
Jagiellonian University

Faculty of Physics, Astronomy and Applied

Computer Science

Volume reduction in large-N

lattice gauge theories

Mateusz Koreń
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Introduction

Abstract

This work covers volume reduction in quantum field theories on a lattice

at large N (number of colors), as first described by Eguchi and Kawai in

Ref. [1]. The volume reduction (or volume independence) means that the

theory defined on an arbitrarily small lattice is equivalent in the large-N

limit to the theory on an infinite lattice with the same bare parameters.

We analyze the volume reduction by means of Monte Carlo simulations

using the lattice model on a single site (or a small fixed number of sites) with

Wilson fermions in the adjoint representation, using N up to 60. Most of

the results focus on two flavours of Dirac fermions and the single fermionic

flavour is also discussed where there is a significant difference of behaviour.

We find that the (ZN)4 center symmetry, necessary for the realization

of volume reduction, is unbroken in the reduced model for a large range of

parameters and, in particular, that the maximum admissible value of the

adjoint fermion mass is non-zero in the large-N limit.

We calculate physical quantities, such as the plaquette, the static quark

potential and the eigenvalues of the Dirac operator. We analyze the finite-

N corrections and consider the practicality of volume-reduced models in

supplementing the large-volume calculations.
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Thesis organization

This work is organized as follows. In Chapter 1 we introduce the basic

notations and show the derivation of Eguchi-Kawai reduction as well as

the reason of its failure, together with some historical attempts to cure the

problems of the original construction. In Chapter 2 we give a pedagogical

review of the modern way of understanding volume reduction in the lan-

guage of large-N orbifold equivalences. Chapter 3 contains a definition of

the lattice model we analyze, and a review of perturbative predictions for

the volume-reduced models.

Chapters 4, 5 and 6 contain the main part of this work which is the

numerical investigation of the large-N volume-reduced lattice model with

adjoint fermions. Chapter 4 describes the numerical setup for the Monte

Carlo simulations used to generate our results, presented in the subsequent

chapters. Chapter 5 describes the phase diagram of the analyzed model and

focuses on finding the range of parameters where volume reduction holds.

In Chapter 6 we analyze several physical quantities in the volume-reduced

model.

Finally, we conclude with Chapter 7 where we summarize the obtained

results and give an outline of future directions to extend the analysis per-

formed in this work.

Publications

A substantial part of the results presented in this thesis has already been

published by the author and collaborators in Refs. [2, 3].
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Chapter 1

Eguchi-Kawai reduction

1.1 Large-N lattice gauge theory primer

Lattice gauge theory [4] is based on the euclidean path integral formula-

tion of quantum field theories [5, 6]. The spacetime is discretized as a

4-dimensional cubic lattice with spacing a. The lattice coordinates are la-

beled by

x = an = a(n1, n2, n3, n4), ni ∈ Z. (1.1)

To introduce gauge fields we assign a group element Uµ(x) ∈ G (in this

work G will typically be SU(N), unless otherwise stated) to lattice links

connecting neighboring sites (x, x+µ) – matrix notation is imposed in gauge

(“color”) indices1. Fermion fields are introduced by assigning a Dirac spinor

ψα(x) to each lattice site. The anticommuting nature of fermion fields is

taken into account by using Grassmann variables.

Gauge transformation of the fermion field under group G is given by

ψα(x)→ ω(x)ψα(x), (1.2)

where ω(x) ∈ R(G) is a matrix in some given representation of the group

G. The gauge fields transform according to

Uµ(x)→ ω(x)Uµ(x)ω−1(x+ µ). (1.3)
1In this work we always understand the notation x+ µ as lattice vector x plus unit

lattice vector in direction µ.

1
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In continuum, parallel transporter along a curve Γ is given by

UΓ = P exp{ig
∫

Γ

Âµ(x)dxµ}, (1.4)

where P is the Dyson’s path ordering, g is the bare coupling constant and

Âµ(x) = Aµ(x)aτa is the vector potential of the gauge field (τa are the

generators of the proper gauge algebra).

The same quantity on the lattice is given by a product of link matri-

ces along the contour Γ. Thus we identify the lattice variables with their

continuum counterparts via

Uµ(x) = exp
{
igaÂµ(x+ 1

2
µ)
}
, (1.5)

Moreover, it is easy to see that, in accordance with Eq. 1.3, any parallel

transporter along closed contour Γ transforms covariantly and its trace,

called the Wilson loop2

WΓ ≡ TrUΓ (1.6)

is gauge invariant.

Let us also mention about a special type of Wilson loop that will be

of great importance in this work. Consider a finite lattice of sizes {Lµ},
with periodic boundary conditions. We can construct a closed contour by

taking a straight line of length Lµ in the proper direction – a Wilson loop

along such line is called the Polyakov loop (or Wilson line) Pµ and is the

simplest example of a non-contractible loop (i.e. loop whose winding number

is different from zero).

We can now introduce the action for the theory. It must be gauge

invariant and it must give the continuum action (∼ Tr F̂ 2) in the limit

a→ 0. The simplest choice for the gauge action, introduced by Wilson [4],

is based on the simplest non-trivial Wilson loop, the so-called plaquette:

TrU�µν(x) = TrUµ(x)Uν(x+ µ)U−1
µ (x+ ν)U−1

ν (x), (1.7)

2It is quite common in the literature to use the term Wilson loop also for the untraced

operator along a closed contour. We also use this convention in this work, using the term

“Wilson loop matrix” for the untraced operator whenever the meaning cannot be easily

deduced from the context.
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which can be shown (see e.g. Ref. [7]) to correspond to Tr exp{iga2F̂µν(x)}.
Therefore we define the action for the gauge group SU(N) as

Sgauge = β
∑
x, µ<ν

{
1− 1

N
ReTrU�µν(x)

}
, (1.8)

the sum goes over all plaquettes on the lattice and β is the normalization

factor which for conformity with the continuum theory must be set to

β =
2N

g2
. (1.9)

The action for the fermion field

Sferm = ψ̄ Dlatψ (1.10)

requires more attention as the naive discretization of the Dirac operator

leads to the famous doubling problem [7]. In this work we choose the sim-

plest solution to this problem, namely the Wilson fermions which remove

the unwanted doublers at the cost of explicit breaking of the chiral symme-

try which is only restored as a→ 0 [7, 8]. The Wilson Dirac operator (with

the Wilson parameter r = 1 and after customary rescaling) is equal to

DW
lat(x, y) = δxy − κ

4∑
µ=1

[
(1− γµ)URµ (x)δy,x+µ + (1 + γµ)U−1R

µ (y)δy,x−µ

]
,

(1.11)

where UR is the gauge link in the chosen group representation3, γµ are the

euclidean Dirac matrices and κ is the (dimensionless) hopping parameter

related to the bare fermion mass by

κ =
1

2am0 + 8
. (1.12)

Action defined in this way may now be quantized within the path inte-

gral formalism, using the generating functional

Z =

∫
[dU ][dψ][dψ̄ ]e−Sgauge[U ]−Sferm[ψ,ψ̄,U ]. (1.13)

3In this work we will be particularly interested in the adjoint representation. The

gauge theory with adjoint fermions will be labeled as QCD(Adj) to distinguish it from

the physical QCD with fundamental fermions. Another theory used in this work is

QCD(AS), which contains fermions in the two-index antisymmetric representation.
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To avoid Grassmann variables we use the bilinearity of the fermionic action

and integrate out ψ, ψ̄ to get

Z =

∫
[dU ]e−Sgauge[U ]−ln detDWlat[U ]. (1.14)

Note that, thanks to the lattice regulator, there is no need to introduce

gauge fixing via Fadeev-Popov procedure. That is particularly clear in the

case of finite lattices (which are used in computer simulations) where the

path integral is nothing but a finite-dimensional Haar integral over the

group space.

The theory given in Eq. 1.14 contains no dimensionful parameters. How-

ever, the renormalization group connects the dimensionless bare coupling

constant g with the dimensionful lattice spacing a (which plays the role of

the UV cutoff), in a process called dimensional transmutation – see Ref. [7]

for a comprehensive discussion. For our purposes, it is sufficient to note

that for asymptotically free theories, which are the topic of this work, the

continuum limit a → 0 is approached by taking g → 0 (or equivalently

β →∞).

We now analyze the large-N limit of the theory i.e. use gauge group

SU(N) with infinite (or, in computer practice, finite but large) number of

colors. That requires [9] keeping the product

b =
1

g2N
(1.15)

fixed4. As first shown in Ref. [9], the large-N limit results in a vast simpli-

fication of the perturbative expansion of the theory – it allows only graphs

with topology of a sphere (the so-called planar graphs).

There are several possibilities of what can happen with the fermion

fields. If we start from the QCD with N = 3 colors and Nf fundamental

fermions there are at least 3 interesting possibilities:

1. ’t Hooft limit [9] – keep Nf fixed,

4b is the inverse of the ’t Hooft coupling, b−1 = λ = g2N , and is the quantity typically

used in the large-N lattice literature. Note that b = β
2N2 .
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2. Veneziano limit [10] – keep the ratio Nf/N fixed,

3. Corrigan-Ramond limit [11] – keep Nf fixed but use fermions in the

antisymmetric representation (which coincides with the fundamental

representation when N = 3).

The first possibility quenches fermions in the large-N limit making the

dynamics dependent only on the gluon sector. The two others allow dy-

namical fermions making the large-N dynamics more reminiscent of the

original QCD.

Another major simplification of the theory in the large-N limit is the

factorization of products

〈ÂB̂〉 = 〈Â〉〈B̂〉+O(1/N), (1.16)

where Â and B̂ are quantum operators properly normalized to possess a

finite limit as N →∞ [12, 13]. Therefore, in the large-N theories variances

of operators vanish.

The large-N lattice gauge theory is a very active field of work – see

Ref. [14] for a recent review of research in this field.

1.2 Derivation of the Eguchi-Kawai

reduction

The first notion of volume reduction in large-N lattice gauge theory was

introduced by Eguchi and Kawai [1]. Let us consider two theories:

1. U(N) (or equivalently SU(N)) pure gauge theory on infinite lattice

(called the “full model” in the following), with generating functional

Z =

∫
[dU ] e−S[U ] =

∫
(
∏
x,µ

dUx,x+µ)e−β
∑
x,µ<ν(1− 1

N
ReTrU�

µν(x)), (1.17)

2. The same theory reduced to a single lattice site with periodic bound-

ary conditions – the so-called Eguchi-Kawai model – with generating
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functional

ZEK =

∫
(
∏
µ

dUµ)e−β
∑
µ<ν(1− 1

N
ReTrU�

µν), (1.18)

where the reduced plaquette is U�µν = UµUνU
†
µU
†
ν .

Eguchi and Kawai showed that in the large-N limit these two theories satisfy

the same Dyson-Schwinger equations and are thus equivalent in the large-

N limit (for observables that are invariant under translational symmetry),

provided that some conditions are satisfied.

To see what these conditions are let us quickly sketch the proof here. We

start with the derivation of the Dyson-Schwinger equations for the expec-

tation values of Wilson loops (also called loop equations) in the full model

[1, 12, 15, 16, 17].

First we choose a closed contour Γ such that the link Uµ(y) is only

encountered once in the contour. For ease of notation we label Γ′ as the

contour Γ without the link (y, y + µ) i.e.

WΓ ≡ TrUΓ = TrUΓ′Uµ(y). (1.19)

The quantity 〈TrUΓ′τ
aUµ(y)〉, due to the invariance of the measure in

the path integral, must be invariant under the transformation

Uµ(y)→ (1 + iετa)Uµ(y). (1.20)

Collecting the terms linear in ε one obtains

〈TrUΓ′τ
aτaUµ(y)〉 =

β

2N

〈
Tr (UΓ′τ

aUµ(y))×∑
ρ 6=µ

(
TrUρ(y)Uµ(y + ρ)Uρ(y + µ)U †µ(y)τa−

Tr τaUµ(y)Uρ(y + µ)U †µ(y + ρ)U †ρ(y)+

TrU †ρ(y − ρ)Uµ(y − ρ)Uρ(y + µ− ρ)U †µ(y)τa−

Tr τaUµ(y)U †ρ(y + µ− ρ)U †µ(y − ρ)Uν(y − ρ)
)〉
, (1.21)

where the traces in the sum consist of all the oriented plaquettes in the

action that contain Uµ(y) or its hermitian conjugate. One can now use the
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property of the generators τa:

N2∑
a=1

τaijτ
a
kl = 1

2
δilδjk (1.22)

and perform the sum over a to get the loop equation:

〈WΓ〉 =
1

g2N

∑
ρ 6=µ

(
〈WΓ′+ρ(y,µ)〉 − 〈WΓ′′+ρ(y,µ)〉+ 〈WΓ′−ρ(y,µ)〉 − 〈WΓ′′−ρ(y,µ)〉

)
,

(1.23)

where the contours are:

Γ = (x, . . . , y, y + µ, . . . , x) ∼

Γ′+ρ(y, µ) = (x, . . . , y, y + ρ, y + ρ+ µ, y + µ, . . . , x) ∼

Γ′′+ρ(y, µ) = (x, . . . , y, y + µ, y + ρ+ µ, y + ρ, y, y + µ, . . . , x) ∼

Γ′−ρ(y, µ) = (x, . . . , y, y − ρ, y − ρ+ µ, y + µ, . . . , x) ∼

Γ′′−ρ(y, µ) = (x, . . . , y, y + µ, y − ρ+ µ, y − ρ, y, y + µ, . . . , x)∼

When the link Uµ(y) is encountered more than once in the contour we

get additional terms in Eq. 1.23. For example, when

Γ = (x, . . . , y, y + µ, . . . , z, . . . , y, y + µ, . . . , x)

(the contour passes through Uµ(y) twice in the same direction), on the r.h.s.

of Eq. 1.23 we get an additional term proportional to 〈WΓ1WΓ2〉, where

Γ1 = (y, y+ µ, . . . , z, . . . , y) and Γ2 = (y, y+ µ, . . . , x, . . . , y) sum up to the

contour Γ. One can systematically add terms from different link repetitions

of Uµ(y) in a similar manner [16].

Let us now consider the same equations in the reduced (EK) model.

For every contour Γ = (x, x+ α, x+ α+ β, . . . , x+ α+ β + . . .+ ω) in the

full model one can uniquely assign its counterpart Γ̃ = (α, β, . . . , ω) in the

reduced model.
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The only difference in the obtained Dyson-Schwinger equations is the

presence of additional terms coming from the fact that the reduced counter-

part of contour Γ = (x, . . . , y, y+µ, . . . , z, z+µ, . . . , x) has the same link Uµ

repeated even when y 6= z. Therefore in this case we get an additional term

proportional to 〈WΓ̃1
WΓ̃2
〉, where Γ̃1,2 correspond to the following (open)

contours in the full model: Γ1 = (y, y + µ, . . . , z), Γ2 = (z, z + µ, . . . , y).

Thus, the volume-reduced theory is in general different from the unre-

duced one. However, in the limit N → ∞ we can factorize the additional

terms:

〈WΓ̃1
WΓ̃2
〉 = 〈WΓ̃1

〉〈WΓ̃2
〉+O(1/N). (1.24)

Since Γ̃1 and Γ̃2 correspond to open paths, in both of them at least one term

Uµ will not have a corresponding U †µ. We now use the fact that the reduced

action possesses a symmetry (independently for each lattice direction):

Uµ → eiφUµ, where φ ∈
{

0, 2π
N
, . . . , 2(N−1)π

N

}
, (1.25)

called the center symmetry – it is ZN for finite N and becomes U(1) in the

large-N limit5. Using it we obtain

〈WΓ̃1
〉 = 〈WΓ̃2

〉 = 0 (1.26)

and all the unwanted terms disappear. We thus see that Eguchi-Kawai

reduction holds iff the center symmetry is not spontaneously broken.

* * *

However, the center symmetry in the Eguchi-Kawai model is in fact

spontaneously broken at high β for d > 2, as can be seen both in the

Monte Carlo simulations [18, 19, 20] and in perturbation theory [18, 21]

(see Sec. 3.2). This invalidates the Eguchi-Kawai reduction.

Over the years there were several proposals to cure the center-symmetry

breaking and obtain a working large-N volume reduction. Let us quickly

describe the most interesting approaches:

5The full symmetry in d spacetime dimensions is (ZN )d and throughout this work

we also use the shortened notation ZdN .
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1. Force the eigenvalues to satisfy the center symmetry by explicitly fix-

ing them as different elements of the ZN group (the so-called Quenched

Eguchi-Kawai or QEK model) [18, 22]. This approach is the histori-

cally first attempt to heal the Eguchi-Kawai reduction and it gained

some popularity. However, several years ago it was shown to fail [23]

due to non-trivial correlations between different lattice directions.

2. Use twisted boundary conditions (Twisted Eguchi-Kawai, or TEK

model) [24, 25]. The original choice of the twist was shown not to

work [26, 27, 28] however a different choice that appears to overcome

the problems was proposed recently [29, 30].

3. The center symmetry is intact for physical lattice size larger than

some aLcrit [20] – as long as one keeps the lattice size L > Lcrit the

volume reduction allows one to perform the calculations as though it

was infinite. This idea is known as partial reduction or continuum

reduction and was studied both in four [20] and three dimensions [31]

(it was also the topic of the master’s thesis of the author of this work,

see Ref. [32] for a review of the results). Note that Lcrit → ∞ in the

continuum limit.

4. Use adjoint fermions to stabilize the center symmetry (Adjoint Eguchi-

Kawai, or AEK model) [33]. This idea is inspired by the large-N

orbifold equivalences described in Chapter 2 and is the basis of this

work6.

6There is also a related idea of trace-deformed (or center-stabilized) reduction [34, 35],

that however becomes rather complex when reducing more than one lattice direction.



Chapter 2

Volume reduction as large-N

equivalence

2.1 Large-N equivalences

The large-N factorization, Eq. 1.16, not only greatly simplifies the dynamics

of the theory but also resembles the classical limit of quantum mechanics

where quantum fluctuations are suppressed as ~ → 0. In fact this analogy

can be made formal, as was shown in Ref. [13]. The idea of this construction

is to find a basis of coherent states – in this basis the expectation values of

quantum operators become classical observables when N → ∞, in the full

analogy to the ~ → 0 limit. Let us briefly discuss the main ingredients of

this construction (our treatment follows closely that of Ref. [36]).

We introduce a Lie group G (called the coherence group) acting on the

Hilbert space of the theory H via a set of unitary operators {Ĝ(u)}, u ∈ G.

We choose a base state1 |0〉 ∈ H and generate the coherent states by

|u〉 = Ĝ(u)|0〉. (2.1)

E.g. in the case of quantum mechanics of a point particle G is the

Heisenberg group, consisting of space and momentum translations, while

1The precise form of the base state is not important for our purposes, see Refs. [13, 36]

for a more comprehensive discussion.

10



CHAPTER 2. REDUCTION AS LARGE-N EQUIVALENCE 11

for U(N) hamiltonian lattice gauge theory G is generated by a Lie algebra

consisting of all hermitian linear combinations of spatial Wilson loops with

up to one conjugate momentum or matter field insertion [13, 36].

The set of coherent states forms an overcomplete basis of the Hilbert

space. As N → ∞ the overlaps between different states 〈u|u′〉 tend expo-

nentially to 0 and the basis becomes orthogonal.

Operators with finite N →∞ limit of 〈u|Â|u
′〉

〈u|u′〉 are called classical opera-

tors. We introduce the classical phase space defined as the coadjoint orbit

of the coherence group2. For every classical operator we define the classical

observable as

a(ζ) ≡ lim
N→∞

〈u|Â|u〉, (2.2)

where ζ denotes a point in the classical phase, uniquely determined by

u [13]. The following relations hold for the matrix elements of classical

operators:

lim
N→∞

〈u|ÂB̂|u〉 = a(ζ)b(ζ), (2.3)

lim
N→∞

〈u|
[
Â, B̂

]
|u〉 = {a(ζ), b(ζ)}PB, (2.4)

where {·, ·}PB is the Poisson bracket (the construction of the classical phase

space always allows the introduction of the Poisson bracket [13]). The

classical dynamics is governed by the classical Hamiltonian, given by the

expectation value of the quantum one:

hcl(ζ) ≡ lim
N→∞

1
N2 〈u|Ĥ|u〉, (2.5)

da(ζ)

dt
= {hcl(ζ), a(ζ)}PB. (2.6)

By minimizing the classical Hamiltonian one obtains the ground state of the

large-N theory. It is then possible to systematically add 1/N corrections

to find the excited states [13].

2See Section 3 of Ref. [13] for a thorough discussion. For example, in the case of the

point particle the coadjoint orbit of the Heisenberg group is simply the two-dimensional

plane parametrized by the position and momentum of the particle.
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Unfortunately, finding the minimum ζmin of hcl has not been attained in

the case of gauge theories except for some simple toy models. One can how-

ever use the coherent state method to compare different quantum theories –

if the classical phase spaces and Hamiltonians of the two theories are iden-

tical then the theories are equivalent in the large-N limit. This method has

the advantage over the Dyson-Schwinger approach used in Refs. [1, 17] in

being completely general – while the Dyson-Schwinger equations can have

multiple solutions and identical equations are only guaranteed to give co-

inciding dynamics in the phase continuously connected to strong-coupling

large-mass region [17].

In the following parts of this section we present two particularly in-

teresting examples of large-N equivalences: the orbifold and orientifold

equivalences. Both these terms originate from string theory but can be

described purely in the QFT language and will be analyzed in this work

without mentioning their stringy interpretation.

2.1.1 Orbifold equivalence

Large-N orbifold equivalences were conjectured in Ref. [37] as a way of re-

lating non-perturbative aspects of supersymmetric and non-supersymmetric

theories related by orbifold projection. Then they were put in a rigorous

framework for gauge theories with and without matter fields in Refs. [17, 36].

In this section we limit ourselves to a general discussion of orbifold equiva-

lences, postponing the detailed discussion until Sec. 2.2.

The orbifold projection is based on a discrete symmetry (the so-called

projection group P) of a “parent” field theory. We project out all degrees of

freedom in the parent that are not invariant under this symmetry, yielding

a “daughter” field theory. Both theories possess the same large-N limit

for a class of observables commuting with P (called the “neutral sector”),

provided that P is not spontaneously broken3.

3Technically, the equivalence is independent of the realization of P. However, if P is

spontaneously broken the minimum of the classical Hamiltonian lies outside the neutral

sector, thus preventing the extraction of information about quantum theories of interest
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The projection groups typically used for orbifold equivalences, such as

volume reduction, are cyclic groups or products thereof. To be specific let

us choose just one cyclic group P = Zm embedded in a pure-gauge U(N)

lattice gauge theory4, where N = mN ′ with integer N ′.

The embedding is chosen so that the gauge fields Uµ(x) transform under

P as [36, 38]:

Uµ(x)→ γUµ(x)γ†, (2.7)

where γ = Ω(m) × IN ′ , with Ω(m) defined as the clock matrix:

Ω(m) ≡ diag[1, ω, . . . , ωm−1], with ω = e2πi/m. (2.8)

The orbifold projection removes the degrees of freedom that are not

invariant under the transformation given in Eq. 2.75. As a result, the

N ×N matrices of the gauge fields are left with non-zero entries only in m

blocks, each of size N ′ ×N ′ (an example is given in Fig. 2.1). All of these

blocks are unitary by construction, thus the daughter theory will have a

[U(N ′)]m symmetry group that can be interpreted as U(N ′) gauge theory

with additional internal space (called “theory space” T by the authors of

Ref. [36]) consisting of m independent factors on a discretized circle (or a

torus in the general case of many cyclic groups).

There is a bijective mapping of the neutral observables between the

daughter and parent theories. For example, for the Wilson loops:

1

N
TrUΓ =

1

m

∑
i∈T

1

N ′
TrU

(i)
Γ , (2.9)

where the discrete index i is used for averaging over the theory space.

In Ref. [36] the authors have proven that the subgroups of the coherence

groups that define the neutral sectors are isomorphic in the two theories,

and making the problem rather academic [36].
4The procedure can be extended to include adjoint matter fields in a completely

analogous way [36], see also Sec. 2.2.
5The more general form of the constraint is of the form Uµ(x) = γUµ(x)γ†e2πir/m,

where r ∈ Z is called the charge of the field. Non-zero charge will be used for the gauge

fields in Sec. 2.2, cf. Eq. 2.14.
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U (daughter) =



U11 U12 0 0 0 0

U21 U22 0 0 0 0

0 0 U33 U34 0 0

0 0 U43 U44 0 0

0 0 0 0 U55 U56

0 0 0 0 U65 U66


Figure 2.1: An example result of orbifold projection, with P = Z3 acting

on a U(6) gauge theory. The fields invariant under P are given by the

condition U = γUγ†, where γ (in a convenient basis) is given by γ =

Ω(3)× I2 = diag[1, 1, e2πi/3, e2πi/3, e−2πi/3, e−2πi/3]. The remaining symmetry

of the daughter theory is [U(2)]3.

thus giving the same classical phase spaces and Hamiltonians – and making

the theories equivalent in the large-N limit, as discussed in the earlier part

of this section. One particularly interesting example of the orbifold equiva-

lence will be the volume reduction, discussed in Sec. 2.2, where the theory

space is identified with the physical spacetime.

2.1.2 Orientifold equivalence

Another example of large-N equivalence that attracted a lot of attention is

the orientifold equivalence which relates large-N limits of QCD(Adj) with

nf adjoint Majorana fermions and QCD(AS) with Nf Dirac fermions, at

nf = Nf [39, 40].

This equivalence was initially investigated in the case of nf = 1 where it

relates a supersymmetric theory (N = 1 SYM) with a non-supersymmetric

one (Nf = 1 QCD(AS)). Another particularly interesting possibility, which

will be used in the following part of this work, is nf = 2. QCD(AS) at large

number of colors is a very natural large-N limit of the physical N = 3 QCD

[41] (called the Corrigan-Ramond limit, see Sec. 1.1), especially at Nf = 2
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which describes the 2 lightest physical quarks.

In this section we follow the terminology of Ref. [42]. In this treatment

the orientifold equivalence is an example of “daughter-daughter” equiva-

lence in the sense that both theories can be constructed from a common

parent by applying different orientifold projections.

The orientifold projections are based on Z2 projection groups related

with charge conjugation (C) symmetry. The parent theory for both theo-

ries under investigation is SO(2N) gauge theory with nf adjoint Majorana

fermions. The two theories result from different Z2 projections of the par-

ent theory [42]. The QCD(Adj) with nf Majorana fermions is a result of

imposing the constraint

U = JUJT , ψ = JψJT , (2.10)

where J = iσ2× IN ∈ SO(2N), U symbolically denotes the bosonic degrees

of freedom and ψ the fermionic degrees of freedom. On the other hand,

QCD(AS) with Nf (= nf ) Dirac fermions is obtained from the parent theory

by the projection with the constraint

U = JUJT , ψ = −JψJT . (2.11)

The projection in Eq. 2.11 involves additional factor (−1)F , which multiplies

the fermionic fields by −1.

One can show that the neutral sectors in both theories consist of C-
even operators (see Ref. [42] for details). Thus, for the equivalence to be

meaningful it is necessary that the charge conjugation symmetry is not

spontaneously broken in either of the theories [42, 43]. For the Wilson

loops this requirement can be written simply as

〈TrUΓ〉 = 〈TrU †Γ〉. (2.12)

While the C symmetry is expected to be preserved on R4 [43] it was

shown to be broken in QCD(AS) on R3 × S1, with periodic boundary con-

ditions for fermions, for small enough radius of the circle [42].
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2.2 Volume reduction as large-N orbifold

equivalence

Volume reduction/expansion in the language of orbifold projections was in-

troduced in Refs. [33, 44]. For definiteness and ease of notation we consider

the following two d-dimensional lattice gauge theories:

• Theory 1: U(N ′) gauge theory on a periodic lattice of volume Λ = Ld,

with or without adjoint matter fields,

• Theory 2: U(N) single-site model with the same matter content as

theory 1.

The generalization to arbitrary volume of theory 2 and anisotropic lattices is

also possible (the only difference is a somewhat more complicated notation,

see the Appendix of Ref. [33] for details).

2.2.1 Theory 1 → Theory 2 (volume reduction)

The volume reduction from theory 1 to 2 is implemented by discarding

all fields carrying non-zero momentum [33]. This can be described in the

language of orbifold projections with theories 1 and 2 being the parent and

daughter theories respectively, with N ′ = N .

Due to the periodic boundary conditions theory 1 has a ZdL translational

invariance. We choose the projection group P = ZdL and eliminate all the

fields that are not invariant under the translations. The invariant fields

are manifestly visible in the momentum space – consider a lattice Fourier

transform for some generic field Φ:

ΦTh.1(x) =
∑
n∈ZdL

Φ̃ne
2πin·x/L n=0−−−→ ΦTh.2 = Φ̃0. (2.13)

As a result of the projection all the components except the (constant in

space) zero-momentum mode are discarded.

The projection defines a one-to-one mapping between the Wilson loops

in the parent theory, averaged over spacetime, and the Wilson loops in the
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daughter theory6. For example, the Wilson action of pure gauge theory is

cast to the Eguchi-Kawai action times Ld (the factor of volume accounts

for the ratio of discarded degrees of freedom of the parent theory). This

result also applies to the Wilson loops with arbitrary number of adjoint

matter field insertions along the loop (called “single-trace observables” by

the authors of Ref. [33]).

2.2.2 Theory 2 → Theory 1 (volume expansion)

We start with pure gauge theory and choose N = LdN ′. The single-site

model is now the parent theory whereas the “big” lattice of theory 1 is

the daughter. We choose P = ZdL which is a subgroup of the Z4
N center

symmetry of theory 2.

As usual, the orbifold projection eliminates all degrees of freedom not

invariant under P – the proper embedding of the projection group in the

full symmetry of the theory will allow us to identify the subblocks of gauge

matrices in the parent with different points in the spacetime of the daughter

theory.

The projection is equivalent to imposing a following set of constraints

on the gauge fields [33]:

Uµ =

{
γνUµγ

†
ν e

2πi/L, µ = ν

γνUµγ
†
ν , µ 6= ν

(2.14)

Here γν are defined as

γν = IL × . . .︸ ︷︷ ︸
ν−1

×Ω(L) × IL × . . .︸ ︷︷ ︸
d−ν

×IN ′ , (2.15)

with Ω(L) being the clock matrix, cf. Eq. 2.8.

As a result of the projection, in every Uµ there are only Ld non-zero

blocks of size N ′ ×N ′ left. Each of the N ′ ×N ′ blocks is a unitary matrix

by itself, and can be naturally associated with a single link in the “big”

6With winding numbers being integer multiples of L (this includes all the “ordinary”

contractible Wilson loops with zero winding number).
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lattice by inspection of how it couples to other blocks in the projected

Eguchi-Kawai action7.

Under the same mapping the Wilson loops of the parent theory are

associated one-to-one with Wilson loops in the daughter theory averaged

over spacetime volume. Likewise the action becomes the standard big lattice

action up to a constant factor that ensures the equality of ’t Hooft couplings

in the two theories.

Addition of adjoint matter fields (both scalars and fermions) is straight-

forward as these fields transform in the same way as the gauge fields, they

also preserve center symmetry. Thus the effect of the projection is simply

Φ = γνΦγν (2.16)

where Φ is the matter field matrix. There is a one-to-one mapping between

the single-trace observables, just as in the pure-gauge case.

2.2.3 Large-N equivalence

As discussed earlier, the large-N dynamics of parent and daughter theories

related by orbifold projections coincide in the neutral sectors. However,

for the ground states (and thus the physical properties) of the theories to

coincide, the symmetries defining the projections must not be spontaneously

broken. Of these symmetries, the one that is the most non-trivial to satisfy

is the center symmetry of the small-volume model – it is broken in the pure-

gauge case, thus invalidating Eguchi-Kawai reduction. In the subsequent

chapter we will analyze the introduction of adjoint fermions in order to keep

the center symmetry intact.

2.2.4 Effective system size at finite N

The orbifold equivalence is demonstrated by takingN →∞. However, since

in computer simulations we are always dealing with finite N it is useful to

7The phase factor e2πi/L in Eq. 2.14 is chosen so that the correct coupling of blocks

to the nearest neighbors is obtained – see the Appendix of Ref. [33] for a comprehensive

discussion.
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consider, at least qualitatively, the effective size Leff of the volume-reduced

lattice (or, equivalently, the effective volume Veff = L4
eff) and its finite-N

dependence.

If the large-N equivalence holds, we expect that the theory on a single

site with N colors gives the same physical results as the theory on a volume

Veff with Neff colors – up to corrections suppressed by powers of 1/Neff.

There is a trade-off between increasing Leff and Neff and the value of Neff

must be large enough so that the finite-Neff corrections to the quantities

of interest are not too large. We choose Neff fixed and ask what is the

dependence Leff(N).

The orbifold projection of presented in Sec. 2.2.2 gives an explicit pre-

scription of packaging the matrices in different spacetime points into a larger

gauge matrix. The N ×N link matrices are partitioned into blocks of size

Neff×Neff, with Neff = N/L4
eff. If we fix Neff to some constant value (e.g. 3)

we obtain the effective-size scaling

Leff(N) ∝ N1/4. (2.17)



Chapter 3

Volume reduction with adjoint

fermions

3.1 Definition of the Adjoint Eguchi-Kawai

model

Addition of adjoint fermions was proposed by the authors of Ref. [33] as

a way to stabilize center symmetry. They have shown that the massless

adjoint fermions with periodic boundary conditions give a repulsive contri-

bution to the one-loop potential of Polyakov loop eigenvalues that allows

the center symmetry to be preserved. There are also reasons to believe that

the center symmetry may be preserved even with heavy adjoint fermions

(see Sec. 3.2).

In this section we define the model that will be the main topic of this

work, the Adjoint Eguchi-Kawai (AEK) model, i.e. a single-site lattice the-

ory with SU(N) gauge group and Nf adjoint Dirac fermions. The generat-

ing functional of the theory is

ZAEK =

∫ ∏
µ

[dU ] exp
(
−Sgauge[U ] + ln(detDW [U ])Nf

)
, (3.1)

20
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where the gauge part is the Eguchi-Kawai action (cf. Eq. 1.18):

Sgauge = −2Nb
∑
µ<ν

ReTrUµUνU
†
µU
†
ν + constant. (3.2)

The constant is independent of the gauge configuration and we neglect it in

the numerical simulations. We use Wilson fermions with periodic boundary

conditions in all directions:

DW = 1− κ

[
4∑

µ=1

(1− γµ)Uadj
µ + (1 + γµ)U †adj

µ

]
. (3.3)

The Wilson discretization is chosen due to its simplicity (especially when

working with fermions that are not very light), following Refs. [2, 45] (see

also Ref. [46] for a related calculation on a 24 lattice). Overlap discretization

was also used in the literature [47, 48].

The bare quark mass is zero at κ = 1/8. However, since Wilson fermions

do not preserve chiral symmetry at finite a, the physical quark masses are

additively renormalized. We thus define κc(b) as the value of κ at which

the physical quark mass becomes 0. The value of κc goes to 1/8 as a → 0

but it is in general different (larger) than that at finite lattice spacing, and

the physical quark mass becomes:

mphys =
1

a

(
1

2κ
− 1

2κc

)
. (3.4)

The gauge theory with adjoint fermions is asymptotically free if Nf <

N I
f = 11/4, independently on the value of N . It is argued by a range

of analytic methods [49, 50] that (also independently on N) there exists a

value N∗f < N I
f above which the massless theory loses its confining character

and develops an infrared fixed point (becomes conformal). The range Nf ∈
[N∗f , N

I
f ) is called the “conformal window”. N∗f is estimated by various

methods to be in N∗f ∈ [1 1
16
, 2 3

40
] [49]. However, only non-perturbative

studies can give a definite answer whether the theory with given Nf lies in

the conformal window or not1.

1This is especially interesting in the case Nf = 2 for which the analytic methods are

not unanimous. Several lattice studies have been performed for this theory (see below).
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Thus, the AEK models with Nf = 1/2, Nf = 1 and Nf = 2 are all

interesting, for different reasons. Let us briefly review the putative large-

volume equivalents of the three theories:

1. Nf = 1/2 (single Majorana fermion): this corresponds, in the mass-

less case, to the large-N limit of N = 1 SYM. This theory has been

extensively studied, also using lattice methods, although this is some-

what difficult due to the so-called sign problem [51, 52, 53]. The

lattice regularization also breaks the supersymmetry and a set of spe-

cific methods has to be used to analyze this theory efficiently. We do

not attempt to analyze the supersymmetric case in this work.

2. Nf = 1: as discussed in Sec. 2.1 the large-N orientifold equivalence

connects the theory with Nf adjoint Dirac fermions to the theory

with 2Nf Dirac fermions in the antisymmetric representation. On

the other hand, large-N QCD(AS) with two flavours is the Corrigan-

Ramond limit of the physical QCD with 2 lightest quarks. Thus there

exists a chain of orbifold-orientifold equivalences, pictured in Fig. 3.1,

that connects Nf = 1 AEK to Nf = 2 QCD, up to 1/N corrections

[33]! The large-volume theory, Nf = 1 QCD(Adj), is expected to

be confining and to show spontaneous breaking of chiral symmetry

[49, 50].

3. Nf = 2: the theory with two flavours of massless adjoint fermions is

expected to lie in the conformal window or close to it [49, 50]. The

best analyzed case is N = 2 due to its use in the walking technicolor

theory – it is now rather well established that the theory is conformal

[54, 55, 56]. This result is expected to persist for all N [49, 50] –

e.g. note that the gluonic and fermionic degrees of freedom scale with

N in the same way and that the Gell-Mann–Low β function of the

theory is independent on N up to two loops (although there exists an

N -dependence in the fourth-order correction to the β function [57]).

Also note that the theories inside the conformal window are perfectly

feasible to analyze using volume reduction [58].
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QCD(AS) N=3,
2Nf Dirac fermions,

large volume

QCD(AS) N→∞,
2Nf Dirac fermions,

large volume

QCD(Adj) N→∞,
Nf Dirac fermions,

SINGLE SITE

QCD(Adj) N→∞,
Nf Dirac fermions,

large volume

N→∞

Orientifold
equivalence

(C-even sectors)
Orbifold

equivalence

Agree
within 1/N

Figure 3.1: The chain of orbifold-orientifold equivalences connecting the

QCD with N = 3 (in the antisymmetric representation which is equivalent

to the fundamental representation at this value of N) with 2Nf flavours

and the AEK model with Nf flavours.

Also, if the center symmetry is preserved for heavy quarks we expect

that in this region the AEK model well approximates the dynamics of the

large-volume pure-gauge model, regardless of Nf [45]. That would be a

realization of a working Eguchi-Kawai reduction.

3.2 Perturbative calculation

In this section we investigate the perturbative properties of the volume-

reduced systems. We first consider the pure gluonic model and show the

emergence of the center symmetry breaking that invalidates the volume

reduction. Then we analyze the impact of adjoint fermions, both in the

massless and in the massive case.
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3.2.1 Pure-gauge case

The perturbative calculation of the one-loop potential in the (four-dim-

ensional) Eguchi-Kawai model can be found in Refs. [18, 21]2. The action

of the model can be rewritten, up to a constant factor, as

Sgauge = Nb
∑
µ<ν

Tr
(
[Uµ, Uν ][Uµ, Uν ]

†) . (3.5)

The minimum of the action is obtained when [Uµ, Uν ] = 0 i.e. when the

link matrices can be simultaneously diagonalized. Thus it is convenient to

parametrize:

Uµ = VµDµV
†
µ , µ = 1, . . . , 4 (3.6)

where Dµ = diag [eiϑ
1
µ , . . . , eiϑ

N
µ ] and Vµ is a unitary matrix.

At large b the effective potential can be found by calculating the parti-

tion function in the vicinity of the diagonal link matrices. We change the

integration variables to ϑ and V obtaining

ZEK = N
∫ (∏

µ

∏
i

dϑiµ
)∏
µ

∏
i<j

sin2 ϑiµ−ϑ
j
µ

2
Z ′(ϑ), (3.7)

Z ′(ϑ) =

∫ (∏
µ

dVµ
)

exp
(
Nb

∑
µ6=ν

Tr (VµDµV
†
µVνDνV

†
ν VµD

∗
µV
†
µVνD

∗
νV
†
ν )
)

(3.8)

We may now fix the gauge – we choose the “timelike” gauge V1 = I,

eliminating one of the integrals. When b is large the remaining link matrices

are close to being diagonal, thus we can write

Vµ = exp(iAµ), µ = 2, . . . , 4 (3.9)

and expand in the hermitian matrices Aµ. Note that after choosing the

timelike gauge there still exists a residual gauge freedom – Eq. 3.6 is invari-

ant with respect to the transformation:

Vµ → VµΛµ, (3.10)

2In this derivation we use the timelike gauge following Ref. [21] however we do not use

the smart parametrization trick used in that Ref. This (arguably) makes the derivation

simpler in our approach, at the cost of harder generalization to arbitrary dimensionality.
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where Λµ is an arbitrary unitary diagonal matrix. To remove this freedom,

we require (following Ref. [21]) that matrices Aµ have vanishing entries on

the diagonal.

The first order of the expansion in Aµ disappears and in the second

order we obtain:

Z ′(ϑ) =

∫ (∏
µ>1

∏
i>j

d 2Aijµ
)

exp
(
−16Nb

∑
i>j

∑
µ6=ν

sin2 ϑiµ−ϑ
j
µ

2
sin2 ϑiν−ϑ

j
ν

2
(3.11)

×
(
|Aijµ |2 + |Aijν |2 − AijµAjiν − AjiµAijν

))
,

with Aij1 ≡ 0. For each given i, j the integral in Eq. 3.11 is a 3-dimensional

complex Gaussian integral. We evaluate the determinants and obtain:

ZEK = N ′
∫ (∏

µ,i

dϑiµ
)

exp
(
−V1-loop(ϑ)

)
, (3.12)

V1-loop(ϑ) = 2
∑
i>j

log
(∑

µ

sin2 ϑiµ−ϑ
j
µ

2

)
, (3.13)

where V1-loop(ϑ) is called the one-loop effective potential (or effective action).

In Refs. [18, 21] the effective potential was calculated for arbitrary lattice

dimensionality:

V1-loop(ϑ) = (d− 2)
∑
i>j

log
(∑

µ

sin2 ϑiµ−ϑ
j
µ

2

)
(3.14)

The validity of the large-N volume reduction in d = 2 is well-known

by other methods [1, 59]. However when d > 2 the effective potential for

the phases ϑiµ is attractive and favours a peaked distribution of eigenvalues,

signalling spontaneous breaking of the center symmetry. This phenomenon

is in fact seen in the Monte Carlo simulations [18, 19, 20, 31, 32] and it

invalidates the Eguchi-Kawai volume reduction.

3.2.2 The effect of adjoint fermions

We now add Nf adjoint Wilson fermions with periodic boundary conditions

to the theory. In one-loop perturbation theory the Wilson Dirac operator,
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Eq. 3.3, is diagonal in color space [60] and one can easily calculate the

one-loop potential (up to a ϑ-independent term) [61]:

V1-loop(ϑ) = 2
∑
i>j

log
(∑

µ

sin2 ϑiµ−ϑ
j
µ

2

)
−4Nf

∑
i>j

log
(∑

µ

sin2(ϑiµ−ϑjµ)+m2
W (ϑ)

)
,

(3.15)

where the first term is the contribution of the gauge fields and the second

term is the fermionic part, with mW being the contribution from the bare

mass and the Wilson term:

mW (ϑ) = am0 + 2
∑
µ

sin2 ϑiµ−ϑ
j
µ

2
. (3.16)

The fermionic term in the potential has the opposite sign to the gauge

part (the fermions give a repulsive contribution to the potential) and the

analysis which term dominates is more involved in this case. In particu-

lar, the singularities for coinciding eigenvalues can now lead to incorrect

conclusions if not analyzed with proper care [61].

The situation is simpler in the case of only one compactified direction.

Ref. [33] contains the one-loop result for massless fermions in the R3 × S1

case (in the continuum):

V1-loop(Ω) =
(
Nf − 1

2

) 1

π2L4

∞∑
r=1

1

n4
|Tr Ωr|2, (3.17)

where Ω is the Polyakov loop matrix in the compactified direction. For

Nf > 1/2 this potential prefers the vanishing traces of Tr Ωr and thus it is

repulsive for the phases of eigenvalues, resulting in the preservation of the

center symmetry3.

The continuum analysis has been extended to the massive case in Refs.

[62, 63]. A corresponding lattice analysis with Wilson fermions was pre-

sented in Refs. [60, 64]. Both these approaches show that as we increase

the mass from zero there is a cascade of transitions breaking ZN symmetry

3For Nf = 1/2 (the supersymmetric case, see Sec. 3.1) the one-loop potential vanishes

and different methods were used to show that the center symmetry is preserved in this

case, see Ref. [33].
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to its ZK subgroups with K decreasing from large values at very small mass

to 1 at very large mass4.

This effect can be understood as follows [64]. The one-loop effective

potential can be written as

V1-loop(Ω) =
∞∑
r=1

Vr|Tr Ωr|2 + Const., (3.18)

where the coefficients Vr are of the form5:

Vr = NfV
(ferm.)
r − V (gauge)

r where V (ferm.)
r , V (gauge)

r > 0 . (3.19)

The sign of Vr determines the realization of the center symmetry (at

the one-loop level). If all Vr ≥ 0 for 1 ≤ r < N (and at least one of them

is greater than zero) then the center symmetry is unbroken. It is shown

in Ref. [64] that this is the case for massless fermions with Nf > 1/2. On

the other hand, if for some K < N we have VK < 0 then the symmetry

is broken to the ZK subgroup. Ref. [64] numerically shows that this is the

case for the massive fermions, with K ∼ 1/am.

This result is easy to understand intuitively [64] – in the reduction lan-

guage r corresponds to euclidean distance (Tr Ωr wraps r times around the

compactified direction) in the corresponding volume-expanded theory. If

the fermions have a mass then their range is smaller than that of the mass-

less gluons and at some r the fermionic contribution, that dominates at

small distance, must become smaller than the gluonic one.

Thus the one-loop analysis with one compact direction allows reduction

only with the fermions of mass of order O(1/aN), which vanishes in the

large-N limit.

However, as pointed in Refs. [58, 61], this picture is far from being

complete, especially when compactifying multiple directions. For example,

4This silently assumes that N is divisible by K – however, as we will see in Chapter 5,

there exist phases with only approximate ZK symmetry, e.g. ZN at odd N can break into

approximate Z2 with bunches of eigenvalues differing by O(1/N) – this is a subleading

effect at large N and we neglect this subtlety in the analysis of this chapter.
5The explicit expressions are not important for our purposes, see Ref. [64] for details.
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the breaking of the symmetry in the single-site model causes the eigenvalues

to coincide which results in an IR singularity in Eq. 3.15. This is a result of

integrating out massless modes that are necessary for the correct description

of the long-distance behaviour of the theory [61].

The authors of Ref. [61] give a semi-quantitative description of the ne-

glected modes by introducing a matrix model from which they infer the

non-perturbative fluctuation scale at which the one-loop analysis breaks

down. They estimate the size of the eigenvalue separation to be of order

∼ b−1/4.

Therefore, when the perturbation theory suggests that the center sym-

metry is broken to a ZK subgroup with K � 1, the separation of the

bunches of eigenvalues may be in fact smaller than their width and the

resulting phase is indistinguishable from the completely unbroken phase,

thus leading to a working large-N volume reduction. The final picture can

however only be resolved by non-perturbative calculations, such as the one

presented in the subsequent chapters.



Chapter 4

Monte Carlo simulation of the

AEK model

In this chapter we present the numerical methods to analyze the Adjoint

Eguchi-Kawai model by means of Monte Carlo simulations. We analyze

both the Nf = 1 and Nf = 2 cases. We use Hybrid Monte Carlo algorithm

[65] to generate the ensembles, equipped with the rational approximation

in the case of the single fermionic flavour [66, 67].

4.1 Hybrid Monte Carlo – general idea

Hybrid Monte Carlo (HMC) is a standard algorithm used in lattice gauge

theories with dynamical fermions. Let us first review the basic concepts of

the algorithm (for a more in-depth discussion see e.g. [68, 69]).

Consider a general bosonic field A with action S[A]. For simplicity we

employ matrix notation and omit the indices – in lattice gauge theory one

has A ≡ Aaµ(x).

HMC is based on introduction of auxiliary Gaussian-distributed mo-

menta conjugate to A. We can symbolically write the resulting Hamiltonian

as

H[A,P ] = 1
2
TrP 2 + S[A] . (4.1)

29
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Note that one can easily integrate out the momenta and recover the original

expectation values:

〈O〉A,P =

∫
D[A]D[P ]e−H[A,P ]O[A]∫
D[A]D[P ]e−H[A,P ]

=

∫
D[A]e−S[A]O[A]∫
D[A]e−S[A]

= 〈O〉A . (4.2)

The Hamiltonian gives the classical equations of motion, called Molecular

Dynamics (MD) equations, that leave H unchanged and thus lead to exact

microcanonical evolution of the system in additional “computer” time τ :

Ȧ =
∂H

∂P
= P , Ṗ = −∂H

∂A
= −∂S

∂A
. (4.3)

In computer practice we integrate the MD equations numerically, intro-

ducing a discrete step size ε = ∆τ . This method introduces systematic er-

rors. To balance this effect the algorithm utilizes a Metropolis accept/reject

step with acceptance probability

Pacc(A→ A′, P → P ′) = min {1, exp(H[A,P ]−H[A′, P ′])} (4.4)

after integrating the equations from τ = 0 to τ = τfin (which is most often

set to 1).

One can show that this corrects the errors and satisfies the detailed

balance condition for A provided that the Molecular Dynamics integration

is reversible

PMD(A→ A′, P → P ′) = PMD(A′ → A,−P ′ → −P ) (4.5)

and preserves the integration measure D[A]D[P ]. The simplest and most

commonly used integrator that satisfies these conditions [68] is the leap-frog

integrator:

I(ε, τfin = εNMD) =
(
P ε

2
A εP ε

2

)NMD

, (4.6)

where

Pε : {A(τA), P (τP )} →
{
A(τA), P (τP + ε) = P (τP )− ε ∂S

∂A

∣∣
A(τA)

}
, (4.7)

Aε : {A(τA), P (τP )} → {A(τA + ε) = A(τA) + εP (τP ), P (τP )} . (4.8)
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0 3ε/2ε/2 ε 2ε τfinτ  −εfin

A ...

Figure 4.1: Schematic picture of a multi-step leap-frog evolution of A and

P fields.

Fig. 4.1 shows a pictorial explanation of leap-frog’s action on A and P .

Leap-frog integrator introduces errors of order O(ε2). They are corrected

by the Metropolis step, however if the errors are too big the acceptance

will become poor. This is why it is important to properly choose ε. In our

calculations ε is set so that the acceptance rates are approximately between

0.7 and 0.85.

Most of the calculations presented in this work were done using the

leap-frog algorithm. There exist however more advanced integrators, sys-

tematically studied in Ref. [70] by Omelyan et al. (hence the commonly

used name “Omelyan integrators”). Recently, we have implemented the

second order minimum-norm (2MN) integrator [70, 71]. It requires two cal-

culations of ∂S
∂A

(“force calculations”) per MD step, i.e. it is approximately

twice as costly as the leap-frog, however the resulting difference between

the final and the initial hamiltonian (∆H) is an order of magnitude smaller

in the case of 2MN (for the same ε). This gives a significant speed-up of the

algorithm and 2MN is the integrator-of-choice in our current calculations1.

1There is also a possibility to use the higher-order integrators analyzed in Ref. [70],

e.g. the ones that introduce O(ε4) errors. We have implemented the fourth order in-

tegrator 4MN4FP (we follow the naming convention of Ref. [71]) that requires 4 force

calculations per MD step. It gives ∆H much smaller than 2MN, however in practice

we found its efficiency to be inferior to 2MN at the system sizes we currently use – its

practicality should increase as one goes to larger systems than the ones we can currently

achieve.
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4.2 Hybrid Monte Carlo – application to

Nf = 2 AEK

4.2.1 Introduction

The action for the Nf = 2 AEK model is

S[U ] = Sgauge[U ]− ln(detD[U ])2 , (4.9)

where Sgauge is the Wilson plaquette action defined in Eq. 3.2, and the

(Wilson) Dirac operator is defined in Eq. 3.3.

The explicit calculation of the fermionic determinant is very costly and

the way to avoid it is to introduce pseudofermion fields. The determinant

is real due to the γ5-hermiticity of the Dirac operator:

γ5Dγ5 = D†. (4.10)

Thus we can write:

(detD)2 = detD detD† = det(DD†). (4.11)

Next we note that one can interpret the determinant as a result of a bosonic

integral:

det(DD†) =
1

det(DD†)−1
= Const.

∫
D[φ]e−φ

†(DD†)−1φ , (4.12)

where φ is a complex bosonic field with the same indices as the fermionic

fields (hence the name pseudofermions). The last observation is that the

action is indifferent to the substitution

D → Q = Dγ5 , Q = Q†. (4.13)

We are now ready to write the HMC Hamiltonian for the Nf = 2 AEK

model:

H =
1

2

∑
µ

Tr (P 2
µ)− Nb

2

∑
µ6=ν

(TrU�µν + h.c.) + φ†Q−2φ . (4.14)
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Pµ are momenta conjugate to the gauge fields Aµ (the link variables Uµ =

exp(iAµ)) – they are traceless hermitian N ×N matrices, while the pseud-

ofermion φ is a complex (bosonic) Dirac field in the adjoint representation

(thus having 4(N2 − 1) complex components).

The standard HMC algorithm produces momenta, gauge fields and pseud-

ofermions distributed according to the probability density e−H . This is done

using the following steps, undertaken with a given “starting” set of Uµ:

• New momenta Pµ are drawn directly from the Gaussian distribution

exp(−TrP 2
µ/2).

• A new pseudofermion φ is obtained by first drawing a random

pseudofermion field ψ from a Gaussian distribution, with weight

exp{−Tr (ψ†ψ)}, and then setting

φ = Qψ . (4.15)

• The initial Hamiltonian is evaluated. Note that the pseudofermion

term in the action can be easily obtained from the Gaussian fields ψ.

• The Molecular Dynamics equations are then solved numerically using

the leap-frog algorithm (or some more sophisticated integrator). The

MD equation for the gauge field is

U̇µ = iPµUµ , (4.16)

while that for Ṗµ must be determined by enforcing that Ḣ = 0 (the

specific calculations for AEK model are presented in the next subsec-

tion). The pseudofermion field φ is unchanged during the evolution.

• At the end of the MD trajectory the new fields U ′µ and P ′µ are obtained

and the final Hamiltonian is evaluated using these fields. Finally,

the Metropolis accept/reject step is performed, i.e. the new gauge

configuration is accepted with probability Eq. 4.4.

One ends up with a (possibly) new set of Uµ and then repeats the steps.
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4.2.2 Calculation of the HMC force

The right hand side of the Molecular Dynamics equation for Ṗ (called force

in analogy with classical mechanics) corresponds to a change of the action

with respect to an infinitesimal change in the gauge field (see Eq. 4.3):

U → Ueiω , (4.17)

where ω is an infinitesimal traceless hermitian matrix. The force separates

into the gluonic and fermionic part:

Ṗµ = Ṗµ
U

+ Ṗµ
φ
. (4.18)

The former is

Ṗµ
U

= iNb
∑
ν 6=µ

Uµ
[
UνU

†
µU
†
ν + U †νUµUν

]
+ h.c. . (4.19)

Note that this result is automatically traceless and that it has the same

structure as the large-volume HMC result (see e.g. Ref. [68]), despite differ-

ent derivation – the large-volume gauge action is linear in Uµ(x) while the

EK action is quadratic in Uµ.

To calculate the fermionic part we first express the variation of the

pseudofermion action in terms of variation of Q[U ]:

φ†δ(Q−2)φ = −2φ†Re{Q−2δQQ−1}φ = −2 Re{χ†δQψ} (4.20)

where we have introduced

χ = Q−2φ and ψ = Qχ . (4.21)

Next we use the explicit form of the Dirac operator, Eq. 3.3, and obtain the

final result for the fermionic force:

Ṗµ
φ

= i(−κ)
{

(γ5 − γµγ5)αβ
[
UµψβU

†
µχ
†
α − χ†αUµψβU †µ

]
− (γ5 + γµγ5)αβ

[
ψβUµχ

†
αU
†
µ − Uµχ†αU †µψβ

] }
+ h.c. . (4.22)

Again, the tracelessness of Pµ is maintained.
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4.2.3 Some technical details

The most computationally expensive operation in HMC is the inversion of

the Dirac operator. In the MD equation, the only place where we need the

inversion of Q is the calculation of χ in Eq. 4.21. We use the fact that

Q2 is a hermitian positive definite operator and use Conjugate Gradients

algorithm to obtain an iterative approximation to χ. In this way we never

need to explicitly calculate the Dirac operator Q – we only need to calculate

the action of Q2 on a vector.

This greatly reduces the memory consumption of the algorithm and

also allows significant CPU-time reduction2. It also allows us to avoid the

explicit construction of the adjoint matrices Uadj
µ . Instead we represent the

pseudofermion fields φ in the color space as a traceless hermitian matrix on

which Uadj
µ acts as

Uadj
µ φ→ UµφU

†
µ. (4.23)

In this way the action of Q on a vector only requires the multiplication of

N ×N matrices so it has the time scaling O(N3).

We calculate the pseudofermion part of the final Hamiltonian in anal-

ogous manner. The only difference is a stronger stopping criterion of the

CG. For the MD we require that the residue

r ≡ φ−Q2χ (4.24)

satisfies |r|/|φ| < 10−5. The accept-reject step compensates for any errors

introduced due to the truncation of the CG so we only need to take care

that the lower precision does not affect the acceptance rate too much. In the

accept-reject step, on the other hand, we need to assure that the precision

2That is, unless the number of CG iterations NCG grows proportionally to N – a

possibility that cannot be easily excluded in the volume-reduced case where Q is a dense

matrix. The actual scaling, however, ranges from O(N0) to O(N1/2) as will be discussed

further in this section. The matter is more obvious in the large-volume simulations

where Q is a sparse matrix or at least most of its values are very close to 0. The lack

of a simple zero-structure in the volume-reduced case also greatly hampers the use of

CG-preconditioners commonly used in the large-volume case. No preconditioning was

used in the calculations presented in this work.
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Figure 4.2: Average number of CG iterations in the MD updates for various

N as a function of κ at b = 1.0, κc ≈ 0.13.

is good enough so we use a stopping criterion |r|/|φ| < 10−15 which is

comparable to the numerical precision of the exact inverter.

Next, we want to estimate the CPU-time scaling of the algorithm with

N . To do that we need to know how the number of CG iterations, NCG

depends on N – we found that this depends on the quark mass. For the

heavy quarks, away from the critical line κc, NCG is independent of N (for

a given stopping criterion) while for the light quarks (close to κc) it grows

approximately as N1/2. An illustration of this is given in Fig. 4.2.

The last ingredient of the time-scaling behaviour of the HMC algorithm

is the number of MD steps per trajectory (for a given acceptance rate). We

find it to grow approximately linearly with N . Thus the final CPU time

scaling ranges from O(N4) for heavy quarks to O(N4.5) for light quarks.

It is a common practice in large-volume simulations to use larger time

steps for the fermionic force than for the gluonic force. This is based on

the fact that the gluonic part of the force is typically much larger (i.e. the
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fields change faster under its influence and have to be evaluated with larger

accuracy). In our case we may expect that, since fermions play crucial

role in the center symmetry restoration, their impact on the dynamics (and

the corresponding size of the force) can be comparable to the gluonic one.

We found that this is in fact the case in the Monte Carlo simulations (see

Ref. [2] for details) so we conclude that using different time steps is not

practical in our case.

Finally, almost all simulations in this work were done using serial code

working on a single CPU core. Recently, we have implemented a parallel

simulation code that can be efficiently executed on (16 × V olume) cores.

This allows working with 16 cores on a single-site and 256 cores on 24 lattice.

In this work, only one result obtained with the new code is presented – see

Sec. 5.3.2.

4.3 Simulation of Nf = 1 AEK – Rational

Hybrid Monte Carlo

4.3.1 The rational approximation

When trying to construct the HMC algorithm for odd number of flavours we

encounter several problems of both conceptual and technical nature. First,

we note that although the fermionic determinant in the models we analyze

is always positive [45], there may exist gauge configurations where some

eigenvalues of the Wilson Dirac operator will have a negative real part.

This invalidates the concept of the pseudofermion integral and to protect

from that, we replace detD with

det |D| = det
√
DD† = det |Q| = Const.

∫
D[φ]e−φ

†|Q|−1φ , (4.25)

where Q is the hermitian operator defined in Eq. 4.13.

Explicit calculation of |Q|−1 is, however, very costly and one has to rely

on some sort of approximation – we choose the Zolotarev optimal rational
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approximation:

R(x) = A
n∏
i=1

(x+ c2i−1)

(x+ c2i)
= A

(
1 +

n∑
i=1

ri
x+ ai

)
−−−→
n→∞

1/
√
x, (4.26)

where he coefficients A, ai, ri are set to minimize the error (see e.g. Ref. [68]

for an accessible review or Ref. [72] for a more in-depth treatment):

δ = max
ε≤x≤1

|1−
√
xR(x)|. (4.27)

If the spectrum of Q2 is contained in [εM2,M2] then the approximation we

need is

|Q|−1 ' 1

M
R(Q2/M2) ≡ R . (4.28)

To protect ourselves from any imperfections of the approximation we

introduce additional correcting pseudofermion field φcorr and write the de-

terminant as:

det |Q| = Const.

∫
D[φ, φcorr] exp

{
−φ†Rφ− φ†corr(|Q|R)−1φcorr

}
.

(4.29)

If the quality of the approximation is good, then the operator |Q|R is close

to identity and has a very weak dependence on the gauge configuration.

Thus using only φ in the Molecular Dynamics should not affect the accep-

tance rate very much.

4.3.2 Changes compared to Nf = 2

Compared to the Nf = 2 case, there are three parts of the algorithm that

need to be changed for the Rational Hybrid Monte Carlo (RHMC):

1. Generation of the pseudofermion fields: we generate fields ψ and ψcorr

with Gaussian distribution and calculate

φ = Cψ , φcorr = Bψcorr , (4.30)

where C†C = R−1 and B†B = |Q|R.
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Operator C that fulfills the above condition can be easily found from

Eq. 4.26:

C =

√
M

A

n∏
i=1

(Q/M + i
√
c2i−1)

(Q/M + i
√
c2i)

. (4.31)

To find B note that the operator

Z = Q2R2 − 1 (4.32)

is very small (of order δ) so one only needs the first few terms of the

power series:

B = (1 + Z)1/4 = 1 + 1
4
Z − 3

32
Z2 + . . . (4.33)

to compute B up to the machine precision [68].

2. Calculation of the pseudofermion contribution to the Hamiltonian for

the Metropolis step. The initial Hamiltonian can be calculated from

ψ and ψcorr. The final Hamiltonian however requires calculation of

Rφ and (|Q|R)−1φcorr. The latter can be found as a power series in

Z.

3. Calculation of the fermionic force in the Molecular Dynamics equa-

tions. The variation of the φ†Rφ part is (remember that we do not

include φcorr in the MD):

φ†δRφ =
A

M

n∑
i=1

riφ
†δ
(
(Q2/M2 + ai)

−1
)
φ =

= − 2A

M3

n∑
i=1

riφ
†Re{(Q2/M2 + ai)

−1δQQ (Q2/M2 + ai)
−1}φ =

= − 2A

M3

n∑
i=1

ri Re{χ†iδQψi}, (4.34)

where

χi = (Q2/M2 + ai)
−1φ and ψi = Qχi . (4.35)

From Eq. 4.34 we see that the force is nothing but a sum of terms

equivalent to the force in the Nf = 2 HMC (compare Eq. 4.21).
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Figure 4.3: Example comparison of simulation cost of Nf = 1 and Nf = 2

simulations for a representative scan. We define the simulation cost as

the CPU time per HMC trajectory divided by the average acceptance rate

and we normalize it to the pure-gauge value (set to one). The results are

presented as a function of κ at N = 16, b = 1.0 .

Note that the shifted structure of Eqs. 4.35 allows their simultaneous

solution at the cost of solving the single (most expensive) equation, using

the multi-shift Krylov solver CG-M [73]. Similar calculations can be applied

to other parts where the approximation is used.

Calculating C in the pseudofermion generation, Eq. 4.31, is the only

place where we need to invert a matrix that is not hermitian positive definite

– we do this using CGNE-M algorithm (which is a combination of standard

CGNE with the multi-shift solver CG-M – the normal equations preserve

the shifted structure).

It is interesting to compare the cost of the Nf = 1 and Nf = 2 simula-

tions. An example comparison is presented in Fig. 4.3. The first observation

is that in both cases the simulation becomes much more costly as one ap-
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proaches κc (even by two orders of magnitude). In the analyzed case the

cost of the simulation for heavy fermions is roughly two times bigger for the

RHMC algorithm than for the ordinary HMC. As we get closer to κc the

additional overhead due to the rational approximation becomes less signif-

icant and at κ = 0.13 we can see that the result for Nf = 2 is in fact much

larger. This is most likely caused by a smaller physical quark mass which

requires more CG iterations in the two-flavour case (κc have different values

for the two models due to a different additive renormalization).



Chapter 5

Phase diagram of the AEK

model

The ultimate goal of the volume reduction technique is to use the single-site

model to extract the properties of physical (large-volume) systems. To do

that we must first determine the values of parameters of the AEK model

for which the center symmetry is unbroken. In this section we present

the methods and the numerical results used to establish these values. The

sketch of the deduced phase diagram in the κ− b plane (cf. Eqs. 1.12, 1.15)

is presented in Figure 5.1.

The main feature of the phase diagram is the presence of a broad region

of parameters in which the Z4
N center symmetry is intact. Due to its funnel-

like shape we call this region the center-symmetric “funnel”. In this region

the large-N volume reduction holds and the measurements of observables

can be mapped to the large-volume ones. The smallest value of κ (for given

b) at which the center-symmetry is unbroken is denoted as κf .

This chapter mostly presents the results for Nf = 2 contained in Ref. [2]

with some minor extensions. We find that the results in Nf = 1 are very

similar and thus we only show a limited number of plots for this case – the

only substantial difference is the width of the center-symmetric funnel and

we present the results for both cases in Sec. 5.3.2.

42
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Figure 5.1: Sketch of the phase diagram for the Nf = 2 AEK model with

N ≈ 30 (a completely analogous picture is valid for Nf = 1). The region

named Z4
N is the center-symmetric funnel in which the volume reduction

is valid. Surrounding it, there are several phases named Z1-Z5 after the

pattern of partial breaking of the center symmetry (the phases are labeled

ZK , not Z4
K because every time we observe the center symmetry breaking

there are substantial correlations between different lattice directions, see

Sec. 5.2). Z1 is the name for the region where the center symmetry is

completely broken (as in the pure-gauge EK model, that is represented by

the κ = 0 line). The grey dotted lines denote the values of b used for scans

in Sec. 5.2.
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5.1 Measured quantities

Observables used to detect the center symmetry breaking are the general

open loops:

Kn = 1
N

Tr Un1
1 Un2

2 Un3
3 Un4

4 , with nµ = 0,±1,±2, . . . (5.1)

where U−n ≡ U †n. These loops transform non-trivially under the center

symmetry (unless all nµ are integer multiples ofN) and are thus very general

order parameters for the center-symmetry breaking. We put the most focus

on the simplest examples of such loops, which are the 4 Polyakov loops:

Pµ = 1
N

TrUµ (5.2)

and the 12 “corner variables”:

Mµν = 1
N

TrUµUν and Mµ,−ν = 1
N

TrUµU
†
ν (5.3)

with µ 6= ν. The corner variables were found to be particularly helpful

in finding the center symmetry breaking in the Quenched Eguchi-Kawai

model [23] because of their sensitivity to partial Z4
N breakings1, also the

ones including correlations between different lattice directions.

We also analyze the more complicated open loops, although to keep the

quantity of data manageable, we limit ourselves to −5 ≤ nµ ≤ 5. In this

case the loops are not sensitive to more complicated patterns of partial

symmetry breaking, e.g. Z4
N → Z10. To be able to observe such patterns we

analyze the eigenvalues of link matrices. As already noted in Sec. 3.2 each

link can be represented as

Uµ = VµDµV
†
µ , with Dµ = diag[eiϑ

1
µ , eiϑ

2
µ , . . . , eiϑ

N
µ ] (5.4)

The single-site gauge transformation Uµ → ΩUµΩ† leaves the set of eigenval-

ues unchanged. In the center-symmetric phase one expects the distribution

of phases ϑaµ of link eigenvalues to be invariant under translations by 2πn/N .

1The partial breaking of ZN to ZK (1 < K < N) is observed when all the loops

Tr [(Uµ)L] with 0 < L < K vanish but Tr [(Uµ)K ] is non-zero.
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The partial symmetry breaking can be detected when only a subgroup of

the translational symmetry is unbroken.

If the coupling is not very strong one also expects that the partition

function is dominated by the link matrices that are close to being simulta-

neously diagonalizable (see Sec. 3.2). One can then use the gauge freedom

to set the U1 to be diagonal (analogously to what was done in the pertur-

bative calculation of Sec. 3.2.1) and analyze the elements of the other link

matrices. In particular, the phases of the diagonal elements are expected to

be close to the phases of the link eigenvalues and the correlations between

them (and the exact eigenvalues of U1) give extra input to the realization

of the center symmetry (see Sec. 5.2).

Apart from the aforementioned observables we also use the average pla-

quette, described in Chapter 6, which is very helpful to map the gross

features of the phase diagram.

5.2 Scans of κ− b plane

To establish the center symmetry realization in the model we performed a

series of scans in the κ− b plane. The gross features of the phase diagram

were analyzed with the scans in κ, at fixed b (“horizontal scans”). In these

runs we used N ≤ 30. The gathered information was later supplemented

by looking at the selected points with greater precision and larger values

of N (up to 53, and in one case up to 60). We also made several “vertical

scans” (changing b at fixed κ).

We mostly focused on the range of b ∈ [0.35, 1]. This reaches from

the non-perturbative regime above the bulk transition to a weakly coupled

regime that can be compared to the perturbative calculations – e.g. for

N = 3 this corresponds to the range of β between 6.3 and 18.

For the Nf = 2 case we also made several scans extending to the un-

physical strongly-coupled phase (where the center symmetry is intact also

in the pure-gauge case) as well as to extremely weakly coupled theory (up

to b = 200). The values of κ were mostly in the range between 0 and 0.26
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Figure 5.2: Absolute values of the Polyakov loops for N = 16 and 30, b = 1.0. All 4

directions are shown (in both panels).

but we also made some runs extending as far as κ = 0.6.

In particular, for both Nf = 1 and Nf = 2 we performed detailed

scans at b = 0.35, 0.5, 0.75, 1.0 with N = 10, 16, 23, 30 for κ ∈ [0, 0.26]

measured every 0.01, both increasing the value of κ (called “UP” scans in

the following) and decreasing κ (called “DOWN” or “DN” scans).

In Fig. 5.2 we present the example results of Polyakov loops measured

in the runs at b = 1.0 for both values of Nf (for the sake of clarity, only the

UP scans at N = 16 and 30 are plotted). At pure gauge, κ = 0, the absolute

values of the Polyakov loops are clearly different from 0 signalling a spon-

taneously broken center symmetry, as expected. For Nf = 2, Fig. 5.2(a),

at around κ = 0.02 − 0.04 there is a jump to significantly smaller values

which suggest that the center symmetry is not broken, up to finite-N fluc-

tuations2. The situation does not change throughout all higher values of κ

up to κc, around 0.13, and beyond. There may be some concerns perhaps

2Note that, strictly speaking, one can only discuss phase transitions and spontaneous

symmetry breaking in infinite systems so the terminology we use is only adequate for

N → ∞. In practice, however, spontaneous symmetry breaking is effectively observed

in simulations at finite but large values of N and we keep using the language of phase

transitions throughout this work.
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(d) N = 16, b = 1.0, κ = 0.25

Figure 5.3: Scatter plots of Polyakov loops in the Nf = 2 model. All 4 directions are

pictured together.

about the N = 16 run for κ > 0.22. For Nf = 1, Fig. 5.2(a), the situation is

similar, however the transition to smaller absolute values of Polyakov loops

takes place at higher values of κ = 0.03− 0.05.

The picture is confirmed by looking at the scatter plots of the Polyakov

loops in the complex plane, presented in Fig. 5.3 (for the Nf = 2 case). In

the pure-gauge model, Fig. 5.3(a), the values of the Polyakov loops are close

to 1, clearly forming a state with broken center symmetry. With smaller N

one can observe tunneling between the different vacua with broken center

symmetry, see Fig. 5.3(b). The tunneling is however suppressed as the
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Figure 5.4: Absolute values of the corner variables for N = 16 and 30, b = 1.0. All 12

directions are shown (in both panels).

size of the system becomes larger. The run with κ = 0.09, Fig. 5.3(c),

is on the other hand uniformly distributed around 0, signalling that the

center symmetry is likely to be unbroken. The last plot, Fig. 5.3(d), is also

distributed close to zero but the shape of the blob is rather asymmetric,

signalling that there may occur a partial breaking of the Z4
N symmetry.

We can further analyze the situation by looking at the corner variables

Mµν , Fig. 5.4. They are sensitive to partial symmetry breaking, especially

in the case where correlations between different directions are involved. We

can see that the jump to |Mµν | close to zero occurs at larger values of κ

than in the case of Polyakov loops. Also, in the region κ & 0.2 the corner

variables are clearly non-zero (both for Nf = 1 and Nf = 2). We thus con-

jecture that the center-symmetric phase is separated from the completely

broken phases by regions with partially broken symmetry.

This conjecture can be further verified by looking directly at the his-

tograms of eigenvalues of Uµ. The link eigenvalues provide a more thorough

test of the realization of the center symmetry than Pµ and Mµν alone as

they are sensitive also to patterns of symmetry breaking in which both of

these loops vanish. From now on we focus on the Nf = 2 model. All the re-

sults presented in this section are analogous for the Nf = 1 case, except the
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larger κf (which will be analyzed for both values separately in Sec. 5.3.2)

and slightly larger finite-N corrections.

In Fig. 5.5 we present examples of the results that allow us to fill in the

details of the phase diagram in Fig. 5.1. The phases of eigenvalues (defined

in the range ϑaµ ∈ (−π, π]) presented in each histogram are collected in 3N

bins of width 2π/3N each. The ZN symmetry implies that the histogram

should be periodic under translation by multiples of 3 bins (up to the errors,

that are proportional to the square root of the number of counts in each

bin).

An example histogram inside the funnel is presented in Fig. 5.5(a). The

distribution of ϑaµ is invariant under ZN translations and within errors it

is consistent with being uniform. This is, in fact, a little surprising as the

pure-gauge model is known to reproduce the Haar-measure-like probability

density distribution in the unbroken phase [20]:

p(ϑaµ) =

(
1

2π
− (−1)N

Nπ
cos(Nϑaµ)

)
, (5.5)

which has visible oscillations in computer simulations (that vanish like

1/N). As a check on our code, we have confirmed that the simulation

reproduces this equation at κ = 0 with b below the bulk transition.

Outside the funnel the attraction between eigenvalues leads to the break-

ing of the center symmetry that manifests itself by a formation of groups

(“clumps”) of eigenvalues on the unit circle. By counting the number of

clumps we can identify the approximate remnant symmetry (Zk-symmetric

histogram has k clumps).

In Fig. 5.5 we show some examples of the clumping patterns – Figs. 5.5(b)

and 5.5(c) show Z1 and Z2 phases on the l.h.s of the funnel (small κ region)

while Figs. 5.5(d), 5.5(e) and 5.5(f) show Z3, Z4 and Z5 phases on the r.h.s.

of the funnel (large κ region).

Note that the remnant symmetry is not always exact. For example, in

Fig. 5.5(c) we find two clumps for N = 23 and in Fig. 5.5(d) three clumps for

N = 16 – the eigenvalues cannot be equally distributed between the clumps

and the symmetry is only approximate. Also in the case of Fig. 5.5(f) where
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Figure 5.5: The (unnormalized) histograms of the phases ϑaµ of the link eigenvalues. The

uncertainties in each bin are of the order of
√
Number of counts . More details of the

binning are discussed in the text.
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there are five clumps for N = 30 we see that the clumps are not even and

correspond to 7,6,7,6,4 eigenvalues respectively. We also find that different

runs can have different patterns of clumping, e.g. 7,7,6,6,4 vs. 7,6,6,6,5, but

that it is rare for the clumping to change during a run. Thus it appears that

there are different competing “vacua” that are only approximately related

by center symmetry transformations.

We can now understand the results given by the Polyakov loops and

the corner variables. The Polyakov loops are practically insensitive to the

partial symmetry breaking while the corner variables are giving various,

sometimes complex, patterns in that case (cf. Fig. 5.4) – also in the case

of more complicated patterns such as Z5 where we expect the “squared”

Polyakov loop TrU2
µ to be insensitive. Thus, as Mµν involve links in different

directions, we may expect that these complex patterns mean that there exist

substantial correlations between the different links.

To measure this, at least at relatively weak coupling, we use the “time-

like” gauge in which U1 is diagonal, in a similar manner as in Section 3.2.

At large b we expect that in this gauge the remaining links are also close

to diagonal (cf. Eq. 3.5) and thus we can treat their diagonal elements “al-

most” as eigenvalues. In Fig. 5.6 we see an example configuration which

shows that even at b as low as 0.35 the diagonal dominance is very clear

(at least for κ > κc; for κ < κc the diagonal dominance is only clear for

b & 1.0).

Fig. 5.7 presents the phases of Uµ in 20 configurations collected in a run

with the same parameters as in Fig. 5.6. We set the gauge in such a way

that the phases of eigenvalues of U1 are ordered – note that no ambiguity

exists in the ordering of the remaining diagonal elements once we specify the

order for U1. We see three clumps of sizes 6,4,6 that, while being positioned

at different angles, are almost completely correlated between all four links,

and do not change during the Monte Carlo evolution. Because of these

correlations, seen every time when the center symmetry is broken, we infer

that the approximate remnant symmetry of Fig. 5.6 is Z3, not Z4
3.

Ref. [61] argues that one should expect that the number of clumps should

become smaller as one gets further away from the funnel (i.e. as the quark
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Figure 5.6: Absolute values of link elements in the “timelike” gauge – an example con-

figuration at Nf = 2, N = 16, b = 0.35, κ = 0.23. The diagonal elements are clearly the

largest ones.

mass gets higher). That is indeed what we observe. On the large-κ side

we extended some scans up to κ = 0.6. We find that ϑaµ in the UP scans

form less and less clumps after leaving the funnel, until they end up in a

two clump state. The DOWN scans, started from an ordered start, begin

with a single clump and as κ is decreased have a transition to two clumps.

The transition appears to occur in stages where the eigenvalues gradually

“peel off” from the original clump. As κ is further decreased, there ap-

pear more and more clumps until we enter the funnel and the eigenvalues

become uniformly distributed on the unit circle. The largest number of

clumps depends on N , and the largest we have observed is five, as shown
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Figure 5.7: Phases of the diagonal elements of Uµ, in the gauge where U1

is diagonal and its phases are ordered, for 20 thermalized configurations at

Nf = 2, N = 16, b = 0.35, κ = 0.23. The phase is Z3 and the range of the

phases was adjusted so as to avoid the cut through one of the three clumps.

in Fig. 5.5(f).

One expects a similar phenomenon on the small-κ side. In fact, as we

increase κ (thus reducing the quark mass) from 0 we encounter similar

transitions although the maximum number of clumps before entering the

funnel is significantly smaller in this region. For N < 23 we only observe

the Z1 phase, for 23 ≤ N < 47 we see Z1 and Z2, while for N = 47 and 53

we find Z1, Z2 and Z3 phases. The arguments of Ref. [61] imply that the

maximum number of clumps should increase with b. Indeed, that is what

we observe – for b > 1 the phase Z3 appears at smaller values of N .

We have also checked the results given by the higher-order open loops

defined in Eq. 5.1, following the method of Ref. [45], as well as performed

several vertical scans in the κ − b plane to supplement our knowledge of

the phase diagram. We found that these calculations confirm the results
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presented earlier in this section and, for the sake of brevity, we do not

present them here.

5.3 The width of the center-symmetric

funnel

5.3.1 The N-scaling of Pµ and Mµν

The encouraging results of the previous section lead to the crucial question

– what happens to the center-symmetric funnel as N → ∞? In order to

study the large-N limit we have extended the calculations to larger values

of N in several points of the κ− b plane.

Let us begin with the large-N extrapolations of 〈|Pµ|2〉 and 〈|Mµν |2〉.
In the N → ∞ limit they are equal to |〈Pµ〉|2 and |〈Mµν〉|2 (cf. Eq. 1.16)

– which are both equal to zero if the center symmetry is unbroken. Thus

an important check of the proposed phase diagram, presented in Fig. 5.1,

is that both these values extrapolate to 0 in the tentative center-symmetric

funnel.

Ordinarily finite-N effects are O(1/N2) but in the volume-reduced mod-

els one can also encounter O(1/N) corrections (see Sec. 6.1). In Fig. 5.8 we

show 〈|P1|2〉 as a function of 1/N2 for two representative points in the κ− b
plane. Although the 1/N2 term is clearly the largest finite-N contribution

in many cases we found that pure 1/N2 fits have large values of χ2/d.o.f..

Addition of 1/N term as well as dropping the 2 lowest values of N (10

and 16) lead to satisfactory fits in all analyzed cases – the values of the fit

parameters are collected in Table 5.1. The coefficients of the 1/N term are

small in all cases, and in fact consistent up to ∼ 3σ with zero except for

b = 0.35, κ = 0.06. We also show the results of fits to 1/N2 plus a constant

term – the fits are of similar quality and the constant term is consistent

with 0 except, again, the point b = 0.35, κ = 0.06. We conclude that (ex-

cept this one point near the edge of the tentative funnel) the behaviour of

Polyakov loops is consistent with hypothesis that the center symmetry is
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Figure 5.8: Large-N extrapolations of 〈|P1|2〉 for Nf = 2, b = 0.35 and two

values of κ: 0.06 and 0.12. The values of N are 10, 16, 23, 30, 37, 42, 47

and 53.

intact in the funnel.

Example data for the corner variables are presented in Fig. 5.9. The

particularly striking is the data at b = 0.35, κ = 0.06 – the pictured 〈|M12|2〉
begins to rise for N & 40 and clearly does not extrapolate to zero. This

result is rather surprising as otherwise there is no clear sign of breaking of

the center symmetry – for all analyzed values of N , Mµν as well as other

open loops from Eq. 5.1 are distributed approximately near the origin and

the distribution of link eigenvalues is consistent with uniform.

Our interpretation is that the increase in 〈|Mµν |2〉 with N is due to the

lower edge of the funnel, κf , increasing with N (possibly reaching κf > 0.06

in the large-N limit)3. In that case, we might be able to observe clear

signal of Z4
N symmetry breaking at higher values of N and the hints of the

transition are already visible in the values we use due to the vicinity of

3This effect can be also observed (for b = 1.0) in Fig. 5.4 where the jump in the

corner variables for N = 30 is at visibly higher values of κ than for N = 16.
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Qty b κ c1 c2
χ2

d.o.f. c′0 c′2
χ′2

d.o.f.

〈|P1|2〉 0.35 0.06 0.006(1) 1.21(6) 0.36 9(1)× 10−5 1.31(1) 0.39

〈|P1|2〉 0.35 0.09 0.0014(9) 0.73(3) 0.67 2(1)× 10−5 0.76(2) 0.73

〈|P1|2〉 0.35 0.12 0.001(3) 0.57(3) 0.82 0(2)× 10−5 0.56(1) 0.84

〈|M12|2〉 0.35 0.09 0.152(5) 2.9(1) 0.42 0.0023(3) 5.3(4) 2.57

〈|M12|2〉 0.35 0.12 0.036(6) 3.5(2) 1.0 5(1)× 10−4 4.1(2) 1.2

〈|P1|2〉 1.0 0.06 −0.0001(3) 1.17(1) 0.025 −1(3)× 10−6 1.17(1) 0.025

〈|P1|2〉 1.0 0.09 −0.0003(4) 0.70(1) 1.2 −5(6)× 10−6 0.70(1) 1.2

〈|P1|2〉 1.0 0.12 −0.0010(3) 0.55(1) 0.60 −1.4(4)× 10−5 0.54(1) 0.58

〈|M12|2〉 1.0 0.06 0.69(3) -1.6(7) 0.58 0.010(1) 9(2) 2.7

〈|M12|2〉 1.0 0.09 0.0053(7) 6.1(2) 0.99 8(2)× 10−4 6.9(3) 1.7

〈|M12|2〉 1.0 0.12 0.01(1) 5.5(4) 0.4 0(1)× 10−4 5.4(2) 0.41

Table 5.1: Results from fits to the large-N behavior of 〈|P1|2〉 and 〈|M12|2〉 in the Nf = 2

case [2]. Fits are to N = 23, 30, 37, 42, 47 and 53 using f1(N) = c1/N + c2/N
2 and

f2(N) = c′0 + c′2/N
2, showing statistical errors.

increasing κf . The results for Mµν also explain why the Pµ fits were less

satisfactory in this point.

For all other analyzed points we find that the corner variables decrease

monotonically with N . As for the Polyakov loops, the 1/N2 fits are rather

poor but the addition of 1/N term leads to acceptable fits in all cases (note

that contrary to the Pµ case the 1/N terms differ significantly from 0). The

fits to 1/N2 plus constant lead to small but often non-zero constant values

but they also usually have higher χ2/d.o.f. than the c2/N
2 + c1/N fits – we

thus conclude that the latter fits are the most reasonable ones4.

4We have also experimented with fits to c2/N
2 + c4/N

4 (an example is shown in

Fig. 5.9) but the fits require very large coefficients with opposite sign to give a satisfying

quality – we consider such fine tuning as very unlikely to be the correct description.
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Figure 5.9: Large-N extrapolations of 〈|M12|2〉 for Nf = 2, b = 0.35 and

two values of κ: 0.06 and 0.12.

5.3.2 Funnel width as N →∞

The presented results suggest that the center symmetry is in fact unbroken

in a sizeable region of parameters, but there remains some anxiety whether

κf does not in fact converge to κc in the large-N limit – in that case the

reduction with massive fermions may only be apparent for some low enough

values of N (as in the b = 0.35, κ = 0.06 case).

To resolve this matter it is important to study the function κf (N) and to

perform its large-N extrapolation. To investigate this we have performed

a series of fine scans of the small κ region. An example is pictured in

Fig. 5.10. There are two phases with broken center symmetry before we

enter the funnel: the system is in the Z1 phase in the region 0 ≤ κ . 0.02

and in the Z2 phase in 0.02 . κ . 0.05. The transition between the first

and the second phase shows a significant hysteresis while that between the

second phase and the funnel does not – we will discuss the possible order

of this phase transition in the following part of this section.

A reliable large-N extrapolation of κf (N) requires very costly analysis
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Figure 5.10: Absolute values of all Polyakov loops and corner variables in

the low κ region, Nf = 2, N = 30, b = 0.75.

and with our resources we were only able to perform it at a single value of

coupling, b = 1.0, albeit for both Nf = 2 and Nf = 1. In both cases we

have done very fine scans near the edge of the funnel. N ≤ 53 was used

for Nf = 2 and N ≤ 60 for Nf = 1. The corner variables were found to

be the most useful in determining the transition (although we performed

careful checks if the other observables do not show any signs of some more

complicated pattern of the symmetry breaking that the corner variables

could miss). We were able to pin down the transition, conservatively, to

about δκ = ±0.001.

The results are presented in Fig. 5.11 along with two fits each. The first

fits are of the form c0 + c1/N – they have a very low χ2/d.o.f. (signalling

that the uncertainties are perhaps overly conservative) and they look very
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Figure 5.11: Large-N extrapolations of κf . Note that the errors are rather

conservative as the main goal was the exclusion of the “closed funnel” hy-

pothesis. The point N = 60 for Nf = 1 was calculated using the new

parallel code on the Deszno supercomputer.
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reasonable. The extrapolated large-N limits are:

κf (Nf = 2, N =∞, b = 1) = 0.0655(5), (5.6)

κf (Nf = 1, N =∞, b = 1) = 0.0934(3), (5.7)

both of which are values substantially lower than κc (which is ≈ 0.13−0.14

at this value of b). Note that the funnel is significantly narrower for Nf =

1. This is understandable in the context of the perturbative calculations

presented in Sec. 3.2.2 (cf. Eq. 3.19).

The second fits are to the function c1/N+c2/N
2+1/8 where the constant

term is the lower limit on κc
5. In both cases the fit is extremely poor

(χ2/d.o.f. = 23 for Nf = 2 and χ2/d.o.f. = 6.3 for Nf = 1), excluding

the possibility of the closed funnel – particularly taking into account that

taking κc = 0.13 − 0.14 makes the fits even worse. We conclude that, at

least for b = 1, the funnel has finite width in the large-N limit and the

reduction holds also for rather heavy fermions.

5.3.3 Funnel width as a function of b

Another interesting property of the funnel is its behaviour as a function of

b. Ref. [61] predicts that at large b the width of the funnel in am should be

proportional to b−1/4. As was already mentioned in the previous section, it

also predicts that at the edge of the funnel there should be multiple phases

with partially broken symmetry – the width of each eigenvalue clump is

proportional to b−1/4 so the maximum number of clumps should increase

with b (as long as N is large enough).

To investigate this we have performed a series of scans in κ for N = 10

(and, in some cases, for N = 30) at b=2.5, 5, 10, 50 and 200 (the presented

analysis usesNf = 2 data only; we have no reasons to suspect a qualitatively

different behaviour of Nf = 1 in this case). We find that the simulation

algorithm performs surprisingly well even at such extremely high values of

5That is, without taking into account the additive renormalization of the mass. The

precise determination of κc is very costly and we have limited ourselves to finding the

approximate value. Therefore, we choose the most conservative approach in the fits.
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b. No indication of autocorrelation times that are close to the number of

trajectories used for measurements (7500 in the N = 10 case) was found6.

We analyze κf as a function of b to check whether

amf ≡
1

2κf
− 1

2κc
∝ b−1/4. (5.8)

It would be of great benefit to repeat the study of the previous section

for all values of b – that is however out of our numerical possibilities. Also,

we find that it is harder to pin down the precise κf for b away from unity.

At b = 0.35 the transition to the center-symmetric phase is very smooth,

up to the point where locating it precisely is very hard and in fact it may

be a crossover – one sign of such difficulties was already seen in Sec. 5.3.1

in the case b = 0.35, κ = 0.06. Also, Ref. [74] has triggered a discussion

whether the funnel has at all finite width at this value of b. At b = 0.5 and

above the transition becomes well-located and with growing b it becomes

stronger and stronger. At very high b it becomes a strong-first order tran-

sition with significant hysteresis (see also the discussion of the plaquette

in Sec. 6.1) that makes it difficult to precisely determine κf without using

more advanced methods. The situation is thus not entirely explained away

from b = 1 and would definitely benefit from further study.

Therefore, we limit ourselves to the analysis of the data for N = 10 and

30, presented in Fig. 5.12. Along with the data we present the fits to the

form predicted by Ref. [61] with κc = 0.125 for all b, for simplicity. The fit

at N = 10 is good while the fit at N = 30 has some tension to the obtained

data (the data seems to be better reproduced if we insert the estimate for

the true value of κc but that also significantly increases the uncertainties

in amf as the precision of our estimate of κc is rather limited). Overall,

our conclusion is that the obtained results are consistent with the predicted

dependence on b.

6However the MD step size has to be reduced, approximately as
√
b, and we find

that for b = 200 the 450 trajectories used for thermalization is sometimes slightly too

little for the system to thermalize completely.
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Figure 5.12: The dependence of κf on b, for N = 10 and 30, Nf = 2. The

dashed vertical line marks κc(b =∞) = 1/8. The fit functions are discussed

in the text.



Chapter 6

Physical measurements in the

AEK model

6.1 Plaquette

The basic quantity to analyze in any lattice gauge theory is the average

value of the plaquette

Uplaq =
1

6N

∑
µ<ν

TrUµUνU
†
µU
†
ν . (6.1)

While the plaquette is a UV-dominated quantity, and thus does not relate

directly to any continuum observable, it is very helpful to study the gross

features of the theory and to compare different lattice calculations.

Fig. 6.1 presents the results of the plaquette in the horizontal scans at

b = 0.5 and b = 1.0 (with the parameters described in Sec. 5.2). We also

plot, where possible, the approximate large-N results obtained by fitting the

results at the four values of N (or more, where available) to the function

c0 +c1/N +c2/N
2. The more precise fits done in selected points of the κ−b

plane are described further in this section.

In both plots there is a visible change of slope around κ ≈ 0.05, when

we enter the funnel. Also in the large-κ region we see a change of behaviour

at the edge of the funnel. Another interesting feature of both plots is

the behaviour in the vicinity of κc ≈ 0.13 – there is a large jump in the

63
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Figure 6.1: Horizontal scans (both UP and DOWN) of the average plaquette

at Nf = 2 for N = 16, 30 and the large-N extrapolations (where possible),

and two values of the ’t Hooft coupling.
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plaquette value. The jump becomes smaller with growing N , however it

seems to persist at large N . While a more precise (and very expensive

computationally) scan in the near-κc region could resolve this issue, this

data suggests that the phase transition in κc is likely to be of first order.

At Nf = 1 we see the same picture, which was already reported in

Ref. [45]. In the Nf = 1 case this is the expected behaviour because the

large-volume theory is expected to be confining [49, 50]. For Nf = 2 the

supposed first order transition in κc is however somewhat surprising as the

large-volume theory is expected to be conformal (in the massless case).

The argument goes as follows: based on analysis in chiral perturbation

theory one can argue that for a confining theory one expects (close to the

continuum limit) a first order transition or two second order transitions

separated by the Aoki phase [75, 76]. On the other hand if the theory is

conformal one expects a single second order phase transition at κc – that

is the case for N = 2 where the single second order phase transition is

observed for b & 0.25 [54, 55]. A different behaviour of the large-N theory

is possible although unexpected (see Sec. 3.1).

Let us now discuss the large-N extrapolations of the average plaque-

tte. Fig. 6.2 shows two example plots for different parameters. As already

pictured in Fig. 6.1, the finite-N corrections are quite substantial and can

have either sign, depending on the position in the κ − b plane. We find

that the leading finite-N correction is O(1/N). This is different from the

large-volume results where one expects O(1/N2). In the reduced model one

can however observe this kind of behaviour – the one-loop analysis of the

one-site pure-gauge model around the center-symmetric vacuum gives [19]:

〈Uplaq〉 = 1− 1

8b
(1− 1/N) +O(1/b2). (6.2)

In fact, comparing Eq. 6.2 to the data in Fig. 6.2(b) we see that at b = 1 the

large-N one-loop result, 0.875, is a reasonable approximation to the limit

obtained from the data, even with moderately light fermions at κ = 0.12.

In general, inside the center-symmetric funnel but far away from κc (for

the heavy fermions) we expect that the large-N extrapolation of the pla-

quette will be close to the large-volume pure-gauge result with a growing
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Figure 6.2: Two examples of large-N extrapolations of the plaquette for

Nf = 2. Various fits are shown in addition to the data.
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b κ χ2/d.o.f. c1 c0 pure-gauge value

0.35 0.06 1.8 0.75(4) 0.549(1) 0.550

0.35 0.09 2.4 0.34(4) 0.552(1) 0.550

0.35 0.12 1.5 -0.92(3) 0.565(1) 0.550

1.0 0.06 0.2 0.120(3) 0.8694(1) 0.8692

1.0 0.09 1.1 0.076(3) 0.8697(1) 0.8692

1.0 0.12 0.6 -0.248(4) 0.8709(1) 0.8692

1.0 0.15 2.3 0.39(1) 0.8795(4) 0.8692

Table 6.1: Results from large-N extrapolation of plaquette expectation

values at Nf = 2. We choose the fit function c0 + c1/N to results at

N = 23, 30, 37, 42, 47 and 53 – we find that in all cases analyzed this

choice leads to reasonable fit quality (the largest obtained χ2/d.o.f is 2.4

which corresponds to p-value p ≈ 0.04). The inclusion of N = 10 and 16

leads to worse fit quality and in some cases even the inclusion of 1/N2 term

does not lead to acceptable fits (see e.g. Fig. 6.2(a)). The table quotes

the values of c0, c1 and χ2/d.o.f., with errors being statistical. Systematic

errors (from different choices of fit function) are a few times larger than

the statistical errors. Our best estimates of the pure-gauge large-volume

expectation value are also quoted. The b = 1 value is a perturbative result

obtained from Ref. [45], while that at b = 0.35 is obtained from the N = 8

pure-gauge simulation at b = 0.3504, from Ref. [77].

discrepancy from the pure-gauge behaviour as κ → κc. To verify this hy-

pothesis, in Table 6.1 we collect the results of the extrapolations together

with the estimates of the pure-gauge large-volume results.

We see that the extracted large-N results, c0, confirm our semi-quanti-

tative prediction. For κ = 0.06, 0.09 the results are consistent with the

pure-gauge results while for κ = 0.12 (closer to κc) they begin to differ.

We also consider one point on the large-κ side of κc. In this case the

plaquette differs substantially from the pure-gauge result. This shows that

the difference of behaviour between the l.h.s. and r.h.s. of κc persists in the

large-N limit (see also the large-κ regions in Fig. 6.1).
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Figure 6.3: The average plaquette in scans at extremely high b for Nf = 2,

N = 10. Note the very fine vertical scale at large b. At such high values

of b we have κc ≈ 0.125, while κf ranges approximately between 0.03 and

0.05, depending on the value of b (cf. Fig. 5.12).

We conclude this section with the results for very large b. The values

of the plaquette in scans at b = 5, 10, 50, 200 (which were already discussed

in Sec. 5.3.3) are presented in Fig. 6.3. The general shape of each curve

resembles those at b = 1 (compare Fig. 6.1(b)). There are two distinctive

features:

1. The jump at κc falls rapidly with increasing b – such behaviour is

qualitatively consistent with the expectations of chiral perturbation
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theory in the confining scenario [75].

2. The jump in the plaquette at κf becomes more distinct, signalling

that the transition in κf is first order at very large b.

6.2 Wilson loops and static-quark potential

While the plaquette is a very useful quantity to compare lattice simulations

to one another, ultimately one would like to be able to use the volume

reduction to calculate physical (continuum) quantities. One such quantity

that is accessible in the single-site model is the heavy-quark potential. We

calculate it using rectangular Wilson loops wrapped around the 14-torus,

in accordance with the volume reduction prescription:

W (L1, L2) =
1

12

∑
µ 6=ν

〈
1
N

ReTrUL1
µ UL2

ν U †L1
µ U †L2

ν

〉
, (6.3)

where we have averaged over all orientations.

For N →∞, inside the funnel, the single-site result should be equal to

the large-volume value, for all L1, L2. We can extract the potential from

the large L2 behaviour:

W (L1, L2)
L2→∞−−−−→ c(L1)e−V (L1)L2 . (6.4)

In the confining regime we expect linear behaviour of the potential at large

L1, with non-vanishing string tension σ:

dV (L1)

dL1

L1→∞−−−−→ σ. (6.5)

As we are always dealing with finite N in the simulations, we need to

keep L � N to keep the finite-N effects under control – the key question

is how large Li one can achieve at given N . This is an exploratory study

and we only used unsmeared links, as opposed to the state-of-art large-

volume simulations which use various kinds of smearing as well as other

noise reduction techniques. In this way we can identify the finite-N effects

in a more transparent way.
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Figure 6.4: Log-linear plot of 1×L Wilson loop versus L for L ≤ N . Results

are from Nf = 2, b = 0.35, κ = 0.12 and for N = 10, 21, 37, 47 and 53,

using 20 configurations except for N = 10 where 150 configurations were

used.

In Fig. 6.4 we present the log-linear plot of 1 × L Wilson loops for

several values of N . For each N we find an approximately exponential

decrease followed by a slow, approximately linear, rise. Since the rise is

an unphysical behaviour (in the large-volume language) and it begins at

larger L as N increases we interpret it as a finite-N effect. The exponential

drop-off seems to converge to a common envelope (linear on the logarithmic

plot). For example, at L = 6 the N = 37 point has already peeled off from

the envelope while the N = 47 and 53 are in good agreement. We can thus

reliably extract the large-N behaviour up to some Lmax(N) – the crucial

question is how exactly Lmax depends on N . To estimate this for every N

one can look at the minimum value of the loop for given L. Then we find

that it falls approximately as 1/N thus Lmax grows only logarithmically

with N .
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Figure 6.5: As for Fig. 6.4, but for 5× L loops.

This is not unexpected as we are trying to extract an exponentially

falling contribution from a quantity that has finite-N corrections, however

this poses a significant numerical challenge. It is also worth stressing that

it is not the statistical errors that are limiting but the size of N that needs

to be taken to extract the potential for large enough L.

Having said that, we see from the Fig. 6.4 that we can extract the

value of the potential V (1) with reasonably small errors. To find σ we

also need to extract the potential at larger separations. In Fig. 6.5 we

show the results for 5 × L loops. The overall pattern is similar to the

one in Fig. 6.4 but the convergence to the common exponentially-decaying

envelope is much poorer and only results for L ≤ 2 appear converged. This

is by no means unexpected as the signal for W (5, L) is significantly smaller

than for W (1, L) while the finite-N background is little changed. This type

of behaviour only allows us to calculate the potential up to separations of 2-

3 lattice units which is too small to reliably estimate the string tension. We

were also unable to extract the Creutz ratios in a reliable way. Again, note
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that the problem is not in the statistics (the 20 configurations are sufficient

to measure the exponentially-falling part of the curves) but rather in the

1/N corrections.

We have also carried out similar calculations in the other points inside

the funnel. Our results are qualitatively the same although we find that the

slope of the rising part at large values of L generally decreases with growing

b. Also, in the large-κ part of the funnel (where the plaquette is closer to

unity) the slope decreases even further and becomes almost L-independent.

The unphysical rise at large L can be understood, at least qualitatively,

in the strong coupling limit of the pure gauge theory (i.e. at κ = 0, b = 0).

The links are then distributed according to the Haar measure. In the large

volume this results in a zero signal due to the vanishing integrals of type:∫
UdU = 0. (6.6)

On the single site, however, the zero-th order of the strong coupling ex-

pansion does not vanish because for every closed contour every Uµ in the

integral comes in pair with a corresponding U †µ. In fact, one can show (using

Refs. [78, 79]) that for b = 0, κ = 0:

W (L1, L2) =
1

N2 − 1
(L1 +L2−1−L1L2/N

2) for 0 < L1, L2 ≤ N. (6.7)

This result shows that the linear rise of the signal with L is not unnatural

in volume-reduced models at finite N . On the quantitative level, however,

the above model does not fit the data obtained in the simulations in the

moderate and weak coupling region. For example, one would expect that

Wmin ∼ 1/N2 while we observe an approximate 1/N dependence.

One idea on how to make the corrections smaller is to use the 24 lattice

and only measure the Wilson loops with odd L1 and L2. In this way the

loop never contains pairs U , U † of the same link and the zero-th order in the

strong coupling expansion vanishes. That this in fact reduces the finite-N

corrections is pictured in Fig. 6.6. This further confirms that the finite-N

behaviour can be understood, at least on the qualitative level. However,

our values of N to date (N ≥ 15) are too small to allow a reliable extraction

of the string tension from the 24 data.
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Figure 6.6: Wilson loops on 24 lattice. Nf = 2, N = 10, b = 0.35, κ = 0.1. The lines

between the datapoints are added to guide the eye.

6.3 Spectrum of the Dirac operator

6.3.1 Spectrum of the Wilson Dirac operator DW

As discussed in Sec. 2.2.4, one can analyze the effective size of the volume-

reduced system at finite-N . One of the observables that are useful to analyze

this quantity is the spectrum of the Dirac operator. The orbifold construc-

tion predicts the effective length Leff to scale proportionally to N1/4 (cf.

Eq. 2.17 and the preceding discussion).

However, as we show further in this section, some features of the Dirac

operator spectrum suggest that such scaling may be perhaps overly pes-

simistic thus we also compare our data to a less conservative possibility,

discussed in Refs. [80, 81] in the context of theories with twisted bound-

ary conditions – in this case every element of the the volume-reduced link

matrices is used in the packaging of the link matrices of the large-volume

theory. This leads to Leff ∝ N1/2. There is also an even more optimistic

scenario, motivated in the Appendix of Ref. [2], which leads to Leff ∝ N .

We expect that in the center-symmetric funnel the spectrum of the

Wilson Dirac operator DW (cf. Eq. 3.3) should resemble that of the large-
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Figure 6.7: Free spectrum of the Wilson Dirac operator at 84 (large blue

dots) and 164 (small red dots), m0 = 0. The spectrum is symmetric with

respect to the real axis, only the non-negative imaginary part is shown.

volume four-dimensional lattice gauge theory on L4
eff. In particular, in the

weak coupling, b & 1, where the spectrum of a free fermion is a valid

approximation, the spectrum should have the characteristic five “fingers”

that reach down to the real axis [82]. The number of fingers is a direct

indicator of the dimensionality of the system (in d dimensions there are

d+ 1 fingers). Thus observing a smaller number of fingers is an indicator of

the correlations between the lattice directions (supplementing the discussion

in Sec. 5.2). Also, the distance of the fingers to the real axis should scale

like 1/Leff. As an example, the spectrum of the free Wilson Dirac operator

on lattices 84 and 164 is presented in Fig. 6.7.

We now show some representative results for the spectrum of

DW (m
(valence)
0 = 0) from our simulations. Note that the Dirac operator in

the determinant of Eq. 3.1 (which determines the masses of the sea quarks)
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is

DW (m0) = 2κ
(
4DW (0) + 1

2κ
− 4
)

=
1

4 + am0

(
4DW (0) + am0

)
, (6.8)

so that the eigenvalues of 4DW (0) close to λ = 4− 1
2κ

are suppressed. The

spectrum is bounded to 0 ≤ Reλ ≤ 8 so the determinant suppression is

important only for κ > 1/8.

Another thing to remember is that on a lattice with even number of sites

in each direction the Dirac operator spectrum is symmetric under reflection

about the Reλ = 4 axis [83]. On the single site there is no such symmetry

but if the reduction holds we expect its emergence (approximate at finite-

N).

In Fig. 6.8 we show the spectrum for six representative values of κ in

the scan at Nf = 2, N = 30, b = 1. At κ = 0.01, Fig. 6.8(a), which is

in the Z1 phase (compare Figs. 5.1 and 5.4(a)) we see a well-formed first

finger and a small indication of the second one. This is consistent with

the link eigenvalues forming a single clump, so that the “momenta”, given

by eigenvalue differences are small (the Dirac operator is constructed out

of the adjoint links and thus it gives the information about the differences

of eigenvalues of the fundamental links). At κ = 0.03, Fig. 6.8(b), we are

in the Z2 phase. The two clumps of link eigenvalues allow the eigenvalue

differences to reach π and to form the fifth finger, however the second and

fourth finger are only slightly indicated and the middle finger is absent.

Also the “rectangular” shaped envelope shows that the spectrum is very

different from the large-volume one.

The next value, κ = 0.12 pictured in Fig. 6.8(c), is well inside the center-

symmetric funnel. The distribution of the eigenvalues of DW is qualitatively

very similar to that of a free fermion on a large lattice with a rounded

top and five fingers – these features are present for all κ < κc inside the

funnel. A particularly interesting feature is the presence of the comet-

shaped clump of eigenvalues near the origin. We find that there are exactly

4(N − 1) eigenvalues per configuration in this clump. We thus interpret

them as the would-be zero modes i.e. the eigenvalues that would be zero in

the b→∞ limit. In the weak-coupling analyses these modes are neglected
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(a) κ = 0.01 (b) κ = 0.03

(c) κ = 0.12 (d) κ = 0.14

(e) κ = 0.17 (f) κ = 0.24

Figure 6.8: Spectrum of 4DW (0) from simulations at Nf = 2, N = 30, b = 1.0 and six

representative values of κ (i.e. masses of the sea quarks). The plots are made using 20

configurations each, only the eigenvalues with non-negative imaginary part are shown.
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[60] because they do not impact the dynamics (i.e. they do not depend on

ϑaµ) and because they only form a O(1/N) fraction of the total number of

modes.

In our calculations, however, they form the lowest non-zero eigenvalues

of the Dirac operator and thus can have a significant impact on the finite-N

dynamics, despite their relative paucity. Recall that the smallest eigenvalues

of the large-volume Dirac operator determine the long-range behaviour of

the theory, such as chiral symmetry breaking. For very large values of N

we expect the smallest eigenvalues to come dominantly from the first finger,

which should approach close to the real axis – we see that N = 30 is rather

far from this description and we conclude that the would-be zero modes are

a potential source of O(1/N) corrections whose contribution can be sizeable

(given how far the “true” low-energy modes in the first finger are from the

real axis).

For κ = 0.14, which is inside the funnel and above κc, the spectrum,

shown in Fig. 6.8(d), is very similar to the one at κ = 0.12. The would-be

zero modes look somewhat different – almost all of them are squeezed to the

left of Reλ = 0.43 which is the point suppressed by the determinant. As a

whole though, the picture looks similar on both sides of the funnel. Moving

on further to κ = 0.17, Fig. 6.8(e), which is also expected to be inside

the funnel, we see that the second and fifth finger have almost disappeared

while the first finger has become more distinct and reaches down closer to

the real axis. This may raise some concerns whether this point is in fact in

the funnel where volume reduction holds (an analysis of the width of the

r.h.s. of the funnel, similar to the one in Sec. 5.3.2, would help to clarify

this issue).

The last plot, Fig. 6.8(f), is taken at κ = 0.24, in the Z3 phase. This is

reflected by the spectrum being divided into three distinct regions (the one

with the negative imaginary part is not shown in the plot) resulting from

link eigenvalue differences distributed around 0 and ±2π/3.

We have also studied the N -dependence of the spectrum at b = 1 and

κ = 0.12. Fig. 6.9 compares the results for N = 37 and N = 53. The

number of eigenvalues is approximately the same in both panels (and a
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(a) N = 37, 300 configs (b) N = 53, 150 configs

Figure 6.9: Spectrum of 4DW (0) at Nf = 2, b = 1.0 and κ = 0.12, for N = 37 and 53.

Note that since (53/37)2 ≈ 2 the number of points is approximately the same in both

plots.

lot bigger than in Fig. 6.8). There is not much difference in the spectra –

the clump of the would-be zero modes decreases with growing N and the

first and fifth finger move a little downwards. The tips of the other fingers,

however, barely move.

The conclusions from these results can be summarized as follows:

1. There is a qualitative agreement of the spectrum of DW inside the

funnel with that of a theory on a four-dimensional large-volume lattice

that supports our claim that the reduction holds therein.

2. The dependence of the distance of the fingertips to the real axis is

inconsistent with Leff ∝ N . On our level of precision it allows both

N1/2 and N1/4 although the presence of well-formed fingers disfavors

the latter possibility. At N ≤ 53 we would not expect the presence

of the fingers in that case, unless some effects that we have not taken

into account make the spectrum look “surprisingly” good1.

1The N = 48 would correspond to Leff = 2 at Neff = 3 which shows no signs of

fingers.
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3. The would-be zero modes are a potential source ofO(1/N) corrections

and can significantly influence the finite-N dynamics, provided that

these 1/N corrections are not exactly cancelled by some mechanism

among the 4(N2 −N) “bulk” eigenvalues.

We have also calculated the spectrum of the Dirac operator in the funda-

mental representation. This gives the information about the link eigenvalues

themselves, rather than their differences. The obtained results confirm the

results presented above and are not presented for the sake of brevity.

6.3.2 Spectrum of the hermitian Dirac operator

The scans similar to the ones in the previous section were also done for

b lower than 1. In that case however, the picture is harder to compare

with the known-results of the large-volume free fermion case. In particular,

at b = 0.35 the spectrum fills the whole allowed region and there is no

sign of fingers. A better approach in this case is to analyze the spectrum

of the hermitian Dirac operator Q (cf. Eq. 4.13) or, equivalently, Q2 =

DW (m0)DW (m0)†.

Analyzing the eigenvalues of Q2 can teach us many interesting things

about the theory. In the continuum limit the spectrum has a gap

λmin
Q2 = (amphys)

2, (6.9)

where mphys is the physical quark mass. Away from the continuum the gap

is smoothed but the spectrum still begins approximately at the square of the

physical mass [84]. Also, if the theory shows the spontaneous breaking of the

chiral symmetry, for small enough quark masses the density of the spectrum

above the gap is approximately constant and equal to the condensate.

In Fig. 6.10 we present the results for the density of eigenvalues of Q2

for Nf = 2, b = 0.35 and κ = 0.12 for several values of N ≤ 47 (the results

for N = 53 are very similar to those of N = 47 and were dropped due to

lower statistics). The plots are normalized to have the same integral so that

we can study the N →∞ limit. The peak at small eigenvalues around 0.01
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Figure 6.10: Density of eigenvalues of Q2 for Nf = 2 at b = 0.35 and

κ = 0.12, for N = 10, 20, 37 and 47, using 150, 150, 20 and 60 configura-

tions, respectively. The vertical scale is arbitrary, but the relative scales for

different N are chosen so that the area under each spectrum is the same.

Errors are not shown, but can be estimated from the kinks in the spectra.

has exactly the area to contain the 4(N − 1) would-be zero modes. Its area

drops as 1/N and we expect it to disappear completely in the large-N limit.

The N -dependence of the bulk part of the spectrum seems to be divided

into two parts – for the eigenvalues above λQ2 ≈ 1.5 the density is approx-

imately N -independent while the density of the smaller eigenvalues has

substantial N -dependence for smaller values of N . The values for N = 37

and N = 47 (and unplotted N = 53) seem to be pretty consistent and there

is not much area of the would-be zero modes to be “redistributed” to the

bulk part. Thus we conclude that the form of the bulk density at N = 47

should be a good approximation to the large-N density.

These results give us another estimate of how large N should one use
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in simulations to obtain the results that are close enough to the large-N

limit. On one hand the bulk part of the spectrum is little changed beyond

N ≈ 40. On the other hands the O(1/N) contribution of the would-be zero

modes is dominant in the physically-important low mode region (and will

most likely remain so also for much larger values of N). It is not easy to

determine a priori how important are the corrections due to the would-be

zero modes – one needs to calculate physical observables, such as meson

masses, and study their N -dependence.

We can now also give a very crude estimate of the physical mass by

neglecting the would-be zero modes and linearly extrapolating the shape of

the bulk density towards zero density. This analysis suggests that the gap

is λmin
Q2 ≈ 0.1 which corresponds to the quark mass amphys ≈ 0.3 modulo an

unknown multiplicative renormalization factor (which we however expect

to be O(1) at b = 0.35 [45]). This rough estimate shows that the quarks

are relatively heavy at the given parameters, not much below mphys = 1/a.



Chapter 7

Summary and outlook

In this work we have presented the analysis of large-N volume-reduced

gauge theories using the lattice regularization. The volume reduction allows

one to non-perturbatively analyze theories that are of great importance.

With heavy fermions (both for Nf = 1 and Nf = 2) one can compare the

results to the large-volume pure gauge theory in the large-N limit. On the

other hand, with light fermions one can analyze a theory (Nf = 1 AEK)

that is within 1/N of the physical QCD with two light quarks or a theory

that is close to the conformal window and is very important for the walking

technicolor models (Nf = 2 AEK)1.

We have reviewed the concept of volume reduction showing how it arises

from the comparison of large-N Dyson-Schwinger equations on the infinitely

large and single-site lattice [1]. We have discussed the lack of spontaneous

breaking of the center symmetry in the volume-reduced model as the key

condition for the volume reduction to hold – and how it fails in the pure-

gauge model originally discussed by Eguchi and Kawai in Ref. [1]. We have

reviewed the ideas to cure the model and we have focused on the concept of

adding fermions in the adjoint representation of the gauge group. We have

then presented a pedagogical review of the large-N orbifold equivalences

that constitute a modern theoretical background for the volume reduction

1Also the supersymmetric Nf = 1/2 case, that was not analyzed in this work, is a

theory of great interest for the theorists.
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with adjoint fermions.

Next, we have introduced the volume-reduced system to be analyzed

in this paper – the single-site SU(N) lattice gauge theory with Nf adjoint

Wilson Dirac fermions – called the Adjoint Eguchi-Kawai model. We have

discussed the theoretical importance of this model for comparisons with

standard large-volume calculations and predictions. We have presented the

perturbative predictions of the behaviour of the model as well as the semi-

quantitative arguments going beyond the perturbation theory presented in

Ref. [61]. The perturbative analysis predicts that the center symmetry in

the large-N limit is intact only for the massless fermions. On the other

hand, Ref. [61] argues that in the massive case the perturbative attrac-

tion of eigenvalues of the Polyakov loop may be overwhelmed by the non-

perturbative fluctuations and result in a center-symmetric ground state,

perhaps even with heavy fermions of m ∼ 1/a. In such case we expect

that the observables will be influenced mostly by the gluon dynamics and

that one can compare AEK with heavy fermions directly to the pure-gauge

large-volume large-N results. That would be a prescription to obtain a

working Eguchi-Kawai reduction.

After introducing the subject we went on to the numerical analysis of

the AEK model with the Monte Carlo method. We have presented the

numerical setup used in this work – the Hybrid Monte Carlo algorithm

for the Nf = 2 case as well as the Rational Hybrid Monte Carlo for the

Nf = 1 case. We have discussed the N -scaling and the performance of the

algorithm.

After that we have analyzed the phase diagram of the AEK model.

To establish the realization of the center symmetry we performed, using

N ≤ 60 and a robust set of observables, scans in the κ− b plane going to b

as high as 200. We have shown that the model has a rich phase structure

that is in agreement with the predictions of Ref. [61]. The center symmetry

is fully broken for very heavy fermions – as one decreases the fermion mass

the theory undergoes a series of phase transitions with partial breakings of

the center symmetry. Finally, at small enough mass it enters the “funnel”

of the unbroken center symmetry. The funnel exists on both sides of the κc
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(the critical value of κ where the physical quark mass disappears). However,

the pattern of the partial breakings is different on the two sides of κc. On

the l.h.s. (this is the region typically used in the large-volume analyses) we

see partial breakings up to Z3 phase while on the r.h.s. – up to Z5. We

believe that at larger values of N it is possible to obtain groups with even

higher partial breakings. Also, in accordance with Ref. [61] it is possible to

see higher partial breakings when one goes to larger b – e.g. for N = 30 we

see at most Z2 at b = 1 while for b ≥ 10 we observe also a Z3 phase. We

have also found that whenever the center symmetry is broken one observes

strong correlations between different lattice directions.

We have found that Nf = 1 and Nf = 2 cases have a similar behaviour

and thus we have mostly focused on presenting results for the Nf = 2 case

(described in Ref. [2]). The main difference is the width of the funnel – the

funnel is expected to be narrower in the Nf = 1 case (i.e. going to lower

fermion mass is necessary to obtain the center-symmetric phase). We have

found that this is in fact observed in the simulations.

We have also observed that for both numbers of flavours the funnel

becomes narrower as N grows. It is thus a matter of crucial importance to

establish whether it remains finite in the large-N limit. This is a significant

numerical challenge and we have limited ourselves to prove it for a single

value of coupling, b = 1, on the l.h.s. of κc. We have found that both for

Nf = 2 and Nf = 1 the large-N extrapolation of quark mass mf (the largest

mass sufficient to restore the center symmetry) is rather large (mf ∼ 1/a),

allowing to treat the dynamics at the verge of the funnel as essentially pure-

gauge. Also, in both cases the fits to the closed-funnel hypothesis (mf = 0)

have very large values of χ2/d.o.f. (23 for Nf = 2 and 6.3 for Nf = 1).

This allows us to conclude that (at b = 1) the funnel does not vanish in

the large-N limit and that massive fermions stabilize the center symmetry.

We have also found that mf has a b-dependence that is consistent with the

predictions of Ref. [61].

Finally, we have used the volume reduction in order to analyze phys-

ical observables. First we have analyzed the average plaquette. We have

performed the large-N extrapolations in selected points of the κ− b plane
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and shown that for heavy quarks the large-N value is consistent with large-

volume pure-gauge calculations while for light quarks it begins to differ. We

have also presented data suggesting that for both Nf = 1 and Nf = 2 there

is a first order transition at κc for b . 1. While this result is expected for

Nf = 1, it is rather surprising for Nf = 2 because it supports the confining

scenario in contrast to large-volume calculations at N = 2 which show that

the theory is conformal. A discrepancy of behaviour between N = 2 and

N → ∞ is unexpected in the literature and the situation would definitely

benefit from further study focusing particularly on the light quark region.

We have also analyzed the heavy-quark potential using large Wilson

loops. We found that the accuracy that one can obtain is limited by the

finite-N effects – using N ≤ 53 we were only able to obtain V (L) for L . 3

and so we were unable to reliably extract the string tension. We have

provided a qualitative description of the 1/N corrections using the strong

coupling expansion and proposed a way to reduce them significantly using

odd-sized loops on a lattice of size 24.

The last analyzed observable was the spectrum of the Wilson Dirac

operator. By using the spectrum of DW we have investigated the mea-

sure of “effective lattice size” Leff at finite values of N . We have shown

that the spectrum favours the Leff ∝ N1/2 although we cannot exclude

the Leff ∝ N1/4 hypothesis. We have also argued how the would-be zero

modes, which are a O(1/N) effect typically excluded in the perturbative

analyses, can have a significant impact on the dynamics of the theory for

finite N – especially when discussing the properties of the theory described

by the low eigenvalues of the Dirac operator. In fact, they could be one

possible explanation of the discrepancy with N = 2 simulations in the con-

formal/confining scenario that we observe at Nf = 2. We have also analyzed

the square of the hermitian Wilson Dirac operator Q2, argued how one can

distinguish the would-be zero modes from the bulk part of the spectrum

and given an estimate of the physical quark mass using the bulk part of the

Q2 spectrum.

* * *
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There are several ways in which one can extend the results presented in

this work. A first and foremost is the need to go to larger systems – that

can be realized by using larger values of N and/or using lattices with more

than one site. The latter possibility has the advantage of being easier to

parallelize – there is a lot of room for improvement in this respect as almost

all simulations performed in this work were executed on a single CPU core.

We also find finite-N corrections that are of order O(1/N) and that

are rather large (see e.g. Fig. 6.1). O(1/N) correction are to be expected

from the perturbation theory in the volume-reduced case (as opposed to

O(1/N2) that are expected in the large-volume models). They can also

arise from the would-be zero modes that we observe in the spectrum of the

Dirac operator.

All these problems can be healed by using twisted boundary conditions

– there the system has O(1/N2) corrections. Also as shown in Refs. [61, 74]

the finite-N corrections to the plaquette are very small compared to the un-

twisted case. Another great advantage of the twisted boundary conditions

is the effective size Leff(N) ∝ N1/2 [80, 81].

To see how crucial it is to obtain this scaling rather than the more

pessimistic one let us compare the CPU-time scaling of the volume-reduced

model with the large-volume large-N simulations. For the large-volume

simulations we have

tCPU(L4) ∝ L5N3, (7.1)

where L5 is the standard volume scaling of the HMC algorithm [85, 86] and

N3 is the cost of the matrix multiplication. On the single site and for light

quarks we have:

tCPU(14) ∝ N4.5 =

{
L5

effN
2 if Leff ∝ N1/2

L5
effN

3.25 if Leff ∝ N1/4
(7.2)

Thus the volume reduction is computationally much more competitive in

the case of the former scaling. Our calculations suggest that the optimistic

scenario is also possible in the untwisted model, however the matter is far

from being as well-established as it is in the twisted case2.
2To even further confirm this we have made some preliminary calculations of the
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It is also crucial to calculate more physical quantities, in particular the

meson masses. This can be done on the single site using the Quenched

Momentum Prescription as described in Ref. [87]. However, as this method

is quite novel and it raises some controversies (see e.g. Ref. [88]), it would

be very beneficial to compare its results to the standard calculations that

can be done by introducing one extended lattice direction. Calculation of

the pion mass would be an important crosscheck on our findings of the con-

fining/conformal scenario at Nf = 2. A setup with one elongated direction

also allows the calculation of glueball masses.

Wilson Dirac spectrum with twisted boundary conditions and we find that at large

b the spectrum resembles very closely that of the free fermion on the corresponding

L4
eff = (

√
N)4 lattice. We also see no sign of the would-be “zero modes”, which are

present in the untwisted case.
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[29] A. González-Arroyo, M. Okawa, JHEP 1007 (2010) 043

[1005.1981 [hep-lat]].



BIBLIOGRAPHY 90
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