = V̌ + V̌ Ǧ0(E + iǫ)V̌ + V̌ Ǧ0(E + iǫ)V̌ Ǧ0(E + iǫ)V̌ + . . . (7.23)

Equivalently, this equation can be rewritten in the form:

ť(E) = V̌
(

1̌ + Ǧ0(E + iǫ)V̌ + Ǧ0(E + iǫ)V̌ Ǧ0(E + iǫ)V̌ + . . .
)

(7.24)

and when acted upon the deuteron bound state satisfying equation (4.55) this
equation produces a singularity:

ť(E) | Ψ2N
bound〉 =

V̌
(

1̌ + Ǧ0(E + iǫ)V̌ + Ǧ0(E + iǫ)V̌ Ǧ0(E + iǫ)V̌ + . . .
)

| Ψ2N
bound〉 =

V̌
(

1̌ + 1̌ + 1̌ + . . .
)

| Ψ2N
bound〉. (7.25)

This singular behavior is limited to the isospin 0 case (the isospin of the
deuteron). The exact form of the singularity at E = Eb can be worked out [46]:

ť(E → Eb) = V̌ | Ψ2N
bound〉

1

E − Eb
〈Ψ2N

bound | V̌ . (7.26)

In order to arrive at this solution the completeness relation, now with the bound
state, has to be inserted into the LSE written in terms of the full propagator
from equation (4.42):

ť = V̌ + V̌ Ǧ(E)V̌ . (7.27)

Using the operator form of the deuteron bound state (6.1) we arrive at an
expression for the transition operator at energies close to the deuteron binding
energy.

〈p′ | ť(E → Eb) | p〉 = 〈p′ |
(

V̌ | Ψ2N
bound〉

1

E − Eb
〈Ψ2N

bound | V̌
)

| p〉 =

(

Eb −
p′2

m

)

〈p′ | Ψ2N
bound〉

1

E − Eb
〈Ψ2N

bound | p〉
(

Eb −
p′2

m

)

=

(

Eb −
p′2

m

)(

Eb −
p2

m

)

2
∑

l=1

2
∑

l′=1

1
∑

md=−1

φl′(|p′|)φl(|p|)∗
[

b̌l′(p
′)
]

[| 1md〉〈1md |]
[

b̌l(p)
]†

(7.28)

50

All operators in the above equations act in the 2N spin space and can be cal-
culated using the util1N2N3N.m package. One final step has to be taken in
order to calculate the six scalar functions that will define the transition opera-
tor for energies close to the deuteron binding energy, we can use the procedure
described in Chapter 5 to perform the decomposition of (7.28). Appendix D
points to a notebook that calculates (7.28) and performs the decomposition.

PROGRAMS/toperator/nb/deu.nb

implements this procedure and produces the tab array that can be used as a
replacement for ti when the energy is close to the 2N binding energy for the
isospin 0 case.

The results of this substitution (7.28) can be appreciated in Figures 7.3 and
7.4, where we calculate the transition operator multiplied by (E − Eb). Each
plot in 7.3 contains a comparison of the transition operator calculated at the
deuteron binding energy using (7.28) (for the isospin 0 case) and the transition
operator calculated using (7.15) directly for an energy close to the deuteron
binding energy. The substitution of (7.28) produces functions that fit smoothly
to other energy cases. Figure 7.4 contains plots of the energy dependence of
a couple chosen values of the transition operator. Also in this case the results
based on the deuteron residue fit nicely to other results.

51

çç
ç
ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç
ç
ç ç ç ç

ç
ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç
ç
çç

´́
´
´
´
´

´

´

´

´

´

´

´

´

´
´
´
´
´ ´ ´ ´ ´

´
´
´

´

´

´

´

´

´

´

´

´
´
´
´
´́

-0.0000189713

-0.0000225797
-1.0 -0.5 0.0 0.5 1.0

E = -1.79425@MevD

çç
ç
ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç
ç
ç ç ç ç

ç
ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç
ç
çç

´́
´
´
´
´

´

´

´

´

´

´

´

´

´
´
´
´ ´

´ ´ ´
´
´
´
´

´

´

´

´

´

´

´

´

´

´
´
´
´́

-0.0000189713

-0.0000225797

-1.0 -0.5 0.0 0.5 1.0

E = -2.73637@MevD

x

ççççççççç
ç
ç

ç

ç

ç

ç

ç

ç

ç ç
ç
ç ç

ççç ç ç ç ç

´́́́́ ´́́́´
´

´

´

´

´

´

´

´ ´ ´ ´ ´ ´´´ ´ ´ ´ ´

0.000419218

-0.0000191005
0 5 10 15 20

E = -1.79425@MevD

ççççççççç
ç
ç

ç

ç

ç

ç

ç

ç

ç ç
ç
ç ç ç

çç ç ç ç ç

´́́́́ ´́́
´́

´

´

´

´

´

´

´

´ ´ ´ ´ ´ ´´´ ´ ´ ´ ´

0.000419218

-0.0000191005
0 5 10 15 20

E = -2.73637@MevD

|p′|[fm−1]

Figure 7.3: Left panel: dependence of (E − Ed)t2(E, |p′| = 6.0[fm−1], |p| =
0.3, x = p̂

′ · p̂)[fm] on x, right panel: dependence of (E −
Ed)t2(E, |p′|[fm−1], |p| = 0.3, x = p̂

′ · p̂ = −0.19)[fm] on |p′|. Both are calcu-
lated for the isospin 0 case and using the Bonn B potential from [10]. Circles
mark values calculated from the deuteron bound state at Ed = −2.2242[MeV].
Crosses on plots in different rows mark values calculated for various energies -
the smooth transition through Ed is visable. The solid lines are interpolated
from the calculated points (circles, crosses).

52

æ

æ

æ

æ

æ

æ

-4 -3 -2 -1 0

-0.00005

0.00000

0.00005

0.00010

0.00015

E@MeVD

HE
-

E
d
Lt

3
HE

,.
..L

æ

æ

æ

æ

æ

æ

-4 -3 -2 -1 0

-0.00015

-0.00010

-0.00005

0.00000

0.00005

E@MeVD

HE
-

E
d
Lt

4
HE

,.
..L

Figure 7.4: Dependence of (E−Ed)ti(E, |p′| = 0.26[fm−1], |p| = 0.3, x = p̂
′·p̂ =

−0.41)[fm] on the energy E for two different choices of i. The crossing point
of the horizontal and vertical lines is calculated from the deuteron bound state
at Ed = −2.2242[MeV]. All plots are calculated for the isospin 0 case and using
the Bonn B potential from [10].

53

54

Chapter 8

Deuteron
electro-disintegration

Having calculated the deuteron bound state and the transition operator it is a
good moment to use this in a practical situation. The multitude of energies for
the transition operator matrix elements that will be needed in this chapter will
reveal the necessity for a quick implementation of transition operator calcula-
tions. This can be achieved by using an iterative approach such as the Arnoldi
algorithm discussed in Appendix A. The following discussion is taken from our
paper on the deuteron electro-disintegration [21]. The notation was changed to
be consistent with this thesis and additional detailed information is given on the
construction and numerical realization of the resulting expressions. This was
not possible in the paper due its natural limitations.

We examine the reaction e+2H→ e+p+n in an energy range that allows for
a non-relativistic treatment of the nuclear states. The initial state of the system
consists of the deuteron with the total momentum K = 0 and the electron with
a momentum value qe. We will assume that the energy of the electron Ee ≈ qe -
due to the small mass of the particle compared to its kinetic energy. In the final
state the deuteron is split into a proton and neutron, the electron is scattered
by the angle θe and changes momentum to q′e (E′

e ≈ q′e). In this process the
2N system (the deuteron in the initial state, the free proton and neutron in the
final state) receives a momentum transfer Q = q′

e − qe, whose magnitude can
be calculated as:

Q =
√

q2e + q′2e − 2qeq′e cos θe ≈
√

E2
e + E′2

e − 2EeE′
e cos θe. (8.1)

The electromagnetic interaction is mediated by a virtual photon with the four-
momentum (ω,Q) = (E′

e − Ee,Q) and we will be working in a reference frame
in which Q is parallel to the ẑ axis. The energy and momentum is conserved
in the reaction making it possible to calculate the total final momentum of the
2N system:

Kf = k1 + k2 = (0, 0, Q) (8.2)

and the magnitude of the relative momentum:

|pf | = |1
2

(k1 − k2) =
1

2

√

4m(Ed + Ee − E′
e)−Q2 (8.3)

55

in the final state. Here Ed is the deuteron binding energy (around −2.2[MeV])
and additionally we make the assumption about the identical mass of the proton
and neutron m. We have a freedom of choice for the angle of pf .

Our aim is to find the matrix element Mµ:

Mµ
(

pf ,Kf
)

≡a 〈pfKf ,m1ν1,m2ν2 | (1̌ + ť(E)G0(E))ǰµ2N | Ψ(md)K = 0〉
=a 〈pfKf ,m1ν1,m2ν2 | (1̌ + ť(E)G0(E))

(ǰµ(1) + ǰµ(2) + ǰµ(1, 2)) | Ψ(md)K = 0〉
= 2a〈pfKf ,m1ν1,m2ν2 | ǰµ(2) | Ψ(md)K = 0〉
+a〈pfKf ,m1ν1,m2ν2 | ǰµ(1, 2) | Ψ(md)K = 0〉
+a〈pfKf ,m1ν1,m2ν2 | ťG0ǰ

µ
2N | Ψ(md)K = 0〉, (8.4)

where initially there is a deuteron bound state (with K = 0 and the ẑ projection
of the spin md) and a free electron with momentum qe. The final state is
antisymmetric:

a〈pK,m1ν1,m2ν2 |≡
1

2
(〈pK,m1ν1,m2ν2 | −〈−pK,m2ν2,m1ν1 |) . (8.5)

The energy value in the transition operator and propagator E = (pf)2/m, mi

(νi) being the ẑ projection of the spin (isospin) of the individual particles and
the particles in the second term have switched places (m1 → m2, m2 → m1,
ν1 → ν2, ν2 → ν1) resulting in a change of momentum (p→ −p). Equation (8.4)
introduces electro-magnetic current operators ǰ(1), ǰ(2), ǰ(1, 2) acting on the
degrees of freedom of particle 1, 2, both 1 and 2 - respectively. The index µ = 0
marks the charge density operator and µ = 1, 2, 3 mark the vector components
of the current. In the following discussion we will drop this index for clarity and
assume that a choice of coordinate system and index is available. Additionally
when referring to matrix elements of type (8.4) that do not involve the transition
operator we will use the term ”plane wave” part. The fact that in (8.4) we finally
use only ǰ(2) reflects the antisymmetry of the final 2N state.

Finally it should be noted that the transition operator in (8.4) should satisfy
a slightly modified version of the Lippmann Schwinger equation (4.50):

ť(E) = V̌ + ť(E)Ǧ0(E + iǫ)V̌ ,

with the order of operators reversed. This not a big complication, we can use
the methods described earlier to calculate the scalar functions that define this
”reversed” transition operator. It can be shown in a simple calculation that the
”reversed” scalar functions have the initial and final relative momenta switch
places with respect to the scalar functions that define the transition operator
that follows (4.50).

8.1 Single nucleon current in three dimensions

The matrix elements in momentum space (operators in isospin - spin space) of
the single nucleon currents (1N) depend only on the degrees of freedom of one
particle. For instance ǰ(2) produces a matrix element that can be written in

56

terms of the sum and difference of the individual initial (k1, k2) and final (k′
1,

k′
2) momenta of the second particle:

[

〈k′
1k

′
2 | ǰ(2) | k1k2〉

]2N
= δ

(

k′
1 − k1

) [

j(2,k′
2 − k2,k

′
2 + k2)

]

≡ δ
(

k′
1 − k1

)

[j(2,k−,k+)] . (8.6)

This matrix element can also be written in terms of the relative and total mo-
mentum eigenstates (p, K) as:

[

〈p′K ′ | ǰ(2) | pK〉
]

= δ

(

1

2
K ′ − 1

2
K + p′ − p

)

[

j(2,k− =
1

2
K ′ − 1

2
K − p′ + p,k+ =

1

2
K ′ +

1

2
K − p′ − p)

]

. (8.7)

Expressions inside the square brackets [. . .] have a matrix representation that
can be easily constructed using the KP and the util1N2N3N.m package, see
Apendix B. Using the deuteron bound state in the operator form (6.1) and the
initial isospin state of this system ([| 0 0〉]), the action of ǰ(2) on the deuteron
state at rest can be calculated:

[

〈p′K ′ | j(2) | Ψ(md)K = 0〉
]

=

=
2
∑

l=1

φl(|p′ +
1

2
K ′|)

[

j(2,K ′,−2p′)
]2N

[

Bl(p
′ +

1

2
K ′)

]2N

[| 0 0〉⊗ | 1md〉]2N

≡
[

O1N(2,p′,K ′)
]2N

[| 0 0〉⊗ | 1md〉]2N . (8.8)

This produces a final state in the [. . .]
2N

matrix representation (table E.2 in the
Appendix E).

[

O1N
]

is the resulting single particle operator. When used as in
equation (8.8) it will yield the matrix representation of the final isospin - spin
state for the final momenta p′, K ′.

The sum in equation (8.8) is a basic building block of the calculation. A
FORTRAN implementation (both fixed format (.f) and free format (.f90)) of

[

O1N(2,p′,K ′)
]

[| 0 0〉⊗ | 1md〉]

is available. Details on the notebooks and codes can be found in Appendix D.
We use the single nucleon non-relativistic current density:

[j0(2,k−,k+)]
2N

=
[

Gp
EΠ̌p +Gn

EΠ̌n
]2Nisospin ⊗

[

1̌
]2Nspin

, (8.9)

and the convection and spin current operators (these two parts are used in the
notebooks):

[jconv(2,k−,k+)]
2N

=
k+

2MN

[

Gp
EΠ̌p +Gn

EΠ̌n
]2Nisospin ⊗

[

1̌
]2Nspin

, (8.10)

[jspin(2,k−,k+)]
2N

=
[

Gp
M Π̌p +Gn

M Π̌n
]2Nisospin⊗

[

iσ(2)× k−
2MN

]2Nspin

. (8.11)

Here:
[

Π̌p
]2Nisospin

=
1

2

([

1̌
]

+ [τ3]
)

(8.12)

57

is an operator projecting on to the proton subspace and

[

Π̌n
]2Nisospin

=
1

2

([

1̌
]

− [τ3]
)

, (8.13)

is an operator projecting on to the neutron subspace. Gp
E , G

n
E , G

p
M , G

n
M are the

electric and magnetic proton and neutron form factors. The remaining notation
is the same as in [50]. In the notebook we use the spherical components:

ǰ(2)+ =
1√
2

(

−ǰ(2)x̂ − iǰ(2)ŷ
)

,

ǰ(2)− =
1√
2

(

ǰ(2)x̂ − iǰ(2)ŷ
)

and produce codes for
[

O1N(2,p′,K ′)
]2N

[| 0 0〉⊗ | 1md〉]2N with different values
of md and for the different types of current operators (and components +1, −1).

8.2 2N currents in three dimensions

2N current operator matrix elements in the momentum space (operators in
isospin - spin space) can be found in literature. They typically carry the follow-
ing momentum dependence:

[

〈k′
1k

′
2 | j(1, 2) | k1k2〉

]2N
=
[

j(1, 2,k′
1 − k1,k

′
2 − k2)

]

. (8.14)

Examples are given in [51, 52, 53]. We restrict our discussion to this class
of momentum dependencies. Our formalism can, however, be generalized to
include any type of momentum dependence. The classical approach to dealing
with (8.14) is to use an expansion into a linear combination of scalar functions

(f jSi , f ji) and combinations of operators in isospin space (Ťi) and spin space
(ǑjS , Ǒj):

[

j0(1, 2)
]

=

5
∑

i=1

8
∑

j=1

f jSi (k′
1 − k1,k

′
2 − k2)

[

Ťi ⊗ ǑjS

]

, (8.15)

[

~j(1, 2)
]

=

5
∑

i=1

24
∑

j=1

f ji (k′
1 − k1,k

′
2 − k2)

[

Ťi ⊗ Ǒj

]

, (8.16)

with S used to distinguish density and vector parts of operators. This approach
can be found for example in [54] where a general operator basis is given. In the
present discussion this decomposition is not necessary and we can work directly
with the current in the operator form. Equation (8.14) can also be written in
terms of the relative and total momenta:

[

〈p′K ′ | j(1, 2) | pK〉
]

=

[

j(1, 2,
1

2
K ′ − 1

2
K + p′ − p,

1

2
K ′ − 1

2
K − p′ + p)

]

.

(8.17)

58

Again, using the operator form of the deuteron (6.1), the action of j(1, 2) can
be calculated:

[

〈p′K ′ | j(1, 2) | Ψ(md)K = 0〉
]

=

∫

d3p′′
2
∑

l=1

φl(|p′′|)
[

j(1, 2,
1

2
K ′ + p′ − p′′,

1

2
K ′ − p′ + p′′)

]

[Bl(p
′′)] [| 0 0〉⊗ | 1md〉]

≡
[

O2N(1, 2,p′,K ′)
]

[| 0 0〉⊗ | 1md〉] . (8.18)

[

O2N
]

is the resulting two-particle operator. It gives the full isospin - spin state
for the final p′, K ′ momenta.

Equation (8.18) is a basic building block of the calculation. A FORTRAN
implementation (both fixed format (.f) and free format (.f90)) of

[

O2N(2,p′,K ′)
]

[| 0 0〉⊗ | 1md〉]

is available. Details on the notebooks and codes can be found in Appendix D.
For our calculations we use 2N currents from [55]. It should be noted that the
code produced by the Mathematica R© notebook should be modified to contain
additional definitions for numerical coefficients and scalar functions. Detailed
information about the additional definitions can be found in the notebook com-
ments and [55].

8.3 Putting everything together

Using the decomposed form of the transition operator (7.2) and the previously
derived operators from (8.8), (8.18) we can write down the detailed form of the
rescattering part of M :

[〈p′P′ | t(E)G0(E)j2N | φdmd P = 0〉]

=

∫

d3p [〈p′ | t(E) | p〉] 1

E − p2

m + iǫ

× [O(p,P′)] [| 0 0〉 ⊗ χ(md)]

= m

∫ p̄

0

p2 [f(|p|)]− p′2 [f(|p′|)]
p′2 − p2

d|p|

+m
|p′| [f(|p′|)]

2

(

ln

(

p̄+ |p′|
p̄− |p′|

)

− iπ
)

× [| 0 0〉 ⊗ χ(md)] , (8.19)

where we used (7.19). Here Ǒ is either Ǒ1N or Ǒ2N , E = p′2

m , the cut-off value
for the integral (p̄) was introduced and:

[f(|p|)] =

∫ 2π

0

dφ

∫ 1

−1

dx [〈p′ | t(E) | p〉] [O(p,P′)] . (8.20)

59

The momentum dependence in (8.20) is due to the assumption:

p = |p|
(

cos(θf)
(

√

1− x2 cos(φ) cos(φf) + x sin(φf)
)

−
√

1− x2 sin(φ) sin(θf),
√

1− x2(cos(φ) cos(φf) sin(θf) + sin(φ) cos(θf)) + x sin(φf) sin(θf),

x cos(φf)−
√

1− x2 cos(φ) sin(φf))
)

(8.21)

and the integral:

∫

d3p→
∫ p̄

0

d|p||p|2
∫ 2π

0

dφ

∫ 1

−1

dx. (8.22)

This choice of the parametrization of p integration is important to effectively
use the previously calculated transition operator. If in (8.21) the angles θf , φf

are chosen such that:

p′ = |p′|(sin(φf) cos(θf), sin(φf) sin(θf), cos(φf)), (8.23)

then the scalar product p̂
′ · p̂ = x. If additionally in the numerical realization

the points chosen for x, |p| and |p′| in (8.22) match those that were chosen
for the transition operator calculation, then no interpolations are necessary. It
should, however, be noted that the gains from this parametrization are present
only when working with 1N currents. In the case of 2N currents the additional
integration makes it more feasible to use the same set of |p| integration points
for all final momenta.

8.4 Results

The kinematic situation is presented in Figure 8.1. Selected observables are
calculated under the one-photon exchange approximation [49] using the matrix
elements M that were discussed earlier in this chapter. We consider first the
exclusive unpolarized cross-section:

d5σ/(dEe′ , dΩe′ , dΩp),

with Ee′ being the energy of the outgoing electron, Ωe′ being the solid angle
of the outgoing electron and Ωp being the solid angle of the proton in the final
state. Next we calculate one case of the spin dependent helicity asymmetry:

A‖ =
σ(h = +1,Jd ‖ ẑ)− σ(h = −1,Jd ‖ ẑ)

σ(h = +1,Jd ‖ ẑ) + σ(h = −1,Jd ‖ ẑ)
,

where h is the initial helicity of the electron and the projection of the deuteron
total angular momentum Jd on ẑ is md = 1. Finally, the deuteron analyzing
powers are considered - in this case the initial electron is unpolarized and we
deal with different polarization states of the initial deuteron. All observables
are displayed in Figures 8.2, 8.3, 8.4. We restrict ourselves to only one of the
kinematics from [21] - K6, with the initial energy of the electron Ee = 500[MeV],

60

the final energy of the electron E′
e = 281.2[MeV], the magnitude of the final

relative momentum of the two-nucleons pf = 375.3[MeV/c] and the momentum
transfer Q = 500[MeV]. Our main objective is to compare different methods
of calculation, thus we did not attempt to compare our results with measured
data. Excellent convergence with PWD predictions is observed, thus proving
the validity of PWD schemes. More information on the physical significance
and calculation of the observables can be found for example in [50].

Figure 8.1: The incoming electron has momentum qe, the outgoing electron q′
e.

Momentum transfer to the 2N system k1 + k2 = Q is parallel to the ẑ axis.

 1e-10

 1e-09

 1e-08

 1e-07

 1e-06

-180-135 -90 -45 0 45 90 135 180 d
5 σ/

(d
E

e’
dΩ

e’
dΩ

p)
 [f

m
2 /(

M
eV

sr
2)]

 Θp [deg]

 1e-10

 1e-09

 1e-08

 1e-07

 1e-06

-180-135 -90 -45 0 45 90 135 180 d
5 σ/

(d
E

e’
dΩ

e’
dΩ

p)
 [f

m
2 /(

M
eV

sr
2)]

 Θp [deg]

Figure 8.2: The unpolarized cross section as a function of the outgoing proton
angle Θp from Figure 8.1. Negative values of θp correspond to the azimuthal
angle φp = 0◦ and positive to φp = 180◦. On the left panel plane wave results
(dashed) are compared with the full calculation (solid). On the right panel the
convergence to the full 3D result (solid) is shown for different numbers of partial
waves (j ≤ 4 - dashed-dotted, j ≤ 7 - dotted, j ≤ 9 - dashed). Results reprinted
from our paper [21] for kinematics K6.

61

-1
-0.8
-0.6
-0.4
-0.2

 0
 0.2
 0.4
 0.6
 0.8

-180 -135 -90 -45 0 45 90 135 180

 A
||

 Θp [deg]

-1

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

-180 -135 -90 -45 0 45 90 135 180

 A
||

 Θp [deg]

Figure 8.3: The same as in Figure 8.2 but for the selected example of the spin
dependent helicity asymmetry.

62

-0.4

-0.3

-0.2

-0.1

 0

 0.1

 0.2

 0.3

-180 -135 -90 -45 0 45 90 135 180

 iT
11

 Θp [deg]

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

-180 -135 -90 -45 0 45 90 135 180

 T
20

 Θp [deg]

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

-180 -135 -90 -45 0 45 90 135 180

 T
21

 Θp [deg]

-0.8
-0.7
-0.6
-0.5
-0.4
-0.3
-0.2
-0.1

 0
 0.1
 0.2
 0.3

-180 -135 -90 -45 0 45 90 135 180

 T
22

 Θp [deg]

-0.4

-0.3

-0.2

-0.1

 0

 0.1

 0.2

 0.3

-180 -135 -90 -45 0 45 90 135 180

 iT
11

 Θp [deg]

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

-180 -135 -90 -45 0 45 90 135 180
 T

20

 Θp [deg]

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

-180 -135 -90 -45 0 45 90 135 180

 T
21

 Θp [deg]

-0.8
-0.7
-0.6
-0.5
-0.4
-0.3
-0.2
-0.1

 0
 0.1

-180 -135 -90 -45 0 45 90 135 180

 T
22

 Θp [deg]

Figure 8.4: The same as in Figure 8.2 but for the deuteron analyzing powers
Tkq (see for example [50]).

63

64

Chapter 9

Muon induced deuteron
disintegration

The same methods that were used in the previous chapter to calculate matrix
elements of the electromagnetic current operator (and consequently observables)
for deuteron electro-disintegration can be applied to the description of muon
induced deuteron disintegration: µ + d → νµ + n + n. This reaction is treated
as the decay of the muonic atom, with the muon initially on the lowest K
shell. The muon binding energy in this atom can be safely neglected and in the
initial state we deal essentially with the deuteron and muon at rest. We work
in a reference frame in which the three-momentum transfer to the 2N system
Q = −pν , where pν is the outgoing neutrino momentum, antiparallel to ẑ,
as shown in Figure 9.1. Non-relativistic energy and momentum conservation
laws lead to the expression for the final relative momentum magnitude of the
neutron-neutron (nn) system:

|p| = 1

2

√

4Edm+ 4mµm− pν(4m+ pν). (9.1)

Here mµ is the muon mass, pν ≡ |pν | is the magnitude of the outgoing neutrino
momentum, m is the nucleon mass and Ed ≈ −2.2[MeV] is the deuteron binding
energy. Our goal is to calculate the differential and total decay rates.

Using the Fermi approximation, the differential decay rate can be written
as:

dΓ

dpν
= (2π)2

(m′α)3

π
4π

∫

dp̂
m|p|

2

1

3

∑

md,m1,m2

1

2

∑

sµ,sν

∣

∣

∣

∣

(2π)4
G√

2
LλJ

λ

∣

∣

∣

∣

2

. (9.2)

In the factor (m′α)3

π stemming from the non-relativistic wave function of the
hydrogen-like atom m′ =

mµmd

mµ+md
is the reduced mass of the deuteron - muon

system and α ≈ 1
137 is the fine structure constant. The 4π factor comes from

the integration over all neutrino angles. The first sum in (9.2) runs over all spin
projections of the initial deuteron and the two final nucleons and the second sum
is over the spin projections of the initial muon and the outgoing neutrino. The

65

Figure 9.1: Diagrammatic representation and kinematics for the µ+ d→ νµ +
n + n reaction. This process is treated as the decay of the muonic atom, with
the muon on the K shell.

integral is over all angles of the final relative momentum of the two nucleons,
while the magnitude of this relative momentum is determined by (9.1). Finally,
G is the Fermi constant. The weak transition operator Tw is given (up to a
factor) by the contraction of the leptonic tensor Lλ and the hadronic tensor Jλ,
Tw = LλJ

λ. The leptonic tensor has the well known V −A form:

Lλ ≡
1

(2π)3
lλ =

1

(2π)3
ū(pν , sν)γλ(1− γ5)u(pµ, sµ)

and is given in terms of the Dirac spinors u(p, s) and standard Dirac matrices
γ [49]. The hadronic tensor Jλ is just the matrix element of the nuclear weak
current operator between the initial 2N bound state (deuteron) and the final
2N scattering state:

Jλ ≡ 1

(2π)3
Mλ =

1

(2π)3
〈pK | (1 + tG0)ǰµ2N | φdpd = 0〉.

The equation (9.2) is only the starting point. It has to be modified in order
to take into account the hyperfine coupling in the initial muonic atom. That
is why in (9.3) the muon spin and the total deuteron angular momentum are
coupled (via the Clebsch-Gordan coefficients) to their total spin f .

dΓ

dpν
= G2 (m′α)3

2π2
|pν |2

m|p|
2

∫

dp̂

1/2
∑

m1,m2,sν=−1/2

1

2f + 1

f
∑

mf=−f

∣

∣

∣

∣

∣

∣

1
∑

md=−1

1/2
∑

sµ=−1/2

C(
1

2
, 1, f ; sµ,md,mf)lλM

λ

∣

∣

∣

∣

∣

∣

2

. (9.3)

One focuses usually on the dominant decay from the hyperfine doublet states
with f = 1

2 . The decay rate from the hyperfine states with f = 3
2 is expected

to be much smaller and is experimentally poorly determined.
When calculating the total decay rate we limit the integration over neutrino

momenta to values that produce real values of |p| in (9.1). Alternatively we can

66

use (9.1) to calculate the differential decay rate with respect to the magnitude
of the relative momentum of the two outgoing nucleons p = |p|. The relation to
(9.3) is:

dΓ

dp
(p) =

dΓ

dpν
(pν(p))

1
∣

∣

∣

dp
dpν

∣

∣

∣

∣

∣

∣

∣

∣

∣

pν=pν(p)

. (9.4)

After some simple algebra, it can be seen that in order to calculate the
total decay rate from (9.3), matrix elements of the weak 2N current operator
in a form very similar to (8.4) need to be calculated. This can be achieved
using the formalism described earlier in Chapters 8.1, 8.2 and 8.3. For the

chosen kinematics the crucial part of the calculations comes from
∣

∣lλM
λ
∣

∣

2
. This

expression will be expanded to contain nuclear matrix elements of exactly the
same type as (8.4) and all elements will carry the dependence on the momenta
and spin quantum numbers.

The final element needed for the calculation is the current operator ǰµ =
(ǰ0, ǰ). In order to arrive at the weak single nucleon current operator we use a
standard approach with the non-relativistic expansion of

〈p′, s′ | ǰµ(1) | p, s〉 =

ū(p′, s′)
(

(

gV1 − 2mgV2
)

γµ + gV2 (p+ p′)
µ

+gA1 γ
µγ5 + gA2 (p− p′)µ γ5

)

τ̌−u(p, s′), (9.5)

keeping terms up to 1
m2 (m being the nucleon mass). The form factors gV1 , gA1 ,

gV2 , gA2 of in (9.5) are chosen to agree with [56]. The final result of the expansion
is

〈p′ | ǰ0(1) | p〉 = [τ̌−]⊗
[

gV1 − (gV1 − 4mgV2)
(p′ − p)

2

8m2
+
(

gV1 − 4mgV2
)

i
(p′ × p) · σ̌

4m2

+gA1
σ̌ · (p + p′)

2m
+ gA2

(

p′2 − p2
)

4m2
σ̌ · (p′ − p)

]

, (9.6)

〈p′ | ǰ(1) | p〉 = [τ̌−]⊗
[

gV1
p + p′

2m
− 1

2m

(

gV1 − 2mgV2
)

iσ̌ × (p− p′)

+gA1

(

1− (p + p′)2

8m2

)

σ̌ +

+
gA1

4m2
((p · σ̌)p′ + (p′ · σ̌)p + i (p× p′))

gA2 (p− p′)
σ̌ · (p− p′)

2m

]

, (9.7)

where τ̌− is the isospin lowering operator. Note that now p (p′) is the initial (fi-
nal) momentum of the single nucleon. Relation (9.6) introduces a single nucleon

67

weak density operator acting in the isospin-spin space of the given nucleon and
(9.7) is the corresponding vector part of the single nucleon weak operator acting
in the same space. For the moment we restrict ourselves to the single nucleon
currents. However, our formalism, allows us to incorporate operators acting on
the degrees of freedom of both particles. Incorporation of two-nucleon currents
is planned for the near future.

In our calculations we use the Bonn B 2N potential [10] to generate the
initial deuteron state and the final 2N scattering states for a number of final
neutrino momentum values. Typically we use about 30 values for the integral
over pν . The angular integrations are not very demanding, either. For the unpo-
larized situation, there is no dependence on the azimuthal angle of the relative
momentum and the integral is only one dimensional. In order to achieve fully
convergent results no more than 30 polar angles are needed. After integrating
(9.3) over all kinetically allowed neutrino momenta we get the total decay rates
for f = 1

2 and f = 3
2 . We provide two types of results: predictions based on the

plane wave approximation (where the ťG0 term is neglected in the final state,
see equation 8.4) and full results:

Γ
f= 1

2

PW = 363.511[1/s]

Γ
f= 1

2

full = 396.118[1/s]

Γ
f= 3

2

PW = 10.425[1/s]

Γ
f= 3

2

full = 12.231[1/s]

(9.8)

Our value for Γ
f= 1

2

full is quite close to the experimentally measured decay rate
(see for example [56] and the references therein - the experimental values from
different measurements are in the range 365 − 470[1s] their errors amount even
to 25%). Before making a more thorough comparison, we would like to include
2N currents in our calculations.

Below in Figure 9.2 we show a comparison between the new three dimensional
approach and the classical partial wave method for the differential decay rate
with respect to the outgoing neutrino momentum. As can be seen both methods
are in a very good agreement. This plot also contains the decay rate calculated
with only the plane wave parts of the matrix elements. This illustrates that the
effect of the 2N transition operator is significant, especially for higher energies.
Figure 9.3 shows the three-dimensional decay rate for the f = 3

2 case. The
results are very small compared the f = 1

2 case. Figures 9.4 and 9.5 contain
similar comparisons but for the differential decay rate with respect to the relative
momentum magnitude of the two outgoing neutrons.

68

´́´´´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´
´
´
´

´

´

´

´
´́
´
´
´

´

´

´

´

´

+++++ + + + + + + + + + + + + + + + + +
+ +

+

+

+
++
+++++++++++

0 20 40 60 80 100

0

50

100

150

pΝ@MeVD

dG dp
Ν

@
1

s
M

eV
D

Figure 9.2: The contribution to the total decay rate from various values of the
neutrino energy pν . The classical partial wave approach (crosses) is in very good
agreement with the three dimensional calculations (solid line). The plane wave
contribution calculated using the three dimensional approach (solid line) and
the partial-wave approach (pluses) is also shown. All plots correspond to the
hyperfine doublet state with f = 1

2 .

´́´´´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´
´
´

´

´

´

´
´́
´
´

´

´

´

´

´

´

0 20 40 60 80 100

0

1

2

3

4

pΝ@MeVD

dG dp
Ν

@
1

s
M

eV
D

Figure 9.3: The same as in Figure 9.2 for f = 3
2 but without the plane wave

predictions.

69

´́́´́´́´´´´´´´´´´´´
´´

´
´

´

´

´

´

´´´́́́
´́
´
´

´

´

´

++++++++++++++++
++

+
+

+

+

+

+

+

+

+
+

+

+

+
+
+
+

+

+
+
+
++

0 50 100 150 200 250 300

0

1

2

3

4

p@MeVD

dG dp
@

1

s
M

eV
D

Figure 9.4: The contribution to the total decay rate from various values of
the relative nn momentum magnitude p. The classical partial wave approach
(crosses) is in a very good agreement with the three dimensional calculations
(solid line). The plane wave contribution calculated using the three dimensional
approach (solid line) and the partial-wave approach (pluses) is also shown. All
plots correspond to the hyperfine doublet state with f = 1

2 .

´́́´́´́´´´´
´´

´´
´´

´´
´´

´´
´

´

´

´

´

´´́́́´́
´
´

´

´

´

0 50 100 150 200 250 300

0.00

0.02

0.04

0.06

0.08

0.10

0.12

p@MeVD

dG dp
@

1

s
M

eV
D

Figure 9.5: The same as in Figure 9.4 for f = 3
2 but without the plane-wave

predictions.

70

Chapter 10

Calculation of the 3N
bound state in three
dimensions

Out starting point is equation (4.66) for the Faddeev component of the 3N
bound state:

| ψ3N 〉 = Ǧ0(E)V̌
(

1̌ + P̌
)

| ψ3N 〉+ Ǧ0(E)V̌ (1)
(

1̌ + P̌
)

| ψ3N 〉,

where V̌ is the 2N potential energy operator acting between particles 2, 3 and
V̌ (1) is that part of the 3N potential operator that is invariant under the ex-
change of particles 2, 3. The full wave function can be constructed from the
Faddeev component using permutation operators:

| Ψ〉 =
(

1̌ + P̌12P̌23 + P̌13P̌23

)

| ψ3N 〉 ≡
(

1̌ + P̌
)

| ψ3N 〉.

An alternative form to (4.66) that employs the transition operator (4.71) was
also presented in [35]. Here we will only focus on (4.66). Appendix D points
to notebooks that create codes necessary in the numerical realization of the
calculations presented below.

We introduce the total 3N isospin states:

|
(

t
1

2

)

T 〉,

where the isospins of particles 2 and 3 are coupled to the isospin t and then fur-
ther with the isospin of particle 1 to the total isospin T . Additional constraints
on the 3N matrix elements of the 2N potential [35]:

〈
(

t′
1

2

)

T ′ | V̌ |
(

t
1

2

)

T 〉 = δt′t〈
(

t′
1

2

)

T ′ | V̌ |
(

t′
1

2

)

T 〉 (10.1)

and the 3N force:

〈
(

t′
1

2

)

T ′ | V̌ (1) |
(

t
1

2

)

T 〉 = δT ′T 〈
(

t′
1

2

)

T ′ | V̌ (1) |
(

t
1

2

)

T ′〉 (10.2)

71

can be used with (4.66). Constraints can also be put on the operator form of
the 3N Faddeev component. Following [34], | ψ3N 〉 can be written as:

〈
(

t
1

2

)

T | ψ3N 〉 =

∫

d3p d3q

8
∑

i=1

φ
(i)
tT (|p|, |q|, p̂ · q̂)

| pq〉 ⊗
(

[

Ǒi(p, q)
]3Nspin

[| χm〉]3Nspin
)

, (10.3)

where the Faddeev component is fully determined by the scalar functions φ.
| χm〉 =|

(

0, 12
)

1
2m〉 is a 3N spin state in which the spins of particles 2 and 3 are

coupled to 0, then coupled with the spin of the first particle to the total 3N spin
1
2 with the projection m. The eight 3N spin space operators [34] are defined as
(σ̌(23) = 1

2 (σ̌(2)− σ̌(3))):

Ǒ1(p, q) = 1̌

Ǒ2(p, q) =
1√
3
σ̌(23) · σ̌(1)

Ǒ3(p, q) =
3

2

1

i
σ̌(1) · (p̂× q̂)

Ǒ4(p, q) =
1√
2

(iσ̌(23) · (p̂× q̂)− (σ̌(1)× σ̌(23)) · (p̂× q̂))

Ǒ5(p, q) =
1

i

(

σ̌(23) · (p̂× q̂)− 1

i
(σ̌(1)× σ̌(23)) · (p̂× q̂)

)

Ǒ6(p, q) =

√

3

2

(

σ̌(23) · p̂σ̌(1) · p̂− 1

3
σ̌(23) · σ̌(1)

)

Ǒ7(p, q) =

√

3

2

(

σ̌(23) · q̂σ̌(1) · q̂ − 1

3
σ̌(23) · σ̌(1)

)

Ǒ8(p, q) =
3

2

1√
5

(

σ̌(23) · q̂σ̌(1) · p̂ + σ̌(23) · p̂σ̌(1) · q̂ − 2

3
p̂ · q̂σ̌(23) · σ̌(1)

)

.

(10.4)

Equation (10.1) together with the general form of the 2N potential (and transi-
tion operator) from equation (5.8) and the operator form (10.3) can be used to
construct a numerical realization of 3N bound state calculations.

All operators in equations (4.66) and (4.71) are linear. Their form allows us
to consider parts of these equations separately. We will first consider the action
of the permutation operator on the Faddeev component written in the operator
form (10.3). The full permutation operator acts simultaneously in the 3N spin,

72

isospin and momentum spaces. Using (10.3) we can write:

P̌12P̌23 | ψ3N 〉 =
∫

d3p d3q
∑

tT

8
∑

i=1

φ
(i)
tT (|p|, |q|, p̂ · q̂)

P̌12P̌23

(

| pq〉⊗ |
(

t
1

2

)

T 〉 ⊗
(

Ǒi(p, q) | χm〉
)

)

=

∫

d3p d3q
∑

tT

8
∑

i=1

φ
(i)
tT (|p|, |q|, p̂ · q̂)

(

P̌12P̌23 | pq〉
)

⊗
[

P̌12

]3N [
P̌23

]3N [
1̌⊗ Ǒi(p, q)

]3N
[

|
(

t
1

2

)

T 〉⊗ | χm〉
]3N

. (10.5)

In the above equations all operators except the momentum space permuta-
tion operator have a simple matrix representation that can be created using
util1N2N3N.m (the representation of the permutation operator acting in the
isospin-spin space of the three-nucleon system can be created using the Kro-
necker Product). Momentum space permutations can also easily be worked out
for Jacobi momentum eigenstates (this was described at the end of section 4.4)
and have an implementation in the util1N2N3N.m package. On the other hand
the resulting state will have the same operator form as (10.3):

P̌12P̌23 | ψ3N 〉 =
∫

d3p d3q
∑

tT

8
∑

i=1

β
(i)
tT (|p|, |q|, p̂ · q̂)

| pq〉⊗ |
(

t
1

2

)

T 〉 ⊗
(

Ǒi(p, q) | χm〉
)

. (10.6)

Comparing (10.5) and (10.6) and removing the spin and isospin dependencies
by projecting from the left with:

∑

m

〈p′q′ | ⊗
[

〈
(

t′
1

2

)

T ′ |
]3Nisospin

⊗
[

〈χm | Ǒk(p′, q′)
]3Nspin

(10.7)

73

leads to an equation for β
(i)
tT (|p|, |q|, p̂ · q̂):

∑

tT

8
∑

i=1

β
(i)
tT (|p′|, |q′|, p̂′ · q̂′)

∑

m

[

〈
(

t′
1

2

)

T ′ | ⊗〈χm |
]3N

[

1̌⊗ Ǒk(p′, q′)
]3N

[

1̌⊗ Ǒi(p
′, q′)

]3N
[

|
(

t
1

2

)

T 〉⊗ | χm〉
]3N

=

∑

tT

8
∑

i=1

φ
(i)
tT (|P 2312(p′, q′)|, |Q2312(p′, q′)|, P̂ 2312

(p′, q′) · Q̂2312
(p′, q′))

∑

m

[

〈
(

t′
1

2

)

T ′ | ⊗〈χm |
]

[

1̌⊗ Ǒk(p′, q′)
] [

P̌12

] [

P̌23

]

[

1̌⊗ Ǒi(P
2312(p′, q′),Q2312(p′, q′))

]

[

|
(

t
1

2

)

T 〉⊗ | χm〉
]

(10.8)

with P 2312(p′, q′) and Q2312(p′, q′) defined as:

P̌23P̌12 | p′q′〉 =| P 2312(p′, q′)Q2312(p′, q′)〉, (10.9)

P 2312(p′, q′) = −1

4
(2p′ + 3q′), (10.10)

Q2312(p′, q′) = p′ − 1

2
q′. (10.11)

The expressions above can be used to translate the 3N bound state problem
into a linear problem in the space of the scalar functions φ, β. Acting with a
permutation on the Faddeev component is equivalent to transforming φ → β.
Further parts of this chapter provide similar translations of the remaining parts
of (4.66). Once all of the translations are complete, the full form of the 3N
operaor Ǎ (used in solving the integral 2N and 3N bound state equations in
4.56) can be constructed.

For the sake of readability we can rewrite equation (10.8) in the following
form:

∑

tT

8
∑

i=1

β
(i)
tT (|p′|, |q′|, p̂′ · q̂′)F 2233

t′T ′k;tT i(p
′, q′) =

∑

tT

8
∑

i=1

φ
(i)
tT (|P 2312(p′, q′)|, |Q2312(p′, q′)|, P̂ 2312

(p′, q′) · Q̂2312
(p′, q′))

F 1223
t′T ′k;tT i(p

′, q′)

(10.12)

where we introduce two new functions:

F 2233
t′T ′k;tT i(p

′, q′) =

∑

m

[

〈
(

t′
1

2

)

T ′ | ⊗〈χm |
]3N

[

1̌⊗ Ǒk(p′, q′)
]3N

[

1̌⊗ Ǒi(p
′, q′)

]3N
[

|
(

t
1

2

)

T 〉⊗ | χm〉
]3N

(10.13)

74

F 1223
t′T ′k;tT i(p

′, q′) =

∑

m

[

〈
(

t′
1

2

)

T ′ | ⊗〈χm |
]

[

1̌⊗ Ǒk(p′, q′)
] [

P̌12

] [

P̌23

]

[

1̌⊗ Ǒi(P
2312(p′, q′),Q2312(p′, q′))

]

[

|
(

t
1

2

)

T 〉⊗ | χm〉
]

(10.14)

Both can be easily calculated and implemented in FORTRAN (see section D.2).

In order to arrive at β
(i)
t′T ′(|p′|, |q′|, p̂′ · q̂′) we multiply equation (10.12) from the

left by the inverse of the matrix of F 2233
t′T ′k;tT i coefficients Finv (where the set

t′T ′k denotes the row and the set tT i denotes the column):

∑

t′T ′j

Finv2233t′′T ′′k;t′T ′j(p
′, q′)F 2233

t′T ′j;tT i(p
′, q′) = δt′′tδT ′′T δki. (10.15)

Finally we arrive at:

β
(k)
t′T ′(|p′|, |q′|, p̂′ · q̂′) =

∑

tT

8
∑

i=1

φ
(i)
tT (|P 2312(p′, q′)|, |Q2312(p′, q′)|, P̂ 2312

(p′, q′) · Q̂2312
(p′, q′))

C1223
t′T ′k;tT i(p

′, q′),

(10.16)

where the new function is defined to be:

C1223
t′T ′k;tT i(p

′, q′) =
∑

t′′T ′′j

Finv2233t′T ′k;t′′T ′′j(p
′, q′)F 1223

t′′T ′′j;tT i(p
′, q′) (10.17)

and again can be easily implemented using util1N2N3N.m. Equation (10.16)

introduces a linear operator in the space of scalar functions φ
(k)
t′T ′(|p′|, |q′|, p̂′ ·q̂′),

β
(k)
t′T ′(|p′|, |q′|, p̂′ · q̂′):

(

P̌ scalar
1223 φ

)(k)

t′T ′ (|p′|, |q′|, p̂′ · q̂′) = β
(k)
t′T ′(|p′|, |q′|, p̂′ · q̂′) (10.18)

The action of the permutation operator on the Faddeev state is equivalent to

the action of (10.18) on the scalar function φ
(k)
t′T ′(|p′|, |q′|, p̂′ · q̂′).

For the P̌13P̌23 case we analogously introduce C1323
t′T ′k;tT i(p

′, q′). Momentum
space permutations will be given by:

P̌23P̌13 | p′q′〉 =| P 2313(p′, q′)Q2313(p′, q′)〉 (10.19)

P 2313(p′, q′) = −1

4
(2p′ − 3q′) (10.20)

Q2313(p′, q′) = −p′ − 1

2
q′. (10.21)

75

Repeating the calculations for a different permutation operator we find:

β
(k)
t′T ′(|p′|, |q′|, p̂′ · q̂′) =

∑

tT

8
∑

i=1

φ
(i)
tT (|P 2313(p′, q′)|, |Q2313(p′, q′)|, P̂ 2313

(p′, q′) · Q̂2313
(p′, q′))

C1323
t′T ′k;tT i(p

′, q′)

(10.22)

and introduce the operator (note that β used here is a general scalar function,
not necessarily the result of (10.18)):

(

P̌ scalar
1323 φ

)(k)

t′T ′ (|p′|, |q′|, p̂′ · q̂′) = β
(k)
t′T ′(|p′|, |q′|, p̂′ · q̂′). (10.23)

The method of calculating the action of permutations that was presented
is equivalent to the one described in [35]. Here we use a more direct approach
and arrive at a slightly different notation. In particular [35] introduces the
geometrical factors Ft′tT ′ :

〈
(

t′
1

2

)

T ′ | P̌ |
(

t
1

2

)

T 〉 = δT ′TFt′tT ′

(

P̌ spin
12 P̌ spin

23 + (−1)t
′+tP̌ spin

13 P̌ spin
23

)

,

(10.24)
while here we combine the action of the permutation in the full isospin - spin
space. This approach allows us to simplify the calculation without increasing
the computational cost of the numerical implementation.

The next operator to consider is the 2N potential V̌ . We will use the de-
composition of the general symmetric 2N potential from equation (5.8) and the
operator form of the Faddeev state from equation (10.3). Again using the ob-
servation that all operators in (4.66) are linear we can consider the this operator
separatly and as before try to arrive at the form of an operator acting in the
space of scalar functions that define the Faddeev state (10.3). The calculation
in this case is simpler since we will not consider momentum space permutations.
We start again from the full Faddeev state:

V̌ | ψ3N 〉 =
∫

d3p d3q
∑

tT

8
∑

i=1

φ
(i)
tT (|p|, |q|, p̂ · q̂)

V̌

(

| pq〉⊗ |
(

t
1

2

)

T 〉 ⊗
(

Ǒi(p, q) | χm〉
)

)

(10.25)

Next we use (10.1) together with the observation that the potential acts in the
spaces of particles 2 and 3 (we consider the first Faddeev component):

(

〈p′q′;

(

t′
1

2

)

T ′ |
)

V̌

(

| pq;

(

t
1

2

)

T 〉
)

=

δ3(q′ − q)δtt′

(

[

1̌
]1Nspin ⊗

[

〈p′ | V̌ tT ′tT | p〉
]2Nspin

)

(10.26)

and (5.8) to write the 3N spin operator as:

[

〈p′ | V̌ tT ′tT | p〉
]3Nspin

=

6
∑

i=1

vtT
′tT

i (|p′|, |p|, p̂′ · p̂)
[

W̌i(p
′,p)

]3Nspin
. (10.27)

76

We introduced the capital W̌ operator acting on the spins of particles 2 and 3.
Finally, after inserting all this into the original equation, projecting from the
left with (10.7) and we arrive at:

∫

d3p

8
∑

i=1

∑

T

6
∑

j=1

φ
(i)
t′T (|p|, |q′|, p̂ · q̂′)vt

′T ′t′T
j (|p′|, |p|, p̂′ · p̂)

(

∑

m

[〈χm |]
[

Ǒk(p′, q′)
] [

W̌j(p
′,p)

] [

Ǒi(p, q
′)
]

[| χm〉]
)

=

8
∑

i=1

(

∑

m

[〈χm |]
[

Ǒk(p′, q′)
] [

Ǒi(p
′, q′)

]

[| χm〉]
)

α
(i)
t′T ′(|p′|, |q′|, p̂′ · q̂′),

(10.28)

where we assumed that the resulting state will also have the operator form (10.3)

with scalar functions α
(i)
t′T ′(|p′|, |q′|, p̂′ · q̂′). With the introduction of two new

functions:

Cki(p, q) =
∑

m

[〈χm |]
[

Ǒk(p, q)
] [

Ǒi(p, q)
]

[| χm〉] , (10.29)

Lkji(p, q;p,p′;p′, q) =
∑

m

[〈χm |]
[

Ǒk(p, q)
] [

W̌j(pp
′)
] [

Ǒi(p
′, q)

]

[| χm〉] (10.30)

and additionally C−1
ki (p, q) such that

∑

l

C−1
kl (p, q)Cli(p, q) = δki, (10.31)

equation (10.28) can be rewritten as:

α
(k)
t′T ′(|p′|, |q′|, p̂′ · q̂′) =

∫

d3p

8
∑

i=1

∑

T

6
∑

j=1

φ
(i)
t′T (|p|, |q′|, p̂ · q̂′)vt

′T ′t′T
j (|p′|, |p|, p̂′ · p̂)

8
∑

l=1

C−1
kl (p′, q′)Llji(p

′, q′;p′,p;p, q′) ≡

∫

d3p

8
∑

i=1

∑

T

6
∑

j=1

φ
(i)
t′T (|p|, |q′|, p̂ · q̂′)vt

′T ′t′T
j (|p′|, |p|, p̂′ · p̂)

(C−1L)kji(p
′, q′;p′,p;p, q′). (10.32)

Equation (10.32) again introduces a linear operator in the space of scalar func-

tions φ
(k)
t′T ′(|p′|, |q′|, p̂′ · q̂′) , α

(k)
t′T ′(|p′|, |q′|, p̂′ · q̂′):

(

V̌ scalarφ
)(k)

t′T ′ (|p′|, |q′|, p̂′ · q̂′) = α
(k)
t′T ′(|p′|, |q′|, p̂′ · q̂′). (10.33)

77

The action of the 2N potential on the Faddeev component is equivalent to acting
with this operator on the scalar functions that define the Faddeev state in the
operator form. Further simplification of the calculation can be achieved by using
the following parametrization of vectors in (10.32):

q′ = |q′|(0, 0, 1),

p′ = |p′|(
√

1− x′2, 0, x′),
p = |p|(

√

1− x2cosφ,
√

1− x2sinφ, x). (10.34)

This transforms the form of the integral in (10.32) to:

∫

d3p→
∫ ∞

0

d|p||p|2
∫ 2π

0

dφ

∫ 1

−1

dx (10.35)

Using (10.34) the argument of φ
(i)
t′T (|p|, |q′|, p̂ · q̂′) depends only on |p|, |q′| and

x′. This allows us to perform the integration over φ and the summation over j
beforehand and store the results in a table for further use.

We now consider the 3N force. This is the most numerically demanding part
of the calculation as it will introduce a six-fold integral. Additional difficulties
arise from the fact that no integrals or sums can be prepared beforehand for use
in further iterations. We will again start with the general expression:

V̌ (1) | ψ3N 〉 =
∫

d3pd3q
∑

tT

8
∑

i=1

φ
(i)
tT (|p|, |q|, p̂ · q̂)

V̌ (1)

(

| pq〉⊗ |
(

t
1

2

)

T 〉 ⊗
(

Ǒi(p, q) | χm〉
)

)

. (10.36)

In principle the three-nucleon force also has a decomposition similar to that of
the 2N potential [23]:

〈p′q′; (t′
1

2
)T ′ | V̌ (1) | pq; (t

1

2
)T 〉 =

δT ′T

∑

l

vlt′tT ′(p′q′;pq)
[

Ω̌(p′q′;pq)
]3Nspin

(10.37)

but with our representation of 3N spin states and operators it is simpler to
consider the 3N operator as a whole, especially because we consider only the
case of the N2LO chiral potential (see eg. [37, 43]) with very few 3N spin
structures.

After using (10.2) and comparing the result with (10.3) we get an equation

78

for the scalar functions γ after the action of the 3N potential:

∫

d3p

∫

d3q

8
∑

i=1

∑

tT

γ
(i)
tT (|p|, |q|, p̂ · q̂)

| pq〉⊗ | (t1
2

)T 〉 ⊗
[

Ǒi(p, q)
]

[| χm〉] =

∫

d3p

∫

d3q

8
∑

i=1

∑

tT

∫

d3p′
∫

d3q′
∑

t′

φ
(i)
t′T (|p′|, |q′|, p̂′ · q̂′) | pq〉⊗ | (t1

2
)T 〉

[

〈pq; (t
1

2
)T | V̌ (1) | p′q′; (t′

1

2
)T 〉
]

[

Ǒi(p
′, q′)

]

[| χm〉] . (10.38)

The next step is projecting (10.38) from the left with (10.7) to get:

8
∑

i=1

γ
(i)
t′T ′(|p′|, |q′|, p̂′ · q̂′)

∑

m

[〈χm |]
[

Ǒk(p′, q′)
] [

Ǒi(p
′, q′)

]

[| χm〉] =

8
∑

i=1

∫

d3p′′
∫

d3q′′
∑

t′′

φ
(i)
t′′T ′(|p′′|, |q′′|, p̂′′ · q̂′′)

∑

m

[〈χm |]
[

Ǒk(p′, q′)
]

[

〈p′q′; (t′
1

2
)T ′ | V̌ (1) | p′′q′′; (t′′

1

2
)T ′〉

]

[

Ǒi(p
′′, q′′)

]

[| χm〉] . (10.39)

After the introduction of a new scalar function:

Ett′T
ki (pq;pqp′q′;p′q′) =

∑

m

[〈χm |]
[

Ǒk(p, q)
]

[

〈pq; (t
1

2
)T | V̌ (1) | p′q′; (t′

1

2
)T 〉
]

[

Ǒi(p
′, q′)

]

[| χm〉] (10.40)

equation (10.39) turns into:

8
∑

i=1

γ
(i)
t′T ′(|p′|, |q′|, p̂′ · q̂′)Cki(p

′, q′) =

8
∑

i=1

∫

d3p′′
∫

d3q′′
∑

t′′

φ
(i)
t′′T ′(|p′′|, |q′′|, p̂′′ · q̂′′)

Et′t′′T ′

ki (p′q′;p′q′p′′q′′;p′′q′′) (10.41)

79

or using (10.31) we can write:

γ
(k)
t′T ′(|p′|, |q′|, p̂′ · q̂′) =

8
∑

i=1

∫

d3p′′
∫

d3q′′
∑

t′′

φ
(i)
t′′T ′(|p′′|, |q′′|, p̂′′ · q̂′′)

8
∑

r=1

C−1
kr (p′, q′)Et′t′′T ′

ri (p′q′;p′q′p′′q′′;p′′q′′) ≡

8
∑

i=1

∫

d3p′′
∫

d3q′′
∑

t′′

φ
(i)
t′′T ′(|p′′|, |q′′|, p̂′′ · q̂′′)(C−1E)t

′t′′T ′

ki (p′q′p′q′p′′q′′;p′′q′′).

(10.42)

This equation introduces yet another linear operator acting in the space of
scalar functions that define the Faddeev state. More precisely:

(V̌ (1)scalarφ)
(i)
tT (|p|, |q|, p̂ · q̂) =

8
∑

i=1

∫

d3p

∫

d3q
∑

t′

φ
(i)
tT (|p|, |q|, p̂ · q̂)

8
∑

r=1

C−1
kr (p, q)EttT

ri (pq;pqpq;pq) ≡

8
∑

i=1

∫

d3p

∫

d3q
∑

t′

φ
(i)
tT (|p|, |q|, p̂ · q̂)(C−1E)ttTri (pq;pqpq;pq). (10.43)

Putting everything together requires constructing:

ˇK(E) = Ǧ0(E)V̌ scalar
(

1̌scalar + P̌ scalar
1223 + P̌ scalar

1323

)

+

Ǧ0(E)V̌ (1)scalar
(

1̌scalar + P̌ scalar
1223 + P̌ scalar

1323

)

(10.44)

from (10.18) , (10.23) , (10.33), (10.43) and the free propagator (4.43). After
this operator is constructed (parts of the operator can be applied separately),
in order to find the bound state we solve equation (4.56) with Ǎ(E) = Ǩ(E):

Ǩ(E)φ = φ . (10.45)

Results agree well with classical partial wave calculations. We use chiral
NNLO 2N and 3N potentials (see eg. [37, 43]). Results for the total binding
energy, 2N and 3N kinetic and potential energy expectation values are shown in
Table 10.1. Again the three-dimensional results agree very well with the PWD
predictions. The effect of the 3N force on the total binding energy is around
9%.

A selected set of slices through the scalar functions that define the full wave
function of the three-nucleon system are shown in Figures 10.1 and 10.2. The
plots show the |p| and |q| dependence of βi

tT (|p|, |q|, x = p̂ · q̂) for different
values of t and i.

80

PWD 3D
λ 1.0 0.99976

< Ekin > 33.448 33.412
< E2N

pot > -41.329 -41.273

< E3N
pot > -0.765 - 0.770

total energy -8.646 -8.631

Table 10.1: Expectation values (in [MeV]) of different energy operators and λ
for the triton. The first column contains the results using partial waves and
the second column contains results for the new three dimensional approach.
λ is the eigenvalue calculated in equation (4.56) with A = K from (10.44).
After calculating the bound state, expectation values for the kinetic, 2N and 3N
potential energy can be calculated separately. In our triton calculations we do
not allow charge independence breaking. The up to date experimental value for
the triton binding energy is 8.481821[MeV] [57]. Results from our paper [35].

81

-0.06

-0.05

-0.04

-0.03

-0.02

-0.01

 0

 0.01

 0 1 2 3 4 5 6

 β
(i)

tT
(p

,q
,x

)
[fm

3]

q [1/fm]

i=2,t=0

-0.05
-0.045
-0.04

-0.035
-0.03

-0.025
-0.02

-0.015
-0.01

-0.005
 0

 0.005

 0 1 2 3 4 5 6

 β
(i)

tT
(p

,q
,x

)
[fm

3]

q [1/fm]

i=6,t=0

-0.0001

 0

 0.0001

 0.0002

 0.0003

 0.0004

 0.0005

 0.0006

 0.0007

 0 1 2 3 4 5 6

 β
(i)

tT
(p

,q
,x

)
[fm

3]

q [1/fm]

i=7,t=0

-0.025

-0.02

-0.015

-0.01

-0.005

 0

 0.005

 0 1 2 3 4 5 6

 β
(i)

tT
(p

,q
,x

)
[fm

3]

q [1/fm]

i=1,t=1

-0.0003

-0.00025

-0.0002

-0.00015

-0.0001

-5e-05

 0

 5e-05

 0 1 2 3 4 5 6

 β
(i)

tT
(p

,q
,x

)
[fm

3]

q [1/fm]

i=5,t=1

-0.0014

-0.0012

-0.001

-0.0008

-0.0006

-0.0004

-0.0002

 0

 0.0002

 0 1 2 3 4 5 6

 β
(i)

tT
(p

,q
,x

)
[fm

3]

q [1/fm]

i=8,t=1

Figure 10.1: Slices through a few selected scalar functions βi
tT (|p|, |q|, x = p̂ · q̂)

that describe full 3N bound state are shown. The presented fragments are a
function of |q| for |p| ≈ 1.4[fm−1], T = 1

2 and x ≈ 0.55. Reprinted results from
our paper [35]. This paper presents additional iteration schemes that are not
discussed in this text but as can be seen all results overlap.

82

-0.4
-0.35
-0.3

-0.25
-0.2

-0.15
-0.1

-0.05
 0

 0.05

 0 0.5 1 1.5 2 2.5 3 3.5 4

 β
(i)

tT
(p

,q
,x

)
[fm

3]

p [1/fm]

i=2,t=0

-0.012

-0.01

-0.008

-0.006

-0.004

-0.002

 0

 0 0.5 1 1.5 2 2.5 3 3.5 4

 β
(i)

tT
(p

,q
,x

)
[fm

3]

p [1/fm]

i=6,t=0

-0.005

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0 0.5 1 1.5 2 2.5 3 3.5 4

 β
(i)

tT
(p

,q
,x

)
[fm

3]

p [1/fm]

i=7,t=0

-0.45
-0.4

-0.35
-0.3

-0.25
-0.2

-0.15
-0.1

-0.05
 0

 0.05

 0 0.5 1 1.5 2 2.5 3 3.5 4

 β
(i)

tT
(p

,q
,x

)
[fm

3]

p [1/fm]

i=1,t=1

-0.0006

-0.0004

-0.0002

 0

 0.0002

 0.0004

 0.0006

 0.0008

 0 0.5 1 1.5 2 2.5 3 3.5 4

 β
(i)

tT
(p

,q
,x

)
[fm

3]

p [1/fm]

i=5,t=1

-0.03

-0.025

-0.02

-0.015

-0.01

-0.005

 0

 0.005

 0 0.5 1 1.5 2 2.5 3 3.5 4

 β
(i)

tT
(p

,q
,x

)
[fm

3]

p [1/fm]

i=8,t=1

Figure 10.2: The same as in Figure 10.1 but the presented fragments are a
function of |p| for |q| ≈ 0.72[fm−1], T = 1

2 and x ≈ −0.61

83

84

Chapter 11

Summary and Outlook

Using the three-dimensional approach (4.9), (4.26) and the isospin formalism
to describe the nuclear systems made the path from fundamental equations
to practical numerical realizations very direct. This direct path, apart from
serving as a beautiful reminder of the roots of our calculations, greatly speeds
up the process of adapting our framework to new models. This property makes
three dimensional calculations an attractive tool that can be used to test new
models. This is especially apparent for higher energies, where the algebra of
partial wave projected states and operators becomes increasingly complicated
and the problem of convergence emerges.

The text started with an elementary description of the degrees of freedom
of 2N and 3N systems in Chapter 4. There we also tried to give a, possibly
oversimplified, derivation of the equations that were the subject of our calcula-
tions in further chapters. Chapter 4 thus contained a short introduction to the
Lippmann-Schwinger equation for the transition operator and the equations for
the 2N and 3N bound states. We also gave a description of our treatment of
basic 2N and 3N operators. This treatment can be directly implemented in the
util1N2N3N.m Mathematica R© package (Appendix B).

We start our discussions in Chapter 6 with the simple problem - the deuteron
wave function. This toy-problem was used to test our Krylov methods and to
compare the results of different methods. Our final 3D results are in an excellent
agreement with PWD calculations. The deuteron wave function is calculated
using a very general form of the 2N force as was published in [15].

In Chapter 7 we presented our approach to calculating the 2N transition
operator where we employed a very general form of the 2N potential described
in Chapter 5. Chapter 7 considered both the positive and the negative energy
case for the transition operator. For positive energies the method described
in this text, among others, was published in [20] and can be used to calculate
all nucleon-nucleon scattering observables. For the negative energy case, we
presented our treatment of the bound-state singularity (at the deuteron binding
energy and the isospin 0 case). Our calculation of the residue involves using the
deuteron wave function calculated earlier in Chapter 6. This handling of the
deuteron residue is necessary for our future calculations of 3N scattering.

Our description of deuteron electro-disintegration given in Chapter 8 was
published in [21]. Because the three-dimensional approach employs all partial
waves it was possible to recreate PWD results in only one run. The standard

85

PWD approach however, required many partial waves to be taken into account.
This is clearly the case for large momentum transfers to the 2N system as can
be observed in the included figures. With a sufficient number of partial-waves,
observables calculated using PWD agree very well with the three-dimensional
approach.

The formalism, that was developed in Chapter 8 has further applications
in the description of muon induced deuteron disintegration. This reaction was
the subject of Chapter 9 and is treated as the decay of the muonic atom (with
the muon on the K shell) using the Fermi approximation. Results for the total
and differential decay rates, calculated using the three-dimensional and PWD
approach, agree very well. Although these calculations are not yet published,
we managed to compare them with the work of other research groups and found
good agreement. We believe that essentially any reaction involving the 2N
system (neutrino induced deuteron breakup, pion absorption on 2H, . . .) can be
efficiently treated in our three-dimensional formalism.

In Chapter 10 we describe our calculation of the 3N bound state. Our
formalism can, not only, employ a very general form of the 2N force (see for
example Chapter 5) but additionally a general operator form of the 3N potential.
Our results from this chapter were published in [35] and show the effect of the
additional 3N force on the bound state energy of the triton.

We would like to emphasize that in all the discussed cases we managed to
get a very good agreement with standard PWD calculations.

Natural extensions of the formalisms developed in Chapters 8,9,10 are pos-
sible. For example we plan to calculate the 3He wave function, which would
require incorporating the Coulomb proton-proton interaction. This might lead
to a more accurate 3He wave function than those currently available (based on
PWD). Later we could treat µ +3 He → νµ +3 H reaction and the β decay of
the triton, employing also various models of 2N current operators.

Our formalism can also be used in the partial wave decomposition of new po-
tentials [58, 59, 60]. This was not explored in this text but section E.5 contains
a brief description of partial wave states and their relation to the 3D formalism
described in this thesis. The resulting complicated algebraic expressions result-
ing from the isospin and spin matrix elements of operators can also be treated
in a consistent way with the use of our Mathematica R© tools.

In this thesis we put a lot of effort to make the expressions introduced in the
previous chapters easily translatable to numerical codes. The following chapters
are marked as APPENDIX but are an integral part of the thesis. They contain
detailed information on the numerical realization of our calculations. We start
in Appendix A by giving a list of all operators that were intruded earlier in the
text. With the help of the notation from Chapter 3 we hope that creating a
numerical implementation of these expressions should be straightforward. The
only components that are needed for the code are (occasionally) interpolations
and implementations of the complicated algebraic expressions that result from
isospin - spin matrix elements. Creating these expressions is made simple with
the use of the util1N2N3N.m and FunctionArra.m packages that were created for
use with this thesis and are described in Appendixes B and C. Appendixes B and
C are very Mathematica R© oriented but require only a very basic understanding
of the Mathematica R© syntax. We hope that the tutorials presented there will
be easy to follow. Finally, in Appendix D we document the FORTRAN codes
that was created using these two packages and attached to the text.

86

Appendix A

Numerical methods

A.1 Dealing with large linear operators

In the previous chapters we encountered linear equations for the bound state
of the 2N, 3N system and the transition operator. All these equations are
constructed from linear operators, that (except for the 2N bound state) have
a very large dimension. A crucial step towards solving these equations was to
develop methods of dealing with these large operators. Below we give a list of
all linear operators that are used in our calculations and the dimension of the
problem assuming that all real arguments of the scalar functions are discretized
on a grid of 40 points.

• Deuteron operator from (6.9):

(

Ǩd(Ed)φ
)

q
(|p|) =

1

Ed − p2

m

∫

d3p′
6
∑

j=1

v00j (p,p′)

2
∑

k′′=1

(

∑

k

(

Ad(p)
)−1

qk
Bd

kjk′′(p,p′)

)

φk′′(|p′|)

80 dimensional vectors and 80× 80 dimensional operators

• Transition operator kernel from (7.15):

(

B̌t
){γ}

k
({E} , |p′|, {|p|} , x′) =

∫ +∞

0

d|p′′|
∫ 1

−1

dx′′
∫ 2π

0

dφ′′
6
∑

j=1

6
∑

j′=1

|p′′|2

{E} − |p′′|2
m + iǫ

v{γ}

j (|p′|, |p′′|,
√

1− x′2
√

1− x′′2 cosφ′′ + x′x′′)

Bkjj′(|p′|, {|p|} , x′, |p′′|, x′′, φ′′)
t{γ}

j′ ({E} , |p′′|, {|p|} , x′′)

87

transition operator f̌ from (7.21):

(f̌(|p′′|)t){γ}

k ({E} , |p′|, {|p|} , x′) =

m

∫ 1

−1

dx′′
∫ 2π

0

dφ′′
6
∑

j=1

6
∑

j′=1

v{γ}

j (|p′|, |p′′|,
√

1− x′2
√

1− x′′2 cosφ′′ + x′x′′)

Bkjj′(|p′|, {|p|} , x′, |p′′|, x′′, φ′′)
t{γ}

j′ ({E} , |p′′|, {|p|} , x′′)

For a single energy - 160 independent equations of dimension 9600× 9600

• Operators from 3N bound state calculations. Permutation operators from
equation (10.16) , (10.22):

(

P̌ scalar
1223 φ

)(k)

t′T ′ (|p′|, |q′|, p̂′ · q̂′) =

∑

tT

8
∑

i=1

φ
(i)
tT (|P 2312(p′, q′)|, |Q2312(p′, q′)|, P̂ 2312

(p′, q′) · Q̂2312
(p′, q′))

C1223
t′T ′k;tT i(p

′, q′)

(

P̌ scalar
1323 φ

)(k)

t′T ′ (|p′|, |q′|, p̂′ · q̂′) =

∑

tT

8
∑

i=1

φ
(i)
tT (|P 2313(p′, q′)|, |Q2313(p′, q′)|, P̂ 2313

(p′, q′) · Q̂2313
(p′, q′))

C1323
t′T ′k;tT i(p

′, q′)

The 2N potential operator from equation (10.32):

(

V̌ scalarφ
)(k)

t′T ′ (|p′|, |q′|, p̂′ · q̂′) =
∫

d3p′
8
∑

i=1

∑

T

6
∑

j=1

φ
(i)
tT ′(|p′|, |q|, p̂′ · q̂)vtT tT ′

j (|p|, |p′|, p̂ · p̂′)

(C−1L)kji(p, q;p,p′;p′, q).

The 3N potential operator from equation (10.43):

(V̌ (1)scalarφ)
(i)
tT (|p|, |q|, p̂ · q̂) =

8
∑

i=1

∫

d3p

∫

d3q
∑

t′

φ
(i)
tT (|p|, |q|, p̂ · q̂)

8
∑

r=1

C−1
kr (p, q)EttT

ri (pq;pqpq;pq) ≡

8
∑

i=1

∫

d3p

∫

d3q
∑

t′

φ
(i)
tT (|p|, |q|, p̂ · q̂)(C−1E)ttTki (pq;pqpq;pq)

2048000 dimensional vectors and 2048000× 2048000 dimensional operators

88

Functions
(

Ad(p)
)−1

qk
, Bd

kjk′′(p,p′) , Bkjj′(|p′|, {|p|} , x′, |p′′|, x′′, φ′′) ,

C1223
t′T ′k;tT i(p

′, q′) , C1323
t′T ′k;tT i(p

′, q′) , (C−1L)kji(p, q;p,p′;p′, q) and

(C−1E)ttTki (pq;pqpq;pq) were discussed earlier in the text and their

implementation is available with the use of the util1N2N3N.m and

FunctionArray.m packages discussed in Appendixes B, C. Notebooks

creating the implementations are discussed in Appendix D.

It is clear from the form of these equations that we will have to deal with
large linear systems. This is especially apparent in the 3N bound state case.
There is currently no possibility to store 2048000×2048000 dimensional matrices
on a single PC. Moreover, the explicit form of the matrices involved in our
computations is known only for a limited number of cases. Our methods of
dealing with these large equations do not require the knowledge of the matrix
representation. Our numerical realization requires only the implementation of
the action of appropriate operators onto vectors and some appropriately chosen
scalar product.

The calculations are divided into two steps. In the first step we find a sub-
space of the domain of the large linear operator that is involved in our equations.
This subspace is ideally of small dimension (around 40) and contains eigenvalues
with the largest absolute values of the linear operator (the matrix representa-
tion of the large linear operator in this subspace is calculated simultaneously).
In the next step we reconstruct the original equation in this small subspace and
solve it using classical methods.

The basic scheme for finding the subspace is as follows. First we start with
some arbitrary vector q1, next using our implementation of the action of the
large linear operator Ǎ on a vector we calculate Ǎq1, ǍǍq1, ǍǍǍq1, . . . (this
iteration scheme can be different in practical applications, we will typically
use the Arnoldi algorithm). From this set of vectors we calculate a new set
q̂1, q̂2, q̂3, . . . of orthogonal vectors that spans the same space

span(q1, Ǎq1, ǍǍq1, ǍǍǍq1, . . .) = span(q̂1, q̂2, q̂3, . . .) (A.1)

and the representation of Ǎ in this space. It can be deduced from the form of
our iterations that, at each step, vector components proportional to the largest
eigenvalues of Ǎ will be amplified. In real applications we use a slightly more
sophisticated iteration method - Arnoldi iteration, it will be described in detail
in section A.2. The subspace resulting from Arnoldi iterations can be proved to
be identical to span(q̂1, q̂2, q̂3, . . .) but the algorithm is more numerically stable.

A.2 Arnoldi iteration scheme

This section gives a description of the Arnoldi iteration procedure that was suc-
cessfully used in our calculations. The following simple scheme was fully suffi-
cient for our applications, more advanced Krylov methods are however available,
see for example [61]. Let v be some initial vector with norm 1, Ǎ be a general
linear operator acting in the space of v and N be the number of iterations. The
Arnoldi algorithm is listed in Program 1.

89

Program 1 Pseudo - code for Arnoldi algorithm.

1 q[1] <- v

2 DO k = 2 , N

3 q[k] <- A q[k - 1]

4 DO j = 1 , k - 1

5 h[j , k - 1] <- (q[j] , q[k])

6 q[k] <- q[k] - h[j , k - 1] q[j]

7 END DO

8 h[k , k - 1] = |q[k]|

9 q[k] = q[k] / h[k , k - 1]

10 END DO

In line 3 of Program 1 the action of linear operator A on vector q[k - 1] is
performed and stored in q[k]. In line 5 the scalar product is computed and in
line 8 the norm calculated.

The result of the algorithm is a N×N−1 matrix
[

ȟ
]

with elements h[i , j]

(hij) and a set of vectors {qi} (q[i]) i = 1, ..., N . It can be easily seen that
the produced vectors are orthogonal. Following the algorithm and remembering
about the normalization in line 9 of Program 1, the first four vectors are:

q1 = v

q2 = Ǎq̂1 − (q̂1, Ǎq̂1)q̂1

q3 = Ǎq̂2 − (q̂1, Ǎq̂2)q̂1 − (q̂2, Ǎq̂2 − (q̂1, Ǎq̂2)q̂1)q̂2

q4 = Ǎq̂3 − (q̂1, Ǎq̂3)q̂1 − (q̂2, Ǎq̂3 − (q̂1, Ǎq̂3)q̂1)q̂2

− (q̂3, Ǎq̂3 − (q̂1, Ǎq̂3)q̂1 − (q̂2, Ǎq̂3 − (q̂1, Ǎq̂3)q̂1)q̂2)q̂3

. . . (A.2)

Using the properties of the scalar product one can immediately see that the
vectors q2 and q̂1 are orthogonal, that is (q2, q̂1) = 0. Using this it is easy to
simplify the expression for q3 and then iterate to arrive at:

q1 = v

q2 = Ǎq̂1 − (q̂1, Ǎq̂1)q̂1

q3 = Ǎq̂2 − (q̂1, Ǎq̂2)q̂1 − (q̂2, Ǎq̂2)q̂2

q4 = Ǎq̂3 − (q̂1, Ǎq̂3)q̂1 − (q̂2, Ǎq̂3)q̂2 − (q̂3, Ǎq̂3)q̂3

. . . (A.3)

or alternatively:

q1 = v

q2 = Ǎq̂1 − h11q̂1

q3 = Ǎq̂2 − h12q̂1 − h22q̂2

q4 = Ǎq̂3 − h13q̂1 − h23q̂2 − h33q̂3

. . . (A.4)

The meaning of elements h[k , k - 1] (hkk−1) from line 8 of Program 1 can

90

also be easily calculated. For example the using (A.3):

|q3|2 = (q3, q3)

= (q3, Ǎq̂2 − (q̂1, Ǎq̂2)q̂1 − (q̂2, Ǎq̂2)q̂2)

= (q3, Ǎq̂2)

= |q3|(q̂3, Ǎq̂2)

In other words when we calculate the norm |q3| we arrive at (q̂3, Ǎq̂2). This in
addition to (A.4) can be generalized. It becomes clear that:

hij = (q̂i, Ǎq̂j) (A.5)

are matrix elements of the operator Ǎ projected onto a space spanned by the
orthogonal vectors span (q̂1, q̂2, q̂3, ..., q̂N). It can also be shown that this space
is identical to the Krylov space

K(v̂, N) = span
(

v̂, Ǎv̂, Ǎ2v̂, ..., ǍN v̂
)

= span (q̂1, q̂2, q̂3, ..., q̂N) . (A.6)

In order to get a complete set of matrix elements of
[

ȟ
]

it is necessary to
additionally calculate the last column. This can be done using Program 2

Program 2 Pseudo - code for calculating the last column.
1 DO k = 1 , N

2 v <- q[n]

3 v <- A v

4 h[k , n] = (q[k] , v)

5 END DO

or alternatively the last row can be dropped, q̂N neglected and N ← N − 1
set.

The eigenvectors and eigenvalues of the operator ȟ in the Krylov space (A.6)
are approximations of the most extreme eigenvectors and values of Ǎ. Reducing
the dimension of vectors and matrix operators makes it possible to apply the
standard numerical methods of linear algebra to problems that would otherwise
be too big due to limited computing resources and time. This reduction is quite
substantial. For example, the Faddeev component in 3N bound state calcu-
lations can be discretized over its arguments to produce a (typically) 500000
dimensional vector but after using the Arnoldi procedure we work with (typi-
cally) 40 dimensional vectors and matrices. More detailed information on the
algorithm can be found for example in [61].

This algorithm is in many ways similar to standard Gram-Schmidt orthog-
onalization procedure, however it proves to be more numerically stable. Calcu-
lating the action of Ǎ, the scalar product and the norm can be easily parallelized
and implemented to run on a large computing cluster, making Arnoldi iterations
an essential part of our numerical performance. In our programs the Arnoldi
iteration is used to calculate the bound states of the 2N and 3N systems and
to solve linear equations arising in the iterative calculation of transition oper-
ator matrix elements. Details can be found in the programs themselves and in
Appendix D.

91

A.3 Implementation on a large computing clus-
ter

As mentioned before the only operations that need to be implemented in or-
der for our iteration schemes to work are the action of a linear operator on a
vector and the calculation of a scalar product. Due to the large size of vectors in-
volved it is often necessary to construct parallel code. This section describes our
method of implementing these two algebraic operations on a large computing
cluster.

In our programs we use the Message Passing Interface (MPI) for parallel
computations. For a detailed description of this protocol the reader is referred
to a wealth of tutorials and guides available on the Internet. A good starting
point for learning the interface is:

https://computing.llnl.gov/tutorials/mpi/

In a typical MPI session the same program is distributed over a large number
of computing nodes (processors) and run in parallel. Each running program
has access to a unique identification number id. We found that in order to
implement the two operations (the action of a large linear operator on a vector
and scalar product) only two subroutines using the MPI interface are necessary.
Below we give the two-line pseudo code that uses these subroutines, can be ran
in parallel and used to implement the action of a large linear operator on a
vector (Program 3) and scalar product between the two vectors (Program 4).

In Program 3 all variables are vectors and variables ending with SG_id

hold a fragment of the full vector. The distribution of the full vector be-
tween the parallel processes is determined by each processes unique identifi-
cation number. This distribution is performed in such a way that after running
v <- SGtoFULL(VSG_id) each process will hold the full version of the vector
in v. SGtoFULL(VSG_id) can be easily implemented using MPI subroutines.
It is important to note that vectors from the pseudo code do not have to be
implemented as one dimensional tables. When dealing with the 2N, 3N bound
states or the transition operator, it is far more advantageous to hold the scalar
functions as multidimensional arrays, this way, implementing the action of the
large linear operator on the scalar function is more straightforward. Operation
vSG_id <- O(v) calculates the action of the large linear operator Ǒ on the full
vector v, only a fragment (the segment is determined by the threads unique id)
VSG_id of the resulting vector is calculated. As a result of running Program 3
the value of the full vector v will be changed, the new value is created from the
old value with the use of the large operator Ǒ. In addition to the full vector
and the vector fragment each parallel thread needs to hold in memory the data
necessary to use the large linear operator in calculating the vector fragment.
For the calculations to be efficient, the number of fragments into which the full
vector is split should be such that performing line 1 takes substantially longer
than line 2. Data distribution is a bottle neck on most computational clusters.

92

https://computing.llnl.gov/tutorials/mpi/

Program 3 Pseudo - code for the parallelized action of the large linear operator
on a vector.

<determine the segment of the

full vector that will be held

in vSG_id>

1 vSG_id <- O(v)

2 v <- SGtoFULL(vSG_id)

To summarize, each process holds information necessary to implement a
fragment of the full operator and information necessary to construct the full
vector:

àààààààààààààààààààà

àààààààààààààààààààà

áááááááááááááááááááá

áááááááááááááááááááá

áááááááááááááááááááá

áááááááááááááááááááá

áááááááááááááááááááá

áááááááááááááááááááá

áááááááááááááááááááá

áááááááááááááááááááá

áááááááááááááááááááá

áááááááááááááááááááá

áááááááááááááááááááá

áááááááááááááááááááá

áááááááááááááááááááá

áááááááááááááááááááá

áááááááááááááááááááá

áááááááááááááááááááá

áááááááááááááááááááá

áááááááááááááááááááá

process 1

à

à

à

à

à

à

à

à

à

à

à

à

à

à

à

à

à

à

à

à

áááááááááááááááááááá

áááááááááááááááááááá

àààààààààààààààààààà

àààààààààààààààààààà

áááááááááááááááááááá

áááááááááááááááááááá

áááááááááááááááááááá

áááááááááááááááááááá

áááááááááááááááááááá

áááááááááááááááááááá

áááááááááááááááááááá

áááááááááááááááááááá

áááááááááááááááááááá

áááááááááááááááááááá

áááááááááááááááááááá

áááááááááááááááááááá

áááááááááááááááááááá

áááááááááááááááááááá

áááááááááááááááááááá

áááááááááááááááááááá

process 2

à

à

à

à

à

à

à

à

à

à

à

à

à

à

à

à

à

à

à

à

. . .

Having run Program 3, each process will hold a fragment of the full vector:

à

à

á

á

á

á

á

á

á

á

á

á

á

á

á

á

á

á

á

á

process 1

á

á

à

à

á

á

á

á

á

á

á

á

á

á

á

á

á

á

á

á

process 2 . . .

and the full vector can be reconstructed from the fragments and used in the
next iteration.

The scalar product usually does not require as much computational effort
as calculating the action of the large linear operator. Parallelization can be
achieved in a straightforward way. In Program 4 spSG_id holds part of the scalar
product calculated from the threads vector fragments v1SG_id and v2SG_id.
After summing up all contributions from all threads in line 2, sp will hold
the full scalar product. Just as before each vector ending with SG_id holds a
fragment determined by the threads id.

Program 4 Pseudo - code for the parallelized scalar product.
<determine the segment of the

full vectors that will be held

in v1SG_id , v2SG_id>

1 spSG_id <- SP(v1SG_id , v2SG_id)

2 sp <- SGtoFULLsp(spSG_id)

93

94

Appendix B

The util1N2N3N.m
package

In previous chapters many expressions were contained within square brackets
[. . .]. This notation was used to mark the existence of a matrix implementation,
typically in one of the bases from the Appendix: E.1, E.2, E.3, E.4, E.5 or
E.6. Further observation leads to the conclusion that all expressions inside [. . .]
can be built from a finite number of construction elements. The util1N2N3N.m

Mathematica R© package provides an implementation of these construction ele-
ments and tools that can be used to put them together. This package can be
used with FunctionArray.m discussed in the next chapter in order to create a
FORTRAN implementation of any [. . .] expression.

This chapter can be read in parallel to

PROGRAMS/UTIL1N2N3Ntutorial/UTIL1N2N3Ntutorial.nb

After evaluating, the input and output numbers from the notebook schould
match those in the text below.

B.1 Loading the package

This can be done by typing:

and uses the Get Mathematica R© function. The argument of this function is a
path name pointing to a directory above the tutorial notebook.

B.2 Getting information on the package

Information on any symbols introduced by the package can be accessed by using
the ? command. For example:

95

lists information on all available functionalities.

B.3 Scalar products, vector products and spin
(isospin) operators

One of the more useful new features is the scalar product (SP). The standard
Mathematica R© implementation uses the . symbol. The new implementation

uses CenterDot (entered as
....

... and displayed as · where
... is the ESCAPE key):

After looking at the following examples it should become apparent that the new
implementation has many advantages over the standard method (that uses the
lower .).

First we introduce two vectors:

96

and calculate the SP:

Up to this point there is no difference with ”.”. Now we try to calculate the
SP of a known vector A and a new symbol CC:

CenterDot assumes that CC is an element of an Array. This assumption can be
very useful in some situations. Using A.CC would produce an error.

The next example uses matrix operators. We introduce:

F now holds a vector of matrix operators, more precisely:

(

σ̌1 ⊗ 1̌⊗ 1̌, σ̌2 ⊗ 1̌⊗ 1̌, σ̌2 ⊗ 1̌⊗ 1̌
)

with the spin operator (or the isospin operator, since both are represented using
the Pauli matrixes) acting in the space of particle 1. Each component of the
vector is an 8× 8 dimensional matrix:

CenterDot allows us to quickly calculate what would normally require the use
of Sum:

The new definitions for the cross product (KP, entered as
...cross

... and dis-
played as ×):

97

have similar properties as the CenterDot. We can calculate the CP of two
known vectors:

or the CP of a known vector and an unknown array CC:

Finally the CP between a vector and a vector of operators and the CP between
two vectors of operators works according to expectations:

and does not require the manual use of Sum.

B.4 Permutations

Permutations within the spin (isospin) space of the 2N and 3N systems are a
big part of the calculations presented in the previous chapters. The matrix
representation of the permutation operator in the E.5 spin (isospin) basis can
be obtained using:

Permuting the particles twice produces the identity operator:

98

Incidentally the package also provides the identity operator for the 2N spin
(isospin) space:

With two particles there is only one nontrivial way of permuting them. Per-
muting particle 1 with particle 1 or particle 2 with particle 2 gives the identity
operator:

Permutation matrices in the joined isospin - spin space can be constructed

using the KP. The new definitions for the CircleTimes (entered as
...c ∗

... and
displayed as ⊗) can return the KP:

The CircleTimes definitions will be discussed in more detail in the next sec-
tion. For 3N systems one can use PER3N. Now the permutation operators are
implemented using 8× 8 matrices in basis E.6.

Permutations within the spin (isospin) spaces of 2N and 3N systems are
simple to work out. Careful considerations of E.2 and E.3 lead directly to the
matrix form of the permutation operator. Permutations within the momentum
space of the 3N system are slightly more complicated. Permutations of single
particle momentum eigenstates with particle 1 having momentum k1, particle
2 having momentum k2 and particle 3 having momentum k3:

are still simple. Our package provides the Mpermute symbol:

99

which works according to expectations.
Permuting Jacobi momentum eigenstates is a little more tricky. There are

three different ways of defining Jacobi momenta (see ?util1N2N3N for more
information), the package introduces the JMpermute symbol:

which can use the three different definitions (JMpermute[1...3][...]). The
example above uses the first definition with p = 1

2 (k2 − k3) and q = 2
3 (k1 −

1
2 (k2 + k3)) and applies P̌12P̌23 to | pq〉. A reverse permutation recreates the
original vectors:

B.5 Other useful definitions and examples

Using the built in ⊗ (CircleTimes in Mathematica R© , entered as
...c ∗

...) symbol
produces the Kronecker Product matrix representation of the tensor product.
It is crucial to underline that the order of operations in the KP is important so
an extensive use of brackets is encouraged:

This is a very powerful function of the util1N2N3N.m function and allowed us
to glue together expressions acting in the spaces of different nucleons.

In some situations expressions inside [. . .] consist of vectors acting on scalar

quantities. The CircleDot symbol (entered using
...c.

... and displayed as ⊙) makes
working with such products simple, even when vectors of operators are involved:

100

Here SIGMA3N[1] is a vector of operators (three 8 × 8 dimensional spin (or
isospin) operators acting in the space of particle 1) and sigma3N[1,1] is a
single operator acting in the space of the first particle.

This next example mimics a situation in which the potential operator is
given in operator form 〈p′ | V̌ | p〉 (where we will use p′ = pp) and acts in the
spin space of the 2N particle system:

Finding the decomposition of this operator into the six w̌ operators introduced
when discussing the deuteron can be achieved using the built definitions for W2N
(for 3N systems see ?W3N). First a basis of six flattened w̌ operators is created:

Next a linear system is solved:

An error in this step might suggest that V does not have a decomposition within
the six w̌ operators.

Single particle spin (isospin) 1
2 states can be used with:

Two and three-nucleon spin (isospin) states constructed using Clebsch-Gordan
coefficients are also available:

101

More information on these states is available with ?STATE1N, ?STATE2N,
?STATE2N.

102

Appendix C

The FunctionArray.m
package

Below we give an introduction to the FunctionArray.m Mathematica R© package.
With the help of this package it is possible to produce automatic FORTRAN
implementations of expressions created using util1N2N3N.m. This chapter is
designed to be read in parallel to

PROGRAMS/FunctionArraytutorial/FunctionArraytutorial.nb

which contains three examples that are discussed below. After evaluating, the
In[] numbers from the notebook should match those in this chapter.

C.1 Loading the package

This is very straightforward and one needs simply to type:

into the Mathematica R© notebook. The package is contained with the files pro-
vided with this thesis and located in the directory above FunctionArraytuto-
rial.nb. Other examples also use this location.

C.2 A simple function

Now that the definitions from FunctionArray.m are available, we start with a
very simple example. We first tell Mathematica R© that the function simple

takes one argument, a double precision number:

Multiple arguments can be used, for example {{double , {2,2}},{complex,{2}}}
(two arguments; the first one is a double precision, dimension(2,2) matrix
and the second one is a complex, dimension(2) vector). The first element

103

in each sublist corresponds to an appropriate FORTRAN type and the sec-
ond element corresponds to the dimension. Empty brackets correspond to a
single number. More information on available types is available by running
?FunctionArray.

Next we need to supply information on the objects returned by the function.
In our example simple will return a double precision number:

Notice the lack of external brackets - only one value can be returned (nothing
stands in the way of returning a vector or array).

Many objects that we would like to implement as FORTRAN functions con-
tain a large amount of integer arguments or indexes. The FunctionArray.m

package makes sure that the implementation of such objects is efficient. This
is done using one final piece of information. Apart from the function itself we
need to declare that simple has one integer index and it can take values from
the range 1 . . . 3:

Finally we define the function itself. The general syntax is:

where the first element is the name of the function, the second element is a list
of integer index arguments (specified by IndexRange) and the third element is
a list of the remaining arguments (specified by ReturnType).

These four definitions (ArgumentType, ReturnType, IndexRange and
simple@{...}@{...}) are all that Mathematica R© needs to know in order to
produce a FORTRAN implementation. Both .f and .f90 code can be produced.
In addition to the function implementations, test programs can be created:

The first argument to functionarray, functionarraytest,
fixedfunctionarray and fixedfunctionarraytest is a string that will be
used in the name of the functions in the FORTRAN implementations. The
second argument is a symbol for which the necessary definitions (ArgumentType,
ReturnType, . . .) have been evaluated. The last argument is the maximal

104

number of columns for the code (100 columns for .f90 code and 70 for .f fixed
syntax).

The third argument is a function, in this case N. In functionarraytest

and fixedfunctionarraytest, N is just a dummy argument. The relevance of
this third argument in functionarray and fixedfunctionarray can be un-
derstood after a short introduction to their inner workings. After evaluating
functionarray["simple", simple , N , 100] or
fixedfunctionarray["simple" , simple , N , 70] Mathematica R© creates
a list of unique argument symbols according to the specifications in
ArgumentType[simple]. The list of unique arguments is used as B in
simple@{A List}@{B List}, this expression is then evaluated for all possible
integer indexes in A. This list of evaluated expressions will be turned into FOR-
TRAN code. Before turning the evaluated expressions into a FORTRAN, code
N will be applied to each expression. If the expression is an array or list, N is
applied to each element of the array or list separately. This third argument (N)
thus allows us to make one final adjustment before producing the FORTRAN
implementation. It can be especially useful when working with functions that
return, say, an array of complex numbers. In this case N can be replaced by
DCMPLX[N\[#]]&. This function will be applied to all elements of the array be-
fore turning it into FORTRAN code. Inside the code each element of the array
will have DCMPLX(...) around it informing the compiler that the elements are
of double complex type.

Exporting the code can be performed using the "Text" argument with
Export:

The code will be written to the same directory as the notebook. A peek into
the new files reveals the method of implementation.

The simple.f code uses the case construct:

select case(indsum)

case (1)

simpleF = simple_1(dp17)

case (2)

simpleF = simple_2(dp17)

case (3)

simpleF = simple_3(dp17)

end select

Each index case (1 . . . 3) is implemented as a separate function, for example:

function simple_2(dp19)

double precision :: simple_2

double precision :: dp19

simple_2 =

105

-dp19 **2

return

end function simple_2

This type of construction works nearly as fast as the function pointer scheme
used in the .f90 implementation that will be discussed later. Using code opti-
mization makes up for the lack of function pointers in FORTRAN77 (making the
speed differences, compared to a function pointer implementation, negligible).

In order to use the full implementation, a program should provide an inter-
face. This can be copied from the test program testsimple.f:

interface

function simpleF(ind22 , dp21)

double precision :: simpleF

double precision :: dp21

integer :: ind22

end function simpleF

end interface

Notice that the function name is simpleF, it is created from the string ”simple”
that was supplied to Mathematica R© and an additional ”F”. The test program
calls simpleF for all cases if index values:

print * ,simpleF (1, dp20)

print * ,simpleF (2, dp20)

print * ,simpleF (3, dp20)

The FORTRAN90 version uses a slightly more refined method of implemen-
tation. Each possible index value is assigned a pointer to a function, this scheme
is fast even without code optimization. Function pointers are a relatively new
addition to FORTRAN and require a compiler that supports this new feature.
Most new compilers utilize this novelty (for example gfortran-4.5 or higher)
and there are also many examples of codes available online. File simple.f90

contains a module:

module simple

implicit none

...

end module simple

In order to work, this module needs to be initialized by calling:

subroutine initializesimple ()

allocate(simpleARRAY (3))

...

simpleARRAY (1) % simplepointer => simple_1

simpleARRAY (2) % simplepointer => simple_2

simpleARRAY (3) % simplepointer => simple_3

return

end subroutine initializesimple

This subroutine allocates an array of function pointers and assigns a function
to each element of the array.

Using the implemented functions is simple, testsimple.f90 calls each index
case:

106

print * ,simpleARRAY (1) % simplepointer (dp16)

print * ,simpleARRAY (2) % simplepointer (dp16)

print * ,simpleARRAY (3) % simplepointer (dp16)

Notice that simpleARRAY and simplepointer are created from the string ”sim-
ple” that was supplied to Mathematica R© and an additional ”ARRAY”, ”pointer”.
For more complicated functions simpleARRAY(1) might be replaced by
moreindexesARRAY(1,2,3) and will correspond to a different set of indexes.

C.3 A more complicated example

In this example, we implement a function that takes two arguments and returns
a 2 dimensional vector of complex numbers. The first argument is a 2×2 matrix
and the second one is also a 2 dimensional vector. In addition, we declare two
integer indexes that will take values from 1 . . . 2. All this information can be
supplied to Mathematica R© using the following three simple expressions:

We use a combination of matrix and vector operators to produce the result.
The function itself is defined using:

with the indexes (i, j), the matrix argument (array) and the vector argument
(vector).

Code production is the final step:

107

Multiple versions of FORTRAN implementations and test files will be pro-
duced. The structure of implementation is analogous to the simple example
given above. The .f code can be called after supplying an interface
(see PROGRAMS/FunctionArraytutorial/testcomplicated.f):

print * ,complicatedF (1, 1, dc35 , dp36)

print * ,complicatedF (1, 2, dc35 , dp36)

print * ,complicatedF (2, 1, dc35 , dp36)

print * ,complicatedF (2, 2, dc35 , dp36)

The .f90 code can be called after initializing the module
(see PROGRAMS/FunctionArraytutorial/testcomplicated.f90):

call initializecomplicated ()

...

print * ,complicatedARRAY (1, 1) &

% complicatedpointer (dc27 ,dp28)

print * ,complicatedARRAY (1, 2) &

% complicatedpointer (dc27 ,dp28)

print * ,complicatedARRAY (2, 1) &

% complicatedpointer (dc27 ,dp28)

print * ,complicatedARRAY (2, 2) &

% complicatedpointer (dc27 ,dp28)

The names of the functions and arrays are created, as in the simple example,
by adding ”F”, ”ARRAY” or ”pointer” to the string ”complicated” (passed as
an argument to functionarray, fixedfunctionarray, . . .).

C.4 One more example

In this last example we assume that a lot of time was needed to calculate a
matrix:

108

We would like Mathematica R© to use this array and not calculate its elements
on the fly. First we give the standard information:

Next we define the function itself by using substitution rules:

Finally we produce the code:

The test functions in this case will print out the 2 × 2 matrix elements in
the default FORTRAN order. A more human readable method of output can
be added manually to the test code.

C.5 Final remarks

The test programs use a set of arbitrary numbers as arguments (typically 1.0).
In some cases this might produce errors resulting from singularities in the im-
plemented functions. If the output of the test programs produces numerous
cases of NAN (not a number) this might be an indication that the values of the
arguments should be changed.

The package detects errors and throws error messages. If Mathematica R©

refuses to cooperate - do not panic - the messages contain clues as to what went
wrong. If the reader notices an error please contact me
(kacper.topolnicki@uj.edu.pl).

The tutorial notebook was created using Mathematica R© 8. Opening this
notebook in a newer version of Mathematica R© might produce a warning mes-
sage. This warning can be ignored since the notebook uses only core Mathe-

matica R© functions that should be constant from one version to another. The
util1N2N3N.m package also uses only core language functions and is a simple
text file. Employing this package in a newer version of Mathematica R© should
not cause problems.

109

110

Appendix D

Code organization

This chapter contains documentation on the notebooks and codes that were
supplied with this thesis. Each of the following sections is related to a single
problem - the deuteron, the 3N bound state, the transition operator and cur-
rent calculations. In the previous chapters the FunctionArray.m Mathematica R©

package was introduced. The definitions introduced by the package led us to
use a common simple structure for all the following sections. First we introduce
the location of notebooks that will be used to create the FORTRAN code. Next
we discuss the syntax of the FORTRAN functions, their arguments and relation
to previously introduced mathematical expressions.

D.1 Building blocks for the deuteron bound state
calculations

The FORTRAN code that can be used in the construction of the 2N bound
state calculation is constructed by evaluating:

PROGRAMS/deuteron/nb/deuteron.nb.

The code produced by the notebook will be written to:

PROGRAMS/deuteron/.

Both fixed format (.f) and free format (.f90) versions are created. Note - in
order for the free format code to compile, the compiler must support function
pointers (gfortran-4.5 or higher). We assume that this is fulfilled in this whole
chapter.

File AdeuteronFUN.f contains a function

function AdeuteronF(i , j , p)

double precision :: AdeuteronFUN

integer :: i , j

double precision :: p

File AdeuteronFUN.f90 contains a module with an array of function pointers.
The individual functions can be called using:

use Adeuteron

...

AdeuteronARRAY(i , j) % Adeuteronpointer(p)

...

111

with the types:

double precision :: p

Before the module can be used, it should be initialized by calling:

subroutine initializeAdeuteron ()

Both files contain an implementation of (6.3) with k′ = i , k = j and p =
(0, 0, |p|) with |p| = p.

File AinvdeuteronFUN.f contains a function

function AinvdeuteronF (i , j , p)

double precision :: AinvdeuteronFUN

integer :: i , j

double precision :: p

File AinvdeuteronFUN.f90 contains a module with an array of function
pointers. The individual functions can be called using:

use Ainvdeuteron

...

AinvdeuteronARRAY(i, j) % Ainvdeuteronpointer (p)

...

with the types:

double precision :: p

Before the module can be used, it should be initialized by calling:

subroutine initializeAinvdeuteron ()

Both files contain an implementation of (Ad(p))−1
qk from (6.7) with q = i , k =

j and p = (0, 0, |p|) with |p| = p.
File BdeuteronFUN.f contains a function

function BdeuteronF(kk , j , k , p ,

-pp , x)

double precision :: BdeuteronFUN

integer :: k , j, kk

double precision :: p

double precision :: pp

double precision :: x

File BdeuteronFUN.f90 contains a module with an array of function pointers.
The individual functions can be called using:

use Bdeuteron

...

BdeuteronARRAY(kk , j , k) % Bdeuteronpointer(p , pp , x)

...

with the types:

double precision :: p

double precision :: pp

double precision :: x

Before the module can be used, it should be initialized by calling:

subroutine initializeBdeuteron ()

Both files contain an implementation of (6.4) with k′ = kk , k = k ,j = j and
p = (0, 0, |p|) p′ = (

√
1− x2|p′|, 0, x|p′|) with |p| = p , |p′| = pp and x = x.

Additionally the

112

PROGRAMS/deuteron/

directory contains test programs that can be used with the code. The programs
demonstrate function calling and module initializations. They can be used as a
template for new programs.

D.2 Building blocks for 3N bound state calcu-
lations

Fortran codes that can be used in the 3N bound state calculations can be built
by evaluating:

PROGRAMS/bound3N/nb/CinvL.nb

and

PROGRAMS/bound3N/nb/PER.nb

The code produced by the notebooks will be written to:

PROGRAMS/bound3N/

Both fixed format (.f) and free format (.f90) versions are created.
File C1223.f contains a function:

function C1223F(i , j , x , p , q)

double precision :: C1223FUN

integer :: i , j

double precision :: x

double precision , dimension (3):: p

double precision , dimension (3):: q

File C1223.f90 contains a module with an array of function pointers. The
individual functions can be called using:

C1223ARRAY(i , j) % C1223pointer(x , p , q)

with the types:

double precision :: x

double precision , dimension (3):: p

double precision , dimension (3):: q

Before the module can be used, it should be initialized by calling:

subroutine initializeC1223 ()

Both files contain an implementation of C1223
t′T ′k;tT i(p

′, q′) from equation (10.17)

with x = p̂
′ · q̂′, p = P 2312(p′, q′) and q = Q2312(p′, q′) (see equations (10.10),

(10.11)). Each unique set of t′T ′k is numbered by i and each unique set of tT i
is numbered by j - detailed information on the ordering can be easily deduced
from the notebook.

File C1323.f contains a function:

function C1323F(i , j , x , p , q)

double precision :: C1323FUN

integer :: i , j

double precision :: x

double precision , dimension (3):: p

double precision , dimension (3):: q

113

File C1323.f90 contains a module with an array of function pointers. The
individual functions can be called using:

C1323ARRAY(i , j) % C1323pointer(x , p , q)

with the types:

double precision :: x

double precision , dimension (3):: p

double precision , dimension (3):: q

Before the module can be used, it should be initialized by calling:

subroutine initializeC1323 ()

Both files contain an implementation of C1323
t′T ′k;tT i(p

′, q′) from equation (10.22)

with x = p̂
′ · q̂′, p = P 2313(p′, q′) and q = Q2313(p′, q′) (see equations (10.20),

(10.21)). As before, the unique set of t′T ′k is numbered by i and each unique
set of tT i is numbered by j - detailed information on the ordering can be found
the notebook.

File CinvL.f contains a function:

function CinvLF(i , j , k ,

- p , q , x , pp , xx , phiphi)

double precision :: CinvLFUN

integer :: ind9 , ind10 , ind11

double precision :: p

double precision :: q

double precision :: x

double precision :: pp

double precision :: xx

double precision :: phiphi

File CinvL.f90 contains a module with an array of function pointers. The
individual functions can be called using:

CinvLARRAY(i , j , k) % &

&CinvLpointer(p , q , x , pp , xx , phiphi)

with the types:

double precision :: p

double precision :: q

double precision :: x

double precision :: pp

double precision :: xx

double precision :: phiphi

Before the module can be used, it should be initialized by calling:

subroutine initializeCinvL ()

Both files contain an implementation of (C−1L)kji(p, q;p,p′;p′, q) from equa-
tion (10.32) with:

p = |p|(0, 0, 1)

q = |q|(
√

1− x2, 0, x)

p′ = |p′|(
√

1− x′2sin(φ′),
√

1− x′2cos(φ′), x′),

p = |p|, q = |q|, pp = |p′|, x = x, xx = x′ and phiphi = φ′.
We do not include the notebook that was used in the creation of CinvEfun.f

or CinvEfun.f90. Creating these files requires a lot of time in Mathematica R©

114

and additional methods were used in order to increase the speed of computation
(parallelization). File CinvEfun.f contains a function:

function CinvEfunF(i1 , i2 , i3 , k , i

-, x , Q1 , Q2 , Q3 , thetapp

-, phipp , thetaqq , phiqq)

double precision :: CinvEfunFUN

integer :: i1 , i2 , i3 , k , i

double precision :: x

double precision , dimension (3):: Q1

double precision , dimension (3):: Q2

double precision , dimension (3):: Q3

double precision :: thetapp

double precision :: phipp

double precision :: thetaqq

double precision :: phiqq

File CinvEfun.f90 contains a module with an array of function pointers. The
individual functions can be called using:

CinvEfunARRAY (i1 , i2 , i3 , k , i) % &

&CinvEfunpointer (x , Q1 , Q2 , Q3 , &

&thetapp , phipp , thetaqq , phiqq)

with types:

double precision :: x

double precision , dimension (3):: Q1

double precision , dimension (3):: Q2

double precision , dimension (3):: Q3

double precision :: thetapp

double precision :: phipp

double precision :: thetaqq

double precision :: phiqq

Both contain an implementation of (C−1E)t
′t′′T ′

ki (p′q′p′q′p′′q′′;p′′q′′) from (10.42)
with a NNLO 3N potential from [43]. k′

1−k1 = Q1, k′
2−k2 = Q2, k′

3−k3 = Q3

(k1,k2,k3 are the individual particle momenta in the initial state and k′
1,k

′
2,k

′
3

are individual particle momenta in the final state). Additional angles θp′ =
thetapp, φp′ = phipp, θq′ = thetaqq, φq′ = phiqq, parametrize the final
Jacobi momenta:

p′ = |p′|(sin(θp′)cos(φp′), sin(θp′)sin(φp′), cos(θp′))

q′ = |q′|(sin(θq′)cos(φq′), sin(θq′)sin(φq′), cos(θq′)).

The integer indexes translate literally k = k, i = i. The values of i1, i2, i3
correspond to diffrent initial and final isospin states:

i1 = 1, i2 = 1, i3 = 1→ 〈
(

0
1

2

)

1

2
| . . . |

(

0
1

2

)

1

2
〉,

i1 = 2, i2 = 1, i3 = 1→ 〈
(

1
1

2

)

1

2
| . . . |

(

0
1

2

)

1

2
〉,

i1 = 1, i2 = 2, i3 = 1→ 〈
(

0
1

2

)

1

2
| . . . |

(

1
1

2

)

1

2
〉,

i1 = 2, i2 = 2, i3 = 1→ 〈
(

1
1

2

)

1

2
| . . . |

(

1
1

2

)

1

2
〉,

where in 〈
(

t 12
)

T | the isospins of paricles 2 and 3 is coupled to t then this is
coupled with the last particle isospin to the total 3N isospin T .

115

D.3 Building blocks for transition operator cal-
culations

The FORTRAN codes that can be used in the 2N transition operator calcula-
tions is constructed by evaluating:

/PROGRAMS/toperator/nb/toperator.nb.

The code produced by the notebook will be written to:

/PROGRAMS/toperator/.

Both fixed format (.f) and free format (.f90) versions are created.
File AinvBfunctionFUN.f contains a function:

function AinvBtoperatorF (k , j , jj , p ,

-pp , xx , ppp , xxx , phi)

double precision :: AinvBtoperatorFUN

integer :: k , j , jj

double precision :: p

double precision :: pp

double precision :: xx

double precision :: ppp

double precision :: xxx

double precision :: phi

File AdeuteronFUN.f90 contains a module with an array of function pointers.
The individual functions can be called using:

AinvBtoperatorARRAY (k, j, jj) % &

&AinvBtoperatorpointer (p , pp , xx , ppp , xxx , phi)

with the types:

double precision :: p

double precision :: pp

double precision :: xx

double precision :: ppp

double precision :: xxx

double precision :: phi

Before the module can be used, it should be initialized by calling:

subroutine initializeAinvBtoperator ()

Both files contain an implementation of :

6
∑

r=1

A−1
kr (|p′|, {|p|} , x′)Brjj′(|p′|, {|p|} , x′, |p′′|, x′′, φ′′) (D.1)

from (7.15) using (7.4) , (7.5) and momenta defined in (7.7) with |p| = p, |p′| =
pp, x′ = xx, |p′′| = ppp, x′′ = xxx and φ′′ = phi.

Recall that for energies approaching the deuteron binding energy the tran-
sition operator will have a singularity (7.26):

ť(E → Eb) = V̌ | Ψ2N
bound〉

1

E − Eb
〈Ψ2N

bound | V̌ .

Thus for negative energies we will calculate:

ť(E)(E − Eb) (D.2)

116

and expect this operator to have a non singular behavior around the deuteron
binding energy.

After evaluation, the notebook

PROGRAMS/toperator/nb/deu.nb

will hold definitions for (D.2) for energies around the deuteron binding energy.
More specifically it calculates the matrix representation of:

V̌ | Ψ2N
bound〉〈Ψ2N

bound | V̌ (D.3)

and then decomposes this operator according to (5.1). The final result is a table
tab containing values corresponding to (D.2) for different |p|, p′, x from (7.7).

The grid of |p|, p′, x to be used use in deu.nb is read from:

PROGRAMS/toperator/points10XII2012.

This file can be changed. Its format can easily be inferred from the notebook.
Deuteron scalar functions are read from:

PROGRAMS/toperator/d1m2.22400

with the first column being the momentum value |p|, the second being φ1(|p|)
and the third being φ2(|p|) (from (6.1)).

D.4 Building blocks for current operators

The FORTRAN code that can be used in calculations involving single nucleon
current operators can be constructed by evaluating:

PROGRAMS/currents/nb/Single.nb

The code produced by the notebook will be written to:

PROGRAMS/currents/.

Both fixed format (.f) and free format (.f90) versions are created.
Several files are produced:

J1spinplusFUN.f90 , J1spinplusFUN.f,

J1spinminusFUN.f90 , J1spinminusFUN.f,

J1convplusFUN.f90 , J1convplusFUN.f,

J1convminusFUN.f90 , J1convminusFUN.f

and here we will describe only the first set, since all other codes is similar. File
J1spinplusFUN.f contains a function:

function J1spinplusFUNF(ind , phi1 , phi2 , pF

-, ppF)

double complex , dimension (16):: J1spinplusFUNFUN

integer :: ind

double precision :: phi1

double precision :: phi2

double precision , dimension (3):: pF

double precision , dimension (3):: ppF

117

File J1spinplus.f90.f90 contains a module with an array of function pointers.
The individual functions can be called using:

J1spinplusFUNARRAY (ind) % &

&J1spinplusFUNpointer(phi1 , phi2 , pF , ppF)

with the types:

double precision :: phi1

double precision :: phi2

double precision , dimension (3):: pF

double precision , dimension (3):: ppF

Before the module can be used, it should be initialized by calling:

subroutine initializeJ1spinplusFUN ()

Both contain an implementation of

[

O1N(2,p′,K ′)
]

[| 0 0〉⊗ | 1md〉]

from equation (8.8) with phi1, phi2 being the values of the deuteron scalar
functions φl(|p′ + 1

2K
′|) with l = 1, 2 calculated for the value of the final total

and relative momentum K ′ = ppF, p′ = pF. The value of ind determines md:
ind = 1 - md = −1, ind = 2 - md = 0, ind = 3 - md = 1.

The FORTRAN code that can be used in calculations involving two-nucleon
current operators can be constructed by evaluating:

PROGRAMS/currents/nb/Double.nb

The code produced by the notebook will be written to:

PROGRAMS/currents/.

Both fixed format (.f) and free format (.f90) versions are created.
A number of files can be produced by the notebooks, here we use:

J2NPRC1plusFUN.f90 , J2NPRC1plusFUN.f

that implements the +1 spherical component of a current from [55]. All other
codes is similar and can be created by slight modifications to the notebook (all
definitions - for other components - are ready after notebook evaluation, all that
needs to be added is a couple Export directives). File J2NPRC1plusFUN.f
contains a function:

function J2NPRC1plusFUNF (ind , phi1 , phi2 , pF

- , ppF , pI , ppI)

double complex , dimension (16):: J2NPRC1plusFUNFUN

integer :: ind

double precision :: phi1

double precision :: phi2

double precision , dimension (3):: pF

double precision , dimension (3):: ppF

double precision , dimension (3):: pI

double precision , dimension (3):: ppI

File J2NPRC1plusFUN.f90 contains a module with an array of function
pointers. The individual functions can be called using:

J2NPRC1plusFUNARRAY (ind) % &

&J2NPRC1plusFUNpointer (phi1 , phi2 , pF , ppF , pI , ppI)

118

with the types:

double precision :: phi1

double precision :: phi2

double precision , dimension (3):: pF

double precision , dimension (3):: ppF

double precision , dimension (3):: pI

double precision , dimension (3):: ppI

Before the module can be used, it should be initialized by calling:

subroutine initializeJ2NPRC1plusFUN ()

Both contain an implementation of

[

O2N(2,p′,K ′)
]

[| 0 0〉⊗ | 1md〉]

from equation (8.18) with phi1, phi2 being the values of the deuteron scalar
functions φl(|p′′) with l = 1, 2 calculated for the value of the magnitude of the
integral momentum p′′ = pI. Final total and relative momentum K ′ = ppF,
p′ = pF. The value of ind determines md as before. In these functions ppI is a
dummy argument.

119

120

Appendix E

Other details

E.1 Reference tables for the different basis vec-
tors

i ν
isospin
1 (i) ν

spin
1 (i)

1 − 1
2

− 1
2

2 − 1
2

1
2

3 1
2

− 1
2

4 1
2

1
2

Table E.1: Reference list of 1N basis states
| 12 , ν

isospin
1 (i)〉isospin⊗ | 12 , ν

spin
1 (i)〉spin

quantum numbers. i is the number of the basis state and ν
spin(isospin)
j (i) is the

projection of the spin (isospin) of particle i.

i ν
isospin
1 (i) ν

isospin
2 (i) ν

spin
1 (i) ν

spin
2 (i)

1 − 1
2

− 1
2

− 1
2

− 1
2

2 − 1
2

− 1
2

− 1
2

1
2

3 − 1
2

1
2

− 1
2

− 1
2

4 − 1
2

1
2

− 1
2

1
2

5 − 1
2

− 1
2

1
2

− 1
2

6 − 1
2

− 1
2

1
2

1
2

7 − 1
2

1
2

1
2

− 1
2

8 − 1
2

1
2

1
2

1
2

9 1
2

− 1
2

− 1
2

− 1
2

10 1
2

− 1
2

− 1
2

1
2

11 1
2

1
2

− 1
2

− 1
2

12 1
2

1
2

− 1
2

1
2

13 1
2

− 1
2

1
2

− 1
2

14 1
2

− 1
2

1
2

1
2

15 1
2

1
2

1
2

− 1
2

16 1
2

1
2

1
2

1
2

Table E.2: Reference list of 2N basis states
| 12 , ν

isospin
1 (i)〉isospin⊗ | 12 , ν

isospin
2 (i)〉isospin⊗ | 12 , ν

spin
1 (i)〉spin⊗ | 12 , ν

spin
2 (i)〉spin

quantum numbers. i is the number of the basis state and ν
spin(isospin)
j (i) is the

projection of the spin (isospin) of particle i.

121

i ν
isospin
1 (i) ν

isospin
2 (i) ν

isospin
3 (i) ν

spin
1 (i) ν

spin
2 (i) ν

spin
3 (i)

1 − 1
2

− 1
2

− 1
2

− 1
2

− 1
2

− 1
2

2 − 1
2

− 1
2

− 1
2

− 1
2

− 1
2

1
2

3 − 1
2

− 1
2

− 1
2

− 1
2

1
2

− 1
2

4 − 1
2

− 1
2

− 1
2

− 1
2

1
2

1
2

5 − 1
2

− 1
2

1
2

− 1
2

− 1
2

− 1
2

6 − 1
2

− 1
2

1
2

− 1
2

− 1
2

1
2

7 − 1
2

− 1
2

1
2

− 1
2

1
2

− 1
2

8 − 1
2

− 1
2

1
2

− 1
2

1
2

1
2

9 − 1
2

1
2

− 1
2

− 1
2

− 1
2

− 1
2

10 − 1
2

1
2

− 1
2

− 1
2

− 1
2

1
2

11 − 1
2

1
2

− 1
2

− 1
2

1
2

− 1
2

12 − 1
2

1
2

− 1
2

− 1
2

1
2

1
2

13 − 1
2

1
2

1
2

− 1
2

− 1
2

− 1
2

14 − 1
2

1
2

1
2

− 1
2

− 1
2

1
2

15 − 1
2

1
2

1
2

− 1
2

1
2

− 1
2

16 − 1
2

1
2

1
2

− 1
2

1
2

1
2

17 − 1
2

− 1
2

− 1
2

1
2

− 1
2

− 1
2

18 − 1
2

− 1
2

− 1
2

1
2

− 1
2

1
2

19 − 1
2

− 1
2

− 1
2

1
2

1
2

− 1
2

20 − 1
2

− 1
2

− 1
2

1
2

1
2

1
2

21 − 1
2

− 1
2

1
2

1
2

− 1
2

− 1
2

22 − 1
2

− 1
2

1
2

1
2

− 1
2

1
2

23 − 1
2

− 1
2

1
2

1
2

1
2

− 1
2

24 − 1
2

− 1
2

1
2

1
2

1
2

1
2

25 − 1
2

1
2

− 1
2

1
2

− 1
2

− 1
2

26 − 1
2

1
2

− 1
2

1
2

− 1
2

1
2

27 − 1
2

1
2

− 1
2

1
2

1
2

− 1
2

28 − 1
2

1
2

− 1
2

1
2

1
2

1
2

29 − 1
2

1
2

1
2

1
2

− 1
2

− 1
2

30 − 1
2

1
2

1
2

1
2

− 1
2

1
2

31 − 1
2

1
2

1
2

1
2

1
2

− 1
2

32 − 1
2

1
2

1
2

1
2

1
2

1
2

33 1
2

− 1
2

− 1
2

− 1
2

− 1
2

− 1
2

34 1
2

− 1
2

− 1
2

− 1
2

− 1
2

1
2

35 1
2

− 1
2

− 1
2

− 1
2

1
2

− 1
2

36 1
2

− 1
2

− 1
2

− 1
2

1
2

1
2

37 1
2

− 1
2

1
2

− 1
2

− 1
2

− 1
2

38 1
2

− 1
2

1
2

− 1
2

− 1
2

1
2

39 1
2

− 1
2

1
2

− 1
2

1
2

− 1
2

40 1
2

− 1
2

1
2

− 1
2

1
2

1
2

41 1
2

1
2

− 1
2

− 1
2

− 1
2

− 1
2

42 1
2

1
2

− 1
2

− 1
2

− 1
2

1
2

43 1
2

1
2

− 1
2

− 1
2

1
2

− 1
2

44 1
2

1
2

− 1
2

− 1
2

1
2

1
2

45 1
2

1
2

1
2

− 1
2

− 1
2

− 1
2

46 1
2

1
2

1
2

− 1
2

− 1
2

1
2

47 1
2

1
2

1
2

− 1
2

1
2

− 1
2

48 1
2

1
2

1
2

− 1
2

1
2

1
2

49 1
2

− 1
2

− 1
2

1
2

− 1
2

− 1
2

50 1
2

− 1
2

− 1
2

1
2

− 1
2

1
2

51 1
2

− 1
2

− 1
2

1
2

1
2

− 1
2

52 1
2

− 1
2

− 1
2

1
2

1
2

1
2

53 1
2

− 1
2

1
2

1
2

− 1
2

− 1
2

54 1
2

− 1
2

1
2

1
2

− 1
2

1
2

55 1
2

− 1
2

1
2

1
2

1
2

− 1
2

56 1
2

− 1
2

1
2

1
2

1
2

1
2

57 1
2

1
2

− 1
2

1
2

− 1
2

− 1
2

58 1
2

1
2

− 1
2

1
2

− 1
2

1
2

59 1
2

1
2

− 1
2

1
2

1
2

− 1
2

60 1
2

1
2

− 1
2

1
2

1
2

1
2

61 1
2

1
2

1
2

1
2

− 1
2

− 1
2

62 1
2

1
2

1
2

1
2

− 1
2

1
2

63 1
2

1
2

1
2

1
2

1
2

− 1
2

64 1
2

1
2

1
2

1
2

1
2

1
2

Table E.3: Reference list of 3N basis states
| 12 , ν

isospin
1 (i)〉isospin⊗ | 12 , ν

isospin
2 (i)〉isospin⊗ | 12 , ν

isospin
3 (i)〉isospin⊗

| 12 , ν
spin
1 (i)〉spin⊗ | 12 , ν

spin
2 (i)〉spin⊗ | 12 , ν

spin
3 (i)〉isospin

quantum numbers. i is the number of the basis state and ν
spin(isospin)
j (i) is the

projection of the spin (isospin) of particle i.

122

i ν
spin(isospin)
1 (i)

1 − 1
2

2 1
2

Table E.4: Reference list of 1N spin(isospin) basis states

| 12 , ν
spin(isospin)
1 (i)〉spin(isospin)

quantum numbers. i is the number of the basis state and ν
spin(isospin)
j (i) is the

projection of the spin (isospin) of particle i.

i ν
spin(isospin)
1 (i) ν

spin(isospin)
2 (i)

1 − 1
2

− 1
2

2 − 1
2

1
2

3 1
2

− 1
2

4 1
2

1
2

Table E.5: Reference list of 2N spin(isospin) basis states

| 12 , ν
spin(isospin)
1 (i)〉spin(isospin)⊗ | 12 , ν

spin(isospin)
2 (i)〉spin(isospin)

quantum numbers. i is the number of the basis state and ν
spin(isospin)
j (i) is the

projection of the spin (isospin) of particle i.

i ν
spin(isospin)
1 (i) ν

spin(isospin)
2 (i) ν

spin(isospin)
3 (i)

1 − 1
2

− 1
2

− 1
2

2 − 1
2

− 1
2

1
2

3 − 1
2

1
2

− 1
2

4 − 1
2

1
2

1
2

5 1
2

− 1
2

− 1
2

6 1
2

− 1
2

1
2

7 1
2

1
2

− 1
2

8 1
2

1
2

1
2

Table E.6: Reference list of 3N spin(isospin) basis states

| 12 , ν
spin(isospin)
1 (i)〉spin(isospin)⊗ | 12 , ν

spin(isospin)
2 (i)〉spin(isospin)⊗

| 12 , ν
spin(isospin)
3 (i)〉spin(isospin)

quantum numbers. i is the number of the basis state and ν
spin(isospin)
j (i) is the

projection of the spin (isospin) of particle i.

E.2 Expansion functions for the Bonn B poten-
tial

The scalar functions for the different parts of the Bonn B potential are (all
necessary definitions were given in Chapter 6) [15]:

Ops =

(

1 +
2m

E′ + E

)[

(p′ · p)2 − p′2p2
]

w2 +

(

1 +
2m

E′ + E

)

w4

+
1

4

{

−(W ′ −W)2 +

(

1 +
2m

E′ + E

)

[p′2 + p2 − 2(p′ · p)]

}

w5

+
1

4

{

−(W ′ +W)2 +

(

1 +
2m

E′ + E

)

[p′2 + p2 + 2(p′ · p)]

}

w6

(E.1)

123

Os = −[W ′W − (p′ · p)]2w1 − [W ′W − (p′ · p)]w3 + w4 (E.2)

Ovv =
{

[W ′W + (p′ · p)]2 +W ′2p2 +W 2p′2 + 2W ′W (p′ · p)
}

w1

+

{

−1

2

(

W ′2 +W 2
) (

p′2 + p2
)

+ 2W ′W (p′ · p)

+
1

2

(

1 +
2m

E′ + E

)

[

p′4 + p4 − 2(p′ · p)2
]

}

w2

−[3W ′W + (p′ · p)]w3 −
(

2 +
2m

E′ + E

)

w4

−1

4

{

−(W ′ −W)2 +

(

1 +
2m

E′ + E

)

[p′2 + p2 − 2(p′ · p)]

}

w5

−1

4

{

−(W ′ +W)2 +

(

1 +
2m

E′ + E

)

[p′2 + p2 + 2(p′ · p)]

}

w6

(E.3)

Ovt =

{

W ′2p2 +W 2p′2 − W ′ −W
2m

(

W ′2p2 −W 2p′2
)

+ 2W ′W [2W ′W + (p′ · p)]− W ′ +W

m

[

W ′2W 2 − (p′ · p)2
]

}

w1

+

{

2W ′W (p′ · p)− 1

2

(

W ′2 +W 2
) (

p′2 + p2
)

+
1

2

(

1 +
2m

E′ + E

)

[

p′4 + p4 − 2(p′ · p)2
]

− 1

2m(E′ + E)

[

W ′2p4 +W 2p′4 −
(

W ′2 +W 2
)

(p′ · p)2
]

}

w2

−
[

2W ′W +
W ′ +W

m
(p′ · p)

]

w3

+

{

−W
′ +W

m
+

1

2m(E′ + E)

[

W ′2 +W 2 − 2m(W ′ +W)
]

}

w4

−1

4

{

−(W ′ −W)2 +

(

1 +
2m

E′ + E

)

[p′2 + p2 − 2(p′ · p)]

− 1

m(E′ + E)
[W ′2p2 +W 2p′2 −

(

W ′2 +W 2
)

(p′ · p)]

}

w5

−1

4

{

−(W ′ +W)2 +

(

1 +
2m

E′ + E

)

[p′2 + p2 + 2(p′ · p)]

− 1

m(E′ + E)
[W ′2p2 +W 2p′2 +

(

W ′2 +W 2
)

(p′ · p)]

}

w6 (E.4)

Ott =

{

[W ′W + (p′ · p)]
2

+ 2

(

2− W ′ +W

m

)

[

W ′2W 2 − (p′ · p)2
]

+

{

3 +
3[W ′W −m(W ′ +W)] + (p′ · p)

2m2

}

[W ′W − (p′ · p)]
2

+

[

1 +
(W ′ −W)2

4m2

]

(

W ′2p2 +W 2p′2
)

+ 2

[

1− (W ′ −W)2

4m2

]

W ′W (p′ · p)

−W
′ −W
m

(

W ′2p2 −W 2p′2
)

}

w1

124

+

{

2

[

1− (W ′ −W)2

4m2

]

W ′W (p′ · p)−
[

1 +
(W ′ −W)2

4m2

](

1 +
2m

E′ + E

)

(p′ · p)2

−
[

1 +
(W ′ −W)2

4m2

](

m2 + E′E

E′ + E
+m

)

(W ′p2 +Wp′2)

− 1

m(E′ + E)

[

W ′2p4 +W 2p′4 −
(

W ′2 +W 2
)

(p′ · p)2
]

}

w2

+

{

−W ′W − (p′ · p) + 2

(

2− W ′ +W

m

)

(p′ · p)− 2

[

1− (W ′ −W)2

4m2

]

W ′W

+

{

3 +
3[W ′W −m(W ′ +W)] + (p′ · p)

2m2

}

[W ′W − (p′ · p)]

}

w3

−
{

4 +
3[W ′W −m(W ′ +W)] + (p′ · p)

2m2
− 2

(

2− W ′ +W

m

)

+

[

1 +
(W ′ −W)2

4m2

](

1 +
2m

E′ + E

)

− 1

m(E′ + E)

(

W ′2 +W 2
)

}

w4

−1

2

{

[

1− (W ′ −W)2

4m2

]

W ′W − 1

m(E′ + E)
[W ′2p2 +W 2p′2 −

(

W ′2 +W 2
)

(p′ · p)]

+
1

2

[

1 +
(W ′ −W)2

4m2

] [(

1 +
2m

E′ + E

)

[p′2 + p2 − 2(p′ · p)]−W ′2 −W 2

]

}

w5

−1

2

{

−
[

1− (W ′ −W)2

4m2

]

W ′W − 1

m(E′ + E)

[

W ′2p2 +W 2p′2 + (W ′2 +W 2)(p′ · p)
]

+
1

2

[

1 +
(W ′ −W)2

4m2

] [(

1 +
2m

E′ + E

)

[p′2 + p2 + 2(p′ · p)]−W ′2 −W 2

]

}

w6. (E.5)

E.3 Scalar coefficients for the deuteron bound
state equation

Ad
1,1 = 3

Ad
1,2 = 0

Ad
2,1 = 0

Ad
2,2 =

8p4

3

125

Bd
1,1,1 = 3

Bd
1,1,2 = 0

Bd
1,2,1 = 3

Bd
1,2,2 = 0

Bd
1,3,1 = 0

Bd
1,3,2 = 0

Bd
1,4,1 = −p2

(

x2 − 1
)

p′2

Bd
1,4,2 =

4

3
p2
(

x2 − 1
)

p′4

Bd
1,5,1 = p2 + 2pxp′ + p′2

Bd
1,5,2 =

4

3
p′2
(

p2
(

3x2 − 1
)

+ 2p′ (p′ + 2px)
)

Bd
1,6,1 = p2 − 2pxp′ + p′2

Bd
1,6,2 =

4

3
p′2
(

p2
(

3x2 − 1
)

+ 2p′ (p′ − 2px)
)

Bd
2,1,1 = 0

Bd
2,1,2 =

4

3
p2
(

3x2 − 1
)

p′2

Bd
2,2,1 = 0

Bd
2,2,2 =

4

3
p2
(

3x2 − 1
)

p′2

Bd
2,3,1 = 0

Bd
2,3,2 = 8p3x

(

x2 − 1
)

p′3

Bd
2,4,1 =

4

3
p4
(

x2 − 1
)

p′2

Bd
2,4,2 = −4

9
p4
(

9x4 − 14x2 + 5
)

p′4

Bd
2,5,1 =

4

3
p2
(

2p2 +
(

3x2 − 1
)

p′2 + 4pxp′
)

Bd
2,5,2 = −4

9
p2p′2

(

p2
(

3x2 − 1
)

+
(

3x2 − 1
)

p′2 + 4pxp′
)

Bd
2,6,1 =

4

3
p2
(

2p2 +
(

3x2 − 1
)

p′2 − 4pxp′
)

Bd
2,6,2 =

4

9
p2p′2

(

p2
(

1− 3x2
)

+
(

1− 3x2
)

p′2 + 4pxp′
)

126

A−1d
1,1 =

1

3

A−1d
1,2 = 0

A−1d
2,1 = 0

A−1d
2,2 =

3

8p4

E.4 Scalar coefficients for the 2N Lippmann -
Schwinger equation

Here we list only the A−1 coefficients, the remaining A, B were used in the same
form as in [15].

A−1
1,1 =

1

4

A−1
1,2 = 0

A−1
1,3 = 0

A−1
1,4 = 0

A−1
1,5 = 0

A−1
1,6 = 0

A−1
2,1 = 0

A−1
2,2 =

|p|4 − 2|p|2|p′|2x′2 + |p′|4

4 (|p|2 − |p′|2)
2

A−1
2,3 = 0

A−1
2,4 =

|p|4 − 2|p|2|p′|2x′2 + |p′|4

4|p′|2 (x′2 − 1) (|p|3 − |p||p′|2)
2

A−1
2,5 = −|p|

2 − 2|p||p′|x′ + |p′|2

8 (|p|2 − |p′|2)
2

A−1
2,6 = −|p|

2 + 2|p||p′|x′ + |p′|2

8 (|p|2 − |p′|2)
2

127

A−1
3,1 = 0

A−1
3,2 = 0

A−1
3,3 =

1

8|p|2|p′|2 (x′2 − 1)

A−1
3,4 = 0

A−1
3,5 = 0

A−1
3,6 = 0

A−1
4,1 = 0

A−1
4,2 =

|p|4 − 2|p|2|p′|2x′2 + |p′|4

4|p′|2 (x′2 − 1) (|p|3 − |p||p′|2)
2

A−1
4,3 = 0

A−1
4,4 =

|p|4 − |p|2|p′|2
(

x′2 + 1
)

+ |p′|4

2|p|4|p′|4 (x′2 − 1)
2

(|p|2 − |p′|2)
2

A−1
4,5 = − |p|2 − 2|p||p′|x′ + |p′|2

8|p′|2 (x′2 − 1) (|p|3 − |p||p′|2)
2

A−1
4,6 = − |p|2 + 2|p||p′|x′ + |p′|2

8|p′|2 (x′2 − 1) (|p|3 − |p||p′|2)
2

A−1
5,1 = 0

A−1
5,2 = −|p|

2 − 2|p||p′|x′ + |p′|2

8 (|p|2 − |p′|2)
2

A−1
5,3 = 0

A−1
5,4 = − |p|2 − 2|p||p′|x′ + |p′|2

8|p′|2 (x′2 − 1) (|p|3 − |p||p′|2)
2

A−1
5,5 = −

(

|p|2 − 2|p||p′|x′ + |p′|2
)2

32|p|2|p′|2 (x′2 − 1) (|p|2 − |p′|2)
2

A−1
5,6 =

|p|4 + 2|p|2|p′|2
(

2x′2 − 3
)

+ |p′|4

32|p|2|p′|2 (x′2 − 1) (|p|2 − |p′|2)
2

A−1
6,1 = 0

A−1
6,2 = −|p|

2 + 2|p||p′|x′ + |p′|2

8 (|p|2 − |p′|2)
2

A−1
6,3 = 0

A−1
6,4 = − |p|2 + 2|p||p′|x′ + |p′|2

8|p′|2 (x′2 − 1) (|p|3 − |p||p′|2)
2

A−1
6,5 =

|p|4 + 2|p|2|p′|2
(

2x′2 − 3
)

+ |p′|4

32|p|2|p′|2 (x′2 − 1) (|p|2 − |p′|2)
2

A−1
6,6 = −

(

|p|2 + 2|p||p′|x′ + |p′|2
)2

32|p|2|p′|2 (x′2 − 1) (|p|2 − |p′|2)
2

128

E.5 Link to partial wave states

Here we give expressions that can be used to link (4.9) and (4.26) to the partial
wave basis states. The formulas below are taken from [45] and are repeated
for convenience. Whenever partial wave states are mentioned, this section can
provide detailed information.

E.5.1 Two nucleons

We define:

[| sms〉]2Nspin
, [| tmt〉]2Nisospin

to be states in which the spins (isospins) of the two nucleons are coupled to the
total spin (isospin) s(t) = 0, 1 with the projection ms(mt) = −s(t), . . . , s(t).
Additionally:

| plml〉

is a state with the relative momentum magnitude p, the relative orbital angular
momentum l with the projection ml. The link between this state with and the
three-dimensional vector | p′〉 is given by:

〈p′ | plml〉 =
δ(p− |p′|)

p2
Ylml

(p̂′), (E.6)

where Ylm(p̂′) is the spherical harmonic.

The partial wave states have the spin and the relative angular momentum
coupled to the total angular momentum j with its projection m:

| p(ls)jmtmt〉 =| pγ〉 =
∑

mlms

C(lsj,mlmsm) | plml〉⊗[| sms〉]⊗[| tmt〉] . (E.7)

In numerical calculations all states up to a given j = jmax are considered and
γ denotes the set of discrete quantum numbers.

E.5.2 Three nucleons

We define
[

| (s1

2
)SMS〉

]3Nspin

to be a state in which the spin of the subsystem of particles 2 and 3 (s) is coupled
with the spin of the particle 1 (1

2) to the total spin S with the projection MS .
The 3N isospin state:

[

| (t1
2

)TMT 〉
]3Nisospin

is defined in a similar manner but with the isospin of the subsystem t, the first
particle isospin 1

2 and the total isospin T with the projection MT .

Additionally to partial-wave states | plml〉 describing the relative motion
within the subsystem (2,3) we introduce also partial wave states of the relative
motion between particle 1 and the (2,3) subsystem: | qλmλ〉. Here q is the

129

magnitude of the relative momentum and λ is the corresponding angular mo-
mentum with the projection mλ. These states are naturally coupled to give the
states of the total angular momentum L with the projection ML:

| pq(lλ)LML〉.
The overlap between the product of three-dimensional momenta | p′q′〉 and

the states | pq(lλ)LML〉 is given by:

〈p′q′ | pq(lλ)LML〉 =
δ(p− |p′|)
p|p′|

δ(q − |q′|)
q|q′| YLML

lλ (p̂′, q̂′), (E.8)

where YLM
lλ (p̂′, q̂′) is a linear combination of spherical harmonics (see for exam-

ple [62]):

YLML

jj′ (p̂′, q̂′) =

j
∑

m=−j

j′
∑

m=−j′

C(jj′L,mm′ML)Yjm(p̂′)Yj′m′(q̂′). (E.9)

Finally, we define the following set of states:

| pq(lλ)L(s
1

2
)S(LS)JM(t

1

2
)TMT 〉 ≡| pqβ〉 =

∑

MLMS

C(LSJ,MLMSM)

| pq(lλ)LML〉 ⊗
[

| (s1

2
)SMS〉

]

⊗
[

| (t1
2

)TMT 〉
]

, (E.10)

where we couple the total orbital angular momentum L and the total spin S to
the total 3N angular momentum J with the projection M . In (E.10) β denotes
the whole set of discrete quantum numbers.

An alternative set of states can be created by coupling l and s to the total
(2, 3) subsystem angular momentum j. Parallel to that, the orbital angular mo-
mentum λ is coupled with the spin of particle 1 to its total angular momentum
I. Finally, j and I are coupled to the total 3N angular momentum J with the
projection M . Such states are denoted as | pqα〉, where α comprises information
about l, s, j, λ, I, J,M, t, T,MT . The link between (E.10) and the new states are
given by [63]:

| pq(ls)j(λ1

2
)I(jI)JM(t

1

2
)T 〉 ≡| pqα〉 =

∑

LS

√

(2j + 1)(2I + 1)(2L+ 1)(2S + 1)







l s j
λ 1

2 I
L S J







| pq(lλ)L(s
1

2
)S(LS)JM(t

1

2
)T 〉, (E.11)

where {. . .} is the Wigner 9j symbol. Since J , M and the pairity Π = (−1)l+λ

are constants of motion, in numerical calculations states with given J,M and
Π can be considered separately. For numerical implementations channels with
J ≤ Jmax and 2N channels with j ≤ jmax are considered.

The partial wave decomposition of new forces and current operators is quite
challenging. Our Mathematica R© framework can be used to calculate the compli-
cated isospin - spin matrix elements making the decomposition easier [58, 59, 60].

130

E.5.3 Connection with our three-dimensional calculations

As mentioned earlier, the S and D components ψ0, ψ2 of the deuteron wave
function are directly related to the scalar functions φ1, φ2 from Chapter 6. The
link is [22]:

ψ0(|p|) =
√

4πφ1(|p|) (E.12)

ψ2(|p|) =
4
√

2|p|2
3

φ2(|p|). (E.13)

The relation of our three-dimensional 3N bound state results and the partial-
wave projected triton using (E.11) is more complicated. The link between the
two representations was worked out in [35], the final expression being:

〈pqα|Ψmmt〉 =

δMT ,mt

∑

L,S

√

(2j + 1)(2I + 1)(2L+ 1)(2S + 1)







l s j
λ 1

2 I
L S J







×
L
∑

ML=−L

C(LSJ ;ML,M −ML,M)

π
∫

0

dθp sin θp

2π
∫

0

dφp

π
∫

0

dθq sin θq

2π
∫

0

dφq

× Y∗LML

lλ (p̂, q̂)

8
∑

i=1

φ
(i)
tT (p, q)

× 〈
(

s
1

2

)

SM −ML|
[

Ǒi (p, q)
]

|χm〉 , (E.14)

where | Ψmmt〉 is the full wave function of the 3N bound state (m is the spin
projection and mt is the isospin projection) and φ are the scalar functions that
define the 3N bound state in operator form (10.3). The integrals are over all
possible directions of p and q.

The transition operator calculated using the 3D approach in Chapter 7 can
also be transformed to the partial-wave basis from (E.7). The link was given in
[58]:

〈p′(l′s)jmj | V tmt | p(ls)jmj〉 =

=

∫

dp ′
∫

dp
∑

m′
l

C(l′, s, j;m′
l,mj −m′

l,mj)

×
∑

ml

C(l, s, j;ml,mj −ml,mj) Y
∗
l′ m′

l
(p̂′) Ylml

(p̂)

×〈smj −m′
l |
[

V tmt(p′,p)
]

| smj −ml〉, (E.15)

first for the 2N potential but the same expression can be used for the transition
operator. V tmt(p′,p) is a matrix element of the 2N isospin projected (| tmt〉)
potential (or transition operator) between | p′〉 and | p〉. Actually the above
expression can be greatly simplified, see [58].

131

132

List of Figures

6.1 Values of λ from equation (4.56) for different values of Ed. 38
6.2 NNLO φ1, φ2 for Ed = −2.2001[MeV]. 39
6.3 Bonn B φ1, φ2 for Ed = −2.2242[MeV]. 39
6.4 The s and d NNLO deuteron wave function. 40
6.5 The s and d Bonn B deuteron wave function. 40

7.1 Wolfenstein parameters calculated for 300[MeV]. 48
7.2 Observables for nucleon-nucleon scattering. 49
7.3 Deuteron residue for different momentum configurations. 52
7.4 Deuteron residue compared with different energy cases. 53

8.1 Deuteron disintegration kinematic situation. 61
8.2 Deuteron disintegration - the unpolarized cross section. 61
8.3 Deuteron disintegration - the spin dependent helicity asymmetry. 62
8.4 Deuteron disintegration - deuteron analyzing powers Tkq. 63

9.1 µ+ d→ νµ + n+ n kinematic situation. 66
9.2 dΓ

dpν
for µ+ d→ νµ + n+ n. 69

9.3 dΓ
dpν

for µ+ d→ νµ + n+ n. 69

9.4 dΓ
dp for µ+ d→ νµ + n+ n. 70

9.5 dΓ
dp for µ+ d→ νµ + n+ n. 70

10.1 Slices through a few selected scalar functions βi
tT (|p|, |q|, x = p̂ · q̂). 82

10.2 Slices through a few selected scalar functions βi
tT (|p|, |q|, x = p̂ · q̂). 83

133

Acknowledgments

We acknowledge support by the Foundation for Polish Science - MPD program,
co-financed by the European Union within the European Regional Development
Fund. Part of the numerical calculations have been performed on the Super-
computing cluster of the JSC, Jülich, Germany.

Kacper Topolnicki would like to thank professor Jacek Golak for a fruitful
collaboration over the course of his PHD studies. Finally, we would also like
to mention and thank all our collaborators: Roman Skibiński, Henryk Wita la,
Andreas Nogga, Hiroyuki Kamada and last but not least Laura Marcucci.

134

Bibliography

[1] H. Wita la, J.Golak, R. Skibiński, and K. Topolnicki. Calculations of three-
nucleon reactions with N3LO chiral forces: achievements and challenges.
arXiv 1310.0198, accepted for publication in Journal of Physics G.

[2] J. Holz and W. Glöckle. Time-independent and time-dependent potential
scattering without angular momentum decomposition. Journal of Compu-

tational Physics, 76(1):131 – 158, 1988.

[3] J. Holz and W. Glöckle. Nucleon-nucleon scattering in a time-dependent
treatment. Physical Review C, 37:1386–1402, 1988.

[4] D. Hüber, W. Glöckle, and A. Bömelburg. Quasielastic electron scattering
on a two-nucleon model system: Scaling and cumulant expansion of the
structure function. Physical Review C, 42:2342–2357, 1990.

[5] R.A. Malfliet and J.A. Tjon. Solution of the Faddeev equations for the
triton problem using local two-particle interactions. Nuclear Physics A,
127(1):161 – 168, 1969.

[6] Ch. Elster, J. H. Thomas, and W. Glöckle. Two-body t-matrices without
angular-momentum decomposition: Energy and momentum dependences.
Few-Body Systems, 24(1):55–79, 1998.

[7] R.A. Rice and Y.E. Kim. Formulation of few-body equations without par-
tial waves. Few-Body Systems, 14(3):127–148, 1993.

[8] R. Machleidt, K. Holinde, and Ch. Elster. The Bonn meson-exchange model
for the nucleonnucleon interaction. Physics Reports, 149(1):1 – 89, 1987.

[9] I. Fachruddin, Ch. Elster, and W. Glöckle. Nucleon-nucleon scattering in
a three dimensional approach. Physical Review C, 62:044002, 2000.

[10] R. Machleidt. The Meson Theory of Nuclear Forces and Nuclear Structure,
volume 19 of Advances in Nuclear Physics. Springer US, 1989.

[11] S. Bayegan, M. A. Shalchi, and M. R. Hadizadeh. Three dimensional cal-
culations of NN bound and scattering states with a chiral potential up to
N3LO. Physical Review C, 79:057001, 2009.

[12] M. Rodriguez Gallardo, A. Deltuva, E. Cravo, R. Crespo, and A. C. Fon-
seca. Two-body scattering without angular-momentum decomposition.
Physical Review C, 78:034602, 2008.

135

[13] G.L. Caia, V. Pascalutsa, and L.E. Wright. Solving potential scatter-
ing equations without partial wave decomposition. Physical Review C,
69:034003, 2004.

[14] G. Ramalho, A. Arriaga, and M. T. Peña. Solution of the spectator equation
for relativistic nn scattering without partial wave expansion. Few-Body

Systems, 39(3-4):123–157, 2006.

[15] J. Golak, W. Glöckle, R. Skibiński, H. Wita la, D. Rozp ιedzik, K. Topolnicki,
I. Fachruddin, Ch. Elster, and A. Nogga. Two-nucleon systems in three
dimensions. Physical Review C, 81:034006, 2010.

[16] Evgeny Epelbaum. Few-nucleon forces and systems in chiral effective field
theory. Progress in Particle and Nuclear Physics, 57(2):654 – 741, 2006.

[17] E. Epelbaum, H.-W. Hammer, and Ulf-G. Meißner. Modern theory of
nuclear forces. Review of Modern Physics, 81:1773–1825, 2009.

[18] S. Veerasamy, Ch. Elster, and W.N. Polyzou. Two-nucleon scattering with-
out partial waves using a momentum space argonne V18 interaction. Few-

Body Systems, 54(12):2207–2225, 2013.

[19] R. Skibiński, J. Golak, D. Rozp ιedzik, K. Topolnicki, H. Wita la, W. Glöckle,
A. Nogga, E. Epelbaum, H. Kamada, Ch. Elster, and I. Fachruddin. Recent
developments of a three-dimensional description of the nn system. Few-

Body Systems, 50(1-4):279–281, 2011.

[20] J. Golak, R. Skibiński, H. Wita la, K. Topolnicki, W. Glöckle, A. Nogga,
and H. Kamada. Different methods for the two-nucleon t-matrix in the
operator form. Few-Body Systems, 53(3-4):237–252, 2012.

[21] K. Topolnicki, J. Golak, R. Skibiński, A.E. Elmeshneb, W. Glöckle,
A. Nogga, and H. Kamada. Deuteron disintegration in three dimensions.
Few-Body Systems, 54(12):2233–2253, 2013.

[22] I. Fachruddin, Ch. Elster, and W. Glöckle. New forms of deuteron equations
and wave function representations. Physical Review C, 63:054003, 2001.

[23] W. Glöckle, Ch. Elster, J. Golak, R. Skibiński, H. Wita la, and H. Kamada.
A new treatment of 2N and 3N bound states in three dimensions. Few-Body

Systems, 47(1-2):25–38, 2010.

[24] Ch. Elster, W. Schadow, A. Nogga, and W. Glöckle. Three body bound
state calculations without angular momentum decomposition. Few-Body

Systems, 27(2):83–105, 1999.

[25] H. Liu, Ch. Elster, and W. Glöckle. Model study of three-body forces in
the three-body bound state. Few-Body Systems, 33(4):241–258, 2003.

[26] M. R. Hadizadeh and S. Beyagan. Proceedings of the 3rd Asia- Pacific
Conference, Nakhon Ratchasima, Thailand, July 2005 (World Scientific,
Singapore, 2007). page 16.

136

[27] S. Bayegan, M. R. Hadizadeh, and M. Harzchi. Three-nucleon bound state
in a spin-isospin dependent three dimensional approach. Physical Review

C, 77:064005, 2008.

[28] S. Bayegan, M. R. Hadizadeh, and M. Harzchi. A realistic three-
dimensional calculation of the 3H binding energy. Few-Body Systems, 44(1-
4):65–67, 2008.

[29] M. R. Hadizadeh, L. Tomio, and S. Beyagan. AIP Conference Proceedings
1265 (2010). page 84.

[30] M. R. Hadizadeh and S. Bayegan. Four-body bound-state calculations in
three-dimensional approach. Few-Body Systems, 40(3-4):171–191, 2007.

[31] M. R. Hadizadeh, L. Tomio, and S. Bayegan. Solutions of the bound-state
Faddeev-Yakubovsky equations in three dimensions by using NN and 3N
potential models. Physical Review C, 83:054004, 2011.

[32] M.R. Hadizadeh and S. Bayegan. Bound-state calculations of the three-
dimensional Yakubovsky equations with the inclusion of three-body forces.
The European Physical Journal A, 36(2):201–209, 2008.

[33] S. Bayegan, M.R. Hadizadeh, and W. Glöckle. A realistic formalism for
4N bound state in a three-dimensional Yakubovsky scheme. Progress of

Theoretical Physics, 120(5):887–916, 2008.

[34] I. Fachruddin, W. Glöckle, Ch. Elster, and A. Nogga. Operator form of 3H
(3He) and its spin structure. Physical Review C, 69:064002, 2004.

[35] J. Golak, K. Topolnicki, R. Skibiński, W. Glöckle, H. Kamada, and
A. Nogga. A three-dimensional treatment of the three-nucleon bound state.
Few-Body Systems, 54(12):2427–2446, 2013.

[36] R. B. Wiringa, V. G. J. Stoks, and R. Schiavilla. Accurate nucleon-nucleon
potential with charge-independence breaking. Physical Review C, 51:38–51,
1995.

[37] E. Epelbaum, W. Glöckle, and Ulf-G. Meißner. The Two-nucleon system
at next-to-next-to-next-to-leading order. Nuclear Physics A, 747:362–424,
2005.

[38] Wolfram Research Inc. Mathematica version 8.0. Wolfram Research Inc.

Champaign, Illinois, 2010.

[39] S.A. Coon, M.D. Scadron, P.C. McNamee, B.R. Barrett, D.W.E. Blatt,
and B.H.J. McKellar. The two-pion-exchange three-nucleon potential and
nuclear matter. Nuclear Physics A, 317(1):242 – 278, 1979.

[40] R.G. Ellis, S.A. Coon, and B.H.J. McKellar. π- and ρ-exchange three-
nucleon potentials (i). Nuclear Physics A, 438(34):631 – 668, 1985.

[41] S. A. Coon and W. Glöckle. Two-pion-exchange three-nucleon potential:
Partial wave analysis in momentum space. Physical Review C, 23:1790–
1802, 1981.

137

[42] S. A. Coon and M. T. Peña. Momentum and coordinate space three-nucleon
potentials. Physical Review C, 48:2559–2575, 1993.

[43] E. Epelbaum, A. Nogga, W. Glöckle, H. Kamada, Ulf-G. Meißner, and
H. Wita la. Three-nucleon forces from chiral effective field theory. Physical

Review C, 66:064001, 2002.

[44] E. Belbruno. Capture Dynamics and Chaotic Motions In Celestial Mechan-

ics. Princton University Press, Princton, 2004.

[45] W. Glöckle. The Quantum Mechanical Few-Body Problem. Springer-Verlag,
Berlin-Heidelberg, 1983.

[46] Ch. Elster. Lectures on few body systems. Available online at
www.phy.ohiou.edu/~elster/.

[47] W.Glöckle, H.Wita la, D.Hüber, H.Kamada, and J.Golak. The three-
nucleon continuum: achievements, challenges and applications. Physics

Reports, 274(34):107 – 285, 1996.

[48] L. Wolfenstein. Possible triple-scattering experiments. Physical Review,
96:1654–1658, 1954.

[49] S.D. Drell J.D. Bjorken. Relativistic Quantum Mechanics. McGraw-Hill
Book Company, 1964.

[50] D. Rozp ιedzik. Phd thesis, Jagiellonian University, Cracow. unpublished,
2010.

[51] D.O. Riska. Isovector electromagnetic exchange currents and the nucleon
- nucleon interaction. Physica Scripta, 31:471, 1985.

[52] R. Schiavilla, V. R. Pandharipande, and D. O. Riska. Magnetic form factors
of the trinucleons. Physical Review C, 40:2294–2309, 1989.

[53] R. Schiavilla, V. R. Pandharipande, and D. O. Riska. Charge form factors
of the three- and four-body nuclei. Physical Review C, 41:309–317, 1990.

[54] S. Kölling, E. Epelbaum, H. Krebs, and Ulf-G. Meißner. Two-pion exchange
electromagnetic current in chiral effective field theory using the method of
unitary transformation. Physical Review C, 80:045502, 2009.

[55] S. Kölling, E. Epelbaum, H. Krebs, and Ulf-G. Meißner. Two-nucleon
electromagnetic current in chiral effective field theory: One-pion exchange
and short-range contributions. Physical Review C, 84:054008, 2011.

[56] L.E. Marcucci, M. Piarulli, M. Viviani, L. Girlanda, A. Kievsky, et al.
Muon capture on deuteron and 3He. Physical Review C, 83:014002, 2011
and references therein.

[57] G. Audi and A.H. Wapstra. The 1995 update to the atomic mass evaluation.
Nuclear Physics A, 595(4):409 – 480, 1995.

138

www.phy.ohiou.edu/~elster/

[58] J. Golak, D. Rozp ιedzik, R. Skibiński, K. Topolnicki, H. Wita la, W. Glöckle,
A. Nogga, E. Epelbaum, H. Kamada, Ch. Elster, and I. Fachruddin. A new
way to perform partial-wave decompositions of few-nucleon forces. The

European Physical Journal A, 43(2):241–250, 2010.

[59] R. Skibiński, J. Golak, K. Topolnicki, H. Wita la, H. Kamada, W. Glöckle,
and A. Nogga. The Tucson-Melbourne three-nucleon force in the autom-
atized partial-wave decomposition. The European Physical Journal A,
47(4):1–16, 2011.

[60] R. Skibiński, J. Golak, K. Topolnicki, H. Wita la, E. Epelbaum, W. Glöckle,
H. Krebs, A. Nogga, and H. Kamada. Triton with long-range chiral N3LO
three-nucleon forces. Physical Review C, 84:054005, 2011.

[61] Y. Saad. Iterative Methods for Sparse Linear Systems. PWS Publishing
Company, 1996.

[62] V. F. Weisskopf J. M. Blatt. Theoretical Nuclear Physics. Springer-Verlag,
New York Heidelberg Berlin, 1979.

[63] A. R. Edmonds. Angular Momentum in Quantum Mechanics. Princton
University Press, New Jersey, 1957.

139

	Preface
	Text organization
	Units and Notation
	Introduction
	Degrees of freedom
	The transition operator and 2N scattering
	Equations for the 2N and 3N bound states
	Numerical realization of 2N and 3N states and operators

	Decomposition of the 2N potential operator
	Practical implementation

	Calculation of the 2N bound state in three dimensions
	Calculation of the 2N transition operator in three dimensions
	Positive energies
	Negative energies

	Deuteron electro-disintegration
	Single nucleon current in three dimensions
	2N currents in three dimensions
	Putting everything together
	Results

	Muon induced deuteron disintegration
	Calculation of the 3N bound state in three dimensions
	Summary and Outlook
	Numerical methods
	Dealing with large linear operators
	Arnoldi iteration scheme
	Implementation on a large computing cluster

	The util1N2N3N.m package
	Loading the package
	Getting information on the package
	Scalar products, vector products and spin (isospin) operators
	Permutations
	Other useful definitions and examples

	The FunctionArray.m package
	Loading the package
	A simple function
	A more complicated example
	One more example
	Final remarks

	Code organization
	Building blocks for the deuteron bound state calculations
	Building blocks for 3N bound state calculations
	Building blocks for transition operator calculations
	Building blocks for current operators

	Other details
	Reference tables for the different basis vectors
	Expansion functions for the Bonn B potential
	Scalar coefficients for the deuteron bound state equation
	Scalar coefficients for the 2N Lippmann - Schwinger equation
	Link to partial wave states
	Two nucleons
	Three nucleons
	Connection with our three-dimensional calculations

	List of Figures
	Bibliography

