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Kraków, 2023



I would like to express my heartfelt gratitude to my supervisors, prof. Jacek Tabor and dr hab.
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Streszczenie

W ostatnich latach zaobserwowano dynamiczny rozwój metod sztucznej inteligencji, który

spowodował automatyzację wielu zadań. W tych zadaniach systemy oparte o sztuczną

inteligencję uzyskują skuteczność na poziomie zbliżonym, badź nawet wyższym niż ludzki.

Osiągnięto to dla wielu problemów w domenach takich jak rozpoznawanie obrazów czy

przetwarzanie języka naturalnego. Stało się to możliwe głównie dzięki rozwojowi mocy

obliczeniowej (w szczególności kart graficznych) i metod opartych o sztuczne sieci neuronowe

(SSN). Jednakże modele oparte o SSN mimo wielkiej skuteczności mają też szereg wad. Istotną

wadą jest ich czarnoskrzynkowy charakter, który rozumie się jako brak wyjaśnienia zwracanych

przez model predykcji i sposobu jego rozumowania. Brak zrozumienia decyzji modelu jest

szczególnie niepożądany w dziedzinach takich jak medycyna, gdzie decyzje mają znaczący

wpływ na ludzkie życie.

W związku z brakiem transparentności SSN opracowano wiele metod wyjaśniających ich

decyzje. Można podzielić je na dwie grupy: metody post-hoc oraz metody samowyjaśnialne.

Pierwsza grupa metod zakłada opracowanie dodatkowego modelu analizującego decyzje

podejmowane przez model czarnoskrzynkowy. Zaletą tego podejścia jest możliwość

zastosowania go do wytrenowanego już modelu bez zmian w jego architekturze. Natomiast

częsta wadą jest nieprecyzjność i niewiarygodność zwracanych wyjaśnień. W przypadku metod

samowyjaśnialnych, mechanizm interpretowalności jest zaszyty w ich architekturę, więc wraz

z predykcją zwracane jest jej wyjaśnienie. Dzięki temu zapewniają one większą wiarygodność

wyjaśnienia, ale są jednocześnie trudniejsze do wytrenowania, a osiągana przez nie skuteczność

jest niższa niż ta uzyskiwana przez metody czarnoskrzynkowe.

Niniejszy doktorat skupia się na metodach samowyjaśnialnych opartych na sztucznych

sieciach neuronowych, ze szczególnym uwzględnieniem mechanizmu poolingu atencyjnego

oraz części prototypowych. Mechanizm poolingu atencyjnego stosuje się do uczenia ze słabym

nadzorem, zwłaszcza do uczenia wieloinstancyjnego (gdzie jedna etykieta przypisana jest do

zbioru instancji). Natomiast modele oparte o części prototypowe w trakcie treningu uczą się

konceptów wizualnych pochodzących z danych treningowych. Na etapie inferencji zapamiętane

przez model koncepty wizualne są porównywane do danych wejściowych w celu dokonania

ostatecznej predykcji.

W ramach doktoratu, bazując na modelu opartym o części prototypowe ProtoPNet [11],

opracowano trzy nowe architektury, które niwelują ograniczenia modelu bazowego. Pierwszy z

nich, ProtoPShare [I], współdzieli części prototypowe pomiędzy klasami poprzez ich łączenie

w uprzednio wytrenowanym modelu. Łączenie to odbywa się w oparciu o nową metrykę

potrafiącą wykryć podobieństwo semantyczne pomiędzy prototypami, nawet gdy są one odległe

w przestrzeni ukrytej. Aby wykluczyć potrzebę trenowania modelu bazowego, wprowadzono

ProtoPool [II], który uczy się zbioru części prototypowych wraz z ich przypisaniem do
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poszczególnych klas, pozwalając na ich współdzielenie. Jest to możliwe dzięki zastosowaniu

technik regularyzacyjnych opartych o Gumbel-Softmax oraz wprowadzeniu podobieństwa focal

similarity, które wykrywa bardziej charakterystyczne części prototypowe. Uogólnienie tych

metod do problemu regresji w przewidywaniu właściwości molekuł zaprezentowano wraz z

dedykowanym modelem ProGReST w pracy [III].

Poza rozwojem metod opartych na częściach prototypowych, w ramach doktoratu

rozwinięto metodykę poolingu atencyjnego stosowanego w problemach uczenia

wieloinstancyjnego i zaproponowano dwa nowe podejścia. Pierwsze z nich, SA-AbMILP [IV]

korzysta z mechanizmu self-attention do nauki zależności pomiędzy instancjami w zbiorze.

Dzięki temu lepiej sprawdza się dla bardziej złożonych założeń uczenia wieloinstancyjnego,

a jednocześnie wyjaśnia jak dana cecha wizualna wpłynęła na decyzję modelu. Drugie z

nich, ProtoMIL [V], pozwala na lokalną i globalną interpretowalność dla problemu uczenia

wieloinstancyjnego poprzez połączenie ze sobą części prototypowych i poolingu atencyjnego.

Podsumowując, prezentowany doktorat skupia się na metodach interpretowalności

dla uczenia głębokiego, a w szczególności na modelach opartych o części prototypowe i

mechanizm atencji. W ramach przeprowadzonych badań opublikowanych zostało pięć prac

na konferencjach naukowowych posiadających kategorię A* [I, II] i kategorię A [III, IV,

V] według rankingu CORE. Doktorant jest pierwszym autorem wszystkich tych publikacji.

Ponadto był on kierownikiem grantu NCN Preludium oraz grantu w ramach Inicjatywy

Doskonałości Uniwersytetu Jagiellońsiego. Doktorant odbył również staż naukowy w Centrum

Wizji Komputerowej Autonomicznego Uniwersytetu Barcelońskiego w grupie badawczej prof.

Joosta van de Weijera, oraz jest współautorem aplikacji patentowej złożonej do Europejskiego

Biura Patentowego.

Słowa kluczowe: interpretowalność, wyjaśnialna sztuczna inteligencja, uczenie głębokie.
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Abstract

Recent years have brought a significant advancement in artificial intelligence methods

allowing for the automation of multiple repetitive tasks in many domains, including image

recognition and natural language processing. This resulted in performance comparable or

superior to humans. These achievements were largely possible owing to recent breakthroughs

in computational devices, especially graphical processing units (GPUs), and machine learning

techniques utilizing Deep Neural Networks (DNNs). However, despite their remarkable

performance, DNNs involve multiple flaws. One major drawback is their black-box nature

caused by the lack of explanations for their decisions. The inability to inspect the model’s

reasoning process is a concerning aspect, particularly in high-stakes decision fields such as

medicine, where those decisions may significantly impact human lives.

In response to the lack of transparency of DNNs, various approaches have been developed to

provide explanations for their decisions. These approaches may be divided into two categories:

post-hoc and self-explainable methods. Post-hoc methods involve training a black-box model

and subsequently developing an explainer model on top of it. This approach can be applied

to already-trained models, but resulted explanations are frequently unreliable and imprecise.

Nonetheless, self-explainable approaches incorporate interpretability as an intrinsic aspect of

the model. This way they provide explanations alongside with their predictions. While

self-explainable models offer higher quality explanations compared to explainers, they are more

challenging to train, and their performance is moderately lower than the black-box models.

This doctoral thesis focuses on developing self-explanaible methods utilizing artificial

neural networks, with particular focus on attention pooling mechanism and prototypical-parts

methodology. The former is employed in weakly supervised learning, particularly in

multi-instance learning, where a set of instances is assigned to a single label. The latter,

prototypical-part models learn concepts from the training data during the learning process and

compare those concepts to an input sample in the inference phase to obtain the prediction.

As part of this doctoral thesis, three new models were developed to address the limitations

of the initial prototypical parts-based model ProtoPNet [11]. The first model, ProtoPShare [I]

introduces prototype parts sharing across classes by combining those already trained. For this

purpose a new metric was defined detecting semantic similarity between prototypical parts,

even when they are far in the latent space. The next model, ProtoPool [II], is more advanced

and shares the prototypical parts from scratch. It is possible thanks to regularization techniques

based on the Gumbel-Softmax Trick. Moreover, ProtoPool introduces focal similarity, which

enables more descriptive prototypical parts than those obtained from baseline methods. Finally,

ProGReST [III], generalizes prototypical parts to regression problems of predicting molecular

properties.
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In addition, two methods have been introduced based on the attention pooling methodology.

The first one, SA-AbMILP model [IV] uses a self-attention mechanism to learn dependencies

between instances in a bag resulting in better performance in non-standard multiple instance

learning assumptions, such as presence-based and threshold-based. This enables to understand

which visual features influence the model’s decision. The second model, ProtoMIL [V],

aims to introduce global level explanation into the MIL classification problem by combining

prototypical parts and attention pooling.

To summarize, this doctoral thesis focuses on interpretable deep learning based on

prototypical parts-based models and attention mechanism. Five papers were published based

on those research, two at A* conferences [I, II], and three at A conferences [III, IV, V]

according to CORE ranking (in all of them the Ph.D. candidate is the first author). Additionally,

the Ph.D. candidate was a principal investigator of the NCN Preludium grant and the grant

from the Jagiellonian University Excellence Initiative. He also completed a research internship

at the Computer Vision Center of the Autonomous University of Barcelona in the research

group of Professor Joost van de Weijer and is a co-author of a patent application submitted to

the European Patent Office.

Keywords: interpretability, explainable artificial intelligence, deep learning.
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1. Introduction and Motivation

The advancements in artificial intelligence (AI), particularly in deep learning (DL), have

led to an increased use of deep neural network models in various fields such as image

recognition [52, 54, 69], natural language processing [14, 77], and drug discovery [12, 24].

In many cases, these computer systems perform on par or even surpass human-level

performance [27]. It is mainly possible thanks to the availability of computational resources,

software frameworks, and vast digital datasets. Moreover, the widespread adoption of DL

models is possible thanks to their properties allowing them to model complex non-linearities

and unstructured data representation [27]. For instance, raw pixels of images can be transformed

into meaningful latent codes representing the picture.

However, the growing use of DL models in fields such as medicine [47] and justice [70],

where high-stakes decisions are made, requires a better understanding of the reasoning process

behind the predictions made by these systems [57]. Unfortunately, most DL models have a

black-box nature [57], meaning that they do not provide explanations for their predictions,

see Figure 1.1. Therefore, there is a need to develop approaches to explain decisions of deep

neural networks [57]. This need was acknowledged by regulatory bodies such as the European

Union, and as a result, laws have been introduced requiring decision support systems to provide

explanations to users [34]. The need to understand model’s decision, further strengthened by

the regulatory bodies, has given rise to the field of eXplainable Artificial Intelligence (XAI).

XAI can be divided into two sub categories: post-hoc methods and self-explainable

models [57]. Post-hoc methods aim to explain pre-trained neural networks using a second

model, called an explainer. The explainer is built on top of the black-box model, so there is

no need to alter the neural network architecture or retrain the models [57]. Popular post-hoc

methods include saliency maps [55, 62, 63, 65], perturbation-based explanations [19, 20, 56],

concept activation vectors [13,26,37,76], and importance-based methods [5,49]. However, their

explanations may be unreliable due to the biases from the black-box model and explainer [1,57].

To address these limitations, self-explainable (gray-box) approaches have emerged. These

models have a built-in interpretability component making their explanations more reliable.

However, these models are more difficult to train and may have to a certain extent lower

performance than black-box approaches [58]. One of the recent attempts to create a

gray-box neural network was the self-explainable neural network [3] consisting of a second

computational path for explanations. Subsequent approaches utilize bag-of-words [10] or
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input image: husky deep neural network
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Figure 1.1: In contrast to traditional deep learning methods (top part), the explainable artificial
intelligence (XAI) pipeline (bottom part) enables users to obtain explanations for the model’s
predictions and assess the model’s decision-making process. In this example, an image of a
husky is misclassified as a wolf as the model learns to associate snow with wolves (a real-life
example copied from [56]). It highlights the importance of XAI approaches in understanding
and identifying potential biases and limitations of deep learning models.

attention mechanisms [23, 67, 81]. However, all of the above focus only on explaining a

single prediction (local explanations) and return no explanation for the classes (no global

explanations).

To tackle this issue and enable global explanations, concept-based models have been

introduced. They can be divided into two subgroups: Concept Bottleneck Models (CBM) [39,

50] and prototypical parts-based models [11, 16, 28, 46, 53, 60, 61, 71] with a baseline

method called Prototypical Parts Network (ProtoPNet) [11]. CBM learns to predict a set of

prede[U+FB01]ned concepts and makes predictions based on their presence in the input,

whereas ProtoPNet compares the parts of the input data to patterns represented by parts of

the training data to measure the similarity between them and uses them to make a prediction (an

example of interpretation from ProtoPNet is presented in Figure 1.2). Prototypical parts-based

models provide local and global explanations, characterizing data classes, and making them

useful for a wide range of applications.

Prototypical parts-based models are widely recognized as an interpretable approach and

and from the user’s perspective are considered to be the most effective in comprehending the

explanations [33], due to the use of parts of the training examples to perform the prediction.

For the aforementioned reasons, we decided to follow this direction of research and aimed to
show that it is possible to build more transparent and trustworthy machine learning-based
systems based on prototypical parts and attention mechanism.
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Figure 1.2: ProtoPNet finds similarities between the input image and reference patterns, and
presents the explanation in the form of "This looks like that...". As exemplified, "this looks
like sparrow, because its wing, head and legs are similar to the wing, head and legs of other
sparrows" (copied from: [11]).

To prove this hypothesis broad research has been conducted resulting in five scientific

publications that constitute part of this doctoral dissertation:

[I] Dawid Rymarczyk, Łukasz Struski, Jacek Tabor, Bartosz Zieliński. “Protopshare:

Prototypical parts sharing for similarity discovery in interpretable image classification.“

ACM Conference on Knowledge Discovery & Data Mining (KDD), 2021, 1420-1430,

CORE A*, 200 MEiN points.

[II] Dawid Rymarczyk, Łukasz Struski, Michał Górszczak, Koryna Lewandowska, Jacek

Tabor, Bartosz Zieliński. “Interpretable image classification with differentiable prototypes

assignment.“ European Conference on Computer Vision (ECCV), 2022, 351-368, CORE

A*, 140 MEiN points.

[III] Dawid Rymarczyk, Daniel Dobrowolski, Tomasz Danel. “ProGReST: Prototypical Graph

Regression Soft Trees for Molecular Property Prediction.“ SIAM Conference on Data

Mining (SDM), 2023, 379-387, CORE A, 140 MEiN points.

[IV] Dawid Rymarczyk, Adriana Borowa, Jacek Tabor, Bartosz Zieliński. “Kernel

self-attention for weakly-supervised image classification using deep multiple instance

learning.“ IEEE/CVF Winter Conference on Applications of Computer Vision (WACV),

2021, 1721-1730, CORE A,140 MEiN points.

[V] Dawid Rymarczyk, Adam Pardyl, Jarosław Kraus, Aneta Kaczyńska, Marek

Skomorowski, Bartosz Zieliński. “ProtoMIL: Multiple Instance Learning with Prototypical

Parts for Whole-Slide Image Classification.“ European Conference on Machine Learning

and Principles and Practice of Knowledge Discovery in Databases (ECML PKDD), 2022,

CORE A, 140 MEiN points.
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Contributions of these research articles are as follows:

• Introducting two prototypical parts-based models, ProtoPShare [I] and ProtoPool [II],

detecting similarities between data classes and increase interpretability with prototypical

parts sharing when compared to ProtoPNet [11].

• Generalizing prototypical parts and soft neural decision trees to the regression problem and

applying it to molecular property prediction in the ProGReST model [III].

• Designing two interpretable models for Multiple Instance Learning (MIL) problem,

SA-AbMILP [IV] and ProtoMIL [V], with the former modelling the relationships between

instances within a bag, and the latter generalizing prototypical parts to MIL.

The structure of the doctoral dissertation is as follows: In Section 2, the research scope of

this dissertation is briefly discussed. In Section 3, a detailed description is provided, consisting

of two subsections: Section 3.1 is dedicated to the contributions related to prototypical

part-based models, and Section 3.2 is focused on the advancements made in MIL problems.

The research profile of the Ph.D. candidate is presented in Section 4. Finally, in Section 5, the

contributions are outlined.
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2. Research scope

Explainable Artificial Intelligence (XAI) is a broad field integrating explainability

(post-hoc) and interpretability (self-interpretable) approaches [4]. Despite the fact they are

frequently used interchangeably, there is a critical difference between them. Explainability aims

to provide explanations for already trained black-box models. To achieve this, an explainer is

needed to provide an explanation for a prediction, as it is not part of the prediction system.

Interpretability, however, focuses on building inherently interpretable models providing an

explanation along with a prediction [57].

Thanks to the advancements made in the field of XAI, a systematic categorization of its

methods and properties has been proposed in [4], furthering the current state of research.

The taxonomy presented in Figure 2.1 indicates that current research mainly focuses on static

explanations without user involvement, and predominantly for models as opposed to data

exploration. For model explanations, the methods can be local (explaining a single prediction)

or global (characterizing a data class), post-hoc (explainers), or direct (e.g. self-explainable

like prototypical parts [11]). For post-hoc methods, examples or features can be used as

explanations, such as ExMatchina [33] or GradCAM [62]. The taxonomy also distinguishes

surrogate models, i.e. simple methods (such as decision rules) distilled from black-box models.

All of the works listed as this dissertation contribution pertain to into static, model-oriented and

direct (self-explanatory) approaches.

The first part of this dissertation focuses on the self-explainable models with both, global

and local explanations:

• Sharing prototypical parts with two-staged training (ProtoPShare [I]). This work

introduces an extension to the Protoypical Parts Network (ProtoPNet) [11] allowing for

sharing prototypical parts between classes, addressing a shortcoming in the original model.

While ProtoPNet is inspired by human communication, it does not account for the fact

that real-world objects share common parts. To overcome this limitation, an extension

was created, introducing a data-dependent operation consisting in discovering semantically

similar prototypical parts and merges them.

This resulted in a model capable of achieving comparable accuracy to ProtoPNet while

allowing for the discovery of similarities between data classes. Extensive numerical

experiments demonstrate that the number of prototypical parts that can be merged varies

depending on the backbone network, and merging an excessive number of parts can

12



Figure 2.1: Taxonomy of Explainable Artificial Intelligence based on data type, interpretability
level and exemplary approaches outlining current state of the XAI field and where this thesis
contributes most (in pink boxes) (copied from [4].)

contribute to model collapse. However, reducing the number of prototypes by a factor

of five without significant drop in accuracy is achievable (smaller number of prototypical

parts increases the models interpretability). A user study shows that our method is more

effective in detecting similar semantic concepts compared to other non data-dependent

operations. Furthermore, theoretical analysis, stated theorem and its proof demonstrate why

prototypical parts merge-pruning is not resulting in significant accuracy drop before model

collapse.

In summary, we introduced a novel prototypical parts-based architecture improving the

transparency of deep learning models and enabling the detection of inter-class similarities.

The reduction in prototypes during the prediction phase makes the model more sparse,

which is a crucial factor for trustworthy explainable models [58].

• Prototypical parts sharing from scratch (ProtoPool) [II]. In this work, we introduce

ProtoPool, which is a natural extension of ProtoPShare [I]. While ProtoPShare requires a

two-stage training process to achieve prototypical parts sharing, ProtoPool provides a more

optimal solution by enabling the training of shared prototypical parts from scratch. This is

made possible through the use of the Gumbel-Softmax trick, which associates prototypical

parts from a pool with classes. To ensure that multiple prototypical parts are assigned to a

single class, we employ regularization with an orthogonal loss. Additionally, we propose

a novel focal similarity function increasing the expressiveness of prototypical parts by

focusing on an object’s salient features.

ProtoPool achieves state-of-the-art accuracy, while allowing for the discovery of similarities

between data classes and operating on fewer prototypical parts. Also neuroscience-inspired
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min: 0.02

maximizing gap

Figure 2.2: Our focal similarity limits high prototype activation to a narrow area. It is
obtained by widening the gap between the maximal and average activation (equal 6.10 and
0.52, respectively). ProtoPool with focal similarity generates more salient prototypes than other
models. Image copied from our work [II]

intuition for our architectural design is provide, e.g. ProtoPool mimics the simultaneous

information processing which is faster than successive processing [35] present for

ProtoTree [53]. Furthermore, our user study demonstrates that ProtoPool with focal

similarity produces prototypical parts more salient than those generated by baseline

methods, and we demonstrate that increasing the number of prototypical parts does not

always result in improved model performance, as the model can saturate.

In summary, ProtoPool addresses the shortcomings of ProtoPShare and enables the training

of shareable prototypical parts between classes from scratch. This increases the efficiency

and accuracy of the model, as well as results in improved transparency with more sparse

prototypical part explanations than ProtoPShare. The novel focal similarity function detects

more robust and salient prototypical parts, increasing their expressiveness and resulting in

higher trustworthiness of the model, as confirmed by our user study.

• Generalization of prototypical parts approach to the graph regression problem
(ProGReST) [III]. ProGReST is a novel solution to the problem of graph regression for

molecular property prediction, with an emphasis on interpretability. The model, which

is a soft neural tree [22], represents each node as a prototypical part (in this case in the

form of a subgraph). During prediction, similarities between the input graph and subgraphs

derived from the training dataset are used to provide explanations. We introduce several

regularization techniques to effectively train the nodes with meaningful prototypical parts.

Moreover, a proxy-projection approach is defined to significantly reduce the training time

of the model.

In our experiments on five chemical datasets, ProGReST achieves state-of-the-art

performance compared to other deep learning methods. We also demonstrate that strong

regularization of the tree is crucial to obtain the best performing model with meaningful

prototypical parts. The proxy-projection approach significantly reduces the push operation
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Figure 2.3: Similarity scores between crucial instances of a bag and prototypical parts for
a negative bag from the Camelyon16 dataset. There are five instances (columns) and eight
prototypical parts (rows). Each prototypical part is represented by the part of training image
and three nearest training patches, while each instance is represented by the corresponding
patch and its attention weight (ai). The heatmap in each cell indicates the prototype activation.
ProtoMIL strongly activates only one prototype and focuses mainly on nuclei when analyzing
the healthy parts of the tissue. These findings provide valuable insights into how ProtoMIL
operates and how it is able to effectively classify bags into positive and negative classes. Image
copied from our work [V].

time by an order of magnitude, while chemical experts confirm the faithfulness of the

explanations provided by the model.

In summary, ProGReST is a novel architecture addressing the problem of graph regression

for molecular property prediction in an interpretable manner. Our results are superior to

other methods, and the utilized regularizers are crucial to obtain the best performing models.

By incorporating prototypical parts into this task, we increased the transparency of DL

tools for drug design, and the resulting explanations can guide medicinal chemists in drug

candidate design by demonstrating how specific substructures of the compounds influence

the final chemical property prediction.

In the second part of this dissertation, we focus on the problem of Multiple Instance

Learning (MIL) and propose contributions to make MIL models more interpretable:

• Interpretable aggregation with self-attention (SA-AbMILP) [IV]. To enhance the

interpretability of models suited for Multiple Instance Learning (MIL) problems, the we

introduce a new approach called Self-Attention Attention-based MIL Pooling operator

(SA-AbMILP). Unlike the basic AbMILP approach [31], SA-AbMILP can handle more
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challenging MIL assumptions, such as presence-based and threshold-based assumptions,

while maintaining interpretability. The model includes a self-attention module before the

pooling operator enabling the model to identify the relationship between instances in a

bag. This allows the model to consider not only individual instances’ contribution to the

prediction, but also how they interact with each other. In addition, the authors suggest using

different attention kernels as a hyperparameter of the model.

To evaluate the effectiveness of the proposed approach, extensive numerical experiments

were conducted on five datasets. The obtained results demonstrated that SA-AbMILP

outperforms other state-of-the-art MIL models. Moreover, SA-AbMILP and its kernel

versions can identify key instances within bags accurately. It was shown through a detailed

analysis of the model’s explanations based on the artificial dataset simulating the threshold

and presence-based MIL assumptions. Furthermore, self-attention maps can be used as parts

of the explanations to show how instances interfere with each other.

Overall, SA-AbMILP is an approach improving the interpretability of models suited for

MIL. Its ability to model interactions between instances within a bag makes it suitable

for more challenging MIL assumptions, such as presence-based and threshold-based. The

numerical experiments demonstrated the superior performance of the model, while the

analysis of the explanations showed that SA-AbMIL improves transparency over baselines

such as AbMILP.

• Local and global interpertability for MIL (ProtoMIL) [V]. While previously discussed

models, such as AbMILP and SA-AbMILP, provide interpretability only at the local

prediction level, we introduced ProtoMIL a novel approach to incorporate global

interpretability into Multiple Instance Learning (see Figure 2.3). It is possible through a

combination of prototypical parts with attention pooling operator. Moreover, to effectively

train ProtoMIL, we propose novel cluster and separation loss functions. They use results

from attention mechanism to identify key instances to weight the influence of each instance

within a bag on a learning of prototypical parts.

As a result, ProtoMIL provides the global and local interpretation of the prediction in

contrast to baseline models with only local explanations. The global interpretation of

the model, in the form of class-specific prototypical parts and key bag instances, is

shown through a novel matrix-based visualization. At the same time the performance of

the ProtoMIL, measured with accuracy and ROC AUC, is comparable to state-of-the-art

methods.

To conclude, ProtoMIL affords a better understanding of the model’s behavior at both local

and global levels through the combination of prototypical parts and attention mechanism.

While ProtoMIL provides interpretability, it still achieves accuracy comparable to the

state-of-the-art methods.
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All the previously mentioned works propose novel deep learning architectures based on

prototypical parts and attention mechanisms. This unique combination has made them

highly interpretable, resulting in increased transparency and trustworthiness of self-explainable

approaches. These claims were confirmed by a range of experiments, including user studies,

analysis performed by domain-experts, and experiments on multiple datasets.
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3. Detailed description of the contributions

3.1. Prototypical parts-based models: ProtoPShare [I], ProtoPool [II] and
ProGReST [III]

To make the thesis self-contained, this chapter starts with the description of the

ProtoPNet [11] architecture and its training methodology. It is necessary since the contributions

of this thesis part are based on prototypical part layer introduced by ProtoPNet [11]. The

subsequent sections discuss the limitations of ProtoPNet and how they were addressed by

ProtoPShare [I] (Section 3.1.2) and ProtoPool [II] (Section 3.1.3), respectively. The final section

(Section 3.1.4) of this chapter introduces the ProGReST [III] model, which is a novel approach

to graph regression problems utilizing prototypical parts.

3.1.1. Preliminaries

Motivation. The primary objective of ProtoPNet [11] is to achieve interpretability in image

classification. The authors drew inspiration from how humans explain the identity of one object

to one another. They base their explanation on the sentence This looks like that.... For instance,

this is a bird because it has wings, tail, and feathers, as presented n Figure 1.2. This approach

is called positive reasoning since it relies only on the features that a given object possesses to

explain its identity.
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 (backbone 𝑓B, add-on layers 𝑓AO, and sigmoid) prototypical parts layer g
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Figure 3.1: Architecture of ProtoPNet.

Architecture. The ProtoPNet model comprises three main parts: convolutional layers f are

composed of a pretrained convolutional backbone fB, such as ResNet, and two additional 1× 1
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convolutional layers with sigmoid activation fAO, followed by the prototypical parts layer g and

the fully connected layer h. The purpose of fAO is to translate the convolutional output to a

prototypical part space. The prototypical part layer g contains K prototypes pi ∈ RD per class

which are compared to the latent representations of the input. Finally, the last layer h links the

output of the prototypical parts layer, with a specific weight initialization scheme: if prototype

pi is assigned to class c, then hci is set to 1, otherwise, it is set to -0.5. Figure 3.1 depicts the

architecture of ProtoPNet.

Inference. For an input image x ∈ X , the hidden representation fB(x) of shape H ×W × d
is generated by the backbone model fB. The output is then translated into a prototypical parts

space of shape H ×W × D by fAO and result in a set of representation vectors Zx = {zi ∈
f(x) : zi ∈ RD, i = 1, ..., H ·W}. Each prototypical part pi of shape 1× 1×D is compared to

each of the H ×W representation vectors to calculate their similarities (i.e. the activations of

the prototype on the analyzed image). The maximum value from the similarities is then taken

to assess the presence of an i-th prototype on the image. The similarity calculation is based on

the equation:

max
zj∈Zx

sim(pi, zj), where sim(pi, zj) = log
|zj − pi|2 + 1

|zj − pi|2 + η
and η � 1. (3.1)

Finally, to obtain the predictions, these values are passed through the fully connected layer h.

Training. The training process of ProtoPNet consists of three phases: warm-up, joint learning,

and convex optimization of the last layer. In the first phase, the convolutional add-on layers fAO
and the prototypical parts layer g are learned. During the second phase, fAO and g are trained

jointly with the backbone network pretrained fB. Finally, in the last phase, the fully-connected

layer h is fine-tuned.

The first two phases are trained using the cross-entropy loss function, along with two

additional regularization terms: cluster and separation costs [11]. The cluster loss ensures that

each training image has a patch representation close to at least one prototypical part of its class.

In contrast, the separation cost pushes every patch representation of a training image away from

the prototypical parts of the other classes. These costs are defined as follows:

Lclst =
∑
x∈X

min
pj∈Pc

min
z∈Zx

|z − pj|22; Lsep = −
∑
x∈X

min
pj /∈Pc

min
z∈Zx

|z − pj|22.

In the convex optimization phase of the last layer h, in addition to the cross-entropy

loss, ProtoPNet regularizes the h weights initialized with negative values to be close to 0.

This regularization term of the last layer (ll) for each class c ∈ C is as follows: Lll =∑C
c=1

∑
pj /∈Pc

|hc,j|.
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Finally, to ensure that the learned prototypical parts can be represented as a part of the

images from the training dataset, a push operation is performed. For each prototype pj assigned

to the class c, the closest patch representation from all images of the training set of that class is

assigned. This is computed as follows:

pj ←− arg min ||z − pj||2, where Z = {z : z ∈ f(xi)∀i such that yi = c} (3.2)

3.1.2. Discovering class similarities with prototypical parts sharing (ProtoPShare) [I]

This section starts with the ProtoPShare’s motivation. Then key contributions are presented

together with the main results. Additional details on the method and results are provided in the

work [I].

Motivation. The ProtoPNet discussed earlier has several limitations problematic in

applications. These limitations arise from two main reasons. Firstly, each prototype is

assigned to only one class, leading to a large number of prototypes. This, in turn, negatively

affects interpretability, which requires small number of features in explanations that are of low

complexity [17, 73]. Secondly, the training process pushes the prototypes of different classes

away from each other in the representation space. As a result, prototypes with similar semantics

can be far apart from each other, leading to unstable predictions (see Figure 3.2).

Contributions. To address these limitations, we introduced the Prototypical Part Shared

network (ProtoPShare), which shares prototypes between classes via data-dependent

merge-pruning. This approach leads to a relatively small number of prototypes and promotes

proximity between prototypes with similar semantics. Moreover, this method enables the

discovery of similarities between classes.

Details. To enable sharing of prototypical parts across multiple data classes, our pruning

process involves several steps. First, we begin with a set P of all prototypes obtained after

ProtoPNet training, K number of classes, and ζ percentage of prototypes to merge per pruning

step. Next, we compute similarities between prototype pairs and merge ζ percent of the most

similar pairs (p, p̃). We discard prototype p and its weights h(p) and instead use prototype

p̃ and its weights h(p̃), aggregated with h(p) via summation, for the class to which p was

assigned. After each step, we fine-tune layer h. This merge-pruning process enables sharing of

prototypical parts across multiple data classes, as shown in Figure 3.3. The theoretical results

of merge-pruning operation are provided in the main paper [I].

Training with the loss function described in [11] can produce prototypes of similar semantic

that are distant in the representation space because the Euclidean distance between prototypical

parts does not capture features semantics. To address this issue, we propose a data-dependent
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Figure 3.2: Our method aligns prototypical parts that are both similar and distant in the latent
space. The left plots display tSNE projections of prototypes trained on CUB-200-2011 and
Stanford Cars datasets, with the top and bottom parts representing each dataset, respectively.
Two of these prototypes, marked as red and green squares, correspond to semantically similar
prototypical parts: a bright belly with grayish wings (top) and a fender (bottom). Despite their
semantic similarity, these prototypes are distant in the representation space. Our method enables
the detection and alignement of such pairs. Image copied from our work [I]
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Figure 3.3: Architecture of ProtoPShare. Compared to ProtoPNet it consists of sharable
prototypical parts by having multiple positive (close to 1) connections resulting in contribution
of a single prototypical part to multiple data classes. Image copied from our work [I]

similarity comparing the difference between g(z, p) and g(z, p̃) for all training patches x ∈ X .

Specifically, the similarity for prototype pair (p, p̃) ∈ P 2 is defined as the compliance of the

similarity scores computed for all patches:

dDD(p, p̃) = 1∑
x∈X(g(z,p)−g(z,p̃))2 . (3.3)

This data-dependent similarity enables us to identify prototypes similar in their semantic

meaning, even if they are distant in the representation space.

Results ProtoPShare achieves higher accuracy compared to ProtoPNet and its variations for

different pruning rates, as shown in Figure 3.4. Moreover, ProtoPShare performs well,

even with only 25% of the initial prototypes in the case of ResNet34. This results confirm

that data-dependent merge-pruning can reduce the number of prototypical parts needed in

classification and still preserve competitive accuracy of the model.

ProtoPShare uncovers class similarity by utilizing shared prototypes and visualizing it

through a graph, as depicted in Figure 3.5. A user study was conducted to compare the

effectiveness of data-dependent and data-independent approaches. Participants were presented

with pairs of prototypes and asked to select the more consistent one. Out of 285 responses from

57 participants, 195 favored the data-dependent approach, 61 preferred data-independent, and

29 could not decide. This demonstrates that the data-dependent approach is considered more

consistent than the data-independent one.

Summary. In this work, we introduced ProtoPShare [I], a model for interpretable image

classification based on prototypical parts. We also proposed a new data-dependent similarity

measure to identify semantic coherence between visual concepts, as well as a merge-pruning

operation that enables sharing of prototypical parts. Our model’s effectiveness was confirmed
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Figure 3.4: This figure shows the accuracy of ProtoPShare on the CUB-200-2011 dataset
for different percentages of prototypes merged per pruning step, as the number of prototypes
decreases. Higher accuracy is better. It can be observed that ProtoPShare preserves the original
accuracy and depending on the backbone network, there is a different number of prototypical to
be merged before the model collapse. Image copied from our work [I]

Figure 3.5: The inter-class similarity graph generated by ProtoPShare trained on the Stanford
Cars dataset reveals how classes share prototypes. Each node represents a car class, and the
edge strength between two nodes corresponds to the number of shared prototypes. For instance,
the Audi S5 Coupe class shares four prototypes with the Audi S5 Convertible class but does not
share any prototypes with the Acura RL Sedan class. The image illustrates ProtoPShare ability
to detect inter-class similarities. Image copied from our work [I]
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Figure 3.6: Focal similarity is a similarity metric focusing on salient visual features, making
interpretation easier to comprehend compared to other metrics that are more distributed through
the image. Image copied from our work [II]

on two datasets, and we validated the semantic similarities discovered by the model through a

user study.

3.1.3. Learning prototypical parts sharing from scratch (ProtoPool) [II]

Motivation. ProtoPShare [I] and ProtoTree [53] were introduced as solutions to the scalability

and unstable predictions of ProtoPNet [11] (discussed above). However, they both have

drawbacks: ProtoPShare requires a previously trained ProtoPNet, which extends the training

time, whereas ProtoTree builds a decision tree that may lead to explanations based only on

prototype absence. For instance, a model can predict a "sparrow" because an image does not

contain red feathers, a long beak, and wide wings, which is also true for many other species.

Contributions. To overcome these limitations, we proposed ProtoPool, a self-explainable

prototype model for fine-grained image classification. ProtoPool introduces two novel

mechanisms enhancing interpretability and training efficiency. Firstly, instead of using hard

assignment of prototypes to classes, we employ a soft assignment represented by a distribution

over the prototypes. This distribution is randomly initialized and binarized during training using

the Gumbel-Softmax trick, eliminating the pruning step required in ProtoPNet, ProtoPShare,
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Figure 3.7: Archtecture of ProtoPool. Due to the introduction of slots q the model can learn the
assignments of prototypical parts from the pool to data classes. It results in fewer prototypical
parts used by the model while it maintains positive reasoning through specific initialization of
the fully connected layer h. Image copied from our work [II].

and ProtoTree. Secondly, we introduce a focal similarity function focusing the model on the

salient features (see Figure 3.6).

Details. The architecture of ProtoPool, illustrated in Figure 3.7, comprises three main

components: convolutional layers f , a prototype pool layer g, and a fully connected layer

h. The prototype pool layer g contains a pool of M trainable prototypes P = {pi ∈ RD}
and T slots for each class. Each slot is implemented as a distribution qt ∈ RM of prototypes

available in the pool, where qt assigns a probability to each prototype of being assigned to slot

t (||qt|| = 1). The fully connected layer h is initialized to enforce positive reasoning by setting

the weights between each class c and its slots to 1, while the remaining weights of h are set to

0.

To obtain a prediction for a given input image x ∈ X , the convolutional layers f extract

the image representation f(x), which can be viewed as a set of H · W vectors of dimension

D corresponding to different locations in the image (as shown in Figure 3.7). For the sake of

clarity, we denote this set asZx. Subsequently, for each slot t, the prototype pool layer computes

the aggregated similarity gt =
∑M

i=1 q
i
tgpi between Zx and all prototypes in the pool, where qt

denotes the distribution of prototypes assigned to slot t, and gpi is defined in the next paragraph.

gt is then multiplied by the corresponding weight in the fully connected layer h and aggregated

to produce the output logits. Finally, the logits are normalized using softmax to obtain the final

prediction.
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In ProtoPNet [11] and other models using prototypical parts, the similarity of point z to

prototype p is defined as: gp(z) = log(1 + 1
‖z−p‖2 ), and the final activation of the prototype

p with respect to image x is given by gp = maxz∈Zx gp(z). It can be observed that such an

approach has two possible disadvantages. Firstly, high activation can be obtained when all the

elements in Zx are similar to a prototype. It is undesirable because the prototypes can then

concentrate on the background. The other negative aspect concerns the training process, as the

gradient is passed only through the most active part of the image.

To prevent those behaviors in ProtoPool we introduce a novel focal similarity function

widening the gap between maximal and average activation

gp = max
z∈Zx

gp(z)−mean
z∈Zx

gp(z), (3.4)

as presented in Figure 2.2. The maximal activation of focal similarity is obtained if a prototype

is similar to only a narrow area of the image x. Consequently, the constructed prototypes

correspond to more salient features, and the gradient passes through all elements of Zx.

To generate a prototype distribution q, one could apply softmax on the vector of size RM .

However, this could lead to assigning many prototypes to one slot, decreasing interpretability.

Therefore, to obtain distributions with only one probability close to 1, a differentiable argmax

function is required. The Gumbel-Softmax estimator [32] provides a perfect match in this case.

With M being the number of classes, for q = (q1, . . . , qM) ∈M and τ ∈ (0,∞), it is defined as:

Gumbel-softmax(q, τ) = (y1, . . . , yM) ∈M ,

where yi =
exp((qi+ηi)/τ)∑M

m=1 exp((qm+ηm)/τ)
and ηm for m ∈ 1, ..,M are samples drawn from standard

Gumbel distribution. The Gumbel-Softmax distribution interpolates between continuous

categorical densities and discrete one-hot-encoded categorical distributions, approaching the

latter for low temperatures τ ∈ [0.1, 0.5].

To avoid the issue of one prototype being assigned to multiple slots of a single class and

wasting the capacity of the prototype pool layer, we need to introduce additional constraints to

the loss function. For this purpose we extend the loss function with

Lorth =
T∑
i<j

〈qi,qj〉
‖qi‖2·‖qj‖2 , (3.5)

where q1, .., qT are the distributions of a particular class. As a result, successive slots of a class

are assigned to different prototypes.

Results Table 3.1 presents a comparison of our ProtoPool with other prototypical part-based

models. In addition to the accuracy achieved by each model, we also report the number of
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Table 3.1: Comparison of ProtoPool with other prototypical methods trained on the
CUB-200-2011 and Stanford Cars datasets. It can be noted that ProtoPool achieves comparable
results to models using much more prototypical parts and its superior over models with the same
number of prototypical parts. Table copied from our work [II]

CUB-200-2011

Model Arch. Proto. # Acc [%]

ProtoPool (ours)

R34

202 80.3±0.2
ProtoPShare [I] 400 74.7
ProtoPNet [11] 1655 79.5
TesNet [71] 2000 82.7±0.2

ProtoPool (ours)

R152

202 81.5±0.1
ProtoPShare [I] 1000 73.6
ProtoPNet [11] 1734 78.6
TesNet [71] 2000 82.8±0.2

ProtoPool (ours)iNR50 202 85.5±0.1
ProtoTree [53] 202 82.2±0.7

ProtoPool (ours) Ex3 202×3 87.5
ProtoTree [53] 202×3 86.6

ProtoPool (ours)

Ex5

202×5 87.6
ProtoTree [53] 202×5 87.2
ProtoPNet [11] 2000×5 84.8
TesNet [71] 2000×5 86.2

Stanford Cars

Model Arch. Proto. # Acc [%]

ProtoPool (ours)

R34

195 89.3±0.1
ProtoPShare [I] 480 86.4
ProtoPNet [11] 1960 86.1±0.2
TesNet [71] 1960 92.6±0.3

ProtoPool (ours) R50 195 88.9±0.1
ProtoTree [53] 195 86.6±0.2

ProtoPool (ours) Ex3 195×3 91.1
ProtoTree [53] 195×3 90.5

ProtoPool (ours)

Ex5

195×5 91.6
ProtoTree [53] 195×5 91.5
ProtoPNet [11] 1960×5 91.4
TesNet [71] 1960×5 93.1

prototypes utilized by the models. Specifically, we compare our approach with ProtoPNet [11],

ProtoPShare [I], ProtoTree [53], and TesNet [71].

Our analysis shows that ProtoPool outperforms other models for the CUB-200-2011

dataset, even though some models utilize a significantly larger number of prototypical parts.

Furthermore, for the Stanford Cars dataset, our model performs better than ProtoTree and

ProtoPShare, despite having a similar number of prototypes, and moderately worse than TesNet,

which uses ten times more prototypes. It is worth noting that the higher accuracy of TesNet

could be attributed to the prototype orthogonality enforced during training.

We conducted a user study to investigate whether the use of focal similarity results in more

salient prototypical parts. We asked a question: “How salient is the feature pointed out by the

AI system?”. The task was to assign a score from 1 to 5 where 1 meant “Least salient” and

5 meant “Most salient”. Images were generated using prototypes obtained for ProtoPool with

ProtoPNets similarity or with focal similarity and from a trained ProtoTree (see Figure 3.6).

The study involved 40 participants hired via Amazon Mechanical Turk (AMT) system. They

answered 60 questions (30 per dataset) presented in a random order, which resulted in 2400

answers.

The findings from our user study are presented in Figure 3.8. The results indicate that

ProtoPool generated prototypes with higher saliency scores than the other models, as shown
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Figure 3.8: Comparison of scores from a user study on prototypes obtained for ProtoPool with
and without focal similarity and for ProtoTree. The distribution of user votes for ProtoPool
is skewed towards higher values. It means that ProtoPool is able to identify more salient and
expressive prototypical parts than the baseline methods. Image copied from our work [II]

by the mostly higher scores ranging from 3 to 5. ProtoPool achieved a mean score of 3.66,

while ProtoTree and ProtoPool without focal similarity obtained mean scores of 2.87 and 2.85,

respectively.

Summary. In [II], we presented the ProtoPool architecture offering the unique advantage of

sharing prototypical parts from scratch in contrast to two-stage ProtoPShare [I]. Additionally,

ProtoPool’s decision-making process is based on positive reasoning, which is crucial from a

user’s perspective and gives it an advantage over ProtoTree [53].

Furthermore, we introduced Focal Similarity, a similarity metric capturing more salient

features than counterparts as demonstrated by the user study. Our approach improved the

interpretability of prototypical parts-based methods while achieving comparable results to

existing ones.

3.1.4. Generalization of prototypical parts methodology to the graph regression problem
(ProGReST) [III]

Motivation. ProtGNN [80] is a method developed for the graph classification problem utilizing

prototypical parts for graph data. While it works successfully in classification problems, it has

limited ability to handle regression problems where there are no classes to which prototypical

parts can be assigned. Additionally, prototypical-part-based methods use periodic projection

operations [11, 80] to ensure that prototypes are close to the training data. However, in

ProtGNN, the projection relies on an MCTS algorithm that is computationally expensive and

may not always produce meaningful prototypes.
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Contributions. To address this issue, we propose the Prototypical Graph Regression Soft Trees

(ProGReST) model, designed for graph regression problems and apply it to the molecular

property prediction. ProGReST uses prototypical parts and combines them with Soft Neural

Trees [22] to construct the prototypical parts model. To address shortcomings of ProtGNN, we

reduce training time by introducing proxy projection. However, such a model can be difficult to

train that is why define a set of regularizes making the ProGReST interpretable and accurate.

Details. The ProGReST architecture, illustrated in Fig. 3.9, is composed of a graph

representation network f , a prototypical regression soft tree layer t, and the final layer h. The

prototype regression soft tree layer contains 2H−1 prototypes pj ∈ RD, whereH is the depth of

the tree. The number of prototypes is the same as the number of nodes of the tree because there

is only one prototypical part in each node. All nodes have two children and the tree contains 2H

leaves. Each leaf li calculates only one value yli ∈ R. The prototypes are trainable parameters.

The regression task involves a dataset of V graphs xi ∈ X with corresponding labels

yi ∈ Y ⊂ R. The graph xi ⊂ RN×E consists of a set of nodesN and a set of edges E . The model

takes an input graph xi ∈ G and returns its predicted value ŷi ∈ Y . Before a graph is processed

by the model, it is encoded as an array of shape N ×W , where N is a number of nodes and

W is the size of the vector encoding each node. Then, the graph representation network is used

to calculate the input embedding Zxi = f(xi) where Zxi ∈ RN×D, D is the prototypical part

vector length. The graph representation network is a graph convolutional network (GCN) [38]

followed by a node-wise convolution with the sigmoid activation at the end, used to map the

input features to the prototype space.

For each input xi ∈ G, ProGReST calculates the prototype activation as the similarity

between the prototypical part p and the latent graph representation z ∈ RC for each graph

node. Then, it calculates the maximum activation a given prototype in the input graph:

ẑ = max
z∈Zxi

e−||z−p||2 (3.6)

Unlike decision trees with nodes routing to only one child, Soft Decision Trees distribute the

signal to both children simultaneously, with the probability adding up to 1. We use prototype

activation as a probability of routing to a right node as it is in [53]. The probability of routing

to the left node is a complement to 1 and equals 1− ẑ.

To determine the probability in a leaf lk, we need to traverse through the path Pi consisted

of its parents:

lk(x) =
∏
n̂∈Pk

ẑn̂(x), (3.7)
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Figure 3.9: Archtecture of ProGReST. Firstly, model generates latent representation of the
molecular graph, then prototypical parts activation are calculated and aggregated to obtain a
prediction. Thanks to the usage of soft neural tree, we were able to generalize prototypical parts
methodology to the regression problem. Image copied from our work [III]

where ẑn̂ is the similarity value in node n̂. Then, the final prediction is made by summing up

probabilities from the leaves multiplied by weights wlk of the last layer h:

ŷ(x) =
∑
lk∈`

wlk · lk(x). (3.8)

In order to ensure that our prototypes are representative of the training dataset distribution,

a projection is needed to swap the prototypical parts with a vector from the graph’s latent

representation. We propose proxy projection for periodic prototypical parts assignments during

the training. The proxy projection works by finding the closest vector from the latent graph

representation to a given prototypical part and replacing it. The proxy projection is defined as

follows:

p← arg min
z∈Zj

||z − pj||2, where Z = ẑ : ∀i, ẑ ∈ f(xi).

Results. As Table. 3.2 shows, our ProGReST model not only outperforms its baseline model

(GCN) but also achieves the best results on four of the five datasets. The prototypical-part-based

approach for molecular activity prediction not only brings the interpretability of the

predictions into the process, but also achieves superior results. This is in contrast to other

prototypical-part-based methods such as [53] in computer vision where the introduction of

interpretability reduces the model accuracy.
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Table 3.2: Results of molecular property prediction. ProGrest achieves the state-of-the-art
results on all except one datasets. Also, the Table shows that it can work with different graph
neural networks backbone such as transformers (RMAT). Table copied from our work [III].

Method Caco-2 ↓ PPBR ↓ LD50 ↓ VDss ↑ HL ↑
RDKit2D + MLP [30] 0.393± 0.024 9.994± 0.319 0.678± 0.003 0.561± 0.025 0.184± 0.111
AttrMasking [29] 0.546± 0.052 10.075± 0.202 0.685± 0.025 0.559± 0.019 0.151± 0.068
Morgan + MLP [30] – 12.848± 0.362 0.649± 0.019 0.493± 0.011 0.329± 0.083
ContextPred [29] 0.502± 0.036 9.445± 0.224 0.669± 0.030 0.485± 0.092 0.129± 0.114
NeuralFP [41] 0.530± 0.102 9.292± 0.384 0.667± 0.020 0.258± 0.162 0.177± 0.165
AttentiveFP [75] 0.401± 0.032 9.373± 0.335 0.678± 0.012 0.241± 0.145 0.085± 0.068
CNN [30] 0.446± 0.036 11.106± 0.358 0.675± 0.011 0.226± 0.114 0.038± 0.138
SimGCN [8] – – – 0.582± 0.031 0.392 ±0.065
ProGReST+GCN (Our) 0.367± 0.022 9.722± 0.200 0.611± 0.009 0.586± 0.012 0.295± 0.058
GCN (Baseline) [38] 0.599± 0.104 10.194± 0.373 0.649± 0.026 0.457± 0.050 0.239± 0.100
ProGReST+RMAT (Our) 0.360±0.069 9.256±0.287 0.597± 0.072 0.620 ±0.069 0.337± 0.049
RMAT [51] 0.363± 0.030 9.909± 0.388 0.569 ±0.092 0.487± 0.083 0.360± 0.063

Table 3.3: Comparison of the time needed to perform the projection. Our novel proxy projection
is much faster (two orders of magnitude) than the ProtoGNN MCTS-based projection resulting
in a significant speed-up of the model’s training. Table copied from our work [III].

Depth 4 5
Proxy Projection 10.1s 16.2s
MCTS-based Projection 1760.0s 4371.5s

We compared the computational efficiency of the Proxy and MCTS-based projections.

Unlike ProtGNN, ProGReST can identify the critical vector of graph latent representation using

a similarity function as we do not perform pooling of latent representation. From the results

shown in Tab. 3.3, we observe that MCTS-based projection is significantly slower than our

Proxy Projection.

To establish the interpretability of the prototypical parts learned by our model, we conducted

a qualitative study where a chemist evaluated the relevance of the discovered molecular features.

Initially, a chemist was presented with a small subset of compounds from the Caco-2 dataset,

and the atoms forming the learned prototypical parts were highlighted. Subsequently, the

compounds containing the same prototypes were displayed to verify the alignment between

the similarity function utilized in the model and the chemist’s knowledge-based intuition.

Several useful prototypical parts were identified through visual inspection. For instance, in

the Caco-2 dataset, there are prominent molecular features correlating well with the ability of

compounds to penetrate the epithelial barrier. The model detected a set of ketone and amine

groups impacting the compound’s hydrophilicity and can form hydrogen bonds with the lipid

layers, which can significantly alter permeability. Other prototypical parts included aromatic

rings and aliphatic side chains, which are also related to hydrophobicity and can be correlated

with the compound’s bulkiness, decreasing its ability to pass the barrier. These structures are

depicted in Fig. 3.10.
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Figure 3.10: Two examples of the learned prototypical parts. The atoms marked with a red
circle are part of the prototype. The compounds on the left are the reference compounds, and
the ones on the right are matched by the similarity of the prototypical parts. In prototype A,
we see aromatic rings and conjugated bonds (alternating single and double bonds). Prototype B
consists of ketones (=O) and amides (-C(=O)NH2). Image copied from our work [III].

Summary. Our work generalizes the prototypical-part to graph regression problem, and we

demonstrated its effectiveness on the molecular property prediction task. The results we

obtained show that our method outperforms existing approaches and achieves state-of-the-art

results. Additionally, our approach provides insights into the regression model as an

interpretable subgraph and tree structure, enabling us to better understand the underlying

mechanisms.

We also introduced a new technique called proxy-projection, which significantly reduces the

training time required for our model. This innovation is a significant contribution to the field,

as it makes the training of large-scale models feasible and practical.

3.1.5. Summary

This section outlines the contributions made by the Ph.D. candidate in advancing the field

of interpretable deep learning models through the use of prototypical parts. In the following

section, we delve into the candidate’s contributions towards improving interpretability in

multiple-instance learning problems, including the generalization of prototypical parts to

this domain. Those models directly improve the transparency and trustworthiness of deep

learning-based models for various set of problems while maintain or achieve superior

performance compared to the state-of-the-art.
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3.2. Interpretable multiple instance learning

This chapter aims to provide a comprehensive coverage of the multiple-instance

learning problem and its basic method, Attention-based Multiple Instance Learning Pooling

(AbMILP) [31] since the contributions of Ph.D candidate are strongly related to them (Section

3.2.1). Subsequent sections show the limitations of AbMILP and present the solutions proposed

by SA-AbMILP [III] (Section 3.2.2) and ProtoMIL [IV] (Section 3.2.3).

3.2.1. Preliminaries

Multiple Instance Learning (MIL) [15] is a type of supervised machine learning where each

sample is represented by a bag of feature vectors, called instances, of a fixed length L. In

contrast to typical supervised learning, where each sample has a separate feature vector, in

MIL, a sample (called bag) may contain a variable number of objects (called instances). The

standard MIL assumption is that the label of the bag, denoted by y ∈ {0, 1}, is positive if at least

one of its instances is positive, where each instance hi has a hidden binary label yi ∈ {0, 1}.

y =


0, iff

n∑
i=1

yi = 0,

1, otherwise.
(3.9)

The standard assumption adopted by AbMILP is too restrictive and not suitable for many

real-world problems. For instance, consider the evaluation of digestive tract health using the

NHI scoring system [45], where a biopsy is given a score of 2 if more than 50% of crypts are

infiltrated with neutrophils and there is no damage or ulceration in the epithelium. Such tasks

require more complex types of MIL [21] relying on multiple assumptions (or concepts).

Let Ĉ ⊆ C be the set of required instance-level concepts, and let p : X × C → N

be the function counting how often the concept c ∈ C occurs in the bag x ∈ N . Then, in

presence-based assumption, the bag is positive if each concept occurs at least once:

y =

1, iff for each c ∈ Ĉ : p(x, c) ≥ 1,

0, otherwise.
(3.10)

In the case of threshold-based assumptions, the bag is positive if concept ci ∈ C occurs at

least ti ∈ N times:

y =

1, iff for each ci ∈ Ĉ : p(x, ci) ≥ ti,

0, otherwise.
(3.11)

Attention-based MIL Pooling (AbMILP) [31] is a type of pooling method computing the

weighted average of instances in a bag using a neural network to determine the instance weights.
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Mathematically, given a bag x = {hi}Ni=1,hi ∈ RL×1, AbMILP is defined as follows:

z =
∑

i = 1naihi, (3.12)

where ai is the weight assigned to instance i and is computed using the following softmax

function:

ai =
exp

(
wT tanh(Vhi)

)∑n
j exp (wT tanh(Vhj))

, (3.13)

where w ∈ RM×1 and V ∈ RM×L are trainable neural network layers, and tanh is used to

prevent exploding gradients. Additionally, the weights ai sum up to 1 to accommodate bags of

varying sizes, and the instances are randomly ordered within the bag to prevent overfitting.

3.2.2. Interpretable aggregation with self-attention (SA-AbMILP) [IV]

Motivation. Attention-based MIL Pooling (AbMILP), introduced by Ilse et al. [31], has found

wide application in medical image analysis [44, 48, 72], particularly for whole-slide image

assessment. However, AbMILP lacks the ability to model dependencies between instances in a

bag, despite its effectiveness in aggregating information from varying numbers of instances.

Contributions. To overcome this limitation, we propose a method combining self-attention

mechanism with Attention-based MIL Pooling. This approach captures global dependencies

between instances in a bag, which have been shown to be beneficial [82], while simultaneously

aggregating them into a fixed-sized vector for use in successive layers of the network. The

resulting vector can be used for regression, and for binary and multi-class classification

problems.

Details. Our method, called SA-AbMILP, is a pipeline combining Self-Attention with

Attention-based MIL Pooling in four steps. Firstly, the bag’s images are fed through a

Convolutional Neural Network (CNN) to obtain their representations. Subsequently, the

self-attention module is applied to these representations to integrate dependencies between the

instances. This can be achieved using dot product or other kernels (details about kernels are

provided in work [III]). The resulting feature vectors, which include integrated dependencies,

are passed to the AbMILP module to obtain a fixed-sized vector for each bag. This vector can

then be passed to successive Fully-Connected (FC) layers of the network. The entire pipeline is

illustrated in Fig. 3.11.

The Self-Attention (SA) mechanism is used to identify the interdependencies between

instances within a bag. It enhances the instance representations by incorporating knowledge

from the entire bag, which is crucial for identifying the number of instances of the same concept

and their relationships. SA transforms each instance into two feature spaces, namely, keys
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Figure 3.11: SA-AbMILP architecture. Thanks to the use of self-attention module,
SA-AbMILP can model relationships between instances within a bag. Image copied from our
work [IV].

ki = Wkhi and queries qj = Wqhj, and calculates their similarity score sij = 〈k(hi),q(hj)〉
using dot product or other kernels. This similarity score is used to compute attention weights βj,i
for each instance, indicating how much the model focuses on the ith instance when processing

the jth one. The attention layer’s output is defined for each instance separately as:

ĥj = γoj + hj, where oj =
N∑
i=1

βj,iWvhi, (3.14)

Here, Wq,Wk ∈ RL̄×L, and Wv ∈ RL×L are trainable layers. The output oj is obtained

by weighting the instance representations with the computed attention weights βj,i and passing

them through a trainable layer Wv. The parameter L̄ = L/8 is chosen based on the results

presented in [79]. Moreover, γ is a trainable scalar initialized to 0.

Results. Table 3.4 presents the results of our method on histological datasets [25, 66]. In both

datasets, our method, with or without kernel extension, outperforms the baseline methods in

terms of the Area Under the ROC Curve (AUC). Furthermore, our method achieves the highest

recall, which is crucial in medical applications. To shed light on why our method outperforms

AbMILP, we compare the weights of patches in the average pooling. These patches contribute

the most to the final score and thus should be thoroughly investigated by pathologists. Lastly,

we observe that while kernels generally enhance performance, none of them is significantly

superior.

Figure 3.12 illustrates a comparison between the explanations obtained from AbMILP

and SA-AbMILP for a toy dataset created with MNIST digits. The dataset follows the

presence-based MIL assumption, where a bag is considered positive if it contains both 9 and

7 digits. It can be observed that in SA-AbMILP, the self-attention module strengthens the

representations of both 9s and 7s, resulting in higher weights in the aggregation operator as

compared to AbMILP.
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Table 3.4: Results for breast and colon cancer datasets (mean and standard error of the mean
over 5 repetitions). It can be noticed that SA-AbMILP and its kernel variations achieved
state-of-the-art results. However, there is no superior kernel in the results, meaning that it
is a hyperparameter of the model. Description of acronyms in [IV]. Table copied from our
work [IV]

breast cancer dataset
method accuracy precision recall F-score AUC

instance+max 61.4± 2.0 58.5± 3.0 47.7± 8.7 50.6± 5.4 61.2± 2.6
instance+mean 67.2± 2.6 67.2± 3.4 51.5± 5.6 57.7± 4.9 71.9± 1.9

embedding+max 60.7± 1.5 55.8± 1.3 54.6± 7.0 54.3± 4.2 65.0± 1.3
embedding+mean 74.1± 2.3 74.1± 2.3 65.4± 5.4 68.9± 3.4 79.6± 1.2

AbMILP 71.7± 2.7 77.1± 4.1 68.6± 3.9 66.5± 3.1 85.6± 2.2
SA-AbMILP 75.1± 2.4 77.4± 3.7 74.9± 3.7 69.9± 3.0 86.2± 2.2

GSA-AbMILP 75.8± 2.2 79.3± 3.3 74.7± 3.4 72.5± 2.5 85.9± 2.2
IQSA-AbMILP 76.7± 2.3 78.6± 4.2 75.1± 4.2 66.6± 4.3 85.9± 2.2
LSA-AbMILP 65.5± 2.9 62.5± 3.7 89.5± 2.6 68.5± 2.6 86.7± 2.1
MSA-AbMILP 73.8± 2.6 78.4± 3.9 73.8± 3.6 69.4± 3.4 85.8± 2.2

colon cancer dataset
method accuracy precision recall F-score AUC

instance+max 84.2± 2.1 86.6± 1.7 81.6± 3.1 83.9± 2.3 91.4± 1.0
instance+mean 77.2± 1.2 82.1± 1.1 71.0± 3.1 75.9± 1.7 86.6± 0.8

embedding+max 82.4± 1.5 88.4± 1.4 75.3± 2.0 81.3± 1.7 91.8± 1.0
embedding+mean 86.0± 1.4 81.1± 1.1 80.4± 2.7 85.3± 1.6 94.0± 1.0

AbMILP 88.4± 1.4 95.3± 1.5 84.1± 2.9 87.2± 2.1 97.3± 0.7
SA-AbMILP 90.8± 1.3 93.8± 2.0 87.2± 2.4 89.0± 1.9 98.1± 0.7

GSA-AbMILP 88.4± 1.7 95.2± 1.7 83.7± 2.8 86.9± 2.1 98.5± 0.6
IQSA-AbMILP 89.0± 1.9 93.9± 2.1 85.5± 3.0 86.9± 2.5 96.6± 1.1
LSA-AbMILP 84.8± 1.8 92.7± 2.7 71.1± 4.6 73.4± 4.3 95.5± 1.7
MSA-AbMILP 89.6± 1.6 94.6± 1.5 85.7± 2.7 87.9± 1.8 98.4± 0.5

Summary. Our work introduced the SA-AbMILP [IV] architecture, which is capable of

modeling dependencies between instances within a bag. We also presented a generalization

of the attention-based approach to encompass more MIL assumptions, such as threshold- and

presence-based.

One of the key advantages of our approach is ability to maintain the interpretability

component of attention pooling while achieving state-of-the-art results. This is a significant

contribution to the field, as it enabled us to better understand the underlying mechanisms of the

model’s decision-making process while still achieving high performance.

3.2.3. Local and global interpertability for MIL (ProtoMIL) [V]

Motivation. In recent years, deep learning has led to the integration of MIL with several

neural network-based models, including convolutional blocks, embedding all instances of a

bag and aggregate their embeddings [31,42,59,74]. While some aggregation methods highlight

important instances for prediction interpretation, they typically fail to explain the cause of their

importance [31, 42, 59]. Previous attempts to explain MIL models usually introduce additional

bias into the explanation or require extra input [7, 9, 43, 57].
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 AbMILP 0.01 0.04 0.26 0.02 0.08 0.00 0.02 0.21 0.37
SA-AbMILP 0.12 0.19 0.06 0.15 0.07 0.04 0.08 0.09 0.20

True label: 1; Prediction from AbMILP: 0; Prediction from SA-AbMILP: 1

True label: 0; Prediction from AbMILP: 1; Prediction from SA-AbMILP: 0

SA-AbMILP     0.06      0.10      0.09      0.10      0.23      0.05     0.09      0.12     0.07      0.09

      AbMILP     0.08      0.12      0.09      0.01      0.10      0.04     0.04      0.04     0.38      0.09

Figure 3.12: This image shows the comparison of the explanations generated by AbMILP and
SA-AbMILP on a MIL dataset with a presence-based MIL assumption. The bag is considered
positive if it contains both the digits 7 and 9. As the image shows, SA-AbMILP is able to
correctly capture the most important instances within a bag compared to the AbMILP model.
Image copied from our work [IV]

Contributions. To address these shortcomings, we introduce ProtoMIL, which builds on

case-based reasoning, a natural explanation strategy used by humans [40]. It addresses the

problem of gigapixel images classification, e.g. whole slide images (WSI) of biopsies. This

classification can be defined under the MIL framework, where we divide each WSI into patches

(to obtain instances) and analyze their similarity to trainable set prototypical parts of positive

and negative data classes, as in [11]. The trainable prototypes enable ProtoMIL to automatically

derive visual concepts from training set of positive and negative instances with the usage only

of a bag label. We then apply an attention pooling operator to aggregate these similarities over

instances to obtain a bag-level representation classified with an additional neural layer.

ProtoMIL is different from non-MIL approaches as it incorporates an aggregation layer and

a novel regularization technique encouraging the model to derive prototypes from instances

responsible for the positive label of a bag, which is challenging due to their concealed and

underrepresented nature.

Details. To obtain a representation of an image, we first divide it into patches. However, since

we do not know which patches correspond to the given data class, we employ Multiple Instance

Learning (MIL) where a bag of instances (in our case, patches) has only one label for the whole

bag. This bag is then passed through the four modules of ProtoMIL, as shown in Fig. 3.13: the

convolutional network fconv, the prototype layer fproto, the attention pooling operator a, and the

fully connected last layer g. The convolutional and prototype layers process single instances,

while the attention pooling and the last layer work at the bag level. More precisely, given a bag

of patches x = {x1, . . . ,xk}, each xi ∈ X is pushed through convolutional layers to obtain their

representations F = {fconv(x1), . . . , fconv(xk)}. As fconv(xi) ∈ H ×W × D, for the clarity
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Figure 3.13: Architecture of ProtoMIL. Thanks to the use of prototypical parts, the ProtoMIL
assures not only local interpretability (with attention pooling) but also the global one. Image
copied from our work [V].
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Table 3.5: Effectiveness of ProtoMIL on thre large-scale histopathology datasets. It can be
noticed that ProtoMIL offers the best interpretability features while it still achieves comparable
results to other methods, even much more complex such as transformes (TransMIL). Notice that
values for comparison marked with “*” and “**” are taken from [42] and [64], respectively.
Table copied from our work [V]

CAMELYON16 TCGA-NSCLC TCGA-RCC
METHOD ACCURACY AUC ACCURACY AUC ACCURACY AUC INTER.

INSTANCE+MEAN* 79.84% 0.762 72.82% 0.840 90.54% 0.978 -

INSTANCE+MAX* 82.95% 0.864 85.93% 0.946 93.78% 0.988 +

MILRNN* 80.62% 0.807 86.19% 0.910 - - -

ABMILP* 84.50% 0.865 77.19% 0.865 89.34% 0.970 ++

DSMIL* 86.82% 0.894 80.58% 0.892 92.94% 0.984 ++

CLAM-SB** 87.60% 0.881 81.80% 0.881 88.16% 0.972 +

CLAM-MB** 83.72% 0.868 84.22% 0.937 89.66% 0.980 +

TRANSMIL** 88.37% 0.931 88.35% 0.960 94.66% 0.988 +

PROTOMIL (our) 87.29% 0.935 83.66% 0.918 92.79% 0.961 +++

of description, let Zxi
= {zj ∈ fconv(xi) : zj ∈ RD, j = 1..HW}. Then, the prototypical part

layer computes vector hi of similarity scores [11] between each embedding fconv(xi) and all

prototypes p ∈ P as

hi =

(
g(Zxi

,p) = max
z∈Zxi

log
(
‖ zi−p ‖2+1
‖ zi−p ‖2+ε

))
p∈P

for ε > 0.

As a results, we have a bag of similarity scores {h1, . . . ,hk}, passed to the attention

pooling [31] to obtain a single similarity scores for the entire bag

hbag =
k∑
i=1

ai hi, where ai =
exp{wT (tanh(VhTi )� sigm(UhTi )}
k∑
j=1

exp{wT (tanh(VhTj )� sigm(UhTj )}
, (3.15)

w ∈ RL×1, V ∈ RL×M , and U ∈ RL×M are parameters, tanh is the hyperbolic tangent, sigm is

the sigmoid non-linearity and � is an element-wise multiplication. Such representation is then

sent to the last layer to obtain the predicted label y̌ = g(hbag) as in [11].

Results. We evaluated the effectiveness of ProtoMIL on multiple datasets, but in this section,

we present the results on three large-scale datasets: Camelyon16 [18], TCGA-NSCLC [6], and

TCGA-RCC [2]. Table 3.5 summarizes the results. ProtoMIL achieved superior results in terms

of AUC for the Camelyon dataset, while the results for the other datasets are comparable. It is

worth noting that interpretable methods often trade-off interpretability for effectiveness, which

can lead to a slight drop in accuracy [58]. We also marked the level of interpretability given by

the models, only ProtoMIL can explain its decisionwith global and local interpretations as it is

presented in Figure 2.3.
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Summary. Our work [V] extends the use of prototypical parts to the multiple instance learning

(MIL) problem. By doing so, we are able to not only obtain local interpretations for individual

predictions but also effectively characterize the classes using prototypical parts. This provides

the user with the ability to assess the trustworthiness of the model’s predictions and facilitating

making informed decisions.

3.2.4. Summary

In this chapter, we summarized the contributions made by the Ph.D. candidate towards

advancing the field of interpretable deep learning models for Multiple-Instance Learning

problems, specifically through the adoption of self-attention mechanisms and prototypical

parts. Moving forward, we now discuss the other research-related activities undertaken by the

candidate that are not directly related to the publication included in this dissertation.
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4. Ph.D. candidate’s research profile

This chapter of the dissertation provides a comprehensive account of the Ph.D. candidate’s

other notable accomplishments outside the scope of the publications that comprise this thesis.

Specifically, we discuss the candidate’s contributions to other publications, grants obtained,

and participation in relevant projects. Additionally, we examine the candidate’s collaborations

with other researchers. Finally, we highlight the candidate’s work as a reviewer and efforts to

promote science.

List of publications to which Ph.D. candidate contributed that are not part of this
dissertation:
• Adriana Borowa, Dawid Rymarczyk, Dorota Ochońska, Agnieszka Sroka-Oleksiak,

Monika Brzychczy-Włoch, Bartosz Zieliński, “Identifying bacteria species on microscopic

polyculture images using deep learning“, IEEE Journal of Biomedical and Health

Informatics, 2023, IF 7.021, MEiN points 140.

• Bartosz Zieliński, Agnieszka Sroka-Oleksiak, Dawid Rymarczyk, Adam Piekarczyk,

Monika Brzychczy-Włoch, “Deep learning approach to describe and classify fungi

microscopic images“, PLoS ONE, 2020, IF 3.240, MEiN points 100.

• Adriana Borowa, Dawid Rymarczyk, Dorota Ochońska, Monika Brzychczy-Włoch,

Bartosz Zieliński, “Deep learning classification of bacteria clones explained by persistence

homology“, International Joint Conference on Neural Networks (IJCNN), 2021, CORE B,

MEiN points 140.

• Mikołaj Sacha, Dawid Rymarczyk, Łukasz Struski, Jacek Tabor, Bartosz Zieliński,

“ProtoSeg: Interpretable Semantic Segmentation With Prototypical Parts“, IEEE/CVF

Winter Conference on Applications of Computer Vision (WACV), 2023, CORE A, MEiN

points 140.

• Adam Pardyl, Dawid Rymarczyk, Zbisław Tabor, Bartosz Zielinski. “Automating

Patient-Level Lung Cancer Diagnosis in Different Data Regimes.“ Neural Information

Processing (ICONIP). 2022. CORE B. MEiN points 140.

• Dawid, Rymarczyk, Adriana, Borowa, Anna, Bracha, Maurycy, Chronowski, Wojciech,

Ozimek, Bartosz, Zieliński. “Comparison of supervised and self-supervised deep

representations trained on histological images.“ One World, One Health – Global

Partnership for Digital Innovation (MedInfo), 2021, rank CORE B, MEiN points 70.
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List of acquired grants (as principal investigator):
• NCN Preludium: Improving interpretability properties of prototypical parts-based deep

neural networks.

National Science Center, Poland

2023 - 2024

• POB DigiWorld minigrant: Deep Neural Networks in the context of human cognitive

system.

Jagiellonian University, Poland

2021 - 2022

List of grants to which Ph.D. candidate contributed (as co-investigator):
• Team-Net: Bio-inspired artificial neural networks

Foundation for Polish Science, Poland

principal investigator: prof. Jacek Tabor,

2020 - 2023

• NCN Opus: Deep Self-Organizing Neural Graphs

National Science Center, Poland

principal investigator: prof. Jacek Tabor,

2022 - 2025

• POB DigiWorld minigrant: Innovative microbiological diagnostics using machine learning

Jagiellonian University, Poland

principal investigator: dr Bartosz Zieliński,

2021

• Fast track: Opracowanie platformy badań fenotypowych, opartej na technologii

high-content screening, z analizą za pomocą algorytmów sztucznej inteligencji w celu

odkrywania nowych leków w chorobach neurozapalnych i zwłóknieniowych

National Center for Research and Development, Poland

company: Selvita,

2019 - 2022

• Fast track: X-rAI: Przeglądarka diagnostyczna dla radiologii z komputerowym

wspomaganiem wykorzystującym Sztuczną Inteligencję

National Center for Research and Development, Poland

company: AGH University of Science and Technology,

2021 - 2023
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Established research cooperations.
• International cooperation:

• Internship in the group of prof. Joost van de Weijer at Computer Vision Center at

Autonomous University of Barcelona. Outcomes:

• Dawid Rymarczyk, Joost van de Weijer, Bartosz Zieliński, Bartłomiej Twardowski.

ICICLE: Interpretable Class Incremental Continual Learning. arXiv preprint

arXiv:2303.07811, 2023.

• Sumbission of a grant proposal for European Commission

call HORIZON-CL4-2023-HUMAN-01-CNECT with a topic

HORIZON-CL4-2023-HUMAN-01-01. The consortium consists of 18 partners

worldwide, among others there are University of Oxford, and University of Piza.

• National cooperation:

• Cooperation with prof. Zbisław Tabor from AGH University of Science and Technology

in Kraków. Outcomes:

• Adam Pardyl, Dawid Rymarczyk, Zbisław Tabor, Bartosz Zieliński. Automating

Patient-Level Lung Cancer Diagnosis in Different Data Regimes. Neural

Information Processing (ICONIP). 2022. CORE B. MNiSW points 140.

• Cooperation with prof. Monika Brzychczy-Włoch from Colegium Medicum of

Jagiellonian University. Outcomes:

• Adriana Borowa, Dawid Rymarczyk, Dorota Ochońska, Agnieszka

Sroka-Oleksiak, Monika Brzychczy-Włoch, Bartosz Zieliński, Identifying bacteria

species on microscopic polyculture images using deep learning, IEEE Journal of

Biomedical and Health Informatics, 2023, IF 7.021, MNiSW points 140.

• Bartosz Zieliński, Agnieszka Sroka-Oleksiak, Dawid Rymarczyk, Adam

Piekarczyk, Monika Brzychczy-Włoch, Deep learning approach to describe and

classify fungi microscopic images, PLoS ONE, 2020, IF 3.240, MNiSW points 100.

• Adriana Borowa, Dawid Rymarczyk, Dorota Ochońska, Monika

Brzychczy-Włoch, Bartosz Zieliński, Deep learning classification of bacteria

clones explained by persistence homology, International Joint Conference on Neural

Networks (IJCNN), 2021, CORE B, MNiSW points 140.

• Submission to European Patent Office of the following invention: “A method and

a system for identifying polyculture bacteria on microscopic images using deep

learning“, Application number: EP22461550.0. 2022.

• Cooperation with dr Koryna Lewandowska from Jagiellonian University. Outcomes:

• Dawid Rymarczyk, Łukasz Struski, Michał Górszczak, Koryna Lewandowska,

Jacek Tabor, Bartosz Zieliński. “Interpretable image classification with
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differentiable prototypes assignment.“ European Conference on Computer Vision

(ECCV), 2022, pp. 351-368, rank CORE A*, 140 MEiN points.

Acting as a reviewer for:
• The IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), CORE

rank A*,

• International Conference on Computer Vision (ICCV), CORE rank A*,

• European Conference on Computer Vision (ECCV), CORE rank A*,

• IEEE/CVF Winter Conference on Applications of Computer Vision (WACV), CORE rank

A,

• European Conference on Machine Learning and Principles and Practice of Knowledge

Discovery in Databases (ECML PKDD), CORE rank A.

Science promotion:
• Co-organizer of a workshop accompanying European Conference on Artificial Intelligence

(ECAI, CORE rank A) on “Joint workshops on XAI methods, challenges and applications“,

2023,

• invited speaker for TestDive 2020,

• scientific poster presentation:

Michał Koziarski, Piotr Gaiński, Krzysztof Rataj, Adriana Borowa, Konrad Wójtowicz,

Jakub Gwóźdź, Magdalena Otrocka, Dawid Rymarczyk, Michał Warchoł, Multimodal

Approach to MoA Prediction Based on Cell Painting Imaging and Chemical Structure Data,

ELRIG Annual Drug Discovery Conference, 2022.
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5. Conclusions

This dissertation highlights notable accomplishments of a Ph.D. candidate in the field of

interpretable deep learning, particularly in the areas of prototypical parts and self-explainable

Multiple-Instance Learning. The candidate’s research has been accepted to the main tracks of

prestigious conferences, including ECCV and KDD, as well as other reputable international

events such as WACV, SDM, and ECML PKDD. In these works, new self-explainable deep

learning approaches were introduced, such as ProtoPShare and ProtoPool sharing prototypical

parts between classes, ProGReST tackling molecular property prediction problem in an

interpretable way, and advancing field of Multiple Instance Learning with SA-AbMILP and

ProtoMIL, focusing on modeling relationships between instances in a bag and providing global

explanations. Moreover, he has acted as a reviewer for top-tier conferences such as CVPR, and

he has actively promoted science, e.g. by organizing workshops at conferences.

The Ph.D. candidate’s achievements go beyond his high-quality research work, as he has

also secured research funding from a Preludium grant from NCN and Excellence Initiative

from Jagiellonian University. Moreover, he established international collaborations resulting

in a scientific internship in the group of prof. Joost van der Weijer at Computer Vision

Center at Autonomous University of Barcelona, and a submission of a grant proposal to

the European Commission with 18 international partners. He also contributed to multiple

interdisciplinary national collaborations, e.g. with microbiologists. Additionally, he has shown

commercialization potential of his work by submitting a patent application to the European

Patent Office.

His previous works have inspired others in the field, such as ProtoPShare [I] which served

as a basis for the development of data distillation techniques for interpretable models [36], and

ProtoPool [II] which has led to the generalization of prototypical parts to ProtoKNN [68]. In

addition, the MIL methods developed in the work [IV] have been used to develop more effective

MIL classifiers [42], and the concept of ProtoMIL [V] has been further explored by [78] to

combine prototypes with contrastive learning to improve the model’s performance.

Looking ahead, the Ph.D. candidate plans to collaborate with international partners to

develop sustainable and interpretable neural networks, continue exploring multiple-instance

learning techniques for pathogen classification with microbiologists. Currently, he is involved

in works on enhancing the robustness of prototypical parts against adversarial attacks and

generating counterfactual examples by altering the prototypical parts.
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Information on publications constituting part of
collection of research articles

[I] Dawid Rymarczyk, Łukasz Struski, Jacek Tabor, Bartosz Zieliński. “Protopshare:

Prototypical parts sharing for similarity discovery in interpretable image classification.“

Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data

Mining. 2021, pp. 1420-1430, rank CORE A*, 200 MEiN points.

[II] Dawid Rymarczyk, Łukasz Struski, Michał Górszczak, Koryna Lewandowska, Jacek

Tabor, Bartosz Zieliński. “Interpretable image classification with differentiable prototypes

assignment.“ European Conference on Computer Vision (ECCV), 2022, pp. 351-368, rank

CORE A*, 140 MEiN points.

[III] Dawid Rymarczyk, Daniel Dobrowolski, Tomasz Danel. “ProGReST: Prototypical Graph

Regression Soft Trees for Molecular Property Prediction.“ SIAM Conference on Data

Mining (SDM), 2023, pp. 379-387, rank CORE A, 140 MEiN points.

[IV] Dawid Rymarczyk , Adriana Borowa, Jacek Tabor, Bartosz Zieliński. “Kernel

self-attention for weakly-supervised image classification using deep multiple instance

learning.“ IEEE/CVF Winter Conference on Applications of Computer Vision (WACV),

2021, pp. 1721-1730, rank CORE A,140 MEiN points.

[V] Dawid Rymarczyk, Adam Pardyl, Jarosław Kraus, Aneta Kaczyńska, Marek

Skomorowski, Bartosz Zieliński. “ProtoMIL: Multiple Instance Learning with Prototypical

Parts for Whole-Slide Image Classification.“ European Conference on Machine Learning

and Principles and Practice of Knowledge Discovery in Databases (ECML PKDD), 2022,

rank CORE A, 140 MEiN points.
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One explanation does not fit all: A toolkit and taxonomy of ai explainability techniques.

arXiv:1909.03012, 2019.

[5] Sebastian Bach, Alexander Binder, Grégoire Montavon, Frederick Klauschen, Klaus-Robert

Müller, and Wojciech Samek. On pixel-wise explanations for non-linear classifier decisions by

layer-wise relevance propagation. PloS one, 10(7):e0130140, 2015.

[6] Shaimaa Bakr, Olivier Gevaert, Sebastian Echegaray, Kelsey Ayers, Mu Zhou, Majid Shafiq, Hong

Zheng, Jalen Anthony Benson, Weiruo Zhang, Ann NC Leung, et al. A radiogenomic dataset of

non-small cell lung cancer. Scientific data, 5(1):1–9, 2018.

[7] Alina Jade Barnett, Fides Regina Schwartz, Chaofan Tao, Chaofan Chen, Yinhao Ren, Joseph Y

Lo, and Cynthia Rudin. Iaia-bl: A case-based interpretable deep learning model for classification

of mass lesions in digital mammography. arXiv preprint arXiv:2103.12308, 2021.

[8] Suman K. Bera, Jason Dent, Gill Gurbinder, Andrew Stoleman, and Bo Wu. Simgcn for tdc

benchmarks. 2022.

[9] Adriana Borowa, Dawid Rymarczyk, Dorota Ochońska, Monika Brzychczy-Włoch, and Bartosz
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Figure 1: Comparison between ProtoPNet with exclusive prototypes and our ProtoPShare that shares prototypes between
classes. The number of prototypes in ProtoPNet is large because each of them is assigned to only one class. E.g. in this example,
classesHenslow sparrow and Lincoln sparrow have separate prototypes corresponding to Eye in ProtoPNet. In ProtoPShare, the
similar prototypes are merged into one, decreasing model complexity and discovering similarities between classes.

ABSTRACT
In this work, we introduce an extension to ProtoPNet called Pro-

toPShare which shares prototypical parts between classes. To ob-

tain prototype sharing we prune prototypical parts using a novel

data-dependent similarity. Our approach substantially reduces the

number of prototypes needed to preserve baseline accuracy and

finds prototypical similarities between classes. We show the effec-

tiveness of ProtoPShare on the CUB-200-2011 and the Stanford Cars

datasets and confirm the semantic consistency of its prototypical

parts in user-study.
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1 INTRODUCTION
Broad application of deep learning in domains like medical diagno-

sis and autonomous systems enforces models to explain their deci-

sions. Ergo, more andmoremethods provide human-understandable

justifications for their output [2–5, 8, 10, 13, 30]. Some of them are in-

spired by the human brain and how it explains its visual judgments

by pointing to prototypical features that an object possesses [32].
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Figure 2: Example prototypes similar according to our data-
dependent similarity but distant in representation space.
The tSNE projections of prototypes (left plots) trained for
CUB-200-2011 and Stanford Cars datasets (top and bot-
tom part, respectively) contains two prototypes marked as
red/green squares. They correspond to semantically similar
prototypical parts (top representing bright belly with gray-
ish wings and bottom representing fender) that are distant
in the representation space. Such pairs can be discovered by
our data-dependent similarity defined in Section 3. Notice
that each example prototype is represented by one row of 3
closest images’ parts (marked with yellow bounding-boxes).
More examples are presented in Figure 11.

I.e., a certain object is a car because it has tires, roof, headlights,

and horn.

Recently introduced Prototypical Part Network (ProtoPNet) [4]
applies this paradigm by focusing on parts of an image and compar-

ing them with prototypical parts of a given class. This comparison

is achieved by pushing parts of an image and prototypical parts

through the convolutional layers, obtaining their representation,

and computing similarity between them. We will refer to the repre-

sentations of prototypical parts as prototypes.
ProtoPNet is a self-explaining model that generates intuitive

explanations and achieves accuracy comparable with its analogous

non-interpretable counterparts. However, it has limited applicabil-

ity due to two main reasons. Firstly, the number of prototypes is

large because each of them is assigned to only one class. It nega-

tively influences the interpretability whose much-desirable proper-

ties are small size and low complexity [7, 39]. Secondly, due to the

training that pushes away the prototypes of different classes in the

representation space, the prototypes with similar semantic can be

distant (see Figure 2). Therefore, the predictions obtained from the

network can be unstable.

In this work, we address those limitations by introducing the

Prototypical Part Shared network (ProtoPShare)1 that shares the

prototypes between the classes, like presented in Figure 1. As a

1
The code is available here: https://github.com/gmum/ProtoPShare.

Figure 3: Inter class similarity visualization as a graph gener-
ated based on the prototypes shared in ProtoPShare trained
on Stanford Cars dataset. Each node corresponds to a class,
and the strength of the edge between two nodes corresponds
to the number of shared prototypes. E.g. Audi S5 Coupe
shares 4 prototypes with Audi S5 Convertible but does not
share prototypes with Acura RL Sedan. This graph can be
used to find similarities between the classes or to cluster
them into groups. Notice that each class is represented by
three images located around the node.

result, the number of prototypes is relatively small and prototypes

with similar semantic are close to each other. Additionally, it is

possible to discover similarities between the classes, as presented

in Figure 3. ProtoPShare method consists of two phases, initial

training and prototypes’ pruning. In the first phase, the model is

trained using exclusive prototypes and a loss function described

in [4]. In the second phase, the iterative pruning merges successive

portions of the most similar prototypes. For this purpose, we in-

troduce the data-dependent similarity described in Section 3 that

finds prototypes with similar semantics, even if they are distant in

representation space. We demonstrate the superiority of the Pro-

toPShare approach by comparing it to the other methods based

on the prototypes’ paradigm. Our contribution can be therefore

summarized as follows:

• We construct ProtoPShare, a self-explained method built on

the paradigm of prototypical parts that shares prototypes

between the classes.

• We introduce data-dependent similarity that can find se-

mantically similar prototypes even if they are distant in the

representation space.

• We significantly reduce the number of prototypes comparing

to state of the art, reducing model complexity and discover-

ing similarities between classes.

This paper is organized as follows. Section 2 investigates related

works on interpretability and pruning. In Section 3, we introduce

our ProtoPShare method together with its theoretical understand-

ing. Section 4 illustrates experimental results on CUB-200-2011 and
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Figure 4: The architecture of our ProtoPShare. It consists of convolutional layers 𝑓 , followed by a prototype layer 𝑔, and a
fully connected layer ℎ. Layer 𝑔 contains prototypes that are shared between the classes. E.g. in this example, prototype 𝑝2 is
assigned both to class Common yellowthroat and Prothonotary warbler which corresponds to stronger connections between 𝑝2
and both classes in layer ℎ. As a result of sharing the prototypes, we reduce their number and discover similarities between
classes.

Stanford Cars datasets, while Section 5 concentrates on ProtoPShare

interpretability. Finally, we conclude the work in Section 6.

2 RELATEDWORKS
ProtoPShare is a self-explained method with a strong focus on the

prototypes’ pruning. Therefore, in the related works, we consider

the articles about interpretability and pruning.

Interpretability. Interpretability approaches can be divided into

post hoc and self-explaining methods [2]. Post hoc techniques in-
clude saliency maps, showing how important each pixel of a par-

ticular image is for its classification [30, 33–35]. Another tech-

nique called concept activation vectors provides an interpretation

of the internal network state in terms of human-friendly con-

cepts [5, 12, 19, 42]. Other methods analyze how the network’s

response changes for perturbed images [8, 9, 31]. Post hoc methods

are easy to use in practice as they do not require changes in the

architecture. However, they can produce unfaithful and fragile ex-

planations [1]. Therefore, as a remedy, self-explainable models were

introduced by applying the attention mechanism [10, 36, 40, 44, 45]

or the bag of local features [3]. Other works [13, 23, 29] focus on

exploiting the latent feature space obtained, e.g. with adversarial

autoencoder. The interesting self-explainingmethods are prototype-

based models represented, like Prototypical Part Network [4] with

a hidden layer of prototypes representing the activation patterns.

A similar approach for hierarchically organized prototypes is pre-

sented in [14] to classify objects at every level of a predefined

taxonomy. Some works concentrate on transforming prototypes

from the latent space to data space [14]. The others try to apply

prototypes to other domains like sequence learning [27] or time

series analysis [11].

Pruning. Pruning is mostly used to accelerate deep neural net-

works by removing unnecessary weights or filters [25]. The latter

can be roughly divided into data-dependent and data-independent

filter pruning [16], depending on whether the data is used or not

to determine the pruned filters. The basic type of data-independent
pruning removes filters with the smallest sum of absolute values of

weights [22]. More complicated approaches designate irrelevant or

redundant filters using scaling parameters of batch normalization

layers [41] or the concept of geometric median [16].Data-dependent
pruning can be solved as an optimization problem on the statis-

tics computed from its subsequent layer [26], by minimizing the

reconstruction error on the subsequent feature map using Lasso

method [17], or by using a criterion based on Taylor expansion

that approximates the change in the cost function induced by prun-

ing [28]. Filters’ importance can also be propagated from the final

response layer to minimize its reconstruction error [43]. Another

possibility is to introduce additional discrimination-aware losses

and select the most discriminative channels for each layer [46].

Finally, feature maps can be clustered and replaced by the aver-

age representative from each cluster [38]. Moreover, filters can be

pruned together with other structures of the network [24].

Our ProtoPShare extends the ProtoPNet [4] by the shared pro-

totypes obtained with the data-dependent pruning based on the

feature maps.

3 PROTOPSHARE
In this section, we first describe the architecture of ProtoPShare and

then define our data-dependent merge-pruning algorithm. Finally,

we provide a theoretical understanding of how the prototypes’

merge affects classification accuracy.

Architecture. The architecture of ProtoPShare, shown in Figure 4,

consists of convolutional layers 𝑓 , followed by a prototype layer

𝑔, and a fully connected layer ℎ (with weight 𝑤ℎ and no bias).

Given an input image 𝑥 ∈ 𝑋 , the convolutional layers extract

image representation 𝑓 (𝑥) of shape 𝐻 ×𝑊 × 𝐷 . For the clarity of

description, let 𝑍𝑥 = {𝑧𝑖 ∈ 𝑓 (𝑥) : 𝑧𝑖 ∈ R𝐷 , 𝑖 = 1..𝐻𝑊 }. Then, for
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Figure 5: The process of merging two prototypes. If proto-
types 𝑝1 and 𝑝3 are similar (e.g. they both present a birds’ leg),
we delete one of them (in this case 𝑝3). Moreover, to recom-
pensate this removal, we assign 𝑝1 to 𝑝3’s class and add 𝑝3’s
weights to 𝑝1’s weights in ℎ (here done by summing weights
represented as the blue and green arrows).

each class 𝑘 , the network learns𝑚𝑘 prototypes 𝑃𝑘 = {𝑝𝑖 }𝑚𝑘

𝑖=1
, where

𝑝𝑖 ∈ R𝐷 represents prototypical parts trained for class 𝑘 . Given a

convolutional output 𝑍𝑥 and prototype 𝑝 , ProtoPShare computes

the distances between them, inverts them to obtain the similarity

scores, and takes the maximum among all 𝑧 ∈ 𝑍𝑥 :

𝑔(𝑍𝑥 , 𝑝) = max

𝑧∈𝑍𝑥

log

(
∥𝑧−𝑝 ∥2+1
∥𝑧−𝑝 ∥2+Y

)
for Y > 0. (1)

Finally, the similarity scores produced by the prototype layer (𝑚𝑘

values per class) are multiplied by the weight matrix 𝑤ℎ in the

fully connected layer ℎ. This results in the output logits that are

normalized using softmax to obtain a final prediction.

After training with exclusive prototypes and a loss function

adapted from [4], most representations of the image’s parts are clus-

tered around semantically similar prototypes of their true classes,

and the prototypes from different classes are well-separated. As a

result, the prototypes with similar semantics can be distant in rep-

resentation space (see Figure 2), resulting in unstable predictions.

In the next paragraph, we present how to overcome this issue with

our data-dependent merge-pruning.

Data-dependent merge-pruning. Here, we describe the pruning
phase of our method. As the input, it obtains the network trained

with exclusive prototypes, and as the output, it returns the network

with a smaller number of shared prototypes.

Let 𝑃 be the set of all prototypes (after training phase), 𝐾 be the

number of classes, and Z be the percentage of prototypes to merge

per pruning step. Each step begins with computing the similarities

between the pairs of prototypes, then for each pair (𝑝, 𝑝) among

Z percent of the most similar pairs, the prototype 𝑝 is removed

together with its weights 𝑤ℎ (𝑝). In exchange, the class to which

𝑝 was assigned reuses prototype 𝑝 whose weights 𝑤ℎ (𝑝) are ag-
gregated with𝑤ℎ (𝑝). We present this procedure in Figure 5. Note

that in each step, we cannot always merge exactly Z percent of

prototypes. It is because the similarity metric can have the same

value for many pairs. Lastly, we finetune layer ℎ after each step.

As described in the architecture description, training with a

loss function described in [4] can result in prototypes of similar

semantic that are far from each other. To overcome this problem,

we introduce a special type of data-dependent similarity. It uses

training images 𝑥 ∈ 𝑋 to generate the representation of all training

patches, and compare the difference between 𝑔(𝑍𝑥 , 𝑝) and 𝑔(𝑍𝑥 , 𝑝).
The data-dependent similarity for pair of prototypes (𝑝, 𝑝) ∈ 𝑃2 is
defined as the compliance on the similarity scores computed for all

patches 𝑥 ∈ 𝑋 :

𝑑𝐷𝐷 (𝑝, 𝑝) = 1∑
𝑥∈𝑋 (𝑔 (𝑍𝑥 ,𝑝)−𝑔 (𝑍𝑥 ,�̃�))2

. (2)

As a result, prototypes are considered similar if they activate alike

on the training images, even if they are far from each other in the

representation space.

Theoretical results. The following theorem provides some the-

oretical understanding of how the prototypes’ merge affects the

classification accuracy. Intuitively, the theorem states that if the

pruningmerges similar prototypes, then the predictions after merge

do not change if predictions before the merge had certain confi-

dence. Due to the page limits, the proof is in the Appendix A.

Theorem 1. Let 𝑥 ∈ 𝑋 be an input image correctly classified by
ProtoPShare ℎ ◦𝑔𝑝 ◦ 𝑓 as class 𝑐 before the prototypes’ merge, and let:

(A1) some of the class 𝑘 prototypes remain unchanged 𝑃 ′
𝑘

⊂ 𝑃𝑘
while the others merge into the other classes’ prototypes 𝑆𝑘 ⊂⋃
𝑖≠𝑘

𝑃 ′
𝑖
,

(A2) 𝑝 ∈ 𝑃𝑘 \ 𝑃 ′
𝑘
is merged into 𝑝 ∈ 𝑆𝑘 ,

(A3) 𝑧𝑝 = argmin

𝑧∈ ⋃
𝑥∈𝑋

𝑍𝑥

∥𝑧 − 𝑝 ∥ is the representation of the training

patch nearest to any prototype 𝑝 ,
(A4) there exist 𝛿 ∈ (0, 1) such that:

a) for 𝑘 ≠ 𝑐 , 𝑝 ∈ 𝑃𝑘 \𝑃 ′𝑘 and 𝑝 ∈ 𝑆𝑘 , we suppose that ∥𝑝−𝑝 ∥ ≤
\ ∥𝑧𝑝 −𝑝 ∥ −

√
Y and \ = min(

√
1 + 𝛿 −1, 1− 1√

2−𝛿
) (Y comes

from function 𝑔 defined in (1)),
b) for 𝑝 ∈ 𝑃𝑐 \ 𝑃 ′𝑐 and 𝑝 ∈ 𝑆𝑐 , we suppose that ∥𝑝 − 𝑝 ∥ ≤

(
√
1 + 𝛿 − 1)∥𝑧𝑝 − 𝑝 ∥ and ∥𝑧𝑝 − 𝑝 ∥ ≤

√
1 − 𝛿 ,

(A5) for each class 𝑘 , weights connecting class with assigned proto-
types equal 1, and the other weights equal 0 (i.e., 𝑤ℎ (𝑝) = 1

for 𝑝 ∈ 𝑃𝑘 ∪ 𝑆𝑘 and𝑤ℎ (𝑝) = 0 for 𝑝 ∈ ⋃
𝑖≠𝑘

𝑃𝑖 \ 𝑆𝑘 ).
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Figure 6: The accuracy of ProtoPShare and baselinemethods with respect to decreasing number of prototypes.We compare the
accuracy (higher is better) for various pruning rates onCUB-200-2011 and StanfordCars datasets. As observed, our ProtoPShare
achieves higher accuracy than the variations of our method (data-independent and random), ProtoPNet with the original
pruning, and ProtoPNet (shared) trained with shared prototypes. Moreover, ProtoPShare maintains high accuracy even for
only 25% of the initial prototypes. Notice that the accuracy for the initial pruning steps is zoomed to increase plot clarity, and
that we stop pruning around 300 remaining prototypes due to the model collapse.

Then, after the prototypes’ merge, the output logit for class 𝑐 can
decrease at most by Δ𝑐

max
, and the output logit for the other classes

𝑘 ≠ 𝑐 can increase at most by Δ𝑘
max

, where:

Δ𝑘
max

:= |𝑃𝑘 \ 𝑃 ′
𝑘
| log ((1 + 𝛿) (2 − 𝛿)) for 𝑘 ∈ {1, . . . , 𝐾}.

Hence, if the output logits between the top-2 classes are at least Δ𝑐
max

+
max

𝑘≠𝑐

(
Δ𝑘
max

)
apart, then the merge of prototypes does not change the

prediction of 𝑥 .

4 EXPERIMENTS
In this section, we analyze the accuracy and robustness of ProtoP-

Share in various scenarios of the merge-pruning, and we explain

our architectural choices by comparing it to other methods.

We train ProtoPShare to classify 200 bird species from the CUB-

200-2011 dataset [37] and 196 car models from the Stanford Cars

dataset [21]. As the convolutional layers 𝑓 , we take the convolu-

tional blocks of ResNet-34, ResNet-152 [15], DenseNet-121, and

DenseNet-161 [18] pretrained on ImageNet [6]. We set the number

of prototypes per class to 10, which results in 2000 prototypes for

birds and 1960 prototypes for cars after the first phase of ProtoP-

Share. Moreover, in the second phase, we assume finetuning with

25 iterations after each pruning step.

How many prototypes are required? In Figure 6, we compare

the accuracy of ProtoPShare with ProtoPNet and variations of our

method (data-independent and random) for various pruning rates.

Data-independent uses inverse Euclidean norm as the similarity

measure instead of similarity defined in (2), while random cor-

responds to random joining. The results for ProtoPShare and its

variations were obtained from the successive steps of pruning, while

the results for ProtoPNet were obtained for different values of ^

and 𝜏 from Appendix S8 in [4]. One can observe that ProtoPShare

Figure 7: The accuracy of ProtoPShare for different percent-
ages of prototypes merged per pruning step with respect to
decreasing number of prototypes. Comparing the accuracy
(higher is better) on the CUB-200-2011 dataset, we observe
that the drop in accuracy is lower for a smaller number of
prototypes (5%)merged per step. It is expected because small
modifications in the set of prototypesmakefinetuningmore
effective than in the case of broader changes.
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Table 1: ProtoPShare and baseline method results for the smallest number of prototypes that preserve baseline accuracy. Re-
sults show the superiority of our method achieved for various architectures trained on both datasets, which in some cases (e.g.
ResNet34 trained on CUB-200-2011) obtains almost 10% higher accuracy. Additional results correspond to different finetuning
strategies used after ProtoPShare pruning steps, including optimizing only the last layer (ℎ), optimizing the prototypes and
last layers (𝑃 and ℎ), and optimizing all the layers (𝑓 , 𝑃 , and ℎ). Note that RN and DN correspond to ResNet and DenseNet
architectures, respectively.

Model

Finetuning after |𝑃 | RN34 RN152 DN121 DN161 |𝑃 | RN34 DN121

pruning step before |𝑃 | in the final model before |𝑃 | in the final model

𝑓 𝑃 ℎ pruning 400 1000 1000 600 pruning 480 980

CUB-200-2011 Stanford Cars

ProtoPNet (shared) no pruning 0.6833 0.6938 0.6985 0.6823 0.8231 0.8264

ProtoPNet ✓ 2000 0.5751 0.7207 0.6972 0.7509 1960 0.8428 0.8031

ProtoPShare (ours)

✓ ✓ ✓ 2000 0.6355 0.6821 0.6612 0.6526 1960 0.7864 0.7767

✓ ✓ 2000 0.6591 0.7161 0.6836 0.7047 1960 0.7902 0.7903

✓ 2000 0.7472 0.7361 0.7472 0.7645 1960 0.8638 0.8481

achieves higher accuracy for all pruning rates and works reasonably

well even for only 25% of the initial prototypes in case of ResNet34.

Moreover, data-independent obtains similarly good results at the

initial steps of prunings, but its accuracy drops more rapidly with a

higher pruning rate. At the same time, the results of ProtoPNet, ei-

ther with the original pruning or with shared prototypes, are always

worse than ProtoPShare. Moreover, results for those two ProtoPNet

variations are between results for data-independent and random

models. Finally, for each model, we observe a critical step of prun-

ing with a significant accuracy drop. Hence, we suggest monitoring

the accuracy of the validation set when applying ProtoPShare in

specific domains.

Accuracy vs. step size. In Figure 7, we present how the ProtoP-

Share behaves for different percentages of prototypes merged per

pruning step (Z = 5%, 10%, or 15%). One can observe that the

accuracy is higher for smaller Z . It is expected because small modi-

fications in the set of prototypes make finetuning with 25 iterations

more effective than in the case of broader changes. Notice that

we have not tested Z < 5%, which would most probably further

increase the accuracy at the cost of extensive computations.

Why two training phases? To demonstrate the need for two train-

ing phases in ProtoPShare, we compare it to ProtoPNet trained

with shared prototypes. In this setting, ProtoPShare is first trained

with plenty of prototypes (e.g. 2000 for the CUB-200-2011) and then

pruned to a small number of prototypes (e.g. 400 for ResNet34).

Simultaneously, we train ProtoPNet with a small number of pro-

totypes from the beginning (e.g. 400 for ResNet34) that are shared

between classes. The results presented in Figure 6 and Table 1 con-

firm that ProtoPShare achieves better accuracy for both datasets.

The biggest gain in accuracy, between 5% to 10%, is obtained for the

CUB-200-2011. However, the trend is similar in the case of the Stan-

ford Cars. Additionally, we compare the effectiveness of different

finetuning strategies in Table 1. Based on the results, we conclude

that the finetuning only the last layer is the best strategy. Notice

that the results in Table 1 are obtained for the smallest number of

Figure 8: The difference in the accuracy between ProtoP-
Share with 600 prototypes and ProtoPNet with 1400 proto-
types. The results obtained for DenseNet161 and various
image perturbations suggest that ProtoPShare preserves ro-
bustness to the image perturbations even though it uses a
smaller number of prototypes.

prototypes that preserve baseline accuracy, while in Figure 6 we

plot the complete results.

Resistance to perturbations. In Figure 8 we present the difference

in accuracy between ProtoPShare trained for 2000 and then pruned

to 600 prototypes with ProtoPNet trained for 2000 and then pruned

to 1400 prototypes (using ^ = 6 and 𝜏 = 5 from Appendix S8

in [4]) for various image perturbations. We incorporate different

perturbations and magnitudes that modify brightness, contrast,

saturation, hue, and perspective using Torchvision ColorJitter and
Perspective transformations with probability of perturbation equal

1 and perturbation values from range [0; 0.5] for hue and [0; 1] for
the others. As presented, the ProtoPShare with smaller number of

prototypes performs on par to the ProtoPNet with a larger number

of prototypes. Therefore, we conclude that ProtoPShare preserves

robustness to the image perturbations even though it uses a smaller

number of prototypes.
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Figure 9: Eight prototypes from eight classes merged into one prototype by our ProtoPShare method. One can see that all
prototypes correspond to the prototypical part of a wing with light smudge.

Discussion. We confirmed that ProtoPShare achieves better ac-

curacy than other methods for almost all pruning rates. We demon-

strated the need for small-steps pruning with finetuning only the

last fully connected layer instead of the broader optimization. Ad-

ditionally, we explained the need for two phases (training and

pruning) and verified that the smaller number of prototypes does

not negatively influence the model’s robustness.

5 INTERPRETABILITY OF PROTOPSHARE
In the section, we focus on the interpretability of ProtoPShare us-

ing qualitative results and user study. We explain why the merge

of prototypes is better than the original pruning from [4], illus-

trate how our model can discover the inter-class similarity, and

demonstrate the superiority of data-dependent similarity over its

data-independent counterpart.

Why merge-pruning instead of pruning? We decided to introduce

our merge-pruning algorithm after a detailed analysis of the pro-

totypes pruned by ProtoPNet and the conclusion that around 30%

of them represent significant prototypical parts instead of a back-

ground. This observation is somehow consistent with Section 3.2

in [4], which states that “the prototypes whose nearest training

patches have mixed class identities usually correspond to back-

ground patches, and they can be automatically pruned from the

model.” Nevertheless, we were surprised by the high percentage of

meaningful prototypes that are pruned. To illustrate the problem,

we present some of them in Figure 10. In our opinion, it negatively

influences the model accuracy (what we show in Section 4) and the

model explanations, as some of the important prototypes can be re-

moved only because of its similarity to the other class. That is why

we provide the merge-pruning that can join many semantically sim-

ilar prototypes from different classes without significant decrease

in accuracy. As an example, in Figure 9, we present eight prototypes

from eight classes merged into one prototype corresponding to a
wing with light smudge.

Inter-class similarity discovery. The positive property of ProtoP-

Share is its ability to discover the similarity between classes based

on the prototypes they share. Such similarity can be represented,

i.a., by the graph that we present in Figure 3 where each node cor-

responds to a class and the strength of an edge between two nodes

corresponds to the number of shared prototypes. Such analysis has

many applications, like finding similar prototypical parts between

two classes or clustering them into groups. Moreover, such a graph

can be the starting point for more advanced visualizations.

Figure 10: Example prototypes (one per row) pruned by Pro-
toPNet that do not represent the background. The first col-
umn corresponds to the image with the prototypical part (in
a yellow bounding box). The second column shows the pro-
totype’s activationmap for this image obtained as described
in [4]. The remaining five columns present images’ parts (in
yellow bounding boxes) whose representations are closest to
the considered prototype. We observe that none of the pre-
sented prototypes represent the backgroundwhat illustrates
that ProtoPNet removes many meaningful prototypes.

Why data-dependent similarity? To explain the superiority of our

data-dependent over the data-independent similarity (an inverse of

Euclidean distance), in Figure 2, we present the pairs of prototypes

close according to the former, but distant according to the later.

More examples are presented in Figure 11. It can be noticed that the

prototypes of one pair are semantically similar, even though they

sometimes differ in colors’ distribution. In our opinion, the ability

to find such pairs of similar prototypes is the main advantage of

our data-dependent similarity. This ability is extremely important

after the merge-pruning step because, as presented in Figure 12,

ProtoPShare representations of the image’s parts more often acti-

vate the prototypes assigned to their true class, which indirectly
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(a) Pairs of semantically similar prototypes distant in the representation
space but close according to our data-dependent similarity.

(b) Pairs of prototypes close in the representation space.

Figure 11: Similar prototypes according to data-dependent
and data-independent metrics. Notice that each prototype is
represented by one row of 3 closest images’ parts (marked
with yellow bounding-boxes), so each pair corresponds to 6
pictures.

results in higher accuracy and robustness. Notice that, to generate

Figure 12, we create a dataset with 5 parts from each testing image

with the highest prototype activation, and then analyze which of

those activations correspond to a true class. We conclude that only

ProtoPShare constantly increases this number, which means that it

uses model capacity more effectively.

User study. To further verify the superiority of our data-dependent
pruning, we conducted user study where we presented two pairs of

prototypes to the users. One of the pair contains prototypes most

similar according to our data-dependent similarity, while the other

contains prototypes closest in the representation space. The pairs

were presented at once but in random order to prevent the order

bias, and the users were asked to indicate a more consistent pair

of prototypes (with an additional option “Impossible to decide”).

Figure 12: Percent of patches correctly assigned to their
classes (higher is better) in the successive steps of the prun-
ing. The ProtoPShare pruning method constantly increases
this number, which means that it uses the model capacity
more effectively than the original ProtoPNet pruning.

The study was conducted on 57 users asked 5 times for a differ-

ent randomly chosen set of prototypes, resulting in 285 answers

altogether. Among all the answers, 195 favored our approach, 61

preferred data-independent similarity, and in 29 cases users could

not decide which similarity is better. Therefore, we conclude that

our data-dependent similarity is considered as more consistent than

its data-independent counterpart.

Discussion. In this section, we explained why prototype merge is

preferred over background pruning and why it is crucial to use data-

dependent instead of the data-independent similarity. Moreover,

we showed how ProtoPShare can be used for similarity discovery.

6 CONCLUSIONS
We presented ProtoPShare, a self-explained method that incorpo-

rates the paradigm of prototypical parts to explain its predictions.

The method extends the existing approaches because it can share

the prototypes between classes, reducing their number up to three

times and still preserving baseline accuracy. To efficiently share

the prototypes, we introduced our data-dependent pruning that

merges prototypes with similar semantics. As a result, we increased

the model’s interpretability and enabled similarity discovery while

maintaining high accuracy, as we showed through theoretical re-

sults and many experiments, including user study.
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A PROOF FOR THEOREM 1
In this section, we present proof of Theorem 1 that examines the

changes in the network’s predictions after the prototypes’ merge.

Proof of Theorem 1. For any class 𝑘 , let

𝐿𝑘 (𝑥, 𝑃) =
∑
𝑝∈𝑃

𝑤ℎ (𝑝) · log
(
∥𝑧𝑝−𝑝 ∥2+1
∥𝑧𝑝−𝑝 ∥2+Y

)
denotes its output logit for an input image 𝑥 ∈ 𝑋 . From assump-

tion (A5), before the merge, we have

𝐿𝑘 (𝑥, 𝑃𝑘 ) =
∑
𝑝∈𝑃𝑘

log

(
∥𝑧𝑝−𝑝 ∥2+1
∥𝑧𝑝−𝑝 ∥2+Y

)
,

and after merge

𝐿𝑘 (𝑥, 𝑃 ′𝑘 ∪ 𝑆𝑘 ) =
∑

𝑝∈𝑃 ′
𝑘
∪𝑆𝑘

log

(
∥𝑧𝑝−𝑝 ∥2+1
∥𝑧𝑝−𝑝 ∥2+Y

)
.

If none of the prototypes from class 𝑘 is merged into the other

prototype (i.e., 𝑆𝑘 = ∅), then there are no changes at the output (i.e.,

𝐿𝑘 (𝑥, 𝑃 ′𝑘 ∪ 𝑆𝑘 ) − 𝐿𝑘 (𝑥, 𝑃𝑘 ) = 0). In the opposite case

𝐿𝑘 (𝑥, 𝑃 ′𝑘 ∪ 𝑆𝑘 ) − 𝐿𝑘 (𝑥, 𝑃𝑘 ) =
∑
𝑝∈𝑆𝑘

log

(
∥𝑧𝑝−𝑝 ∥2+1
∥𝑧𝑝−𝑝 ∥2+Y

)
−

∑
𝑝∈𝑃𝑘\𝑃 ′

𝑘

log

(
∥𝑧𝑝−𝑝 ∥2+1
∥𝑧𝑝−𝑝 ∥2+Y

)
=

|𝑃𝑘\𝑃 ′
𝑘
|∑

𝑖=1

log

(
∥𝑧𝑝𝑖 −𝑝𝑖 ∥

2+1
∥𝑧𝑝𝑖 −𝑝𝑖 ∥2+1

· ∥𝑧𝑝𝑖 −𝑝𝑖 ∥
2+Y

∥𝑧𝑝𝑖 −𝑝𝑖 ∥2+Y

)
.

For each class 𝑘 ∈ {1..𝐾} and its prototypes 𝑖 ∈ {1..|𝑃𝑘 \ 𝑃 ′
𝑘
|}, let

𝜗𝑖 :=
∥𝑧𝑝𝑖 −�̃�𝑖 ∥

2+1
∥𝑧𝑝𝑖 −𝑝𝑖 ∥2+1

· ∥𝑧𝑝𝑖 −𝑝𝑖 ∥
2+Y

∥𝑧𝑝𝑖 −�̃�𝑖 ∥2+Y
.

To obtain the lower bound of 𝜗𝑖 for 𝑘 = 𝑐 (correct class of 𝑥), we

use the second inequality in (A4b), receiving

∥𝑧𝑝𝑖 −�̃�𝑖 ∥
2+1

∥𝑧𝑝𝑖 −𝑝𝑖 ∥2+1
≥ 1

∥𝑧𝑝𝑖 −𝑝𝑖 ∥2+1
𝑏𝑦 (𝐴4𝑏)

≥ 1

2−𝛿 .

By the assumption (A3) and the triangle inequality we obtain ∥𝑧𝑝𝑖 −
𝑝𝑖 ∥ ≤ ∥𝑧𝑝𝑖 −𝑝𝑖 ∥ ≤ ∥𝑧𝑝𝑖 −𝑝𝑖 ∥+∥𝑝𝑖−𝑝𝑖 ∥ . From the assumption (A4b)

we obtain ∥𝑝𝑖 − 𝑝𝑖 ∥ ≤ (
√
1 + 𝛿 − 1)∥𝑧𝑝𝑖 − 𝑝𝑖 ∥, what implicate

∥𝑝𝑖 − 𝑝𝑖 ∥ + ∥𝑧𝑝𝑖 − 𝑝𝑖 ∥ ≤
√
1 + 𝛿 ∥𝑧𝑝𝑖 − 𝑝𝑖 ∥. Hence

∥𝑧𝑝𝑖 −𝑝𝑖 ∥
2+Y

∥𝑧�̃�𝑖 −�̃�𝑖 ∥2+Y
≥ ∥𝑧𝑝𝑖 −𝑝𝑖 ∥

2+Y
( ∥𝑧𝑝𝑖 −𝑝𝑖 ∥+∥�̃�𝑖−𝑝𝑖 ∥)2+Y

≥ 1

1+𝛿 .

Combining the above inequalities, we have

𝜗𝑖 =
∥𝑧�̃�𝑖 −�̃�𝑖 ∥

2+1
∥𝑧𝑝𝑖 −𝑝𝑖 ∥2+1

· ∥𝑧𝑝𝑖 −𝑝𝑖 ∥
2+Y

∥𝑧�̃�𝑖 −�̃�𝑖 ∥2+Y
≥ 1

(1+𝛿) (2−𝛿) .

It means that the output logit change of class 𝑐 as a result of the

prototype merge satisfies

𝐿𝑐 (𝑥, 𝑃 ′𝑐∪𝑆𝑐 )−𝐿𝑐 (𝑥, 𝑃𝑐 ) =
|𝑃𝑐\𝑃 ′

𝑐 |∑
𝑖=1

log𝜗𝑖 ≥ −|𝑃𝑐\𝑃 ′𝑐 | log((1+𝛿) (2−𝛿))

or equivalently, 𝐿𝑐 (𝑥, 𝑃𝑐 ) −𝐿𝑐 (𝑥, 𝑃 ′𝑐 ∪𝑆𝑐 ) ≤ |𝑃𝑐 \𝑃 ′𝑐 | log((1+𝛿) (2−
𝛿)). Hence, the worst decrease of the class 𝑐 output logit as a result
of prototype merge is Δ𝑐

max
.

To obtain the lower bound of 𝜗𝑖 for 𝑘 ≠ 𝑐 (incorrect class of

𝑥), we use the triangle inequality together with assumptions (A3)

and (A4a), receiving

∥𝑧�̃�𝑖 − 𝑝𝑖 ∥
2
𝑏𝑦 (𝐴3)

≤ ∥𝑧𝑝𝑖 − 𝑝𝑖 ∥2 ≤ (∥𝑧𝑝𝑖 − 𝑝𝑖 ∥ + ∥𝑝𝑖 − 𝑝𝑖 ∥)2

𝑏𝑦 (𝐴4𝑎)
≤ (∥𝑧𝑝𝑖 − 𝑝𝑖 ∥ + (

√
1 + 𝛿 − 1)∥𝑧𝑝𝑖 − 𝑝𝑖 ∥)2 = (1 + 𝛿)∥𝑧𝑝𝑖 − 𝑝𝑖 ∥2 .

Hence

∥𝑧�̃�𝑖 −�̃�𝑖 ∥
2+1

∥𝑧𝑝𝑖 −𝑝𝑖 ∥2+1
≤ (1+𝛿) ∥𝑧𝑝𝑖 −𝑝𝑖 ∥

2+1
∥𝑧𝑝𝑖 −𝑝𝑖 ∥2+1

≤ 1 + 𝛿. (3)

To derive an upper bound for the second part of 𝜗𝑖 , we use the

assumption (A3) and (A4a)

∥𝑝𝑖 − 𝑝𝑖 ∥
𝑏𝑦 (𝐴4𝑎)

≤ \ ∥𝑧𝑝𝑖 − 𝑝𝑖 ∥ −
√
Y
𝑏𝑦 (𝐴3)

≤ \ ∥𝑧�̃�𝑖 − 𝑝𝑖 ∥ −
√
Y

𝑏𝑦 (𝐴4𝑎)
≤

(
1 − 1√

2−𝛿

)
∥𝑧�̃�𝑖 − 𝑝𝑖 ∥ −

√
Y.

From which we know that ∥𝑧�̃�𝑖 − 𝑝𝑖 ∥ − ∥𝑝𝑖 − 𝑝𝑖 ∥ > 0. Again, we

use the triangle inequality ∥𝑧�̃�𝑖 − 𝑝𝑖 ∥ ≤ ∥𝑧�̃�𝑖 − 𝑝𝑖 ∥ + ∥𝑝𝑖 − 𝑝𝑖 ∥,
what implicate ∥𝑧�̃�𝑖 − 𝑝 ∥ ≥ ∥𝑧�̃�𝑖 − 𝑝𝑖 ∥ − ∥𝑝𝑖 − 𝑝𝑖 ∥. By reusing

assumptions (A3) and (A4a), we have

∥𝑧𝑝𝑖 −𝑝𝑖 ∥+
√
Y√

2−𝛿
≤ 1√

2−𝛿
∥𝑧𝑝𝑖 − 𝑝𝑖 ∥ +

√
Y
by (A4a)

≤ ∥𝑧𝑝𝑖 − 𝑝𝑖 ∥ − ∥𝑝𝑖 − 𝑝𝑖 ∥

by (A3)

≤ ∥𝑧�̃�𝑖 − 𝑝𝑖 ∥ − ∥𝑝𝑖 − 𝑝𝑖 ∥.
Thanks to the above, we get

∥𝑧𝑝𝑖 −𝑝𝑖 ∥
2+Y

∥𝑧�̃�𝑖 −�̃�𝑖 ∥2+Y
≤ ∥𝑧𝑝𝑖 −𝑝𝑖 ∥

2+Y
( ∥𝑧�̃�𝑖 −𝑝𝑖 ∥−∥�̃�𝑖−𝑝𝑖 ∥)2+Y

≤
(

∥𝑧𝑝𝑖 −𝑝𝑖 ∥+Y
∥𝑧�̃�𝑖 −𝑝𝑖 ∥−∥�̃�𝑖−𝑝𝑖 ∥

)
2

≤ 2−𝛿.

(4)

By inequalities (3), (4) get that the output logit change of class 𝑘 as

a result of the prototype merge satisfies

𝐿𝑘 (𝑥, 𝑃 ′𝑘∪𝑆𝑘 )−𝐿𝑘 (𝑥, 𝑃𝑘 ) =
|𝑃𝑘\𝑃 ′

𝑘
|∑

𝑖=1

log𝜗𝑖 ≤ |𝑃𝑘\𝑃 ′𝑘 | log((1+𝛿) (2−𝛿)) .

Hence, the worst increase of the class 𝑘 output logit as a result of

prototype merge is Δ𝑘
max

.

To prove the last thesis, let us assume that the output logit

𝐿𝑐 (𝑥, 𝑃𝑘 ) of the correct class 𝑐 before prototype merge is at least

Δ𝑐
max

+max

𝑘≠𝑐

(
Δ𝑘
max

)
higher than the output logit 𝐿𝑘 (𝑥, 𝑃𝑘 ) of any

other class 𝑘 ≠ 𝑐 , i.e.,

𝐿𝑐 (𝑥, 𝑃𝑐 ) ≥ 𝐿𝑘 (𝑥, 𝑃𝑘 ) + Δ𝑐
max

+max

𝑘≠𝑐

(
Δ𝑘
max

)
for 𝑘 ≠ 𝑐. (5)

Since the output logit of the correct class 𝑐 satisfies

𝐿𝑐 (𝑥, 𝑃 ′𝑐 ∪ 𝑆𝑐 ) ≥ 𝐿𝑐 (𝑥, 𝑃𝑐 ) − Δ𝑐
max

(6)

and the output logit of any class 𝑘 ≠ 𝑐 satisfies

𝐿𝑘 (𝑥, 𝑃 ′𝑘 ∪ 𝑆𝑘 ) ≤ 𝐿𝑘 (𝑥, 𝑃𝑘 ) + Δ𝑘
max

, (7)

for any 𝑘 ≠ 𝑐 we have 𝐿𝑐 (𝑥, 𝑃 ′𝑐 ∪ 𝑆𝑐 ) ≥ 𝐿𝑐 (𝑥, 𝑃𝑐 ) − Δ𝑐
max

≥
𝐿𝑘 (𝑥, 𝑃𝑘 ) + max

𝑘≠𝑐

(
Δ𝑘
max

)
≥ 𝐿𝑘 (𝑥, 𝑃 ′𝑘 ∪ 𝑆𝑘 ) (inequalities (6), (5), (7)

give the individual inequalities, respectively). Hence, the input

image 𝑥 will still be correctly classified as class 𝑐 after prototype

merge. □
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B TRAINING DETAILS
We decided to omit the training details in the paper for its clarity.

However, to make the paper reproducible, we provide them in this

section.

First of all, we perform exhaustive offline data augmentation

using rotation, skewing, flipping, and shearing with the probability

of 0.5 for each operation. When it comes to the architecture, 𝑓 is

followed by two additional 1 × 1 convolutional layers before the

prototypes’ layer, and we use ReLU as the activation function for all

convolutional layers except the last one (with the sigmoid function).

The training bases on the images cropped (using the bounding-

boxes provided with the datasets) and resized to 224×224 pixels. As

a result, we obtain a convolutional feature map of size 7 × 7 × 256.

Hence, prototypes have size 1 × 1 × 256. During training, we use

Adam optimizer [20] with 𝛽1 = 0.9 and 𝛽2 = 0.999, batch size 80,

learning rates 10
−4

for 𝑓 and ℎ, and 3 · 10−3 for additional 1 × 1

convolutions and prototypes’ layer. For the loss function defined

in [4], we use weights _1 = 0.8, _2 = 0.08, and _𝑙 = 10
−4
. Moreover,

the learning rates for convolutional parts and prototype layer are

multiplied by 0.1 every 5 epochs of the training.

C USER STUDY QUESTIONNAIRE

Figure 13: Example question from our user study.

To further verify the superiority of our data-dependent pruning,

we conduct a user study where we present five questions to the user.

There were four versions of the questionnaire with different sets of

questions. Each questionnaire had the following initial instruction:

“In this form, you will see two sets of images with yellow bounding-

boxes. All bounding-boxes of one set should present one semantic

meaning that corresponds to a particular characteristic of a bird’s

part (e.g. white head, dark neck, striped wing, or black legs). Please,

decide which of the two sets presents more consistent bounding-

boxes. This task can be difficult, as two sets you compare can have

a different meaning. Nevertheless, try to decide which of them is

more consistent, and if it is impossible, please choose the option

Impossible to decide.” After the initial instruction, we asked five

times, “Which of the two sets presents a more consistent meaning?”.

An example question is presented in Figure 13. We present the

detailed results of the study in the paper.
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Interpretable Image Classification with
Differentiable Prototypes Assignment

Dawid Rymarczyk1,2 ,  Lukasz Struski1 , Micha l Górszczak1 ,
Koryna Lewandowska3 , Jacek Tabor1 , and Bartosz Zieliński1,2

1 Faculty of Mathematics and Computer Science, Jagiellonian University
2 Ardigen SA

3 Department of Cognitive Neuroscience and Neuroergonomics,
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Abstract. Existing prototypical-based models address the black-box
nature of deep learning. However, they are sub-optimal as they often as-
sume separate prototypes for each class, require multi-step optimization,
make decisions based on prototype absence (so-called negative reasoning
process), and derive vague prototypes. To address those shortcomings,
we introduce ProtoPool, an interpretable prototype-based model with
positive reasoning and three main novelties. Firstly, we reuse prototypes
in classes, which significantly decreases their number. Secondly, we allow
automatic, fully differentiable assignment of prototypes to classes, which
substantially simplifies the training process. Finally, we propose a new fo-
cal similarity function that contrasts the prototype from the background
and consequently concentrates on more salient visual features. We show
that ProtoPool obtains state-of-the-art accuracy on the CUB-200-2011
and the Stanford Cars datasets, substantially reducing the number of
prototypes. We provide a theoretical analysis of the method and a user
study to show that our prototypes capture more salient features than
those obtained with competitive methods. We made the code available
at https://github.com/gmum/ProtoPool.

Keywords: deep learning; interpretability; case-based reasoning

1 Introduction

The broad application of deep learning in fields like medical diagnosis [3] and
autonomous driving [53], together with current law requirements (such as GDPR
in EU [21]), enforces models to explain the rationale behind their decisions.
That is why explainers [6,23,29,39,44] and self-explainable [4,7,58] models are
developed to justify neural network predictions. Some of them are inspired by
mechanisms used by humans to explain their decisions, like matching image parts
with memorized prototypical features that an object can poses [8,27,34,43].

Recently, a self-explainable model called Prototypical Part Network (Pro-
toPNet) [8] was introduced, employing feature matching learning theory [40,41].
It focuses on crucial image parts and compares them with reference patterns

https://orcid.org/0000-0002-3406-6732x
https://orcid.org/0000-0003-4006-356X
https://orcid.org/0000-0003-3695-0975
https://orcid.org/0000-0003-4826-6361
https://orcid.org/0000-0001-6652-7727
https://orcid.org/0000-0002-3063-3621
https://github.com/gmum/ProtoPool
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Prothonotary 
Warbler

Wilson 
Warbler

grey 
wing

yellow and black 
feathers under tail

olive wing 
colorblack crown

beck and head 
of equal length

Prototypical parts

grey 
back yellow 

primary color
yellow head  

black eye

yellow striped 
wing feathers 

black eye
grey bill

Shared prototypes

Fig. 1: Automatically discovered prototypes4 for two classes, Prothonotary War-
bler and Wilson Warbler (each class represented by three images on left and right
side). Three prototypical parts on the blue and green background are specific
for a Prothonotary Warbler and Wilson Warbler, respectively (they correspond
to heads and wings feathers). At the same time, four prototypes shared between
those classes (related to yellow feathers) are presented in the intersection. Pro-
totypes sharing reduces their amount, leads to a more interpretable model, and
discovers classes similarities.

(prototypical parts) assigned to classes. The comparison is based on a similarity
metric between the image activation map and representations of prototypical
parts (later called prototypes). The maximum value of similarity is pooled to
the classification layer. As a result, ProtoPNet explains each prediction with
a list of reference patterns and their similarity to the input image. Moreover,
a global explanation can be obtained for each class by analyzing prototypical
parts assigned to particular classes.

However, ProtoPNet assumes that each class has its own separate set of
prototypes, which is problematic because many visual features occur in many
classes. For instance, both Prothonotary Warbler and Wilson Warbler have yel-
low as a primary color (see Figure 1). Such limitation of ProtoPNet hinders
the scalability because the number of prototypes grows linearly growing number
of classes. Moreover, a large number of prototypes makes ProtoPNet hard to
interpret by the users and results in many background prototypes [43].

To address these limitations, ProtoPShare [43] and ProtoTree [34] were in-
troduced. They share the prototypes between classes but suffer from other draw-
backs. ProtoPShare requires previously trained ProtoPNet to perform the merge-
pruning step, which extends the training time. At the same time, ProtoTree
builds a decision tree and exploits the negative reasoning process that may re-
sult in explanations based only on prototype absence. For example, a model can
predict a sparrow because an image does not contain red feathers, a long beak,

4 Names of prototypical parts were generated based on the annotations from CUB-
200-2011 dataset (see details in Supplementary Materials).
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and wide wings. While this characteristic is true in the case of a sparrow, it also
matches many other species.

IMAGE
Focal 

similarity
ProtoPNet 
similarity

ProtoTree 
similarity

Fig. 2: Focal similarity focuses
the prototype on a salient visual
feature. While the other similar-
ity metrics are more distributed
through the image, making the
interpretation harder to com-
prehend. It is shown with three
input images, the prototype ac-
tivation map, and its overlay.

To deal with the above shortcomings, we
introduce ProtoPool, a self-explainable pro-
totype model for fine-grained images clas-
sification. ProtoPool introduces significantly
novel mechanisms that substantially reduce
the number of prototypes and obtain higher
interpretability and easier training. Instead
of using hard assignment of prototypes to
classes, we implement the soft assignment rep-
resented by a distribution over the set of pro-
totypes. This distribution is randomly ini-
tialized and binarized during training using
the Gumbel-Softmax trick. Such a mechanism
simplifies the training process by removing the
pruning step required in ProtoPNet, ProtoP-
Share, and ProtoTree. The second novelty is
a focal similarity function that focuses the
model on the salient features. For this pur-
pose, instead of maximizing the global activa-
tion, we widen the gap between the maximal
and average similarity between the image ac-
tivation map and prototypes (see Figure 4).
As a result, we reduce the number of proto-
types and use the positive reasoning process
on salient features, as presented in Figure 2 and Figure 10.

We confirm the effectiveness of ProtoPool with theoretical analysis and ex-
haustive experiments, showing that it achieves the highest accuracy among mod-
els with a reduced number of prototypes. What is more, we discuss interpretabil-
ity, perform a user study, and discuss the cognitive aspects of the ProtoPool over
existing methods.

The main achievements of the paper can be summarized as follows:

– We construct ProtoPool, a case-based self-explainable method that shares
prototypes between data classes without any predefined concept dictionary.

– We introduce fully differentiable assignments of prototypes to classes, allow-
ing the end-to-end training.

– We define a novel similarity function, called focal similarity, that focuses the
model on the salient features.

– We increase interpretability by reducing prototypes number and providing
explanations in a positive reasoning process.
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2 Related works

Attempts to explain deep learning models can be divided into the post hoc and
self-explainable [42] methods. The former approaches assume that the reasoning
process is hidden in a black box model and a new explainer model has to be cre-
ated to reveal it. Post hoc methods include a saliency map [31,38,44,45,46] gen-
erating a heatmap of crucial image parts, or Concept Activation Vectors (CAV)
explaining the internal network state as user-friendly concepts [9,14,23,25,55].
Other methods provide counterfactual examples [1,15,33,36,52] or analyze the
networks’ reaction to the image perturbation [6,11,12,39]. Post hoc methods are
easy to implement because they do not interfere with the architecture, but they
can produce biased and unreliable explanations [2]. That is why more focus is
recently put on designing self-explainable models [4,7] that make the decision
process directly visible. Many interpretable solutions are based on the atten-
tion [28,48,54,57,58,59] or exploit the activation space [16,37], e.g. with adver-
sarial autoencoder. However, most recent approaches built on an interpretable
method introduced in [8] (ProtoPNet) with a hidden layer of prototypes repre-
senting the activation patterns.

ProtoPNet inspired the design of many self-explainable models, such as Tes-
Net [51] that constructs the latent space on a Grassman manifold without
prototypes reduction. Other models like ProtoPShare [43] and ProtoTree [34] re-
duce the number of prototypes used in the classification. The former introduces
data-dependent merge-pruning that discovers prototypes of similar semantics
and joins them. The latter uses a soft neural decision tree that may depend
on the negative reasoning process. Alternative approaches organize the proto-
types hierarchically [17] to classify input at every level of a predefined taxonomy
or transform prototypes from the latent space to data space [27]. Moreover,
prototype-based solutions are widely adopted in various fields such as medical
imaging [3,5,24,47], time-series analysis [13], graphs classification [56], and se-
quence learning [32].

3 ProtoPool

In this section, we describe the overall architecture of ProtoPool presented in
Figure 3 and the main novelties of ProtoPool compared to the existing models,
including the mechanism of assigning prototypes to slots and the focal similarity.
Moreover, we provide a theoretical analysis of the approach.

Overall architecture The architecture of ProtoPool, shown in Figure 3, is
generally inspired by ProtoNet [8]. It consists of convolutional layers f , a pro-
totype pool layer g, and a fully connected layer h. Layer g contains a pool of
M trainable prototypes P = {pi ∈ RD}Mi=1 and K slots for each class. Each slot
is implemented as a distribution qk ∈ RM of prototypes available in the pool,
where successive values of qk correspond to the probability of assigning succes-
sive prototypes to slot k (∥qk∥ = 1). Layer h is linear and initialized to enforce
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Fig. 3: The architecture of our ProtoPool with a prototype pool layer g. Layer
g contains a pool of prototypes p1 − p4 and three slots per class. Each slot is
implemented as a distribution q ∈ R4 of prototypes from the pool, where succes-
sive values of q correspond to the probability of assigning successive prototypes
to the slot. In this example, p1 and p2 are assigned to the first slot of Prothono-
tary Warbler and Wilson Warbler, respectively. At the same time, the shared
prototypes p3 and p4 are assigned to the second and third slots of both classes.

the positive reasoning process, i.e. weights between each class c and its slots are
initialized to 1 while remaining weights of h are set to 0.

Given an input image x ∈ X, the convolutional layers first extract image
representation f(x) of shape H ×W ×D, where H and W are the height and
width of representation obtained at the last convolutional layer for image x, and
D is the number of channels in this layer. Intuitively, f(x) can be considered as a
set of H ·W vectors of dimension D, each corresponding to a specific location of
the image (as presented in Figure 3). For the clarity of description, we will denote
this set as Zx = {zi ∈ f(x) : zi ∈ RD, i = 1, ...,H ·W}. Then, the prototype
pool layer is used on each k-th slot to compute the aggregated similarity gk =∑M

i=1 q
i
kgpi

between Zx and all prototypes considering the distribution qk of this
slot, where gp is defined below. Finally, the similarity scores (K values per class)
are multiplied by the weight matrix wh in the fully connected layer h. This
results in the output logits, further normalized using softmax to obtain a final
prediction.

Focal similarity In ProtoPNet [8] and other models using prototypical parts,
the similarity of point z to prototype p is defined as5 gp(z) = log(1 + 1

∥z−p∥2 ),

and the final activation of the prototype p with respect to image x is given by
gp = maxz∈Zx

gp(z). One can observe that such an approach has two possible
disadvantages. First, high activation can be obtained when all the elements in
Zx are similar to a prototype. It is undesirable because the prototypes can then

5 The following regularization is used to avoid numerical instability in the experiments:

gp(z) = log( ∥z−p∥2+1

∥z−p∥2+ε
), with a small ε > 0.
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training image
overlay of prototype 

activation
prototype activation 

heatmap
max: 6.10

mean: 0.52
min: 0.02

maximizing gap

Fig. 4: Our focal similarity limits high prototype activation to a narrow area (cor-
responding to white and black striped wings). It is obtained by widening the gap
between the maximal and average activation (equal 6.10 and 0.52, respectively).
As a result, our prototypes correspond to more salient features (according to our
user studies described in Section 5).

concentrate on the background. The other negative aspect concerns the training
process, as the gradient is passed only through the most active part of the image.

To prevent those behaviors, in ProtoPool, we introduce a novel focal sim-
ilarity function that widens the gap between maximal and average activation

gp = max
z∈Zx

gp(z)−mean
z∈Zx

gp(z), (1)

as presented in Figure 4. The maximal activation of focal similarity is obtained
if a prototype is similar to only a narrow area of the image x (see Figure 2).
Consequently, the constructed prototypes correspond to more salient features
(according to our user studies described in Section 5), and the gradient passes
through all elements of Zx.

Assigning one prototype per slot Previous prototypical methods use the
hard predefined assignment of the prototypes to classes [8,43,51] or nodes of
a tree [34]. Therefore, no gradient propagation is needed to model the proto-
types assignment. In contrast, our ProtoPool employs a soft assignment based
on prototypes distributions to use prototypes from the pool optimally. To gen-
erate prototype distribution q, one could apply softmax on the vector of size
RM . However, this could result in assigning many prototypes to one slot and
consequently could decrease the interpretability. Therefore, to obtain distribu-
tions with exactly one probability close to 1, we require a differentiable arg max
function. A perfect match, in this case is the Gumbel-Softmax estimator [20],
where for q = (q1, . . . , qM ) ∈ RM and τ ∈ (0,∞)

Gumbel-softmax(q, τ) = (y1, . . . , yM ) ∈ RM ,

where yi =
exp((qi+ηi)/τ)∑M

m=1 exp((qm+ηm)/τ)
and ηm for m ∈ 1, ..,M are samples drawn from

standard Gumbel distribution. The Gumbel-Softmax distribution interpolates
between continuous categorical densities and discrete one-hot-encoded categori-
cal distributions, approaching the latter for low temperatures τ ∈ [0.1, 0.5] (see
Figure 5).
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Fig. 5: A sample distribution (slot) at the initial, middle, and final step of train-
ing. In the beginning, all prototypes are assigned with a probability of 0.005.
Then, the distribution binarizes, and finally, one prototype is assigned to this
slot with a probability close to 1.

Slots orthogonality Without any additional constraints, the same prototype
could be assigned to many slots of one class, wasting the capacity of the prototype
pool layer and consequently returning poor results. Therefore, we extend the loss
function with

Lorth =
K∑

i<j

⟨qi,qj⟩
∥qi∥2·∥qj∥2

, (2)

where q1, .., qK are the distributions of a particular class. As a result, successive
slots of a class are assigned to different prototypes.

Prototypes projection Prototypes projection is a step in the training process
that allows prototypes visualization. It replaces each abstract prototype learned
by the model with the representation of the nearest training patch. For prototype
p, it can be expressed by the following formula

p← arg min
z∈ZC

∥z − p∥2, (3)

where ZC = {z : z ∈ Zx for all (x, y) : y ∈ C}. In contrast to [8], set C is not a
single class but the set of classes assigned to prototype p.

Theoretical analysis Here, we theoretically analyze why ProtoPool assigns
one prototype per slot and why each prototype does not repeat in a class. For
this purpose, we provide two observations.

Observation 1 Let q ∈ [0, 1]M ,
∑

qi = 1 be a distribution (slot) of a par-
ticular class. Then, the limit of Gumbel-softmax(q, τ), as τ approaches zero,
is the canonical vector ei ∈ RM , i.e. for q there exists i = 1, ..,M such that
lim
τ→0

Gumbel-softmax(q, τ) = ei.

The temperature parameter τ > 0 controls how closely the new samples approx-
imate discrete one-hot vectors (the canonical vector). From paper [20] we know
that as τ → 0, the softmax computation smoothly approaches the arg max, and
the sample vectors approach one-hot q distribution (see Figure 5).
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Table 1: Comparison of ProtoPool with other prototypical methods trained on
the CUB-200-2011 and Stanford Cars datasets, which considers a various number
of prototypes and types of convolutional layers f . In the case of the CUB-200-
2011 dataset, ProtoPool achieves the highest accuracy than other models, even
those containing ten times more prototypes. Moreover, the ensemble of three Pro-
toPools surpasses the ensemble of five TesNets with 17 times more prototypes.
On the other hand, in the case of Stanford Cars, ProtoPool achieves competitive
results with significantly fewer prototypes. Please note that the results are first
sorted by backbone network and then by the number of prototypes, R stands
for ResNet, iN means pretrained on iNaturalist, and Ex is an ensemble of three
or five models.

CUB-200-2011

Model Arch. Proto. # Acc [%]

ProtoPool (ours)

R34

202 80.3±0.2
ProtoPShare [43] 400 74.7

ProtoPNet [8] 1655 79.5

TesNet [51] 2000 82.7±0.2

ProtoPool (ours)

R152

202 81.5±0.1

ProtoPShare [43] 1000 73.6
ProtoPNet [8] 1734 78.6

TesNet [51] 2000 82.8±0.2

ProtoPool (ours)
iNR50

202 85.5±0.1

ProtoTree [34] 202 82.2±0.7

ProtoPool (ours)
Ex3

202×3 87.5

ProtoTree [34] 202×3 86.6

ProtoPool (ours)

Ex5

202×5 87.6

ProtoTree [34] 202×5 87.2

ProtoPNet [8] 2000×5 84.8
TesNet [51] 2000×5 86.2

Stanford Cars

Model Arch. Proto. # Acc [%]

ProtoPool (ours)

R34

195 89.3±0.1

ProtoPShare [43] 480 86.4

ProtoPNet [8] 1960 86.1±0.2
TesNet [51] 1960 92.6±0.3

ProtoPool (ours)
R50

195 88.9±0.1
ProtoTree [34] 195 86.6±0.2

ProtoPool (ours)
Ex3

195×3 91.1
ProtoTree [34] 195×3 90.5

ProtoPool (ours)

Ex5

195×5 91.6
ProtoTree [34] 195×5 91.5

ProtoPNet [8] 1960×5 91.4

TesNet [51] 1960×5 93.1

Observation 2 Let K ∈ N and q1, .., qK be the distributions (slots) of a partic-
ular class. If Lorth defined in Eq. (2) is zero, then each prototype from a pool is
assigned to only one slot of the class.

It follows the fact that Lorth = 0 only if ⟨qi, qj⟩ = 0 for all i < j ≤ K, i.e. only
if qi, qj have non-zero values for different prototypes.

4 Experiments

We train our model on CUB-200-2011 [50] and Stanford Cars [26] datasets to
classify 200 bird species and 196 car models, respectively. As the convolutional
layers f of the model, we take ResNet-34, ResNet-50, ResNet-121 [18], DenseNet-
121, and DenseNet-161 [19] without the last layer, pretrained on ImageNet [10].
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SUM: 21.64 

4.08 • 0.89 ＝ 3.63

Prototypical part Activation map Similarity and weight
Why is that Ford Freestar Minivan 2007? 

3.87 • 0.83 ＝ 3.21

3.82 • 0.81 ＝ 3.09

Image

Fig. 6: Sample explanation of Ford
Freestar Minivan 2007 predictions.
Except for an image, we present a
few prototypical parts of this class,
their activation maps, similarity func-
tion values, and the last layer weights.
Moreover, we provide the sum of the
similarities multiplied by the weights.
ProtoPool returns the class with the
largest sum as a prediction.

Scarlet Tanager

Red head, needle shape of bill and black eye

Solid belly 
pattern
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shapePrimary red color

Buff black wings

Scarlet Tanager Prototypes

Notched black 
tail

Fig. 7: Samples of Scarlet Tanager and
prototypical parts assigned to this
class by our ProtoPool model. Pro-
totypes correspond, among others, to
primary red color of feathers, black
eye, perching-like shape, black notched
tail, and black buff wings6.

The one exception is ResNet-50 used with CUB-200-2011 dataset, which we
pretrain on iNaturalist2017 [49] for fair comparison with ProtoTree model [34].
In the testing scenario, we make the prototype assignment hard, i.e. we set all
values of a distribution q higher than 0.5 to 1, and the remaining values to 0
otherwise. We set the number of prototypes assigned to each class to be at most
10 and use the pool of 202 and 195 prototypical parts for CUB-200-2011 and
Stanford Cars, respectively. Details on experimental setup and results for other
backbone networks are provided in the Supplementary Materials.

Comparison with other prototypical models In Table 1 we compare the
efficiency of our ProtoPool with other models based on prototypical parts. We
report the mean accuracy and standard error of the mean for 5 repetitions.
Additionally, we present the number of prototypes used by the models, and we
use this parameter to sort the results. We compare ProtoPool with ProtoPNet [8],
ProtoPShare [43], ProtoTree [34], and TesNet [51].

One can observe that ProtoPool achieves the highest accuracy for the CUB-
200-2011 dataset, surpassing even the models with a much larger number of
prototypical parts (TesNet and ProtoPNet). For Stanford Cars, our model still
performs better than other models with a similarly low number of prototypes,
like ProtoTree and ProtoPShare, and slightly worse than TesNet, which uses
ten times more prototypes. The higher accuracy of the latter might be caused
by prototype orthogonality enforced in training. Overall, our method achieves
competitive results with significantly fewer prototypes. However, ensemble Pro-
toPool or TesNet should be used if higher accuracy is preferred at the expense
of interpretability.
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Table 2: Characteristics of prototypical methods for fine-grained image classifi-
cation that considers the number of prototypes, reasoning type, and prototype
sharing between classes. ProtoPool uses 10% of ProtoPNet’s prototypes but only
with positive reasoning. It shares the prototypes between classes but, in contrast
to ProtoPShare, is trained in an end-to-end, fully differentiable manner. Please
notice that 100% corresponds to 2000 and 1960 of prototypes for CUB-200-2011
and Stanford Cars datasets, respectively.

Model ProtoPool ProtoTree ProtoPShare ProtoPNet TesNet

Portion of prototypes ∼10% ∼10% [20%;50%] 100% 100%

Reasoning type + +/− + + +

Prototype sharing direct indirect direct none none

Shared prototype

BMW 3 Series 
Sedan 2012

Bentley 
Continental GT 

Coupe 2012

Fiat 500 
Convertible 2012

Ferrari California 
Convertible 2012

Lamborghini 
Reventon Coupe 

2008

Aston Martin V8 
Vantage 

Convertible 2012

BMW 1 Series 
Coupe 2012

Bugatti Veyron 
16.4 Convertible 

2009

McLaren 
MP4-12C Coupe 

2012

Fig. 8: Sample prototype of a convex tailgate (left top corner) shared by nine
classes. Most of the classes correspond to luxury cars, but some exceptions exist,
such as Fiat 500.

5 Interpretability

In this section, we analyze the interpretability of the ProtoPool model. Firstly,
we show that our model can be used for local and global explanations. Then,
we discuss the differences between ProtoPool and other prototypical approaches,
and investigate its stability. Then, we perform a user study on the similarity func-
tions used by the ProtoPNet, ProtoTree, and ProtoPool to assess the saliency
of the obtained prototypes. Lastly, we consider ProtoPool from the cognitive
psychology perspective.

Local and global interpretations Except for local explanations that are
similar to those provided by the existing methods (see Figure 6), ProtoPool can
provide a global characteristic of a class. It is presented in Figure 7, where we
show the prototypical parts of Scarlet Tanager that correspond to the visual
features of this species, such as red feathers, a puffy belly, and a short beak.
Moreover, similarly to ProtoPShare, ProtoPool shares the prototypical parts
between data classes. Therefore, it can describe the relations between classes
relying only on the positive reasoning process, as presented in Figure 1 (in con-
trast, ProtoTree also uses negative reasoning). In Figure 8, we further provide
visualization of the prototypical part shared by nine classes. More examples are
provided in Supplementary Materials.

Differences between prototypical methods In Table 2, we compare the
characteristics of various prototypical-based methods. Firstly, ProtoPool and
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Fig. 9: Distribution presenting how many prototypes are shared by the specific
number of classes (an estimation plot is represented with a dashed line). Each
color corresponds to a single ProtoPool training on Stanford Cars dataset with
ResNet50 as a backbone network. The right plot corresponds to the mean and
standard deviation for five training runs. One can observe that the distribution
behaves stable between runs.

ProtoTree utilize fewer prototypical parts than ProtoPNet and TesNet (around
10%). ProtoPShare also uses fewer prototypes (up to 20%), but it requires a
trained ProtoPNet model before performing merge-pruning. Regarding class sim-
ilarity, it is directly obtained from ProtoPool slots, in contrast to ProtoTree,
which requires traversing through the decision tree. Moreover, ProtoPNet and
TesNet have no mechanism to detect inter-class similarities. Finally, ProtoTree
depends, among others, on negative reasoning process, while in the case of Pro-
toPool, it relies only on the positive reasoning process, which is a desirable
feature according to [8].

Stability of shared prototypes The natural question that appears when
analyzing the assignment of the prototypes is: Does the similarity between two
classes hold for many runs of ProtoPool training? To analyze this behavior, in
Figure 9 we show five distributions for five training runs. They present how
many prototypes are shared by the specific number of classes. One can observe
that difference between runs is negligible. In all runs, most prototypes are shared
by five classes, but there exist prototypes shared by more than thirty classes.
Moreover, on average, a prototype is shared by 2.73 ± 0.51 classes. A sample
inter-class similarity graph is presented in the Supplementary Materials.

User study on focal similarity To validate if using focal similarity results in
more salient prototypical parts, we performed a user study where we asked the
participants to answer the question: “How salient is the feature pointed out by
the AI system?”. The task was to assign a score from 1 to 5 where 1 meant “Least
salient” and 5 meant “Most salient”. Images were generated using prototypes
obtained for ProtoPool with ProtoPNets similarity or with focal similarity and
from a trained ProtoTree7. To perform the user study, we used Amazon Mechan-

6 Names of prototypical parts were generated based on the annotations from CUB-
200-2011 dataset (see details in Supplementary Materials).

7 ProtoTree was trained using code from https://github.com/M-Nauta/ProtoTree

and obtained accuracy similar to [34]. For ProtoPNet similarity, we used code
from https://github.com/cfchen-duke/ProtoPNet.

https://github.com/M-Nauta/ProtoTree
https://github.com/cfchen-duke/ProtoPNet
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ical Turk (AMT) system8. To assure the reliability of the answers, we required
the users to be masters according to AMT. 40 workers participated in our study
and answered 60 questions (30 per dataset) presented in a random order, which
resulted in 2400 answers. Each question contained an original training image
and the same image with overlayed activation map, as presented in Figure 2.

0 50 100 150 200 250
votes

5

4

3

2

1

ProtoPool (ours)
ProtoTree
ProtoPool w/o focal similarity

le
as

t
m

os
t

sa
lie

nt
Fig. 10: Distribution of scores from
user study on prototypes obtained
for ProtoPool without and with fo-
cal similarity and for ProtoTree. One
can observe that ProtoPool with focal
similarity generates more salient pro-
totypes than the other models.

Results presented in Figure 10 show
that ProtoPool obtains mostly scores
from 3 to 5, while other methods of-
ten obtain lower scores. We obtained a
mean value of scores equal to 3.66, 2.87,
and 2.85 for ProtoPool, ProtoTree, and
ProtoPool without focal similarity, re-
spectively. Hence, we conclude that Pro-
toPool with focal similarity generated
more salient prototypes than the refer-
ence models, including ProtoTree. See
Supplementary Materials for more infor-
mation about a user study, detailed re-
sults, and a sample questionnaire.

ProtoPool in the context of cog-
nitive psychology ProtoPool can be
described in terms of parallel or simulta-
neous information processing, while Pro-
toTree may be characterized by serial or
successive processing, which takes more time [22,30,35]. More specifically, hu-
man cognition is marked with the speed-accuracy trade-off. Depending on the
perceptual situation and the goal of a task, the human mind can apply a cate-
gorization process (simultaneous or successive) that is the most appropriate in a
given context, i.e. the fastest or the most accurate. Both models have their ad-
vantages. However, ProtoTree has a specific shortcoming because it allows for a
categorization process to rely on an absence of features. In other words, an object
characterized by none of the enlisted features is labeled as a member of a specific
category. This type of reasoning is useful when the amount of information to be
processed (i.e. number of features and categories) is fixed and relatively small.
However, the time of object categorization profoundly elongates if the number
of categories (and therefore the number of features to be crossed out) is high.
Also, the chance of miscategorizing completely new information is increased.

6 Ablation study

In this section, we analyze how the novel architectural choices, the prototype
projection, and the number of prototypes influence the model performance.

8 https://www.mturk.com

https://www.mturk.com
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Table 3: The influence of prototype projection on ProtoPool performance for
CUB-200-2011 and Stanford Cars datasets is negligible. Note that for CUB-200-
2011, we used ResNet50 pretrained on iNaturalist.

CUB-200-2011 Stanford Cars

Architecture Acc [%] before Acc [%] after Acc [%] before Acc [%] after

ResNet34 80.8±0.2 80.3±0.2 89.1±0.2 89.3±0.1
ResNet50 85.9±0.1 85.5±0.1 88.4±0.1 88.9±0.1
ResNet152 81.2±0.2 81.5±0.1 — —

Table 4: The influence of novel architectural choices on ProtoPool performance
for CUB-200-2011 and Stanford Cars datasets is significant. We consider training
without orthogonalization loss, with softmax instead of Gumbel-Softmax, and
with similarity from ProtoPNet instead of focal similarity. One can observe that
the mix of the proposed mechanisms (i.e. ProtoPool) obtains the best accuracy.

CUB-200-2011 Stanford Cars

Model Acc [%] Acc [%]

ProtoPool 85.5 88.9
w/o Lorth 82.4 86.8
w/o Gumbel-Softmax trick 80.3 64.5
w/o Gumbel-Softmax trick and Lorth 65.1 30.8
w/o focal similarity 85.3 88.8

Influence of the novel architectural choices Additionally, we analyze the
influence of the novel components we introduce on the final results. For this pur-
pose, we train ProtoPool without orthogonalization loss, with softmax instead
of Gumbel-Softmax trick, and with similarity from ProtoPNet instead of focal
similarity. Results are presented in Table 4 and in Supplementary Materials. We
observe that the Gumbel-Softmax trick has a significant influence on the model
performance, especially for the Stanford Cars dataset, probably due to lower
inter-class similarity than in CUB-200-2011 dataset [34]. On the other hand,
the focal similarity does not influence model accuracy, although as presented in
Section 5, it has a positive impact on the interpretability. When it comes to or-
thogonality, it slightly increases the model accuracy by forcing diversity in slots
of each class. Finally, the mix of the proposed mechanisms gets the best results.

Before and after prototype projection Since ProtoPool has much fewer
prototypical parts than other models based on a positive reasoning process,
applying projection could result in insignificant prototypes and reduced model
performance. Therefore, we decided to test model accuracy before and after the
projection (see Table 3), and we concluded that differences are negligible.

Number of prototypes and slots vs accuracy Finally, in Figure 11 we
investigate how the number of prototypical parts or slots influences accuracy for
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(a) Accuracy depending on the number
of prototypes. One can observe that the
model reaches a plateau for around 200
prototypical parts, and there is no gain in
further increase of prototype number.
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(b) Accuracy depending on the number
of slots. One can observe that the model
reaches a plateau for around 10 slots per
class.

Fig. 11: ProtoPool accuracy with ResNet50 backbone depending on the number
of prototypes and slots for CUB-200-2011 (blue square) and Stanford Cars (or-
ange circle) datasets.

the CUB-200-2011 and Stanford Cars datasets. We observe that up to around 200
prototypical parts, the accuracy increases and reaches the plateau. Therefore, we
conclude that the amount of prototypes optimal for ProtoTree is also optimal
for ProtoPool. Similarly, in the case of slots, ProtoPool accuracy increases till
the 10 slots and then reaches the plateau.

7 Conclusions

We presented ProtoPool, a self-explainable method that incorporates the paradigm
of prototypical parts to explain its predictions. This model shares the prototypes
between classes without pruning operations, reducing their number up to ten
times. Moreover, it is fully differentiable. To efficiently assign the prototypes to
classes, we apply the Gumbel-Softmax trick together with orthogonalization loss.
Additionally, we introduced focal similarity that focuses on salient features. As
a result, we increased the interpretability while maintaining high accuracy, as
we showed through theoretical analysis, multiple experiments, and user study.
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ProGReST: Prototypical Graph Regression Soft Trees for Molecular

Property Prediction

Dawid Rymarczyk∗† Daniel Dobrowolski∗ Tomasz Danel∗

Abstract

In this work, we propose the novel Prototypical Graph Re-

gression Self-explainable Trees (ProGReST) model, which

combines prototype learning, soft decision trees, and Graph

Neural Networks. In contrast to other works, our model can

be used to address various challenging tasks, including com-

pound property prediction. In ProGReST, the rationale is

obtained along with prediction due to the model’s built-in

interpretability. Additionally, we introduce a new graph pro-

totype projection to accelerate model training. Finally, we

evaluate PRoGReST on a wide range of chemical datasets for

molecular property prediction and perform in-depth analysis

with chemical experts to evaluate obtained interpretations.

Our method achieves competitive results against state-of-

the-art methods.

Key words. Drug design; Graph Neural Networks; Inter-
pretability; Deep Learning

1 Introduction

In chemistry, the accurate and rapid examination of the
compounds is often the key to a successful drug discov-
ery. Searching through millions of compounds, synthe-
sizing them, and evaluating their properties consumes
astounding amounts of money and does not guarantee
any success at the end of the discovery process. That
is why currently in silico molecular property prediction
is indispensable in modern drug discovery, material de-
sign, synthesis planning, etc. Computer methods can
accelerate compound screening and mitigate the risk of
selecting futile compounds for the in vitro examination.

Recent advancements in deep learning, especially
in Graph Neural Networks (GNNs), raised the us-
ability of in vitro cheminformatics tools to the next
level [7]. Tasks such as molecular property prediction,
detection of active small molecules, hit identification,
and optimization can be accelerated with models such
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Figure 1: Overview of the ProGReST approach. Molec-
ular substructures are matched against the trained pro-
totypical parts, and the prediction is based on the com-
bination of these features.

as Molecule Attention Transformer (MAT) [23], Deep-
GLSTM [26], and Junction Tree Variational Autoen-
coder (JT-VAE) [15]. Despite the early adoption of
artificial intelligence (AI) methods in the drug design
process, the initial results are encouraging [22]. Unfor-
tunately, most AI methods do not offer insight into the
reasoning behind the decision process.

Due to the complexity of biological systems and
drug design processes, insights into the knowledge gath-
ered by the deep learning model are highly sought. Even
if the model fails to achieve its goals, the explainabil-
ity component can hint at the medicinal chemist, e.g.
by showing a mechanistic interpretation of the drug ac-
tion [14]. Most of the current eXplainable Artificial In-
telligence (XAI) approaches are post-hoc methods and
are applied to already trained models [40]. However,
the reliability of those methods is questionable [31]. It
assumes that the second model is built to explain an
existing trained model. It may result in an unnecessar-
ily increased bias in the explanations, which come from
the trained model and the post-hoc model. That is why
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self-interpretable models are being developed, such as
self-explainable neural networks (SENN) [2] and Proto-
type Graph Neural Network (ProtGNN) [42]. Only the
latter can be applied to the graph prediction problem.

However, ProtGNN is designed for classification
problems only since it requires a fixed assignment of
prototypes to the classes. While for a regression prob-
lem, the model predicts a single label making such an
assignment impossible. To overcome the limited ap-
plicability of ProtGNN, we introduce the Prototypical
Graph Regression Soft Trees (ProGReST) model that is
suitable for a graph regression problem, common in the
molecular property prediction [38]. It employs prototyp-
ical parts (in the paper, we use the terms ”prototypical
parts” and ”prototypes” interchangeably.) [6] that pre-
serve information about activation patterns and ensure
intrinsic interpretability (see Fig. 1). Prototypes are
derived from the training examples and used to explain
the model’s decision. To build a model with prototypes,
we use Soft Neural Trees [8].

Hence the regression task is more challenging than
the classification, it also requires more training epochs
for a model to converge. And, prototypical-part-based
methods use projection operation periodically [6, 42] to
enforce the closeness of prototypes to the training data.
In ProtGNN, projection is based on an MCTS algorithm
that requires lots of computational time to find mean-
ingful prototypes. In ProGReST, we propose proxy pro-
jection to reduce the training time and perform MCTS-
based at the end to ensure the full interpretability of
the derived prototypes.

The ProGReST achieves state-of-the-art results on
five cheminformatics datasets for molecular property
prediction and provides intuitive explanations of its
prediction in the form of a tree. Also, we confronted
the findings of the ProGReST with chemists to validate
the usability of our model.

Our contributions can be summarized as follows:

• we introduce ProGReST, a self-explainable
prototype-based model for regression of molecular
properties,

• we employ a tree-based model to derive meaningful
prototypes,

• we define a novel proxy projection function that
substantially accelerates the training process.

2 Related Works

2.1 Molecular property prediction The accurate
prediction of molecular properties is critical in chemical
modeling. In machine learning, chemical compounds
can be described using calculated molecular descrip-

tors, which are computed as a function of the compound
structure [34]. Many successful applications of machine
learning in drug discovery utilize chemical structures di-
rectly by employing molecular fingerprints [5] or molec-
ular graphs as an input to the model [9].

Currently, molecular graphs are a preferable rep-
resentation in cheminformatics because they can cap-
ture nonlinear structure of the data. In a molecular
graph, atoms are represented as nodes, and the chemi-
cal bonds are graph edges. Each atom is attributed with
atomic features that encode chemical symbols of the
atom and other relevant features [30]. This graphical
representation can be processed by graph neural net-
works that learn the molecule-level vector representa-
tion of the compound and use it for property prediction.
Graph neural networks usually implement the message
passing scheme [10], in which information is passed be-
tween nodes along the edges, and the atom features are
updated [41]. However, more recent architectures focus
on modeling long-range dependencies between atoms,
e.g. by implementing graph transformers [24].

2.2 Interpretability of deep learning Methods
explaining deep learning models can be divided into
the post-hoc and interpretable [31]. The first one cre-
ates explainer that reveals the reasoning process of a
black box model. Post-hoc methods include: a saliency
map [3] that highlights crucial input parts. Another
one is Concept Activation Vectors (CAV), that uses
concepts to explain the neural network predictions [16].
Implementation of post hoc methods is straightforward
since there is no intervention into its architecture. How-
ever, they can produce biased and unreliable explana-
tions [1]. That is why more focus is recently on de-
signing self-explainable models [2] to make the decision
process directly visible. Recently, a widely used self-
explainable model introduced in [6] (ProtoPNet) has a
hidden layer of prototypes representing the activation
patterns.

Many of the works extended the ProtoPNet, such
as TesNet [35] employing Grassman manifold to find
prototypes. Also, methods like ProtoPShare [33], Pro-
toPool [32] and ProtoTree [27] reduce the number of
used prototypes. Lastly, those solutions are widely
adopted in various fields such as medical imaging [17]
and graph classification [42]. Yet, none of these do not
consider regression.

3 ProGReST

3.1 Architecture The architecture of ProGReST,
depicted in Fig. 2, consists of a graph representation
network f , a prototypical regression soft tree layer t
and the last layer h. We consider a regression problem
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Figure 2: ProGReST architecture. It consists of a graph convolutional neural network (GCN) that generates the
latent representation of the molecular graph. Later on in the prototype regression, the soft tree layer computes
the similarity of each node (prototypical part) to each latent vector of molecular representation. Then the last
layer is used to obtain the prediction.

with a dataset consisted of K graphs xi ∈ G with
corresponding labels yi ∈ Y ⊂ R. Graph G ⊂ RN×E

contains a set of possible nodes N and a set of graph
edges E . Given an input graph xi ∈ G, the model
returns its prediction ŷi ∈ Y.

Before a molecule is processed by the model, it is
encoded as an array of shape N × P , where N is a
number of nodes and P is the size of the vector encoding
each node. Then, the graph representation network is
used to calculate the input embedding z = f(x) where
z ∈ RN×C , C is the prototype depth, and x is an
input graph. The graph representation network is a
graph convolutional network (GCN) [19] followed by a
node-wise convolution with the sigmoid activation at the
end, used to map the input features to the prototype
space. The additional node-wise layers reduce the
dimensionality of the latent representation and facilitate
the learning of meaningful prototypical parts.

The prototype regression soft tree layer contains
2D−1 prototypes pj ∈ RC , where D is the depth of
the tree. The number of prototypes is the same as
the number of nodes of the tree because there is only
one prototypical part in each node. All nodes have two
children and the tree contains 2D leaves. Each leaf li
calculates only one value yli ∈ R. The prototypes are
trainable parameters.

For each input x ∈ G, ProGReST calculates the
prototype activation as the similarity between the pro-
totypical part p and the latent graph representation
zi ∈ RC for each graph node i. Then, it calculates the
maximum activation as a presence of a given prototype
in the input graph:

(3.1) ẑ = max
i

e−||zi−p||2

Unlike decision trees with nodes routing to only
one child, Soft Decision Trees distribute the signal
to both children simultaneously, with the probability
adding up to 1. To assure that in each node there is
a single prototypical part with a similarity value from
Equation 3.1 used as a probability of routing to a right
node as it is in [27]. The probability of routing to the
left node is a complement to 1 and equals 1− ẑ.

To determine the probability in a leaf lk, we need
to traverse through the path Pi consisted of its parents:

(3.2) lk(x) =
∏

n̂∈Pk

ẑn̂(x),

where ẑn̂ is the similarity value in node n̂. Then, the
final prediction is made by summing up probabilities
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from the leaves multiplied by weights wl
k of the last

layer h:

(3.3) ŷ(x) =
∑
lk∈ℓ

wl
k · lk(x).

3.2 Regularizers Additional regularizers in the loss
function of ProGReST are added to ensure that the
prototypes and the soft decision tree are effectively
learnt.

First of all, we want to minimize the chances of the
tree routing only to the left side of the tree. The origin
of this problem is in the initialization of the model. It is
difficult to activate equally prototypes due to their large
distance from the prototypical parts. To mitigate this
we implement regularization from [8] that encourages
each node to use the left and right subtrees equally.
The penalty is the cross entropy between distribution
[0.5, 0.5] and the actual average distribution [αi, 1−αi]
where αi for node i is given by:

(3.4) αi =

∑
x Πi(x)ẑi(x)∑

x Πi(x)
,

where Πi(x) is the path probability from the root to
node i. Next, we calculate the weighted sum of the
cross entropy, weighted by 2−di between each node and
balanced distribution. di is the depth of node i.

(3.5) Lp = −
2D−1∑
i=1

2−di [0.5 log(αi) + 0.5 log(1− αi)] .

As in other prototypical-parts-based models, such
as [6, 33, 42], the regularization of a latent space
is needed to derive meaningful prototypes. For that
purpose we adapt the cluster cost from [17] to assure
that the prototypes are close to the parts of the training
data points with a batch of B examples.

(3.6) Lc =
1

|B|
∑
x∈B

min
pj∈P

min
z∈f(x)

||z − pj ||2.

The penalty function given by Eq. 3.6 may enforce
the prototypical parts to be identical. To prevent that
we propose a novel orthogonal loss between parents of
each leaf. We penalize the similarity between proto-
typical parts between parents and not all nodes because
some of the prototypes can be reused on a different path.
For each leaf we have D parents. The goal here is to
have a have different prototype in each of the node on
the given path to maximize the capacity of the model.

We propose to minimize the Frobenius norm between
the leaf parents.

(3.7) Ld =
1

|ℓ|
∑
l∈ℓ

√ ∑
pi∈Pl

∑
j>i,pj∈Pl

|Sc(pi, pj)|2,

where Sc is a cosine similarity. To ensure the majority
of probability mass in a single leaf, we use a modified
mean squared error (MSEW ) in the training phase. It
is needed to assure ease to understand interpretation
focused on a single path to a leaf. Given the label y for
input x, we define the loss function as follows:

(3.8) MSEW (y, wl) =
1

|ℓ|
∑
lk∈ℓ

lk(x) · (y − wl
k)

2,

where wl
k is the weight of a given leaf in the last layer.

When the probability in a given node is 1, the prediction
itself is wl

k. So the single path is used to derive the
prediction. As a results the final cost function is as
follows:

(3.9) L = MSEW (y, wl) + λpLp + λc + Lx + λdLd,

where λp, λc, λd are hyper-parameters.

3.3 Proxy projection To assure that prototypes are
from the training dataset distribution, we need to use
a projection that swaps the prototypical parts with
a vector from graph latent representation. In [42], a
projection is based on the MCTS algorithm. However,
it is done periodically during the training and is very
computationally expensive. That is why we use a proxy
projection for periodic prototype assignments while at
the end of the training we perform the MTCS-based
one. Our proxy projection is much faster than MCTS,
but also not-interpretable. However, it can be used as
an approximation of the exact one.

Our proxy projection tries to find the closest vector
from latent graph representation to a given prototypical
part and replace it. However, such an assignment makes
it non-interpretable since we do not know which nodes
with what level of importance contributed to a given
representation vector. The proxy projection is defined
as follows:

p← argmin
z∈Zj

||z − pj ||2,(3.10)

where Z = {ẑ : ∀i, ẑ ∈ f(xi)}.

The MCTS-based projection looks for a subgraph
of the input graph, which is the closest to the prototype
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in the latent space [42]. This method can be easily in-
terpreted because two subgraphs shall similarly activate
the same prototype. The MCTS-based projection:

pj ← argmin
z∈Zj

||z − pj ||2,(3.11)

where Zj = {ẑ : ∀i,pool(f(x̂)), x̂ ∈ Subgraph(xi)}.

In addition, we reduce the time needed for MCTS-
based projection to find the closest subgraph by limiting
the search to a single graph. Firstly, with our proxy
projection, we identify the graph with the most similar
latent vector to a prototype, and then we apply an
MCTS-based search on the found graph to identify
significant vertices.

3.4 Training schema Due to the more challenging
nature of regression comparing to classification [41], we
introduce an additional training part called a warmup.
During warmup, we firstly cluster the molecules using
the K-Means algorithm based on the molecular property
values. Then we assign each molecule to a given cluster
and we treat it as a new label of a given molecule. Using
those pseudo-labels we pre-train full ProGReST using
all regularizers with a CrossEntropy Loss LCE using
training schema from [27].

At the end of the warmup, each leaf weight wl is
translated into scalars using K-Means centroids. For
each leaf l we have:

(3.12) l = Softmax(l) · Kcentroids.

Similarily to [6], warmup allows the model to derive
initial prototypical parts that can be reused in a regres-
sion task. After warmup we train ProGReST using loss
function from Eq. 3.9. Starting from a given epoch, we
periodically perform a proxy projection Eq. 3.10. Af-
ter the last projection (MCTS-based one) we only train
leaves to refine the model. The detailed algorithm for
training can be found in Supplementary Materials1.

4 Experimental Setup

To evaluate the proposed model, we used five datasets
from PyTDC [12] that are dedicated to predicting
molecular properties. Depending on the dataset, we
followed the fold splitting strategy recommended for a
given set (scaffold-based split or random split). Each of
the datasets was divided into training, validation, and
testing sets with the following proportions 80%, 10%,
and 10% respectively.

All experiments were implemented in Python 3 and
the model is implemented in PyTorch library [29]2. As

1https://arxiv.org/pdf/2210.03745.pdf
2The code is available at https://github.com/gmum/ProGReST

a graph representation generation network f , we use
graph convolutional network [25] containing 3-5 layers
with 128-512 kernels. We used prototypes of depth C ∈
{64, 128, 256}. For each dataset, we performed a grid
search of hyperparameters of the model. Among the
tested parameters were: tree depth D ∈ [4; 7], warmup
pseudo labels number from 1 to 2D−1 so that each class
can be in at least one leaf. The warmup lasts up to
80 epochs with an early stopping period of 5 epochs.
In the next phase of training, we learned ProGReST for
250 epochs and again used an early stopping mechanism
with a window of 10 epochs. Weights of the regularizers
from the loss functions were: λc ∈ [0.05, 0.8], λp ∈
[0.05, 0.3] and λd ∈ [0.0001, 0.01]. For the MCTS-
based projection, we limited the number of iterations
to 32. A minimum number of atoms in MCTS-based
projection is set to 3 and a maximum to 12. Moreover,
MCTS can expand to 12 children. Periodical projection
starts at 80th epoch and is performed every 20 epoch.
Each model was run 5 times with different seeds. As
an optimizer, we use ADAM [18] with a learning rate
η different for each node pj including leaves, ηpj =

η · 2−(D−dj). η for encoder e and add-on layer a
was calculated by η · 2−D. Base η for training was
η ∈ {0.01, 0.005, 0.001}. Such sophisticated learning
schedule is caused by the exponential increase of the
computational complexity of gradients for the higher
prototypes. It is common practice for Soft Decision
Tree [8]. Our experiments were performed with NVIDIA
RTX 2080 Ti.

5 Experiments

We evaluate ProGReST on five datasets from the
PyTDC repository [12]: Caco-2 [36], PPBR [37],
LD50 [43], VDss [21], and Half-Life (HL) [28]. In the
Supplementary Materials, we provide a short character-
istic of the datasets.

Results As Tab. 1 shows, our ProGReST model
not only outperforms its baseline model (GCN) but also
achieves the best results on four of the five datasets. The
prototypical-part-based approach for molecular activity
prediction not only brings the interpretability of the
predictions into the process, but also achieves superior
results. This is in contrast to other prototypical-part-
based methods such as [27] in computer vision where
the introduction of interpretability reduces the model
accuracy.

6 Interpretability

To corroborate the interpretability of the prototypical
parts learned by our model, we performed a qualitative
study in which a chemist assessed the usefulness of the
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Table 1: Results of molecular property prediction. Notice that ProGReST achieves better results than the baseline
model (GCN) for each of the datasets. On 4 out of 5 datasets our model achieves the highest effectiveness. We
conclude that interpretable molecular prediction can be done without a sacrifice of model performance.

Method Caco-2↓ PPBR↓ LD50↓ VDss↑ HL↑
RDKit2D + MLP [13] 0.393± 0.024 9.994± 0.319 0.678± 0.003 0.561± 0.025 0.184± 0.111
AttrMasking [11] 0.546± 0.052 10.075± 0.202 0.685± 0.025 0.559± 0.019 0.151± 0.068
Morgan + MLP [13] – 12.848± 0.362 0.649± 0.019 0.493± 0.011 0.329± 0.083
ContextPred [11] 0.502± 0.036 9.445± 0.224 0.669± 0.030 0.485± 0.092 0.129± 0.114
NeuralFP [20] 0.530± 0.102 9.292± 0.384 0.667± 0.020 0.258± 0.162 0.177± 0.165
AttentiveFP [39] 0.401± 0.032 9.373± 0.335 0.678± 0.012 0.241± 0.145 0.085± 0.068
CNN [13] 0.446± 0.036 11.106± 0.358 0.675± 0.011 0.226± 0.114 0.038± 0.138
SimGCN [4] – – – 0.582± 0.031 0.392 ± 0.065

ProGReST+GCN (Our) 0.367± 0.022 9.722± 0.200 0.611± 0.009 0.586± 0.012 0.295± 0.058
GCN (Baseline) [19] 0.599± 0.104 10.194± 0.373 0.649± 0.026 0.457± 0.050 0.239± 0.100

ProGReST+RMAT (Our) 0.360 ± 0.069 9.256 ± 0.287 0.597± 0.072 0.620 ± 0.069 0.337± 0.049
RMAT [24] 0.363± 0.030 9.909± 0.388 0.569 ± 0.092 0.487± 0.083 0.360± 0.063

Figure 3: Two examples of the learned prototypical
parts. The atoms that are marked with a red circle
are a part of the prototype. The compounds on the left
are the reference compounds, and the ones on the right
are matched by the similarity of the prototypical parts.
In prototype A, we see aromatic rings and conjugated
bonds (alternating single and double bonds). Prototype
B consists of ketones (=O) and amides (-C(=O)NH2).

discovered molecular features. First, a small subset
of compounds from the Caco-2 dataset was presented
to the human expert, and the atoms constituting the
learned prototypical parts were highlighted. Next, the
compounds that contained the same prototypes were
shown in order to confirm the agreement between the
similarity function used in the model and the human
knowledge-based intuition.

As a result of the visual inspection, a number of use-
ful prototypical parts were identified. Caco-2 is a perme-
ability assay, and there are several prominent molecular
features that correlate well with the compound ability to
penetrate the epithelial barrier. One of the features de-

tected by the model is a set of ketone and amine groups
that impact the hydrophilicity of the compound and
can form hydrogen bonds with the lipid layers, which
may hugely alter the permeability. In other prototypi-
cal parts we see aromatic rings or aliphatic side chains
which are also related to the hydrophobicity and can
be correlated with the compound bulkiness, decreasing
the compound ability to pass the barrier. The described
structures are depicted in Fig. 3.

The examination of the prototype similarity be-
tween different compounds showed that the same func-
tional groups are correctly matched. What is more in-
teresting, some more subtle similarities are also discov-
ered by the model, e.g. conjugated bonds are found
similar to the aromatic rings, indicating that the model
captures the electronic nature of these structures. On
the right side of Fig. 3, an exemplary matching structure
is shown.

7 Ablation study

7.1 Warmup In this part, we present the influence
of a warmup training stage on the effectiveness of our
model. For two of the datasets (Caco2 and VDss), we
show how the number of epochs and number of pseudo
labels in the warmup phase influence the results, shown
in Fig. 4b and Fid. 4a. The results show that too
long training is not beneficial for a warmup because
the model overfits to labels derived from clustering and
forgets features related to a regression task. Also, the
number of pseudo-labels varies between datasets, for
Caco2 the best one is 16 while for VDss the best is 24. It
shows that these parameters should be chosen carefully,
most probably due to the relatively small number of
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(c) Effect of tree depth on model per-
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Figure 4: The plots a) and b) shows how the number of clusters in K-Means in a warmup phase influences the
model accuracy. We observe that, K = 24 is the most optimal for VDss and K = 16 is the most optimal for Caco.
The plot c) show effect of tree depth on model performance. We observe that the model performance saturates
when the depth of the tree is increased over 6.

Table 2: Comparison of the time needed to perform the
projection. We conclude that Proxy Projection is much
faster than MCTS-based projection.

Depth 4 5
Proxy Projection 10.1s 16.2s
MCTS-based Projection 1760.0s 4371.5s

examples in each of the datasets.

7.2 Proxy Projection vs MCTS-based projec-
tion In this part of ablation, we want to show a differ-
ence in computational time between Proxy and MCTS-
based projections. As an MCTS-based one, we take
the implementation from [42]. In contrast to ProtGNN,
ProGReST can find the important vector of graph la-
tent representation using a similarity function, because
we do not perform pooling of a latent representation.
Based on Tab. 2, we conclude that MCTS-based pro-
jection works much slower than our novel Proxy Pro-
jection. That is why we recommend using it in periodi-
cal projections. To preserve the interpretability compo-
nent, we encourage to use MCTS projection at the end
of the training.

7.3 Depth of the tree Also, we checked how the
depth of a tree influences the model performance. Too
small trees don’t have enough capacity to correctly
model the task. While, too big ones tend to overfit
and lost the ability to generalize well. We observed it
for each dataset, as it is visible in Fig. 4c.

7.4 Latent distance We checked the latent distance
loss proposed in ProtGNN [42]. The authors penalize
the model if the distance between all prototypes as-
signed to a single data class is too small. However, in a
regression task there are no classes. We decided to try
to apply the proposed loss on all prototypes and it is
inconclusive if it helps or not. However, the influence of
the loss correlates with the depth of tree. For smaller
trees it is beneficial to use this regularizers (for exam-
ple Caco2 in Tab. 4 has 5 levels), while for deeper trees,
the number of nodes grows exponentially. This makes it
difficult to ensure orthogonality between all prototypes
(for example LD50 in Tab. 4 has 6 levels and the score
was worse than the one without the extra loss). That
is why we used this loss only for parents of leaves in
our tree. We can argue that some structures can exist
independently of each other. For example the absence
of an aromatic ring does not ensure the absence of any
functional structure.

7.5 Influence of regularizers As the training
schema of the model is complicated, we tested the influ-
ence of each part of the loss function on the final perfor-
mance of the model. The results are shown in Tab. 3.
We notice that cluster cost does not increase the model
performance, but it requires less epochs to train. For
tested datasets, Caco2 with cluster cost needed 114± 8
epochs to get best result, but without it 137±10 epochs,
LD50 with needed 184± 28, but without 215± 19. On
the other hand, path cost with λp greater than zero im-
proves the model by encouraging the model to use all
leaves during the training. The latent distance cost also
results in better effectiveness of the model. We con-
clude that all of those regularizers are complementary
and result in a lower error rate of the model.
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Table 3: Influence of the different loss components on the model performance. Notice that the regularizers are
crucial to training the model. A combination of all regularizers results in the best-performing model.

Dataset no regularizer with cluster cost with path cost with latent distance cost all

Caco2 ↓ 0.565± 0.003 0.558± 0.013 0.454± 0.086 0.432± 0.034 0.367 ± 0.022
LD50 ↓ 0.660± 0.025 0.675± 0.004 0.639± 0.016 0.643± 0.014 0.611 ± 0.009
PPBR ↓ 11.628± 0.291 11.272± 0.701 11.092± 0.771 9.846± 0.407 9.722 ± 0.200
VDss ↑ 0.130± 0.125 0.180± 0.231 0.180± 0.151 0.531± 0.064 0.586 ± 0.012
HL ↑ −0.031± 0.051 0.033± 0.134 0.029± 0.098 0.193± 0.099 0.295 ± 0.058

Table 4: Different strategies for distance loss. One can
observe, that regularizing only parent nodes is the most
effective to obtain the best model.

Dataset without parents all[42]

Caco2 ↓ 0.402± 0.032 0.367 ± 0.022 0.387± 0.030
LD50 ↓ 0.625± 0.228 0.611 ± 0.009 0.632± 0.025
VDss ↑ 0.544± 0.051 0.586 ± 0.012 0.558± 0.044
HL ↑ 0.239± 0.025 0.295 ± 0.058 0.212± 0.053

7.6 Pretrained model As most prototype-based
models use pretrained models in their backbones, es-
pecially those in the computer vision domain. We in-
vestigated how the usage of a pretrained model on a
large chemical database behaves in a prototype-based
learning scenario. We decided to use R-MAT [23], the
current state-of-the-art model for chemical compound
representation. We observe the improvement of the re-
sults for all datasets, as Tab. 1 shows.

8 Conclusions

In this work, we introduce ProGReST, which is an in-
terpretable model for regression of molecular properties.
We show that it not only brings the interpretability into
the prediction but also outperforms GCN architecture,
as well as achieves state-of-the-art results on 4 out of
5 datasets that we tested. Additionally, we introduce
a proxy projection which accelerates the training time
and reduces the power consumption needed for training
which is important from an environmental point of view.
Finally, we show that the ProGReST explanations are
valid and show the influence of the novelties and their
hyperparameters on the models’ performance.

In future works, we want to analyze the possibility
of pruning for ProGReST and generalize it to other data
types such as text, because in NLP there are a lot of
problems represented as graphs and regression tasks.
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B. Zieliński, Protopshare: Prototypical parts sharing
for similarity discovery in interpretable image classifi-
cation, in SIGKDD, 2021.

[34] R. Todeschini and V. Consonni, Handbook of molec-
ular descriptors, John Wiley & Sons, 2008.

[35] J. Wang, H. Liu, X. Wang, and L. Jing, Inter-
pretable image recognition by constructing transparent
embedding space, in ICCV, 2021.

[36] N.-N. Wang, J. Dong, Y.-H. Deng, et al., Adme
properties evaluation in drug discovery: Prediction of
caco-2 cell permeability using a combination of nsga-
ii and boosting, Journal of Chemical Information and
Modeling, (2016).

[37] M. Wenlock and N. Tomkinson, Experimental in
vitro dmpk and physicochemical data on a set of publicly
disclosed compounds.

[38] O. Wieder, S. Kohlbacher, M. Kuenemann,
et al., A compact review of molecular property predic-
tion with graph neural networks, Drug Discovery To-
day: Technologies, (2020).

[39] Z. Xiong et al., Pushing the boundaries of molec-
ular representation for drug discovery with the graph
attention mechanism, Journal of Medicinal Chemistry,
(2020).

[40] Z. Ying et al., Gnnexplainer: Generating explana-
tions for graph neural networks, NeurIPS, (2019).

[41] S. Zhang et al., Graph convolutional networks: a
comprehensive review, Computational Social Networks,
(2019).

[42] Z. Zhang et al., Protgnn: Towards self-explaining
graph neural networks, AAAI, (2022).

[43] H. Zhu et al., Quantitative structure-activity rela-
tionship modeling of rat acute toxicity by oral exposure,
Chemical Research in Toxicology, (2009).

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited387

D
ow

nl
oa

de
d 

06
/0

6/
23

 to
 8

7.
12

8.
16

6.
22

0 
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



Kernel Self-Attention for Weakly-supervised Image Classification using Deep

Multiple Instance Learning

Dawid Rymarczyk 1,2,*, Adriana Borowa1, 2,*, Jacek Tabor1,**, and Bartosz Zieliński1, 2,**
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Abstract

Not all supervised learning problems are described by a

pair of a fixed-size input tensor and a label. In some cases,

especially in medical image analysis, a label corresponds

to a bag of instances (e.g. image patches), and to clas-

sify such bag, aggregation of information from all of the

instances is needed. There have been several attempts to

create a model working with a bag of instances, however,

they are assuming that there are no dependencies within the

bag and the label is connected to at least one instance. In

this work, we introduce Self-Attention Attention-based MIL

Pooling (SA-AbMILP) aggregation operation to account for

the dependencies between instances. We conduct several

experiments on MNIST, histological, microbiological, and

retinal databases to show that SA-AbMILP performs better

than other models. Additionally, we investigate kernel vari-

ations of Self-Attention and their influence on the results.

1. Introduction

Classification methods typically assume that there exists

a separate label for each example from a dataset. However,

in many real-life applications, there exists only one label

for a bag of instances because it is too laborious to label

all of them separately. This type of problem, called Multi-

ple Instance Learning (MIL) [7], assumes that there is only

one label provided for the entire bag and that some of the

instances associate to this label [9].

MIL problems are common in medical image analysis

due to the vast resolution of images and the weakly-labeled

small datasets [4, 21]. Among others, they appear in the

whole slide-image classification of biopsies [2, 3, 34], clas-

sification of dementia based on brain MRI [28], or the dia-

betic retinopathy screening [22, 23]. They are also used in

computer-aided drug design to identify which conformers

are responsible for the molecule activity [26, 36].

Recently, Ilse et al. [13] introduced the Attention-based

MIL Pooling (AbMILP), a trainable operator that aggre-

gates information from multiple instances of a bag. It is

based on a two-layered neural network with the attention

weights, which allows finding essential instances. Since

the publication, this mechanism was widely adopted in the

medical image analysis [18, 20, 32], especially for the as-

sessment of whole-slide images. However, the Attention-

based MIL Pooling is significantly different from the Self-

Attention (SA) mechanism [35]. It perfectly aggregates in-

formation from a varying number of instances, but it does

not model dependencies between them. Additionally, the

SA-AbMILP is distinct from other MIL approaches devel-

oped recently because it is not modeling the bag as a graph

like in [30, 33], it is not using the pre-computed image

descriptors as features as in [30], and it models the depen-

dencies between instances in contrast to [8].

In this work, we introduce a method that combines self-

attention with Attention-based MIL Pooling. It simulta-

neously catches the global dependencies between the in-

stances in the bag (which are beneficial [37]) and aggre-

gates them into a fixed-sized vector required for the suc-

cessive layers of the network, which then can be used in

regression, binary, and multi-class classification problems.

Moreover, we investigate a broad spectrum of kernels re-

placing dot product when generating an attention map. Ac-

cording to the experiments’ results, using our method with

various kernels is beneficial compared to the baseline ap-

proach, especially in the case of more challenging MIL

assumptions. Our code is publicly available at https:

1721



//github.com/gmum/Kernel_SA-AbMILP.

2. Multiple Instance Learning

Multiple Instance Learning (MIL) is a variant of induc-

tive machine learning belonging to the supervised learning

paradigm [9]. In a typical supervised problem, a separate

feature vector, e.g. ResNet representation after Global Max

Pooling, exists for each sample: x = h,h ∈ R
L×1. In MIL,

each example is represented by a bag of feature vectors of

length L called instances: x = {hi}
n
i=1,hi ∈ R

L×1, and

the bag is of variable size n. Moreover, in standard MIL as-

sumption, label of the bag y ∈ {0, 1}, each instance hi has

a hidden binary label yi ∈ {0, 1}, and the bag is positive if

at least one of its instances is positive:

y =







0, iff
n
∑

i=1

yi = 0,

1, otherwise.

(1)

This standard assumption (considered by AbMILP) is

stringent and hence does not fit to numerous real-world

problems. As an example, let us consider the digestive track

assessment using the NHI scoring system [19], where the

score 2 is assigned to a biopsy if the neutrophils infiltrate

more than 50% of crypts and there is no epithelium damage

or ulceration. Such a task obviously requires more challeng-

ing types of MIL [9], which operate on many assumptions

(below defined as concepts) and classes.

Let Ĉ ⊆ C be the set of required instance-level concepts,

and let p : X × C → K be the function that counts how

often the concept c ∈ C occurs in the bag x ∈ X . Then,

in presence-based assumption, the bag is positive if each

concept occurs at least once:

y =

{

1, iff for each c ∈ Ĉ : p(x, c) ≥ 1,

0, otherwise.
(2)

In the case of threshold-based assumptions, the bag is

positive if concept ci ∈ C occurs at least ti ∈ N times:

y =

{

1, iff for each ci ∈ Ĉ : p(x, ci) ≥ ti,

0, otherwise.
(3)

In this paper, we introduce methods suitable not only for

the standard assumption (like it was in the case of AbMILP)

but also for presence-based and threshold-based assump-

tions.

3. Methods

3.1. Attentionbased Multiple Instance Learning
Pooling

Attention-based MIL Pooling (AbMILP) [13] is a type

of weighted average pooling, where the neural network de-

termines the weights of instances. More formally, if the bag

x = {hi}
n
i=1,hi ∈ R

L×1, then the output of the operator is

defined as:

z =
n
∑

i=1

aihi, where ai =
exp

(

wT tanh(Vhi)
)

∑N

j exp (wT tanh(Vhj))
,

(4)

w ∈ R
M×1 and V ∈ R

M×L are trainable layers of neural

networks, and the hyperbolic tangent prevents the exploding

gradient. Moreover, the weights ai sum up to 1 to wean

from various sizes of the bags and the instances are in the

random order within the bag to prevent the overfitting.

The most important limitation of AbMILP is the assump-

tion that all instances of the bag are independent. To over-

come this limitation, we extend it by introducing the Self-

Attention (SA) mechanism [35] which models dependen-

cies between instances of the bag.

3.2. SelfAttention in Multiple Instance Learning

The pipeline of our method, which applies Self-

Attention into Attention-based MIL Pooling (SA-

AbMILP), consists of four steps. First, the bag’s images are

passed through the Convolutional Neural Network (CNN)

to obtain their representations. Those representations

are used by the self-attention module (with dot product

or the other kernels) to integrate dependencies of the

instances into the process. Feature vectors with integrated

dependencies are used as the input for the AbMILP module

to obtain one fixed-sized vector for each bag. Such a vector

can be passed to successive Fully-Connected (FC) layers of

the network. The whole pipeline is presented in Fig. 1. In

order to make this work self-contained, below, we describe

self-attention and particular kernels.

Self-Attention (SA). SA is responsible for finding the de-

pendencies between instances within one bag. Instance rep-

resentation after SA is enriched with the knowledge from

the entire bag, this is important for the detection of the num-

ber of instances of the same concept and their relation. SA

transforms all the instances into two feature spaces of keys

ki = Wkhi and queries qj = Wqhj, and calculates:

βj,i =
exp (sij)

∑N

i=1
exp (sij)

, where sij = 〈k(hi),q(hj)〉, (5)

to indicate the extent to which the model attends to the ith

instance when synthesizing the jth one. The output of the

attention layer is defined separately for each instance as:

ĥj = γoj + hj, where oj =

N
∑

i=1

βj,iWvhi, (6)

Wq,Wk ∈ R
L̄×L, Wv ∈ R

L×L are trainable layers, L̄ =
L/8, and γ is a trainable scalar initialized to 0. Parameters

L̄ and γ were chosen based on the results presented in [35].

1722



⊗

v

CNN
q

k ⊗
⊗

+ FC

Bag of 
instances

Representations of 
instances Self-attention Attention-based MIL 

Pooling Classifier

Attention map

Figure 1: The pipeline of self-attention in deep MIL starts with obtaining feature space representation for each of the instances

from the bag using features block of Convolutional Neural Network (CNN). In order to model dependencies between the

instances, their representations pass trough the self-attention layer and then aggregate using AbMILP operator. The obtained

fixed-size vector goes trough the Fully Connected (FC) classification layer.

Kernels in self-attention. In order to indicate to which

extent one instance attends on synthesizing the other one,

the self-attention mechanism typically employs a dot prod-

uct (see sij in Eq. 5). However, dot product can be replaced

by a various kernel with positive results observed in Support

Vectors Machine (SVM) [1] or Convolutional Neural Net-

works (CNN) [31], especially in the case of small training

sets.

The Radial Basis Function (RBF) and Laplace kernels

were already successfully adopted to self-attention [14, 29].

Hence, in this study, we additionally extend our approach

with the following standard choice of kernels (with α as a

trainable parameter):

• Radial Basis Function (GSA-AbMILP):

k(x, y) = exp (−α‖x− y‖22),

• Inverse quadratic (IQSA-AbMILP):

k(x, y) = 1

α‖x−y‖2

2
+1

,

• Laplace (LSA-AbMILP):

k(x, y) = −‖x− y‖1,

• Module (MSA-AbMILP):

k(x, y) = ‖x− y‖α − ‖x‖α − ‖y‖α.

We decided to limit to those kernels because they are com-

plementary regarding the shape of tails in their distributions.

4. Experiments

We adopt five datasets, from which four were adopted

to MIL algorithms [13, 30], to investigate the performance

of our method: MNIST [17], two histological databases of

colon [25] and breast [10] cancer, a microbiological dataset

DIFaS [38], and a diabetic retinopathy screening data set

called “Messidor” [5]. For MNIST, we adapt LeNet5 [17]

architecture, for both histological datasets SC-CNN [25] is

applied as it was in [13], for microbiological dataset we

use convolutional parts of ResNet-18 [12] or AlexNet [16]

followed by 1 × 1 convolution as those were the best fea-

ture extractor in [38], and for the "Messidor" dataset we

used the ResNet-18 [12] as most of the approaches that

we compare here are based on the handcrafted image fea-

tures like in [30]. The experiments, for MNiST, histolog-

ical and "Messidor" datasets, are repeated 5 times using

10 fold cross-validation with 1 validation fold and 1 test

fold. In the case of the microbiological dataset, we use the

original 2 fold cross-validation which divides the images by

the preparation, as using images from the same preparation

in both training and test set can result in overstated accu-

racy [38]. Due to the dataset complexity, we use the early

stopping mechanism with different windows: 5, 25, 50 and

70 epochs for MNIST, histological datasets, microbiologi-

cal, and "Messidor" datasets, respectively. We compare the

performance of our method (SA-AbMILP) and its kernel

variations with instance-level approaches (instance+max,

instance+mean, and instance+voting), embedding-level ap-

proaches (embedding+max and embedding+mean), and

Attention-based MIL Pooling, AbMILP [13]. The instance-

level approaches in the case of MNIST and histological

database compute the maximum or mean value of the in-

stance scores. For the microbiological database, instance

scores are aggregated by voting due to multiclassification.

The embedding-level approaches calculate the maximum

or mean for feature vector of the instances. For "Mes-

sidor" dataset we are comparing to the results obtained

by [30, 8]. We run a Wilcoxon signed-rank test on the re-

sults to identify which ones significantly differ from each

other, and which ones do not (and thus can be considered

equally good). The comparison is performed between the

best method (the one with the best mean score) and all the

other methods, for each experiment separately. The mean

accuracy is obtained as average over 5 repetitions with the

same train/test divisions used by all compared methods.

The number of repetitions is relatively small for statistical

tests. Therefore we set the p-value to 0.1. For computations,

we use Nvidia GeForce RTX 2080.
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(a) (b) (c)

Figure 2: Results for MNIST dataset with bags generated using standard (a), presence-based (b), and threshold-based (c)

assumption. In all cases, our approach, either with dot product (SA-AbMILP) or the other kernels (GSA-AbMILP, IQSA-

AbMILP, LSA-AbMILP, and MSA-AbMILP) obtains statistically better results than the baseline method (AbMILP). See

Section 3 for description of the shortcuts.

4.1. MNIST dataset

Experiment details. As in [13], we first construct vari-

ous types of bags based on the MNIST dataset. Each bag

contains a random number of MNIST images (drawn from

Gaussian distributions N (10, 2)). We adopt three types of

bag labels referring to three types of MIL assumptions:

• Standard assumptions: y = 1 if there is at least one

occurrence of “9”,

• Presence-based assumptions: y = 1 if there is at least

one occurrence of “9” and at least one occurrence of

“7”,

• Threshold-based assumptions: y = 1 if there are at

least two occurrences of “9”.

We decided to use “9” and “7” because they are often con-

fused with each other, making the task more challenging.

We investigated how the performance of the model de-

pends on the number of bags used in training (we consider

50, 100, 150, 200, 300, 400, and 500 training bags). For

all experiments, we use LeNet5 [17] initialized according

to [11] with the bias set to 0. We use Adam optimizer [15]

with parameters β1 = 0.9 and β2 = 0.999, learning rate

10−5, and batch size 1.

Results. AUC values for considered MIL assumptions are

visualized in Fig. 2. One can observe that our method

with a dot product (SA-AbMILP) always outperforms other

methods in case of small datasets. However, when the

number of training examples reaches 300, its kernel exten-

sions work better (Laplace in presence-based and inverse

quadratic in threshold-based assumption). Hence, we con-

clude that for small datasets, no kernel extensions should be

applied, while in the case of a larger dataset, a kernel should

be optimized together with the other hyperparameters. Ad-

ditionally, we analyze differences between the weights of

instances in AbMILP and our method. As presented in

Fig. 3, for our method, “9”s and “7”s strengthen each other

in the self-attention module, resulting in higher weights in

the aggregation operator than for AbMILP, which returns

high weight for only one digit (either “9” or “7”).

4.2. Histological datasets

Experiment details. In the second experiment, we con-

sider two histological datasets of breast and colon cancer

(described below). For both of them, we generate instance

representations using SC-CNN [25] initialized according

to [11] with the bias set to 0. We use Adam [15] optimizer

with parameters β1 = 0.9 and β2 = 0.999, learning rate

10−4, and batch size 1. We also apply extensive data aug-

mentation, including random rotations, horizontal and ver-

tical flipping, random staining augmentation [13], staining

normalization [27], and instance normalization.
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 AbMILP 0.01 0.04 0.26 0.02 0.08 0.00 0.02 0.21 0.37
SA-AbMILP 0.12 0.19 0.06 0.15 0.07 0.04 0.08 0.09 0.20

True label: 1; Prediction from AbMILP: 0; Prediction from SA-AbMILP: 1

True label: 0; Prediction from AbMILP: 1; Prediction from SA-AbMILP: 0

SA-AbMILP     0.06      0.10      0.09      0.10      0.23      0.05     0.09      0.12     0.07      0.09

      AbMILP     0.08      0.12      0.09      0.01      0.10      0.04     0.04      0.04     0.38      0.09

Figure 3: Example of instances’ weights for a positive (top) and negative (bottom) bag in a presence-based assumption (where

positive is at least one occurrence of “9” and “7”) for AbMILP and our method. One can observe that for SA-AbMILP, “9”s

and “7”s strengthen each other in the self-attention module, resulting in higher weights in the aggregation operator than for

AbMILP.

Breast cancer dataset. Dataset from [10] contains 58
weakly labeled H&E biopsy images of resolution 896×768.

The image is labeled as malignant if it contains at least one

cancer cell. Otherwise, it is labeled as benign. Each image

is divided into patches of resolution 32×32, resulting in 672
patches per image. Patches with at least 75% of the white

pixels are discarded, generating 58 bags of various sizes.

Colon cancer dataset. Dataset from [25] contains 100
images with 22444 nuclei manually assigned to one of the

following classes: epithelial, inflammatory, fibroblast, and

miscellaneous. We construct bags of 27 × 27 patches with

centers located in the middle of the nuclei. The bag has

a positive label if there is at least one epithelium nucleus in

the bag. Tagging epithelium nuclei is essential in the case of

colon cancer because the disease originates from them [24].

Results. Results for histological datasets are presented in

Table 1. For both of them, our method (with or without

kernel extension) improves the Area Under the ROC Curve

(AUC) comparing to the baseline methods. Moreover, our

method obtains the highest recall, which is of importance

for reducing the number of false negatives. To explain

why our method surpasses the AbMILP, we compare the

weights of patches in the average pooling. Those patches

contribute the most to the final score and should be inves-

tigated by the pathologists. One can observe in Fig. 4 that

our method highlights fewer patches than AbMILP, which

simplifies their analysis. Additionally, SA dependencies ob-

tained for the most relevant patch of our method are justi-

fied histologically, as they mostly focus on nuclei located

in the neighborhood of crypts. Moreover, in the case of the

colon cancer dataset, we further observe the positive aspect

of our method, as it strengthens epithelium nuclei and weak-

ens nuclei in the lamina propria at the same time,. Finally,

we notice that kernels often improve overall performance

but none of them is significantly superior.

4.3. Microbiological dataset

Experiment details. In the final experiment, we consider

the microbiological DIFaS database [38] of fungi species. It

contains 180 images for 9 fungi species (there are 2 prepara-

tions with 10 images for each species and it is a multi-class

classification). As the size of images is 5760×3600×3 pix-

els, it is difficult to process the entire image through the net-

work so we generate patches following method used in [38].

Hence, unlike the pipeline from Section 3.2, we use two

separate networks. The first network generates the represen-

tations of the instances, while the second network (consist-

ing of self-attention, attention-based MIL pooling, and clas-

sifier) uses those representations to recognize fungi species.

Due to the separation, it is possible to use deep architec-

tures like ResNet-18 [12] and AlexNet [16] pre-trained on

ImageNet database [6] to generate the representations. The

second network is trained using Adam [15] optimizer with

parameters β1 = 0.9 and β2 = 0.999, learning rate 10−5,
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Table 1: Results for breast and colon cancer datasets (mean and standard error of the mean over 5 repetitions). See Section 3

for description of the acronyms.

breast cancer dataset

method accuracy precision recall F-score AUC

instance+max 61.4± 2.0 58.5± 3.0 47.7± 8.7 50.6± 5.4 61.2± 2.6
instance+mean 67.2± 2.6 67.2± 3.4 51.5± 5.6 57.7± 4.9 71.9± 1.9

embedding+max 60.7± 1.5 55.8± 1.3 54.6± 7.0 54.3± 4.2 65.0± 1.3
embedding+mean 74.1± 2.3 74.1± 2.3 65.4± 5.4 68.9± 3.4 79.6± 1.2

AbMILP 71.7± 2.7 77.1± 4.1 68.6± 3.9 66.5± 3.1 85.6± 2.2
SA-AbMILP 75.1± 2.4 77.4± 3.7 74.9± 3.7 69.9± 3.0 86.2± 2.2

GSA-AbMILP 75.8± 2.2 79.3± 3.3 74.7± 3.4 72.5± 2.5 85.9± 2.2
IQSA-AbMILP 76.7± 2.3 78.6± 4.2 75.1± 4.2 66.6± 4.3 85.9± 2.2
LSA-AbMILP 65.5± 2.9 62.5± 3.7 89.5± 2.6 68.5± 2.6 86.7± 2.1
MSA-AbMILP 73.8± 2.6 78.4± 3.9 73.8± 3.6 69.4± 3.4 85.8± 2.2

colon cancer dataset

method accuracy precision recall F-score AUC

instance+max 84.2± 2.1 86.6± 1.7 81.6± 3.1 83.9± 2.3 91.4± 1.0
instance+mean 77.2± 1.2 82.1± 1.1 71.0± 3.1 75.9± 1.7 86.6± 0.8

embedding+max 82.4± 1.5 88.4± 1.4 75.3± 2.0 81.3± 1.7 91.8± 1.0
embedding+mean 86.0± 1.4 81.1± 1.1 80.4± 2.7 85.3± 1.6 94.0± 1.0

AbMILP 88.4± 1.4 95.3± 1.5 84.1± 2.9 87.2± 2.1 97.3± 0.7
SA-AbMILP 90.8± 1.3 93.8± 2.0 87.2± 2.4 89.0± 1.9 98.1± 0.7

GSA-AbMILP 88.4± 1.7 95.2± 1.7 83.7± 2.8 86.9± 2.1 98.5± 0.6
IQSA-AbMILP 89.0± 1.9 93.9± 2.1 85.5± 3.0 86.9± 2.5 96.6± 1.1
LSA-AbMILP 84.8± 1.8 92.7± 2.7 71.1± 4.6 73.4± 4.3 95.5± 1.7
MSA-AbMILP 89.6± 1.6 94.6± 1.5 85.7± 2.7 87.9± 1.8 98.4± 0.5

(a) (b) (c) (d)

Figure 4: An example image from the breast cancer dataset (a), weights of patches obtained by AbMILP (b) and SA-

AbMILP (c), and SA dependencies obtained for the most relevant patch in SA-AbMILP (d). One can observe that SA-

AbMILP highlights fewer patches than AbMILP, which simplifies their analysis. Additionally, SA dependencies are justified

histologically, as they mostly focus on nuclei located in the neighborhood of crypts.

and batch size 1. We also apply extensive data augmen-

tation, including random rotations, horizontal and vertical

flipping, Gaussian noise, and patch normalization. To in-

crease the training set, each iteration randomly selects a dif-

ferent subset of image’s patches as an input.

Results. Results for DIFaS database are presented in Ta-

ble 2. Our method improves almost all of the scores for

both feature pooling networks. The exception is the preci-

sion for ResNet-18, where our method is on par with max-

imum and mean instance representation. Moreover, we ob-

serve that while non-standard kernels can improve results

for representations obtained with ResNet-18, they do not
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Table 2: Results for DIFaS dataset (mean and standard error of the mean over 5 repetitions). See Section 3 for description of

the shortcuts.

DIFaS (ResNet-18)

method accuracy precision recall F-score AUC

instance+voting 78.3± 2.0 78.0± 1.4 76.0± 1.7 75.8± 2.0 N/A
embedding+max 77.1± 0.7 83.1± 0.5 77.1± 0.7 75.5± 0.9 95.3± 0.2
embedding+mean 78.1± 0.8 83.3± 0.5 78.1± 0.8 76.4± 1.0 95.2± 0.2

AbMILP 77.5± 0.6 82.6± 0.5 77.5± 0.6 75.6± 0.8 96.1± 0.3
SA-AbMILP 80.1± 0.6 84.6± 0.6 80.1± 0.6 78.4± 0.8 96.8± 0.3

GSA-AbMILP 79.1± 0.4 83.5± 0.7 79.1± 0.4 77.2± 0.5 97.0± 0.3
IQSA-AbMILP 79.4± 0.4 83.7± 0.7 79.4± 0.4 77.6± 0.6 96.8± 0.3
LSA-AbMILP 77.6± 0.5 82.5± 0.5 77.6± 0.5 75.7± 0.7 96.2± 0.3
MSA-AbMILP 79.2± 0.4 83.5± 0.4 79.2± 0.4 77.5± 0.6 96.9± 0.3

DIFaS (AlexNet)

method accuracy precision recall F-score AUC

instance+voting 77.3± 1.9 78.4± 0.8 76.6± 1.2 76.2± 1.0 N/A
embedding+max 82.9± 1.2 87.1± 0.9 82.9± 1.2 82.3± 1.4 98.4± 0.2
embedding+mean 82.3± 0.7 87.2± 0.4 82.3± 0.7 81.5± 1.0 98.1± 0.3

AbMILP 83.6± 1.2 87.8± 0.7 83.6± 1.2 82.9± 1.5 98.6± 0.2
SA-AbMILP 86.0± 1.0 89.6± 0.6 86.0± 1.0 85.7± 1.3 98.9± 0.1

GSA-AbMILP 84.6± 1.0 89.1± 0.6 84.6± 1.0 84.2± 1.3 98.8± 0.2
IQSA-AbMILP 84.1± 1.2 88.4± 0.6 84.1± 1.2 83.4± 1.4 98.9± 0.2
LSA-AbMILP 83.9± 1.3 88.0± 0.7 83.9± 1.3 83.2± 1.6 98.6± 0.2
MSA-AbMILP 83.1± 0.8 87.8± 0.4 83.1± 0.8 82.4± 1.0 98.7± 0.2

(a) (b) (c) (d) (e)

Figure 5: An example image from the colon cancer dataset (a) with annotated nuclei (b) and epithelium nuclei (c), as well

as, the weights of patches obtained by AbMILP (d) and SA-AbMILP (e). One can observe that SA-AbMILP strengthens

epithelium nuclei and, at the same time, weakens nuclei in the lamina propria.

operate well with those generated with AlexNet. Addition-

ally, to interpret the model outputs, we visualize patches

with the lowest and highest weights in the average pooling.

As shown in Figure 6, our method properly [38] assigns

lower weights to blurred patches with a small number of

cells. Also, in contrast to the baseline method, it assigns

high weight to clean patches (without red artifacts).

4.4. Retinal image screening dataset.

Experiment details. Dataset "Messidor" from [5] con-

tains 1200 images with 654 positive (diagnosed with dia-

betes) and 546 negative (healthy) images. The size of each

image is 700 × 700 pixels. Each image is partitioned into

patches of 224× 224 pixels. Patches containing only back-

ground are dropped. We are using ResNet18 [12] pretrained

on the ImageNet [6] as an instance feature vectors genera-

tor and SA-AbMILP to obtain the final prediction, which

is trained in an end to end fashion. The model is trained

using Adam [15] optimizer with parameters β1 = 0.9 and

β2 = 0.999, learning rate 5 ∗ 10−6, and batch size 1. We

also apply data augmentation as in Section 4.3.
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True class: Candida glabrata 
AbMILP: Cryptococcus neoformans SA-AbMILP: Candida glabrata

AbMILP

Most 
important

Least 
important

SA-AbMILP

True class: Cryptococcus neoformans 
AbMILP: Candida albicans SA-AbMILP: Cryptococcus neoformans

AbMILP SA-AbMILP

Most 
important

Least 
important

Figure 6: Example patches from the DIFaS dataset with the lowest and highest weights in the average pooling. One can

observe that SA-AbMILP properly [38] assigns lower weights to blurred patches with a small number of cells. Moreover, in

contrast to the AbMILP, it assigns high weight to clean patches (without red artifacts).

Table 3: Retinal image screening dataset results. *Results

with asterisk are sourced from [30].

Retinal image screening dataset

method accuracy F-score

LSA-AbMILP 76.3% 0.77
SA-AbMILP 75.2% 0.76

AbMILP 74.5% 0.74
GSA-AbMILP 74.5% 0.75
IQSA-AbMILP 74.5% 0.75
MSA-AbMILP 73.5% 0.74

MIL-GNN-DP* 74.2% 0.77
MIL-GNN-Att* 72.9% 0.75

mi-Graph* 72.5% 0.75
MILBoost* 64.1% 0.66

Citation k-NN* 62.8% 0.68
EMDD* 55.1% 0.69

MI-SVM* 54.5% 0.70
mi-SVM* 54.5% 0.71

Results. Results for "Messidor" database are presented in

Table 3 alongside results of other approaches which are

used for comparison and were taken from [30]. Our method

improves accuracy and the highest scores are achieved using

Laplace kernel variation, which obtains F1 score on par with

the best reference approach. This is the only database for

which Laplace kernel obtains the best results, which only

confirms that the kernel should be optimized together with

the other hyperparameters when applied to new problems.

5. Conclusions and discussion

In this paper, we apply Self-Attention into Attention-

based MIL Pooling (SA-AbMILP), which combines the

multi-level dependencies across image regions with the

trainable operator of weighted average pooling. In contrast

to Attention-based MIL Pooling (AbMILP), it covers not

only the standard but also the presence-based and threshold-

based assumptions of MIL. Self-Attention is detecting the

relationship between instances, so it can embed into the in-

stance feature vectors the information about the presence

of similar instances or find that a combination of specific

instances defines the bag as a positive. The experiments

on five datasets (MNIST, two histological datasets of breast

and colon cancer, microbiological dataset DIFaS, and reti-

nal image screening) confirm that our method is on par or

outperforms current state-of-the-art methodology based on

the Wilcox pair test. We demonstrate that in the case of

bigger datasets, it is advisable to use various kernels of the

self-attention instead of the commonly used dot product.

We also provide qualitative results to illustrate the reason

for the improvements achieved by our method.

The experiments show that methods covering a wider

range of MIL assumptions fit better for real-world prob-

lems. Therefore, in future work, we plan to introduce meth-

ods for more challenging MIL assumptions, e.g. collective

assumption, and apply them to more complicated tasks, like

digestive track assessment using the Nancy Histological In-

dex. Moreover, we plan to introduce better interpretability,

using Prototype Networks.

6. Acknowledgments

The POIR.04.04.00-00-14DE/18-00 project is carried

out within the Team-Net programme of the Foundation for

Polish Science co-financed by the European Union under

the European Regional Development Fund.

References

[1] Gaston Baudat and Fatiha Anouar. Kernel-based

methods and function approximation. In IJCNN’01.

International Joint Conference on Neural Networks.

1728



Proceedings (Cat. No. 01CH37222), volume 2, pages

1244–1249. IEEE, 2001.

[2] Gabriele Campanella, Matthew G Hanna, Luke

Geneslaw, Allen Miraflor, Vitor Werneck Krauss

Silva, Klaus J Busam, Edi Brogi, Victor E Reuter,

David S Klimstra, and Thomas J Fuchs. Clinical-

grade computational pathology using weakly super-

vised deep learning on whole slide images. Nature

medicine, 25(8):1301–1309, 2019.

[3] Gabriele Campanella, Vitor Werneck Krauss Silva,

and Thomas J Fuchs. Terabyte-scale deep multiple

instance learning for classification and localization in

pathology. arXiv preprint arXiv:1805.06983, 2018.

[4] Marc-André Carbonneau, Veronika Cheplygina, Eric

Granger, and Ghyslain Gagnon. Multiple instance

learning: A survey of problem characteristics and ap-

plications. Pattern Recognition, 77:329–353, 2018.

[5] Etienne Decencière, Xiwei Zhang, Guy Cazuguel,

Bruno Lay, Béatrice Cochener, Caroline Trone,

Philippe Gain, Richard Ordonez, Pascale Massin, Ali

Erginay, et al. Feedback on a publicly distributed im-

age database: the messidor database. Image Analysis

& Stereology, 33(3):231–234, 2014.

[6] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai

Li, and Li Fei-Fei. Imagenet: A large-scale hierarchi-

cal image database. In 2009 IEEE conference on com-

puter vision and pattern recognition, pages 248–255.

Ieee, 2009.

[7] Thomas G Dietterich, Richard H Lathrop, and Tomás

Lozano-Pérez. Solving the multiple instance problem

with axis-parallel rectangles. Artificial intelligence,

89(1-2):31–71, 1997.

[8] Ji Feng and Zhi-Hua Zhou. Deep miml network. In

AAAI, pages 1884–1890, 2017.

[9] James Foulds and Eibe Frank. A review of multi-

instance learning assumptions. The Knowledge En-

gineering Review, 25(1):1–25, 2010.

[10] Elisa Drelie Gelasca, Jiyun Byun, Boguslaw Obara,

and BS Manjunath. Evaluation and benchmark for

biological image segmentation. In 2008 15th IEEE

International Conference on Image Processing, pages

1816–1819. IEEE, 2008.

[11] Xavier Glorot and Yoshua Bengio. Understanding

the difficulty of training deep feedforward neural net-

works. In Proceedings of the thirteenth interna-

tional conference on artificial intelligence and statis-

tics, pages 249–256, 2010.

[12] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian

Sun. Deep residual learning for image recognition.

In Proceedings of the IEEE conference on computer

vision and pattern recognition, pages 770–778, 2016.

[13] Maximilian Ilse, Jakub M Tomczak, and Max

Welling. Attention-based deep multiple instance

learning. arXiv preprint arXiv:1802.04712, 2018.

[14] Hyunjik Kim, Andriy Mnih, Jonathan Schwarz, Marta

Garnelo, Ali Eslami, Dan Rosenbaum, Oriol Vinyals,

and Yee Whye Teh. Attentive neural processes. arXiv

preprint arXiv:1901.05761, 2019.

[15] Diederik P Kingma and Jimmy Ba. Adam: A

method for stochastic optimization. arXiv preprint

arXiv:1412.6980, 2014.

[16] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hin-

ton. Imagenet classification with deep convolutional

neural networks. In Advances in neural information

processing systems, pages 1097–1105, 2012.

[17] Yann LeCun, Léon Bottou, Yoshua Bengio, and

Patrick Haffner. Gradient-based learning applied to

document recognition. Proceedings of the IEEE,

86(11):2278–2324, 1998.

[18] Jiayun Li, Wenyuan Li, Arkadiusz Gertych, Beat-

rice S Knudsen, William Speier, and Corey W

Arnold. An attention-based multi-resolution model for

prostate whole slide imageclassification and localiza-

tion. arXiv preprint arXiv:1905.13208, 2019.

[19] Katherine Li, Richard Strauss, Colleen Marano,

Linda E Greenbaum, Joshua R Friedman, Laurent

Peyrin-Biroulet, Carrie Brodmerkel, and Gert De Her-

togh. A simplified definition of histologic improve-

ment in ulcerative colitis and its association with dis-

ease outcomes up to 30 weeks from initiation of ther-

apy: Post hoc analysis of three clinical trials. Journal

of Crohn’s and Colitis, 13(8):1025–1035, 2019.

[20] Ming Y Lu, Richard J Chen, Jingwen Wang, Debora

Dillon, and Faisal Mahmood. Semi-supervised histol-

ogy classification using deep multiple instance learn-

ing and contrastive predictive coding. arXiv preprint

arXiv:1910.10825, 2019.

[21] Gwenolé Quellec, Guy Cazuguel, Béatrice Cochener,

and Mathieu Lamard. Multiple-instance learning for

medical image and video analysis. IEEE reviews in

biomedical engineering, 10:213–234, 2017.

[22] Gwénolé Quellec, Mathieu Lamard, Michael D Abrà-

moff, Etienne Decencière, Bruno Lay, Ali Erginay,

Béatrice Cochener, and Guy Cazuguel. A multiple-

instance learning framework for diabetic retinopathy

screening. Medical image analysis, 16(6):1228–1240,

2012.

[23] Priya Rani, Rajkumar Elagiri Ramalingam, Kumar T

Rajamani, Melih Kandemir, and Digvijay Singh. Mul-

tiple instance learning: Robust validation on retinopa-

thy of prematurity. Int J Ctrl Theory Appl, 9:451–459,

2016.

1729



[24] Lucia Ricci-Vitiani, Dario G Lombardi, Emanuela Pi-

lozzi, Mauro Biffoni, Matilde Todaro, Cesare Peschle,

and Ruggero De Maria. Identification and expan-

sion of human colon-cancer-initiating cells. Nature,

445(7123):111–115, 2007.

[25] Korsuk Sirinukunwattana, Shan E Ahmed Raza, Yee-

Wah Tsang, David RJ Snead, Ian A Cree, and Nasir M

Rajpoot. Locality sensitive deep learning for detec-

tion and classification of nuclei in routine colon can-

cer histology images. IEEE transactions on medical

imaging, 35(5):1196–1206, 2016.

[26] Christoph Straehle, Melih Kandemir, Ullrich Koethe,

and Fred A Hamprecht. Multiple instance learning

with response-optimized random forests. In 2014

22nd International Conference on Pattern Recogni-

tion, pages 3768–3773. IEEE, 2014.

[27] Jakub M Tomczak, Maximilian Ilse, Max Welling,

Marnix Jansen, Helen G Coleman, Marit Lucas, Kikki

de Laat, Martijn de Bruin, Henk Marquering, Myrtle J

van der Wel, et al. Histopathological classification of

precursor lesions of esophageal adenocarcinoma: A

deep multiple instance learning approach. 2018.

[28] Tong Tong, Robin Wolz, Qinquan Gao, Ricardo Guer-

rero, Joseph V Hajnal, Daniel Rueckert, Alzheimer’s

Disease Neuroimaging Initiative, et al. Multiple in-

stance learning for classification of dementia in brain

mri. Medical image analysis, 18(5):808–818, 2014.

[29] Yao-Hung Hubert Tsai, Shaojie Bai, Makoto Yamada,

Louis-Philippe Morency, and Ruslan Salakhutdinov.

Transformer dissection: An unified understanding for

transformer’s attention via the lens of kernel. arXiv

preprint arXiv:1908.11775, 2019.

[30] Ming Tu, Jing Huang, Xiaodong He, and Bowen

Zhou. Multiple instance learning with graph neural

networks. arXiv preprint arXiv:1906.04881, 2019.

[31] Chen Wang, Jianfei Yang, Lihua Xie, and Junsong

Yuan. Kervolutional neural networks. In Proceed-

ings of the IEEE Conference on Computer Vision and

Pattern Recognition, pages 31–40, 2019.

[32] Shujun Wang, Yaxi Zhu, Lequan Yu, Hao Chen,

Huangjing Lin, Xiangbo Wan, Xinjuan Fan, and

Pheng-Ann Heng. Rmdl: Recalibrated multi-instance

deep learning for whole slide gastric image classifica-

tion. Medical image analysis, 58:101549, 2019.

[33] Xiaolong Wang and Abhinav Gupta. Videos as space-

time region graphs. In Proceedings of the European

conference on computer vision (ECCV), pages 399–

417, 2018.

[34] Hiroshi Yoshida, Taichi Shimazu, Tomoharu Kiyuna,

Atsushi Marugame, Yoshiko Yamashita, Eric Cosatto,

Hirokazu Taniguchi, Shigeki Sekine, and Atsushi

Ochiai. Automated histological classification of

whole-slide images of gastric biopsy specimens. Gas-

tric Cancer, 21(2):249–257, 2018.

[35] Han Zhang, Ian Goodfellow, Dimitris Metaxas, and

Augustus Odena. Self-attention generative adversarial

networks. arXiv preprint arXiv:1805.08318, 2018.

[36] Zhendong Zhao, Gang Fu, Sheng Liu, Khaled M

Elokely, Robert J Doerksen, Yixin Chen, and Dawn E

Wilkins. Drug activity prediction using multiple-

instance learning via joint instance and feature selec-

tion. In BMC bioinformatics, volume 14, page S16.

Springer, 2013.

[37] Zhi-Hua Zhou, Yu-Yin Sun, and Yu-Feng Li. Multi-

instance learning by treating instances as non-iid sam-

ples. In Proceedings of the 26th annual international

conference on machine learning, pages 1249–1256,

2009.
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Abstract. The rapid development of histopathology scanners allowed
the digital transformation of pathology. Current devices fastly and accu-
rately digitize histology slides on many magnifications, resulting in whole
slide images (WSI). However, direct application of supervised deep learn-
ing methods to WSI highest magnification is impossible due to hardware
limitations. That is why WSI classification is usually analyzed using stan-
dard Multiple Instance Learning (MIL) approaches, that do not explain
their predictions, which is crucial for medical applications. In this work,
we fill this gap by introducing ProtoMIL, a novel self-explainable MIL
method inspired by the case-based reasoning process that operates on
visual prototypes. Thanks to incorporating prototypical features into
objects description, ProtoMIL unprecedentedly joins the model accu-
racy and fine-grained interpretability, as confirmed by the experiments
conducted on five recognized whole-slide image datasets.

Keywords: Multiple instance learning · Digital pathology ·
Interpretable deep learning

1 Introduction

A typical supervised learning scenario assumes that each data point has a sepa-
rate label. However, in Whole Slide Image (WSI) classification, only one label is
usually assigned to a gigapixel image due to the laborious and expensive label-
ing. Because of the hardware limitations, the direct application of supervised
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Fig. 1. ProtoMIL divides the whole slide image into patches and analyzes their simi-
larity to the reference prototypical parts that describe the given data class. As a result,
it can provide a visual explanation of its prediction. One can observe that ProtoMIL
identifies the most important patches with attention weights, that can appear both
inside and outside a cancer region (marked as green and blue areas, respectively).
Moreover, these patches are described by cancer or healthy tissue prototypes (corre-
sponding to patches in green and red frames, respectively), showing their resemblance
to the training examples. (Color figure online)

deep learning methods to WSI two highest magnification is impossible. That is
why recent approaches [24] divide the WSI into smaller patches (instances) and
process them separately to obtain their representations. Such representations
form a bag of instances associated with only one label, and it is unspecified
which instances are responsible for this label [15]. This kind of problem, called
Multiple Instance Learning (MIL) [12], appears in many medical problems, such
as the diabetic retinopathy screening [30,31], bacteria clones identification using
microscopy images [7], or identifying conformers responsible for molecule activity
in drug design [42,47].

In recent years, with the rapid development of deep learning, MIL is com-
bined with many neural network-based models [14,20,24,27,34,38,39,43–45].
Many of them embed all instances of the bag using a convolutional block of a
deep network and then aggregate those embeddings. Moreover, some aggrega-
tion methods specify the most important instances that are presented to the
user as prediction interpretation [20,24,27,34,39]. However, those methods usu-
ally only exhibit instances crucial for the prediction and do not indicate the
cause of their importance. Naturally, there were attempts to further explain the
MIL models [6,7,25], but overall, they usually introduce additional bias into the
explanation [33] or require additional input [25].

To address the above shortcomings of MIL models, we introduce Prototyp-
ical Multiple Instance Learning (ProtoMIL). It builds on case-based reasoning,
a type of explanation naturally used by humans to describe their thinking pro-
cess [23]. More precisely, we divide each WSI into patches and analyze how
similar they are to a trainable set prototypical parts of positive and negative
data classes, as defined in [8]. Since, the prototypes are trainable, they are auto-
matically derived by ProtoMIL. Then, we apply an attention pooling operator
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to accumulate those similarities over instances. As a result, we obtain bag-level
representation classified with an additional neural layer. This approach signifi-
cantly differs from non-MIL approaches because it applies an aggregation layer
and introduces a novel regularization technique that encourages the model to
derive prototypes from the instances responsible for the positive label of a bag.
The latter is a challenging problem because those instances are concealed and
underrepresented. Lastly, the prototypical parts are pruned to characterize the
data classes compactly. This results in detailed interpretation, where the most
important patches according to attention weights are described using prototypes,
as shown in Fig. 1.

To show the effectiveness of our model, we conduct experiments on five WSI
datasets: Bisque Breast Cancer [16], Colon Cancer [41], Camelyon16 Breast Can-
cer [13], Lung cancer subtype identification TCGA-NSCLC [5] and Kidney can-
cer subtype classification [2]. Additionally, in the Supplementary Materials, we
show the universal character of our model in different scenarios such as MNIST
Bags [20] and Retinopathy Screening (Messidor dataset) [11]. The results we
obtain are usually on par with the current state-of-the-art models. However, at
the same time, we strongly enhance interpretation capabilities with prototypical
parts obtained from the training set. We made our code publicly available at
https://github.com/apardyl/ProtoMIL.

The main contributions of this work are as follows:

– Introducing the ProtoMIL method, which substantially improves the inter-
pretability of existing MIL models by introducing case-based reasoning.

– Developing a training paradigm that encourages generating prototypical parts
from the underrepresented instances responsible for the positive label of a bag.

The paper is organized as follows. In Sect. 2, we present recent advancements
in Multiple Instance Learning and deep interpretable models. In Sect. 3, we define
the MIL paradigms and introduce ProtoMIL. Finally, in Sect. 4, we present the
results of conducted experiments, and Sect. 5 summarizes the work.

2 Related Works

Our work focuses on classification of whole slide images which is described using
Multiple Instance Learning (MIL) framework. Additionally, we develop an inter-
pretable method which relates to eXplainable Artificial Intelligence (XAI). We
briefly describe both fields in the following subsections.

2.1 Multiple Instance Learning

Before the deep learning era, models based on SVM, such as MI-SVM [3], were
used for MIL problems. However, currently, MIL is addressed with numerous
deep models. One of them, Deep MIML [14], introduces a sub-concept layer
that is learned and then pooled to obtain a bag representation. Another exam-
ple is mi-Net [44], which pools predictions from single instances to derive a

https://github.com/apardyl/ProtoMIL
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bag-level prediction. Other architectures adapted to MIL scenarios includes cap-
sule networks [45], transformers [38] and graph neural networks [43]. Moreover,
many works focus on the attention-based pooling operators, like AbMILP intro-
duced in [20] that weights the instances embeddings to obtain a bag embedding.
This idea was also extended by combining it with mi-Net [24], clustering sim-
ilar instances [27], self-attention mechanism [34], and sharing classifier weights
with pooling operator [39]. However, the above methods either do not contain
an XAI component or only present the importance of the instances. Hence, our
ProtoMIL is a step towards the explainability of the MIL methods.

2.2 Explainable Artificial Intelligence

There are two types of eXplainable Artificial Intelligence (XAI) approaches, post
hoc and self-explaining methods [4]. Among many post hoc techniques, one can
distinguish saliency maps showing pixel importance [32,36,37,40] or concept
activation vectors representing internal network state with human-friendly con-
cepts [9,17,21,46]. They are easy to use since they do not require any changes
in the model architecture. However, their explanations may be unfaithful and
fragile [1]. Therefore self-explainable models were introduced like Prototypical
Part Network [8] with a layer of prototypes representing the activation patterns.
A similar approach for hierarchically organized prototypes is presented in [18] to
classify objects at every level of a predefined taxonomy. Moreover, some works
concentrate on transforming prototypes from the latent space to data space [26]
or focus on sharing prototypical parts between classes and finding semantic sim-
ilarities [35]. Other works [28] build a decision tree with prototypical parts in
the nodes or learn disease representative features within a dynamic area [22].
Nonetheless, to our best knowledge, no fine-grained self-explainable method,
like ProtoMIL, exists for MIL problems.

3 ProtoMIL

Due to the large resolution of whole slide images, which should not be scaled
down due to loss of information, we first divide an image into patches. However,
we do not know which patches correspond to the given disease state. Therefore,
this problem boils down to Multiple Instance Learning (MIL), where there is a
bag of instances (in our case patches) and only one label for the whole bag. This
bag is passed trough the four modules of ProtoMIL (see Fig. 2): convolutional
network fconv, prototype layer fproto, attention pooling a, and fully connected
last layer g. Convolutional and prototype layers process single instances, whereas
attention pooling and the last layer work on a bag level. More precisely, given a
bag of patches X = {x1, . . . ,xk}, each x ∈ X is forwarded through convolutional
layers to obtain low-dimensional embeddings F = {fconv(x1), . . . , fconv(xk)}. As
fconv(x) ∈ H × W × D, for the clarity of description, let Zx = {zj ∈ fconv(x) :
zj ∈ R

D, j = 1..HW}. Then, the prototype layer computes vector h of similarity
scores [8] between each embedding fconv(x) and all prototypes p ∈ P as
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Fig. 2. ProtoMIL passes a bag of patches through four modules. First, convolutional
layer fconv generates embeddings for each patch. Then, the prototype layer fproto cal-
culates similarities between patches representations and its prototypes. The similarities
are aggregated using the attention pooling a to obtain the bag similarity scores classified
using the last layer g. Notice that particular colors in vectors hi and hbag correspond
to prototypes similarities.
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h =
(

g(Zx,p) = max
z∈Zx

log
(

‖ z − p ‖2+1
‖ z − p ‖2+ε

))
p∈P

for ε > 0.

This results in a bag of similarity scores H = {h1, . . . ,hk}, which we pass to the
attention pooling [20] to obtain a single similarity scores for the entire bag

hbag =
k∑

i=1

ai hi, where ai =
exp{wT (tanh(VhT

i ) � sigm(UhT
i )}

k∑
j=1

exp{wT (tanh(VhT
j ) � sigm(UhT

j )}
, (1)

w ∈ R
L×1, V ∈ R

L×M , and U ∈ R
L×M are parameters, tanh is the hyperbolic

tangent, sigm is the sigmoid non-linearity and � is an element-wise multiplica-
tion. Note that weights ai sum up to 1, and thus the formula is invariant to the
size of the bag. Such representation is then sent to the last layer to obtain the
predicted label y̌ = g(hbag) as in [8].

Regularization. In MIL, the instances responsible for the positive label of a bag
are underrepresented. Hence, training ProtoMIL without additional regulariza-
tions can result in a prototype layer with only prototypes of a negative class.
That is why we introduce a novel regularization technique that encourages the
model to derive positive prototypes. For this purpose, we introduce the loss
function composed of three components

LCE(y̌, y) + λ1 LClst +λ2 LSep,

where y̌ and y denotes respectively the predicted and ground truth label of bag
X, LCE corresponds to cross-entropy loss, while

LClst =
1

|X|
∑
xi∈X

ai min
p∈P y

min
z∈Zxi

‖z−p‖2
2,

LSep = − 1
|X|

∑
xi∈X

ai min
p/∈P y

min
z∈Zxi

‖z−p‖2
2,

where P y is a set of prototypes assigned to class y. Comparing to [8], components
LClst and LSep additionally use ai from Eq. 1. As a result, we encourage the model
to create more prototypes corresponding to positive instances, which usually
have higher ai values.

4 Experiments

We test our ProtoMIL approach on five datasets, for which we train the model
from scratch in three steps: (i) warmup phase with training all layers except
the last one, (ii) prototype projection, (iii) and fine-tuning with fixed fconv and
fproto. Phases (ii) and (iii) are repeated several times to find the most optimal
set of prototypes. All trainings use Adam optimizer for all layers with β1 = 0.99,



ProtoMIL: MIL with Prototypical Parts for WSI Classification 427

β2 = 0.999, weight decay 0.001, and batch size 1. Additionally, we use an expo-
nential learning rate scheduler for the warmup phase and a step scheduler for
prototype training. All results are reported as an average of all runs with a stan-
dard error of the mean. In the subsequent subsections, we describe experiment
details and results for each dataset.

Across all datasets we use convolutional block from ResNet-18 followed by
two additional 1×1 convolutions as the convolutional layer fconv. We use ReLU
as the activation function for all convolutional layers except the last layer, for
which we use the sigmoid activation function. The prototype layer stores proto-
types shared across all bags, while the attention layer implements AbMILP. The
last layer is used to classify the entire bag. Weights between similarity scores of
prototypes corresponding class logit are initialized with 1, while other connec-
tions are set to −0.5 as in [8]. Together with the specific training procedure, such
initialization results in a positive reasoning process (we rather say “this looks
like that” instead of saying “this does not look like that”).

4.1 Bisque Breast Cancer and Colon Cancer Datasets

Experiment Details. We experiment on two histological datasets: Colon Can-
cer and Bisque Breast Cancer. The former contains 100 H&E images with
22, 444 manually annotated nuclei of four different types: epithelial, inflamma-
tory, fibroblast, and miscellaneous. To create bags of instances, we extract 27×27
nucleus-centered patches from each image, and the goal is to detect if the bag
contains one or more epithelial cells, as colon cancer originates from them. On
the other hand, the Bisque dataset consists of 58 H&E breast histology images
of size 896 × 768, out of which 32 are benign, and 26 are malignant (contain at
least one cancer cell). Each image is divided into 32×32 patches, resulting in 672
patches per image. Patches with at least 75% of the white pixels are discarded,
resulting in 58 bags of various sizes.

We apply extensive data augmentation for both datasets, including random
rotations, horizontal and vertical flipping, random staining augmentation, stain-
ing normalization, and instance normalization. We use ResNet-18 convolutional
parts with the first layer modified to 3×3 convolution with stride 1 to match the
size of smaller instances. We set the number of prototypes per class to 10 with
a size of 128 × 2 × 2. Warmup, fine-tuning, and end-to-end training take 60, 20,
and 20 epochs, respectively. 10-fold cross-validation with 1 validation fold and 1
test fold is repeated 5 times.

Results. Table 1 presents our results compared to both traditional and attention-
based MIL models. On the Bisque dataset, our model significantly outperforms
all baseline models. However, due to the small size of the Colon Cancer dataset,
ProtoMIL overfits, resulting in poorer AUC than attention-based models. Nev-
ertheless, in both cases, ProtoMIL provides finer explanations than all baseline
models (see Fig. 3 and Supplementary Materials).
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Table 1. Results for small histological datasets, where ProtoMIL significantly outper-
forms baseline methods on the Bisque dataset. However, it achieves worse results for
the Colon Cancer dataset, probably due to its small size. Additionally, interpretabil-
ity of the methods is noted and further discussed in Sect. 4.6. Notice that values for
comparison indicated with “*” and “**” comes from [20] and [34], respectively.

Method Bisque Colon Cancer

Accuracy AUC Accuracy AUC Inter.

instance+max* 61.4% ± 2.0% 0.612 ± 0.026 84.2% ± 2.1% 0.914 ± 0.010 +

instance+mean* 67.2% ± 2.6% 0.719 ± 0.019 77.2% ± 1.2% 0.866 ± 0.008 −
embedding+max* 60.7% ± 1.5% 0.650 ± 0.013 82.4% ± 1.5% 0.918 ± 0.010 −
embedding+mean* 74.1% ± 2.3% 0.796 ± 0.012 86.0% ± 1.4% 0.940 ± 0.010 −
AbMILP* 71.7% ± 2.7% 0.856 ± 0.022 88.4% ± 1.4% 0.973 ± 0.007 ++

SA-AbMILP** 75.1% ± 2.4% 0.862 ± 0.022 90.8% ± 1.3% 0.981 ± 0.007 +

ProtoMIL (our) 76.7% ± 2.2% 0.886 ± 0.033 81.3% ± 1.9% 0.932 ± 0.014 +++

4.2 Camelyon16 Dataset

Experiment Details. The Camelyon16 dataset [13] consists of 399 whole-slide
images of breast cancer samples, each labeled as normal or tumor. We create
MIL bags by dividing each slide 20x resolution image into 224 × 224 patches,
rejecting patches that contain more than 70% of background. This results in 399
bags with a mean of 8, 871 patches and a standard deviation of 6, 175. Moreover,
20 largest bags are truncated to 20, 000 random patches to fit into the memory
of a GPU. The positive patches are again highly imbalanced, as only less than
10% of patches contain tumor tissue.

Due to the size of the dataset, we preprocess all samples using a ResNet-18
without two last layers, pre-trained on various histopathological images using
self-supervised learning from [10]. The resulting embeddings are fed into our
model to replace the feature backbone net. ProtoMIL is trained for 50, 40, and
10 epochs in warmup, fine-tuning, and end-to-end training, respectively. The
number of prototypes per class is limited to 5 with no data augmentation. The
experiments are repeated 5 times with the original train-test split.

Results. We compare ProtoMIL to other state-of-the-art MIL techniques, includ-
ing both traditional mean and max MIL pooling, RNN, attention-based MIL
pooling, and transformer-based MIL pooling [38]. ProtoMIL performs on par
in terms of accuracy and slightly outperforms other models on AUC metric
(Table 2) while providing a better understanding of its decision process, as pre-
sented in Fig. 4 and Supplementary Materials.
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Fig. 3. Similarity scores between five crucial instances of a bag (columns) and ten pro-
totypical parts (rows) for a positive and negative bag (left and right side, respectively)
from the Colon Cancer bags. Each prototypical part is represented by a part of the
training image and three nearest training patches, and each instance is represented
by the patch and the value of its attention weight ai. Moreover, each cell contains a
similarity score and a heatmap corresponding to prototype activation. One can observe
that instances of a negative bag usually activate prototypes of a negative class (four
upper prototypes in red brackets), while the instances of positive bags mostly activate
positive prototypes (four bottom prototypes in green brackets). (Color figure online)

4.3 TCGA-NSCLC Dataset

Experiment details. TCGA-NSCLC includes two subtype projects, i.e., Lung
Squamous Cell Carcinoma (TGCA-LUSC) and Lung Adenocarcinoma (TCGA-
LUAD), for a total of 956 diagnostic WSIs, including 504 LUAD slides from
478 cases and 512 LUSC slides from 478 cases. We create MIL bags using WSI
Segmentation and Patching from [27] with default parameters, except patch-
level parameter set to 1. Each slide image is cropped into a series of 224 × 224
patches. This results in 1, 016 bags with a mean of 3, 961 patches. We randomly
split the data in the ratio of train:valid:test equal 60:15:25 and assure that there
is no case overlap between the sets, and use the same ProtoMIL settings as in the
Camelyon16 dataset are used. The results are reported for 4-fold cross-validation.

Results. Results for the TCGA-NSCLC dataset are presented in Table 2 along-
side results of other state-of-the-art approaches from [38]. ProtoMIL performs
slightly lower on the Area Under the ROC Curve (AUC) and accuracy metrics
than the powerful transformer-based model TransMIL but still is competitive to
other CNN-based approaches. However, the advantage of ProtoMIL is its capa-
bility to provide a detailed explanation of predictions as presented in Fig. 5 and
Supplementary Materials.
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Table 2. Our ProtoMIL achieves state-of-the-art results on the Camelyon16 dataset in
terms of AUC metric, surpassing even the transformer-based architecture. Moreover,
it is competitive on TCGA-NSCLC and slightly worse on TCGA-RCC, with a small
drop of accuracy and AUC compared to TransMIL. Additionally, interpretability of the
methods is noted and further discussed in Sect. 4.6. Notice that values for comparison
marked with “*” and “**” are taken from [24] and [38], respectively.

Method Camelyon16 TCGA-NSCLC TCGA-RCC

Accuracy AUC Accuracy AUC Accuracy AUC Inter.

instance+mean* 79.84% 0.762 72.82% 0.840 90.54% 0.978 −
instance+max* 82.95% 0.864 85.93% 0.946 93.78% 0.988 +

MILRNN* 80.62% 0.807 86.19% 0.910 – – −
ABMILP* 84.50% 0.865 77.19% 0.865 89.34% 0.970 ++

DSMIL* 86.82% 0.894 80.58% 0.892 92.94% 0.984 ++

CLAM-SB** 87.60% 0.881 81.80% 0.881 88.16% 0.972 +

CLAM-MB** 83.72% 0.868 84.22% 0.937 89.66% 0.980 +

TransMIL** 88.37% 0.931 88.35% 0.960 94.66% 0.988 +

ProtoMIL (our) 87.29% 0.935 83.66% 0.918 92.79% 0.961 +++

4.4 TCGA-RCC Dataset

Experiment details. TCGA-RCC consists of three unbalanced classes: Kidney
Chromophobe Renal Cell Carcinoma (TGCA-KICH, 111 slides from 99 cases),
Kidney Renal Clear Cell Carcinoma (TCGA-KIRC, 489 slides from 483 cases),
and Kidney Renal Papillary Cell Carcinoma (TCGA-KIRP, 284 slides from 264
cases) for a total of 884 WSIs. We create MIL bags using WSI Segmentation and
Paching from [27] with default parameters and a patch-level parameter set to 1.
Each slide image is cropped into a series of 224× 224 patches. This results in 884
bags with a mean of 4, 309 patches. A separate model is trained for each class,
and scores are averaged for all classes. Other experiment settings are identical
as for TCGA-NSCLC described above.

Results. We compare ProtoMIL to other state-of-the-art MIL techniques, includ-
ing both traditional mean and max MIL pooling, attention-based MIL pooling,
and transformer-based MIL pooling [38]. ProtoMIL performs on par in terms of
accuracy and AUC metric (Table 2) while providing a better understanding of
its decision process, as presented in Supplementary Materials.
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Fig. 4. Similarity scores between five crucial instances of a bag (columns) and eight
prototypical parts (rows) for a negative bag from the Camelyon16 dataset. One can
observe that ProtoMIL strongly activates only one prototype and focuses mainly on
nuclei when analyzing the healthy parts of the tissue. Please refer to Fig. 3 for a detailed
description of the visualization.

Table 3. The influence of ProtoMIL pruning on the accuracy and AUC score. One can
notice that even though the pruning removes around 30% of the prototypes, it usually
does not noticeably decrease the AUC and accuracy of the model.

Dataset Before pruning After pruning

Proto. # Accuracy AUC Proto. # Accuracy AUC

Bisque 20 ± 0 76.7% ± 2.2% 0.886 ± 0.033 13.6 ± 0.25 73.0% ± 2.4% 0.867 ± 0.022

Colon Cancer 20 ± 0 81.3% ± 1.9% 0.932 ± 0.014 15.69 ± 0.34 81.8% ± 2.4% 0.880 ± 0.022

Camelyon16 10 ± 0 87.3% ± 1.2 % 0.935 ± 0.007 6.4 ± 0.24 85.9% ± 1.5% 0.937 ± 0.007

TCGA-NSCLC 10 ± 0 83.66% ± 1.6% 0.918 ± 0.003 7.6 ± 1.2 81.1% ± 1.4% 0.880 ± 0.003

TCGA-RCC 10 ± 0 94.66% ± 1.0% 0.988 ± 0.009 6.2 ± 1.2 91.5% ± 1.2% 0.955 ± 0.006

4.5 Pruning

Experiment Details. We run prototype pruning experiments on all the datasets
to remove not class-specific prototypical parts and check their influence on the
model performance. For each of them, we use the model trained in the previously
described experiments. As pruning parameters, we use k = 6 and l = 40% and
fine-tuned for 20 epochs. Details about pruning operation are described in the
Supplementary Materials.

Results. The accuracy and AUC in respect to the number of prototypes before
and after pruning are presented in Table 3. For all datasets, the number of pro-
totypes after pruning has decreased around 30% on average. However, it does
not result in a noticeable decrease in accuracy or AUC, except for Colon Can-
cer, where we observe a significant drop in AUC. Most probably, it is caused by
the high visual resemblance of nuclei patches (especially between epithelial and
miscellaneous) that after prototype projection may be very close to each other
in the latent space.
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Fig. 5. Similarity scores between five crucial instances of a bag (columns) and eight
prototypical parts (rows) for a LUAD type bag from the TCGA-NSCLC dataset.

4.6 Interpretability of MIL Methods

Column Inter. in Tables 1, and 2 indicates how interpretable are the consid-
ered models. Instances and embeddings-based methods, except instance-max,
are not interpretable, similarly to MILRNN, since they lose information about
instances crucial for the prediction. On the other hand, the AbMILP [20] iden-
tifies crucial instances within a bag and can present the local explanation to
the users. However, other attention-based methods, such as SA-AbMILP [34],
TransMIL [38] and CLAMs [27] perform additional operations, like self-attention,
requiring more effort from the user to analyze the explanation. That is why those
methods have been assigned with lower interpretability. Moreover, DS-MIL [24]
finds a decision boundary on the bag level and can produce a more detailed
explanation than AbMILP, but only for a single prediction (local explanations).
In contrast, the ProtoMIL can produce both local (see Fig. 3) and global expla-
nations (see Supplementary Materials).

5 Discussion and Conclusions

In this work, we introduce Prototypical Multiple Instance Learning (ProtoMIL),
a method for Whole Slide Image classification that incorporates a case-based
reasoning process into the attention-based MIL setup. In contrast to existing
MIL methods, ProtoMIL provides a fine-grained interpretation of its predictions.
For this purpose, it uses a trainable set of prototypical parts correlated with
data classes. The experiments on five datasets confirm that introducing fine-
grained interpretability does not reduce the model’s effectiveness, which is still
on par with the current state-of-the-art methodology. Moreover, the results can
be presented to the user with a novel visualization technique.

The experiments show that ProtoMIL can be applied to a challenging prob-
lem like Whole-Slide Image classification. Therefore, in future works, we plan
to generalize our method to multi-label scenarios and multimodal classification
problems since WSI often comes with other medical data like CT and MRI.
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5.1 Limitations

ProtoMIL limitations are inherited from the other prototype-based models, such
as non-obvious prototype meaning. Ergo, prototype projection might still result
in uncertainty on which attributes it represents. However, there are methods
mitigating these, e.g. explainer defined in [29].

5.2 Negative Impact

Our solution is based on prototypical parts that are susceptible to different
types of adversarial attacks such as [19]. That is why practitioners shall address
this risk in a deployed system with ProtoMIL. What is more, it may be used
in information war to disinform societies when prototypes are obtained with
spoiled data or are shown without appropriate comment, especially in fields like
medicine.
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