
Classical and Quantum Computation of
Strongly Correlated Systems

Professor Jacek Dziarmaga
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INTRODUCTION

Strongly correlated condensed matter sys-
tems are one of the greatest challenges of the
contemporary physics [1]. Correlation effects in-
duced by strong interactions are most prominent
in one and two space dimensions (1D and 2D)
where it is more difficult for particles to avoid
each other than in 3D. The strong correlations
result in exotic states of matter like the Lut-
tinger liquid in 1D or the high-temperature su-
perconductivity and topologically ordered states
with anyonic excitations in 2D. The strongly
correlated systems are promising candidates for
quantum-technological applications like, e.g.,
topological quantum computers [2], but at the
same time they are notoriously hard to solve by
either analytical or numerical methods. Typ-
ically they have no weakly interacting regime
that could be a starting point for a systematic
perturbative expansion.

The general problem is somewhat less chal-
lenging in 1D with its prominent examples of
exactly solvable integrable systems and power-
ful numerical methods like the density matrix
renormalization group (DMRG) [3]. The DMRG
provides essentially exact results for the ground
states with a finite energy gap equivalent to a
finite correlation length and a finite entropy of
entanglement between two “halves” of an infinite
chain. The finite entropy means that the ground
state satisfies a 1D version of the area law for en-
tanglement [4]. The power of the DMRG comes
in part from the possibility to make the Schmidt
decomposition between the left and right halves
of a 1D chain. This is less useful in 2D.

In 2D the above problems return in their full
complexity. Here the analytic methods often boil
down to different versions of the mean-field the-

ory that turn out to be unreliable in most in-
teresting situations. Variational wave-functions
– and variational quantum Monte Carlo algo-
rithms – are biased towards the assumed class
of wave-functions, while the unbiased quantum
Monte Carlo is plagued with the notorious sign
problem originating either from frustration or
fermionic statistics. In this situation quantum
tensor networks emerge as a promising candi-
date to make a breakthrough in a wide class
of systems that are beyond reach of the quan-
tum Monte Carlo [5–11]. As variational meth-
ods, they are free of the sign problem but, at the
same time, the only bias introduced by a tensor
network variational ansatz is that the entangle-
ment entropy must be limited by a 2D version of
the area law: the entropy of entanglement of a
subsystem with the rest of the lattice is propor-
tional to the size of the subsystem’s boundary.
In a wide class of gapful ground states that sat-
isfy the area law, tensor networks can be consid-
ered as unbiased. The same is expected for ther-
mal states of quantum Hamiltonians. By defi-
nition, the Gibbs state is the mixed state with
the maximal entropy possible for a given average
energy. Since this maximal entropy is actually
the entropy of entanglement between the system
and the rest of the universe, then – thanks to
the monogamy of entanglement – there is little
entanglement left between different parts of the
system. This intuition is made rigorous by, e.g.,
an area law for mutual information satisfied by
any thermal state [12].

2D tensor networks [7–9, 11] can be consid-
ered a generalization of the 1D DMRG in the
sense that the variational ansatz that is opti-
mized by the DMRG algorithm is a matrix prod-
uct state (MPS), an example of a 1D tensor net-
work. Figure 1 shows the PEPS ansatz that is
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FIG. 1. This figure shows a PEPS tensor network
on an infinite square lattice. Here we show only part
of the whole network corresponding to 4 × 4 sites of
the infinite lattice. The dashed lines connect this
part with (not shown) rest of the network. In A, the
basic building block is a tensor A with physical in-
dices i, a numbering physical states on a single lattice
site (say, spin and orbital degrees of freedom, respec-
tively), and bond indices t, r, b, l that provide entan-
glement with other sites on the lattice. In B, the
A-tensors are contracted through the bond indices to
provide the probability amplitude for different basis
states in the Hilbert space on the square lattice. In
a sense, the matrix product state (MPS) in 1D can
be obtained as a single column or row of this PEPS
ansatz.

a 2D version of the 1D MPS. However, since –
unlike in MPS – cutting a single bond in the
PEPS ansatz is not equivalent to an orthogonal
Schmidt decomposition, the algorithms to opti-
mize the PEPS ansatz [7, 13] have to be founded
on very different principles than the powerful
DMRG algorithm. In spite of this challenge, the
PEPS provided the best approximations, with
the lowest energies ever achieved, to the ground
states of the paradigmatic t − J and Hubbard
models [14] of the high-temperature supercon-
ductivity. By no means less spectacular was
the solution to the long-standing magnetization-
plateaux puzzle in Ref. [31].

Motivated by the success of PEPS in the
study of strongly correlated ground states, one
of the objectives of the present project is to de-
velop tensor networks for efficient computation
of thermal states of 2D strongly correlated quan-
tum systems. We also want to develop a new
PEPS-based algorithm to search for topological
order in ground states of strongly correlated sys-
tems.

The starting point for the work on ther-
mal networks will be our original proposal [15],
where a tractable 2D thermal density matrix
is obtained by dimensional reduction of an in-

tractable 3D network that is an exact repre-
sentation of the thermal state on the 2D lat-
tice. This algorithm was successfully tested in a
number of benchmark applications including the
high-temperature regime of the Hubbard model
[15, 16]. One of the objectives of this project is
to upgrade and then apply the algorithm to find
finite-temperature phase diagrams that are be-
yond the range of applicability of more conven-
tional methods. The Holy Grail is a complete
finite-temperature phase diagram of the Hub-
bard model, but characterizing unknown phase
diagrams of frustrated spin systems would also
be quite fulfilling.

The starting point for the work on 2D topo-
logical tensor networks will be some of the gen-
eral ideas formulated in the classic paper [17]
that have not been implemented in practice yet.
We are working on a more powerful PEPS algo-
rithm able to find a topologically-ordered ground
state. We also want to develop a new tensor net-
work algorithm suitable for detecting and char-
acterizing the topological order in the PEPS net-
work representing the ground state. A combina-
tion of these two algorithms could be used in a
systematic search for Hamiltonians with topo-
logically ordered ground states and thus pave a
way to physical implementation of topological
quantum computers.

As mentioned above, the area law for quan-
tum entanglement is a practical limit for the
applicability of tensor networks. Some critical
ground states just as well as most dynamical
ones – that are able to develop volume law in a
short time – remain beyond their reach. In these
very interesting regimes of large entanglement
great hopes are placed in quantum computers or
their less challenging version, i.e., quantum sim-
ulators. Today around 150 quantum simulators
are in operation all over the world. They vary
in technology and quality, the degree of their ac-
tual “quantumness” is debatable, but they all to
a greater or lesser extent are based on the idea of
an adiabatic quantum simulator/computer [18–
20]. The most explicit implementation of the
adiabatic quantum simulator (AQS) is the fa-
mous, and somewhat controversial, D-Wave [21].
The idea of AQS is to evolve adiabatically from
a simple ground state of an initial Hamiltonian



3

  

Mott

BEC

FIG. 2. A typical example of adiabatic quantum
state preparation in ultracold atomic gases. Initially
a Bose-Einstein condensate is prepared. This state
is simple in the sense that it is relatively easy to
prepare by evaporative cooling. Once the atoms are
condensed, an optical lattice potential is turned on.
Ideally, the evolution is adiabatic and the atoms fi-
nally end in the Mott insulator ground state in a deep
lattice potential. This interesting ground state is ap-
proximately the Fock state with precisely 1 atom in
each lattice well. Unfortunately, the final Mott state
and the initial superfluid state are different enough
to be separated by a quantum phase transition with
a gap vanishing at the critical point. Consequently,
the evolution is not adiabatic and the final state is ex-
cited with respect to the desired ground state of the
final Hamiltonian. Here the excitations are the empty
and doubly occupied wells. The number of excita-
tions and the excitation energy depend on the rate at
which the lattice potential is turned on. We quantify
this rate by a time-scale τQ known as a “quench time”
for historical reasons. The Kibble-Zurek mechanism
(KZM) predicts that the excitation decays with an
inverse power of the quench time.

to an interesting ground state of a final Hamilto-
nian. Unfortunately, the simple and the interest-
ing are often different enough to be separated by
a quantum phase transition, see figure 2. There-
fore, in order to perform its function, the AQS
must be able to evolve adiabatically in a neigh-
bourhood of a quantum critical point. This evo-
lution is described by a quantum generalization
of the Kibble-Zurek mechanism (KZM), see the
review papers [22, 23]. One of the objectives of
this project is better understanding of the in-
fluence of different imperfections, like disorder
or dissipation and decoherence, on a very sus-

ceptible adiabatic ground state near a quantum
critical point. This knowledge may help to con-
struct more stable versions of the D-Wave and
other machines [24].

OBJECTIVE I: THERMAL TENSOR
NETWORKS

Significance

While the tensor network community is
mainly occupied with increasingly more accu-
rate calculation of ground states we – encour-
aged by their success – proposed a tensor net-
work to calculate thermal states of strongly cor-
related systems [15]. Its general structure is
shown in figure 3. Like all tensor networks, it is
free of the fermionic sign problem. Its accuracy
was demonstrated in benchmark applications to
the 2D quantum Ising model, the quantum com-
pass model, and the Hubbard model [15, 16].
Using modest numerical resources (a few desk-
tops) we achieved accuracy comparable to the
most accurate conventional unbiased numerical
methods (quntum Monte Carlo, cluster DMFT).
Our benchmark results in the strongly interact-
ing regime of the Hubbard model are shown in
figure 4. It is time to attack unsolved problems
that are beyond the conventional means. Pre-
liminary results of our first attempt are shown in
Fig. 5. We think that, after some improvements,
our thermal network may repeat the success
of the ground-state networks and become the
standard method of choice for finite-temperature
problems that are beyond reach of the quantum
Monte Carlo.

Workplan

This research will follow two main lines:

• application of the existing algorithm to
obtain phase diagrams of frustrated and
fermionic systems;

• conceptual developments in order to at-
tack the most challenging problems like
full characterization of the finite-T phase
diagram of the Hubbard model.
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FIG. 3. This figure shows the general structure of
the thermal tensor network proposed by us in Ref.
[15]. The Gibbs operator e−βH , where β is the inverse
temperature and H the Hamiltonian, on an infinite
square lattice can be written with Suzuki-Trotter de-
composition as a 3D tensor network represented by
the diagram in (b). This diagram is build from 2D
horizontal layers (one of them shown in (a)), each
of them corresponding to an operator e−dβH , where
dβ is a small time step in the decomposition. The
dashed line convention from Fig. 1 is used here, as
shown part of the network corresponds to 4× 4 sites
of the infinite lattice and 3 of many layers. Each ball
represents a rank-6 tensor with its 6 indices repre-
sented by 6 lines sticking out of it. A line connecting
two balls represents tensor contraction. Each (red)
vertical line is an index numbering basis states on its
lattice site. The black (contracted) indices are called
the bond indices The third vertical dimension is the
imaginary time β. After making all red contractions
the 3D network in (b) becomes formally a 2D net-
work in (c), but the bond dimension of its (thick
black) bond indices is huge. These indices have to
be truncated, see (e), by the projectors in (d). The
result of this truncation is the 2D network in (f) with
a small truncated bond dimension D (limiting entan-
glement in the truncated state) of the blue indices.
Thanks to the area law for entanglement, for large
enough D this truncation does not affect the accu-
racy of the thermal network provided that the projec-
tors (d) are chosen optimally. To optimize the huge
projectors efficiently, they are represented by another
tensor network made of small isometric tensors which
are optimized one-by-one.
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FIG. 4. This figure, originating from Ref. [16],
shows high-temperature benchmark results in the

Hubbard model: H = −∑〈i,j〉σ t(c†iσcjσ + c†jσciσ
)
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(
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2

) (
ni↓ − 1
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)
, where c†iσ and ciσ create

and annihilate, respectively, an electron with spin
σ =↑, ↓ on site i, niσ = c†iσciσ is the number opera-
tor, U > 0 is on-site repulsion strength, and 〈i, j〉 de-
notes summation over nearest neighbour (NN) pairs
with hopping energy t. The points in the figure show
typical benchmarks for this model: total energy E
per site and double occupancy 〈ni↑ni↓〉 as a func-
tion of the bond dimension 8 ≤ D ≤ 20 obtained in
strongly correlated half-filled and underdoped regime
- U/t = 8 with our tensor network shown in Fig. 3
(details in Ref. [16]). Circles, triangles, squares and
diamonds mark different inverse temperatures β and
electron densities n (per lattice site). For compar-
ison, lines show corresponding results from cluster
DMFT extrapolated with the cluster size sent to in-
finity [25, 26], which is considered to be the best un-
biased numerical method in this regime [25].

Encouraged by our benchmark tests, we be-
lieve that our present algorithm is ready for a
systematic study of most frustrated spin systems
with nearest neighbour interactions and some
paradigmatic fermionic and spin-orbital models
like spinless interacting fermions on honeycomb
lattice [27]). Including additional next-nearest-
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FIG. 5. Preliminary results for a phase tran-
sition in the quantum eg model on an infinite
square lattice: H = −∑〈ij〉||a τai τaj −∑〈ij〉||b τ bi τ bj ,

where
∑
〈ij〉||a(

∑
〈ij〉||b) denotes a sum over nearest-

neighbour bonds along the a-axis (b-axis), τa =√
3
2 σ

z + 1
2σ

x, τ b = −
√
3
2 σ

z + 1
2σ

x and σx, σz are
Pauli matrices representing orbital degrees of free-
dom. A second order phase transition is expected to
a phase with non-zero orbital polarization 〈τz〉 (one
of the orbitals is occupied more frequently than the
other). Estimates of its critical temperature Tc and
critical exponents β, γ are obtained for different val-
ues of the bond dimension 6 ≤ D ≤ 11. The critical
temperature Tc is converged in D up to 4 signifi-
cant digits and the estimates of the critical exponents
agree with the expected 2D Ising universality class
(β = 1/8, γ = 7/4) within 1%. They approach the
exact ones with increasing D. The phase diagram of
this model is inaccessible to quantum Monte Carlo
because of the sign problem.

neighbour interactions is straightforward and
can further increase its range of applicability. To
begin with, we plan to apply the algorithm to
the spin-orbital eg-model [10, 28], the Kitaev-
Heisenberg model [29], the spin-1 Heisenberg
model on the hexagonal lattice [30], and the
Shastry-Sunderland model [31]. Preliminary re-
sults for the eg model are shown in Fig. 5.
Ground states of these models were already
simulated by tensor networks and some major
breakthroughs were made like the solution of
the long-standing magnetization-plateaus puzzle

[31]. A systematic study of their finite-T phase
diagrams will provide further data to be com-
pared with experiments.

At temperatures far below the benchmark in
figure 4, the Hubbard model still remains a hard
problem. Rather than to push the present al-
gorithm towards lower temperatures by a brute
force, we want to rethink some of its basic prin-
ciples, make improvements, and then to attack
this notoriously difficult problem again with an
upgraded version.

Methodology

The application of the existing algorithm will
require optimizing the thermal network for dif-
ferent values of Hamiltonian parameters and
temperatures in order to scan the phase diagram.
In analogy to the state of the art PEPS ground
state simulations [14, 31], large unit cells will be
used to allow for states with many different pat-
terns of translational symmetry breaking.

The conceptual improvements may open a
path to efficient simulation of the Hubbard
model. They include

• generalization of the orthogonal projec-
tors used in the current ansatz, see Fig.
3d, to the most general non-orthogonal
ones [32] that were successfully used to
improve efficiency of tensor networks in a
different context [14];

• redefining the figure of merit for projector
optimization to target directly the desired
observables;

• generalization of the finite entanglement
scalings (FES) – proposed originally [33]
for quantum phase transition in 1D sys-
tems – to our method in order to improve
the accuracy of critical temperatures and
exponents.

The finite entanglement scalings are equivalent
to the finite size scalings known in the quantum
Monte Carlo [34] where they are essential for
its unmatched precision and reliability. Combin-
ing FES with our method can be a crucial step
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towards obtaining reliability and precision com-
parable with the best unbiased quantum Monte
Carlo. It may bring the Monte Carlos’s precision
and reliability to systems with a sign problem
that are not tractable by the Monte Carlo itself.

Collaboration

We hope to benefit from a collaboration with
Prof. Philippe Corboz from Amsterdam who is
a leader in applications of the PEPS network to
ground states of strongly correlated systems.

OBJECTIVE II: TOPOLOGICAL TENSOR
NETWORKS

Significance

The quantum topological order is a non-local
phenomenon evading the Landau classification
based on local order parameters [37]. It sup-
ports anyonic excitations that can be employed
in topological quantum computation. Thanks to
the non-locality the computation is going to be
robust against local decoherence. There is an
urgent demand for strongly correlated systems
with topologically ordered ground states. In or-
der to meet this demand an algorithm was de-
veloped where a quasi-1D tensor network is used
to study topological order in the ground state of
a 2D strongly correlated system [17], see figure
6b. However, a mismatch between the structure
of the 1D network and the 2D lattice limits its
applicability to ground states with very small
correlation lengths. In this project, encouraged
by the recent breakthroughs in minimization of
PEPS energy [13], we will follow the general
strategy of the classic paper [17] but with the
2D PEPS in place of the 1D network. Since the
structure of the 2D PEPS can match that of the
2D lattice, see figure 6a, in principle there are no
upper limits to the correlation lengths that can
be considered. If successful, our project will pro-
vide numerical tools for a systematic search for
topological order in strongly correlated systems.

FIG. 6. This figure comes from the pioneering work
[17]. It shows how to describe a topologically-ordered
ground state on an infinite cylinder with periodic
boundary conditions in the vertical direction. Panel
(a) shows a natural covering of the cylinder with a 2D
PEPS tensor network. The red lines, connecting the
sites of the hexagonal lattice, represent the structure
of this tensor network that is also hexagonal. Panel
(b) shows a less natural covering with a quasi-1D
network used in DMRG calculations. The red lines
represent its quasi-1D structure. Thus far method
(b) was mainly developed (but see [35]) because it
could benefit from the well established DMRG algo-
rithms. However, due to the incompatibility of the
1D tensor network with the 2D lattice, its applica-
bility was limited to very small correlation lengths.
Recent breakthroughs in the PEPS algorithms [13]
encourage us to renew the idea (a), where the corre-
lation length can in principle be arbitrarily large.

Workplan

We want to create a comprehensive numerical
tool made of two key elements:

• an algorithm to minimize the energy of
a 2D PEPS tensor network representing
the ground state of a topologically ordered
system on an infinite 2D lattice;

• an algorithm to detect and characterize
the topological order in the PEPS ap-
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proximating the ground state suspected of
topological ordering.

These two elements can be developed either in
parallel or one after another.

Methodology

In order to obtain sufficiently accurate repre-
sentation of ground states with the PEPS ten-
sor network, we want to develop further the new
variational methods to minimize its energy [13].
We will go beyond the nearest neighbour cou-
plings in a Hamiltonian and introduce at least
the next-nearest-neighbours. Furthermore, in
the iterative optimization procedure we will up-
date clusters of a few lattice sites rather than in-
dividual tensors on individual lattice sites. This
will make the minimization more robust against
being trapped in local energy minima.

In order to detect and characterize topo-
logical order, a PEPS representing the unique
ground state on an infinite lattice can be
wrapped on a cylinder or a torus, as shown in
figure 6a, where it becomes a linear combina-
tion of degenerate ground states. These ground
states are locally indistinguishable but topolog-
ically different. Matrix product states are go-
ing to be employed to represent projectors on
the different ground states. When projected out,
overlaps between ground states, subject to mod-
ular transformations, will reveal their topologi-
cal universality class.

Collaboration

We plan a collaboration with Dr  Lukasz Cin-
cio – currently an Oppenheimer Fellow in the Los
Alamos National Laboratory and formerly a 5-
year postdoc in the Perimeter Institute – who is
a leader in application of DMRG to topological
order [17].

gap
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-t
Λ
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FIG. 7. When a quantum Hamiltonian is slowly
driven across a quantum critical point, its energy gap
closes at the critical point and, at the same time, the
relative transition rate diverges to infinity. As a re-
sult both at the time t = 0 of crossing the critical
point and in its neighbourhood from −t̂ to +t̂, the
evolution cannot be adiabatic. The system must get
excited and – according to the quantum Kibble-Zurek
mechanism [22] – the excitation energy should decay
with a power of the transition time. The characteris-
tic exponent depends on the universality class of the
quantum phase transition [22].

OBJECTIVE III: ADIABATICITY OF
QUANTUM SIMULATORS

Significance

Adiabatic quantum simulators (AQS) are ex-
pected to become an indispensable tool for quan-
tum computation of strongly correlated systems.
They enter the game where tensor networks on
classical computers must give up, i.e., when
the quantum states of interest become entan-
gled more than the limit set by the area law.
The most promising implementations of AQS
are atom/ion traps [19, 36] or superconduct-
ing structures like the D-Wave [21]. An AQS
is supposed to evolve adiabatically – following
a time-dependent Hamiltonian – from a sim-
ple initial ground state to an interesting final
ground state, but the simple and the interest-
ing are often different enough to be separated
by a quantum phase transition. A slow evolu-
tion near a quantum critical point is described
by a quantum version of the Kibble-Zurek mech-
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FIG. 8. This figure shows preliminary experimen-
tal results from quantum simulations of the quantum
Kibble-Zurek mechanism (KZM) in the transverse-
field quantum Ising chain with the D-Wave 2X adia-
batic quantum simulator (Los Alamos). An average
number of kinks is shown in the final ferromagnetic
chain of 500 spins/qubits after a linear quench of the
transverse field gx with a quench time τq. The num-
ber of excitations decays with a power of τq, as ex-
pected from KZM, but the exponent is −1 instead
of the −1/2 predicted in the classic paper [45]. Ei-
ther weak disorder or decoherence and dissipation are
candidate culprits.

anism (KZM), see the review papers [22, 23] and
figure 7. This theory is already supported by
a number of experiments [38]. Its most refined
version – the KZ scaling hypothesis [39] – was
confirmed by a recent beautiful experiment [40].
However, improving precision of experiments is
revealing potential influence of various imperfec-
tions, like disorder [41] or coupling to external
environment causing decoherence and dissipa-
tion [42], on a very susceptible quantum state of
a system attempting an adiabatic evolution near
a quantum critical point. These effects will not
be negligible in any AQS and in particular they
are not negligible in the D-Wave 2X machine,
see our preliminary experimental results in figure
fig:dwaveKZM. The effects of disorder were con-
sidered in early theoretical papers [43] but their
experimental relevance was appreciated only re-
cently [41]. More systematic understanding of

these phenomena and incorporating them into
the general framework of the KZM may help to
construct more accurate adiabatic quantum sim-
ulators.

Workplan

This project will require going back to the
roots and re-examining some of the most basic
notions underlying the KZ physics. To this end
the quantum Ising chain is usually an indispens-
able testing ground [43, 45]. Its Hamiltonian
reads

H = −
L−1∑
l=1

Jlσ
z
l σ

z
l+1 −

L∑
l=1

(gxl σ
x
l + gzl σ

z
l ). (1)

Here Jl are coupling strengths, gxl are transverse
fields, and gzl are longitudinal fields. Both in
theory [43, 45] and in the D-Wave machine the
adiabatic evolution is driven by a ramp of a uni-
form transverse field gx from a large initial value
down to gx = 0. Were it an adiabatic evolution,
the state would follow the ground state from the
initial state of transverse-polarized spins/qubits
to the final ferromagnetic state. In the pure Ising
chain, without any longitudinal field gzl and with
the couplings and transverse fields independent

of l, τ
−1/2
q excitations/kinks are expected to be

found in the final ferromagnetic state [45], where
τq is a transition/quench time.

The plan is to consider first the influence of
uniform and random longitudinal fields gzl on the
final number of excitations. Even when turned-
off, such fields cannot be completely eliminated
in the D-Wave AQS, and even when very small
their influence must be significant given the di-
vergent linear susceptibility at the critical point.
The next step is to couple the chain to Marko-
vian environments whose influence can be mod-
elled by Lindblad superoperators in the master
equation. Finally, non-Markovian environments
can also be considered.

Methodology

In the absence of longitudinal fields, the Ising
chain is solvable by the Jordan-Wigner and Bo-
goliubov transformations. Dynamics of the Ising
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chain coupled to external environment can of-
ten be described in terms of quadratic fermionic
correlators that decouple from higher-order cor-
relators. A quantum state during a slow evo-
lution across a critical point satisfies the area
law for entanglement [44] and thus can in prin-
ciple be simulated with tensor networks. Finally,
we will have access to the newest D-Wave 2X in
Los Alamos to experiment with quantum simu-
lations.

Collaboration

A long standing collaboration with Prof. Wo-
jciech Zurek from the Los Alamos National Lab-
oratory will be sustained. A new collaboration
with Dr Bart lomiej Gardas – currently a 3-year
FUGA postdoc in our group and formerly a 2-
year postdoc in Los Alamos – will be enhanced.

RESEARCH AND TRAINING
POTENTIAL

The project leader (PL) is an author of one
of the pioneering papers on the dynamics of
quantum phase transitions [45] (237 citations)
and an invited review article on the same sub-
ject [22] (243 citations). He also contributed to
some of the first applications of quantum tensor
networks in two spatial dimensions [9, 10, 46].
PL was an advisor of 5 PhD students, four
of them continue their careers in science doing
postdocs in Australia, Austria, Canada, Fin-
land, Netherlands, Italy, and the USA, in places
like the famous Perimeter Institute and the leg-
endary Los Alamos National Laboratory. Their
hosts include international stars like Philippe
Corboz (Amsterdam), Lew Pitaevskii and San-
dro Stringari (Trento), Guifre Vidal (Perimeter),
Frank Verstraete (Vienna), and Wojciech Zurek
(Los Alamos). One of PL’s present students is
a laureate of the prestigious Diamond Grant for
young researchers from the Polish Ministry of
Science and Higher Education. If funded, this
project will provide a high quality environment
for training further students in international re-
search collaboration. It is PL’s principle to face
young people with serious scientific problems

from the very beginning of their careers.

SUMMARY

The proposed research is timely. The quan-
tum tensor networks matured enough to attack
important realistic models of condensed mat-
ter physics. At the same time, the adiabatic
quantum simulators gained precision where even
small disturbances begin to have qualitative con-
sequences. The whole research area is promis-
ing lots of exciting and unexpected new devel-
opments in the near future. We stay in touch
with the leading experts and expect to obtain
results publishable in the leading journals. Fi-
nally, the project will give its young participants
an opportunity of exciting research in an interna-
tional environment already at the very beginning
of their scientific careers.
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