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Abstract

Nuclear multifragmentation and its relation to the liquid-gas phase transition in nuclear
matter has been the subject of intensive theoretical and experimental research. A special
attention was paid to the largest fragment size fluctuations to obtain a better insight into
the phase behavior of fragmenting systems. In particular, percolation studies have shown
that the cumulant ratios (skewness and kurtosis) of the largest fragment size distribution
provide a new robust signature of phase transition (critical behavior) in finite systems.

This thesis examines properties of the largest fragment size (charge) distributions
within the Canonical Thermodynamic Model and the Statistical Multifragmentation
Model (SMM). It is shown that the cumulant features characteristic of percolation
transition indicate also the breakup transition observed along with a specific heat
maximum, interpreted as a manifestation of liquid-gas phase transition.

The cumulant analysis of the largest fragment charge distribution is applied to the
ALADIN data on fragmentation of Au projectiles at relativistic energies. Extensive
comparisons with predictions of a bond percolation model show a remarkably accuracy
of this model in reproducing the distributions as well as the whole fragmentation pattern
as represented by the measured charge correlations. In analogy to percolation, the
pseudocritical and critical points are identified in the fragmentation data.

The analysis method is further applied to the ALADIN S254 experimental data to
investigate the isotopic dependence of projectile fragmentation. The experiment was
conducted with neutron-rich 124Sn and radioactive neutron-poor 107Sn and 124La beams of
600 MeV/nucleon incident energy and natural Sn targets. The identified transition points,
well reproduced by the SMM model, are found to be weakly dependent on the A/Z ratio
of the fragmenting spectator source.

For all investigated reaction systems, the transition temperature determined from the
measured isotopic ratios is around 5.5 MeV, nearly independent of the size and A/Z ratio
of the system. This is in agreement with predictions of the statistical models, confirming
that the fragmentation process is governed by the opening of the corresponding partition
space.

The thesis corroborates that the skewness and kurtosis of the largest fragment size
(charge) distribution are valuable observables in searching for a phase transition in
multifragmentation. Their properties appear generic for fragmentation processes. The
bond percolation model precisely reproducing the experimental data may serve as a very
useful reference model for studying the distinction between first- and second-order phase
transitions.





Streszczenie

Multifragmentacja jąder atomowych i jej związek z przejściem fazowym ciecz-gaz w
materii jądrowej jest przedmiotem intensywnych badań teoretycznych i
eksperymentalnych. Szczególne znaczenie mają badania fluktuacji rozmiaru
największego fragmentu, pozwalające głębiej poznać własności fazowe badanych
systemów. Jak sugeruje model perkolacji, stosunki kumulant (skośność i kurtoza)
rozkładu rozmiaru największego fragmentu mogą stanowić nową wartościową sygnaturę
przejścia fazowego (zjawiska krytycznego) w procesach fragmentacji.

W niniejszej pracy badane są własności tych kumulant w ramach Kanonicznego
Modelu Termodynamicznego oraz Statystycznego Modelu Multifragmentacji (SMM).
Stwierdzono, że sygnatura charakterystyczna dla przejścia fazowego perkolacji stosuje
się także do przejścia fazowego typu ciecz-gaz sygnalizowanego przez maksimum ciepła
właściwego.

Analiza kumulant rozkładu ładunku największego fragmentu jest zastosowana do
danych ALADIN z pomiarów fragmentacji spektatorów pocisków Au przy energiach
relatywistycznych. Szczegółowe porównania z przewidywaniami modelu perkolacji
wiązań wykazują wyjątkowo dobrą dokładność tego modelu w odtwarzaniu wszelkich
rozkładów ładunku fragmentów oraz ich korelacji. W analogii do perkolacji
zidentyfikowany zostały punkt pseudokrytyczny oraz punkt zdarzeń krytycznych.

Analizę rozszerzono na dane z eksperymentu ALADIN S254, aby zbadać zależność
procesu fragmentacji od izospinu systemu. Eksperyment został przeprowadzony z
wiązkami neutronowo-nadmiarowych jąder 124Sn i wiązkami radioaktywnymi
neutronowo-deficytowych izotopów 107Sn i 124La o energii 600 MeV/nukleon.
Zaobserwowane sygnatury przejścia fazowego, dobrze odtworzone przez model SMM,
pokazują nikły wpływ izospinu źródła na przebieg procesu fragmentacji.

Dla wszystkich badanych reakcji, temperatury w punktach przejścia fazowego,
wyznaczone ze zmierzonych stosunków izotopowych, wynoszą około 5.5 MeV, prawie
niezależnie od wielkości i stosunku A/Z systemu. Wynik ten jest zgodny z
przewidywaniami modeli statystycznych, co wskazuje, że o rozkładzie partycji układu
decydują gęstości dostępnych stanów w końcowej fazie termalizacji.

Wyniki pracy potwierdzają, że skośność i kurtoza rozkładu rozmiaru (ładunku)
największego fragmentu są wartościowymi obserwablami w poszukiwaniu przejścia
fazowego w multifragmentacji. Ich właściwości mają charakter ogólny dla procesów
fragmentacji. Model perkolacji, który precyzyjnie opisuje dane eksperymentalne, może
być wykorzystywany jako model referencyjny w badaniach sygnatur stosowanych do
identyfikacji przejść fazowych.
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Chapter 1

Introduction

Nuclear multifragmentation – the disintegration of highly excited nuclei into clusters of
various sizes – has been intensively investigated over the past decades. This was mainly
motivated by the possibility of testing the phase diagram of nuclear matter, since the
multifragmentation process was predicted to be associated with a first-order liquid-gas
phase transition [1–3]. On the other hand, multifragmentation observed in high energy
collisions exhibit properties characteristic of the percolation critical behavior [4–11].
Although the occurrence of a phase transition is often deduced, its order and universality
class are not unequivocally identified. In nuclear systems the distinction between
first-order and second-order (critical behavior) phase transitions is very difficult because
of finite-size and Coulomb effects, which significantly change phase transition
characteristics defined in the thermodynamic limit. In particular, simulations with lattice
gas models have shown that in finite systems the signals characteristic of a second-order
percolation transition can be observed inside the liquid-gas coexistence zone, i.e. the
first-order liquid-gas phase transition becomes similar to a critical behavior [12–16].
Moreover, in analysis of the experimental data, events cannot be sorted according to the
temperature as the control parameter. One has to use another quantity that is measurable
in individual events. This may additionally blur the phase transition signals.

In nuclear multifragmentation studies, particular attention has been paid to the largest
fragment size (mass or charge), which is expected to play the role of the order parameter,
thus providing a better insight into phase behavior of investigated systems [12,13,17–23].
In particular, recent percolation studies have shown that statistical measures of the largest
cluster size distribution, the skewness, K3, and the kurtosis, K4, provide a robust signal of
the percolation transition [24].

The pseudocritical point in finite systems is indicated by the zero crossing of K3
coinciding with a minimum of K4. This signature is applicable even to very small systems
and can be tested with various measurable event sorting variables. Therefore, it is well
suited for applications to nuclear multifragmentation.

The primary objective of this thesis work is the study of phase transition in nuclear
multifragmentation by examining properties of the largest fragment size distributions
(event-to-event fluctuations) with the cumulant analysis suggested by the percolation
results. This new method is applied to statistical multifragmentation models containing a
liquid-gas phase transition and to ALADIN experimental data on spectator fragmentation
at relativistic energies.
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The thesis is organized as follows.
Chapter 2 shortly describes theoretical predictions on the phase diagram of nuclear
matter and the relation of multifragmentation processes to the bulk liquid-gas phase
transition.
Chapter 3 briefly overviews experimental investigations of nuclear multifragmentation in
the context of phase transitions.
Chapter 4 is devoted to model studies, focusing on the cumulant properties of the largest
fragment size distribution. After recalling the percolation results, the studies are
extended to statistical models: the Canonical Thermodynamic Model (CTM) [25] and
the Copenhagen Statistical Multifragmentation Model (SMM) [26].
Chapter 5 examines the fragment charge distributions and correlations measured in
fragmentation of Au projectiles at relativistic energies in the ALADIN experiment [27].
Extensive quantitative comparisons with predictions of the bond percolation are
performed. They concern not only the largest fragment charge distributions, but the
whole fragmentation pattern is verified in detail. In addition, the model is used to
evaluate effects of secondary decays on the cumulant properties, and to test the relevance
of phase transition signals.
In Chapter 6 the cumulant analysis of the largest fragment charge distributions is applied
to the ALADIN S254 experimental data to investigate the isotopic dependence of the
break-up transition. The experiment was conducted with neutron-rich 124Sn and
radioactive neutron-poor 107Sn and 124La beams of 600 MeV/nucleon incident energy
and natural Sn targets [28, 29]. The experimental results are compared to calculations
performed with the Statistical Multifragmentation Model. In addition, the derived
transition temperatures are confronted with predictions of the thermodynamic and
Hartree–Fock models.
Summary and conclusions are presented in Chapter 7.

Author’s contribution:
The thesis author developed software for calculations within the Canonical
Thermodynamic Models, performed SMM simulations and the theoretical data analysis
presented in Chapter 4.
Chapter 5 includes material from the published article [30]:
J. Brzychczyk, T. Pietrzak, A. Wieloch, W. Trautmann, Distributions of the largest
fragment size in multifragmentation: Traces of a phase transition, Phys. Rev. C 98,
054606 (2018).
The author significantly contributed to this work by taking part in the experimental data
analysis and percolation simulations. In particular, the author checked whether the
investigated observables are independent of the projectile energy and the target nucleus
for the applied event sorting, examined the Fisher and Zipf power laws, and performed
model simulations for the bimodality tests.
The results presented in Chapter 6 have been published in the article [31]:
T. Pietrzak et al., The percolation phase transition and statistical multifragmentation in
finite systems, Phys. Lett. B 809, 135763 (2020).
The author performed the cumulant analysis of the experimental data and model
calculations. Preliminary results of this work were presented at the International
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Workshop on Multifragmentation and Related Topics (IWM2009) in Catania and
published in the conference proceedings:
T. Pietrzak et al., Tracing a phase transition with fluctuations of the largest fragment
size: Statistical multifragmentation models and the ALADIN S254 data [32].





Chapter 2

Nuclear multifragmentation and the
liquid-gas phase transition

Since the radial part of the nuclear force is similar to the van der Waals interaction, the
nuclear matter is expected to present a liquid-gas phase transition [1]. This was
corroborated in a variety of theoretical studies, which predict a liquid-gas phase
coexistence region at low densities (below the normal nuclear density) with a critical
density ρc around one-third of the normal nuclear density ρ0 and a critical temperature
Tc ' 14÷ 18 MeV for the symmetric nuclear matter [33–37]. The symmetric nuclear
matter refers to an infinite uniform system of nucleons with equal neutron and proton
densities, interacting only through the strong force (the Coulomb interaction is
neglected). The predictions were based on microscopic approaches such as the
temperature-dependent Hartree-Fock or relativistic mean-field models. As an example,

Figure 2.1: Equation of state relating the pressure (left) or the temperature (right)
and the density (normalized to critical values) in symmetric nuclear matter. The solid
lines represent isotherms (left) and isobars (right). The dash-dotted lines delimit the
coexistence region and the dotted lines the isothermal spinodal region. Figure from [38].

Fig. 2.1 shows results of Hartree-Fock calculation with a Skyrme force for
nucleon-nucleon interaction [38]. The dash-dotted line is the coexistence curve
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determined from the Maxwell construction. The region below this line indicates
conditions at which the liquid and gas phases can coexist in thermodynamic equilibrium.
The dotted line is the upper boundary of the isothermal spinodal region corresponding to
the negative isothermal compressibility (decreasing parts of isotherms in Fig. 2.1). In
this region a homogeneous system is mechanically unstable with respect to density
fluctuations and breaks into separate phases of gas and liquid. The spinodal and
coexistence lines converge at the critical point, where the first-order phase transition
becomes a second-order one. A metastable one-phase state may exist within the area
between the spinodal and coexistence curves. The metastable state separates into
two-phase stable liquid–gas mixture by nucleation of liquid droplets in supersaturated
vapor (at low densities ρ < ρc) or by nucleation of vapor bubbles in superheated liquid
(at higher densities ρ > ρc).

The phase diagram of asymmetric nuclear matter with different neutron-to-proton
ratios was studied in detail within the framework of a relativistic mean-field model by
Müller and Serot [33]. Figure 2.2 compares the coexistence and spinodal curves for

Figure 2.2: Phase diagram of symmetric nuclear matter (a) and of asymmetric matter
with proton fraction y = 0.3 (b) in the temperature-density plane. The solid lines depict
the coexistence curve (CE), the isothermal spinodal (ITS), the adiabatic spinodal (AS),
and the diffusive spinodal (DS). The critical point is denoted by CP. The dotted lines are
contours of equal energy per baryon, and adiabats are shown as dot-dashed lines. Figure
from [33].

symmetric nuclear matter (left diagram) and asymmetric nuclear matter with a proton
fraction of y = 0.3 (right diagram). In the case of isospin-asymmetric matter the
coexistence region is reduced and its structure is more complex. It additionally contains
the diffusive spinodal associated with the chemical instability, i.e., the instability with
respect to fluctuations in the neutron/proton concentration. The phase separation in
asymmetric nuclear matter can be therefore driven by a combination of mechanical and
chemical instabilities. Due to the higher dimensionality of the binodal surface, the
transition is suggested to be of second-order. The neutron/proton compositions of the
coexisting liquid and gas phases are predicted to be different, the liquid is closer to
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symmetry whereas the gas is enriched in the more abundant species. This effect, being a
consequence of the increasing symmetry energy with density, is often referred to as
isospin fractionation or distillation [39–41].

Collisions with heavy ions provide the possibility of investigating nuclear matter far
away from normal conditions. In particular, the multifragmentation process allows to
probe the nuclear phase diagram at moderate temperatures and low densities. In the most
popular scenario of multifragmentation, a hot nuclear system created in a nuclear collision
expands due to the internal thermal pressure and after reaching the liquid-gas coexistence
zone disintegrates into fragments through spinodal decomposition or nucleation, as it is
schematically illustrated in Fig. 2.3. Such a thermodynamic description assumes that the

Figure 2.3: Sketch of collision trajectories in the temperature-density plane leading to the
liquid-gas coexistence region where the system undergoes multifragmentation by spinodal
decomposition or nucleation in the metastable regime.

excited system equilibrates faster than it expands and cools. The light fragments such as
single nucleons and light charged particles are considered as gas while the intermediate
mass fragments and heavy residues (if present) are treated as liquid droplets. Then the
excited fragments undergo sequential decay into cold secondary fragments.

In finite nuclear systems, the phase transition is substantially modified due to the
presence of surface and Coulomb effects. Surface effects can reduce the critical
temperature by 2÷6 MeV while the Coulomb force is responsible for a further reduction
of 1÷ 3 MeV [35, 42, 43]. The estimated temperatures depend on the method and the
size of the studied system. For example, according to calculations with the fermionic
molecular dynamics model performed for the 16O nucleus, the critical temperature
deduced from observing the disappearance of the liquid-gas coexistence is about 10
MeV [44]. A somewhat larger value, Tc ' 12 MeV, has been concluded from a study of a
system of mass number A = 36 with the antisymmetrized molecular dynamics [45].
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Levit and Bonche studied the stability of hot charged nuclei (or liquid drops) immersed
in a vapor of free nucleons by employing a temperature-dependent Hartree-Fock model
with Skyrme interactions [46]. They showed that below a certain limiting temperature,
Tlim, the nucleus can exist in equilibrium with the surrounding vapor, but above Tlim the
nucleus is unstable and will break into pieces. This is the so called Coulomb instability
in finite nuclei. The limiting temperature values calculated within this approach [47] are
presented in Fig. 2.4. They vary considerably with the mass and isospin-asymmetry of
the compound nucleus but are always much lower than the critical temperature of infinite

Figure 2.4: Limiting temperatures as a function of the number of protons Z and neutrons
N as predicted by Besprosvany and Levit [47].

nuclear matter. The Coulomb instability of hot nuclei was also studied in later works with
other models using different kinds of the effective nucleon-nucleon interaction [48–55].
It was found that the values of Tlim are very sensitive to the chosen nuclear interaction
and to the assumed temperature dependence of the surface tension. In particular, Song
and Su derived relations between the limiting temperature and the critical temperature of
nuclear matter for several different Skyrme interactions [49]. The limiting temperature
has been often interpreted as the maximum temperature that a nucleus can sustain before
multifragmentation, and therefore as an upper limit for the maximal temperature observed
experimentally. However, such an interpretation may be questionable, since the excited
system evolves before multifragmentation without the presence of the outer vapor.



Chapter 3

Experimental investigations of
multifragmentation

In the early 1980’s, the Purdue University group observed that the inclusive mass yields
of the fragments produced in p+Xe and p+Kr collisions at 50 to 350 GeV followed a
power law Y (Af) ∝ Af

−τ with the exponent τ of about 2.6 [56, 57]. This was interpreted
as a possible evidence of a liquid-gas phase transition near the critical point according to
the Fisher model which describes the droplet condensation in supersaturated vapor near
the critical temperature [58]. Although such an interpretation might be questionable for
systems created in nuclear reactions, it aroused great interest in the multifragmentation
phenomenon.

Over the next years, a substantial progress in experimental investigations of
multifragmentation was achieved owing to the development of heavy-ion acceleration
and particle detection techniques. In particular, advanced multidetector arrays of high
efficiency with large angular coverage and high granularity (4π detectors) allowed for
almost complete reaction characterization on the event-by-event basis [59]. They permit
to study not only the inclusive particle yields and spectra but also the energy and angular
correlations between the fragments, and observables related to the fragment charge
partitions. Moreover, they provide a possibility to reconstruct the fragmenting system
and to estimate its excitation energy. The development of radioactive beams have offered
the unique opportunity to explore isospin dependence of multifragment decays.

Multifragmentation processes have been observed in various kinds of nuclear
reactions when the excitation energy deposited in the system is comparable to the
nuclear binding energy. Figure 3.1 illustrates three major classes of these reactions.

One class is central or near-central nucleus-nucleus collisions at intermediate
bombarding energies (20÷ 100 MeV/nucleon). Calculations with microscopic transport
models, such as the Boltzmann-Uheling-Uhlenbeck (BUU) and Quantum Molecular
Dynamics (QMD) approaches, indicate that significantly compressed and highly excited
nuclear matter is produced in the early stage of the reaction in the region of overlap
between projectile and target [60]. At this stage, some energetic nucleons and light
particles are emitted mostly in the forward direction (pre-equilibrium emission). Then
the excited, thermalized nuclear system expands due to unbalanced mechanical and
thermal pressure, and disintegrates into nucleons and fragments. Finally, the hot primary
fragments propagate independently in their mutual Coulomb field and undergo
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Figure 3.1: Three main types of nuclear reactions leading to multifragmentation.

secondary decays. Such reactions have been extensively investigated in several
heavy-ion laboratories, especially at the Michigan State University with the MSU 4π and
MINIBALL multidetectors [61–63] at the Texas A&M University with the NIMROD 4π

neutron and charged-particle detection system [64], at the GANIL facility in Caen with
the INDRA 4π multidetector [65] and at LNS Catania using the CHIMERA 4π

multidetector [66].
Another class includes reactions induced by light particles (pions, protons,

antiprotons, light ions) on heavy targets at projectile energies in the GeV range. The
initial reaction dynamics can be viewed as a cascade of nucleon-nucleon and
nucleon-pion collisions, during which several fast particles may be ejected from the
nucleus. According to Intra-Nuclear Cascade (INC) and BUU dynamical calculations
the cascade stops after about 30 fm/c. The excited heavy residue is expected to reach a
state of quasi-equilibrium, and then undergoes statistical decay (via multifragmentation
at sufficiently high excitation energies). Such reactions allow to investigate the thermal
properties of the fragmenting system with minimal rotational and compressional effects.
They were the most comprehensively studied in experiments performed at LNS Saclay
and at the Brookhaven AGS with the Indiana Silicon Sphere (ISiS) 4π detector
array [67]. Measurements indicate that mixtures of intermediate mass fragments (IMF’s)
with 3 6 Z 6 30 and light particles (Z < 3) are emitted from hot nuclear systems
expanded to sub-saturation density, on time scales consistent with a bulk disintegration
(< 100 fm/c).

Multifragmentation processes have been also observed in decays of projectile-like
fragments or projectile spectators in peripheral and semi-peripheral heavy-ion collisions
at intermediate and relativistic energies. Such fragmenting systems are not significantly
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influenced by the compression and angular momentum, similarly as in reactions induced
by light particles. Projectile spectator fragmentation at relativistic energies has been
investigated in a series of experiments carried out at GSI Darmstadt using the ALADIN
forward-spectrometer [27]. A prominent feature of the data is that the fragment
multiplicities and fragment charge correlations are independent of the projectile energy
and the target nucleus when plotted as a function of Zbound (the total charge of fragments
with Z > 2) which is a measure of the spectator size being correlated with the impact
parameter. This universality indicates that a high degree of equilibrium is reached prior
to the fragmentation stage of the reaction.

Figure 3.2: Caloric curve as the dependence of the isotope temperature THeLi on the
total excitation energy per nucleon, determined by the ALADIN group from the decay
of spectator nuclei [68].

Many studies have been devoted to determining the thermodynamic properties of hot
nuclear systems, in particular the nuclear caloric curve, i.e., the dependence of the
temperature T on the excitation energy E∗. The excitation energy is calculated
event-by-event with the calorimetry method based on measurement of the total kinetic
energy of particles emitted from the source [69]. The temperature can be estimated from
the slope of the measured particle kinetic energy spectra, from the double ratios of
isotopic yields, and/or from the population of excited states in light clusters by fitting a
Boltzmann distribution [70]. The first experimental evaluation of the nuclear caloric
curve was reported by the ALADIN collaboration in 1995 (see Fig. 3.2) [68]. It was
derived from fragment distributions measured in Au + Au collisions at an incident
energy of E/A = 600 MeV. The temperature values were deduced from the yield ratios
of He and Li isotopes. As can be seen in Fig. 3.2 the caloric curve exhibits three distinct
parts. In the evaporation regime at excitation energies below 2 MeV/nucleon, the rise of
the temperature is consistent with the low-temperature approximation of a fermionic
system indicated by the solid line. Within the range of excitation energies from 3 to 10
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MeV/nucleon where multifragment breakup dominates, a nearly constant value for THeLi
of about 4.5÷5 MeV is observed. Beyond an excitation energy of 10 MeV/nucleon, the
caloric curve rises approximately linearly with a slope close to that of a classical
Boltzmann gas, indicating the vaporization regime. The plateau in the caloric curve was
interpreted as a signature of a first-order liquid-gas phase transition. Such a behavior is
predicted by statistical models of multifragmentation [26, 71] and also by molecular
dynamics calculations (see e.g. [72]). A flattening or plateau-like structure in the caloric
curve was observed in many measurements. As indicated in Ref. [73] the plateau
temperatures can be interpreted as representing the limiting temperatures resulting from
Coulomb instabilities of heated and expanded nuclei. Using a number of caloric curves
obtained experimentally for different systems, Natowitz et al. derived the limiting
temperature as a function of the system mass, which is shown in Fig. 3.3 [74]. The
observed significant decrease with mass is consistent with presented model predictions.
Based on these results, the authors estimated a critical temperature of Tc = 16.6± 0.86
MeV for symmetric infinite nuclear matter.

Figure 3.3: Limiting temperatures as a function of the system mass. Temperatures
derived from caloric curves with double isotope ratio measurements are indicated by the
solid diamonds. Temperatures obtained from thermal Bremsstrahlung measurements are
indicated by the open squares. The lines represent limiting temperatures calculated using
interactions proposed by Gogny [51] (dashed line), and Furnstahl et al. [75, 76] (solid
line). Figure taken from Ref. [74].

Besides the plateau in the caloric curve, other signals characteristic of a first-order
phase transition have been reported in the experimental studies, such as negative
micro-canonical heat capacity, characterized by abnormal kinetic energy
fluctuation [77], the “fossil” signal of spinodal decomposition, characterized by
abnormal production of equally sized fragments [78], and bimodal characteristics
representative of a two-phase coexistence [21,79]. Several experimental works exploring
the mass (charge) distributions have also reported various signals indicating the
occurrence of critical behavior (continuous phase transition) at temperatures between 5
and 8 MeV [11, 15, 80, 81]. It should be stressed, however, that the full understanding of
these signals requires further theoretical and experimental studies, due to interpretation
difficulties associated with the finite size and Coulomb effects, the validity of
assumptions on constant pressure or volume during phase transition in nuclei, as well as
the influence of non-thermal dynamical effects.
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Chapter 4

Model Studies

4.1 Largest cluster in percolation
Percolation model is a probabilistic model, introduced by S. Broadbent and
J. Hammersley in 1957 to investigate whether fluids can penetrate porous media [82].
Since that time various types of the model have been developed and applied to a wide
range of fields of science, such as statistical physics, physical chemistry, epidemiology,
nanotechnology, materials science, communications, and economy [83,84]. In particular,
percolation is used for studying clustering phenomena in complex physical systems
exhibiting phase transitions (critical behavior). It is usually formulated on a lattice,
which is composed of sites (vertices) connected by bonds. Three-dimensional lattices are
relevant for most physical processes.

There are two main types of percolation models: site and bond percolation. In site
percolation, each site of a given lattice is randomly and independently occupied with
a prescribed probability p, while each bond is considered to be connected. In bond
percolation, all the lattice sites are occupied, but are either connected or not by bonds
which are created randomly throughout the lattice with a given probability p. A cluster is
a group of occupied sites connected by bonds. The cluster size is the number of sites in
the cluster. The probability p is a model control parameter. At p = 0 in bond percolation,
each lattice site is a cluster of size 1. As p increases, the average size of the clusters grows,
and at p = 1 there is only one cluster of the lattice size. Figure 4.1 shows examples of
bond percolation events on a finite square lattice of size A0 = 25 for several values of
p. Percolation events are usually generated with a Monte Carlo procedure. Statistical

Figure 4.1: Exemplary events from bond percolation on 5× 5 square lattice for various
values of the bond probability p.

analysis of large samples of events allows to determine the average characteristics of
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cluster sizes and to study their event-to-event fluctuations. In the continuous limit A0→∞,
percolation exhibits a sharp continuous phase transition. There exists a critical value of
probability pc (percolation threshold) at which the properties of clusters change abruptly.
For p< pc only finite clusters are present. When p> pc there exists an infinite cluster that
spans across the entire lattice. The fraction of sites belonging to this spanning cluster is
the order parameter. The value of the percolation threshold depends on kind of percolation
(bond or site) and lattice topology. For example, in bond percolation on 2D square lattice
pc = 0.5, while for the 3D simple cubic lattice pc ' 0.2488 [83].Various statistical cluster
properties (e.g., the mean cluster size) exhibit singularities (divergences) at the critical
point. Their behavior in approaching the critical point can be described by power laws
with exponents called the critical exponents. The values of the critical exponents are the
same in a given dimensionality, irrespective of the percolation and lattice type [83].These
independence properties are referred to as universality.

In finite systems (lattices) the transition is smoothed. The probability that at least
one cluster connects the opposite lattice sides changes gradually in the transition region.
Such spanning clusters are seen in examples given in Fig. 4.1 for p≥ 0.5. Moreover, the
divergences occurring at the critical point in the continuous limit are replaced by maxima
located near pc. Such finite-size effects can be studied with percolation by changing the
system size.

Percolation models have been applied for describing the properties of nuclear
fragmentation soon after first experimental evidence [57, 85, 86]. Very satisfactory
reproductions of measured fragment mass/charge yields and correlations have been
achieved in studies of various kinds of proton and heavy-ion induced reactions
[8, 11, 87]. The results suggested that nuclei break up similar to percolation clusters with
the presence of critical behavior, seemingly contradicting the first-order liquid-gas phase
transition whose signatures were expected to appear in fragmentation data. In order to
get a better insight into the nature of phase transition in fragmenting systems, particular
attention has been paid to the largest fragments and their size (mass/charge) distributions
(see, e.g., Refs. [12,13,17–23,30] and references given therein). The largest fragment is
expected to represent the liquid part of the system and thus to play the role of the order
parameter. A transition from a “liquid” to a “gaseous” phase is associated with a rapid
decrease in the largest fragment size, which may correspond to the order-parameter
discontinuity in the case of a first-order phase transition or to the power-law
disappearance near a second-order transition point (a critical point) in the continuous
limit.

In percolation of finite systems the order parameter is the largest cluster size.
Extensive studies of its distributions have been performed by J. Brzychczyk [24]
Calculations presented in that article and in this work are carried out with a
three-dimensional bond percolation model on simple cubic lattices [4, 83]. The sites are
arranged on the lattice in the most compact configuration for an assumed the total
number of sites A0 (the system size). Events are generated using a Monte Carlo
procedure. Clusters are identified with the Hoshen-Kopelman algorithm [88] and free
boundary conditions are applied to account for the presence of a surface in real systems.
Given a control parameter value p, the probability distribution P(Amax) of the largest
cluster size Amax is determined from a large sample of events.

As it was presented in Ref. [24], Fig. 4.2 illustrates the evolution of the largest cluster

16



Figure 4.2: Probability distributions of the largest cluster size for a cubic lattice of size
A0 = 5×5×5 with free boundary conditions.

size distribution with the change of the bond probability p, which is representative for
small lattices with open boundaries. Away from the transition at small and large values of
p the distribution is sharply peaked with an extended tail to the right (left) in the disordered
(ordered) phase and positioned close to the limiting values of the cluster size. In the
transition region, the distribution rapidly evolves passing through a broad, flattened, and
nearly symmetrical distribution. Statistical measures as the mean, variance, skewness
and kurtosis contain the most significant information about the distribution. Of particular
interest are the following dimensionless cumulant ratios

K2 ≡ µ2/〈Amax〉2 = κ2/κ
2
1

K3 ≡ µ3/µ
3/2
2 = κ3/κ

3/2
2

K4 ≡ µ4/µ2
2 −3 = κ4/κ

2
2 , (4.1)

where 〈Amax〉 denotes the mean value, µi = 〈(Amax−〈Amax〉)i〉 is the ith central moment,
and κi is the ith cumulant of P(Amax). K2 is the variance normalized to the squared
mean, K3 is the skewness indicating the distribution asymmetry, and K4 is the kurtosis
excess measuring the degree of peakedness. The cumulants are functions of the central
moments with κ1 = 〈Amax〉, κ2 = µ2, κ3 = µ3, and κ4 = µ4− 3µ2

2 . In the transition
region, these quantities obey with good accuracy finite-size scaling relations even for
very small systems with open boundaries [24]. This permits the identification of universal
(independent of the system size) features of Ki at the percolation transition.

The form of observed universality can be illustrated with Fig. 4.3 where the cumulant
ratios Ki are plotted as a function of the bond breaking probability pb ≡ 1− p for three
different system sizes. Increasing pb corresponds to increasing temperature in physical
systems in which the temperature is a control parameter, as it is expected for nuclear
multifragmentation. The location of the critical point in the continuous limit pc ' 0.751
is indicated by the vertical long line. According to the finite-size scaling, the values of
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Figure 4.3: The normalized mean largest fragment size Amax and the cumulant ratios
of Eqs.(4.1) as a function of the bond breaking probability pb, as obtained with bond
percolation for three different system sizes A0 = 64, 216, and 1000. The long vertical
line indicates the critical point pc in the continuous limit. The short lines indicate the
transition (pseudocritical) points for the finite systems. Figure adapted from [31].

the cumulants Ki at pc are expected to be independent of the system size. This is quite
precisely observed in Fig. 4.3 as the crossing of the curves. A prominent feature of K2
is its maximum located very close to pc. The maxima of other quantities used often as
criticality signals (e.g., the maximum variance of the fragment mass distribution) show
much larger deviations from pc (see examples given in [24]). The transition point in finite
systems can be associated with the broadest and most symmetric P(Amax) distribution
observed near the pseudocritical point defined by the maximum of the mean cluster size
being the analog of the susceptibility [24]. This transitional distribution is indicated by
K3 = 0 and the minimum value of K4 of about −1.

It is very important for analysis of experimental data that the cumulant features
characterizing the critical and pseudocritical points are approximately preserved for the
corresponding points when events are sorted by measurable variables correlated with the
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control parameter, such as the total multiplicity or the total mass of complex fragments.
Near-critical events are indicated by the maximum of K2 while events associated with
the pseudocritical point are characterized by K3 = 0 and the minimum value of K4 of
about −1. These new signatures of the transition points are the subject of further studies
within models of statistical multifragmentation and will be applied for analysis of the
ALADIN experimental data.

4.2 Thermodynamic model predictions

The Canonical Thermodynamic Model (CTM) is a statistical model applied for describing
the clustering in nuclear multifragmentation [25]. This model assumes that the hot nuclear
system expands to a freeze-out volume where it breaks up into fragments (composites) in
thermal equilibrium. In the freeze-out volume, the nuclear interaction between different
composites is neglected, and the probability of different channels is calculated according
to the availability of phase space. The model allows fast computing of the partition
function in the canonical ensemble using a recursion method, and thus to obtain the
thermodynamic properties of the system.

CTM was initially formulated for one kind of particles (nucleons) [17]. This
simplified one-component model permits exact calculations for systems with large
number of particles, as required for phase transition studies. The presence of a first-order
phase transition has been established [17, 25, 89]. With the extension to two kinds of
particles (neutrons and protons) [90] the model is similar to the Copenhagen Statistical
Multifragmentation Model (SMM) [26] which is more general but requires complicated
and time-consuming Monte-Carlo sampling. In typical physical applications the two
models predict very similar results [91].

4.2.1 One-component Canonical Model

The canonical partition function of a closed system consisting of A identical particles of
only one kind at temperature T can be written as

QA =
1

A!
(ω)A (4.2)

where ω is the partition function of one particle. The A! term in the denominator accounts
for particle indistinguishability. In the case of a spinless particle with no internal structure

ω =
Va

h3 (2πmT )3/2 (4.3)

where m is the particle mass, Va is the volume available for the particle centre of mass
motion, and h is the Planck’s constant.

In the one-component CTM, all particles in a system, which is composed of A0 nucleons,
are represented by monomers, dimers, trimmers, etc. (single nucleons and their various
clusters). A system containing n1 monomers, n2 dimers, n3 trimmers, etc. is characterized
by the vector ~n = (n1,n2,n3, ...) called a channel. The system partition function is given
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by

QA0 = ∑∏
i

(ωi)
ni

ni!
(4.4)

where ωi is the partition function of a composite which has i nucleons. The sum runs over
all channels that satisfy the mass conservation

A0 = ∑
i

i×ni (4.5)

The one-body partition function ωi is a product of two parts

ωi =
Va

h3 (2πm0iT )3/2×qi (4.6)

where the first part arises from the translational motion of the composite and the second
one, qi, is the internal partition function. Here m0 denotes the nucleon mass. The volume
available to the particles for the centre of mass motion Va is less than the system’s total
volume V interpreted as the volume to which the nuclear system has expanded at break
up (the freeze-out volume). It is assumed that the excluded volume is constant,
independent of the channel, and Va = V −V0 where V0 = A0/ρ0 with ρ0 being the
normal nuclear density. For more precise calculations, however, the multiplicity of
fragments should be taken into account [92]. The assumptions that fragments are well
separated and the excluded volume is independent of multiplicity will fail for non-dilute
systems. Therefore, the model is restricted (somewhat arbitrarily) to volumes V ≥ 2V0 or
to the system average density ρ ≤ 0.5ρ0. This is not a significant limitation because there
are experimental indications that the freeze-out volume V is around 3V0 [26, 92, 93].
Such a value, V = 3V0, was used in all simulations presented in the following, unless
otherwise specified.

The internal partition function qi = 1 for i = 1, and for i≥ 2

qi = exp(−Fi/T ) (4.7)

where Fi is the intrinsic free energy at freeze-out, which is approximated using the Fermi-
gas model

Fi = −W0i+σ(T )i2/3 + i
T 2

ε0
−2i

T 2

ε0
(4.8)

As in Ref. [26], W0 = 16 MeV is the volume energy per nucleon, σ(T ) is a
temperature-dependent surface energy coefficient and ε0 is a constant parameter. The
surface coefficient at zero temperature σ(T = 0) ≡ σ0 = 18 MeV as in the
Bethe-Weizsäcker mass formula. With increasing temperature the surface tension
decreases, vanishing at the critical temperature taken as Tc = 18 MeV. For temperatures
below the critical temperature, σ(T ) is expressed by the formula

σ(T ) = σ0

(
T 2

c −T 2

T 2
c +T 2

)5/4

(4.9)
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The constant ε0 in Eq. (4.8) can be interpreted as a parameter determining the fraction
of the total thermal energy transferred into the internal excitation of fragments. The
value of ε0 is assumed to be 16 MeV as for the ideal Fermi gas at normal nuclear matter
density [26].

The probability of occurrence of a given channel P(~n) = P(n1,n2,n3,n4, ...) is

P(~n) =
1

QA0
∏

i

(ωi)
ni

ni!
(4.10)

and the average number of fragments with i nucleons can be calculated as

〈ni〉=
QA0−i

QA0

ωi (4.11)

From this and Eq. 4.5 one can derive a recursion relation

QA0 =
1

A0

A0

∑
k=1

kωkQA0−k (4.12)

which allows computing the partition function in a short time even for large (A ∼ 103)
systems, and obtain all relevant thermodynamic quantities.

The mean energy of one fragment with k nucleons can be calculated as

Ek = T 2 ∂ ln(ωk)

∂T
=

3
2

T + k(−W0 +
T 2

ε0
)+σ(T )k2/3−T

∂σ(T )
∂T

k2/3 (4.13)

In this equation, the first term comes from the center of mass motion and the remaining
ones from the internal partition function. The average energy of the whole system can be
calculated from the temperature dependence of the partition function or by summing up
the mean fragment energies

〈E〉= T 2 1
QA0

∂QA0

∂T
=

A0

∑
k=1

Ek〈nk〉 (4.14)

The excitation energy 〈E∗〉 is the difference between the total energy 〈E〉 and the ground
state energy E(gr) that is calculated for mass number A0 using the liquid-drop formula

〈E∗〉= 〈E〉−E(gr) = 〈E〉− (−W0A0 +σ0A2/3
0 ) (4.15)

Figure 4.4 shows an example of the caloric curve plotted as the average excitation energy
per nucleon versus the temperature that is the control parameter in the canonical model.
Near the temperature of 6.5 MeV, the caloric curve exhibits a sharp increase (plateau-
like behavior when plotted as T vs. E∗), which is a characteristic signature of a first-
order phase transition in finite systems. The point of the fastest increase corresponds to a
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Figure 4.4: Caloric curve for a system with 216 nucleons.

maximum of the specific heat CV

CV =

(
∂ (E/A0)

∂T

)
V

(4.16)

Here, the specific heat is the heat capacity per nucleon, which is a dimensionless
quantity since the temperature is in energy units (MeV). For the canonical ensemble the
specific heat at constant volume is a second derivative of the free energy F . In the case of
first-order phase transition, the second derivative is a derivative of a discontinuous
quantity and CV diverges to infinity in the thermodynamic limit. In a finite system where
the transition is smoothed, the divergence is replaced by a peak. Examples of such peaks
for various system sizes will be shown in Fig. 4.6.

The pressure can be calculated as

p = T
∂ lnQA0

∂Va
=

T
Va

A0

∑
i
〈ni〉 (4.17)

It allows determining the isotherms at various temperatures in the pressure versus density
plane, as shown in Fig. 4.5 for systems with 64, 216, and 1000 nucleons. One can clearly
see that for larger systems the isotherms present a back bending (related to a mechanical
instability), which is characteristic of the first-order liquid-gas phase transition.

Of particular interest in this work are properties of the largest fragment size. For this
purpose one needs to derive the probability P(Amax) that the largest cluster is Amax in
fragmentation of a system of size A0. Let’s define

QA0(k) ≡ QA0(ω1,ω2, ...,ωk,0, ...,0) (4.18)

as the partition function QA0 calculated with ω1,ω2, ...,ωk,0,0, ..., i.e. when all ωi with
i > k are set to zero. In this ensemble there are no channels with clusters having more
than k nucleons, and thus the largest cluster may be of any size less or equal to k.
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Figure 4.5: Pressure vs density isotherms for indicated system sizes.

The difference
∆QA0(k) ≡ QA0(k)−QA0(k−1) (4.19)

represents the total partition function for the ensemble of all channels in which the largest
cluster has exactly k nucleons. Therefore, the probability that the largest cluster has k
nucleons is

P(Amax = k) =
∆QA0(k)

QA0(ω1,ω2, ...,ωA0)
(4.20)

Once the probability distribution of the largest fragment size is determined, one can
calculate the mean value and higher order statistical measures of this distribution using
Eqs. (4.1).
Figure 4.6 shows the largest fragment size distributions as a function of the temperature
in the transition region where a peak of the specific heat is observed for different system
sizes. As can be seen in the top panel, with increasing system size the CV peak becomes
sharper and higher, as well as shifted towards larger temperatures. In the thermodynamic
limit, the transition location is expected at T ' 8 MeV as calculated within the grand
canonical approach and shown in Fig. 4 of Ref. [89]. In this model, the critical
temperature is assumed to be Tc = 18 MeV. The location of the specific heat maximum
indicates the transition point (temperature) in finite systems. At low temperatures, below
the transition, the largest fragment size is comparable to the system size. This
corresponds to evaporation regime in nuclear reactions in which the system is created
with low excitation energy and then decays via emission of few nucleons and/or light
particles leaving a heavy remnant. At higher temperatures, after passing the transition
point, the system disintegrates into many light and intermediate mass fragments, leading
to a rapid decrease of the largest fragment size. As seen in the bottom panel, 〈Amax〉
shows the fastest decrease at the transition point. A step discontinuity develops with
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Figure 4.6: From top to bottom: the specific heat, the largest cluster size probability
distribution, and its average value as functions of the temperature for systems with 64,
216 and 1000 nucleons. The probabilities shown in the middle panel are indicated by a
logarithmic color scale going from blue (minimum) to red (maximum).

increasing system size, which is characteristic of the order parameter behavior at a
first-order phase transition [32].

The cumulant ratios K3 and K4 of Eqs. (4.1) as functions of the temperature are shown in
Fig. 4.7. The transition temperatures for systems with 64, 216, and 1000 nucleons,
derived from the locations of the specific heat maximum, are 6.09, 6.55, and 7.11 MeV,
respectively. These values are marked by the dotted vertical lines. As can be seen, the
transition point is precisely indicated by K3 = 0 and the minimum of K4, similarly to the
percolation case. A comparison between the CTM and percolation results is presented in
Fig. 4.8. Although the K3 and K4 characteristics at the transition points are similar in
both models, the shapes of the P(Amax) distribution are significantly different as shown
in Fig. 4.9. In CTM a bimodal structure of the distribution is observed as expected for a
first-order phase transition in the canonical ensemble. A distinct bimodality appears for a
system as large as A0 = 1000, and the two-peak structure gradually vanishes as the
system size decreases.
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Figure 4.7: From top to bottom: the specific heat, the mean, skewness and kurtosis of the
largest fragment size distribution as a function of the temperature for three system sizes.

The above examples illustrate that the transition point in small systems, associated with a
phase transition in the thermodynamic limit, is well indicated by K3 = 0 together with a
minimum of K4 for both, i.e. first- and second-order, types of transition. The
comparisons suggest that some evidence for the transition order can be obtained from the
shape of P(Amax) and evolution of the cumulants with the system size. In particular, in
the vicinity of the transition point the cumulants exhibit maxima whose amplitudes
increase with the system size in the case of the thermodynamic model. This is in contrast
to percolation where the amplitudes are bounded according to the second-order
finite-size scaling, which is particularly clearly seen in Fig. 4.8 for the normalized
variance K2.

A bimodal pattern of the correlation between the largest and second-largest fragment
sizes has also been proposed as a signature of a first-order phase transition [94, 95].
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In order to investigated this with CTM one has to get the probability PA0(Amax,A2) that in
fragmentation of a system of size A0 the largest fragment is of size Amax and the second-
largest fragment is of size A2. There are two cases to be considered:
First, if A2 < Amax, (Amax +A2 ≤ A0) then

PA0(Amax,A2 < Amax) =
∆QA0−Amax(A2) ·ωAmax

QA0

(4.21)

The partition functions are calculated in a similar way as for Amax.
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Figure 4.9: Probability distributions of the largest fragment size at the transition points.

Second case, if A2 = Amax then

PA0(Amax,A2 = Amax) =
∆QA0(A2)−QA0−A2(A2−1) ·ωA2

QA0

(4.22)

The first term in the subtraction is the total partition function for the channels where the
largest cluster size is A2 but the number of such clusters can be one or more. The second
term is the total partition function for the channels in which there is only one cluster of
size A2 being the largest one.

The upper panel in Fig. 4.10 illustrates the correlation between the two largest fragment
sizes at and near the transition temperature T = 6.55 MeV in the system consisting of 216
nucleons. The bottom panel shows another representation of this correlation: Amax as a
function of the asymmetry parameter defined as

η ≡ Amax−A2

Amax +A2
(4.23)

At T = 6 MeV, below the transition temperature, almost the entire mass of the system is
contained in one large fragment, identified with the liquid phase. Above the transition, at
T = 7 MeV, the system contains only small fragments, which is identified with the gas
phase. The plots reveal that these two types of channels are simultaneously present at the
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Figure 4.10: Probability distributions of the relation between the two largest fragment
sizes below, at, and above the transition temperature for system of size A0 = 216. The
probabilities are indicated by a logarithmic color scale.

transition, indicating phase coexistence as in liquid-gas phase transitions.
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Figure 4.11: Transition temperature as a function of the freeze-out volume for indicated
system sizes.

Presented above results are for the freeze-out volume V = 3V0, three times larger than
the normal nucleus volume. The calculations have also been performed for other freeze-
out volumes to evaluate how the transition temperature depends on this model parameter.
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Figures 4.11 and 4.12 show the obtained dependences for various system sizes. For all
the systems, the transition temperature decreases by about 0.65 MeV with a freeze-out
volume increase from 2V0 to 4V0. It might be also interesting to compare the shapes of the
P(Amax) distribution at the transition point for different freeze-out volumes. Figure 4.13
shows such a comparison for the system with 216 nucleons. The distributions are very
similar - only a slight increase in the degree of bimodality is observed with increasing the
freeze-out volume.
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4.2.2 Two-component Canonical Model
In the two-component CTM, the system consists of two kinds of particles: protons and
neutrons. Clusters are specified by two indices i, j where i is the number of protons and
j is the number of neutrons. The partition function for the fragmenting system with Z0
protons and N0 neutrons (mass number A0 = Z0 +N0) at a temperature T is given as

QZ0,N0 = ∑∏
i,j

ω
ni,j
i,j

ni,j!
(4.24)

where ωi,j is the partition function of one composite with i protons and j neutrons (mass
number a = i+ j), and ni,j is the number of such composites in a given channel. The sum
is over all possible break-up channels that satisfy the requirements

Z0 = ∑
i,j

i×ni,j (4.25)

and
N0 = ∑

i,j
j×ni,j (4.26)

The partition function of a fragment is

ωi,j =
Va

h3 (2πm0aT )3/2× zi,j (4.27)

where m0a is the fragment mass. The available volume Va is calculated as in the one-
component model. Here, the intrinsic partition function zi, j is specified as

• For protons and neutrons: z1,0 = z0,1 = 2 to incorporate the spin degeneracy.

• For deuteron, triton, 3He and 4He

zi,j = (2si,j + 1)exp
(
−Ei,j(gr)

T

)
(4.28)

where si,j and Ei,j(gr) are the experimental ground-state spin and energy,
respectively:
s1,1, = 1 E1,1(gr) = −2.225 MeV (deuteron)
s1,2 =

1
2 E1,2(gr) = −8.482 MeV (triton)

s2,1 =
1
2 E2,1(gr) = −7.718 MeV (3He)

s2,2 = 0 E2,2(gr) = −28.296 MeV (4He),
Excited states of these light nuclei are not included.

• For fragments with mass number a≥ 5 the internal partition function is calculated
using the liquid-drop model for binding energies and the Fermi-gas model for
excited states

zi,j = exp
1
T

[
W0a−σ(T )a2/3−κ

i2

a1/3 (1−w)− s
(i− j)2

a
+

T 2a
ε0

]
(4.29)
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With respect to the one-component CTM, the formula includes two additional
terms: the Coulomb energy term with the coefficient κ = 0.72 MeV and the
parameter w correcting for the Coulomb interaction between different composites,
which is calculated based on the Wigner-Seitz approximation
w = 1− (V0/V )1/3 [26], and the symmetry energy term with the coefficient
s = 23.2 MeV. One needs to specify which composites are included in the partition
function. Here, for mass number a = 5 only charge numbers i = 2, 3 and for mass
number a = 6 only charge numbers i = 2, 3, 4 are taken into account. For a > 6 all
nuclei were included within drip lines derived from the liquid-drop formula.

The probability of a given channel is

P(~ni,j) = P(n0,1,n1,0,n1,1, ...,ni, j, ...) =
1

QZ0,N0
∏
i, j

(ωi,j)
ni,j

ni,j!
(4.30)

The average number of composites with i protons and j neutrons can be calculate as

〈ni,j〉=
QZ0−i,N0−j

QZ0,N0

ωi,j (4.31)

From this and the constraint of Eq. 4.25 one obtains a recursion relation to compute
partition functions

QZ0,N0 =
1
Z0

∑
i,j

iωi,jQZ0−i,N0−j (4.32)

Deriving formula for the probability P(Amax) follows in a similar way as in the one-
component model. We construct QZ0,N0(a) where all the intrinsic partition functions ωi,j
are set to zero when i+ j > a. The probability that the largest fragment mass number is
Amax can be calculated as

P(Amax = a) =
QZ0,N0(a)−QZ0,N0(a−1)

QZ0,N0

(4.33)

The calculation of the probability P(Zmax) that the largest fragment charge number is
Zmax can be done by analogy with appropriate changes in the formula.

Due to long-range Coulomb interactions the model generates some fraction of fission-like
channels containing two large fragments [96]. Such fission events are usually removed
from the analysis of fragment size distributions in phase transition (criticality) studies
(see e.g. [5,97]). Their presence would otherwise contaminate the obtained results. In the
present calculations the contribution from fission-like events was suppressed to focus on
possible signatures of a phase transition. The obtained results concerning the temperature
dependence of the heat capacity and the largest fragment size distribution are shown in
Figs. 4.14 - 4.16 for several nuclear systems. Qualitatively, these results are similar to
those of the one-component model. However, as a consequence of the Coulomb repulsion,
the maxima of the specific heat CV are positioned at lower temperatures around 5.5 MeV,
nearly independently of the system size. Comparing Fig. 4.15 with Fig. 4.16 shows that
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Figure 4.14: The specific heat CV (top panel), the distribution of the largest fragment
mass number Amax (middle panel), and the mean value 〈Amax〉 of the largest fragment
mass normalized with respect to the system mass A0 (bottom panel) as a function of the
temperature for the indicated nuclear systems.

the cumulant ratios Ki are almost identical for the Amax and Zmax distributions. Defining
the transition temperature through the maximum of CV, referred also to as the boiling or
breakup point [17], we observe that it coincides with the zero crossing of the skewness
K3 and the minimum of K4. This corroborates conclusions from the percolation and one-
component CTM studies that such characteristics of K3 and K4 can indicate a trace of
a phase transition in small systems. As can be seen from Figs. 4.15 and 4.16, the
effect of varying the neutron content of the Sn isotopes is small. The weak effect of the
system A0/Z0 ratio on the transition point can also be seen in Fig. 4.17, which plots the
system size dependence of the breakup temperature for neutron-poor and neutron-rich
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systems. The results are shown for the three different freeze-out volumes V indicated
in the figure. For given A0/Z0 and V , the transition temperature slightly decreases with
increasing system size.
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Figure 4.16: As in Fig. 4.15, but for the probability distribution of the largest fragment
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4.3 Simulations with Statistical Multifragmentation
Model

For more realistic simulations that can be compared with experimental data, we have
used the Copenhagen Statistical Multifragmentation Model (SMM) [26], which includes
secondary decays of hot primary fragments. The model input requires the specification
of the atomic and mass numbers of the system (Z0,A0), the excitation energy, and the
freeze-out density. The fragment characteristics are calculated as in the two-component
CTM. The break-up channels are selected randomly from the ensemble of all possible
partitions and their statistical weights (probabilities) are determined. For small fragment
multiplicities, appearing at low excitation energies, the microcanonical sampling is
performed. At high excitation energies, above 4 MeV/nucleon, the SMM code generates
partitions by Monte-Carlo sampling from the grand-canonical distribution, however,
with requiring the exact mass number and charge conservations in each partition. The
temperature of the system in a given channel is determined iteratively so that the total
energy is conserved. Therefore, it is referred to as the microcanonical temperature of the
system. The hot primary fragments formed in the freeze-out volume are then propagated
independently in their mutual Coulomb fields and undergo secondary decays. The
decays of large fragments (A > 16) are simulated with the evaporation-fission model
while smaller fragments with the Fermi break-up model [98].

Since the calculated events contain the complete information about all produced
particles and fragments (masses, charges, and momenta), they can be treated in the same
way as experimental events. In particular, they can be sorted into event groups according
to measurable quantities. Of interest here is sorting events by Zbound, defined as the sum
of the atomic numbers Z of all fragments with Z ≥ 2, which has been used in analyses of
the ALADIN data on fragmentation of projectile spectators in peripheral collisions at
relativistic energies [27–29, 99]. This quantity is correlated with the excitation energy
per nucleon and plays the role of the control parameter.

In order to check whether the investigated phase transition signatures associated with
the Zmax distributions are preserved for the Zbound sorting, we have performed SMM
simulations for the Sn system with Z0 = 50 and A0 = 124. A uniform excitation energy
distribution extending to 10 MeV per nucleon, and the freeze-out density of one third
of the normal nuclear density were assumed. Figure 4.18 presents the obtained results,
showing in the left diagrams the Zmax distribution, its mean value, (normalized) variance
and K3, K4 values as a function of Zbound. The Zmax versus Zbound plot shows that
the break-up transition associated with the broadest Zmax distribution is located near
Zbound = 45, as marked by the vertical dotted line. This distribution exhibiting a bimodal
structure is shown in the right top diagram. As can be seen, the transition point on the
Zbound axis is well indicated by K3 = 0 and a minimum of K4. The systems at Zbound = 45
have the average excitation energy of 5.2 MeV/nucleon and the average temperature of
6 MeV. As shown in the right bottom diagram, this corresponds to a point laying on the
flattest part of the caloric curve, confirming that the observed transition can be interpreted
as a trace of a first-order phase transition.

These results support the usefulness of the zero crossing of K3 and the minimum of
K4 as a signature of a phase transition in fragmenting nuclear systems (with the presence
of secondary decays) with using measurable quantities such as Zmax and Zbound.



  

124Sn

Figure 4.18: Results of SMM calculations for the 124Sn system, performed over a wide
range of the excitation energy. The left part shows the largest fragment charge distribution
P(Zmax) and its statistical measures as a function of Zbound. The right part, from top to
bottom: the distributions of Zmax, the excitation energy per nucleon and the temperature
at the transition point Zbound = 45, and the caloric curve with a point indicating the mean
excitation energy and temperature for Zbound = 45.

37



38



Chapter 5

ALADIN data on spectator
fragmentation and percolation
description

5.1 Experimental data
The present work examines the ALADIN data on fragmentation of projectile spectators
in 197Au + Cu, In, Au peripheral collisions at the incident energies of 600A MeV (Cu,
In, Au targets), 800A MeV (Au), and 1000A MeV (Cu, Au). The experiment (S114) was
performed at the heavy-ion synchrotron SIS of the GSI Helmholtzzentrum in Darmstadt.

Figure 5.1: Schematic view of the ALADIN facility at GSI Darmstadt.

Details of the experiment and general characteristics of the data have been presented in
Ref. [27]. Figure 5.1 shows the ALADIN experimental setup. Projectile fragments
entering into the acceptance of the magnet were tracked and identified with the large
volume time projection chamber TP-MUSIC III and the time-of-flight (TOF) wall.
Fragments with the atomic numbers Z ≥ 2 were detected with high efficiencies, close to
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100% at the bombarding energy of 1000 MeV/nucleon, and fully Z-identified. For the
present analysis, the event-sorted data files were used that formed the basis of the results
reported in the experimental paper [27]. A prominent feature of the ALADIN data is that

  

Figure 5.2: The mean multiplicity of intermediate-mass fragments (with atomic numbers
3≤ Z ≤ 30) as a function of Zbound for the reaction 197Au + 197Au at the incident energies
of 400, 600, 800 and 1000 MeV/nucleon (left), and for the reactions of 238U projectiles
at the energy of 1000 MeV/nucleon with the seven targets of Be, C, Al, Cu, In, Au and U
(right). Figures from Ref. [27].

the fragment multiplicities and correlations are independent of the projectile energy and
the target nucleus when plotted as a function of Zbound (the sum of the atomic numbers Z
of all fragments with Z ≥ 2). For example, the left part of Fig. 5.2 shows that the mean
multiplicity of intermediate-mass fragments (IMF’s) is independent of the projectile
energy within the experimental accuracy for the 197Au + 197Au reactions. The invariance
with respect to the target is shown in the right part of the figure for the case of 238U
projectiles at the incident energy of 1000 MeV/nucleon. This universality has been
interpreted as indicating a high degree of equilibration attained prior to or during the
fragmentation stage [27]. The numbers of events as a function of Zbound in the analysed
ALADIN data sets are presented in Fig. 5.3. The largest statistics were obtained with the
Au target.
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Figure 5.3: Distributions of Zbound in the ALADIN data.

5.2 Largest fragment charge distributions
Examples of the the largest fragment charge Zmax distributions at several Zbound values
are shown in Fig. 5.4 for the reaction Au + Au at 600 MeV/nucleon. The event sorting
variable Zbound is correlated with the size of the projectile spectator and inversely
correlated with the excitation energy per nucleon [99]. At low excitation energies,
corresponding to largest Zbound values, evaporation processes are dominant, leaving one
large fragment (heavy remnant). At excitation energies approaching and exceeding the
nuclear binding energy, the systems are disassembled into many small fragments. The
transition between the two extreme regimes is characterized by a rapidly decreasing Zmax
associated with an increasing number of fragments. The evolution of the Zmax
distribution seen in Fig. 5.4 indicates that such a transition takes place between
Zbound = 50 and Zbound = 60, where also a fast rising of the IMF production is observed
(see Fig. 5.2). This transition is clearly visible in Fig. 5.5 presenting the correlation
between Zmax and Zbound. The plot reveals also a small fraction of fission events with
Zmax around 40 located at largest Zbound values.

In order to identify the breakup transition and to find its precise location, the cumulant
ratios Ki of the the Zmax probability distributions have been examined. They are shown in
Fig. 5.6, plotted as a function of Zbound for different targets and energies. The comparison
of the different data sets confirms that also these distributions are independent of the
projectile energy and the target nucleus. Significant systematic differences are seen only
for K2 below Zbound' 50. The values of K2 in the region of small Zbound depend slightly on
the projectile energy. It may be related to a sensitivity of K2 to existing small changes in
the reaction dynamics or perhaps simply to a residual energy dependence of the detection
efficiency. At large excitation energies corresponding to small Zbound values, secondary
evaporation effects may also be of importance. The signature characteristic of a phase
transition K3 = 0 and minimum of K4 is clearly observed at Zbound = 54 in all the cases.
The statistical errors are small and comparable to the apparent scatter of the data points.
They are smallest near the transition point Zbound = 54, where the error bars are smaller
than the size of data symbols. The errors become larger for smaller Zbound values. For
example, at Zbound = 31, the error analysis for the Au + Au system at 1000 MeV/nucleon
yields 0.0091, 0.077, and 0.347 for the statistical rms uncertainties of K2, K3, and K4,
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Figure 5.4: Probability distributions of the largest fragment charge at several Zbound values
in Au + Au collisions at 600 MeV/nucleon.

respectively. For clarity, these errors are not displayed in the figure.
In the following, the experimental results will be compared with predictions of the

cubic bond percolation model. The atomic number serves as a measure of the fragment
size in the experimental data. The corresponding measure in the percolation analysis
performed here is the number of sites contained within a cluster. In other words, the
number of sites is considered as the number of protons. The same notation will be used
for percolation quantities as for their experimental counterparts. Percolation events were
generated with Monte Carlo simulations for the bond probabilities uniformly distributed
in the interval [0,1], and then sorted according to Zbound. The experimental and simulated
cumulant ratios Ki of the largest fragment size distribution P(Zmax) are compared in
Fig. 5.7. The percolation results are plotted in the left part as a function of Zbound
normalized to the system size Z0, for three different system sizes that span over a range
expected to be in the transition region. In this representation, the Ki distributions show a
weak dependence on the system size which vanishes at the pseudocritical point located
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Figure 5.5: Distribution of Zmax vs Zbound for the ALADIN data shown with a logarithmic
color scale. The broken line indicates the mean values of Zmax.

  

Figure 5.6: The cumulant ratios of P(Zmax) as a function of Zbound. Experimental data for
Au fragmentation following collisions with Au targets (left panels) and Cu targets (right
panels) at the incident energies of 600 and 1000 MeV/nucleon. The statistical errors are
of the order of the scatter of the data symbols.
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at Zbound/Z0 ' 0.84 (the squares). The results corresponding to the true critical point
are located near the maximum of K2 (Fig. 5.7) but their positions on the Zbound/Z0 axis
depend somewhat on the system size (the filled circles in Fig. 5.7, left panel).

The experimental results are shown in the right diagrams for the 197Au + 197Au
systems at 600 and 1000 MeV/nucleon and for the summed data sets (all targets and
all energies). Here, the cumulant ratios Ki are plotted as a function of Zbound. The
system sizes are considered unknown quantities that are to be determined. Overall, the
percolation and experimental patterns of Ki are very similar. The specific characteristics
of the percolation pseudocritical point are well observed in the data at Zbound ' 54. With
this correspondence, the mean system size at Zbound ' 54 may be estimated as Z0 '
Zbound/0.84 ' 64. For the percolation “critical” point, an approximate correspondence
can be established relying on K3 and K4. It indicates Zbound ' 36 and a system size Z0
around 36/0.69' 52.

In order to test the sensitivity of Ki to the secondary decay and detection inefficiency
effects, a simple simulation was performed and applied to percolation events. The result
is shown in Fig. 5.8. The largest cluster was divided into two fragments:
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Figure 5.8: The cumulants of P(Zmax) as a function of Zbound calculated for the system
size Z0 = 64 as shown in the left panel of Fig. 5.7 (full lines) in comparison with the
results of the two tests described in the text investigating the effects of secondary decays
(dashed lines) and of the detection efficiency of the spectrometer (dotted lines). Figure
published in [30].

Zmax → (Zmax− 1) + 1 with probability p1, or Zmax → (Zmax− 2) + 2 with probability
p2. Such calculations with various assumptions on p1 and p2 indicate that K2
significantly increases at small Zbound while K3 and K4 remain nearly unchanged. As an
example, for Z0 = 64 with p1 = 0.6 and p2 = 0.3, the maximum of K2 increases from
0.23 to 0.27 and its position is shifted towards lower Zbound by ∼ 5% (Fig. 5.8, dashed
lines). These observations support the conclusion that K3 and K4 are more reliable than
K2 as quantitative indicators of the transition points. The results of a test investigating
the effects of the small detection inefficiencies of the spectrometer are shown in the same
panels of Fig. 5.8 (dotted lines). It consisted of modifying the percolation event files by
randomly deleting fragments with probabilities 1 − ε(Z) and redoing the cumulant
analysis with these modified files. The detection efficiencies ε(Z) were assumed to have
the values of the geometrical acceptance of the time-of-flight wall of the spectrometer as
determined for 800 MeV/nucleon incident energy [100]. They increase smoothly from
ε(2) = 0.93 to ε(7) = 0.99 and ε(Z) = 1.00 for Z ≥ 8. This test cannot restore the
original event structure nor can it take account of additional sources of uncertainties
mentioned in the experimental reports [27, 100] as, e.g., reactions in the detector
material. However, these processes are estimated to cause similarly small effects on the
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percent level whose magnitude can equally be estimated from the deviation of the test
result. Both tests indicate that the modifications can be expected to be small,
corresponding to an uncertainty of the order of one unit of Zbound on the abscissa. The
coincidence of the zero crossing of K3 with the minimum of K4 is not affected.

5.3 Sizes of fragmenting systems
Information on the size of the fragmenting system (spectator remnant) is necessary for
performing theoretical calculations. Only the knowledge of the relation between Zbound
and Z0 is required. An estimation of the mean system mass 〈A0〉 as a function of Zbound in
several Zmax windows was made for the 600A MeV 197Au + Cu reaction [101]. Assuming
the charge-to-mass ratio Z0/A0 = 0.4 as for 197Au projectiles, the results converted to
the mean system charge 〈Z0〉 and averaged over Zmax bins are shown in Fig. 5.9 by
the solid line. A similar result (dashed line) was obtained by Campi et al. who used
a sum-rule approach for extrapolating from the measured Zbound to Z0 [102]. As it was
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Figure 5.9: Estimates of the mean system size 〈Z0〉 as a function of Zbound, plotted with the
Zmax experimental distributions shown in Fig. 5.5. The full and thin dashed lines represent
two estimates of 〈Z0〉 obtained from the experimental data with different methods [101,
102] while the filled circles give the result obtained with present percolation analysis (see
text). Figure published in [30].

shown above for the critical and pseudocritical points, the system sizes can be deduced
from comparisons between the experimental data and the percolation predictions using
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Ki versus Zbound dependencies. Such a procedure based on the K3 and K4 equalities
can be extended to other Zbound values. In Fig. 5.10 the cumulants are plotted as a
function of Zbound for the experimental data and percolation systems of different sizes
Z0. For a given Z0, the crossing of the percolation and experimental lines determine the
corresponding Zbound. The relation found by this procedure is displayed in Fig. 5.9 by the
solid circles. As can be seen, it is in very good agreement with the experimental estimates
of Ref. [101]. In reality, the system sizes at fixed Zbound are dispersed. To evaluate the
significance of this dispersion for the analysis, additional percolation calculations have
been performed for a Gaussian distribution of Z0 with the mean of 57 and standard
deviation of 2. Such a deviation is suggested by SMM simulations with input conditions
established in Ref. [103]. The results are plotted in Fig. 5.10 by the dashed lines, showing
that the dispersion effects are not substantial.
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Figure 5.10: The K3 and K4 cumulants as a function of Zbound. The experimental data
(filled circles, all systems, as shown by full lines in Fig. 5.7, right panel) and percolation
calculations for the indicated system sizes Z0. The dotted vertical lines indicate the
crossing points for K3 and K4. The dashed line shows the result obtained with a Gaussian
distribution of Z0 with 〈Z0〉= 57 (see text). Figure published in [30].
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5.4 Fragment yields and correlations

This section examines if the close resemblance between the data and percolation observed
for the Zmax distributions is more general, extending to the whole fragmentation pattern.
It is also interesting whether the critical and pseudocritical points indicated by the K3 and
K4 cumulants are coinciding with other criticality signals associated with fragment size
distributions, such as the Fisher power-law and the Zipf’s law.

5.4.1 Fisher power-law

A power-law fragment size (mass or charge) distribution was frequently observed in
nuclear fragmentation and interpreted as a signature of critical behavior at liquid-gas
phase transition, see e.g. [56, 57, 67, 80, 104, 105]. This interpretation was stimulated
by the Fisher’s droplet model, which predicts a power-law droplet-size distribution with
the critical exponent τ between 2.1 and 2.3 for systems at the critical point [58]. In the

Figure 5.11: The experimental mean fragment multiplicity as a function of the fragment
charge Z (the largest fragment excluded) for indicated systems, selected with the
conditions Zbound = 36 and 54.

percolation model, the cluster size distribution for infinite systems at the critical point also
obeys a power-law with τ = 2.189 [106]. In finite systems such a distribution is expected
near the pseudocritical point, but only in a limited range of small clusters when the largest
cluster is excluded [24]. Denoting the system size by Z0 and the cluster (fragment) size
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by Z, it can be described as
〈mZ〉= q0Z0Z−τ (5.1)

where 〈mZ〉 is the mean multiplicity of fragments with atomic number Z, and the
normalization coefficient q0 = 0.173 [24].

The experimental fragment charge distributions for two different targets and energies
at Zbound = 36 and 54 are shown in Fig. 5.11. Since all the data sets give approximately
the same results, they can be summed to obtain better statistics for comparisons with
percolation predictions as made in Fig. 5.12. The percolation calculations are performed
for the estimated system sizes Z0 = 52 and 64. As can be seen, the model well describes
the data over four orders of magnitude. The dotted lines represent the power-law
dependencies of Eq. 5.1 (straight lines in log-log plots). At Zbound = 54, the distributions
follows for Z < 15 this asymptotic power-law dependence with the exponent τ = 2.189,
as expected for the percolation pseudocritical point. I should be noted that this τ value is
close to the Fisher critical exponent of the liquid-gas phase transition universality class,
which is about 2.21 [107].

Figure 5.12: Fragment charge distributions for Zbound = 36 and 54. Experimental data
for all systems (filled circles) compared with percolation predictions (solid lines). The
statistical error bars are shown for errors larger than the symbol size. The asymptotic
power-law dependencies of Eq. 5.1 are plotted with dotted lines.
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5.4.2 Zipf’s law

Another signature of a phase transition in multifragmentation is the nuclear Zipf’s law
of fragment size distributions [20, 81, 108]. The Zipf’s law was originally formulated for
word frequencies in a given language by American linguist G. K. Zipf. He noted that
the most frequent word appears approximately twice as often as the second most frequent
word, three times as often as the third most frequent and so on, i.e. the frequency of the
usage of a word is inversely proportional to its rank [109]. Thus, if words are ranked by
their frequency of occurrence (“size”), the frequency f shows a power-law dependence
on the rank r

f (r) ∝ r−λ (5.2)

with λ ' 1. Interestingly enough, such a rank-size law was also found in many other
phenomena, for example, in distributions of city populations [110], the Internet
traffic [111], distributions of firm sizes [112], and DNA base pair sequences [113].

Watanabe found in bond percolation simulations that cluster sizes at the critical point
also obey Zipf’s law [114]. Similar results were obtained with the lattice-gas and
molecular dynamical models by Ma, who proposed to use the occurrence of Zipf’s law
in fragment size distributions as a signature of phase transition in nuclear
multifragmentation [20, 81, 108]. Campi and Krivine demonstrated that for infinite
systems, the Zipf’s law is a mathematical consequence of a power law with the Fisher
exponent τ ' 2 for cluster size distribution [115]. They concluded that the observation
of a Zipf’s law is not a new and independent signal of a critical behavior. Moreover, in
small systems typical of nuclear fragmentation, the signal and its location can be affected
by finite size effects [115,116]. In spite of this, it has been argued that the Zipf-type plot
is a direct observable allowing to characterize the fragment hierarchy in nuclear
fragmentation, and as such it is a useful signal of phase transition or critical behavior
[81].
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Figure 5.13 shows the Zipf-type plots, i.e. the mean size (charge) of the largest (rank
r = 1), second largest (r = 2), third largest (r = 3), . . . fragments plotted as a function of
their rank r for the ALADIN data with comparisons with percolation calculations. The
model results are shown for the rank numbers up to 11 because for all considered
percolation events, the total fragment multiplicity is at least m = 11, as implied by the
condition m > Z0− Zbound. The experimental data events contain only fragments with
Z > 1. Since their mean multiplicities for Zbound = 36 and 54 are about 9.1 and 7.7, the
mean total multiplicities including Z = 1 isotopes may be estimated as 25.1 and 17.7,
respectively, by assuming mZ=1 = Z0− Zbound. It was, therefore, assumed that events
containing less than 8 fragments can be supplemented with fragments of Z = 1 up to the
rank of 8. As can be seen in Fig. 5.13, the percolation model very well describes the
data, and an approximate power-law dependence according to the Zipf’s law is observed
at Zbound = 36. The black dashed line shows a power-law fit to the percolation results,
which determined the exponent λ ' 0.93. It is worth noting that this feature appears at
the “critical” point while a trace of the asymptotic power-law behavior in the fragment
size distribution (with the largest fragment excluded) is observed at the pseudocritical
point Zbound = 54. Although the two signatures are related in the thermodynamic limit,
they are affected differently by finite size and event sorting effects. The obtained result
indicate that the Zipf’s law is also a valuable signature in small nuclear systems, which
points to the events characteristic of a critical point.

5.4.3 Correlations with the largest fragment

Extended comparisons of the experimental data with predictions of the percolation
model are shown in Fig. 5.14. They are performed for four Zbound values, namely
Zbound = 36,43,53, and 66. The system sizes applied in percolation calculations are
Z0 = 52,57,64, and 73, respectively, which were found from the matching conditions for
K3 and K4, as shown in Fig. 5.10. Statistical error bars are omitted in the figure for better
readability, however, their magnitude is reflected in the scatter of the data symbols. The
top panels show the P(Zmax) distributions. Overall, the agreement is very good, although
the experimental distributions exhibit some local enhancements which are not accounted
for by the model. They are seen for Zbound = 36 and 43 at largest Zmax, which
correspond to events with one large fragment and few light particles. Such
evaporation-like events may be expected even for large excitation energies (small Zbound
values), because neutron-rich projectile spectators can be cooled by neutron emissions.
Another enhancement observed at Zbound = 66 around Zmax ' 37 is associated with a
contribution from fission events, which is also visible in Fig. 5.5. The next panels in
Fig. 5.14 examine various fragment size characteristics and correlations as a function of
Zmax. They are the mean and variance of the multiplicity of fragments with Z > 2, the
mean fragment size S2 defined as the second moment of the fragment size distribution
normalized to the first moment (the largest fragment excluded) [83], the mean and
variance of the second largest fragment size, and the size asymmetry between the second
and third largest fragments a23 ≡ (Z2−Z3)/(Z2 +Z3) averaged over events with Z3 > 2.
These calculations were performed for fragments with Z > 2 to avoid contributions from
light particles coming from other sources.
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mean fragment charge, the mean and variance of the second largest fragment charge, the
mean charge asymmetry between the second and third largest fragments. The statistical
errors are of the order of the scatter of the data symbols. Figure published in [30].
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The question arises whether simultaneously fixed Zbound and Zmax will severely limit
the possibilities for the fragment-charge partitioning, leading to rather trivial results.
This is the case when Zmax is close to its limiting minimum or maximum value. The
number of possible partitions is largest for Zmax in the middle of its range, around
Zbound/2. This least restrictive condition allows for a better test of fragmentation
patterns. Without additional Zmax selection the characteristics would be dominated by
the trivial contributions in the cases when P(Zmax) distributions are peaked near the
limiting Zmax values, as for Zbound = 36 and 66 (top row in Fig. 5.14).

The comparisons confirm in detail a close resemblance between the experimental and
percolation events (fragment charge/size partitions), not only in the transition region, but
also in a wide range of Zbound values.

5.5 Appearance of bimodality signals
A bimodal structure of distributions of the largest fragment size or other quantities
expected to be closely correlated with the order parameter is considered as a signature of
first-order phase transition [79, 117–119]. The present and other experimental
examinations of the largest-fragment charge distribution have not ascertained such a
signal. However, the presence of bimodality has been reported for distributions of some
other quantities such as the charge asymmetry between the two or three largest
fragments, and the asymmetry ratio between heavy and light
fragments [20, 38, 79, 120, 121]. In the ALADIN data on 197Au + 197Au at 1000A MeV, a
bimodal distribution of Zmax − Z2 − Z3 has been found in the transition region
Zbound = 53−55 [79, 122]. As demonstrated by Trautmann [122], the bimodal behavior
of this variable can be reproduced by a percolation model, which contains only a
second-order phase transition.
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Figure 5.15: Bond percolation for Z0 = 64. The probability distribution of the largest
cluster size Zmax at the transition point pb = 0.65 (solid line) and for the bond probability
distributed over a finite range (dashed line). Figure published in [30].

As expected for the continuous percolation transition, the distribution of P(Zmax) does
not exhibit bimodality. The shape of the transitional distribution is characterized by a wide
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plateau regardless of the system size, as it was shown in Sec.4.2.1 (Fig. 4.9) and is also
illustrated in Fig. 5.15 for the system size Z0 = 64 (solid line). Such distribution shapes
are observed when events are sorted by the control parameter pb. If pb is dispersed in
a sample of analyzed events, the shape of P(Zmax) can be very different. In particular,
a bimodal shape may appear as shown in Fig. 5.15 by the dashed line. It warns against
using wide bins for event sorting or sorting variables that are not well correlated with the
control parameter.
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Figure 5.16: Bond percolation for Z0 = 64. Correlations between Zmax and the size
asymmetry of the two largest clusters in the transition region.

Even when percolation events are sorted by the control parameter, various size
asymmetry variables exhibit bimodal behavior in the transition region. As an example,
Fig. 5.16 shows the correlation between Zmax and the size asymmetry of the two largest
fragments (Zmax− Z2)/(Zmax + Z2). A bimodal structure of this distribution is clearly
observed at pb = 0.68. It should be noted that the projection onto the Zmax axis does not
reveal this bimodality. A similar degree of bimodality is observed for a much larger
system with 163 sites, suggesting that this feature is not generated by finite size effects.
Correlations of this kind were examined experimentally for fragmentation of projectiles
in 197Au + 197Au and Xe + Sn reactions at 80 MeV/nucleon with qualitatively similar
results [121].

Another example concerns the asymmetry between the total sizes of large and small
fragments. Following the prescription applied to Xe + Sn central collisions [38],
fragments with Z ≥ 13 are considered as large and fragments with 3 ≤ Z ≤ 12 as small.
The evolution of their normalized difference distributions near the percolation transition
is illustrated in the left diagram of Fig. 5.17. The system size of 100 sites is comparable
to the total charge of the investigated nuclear system. Also in this case a bimodal
structure is predicted by the percolation model. The right diagram shows the
qualitatively similar result that is observed when the clusters with Z = 1 − 2 are
additionally included in the group of light fragments.

The presented percolation simulations demonstrate that bimodalities observed in
distributions of the asymmetry variables are not necessarily associated with a first-order
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Figure 5.17: Bond percolation for Z0 = 100: distributions of the normalized differences
between the sum of atomic numbers of large fragments with Z≥ 13 and the sum of atomic
numbers of small fragments with 3≤ Z ≤ 12 (left panel) or with 1≤ Z ≤ 12 (right panel),
calculated for three values of the bond breaking probability pb below, near, and above the
pseudocritical point. Figure published in [30].

phase transition.

5.6 Transition temperature
The analysis of the largest fragment charge fluctuations indicates Zbound = 54 as the
transition point for nuclear systems with Z0 ' 64. Based on estimations performed for
the 197Au + 197Au reaction at 600 MeV/nucleon [27, 68], this point corresponds to the
excitation energy around 6 MeV per nucleon, which can be associated with a
temperature within the range 5 − 7 MeV [68, 73, 123]. The isotope temperature
determined for this point from double ratios of helium and lithium isotopic yields is
about THeLi ' 5.4 MeV as reported in Ref. [123]. In the context of percolation, the
transition point may be interpreted as the pseudocritical point. The analysis suggests that
near-critical events are rather located at Zbound ' 36 where the estimated excitation
energy is about 10 MeV per nucleon, corresponding to temperatures between 6 and
7 MeV. These temperatures are well below the critical temperature of about
14− 15 MeV, calculated with relativistic mean-field models for asymmetric nuclear
matter with a proton fraction of the 197Au nucleus [33, 124]. However, in finite nuclear
systems the critical temperature may be reduced by more than 5 MeV as a result of the
presence of Coulomb and surface effects [42]. The estimated temperatures depend on the
method and size of the system under study. For example, according to calculations with
the Fermionic Molecular Dynamics model performed for 16O, the critical temperature
deduced from observing the disappearance of the liquid-gas coexistence is about
10 MeV [44]. A somewhat larger value Tc ' 12 MeV has been concluded from a study
of a system of mass number A = 36 with antisymmetrized molecular dynamics [45].

The critical temperatures from calculations using the lattice-gas model are within the
range from 5 to 8 MeV [15, 16], i.e. much lower than the expected critical temperature
for nuclear liquid-gas phase transition even for small systems (cf., e.g., Refs. [42,44,45]).
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As Le Neindre et al. pointed out, these temperatures are comparable with the critical
temperatures that appear in analyses based on the Fisher scaling of fragment yields [21].
In fact, the values reported in Refs. [11, 80, 125] are between 4.75 and about 8 MeV.
In the lattice-gas model, the critical-like behavior identified by searching for the scaling
features of power-law type fragment spectra appears along the Kertész line or its extension
into the coexistence zone in the temperature-vs-density phase diagram [12–16, 126]. The
wide range of observed temperatures is to be expected since different reaction types
and experimental techniques will lead to different approaches of the critical line. There
are also some uncertainties associated with determining temperatures from the observed
fragment properties and yields.
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Chapter 6

Isotopic dependence of spectator
fragmentation

6.1 ALADIN experiment S254

The ALADIN experiment S254 was conducted in 2003 at the GSI Schwerionen
Synchrotron (SIS) to study isotopic effects in projectile-spectator fragmentation at
relativistic energies. A stable beam of neutron-rich 124Sn and radioactive neutron-poor
107Sn and 124La secondary beams were used to explore a wide range of isotopic
compositions. The beams with a laboratory energy of 600 MeV/nucleon were directed
onto natural Sn targets. The secondary beams were produced at the fragment separator
FRS by the fragmentation of primary 142Nd projectiles in a thick beryllium target, and
they contained also some fraction of neighboring isotopes. The mean compositions of
the nominal 124La (107Sn) beams were 〈Z〉 = 56.8(49.7) and 〈A/Z〉 = 2.19(2.16),
respectively [127]. Dynamical model studies confirm that these 〈A/Z〉 values are also
representative for spectators produced in the reactions [128, 129].

The ALADIN experimental setup has been presented in the previous chapter. For the
S254 experiment, it has been upgraded by constructing new eight proportional readout
chambers for the TP-MUSIC IV detector and by redesigning the electronic readout
chain [130]. The threshold for fragment detection and identification was below atomic
number Z = 2 and the resolution permitted individual identification of detected
fragments according to their atomic number Z up to the projectile Zproj [29]. The high
efficiency of close to 100% for the detection of projectile fragments is an important
property of the setup [27]. Tests performed for the case of 197Au fragmentation,
confirmed that possible minor inefficiencies have negligible effects on the studied
cumulant ratios of the largest fragment size distribution.

The most prominent result of the experiment is the observation that the isotopic
dependence of projectile fragmentation is weak [28]. When determined as a function of
Zbound, the mean IMF multiplicity, the mean largest fragment charge, and the
temperatures deduced from the isotope yields are nearly invariant with respect to the
projectile A/Z ratio. As an example, Fig. 6.1 shows the results for the double-isotope
temperatures THeLi and TBeLi.
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Figure 6.1: Apparent temperatures THeLi (left panel) and TBeLi (right panel) as a
function of Zbound normalized to the projectile charge Zproj for the three studied reactions
107,124Sn+Sn and 124La+Sn at 600 MeV/nucleon. For clarity, two of the three data sets
are slightly shifted horizontally, only statistical errors are displayed. Figure from [28].

6.2 Largest fragment charge distributions
In this section, the data analysis is extended to higher order fluctuations of the largest
fragment size to examine the transition signals and their isotopic dependence. The
distributions of the largest fragment charge (atomic number) as a function of Zbound are
illustrated in Fig. 6.2. As can be seen, they exhibit specific lines in their structures

Figure 6.2: Experimental distributions of the largest fragment charge Zmax as a function
of Zbound for the three reaction systems.

caused by constraints imposed trough the event selection according to Zbound. The main
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Figure 6.3: Experimental results (symbols) and SMM ensemble calculations (lines) for
the mean multiplicity 〈MIMF〉 of intermediate-mass fragments, the mean value 〈Zmax〉 of
the largest fragment charge, the variance var (Zmax), and the cumulant ratios K2 to K4,
from top to bottom, as a function of Zbound. The results for K2 are smoothed to suppress
odd-even effects at small Zbound. The dotted vertical lines in the lower panels indicate the
observed zero transitions of K3. Figure published in [31].

statistical measures characterizing the experimental Zmax distributions, i.e., the average
value, variance and the cumulant ratios K2, K3, K4 are shown by points in Fig. 6.3. In
addition, the top row shows the results reported in Ref. [29] for the mean multiplicity of
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intermediate-mass fragments (IMF, 3 ≤ Z ≤ 20). The rise and fall of the IMF
multiplicity as a function of Zbound with maxima slightly exceeding the value
〈MIMF〉 = 2 is very similar for the three cases. The same holds for the evolution of the
mean value 〈Zmax〉 and the variance var(Zmax) displayed below. The cumulant ratios
shown in the lower three rows exhibit the properties known from the percolation and
thermodynamic models, qualitatively similar to the case of the 197Au fragmentation
discussed in the previous chapter. In particular, the transition points are well determined
by the coincident zero transitions of K3 and the minima of K4 with values of about -1.
For all three systems, they are located in the same small interval of Zbound = 25 for 107Sn
to Zbound = 27 for 124Sn and 124La, approximately where 〈MIMF〉 rises most steeply with
decreasing Zbound.

6.3 SMM description of the experimental results
For the interpretation of the measured fragmentation processes and the observed isotopic
effects, the Statistical Multifragmentation Model was applied [29]. An ensemble of
excited sources, defined with a few parameters, was used to represent the intermediate
stage of the reaction at which equilibrium is assumed, an established method
successfully applied in previous interpretations of ALADIN fragmentation
data [103, 131]. The disintegration and further deexcitation of excited fragments is then
followed within the statistical framework of the model. The experimental data were very
well reproduced and, in particular, also the mean value of the largest fragment charge
and its evolution with impact parameter were obtained with high accuracy.

Here the analysis is extended to the cumulant ratios of the distributions of the largest
fragment charge in order to investigate whether the experimental data and the SMM
results equally exhibit the higher-order features. An ensemble of hot sources representing
the variety of excited spectator nuclei expected in a participant-spectator scenario was
chosen with parameters determined empirically by searching for an optimum reproduction
of the measured fragment charge distributions and correlations. As an example, Fig. 6.4
shows the correlation between the atomic number and the excitation energy of the source.
The quality of the obtained description for the three studied reaction systems is illustrated
in Fig. 6.3. The top two rows present the results reported in Figs. 13, 14 of Ref. [29]. The
cumulant ratios in the lower three rows show that the good quality of the reproduction
extends to the higher-order properties of the Zmax distributions. Some deviations are
observed for K2 in the region of smaller Zbound and for K3 and K4 at larger Zbound. A
good agreement is observed near and around the transition points (percolation pseudo-
critical points) that are equally well determined by the SMM results. As documented in
Ref. [29], the evolution of the fragment Z spectra with Zbound exhibits the well-known
transition from U-shaped through power-law to exponential spectral forms. The location
of the identified transition points falls into the Zbound interval with power-law shaped
Z spectra. The statistical errors are omitted in the figure but may be estimated from the
scatter of the data points and lines. The significant odd-even effects visible at small Zbound
in the multiplicities of intermediate-mass fragments (top row of Fig. 6.3) are caused by
the definition of Zbound that includes He fragments. Small even values of Zbound may thus
contain larger amounts of multiple 4He events without a fragment with Z ≥ 3. This is
reflected in the cumulant ratios K3 and K4 with slightly more peaked and more skewed
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Figure 6.4: Ensemble of hot thermal sources represented in a plot of the atomic number
versus the excitation energy per nucleon used in the SMM calculations for reactions with
124Sn projectiles.

distributions for the smaller odd values of Zbound. In the K2 distributions, this effect has
been suppressed by smoothing over the two neighboring values of Zbound with weights
[0.25, 0.5, 0.25]. It permits the maxima of K2 at Zbound = 11 for 107Sn and Zbound = 13 for
the two heavier projectiles to appear more clearly. These values may indicate approximate
locations of the true critical point as discussed in Ref. [30]. The differences of K2 at small
Zbound, between experimental and model results and between systems, are not surprising
because the variances and values of 〈Zmax〉 are small and the tiny overprediction of 〈Zmax〉
and underprediction of the variances in some cases have visible effects on K2.

6.4 ∆-scaling
Properties of the cumulants are of interest in the context of ∆-scaling proposed for
revealing a phase transition in finite systems [18, 132, 133]. Probability distributions
P(Zmax) for different 〈Zmax〉 values obey ∆-scaling if they can be converted to a single
scaling function Φ(z(∆)) with the transformation

〈Zmax〉∆P(Zmax) = Φ(z(∆)) ≡Φ
(

Zmax−〈Zmax〉
〈Zmax〉∆

)
, (6.1)

where 1/2≤ ∆ ≤ 1.

61



The ∆-scaling method has been applied to distributions of the largest fragment charge
with expectations that the distributions obey the ∆ = 1/2 scaling in the low temperature
(ordered) phase and the ∆ = 1 scaling in the high temperature (disordered) phase [18–20,
121, 134]. The transition between the two scaling regimes would signal the presence of a
phase transition.

As it was shown in Ref. [24], the percolation model contradicts such expectations. In
the percolation disordered phase no ∆-scaling is observed for the largest cluster size. In
the ordered phase, the ∆ = 1/2 scaling can only be observed for different system sizes
at a fixed value of the control parameter, which is difficult to realize experimentally. In
addition, for small system sizes corresponding to nuclear systems, this limiting scaling
behavior is violated as a consequence of surface effects.

The ALADIN experimental data with events sorted according to Zbound do not show
∆-scaling features in any Zbound range. This can be concluded from Fig. 5.10 for the
197Au spectator fragmentation and from Fig. 6.3 for the present data, considering that
K3 = const and K4 = const are necessary conditions for ∆-scaling [24].

Another consequence of the ∆-scaling is a linear correlation of the logarithms of the
variance and of the squared mean value of Zmax. As can be seen in Fig. 6.5, such a
correlation is not observed. The variation of the slopes is continuous and very smooth.
The correlations recorded for the three reactions are nearly identical and also very similar
to that reported for 131Xe + 27Al at the same energy in Ref. [30]. They show the odd-even
effects at small ln(〈Zmax〉2) known to be caused by the definition of Zbound (cf. Fig. 6.3).
Qualitatively similar shapes have been reported for percolation [24] and for the canonical
lattice gas model with constant density and varying temperature [13].

Figure 6.5: Natural logarithm of the variance as a function of the natural logarithm of
the squared mean value of the largest atomic number Zmax recorded in the three reactions
with 107Sn (open circles), 124Sn (filled circles), and 124La (open triangles) projectiles at
600 MeV/nucleon. The data symbols represent the results for individual values of Zbound
in the range from 5 to 45. The positions of the pseudocritical (pc) points are indicated
by dashed vertical lines and correspond, from left to right, to the 107Sn, 124Sn, and 124La
systems. Figure published in [31].
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6.5 Isotopic dependence of the breakup temperature
The determined positions of the transition points on the Zbound axis allowed to evaluate the
parameters of the fragmenting sources. They are presented in Tab. 6.1, including results
obtained for Au projectiles. The mean atomic number Z0 was estimated on the basis of
percolation to be 19% larger than the observed Zbound value at the transition (cf. Fig. 4 in
Ref. [30]). The isotopic asymmetry I = (N−Z)/A was assumed to be that of the initial
projectiles. The values of the isotope temperature THeLi were taken from Refs. [28, 123],
and the so-called apparent temperatures at the Zbound values of the transition points were
used. As indicated by model calculations, the apparent THeLi may underestimate the actual
breakup temperature by up to 15% because of the effects of secondary decays [123] and
corrections of 20% were used in Refs. [28, 74]. Here the observed values are found to be
on average 0.4 MeV, i.e. less than 10%, lower than the mean microcanonical temperatures
obtained with the SMM for the same breakup points [29]. The statistical errors of THeLi
are below 0.1 MeV [28], so that the experimental results indicate a minor dependence on
the isotopic composition of the system. The measured values are lower by ≈ 0.4 MeV in
the case of the neutron-poor, i.e. more highly charged, systems. This is not reflected in
the calculated SMM and CTM results (Table 6.1) nor is it evident from the apparent TBeLi
isotope temperatures of 5.6 to 5.7 MeV reported in Ref. [28].

Projectile Zbound Z0 I THeLi TSMM TCTM
(MeV) (MeV) (MeV)

107Sn 25 30±2 0.074 5.4 6.0 5.5
124Sn 27 32±2 0.194 5.8 5.9 5.6
124La 27 32±2 0.086 5.5 6.0 5.5
197Au 54 64±2 0.198 5.4 5.2 5.2

Table 6.1: Freeze-out characteristics of the four fragmenting systems at the transition
points Zbound: the estimated atomic number Z0, the asymmetry I = (N − Z)/A of
the projectile (averaged over the beam composition for the radioactive projectiles),
the apparent temperature THeLi at the transition point from Refs. [28, 123], the mean
microcanonical temperature TSMM from Ref. [29], and the CTM freeze-out temperature
calculated for the indicated system charge Z0 and asymmetry I.

The isotopic and system size dependence of the breakup temperature is shown again
in Fig. 6.6, together with predictions obtained with the SMM and CTM as well as from
the Hartree-Fock calculations reported by Besprosvany and Levit [47]. For this purpose,
SMM and CTM calculations were performed for many systems covering the interval of
20 . Z0 . 80, for the two indicated asymmetries I, and by generating events over wide
ranges of either the excitation energy (SMM) or the temperature (CTM). The transition
points were identified on the basis of the obtained cumulant ratios by searching for their
characteristic signal. In the case of the SMM, the microcanonical breakup temperatures
derived in this way for the experimentally studied systems are within ≈ 0.2 MeV the
same as the results of the ensemble calculations listed in the table. The results for the
neutron-poor and the neutron-rich cases are shown separately in the two panels. The
experimental temperatures THeLi are given with an assumed error of ±0.3 MeV and
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Figure 6.6: Breakup temperatures Tb as a function of the reconstructed atomic number
Z0 of the disintegrating system at the pseudocritical breakup point for neutron-poor (left)
and neutron-rich (right) systems. The boxes represent the apparent chemical breakup
temperatures THeLi from Table 6.1 with an assumed error of ±0.3 MeV while the lines
give the model results as indicated. The value 5.4± 0.4 MeV for the fragmentation of
197Au [123] is included in the right panel.

include THeLi = 5.4±0.4 MeV for 197Au at Zbound = 54 from Ref. [123], corresponding to
Z0 = 64. After applying the same 20% correction, these values are in very good agreement
with the plateau temperatures of caloric curves compiled by Natowitz et al. [74]. It is
evident that the fragmentation occurs at temperatures lower than those expected for the
Coulomb instabilities of equilibrated compound nuclei investigated with the Hartree-Fock
model [47]. The magnitudes of the latter may still depend on the form of the nuclear
potential used in the calculations [46,135] but the predicted dependences on the mass and
isotopic composition of the system are much stronger than in the statistical models and as
observed here and in other fragmentation reactions [136].
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Chapter 7

Summary and conclusions

The main aim of this thesis work was to study the phase transition in nuclear
multifragmentation by examining properties of the largest fragment size distribution,
which reflects event-to-event fluctuations. The size of the largest fragment plays the role
of the order parameter in multifragmentation, and thus is expected to provide valuable
information about the phase behavior of fragmenting systems. Bond percolation studies
presented in [24] suggested new signatures of a critical behavior (second-order phase
transition) associated with the cumulant ratios of the largest fragment size distribution:
the normalized variance K2, skewness K3 and kurtosis excess K4. In particular, the
pseudocritical point in finite percolation systems is indicated by K3 = 0 coinciding with
a minimum of K4.

Here, the properties of the largest fragment size distribution (mass or charge) have
been studied within statistical models: the Canonical Thermodynamic Model (CTM) and
the Copenhagen Statistical Multifragmentation Model (SMM). The simplified one -
component CTM is known to contain a first-order phase transition and allows
calculations in a wide range of system sizes. As for the canonical ensemble, the control
parameter is the temperature. In finite systems the transition is indicated by a maximum
of the specific heat CV that becomes increasingly pronounced as the system grows in
size. It is shown that this transition point coincides with the zero transition of K3 and
minimum of K4. This result demonstrates that the transition point in small systems,
associated with a phase transition in the thermodynamic limit, is well indicated by this
cumulant signature for both, i.e. first- and second-order, types of transition. Although in
both cases the K3 and K4 measures of the largest fragment size distribution have the same
characteristics, the distribution shapes are different. In CTM the distribution exhibits
bimodality (two peaks corresponding to the coexisting gas and liquid phases), while in
percolation the distribution has a wide plateau. The bimodality signal is also present in
correlations between the largest and the second largest fragment sizes. However, a
distinct bimodality is observed for large systems and gradually vanishes as the system
size decreases. The derived transition temperature is in the range 6 to 7.5 MeV
depending on the system size and the freeze-out volume. Calculations with the more
realistic two-component CTM and SMM corroborate conclusions from the percolation
and one-component CTM studies that the specific characteristics of K3 and K4 can
indicate a phase transition in small systems. The transition temperature is influenced by
the introduced Coulomb and neutron-proton symmetry energies. It is around 5.5 MeV,
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nearly independently of the system size and the neutron-proton asymmetry.

Fragment size (charge or atomic number Z) distributions have been studied using the
ALADIN data on fragmentation of 197Au projectiles at energies between 600 and 1000
MeV/nucleon. The analysis was focused on the largest fragment charge fluctuations. The
cumulant ratios of the largest fragment size distribution were examined as a function of
Zbound, which is correlated with the excitation energy and plays the role of the control
parameter. The transition point indicated by K3 = 0 and a minimum of K4 is observed at
Zbound = 54 which, according to Ref. [123], corresponds to excitation energies near 6
MeV/nucleon, associated with a temperature around 5.5 MeV. In percolation, it
corresponds to the pseudocritical point, and in the thermodynamic model, to the
maximum of the specific heat that is associated with a first-order phase transition. Based
on percolation simulations, the cumulants K3 and K4 are shown to be not significantly
affected by experimental conditions and secondary decay effects. They were used as
constraints in comparison with bond percolation predictions to determine the system
sizes at different Zbound values. The system sizes found with this method are in good
agreement with experimental estimates. Extensive comparisons with predictions of the
bond percolation model were made to test the whole fragmentation pattern. They have
shown that the fragment sizes and their event-to-event fluctuations observed in the
experiment are remarkably well reproduced by the model. The analysis suggests that
near-critical events, corresponding to the percolation critical point in the continuous
limit, are located at Zbound = 36. The associated excitation energy is about 10
MeV/nucleon, leading to a temperature of approximately 6 to 7 MeV [68], [123].

Due to the high accuracy in describing the fragment size properties, the percolation
model, containing a second-order phase transition, can serve as a very useful reference
model for studying the phase behavior of fragmenting systems. In particular, it permits
verifying the uniqueness of signatures proposed for revealing the presence of a first-order
phase transition. It should to be stressed, however, that model comparisons, in order
to be applicable to experimental verification, must rely on event samples selected with
measurable quantities, such as for example Zbound. These sorting quantities are inevitably
dispersed over the control parameter of the model as, e.g., the temperature or the bond
probability, which may significantly modify or artificially create investigated signatures.
As an example, it has been shown with percolation simulations that bimodality may
appear in the largest fragment size distribution when events are selected with Zbound.

The cumulant analysis of the largest fragment charge distributions has been applied
to the ALADIN S254 experimental data to investigate the isotopic dependence of
projectile fragmentation. The experiment was conducted with neutron-rich 124Sn and
radioactive neutron-poor 107Sn and 124La beams of 600 MeV/nucleon incident energy
and natural Sn targets [28, 29]. The coincident zero transitions of K3 and the minima of
K4 with values of about -1 are observed at Zbound=25 for 107Sn and Zbound=27 for 124Sn
and 124La indicating the transition points. Their locations are nearly independent of the
projectile A/Z ratio. It is shown that the SMM model in the form used to successfully
describe the fragment distributions and correlations of the studied reaction [29]
reproduces also the fluctuations of the largest fragment charge. The evolutions of the
experimental and calculated cumulant ratios with Zbound follow each other rather well,
and quite precisely near the transition. The locations of the transition points on the
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Zbound axis allow to estimate the associated temperatures. For all investigated reaction
systems, including reactions with Au projectiles, the temperatures determined from the
measured isotopic ratios THeLi are around 5.5 MeV [28, 123] in a good agreement with
predictions of the statistical models, showing only a very weak dependence of the
transition temperatures on the A/Z ratio and size of the fragmenting system. This
confirms the earlier observations (Refs. [28, 29, 137]) that the fragmentation process is
governed by the opening of the corresponding partition space and less likely by a
possible Coulomb instability related to the system charge. Overall, the studies
corroborated the suggestion derived from percolation that the cumulant ratios skewness
K3 and kurtosis excess K4 of the distributions of the largest fragment size (charge) are
valuable observables in searching for a phase transition in multifragmentation. It has
been shown that K3=0 coinciding with a minimum of K4 indicates not only the
second-order percolation transition but also the transitions observed in CTM and SMM
statistical models that are believed to be associated with a first-order phase transition in
the thermodynamic limit. The observed properties of the cumulant ratios appear generic
for fragmentation processes. It will be interesting to investigate their existence in other
fragmentation models.

The presented very detailed quantitative analysis has demonstrated that the bond
percolation model with no free parameters remarkably well describes the experimental
fragment sizes and their fluctuations. It should be stressed that no correction for the
secondary decays was applied in the analysis. In the context of the lattice-gas model,
which is similar to bond percolation near the normal density, the success of percolation
suggests that clusters are formed in the dense medium and isolated fragments are cold, in
accordance with the "Little big bang" scenario of multifragmentation proposed in
Ref. [10, 138]. However, the location of the transition in a temperature vs density phase
diagram is uncertain. Calculations with the lattice-gas model performed for small
systems demonstrated that critical-like behavior can also be observed in the liquid-gas
coexistence zone of the phase diagram at low densities [12–16]. It has recently been
shown by investigating the lattice-gas, percolation and thermodynamic models that all
three models provide qualitative descriptions of experimental data while the transition
points are indicative of either a first- or a second-order phase transition, depending the
applied model [139]. Further investigations, particularly with quantum molecular
dynamics calculations that reproduce the experimental fragmentation patterns, are
required for better understanding of the phase transition signals in nuclear
multifragmentation processes.
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