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JAGIELLONIAN UNIVERSITY

Abstract

Information and Communication Technology

Doctor of Philosophy

Development of universal data representations with application in

chemistry

by Magdalena WIERCIOCH

In recent years, deep learning models have shown their great potential in the

field of representation learning. Unfortunately, unlike the established deep

learning-based methodologies that have achieved human-level accuracy in

various application domains such as computer vision and speech recogni-

tion, the development of molecular modeling is still at an early stage. This

seems to be mainly caused by the inductive biases of molecules that are com-

pletely different from those of image, and the lack of sufficiently large and

reliable chemical data.

In this Thesis, we propose solutions for three different tasks:

• The classification task. Here, a new model, called HybNN, is applied to

detect bioactive chemical compounds.

• The classification, regression, and interpretability task. Here, a new model,

called SENN, is applied to predict molecular toxicity.

HTTPS://WWW.UJ.EDU.PL/
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• Deep representation learning of graphs and sequences. Here, a new model

called TENN is applied to evaluate whether the candidate drug and a

target protein are interacting.

First, we propose an architecture that aims to solve the classification problem

as its main task. To illustrate how the model works, we apply it to detect

bioactive chemical compounds. In contrast to the state-of-the-art method-

ologies, our approach automatically learns a mixed molecular representa-

tion from both physiochemical properties and contextual information that

describes the structure of the molecules. In more detail, the contributions of

this work are as follows.

• The first thorough comparison of classification approaches with appli-

cation to molecular bioactivity prediction task.

• A collection of molecular features that aim to capture the structure-

property relationships.

• Results demonstrating that a unified approach that employs the bidi-

rectional gated recurrent component and a spatial graph component

improves the state-of-the-art for the classification task.

Second, we study both a classification and a regression task. In addition,

we focus on the model’s interpretability. In the context of chemical data, a

typical regression problem is molecular properties prediction. Specifically,

we discuss the exemplary application, i.e., toxicity prediction is discussed.

In this contribution, we employ a subgraph embedding component that en-

ables one to exploit a graph structure. Also, there was an opportunity to see

whether incorporation of a set of global molecular features can be profitable.

In particular, we make the following contributions.

• We introduce a novel well-designed deep learning-based architecture
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that uses a subgraph embedding component that is fed into graph con-

volutional networks to improve the learning process.

• We study and compare the characteristics of eight different model ar-

chitectures (RF, SVM, FFN, GIN, GCNN, TopTox, Weave, and SENN -

our methodology) employed to solve both classification and regression

problems.

• We compile a comprehensive list of molecular features allowing us to

improve discriminative capability of our method.

• Finally, we demonstrate the utility of our methodology and find that

we achieve remarkably superior performance over the state-of-the-art

models on various publicly available regression and classification bench-

marks.

At last, deep representation learning of graphs and sequences is our chal-

lenge. The proposed deep learning-based approach is evaluated on represen-

tative chemical datasets to build a classifier capable of predicting drug-target

interactions. This is a preliminary work to see if the composition of sequen-

tial information, graph-based structure, and a continuous bag of molecular

words could enable to detect more complex interactions. In summary, the

contributions of this work are as follows.

• We present the first study on the representation learning of graphs and

sequences for the classification task and apply it to the drug-target in-

teraction prediction problem (DTI).

• The novel model employs three units to learn the representations of the

drug, target, and chemical compound level by level, and then made

prediction with overall interaction representation.

• We find that extraction of the global information of protein sequences

and drug compounds leads to improvement in the efficiency of DTI,
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and enables to detect more complex interactions. Specifically, the exper-

imental results on publicly available datasets demonstrated the compe-

tency of our method.



Streszczenie

Opracowanie uniwersalnych metod reprezentacji danych do poprawy

jakości metod uczenia maszynowego z przykładowym zastosowaniem w

chemii

W ostatnich latach modele bazujące na głębokim uczeniu sieci neuronowych

okazały się przydatne w dziedzinie uczenia reprezentacji (ang. representa-

tion learning). Wyraźny sukces takich algorytmów widoczny jest w obszarze

wizji komputerowej czy rozpoznawania głosu, gdzie zaproponowane kom-

puterowe metody osiągnęły wyniki poziomu eksperta. Niemniej jednak okazuje

się, że wykorzystanie dostępnych metod do modelowania związków chemicznych

nie jest trywialnym zadaniem. Powodów takiego stanu jest kilka, ale należy

do nich fakt, iż molekuła jest zupełnie innym obiektem aniżeli na przykład

obraz. Ponadto w problemach chemicznych liczba poetykietowanych danych

treningowych jest wyraźnie mniejsza (ang. inductive bias).

Dlatego głównym zadaniem badawczym podjętym w niniejszej pracy doktorskiej

jest zaproponowanie metod uczenia reprezentacji, które mają być przydatne m.in. w

dziedzinie projektowania leków. Wychodząc naprzeciw postawionym wyzwan-

iom Autorka pracy przedstawiła trzy algorytmy pozwalające na uzyskanie

komputerowej reprezentacji molekuły. W celu oceny przydatności modeli,

wykonano szereg eksperymentów obejmujących zadania klasyfikacji oraz re-

gresji.

Uściślając, w pracy zaproponowano rozwiązania trzech następujących za-

gadnień informatycznych.
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• Zadanie klasyfikacji. W tym obszarze nowy model o nazwie HybNN

użyto do wykrywania związków chemicznych aktywnych biologicznie.

• Zadanie klasyfikacji, regresji and interpretowalności. W tym obszarze nowy

model o nazwie SENN użyto do przewidywania toksyczności związków

chemicznych.

• Uczenie reprezentacji grafów i ciągów bazujący na koncepcji głębokiego uczenia.

W tym obszarze nowy model o nazwie TENN użyto do sprawdzenia

czy molekuła i biologiczny cel wchodzą z sobą w interakcję.

Pierwszą propozycją jest architektura rozwiązująca problem klasyfikacji. W

celu sprawdzenia przydatności modelu wykonano szereg eksperymentów

na danych chemicznych, tj. związkach aktywnych i nieaktywnych biolog-

icznie. W efekcie wprowadzona metoda uczy się reprezentacji w oparciu o

atrybuty fizykochemiczne związku chemicznego oraz informacje odnoszące

się do struktury molekuły. Wkład zaproponowanego podejścia podsumowany

został poniżej.

• Dokonano porównania algorytmów klasyfikacji z zastosowaniem do

wykrywania związków aktywnych biologicznie.

• Zaproponowano zestaw cech związanych z molekułą, które mają pozwalać

na identyfikację zależności struktura a właściwość.

• Rezultaty wskazują, że zintegrowane podejście łączące sieć rekuren-

cyjną z podejściem grafowym wykorzystującym informacje przestrzenne

przynosi poprawę wyników w stosunku do innych znanych metod.

W drugim etapie prac skupiono się na zadaniu klasyfikacji i regresji. Do-

datkowo poruszona została tematyka interpretowalności modelu. Tym razem

w kontekście chemii podjęty został temat przewidywania właściwości związków

chemicznych na przykładzie toksyczności. Zaproponowany algorytm zaw-

iera komponent związany z budową podgrafów, który umożliwia bardziej
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szczegółową analizę grafowej struktury molekuł. Przy okazji eksperymenty

ujawniły, że umieszczenie informacji związanej z globalnymi cechami związków

chemicznych również poprawia zdolność predykcji systemu. W skrócie, za-

proponowana metodologia wnosi następujący wkład.

• Wprowadzono nową architekturę bazującą na głębokich sieciach neu-

ronowych, która zakłada użycie komponentu operującego na podgrafach

oraz globalnych cechach związków chemicznych.

• Zaproponowana metoda została porównana z siedmioma różnymi i

często stosowanymi architekturami (RF, SVM, FFN, GIN, GCNN, Top-

Tox, Weave) w zadaniach klasyfikacji oraz regresji.

• Wyodrębniono zestaw cech molekuł do poprawy zdolności dyskrymi-

nacyjnych podejścia.

• Na podstawie eksperymentów wykonanych na danych dostępnych pub-

licznie wykazano, że algorytm poprawia rezultaty osiągane przez inne

metodologie.

Trzecim podejściem zaprezentowanym w niniejszej dysertacji jest głębokie

uczenie reprezentacji na grafach i ciągach. W tym przypadku podjęto się za-

projektowania modelu dedykowanego zadaniom klasyfikacji do zautomaty-

zowanego przewidywania występowania interakcji lek - cel biologiczny. Metoda

pozwala sprawdzić czy zestawienie informacji zawartej w sekwencjach bi-

ałek, grafowej postaci związku chemicznego i tekstowej reprezentacji molekuły

pozwala wykryć złożone interakcje pomiędzy obiektami. Wkład tej części

jest następujący.

• Zaproponowano innowacyjną metodę uczenia reprezentacji na grafach

i ciągach dla zadania klasyfikacji na przykładzie detekcji występowa-

nia interakcji lek - biologiczny cel.
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• Zaprezentowane podejście łączy trzy oddzielnie skonstruowane kom-

ponenty: reprezentację sekwencji białek, reprezentację związku chemicznego

w postaci grafu oraz tekstową reprezentację molekuły.

• Zaprojektowane i wykonane eksperymenty wskazują, że wyodrębnie-

nie globalnej informacji dotyczącej związku chemicznego i białka jako

celu biologicznego powoduje wyraźną poprawę wyników klasyfikacji.

Co więcej, zastosowane podejście można użyć do wykrywania bardziej

złożonych interakcji.
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Chapter 1

Introduction

1.1 Context

Over the years, scientists have noticed that the choice and quality of the data

representation, or features in the data used to train a machine learning model

directly affect the final performance of the used approach. It is also not sur-

prising that algorithm’s usefulness depends on the task. However, one can

always indicate sets of features considered as representative that are treated

as reflection of what the data is like. Then, these features could be used as

input for various tasks such as classification or prediction. Therefore, work-

ing on learning representation, in some cases, can be beneficial, for example,

when data featurization is employed, especially dealing with small datasets.

In general, the concept of representation learning means learning a parameter-

function map from the raw input data domain to a feature vector or tensor.

The goal is to detect and extract abstract, or higher conceptual level ideas

in order to boost the performance of a system over the unseen data. What

is more, the dimensionality of the input domain is usually high since objects

such as videos, images, or text are taken into consideration. However, the en-

coded representation is associated with a low-dimensional manifold. In this
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regard, although there are many dimension reduction techniques that offer

the ability to make high-dimensional data space simpler, such methods often

do not capture a mapping that is relevant for new data samples. Interestingly,

representation learning is developed for doing this job.

In conventional machine learning, we begin with a specific challenge for

which there is training data available. Then, the data is pre-processed, trans-

formed, fed into the machine learning pipeline, and a solution is returned.

Here, the learning part includes only making decision based on the approx-

imation of the data unknown mapping. In turn, one of the driving factors

of the success of deep learning lies in its ability to learn compact and ex-

pressive representations directly from the observed data. Furthermore, the

availability of programmable highly-parallel hardware, especially graphics

processing units (GPUs), caused that hand-crafted features have been re-

placed by feature learning mechanism. In consequence, the development

of architecture-engineering has had a tremendous influence in the field of

representation learning. In addition, in the last few years, a number of novel

deep learning architectures and building blocks have been published report-

ing superior performance.

First of all, there is no single definition of what it means to learn a repre-

sentation. Undoubtedly, an intuition is that a good representation makes the

learning task easier. A few years ago, Bengio, Courville and Vincent [12] fo-

cused on a few essential aspects of good representations. According to their

investigation, a list of prior factors can be introduced. Examples include local

smoothness of input, spatial and temporal coherence in a sequence of inputs

is observed, or a hierarchical organization of multiple explanatory factors.

In addition, factors are related to each other through simple, usually linear

dependencies, and factors that are shared with other tasks, also share the

statistical power across tasks.
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Following these guidelines, deep learning has introduced a few extra require-

ments to support the field of representation learning and learn a good repre-

sentation. Examples of such principles are the following:

• Abstraction and Invariance. Because the same input is expected to con-

sistently generate the same output, a good representation is supposed

to yield more abstract concepts. In consequence, it should be more in-

variant to small and local modifications in input data.

• Distribution. Representations should be expressive and lead to captur-

ing the diversity input space.

• Disentanglement. A disentangled representation keeps the informa-

tion about the elements in a dataset in a form that is interpretable and

compact.

The significance of representations of molecules has attracted a great deal

of interest in the decades of drug discovery research [165]. A molecule is

commonly-seen as a group of atoms held together by bonds. Unfortunately,

this representation is itself insufficient for understanding chemical space and

solving various problems such as properties prediction [9]. Therefore, given

the role and applications of molecular design, several new approaches have

to be explored. As a result, in this Thesis, a molecular representation R is a

mapping from drug-like moleculesM to some set X.

Also, many studies led to the development of a wide variety of notations

to describe chemical compounds. For instance, one may give an example

of a formula arranged in a standardized order called the Hill System Order.

Although it seems simple and is commonly used, it has its serious cons. First

of all, it lacks information about the atom’s links to other atoms, or atom’s

chemical behavior. Let’s take butane and 2-methyl propane (isobutane) as an

example. Both structures have the same molecular formula, i.e. C4H10, but
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they have different chemical properties. In consequence, just looking at the

molecular formula leads to confusion.

Much effort has been made in cheminformatics to develop hand-crafted fea-

tures for molecular representations called descriptors [147]. Each existing

descriptor aims at reflecting structural similarities and biological activities of

chemical compounds. The widely-used Coulomb Matrix [129], Bloom filters

[14], Extended-Connectivity Fingerprints [125], or Bag-of-Bonds [66] are just

four examples of such representations for this purpose. Furthermore, with

the advent of computers, the operations including computational storage,

retrieval and searching for structures have come into prominence. In addi-

tion, using fixed descriptors, researchers made a strong improvement to pre-

diction of molecular properties and activity, considered as one of the most

basic and important drug discovery tasks. Nevertheless, hand-engineered

features have disadvantages, like large dimension of the feature vector and

considering only a certain task. To be more precise, in order to predict drug

lipophilicity, the experts would likely take into consideration other character-

istics of chemical compounds than to predict toxicity. Thus, the ideal solution

could be a mechanism that itself recognizes the discriminative patterns and

creates representation for a specific challenge.

In fact, predicting molecular properties, activities, and interactions from molec-

ular structures is one of the fundamental issues in the cheminformatics com-

munity [30]. Predictive models are extensively used to support the initial

stage of drug discovery and help researchers to assess safety as well as any

side effects for safe dosage ranges. Recently, inspired by the remarkable suc-

cess of machine learning in many tasks including computer vision or natu-

ral language processing, researchers have also shown the potentials of deep

learning for drug discovery. In particular, deep learning-based architectures

are flexible and capable of handling diverse input data types. In this way,
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they improve the conventional representations in a variety of tasks.

In spite of the notable advantages of deep learning, challenges in applying

deep learning to the cheminformatics domain still remain. For instance, data

remains an open challenge. Firstly, the enormous space of valid chemical

compounds is estimated to be around 1060 [15]. Given the vastness of drug-

like chemical space, we need efficient and automated methods for develop-

ment for various applications. Furthermore, the training data is limited for

the current challenges in drug discovery. Another aspect that is relevant and

should be noted is data bias and data imbalance problems. In addition, in

contrast to computer vision or natural language processing fields, the acqui-

sition of the labels to the specific problem is significantly harder to many

orders of magnitude. It is caused by the fact that the labels can only be ob-

tained through lab experiments.

In view of the above, in this Thesis, we elaborate upon representation learn-

ing, whereby our focus is on three big topics: classification, regression, and

deep representation learning of graphs and sequences. Besides, model inter-

pretability is discussed in an ongoing fashion. Our findings are underpinned

through several experiments with a focus on the selected serious challenges

that exist in chemistry, such as bioactivity prediction, toxicity prediction, and

drug-target interaction prediction.

1.2 Tasks studied during the Thesis

The main research question we focus on is: Does learning representation

have an influence on improving drug discovery and development process?

Therefore, in this Thesis three different deep learning architectures are of-

fered to create a meaningful embedding given a molecular structure. In or-

der to assess the impact of our models, we test them on classification and
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regression tasks.

Representations learning

As it was discussed, representation learning means learning a parameter-

function map from the raw input data domain to a feature vector or tensor,

and aims to extract abstract, or higher conceptual level concepts to acceler-

ate improvement in performance of a computational model over the unseen

data.

Formulation

Let us suppose that an observation x belongs to a dataset X . Moreover, a space H

denotes the space of representations h and g is a model, i.e. g : X → H. Then,

the representations produced by g are used in a larger system to accomplish some

specified tasks.

In the context of the Thesis, our aim is to leverage representation learning

techniques to tackle the classification and regression task for molecular data.

The classification task

At the core of classification is identification the category to which a new in-

stance belongs, based on a training set of observations.

Formulation

Let x ∈ X be an input point and y ∈ Y = {0, 1} refers to a binary label

associated with the negative and positive classes, respectively. Next, assume

that we are given a set of positive and negative instances {(xi, yi)}
n
i=1 drawn

independently from the probability distribution with density p(x, y) that is

defined on X × Y . Additionally, let fcl : X → R denote a discriminant

function to predict a class label for test input point x as ŷ = sign( fcl(x)).

In this Thesis, we address the classification task employed for molecular

bioactivity prediction and drug-target interaction prediction.
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The regression task

In contrast to classification, regression focuses on predicting scalar values

instead of categorical.

Formulation

Given a regression task T with a set of training observations D = {(xi, yi)}
n
i=1,

where xi ∈ X and yi ∈ Y ∈ [a, b] ∈ R, the model is asked to predict the entire

regression function across a value range. Please note that y is a continuous

quality score in an interval. In addition, the supervised regression task is to

find a hypothesis or model freg: X → Y that approximates the true relation-

ship between variables and targets as best as possible.

In this Thesis, we address the regression task employed for molecular prop-

erties prediction.

1.3 Contributions of the Thesis

It is well worth starting off by clarifying that this Thesis is the candidate’s

independent contribution. The presented methodologies have not been

published before, especially they are not part of the candidate’s prior re-

search discussed in Section 1.4. In addition, it’s worth mentioning that the

shortened form of the methodology introduced in Chapter 3 was accepted

for the ELLIS Machine Learning for Molecule Discovery Workshop 2021.

Therefore, the shortened form of Chapter 3 is available on the workshop

webpage (https://moleculediscovery.github.io/workshop2021/). Also,

any graphics that appear in this Thesis are those of the candidate.

In this Thesis, we apply the representation learning framework to tasks re-

lated to cheminformatics field. In order to differ active chemical compounds

https://moleculediscovery.github.io/workshop2021/


10 Chapter 1. Introduction

from inactives, we propose an architecture that uses bidirectional gated re-

current units (BiGRUs) and a spatial graph representation unit (Chapter 3).

The approach is evaluated on a set of experiments on datasets obtained from

the publicly available database. The results reveal that our method improves

the state-of-the-art for the classification task.

The promising outcomes motivated us to build a framework that exploits a

graph structure in more detail to tackle the challenge of toxicity prediction

which is seen as a classification and a regression task (Chapter 4). Our algo-

rithm is demonstrated on a widely used datasets, where we improve upon

the state-of-the-art. In case of the classification, we beat the other method-

ologies including RF [17], SVM [153], GIN [169], GCNN [4], and Weave [88]

for four datasets. For the regression task, our approach surpasses GCNN [4],

TopTox [166], Weave [88] and feed-forward neural network (FFN)) for two

datasets. In addition, we focus on the model’s interpretability. It shows our

method is able to correctly identify the chemical substructures (toxicophores)

that may cause toxicity, such as hydrazones.

Then, we investigate how the deep learning-based methodology can be used

for building classifiers capable of predicting drug-target interactions. Here, a

heterogeneous network is constructed by integrating sequence embeddings

and a graph structure (Chapter 5). Here, the results clearly indicate that ex-

traction of the global information of protein sequences and drug compounds

leads to improvement in the efficiency of DTI, and enables to detect more

complex interactions. Specifically, the experimental results on publicly avail-

able datasets demonstrate the competency of our algorithm.

The implemented models are provided online at: https://bitbucket.org/

mgdlnwrch/.

https://bitbucket.org/mgdlnwrch/
https://bitbucket.org/mgdlnwrch/
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1.4 Contributions to other projects and publications

While working on this Thesis, the author has also been actively engaged

in other research projects. First of all, the author led a project funded by

the National Science Centre (Poland) Grants No. 2016/21/N/ST6/01019.

The second project was funded under the Iwanowska Program of the Polish

National Agency for Academic Exchange (NAWA) - a decision no. PPN/I-

WA/2018/1/00094/DEC/1.

In the following, the publications in which the author of this dissertation

has also been actively engaged by programming, including designing al-

gorithms, designing experiments, running experiments, doing analysis and

writing are enlisted.

• Magdalena Wiercioch, Johannes Kirchmair, Dealing with a data-limited

regime: Combining transfer learning and transformer attention mechanism to

increase aqueous solubility prediction performance, in Artificial Intelligence

in the Life Sciences [39]

• Magdalena Wiercioch, Johannes Kirchmair, Deep Neural Network Ap-

proach to Predict Properties of Drugs and Drug-Like Molecules, in ML for

Molecules Workshop at NeurIPS 2020 [161]

• Magdalena Wiercioch, Exploring the Potential of Spherical Harmonics and

PCVM for Compounds Activity Prediction, in International Journal of Molec-

ular Sciences [157]

• Magdalena Wiercioch, On modeling objects using sequence of moment in-

variants, in Computer Information Systems and Industrial Management [159]

• Magdalena Wiercioch, Feature Selection in Texts, in International Confer-

ence on Computer Recognition Systems [158]
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• Magdalena Wiercioch, Towards Learning Word Representation, in Schedae

Informaticae [160]

• Marek Śmieja, Magdalena Wiercioch Constrained clustering with a com-

plex cluster structure, in Advances in Data Analysis and Classification [138]

• Magdalena Wiercioch, Marek Śmieja, Mixture of metrics optimization for

machine learning problems, in Schedae Informaticae [106]

• Magdalena Wiercioch, Marek Śmieja, Jacek Tabor Probability Index of

Metric Correspondence as a measure of visualization reliability, in Online

Proceedings of Wrocław University of Science and Technology [162]

Furthermore, the candidate has taken an active part in several research events.

The oral presentations or poster presentations prepared and presented by the

candidate are enlisted.

• Deep Neural Network Approach to Predict Properties of Drugs and Drug-Like

Molecules, ML for Molecules Workshop at NeurIPS 2020, 2020, Vancou-

ver, Canada

• Detection and characterization of active compounds based on Random Matrix

Theory, Conference Random Matrix Theory: Applications in the Infor-

mation Era, 2019, Kraków, Poland

• Learning Object Descriptors with Application in Cheminformatics, WiML

Workshop at NeurIPS 2018, 2018, Montreal, Canada

• Automated de-novo molecule design based on Deep Neural Networks, 14th

German Conference on Chemoinformatics, 2018, Mainz, Germany

• On Modeling Objects Using Sequence of Moment Invariants, 17th Inter-

national Conference on Computer Information Systems and Industrial

Management Applications, 2018, Olomouc, Czech Republic
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• Text Embeddings Based on Synonyms, 21st International Conference on

Text, Speech and Dialogue, 2018, Brno, Czech Republic

• Representation Learning: A Case Study, 58th Cracow School of Theoretical

Physics, 2018, Zakopane, Poland

• Text Embeddings Based on Clusters, 10th Cracow Cognitive Science Con-

ference, 2018, Kraków, Poland

• Improving adverse drug reaction detection with models combination, Interna-

tional Language & Technology Conference, 2017, Poznań, Poland

• Feature Selection in Texts, International Conference on Computer Recog-

nition Systems, 2017, Polanica-Zdrój, Poland

• A new density based clustering algorithm, Meeting of Polish Special Inter-

est Group on Machine Learning of Computer Science, 2017, Kraków,

Poland

• Towards Learning Word Representation, Theoretical Foundations of Ma-

chine Learning Conference, 2017, Kraków, Poland

• Probability Index of Metric Correspondence as a measure of visualization re-

liability, Meeting of Polish Special Interest Group on Machine Learning

of Computer Science, 2015, Gliwice, Poland

• Mixture of metrics optimization for machine learning problems, Theoretical

Foundations of Machine Learning Conference, 2015, Będlewo, Poland

1.5 Thesis organization

The Thesis addresses three different tasks (representation learning, classifica-

tion, regression) on different kinds of data related to chemistry. The remain-

der of this Thesis is organized as follows:
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• Chapter 2 introduces the concept of cheminformatics, drug discovery

challenges and gives the necessary information connected with existing

molecular models.

• Chapter 3 is dedicated to the classification problem. We apply our

model to detect bioactive molecules. To specify, a supervised approach

is introduced that allows one to extract the features of different as-

pects of chemical compound and capture the structure-property rela-

tionships.

• In Chapter 4, we focus on a regression task and study model’s inter-

pretability. Therefore, a molecular properties prediction task is intro-

duced, and our approach that employs a subgraph embedding compo-

nent and global molecular features is described.

• Chapter 5, explores the topic of deep representation learning of graphs

and sequences. To demonstrate our novel architecture, we build a clas-

sifier that predicts drug-target interactions.

• Chapter 6 concludes the Thesis with a discussion of limitations and fu-

ture research avenues.

• Appendix A provides background on representation learning, deep learn-

ing architectures, and the notation used throughout the Thesis.
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Chapter 2

Background: cheminformatics and

learning representations for

molecular data

In this chapter we provide the necessary background information related to

existing molecular models and challenges faced by cheminformatics which

are common requirements for the rest of the Thesis.

2.1 Representation learning and cheminformatics

In the context of operations, the machine learning system is comprised of

three components where each component is responsible for a separate task

[45]. Those are: representation, goal, and optimization (see Figure 2.1).

FIGURE 2.1: Three components of Machine Learning Systems.
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Thus, the essence of an effective machine learning system is that one has to

retrieve valuable information from the input data and somehow transform

it into an internal representation such as a feature vector. Also, there is a

specified learning algorithm, and a relevant objective function that captures

what the system is supposed to do. At the same time, an optimization process

should be taken into consideration to get the optimal results.

Obviously, a large body of work has focused on understanding the process of

representation learning. It is known that the goal of representation learning

is to construct effective data representations for various applications includ-

ing classification, regression, domain adaptation, among others. The idea is

to map high dimensional observations into a lower-dimensional latent space

(Rd), such that important properties (like distance) are preserved. For in-

stance, if two objects have similar connections in the original space, their

learned vector representations should be close, too.

It shows that deep learning [60] introduces several key innovations from the

point of view of representation learning. In particular, two main concepts

can be discussed, i.e., distributed representation and deep architecture.

• Distributed Representation. Deep learning provides a technique to

obtain a low-dimensional real-valued dense vector, called distributed

representation. Intuitively, it can be treated as a form of compression,

where a large scale input with many features is meaningfully trans-

formed into relatively few dimensions. As such, it enables to represent

feature spaces in many different domains in an efficient way.

• Deep Architecture. According to the numerous observations, deep

neural networks are more powerful than their shallow counterparts on

a great variety of machine learning tasks [98]. One inevitable advantage

of deep architectures lies in hierarchical learning, in which the layers

learn useful representations of the data.
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Despite the significant success of deep learning-based methodologies in com-

puter vision, natural language processing, and other domains in data min-

ing and machine learning, cheminformatics poses additional challenges in

addressing diverse problems in drug discovery. In fact, drug design is not

straightforward and is still in its infancy. Therefore, since the choice of the

molecular representation model is considered as a limiting factor of the ex-

plainability and performance of the resulting methodology, these challenges

led to the development of representation learning research which focuses on

applying deep learning techniques to chemical data.

2.2 Cheminformatics and drug discovery

The field of chemoinformatics, also known as chemical informatics or chemoin-

formatics, provides a set of tools in the computational toolbox that can be

applied to drug discovery. In fact, the concept of cheminformatics can be

traced back to the 1990s. However, it was firstly defined by Frank Brown in

1998. In his paper entitled Chemoinformatics: what is it and how does it impact

drug discovery [18], Brown attempts to present the vision of cheminformat-

ics’ goals: “The use of information technology and management has become

a critical part of the drug discovery process. Cheminformatics is the mix-

ing of those information resources to transform data into information and

information into knowledge for the intended purpose of making better de-

cisions faster in the area of drug lead identification and organisation.”. In

fact, cheminformatics has its roots in a few more established fields such as

chemistry, chemical information, chemometrics, and computational chem-

istry. Also, the pharmaceutical industry plays a vitally important role in the

development of chemical objects handling. Nevertheless, with the advent of

computers, cheminformatics has evolved into a new branch of science that is

highly correlated with computer science. With these tools at their disposal,
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the present focus of cheminformatics is mainly drug discovery.

Drug discovery aims to find novel molecules that bind to a specific protein

and affect protein activity (by blocking or enhancing effects), which leads

to the modification of the course of the disease. In other words, the key

challenge in drug discovery is to identify chemical compounds that satisfy

multiple constraints, such as potency, safety, and desired metabolic profiles

at the same time. Unfortunately, the process of drug discovery suffers from

huge computational cost and time-consuming procedures, which limits its

application in the pharmaceutical industry [74, 78, 132]. To give an illus-

trative example, existing drug discovery pipelines take 5-10 years with a

cost counted in billions of dollars. The reasons underlying this delay are

poor drug-like properties and complicated molecular properties. In addition,

modern drug discovery usually involves a cost-ineffective Virtual Screening

(VS) process to select candidates from large chemical databases for further

synthesis [102]. Therefore, cheminformatics, especially deep neural network-

based techniques, can be a game changer in various areas of CADD (Computer-

Aided Drug Design).

Indeed, there are few critical steps in the drug development process, includ-

ing target identification and screening, lead generation and optimization,

preclinical and clinical studies, and registration of a drug (see Figure 2.2). In

the early phases of the drug discovery cycle, a foremost step is target valida-

tion to prove the selected target is relevant to the disease. This is followed by

hit identification approaches to determine a significant set of molecules able

to interact with the target. Further, the hit to lead stage delivers compounds

with evaluated properties, including affinity to extract lead compounds. Af-

ter the selection of lead compounds, the lead optimization phase improves

the desired properties of molecules (e.g. pharmacodynamics pharmacoki-

netics). The final stages of drug discovery are called preclinical and clinical
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development. The first refers to studies occurring prior to clinical testing. For

instance, toxicology screenings my be carried out then. Once the pre-clinical

research is complete, the newly synthesized drug candidate is moved on to

clinical development phase that involves clinical trials to finetune the drug

for human use.

FIGURE 2.2: Key steps of the drug discovery and development
process.

The studies in cheminformatics have received increasing attention due to

progress in speed and performance. Many machine learning approaches

have been successfully applied in a variety of tasks for drug discovery. The

examples are molecular properties prediction, drug-drug interaction, or drug-

target interaction prediction. One of the fundamental challenges for these

studies is how to learn expressive representation from molecular structure

[22, 32, 157].

2.3 Molecular representations

Undoubtedly, a vast number of published models are based on traditional

molecular representations [55, 137]. First of all, there is no clear best tra-

ditional representation of chemical compounds for machine learning algo-

rithms, and certain representations may be better for specific tasks. Never-

theless, existing traditional molecular representations fall into mainly three

categories: SDFs, numerical molecular descriptors, and SMILES strings.

SDFs

The SDF or Structures Data File contains the structural information and as-

sociated properties for one or multiple molecules. The advantage of using

an SDF is that one can work on 2- or 3-dimensional structures. On the other
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hand, the disadvantage is that it is a specialised format. In consequence,

SDFs are hard to read for people who do not have expertise in the subject

domain.

As it was mentioned previously, for decades quantitative structure-activity

relationship (QSAR) or quantitative structure-property relationship (QSPR)

studies [113, 128] have mainly relied on hand-crafted features for molecu-

lar representations to guide the drug discovery process. Their objective is

to represent the chemical information of actual molecules in a computer-

interpretable vector of numbers before being used to train the machine learn-

ing model [146]. In fact, a number of different representations of small molecules

exist, and one can debate on the relative pros and cons of the given approach

for the purposes of molecular design. For instance, molecular descriptors

may be classified into five common categories related to their dimensionality

[148].

• 0D (They are based on molecular formula. Examples: atom counts,

bond counts.);

• 1D (They are based on chemical graph. Examples: fragment counts,

functional group counts.);

• 2D (They extract chemical features from structural topology. Examples:

Balaban index, Weiner index.);

• 3D (They extract chemical features from structural geometry. Exam-

ples: GETAWAY, WHIM.);

• 4D (They take into consideration multiple structural conformations.

Examples: Raptor, GRID.);
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(A) Molecule structure “Caffeine”: 3D view.

(B) Fingerprint representation is a bit vector
that consists of 0’s and 1’s that are associated
with the absence or the presence of a par-
ticular fragment of the chemical compound

structure.

(C) SMILES representation. A number is as-
signed to each atom in the chemical com-
pound and then each atom is visited in the

molecular graph in a well-defined order.

FIGURE 2.3: The commonly used molecular representation
methods based on the example of Caffeine.

Fingerprints

Descriptors can also be split into fragments known as fingerprints (FPs). Fin-

gerprints represent molecular structure in a vector format, a bit vector that

consists of 0’s and 1’s that are associated with the absence or the presence

of a particular fragment of the chemical compound structure. The example

of fingerprint representation is depicted in Figure 2.3bB. Obviously, various
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fingerprints exist to model different aspects of a molecule. Amongst the com-

mon types of fingerprints are MACCS and Hashed fingerprints [90]. In gen-

eral, fingerprints offer a number of advantages, including the fact that they

can represent an essentially infinite number of different molecular features,

and allow for easier interpretation of analysis results and inference. On the

other hand, fingerprints bring difficulty in machine learning methods be-

cause of the curse of dimensionality [8] that is related to various problems

that arise when one works with high-dimensional data.

Graph representation

One of the most intuitive ways to represent molecular structures are graphs.

Therefore, any chemical compound is naturally seen as a mathematical graph

G = (V , E), where E refers to chemical bonds and V are atoms. A major

disadvantage of graph representation is the lack of information related to

bond lengths and 3D conformation.

SMILES

The most popular way to represent molecular graphs for machine learning

is the so-called simplified molecular-input line-entry system (SMILES) string

[156]. Specifically, it is seen as ’chemical language’ that encodes structural in-

formation of a molecule into single ASCII strings of 20-90 characters (Figure

2.3). A so-called SMILES representation is constructed by assigning a number

to each atom in the chemical compounds and then visiting each atom in the

molecular graph in a well-defined order. For instance, RDKit [97] employs

depth-first search as the graph traversal algorithm. One benefit of SMILES

strings is that they encode an exact structural representation of a chemical

compound. However, one downside is that SMILES are not injective over

chemical compounds. In other words, if two SMILES strings are not the

same, it does not imply the underlying molecules are not equivalent. On

the other hand, a widely used in the field of cheminformatics, the canonical
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SMILES ensures a one to one correspondence between chemical compound

and SMILES string. However, some researchers claim that the latent rep-

resentations obtained from canonical SMILES can be less useful since they

may be more associated with specific grammar rules of canonical SMILES

rather than with the chemical structure of the given molecule [13]. As a con-

sequence, this may affect interpretation and optimization tasks because it is

natural to expect that a latent space represents chemical properties and cap-

tures notions of chemical similarity rather than grammar rules.

Then, these representations, after pre-processing, can be used as input to ma-

chine learning models such as Support Vector Machines [33], Random Forests

[17], Kernel Ridge Regression [112] or neural networks [175]. The next step

is building a computational model that reveals the relationship between the

chemical compound and a given property or activity. Despite the fact that

these approaches have achieved promising results in many tasks including

biological activity detection [25] and toxicity risk evaluation [1], encoding

chemistry is still the biggest challenge. Here, we give a few examples of the

reasons.

1. Our skills to boil down chemistry into simple numbers are very limited.

2. Manually creating relevant features is really time-consuming.

3. Feature engineering is not easy in the case of not well-investigated structure-

property relationships [150].

4. Hand-crafted features lack generalizability and scalability since one can

make assumptions associated with certain properties of molecules that

may be less relevant [52].

5. The more complex descriptors often require high computational cost

[16, 47, 159].
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Therefore, although research efforts have been put on designing novel hand-

crafted molecular descriptors during the past years, deep learning can take

an important step in the field of representation learning in the context of

cheminformatics.

2.4 Upsides and downsides of learning data-driven

molecular descriptors for chemoinformatics-related

tasks

Given the recent progress in machine—especially deep—learning on numer-

ous tasks [35, 73, 98], it is no wonder that drug discovery could benefit from

this. In particular, molecular representation learning [60] seen as the process

of automating the discovery of feature representation of molecular structure

has attracted significant attention from both chemists and machine learning

scientists [27, 172]. Indeed, deep learning is a promising tool to facilitate a

variety of downstream applications, including bio-property prediction and

chemical reaction prediction, etc. [87, 170, 81]. The driving force behind this

lies in the fact that deep learning-based approaches enable us to learn com-

pact and expressive representations directly from the observed data. Gener-

ally, current works along the line of deep learning for molecules can be cat-

egorized into two main groups according to the input data type of chemical

compound,

• string-based methodologies

• and graph-based methodologies.

Specifically, SMILES (simplified molecular-input line-entry system) is a se-

quence notation encoding a molecule into a character string that follows a
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specified grammar [156]. As discussed previously in 2.3, although several ad-

vantages of using SMILES exist, this format is considered as non-unique [102]

since a single molecule can have multiple possible SMILES strings. Never-

theless, a number of deep learning-based architectures work with SMILES

since a lot of existing machine learning frameworks have available many

techniques for working with text.

However, a chemical compound can also be naturally seen as a graph with

nodes corresponding to atoms and edges corresponding to bonds, and one

may learn on a molecular structure. Viewing molecule structure as graph

data leads to graph neural networks-based (GNNs) [61, 131] architectures.

The molecular graph enables us to capture the spatial connectivity of dif-

ferent atoms and preserve molecular bonds which, amongst others, bring

real benefits. In consequence, large number of graph-based neural network

models have been investigated, such as message passing neural networks

(MPNNs) [57], convolutional networks [58], and graph attention networks

(GATs) [154]. Obviously, they were successfully employed to tackle learning

molecular representation task [65, 167].

Even though a graph-based approach has already led to the development of

state-of-the-art improvements, more computational methods are required to

handle the chemical structure that could support more effective DNN-based

drug discovery. For instance, the scarcity of labeled data brings serious chal-

lenges for deep learning in molecular representation. It is caused by errors

and the fact that lab experiments are costly [36, 99]. In consequence, train-

ing datasets used in cheminformatics problems are often limited in size. In

turn, this results in overfitting and finally the learned representations lack

of generalizability [75]. For this reason, to address the above issue, one has

to design a more powerful models that exhibit scalability and accuracy to ex-

press a great variety of molecules. In addition, another problem that needs to
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be discussed is the limited structural information incorporated into existing

deep models. Although treating a chemical compound as a set of atoms and

bonds is reasonable, one should take into consideration the fact that it also

consists of various molecular dependencies that cannot be missed. In par-

ticular, structural dependencies between nodes and edges and interactions

must be identified.

2.5 Graph-structured data

The core input data structure considered throughout this work is the graph

since a molecule can be represented as a graph. Therefore, here we discuss

some basic elements of graph theory, as well as the key concepts required to

understand how GNNs are formulated and operate.

Let us consider the graph-structured data as a graph G = (V , E), where E is

the set of edges and V is a set of vertices. Here, vi is the ith vertex and eij is

the edge from the jth vertex to the ith vertex. N(vi) = {ui ∈ V|(vi, ui) ∈ E}

denotes the neighborhood of the ith vertex. The adjacency matrix A is a

n× n matrix, where aij = 0 if eij /∈ E and aij = 1 if eij ∈ E . In addition, when

the graph-structured data is employed, one may use a vertex feature matrix

Xvertex of n× f scales, and an edge feature matrix Xedge of m× c, representing

the feature vector of a vertex and an edge, respectively.

A spatial-temporal graph is an attributed graph where the attributes of ver-

tices change dynamically over time. It can be represented as G(t) = (V , E ,X (t)).

In case of the directed graph, it has an asymmetric adjacency matrix since

the edges are directed from one vertex to another. In turn, for the undirected

graph, all edges are undirected. In consequence, the adjacency matrix is sym-

metric, and its normalized Laplacian matrix is defined as:
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L = In − D−0.5AD−0.5, (2.1)

where D refers to the diagonal matrix of vertex degrees with Dii = ∑
n
j=1 Aij,

and In is an identity matrix. In fact, the normalized graph Laplacian matrix

is real symmetric positive semi-definite. Hence, it can be factored as

L = UQUT, (2.2)

where U ∈ R
n×n refers to the corresponding eigenvectors ordered by eigen-

values λ, and Q denotes the diagonal matrix with Qii = λi.
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Chapter 3

Learning Hybrid Representation

for Classification

In this contribution, we propose a novel architecture, namely Hybrid Deep Neural

Network (HybNN), based on structural features and physiochemical properties. In

addition, a new spatial graph representation unit that aims at processing the spa-

tial graph matrix was put forward. The features were extracted both at the atom

level and molecule level, which ensure that both the fine-grained and coarse-grained

connectivity information of chemical compounds is provided. Moreover, BiGRUs

were adopted to cover more elaborate information. The experiments on classifica-

tion task on fourteen prevalent datasets support the generalizability and robustness

of HybNN, which outperformed state-of-the-art algorithms, including ChemixNet

[118], RF [17], SMILES2vec [59], and Chemception [58] for molecular bioactivity

prediction.
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3.1 Introduction

An important step in the drug discovery pipeline is to predict molecular

activity. This is caused by the fact that the discovery of a new drug in-

volves testing small molecules for their ability to bind to the target recep-

tor [20]. Since the task is to separate the active chemical compounds from

the inactives, the classification task is usually suggested. As a result, in the

last decades, many computational methodologies have been proposed and

widely developed to expedite the process of identification of active molecules.

In fact, a series of approaches exploring quantitative structure-activity rela-

tionships (QSAR) have been developed [40]. Most of them focus on similarity

searching - based methods [21]. In addition, typically the development of a

reliable computational methodology needs high-quality descriptors [29].

What is more, the introduction of molecular descriptors has opened up new

avenues for machine learning - based bioactivity prediction. Notably, Bayesian

classifiers [114], feed-forward neural networks (FNNs) [7], Random Forests

(RF) [141], and Support Vector Machines (SVMs) [86] are only a few examples

of traditional machine learning methods that have made an impact in drug

discovery. Despite numerous records of successful application of these ap-

proaches in cheminformatics, they come with several limitations. Firstly, the

well-established approaches often use a number of irrelevant descriptors and

are, in general, not robust for high dimensional data. Another challenge in

molecular activity prediction is predictive accuracy that is not good enough

to avoid unwanted errors which leads to the inability of the drug to meet the

condition for which it was developed.

Albeit powerful, traditional machine learning methods often lead to insuffi-

cient outcomes. Recently, there has been deep learning architectures success-

fully applied on molecular data, too. Nevertheless, in practice, dealing with



3.1. Introduction 33

neural networks poses several unique challenges. First, the available mod-

els usually need large and high-quality data. Second, increasing depth and

width of deep architectures also has an influence on growth in computation.

Third, as the model is not completely aware of the structural information re-

lated to the molecule, it cannot infer any significant molecular dependencies.

In this chapter, the above-mentioned gap is bridged by providing a workflow

procedure, named Hybrid Deep Neural Network (HybNN). HybNN has the

following advantages.

1. HybNN outperforms the other approaches on all test datasets, i.e. four-

teen publicly available benchmark datasets. We demonstrate extensive

comparisons with various approaches, including traditional machine

learning methods and deep learning-based models. Thus, the algo-

rithm sets a new standard in the classification task.

2. HybNN consists of two separate blocks. To specify, the bidirectional

gated recurrent units (BiGRUs) and a spatial graph representation unit

are combined to extract the features of different aspects of the chemical

compound. Thus, it potentially better captures the differences between

chemical compounds of similar structure.

3. HybNN uses a collection of molecular features to construct the molecu-

lar graph representation of the input. It ensures that the most common

attributes will be taken into consideration and better reflect the molec-

ular functionalities.
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FIGURE 3.1: Schematic of the architecture of HybNN. Our
model is comprised of five main modules: the graph embed-
ding module, the word embedding module, spatial graph em-
bedding module (Block 1, see Figure 3.2), the BiGRU network

(Block 2, see Figure 3.3), the gathering linear layer.
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FIGURE 3.2: HybNN: block 1. The unit is based on the idea
of graph convolution (see Figure 3.4). Firstly, we construct a
vertices-related matrix to preserve the topology structure of the
graph G in the space. Then, to learn hidden representations
from the preprocessed graph representation of chemical com-
pounds, an embedding layer is incorporated that provides spa-

tial topology with translational invariance.

FIGURE 3.3: HybNN: block 2. We create SMILES substrings
embeddings. Then, the module takes the sequence of embed-

ded vectors as input and returns a molecular representation.

3.2 Related Work

One of the most popular traditional machine learning methods that is of-

ten used to deal with chemistry-related challenges is Random Forests. The

idea is to build multiple decision trees by randomly extracting various fea-

tures and different samples, namely, multiple weak classifiers. In the end,

the results of multiple weak classifiers are voted on to get the final outcome.

Recently, deep neural network-based architectures have been proposed and

made tremendous progress in the drug discovery field due to, among others,

their flexibility [104]. The first well-known success was the winning Merck

Molecular Activity Kaggle Challenge with a multi-task deep neural network
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(MT-DNN) [34]. Dahl et al. constructed a model that trains a single neural

network with multiple output neurons, where each of these neurons predicts

the activity of the input chemical compound in a different assay. On 14 of

the 19 assays, their model obtained an AUC score exceeding the best base-

line. Obviously, that work was followed by many other works [48, 57] that

demonstrated the power of deep architectures in molecular modeling. In

particular, Chemception takes image data from 2D drawings of molecules as

input before predicting an output such as the molecular activity [58]. The

methodology was inspired by Google’s Inception-ResNet for image classifi-

cation [142]. In fact, the general accuracy of this method across three tasks

appears to be comparable with deep neural networks trained on engineered

descriptors, including ECFP fingerprints. Next, SMILES2Vec has contributed

to existing state-of-the-art learning directly from chemical text representa-

tions [59]. In general, the idea is to treat SMILES strings as text sequences and

train recurrent neural network architectures. Based on the results, Goh et al.

conclude that their SMILES-based algorithm is effective in predicting a wide

range of properties since it outperforms the current state-of-the-art in regres-

sion tasks and matches in classification tasks. Finally, in 2018, ChemixNet

was proposed, where a set of neural networks is used to predict chemical

properties by leveraging both SMILES and molecular descriptors (MACCS

fingerprints) as inputs [118]. Paul et al. showed ChemixNet is an efficient

way to improve model performance and pointed out the efficacy of using

mixed input architectures for molecular learning tasks.

3.3 Methodology

In this chapter, we propose a Hybrid Deep Neural Network (HybNN) algo-

rithm which is a novel BiGRU and graph - based neural network applied to

molecular structures to learn and predict bioactivity. In this architecture, five
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key components are included: the word embedding module, the graph em-

bedding module, the BiGRU network, the spatial graph embedding module,

and the gathering linear layer. The main architecture is shown in Figure 3.1.

The goal of the graph embedding module is to integrate the atom information

so as to extract crucial characteristic properties of a chemical compound that

help to identify it and capture valuable information from a molecular struc-

ture (block 1), see Figure 3.2. In turn, the word embedding module construc-

tion allows one to embed the SMILES substrings. The BiGRU network unit

then captures local and global SMILES string context information present in

the molecular structure (block 2), see Figure 3.3. The preprocessed features

are then gathered together. Finally, we employ a fully connected layer and

a classification layer to pass the information on whether the compound is

bioactive or not.

3.3.1 Graph featurization and CNNs on molecular graph data

(block 1)

In dealing with molecular data and graph neural networks, there is no way

to explicitly use chemical compounds. There must be a preprocessing step.

Hence, we transform all the molecules and convert the input samples to a

regular structure. To specify, we define an adjacency matrix A and intro-

duce an initial vertices-related matrix X to preserve the topology structure

of graph G in the space. The matrix A ∈ R
n×n corresponds to the connec-

tions information between atoms, where n refers to the number of atoms in a

chemical compound. Therefore, for two atoms i and j, respectively, Aij = 1, if

there is a bond (an edge) between i and j, while Aij = 0, if not. At the begin-

ning, the values in this adjacency matrix are set to zero. Also, we introduce

the matrix X = {x1, x2, . . . , xn}, where xi = (xi1, xi2, . . . , xim), and xi ∈ X de-

notes a m-dimensional vector, encodes m features of n atoms. In the case of
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TABLE 3.1: Atom features.

Feature Description

atom type P, H, O, S, F, Si, C, Cl, Br, Mg, Na, Ca, Fe, As, Al, I, B,
V, K, Tl, Yb, Sb, Sn, Ag, Pd, Co, Se, Ti, Zn, N, Li, Ge,
Cu, Au, Ni, Cd, In, Mn, Zr, Cr, Pt, Hg, Pb (one-hot)

valence number of implicit valence
degree number of directly bonded neighbors
atomic mass mass of the atom, ranges from 1 to 260
formal charge integer assigned to an atom in a molecule in the cova-

lent view of bonding
hydrogens number of hydrogens neighbors
hybridization sp2, sp3, sp3d
aromaticity Is the atom a part of an aromatic systems?

an atom type, one-hot encoding comes in handy. In all other cases, the value

is assigned to its fixed index position. The atom type, valency, degree, atomic

mass, formal charge, or aromaticity are only a few examples of the attributes

of each atom that were taken into consideration. They are listed in Table 3.1.

To learn hidden representations h from preprocessed graph representation

of chemical compounds, an embedding layer is incorporated that provides

spatial topology with translational invariance. Specifically, for each atom, we

obtain a spatial graph matrix. To do so, we employ a linear transformation

defined as

XF = XW + b, (3.1)

where XF ∈ R
n×d denotes the lower-dimensional representations, X ∈ R

n×m

refers to the high-dimensional initial matrix of attributes formed from the

graph representation, W ∈ R
m×d denotes the weights matrix, b ∈ R

n×d is

the bias, m and d are the dimension sizes of X and XF, respectively. Next, we

encode the connection space related to the atoms by defining XS ∈ R
n×n×d:
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XS
ij =





XF
j i f Aij = 1

0 otherwise
(3.2)

where XF
j refers to the jth row of the matrix XF.

In consequence, each vertex is encoded by the matrix XS
i ∈ R

n×d that con-

tains information related to the atom’s position and its neighbourhood. Such

a construction of the matrix XS causes that it describes the characteristics of

the atoms in the molecule including the spatial arrangement. We demon-

strate below SGRUs which take advantage of XF and XS.

FIGURE 3.4: HybNN: block 1, SGRU. The processing of
molecule in SGRU.

Spatial graph representation unit (SGRU)

The spatial graph representation unit (SGRU) is based on the idea of graph

convolution. This approach allows one to update the atomic representation,

and at the same time, consider both the information connected with a given

atom i and ith neighbourhood. Here, the core task is to process the matrix

XS
i ∈ R

n×d (that contains spatial information, as mentioned above), and the
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feature vector veci = XF
i ∈ R

d for atom i included in the chemical com-

pound. Specifically, the first step is to set a number choutl as the number of

1D convolutional output channels, the kernel size ksl, padding size psl, and

stride ssl for each convolutional layer l ∈ {1, . . . , L}. Then, the matrix XS
i is

convoluted to get X
choutl
i ∈ R

choutl×d. Here, we distinguish two cases.

• l = 1; Firstly, we want to calculate an intermediate atom vector as the

output of a function that aims to find a vector maxvi = (mv1, . . . , mvd) ∈

R
d such that mvj = max(X

choutl
i,j ), where X

choutl
i,j is the jth column vector

of matrix X
choutl
i and j ∈ {1, . . . , d}. This operation can be seen as pool-

ing. We further concatenate the vector containing attributes, i.e. veci

with X
choutl
i and the result, X

choutl
i ∈ R

(choutl+1)×d, is fed up to the next

(l + 1) convolutional layer.

• l > 1; The matrix X
choutl−1
i is convoluted to get a new matrix X

choutl
i that

is, depending on the value of l, fed up to the next (l + 1) convolutional

layer. This step is repeated until one obtains a vector ui ∈ R
dim.

Given the vector ui and the vector maxvi, these two vectors are concatenated,

and the updated atomic vector representation aouti ∈ R
dim+d is fed up to the

next SGRU. Figure 3.4 illustrates the process of atomic vector construction

in SGRU. In our architecture, when the SGRUs are tied, they form the block

called kSGRU, where k denotes the number of SGRUs. To obtain the final

representation of the molecule from the set of atomic vectors, we apply the

sum that runs over all the atoms in the chemical compound as follows:

ya =
n

∑
i=1

aouti (3.3)
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3.3.2 Word embedding module and the BiGRU network (block

2)

The word embedding unit

Indeed, learning from SMILES is the second key step in our method. Here, to

extract the most significant molecular structural information, we present an

approach that includes the word embedding unit and the BiGRU network.

We define a SMILES string as follows: S = {e1, e2, . . . , eM}. In other words, at

the beginning, a SMILES string is seen as a set of M elements, where ei refers

to the ith element in the set. We assume that the elements can be repeated.

The problem of cutting S is solved by a sliding window of size n over S. In

each iteration, the window moves to the right by one position. As a result

we obtain Sw = {slice1, slice2, . . . , sliceL}, where slicei denotes the ith word,

L = M− n + 1. After processing all SMILES, one obtains all words. Finally,

these sequences are used to form molecular word embeddings.

The goal of word embedding is mapping semantic properties of words into a

dense vector representation. It enables to capture the latent semantics of the

language data. This work employs the Word2Vec [109] vectors pre-trained

on Google News to create SMILES substrings embedding. To specify, a feed-

forward neural network converts each slicei of the sequence Sw into a vector

vi. Then, the sequence of embedded vectors V = v1, v2, . . . , vL is fed up to

the next HybNN’s component, i.e. the BiGRU network.

The BiGRU network unit

In order to deal with variable-length sequences and provide the integration

of contextual information working with SMILES, we adopt the BiGRU net-

work [31]. This component is designed to take the sequence of embedded
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vectors as input and is expected to return a molecular representation. Sup-

pose, we have X = {x1, x2, . . . , xt}, where xt ∈ R
e. The functions we imple-

mented can be formulated as below.

Z = σ(Uzxt + Wzst−1 + bz) (3.4)

r = σ(Urxt + Wrst−1 + br) (3.5)

h = ψ(Uhxt + Wh(st−1 ⊙ r) + bh) (3.6)

st = (1− Z)⊙ h + Z⊙ st−1 (3.7)

where σ(·) and ψ(·) represent different activation functions, i.e. Sigmoid and

Hyperbolic tangent, respectively. Uz, Ur, Uh, Wz, Wr, Wh refer to the corre-

sponding weight coefficients. Z is an update gate to regulate how much the

recurrent unit computes its hidden state, while r refers to a set of reset gates.

Thus, for r close to 0, the reset gate lets the recurrent unit forget the previous

computation state. In addition, ⊙ specifies an element-wise multiplication.

Please also note that st of each GRU unit at time t denotes the current hidden

state. Similarly, the previous hidden state is represented by st−1.

The output of BiGRUs at time t is combined with the results of the forward

and backward GRUs at the same time. Then, when all the GRU units pick

up all information along the forward and backward propagation, the output

layer is updated. Therefore, the BiGRU’s forward hidden state h̃i
t is com-

puted as follows:
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h̃i
t = GRU(hi−1

t , h̃i
t−1), (3.8)

where hi−1
t is the concatenated output obtained from layer i− 1 in the BiGRU.

This way, the designed approach with learnable ability enables to extract vital

features from a SMILES. These features are fed into a dense layer. As a result,

we obtain the learned vector yb that contains relevant structural information

connected with the molecule.

3.3.3 Prediction

Finally, for each molecule, a concatenation layer is employed to link the struc-

tural feature vector yb learned based on the SMILES and the physiochemical

feature vector ya learned from the physiochemical properties. More specif-

ically, we obtain a vector yout = [ya · yb], where · denotes the concatenation

of vectors. Then, the output feature vector is fed into a fully connected layer

that returns a vector out ∈ R
2 as follows:

out = σ(Woyout + bo), (3.9)

where Wo refers to the weight matrix, σ(·) is Sigmoid activation function, and

bo is the bias vector. The last step is bioactivity prediction. We implemented

it using a SoftMax function. Therefore, the function is formulated as follows:

pi = log(
eouti

∑
2
k=1 eoutk

), (3.10)

where pi defines the log probability that the molecule with attribute vector

out belongs to the ith class (positive or negative), while outi is the ith element

value of the vector out.
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3.4 Experiments and Results

3.4.1 Data collection

We use fourteen binary classification datasets in our experiments to test the

performance of HybNN. The datasets are derived from the PubChem database

[155]. Each dataset includes binary labels on its bioactivity property toward

the targets. The datasets are summarized in Table 3.2.

TABLE 3.2: List of assays used for this study.

PubChem
AID

Target Name Actives Inactives

2358 Protein phosphatase 1, catalytic sub-
unit, alpha isoform 3

1006 934

1915 Group A Streptokinase Expression In-
hibition

2219 1017

463213 Identify small molecule inhibitors of
tim10-1 yeast

4141 3235

463215 Identify small molecule inhibitors of
tim10 yeast

2941 1695

488912 Identify inhibitors of Sentrin-specific
protease 8 (SENP8)

2491 3705

488915 Identify inhibitors of Sentrin-specific
protease 6 (SENP6)

3568 2628

488917 Identify inhibitors of Sentrin-specific
protease 7 (SENP7)

4283 1913

488918 Identify inhibitors of Sentrin-specific
proteases (SENPs)

3691 2505

492992 Identity inhibitors of the two-pore do-
main potassium channel (KCNK9)

2094 2820

504607 Identify inhibitors of Mdm2/MdmX
interaction

4830 1412

624504 Inhibitor hits of the mitochondrial
permeability transition pore

3944 1090

651739 Inihibition of Trypanosoma cruzi 4051 1324
651744 NIH/3T3 (mouse embryonic fibrob-

last) toxicity
3102 2306

652065 Identify molecules that bind r(CAG)
RNA repeats

2966 1287
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3.4.2 Evaluation

We conduct experiments to demonstrate the effectiveness of HybNN from

various aspects: 1) predictive performance on validation sets; 2) predictive

performance on test sets; 3) analysis how fast a learning machine improves

its behaviour; 4) the impact of chemical diversity; 5) the verification of trans-

ferability; 6) the influence of varied number of SGRU layers; 7) the impact of

the single blocks.

We use mini-batch stochastic gradient descent (mini-batch SGD) with the

Adam optimizer [93] to train our HybNN. The batch size is set to 64 and

the initial learning rate is 1e−5. It should also be pointed out that the weights

are initialized with the He (Kaiming) initializer [70]. In addition, the hy-

perparameters that need to be optimized are given Table 3.3. All chemical

compound datasets are split into training, validation and testing collections

by following the 8/1/1 ratio. Moreover, we use the area under the receiver

operating characteristic curve (AUC-ROC) as a performance metric. In ad-

dition, the AUC-ROC scores in the tables and figures are obtained by taking

the average from the AUC-ROC values of ten independent trials. The signif-

icance is evaluated by a one-sided Wilcoxon signed-rank test. The results are

statistically significant for a p-value less than 0.05.

The performance of HybNN was compared with four algorithms that have

been used in previous studies for molecular properties prediction, including

RF [17], Chemception [58], SMILES2vec [59], ChemixNet [118]. The detailed

results, including the validation and test sets, are presented in Table 3.4 and

Figure 3.5, respectively. In our configuration, we employ RF with 400 trees

run on Morgan (ECFP) fingerprints. As shown in Table 3.4, for all datasets

except of AID 488912, AID 492992, and AID 652065 HybNN achieves a fa-

vorable performance in the validation dataset. For AID 488912, ChemixNet
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TABLE 3.3: Hyperparameters for HybNN.

Hyperparameters Values considered

learning rate 10e−3, e−3, 10e−4, e−4, 10e−5, e−5, 10e−6,
e−6,

batch size 8, 16, 32, 64, 128
activation function ReLU
dropout ratio 0.0, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4,

0.45, 0.5, 0.55, 0.6, 0.7, 0.75
number of SGRUs 1-8
weight initialization func-
tion

He (Kaiming) [70]

||ya|| 150
||yb|| 50
number of epochs 37 - 63

beats the other models (0.809) but our approach reveals the second-best per-

formance among the results (0.781). For the AID 492992 and AID 652065

validation datasets, ChemixNet obtains AUC-ROC of 0.851 and 0.889, respec-

tively. In turn, HybNN achieves the second highest score, i.e. 0.847 and 0.873,

respectively.

At the same time, the proposed methodology outperforms all benchmark

models in all test datasets. Interestingly, our HybNN also obtains the best

AUC-ROC scores for AID 488912, AID 492992, and AID 652065 (Figure 3.5).

It achieves an AUC-ROC of 0.753 ± 0.003, 0.849 ± 0.004, and 0.847 ± 0.006,

respectively. ChemixNet reports the second-best performance with scores

0.742 ± 0.006, 0.828 ± 0.003, and 0.822 ± 0.004. These results fully prove the

validity of our HybNN. All comparisons besides AID 2358, AID 463215, AID

504607, AID 652065, AID 488915 and AID 651744 are statistically significant.

Therefore, more investigation is needed on this point in the future.

An appropriate parameter setting is a crucial step to successful training deep

neural networks. The next experiment investigates the loss function in the

training and validation set. The Figure 3.6 indicates that the loss decreases

and then stabilizes for both training and validation set. One may observe
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(A) PubChem AID: 2358, 1915, 463213, 463215, 488912

(B) PubChem AID: 488915, 488917, 488918, 492992, 504607

(C) PubChem AID: 624504, 651739, 651744, 652065

FIGURE 3.5: The performance of HybNN over all datasets.
Our model outperforms the other methodologies on all test
datasets. Nevertheless, for AID 2358, AID 463215, AID 504607,
AID 652065, AID 488915 and AID 651744 the results are not sta-

tistically signifcant.
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TABLE 3.4: AUC-ROC for validation sets. HybNN achieves a
good performance on 11 out of 14 datasets.

PubChem
AID

HybNN
(ours)

RF ChemixNet SMILES2Vec Chemception

2358 0.842
±0.005

0.769
±0.006

0.809
±0.005

0.715 ±0.007 0.780 ±0.004

1915 0.841
±0.005

0.790
±0.006

0.813
±0.008

0.741 ±0.005 0.768 ±0.006

463213 0.718
±0.006

0.672
±0.006

0.703
±0.005

0.637 ±0.006 0.652 ±0.007

463215 0.716
±0.007

0.644
±0.006

0.692
±0.006

0.613 ±0.009 0.683 ±0.008

488912 0.781
±0.004

0.701
±0.007

0.809
±0.008

0.672 ±0.006 0.729 ±0.005

488915 0.798
±0.006

0.721
±0.005

0.780
±0.007

0.675 ±0.006 0.751 ±0.007

488917 0.920
±0.006

0.851
±0.007

0.899
±0.006

0.803 ±0.007 0.875 ±0.006

488918 0.885
±0.006

0.821
±0.005

0.855
±0.007

0.749 ±0.006 0.855 ±0.005

492992 0.847
±0.004

0.821
±0.005

0.851
±0.006

0.774 ±0.005 0.849 ±0.006

504607 0.771
±0.008

0.704
±0.006

0.754
±0.006

0.672 ±0.008 0.731 ±0.006

624504 0.929
±0.006

0.876
±0.006

0.915
±0.007

0.810 ±0.006 0.903 ±0.005

651739 0.861
±0.007

0.801
±0.008

0.842
±0.006

0.741 ±0.007 0.813 ±0.006

651744 0.945
±0.006

0.889
±0.007

0.925
±0.007

0.926 ±0.006 0.902 ±0.007

652065 0.873
±0.006

0.806
±0.006

0.889
±0.007

0.743 ±0.007 0.831 ±0.007

that the validation loss does not show a descending trend at around 40-60

epochs. Finally, we evaluate the loss on the validation set every epoch and

keep the model with the lowest validation loss to avoid overfitting on the

training set.

In the next experiments, we verified the effects of different numbers of SGRUs

on the performance of HybNN. It may be observed that, depending on the

dataset, different numbers of SGRUs lead to favorable performance (see Fig-

ure 3.7). We believe, this is related to the complexity of molecular structure
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(A) PubChem AID: 463213. (B) PubChem AID: 488915.

(C) PubChem AID: 492992. (D) PubChem AID: 651744.

FIGURE 3.6: Loss function.

in datasets and the quality of datasets. For instance, the molecular structure

of AID 651744, AID 492992 and AID 488915 datasets is relatively simple, so

the model needs more SGRUs and stronger learning ability. The model does

not work well on AID 463213 datasets, which may be due to the fact that the

data in AID 463213 datasets are not clean enough to cause serious overfitting

[130]. Therefore, this may lead to not too many SGRUs in our model.

We also checked if the chemical similarity has a significant connection to the

predictive performance of HybNN. Therefore, the prediction error was calcu-

lated as a function of the average Tanimoto [126] similarity of the individual
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molecules to the rest of the training set. In fact, one may observe a correlation

between the model error and the average similarity. The prediction accuracy

tends to increase as the average similarity increases between the samples for

which molecular bioactivity is predicted and the rest of the chemical com-

pounds included in the training dataset.

FIGURE 3.7: Performance vs. different number of SGRUs. It
may be observed that for different datasets, different numbers

of SGRUs lead to varying performance.

FIGURE 3.8: Prediction accuracy (measured as AUC-ROC) ver-
sus the average similarity of the molecule to the rest of the train-
ing set. The plot indicates a correlation between model error

and average similarity.

Furthermore, we conduct ablation studies on the sampler architecture.
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• The variant which only learns the representation using block I.

• The variant which only learns the representation using block II.

The ablation experiments results on both tasks are shown in Figure 3.9. There

are several findings from this figure. First, the outcomes indicate that both

block I and block II are all valuable for the prediction task. Second, among

two variants of HybNN, the version where block I is removed has the worst

performance. In case of AID 463213 dataset, the variant that has no block I

reveals AUC-ROC of 0.641, whereas the AUC-ROC of 0.660 is obtained by

the version that has no block II. Similarly, for AID 504607, AID 463215, AID

492992, and AID 651744, we report the scores 0.702, 0.621, 0.784, 0.843 when

block I is removed, while the AUC-ROC of 0.731, 0.663, 0.827, 0.901 when

block II is omitted. It may suggest that employing regular one-dimensional

convolution to process the spatial graph matrix of the molecule is a key in-

gredient in HybNN architecture.

FIGURE 3.9: Performances of different model variants for abla-
tion study. Firstly, both blocks are valuable for the predictive
performance. Secondly, the variant that has no block I has the
worst performance. It indicates that regular one-dimensional

convolution is beneficial here.
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3.5 Conclusion

The goal which motivates this chapter, will be to leverage both graphs and

sequences to learn effective representations of molecules for the drug bioac-

tivity prediction task. Therefore, we introduce a deep learning-based archi-

tecture, called HybNN, for learning representations that integrates specifi-

cally designed concepts, i.e. a stack of convolutional layers, and an RNN

based on bidirectional gated recurrent unit (BiGRU). Therefore, the goal is to

obtain an end-to-end molecular representation and improve chemical bioac-

tivity prediction results. Our method automatically learns a mixed molec-

ular representation from both physiochemical properties and SMILES con-

textual information that describes the structure of the chemical compound.

The performance of this methodology was compared with four state-of-the-

art models including RF, ChemixNet, SMILES2vec and Chemception. The

superiorities and competitiveness of HybNN are demonstrated by extensive

experimental outcomes.
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Chapter 4

Learning A Fragment-Oriented

Representation for Supervised

Learning Problems

In this study, we present Subgraph Encoded Neural Network (SENN), the structure-

based deep neural network, designed to predict the toxicity of small molecules for

drug discovery applications. The locally exploited graph structure allows the algo-

rithm to model the complex phenomenon of molecular properties and affects the

interpretability of our system. Furthermore, by incorporating global molecular fea-

tures, such as a molecular weight, SENN is able to predict new toxic molecules.

SENN shows satisfactory results on a widely used benchmark achieving an AUC-

ROC greater than the previous methodologies (RF [17], SVM [153], GIN [169],

GCNN [4], Weave [88]) for four datasets and also surpassing the other approaches

(GCNN [4], TopTox [166], Weave [88], feed-forward neural network (FFN)) for two

datasets in case of regression task.
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4.1 Introduction

In the previous Chapter we addressed the problem of classification and ap-

plied our solution to a molecular bioactivity prediction task. We have dis-

cussed how information about the physiochemical properties and structure

of the chemical compound can complement and enrich the molecular repre-

sentation and affect the model performance. However, another challenge in

machine learning and deep learning is the sample size. Overall, the prob-

lem is as follows: training a learning model needs enough data to prevent

overfitting and extract valuable insight to learn representations. As a con-

sequence, when one has not sufficient data for a learning task, it is hard to

use the model and make the model interpretable. Therefore, now it is time to

tackle the challenge of representation learning when the dataset is quite small

and biased. In the second contribution, we cast this problem into a problem

involving molecular data where the task is to predict molecular properties.

To specify, our next goal, which motivates this chapter, will allow to exploit

the molecular structure more carefully than the previous approaches since

we consider the fragments of the chemical compound. Here, we focus on the

toxicity prediction, both as a classification and as a regression task.

Indeed, drug development is considered as a fine balance of optimizing drug-

like properties that aim to maximize safety, efficacy, and pharmacokinetics.

Moreover, many studies indicate that poor toxicity remains the major lim-

iting aspect of drug discovery [69]. One strategy that has been widely em-

ployed is in vivo methodology. However, time-consuming wet-lab experi-

ments or simulations result in a limited number of chemical compounds with

validated properties [67]. In addition, it happens that they do not necessar-

ily scale between animal models and humans. To address these issues, there

has recently been a shift towards in vitro and to machine learning based in

silico techniques. Thus, numerous in silico approaches for predicting toxicity
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properties of molecules have been developed [101]. They range from data-

based methods such as quantitative structure-activity relationship (QSAR),

similarity searches [26], structure-based approaches [152, 2], to using algo-

rithms including Random Forests (RF) [120], and Support Vector Machines

(SVM) [23].

To foster further development and to better understand the underlying mech-

anisms of action of various toxic chemicals, we propose Subgraph Encoded

Neural Network (SENN) that investigates the role of atoms connections in

the molecular graph and global molecular features. Summarizing, our con-

tributions are the following.

• We primary focus on the challenge of exploiting a graph structure. To

this aim, we propose k-paths subgraphs, where a parameter k is used to

extract subgraphs from a single input graph.

• A set of global molecular features such as a molecular weight or a num-

ber of rotatable bond is selected to increase the model’s discriminative

capability.

• We report objective results against state-of-the-art methodologies. For

instance, on the AR toxicity dataset, our SENN obtains significantly bet-

ter AUC-ROC score (0.802± 0.006) than that by the well-known predic-

tion approaches including GCNN, SVM, and GIN.

4.2 Related Work

A promising way of extracting relevant patterns from the data to detect toxic

chemical compounds is using the concept of deep learning [85, 145]. Since a

main target of toxicological research are the set of steric and electronic frag-

ments that together produce a certain toxicological effect [91], deep learning

architectures seem to be well suited for this task. For this reason, a wide
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range of papers have explored methods such as Weave [88], TopTox [166],

GIN [169], GCNN [4] working directly on the molecular graph structure,

leading to state-of-the-art performance. In Weave, the Kearnes et al. pro-

pose a novel featurization approach that encodes both the local chemical en-

vironment and the connectivity of atoms in a chemical compound [88]. The

authors pay attention to connectivity that is represented by more detailed

pair features instead of just a simple neighbor listing. The dataset collection

used in the work contains over 38 M data points and includes targets from

many different biological classes. In fact, the experiments with graph con-

volution models do not beat all fingerprint-based methods. However, they

demonstrate that graph convolution models with optimizations may exceed

the performance of the best available fingerprint-based approaches. In turn,

Wu and Wei introduced an element specific topological descriptor together

with a set of extra descriptors based on established physical models and in-

tegrated them with a variety of advanced machine learning methodologies

[166]. The method leads to an improvement over current state-of-the-art out-

comes on a dataset related to the prediction of small molecular quantitative

toxicity. Next, Xu et al. proposed GIN, a GNN architecture under the neigh-

borhood aggregation framework [169]. The method was evaluated on bioin-

formatics datasets and social network datasets. The results reveal that GIN

beats or achieves comparable performance as the other state-of-the-art vari-

ants of GNNs. Another recent method is proposed by Altae-Tran et al. The

authors developed an iterative refinement long short-term memory (LSTM)

that is seen as a modification of the matching-networks architecture and the

residual convolutional network for predicting chemical property [4]. It is

worthy to note that their algorithm brings significant improvement on a wide

range of datasets meaningful for drug discovery, such as toxicity prediction

or adverse reactions detection. However, one of the key limiting factors in

the successful deployment of these approaches for toxicity prediction is the
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requirement for large datasets from which to train such complex models.

Research groups have been also approaching toxicity challenges through a

variety of machine learning techniques such as RF, SVM, and more. Pol-

ishchuk et al. employes RF to QSAR analysis of aquatic toxicity of chemi-

cal compounds [120]. Their model’s quality is assessed on two external test

datasets of 110 and 339 molecules. The results obtained indicate that RF can

be regarded as a very promising approach since it has comparable or bet-

ter statistical characteristics than the corresponding methodologies. On the

other hand, the group of Cao et al. constructed a SVM-based toxicity detec-

tion system for classifying five toxicity datasets [23]. The method measures

the similarities of chemical compounds by the substructure or fragment in-

formation hidden in the SMILES format. The results reveal that most toxic

behaviour is usually associated with structural attributes. Nevertheless, al-

though the available models are very helpful for drug design, more accurate

approaches can be developed for toxicity prediction.

4.3 Methodology

4.3.1 Problem formulation

The core input data structure considered throughout this methodology is the

graph G(V , E), a way to encode molecular data. As alluded to earlier, V de-

notes a set of atoms with |V| = n. Here, the graph is seen as a complete

undirected graph. Thus, it is assumed that all atoms have interactions with

others. This implies that the set of edges can be expressed as |E | = n(n−1)
2 .

Furthermore, in this setting, each edge E is associated with two types of at-

tributes: edge type and spatial information. However, in molecules, there

are very few types of chemical bonds. It is therefore reasonable for simplicity

to assume that each of these bonds eij ∈ E is associated with a parameter
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FIGURE 4.1: Overview of SENN. Our approach can be split into
seven steps. (1) Input. (2) Molecular attributes assignment. (3)
Subgraphs construction. (4) Graph convolution. (5, 6) Embed-

ding. (7) Features concatenation. (8) Prediction.
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weightij ∈ (0, 1 >∈ R. Throughout this chapter, our algorithm also operates

on extra physicochemical f eatures that describe the general properties of the

molecule. Depending on the task, our target is to construct a regressor or a

classifier to predict the toxicity value of molecules or to determine whether

the chemical compound is toxic or not, respectively. Formally, the problem is

defined as per Equation 4.1:

ψ(φ(G), g( f eatures)) = y, (4.1)

where y is the target property to predict, i.e. toxicity. If y ∈ R then we focus

on a regression task. A binary y ∈ {0, 1} indicates a binary classification

task. Moreover, the middle function φ : G → R
d is used to learn a molecular

graph vector representation and function g : f eatures→ R
f aims at learning

a dense representation of features. Then, ψ is used to convert the obtained

features to the final result.

4.3.2 Subgraphs encoding

Here, we introduce a subgraph encoding that is one of the key contribut-

ing factors in our SENN. This idea is motivated by our previous work [158],

where we uncovered the importance of random walks on graphs. Generally,

for a graph G, our goal is to associate the atoms and bonds of a molecule with

a d-dimensional real-valued vector space. In order to meet the challenge of

exploring a more efficient way to represent small chemical compounds, an

approach that we call k-paths subgraphs is employed. To specify, a value of

parameter k indicates how many neighboring vertices and edges should be

considered, looking from the current vertex, to form a graph. Intuitively, k

aims to affect the sensitivity of the final embeddings. In other words, the

lower k, the more meaningful the representation should be.
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In our approach, we denote a set of all neighboring vertex indices within no

more than k edges from the jth vertex by Ñ(j, k). Obviously, Ñ(j, 0) = j.

Formally, given the vertex vj, the k-path subgraph is defined as follows:

Gj,k(Vj,k, Ej,k), (4.2)

where

Vj,k = {vi|i ∈ Ñ(j, k)} (4.3)

and

Ej,k = {exy ∈ E|(x, y) ∈ Ñ(j, k)× Ñ(j, k− 1)}. (4.4)

Thus, vj,k is called the k-path source vertex in which outgoing paths are given.

Consequently, the k-path subgraph for the edge eij is formulated as:

E(ij),k = (Vi,k−1 ∪ Vj,k−1, Ei,k−1 ∩ Ej,k−1). (4.5)

4.3.3 Architecture of SENN

Model design

The entire architecture of SENN could be split into eight parts in a high-level

discussion (see Figure 4.1). The initial input to the SENN is a graph G that

represents a molecule (step 1). Thus, at the beginning, we assign an atom at-

tributes to each vertex and each edge is also associated with its weight (step

2). For example, the weight may equal the normalized multiplicity of the



4.3. Methodology 61

bond it refers to. Then, the graph G is preprocessed to obtain k-paths sub-

graphs, S = {G1,k,G2,k, . . . ,Gr,k}, where r denotes the total number of sub-

graphs (step 3). Each subgraph Gi,k is fed into a graph convolutional neural

network (step 4) and the embedding outGi
∈ R

t is returned (step 5 in Fig-

ure 4.1 and Equation 4.8). To obtain the output outG ∈ R
d from the set of

vectors associated with subgraphs embedding, we use the max pooling op-

eration and combine the obtained vectors by concatenation along the feature

dimension.

At the same time, extra physicochemical features are propagated through a

multilayer perceptron (MLP) block. In consequence, the chemical features

are embedded into a continuous vector space, outatt ∈ R
f .

In the next step, the vector outG is concatenated with the vector outatt ∈ R
f .

The combined representations form a feature vector, outcon ∈ R
d+ f , defined

as

outcon = outG ||outatt (4.6)

that is the input to a few linear layers with a dropout (step 7), and a final

task layer (step 8). In this setting, the final hidden layer is seen as the learned

representation outM.

Transition strategy

However, as it was mentioned, before the final task is performed, we deal

with the graph embedding operation and GCN. Therefore, firstly, for a given

graph G, all distinct k-path subgraphs are extracted (step 3). Then, a random

unit-norm vector is associated with each subgraph. And from that time on,

the embeddings assigned to vertices are updated by GCN’s layers. Specif-

ically, each vector is replaced with the average over all vectors in its neigh-

bourhood. Next, a linear transformation is applied. As a result, the computed
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vertex embeddings are averaged, and we obtain a t-dimensional graph rep-

resentation.

More formally, let us assume that a subgraph Gi,k has an adjacency matrix

A with m vertices. Additionally, suppose that Z∗ ∈ R
m×t denote the em-

bedding of the vertices. Hence, we can define the transition function as per

Equation 4.7. More precisely, given an input subgraph Gi,k with adjacency

matrix A consisting of m nodes (atoms), and the quantity X(0) ∈ R
m×t repre-

senting the t-dimensional embedding of the nodes, an l-layer GCN updates

node embeddings using the following transition function:

Z(j+1) = ReLU(ÃW(j)Z(j)|∀j ∈ {0, 1, . . . , l − 1}), (4.7)

where l refers to the GCN layer, Ã = D̂−
1
2 ÂD̂−

1
2 denotes the normalized

adjacency matrix. Moreover, Â = A + I and D̂ refers to the degree matrix of

Â. W(j) ∈ R
t×t is the weight-matrix of the jth-layer of the GCN.

Furthermore, as we mentioned earlier, the calculated embeddings from the

last layer of GCN are averaged, and the subgraph representation can be de-

fined as follows:

outGi
=

1
m
(

m

∑
i=1

Z(l)[i, :])T. (4.8)

SENN’s architecture has several compelling advantages. However, the sig-

nificant advantage includes interpretability, since it benefits both from bottom-

up and top-down approaches. Here, the bottom-up methodology is associ-

ated with k-paths subgraphs, where one can focus on fragments of the graph.

In turn, selection of global molecular features may be seen as the top-down

approach.
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4.4 Experiments and Results

All models were trained using the stochastic gradient descent (SGD) algo-

rithm with the ADAM optimizer [93]. The initial learning rate was randomly

chosen from 5e−5 to 5e−4. Different seeds were selected for all models to

verify the robustness of the models, and grid search was utilized for hyper-

parameter screening. In addition, the extra physicochemical features em-

ployed in step 5 are connected with the selected general attributes of chem-

ical compounds. They include the features extracted by ChemoPy [24] such

as a molecular weight or a number of rotatable bonds. In the experiments,

we compared our model with five state-of-the-art models, including both tra-

ditional machine learning approach and deep learning methodology, i.e. RF

[17], SVM [33], GIN [169], Weave [88], and GCNN [4]. We evaluate statisti-

cal significance using a one-sided Wilcoxon signed-rank test. In addition, we

claim that the results are statistically significant for a p-value less than 0.05.

Here, in Subsection 4.4.1 we provide more insight into the datasets. Then

the results of the comparison of our algorithm and other models are given.

The performance of the classifiers is evaluated by calculating the AUC-ROC.

In turn, the performance of created regression models was evaluated by the

root mean square error (RMSE) defined as follows:

RMSE =

√
1
n

n

∑
i=1

(yi − ŷi)2,

where n refers to the number of samples, yi is the observed value for the ith

observation, and ŷi is the predicted value.

Furthermore, the means and standard deviations of the AUC-ROC and RMSE

scores are measured by five independent trials.
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TABLE 4.1: List of assays used for this study.

Dataset Name Description Total
(unique
molecules)

AR androgen receptor 9946
(8052)

AhR aryl hydrocarbon receptor 8713
(7260)

AR-LBD androgen receptor, luciferase 9105
(7433)

Aromatase cytochrome P450 enzymes 7654
(6494)

ATAD5 genotoxicity indicated by ATAD5 9635
(7800)

ARE nuclear factor (erythroid-derived 2)-like 2
antioxidant responsive element

7635
(6427)

ER estrogen receptor alpha 8227
(6864)

ER-LBD estrogen receptor alpha, luciferase 9327
(7712)

HSE heat shock factor response element 8684
(7151)

MMP mitochondrial membrane potential 7796
(6417)

p53 DNA damage p53 pathway 9172
(7469)

PPAR-gamma peroxisome proliferator-activated receptor
gamma

8718
(7141)

4.4.1 Data collection

In order to objectively demonstrate the advantages of our SENN, multiple

toxicity-related datasets are adopted for regression and classification tasks.

Classification task

The dataset was taken from the Tox21 Data Challenge [3] in both SDF and

SMILES formats. The data consists of approximately 12 000 compounds and

includes twelve different sub-challenges/tasks. Each sub-challenge relates to

the prediction of a different type of toxicity. They are grouped into two pan-

els: the “Nuclear Receptor Signaling Panel” (seven assays) and the “Stress
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TABLE 4.2: List of assays used for this study.

Dataset Name Total

LC50 823
LD50 7413
IGC50 1792
LC50-DM 353

Response Panel” (five assays). All assay endpoints are reported in Table

4.1. Please note that the Tox21 set contains duplicated records, i.e. the same

SMILES representation in spite of the different chemical compound name.

To identify these molecules, the Online CHEmical database and the Model-

ing environment platform [140] were used. The tool allows us to calculate

the INCHI [82] key structure hash to compare structures.

Regression task

We performed extra experiments using four regression-based toxicity data

sets [166]. These datasets, namely 96 h fathead minnow LC50 dataset (LC50

set), 48 h Daphnia magna LC50 dataset (LC50-DM set), 40 h T. pyriformis

IGC50 dataset (IGC50 set) and oral rat LD50 dataset (LD50 set), are presented

in Table 4.2.

4.4.2 Performance on the classification task

The detailed results, including the validation sets, are shown in Table 4.3.

Regarding the classification task, we compare the prediction performance of

our model (SENN) with the five benchmark models (RF [17], SVM [153] with

an RBF kernel, and Gradient Boosting (GB) [51] as implemented in Scikit-

learn [119], GIN [169], GCNN [4], Weave [88]). RF is run with 600 trees using

Morgan (ECFP) fingerprints. We measured the AUC-ROC scores of the test

sets to evaluate the prediction accuracy. It can be observed that the AUC-

ROC scores of the validation sets on all datasets are higher than those of the
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TABLE 4.3: AUC-ROC for validation sets. Our methodology
beats the other approaches in four cases.

Dataset SENN
(ours)

RF SVM GIN GCNN Weave

AR 0.816
±0.007

0.797
±0.006

0.772
±0.005

0.773
±0.006

0.803
±0.007

0.795
±0.006

Aromatase 0.837
±0.007

0.835
±0.006

0.865
±0.005

0.829
±0.007

0.851
±0.006

0.832
±0.007

ER-LBD 0.829
±0.005

0.820
±0.005

0.806
±0.006

0.792
±0.007

0.819
±0.006

0.823
±0.005

PPAR-
gamma

0.830
±0.008

0.869
±0.007

0.834
±0.007

0.818
±0.006

0.824
±0.006

0.806
±0.005

AhR 0.935
±0.007

0.903
±0.006

0.888
±0.007

0.901
±0.006

0.913
±0.007

0.895
±0.006

AR-LBD 0.856
±0.007

0.891
±0.008

0.860
±0.009

0.844
±0.007

0.871
±0.006

0.861
±0.007

ER 0.735
±0.006

0.758
±0.007

0.732
±0.006

0.702
±0.007

0.754
±0.006

0.731
±0.005

ARE 0.705
±0.008

0.832
±0.006

0.821
±0.008

0.803
±0.006

0.817
±0.006

0.793
±0.007

p53 0.834
±0.006

0.883
±0.007

0.861
±0.006

0.820
±0.008

0.859
±0.006

0.816
±0.006

MMP 0.939
±0.008

0.902
±0.009

0.906
±0.008

0.891
±0.006

0.911
±0.009

0.902
±0.006

HSE 0.789
±0.007

0.805
±0.007

0.827
±0.009

0.751
±0.005

0.794
±0.006

0.773
±0.007

ATAD5 0.855 ±
0.006

0.886
±0.007

0.841
±0.007

0.828
±0.007

0.842
±0.008

0.798
±0.006

test sets. As Table 4.3 reveals, SENN beats the competitive method in four

cases. Our model achieves an average AUC-ROC of 0.816 for AR (the sec-

ond highest score of 0.803 by GCNN), 0.829 for ER-LBD (the second highest

score of 0.823 by Weave), 0.935 for AhR (the second highest score of 0.913 by

GCNN), and 0.939 for MMP (the second highest score of 0.911 by GCNN).

Figure 4.2 shows the mean AUC-ROC scores and standard deviations on the

test sets for all datasets. Here, SENN achieves the highest score in four cases.

More precisely, for AR, ER-LBD, AhR and MMP our approach gets the AUC-

ROC of 0.802 ± 0.006, 0.813 ± 0.004, 0.902 ±, and 0.906 ± 0.004, respectively.

In turn, the second-best model achieves a score of 0.793 ± 0.004 (GCNN),
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TABLE 4.4: RMSE for validation sets (lower is better). Our
method achieves slightly better average RMSE scores on both

the IGC50 and LD50 datasets.

Dataset SENN
(ours)

FFN TopTox GCNN Weave

IGC50 0.452
±0.007

0.498
±0.007

0.461
±0.008

0.518
±0.006

0.504
±0.006

LC50 0.953
±0.006

0.890
±0.006

0.694
±0.009

0.993
±0.005

0.871
±0.005

LC50DM 0.882
±0.005

0.915
±0.008

0.839
±0.006

0.990
±0.007

0.848
±0.008

LD50 0.589
±0.008

0.647
±0.006

0.592
±0.006

0.641
±0.007

0.653
±0.006

0.806 ± 0.007 (GCNN), 0.900 ± 0.004 (RF), and 0.894 ± 0.006 (GCNN), re-

spectively. Please note that only the results on p53, AhR, HSE and ATAD5

are not statistically significant.

4.4.3 Performance on the regression task

For the regression tasks, the prediction performance of SENN is compared

with those of four other neural network-based methods: GCNN [4], TopTox

[166], Weave [88], and the feed-forward neural network (FFN). The detailed

results, including the validation sets, are described in Table 4.4. Undoubt-

edly, SENN achieves the best RMSE scores on both the IGC50 and LD50

datasets, i.e., 0.452 and 0.589, respectively. Interestingly, TopTox beats all the

models for LC50DM (RMSE of 0.839) but our approach outperforms GCNN

(RMSE of 0.882 vs. 0.990).

Figure 4.3 shows the RMSE and MAE scores on the test sets against the

IGC50, LC50, LC50DM and LD50 datasets. In case of IGC50 and LD50, our

approach reveals the best performance among the tested models, i.e. RMSE

of 0.415 ± 0.001, MAE of 0.301 ± 0.002, and RMSE of 0.557 ± 0.002, MAE of

0.431± 0.003, respectively. The results of the second-best approach are as fol-

lows: RMSE of 0.436 ± 0.001, MAE of 0.305 ± 0.001 (TopTox), RMSE of 0.568
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(A) AR, Aromatase, ER-LED, PPAR-gamma (higher is better)

(B) AhR, AR-LBD, ER, ARE (higher is better)

(C) p53, MMP, HSE, ATAD5 (higher is better)

FIGURE 4.2: The mean AUC-ROC scores and standard devi-
ations on test sets for all datasets. SENN achieves the high-
est score for AR (0.802 ± 0.006), ER-LBD (0.813 ± 0.004), AhR
(0.902 ± 0.005), and MMP (0.906 ± 0.004). Only the results on
p53, AhR, HSE and ATAD5 are not statistically significant. To
sum up, the high quality of our model makes it suitable for de-

ployment in leading edge toxicological research.
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± 0.001, MAE of 0.421 ± 0.002 (TopTox). Moreover, although for LC50DM

SENN performs worse than TopTox (RMSE of 0.807 ± 0.002, MSE of 0.593 ±

0.003) and Weave (RMSE of 0.822 ± 0.001, MSE of 0.675 ± 0.003), it is still

better than GCNN (RMSE of 0.973 ± 0.003, MSE of 0.942 ± 0.002). It shows

that all comparisons besides LC50 and LC50DM are statistically significant.

4.4.4 L loss

We run our training for a total of 100 epochs. Figure 4.4 shows loss curves

during training with the maximum training epoch set to 100 for AhR, Aro-

matase, ATAD5 and p53. Depending on the dataset, gaps between training

and the test may be observed which suggest the presence of overfitting. The

largest gap occurred for Aromatase (after 22 epochs) and ATAD5 (after 18

epochs). As illustrated, the overfitting issue observed above was eliminated

within 100 epochs.

4.4.5 Similarity validation

In order to systematically investigate the dependence of the prediction error

on the chemical compounds similarity, we plotted the prediction error as a

function of the average Tanimoto similarity of the individual molecules to

the rest of the training set (shown in Figure 4.5 and Figure 4.6). A correla-

tion between model error and average molecules similarity is observed. The

prediction error increases when the average similarity decreases between the

molecules, for which the compound score is predicted and the rest of the

training set molecules. This observation is related to the Similar Property Prin-

ciple which states that similar compounds are likely to have similar properties

[163].
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(A) IGC50

(B) LC50

FIGURE 4.3: The RMSE and MAE scores on the test sets against
the IGC50, LC50, LC50DM and LD50 datasets. For IGC50 and
LD50 SENN reveals the best performance: RMSE of 0.415 ±
0.001, MAE of 0.301 ± 0.002, and RMSE of 0.557 ± 0.002, MAE
of 0.431 ± 0.003, respectively. All comparisons besides LC50

and LC50DM are statistically significant.
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(C) LC50DM

(D) LD50

FIGURE 4.3: The RMSE and MAE scores on the test sets against
the IGC50, LC50, LC50DM and LD50 datasets. For IGC50 and
LD50 SENN reveals the best performance: RMSE of 0.415 ±
0.001, MAE of 0.301 ± 0.002, and RMSE of 0.557 ± 0.002, MAE

of 0.431 ± 0.003, respectively.
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(A) AhR (B) Aromatase

(C) ATAD5 (D) p53

FIGURE 4.4: SENN training and validation losses.

FIGURE 4.5: AUC-ROC vs similarity. One may notice a correla-
tion between our model performance and average molecules
similarity. In other words, SENN’s performance decreases
when the average similarity decreases between the molecules,
for which the compound score is predicted, and the rest of the

training set molecules.
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FIGURE 4.6: RMSE vs similarity. One may notice a correla-
tion between our model error and average molecules similar-
ity. In other words, SENN’s performance decreases when the
average similarity decreases between the molecules, for which
the compound score is predicted, and the rest of the training set

molecules.

4.4.6 Analysis of distribution of experimental and predicted

value

Table 4.5 and Figure 4.7 show the distribution of experimental and predicted

values on test subsets for the IGC50, LC50, LC50DM, and LD50 dataset. Our

analysis indicate that both TopTox and SENN come up with R2 values greater

than 0.7 except for the LC50DM which has R2 = 0.641 and R=0.628 in case of

TopTox and SENN, respectively. The lower correlation value for the LC50DM

dataset is probably due to the fact that we the number of compounds con-

tained in this dataset is very limited and we used a mixture of LC50 and

LC50DM dataset to train the model. IGC50, LC50 and LD50 have the R2

value of 0.764 , 0.731 0.712 for SENN, and 0.748, 0.745, 0.701 for TopTox. It

denotes they have almost equal capability in prediction of the real derivative

data through the nonlinear regression analysis.
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TABLE 4.5: RMSE for validation sets (lower is better).

Dataset TopTox SENN (ours)

IGC50 0.748 ±0.009 0.764 ±0.011
LC50 0.745 ±0.01 0.731 ±0.009
LC50DM 0.641 ±0.013 0.628 ±0.010
LD50 0.701 ±0.008 0.712 ±0.009

(A) IGC50 (B) LC50

(C) LC50DM (D) LD50

FIGURE 4.7: Confusion matrix. The R2 scores of both TopTox
and SENN are greater than 0.7 except for the LC50DM which
has R2 = 0.641 and R=0.628 in case of TopTox and SENN, re-

spectively.
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4.4.7 Interpretability of SENN

We now turn our attention to the interpretability of SENN. Therefore, four

toxic chemical compounds are randomly sampled from the Tox21 Challenge

dataset. Then we investigate chemical substructures which are relevant for

classification into toxic molecules (Figure 4.8). Herein, the Integrated Gradi-

ents (IG) feature attribution technique was employed [121].

FIGURE 4.8: Heatmaps for the atoms for four randomly se-
lected samples. Dark red colour indicates that these atoms are
responsible for a positive classification. SENN correctly iden-
tifies the chemical substructures (toxicophores) that may cause

toxicity such as hydrazones.

IG makes it possible to get feature attributions relative to an uninformative

baseline. In other words, it evaluates the extent to which each input feature

contributes to the output by computing an average partial derivative of each

feature as the input varies from the baseline to its final value.

In Figure 4.8, we demonstrate attributions produced by Integrated Gradients

on a few examples from the dataset. According to the explanations, certain

chemical groups obtain more positive attributions (marked in red) by IG,

and such an observation matches the ground truth. This means that SENN
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TABLE 4.6: Ablation study on the effect of removal of the global
physicochemical features. In general, the variant which only
learns the representation using fragments reveals a significant

drop of performance for all validation datasets.

Dataset SENN SENN without extra physicochemi-
cal features

AR 0.802 0.790
Aromatase 0.821 0.809
ER-LBD 0.813 0.802
PPAR-
gamma

0.821 0.815

AhR 0.902 0.895
AR-LBD 0.839 0.811
ER 0.710 0.697
ARE 0.790 0.782
p53 0.819 0.808
MMP 0.906 0.894
HSE 0.765 0.753
ATAD5 0.835 0.829

is able to identify a strong association. As the Figure 4.8 shows, it can be

noticed that our model is able to correctly identify the chemical substructures

(toxicophores) that may cause toxicity, such as hydrazones.

4.4.8 Ablation study

We also conduct ablation study to investigate the validity of key components

of SENN. As shown in Table 4.6, decoupling physicochemical features in the

learning framework yields a significant drop of performance for all datasets.

For instance, in the case of AR-LBD dataset, SENN returns AUC-ROC of

0.839 but its reduced version (without extra physicochemical attributes) achieves

AUC-ROC of 0.811. This evidence supports our claim that injecting chemical

domain knowledge into architecture improves model behaviour.

In the next experiment, we compare the performance of SENN with the method

introduced in Chapter 3, i.e. HybNN. Only for ER-LBD HybNN beats SENN

(see 4.9). It indicates that fragment-based approach employed in SENN helps
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to capture the molecular information.

FIGURE 4.9: Comparing SENN and HybNN (presented in
Chapter 3). Results are the mean values for the test set after
five independent trials of training. Only for ER-LBD HybNN
beats SENN which suggests that fragment-based approach em-

ployed in SENN helps to capture the molecular information

4.5 Conclusion

In this work, we proposed Subgraph Encoded Neural Network (SENN) to

enable more accurate predictions of molecular properties. In SENN, we em-

ploy a subgraph embedding component that is fed into graph convolutional

networks to improve the learning process. We further boost the expressive
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power of SENN by proposing a set of chemical attributes that enhance in-

formation associated with molecular physicochemical features. Extensive

experiments demonstrate that SENN achieves remarkably superior perfor-

mance over the state-of-the-art models on various publicly available regres-

sion and classification benchmarks.



79

Chapter 5

Deep Representation Learning of

Graphs and Sequences

This chapter presents our third contribution. We apply the representation learn-

ing framework to the task of predicting drug-target interactions in heterogeneous

networks. Here, a new model, namely Triplet Encoded Neural Network (TENN),

comprised of three main components is presented. One of the components learns

low-dimension vector representations for target that is a protein sequence, by ex-

tracting relevant information from the characters string. In turn, the other two units

learn two representations of chemical compounds. This is done by well-designed

approaches based on a graph attention network (GAT) and a continuous bag of

molecular words. Our experimental results demonstrate the ability of our method to

achieve competitive prediction performance against existing state-of-the-art models

(KronRLS [117], DeepCPI [149], SimBoost [71], DeepDTA [115]) over biologically

plausible drug-target interaction datasets.
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5.1 Introduction

As we have seen in Chapters 2, 3 and 4, challenges such as detection of bioac-

tive chemical compounds, as well as molecular properties prediction includ-

ing toxicity, are all examples of drug discovery tasks. Nevertheless, among

computational approaches to drug development, the scientific community

has already made tremendous progress in the identification of drug-target

interactions (DTI) [176]. DTI is significant, especially for finding effective

and safe treatments. It is also worth to mention that majority of the existing

DTI works have formulated the DTI prediction task as a binary classification.

In the pharmaceutical sciences, a drug target is a chemical compound that

is capable of binding to drugs and producing effects on cells. Proteins are

considered as obvious molecular targets [49]. Of course, in the literature,

there is a great variety of in silico proposals on DTI prediction. Studies have

examined several ligand-based [89] and docking-based methods [46]. For

instance, KronRLS [117] uses the Kronecker Regularized approach for min-

imizing a cost function and employs the similarity matrices for drugs and

targets to obtain the results. Another well-known approach is SimBoost [71]

that is based on the assumption that molecules with similar structures are

more likely to reveal similar effects. In their work, He et al. made attempts

to predict binding affinity scores with a gradient boosting machine by using

feature engineering to represent drug-target interactions. However, tradi-

tional machine learning methods are not commonly used at present to pre-

dict DTIs, as researchers have found a few relevant drawbacks. Firstly, these

approaches usually need a large number of known binding data. In conse-

quence, the prediction results are not satisfactory when one works with a

small amount of known data. Secondly, the performance is much worse if

the three-dimensional structures of the target protein are not available.



5.2. Related Work 81

To address the aforementioned shortcomings, a novel DTI prediction method-

ology, called Triplet Encoded Neural Network (TENN) is introduced. TENN

aims to identify the drug-target interactions by exploiting the existing topo-

logical structure of drug molecules, along with modeling spatio-sequential

information. To sum up, here are three major contributions:

• We propose a learning-based method for drug-target interaction pre-

diction that contains three components.

• We show that if one extracts the global information of protein sequences

and drug compounds, it leads to not only an improvement in the effi-

ciency of DTI, but enables to detect more complex interactions.

• Based on our DTI prediction task, the results indicate that TENN is

better than the other four state-of-the-art approaches.

• The core advantage of TENN is the ability to handle the low-dimensional

feature vectors and predict the probability of interaction between each

pair of drugs and proteins.

• Although our research on TENN focuses on the application to the prob-

lems in chemistry, the proposed methodology is universal and could be

employed to model various interactions in the world.

5.2 Related Work

Lately, the availability of pharmacological databases coupled with advances

in computational resources have engendered the growth of deep learning-

based methods dealing with drug-target interaction prediction. Take, for

instance DeepDTA, in which the authors model protein sequences and com-

pound 1D representations with convolutional neural networks (CNNs) [115].
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FIGURE 5.1: TENN architecture. The main novelty is the het-
erogeneous network that integrates a variety of drug and pro-
tein related information sources by employing three separate
units (see Figure 5.2, Figure 5.4 and Algorithm 1). Each unit
learns a representation. The three representations are then com-
bined and fed into a set of linear layers with dropout to make a

final prediction.
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This technique has revealed significant performance on a kinase family bioas-

say dataset. What is more, according to Öztürk, the more data, the hid-

den information is captured better. Nevertheless, DeepDTA transforms drug

compounds and protein sequences into a corresponding string representa-

tion that is not necessarily an effective way to characterize molecules. An-

other example is DeepCPI [149]. To be more precise, Tsubaki et al. propose

a deep learning-based method for modeling DTI by using latent semantic

analysis and natural language processing techniques to learn feature embed-

dings. They used two sets of compound-protein interactions datasets for hu-

man and C.elegans. The experiments confirm that the methodology based

on convolution and graphs can achieve competitive or higher performance

than the baseline approaches. However, utilizing a conventional convolution

may lead to the loss of protein structure information. In addition, although

several aspects have been addressed, Tsubaki does not also exploit enough

the topological structure of molecules. On the other hand, Pahikkala et al.

propose the Kronecker Regularized Least Squares method that employs 2D

based compound similarity-based representations of the drugs and Smith-

Waterman similarity representation of the targets [117]. Furthermore, the

authors have pointed out four factors that either alone or together with the

other factors bring about considerable differences in the prediction results.

Despite the promising predictive performance of Pahikkala’s model, it de-

pends on the nature of feature engineering employed.

Even though in recent years numerous applications of these methodologies

have been seen, they still may be improved. One may notice that many tech-

niques allow to capture invariant local patterns but do not take into consid-

eration the long-term dependencies, including relationship between objects

that are far apart each other. Moreover, many methods often fail to predict a

potential interaction for given new targets. Therefore, more significant efforts
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have to be made to explore the extent to which the novel approaches promote

solutions that contain diverse exploration strategies of chemical compounds.

5.3 Methodology

We propose a learning-based method, namely TENN, to predict drug-target

interactions. The workflow of TENN is presented in Figure 5.1. First of

all, the heterogeneous network was constructed by integrating a variety of

molecule- and protein-related information sources in a form of three compo-

nents. Since we use two different approaches to extract meaningful features

from that chemical compound, we refer to it as a (hypothetical) drug and just

a compound. To be more precise, TENN operates on tokens in both drug and

protein sequences and on a graph of a molecule. Each component is designed

to calculate a distributed representation of the input. Therefore, component

no. 1 returns outdrug ∈ R
F, component no. 2 yields outtarget ∈ R

F and the

output of component no. 3 is outcompound ∈ R
F. In the second step, the F-

dimensional feature vectors of drugs, molecules, and proteins are combined

(see step 5 in Figure 5.1) and outputs into a single feature vector ycout ∈ R
3F.

Finally, three linear layers with a dropout layer after the first two are added

(see step 4 in Figure 5.1). In the last part, we predict the association between

a chemical compound (possible future drug) and a protein.

5.3.1 Component 1: drug representation

We break each ligand SMILES into a ’sentence’ comprising biological sub-

words (chemical words) in an overlapping manner. To be more precise, k-

mers are extracted, where k = 4 [116]. To do this, we traverse a window

of length k over the SMILES string of a ligand and extract all overlapping

SMILES substrings of length k. Consequently, each k-mer is seen as a chem-

ical word {s1, s2, . . . , sL}, where L is the number of possible k-mers for the
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selected molecule. For example, let us assume the SMILES string for Ampi-

cillin is as follows:

“CC1(C(N2C(S1)C(C2=O)NC(=O)C(C3=CC=CC=C3)N)C(=O)O)C”. When one

splits it, the total number of possible 4-mers is 47.

FIGURE 5.2: TENN: component 1. Each ligand SMILES is bro-
ken into a ’sentence’ comprising biological subwords (chemical
words) in an overlapping manner. Then, the subwords embed-
dings are learnt. The obtained vectors are averaged and fed into

two linear layers.
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Then, the Word2Vec [109] algorithm is employed, continuous-bag-of-words

(CBOW) approach, to learn embeddings for these chemical words by train-

ing on approximately 1.7M canonical SMILES strings that are collected from

the ChEMBL [108] database. Finally, the obtained vectors {sv1, sv2, . . . , svL},

where svi ∈ R
dim are averaged and the computed vector average can be

represented as {w1, w2, . . . , wm}, where wi =
1
L ∑

L
j=1 svji, and m denotes the

fixed-length of the feature vector (average calculation step in Figure 5.2). If

L < m, zero is appended at the end.

Then, the computed feature vector is fed into a neural network that is com-

posed of two linear layers with batch normalization (as shown in Figure 5.2).

The output is drug representation, outdrug ∈ R
F.

5.3.2 Component 2: target representation

Component 2 comprises two pathways which are called unit A and unit B. In

the end, component 2 outputs the protein representation as the feature vector

outtarget ∈ R
F.

Protein representation A single protein is usually represented as a sequence

of 20-letter alphabets which are associated with a particular amino acid. There-

fore, here, a protein is a sequence of amino acids.

Unit A: Our goal is to transform each protein sequence into a vector represen-

tation. Therefore, to learn feature representations, Word2vec [109] is adopted.

According to our methodology, each amino acid is treated as a word and a

protein sequence is seen as a sentence. In consequence, 557000 protein se-

quences from the Swiss-Prot database [6] are fed into the Word2vec model to

obtain the representation of different biophysical and biochemical properties

that are supposed to be hidden in protein sequences. It is assumed that the

output of the Word2vec model are amino acid feature vectors. As a result,
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each protein sequence in our approach is represented as a concatenation of

amino acid vectors (see Figure 5.3).

FIGURE 5.3: TENN: component 2 (unit A). Each amino acid is
seen as a word and a protein sequence is treated as a sentence.
Therefore, the protein sequences are fed into the Word2vec
model to obtain the representation. Finally, each protein se-
quence is represented as a concatenation of amino acid vectors.

FIGURE 5.4: TENN: component 2 (unit B). First, an embedding
vector with a fixed size from unit A is used to describe a protein.
Second, the unit B delegates execution of linear layer, a stack of
linear layer with batch normalization and last linear layer. Then

the final resprentation outtarget is returned.

Unit B: The model from unit A is fetched to create word embeddings for

proteins used to train unit B. These vectors are employed as input for unit B.
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In turn, unit B consists of a linear layer, two pairs of linear layer with batch

normalization and an extra linear layer. The output stores the final vector

representation, outtarget ∈ R
F (see Figure 5.4).

5.3.3 Component 3: compound representation

According to our method, the input to this component is a graph. Therefore,

the RDKit Open Source software [97] was employed to transform the SMILES

string of a chemical compound into a molecular graph G = (V ; E), where the

vertex vi ∈ V represents the ith atom, and eij ∈ E corresponds to the chemical

bond between the atom vith and the atom vjth. After the transformation, the

graph G is passed through by a graph attention network (GAT) [154]. How-

ever, in order to use GAT with molecular graph, one has to encode atoms to

a d-dimensional vector. Then, we aggregate the information from the k-paths

subgraph 4.3.2 for each atom in the molecular graph. The pseudo-code of

this methodology is shown in Algorithm 1.

The approach works as follows. Firstly, we compute an initial vector for each

atom (line no. 4). Then, the Weisfeiler-Lehman-based (C-WL) algorithm is

employed [80]. In the initial version, C-WL calculates embedding vectors for

each combination of an atom and its neighbors. We employ this concept to

provide a vector representation for the atoms. However, we extend C-WL

by incorporating the k-path parameter. In consequence, depending on the

value of k (line no. 5) more or less neighbors are considered. Then, these two

embedding vectors are combined by concatenation (line no. 6). The obtained

node embedding V′ = {v′1, v′2, . . . , v′|V|}, where v′i ∈ R
d3 , are subsequently

fed into a graph attention network (GAT) module. In the end, we are able to

gather atom vectors V′′ = {v′′1 , v′′2 , . . . , v′′|V|}, where v′′i ∈ R
F to obtain an F-

dimensional representation of the molecule by summing up the node vectors

(line no. 9).
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Algorithm 1 Graph Attention Network (GAT) for the compound representa-
tion

1: Input: Molecule as a graph G = (V , E), length k, Ñi - the neighboring
nodes of ith atom, W ∈ R

F×d3 , αij - attention coefficient between the ith
atom and the jth atom

2: Initialize: outcompound ← [0, . . . , 0].
3: for each atom a in molecule do
4: anr ← G.get_node_representation(a) ∈ R

d1

5: akr ← G.get_k_distance_nodes_representation(a, k) ∈ R
d2

6: v′a ← Concatenation(anr, akr) ∈ R
d3

7: for each atom a in molecule do
8: v′′a = σ(∑j∈Ña

αajWv′j)

9: Output: outcompound ← ∑ a; ∀a ∈ V ′′

5.4 Experiments and Results

5.4.1 Data collection

In order to evaluate the proposed methodology, TENN was tested on the

drug-target interactions prediction task. Specifically, the data were down-

loaded from BindingDB [103] database that contains experimentally deter-

mined binding affinities on the interactions of target proteins with small,

drug-like molecules. The database stores 1756093 binding data for 7371 pro-

tein targets and 780240 small chemical compounds. To clean up the data,

a few steps were taken. Firstly, to ensure relevance of the properties, we

excluded inorganic compounds and protein targets with sequence identity

more than 75%. Secondly, we removed interactions samples where the IC50

value was missing or equated more than 300 nM. Our goal was to leave com-

pounds that are most likely of being able to modulate a target with a small-

molecule drug. Note that IC50 denotes the effectiveness of a drug in inhibit-

ing the growth of a specific enzyme. The less the value, the more effective the

drug may be. As a result, we obtained 36014 small molecular drugs and 2,099

targets which gives more than 75 million DTI pairs. Please note that 83676

pairs are known as positive DTIs, but the remaining are undetermined. In
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TABLE 5.1: Dataset details.

Dataset name #Targets #Drugs #Interactions

dataset1 3839 6068 15434
dataset2 3839 6068 3348
dataset3 3839 537 1735
dataset4 160 6068 264
dataset5 160 537 37

consequence, we randomly selected 83676 drug-target pairs from the second

set of pairs and treated them as negative data.

Furthermore, we also obtained known DTIs from DrugBank [164]. The date

of May 15, 2016 was the factor that separated the data. Thus, we split the

data into two groups, i.e. ’new’ and ’old’. The new data is the data that

appeared after the chosen date, and the remaining data is assumed as old.

Finally, the data was grouped into five datasets labeled as positive as listed

in Table 5.1: (dataset no. 1) comprised of old drugs, old targets and their old

interaction pairs; (dataset no. 2) comprised of old drugs, old targets and their

new interaction pairs; (dataset no. 3) comprised of new drugs, old targets and

their interaction pairs; (dataset no. 4) comprised of old drugs, new targets

and their interaction pairs; (dataset no. 5) comprised of new drugs, new

targets and their interaction pairs. Dataset no. 1 was selected for training,

and the remaining four datasets were employed for evaluation of TENN. In

turn, in order to select the negatively labeled dataset, we generally followed

the same steps as in the case of the BindingDB.

5.4.2 Evaluation

We compare TENN with state-of-the-art models such as KronRLS [117], Deep-

CPI [149], SimBoost [71], and DeepDTA [115] in four datasets mentioned in

Subsection 5.4.1. Figure 5.5 reports the average AUC-ROC (AUC), Precision

(Pre), Recall (Rec), Accuracy (Acc), and F1 scores over 3 runs with different
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random seeds on four datasets, as follows:

Acc =
TP + TN

TP + TN + FP + FN
(5.1)

Pre =
TP

TP + FP
(5.2)

Rec =
TP

TP + FN
(5.3)

F1 = 2
Pre ∗ Rec

(Pre + Rec)
(5.4)

where where TP is true positive, TN is true negative, FP is false positive, FN

is false negative.

Moreover, we evaluate statistical significance using a one-sided Wilcoxon

signed-rank test. If a p-value is less than 0.05, it indicates the outcomes are

statistically significant.

5.4.3 Performance comparison with other models

Figure 5.5 shows the comparison of our method and the other machine learn-

ing techniques in terms of different measures such as AUC-ROC (AUC), Ac-

curacy (Acc), Precision (Pre), Recall (Rec) and F1. One can find that our

method outperforms the competing methods. In case of dataset no. 2, TENN

achieves AUC-ROC, Accuracy, Precision, Recall and F1 of 0.908± 0.004, 0.885

± 0.004, 0.883 ± 0.004, 0.815 ± 0.004 and 0.892 ± 0.007, respectively. The

second highest AUC-ROC, Accuracy, F1 result has SimBoost (0.884 ± 0.004,

0.874± 0.005, 0.885± 0.003). As far as dataset no. 3 is considered, our model

also reveals competitive performance with scores 0.899 ± 0.004 (AUC-ROC),
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0.738 ± 0.004 (Accuracy), 0.732 ± 0.003 (Precision), 0.689 ± 0.004 (Recall)

and 0.884 ± 0.007 (F1). For instance, SimBoost, which is the second-best ap-

proach, achieves AUC-ROC = 0.884 ± 0.004 and F1 = 0.875 ± 0.004. More-

over, TENN beats other methods for dataset no. 4, where it has 0.764 ±

0.005 (AUC-ROC), 0.743 ± 0.004 (Accuracy), 0.755 ± 0.003 (Precision), 0.737

± 0.004 (Recall), 0.748 ± 0.005 (F1). To compare, KronRLS that can be treated

as the second-best method, shows AUC-ROC of 0.748± 0.004, and F1 of 0.735

± 0.004. Last but not least, is dataset no. 5, where TENN achieves AUC-

ROC, Accuracy, Precision, Recall and F1 of 0.797± 0.005, 0.667± 0.004, 0.779

± 0.003, 0.725 ± 0.004, and 0.744 ± 0.005, respectively. Here, DeepCPI and

reveals the second-best performance with AUC-ROC of 0.789 ± 0.003, and

F1 of 0.727 ± 0.004. In addition, all comparisons besides dataset no. 4 are

statistically significant.

To sum up, our approach performs the best, and we find that there are at least

two reasons behind it. First of all, in contrast to the other methods, TENN

does not rely heavily on hand-crafted features. Secondly, we consider both

topological structures and local chemical context information.

We also used ROC curves to measure the comprehensive index between the

false positive rate and the true positive rate continuous variable. The goal

was to investigate why DeepDTA performs significantly worse than our ap-

proach. Figure 5.6 illustrates the ROC curve of the TENN predictor and

DeepDTA predictor. As it was mentioned earlier, our averaged AUC-ROC

reaches 0.899, while DeepDTA achieves 0.847. We interpret the worse perfor-

mance of DeepDTA is caused by the fact that the method is optimized for a

densely constructed dataset with specific protein class (is optimized for KIBA

[144] and Davis [37] dataset), while the training datasets used in this study

cover various protein classes.
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(A) Dataset no. 2

(B) Dataset no. 3

(C) Dataset no. 4

FIGURE 5.5: The performance of TENN over all datasets. It may
be observed that TENN outperforms the other approaches. A ll
comparisons besides dataset no. 4 are statistically significant.
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(D) Dataset no. 5

FIGURE 5.5: The performance of TENN over all datasets. It
may be observed that TENN beats the other approaches.

FIGURE 5.6: The ROC curve of TENN and DeepDTA. Our aver-
aged AUC-ROC reaches 0.899, while DeepDTA achieves 0.847.
TENN performs better since it is optimized for various data

sources.
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(A) Dataset no 2. (B) Dataset no 2.

(C) Dataset no 3. (D) Dataset no 3.

(E) Dataset no 4. (F) Dataset no 4.

FIGURE 5.7: Figure 5.7a, 5.7c, 5.7e and 5.7g show how the
embedding size 3F is related to the length of final repre-
sentation affects the predictive performance of TENN. Our
model benefits from a large embedding size. Figure 5.7b, 5.7d,
5.7f, and 5.7h investigate the impact of dropout regularization.
The dropout substantially increases the overall performance of

TENN.
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(G) Dataset no 5. (H) Dataset no 5.

FIGURE 5.7: Figure 5.7a, 5.7c, 5.7e and 5.7g show how the em-
bedding size 3F related to the length of final representation af-
fects the predictive performance of TENN. Our model benefits
from a large embedding size. Figure 5.7b, 5.7d, 5.7f, and 5.7h
investigate the impact of dropout regularization. The dropout

substantially increases the overall performance of TENN.

5.4.4 Ablation study

We perform some ablation studies to investigate the impact of an embedding

size and a dropout ratio in TENN. Figure 5.7 shows the performance of our

default method and its variants.

• Embedding size of TENN. The embedding size 3F affects the represen-

tation ability of TENN. We vary 3F within {33, 63, 129, 255}. As shown

in Figure 5.7a, 5.7c, 5.7e, and 5.7g TENN benefits from a large embed-

ding size. The results on other scenarios have similar trends.

• Dropout regularization in TENN. Figure 5.7b, 5.7d, 5.7f, and 5.7h show

the performance of TENN vs. a dropout ratio. Our results show that

dropout offers better performance. In fact, depending on the dataset,

the dropout rate must be tuned. For instance, using the dropout ratio

ρ ≈ 0.4, TENN achieves a favorable AUC-ROC for the dataset no. 3.
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5.5 Conclusion

In this chapter, we introduced a novel methodology, Triplet Encoded Neural

Network (TENN), for drug-target interactions prediction. The well-designed

model employs three units to learn the representations of the drug, target and

chemical compound level by level, and then make prediction with overall

interaction representation. The experimental results on publicly available

datasets demonstrated the competence of our method.
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Chapter 6

Afterword

A tree that is unbending, is easily broken.

—Lao Tzu

A person with a new idea is a crank until the idea succeeds.

—Mark Twain

6.1 Conclusion

In this Thesis, we have presented various combinations of representation

learning models to enhance drug discovery.

First, we tackled the problem of drug bioactivity prediction (Chapter 3). By

a well-designed architecture that integrates two different concepts, such as a

stack of convolutional layers, and an RNN based on bidirectional gated re-

current unit (BiGRU), we were able to obtain a final representation. Also, we

employed a collection of molecular features that aim to capture the structure-

property relationships. This allowed us to build a classifier to detect active

and inactive chemical compounds.

In Chapter 4, we identified various shortcomings of existing approaches for
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toxicity prediction in which the key limiting factor, among others, is the re-

quirement for large datasets from which to train complex models. By exploit-

ing a graph structure the learning process was improved. Furthermore, we

showed that incorporating a set of global molecular features such as a molec-

ular weight or a number of rotatable bond increases discriminative capability

of our model for classification and regression tasks.

Lastly, we developed deep learning-based model for drug-target interactions

prediction (Chapter 5). The constructed architecture exploits the topological

structure of drug molecules, along with modeling spatio-sequential informa-

tion. More specifically, we integrate three components that enable us to learn

low-dimension vector representations for a target that is a protein sequence,

and vector representations for a chemical compound.

6.2 Perspectives

In this Thesis we motivated, proposed and investigated a few novel solutions

to the problems related to cheminformatics that focus on different aspects of

representation learning. While our methodologies bring progress, important

open challenges remain.

First of all, we think that future work on explanatory techniques would be

necessary for proper usage of the presented approaches in practice. More

investigation into how explanations can provide a complete view of the out-

put returned by the models would also be valuable. In addition, robustifying

setting-prediction to provide faithful insight into model’s output generation

process would also be an interesting direction of research.

Secondly, the introduced algorithms can further be improved. A possible

future direction could be the use of the few-shot learning concept that was

widely explored in computer vision [50, 92]. Specifically, the idea would be
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to pre-train a graph neural network to learn molecular embeddings. Then,

a meta-learning framework could be developed to transfer knowledge from

various prediction tasks and get a well-initialized model which could be fast

adapted to work with few-shot data samples. Moreover, it would be worth-

while exploring architectures that combine both graph and sequence model

to learn representation for the meta-learning process.

Another challenge posed for deep learning-based research in drug discovery

research is the lack of data for reliable model development. Due to the fact

that the wet-lab experiments in this area are time-consuming and expensive,

most of the research only focuses on limited available data sets. One way to

tackle this problem is to use reliable and widely validated simulation tools to

generate huge amount of data.

All of these can be seen as challenges with the potential to not only keep

scientists engaged for the years and decades to come, but also to show that

the strength and competence in science combined with academic breadth and

interdisciplinarity may benefit society as a whole.
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Appendix A

Background: Deep Learning

On being asked, “How is Perceptron performing today?” I am often

tempted to respond, “Very well, thank you, and how are Neutron and

Electron behaving?”

—Frank Rosenblatt

This chapter first presents a thorough introduction to the most relevant classes

of deep learning models to build a ground for our work. In this context, we

start with discussing state-of-the-art feed forward architectures and tempo-

ral neural models. Then, the milestones of supervised learning are briefly

discussed.

A.1 From shallow neural networks to deep archi-

tectures

Neural Networks (NNs) have dramatically improved the state-of-the-art in

various different artificial intelligence tasks. Moreover, they have changed

our daily life. Take for instance conversational interfaces/assistants such as

Apple’s Siri, Amazon Alexa, Microsoft’s Cortana or Google Assistant whose
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presence helps users in many activities, including making phone calls, play-

ing music and shopping online. In practice, the impact of neural networks is

noticeable everywhere. They were applied to several application problems

such as text-to-image [123] or text-to-speech [56, 139] processing. Greenspan

et al. [63] presents remarkable improvements thanks to neural networks in

medical imaging. For instance, Ben-Cohen et al. used this methodology for

liver segmentation and lesions detection [10]. Neural Networks have become

relevant for the more general fields of image processing [135, 171], computer

vision (CV) [27], natural language processing (NLP) [43, 173], autonomous

driving [28, 105], face recognition [134, 42], text understanding [84], art [83],

optics [64], speech recognition [62], acoustic modeling [111], or anomaly de-

tection [96]. To summarize, there is a strong push toward developing better

architectures based on neural networks that have demonstrated vital success

in the science and industry.

The history of neural networks began in the mid 1960’s, and many people

have contributed toward their development over the years. In fact, the ad-

vent of this technique is inspired by the architecture and the dynamics of

networks of neurons in the mammalian brain [107]. For instance, the history

of convolutional neural networks that are discussed in Section A.4 dates back

to the mid-twentieth century when two major cell types in the primary visual

cortex of cats were discovered by Hubel and Wiesel [76, 77]. They observed

that complex cells receive input from many simple cells and thus have more

spatially invariant responses. However, while some scientists were focusing

on the biological system in the natural environment, in 1958 Rosenblatt intro-

duced the Perceptron with the context of the vision system [127]. However,

working with perceptron had been found to be difficult in practice by the

late 1980. As Minsky and Papert highlighted in their work [110], perceptron
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is limited to represent only linear decision boundaries, but not XOR. There-

fore, traditional machine learning algorithms, such as kernel machines [153,

133], have become increasingly successful and popular. Indeed, Rumelhart et

al. demonstrated in their paper that perceptrons can be trained by gradient

descent as late as in 1986. This was considered as a breakthrough in per-

ceptron learning. Then, there were some early successes of neural networks

with more layers, but these methods were not widely used. In the new mil-

lennium, deep neural networks (DNNs) have finally attracted wide-spread

attention, mainly by the work of Hinton et al. [72]. The authors empirically

proved that the proper initialization of DNNs enables to find good solutions

in a reasonable amount of time. This was soon followed by a few deep neural

network-based algorithms that have won many official international compe-

titions. The next major demonstration of the power of DNNs came in 2012

when it was shown that a neural network trained using over a million real-

world images [41] could perform classification into one of a thousand object

categories [95].

A.2 Neural Networks as Function Approximators

In our work models that can be formulated as differentiable functions fθ :

X → Y parameterized by θ ∈ Θ are taken into consideration. Specifically,

the goal is to find this kind of functions by learning parameters θ from a set of

training examples T = {(xi, yi)}, where xi ∈ X denotes the input and yi ∈ Y

some desired output of the ith training sample. For example, xi could be a

molecule represented by its chemical formula, and yi may be a corresponding

bioactivity score (e.g. true or false).

Also, a loss function is defined L : Y × Y × Θ → R to measure the gap

between a provided output y and a predicted output fθ(x) on an observation

x, given a current setting of parameters θ. To be more precise, we want to
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find those parameters θ∗ that minimize the discrepancy on a training set.

This leads to the following mathematical formula of our learning problem:

θ∗ = arg min
θ

1
T ∑

(x,y)∈T

L( fθ(x), y, θ). (A.1)

Here, we might not only want to measure the gap between given and pre-

dicted outputs, but also use a so-called regularizer on the parameters to im-

prove generalization. Therefore, L is also a function of θ. Please note that

in the remainder of this Thesis, we often omit θ in L for clarity. In addition,

since both L and fθ are differentiable functions, it is possible to use gradient-

based optimization methods including Stochastic Gradient Descent (SGD)

[124] and its numerous variants [122, 93] to iteratively update θ based on

mini-batches B ⊆ T of the training samples. This step can be defined as:

θt+1 = θt − η∆θt

1
B
L( fθ(x), y, θt), (A.2)

where ∆θ is the differentiation operation of the loss with respect to parame-

ters for the current batch at time step t, and η refers to a learning rate.

In addition, in order to be able to learn from data, one has to calculate the gra-

dient of a loss with respect to all parameters that appear in the given model.

Since it is assumed that all operations in the computation graph are differen-

tiable, the Chain Rule of calculus can be recursively applied.

A Chain Rule in the calculus Let z = g(y) = g( f (x)) with g : R
n → R

m and

f : R
l → R

n be a composite function. Then, the chain rule is employed to

decompose the calculation of ∆xz, i.e., the gradient of the entire computation

z with respect to x. Thus, the calculation takes the form:
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∆xz = (
∂y

∂x
)T∆yz. (A.3)

Please note that ∂y
∂x refers to the Jacobian matrix of f , which is the matrix of

partial derivatives. ∆yz denotes the gradient of z with respect to y.

A.3 Shallow neural networks

In general, a shallow neural network consists of a linear operation followed

by a nonlinear function. More precisely, the basic idea of a neuron model is

that we have an input data x ∈ R
n0 , a bias b ∈ R

n1 , the weights W ∈ R
n1×n0 ,

and a non-linear function g(·). During the training procedure the parameters

are updated with the goal of minimizing a pre-defined loss function L(ŷ, y),

such as the cross entropy loss. Figure A.1A provides a graphical interpreta-

tion of the computational unit employed in neural networks.

However, in order to build neural networks, the units need to be connected

with each other in a layered structure that allows the input data to be grad-

ually processed as it propagates through the network. Thus, the simplest ar-

chitecture is a feedforward structure. In addition, to update the parameters

a backpropagation process is used, as shown in Figure A.1B. In turn, back-

propagation employs the Chain Rule A.2 to recursively define the efficient

calculation of gradients of parameters and inputs in the computation graph.

This allows to avoid recalculation of previously calculated expressions.
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FIGURE A.1: Graphical visualization of a shallow neural net-
work.

Additionally, depth and width of a neural network are the structure proper-

ties that need to be mentioned since their understanding is one of the central

problems in the study of deep learning theory. Notably, the concept of depth

of a network refers to the number of nonlinear transformations between the

separating layers. In turn, by the dimensionality of a layer k, we mean the

number of neurons. Furthermore, as Bengio indicated, the architectures with

more hidden layers are called deep [11]. In addition, the non-linear functions

(known as activation functions) that are applied for each layer introduce the

non-linear property. The most popular functions are Sigmoid, Hyperbolic
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TABLE A.1: An overview of frequently used activation func-
tions.

Activation function g(z)

Sigmoid σ(z) = 1
1+e−z

Hyperbolic tangent tanh(z) = ez−e−z

ez+e−z

ReLu R(z) = max(0, z)

Signum sgn(z) =





1, for z > 1

0, for z = 0

−1, for z < 0
Softmax f (zi) =

ezi

∑j e
zj

ELU ELU(z) =

{
α(ez − 1), for z ≤ 0

z, for z > 0

tangent, and Rectified linear unit (ReLU). An overview of frequently used

activation functions is given in Table A.1.

Here, we have to explain that, at first, the reasons behind using the shallow

neural networks seem to be quite rational. Nevertheless, there are several

disadvantages associated with shallow neural networks. One of the most

vital is an enormous number of parameters. Let us imagine that a one hidden

layer has k1 nodes and the subsequent output layer contains k2 nodes. As a

result, we would have k1 ∗ k2 parameters between those two layers. This

usually leads to overfitting [68] and the model is unable to generalize well on

the testing data. Also, the slowing down of the training and testing process is

becoming a serious problem. Another drawback of shallow neural networks

is the fact that they take into consideration each input feature independently.

In consequence, the correlation between input features tend to be ignored.

However, this is an important concern in the context of chemical data.

Please also note that although a feedforward network is capable of approxi-

mating any smooth function, one does not have guarantees that this approx-

imation can be really learned. This is caused by a few factors but the most
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important are overfitting and specific properties of currently used optimiza-

tion algorithms. Also, as mentioned above, there is no theorem that indicates

the particular number of hidden units required for such an approximation.

Thus, in the worst-case setting, if we want to memorize every possible input,

this number may be even exponential. This causes that deeper architectures

are usually chosen. Furthermore, it shows that a great families of functions

may be approximated in a much more compact way if the depth of the net-

work is greater than a given value of the depth.

One another important fact about deep neural network design is that the

representation that interests us (also called network embedding) is the inter-

mediate output at the end of the specific model. Equation A.4 defines how it

may be obtained:

f (x, W(1), . . . , W(k), b(1), . . . , b(k)) = h(W(k) . . . h(W(2)h(W(1)x+ b(1))+ b(2)) · · ·+ b(k)),

(A.4)

where h(·) and f (·) are activation functions. In turn, the final output of the

model, such as a prediction value, is calculated from the obtained represen-

tation using an extra task driven layer or a stack of layers.

A.4 Convolutional neural networks

Convolutional neural network (CNN) can be treated as a type of feedforward

neural network that uses convolution structures in at least one of its layers to

extract features from data. Therefore, unlike the traditional feature extraction

algorithms, CNN does not extract features with the help of feature engineer-

ing. This class of models turns out to be a suitable tool for processing signals
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in tensor forms where the tensor elements are arranged in a meaningful or-

der. In other words, CNNs is supposed to work well if patterns in the data

are treated under the assumption of temporal or spatial invariance. The ex-

amples include speech, images, or video but are not limited to.

Specifically, to construct a convolutional neural network-based architecture,

one needs at least four building blocks. The procedure of a CNN is shown

in Figure A.2. As the name suggests, the core operation is convolution that

aims at feature extraction. As a result, we obtain an output feature map. A

convolution matrix convolves with the object such as an image using a given

set of weights and multiplying its elements with the corresponding elements

of the small slices. The idea underlying the convolutional layer operation is

shown in Figure A.3. Since the kernel has a certain size, the information in

the border may be lost. For this reason a padding operation is employed that

helps to enlarge the input with zeros, and indirectly adjust the size. We also

have to adjust the stride to control the density of convolution. Obviously, the

smaller the value of stride, the higher the density. As one may notice, the final

feature map can be comprised of too many features leading to overfitting

problem. To deal with this issue, pooling [53], namely down-sampling, in

the form of average pooling and max pooling is introduced. In the end, a

one or more fully-connected layers appear to perform the same duties found

in shallow neural networks and to produce scores from the activations to be

used for classification or regression.
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FIGURE A.2: An example of a CNN architecture with 2 convo-
lution stages.

FIGURE A.3: A visual representation of a convolutional layer.

A.5 Graph neural networks

In recent years, inspired by the success of CNNs, new theorems and defini-

tions of vital operations have been developed to deal with the complexity of

graph data. For instance, one can define a general concept of graph convo-

lutions based on a 2D convolution (see Figure A.4). This Section outlines the

background of graph neural networks (GNNs).
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FIGURE A.4: Graph convolution. In order to obtain a repre-
sentation of the blue vertex, a solution based on the graph con-
volutional operation would be to take the average value of the
vertex features of the blue vertex along with its direct neigh-

bors.

The concept of GNN model was first given by Gori et al. in 2005 [61], and

later generalized by Scarselli et al. [131] in 2008 and Gallicchio et al. [54] in

2010. The idea is as follows. At the beginning, every vertex has an initial

representation given by its features {hi ∈ R
d|i ∈ V} and the set of edges

E . At each propagation step: nodes create a message with their embedding,

send the message to the neighbors, receive, collect and aggregate messages,

and update their embedding using the received information. This operation

is repeated until convergence. The final embeddings are employed for pre-

diction. More formally, a layer returns a new set of vertex representations

{h′ ∈ R
d′ |i ∈ V}, where the same parameter guided function is applied to

every vertex given its direct neighbors N(i) = {j ∈ V|(j, i) ∈ E}.

h′i = fθ(hi, AGGREGATE({hj|j ∈ N(i)})). (A.5)

In general, there are many variants of paradigms of GNNs. The examples

are Graph Recurrent Neural Networks [143], Graph Convolutional Networks

[19, 48, 94, 5], Graph Generative Networks [151], Spatial-Temporal Graph

Neural Networks [100, 174, 136, 168], and various different hybrid forms [38,
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44]. The next two parts of this Section is discuss the issue of Graph Convolu-

tional Networks and Graph Attention Networks since they will be one of the

most important subjects of the main part of this Thesis. Indeed, the design

of f and AGGREGATE is what mainly distinguishes one type of GNN from

the other.

A.5.1 Graph Convolutional Networks

GCN-like models are comprised of so-called aggregators and updaters. The

role of aggregator is to gather information based on the graph structure,

while the updater aims at updating nodes’ hidden states according to the

obtained information. To be more precise, the following equation defines

this operation:

H(l+1) = σ(LH(l)W(l)), (A.6)

where d denotes the number of features, L ∈ R
n×n refers to the aggregation

matrix, H(l) = (h
(l)
1 , . . . , h

(l)
N )T ∈ R

n×d(l) denotes the node representation ma-

trix in lth layer, H(0) = X, W(l) ∈ R
d(l)×d(l+1)

is the trainable weight matrix in

lth layer, and σ(·) refers to the activation function such as ReLU, LeakyReLU,

or ELU. Moreover, GCN’s aggregator is based on the re-normalized graph

Laplacian Â:

L = Â ≈ D̃−0.5ÃD̃−0.5, (A.7)

where Ã = A + In, and D̃ denotes the diagonal matrix of node degrees with

Dii = ∑
n
j=1 âij.
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A.5.2 Graph Attention Networks

According to the GCNs approach, the neighborhours of vertex i, i.e., j ∈

N(i) are aggregated with equal or predefined weights. In fact, as one may

notice, the impact of neighbors may not be the same and depend on the given

neighbour [79]. Therefore, to tackle this issue, in GAT the Equation A.5 is

modified, and a learned weighted average of the representations of N(i) is

computed. Specifically, we employ a scoring function e : R
d ×R

d → R to

compute a score for every edge (j, i). Such an approach allows to indicate

how important are the features of the neighbor j to the node i:

e(hi, hj) = LeakyReLU(aT · [Whi||Whj]), (A.8)

where α ∈ R
2d′ , W ∈ R

d′×d are learned, and || is a concatenation operator.

These scores, namely attention scores, are normalized across all neighbors

j ∈ N(i) with softmax function. In consequence, the attention function is

given by:

αij = so f tmaxj(e(hi, hj)) =
exp(e(hi, hj))

∑j′∈N(i) exp(e(hi, hj′))
. (A.9)

Next, the new representation of i is obtained by computing a weighted aver-

age of the transformed features of the neighbor vertices (followed by a non-

linearity σ) using the normalized attention coefficients as follows:

h′i = σ( ∑
j∈N(i)

αij ·Whj). (A.10)

As a result, Equations A.8 and A.10 form the definition of GAT.
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A.6 Remarks on supervised learning

The goal of supervised learning is to learn a predictor for a task having rat-

ings, values, labels, etc. In our case, it we want to learn a function, i.e., a clas-

sifier or a predictor f . Therefore, in the training step, the the model’s objec-

tive is, given (xi)i∈[1,...,n] and (yi)i∈[1,...,n], make an attempt to match (xi, f (xi))

with (xi, yi) as accurately as possible. Then, the learned function is used to

map new samples. However, the core challenge here is to propose a function

that generalizes well from labeled to unlabeled data.
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[138] Marek Śmieja and Magdalena Wiercioch. “Constrained clustering with

a complex cluster structure”. In: Advances in Data Analysis and Classi-

fication 11.3 (2017), pp. 493–518.

[139] Jose Sotelo et al. “Char2wav: End-to-end speech synthesis”. In: (2017).

[140] Iurii Sushko et al. “Online chemical modeling environment (OCHEM):

web platform for data storage, model development and publishing

of chemical information”. In: Journal of computer-aided molecular design

25.6 (2011), pp. 533–554.

[141] Vladimir Svetnik et al. “Random forest: a classification and regression

tool for compound classification and QSAR modeling”. In: Journal of

chemical information and computer sciences 43.6 (2003), pp. 1947–1958.

[142] Christian Szegedy et al. “Inception-v4, inception-resnet and the im-

pact of residual connections on learning”. In: Thirty-first AAAI confer-

ence on artificial intelligence. 2017.

[143] Kai Sheng Tai, Richard Socher, and Christopher D Manning. “Im-

proved semantic representations from tree-structured long short-term

memory networks”. In: arXiv preprint arXiv:1503.00075 (2015).

[144] Jing Tang et al. “Making sense of large-scale kinase inhibitor bioac-

tivity data sets: a comparative and integrative analysis”. In: Journal of

Chemical Information and Modeling 54.3 (2014), pp. 735–743.

[145] Weihao Tang et al. “Deep learning for predicting toxicity of chemicals:

A mini review”. In: Journal of Environmental Science and Health, Part C

36.4 (2018), pp. 252–271.



132 Bibliography

[146] Roberto Todeschini and Viviana Consonni. Handbook of molecular de-

scriptors. Vol. 11. John Wiley & Sons, 2008.

[147] Roberto Todeschini and Viviana Consonni. Molecular descriptors for

chemoinformatics: volume I: alphabetical listing/volume II: appendices, ref-

erences. Vol. 41. John Wiley & Sons, 2009.

[148] Katya Tsaioun and Steven A Kates. ADMET for medicinal chemists: a

practical guide. John Wiley & Sons, 2011.

[149] Masashi Tsubaki, Kentaro Tomii, and Jun Sese. “Compound–protein

interaction prediction with end-to-end learning of neural networks

for graphs and sequences”. In: Bioinformatics 35.2 (2019), pp. 309–318.

[150] Muhammad Fahim Uddin et al. “Proposing enhanced feature engi-

neering and a selection model for machine learning processes”. In:

Applied Sciences 8.4 (2018), p. 646.

[151] Diego Valsesia, Giulia Fracastoro, and Enrico Magli. “Learning Lo-

calized Representations of Point Clouds With Graph-Convolutional

Generative Adversarial Networks”. In: IEEE Transactions on Multime-

dia 23 (2020), pp. 402–414.

[152] Han Van De Waterbeemd and Eric Gifford. “ADMET in silico mod-

elling: towards prediction paradise?” In: Nature reviews Drug discovery

2.3 (2003), pp. 192–204.

[153] Vladimir N. Vapnik. The nature of statistical learning theory. Springer-

Verlag New York, Inc., 1995.
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