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space framework with various realistic potentials. As a first step, we test our calculation
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theoretical predictions obtained in a comparable framework are available. For these two

reactions we obtain results with two-nucleon contributions (meson exchange currents)

in the weak current operator, consistent with the AV18 nucleon-nucleon potential. Also

for these two reactions we present brand new results based on the recently published

improved chiral potentials from the Bochum-Bonn group. Break-up channels in muon

capture on 3He are treated under full inclusion of final state interactions, using the
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and photodisintegrations reactions. For the sake of completeness we present first basic

elements of this formalism. The presented results for the two- and three-body break-up of

3He are calculated with a variety of nucleon-nucleon potentials, among which is the AV18

potential, augmented by the Urbana IX three-nucleon potential. In these calculations

only the single nucleon contributions to the weak current operator are retained. We end
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Chapter 1

Introduction

The history of our understanding of the weak force is very long and full of unexpected

realizations [1]. It starts with Henri Becquerel’s discovery of radioactivity in 1896 and

subsequent classification of radioactivity into alpha, beta and gamma decays of the

nucleus by Ernest Rutherford and others. Among those, Maria Sk lodowska-Curie and

Pierre Curie’s pioneering research should be gratefully acknowledged.

Enrico Fermi formulated the first theory for the beta-decay process in 1934. He was

inspired by Quantum Electrodynamics and Wolfgang Pauli’s suggestion that along with

the electron, a very light neutral particle was also emitted in his experiment. Many

years of both theoretical and experimental efforts have brought us to the present-day

picture of the weak interactions. A more complete discussion is beyond the scope of this

thesis but we would like to draw the reader’s attention to two papers published in the

Cornell University Library Archive [2, 3], since they offer a short but quite informative

introduction to the subject. In particular, the following list of “milestones in the history

of weak interactions”from Ref. [3] is worth citing:

1896 Discovery of radioactivity (Becquerel)

1930 Birth of neutrino (Pauli)

1934 Theory of beta decay (Fermi)

1939 Theory of thermonuclear fusion in the Sun (Bethe and von Weizsäcker)

1954 Nonabelian gauge theory (Yang and Mills)

1956 Discovery of parity violation (Lee, Yang and Wu)

1956 Detection of the neutrino (Cowan and Reines)

1957 Discovery of V-A (Sudarshan, Marshak and others)

1957 Current × current formulation (Feynman and Gell-Mann)

1961 SU(2) × U(1) as the electroweak group (Glashow)

1964 Discovery of CP violation (Cronin and Fitch)

1
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1964 Abelian Higgs mechanism (Higgs and others)

1967 Nonabelian Higgs-Kibble mechanism (Kibble)

1967 Electroweak theory (Salam and Weinberg)

1972 Renormalizability of EW theory (t’Hooft and Veltman)

1973 Discovery of neutral current (55 physicists at CERN)

1973 CKM phase for CP violation (Kobayashi and Maskawa)

1982 Discovery of W and Z (Rubbia and Van der Meer)

1992 Precision tests of EW theory (International Collaboration at CERN)

1998 Discovery of neutrino mass (Davis, Koshiba and others)

2002 Experimental proof of thermonuclear fusion in the Sun (SNO)

2007 Verification of CKM theory of CP violation (KEK, Stanford)

2012 Discovery of Higgs boson (ATLAS and CMS Collaborations, CERN)

So we now know that no weak processes involving nucleons can be regarded as being truly

“elementary”and that nucleons are only the effective (and in fact very efficient) degrees of

freedom for low-energy nuclear reactions. Muon capture on the proton, µ−+p→ νµ+n,

is a perfect example of such a process. In its description, the complete knowledge about

the muon current must be combined with the imperfect knowledge about the weak

current of the nucleon, turning the proton into the neutron. Thus this reaction couples

information from the neutron beta decay and the muon decay reactions.

Muon capture reactions on light nuclei have been studied intensively both experimentally

and theoretically for many years. As for the details of the physics motivation in the

particular case of the µ− +2 H→ νµ + n+ n capture reaction we refer the reader to the

web page of the MuSun experiment [4], which aims to measure the capture rate from the

doublet hyperfine state of the muonic deuterium atom in its ground state to a precision

of better than 1.5 %. Here we repeat only after [4] that

1. Muon capture on the deuteron is the simplest weak interaction process on a nucleus

which can both be calculated and measured to a high degree of precision.

2. This reaction is closely related to fundamental reactions of astrophysical interest,

in particular to the p+ p→ d+ e+ + ν̄e process.

3. In the effective field theory approaches this reaction is linked to other physics.

For information on earlier achievements we refer the reader to Refs. [5–7]. More recent

theoretical work, focused on the µ−+2 H→ νµ+n+n and µ−+3 He→ νµ+3 H reactions,

has been summarized in Refs. [8, 9]. Here we mention only that the calculation of Ref. [8],

following the early steps of Ref. [10], was performed both in the phenomenological and
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the “hybrid” chiral effective field theory (χEFT) approach. In the first approach, Hamil-

tonians based on conventional two-nucleon (2N) and three-nucleon (3N) potentials were

used to calculate the nuclear wave functions, and the weak transition operator included,

beyond the single nucleon contribution associated with the basic process µ−+p→ νµ+n,

meson-exchange currents as well as currents arising from the excitation of ∆-isobar de-

grees of freedom [11]. In the hybrid χEFT approach, the weak operators were derived

in χEFT, but their matrix elements were evaluated between wave functions obtained

from conventional potentials. Typically, the potential model and hybrid χEFT predic-

tions are in good agreement with each other [8]. Only very recently, the two reactions

have been studied in a “non-hybrid” χEFT approach [12], where both potentials and

currents are derived consistently in χEFT and the low-energy constants present in the

3N potential and two-body axial-vector current are constrained to reproduce the A = 3

binding energies and the Gamow-Teller matrix element in tritium β-decay. An overall

agreement between the results obtained within different approaches has been found, as

well as between theoretical predictions and available experimental data.

The first theoretical study for the capture µ− +3 He → νµ + n + d was reported in

Ref. [13]. A simple single nucleon current operator was used without any relativistic

corrections and the initial and final 3N states were generated using realistic nucleon-

nucleon potentials but neglecting the 3N interactions.

In the recent paper [14] attempts to use the momentum space treatment of electromag-

netic processes from [15, 16] and the potential model approach developed in Ref. [8] were

joined to perform a systematic study of all the A = 2 and A = 3 muon capture reac-

tions, extending the calculations of Ref. [13] to cover also the µ−+3 He→ νµ+n+n+p

channel. The results obtained for the µ−+2 H→ νµ+n+n and µ−+3 He→ νµ+3 H re-

actions using the Faddeev equations in the momentum space were compared with those

of Ref. [8], obtained using the hyperspherical harmonics formalism (for a review, see

Ref. [17]). In [14] predictions for the total and differential capture rates of the reactions

µ− +3 He → νµ + n + d and µ− +3 He → νµ + n + n + p, obtained with full inclusion

of final state interactions, employing not only nucleon-nucleon but also 3N forces, were

presented. Note that the bulk of the results in [14] was calculated with the single nucleon

current operator.

In this thesis we incorporate to a large extent the results from [14] but add also new

ingredients. First of all, we supplement our weak current operator with two-nucleon

contributions. Although not all the operators used, for example, in [8] are yet incor-

porated, we demonstrate that in our framework the so-called meson exchange currents

given in the momentum space can be included.
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Recently, improved chiral nucleon-nucleon potentials from the Bochum-Bonn group [18]

appeared. It is very interesting to obtain predictions based on this new nucleon-nucleon

force, which is now available to us at different orders of the chiral expansion (from

the lowest order up to even next-to-next-to-next-to-next-to leading order). This set of

potentials is going to be widely used to solve the structure and reactions of light and

heavier nuclei. So far no current operator consistent with this set of nucleon-nucleon

potentials has been constructed, so the calculations are performed with the single nucleon

current operator. In the thesis we present results based on this new type of chiral forces

for the µ−+2 H→ νµ+n+n and µ−+3 He→ νµ+3 H reactions. Our results demonstrate

some very welcome features; for example the range of predictions obtained with different

regulators gets narrower for the higher and higher orders of the chiral expansion.

The thesis is organized in the following way. In Chapter 2 we introduce first the single

nucleon current operator, which we treat in momentum space, and compare our expres-

sions with those of Ref. [8]. We show how to efficiently obtain the corresponding matrix

elements in the partial wave basis. In the same chapter we list also the two-nucleon

contributions to the current operator, given originally in Ref. [11], which will be used in

the thesis.

In the following two chapters we show selected results for the µ− +2 H → νµ + n + n

(Chapter 3) and for the µ− +3 He→ νµ +3 H (Chapter 4) reactions. Since in the thesis

we use the two-nucleon and three-nucleon partial wave states, we face the non-trivial

task to calculate the matrix elements of the single nucleon and two-nucleon current

operators. In the corresponding chapters we briefly describe our method and provide

the basic expressions.

For the sake of completeness, in Chapter 5 we recapitulate the way we calculate the total

capture rates for the two break-up reactions, µ− +3 He → νµ + n + d and µ− +3 He →
νµ + n + n + p, and show predictions obtained with different 3N dynamics. In these

calculations we employ mainly the AV18 nucleon-nucleon potential [19] supplemented

with the Urbana IX 3N potential [20].

Chapter 6 contains our summary and conclusions.

The thesis contains also 4 appendices. Appendix A and Appendix B show two simple

warm-up exercises, where we calculate the muon and neutron lifetimes. We check in this

way our Mathematica R© [21] tools, which are predominantly used to calculate momentum

dependent spin-isospin matrix elements in Chapters 2 and 3.

Appendix C deals with the numerical calculation of the deuteron wave function in the

partial wave basis of the momentum space. Finally, Appendix D shows how to obtain

the numerical solution of the Lippmann-Schwinger equation.



Chapter 2

Weak current operator

2.1 The single nucleon current operator

In the muon capture process we assume that the initial state | i 〉 consists of the atomic

K-shell muon wave function | ψmµ 〉 with the muon spin projection mµ and the initial

nucleus state with the three-momentum Pi (and the spin projection mi):

| i 〉 =| ψmµ 〉 | Ψi Pimi 〉 . (2.1)

In the final state, | f 〉, one encounters the muon neutrino (with the three-momentum

pν and the spin projection mν), as well as the final nuclear state with the total three-

momentum Pf and the set of spin projections mf :

| f 〉 =| νµ pνmν 〉 | Ψf Pf mf 〉 . (2.2)

The transition from the initial to final state is driven by the Fermi form of the interaction

Lagrangian (see for example Ref. [22]) and leads to a contraction of the leptonic (Lλ)

and nuclear (N λ) parts in the S-matrix element, Sfi [13]:

Sfi = i(2π)4 δ4
(
P ′ − P

) G√
2
LλN λ , (2.3)

where G = 1.14939 × 10−5 GeV−2 is the Fermi constant (taken from Ref. [8]), and P

(P ′) is the total initial (final) four-momentum. The well known leptonic matrix element

Lλ =
1

(2π )3 ū(pν ,mν)γλ(1− γ5)u(pµ,mµ) ≡ 1

(2π )3 Lλ (2.4)

is given in terms of the Dirac spinors (note that we use the notation and spinor normal-

ization of Bjorken and Drell [23]).

5
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The nuclear part is the essential ingredient of the formalism, and is written as

N λ =
1

(2π )3 〈Ψf Pf mf | jλw | Ψi Pimi 〉 ≡
1

(2π )3 N
λ . (2.5)

It is a matrix element of the nuclear weak current operator jλw between the initial and

final nuclear states. The primary form of Nλ is present already in such basic processes

(from the point of view of the Fermi theory) as the neutron beta decay or the low-

energy µ−+p→ νµ+n reaction. General considerations, taking into account symmetry

requirements, lead to the following form of the single nucleon current operator [24],

whose matrix elements depend on the nucleon incoming (p) and outgoing momentum

(p ′) and nucleon spin projections m and m′:

〈1
2
m′ | 〈p ′ | jλw(1) | p〉 | 1

2
m〉 =

ū(p ′,m′)
( (
gV1 − 2M gV2

)
γλ + gV2

(
p+ p′

)λ
+gA1 γ

λγ5 + gA2
(
p− p′

)λ
γ5
)
τ−u(p,m) , (2.6)

containing nucleon weak form factors, gV1 , gV2 , gA1 , and gA2 , which are functions of the

four-momentum transfer squared, (p′ − p)2. We neglect the small difference between

the proton mass Mp and neutron mass Mn and introduce the average “nucleon mass”,

M ≡ 1
2 (Mp +Mn ). Working with the isospin formalism, we introduce the isospin

lowering operator, as τ− = (τx − iτy)/2. Since the wave functions are generated by

non-relativistic equations, it is necessary to perform the non-relativistic reduction of

Eq. (2.6). The non-relativistic form of the time and space components of jλw(1) reads

〈p ′ | j0
NR(1) | p〉 =

(
gV1 + gA1

σ · (p + p ′)

2M

)
τ− (2.7)

and

〈p ′ | jNR(1) | p 〉 =(
gV1

p + p ′

2M
− 1

2M

(
gV1 − 2MgV2

)
iσ ×

(
p− p ′

)
+gA1 σ + gA2

(
p− p ′

) σ · (p− p ′ )

2M

)
τ− , (2.8)

where σ is a vector of Pauli spin operators. Here we have kept only terms up to 1/M .



Chapter 2. Weak current operator 7

Very often relativistic 1/M2 corrections are also included. This leads then to additional

terms in the current operator:

〈p ′ | j0
NR+RC(1) | p〉 =(

gV1 − (gV1 − 4MgV2 )
(p ′ − p )2

8M2
+
(
gV1 − 4MgV2

)
i

(p ′ × p ) · σ
4M2

+gA1
σ · (p + p ′ )

2M
+ gA2

(
p ′ 2 − p2

)
4M2

σ ·
(
p ′ − p

))
τ− (2.9)

and

〈p ′ | jNR+RC(1) | p〉 =(
gV1

p + p ′

2M
− 1

2M

(
gV1 − 2MgV2

)
iσ ×

(
p− p ′

)
+gA1

(
1− (p + p ′ )2

8M2

)
σ +

+
gA1

4M2

[
(p · σ ) p ′ +

(
p ′ · σ

)
p + i

(
p× p ′

) ]
)

+gA2
(
p− p ′

) σ · (p− p ′ )

2M

)
τ− . (2.10)

This form of the nuclear weak current operator is very close to the one used in Ref. [8],

provided that one term,

gV2
(p ′ − p )2

2M
(2.11)

is dropped in Eq. (2.9) and we use:

GVE = gV1 , (2.12)

GVM = gV1 − 2MgV2 , (2.13)

GA = −gA1 , (2.14)

GP = −gA2 mµ . (2.15)

Here the form factors GVE and GVM are the isovector components of the electric and

magnetic Sachs form factors, while GA and GP are the axial and pseudoscalar form

factors. Their explicit expressions and parametrization can be found in Ref. [25]. We

also verified that the extra term (2.11) gives negligible effects in all studied observables.

Results in this thesis are obtained solely using the standard partial wave decomposition.

The two-nucleon (2N) momentum space partial wave states, | pᾱ2 〉, carry information

about the magnitude of the relative momentum (p), the relative angular momentum (l),

spin (s) and total angular momentum (j) with the corresponding projection (mj) in ᾱ2.
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This set of quantum numbers is supplemented by the 2N isospin (t) and its projection

(mt). We list all the two-neutron partial wave states with j ≤ 6 in Table 2.1. In order

to avoid the cumbersome task of PWD of the many terms in Eqs. (2.9) and (2.10) we

proceed in the same way as for the nuclear potentials in the so-called automatized PWD

method [26, 27]. In the case of the single nucleon current operator it leads to a general

formula

〈p(ls)jmj tmt Pf | jw(1) | φd Pimd 〉 = δt,1 δmt,−1

〈
1− 1 | τ−(1) | 00

〉
c (l, s, j;ml,mj −ml,mj )

∑
ld=0,2

∑
mld

c (ld, 1, 1;mld ,md −mld ,md )

∑
m1

c

(
1

2
,
1

2
, s;m1,mj −ml −m1,mj −ml

)
∑
m1b

c

(
1

2
,
1

2
, 1;m1b ,md −mld −m1d ,md −mld

)
δmj−ml−m1,md−mld−m1d∫
dp̂Y ∗l ml (p̂) Yldmld

(
̂

p− 1

2
Q

)
ϕld

(
| p− 1

2
Q |

)
〈1

2
m1 |

〈
p +

1

2
Pf | jspin

w (1) | p− 1

2
Pf + Pi

〉
| 1

2
m1d

〉
(2.16)

where Q ≡ Pf −Pi and the deuteron state contains two components

| φdmd 〉 =
∑
ld=0,2

∫
dpp2 | p(ld1)1md 〉 | 00 〉ϕld (p) . (2.17)

Using software for symbolic algebra, for example Mathematica R© [21], we easily prepare

momentum dependent spin matrix elements〈1

2
m ′ |

〈
p ′1 | jspin

w (1) | p1

〉
| 1

2
m
〉

(2.18)

for any type of the single nucleon operator.

Some examples of the resulting 〈p(ls)jmj tmt Pf | jw(1) | φd Pimd 〉 matrix elements

are given in Figs. 2.3–2.6. It is clear that for the two-neutron system we have t = 1 and

mt = −1. Further, we calculate these matrix elements for Pi = 0 and for Pf parallel

to the z-axis. This yields a simple relation between md and mj : For the density matrix

elements (denoted as N0) and for the z Cartesian component of the vector current (Nz)

it holds that mj = md. For the −1 spherical component of the vector current (N−1)

thus results in mj = md − 1. Such a choice means that the magnitude of the three

momentum transfer | Pf −Pi | is equal to the energy of the outgoing neutrino Eν . (We

adopt in the thesis the natural system of units, where c = ~ = 1.)
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Table 2.1: The two-nucleon partial wave states used in the calculations of the µ− +2

H → νµ + n + n reaction up to the total angular momentum jmax = 6. The total
two-nucleon isospin is t = 1.

2N partial wave (ᾱ2) l s j

1 0 0 0
2 1 1 0
3 1 1 1
4 2 0 2
5 1 1 2
6 3 1 2
7 3 1 3
8 4 0 4
9 3 1 4
10 5 1 4
11 5 1 5
12 6 0 6
13 5 1 6
14 7 1 6

Figure 2.1: General diagram for muon capture on the deuteron. The details of the
lepton-nucleus interaction are hidden inside the ellipse.

For the six dominant partial wave states we show two sets of figures, at two different

neutrino energies. Clearly shapes of the lines change with this energy, especially for the

higher partial waves.
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Figure 2.2: Diagram representing the single nucleon current operator. Note that the
lepton line is attached only to nucleon 1.

2.2 Two-body current operators

It is clear that on top of the single nucleon operators, also many-nucleon contributions

appear in jλw. In the 3N system one can even expect 3N current operators:

jλw = jλw(1) + jλw(2) + jλw(3) + jλw(1, 2) + jλw(1, 3) + jλw(2, 3) + jλw(1, 2, 3) . (2.19)

The role of these many-nucleon operators has been studied for example in Ref. [8].

In this section we discuss, very briefly, our approach to the two-body weak current.

The construction of current operators that are entirely consistent with a given model

of nuclear forces is very difficult. Several attempts have been made, especially in the

framework of the chiral effective field theory (see for example [8]), but none of them is

fully satisfactory.

In our thesis we rely on the experience of the Pisa group and use the expressions from

[11]. That paper provides formulas for the two-body weak current operators to be used

with the well established AV18 nucleon-nucleon potential [19].

Like the one-body current, also two-body nuclear weak current consists of vector and

axial-vector parts. The weak vector current is constructed from the isovector part of

the electromagnetic current, in accordance with the conserved-vector-current (CVC)

hypothesis. Two-body weak vector currents have terms which are obtained from the

nucleon-nucleon interaction and are called “model-independent”(MI). There are also

“model-dependent”(MD) contributions that cannot be linked (via the continuity equa-

tion) to the nucleon-nucleon potential. The most important two-body weak vector MI
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Figure 2.3: The nuclear matrix element 〈pᾱ2 | jw(1) | φd 〉 for different partial wave
states (ᾱ2 = 1, 2, 3) at Eν = 5 MeV. In the three rows we show results for the weak
density operator and two relevant components of the weak vector operator. The lines
correspond to md = −1 (solid), md = 0 (dashed) and md = 1 (dotted). Note that for

some (j,md) pairs these matrix elements are zero and thus not shown.
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Figure 2.4: The same as in Fig. 2.3 but for ᾱ2 = 4, 5, 6.
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Figure 2.5: The same as in Fig. 2.3 but for Eν = 95 MeV.



Chapter 2. Weak current operator 14

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0 1 2 3 4 5

N
0
  
[f
m

3
/2

]

–
α

2
=4

-3

-2.5

-2

-1.5

-1

-0.5

 0

 0.5

 0  1  2  3  4  5

–
α

2
=5

-0.2

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0  1  2  3  4  5

–
α

2
=6

-2.5

-2

-1.5

-1

-0.5

 0

 0.5

 0  1  2  3  4  5

N
-1

  
[f

m
3
/2

]

–
α

2
=4

-0.5

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0  1  2  3  4  5

–
α

2
=5 

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0  1  2  3  4  5

–
α

2
=6 

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  1  2  3  4  5

N
Z
  

[f
m

3
/2

]

p [fm
-1

]

–
α

2
=4

-2.5

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

 0  1  2  3  4  5

p [fm
-1

]

–
α

2
=5

-0.25

-0.2

-0.15

-0.1

-0.05

 0

 0.05

 0.1

 0.15

 0.2

 0  1  2  3  4  5

p [fm
-1

]

–
α

2
=6 

Figure 2.6: The same as in Fig. 2.5 but for ᾱ2 = 4, 5, 6.
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Figure 2.7: Diagram showing the very idea of the two-nucleon current operator. Both
nucleons take part in the interaction with the lepton and the two-body mechanism is

shown in the form of the filled oval.

currents are the “π-like and “ρ-like”currents:

j
(2)
ij (ki,kj ;πV) = i (τi × τj)±

[
vPS(kj)(σi(σj · kj)− vPS(ki)σj(σi · ki)

+
ki − kj
k2
i − k2

j

[
vPS(ki)− vPS(kj)

]
(σi · ki)(σj · kj)

]
, (2.20)

j
(2)
ij (ki,kj ; ρV) = −i (τi × τj)±

[
vV (kj)σi × (σj × kj)− vV (ki)σj × (σi × ki)

−vV (ki)− vV (kj)

k2
i − k2

j

[
(ki − kj)(σi × ki) · (σj × kj)

+(σi × ki) σj · (ki × kj) + (σj × kj) σi · (ki × kj)
]

+
ki − kj
k2
i − k2

j

[vV S(ki)− vV S(kj)]

]
, (2.21)

where ki and kj are the momenta transferred to nucleons i and j with Q = ki + kj .

The isospin operators are defined as

(τi × τj)± ≡ (τi × τj)x ± i (τi × τj)y , (2.22)

and vPS(k), vV (k), and vV S(k) are given by

vPS(k) = vστ (k)− 2 vtτ (k) , (2.23)

vV (k) = vστ (k) + vtτ (k) , (2.24)

vV S(k) = vτ (k) , (2.25)
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with

vτ (k) = 4π

∫ ∞
0

r2dr j0(kr)vτ (r) , (2.26)

vστ (k) =
4π

k2

∫ ∞
0

r2dr [j0(kr)− 1] vστ (r) , (2.27)

vtτ (k) =
4π

k2

∫ ∞
0

r2dr j2(kr)vtτ (r) . (2.28)

Here vτ (r), vστ (r), vtτ (r) are the isospin-dependent central, spin-spin, and tensor com-

ponents of the AV18 two-nucleon interaction Other MI and all MD vector currents have

been found numerically very small [11] compared with the “π-like”structures and we

neglect them.

The “π-like”and “ρ-like”terms contribute also to the weak vector charge. They are

in fact “model-dependent”but constitute numerically most important parts. They are

given by:

ρ
(2)
ij (ki,kj ;πV) = − 1

M

[
τj,± vPS(kj) σi ·Qσj · kj + τi,± vPS(ki) σi · ki σj ·Q

]
, (2.29)

ρ
(2)
ij (ki,kj ; ρV) = − 1

M

[
τj,± vV (kj)(σi ×Q) · (σj × kj)

+ τi,± vV (ki)(σj ×Q) · (σi × ki)

]
, (2.30)

where M is, as before, the average nucleon mass.

In contrast to the polar-vector case, the axial current operator is not conserved and its

two-body components cannot be obtained from the nucleon-nucleon interaction. Thus

they should be considered as model dependent. Following again [11] we list here only

the axial current operators stemming from π- and ρ-meson exchanges:

j
(2)
ij (ki,kj ;πA) = − gA

2M
(τi × τj)± vPS(kj)σi × kj σj · kj

+
gA
M

τj,± vPS(kj) (Q + iσi ×Pi) σj · kj + i
 j , (2.31)

j
(2)
ij (ki,kj ; ρA) =

gA
2M

(τi × τj)± vV (kj)
[

Q σi · (σj × kj) + i(σj × kj)×Pi

−[σi × (σj × kj)]× kj

]
+
gA
M
τj,± vV (kj)

[
(σj × kj)× kj − i[σi × (σj × kj)]×Pi

]
+ i
 j , (2.32)
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j
(2)
ij (ki,kj ; ρπA) = −gA

M
g2
ρ (τi × τj)±

fρ(ki)

k2
i + M2

ρ

fπ(kj)

k2
j + M2

π

σj · kj

×
[
(1 + κρ)σi × ki − iPi

]
+ i
 j , (2.33)

where Pi = pi + p′i is the sum of the initial (pi) and final (p′i) momenta of nucleon i.

Note that we in this thesis use vPS(k) and vV (k) instead of vπ(k) and vρ(k) but this

replacement has no significant impact on the calculations.

The last group of operators we deal with in this thesis constitute two-body weak axial

charge operators. First we consider the so-called pion-range operator:

ρ
(2)
ij (ki,kj ;πA) = −i

gA

4 f
2
π

(τi × τj)±
f2
π(ki)

k2
i +M2

π

σi · ki + i
 j , (2.34)

where fπ is the pion decay constant (fπ ≈ 93 MeV) and fπ(k) is the monopole form

factor

fπ(k) =
Λ2
π −M2

π

Λ2
π + k2

(2.35)

with Λπ = 1.7 GeV/c. Secondly, we include short-range axial charge operators associated

with the central and spin-orbit components of the nucleon-nucleon interaction. The

momentum-space expressions are taken again from [11] and read:

ρ
(2)
ij (ki,kj ; sA) =

gA
2M2

[τi,± v
s(kj) + τj,± v

sτ (kj)]σi ·Pi + i
 j , (2.36)

ρ
(2)
ij (ki,kj ; vA) =

gA
2M2

[τi,± v
v(kj) + τj,± v

vτ (kj)] [σi ·Pj + i (σi × σj) · kj ]

−i
gA

4M2
(τi × τj)± v vτ (kj)σi · ki + i
 j , (2.37)

where

v α(k) = 4π

∫ ∞
0

dr r2 j0(kr) v α(r) , (2.38)

with α=s, sτ , v, and vτ . The various scalar functions are defined in the following way:

v s(r) =
3

4
vc(r) +

m2

2

∫ ∞
r

dr′ r′
[
vb(r′)− 1

2
vbb(r′)

]
v v(r) =

1

4
vc(r)− M2

2

∫ ∞
r

dr′ r′
[
vb(r′)− 1

2
vbb(r′)

]
, (2.39)

where vc(r), vb(r) and vbb(r) are the isospin-independent central, spin-orbit, and (L ·S)2

components of the AV18 potential. In order to obtain the definitions of v sτ (r) and

v vτ (r), it is sufficient to replace in the above formulas the isospin-independent vc(r),

vb(r) and vbb(r) with the isospin-dependent vcτ (r), vbτ (r) and vbbτ (r).
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Two-body contributions described in [11] contain also weak current and charge operators

associated with excitations of the ∆ isobars. They have been found to be most important

numerically among all the two-body axial current operators. They are, however, given

in such a form that they cannot be directly included in our momentum space framework.

We decided to neglect them in this thesis and restrict ourselves to the two-body operators

linked to meson exchanges.

We would like to stress that our way to include the rich set of two-nucleon operators is

ready to deal with any expressions given in the momentum space. It was well tested in

[28, 29], where many different two-nucleon current operators generated by the exchange

of two pions, were incorporated in the description of electron induced deuteron break-up

and deuteron photodisintegration reactions. We would like to remind the reader our

basic formula for matrix elements of the current operator in our standard partial wave

basis:

〈p′(l′s′)j′mj′ t
′mt′ Pf | jw(1, 2) | p(ls)jmj tmt Pi 〉 =∑

ml′

(
l′, s′, j′;ml′ ,mj′ −ml′ ,mj′

) ∑
ml

c (l, s, j;ml,mj −ml,mj )∫
dp̂′

∫
dp̂Y ∗l′ml′

(
p̂′
)
Yl ml (p̂)〈

s′mj′ −ml′ ; t
′mt′ |

〈
p′Pf | jspin+isospin

w (1, 2) | p Pi

〉
| smj −ml; tmt

〉
,(2.40)

where p (p′) and Pi (Pf ) are the relative and total momenta of the two nucleons in the

initial (final) state.

Using software for symbolic algebra, for example Mathematica R© [21], we prepare mo-

mentum dependent spin-isospin matrix elements〈
s′mj′ −ml′ ; t

′mt′ |
〈

p′Pf | jspin+isospin
w (1, 2) | p Pi

〉
| smj −ml ; tmt

〉
(2.41)

separately for the total weak current and total weak charge operators in the reference

frame where Q ≡ Pf −Pi ‖ ẑ. (Only such a choice yields a simple relation between the

total angular momentum projections mj and mj′ .) The numerical four fold integrations

are performed on massively parallel computers of the Jülich Supercomputing Centre in

Germany. To achieve fully converged results no more than 20 integral points are required

in each of four dimensions.



Chapter 3

Muon capture on deuteron

In this chapter we present our results for the µ− +2 H→ νµ + n+ n reaction. Although

the steps leading from the general form of Sfi to the capture rates formula are standard,

we give here formulas for kinematics and capture rates for all the studied reactions,

expecting that they might become useful in future benchmark calculations.

3.1 Results for the µ− +2 H→ νµ + n+ n reaction

The kinematics of this processes can be treated without any approximations both rela-

tivistically and nonrelativistically. We make sure that the non-relativistic approximation

is fully justified by comparing values of various quantities calculated nonrelativistically

and using relativistic equations. This is important, since our dynamics is entirely non-

relativistic. In all cases the starting point is the energy and momentum conservation,

where we neglect the very small binding energy of the muon atom and the neutrino

mass, assuming that the initial deuteron and muon are at rest. In the case of the

µ− +2 H→ νµ + n+ n reaction it reads

Mµ +Md = Eν +
√
M2
n + p 2

1 +
√
M2
n + p 2

2 ,

p1 + p2 + pν = 0 (3.1)

and the first equation in (3.1) is approximated nonrelativistically by

Mµ +Md = Eν + 2Mn +
p 2

1

2Mn
+

p 2
2

2Mn
. (3.2)

19
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The maximal relativistic and non-relativistic neutrino energies read correspondingly

(Emax,nnν )rel =
1

2

(
− 4Mn

2

Md +Mµ
+Md +Mµ

)
(3.3)

and

(Emax,nnν )nrl = 2
√
MdMn +MµMn −Mn

2 − 2Mn . (3.4)

Assuming Mp = 938.272 MeV, Mn = 939.565 MeV, Mµ = 105.658 MeV, Md = Mp+Mn

- 2.225 MeV, we obtain (Emax,nnν )
rel

= 99.5072 MeV and (Emax,nnν )
nrl

= 99.5054 MeV,

respectively, with a difference which is clearly negligible.

Further we introduce the relative Jacobi momentum, p = 1
2 (p1 − p2 ), and write the

energy conservation in a way which best corresponds to the nuclear matrix element

calculations:

Mµ +Md = Eν + 2Mn +
E2
ν

4Mn
+

p 2

Mn
. (3.5)

In the nuclear matrix element, 〈Ψf Pf mf | jλw | Ψi Pimi 〉, we deal with the deuteron

in the initial state and with a two-neutron scattering state in the final state. Introducing

the spin magnetic quantum numbers, we write

〈Ψf Pf mf | jλw | Ψi Pimi 〉 = (−)〈p Pf = −pνm1m2 | jλw | φd Pimd 〉

= 〈p Pf = −pνm1m2 |
(

1 + t(Enn)Gnn0 (Enn)
)
jλw | φd Pimd 〉 . (3.6)

Thus for a given nucleon-nucleon potential, V , the scattering state of two neutrons is

generated by introducing the solution of the Lippmann-Schwinger equation, t:

t(Enn) = V + t(Enn)Gnn0 (Enn)V , (3.7)

where Gnn0 (Enn) is the free 2N propagator and the relative energy in the two-neutron

system is

Enn =
p 2

Mn
= Mµ +Md − Eν − 2Mn −

E2
ν

4Mn
. (3.8)

We generate the deuteron wave function and solve Eq. (3.7) in momentum space. Note

that here, as well as for the A = 3 systems, we use the average “nucleon mass” in

the kinematics and in solving the Lippmann-Schwinger equation. The effect of this

approximation on the µ− +2 H → νµ + n + n reaction will be discussed below. Taking
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all factors into account and evaluating the phase space factor in terms of the relative

momentum, we arrive at the following expression for the total capture rate

Γd =
1

2
G2 1

(2π)2

(M ′dα )3

π

π∫
0

dθpν sin θpν

2π∫
0

dφpν

Emax,nnν∫
0

dEνE
2
ν

1

2
Mnp

π∫
0

dθp sin θp

2π∫
0

dφp
1

6

∑
md,mµ

∑
m1,m2,mν

∣∣∣Lλ(mν ,mµ )Nλ(m1,m2,md )
∣∣∣2 , (3.9)

where the factor
(M ′dα )

3

π stems from the K-shell atomic wave function, M ′d =
MdMµ

Md+Mµ

and α ≈ 1
137 is the fine structure constant. We can further simplify this expression, since

for the unpolarized case the integrand does not depend on the neutrino direction and

the azimuthal angle of the relative momentum, φp. Thus we set p̂ν = −ẑ, choose φp = 0

and introduce the explicit components of Nλ(m1,m2,md ), which yields

Γd =
1

2
G2 1

(2π)2

(M ′dα )3

π
4π

Emax,nnν∫
0

dEνE
2
ν

1

2
Mp

2π

π∫
0

dθp sin θp
1

3

∑
md

∑
m1,m2

( ∣∣N0(m1,m2,md )
∣∣2 + |Nz(m1,m2,md ) |2 +

2 |N−1(m1,m2,md ) |2 + 2Re
(
N0(m1,m2,md ) (Nz(m1,m2,md ))∗

) )
. (3.10)

This form is not appropriate when we want to calculate separately capture rates from

two hyperfine states F = 1
2 or F = 3

2 of the muon-deuteron atom (see Fig. 3.1). In

such a case we introduce the coupling between the deuteron and muon spin via standard

Clebsch-Gordan coefficients c(1
2 , 1, F ;mµ,md,mF ) and obtain

ΓFd =
1

2
G2 1

(2π)2

(M ′dα )3

π
4π

Emax,nnν∫
0

dEνE
2
ν

1

2
Mp

2π

π∫
0

dθp sin θp
1

2F + 1

∑
mF

∑
m1,m2,mν∣∣∣ ∑

mµ,md

c(
1

2
, 1, F ;mµ,md,mF )Lλ(mν ,mµ )Nλ(m1,m2,md )

∣∣∣2 . (3.11)

For the sake of clarity, in Eqs. (3.9)–(3.11) we show the explicit dependence of Nλ on

the spin magnetic quantum numbers.

From Eq. (3.11) one can easily read out the differential capture rate dΓFd /dEν . As shown
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Figure 3.1: The splitting of the n = 1 and n = 2 levels of deuterium. The splittings
are not to scale and are magnified from the left to the right of the diagram. The figure
together with its caption is taken from Ref. [30]. It shows predictions of various theories
for one-electron atoms: the non-relativistic Schrödinger equation, the Dirac equation,

QED and including the hyperfine interactions.

in Fig. 3.2 this quantity soars in the vicinity of Emax,nnν (especially for the full results,

that include the neutron-neutron final state interaction), what makes the observation

of dynamical effects quite difficult. That is why the differential capture rate is usually

shown as a function of the magnitude of the relative momentum. The transition between

dΓFd /dEν and dΓFd /dp is given by Eq. (3.8) and reads

dΓFd
dp

=
dΓFd
dEν

∣∣∣dEν
dp

∣∣∣ =
dΓFd
dEν

∣∣∣ 1
dp
dEν

∣∣∣ =
4p

Eν + 2M

dΓFd
dEν

. (3.12)

Our predictions shown in Figs. 3.2, 3.3 and 3.4 are obtained in the standard approach

using partial wave decomposition (PWD), first for the Bonn B potential [31]. The

calculations are performed including all partial wave states with j ≤ 4. In some cases

we include contributions from j = 5 and j = 6 states. We typically use 70 Eν points

and 50 θp values to achieve fully converged results.

These figures (and the corresponding numbers given in Table 3.1) show clearly that the

doublet rate is dominant, as has been observed before, for example in Ref. [8]. Although

the plane wave and full results for the total F = 1
2 and F = 3

2 rates are rather similar,

the shapes of differential rates are quite different. The 1/M2 corrections in the current

operator do not make significant contributions (see Fig. 3.4) and the total rate is reduced
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only by about 2% for F = 1
2 and raised by about 4% for F = 3

2 .

In Fig. 3.5 we see that our predictions calculated with different nucleon-nucleon poten-

tials lie very close to each other. We take the older Bonn B potential [31], the AV18

potential [19] and five different parametrizations of the older chiral next-to-next-to-

leading order (N2LO) potential from the Bochum-Bonn group [32]. The corresponding

total F = 1
2 rates vary only by about 2%, while the total F = 3

2 rates are even more

stable. It remains to be seen, if the same effects can be found with a more complicated

current operator.

The doublet and quadruplet total capture rates are given in Table 3.1 with the various

nucleon-nucleon potentials indicated above and the different approximations already

discussed for Figs. 3.2-3.5. The experimental data of Refs. [33–36] are also shown. Since

the experimental uncertainties for these data are very large, no conclusion can be drawn

from a comparison with them. Thus the very precise data that are expected from the

MuSun experiment [4] will be indeed vitally important.

In Ref. [14] we compare our results calculated in the momentum space with the predic-

tions obtained in the coordinate-space framework of Ref. [8], by including the same single

nucleon current operator and the same AV18 [19] nucleon-nucleon potential. For the cal-

culations that employ the neutron mass (both in the Lippmann-Schwinger equation for

the t-matrix and in the final state kinematics) and are performed with j ≤ 2 partial

wave states we obtain Γ
F=1/2
d = 380 s−1, which should be compared with Γ

F=1/2
d = 378

s−1 from Ref. [8]. If we restrict ourselves only to the 1S0 neutron-neutron partial wave,

the numbers for Γ
F=1/2
d read 237 s−1 and 235 s−1, respectively. This proves a very good

agreement with Ref. [8].

All the above results have been calculated using PWD. In the case of the Bonn B

potential they have been compared with the predictions obtained employing the three-

dimensional scheme from Ref. [37] and an excellent agreement has been found. Thus

we believe that our calculations using the single nucleon current pass all the necessary

tests and we can embark on the inclusion of the 2N contributions to the weak current

operator described in Sec. 2.2 of Chapter 2. As already mentioned they are given in

Ref. [11] for the AV18 nucleon-nucleon potential [19].

In Fig. 3.6 we show the differential capture rate dΓFd /dp for the µ− +2 H→ νµ + n+ n

process, comparing the full results calculated using the single nucleon current operator

with relativistic corrections to the predictions obtained with additional meson exchange

currents [11]. The effects both for F = 1
2 and F = 3

2 are not big and we obtain only
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Figure 3.2: Differential capture rate dΓFd /dEν for the µ− +2 H→ νµ +n+n process,
calculated with the Bonn B potential [31] in the standard PWD approach, using the
single nucleon current operator from Eqs. (2.7) and (2.8) for F = 1

2 (left panel) and
F = 3

2 (right panel) as a function of the neutrino energy Eν . The dashed curves show
the plane wave results and the solid curves are used for the full results. Note that
the average “nucleon mass” is used in the kinematics and in solving the Lippmann-

Schwinger equations (see text for more details).

small shifts for the total capture rates:

Γ
1/2
d (PW) : 361 s−1 −→ 367 s−1

Γ
1/2
d (full) : 392 s−1 −→ 401 s−1

Γ
3/2
d (PW) : 10.2 s−1 −→ 10.8 s−1

Γ
3/2
d (full) : 12.0 s−1 −→ 12.7 s−1

In particular for the most important case of Γ
1/2
d (full) the effect amounts to 2.3 %.

(The corresponding result cannot be directly found in Ref. [8] but it has been confirmed

by one of its authors [38].) For the electromagnetic reactions, especially for deuteron

photodisintegration, meson-exchange currents are much more important, not only for

the unpolarized cross sections but also for the polarization observables. To give the

reader some idea about the scale of these effects, we show in Fig. 3.7 the total deuteron

photodisintegration cross section as a function of the photon laboratory energy Eγ with

the same AV18 potential [19] obtained within the framework described for example in

[28]. Here the solid line represents the predictions obtained with additional “π-like”and

“ρ-like”meson exchange currents closely corresponding to the vector currents from [11].

We see large effects that increase the single nucleon current predictions (dashed line) by

more than a factor of 2.

In Ref. [8] further 2N operators are considered, which stem from the ∆ excitations.

Their contribution is far from being dominant but is visible for example in the 1S0

partial wave. This type of operators is not included in this thesis.
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Figure 3.3: The same as in Fig. 3.2 but given in the form of dΓFd /dp and shown as a
function of the magnitude of the relative neutron-neutron momentum p.
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Figure 3.4: Differential capture rate dΓFd /dp of the µ− +2 H → νµ + n + n process
calculated with the Bonn B potential [31] for F = 1

2 (left panel) and F = 3
2 (right

panel) as a function of the relative neutron-neutron momentum p. The dashed (solid)
curves show the full results obtained with the single nucleon current operator without
(with) the relativistic corrections. Note that the average “nucleon mass” is used in
the kinematics and in solving the Lippmann-Schwinger equations (see text for more

details).

Recently, the so-called “improved”chiral nucleon-nucleon potentials from the Bochum-

Bonn group [18] were published. They are intended to replace the older chiral potentials

[32] and due to the better regularization (performed in the coordinate space) are expected

to yield a better description of nuclear structure and reactions. It is thus very exciting

to obtain predictions based on this new nucleon-nucleon force, which is now available

to us at different orders of the chiral expansion (from the lowest order up to even next-

to-next-to-next-to-next-to leading order). This set of potentials is going to be widely

used to solve the structure and reactions of light and heavier nuclei. So far no current

operator consistent with this set of nucleon-nucleon potentials has been constructed, so

the calculations are performed with the single nucleon current operator. In the thesis we

present first results based on this new type of chiral forces for the µ−+2 H→ νµ +n+n

reaction. In Table 3.2 we show results for the doublet and quadruplet capture rates

calculated for all the available five orders of the chiral expansion and for all the five

regulators at each order. We demonstrate also the spread of the full results for F = 1/2
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Figure 3.5: Differential capture rate dΓFd /dp of the µ− +2 H → νµ + n + n process
calculated using standard PWD with various nucleon-nucleon potentials: the AV18
potential [19] (solid curves), the Bonn B potential [31] (dashed curves) and the set of
older chiral N2LO potentials from Ref. [32] (bands) for F = 1

2 (left panel) and F = 3
2

(right panel) as a function of the relative neutron-neutron momentum p. Note that the
bands are very narrow and thus appear practically as a curve. All the partial wave
states with j ≤ 4 have been included in the calculations with the single nucleon current
operator containing the relativistic corrections. Note that the average “nucleon mass”
is used in the kinematics and in solving the Lippmann-Schwinger equations (see text

for more details).

Table 3.1: Doublet (F = 1/2) and quadruplet (F = 3/2) capture rates for the
µ− +2 H → νµ + n + n reaction calculated with various nucleon-nucleon potentials
and the single nucleon current operator without and with the relativistic corrections
(RC). Plane wave results (PW) and results obtained with the rescattering term in the
nuclear matrix element (full) are shown. Note that the average “nucleon mass” is used
in the kinematics and in solving the Lippmann-Schwinger equations (see text for more

details). The available experimental data are from Refs. [33–36].

Capture rate ΓFd in s−1

F = 1/2 F = 3/2

nucleon-nucleon force and dynamics PW full PW full

Bonn B, without RC 369 403 10.0 11.7
Bonn B, with RC 363 396 10.4 12.2
AV18, with RC 361 392 10.2 12.0
chiral N2LO potential version 1 with RC 367 399 10.5 12.2
chiral N2LO potential version 2 with RC 364 394 10.4 12.2
chiral N2LO potential version 3 with RC 365 397 10.5 12.2
chiral N2LO potential version 4 with RC 367 399 10.4 12.2
chiral N2LO potential version 5 with RC 364 396 10.4 12.2

experimental results:
I.-T. Wang et al. [33] 365 ± 96
A. Bertin et al. [34] 445 ± 60
G. Bardin et al. [35] 470 ± 29
M. Cargnelli et al. [36] 409 ± 40



Chapter 3. Muon capture on deuteron 27

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 0  50  100  150  200  250  300

d
Γ

d
F
 /
 d

p
  
[ 
s

-1
 M

e
V

-1
 ]
  

 p [MeV] 

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0  50  100  150  200  250  300

d
Γ

d
F
 /
 d

p
  
[ 
s

-1
 M

e
V

-1
 ]
  

 p [MeV] 

Figure 3.6: Differential capture rate dΓFd /dp for the µ− +2 H→ νµ + n+ n process,
calculated with the AV18 potential [19] for F = 1

2 (left panel) and F = 3
2 (right panel)

as a function of the relative neutron-neutron momentum p. The dashed curves show
the full results calculated using the single nucleon current operator with relativistic
corrections. The solid lines represent the predictions obtained with additional meson
exchange currents [11]. Now the proper neutron mass is used in the kinematics and in

solving the Lippmann-Schwinger equations.
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Figure 3.7: The total deuteron photodisintegration cross section σ as a function
of the photon laboratory energy Eγ calculated in the center of mass frame with the
AV18 potential [19]. The dashed curve shows the full results calculated using the
single nucleon current operator. The solid line represents the predictions obtained with
additional “π-like”and “ρ-like”meson exchange currents closely corresponding to the
vector currents from [11]. Selected experimental data come from [39] (full circles), [40]

(open circles), [41] (open squares), and [42] (full squares).
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Table 3.2: Doublet (F = 1/2) and quadruplet (F = 3/2) capture rates for the
µ− +2 H → νµ + n + n reaction calculated with the improved chiral nucleon-nucleon
potential [18] for different orders of the chiral expansion and the single nucleon current
operator with the relativistic corrections (RC). Plane wave results (PW) and results
obtained with the rescattering term in the nuclear matrix element (full) are shown.
The neutron mass is used in the kinematics and in solving the Lippmann-Schwinger
equations. All the partial waves with the total 2N angular momentum j ≤ 6 are
employed. In the last column the spread of the full results for F = 1/2 at the given

order, ∆Γ
1/2
d ≡ Γ

1/2
d max

− Γ
1/2
d min

, is also presented.

Capture rate ΓFd in s−1

F = 1/2 F = 3/2

nucleon-nucleon force PW full PW full ∆Γ
1/2
d in s−1

LO with R = 0.8 fm 355.1 396.0 9.32 11.26
LO with R = 0.9 fm 357.1 397.4 9.13 11.04
LO with R = 1.0 fm 359.1 398.4 8.94 10.89 3.3
LO with R = 1.1 fm 361.1 398.9 8.78 10.59
LO with R = 1.2 fm 362.9 399.2 8.63 10.38

NLO with R = 0.8 fm 352.9 384.2 9.89 11.53
NLO with R = 0.9 fm 353.8 385.8 9.88 11.53
NLO with R = 1.0 fm 354.6 387.2 9.85 11.51 5.7
NLO with R = 1.1 fm 355.5 388.6 9.82 11.48
NLO with R = 1.2 fm 356.3 389.8 9.77 11.45

N2LO with R = 0.8 fm 354.2 385.0 9.83 11.60
N2LO with R = 0.9 fm 354.9 386.1 9.84 11.56
N2LO with R = 1.0 fm 355.5 387.2 9.84 11.53 4.3
N2LO with R = 1.1 fm 356.0 388.3 9.83 11.52
N2LO with R = 1.2 fm 356.6 389.3 9.82 11.50

N3LO with R = 0.8 fm 353.0 386.8 9.70 11.44
N3LO with R = 0.9 fm 352.8 386.4 9.74 11.48
N3LO with R = 1.0 fm 353.1 385.2 9.81 11.52 3.6
N3LO with R = 1.1 fm 353.8 384.3 9.91 11.58
N3LO with R = 1.2 fm 354.5 383.2 10.05 11.66

N4LO with R = 0.8 fm 353.1 385.5 9.77 11.51
N4LO with R = 0.9 fm 354.0 386.1 9.78 11.50
N4LO with R = 1.0 fm 354.8 386.3 9.81 11.50 1.7
N4LO with R = 1.1 fm 355.4 385.6 9.88 11.54
N4LO with R = 1.2 fm 355.8 384.6 10.00 11.61

at the given order, ∆Γ
1/2
d ≡ Γ

1/2
d max

− Γ
1/2
d min

, due to various regulators used. Our

results demonstrate a very welcome property of the new chiral forces, since the range

of predictions obtained with different regulators gets narrower for the higher and higher

orders of the chiral expansion. The spread of the results at N4LO is indeed very small

and does not even reach 0.5 % !

We use one example of the improved chiral potential to study the convergence of our

results with respect to the number of 2N partial waves. We see in Table 3.3 that the

convergence is indeed very fast. The 2H(µ−, νµ)nn muon-capture reaction is definitely
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Table 3.3: Doublet (F = 1/2) and quadruplet (F = 3/2) capture rates for the
µ− +2 H → νµ + n + n reaction calculated with one example of the improved chiral
nucleon-nucleon potential [18], using different numbers of two-nucleon basis states and
the single nucleon current operator with the relativistic corrections (RC). The N4LO
potential with the R = 1 fm regulator is used to generate plane wave results (PW)
and results obtained with the rescattering term in the nuclear matrix elements (full).
The neutron mass is used in the kinematics and in solving the Lippmann-Schwinger

equations.

Capture rate ΓFd in s−1

F = 1/2 F = 3/2

partial waves used PW full PW full
1S0 210.0 240.5 4.84 6.38
jmax ≤ 1 273.1 303.3 6.16 7.73
jmax ≤ 2 351.9 383.4 9.62 11.31
jmax ≤ 3 353.1 384.5 9.77 11.46
jmax ≤ 4 354.7 386.2 9.81 11.50
jmax ≤ 5 354.8 386.2 9.81 11.50
jmax ≤ 6 354.8 386.3 9.81 11.50
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Figure 3.8: The kinematically allowed region in the Eν − E1 plane calculated rela-
tivistically (solid line) and nonrelativistically (dashed line). The two line practically

overlap.

a low energy phenomenon and can be successfully treated with a rather limited number

of partial waves.

Our results given in the form of dΓFd /dEν or dΓFd /dp cannot be compared directly with

any experimental results. The muon neutrinos are very hard to detect and information

about the two neutrons would be necessary to define the magnitude of the relative

momentum. We ask ourselves a simple question: How to represent our results in the
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Figure 3.9: The doublet (left panel) and quadruplet (right panel) capture rates
〈dΓFd /dE1〉 for the µ− +2 H → νµ + n + n reaction averaged over 1 MeV neutron
energy bins calculated with the N4LO improved chiral nucleon-nucleon potential [18]
with R = 1 fm regulator. The single nucleon current operator with the relativistic

corrections (RC) is used.

form of the dΓFd /dE1, where E1 is the kinetic energy of the outgoing neutron. (The

kinematically allowed region in the Eν − E1 plane is shown in Fig. 3.8.) We could

in principle derive the expression for this differential capture rate but such a quantity

cannot be measured in practice. So instead we consider the capture rates 〈dΓFd /dE1〉,
which are averaged over certain neutron energy bins. They can be calculated, using

just Eq. (3.11) but with an additional function C(Eν , θp ) which evaluates to 1, if E1

calculated from Eν and θp lies within the [Emin1 , Emax1 ] interval or otherwise to zero.

〈dΓFd /dE1〉 =
1

2
G2 1

(2π)2

(M ′dα )3

π
4π

Emax,nnν∫
0

dEνE
2
ν

1

2
Mp

2π

π∫
0

dθp sin θp
1

2F + 1

∑
mF

∑
m1,m2,mν∣∣∣ ∑

mµ,md

c(
1

2
, 1, F ;mµ,md,mF )Lλ(mν ,mµ )Nλ(m1,m2,md )

∣∣∣2
C(Eν , θp )/

(
Emax1 − Emin1

)
. (3.13)

In Figs. 3.9–3.11 we show these averaged capture rates first for 1 MeV and later for

5 MeV neutron energy bins. We employ the N4LO improved chiral nucleon-nucleon

potential [18] with R = 1 fm regulator and the single nucleon current operator with the

relativistic corrections. These calculations clearly show that the main contributions to

the total capture rates come from the low-energy neutrons. This is bad news for the

experiment, since such neutrons are difficult to detect.
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Figure 3.10: The same as in Fig. 3.9 for 5 MeV neutron energy bins.

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 0  5  10  15  20  25  30  35  40  45  50  55

 <
 d

 Γ
/d

E
1
 >

  
[s

-1
 M

e
V

-1
]

E1 [MeV]

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10

 0  5  10  15  20  25  30  35  40  45  50  55

<
 d

 Γ
/d

E
1
 >

  
[s

-1
 M

e
V

-1
]

E1 [MeV]

Figure 3.11: The same as in Fig. 3.10 but shown on the logarithmic scale.





Chapter 4

Muon capture reaction
3He(µ−, νµ)3H

4.1 Results for the µ− +3 He→ νµ +
3 H reaction

In this case we deal with simple two-body kinematics and we can compare the neutrino

energy calculated nonrelativistically and using relativistic equations. The relativistic

result, based on

Mµ +M3He = Eν +
√
E2
ν +M2

3H
(4.1)

reads

(Eν)rel =
(M3He +Mµ )2 −M2

3H

2 (M3He +Mµ )
. (4.2)

In the non-relativistic case, we start with

Mµ +M3He = Eν +M3H +
E2
ν

2M3H
(4.3)

and arrive at

(Eν)nrl = −M3H +
√
M3H (−M3H + 2 (M3He +Mµ )) . (4.4)

Again the obtained numerical values, (Eν)rel = 103.231 MeV and (Eν)nrl = 103.230

MeV, are very close to each other.

33
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Figure 4.1: General diagram of the kinematics for the µ− +3 He→ νµ +3 H reaction.

For this case we do not consider the (F = 0 and F = 1) hyperfine states in 3He and

calculate directly

Γ3H =
1

2
G2 1

(2π)2
R
(
2M ′3Heα

)3
π

ρ

4π
1

2

∑
m3He

∑
m3H

( ∣∣N0(m3H,m3He )
∣∣2 + |Nz(m3H,m3He ) |2 +

2 |N−1(m3H,m3He ) |2 + 2Re
(
N0(m3H,m3He ) (Nz(m3H,m3He ))∗

) )
, (4.5)

where the factor

(
2M ′3He

α
)3

π , like in the deuteron case, comes from the K-shell atomic

wave function and M ′3He =
M3HeMµ

M3He+Mµ
. Also in this case one can fix the direction of the

neutrino momentum (our choice is p̂ν = −ẑ) and the angular integration yields just 4π.

The phase space factor ρ is

ρ =
E2
ν

1 + Eν√
E2
ν+M2

3H

≈ E2
ν

(
1− Eν

M3H

)
. (4.6)

The additional factor R accounts for the finite volume of the 3He charge and we adopt

from [8] that R = 0.98. (The corresponding factor in the deuteron case has been found

to be very close to 1 [8] and thus is omitted.) Now, of course, the nuclear matrix elements

involve the initial 3He and final 3H states:

Nλ(m3H,m3He ) ≡ 〈Ψ3H Pf = −pνm3H | jλw | Ψ3He Pi = 0m3He 〉 (4.7)

and many-nucleon contributions are expected in jλw as given in Eq. (2.19).

Our results for this process are given in Table 4.1. They are based on various 3N

Hamiltonians necessary to generate the initial 3He and final 3H wave functions. These
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wave functions were calculated by Dr. Andreas Nogga from the Jülich Research Center

[43].

We use the single nucleon current operator. Only in the last line we show a result,

where on top of the single nucleon contributions 2N operators are added to the current

operator jλw. We use the same meson-exchange currents from Ref. [11] as in Chapter 3,

without ∆-isobar contributions. Our two last results from Table 4.1 (1324 s−1 and 1386

s−1), should be compared with the PS (1316 s−1) and Mesonic (1385 s−1) predictions

from Table X of Ref. [8], although not all the details of the calculations are the same.

The experimental value for this capture rate is known with a rather good accuracy

(Γexp = (1496 ± 4) s−1 [44]) so one can expect that the effects of 2N operators exceed

11%. At least for this process, they are more important than the 3N force effects. The

latter ones amount roughly to 2% only. This dependence on the 3N interaction was

already observed in Ref. [10], where it was shown that the total capture rate scales

approximately linearly with the trinucleon binding energy.

Like in the 2N case, also in the 3N system we employ PWD and use our standard 3N

basis | pqᾱ JmJ ;TmT 〉 [15], where p and q are magnitudes of the two relative Jacobi

momenta and ᾱ is a set of discrete quantum numbers. Note that the | pqᾱ JmJ ;TmT 〉
states are already antisymmetrized in the (2, 3) subsystem. Also in this case we have

derived a general formula for PWD of the single nucleon current operator:

〈pqᾱJmJ ;TmT Pf | jw(1) | Ψ3He Pi = 0m3HemTb 〉 =∑
ᾱb

δl,lb δs,sb δj,jb δt,tb δmT ,− 1
2

〈(
t
1

2

)
T − 1

2
| τ−(1) |

(
tb

1

2

)
1

2

1

2

〉
∑
mj

c (j, I, J ;mj ,mJ −mj ,mJ ) c

(
jb, Ib,

1

2
;mj ,m3He −mj ,m3He

)
∑
mλ

c

(
λ,

1

2
, I;mλ,mJ −mj −mλ,mJ −mj

)
∑
mλb

c

(
λb,

1

2
, Ib;mλb ,m3He −mjb −mλb ,m3He −mjb

)
∫
dq̂Y ∗λmλ (q̂) Yλbmλb

(
̂

q− 2

3
Q

)
φᾱb

(
p, | q− 2

3
Q |

)
〈1

2
mJ −mj −mλ |

〈
q +

1

3
Pf | jspin

w (1) | q− 2

3
Pf + Pi

〉
| 1

2
m3He −mjb −mλb

〉
(4.8)

where, as in the 2N space, Q ≡ Pf −Pi. We encounter again the essential spin matrix

element 〈1

2
m ′
∣∣∣〈p ′1

∣∣∣jspin
w (1)

∣∣∣p1

〉 ∣∣∣1
2
m
〉

(4.9)
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of the single nucleon current operator, which is calculated using software for symbolic

algebra. The initial 3N bound state is given as

| Ψ3Hem3He 〉 =
∑
ᾱb

∫
dpp2

∫
dqq2

∣∣∣pqᾱb 1

2
m3He ;

1

2

1

2

〉
φᾱb (p, q) . (4.10)

In our calculations with these older Hamiltonians we use 34 (20) points for integration

over p (q), and 34 partial wave states corresponding to j ≤ 4.

In order to include the 2N contributions in the current operator in our PWD scheme,

we have derived the following general formula:

〈pqᾱJmJ ;TmT Pf | jw(2, 3) | Ψ3He Pim3HemTb 〉 =∑
mj

c (j, I, J ;mj ,mJ −mj ,mJ )
∑
ᾱb

∑
mjb

c

(
jb, Ib,

1

2
;mjb ,m3He −mjb ,m3He

)
∑
ml

c (l, s, j;ml,mj −ml,mj )
∑
mlb

c (lb, sb, jb;mlb ,mjb −mlb ,mjb )

∑
mt

c

(
t,

1

2
, T ;mt,mT −mt,mT

) ∑
mtb

c

(
tb,

1

2
,
1

2
;mtb ,mTb −mtb ,mTb

)
∑
mλ

c

(
λ,

1

2
, I;mλ,mJ −mj −mλ,mJ −mj

)
∑
mλb

c

(
λb,

1

2
, Ib;mλb ,m3He −mjb −mλb ,m3He −mjb

)
〈1

2
mJ −mj −mλ | m3He −mjb −mλb

〉 ∫
dp̂

∫
dq̂

∫
dpb p

2
b

∫
dp̂b

Y ∗l,ml (p̂) Y ∗λmλ (q̂) Ylb,mlb (p̂b) Yλbmλb

(
̂

q +
1

3
Q

)
φᾱb

(
pb, | q +

1

3
Q |

)
〈
smj −ml ; tmt |

〈
p q Pf | jspin+isospin

w (2, 3)

| pb q +
1

3
Q Pi

〉
| sbmjb −mlb ; tbmtb

〉
, (4.11)

where we use the notation: pb = |pb| p̂b ≡ pb p̂b. The momentum dependence of the

spin-isospin matrix elements,〈
sms ; tmt |

〈
p q Pf | jspin+isospin

w (2, 3) | pb qb Pi

〉
| sbmsb ; tbmtb

〉
, (4.12)

cannot be, in the general case, simplified and we deal with a substantial numerical task

for some of the operators introduced in Sec. 2.2. Only for the so-called “local”operators,

which depend on just two vector combinations, p − pb + 1
2Q and −p + pb + 1

2Q, the

angular integrals over dp̂ and dp̂b can be separated and prepared in advance, using

essentially the same codes as for the 2N system. This is for example the case for the

important “π-like and “ρ-like”electromagnetic current operators [15, 28, 29].
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Table 4.1: Total capture rate Γ for the µ− +3 He → νµ +3 H reaction calculated
with the single nucleon current operator and various nucleon-nucleon potentials. In the
last two lines the rates are obtained employing the AV18 [19] nucleon-nucleon and the
Urbana IX 3N potential [20], and adding, in the last line, some selected 2Ns current

operators to the single nucleon current (see text for more explanations).

Three-nucleon Hamiltonian Capture rate Γ in s−1

Bonn B 1360
chiral N2LO version 1 1379
chiral N2LO version 2 1312
chiral N2LO version 3 1350
chiral N2LO version 4 1394
chiral N2LO version 5 1332
AV18 1353

AV18 + Urbana IX 1324
AV18 + Urbana IX with MEC [11] 1386

We end this chapter by adding brand new results based on the improved chiral 2N forces

[18], which ae given in Table 4.2. To the best of our knowledge, they are calculated for

the first time. Like in the case of the µ− +2 H → νµ + n + n reaction, we demonstrate

results for all the available orders of the chiral expansion and for all the five regulators

at each order. Also for the µ− +3 He → νµ +3 H reaction we calculate the spread of

the results at the given order due to various regulators used. Starting from NLO, the

range of predictions shrinks when we go to higher orders of the chiral expansion. The

spread of the results at N4LO is, however, still significant (≈ 1.8%) which might point to

clear drawbacks of the calculations: the lack of consistent 3N forces and many-nucleon

current operators. It will be very interesting to repeat these calculations with a complete

dynamical framework.
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Table 4.2: Total capture rate Γ for the µ− +3 He→ νµ +3 H reaction calculated with
the single nucleon current operator and the improved chiral nucleon-nucleon potentials
from [18]. In the last column the spread of the predictions obtained for a given chiral
order with different regulator parameters, ∆Γ ≡ Γmax−Γmin, is also presented. In the
last line we add, for the sake of comparison, the rate obtained employing the AV18 [19]

nucleon-nucleon potential.

Nucleon-nucleon potential Capture rate Γ in s−1 ∆Γ in s−1

LO with R = 0.8 fm 1610
LO with R = 0.9 fm 1618
LO with R = 1.0 fm 1610 46
LO with R = 1.1 fm 1594
LO with R = 1.2 fm 1572

NLO with R = 0.8 fm 1330
NLO with R = 0.9 fm 1357
NLO with R = 1.0 fm 1381 97
NLO with R = 1.1 fm 1405
NLO with R = 1.2 fm 1427

N2LO with R = 0.8 fm 1337
N2LO with R = 0.9 fm 1356
N2LO with R = 1.0 fm 1376 78
N2LO with R = 1.1 fm 1395
N2LO with R = 1.2 fm 1415

N3LO with R = 0.8 fm 1314
N3LO with R = 0.9 fm 1304
N3LO with R = 1.0 fm 1289 48
N3LO with R = 1.1 fm 1278
N3LO with R = 1.2 fm 1266

N4LO with R = 0.8 fm 1296
N4LO with R = 0.9 fm 1307
N4LO with R = 1.0 fm 1308 23
N4LO with R = 1.1 fm 1299
N4LO with R = 1.2 fm 1285

AV18 1353



Chapter 5

Break-up channels in muon

capture on 3He

For the sake of completeness, we discuss here the formalism and some results for the two

break-up reactions, µ− +3 He→ νµ + n+ d and µ− +3 He→ νµ + n+ n+ p. We stress,

however, that our contribution to the presented results is restricted to the work on PWD

of the single nucleon current operator. Thus this chapter is a short version of Sec. V from

Ref. [14] and brings no new results compared to [14]. The results of this chapter have

been obtained within the framework developed originally for electromagnetic reactions

in the Cracow-Bochum group [15, 16].

5.1 Results for the µ− +3 He → νµ + n + d and µ− +3 He →
νµ + n+ n+ p reactions

The kinematics of the µ− +3 He→ νµ + n+ d and µ− +3 He→ νµ + n+ n+ p reactions

is formulated in the same way as for the µ− +2 H → νµ + n + n process in Chapter. 3.

The maximal neutrino energies for the two-body and three-body captures of the muon

atom are evaluated as

39
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(
Emax,ndν

)rel
=

(M3He −Md +Mµ −Mn)(M3He +Md +Mµ +Mn)

2(M3He +Mµ)
, (5.1)

(Emax,nnpν )rel =
M3He

2 + 2M3HeMµ +Mµ
2 − (2Mn +Mp)

2

2(M3He +Mµ)
, (5.2)(

Emax,ndν

)nrl
=

√
(Md +Mn)(2M3He + 2Mµ −Md −Mn)−Md −Mn , (5.3)

(Emax,nnpν )nrl =
√

(Mp + 2Mn)(2M3He + 2Mµ − 2Mn −Mp)− 2Mn −Mp .(5.4)

The numerical values are the following:
(
Emax,ndν

)rel
= 97.1947 MeV,

(
Emax,ndν

)nrl
=

97.1942 MeV, (Emax,nnpν )
rel

= 95.0443 MeV and (Emax,nnpν )
nrl

= 95.0439 MeV.

The kinematically allowed region in the Eν−Ed plane for the two-body break-up of 3He

is shown in Fig. 5.1, calculated with the relativistic and nonrelativistic kinematics. They

essentially overlap except for the very small neutrino energies. The same is also true for

the three-body break-up as demonstrated in Fig. 5.2. Up to a certain Eν value, which

is denoted by E2sol
ν , the minimal proton kinetic energy is zero. The minimal proton

kinetic energy is greater than zero for Eν > E2sol
ν . Even this very detailed shape of the

kinematical domain can be calculated nonrelativistically with high accuracy (see also

the inset in Fig. 5.2). The values of E2sol
ν based on the relativistic kinematics,

(
E2sol
ν

)rel
=

(M3He +Mµ)(M3He +Mµ − 2Mp)− 4Mn
2 +Mp

2

2(M3He +Mµ −Mp)
(5.5)

and nonrelativistic kinematics,

(
E2sol
ν

)nrl
= 2

(√
M3HeMn +MµMn −Mn

2 −MnMp −Mn

)
, (5.6)

yield very similar numerical values, 94.2832 MeV and 94.2818 MeV, respectively.

The crucial matrix elements

Nλ
nd(mn,md,m3He ) ≡ 〈Ψ(−)

nd Pf = −pνmnmd | jλw | Ψ3He Pi = 0m3He 〉 (5.7)

and

Nλ
nnp(m1,m2,mp,m3He ) ≡ 〈Ψ(−)

nnp Pf = −pνm1m2mp | jλw | Ψ3He Pi = 0m3He 〉 (5.8)
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Figure 5.1: The kinematically allowed region in the Eν−Ed plane calculated relativis-
tically (solid curve) and nonrelativistically (dashed curve) for the µ−+3He→ νµ+n+d

process.
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Figure 5.2: The kinematically allowed region in the Eν−Ep plane calculated relativis-
tically (solid curve) and nonrelativistically (dashed curve) for the µ−+3He→ νµ+n+d

process.

are calculated in two steps. First a Faddeev-like equation is solved for the auxiliary state

| Uλ 〉 for each considered neutrino energy:

| Uλ 〉 =
[
tG0 +

1

2
(1 + P )V

(1)
4 G0(1 + tG0 )

]
(1 + P )jλw | Ψ3He 〉

+
[
tG0P +

1

2
(1 + P )V

(1)
4 G0(1 + tG0P )

]
| Uλ 〉 , (5.9)

where V
(1)

4 is a part of the 3N force symmetrical under the exchange of nucleon 2 and

3, G0 is the free 3N propagator and t is the 2N t-operator acting in the (2, 3) subspace.

Further P is the permutation operator built from the transpositions Pij exchanging

nucleons i and j:

P = P12P23 + P13P23 . (5.10)
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In the second step the nuclear matrix elements are calculated by simple quadratures:

Nλ
nd(mn,md,m3He ) = 〈φnd q0mnmd | (1 + P )jλw | Ψ3He 〉

+ 〈φnd q0mnmd | P | Uλ 〉 , (5.11)

Nλ
nnp(m1,m2,mp,m3He ) = 〈φnnp p qm1m2mp | (1 + P )jλw | Ψ3He 〉

+ 〈φnnp p qm1m2mp | tG0(1 + P )jλw | Ψ3He 〉

+ 〈φnnp p qm1m2mp | P | Uλ 〉

+ 〈φnnp p qm1m2mp | tG0P | Uλ 〉 . (5.12)

Here | φnd q0mnmd〉 is a product state of the deuteron wave function and a momentum

eigenstate of the spectator nucleon characterized by the relative momentum vector q0,

while | φnnp p qm1m2mp 〉 is a product state of two free motions in the 3N system

given by Jacobi relative momenta p and q, antisymmetrized in the (2, 3) subsystem.

Equations (5.9), (5.11) and (5.12) simplify significantly, when V
(1)

4 = 0 [16].

Finally we give the formulas for the total capture rates from [14]. Like for the µ−+3He→
νµ +3 H reaction, also for the two break-up channels these quantities are calculated

directly and the hyperfine states in 3He are not considered. In the case of the two-body

break-up it reads:

Γnd =
1

2
G2 1

(2π)2
R
(
2M ′3Heα

)3
π

4π

Emax,ndν∫
0

dEνE
2
ν

2

3
Mq0

1

3

π∫
0

dθq0 sin θq0 2π

1

2

∑
m3He

∑
mn,md

( ∣∣N0
nd(mn,md,m3He )

∣∣2 + |Nnd, z(mn,md,m3He ) |2 +

2 |Nnd,−1(mn,md,m3He ) |2 +

2Re
(
N0
nd(mn,md,m3He ) (Nnd, z(mn,md,m3He ))∗

) )
, (5.13)

where the same arguments as before are used to simplify the angular integrations. The

energy conservation is expressed in terms of the relative neutron-deuteron momentum

q0 ≡
2

3

(
pn −

1

2
pd

)
, (5.14)

yielding

Mµ +M3He ≈ Eν +Mn +Md +
3

4

q 2
0

M
+

1

6

E2
ν

M
, (5.15)
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where the deuteron binding energy is neglected. For the µ− +3 He → νµ + n + n + p

reaction the total capture rate Γnnp is obtained in a similar way:

Γnnp =
1

2
G2 1

(2π)2
R
(
2M ′3Heα

)3
π

4π

Emax,nnpν∫
0

dEνE
2
ν

2

3
Mq

1

3

π∫
0

dθq sin θq 2π

π∫
0

dθp sin θp

2π∫
0

dφp

pmax∫
0

dpp2

1

2

∑
m3He

∑
m1,m2,mp

( ∣∣N0
nnp(m1,m2,mp,m3He )

∣∣2 + |Nnnp, z(m1,m2,mp,m3He ) |2 +

2 |Nnnp,−1(m1,m2,mp,m3He ) |2 +

2Re
(
N0
nnp(m1,m2,mp,m3He ) (Nnnp, z(m1,m2,mp,m3He ))∗

) )
. (5.16)

The energy conservation is expressed in terms of the Jacobi relative momenta p and q

p ≡ 1

2
(p1 − p2 ) ,

q ≡ 2

3

(
pp −

1

2
(p1 + p2 )

)
, (5.17)

which leads to

Mµ +M3He ≈ Eν + 3M +
p 2

M
+

3

4

q 2

M
+

1

6

E2
ν

M
. (5.18)

The discussion of predictions from [14] starts with Fig. 5.3, where for the µ− +3 He →
νµ+n+d reaction results of calculations employing all partial wave states are compared

with the total subsystem angular momentum j ≤ 3 and j ≤ 4. Both the (symmetrized)

plane wave and full results show a very good convergence and in practice it is sufficient

to perform calculations with j ≤ 3. We refer the reader to Ref. [15] for the detailed

definitions of various 3N dynamics. A similar very rapid convergence is observed with

respect to the total 3N angular momentum J . The differential capture rates dΓnd/dEνµ

rise very slowly with the neutrino energy and show a strong maximum in the vicinity

of the maximal neutrino energy. (At the very maximal neutrino energy the phase space

factor reduces the differential rates to zero.) This maximum is broader for the plane

wave case. Final state interaction effects are very important and in the maximum bring

the full dΓnd/dEνµ to about 1/3 of the plane wave prediction. The results are based on

the AV18 [19] nucleon-nucleon interaction.

In Fig. 5.4 results based on different 3N dynamics are displayed: plane wave approxima-

tion, symmetrized plane wave approximation, with the 3N Hamiltonian containing only

2N interactions and finally including also a 3N force (here the Urbana IX 3N potential

[20]) both in the initial and final state. The effect of the 3N force on dΓnd/dEν is clearly
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visible, since the maximum is reduced by about 20 %. From this figure one might draw

the conclusion that the symmetrization in the plane wave matrix element is not impor-

tant. This agreement between the plane wave and the symmetrized plane wave results

is, however, rather accidental. As demonstrated in [14], the double differential capture

rates d2Γnd/(dEνdΩq0) receive dominant contributions from different angular regions.

For the µ−+3He→ νµ+n+n+p reaction (see Fig. 5.5) the convergence of the differential

capture rate dΓnnp/dEν with respect to the number of partial wave states used in the

full calculations is also very good. Comparing the shapes of dΓnd/dEν and dΓnnp/dEν

it is clear that the latter becomes significantly different from zero at smaller neutrino

energies. The calculations have been based in this case on the AV18 [19] nucleon-nucleon

potential and 3N force effects have been neglected. Figure 5.6 shows 3N force effects

adding the Urbana IX 3N force to the Hamiltonian. The peak reduction caused by the

3N force amounts to about 19 % which is quite similar to the two-body break-up case.

The results presented in Figs. 5.3–5.6 are supplemented by the corresponding values

of integrated capture rates in Table 5.1, together with earlier theoretical predictions of

Refs. [45–47] and experimental data from Refs. [48–51]. From inspection of the table one

can conclude, first of all, that these results are fully at convergence. Secondly, one can

estimate 3N force effects for the total rates. For the two break-up reactions separately

(Γnd and Γnnp) as well as for the total break-up capture rate (Γnd + Γnnp) one deals

with a reduction of their values by about 10 %, when the 3N force is included. Best

predictions of [14] (obtained with the AV18 nucleon-nucleon potential and Urbana IX

3N force and the single nucleon current operator) are Γnd = 544 s−1, Γnnp = 154 s−1

and Γnd + Γnnp = 698 s−1 and can be compared with the available experimental data

gathered in Table 5.1, finding an overall nice agreement between theory and experiment

for Γnd+Γnnp, except for the two results of Refs. [46, 47]. The experimental uncertainties

are however quite large. When comparing with the latest experimental values of Ref. [51],

one finds that the results from [18] for Γnnp are smaller than the experimental values

and fall within the experimental estimates for Γnd and Γnd + Γnnp. One can expect that

these predictions will be changed by about 10 %, when many body current operators

are included in the framework.
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Figure 5.3: The differential capture rates dΓnd/dEν for the µ− +3 He → νµ + n + d
process calculated with the AV18 potential [19] and the single nucleon current operator
as a function of the muon neutrino energy, using the symmetrized plane wave (left panel)

and a full solution of Eq. (5.9) with V
(1)
4 = 0 (right panel). The curves representing

results of the calculations employing all partial wave states with j ≤ 3 (j ≤ 4) in the
2N subsystem are depicted with dashed (solid) curves. The maximal total 3N angular

momentum is Jmax = 9
2 .
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Figure 5.4: The differential capture rates dΓnd/dEν for the µ− +3 He → νµ + n + d
process calculated with the single nucleon current operator and different types of 3N
dynamics: plane wave (dash-dotted curve), symmetrized plane wave (dotted curve),
full solution of Eq. (5.9) without (dashed curve) and with 3N force (solid curve). The
calculations are based on the AV18 nucleon-nucleon potential [19] and the Urbana IX

3N force [20] and employ all partial wave states with j ≤ 3 and J ≤ 9
2 .
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Figure 5.5: The differential capture rates dΓnnp/dEν for the µ−+3He→ νµ+n+n+p
process calculated with the AV18 potential [19] and using a full solution of Eq. (5.9)

with V
(1)
4 = 0. The curves representing results of the calculations employing all partial

wave states with j ≤ 3 (j ≤ 4) in the 2N subsystem are depicted with dashed (solid)
curves. The maximal total 3N angular momentum is Jmax = 9
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Figure 5.6: The differential capture rates dΓnnp/dEν for the µ−+3He→ νµ+n+n+p

process calculated with full solutions of Eq. (5.9) with V
(1)
4 = 0 (dashed curve) and

with V
(1)
4 6= 0 (solid curve). The calculations are based on the AV18 nucleon-nucleon

potential [19] and the Urbana IX 3N force [20] and employ all partial wave states with
j ≤ 3 and J ≤ 9

2 .
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Table 5.1: Capture rates for the µ− +3 He → νµ + n + d (Γnd) and µ− +3 He →
νµ+n+n+p (Γnnp) processes calculated with the AV18 [19] nucleon-nucleon potential
and the Urbana IX [20] 3N force, using the single nucleon current and describing the
final states just in plane wave (PW), symmetrized plane wave (SPW), and including
final state interaction (full). Early theoretial predictions from Refs. [45–47] are also

shown as well as experimental data are from Refs. [48–51].

capture rate Γ in s−1

Γnd Γnnp Γnd + Γnnp
PW SPW full full full

AV18 (jmax = 3) 1917 2046 604 169 773
AV18 (jmax = 4) 1917 2046 606 170 776
AV18+Urbana IX (jmax = 3) 1853 1956 544 154 698

earlier theoretical predictions:
A.F. Yano [45] 510 160 670
A.C. Philips et al. [46] 414 209 623
J.G. Congleton [47] 650
experimental results:
O.A. Zăımidoroga et al. [48] 660± 160

L.B. Auerbach et al. [49] 665 + 170
− 430

E.M. Maev et al. [50] 720± 70
V.M. Bystritsky et al. [51]:

method I 491± 125 187± 11 678± 126
method II 497± 57 190± 7 687± 60





Chapter 6

Summary and conclusions

In Chapter 1 we try to describe the present-day status of few-nucleon studies concerning

the muon-capture reactions on the lightest nuclei. It is clear that a consistent framework

for the calculations of all muon capture processes on the deuteron, 3He and other light

nuclei should ultimately be prepared. This requires that the initial and final nuclear

states are calculated with the same Hamiltonian and that the weak current operator

is “compatible” with the nuclear forces. If results of such calculations can be com-

pared with precise experimental data, our understanding of muon capture (and other)

important weak reactions will be definitely improved.

In this thesis we report on substantial progress towards achieving this goal. The µ− +

2H→ νµ+n+n, µ−+3 He→ νµ+3 H, µ−+3 He→ νµ+n+d, and µ−+3 He→ νµ+n+

n+ p capture reactions are studied using a consistent momentum space framework with

various realistic nucleon-nucleon potentials. We test our calculations in the case of the

µ−+2H→ νµ+n+n and µ−+3He→ νµ+3H reactions, for which theoretical predictions

obtained by the Pisa group with the same nuclear forces and current operators but using

completely different methods are available. Calculations are now possible for the widely

used realistic AV18 nucleon-nucleon potential [19] and two types of the weak current

operator: the single nucleon one and the single nucleon current operator augmented by

the meson-exchanged currents (partly at least) linked to the AV18 potential [11]. In the

case of the µ− +2 H → νµ + n + n we use results calculated within the scheme, which

totally avoids standard partial wave decomposition [37] to cross-check further elements

of our framework.

For each of the four reactions we start with a detailed analysis of the reaction kinemat-

ics. Exact results based on the relativistic and non-relativistic formulas are compared.

In each case we find a beautiful agreement for both types of results, which gives us
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confidence that also the non-relativistic dynamics we employ in our formalism is fully

sufficient.

Chapter 2 introduces the detailed definitions of the weak current operator that is used in

the thesis. Apart from the non-relativistic single nucleon current operator and the single

nucleon current operator that contains relativistic corrections, we adopt meson exchange

currents from Ref. [11]. What is even more important we introduce general formulas

for the partial wave representation of these currents and describe a very efficient way to

obtain the necessary PWD matrix elements. It utilizes software for symbolic algebra,

for example Mathematica R© [21], to prepare momentum dependent spin matrix elements.

In Chapter 3 we demonstrate our results for the µ−+2 H→ νµ +n+n capture process.

We show predictions for the differential and total capture rates calculated with quite

many different nucleon-nucleon potentials and the single nucleon current operator. We

supplement information given in the literature by yielding predictions for the quadruplet

differential and total capture rates. As already mentioned, our results calculated with the

AV18 potential and the corresponding meson-exchange currents confirm earlier findings

of the Pisa group in a completely independent way. We study different forms of the

differential capture rates and show the phase-space regions with maximal contributions

to the total rate.

Last not least, we show for the first time results based on the new, improved chiral

potentials from the Bochum-Bonn group [18]. These new nucleon-nucleon forces are

available for five orders of the chiral expansion and (at each order) with five different

regularizations. Our results demonstrate a very welcome property of the new chiral

forces since the range of predictions obtained at a given order but for five different

regulators becomes very narrow when going to higher and higher orders of the chiral

expansion. The spread of the results at N4LO is below 0.5 % !

In Chapter 4 we focus on the µ− +3 He→ νµ +3 H capture reaction. For this two-body

reaction we show predictions for the total rate, based again on various nucleon-nucleon

potentials and the single nucleon current operator. Like in the previous chapter, we use

a very safe method for PWD, now in the three-nucleon system. Since the 2N currents

from [11] are “non-local”we have to generalize our method for PWD of 2N operators

introduced in [15, 28]. The best result based on the AV18 nucleon-nucleon potential [19],

the Urbana IX three-nucleon potential [20] and the current operator including meson-

exchange contributions from [11] agrees very well with the one given in [8]. We would

like to emphasize that all the three-nucleon bound states have been generated by Dr.

Andreas Nogga [43].
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Also for this reaction, we show for the first time results based on the new, improved chiral

potentials from the Bochum-Bonn goup [18]. The predictions have the same tendency

as for the µ− +2 H→ νµ + n+ n case.

For the sake of completeness of our discussion we adopt in Chapter 5 the formalism and

selected results for the two break-up reactions, µ−+3 He→ νµ + n+ d and µ−+3 He→
νµ + n + n + p. The results of this chapter have been obtained within the framework

developed originally for electromagnetic reactions in the Cracow-Bochum group [15, 16]

using the single nucleon current operator and older nuclear forces. We repeat, however,

that our contribution to the presented results is restricted to the work on PWD of the

single nucleon current operator. That chapter is a short version of Sec. V from Ref. [14]

and brings no new results compared to [14].

The thesis contains additionally four appendices. Appendix A and Appendix B show two

simple warm-up exercises, where we obtain numerically the muon and neutron lifetimes.

We cross-check in this way our Mathematica R© [21] tools, which are later used to calculate

momentum dependent spin-isospin matrix elements in Chapters 2, 3 and 4. Appendix C

deals with the numerical calculation of the deuteron wave function in the partial wave

basis of the momentum space. Appendix D shows how to obtain the numerical solution

of the Lippmann-Schwinger equation.

We strongly believe that the presented predictions will serve as an important benchmark

for the future. We do hope that in the near future all the muon capture processes

described in the thesis will be studied with the inclusion of at least 2N contributions to

the nuclear current operators consistent with the nuclear forces. We definitely plan to

use our framework also for neutrino-induced reactions on the deuteron and 3He.





Appendix A

Muon decay

The muon decay process,

µ− → νµ + e− + ν̄e ,

is definitely worth studying because in the relevant matrix element one encounters ex-

actly the same muonic part which appears in muon capture on light nuclei. On the other

hand, the electronic part is the same as in the neutron beta decay reaction. This purely

leptonic decay involves only elementary particles.

We decided to repeat the exercise of calculating the muon lifetime because one can

learn how to treat the kinematics of three-particle decays. Additionally, we can test our

Mathematica R© [21] notebooks and, using them, significantly simplify the calculations.

In particular, we do not use any trace identities. As the starting point to calculate the

total muon decay rate (the inverse of the muon lifetime) we take directly Eqs. (2.18)

Figure A.1: muon decay diagram where pi , msi is the three-momentum vector and
the spin projection respectively.
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and (2.19a) from [52] and apply it to the muon rest frame:

W =
G2

2

1

(2π )5

1

2m1

∫
d3p2

2E2

∫
d3p3

2E3

∫
d3p4

2E4

δ4 (p̃2 + p̃3 + p̃4 − p̃1 )
1

2

∑
ms1 ,ms2 ,ms3 ,ms4

| M |2 . (A.1)

where we encounter the four-momenta of the initial muon at rest (p̃1 = (m1,p1 = 0)) and

outgoing particles: the massless muon neutrino (p̃2 = (E2 =| p2 |,p2)), the massless

electron antineutrino (p̃3 = (E3 =| p3 |,p3)), and the electron (p̃4 = (E4,p4)). The

essential quantity M is given as a contraction of the muonic and electronic parts [52]

M =
(
ū(p2,ms2)γλ(1− γ5)u(p1,ms1)

)(
ū(p4,ms4)γλ(1− γ5)v(p3,ms3)

)
, (A.2)

where no additional parameter appears. Note that in this appendix we use the spinor

normalization of Ref. [52].

In Eq. (A.1) we average over the initial muon spin projections and sum over spin pro-

jections of the outgoing particles, so

R ≡ 1

2

∑
ms1 ,ms2 ,ms3 ,ms4

| M |2

depends only on dot products of the momentum vectors of the three outgoing particles.

With the help of Mathematica R© [21] we arrive at:

R = 128m1 | p3 |
(
E4 | p2 | −p2 · p4

)
. (A.3)

Having obtained this general result forR in (A.3), we can now decide how to calculate the

integrals in Eq. (A.1). Because of the scalar nature of R and due to the four-momentum

conservation, we are left with two dimensional integrals.

For the same reasons as in Section B we are left with a two dimensional integral. We

choose:

p1 = (0, 0, 0) ,

p4 = (0, 0, | p4 |) , | p4 |∈ [0, | p4 |max] ,

p2 = (| p2 | sin θ24, 0, | p2 | cos θ24) ,p3 = −p2 − p4 , (A.4)

where for massless neutrinos

| p4 |max=

√(
m2

1 +m2
4

)2
4m2

1

−m2
4 (A.5)
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and the magnitude of the electron antineutrino momentum is calculated as

| p2 |=
(m1 − E4)2 − p2

4

2 (m1 − E4+ | p4 | cos θ24)
. (A.6)

(This is the only physical solution for all | p4 |∈ [0, | p4 |max ] and θ24 ∈ [0, π ].)

With this kinematical setup the total decay rate becomes

W =
G2

32

8π2

(2π)5

1

m1

pmax4∫
0

dp4
p2

4

E4

π∫
0

dθ24
sin θ24 | p2 | R

| p2 | + | p2 + p4 | + | p4 | cos θ24
(A.7)

We evaluated W numerically and obtained

W = G2 2.1115× 106 MeV 5 . (A.8)

This is to be compared with the highly nontrivial analytical result given in Eq. (2.57)

of Ref. [52], which reads

W = G2 m5
1

192π3

(
1− 8y + 8y3 − y4 − 12y2 ln y

)
(A.9)

(y ≡ m2
4

m2
1
) and is numerically fully equivalent to our result in (A.8). Note that we do not

discuss here any radiative corrections, which are introduced in [52]. The lifetime of the

muon is τ = (2.197± 0.00004)× 10−6 Sec.





Appendix B

Neutron Beta decay

The neutron beta decay process,

n→ p+ e− + ν̄e ,

is of fundamental importance for our understanding of weak processes involving nucleons.

From the point of view of the modern gauge theory of electro-weak interactions it cannot

be considered as a truly elementary reaction and should be studied with quark degrees

of freedom. We decided to repeat the simple exercise of calculating the neutron lifetime

for two main reasons; first, because it provides a first idea about the single nucleon

weak charged current operator; and secondly, because one can learn how to treat the

kinematics of three-particle decays. Additionally, we can test our Mathematica R© [21]

notebooks and significantly simplify the calculations.

Our starting point to calculate the total free neutron decay rate (the inverse of the

free neutron lifetime) are again Eqs. (2.18) and (2.19a) from [52], although they are

Figure B.1: Neutron beta decay diagram where pi , msi is the three-momentum
vector and the spin projection respectively.
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originally given for the muon decay process:

W =
G2

2

1

(2π )5

1

2m1

∫
d3p2

2E2

∫
d3p3

2E3

∫
d3p4

2E4

δ4 (p̃2 + p̃3 + p̃4 − p̃1 )
1

2

∑
ms1 ,ms2 ,ms3 ,ms4

| M̃ |2 . (B.1)

We deal in Eq. (B.1) with the four-momenta of the initial neutron at rest (p̃1 = (m1,p1 =

0)) and outgoing particles: the proton (p̃2 = (E2,p2)), the massless electron antineutrino

(p̃3 = (E3 =| p3 |,p3)), and the electron (p̃4 = (E4,p4)). The quantity M̃ contains the

essential information about the process and is given as a contraction of the nucleonic

and leptonic parts [52]

M̃ =
(
ū(p2,ms2)γλ(1− ᾱγ5)u(p1,ms1)

)(
ū(p4,ms4)γλ(1− γ5)v(p3,ms3)

)
, (B.2)

where the crucial parameter is ᾱ ≈ 1.3. (Right here we replace the muonic part of

Eq. (2.19a) from [52] by the nucleonic part given in Eq. (1.30) of the same reference.)

In Eq. (B.1) we average over the initial neutron spin projections and sum over spin

projections of the outgoing particles. Note that also in this appendix we use the spinor

normalization of Ref. [52]. We expect that

R̃ ≡ 1

2

∑
ms1 ,ms2 ,ms3 ,ms4

| M̃ |2

is a scalar function and depends only on dot products of the momentum vectors of the

three outgoing particles. Such quantities like R̃ are usually evaluated in a non-trivial

way using various trace identities for the gamma matrices (see for example Ref. [23]).

However, with the help Mathematica R© [21] we easily arrive at the following formula:

R̃ = 16
m1

W2
(ᾱ2 − 1) p2

2 p3 · p4

−16
m1

W4
(ᾱ− 1)2 p2 · p3

(
p2

4 +W 2
4

)
−16m1 (ᾱ2 − 1) p3 · p4W2

+8
m1

W2W4
(3 + ᾱ2) | p3 | p2

2

(
p2

4 +W 2
4

)
−32m1 (1 + ᾱ)2 | p3 | p2 · p4

+8
m1

W4
(1 + 3ᾱ2) | p3 | W2

(
p2

4 +W 2
4

)
, (B.3)

where

Wi ≡ mi + Ei ≡ mi +
√
m2
i + p2

i . (B.4)
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Having obtained this general result for R̃ in (B.3), we can now decide how to calculate

the integrals in Eq. (B.1). For the same reasons as in Appendix A we are left with a

two dimensional integral. However, different kinematical choices can be made and they

are discussed in the following subsections.

B.0.1 Kinematics 1

The proton-neutron mass difference is very small (approximately 1.3 MeV) so the kinetic

energy of the emerging proton can be (at first at least) neglected compared to its mass.

This suggests the following kinematical choice:

p1 = (0, 0, 0) ,

p2 = (0, 0, 0) ,

p4 = (0, 0, | p4 |) , | p4 |∈ [0, | p4 |max] ,

p3 = (| p3 | sin θ34, 0, | p3 | cos θ34) , (B.5)

where

| p3 |= m1 −m2 − E4 (B.6)

and

| p4 |max=

√
(m1 −m2)2 −m2

4 . (B.7)

With this kinematical setup R̃ is particularly simple:

R̃ = 32m1m2 | p3 |
(

(1 + 3ᾱ2)E4 − (ᾱ2 − 1) | p4 | cos θ34

)
(B.8)

and the total decay rate becomes

W =
G2

4π3

pmax4∫
0

dp4
p2

4

E4

π∫
0

dθ34 sin θ34 (m1 −m2 − E4)

(
(1 + 3ᾱ2)E4 − (ᾱ2 − 1) | p4 | cos θ34

)
(B.9)

The calculated lifetime τn = 1
W is 878.34 Sec.
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B.0.2 Kinematics 2

This kinematical choice is very similar to the one in subsection B.0.1 but we do not

assume that the final proton is at rest and express its momentum as

p2 = −p3 − p4 , (B.10)

so the proton total energy E2 is now given as

E2 =
√
m2

2 + p2
3 + p2

4 + 2 | p3 | | p4 | cos θ34 . (B.11)

Standard steps lead then to the following formula for W :

W =
G2

32

8π2

(2π)5

1

m1

pmax4∫
0

dp4
p2

4

E4

π∫
0

dθ34 sin θ34
| p3 |
E2

1∣∣∣1 + |p3|+p4 cos θ34
E2

∣∣∣ R̃
(
kinematics 2

)
. (B.12)

Here, however,

| p4 |max=

√(
m2

1 −m2
2 +m2

4

)2
4m2

1

−m2
4 ,

| p3 |=
−(m1 − E4)2 +m2

2 + p2
4

2 (E4 −m1 − p4 cos θ34)
. (B.13)

It is found the lifetime is about τN = 880.17 Sec.

B.0.3 Kinematics 3

The kinematical choice presented in the previous subsection (and its simplified version

from subsection B.0.1) has a very important feature: a simple rectangular region of

integration. In this subsection we test yet another possibility, aiming at the kinematics,

where the three-momentum transfer from the neutron to proton is parallel to the z axis.

Such a choice is often dictated by the fact that calculations of the nuclear current matrix

elements, especially in partial wave decomposition, are easiest in this case.
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Figure B.2: The region of integration for the neutron beta decay process and kine-
matics 3 in the p2 − θ4 plane. (see text)

Thus we set

p1 = (0, 0, 0) ,

p2 = (0, 0, | p2 |) , | p2 |∈ [0, | p2 |max] ,

p4 = (| p4 | sin θ4, 0, | p4 | cos θ4) ,

p3 = −p2 − p4 , (B.14)

where

| p2 |max=

√(
m2

1 +m2
2 −m2

4

)2
4m2

1

−m2
2 (B.15)

and | p4 | is the physical (positive) solution to

m1 = E2 +
√

p2
2 + p2

4 + 2 | p2 | | p4 | cos θ4 +
√
m2

4 + p2
4 . (B.16)

For this kinematical choice the total decay rate is given as

W =
G2

32

8π2

(2π)5

1

m1

pmax2∫
0

dp2
p2

2

E2

θmax4∫
θmin4

dθ4 sin θ4

∑
i

(
p2

4

| p3 | E4

R̃
(
kinematics 3

)∣∣∣(m1 − E2) | p4 | +E4 p2 cos θ4

∣∣∣
)
. (B.17)

Note that in Eq. (B.17) we sum over i physical solutions of Eq. (B.16). The lifetime

calculated by this kinematics is τn = 879.51 Sec.





Appendix C

Schrödinger equation for the

deuteron

In this appendix we explain how we solve the non-relativistic Schrödinger equation for

the deuteron bound state,

H |Ψdeutmd〉 ≡ (H0 + V ) |Ψdeutmd〉 = Edeut |Ψdeutmd〉 . (C.1)

We work in the momentum space and employ the partial wave representation, so the

deuteron is represented by its two components: the S-component with the orbital angular

momentum l = 0 (ϕ0(p)) and D-component with the orbital angular momentum l = 2

(ϕ2(p)). We use the fact that only two basis states with the two-nucleon spin s = 1,

total angular momentum j = 1 and the total isospin t = 0 contribute to the deuteron

state and adopt a simplified notation

|pl〉 ≡ |p(l1)1〉 |00〉 . (C.2)

Since the deuteron wave function does not depend on the projection of the total angular

momentum, md, we skip md in the following considerations. By projecting from the left

with 〈pl| Eq. (C.1) reads

p2

MN
ϕl(p) +

∑
l′,l=0,2

∫
dp′p′2〈pl|V |p′l′〉 ϕl′(p′) = Edeut ϕl(p) , (C.3)

where ϕl(p) ≡ 〈pl|Ψdeut〉. For a numerical treatment of Eq. (C.3) we assume that the

integral over p′ is carried out with some choice of Gaussian points and weights (pj , wj)

with j = 1, 2, ..., NP distributed in the finite interval (0, p̄), where the upper limit of the

integration, p̄, might depend on the nucleon-nucleon potential used. For example, for all
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Figure C.1: The two deuteron components: ϕ0(p) (left) and ϕ2(p) (right) calculated
using the improved N4LO chiral potential [18] with R= 1 fm as a function of the

magnitude of the relative momentum p.

the improved chiral potentials [18] we take NP = 72 Gaussian points up to p̄ = 25 fm−1.

As an intermediate step we obtain

p2
i

Mn
ϕl(pi) +

∑
l′=0,2

NP∑
j=1

wjp
2
j 〈pil|V |pjl′〉ϕl′(pj) = Edeut ϕl(pi), l = 0, 2 , (C.4)

what can be written as an eigenvalue problem: Aξ = Edeutξ. The components of the

2NP dimensional vector ξ and of the 2NP × 2NP matrix A are given as

ξi +
1

2
NP = ϕl(pi),

A(i+
l

2
Np, j +

l′

2
Np) = δij δll′

p2
i

Mn
+ wip

2
i 〈pil|V |pjl′〉,

i = 1, ..., NP , j = 1, ..., NP , l, l′ = 0, 2. (C.5)

We use the eigenproblem routines from the LAPACK library [53] to find the deuteron

components ϕl(p). Alternatively, we import the A matrix into Mathematica R© [21] and

use its Eigensystem function. Finally, the components are normalized as∫ p̄

0
dp p2 (ϕ2

0(p) + ϕ2
2(p)) = 1 . (C.6)

In Fig. C.1 we show the two deuteron components calculated using the improved N4LO

chiral potential [18] withR= 1 fm. The results for the lower orders of the chiral expansion

and other regulators look similar.



Appendix D

Numerical solutions of the

Lippmann-Schwinger equation

For the calculation of the nuclear matrix elements for the µ−+ d→ νµ + n+ n reaction

given in Eq. (3.6), we need the half-shell elements of the t-matrix,

〈p0α2|t(
p2

MN
+ iε)|p′0α′2〉 , (D.1)

where the magnitude of the final momentum p0 is determined by the escaping muon

neutrino energy. Due to the rotational invariance, parity conservation, spin and isospin

conservation of the nucleon-nucleon potential these matrix elements may be written as

〈
p0(ls)jmj ; tmt

∣∣∣t( p2
0

MN
+ iε)

∣∣∣p′(l′s′)j′m′j ; t′m′t〉 =

δj,j′ δmj ,m′j δ(−1)l,(−1)l′ δs, s
′ δt,t′ δmt,m′t

〈
p0(ls)j; t|t( p2

0

MN
+ iε)|p′(l′s′)j; t

〉
, (D.2)

which means that either l = l′ (uncoupled channel) or l−l′ = ±2 (two coupled channels).

We show how the Lippmann-Schwinger equation

t = V + tG0V (D.3)

is solved numerically for the more difficult case of two coupled channels, which occurs

for j > 0 only if s = 1. Using a shorthand notation

〈p0l|t|p′l′〉 ≡ 〈p0α2|t|p′α′2〉 , (D.4)
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The partial-wave projected Eq. (D.3) takes the following form:

〈p0l|t|p′l′〉 = 〈p0l|V |p′l′〉+
∑

l′′=j−1,j+1

∫ p̄

0
dp′′

p′′2〈p0l|t|p′′l′′〉 〈p′′l′′|V |p′l′〉
p20
MN
− p′′2

MN
+ iε

(D.5)

with ε→ 0+. Treating the singularity by subtraction we obtain

〈p0l|t|p′l′〉 = 〈p0l|V |p′l′〉

+MN

∑
l′′

∫ p̄

0
dp′′

p′′2〈p0l|t|p′′l′′〉 〈p′′l′′|V |p′l′〉 − p2
0〈p0l|t|p0l

′′〉 〈p0l
′′|V |p′l′〉

p2
0 − p′′2

+
MNp0

2

[
ln
∣∣∣ p̄+ p0

p̄− p0

∣∣∣− iπ] ∑
l′′

〈p0l|t|p0l
′′〉 〈p0l

′′|V |p′l′〉 , (D.6)

where we use the following formula

lim
ε→0+

∫ p̄

0

dp

p2
0 − p2 + iε

=
1

2p0

[
ln
∣∣∣ p̄+ p0

p̄− p0

∣∣∣− iπ]. (D.7)

Here again we choose a set of Gaussian points and weights (pn, wn) with n = 1, 2, ..., NP

given on the interval (0, p̄). We supplement this set with an additional pair (p0, w0 = 0)

and require that pn 6= p0 for n > 1. This is done because in Eq. (D.6) we need also

〈p0l|t|p0l
′′〉. Both the upper limit p̄ and the number of integral points NP must be chosen

in a way which yields stable results. With

Z ≡ MNp0

2

[
ln
∣∣∣ p̄+ p0

p̄− p0

∣∣∣− iπ],
H ≡MNp

2
0

N∑
n=1

wn
p2

0 − p2
n

,

w̃n ≡
{0 , n=0

MNwnp
2
n

p20−p
2
n

, n 6=0
(D.8)

We obtain a set of 2(NP + 1) algebraic equations

∑
l′′

NP∑
n=0

[w̃n〈pnl′′|V |pil′〉 −H〈p0l
′′|V |pil′〉δn0

+Z〈p0l
′′|V |pil′〉δn0 − δinδl′l′′ ]〈p0l|t|pnl′′〉 = −〈p0l|V |pil′〉 (D.9)

for 2(NP + 1) unknown matrix elements 〈p0l|t|pnl′′〉, which we solve separately for each

l. To be explicit, we write it as

∑
d

Akdξd = Bk , (D.10)
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Figure D.1: The real (left) and imaginary (right) part of the half-shell t-matrix

〈p0|t
(
p20
M |p〉

)
for the 1S0 partial wave calculated using the improved N4LO chiral po-

tential [18] with R= 1 fm as a function of the initial momentum p. The final momentum
p0= 0.69 fm−1.

where

l, l′, l′′ = j − 1, j + 1,

k = i+ 1 +
l′ − j + 1

2
(NP + 1), i = 0, 1, 2, ...., NP ,

d = n+ 1 +
l′′ − j + 1

2
(NP + 1), n = 0, 1, 2, ...., NP ,

ξd ≡ 〈p0l|t|pnl′′〉,

bk ≡ −〈p0l|t|pil′〉,

Akd ≡ w̃n〈p0l
′′|V |pil′〉+ (Z −H)〈p0l

′′|V |pil′〉δn0 − δinδl′l′′ (D.11)

We solve this system of equations numerically using the standard LU decomposition

routines from the LAPACK library [53]. The case of the uncoupled channel is simpler,

since l = l′ = l′′ and we deal with a system of NP + 1 coupled equation for unknown

〈p0l|T |pnl〉 matrix elements. We show just one example in Fig. D.1, where we choose

the dominant 1S0 partial wave and p0= 0.69 fm−1. The Lippmann-Schwinger equation

is solved using the improved N4LO chiral potential [18] and the R= 1 fm regulator. It is

quite surprising that the real and imaginary parts of the selected matrix elements look

nearly the same.
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31-38 (2005).

[17] A. Kievsky, S. Rosati, M. Viviani, L.E. Marcucci, and L. Girlanda, J. Phys. G 35,

063101 (2008).

[18] E. Epelbaum, H. Krebs, U.-G. Meißner, arXiv:1412.0142 [nucl-th] (2014).

[19] R.B. Wiringa, V.G.J. Stoks, and R. Schiavilla, Phys. Rev. C 51, 38 (1995).

[20] B.S. Pudliner, V.R. Pandharipande, J. Carlson, Steven C. Pieper, and R.B.

Wiringa, Phys. Rev. C 56, 1720 (1997).

[21] Wolfram Research, Inc., Mathematica R©, Version 9.0, Champaign, IL (2012).

[22] J.D. Walecka, Theoretical Nuclear and Subnuclear Physics, Oxford University Press,

New York, 1995.

[23] J.D. Bjorken, S.D. Drell, Relativistic Quantum Mechanics, McGraw-Hill Sci-

ence/Engineering/Math, 1998.

[24] D. Bailin, Weak interactions, Adam Hilger, Bristol, 1982.

[25] G. Shen, L.E. Marcucci, J. Carlson, S. Gandolfi, and R. Schiavilla, Phys. Rev. C

86 035503 (2012).
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