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Streszczenie 

W ramach niniejszej pracy doktorskiej przeprowadzono badania struktury 
elektronowej metodą kątoworozdzielczej spektroskopii fotoelektronów (ARPES) na 
następujących związkach: nadprzewodnikach opartych na żelazie FeTe0.65Se0.35 i  
Fe1-yMyTe0.65Se0.35 (M = Ni i Co); nienadprzewodzącym CaFe2As2 oraz CaFe2-xCoxAs2 w 
którym podstawianie kobaltu w miejsce żelaza powoduje pojawienie się 
nadprzewodnictwa; LaAgSb2, dla którego obserwuje się fazę nadprzewodzącą oraz fazę 
fal gęstości ładunku; oraz nadprzewodzącym LaCuSb2. 

W związku Fe1.01Te0.65Se0.35 podstawianie niklu lub kobaltu w miejsce żelaza 
powoduje tłumienie nadprzewodnictwa.  Badania przeprowadziliśmy na związku 
niedomieszkowanym oraz na Fe0.97Ni0.05Te0.65Se0.35, Fe0.91Ni0.11Te0.65Se0.35 i 
Fe0.94Co0.09Te0.67Se0.33. Zaobserwowaliśmy deformację struktury pasmowej pod 
wpływem domieszkowania oraz wyznaczyliśmy przesunięcia pasm oraz zmiany 
objętości powierzchni Fermiego. Elektronowa część powierzchni Fermiego zwiększa się, 
natomiast dziurowa zanika, co skutkuje zmianą w jej topologii nazywaną przejściem 
Lifshitza. Pokazaliśmy, że zmiany w strukturze pasmowej nie mogą być traktowane jako 
proste przesunięcie energii Fermiego, ale odkształcenie całej struktury.  Domieszkowanie 
kobaltem okazało się mieć znacznie większy wpływ na strukturę pasmową niż 
domieszkowanie niklem, przy czym to domieszkowanie niklem wpływa we większym 
stopniu na właściwości transportowe tych związków. Oznacza to, że podstawianie żelaza 
niklem prowadzi do większego rozpraszania na domieszkach i większych efektów 
korelacji niż podstawianie kobaltem. Ponadto, pokazaliśmy, że domieszkowanie 
powoduje zanikanie nestingu powierzchni Fermiego. 

W przypadku CaFe2As2 podstawianie kobaltu w miejsce żelaza powoduje 
pojawianie się nadprzewodnictwa w układzie oraz przejście z fazy 
antyferromagnetycznej o strukturze ortorombowej do fazy paramagnetycznej o strukturze 
tetragonalnej. Zbadaliśmy trzy próbki: nienadprzewodzący CaFe2As2 oraz 
nadprzewodzące CaFe1.93Co0.07As2 i CaFe1.85Co0.15As2. Zaobserwowaliśmy dwa typy 
struktury elektronowej, odpowiadającą fazie antyferromagnetycznej dla próbek 
niedomieszkowanej i słabo domieszkowanej oraz fazie paramagnetycznej dla próbki 
silnie domieszkowanej.  W ramach fazy antyferromagnetycznej nie zaobserwowaliśmy 
wyraźnych zmian struktury elektronowej. Dla obu próbek antyferromagnetycznych 
zaobserwowaliśmy istnienie stożków Diraca, które w tym związku nie były dotąd 
raportowane.  Struktura elektronowa silnie domieszkowanego związku składa się z pasm 
przecinających poziom Fermiego w punktach Γ! i X!  i tworzących kwasi-dwuwymiarowe 
walce na powierzchni Fermiego.  Jest to struktura typowa dla większości 
nadprzewodników żelazowych. 

LaAgSb2 jest semimetalem Diraca, w którym obserwuje się nadprzewodnictwo i 
fale gęstości ładunku. Powierzchnia Fermiego tego związku składa się z czterech pasm 
tworzących kształt diamentu. Zaobserwowaliśmy występowanie liniowych pasm 
tworzących charakterystyczne przecięcia o kształcie X, linie nodalne ciągnące się w 
kierunku Γ–Z oraz stany powierzchniowe sugerujące, że badana powierzchnia odpowiada 
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terminacji LaSb.  Nie udało się potwierdzić istnienia stożków Diraca na odcinku Γ!–M! , 
które było sugerowane we wcześniejszych publikacjach na temat tego związku. 

Struktura LaCuSb2 również składa się z liniowych pasm tworzących przecięcia w 
kształcie X. Istnienie takich świadczy o potencjalnym występowaniu fermionów Diraca 
w obu tych układach. W związku tym zaobserwowaliśmy także linie nodalne na odcinku Γ–Z.  Porównanie powierzchni Fermiego LaCuSb2 i LaAgSb2 wskazuje na silniejszy 
nesting w pierwszym z nich. Długości zaobserwowanych wektorów nestingu są inne niż 
wektory modulacji fal gęstości ładunku w LaAgSb2, dlatego nie tłumaczą istnienia tej 
fazy.     
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Abstract 

The doctoral dissertation is devoted to the study of the electronic structure of the 
following compounds: iron-based superconductors Fe1.01Te0.65Se0.35 and  
Fe1-yMyTe0.65Se0.35 (M = Ni and Co); parent compound CaFe2As2 and CaFe2-xCoxAs2 
system, in which the substitution of cobalt in a place of iron induces superconductivity 
to; LaAgSb2, for which a superconducting phase and a phase of charge density waves are 
observed; and superconducting LaCuSb2. Measurements were carried out using the angle-
resolved photoemission spectroscopy (ARPES) technique.   

For the Fe1.01Te0.65Se0.35 compound, the substitution of nickel or cobalt in place of 
iron results in suppression of superconductivity. We conducted research on the undoped 
compound and on Fe0.97Ni0.05Te0.65Se0.35, Fe0.91Ni0.11Te0.65Se0.35 and 
Fe0.94Co0.09Te0.67Se0.33. We observed the deformation of the band structure under the 
influence of doping and determined band shifts and changes in the volume of the Fermi 
surface. The electron part of the Fermi surface increases while the hole part disappears, 
which results in a change in its topology called the Lifshitz transition. We have shown 
that changes in the band structure cannot be understood as a simple Fermi energy shift, 
but as a deformation of the entire structure. Cobalt doping turned out to have a much 
greater effect on the band structure than nickel doping, with nickel doping having a 
greater impact on the transport properties of these compounds. This means that 
substituting iron with nickel leads to a greater scattering on impurities and greater 
correlation effects than substituting with cobalt. Moreover, we have shown that doping 
causes the Fermi surface nesting to disappear. 

In the case of CaFe2As2, the substitution of cobalt in place of iron causes the 
appearance of superconductivity in the system and the transition from the 
antiferromagnetic phase with orthorhombic structure to the paramagnetic phase with 
tetragonal structure. We tested three samples: non-superconducting CaFe2As2 and 
superconducting CaFe1.93Co0.07As2 and CaFe1.85Co0.15As2. We observed two types of 
electronic structure, representing the antiferromagnetic phase for the undoped and lightly 
doped samples and the paramagnetic phase for the highly doped sample. As part of the 
antiferromagnetic phase, we did not observe any clear changes in the electronic structure. 
For both antiferromagnetic samples, we observed the existence of Dirac cones, it has not 
been reported so far for this compound. The electronic structure of the highly doped 
compound consists of bands that cross the Fermi level at points Γ! and  X! forming quasi-
two-dimensional cylinders on the Fermi surface. This structure is typical of most iron-
based superconductors. 

LaAgSb2 is a Dirac semimetal where superconductivity and charge density waves 
are observed. The Fermi surface of this compound consists of four bands that form a 
diamond-like shape. We observed the presence of linear bands that form characteristic X-
shaped crossings, nodal lines that extend in the Γ–Z direction and surface states 
suggesting that the studied surface corresponds to the termination of LaSb. It was not 
possible to confirm the existence of Dirac cones in the section Γ!–M!  which was suggested 
in earlier publications on that compound. 
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The structure of LaCuSb2 also consists of linear bands that form X-shaped crossings. 
The existence of such bands indicates the potential presence of Dirac fermions in both 
systems. Therefore, we also observed the nodal lines in the direction Γ–Z. Comparison of 
the Fermi surfaces of LaCuSb2 and LaAgSb2 indicates stronger nesting in the first 
compound. In LaAgSb2 the lengths of the observed nesting vectors are different from the 
charge density wave modulation vectors; therefore they do not explain the existence of 
this phase.  
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1. Motivation 

The motivation for this doctoral thesis was the study of superconductivity, in 
particular changes in the electronic structure occurring when selected atoms are replaced 
in chemical formulas. Three types of superconducting compounds were selected, in which 
doping resulted in different effects. To determine changes in the electronic structure, 
systematic angle-resolved photoelectron spectroscopy (ARPES) studies were carried out, 
thanks to which phenomena like band shifts, Fermi surface (FS) modifications, nesting 
disturbances, and Lifshitz transitions were observed. 

The first investigated compound was the iron-based superconductor FeTe1−ySey (y∼ 
0.35), in which iron atoms were substituted by transition metals: cobalt and nickel. In the 
case of this compound, such doping causes suppression of superconducting properties. 
Transport studies on these samples showed several intriguing phenomena, including a 
change in the sign of the Hall coefficient, which occurs only below room temperature1. 
Significant differences in the attenuation of superconductivity after doping with cobalt or 
nickel point to different scenarios behind the modification of the transport properties. 
Previous studies have shown that the lowering of Tc by Co is associated with electron 
doping, while in the case of Ni, the reason for the rapid decrease of Tc is the strong 
localization of electrons. The simplest phenomenon we were looking for was the shift of 
the bands caused by the addition of carriers to the system and the answer to the question 
of whether these modifications can be understood as a simple shift of the Fermi level, or 
a more complicated deformation of the bands occurs. Moreover, superconductivity 
suppression may be related to changes in nesting, i.e. in a situation where two parts of the 
Fermi surface can be reconstructed by translating with the vector different from the one 
resulting from the lattice symmetry. All of this made this system extremely interesting 
from the point of view of the examination of the electron structure.  

The second compound was CaFe2As2, in which, unlike FeTe1−ySey, the substitution 
of cobalt in place of iron improves the superconducting properties2. This compound is 
characterised by a rich phase diagram2,3; the selection of samples located at the phase 
boundaries allowed for a comprehensive study of the electronic structure. CaFe2-xCoxAs2 

exhibits a phase transition between tetragonal, collapsed tetragonal and orthorhombic 
structures, and it is particularly interesting to compare the electronic structure of each of 
these phases. These transitions occur depending on the dopant concentration, temperature 
or applied external pressure. Moreover, spin density waves are observed in the phase of 
orthorhombic structures further increasing the complexity of the electronic structures 
present in this compound4,5. The research focused on a nonsuperconducting parent 
compound, a lightly doped superconductor with a Co concentration corresponding to the 
appearance of superconductivity in the system, and a heavily doped sample from the 
antiferromagnetic phase. CaFe2As2 is a close "cousin" of the well-studied and very often 
described in the literature BaFe2As2, but so far the publications on it are much more 
modest. The original experimental goal guiding us in the study of this compound was to 
determine the effects of Co doping, band shifts and compare them with the previously 
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measured Fe1-xMxTe1−ySey, M=Co, Ni in an attempt to search for a universal explanation 
of the doping mechanism. 

The last type of compounds were LaCuSb2 and LaAgSb2. The first one is a 
superconductor below Tc = 0.7 K6, the second one is a superconductor with Tc = 0.29 K7 
and a charge density wave system having two different modulation vectors8. As a result 
of their practically identical crystal structure, these compounds provide an ideal platform 
for studying the differences between the two mentioned competing phases. 

An additional common feature of the selected compounds is the occurrence of 
nontrivial topological states. For FeTe1−ySey, there are experimental reports of the 
observation of Dirac surface states associated with topological superconductivity and 
Majorana fermions9,10. For the compound BaFe2As2, there are ARPES studies with 
observations of Dirac cones11 and theoretical predictions about their connections with 
CDW12,13, however, the occurrence of similar states in CaFe2As2 has not yet been 
demonstrated experimentally. In the case of LaCuSb2 and LaAgSb2, there is both 
theoretical and experimental evidence that these materials are host to the Dirac fermions 
and these states are connected with the existence of the Dirac-like structure14–16. 
Literature reports suggest that in LaAgSb2 these states create nested fragments of the 
Fermi surface, and their modification may be related to the disappearance of 
superconductivity and the appearance of charge density waves8,14. 

All these properties make the study of compounds extremely intriguing from the 
point of view of the development of solid-state physics and deepening our understanding 
of the phenomenon of superconductivity and its relationship with other phases of matter. 
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2. Introduction 

2.1. Superconductivity 

Superconductors are materials that are characterized by three main phenomena. The 
first is the complete disappearance of the static electrical resistance below a certain 
temperature Tc called the critical temperature. The second phenomenon is the Meissner 
effect, i.e. the removal of the magnetic field from the entire volume of the material except 
for a thin near-surface layer. The third characteristic feature of a superconductor is the 
quantization of the magnetic flux value17. It is easy to imagine the possibilities of such 
materials in the industry; therefore, the development and research of superconductors 
have become one of the most important tasks in the field of solid-state physics. 

The phenomenon of superconductivity was discovered in 1911 by Heike 
Kamerlingh Onnes during the measurement of the electrical resistance of mercury18. 
Superconducting properties were observed in several elements and more complicated 
materials in the following decades. 

There are several ways to classify superconducting materials. The first is the 
distinction between type I and type II superconductors. The first of them passes to the 
normal state in the presence of an external magnetic field, called a critical field. For type 
II superconductors, there are two values of the critical field. Above the first, the magnetic 
field enters the volume of the material in the form of vortexes. Above the second value 
of the critical field, the superconducting state disappears17. The description of these 
phenomena was developed phenomenologically by Ginzburg and Landau in 195019. 

Another way to classify superconductors is a division according to the theory 
describing the superconducting state. There are conventional and unconventional 
superconductors. The mechanism of conventional superconductivity was explained by J. 
Bardeen, L. Cooper, and J. R. Schrieffer, and their theory was named BCS after their 
names. The basic idea of BCS theory is the concept of the pairing of electrons. That 
pairing occurs through interaction mediated by phonons and results in forming a phase 
that can move and so conduct electricity without energy dissipation. Such pairs of 
electrons are called Cooper pairs. Materials in which superconductivity goes beyond the 
description of the BCS theory are called unconventional. The explanation of the 
mechanism responsible for unconventional superconductivity is probably the most 
discussed and most controversial issue in physics. One of the proposed interactions is 
based on antiferromagnetic spin fluctuation20. 

Another popular classification considers the superconducting transition 
temperature. There are low-temperature superconductors with a superconducting 
transition temperature below the boiling point of liquid nitrogen (77 K), and high-
temperature superconductors with a superconducting transition temperature above the 
boiling point of liquid nitrogen. The timeline of the discovery of new superconductors 
and their critical temperatures is shown in Figure 2.1. 
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Figure 2.1. Evolution of high-temperature superconductivity over time.  

Taken from Ref. 21. 

The last way to classify superconductors relates to their structure and chemical 
composition. Superconductivity is observed in some pure elements (e.g. mercury, lead, 
niobium, vanadium, and others), alloys (e.g. NbTi), and ceramics like layered materials, 
consisting of layers of copper oxide (cuprates) or layers of iron (so-called iron-based 
superconductors).  
The discovery of superconductivity in cuprates by Johannes Georg Bednorz and K. Alex 
Müller in 198622 was one of the most important milestones in the history of condensed 
matter physics. The compound they discovered, lanthanum barium copper oxide (LBCO), 
reached a superconducting state at a temperature of 35 K, which exceeds the upper limit 
imposed by the BCS theory. Cuprates are layered materials, and their common features 
are superconducting layers of copper oxide and other layers that contain ions such 
as lanthanum, barium, or strontium. In this class of materials, it was possible to achieve 
critical temperatures exceeding 100 K, which significantly facilitated the practical use of 
superconductors.  

The next important step in the development of superconductors, and one of the 
greatest achievements of solid physics in the recent years, was the discovery of 
superconductivity in iron-based materials. These superconductors contain layers of iron 
and a pictogen, usually arsenic or phosphorus, or a chalcogen. The first known iron-based 
superconductor is LaOFeP with a critical temperature of about 4 K23. So far, the highest 
critical temperature has been obtained in single-layer FeSe films doped with SrTiO3 and 
was above 100 K24. 
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2.1.1. London's Theory and Meissner Effect 

The first successful attempt at a theoretical description of superconductivity was 
proposed in 1935 by Fritz and Heinz London. The basis of this theory is the assumption 
that Maxwell's laws are universal and must be satisfied in superconducting substances. 
Electrons in a superconductor behave differently from Ohm's law, so another relationship 
must be found to explain the Meisner effect. As a result, it was possible to formulate a 
description of the penetration depth of the superconductor by the magnetic field, explain 
the occurrence of the phenomenon of decay of electrical resistance and decay of the 
magnetic field. 

The theory is based on the division of electrons involved in electrical conductivity 
into two groups: those subject to scattering on the ions of the crystal lattice and those that 
are not subject to scattering, and thus responsible for superconductivity. They then 
postulated that the current density 𝚥 in the superconducting state is directly proportional 

to the magnetic vector potential 𝐴 and depends on the number of electrons in the 
superconducting state 𝑛!, the electron mass 𝑚", and the electron charge 𝑒: 

 𝚥 = −𝑛!𝑒#
𝑚𝑒

𝐴 = − 1𝜇$𝜆%# 𝐴, (2.1) 

where 𝜆% is a constant. The vector potential 𝐴 has the London gauge: 𝛻4⃗ 	 ∙ 𝐴 = 0 and 𝐴& =0  (n is the surface normal) for any external surface through which no current flows into 

the superconductor. The boundary conditions are as follows: ∇44⃗ ∙ ȷ⃗ = 0 i 𝑗& = 0. The 
equation (2.1) is correct for simple sample shapes, in the case of a ring or cylinder, 
additional terms will appear. If we consider, formula (2.1) in the Ampere equation for a 

constant field strength 𝐸4⃗  we get:  

 𝑒∇44⃗ × 𝐵4⃗ = 𝜇$𝚥 = − 1𝜆%# 𝐴. (2.2) 

Then, the rotations of both sides of the equation are calculated, and using the relationship 

∇##⃗ × &∇##⃗ × �⃗�( = ∇##⃗ &∇##⃗ �⃗�( − ∇##⃗ "�⃗�, and Gauss's law for magnetism ∇44⃗ ∙ B44⃗ = 0 we get: 

 
 ∇44⃗ #𝐵4⃗ 	= 1𝜆%# 𝐵4⃗ , (2.3) 

This equation describes the Meissner effect. The constant value of the field 

 B44⃗ (r⃗) = B$ = const is its solution only when B$ = 0. If we substitute B$ = 0 into 
equation (2.2) we get 𝚥 = 0. This means that the zero value of the magnetic field induction 
inside the superconductor is associated with the disappearance of the current. The internal 
field is shielded by currents that flow near the surface of the superconductor. A schematic 
representation of the Meissner effect is shown in the Figure 2.2 
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Figure 2.2. Diagram of the Meissner effect. (a) Material in the normal state,  

(b) superconductor with magnetic field lines are excluded from the bulk.  

Consider a superconductor whose magnetic field near its surface is 𝐵4⃗ (0). Inside such 
material we have: 

 𝐵(𝑥) = 𝐵(0)𝑒' #

$% , 
(2.4) 

where 𝑥 is the distance from the edge of the sample. It follows that the parameter 𝜆% 
determines the depth of penetration of the magnetic field induction into the interior of the 
superconductor. This is called the London Penetration Depth. For carriers with charge q, 
mass m, and concentration n, the London depth of derivation is given by: 

 𝜆% = H𝜖$𝑚𝑐#𝑛𝑞# . (2.5) 
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2.1.2. BCS Theory 

 The Bardeen-Cooper-Schrieffer (BCS) theory is a 
theoretical model of superconductivity that was 
developed in the 1950s25. It is a fundamental concept in 
the field of superconductivity and provides a theoretical 
framework for understanding the properties of 
conventional superconductors and for studying the 
mechanisms of superconductivity in other materials. The 
phenomenon of superconductivity is explained as a 
result of the formation of pairs of electrons, called 
Cooper pairs. The total wave vector of the electron 
forming pair is zero, so it can be written symbolically as +𝒌 ↑  and  −𝒌 ↓. The Feynman diagram corresponding to the interaction of two electrons 
via a phonon is shown in Figure 2.3. The electrons in a pair interact with each other 
through vibrations of phonons.  

The initial Hamiltonian ℋ of a single Cooper pair in the second quantization 
formalism has the following form: 

 ℋ =Q𝜖𝒌𝑎𝒌)* 𝑎𝒌)
𝒌)

− 𝑉Q𝑎𝒌↑* 𝑎'𝒌↓* 𝑎'𝒌&↑𝑎𝒌&↓,
𝒌𝒌&

 (2.6) 

Where 𝑎* and 𝑎 are the creation and annihilation operators, respectively. For an electron 
gas, a variable number of particles is taken into account (so the therm is included: −𝜇𝑁" ≡ −𝜇 ∑ 𝑎𝒌)* 𝑎𝒌)𝒌)  where 𝜇	is	chemical	potential), and the Hamiltonian is taken in 
the following form: 

 ℋ-./ =Q(𝜖𝒌 − 𝜇)𝑎𝒌)* 𝑎𝒌)
𝒌)

−Q𝑉𝒌𝒌&𝑎𝒌↑* 𝑎'𝒌↓* 𝑎'𝒌&↑𝑎𝒌&↓,
𝒌𝒌&

 (2.7) 

The first term of ℋ describes the kinetic energy of the system, and the second describes 
the scattering of an electron from the state +𝒌 ↑  to the state −𝒌 ↓. 𝑉 describes the 
interaction between particles. Only electrons from the energy range (E

F

, E
F
+ℏωD), where 

E
F
 is Fermi energy and ωD is Debye frequency, interact with phonons which leads to the 

formation of an attractive interaction, and it is non-zero and constant near the Fermi 
surface: 

 𝑉𝒌𝒌&	 =	W−𝑉			𝑓𝑜𝑟			𝑘1 − Δ𝑘1 ≤ 𝑘, 𝑘2 ≤ 𝑘1 + Δ𝑘10			𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒	 . (2.8) 

𝑉 > 0, corresponds to the attraction of electrons, which causes a gap in the energy 
spectrum and is associated with the formation of pairs.   

Using mean-field decoupling of the quartic term: 

 
𝑎𝒌↑* 𝑎'𝒌↓* 𝑎'𝒌&↓𝑎𝒌&↓ ≅ 〈𝑎𝒌↑* 𝑎'𝒌↓* 〉𝑎'𝒌&↓𝑎𝒌&↓ + 〈𝑎'𝒌&↓𝑎𝒌&↓〉𝑎𝒌↑* 𝑎'𝒌↓* −〈𝑎𝒌↑* 𝑎'𝒌↓* 〉〈𝑎'𝒌&↓𝑎𝒌&↓〉, (2.9) 

Figure 2.3. Feynman diagram 
corresponding to the interaction of two 

electrons via a phonon. 
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and defining terms: 

 Δ𝐤 ≡Q𝑉𝒌𝒌&〈𝑎'𝒌2↓𝑎𝒌2↑〉
𝒌&

 (2.10) 

 Δ𝐤∗ ≡Q𝑉𝒌𝒌&〈𝑎𝒌↓* 𝑎'𝒌↑* 〉
𝒌&

 (2.11) 

we get an effective BCS Hamiltonian: 

 

ℋ-./ =	Q(𝜖𝒌 − 𝜇)𝑛𝒌) +QgΔ𝒌𝑎𝒌↑* 𝑎'𝒌↑* + Δ𝒌∗ 𝑎'𝒌↓𝑎𝒌↓h
𝒌𝒌) −	Q𝑉55&〈𝑎𝒌↑* 𝑎'𝒌↓* 〉〈𝑎'𝒌&↓𝑎𝒌&↓〉	

𝒌&𝒌
 

(2.12) 

This Hamiltonian can be made diagonalizable by applying the Bogoliubov 
transformation: 

 i 𝑎𝒌↑ = 𝑢𝒌𝛼𝒌 − 𝑣𝒌𝛽𝒌*𝑎'𝒌↑* = 𝑣𝒌𝛼𝒌 + 𝑢𝒌𝛽𝒌*, (2.13) 

Where: 

 

⎩⎪⎨
⎪⎧𝑢𝒌 = 1√2		 t1 + 𝜖𝒌𝐸𝒌u6/#𝑣𝒌 = 1√2		 t1 − 𝜖𝒌𝐸𝒌u6/# .

 (2.14) 

The equation for delta Δ has the following form: 

 Δ = −𝑉	 ∑ 〈𝑎'𝒌↓𝑎𝒌↑〉 = −𝑉∑ 𝑢𝒌𝑣𝒌v〈𝛼𝒌*	𝛼𝒌〉 + 〈𝛽𝒌*𝛽𝒌〉 + 1w𝒌𝒌 , (2.15) 

Which can be rewritten as: 

 Δ = 12𝑉Qx1 − 𝜖𝒌#𝐸𝒌#y
6
# (1 − 2)〈𝑎𝒌*𝑎𝒌〉

𝒌
. (2.16) 

Using the fact that states are subject to the Fermi-Dirac statistic, we get: 

 Δ = 𝑉ΔQ 12𝐸𝒌 tgh t 𝐸𝒌2𝑘-𝑇u𝒌
. (2.17) 

This equation has two solutions: 

 Δ ≡ 0,	 (2.18) 
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and: 

 1 = 	𝑉Q 12𝐸𝒌 𝑡𝑔ℎ t 𝐸𝒌2𝑘-𝑇u𝒌
. (2.19) 

The first one is trivial and corresponds to the normal state. The second one could be used 
to estimate the value of the superconducting gap. The derivation of this relationship is 
one of the most important achievements of the theory: 

 Δ ≅ 2ℏ𝜔8exp t 1𝑁(0)𝑉u. (2.20) 

𝑁(0)	is the density of states at the Fermi level. The second important achievement is a 
relation between the superconducting transition temperature (Tc) and the density of states 
at the Fermi level. Tc is inversely proportional to the strength of the attractive interaction 
between electrons: 

 T9 = 1.14ℏ𝜔:𝑘- exp t− 1𝑉	𝑁(0)u , (2.21) 

This means that the higher the density of states at the Fermi level and the weaker the 
attractive interaction between electrons, the higher the TC. 
The BCS theory was able to explain the main properties of conventional superconductors, 
such as lead and mercury, and is still used today to understand the properties of these 
materials. However, it cannot explain high TC superconductors, with TC typically higher 
than 30 K.  
 
 

2.1.3. Superconductivity in Iron Pnictides and Chalcogenides  

Superconductivity in iron-based pnictides and chalcogenides was discovered in 
2006 in layered oxy-pnictide LaOFeP23,26. In these compounds, superconductivity is 
based on conductive iron layers and pnictides (elements in group 15 of the periodic table) 
or chalcogens (group 16)27. 

A widely used method of classifying iron-based superconductors is related to their 
crystal structure. Many so-called families have been distinguished, for example, '11', 
'111', '122', '1111', with these names referring to their stoichiometry28. All iron-based 
pnictides and chalcogenides have a similar structure with characteristic Fe-pnictogen or 
Fe-chalcogen layers. Each layer is composed of Fe ions that form a square lattice, and the 
rest of the atoms are located above or below the centre of a square pattern.  
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Figure 2.4. Crystal structure of selected families of iron superconductors: 

 (a) ‘11’, (b) ‘111’, (c) ‘122’, (d) ‘1111’. 

 The electronic structure of most of these materials is made up of multiple bands that 
crossed the Fermi level and formed quasi-2d hole pockets in the middle of the Brillouin 
zone and electron pockets at the boundaries of the Brillouin zone28,29. A schematic 
example of the Fermi surface of a typical iron-based superconductor is shown in the 
Figure 2.5. 

 

Figure 2.5. (a) Square FeAs lattice and (b,c) example of Fermi surface of iron-based 

superconductors. The difference between the presented fermi surfaces results from 

different ways of defining a unit cell, (b) 1-Fe BZ with boundaries indicated by a green 

dashed square, (c) 2-Fe folded BZ with boundaries shown by a solid blue square. Taken 

from Ref. 30. 

The properties of iron-based compounds change dramatically with doping, so 
studying their phase diagrams was a subject of intensive research. One of the most 
interesting iron-based superconductors is Fe1+yTe1-xSex with a transition temperature of 
about 14 K. Its phase diagram starts with the magnetic order for a low dopant (Se) level 
and ends with a superconductivity dome. An interesting fact is that inducing 
superconductivity by substituting Se for Te occurs even though the elements are 
isovalent, and the hole/electron concentration in the system does not change. The 
situation is different in the case of substituting iron with transition metals with higher 



 23 

number of valence electrons; this causes an increase in the concentration of electrons and 
the disappearance of superconductivity. The electronic structure of Fe1+yTe1-xSex has been 
extensively studied by various techniques. It is known that for an optimal doping level, 
the Fermi surface consists of two hole pockets around the Γ point and two electron pockets 
around the M point28. Replacing the iron atoms in such a way as to add extra electrons to 
the system (e.g. by using cobalt or nickel atoms) reduces the surface of the hole pockets 
and increases the size of the electron pockets31. However, the observed changes in the 
size of the electron and hole pockets are not consistent with the rigid band model, which 
assumes that modification of the electronic structure can be understood as a simple shift 
of the chemical potential31. 

This compound is of particular interest in the FeTe0.5Se0.5 stoichiometry because of 
the observation of the topological spin-helical Dirac surface states proximity coupled to 
bulk s-wave superconductivity10,32,33. 

Another popular family of iron superconductors is 122. A typical phase diagram of 
system 122 (e.g., BaFe2As2 or CaFe2As2 compounds) starts with the antiferromagnetic 
phase.  By replacing the alkaline earth metal (Ba), pnictogen (As), transition metal (Fe) 
with the appropriate atoms, the antiferromagnetic non-superconducting phase disappears 
and the non-magnetic state of the superconductor is created2,34–36. A schematic 
representation of phase diagram of 122 family is shown in the Figure 2.6. In the case of 
these compounds, a structural transition from the orthorhombic to the tetragonal phase 
due to doping is also observed2,37,38. The electronic structure of 122 compounds in the 
superconducting phase is analogous to the rest of iron-based superconductors, but there 
are significant differences in the antiferromagnetic phase, for which spin density waves 
(SDW) are observed. In the case of BaFe2As2 or CaFe2As2 compounds in the SDW phase, 
the Fermi surface is formed from petal-shaped pockets and the size of the BZ is reduced.  
The doping of these compounds may cause two basic effects on the electronic structure; 
the first is related to the phase transition and is observed as the disappearance of the petal-
like structure and the appearance of concentric pockets. The second effect is the shift of 
the binding energy of the bands. Such shifts may lead to the disappearance or the 
appearance of pockets on the Fermi surface, a phenomenon that can be treated as a 
discontinuous change of its topology. It is called the Lifshitz phase transition39.  
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Figure 2.6. A schematic phase diagram of 122 family. Taken from Ref. 40. 

2.1.4. Topological Superconductivity 

In a classic superconductor, Cooper pairs are formed by conduction electrons with 
spin directed both up and down. The discovery of three-dimensional topological 
insulators gave rise to theoretical proposals for the development of this concept. In these 
materials, an energy gap is observed for the electronic volume states, whereas the surface 
states appear as an odd number of Dirac cones in which the spin of electrons at the Fermi 
surface is fixed. It follows that electrons moving in each direction will only have one spin 
direction, therefore pairing is only possible with electrons with the opposite spin. This is 
the main idea behind topological superconductivity and results in several non-trivial 
consequences. Unlike the topological insulator, where the surface states consist of 
electrons, the surface states in a topological superconductor are made up of Majorana 
fermions, or particles that are their own antiparticles41. Moreover, it is predicted that there 
are some quantum phase transitions related to topological superconductivity, which may 
result in the quantized of supersymmetry in condensed matter42. 

2.2. Topological Materials  

In recent years, the study of a topological material of the electronic structure (or 
materials with non-trivial topology, depending on the naming convention) has become 
one of the most popular topics in solid-state physics. The history of research on these 
materials starts with the quantum Hall effect and develops the huge set of systems that 
includes topological insulators, different types of topological semi-metals, or topological 
superconductors43–45. The schematic timeline of the development of topological materials 
is shown in Figure 2.7.  

It is worth starting any description of the concept of topological materials with the 
term topology. In a very basic approach, it is a branch of mathematics that studies 
properties that do not change even after radically deformed objects. There is a classic 
example that is used to explain this concept. Let’s imagine the transformation of a torus 
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into a mug of coffee. Both the torus and the cup have one ‘hole’, so such a transformation 
is continuous. We can say that these two objects are homeomorphic, they have identical 
topological properties, and in the matter of the topology, they are the same. On the 
contrary, transformation from a sphere to the torus requires creating an additional ‘hole’ 
so that the sphere is not homeomorphic to the torus. In other words, the two objects are 
‘topologically equivalent’ if they can be smoothly transformed into each other. In the case 
of the topological materials, the topological transformation refers to the mapping from 
the crystal momentum k to the Bloch Hamiltonian. These operations are associated with 
topological invariants that cannot change when the Hamiltonian varies  
smoothly43,46. 

 

 
Figure 2.7. Timeline of the Development of Topological Materials. 

 

 The difference between ordinary states of matter and topological materials was 
explained by the concept of a topological invariant. The two-dimensional band structure 
could be mapped into the Bloch Hamiltonian. The equivalence of the classes of 
Hamiltonian could be used to classify the gapped band structure. The topological 
invariant, called Chern number:  𝑛 ∈ ℤ  (ℤ - integers), is used to distinguish these classes. 
The physical meaning of this invariant is related to the Berry phase. The Bloch wave 
function |𝑢;(𝒌)⟩	appears with a well-defined Berry phase when k moves around the 
closed loop and that Berry phase is given by 
 𝒜; = 𝑖⟨𝑢;|∇5|𝑢;⟩, which can be written as a surface integral of the Berry flux  ℱ; = ∇	× 𝒜;. The total Berry flux in the Brillouin zone: 

 𝑛; = 6
#< ∫𝑑#𝒌ℱ;	, (2.22) 

is the Chern number. This quantity is the key to defining the material topology; materials 
with nonzero Berry curvature exhibit properties nontrivially topologically47. The 
importance of the Chern number can be demonstrated by considering the Dirac equations 
or by the example of the simplest of the topological phases, a two-dimensional free 
electron gas, showing the quantum Hall effect.  
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2.2.1. Dirac Equation 

From the point of view of mathematical description, the key to explaining 
topological materials is the Dirac equation48. It describes a relativistic quantum 
mechanical wave function of the particle with spin ½: 
 𝐻 = 𝑐𝐩	 ∙ 𝛼 + 𝑚𝑐#𝛽, (2.23) 

where 𝑚 is the mass of the particle, 𝑐 is the speed of light, 𝛼 and 𝛽 are at least 2 × 2 
Dirac matrices. Examples of such matrices are Pauli matrices: 

 𝜎= = �0 11 0	� , 	𝜎> = �0 −𝑖𝑖 0	 � , 𝜎? = �1 00 −1	�. (2.24) 

The solution of the Dirac equation depends on the dimensionality of the problem.  In one 
dimension, any two of the Pauli matrices could be Dirac matrices. In two dimensions, all 
tree Pauli matrices are Dirac matrices. In three dimensions, four Dirac matrices are at 
least four-dimensional and could be expressed using Pauli matrices: 

 𝛼@ = t 0 𝜎=𝜎= 0	u ≡ 𝜎=	⨂	𝜎@, (2.25) 

 𝛽 = t𝜎$ 00 −𝜎$	u ≡ 𝜎?	⨂	𝜎$, (2.26) 

where 	𝜎$ is the identity matrix. 

In that way, the relativistic energy-momentum relation is a solution of the following 
equation: 

 𝐸# =	𝑚#𝑐A + 𝑝#𝑐#, (2.27) 

and in the three-dimensional case there are two solutions for positive and negative energy: 

 𝐸± = ±�𝑚#𝑐A + 𝑝#𝑐#. (2.28) 

The two positive solutions of the above equation are used to describe the motion of the 
electron with spin, one for the state with the spin-up and the second for the spin-down. A 
negative solution refers to the electron’s antiparticle, the positron. However, this 
formalism can also be used to introduce the concept of a hole in a solid. The absence of 
an electron (with negative mass and kinetic energy) could be understood as a particle with 
positive mass and positive energy.  

To find the description of the topological insulator using the Dirac equation, let’s 
introduce the quadratic correction −𝐵𝑝#: 
 𝐻 = 𝑐𝐩	 ∙ 𝛼 + (𝑚𝑣# − 𝐵𝐩#)𝛽, (2.29) 

The 𝑣 is an effective velocity and is used to replace 𝑐 as I am considering the solids, 𝑚𝑣#is the band gap of the particle. This term makes this equation topologically distinct 
from the original Dirac equation due to breaking the symmetry between positive and 
negative masses.  

Let’s consider one-dimensional case. Equation (2.29) could be written in the form: 

 ℎ(𝑥) = 𝑣𝑝=𝜎= + (𝑚𝑣# − 𝐵𝑝=#)𝜎?, (2.30) 
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where 𝑚𝑣# is a band gap. For the bound state with zero energy, the eigenvalue equation 
takes the form: 

 [𝑣𝑝=𝜎= + (𝑚𝑣# − 𝐵𝑝=#)𝜎?]𝜑(𝑥) = 0 (2.31) 

Its solution, assuming that the wave function must vanish for 𝑥 = 0 and 𝑥 = +∞, takes 
the form: 

 𝜑C(𝑥) = .
√# 	�𝑠𝑔𝑛(𝐵)𝑖 � �exp �− =

E'
� − exp �− =

E(
��, (2.32) 

where 𝜉±'6 = F
#|-|ℏ (1 − 4𝑚𝐵), 𝐶 is normalization constant. The wave function described 

by this solution is distributed dominantly near the boundary and decays exponentially. 
Parameters 𝜉± characterize end state, when 𝐵 → 0, 𝜉I → |𝐵|ℏ/𝑣 and 𝜉' = ℏ/𝑚𝑣 so the 𝜉I approaches to zero and 𝜉' is determined by the energy gap. When 𝑚 → 0, 𝜉' = +∞ 
so the state evolves into bulk state, the end state disappears, and a topological phase 
transition takes places for 𝑚 = 0. 
The full solution of (2.29) takes the following form: 

 𝜓6 = .
√# 

𝑠𝑔𝑛(𝐵)00𝑖 ¡ �exp �− =
E'
� −exp �− =

E(
��, 

(2.33) 

and 
 𝜓# = .

√#¢
0𝑠𝑔𝑛(𝐵)𝑖0 £ �exp �− =

E'
� −exp �− =

E(
��, 

(2.34) 

Solutions for higher dimensions, for the edge and surface states, are closely related to 
this solution. 

In two dimensions (2.29) the equation has the following form: 
 ℎ± = 𝑣𝑝=𝜎= ± 𝑣𝑝>𝜎> + (𝑚𝑣# − 𝐵𝑝#)𝜎?	, (2.35) 

This equation breaks the time-reversal symmetry under the transformations under the 
following transformation: 𝜎@ →	−𝜎@ and 𝑝@ →	−𝑝@. Its solutions: 

 𝜓6 = .
√# 

𝑠𝑔𝑛(𝐵)00𝑖 ¡ �exp �− =
E'
� −exp �− =

E(
�� exp �@J)>ℏ �, (2.36) 

And 

 𝜓# = .
√#¢

0𝑠𝑔𝑛(𝐵)𝑖0 £ �exp �− =
E'
� −exp �− =

E(
�� exp �@J)>ℏ �, (2.37) 

The dispersion relation takes the linear form: 

 𝜖J) = ±𝑣𝑝>𝑠𝑔𝑛(𝐵) (2.38) 
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To distinguish between a topologically trivial and a nontrivial system in two dimensions, 
we could use the Chern number. For a two-band Hamiltonian in the form 𝐻 = 𝐝(𝑝) ∙ 𝜎 
the Chern number is expressed as: 

 𝑛K = − 6
A< 	∫ 𝑑𝐩 𝐝∙NO*#𝐝×O*)𝐝Q

:+ 	, (2.39) 

where 𝑑# = ∑ 𝑑R#RS=,>,? . For (1.13), the Chern number takes the form: 

 𝑛± = ±12 g𝑠𝑔𝑛(𝑚) + 𝑠𝑔𝑛(𝐵)h. (2.40) 

Therefore, when 𝑚 and 𝐵 have the same sign, the system is topologically non-trivial, and 
when the signs are different, 𝑛± = 0.  

The way of thinking in the case of three dimensions is analogous and leads to the 
description of surface states.  

 
 
 

2.2.2. Quantum Hall Effect 

The first known system in which a nontrivial topology was observed was a two-
dimensional electron gas in a strong magnetic field and very low temperature known as 
the quantum Hall effect44. A characteristic feature of the quantum Hall systems is 
quantized conductivity: 

 𝜎=> = 𝑁𝑒#ℎ 	. (2.41) 

 
It has been shown49 that 𝜎=>  calculated with Kubo formula, has the same form so the 𝑁 

is identical as the Chern number in (2.22). Hence, the quantized value of the Hall 
conductance relates to the topological invariant, which is related to Berry’s phase and is 
equal to the Berry phase divided by 2π. In a simplified way, we can assume that this 
invariant is analogous to the number of topologically different closed curves that exist on 
a certain manifold. It is insensitive to smooth changes in systems Hamiltonian (like 
material parameters) which explains the lack of influence of the experimental conditions 
on the quantised conductivity values. The invariant could change only when the system 
passes through a quantum phase transition, and it is understood as a change in topology. 
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Figure 2.8. (a) Schematic real space diagram of the 2D topological insulator with 

 spin-polarized edge and surface states at the system boundary, (b) energy band 

diagram of the 2D topological insulator in momentum space.  

BCB: bulk conduction band, BVB: bulk valence band. 

The consequence of the existence of a nontrivial topology is the existence of one-
dimensional conducting boundary edge states surrounding the entire sample (Figure 2.8 
(a)). The non-trivial edge states cross each other at the so-called Dirac point (Figure 2.8 
(b)). These states are insensitive to scattering on impurities and defects in the 
crystal43,46,50. 

 

 

2.2.3. Topological Insulators 

Topological insulators are the materials that are bulk insulators but have spin-
degenerate conductive states on the surface (shown schematically in Figure 2.9 (a)) and 
are robust to any type of defect or disorder. Three-dimension topological insulators are 
characterised by the topological invariant called Z2, which is based on parity. This concept 
can be explained using Kramer's theory for spins ½ electrons. The energy of two bands 
with the same |𝑘| is the same because of the time-reversal symmetry. Such a pair of bands 
is called a Kramer pair.  These pairs are degenerate at certain points in the Brillouin zone. 
The value of the invariant Z could be determined by counting how often surface states 
cross the Fermi energy between two degenerate points. For an odd number of 
intersections Z2  = 1, for an even number Z2 = 046. If the value is equal to 1 the phase is 
nontrivial, while 0 indicates trivial topology. The nature of the surface state of the 
topological insulator is a consequence of the boundary conditions that arise as a result of 
the combination of the nontrivial bulk states and the vacuum, which is a trivial insulator. 
In the described situation, the topology changes from non-trivial to trivial. The 
topological invariant changes at the interface, and the energy gap closes, so the metallic 
surface states appear. Therefore, it follows that in topological insulators, surface gaps 
must always be present. 
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The characteristic feature of the surface states observed in topological insulators is 
spin degeneracy. This creates separate channels for the up and down spins whose 
momenta are locked in a manner that maintains symmetry with the time-reversal. The 
consequence of this behaviour is the formation of the gapless Dirac cone with linear 
dispersion and helical spin texture (Figure 2.9 (b))47,51. The existence of a spin-degenerate 
cone results in a non-trivial Berry phase equal to π. This value is intuitively easy to 
understand because the electrons that create the Dirac state follow a closed path around 
the Dirac point. 
 
 
 

                  
Figure 2.9. (a) Schematic real space diagram of 3D topological insulators with spin-

polarized surface states at the system boundary. (b) Energy band diagram of the 3D 

topological insulator in momentum space, showing the formation of a 2D Dirac cone.  

 
The first three-dimensional topological insulator to be realized experimentally was 
Bi1−xSbx

52. To date, such behavior has been observed in various systems such as binary 
V2-VI3 compounds (Bi2Te3

52, Bi2Se3
53 and Sb2Te3

54 or the ternary III-V-VI2 family of 
compounds (e.g., TlBiTe2

55, TlBiSe2
56) 

2.2.4. Topological Dirac Semimetals 

As a development of the idea of the topological insulator, we can imagine the 
situation when there is no energy gap between the valence band and the conduction band 
(schematically shown in Figure 2.10). They touch each other at isolated momentum 
points. These points are called Dirac points. In these materials, we can observe linear 
dispersions across the 3D Dirac points along with all the momentum directions in the 
bulk. The crosses of the bands are protected by the symmetries of the system and cannot 
be removed by any perturbations of the Hamiltonian. In the typical situation, two gaps of 
close energies will hybridise and, due to the band repulsion mechanism, create the gap 
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in-between. But the occurrence of symmetries such as crystalline symmetry or time-
reversal symmetry can close this gap. This is because symmetries cause the crossing 
bands to have different quantum numbers and cannot hybridise. That is why these 
materials are called symmetry protected57. 

Due to the similarity of the topological Dirac semimetal phase and topological 
insulator phases, it seems a natural approach to try to transform one into the other through 
a quantum phase transition. In this case, topological Dirac semimetal can be achieved at 
the critical point. This method requires fine-tuning of the chemical composition, and the 
Dirac fermions produced in this way are usually unstable. This is possible by using the 
symmetry of the crystals through which Dirac's 3D fermions can be stabilized. The 
consequence of the unique electronic structure of the topological Dirac semimetals is very 
high bulk carrier mobility, oscillating quantum spin Hall effect high-temperature linear 
quantum magnetoresistance, and giant diamagnetism51. 

 

 

Figure 2.10. Comparison of the band structure of normal insulator, the topological 

Dirac semimetal, and topological insulator with surface states. The topological Dirac 

semimetal can be considered as the critical phase between the TI and the normal 

insulator.  

The first experimentally discovered three-dimensional topological Dirac semimetal 
(TDS) Na3Bi, for which stabilization occurs thanks to the three-fold rotational symmetry 
of the crystal structure58. Another example of such a compound is a Cd3As2 with four-
fold rotational symmetry59. 

2.2.5. Topological Weyl Semimetals 

In the 1930s, Hermann Weyl simplified the Dirac equation by setting the mass equal 
to zero.  In this way, he described the existence of massless fermions with definite 
chirality. For many years it was believed that neutrinos are an example of the physical 
realisation of Weyl fermions; unfortunately, the discovery of their mass proved that to 
date this elementary fermion has not yet been observed in high-energy physics. However, 
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the fermions described by the Weyl equation could be realized in condensed matter 
systems, leading to a new type of topological material called a topological Weyl 
semimetal. The characteristic feature of these materials is linear dispersion of the bulk 
and topological surface state on the surface that forms the so-called Fermi arcs that 
connect a pair of Weyl points with a Chern number equal to 1. 

 
Figure 2.11. Cartoon illustration of the splitting of a Dirac point into 

 a pair of Weyl points with a surface Fermi arc connecting them. 

WP+/-, Weyl points with opposite chirality,  

IS – inversion symmetry, TRS – time-reversal symmetry.  

A key phenomenon necessary for the physical realization of a topological Weyl 
semimetal is the breaking of either time-reversal symmetry or inversion symmetry. There 
are known compounds in which these symmetries break spontaneously. As a result, the 
bulk Dirac points, like the one observed in the topological Dirac semi-metals, are split 
into a pair of Weyl points, as schematically illustrated in Figure 2.11. To date, the 
existence of Weyl states has been successfully confirmed in compounds such as NbAs, 
NbP, TaP and TaAs by the ARPES method58,60–63. There is also a proposition of different 
methods that could lead to the creation of the topological Weyl semimetal. One of them 
is based on the breaking of either time-reversal symmetry or inversion symmetry in a 
topological Dirac semimetal by applying the high magnetic field or mechanical strain. 
Another idea of creating these materials is to stack topological insulators and normal 
insulators, although due to their complexity, it remains a theoretical proposition51. There 
are two classes of Weyl semimetals (type I and type II), depending on whether the system 
preserves or violates Lorentz symmetry. In the case of type II, the Weyl cones are tilted, 
resulting in a complex FS of electron and hole nature64. 
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2.2.6. Topological Nodal-Line Semimetals 

In the next type of topological materials, the discrete nodes in the momentum space 
are replaced by the continuous curves called the nodal lines that are formed at the linearly 
dispersive conduction and valence bands65. The nodal lines can take the form of a line 
through the Brillouin zone whose ends meet at the Brillouin zone boundary66 or fold into 
a closed loop inside the Brillouin zone67, or even create a chain consisting of several 
connected loops68. The schematic illustration for the Dirac line nodes is shown in Figure 

2.12.  
Like other topological materials, the full topological classification of nodal lines 

semimetals could be determined by the topological invariant, whose form depends on the 
symmetry group that protects the structure and dimension of the node. There are three 
types of nodal lines differing in symmetry protection: nodal lines protected by the mirror 
reflexion symmetry; protected by inversion, time-reversal, and SU(2) spin-rotation 
symmetry; and protected by twofold screw rotation, inversion, and time-reversal 
symmetry57. 

This type of structure was experimentally confirmed in several compounds, 
including PtSn4

69, InBi70, SrAs3
71, (Tl/Pb)TaSe2

72, (Hf/Zr)SiS73.  

 
Figure 2.12. Schematic illustration for the Dirac line-nodes in Topological Nodal Line 

Semimetal. 

The evolution of the nodal line with symmetry breaking (like mirror reflexion or 
nonsymmorphic symmetry) is important for the understanding and discovery of novel 
topological materials, as the nodal lines can be fully gapped or gapped into several nodal 
points; thus, topological nodal line can be considered as the parent compound of a 
topological insulator, topological Dirac semimetal, or topological Weyl semimetal51. 
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2.2.7. Topological Chiral Semimetals 

Research on topological materials has opened the way to the discovery of new 
quasiparticles in solid-state physics that do not have analogies in particle physics74. One 
of the proposed systems in which such states can be observed are crystals with a chiral 
structure. There are materials with a lattice structure in which the absence of inversion, 
mirror, or other roto-inversion symmetries results in a well-defined handedness75. In such 
chiral crystals with neither mirror nor inversion symmetry, fermions with high Chern 
numbers (larger than in Weyl semimetals) and long Fermi arc states were observed. 
Examples of chiral crystals in which topological properties were observed by ARPES 
measurements are PtAl, PtGa, PdGa, RhSi, CoSi, and RhSn51. 
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2.3. Description of Investigated Systems 

2.3.1. FeTexSe1-x   

The discovery of unconventional superconductivity in iron compounds is one of the 
early twentieth century's most important developments in solid state physics. The 
mechanism of pairing that takes place in these compounds is still a matter of debate. 
Doping these materials with transition metals can lead, depending on the system, to 
inducing or suppressing superconductivity. The study of the phase diagrams obtained in 
this way is one of the most important methods used to understand these compounds. An 
example of a compound particularly attractive in terms of doping studies is a 
representative of the family ‘11’, the superconducting FeTexSe1-x. 

 
Figure 2.13. Crystal structure of FeTexSe1-x. 

FeTexSe1-x compounds are characterised by a relatively simple crystallographic 
structure and chemical formula. FeTexSe1-x crystallises in the tetragonal space group 
P4/nmm76. The structure is two-dimensional and consists of sheets of FeTexSe1-x, 
orientated in the (001) direction, in which iron atoms are surrounded by alternating Fe/Se 
atoms, forming a chequerboard pattern. 

The phase diagram of FeTexSe1-x consists of three main regions: antiferromagnetic, 
appearing for low Se concentrations; superconducting, observed throughout the range, 
except for Te values above about 0.9; paramagnetic, occurring above Tc

76–79. The bulk 
superconductivity coexists with antiferromagnetic order in the crystals with Se 
concentration in the range of 0.05 to 0.1878. The critical temperature changes from 8 K80 
to 14 K81. There are also reports of observations of spin density waves or spin glass82. 

 FeTexSe1-x also offers the opportunity to study the influence of substituting 
magnetic atoms in place of iron on the transport properties and electronic structure. 
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Replacement of iron with, for example, cobalt or nickel adds additional electrons to the 
system, which has several physical consequences. It has been shown that a small disorder 
introduced into the magnetic sublattice by partial replacement of Fe with a small number 
of atoms with spin values different from those of Fe completely suppresses 
superconductivity in this system, which can be explained by the magnetic scattering of 
the Cooper pair1,81,82. An exemplary graph showing the change in critical temperature 
under the influence of substituting transition metals in place of iron in FeTexSe1-x is shown 
in Figure 2.14. 

 

Figure 2.14. Change in critical temperature under the influence  

of substituting nickel, cobalt, and zinc in place of iron in Fe1-yMySe0.3Te0.7.  

Taken from Ref. 83. 

Furthermore, studies of single FeTexSe1-x crystals doped over a wide range of 
impurity levels with two transition metal elements, Co and Ni, reveal a change of sign of 
the Hall coefficient to negative at low temperatures. At high temperatures, it remains 
positive, which suggests that the remaining hole pockets survived doping, and holes are 
localized after the temperature is reduced. The behaviour of the Hall coefficient for 
different concertation of the dopant and several temperatures is shown in Figure 2.15. 
There are suggestions that the suppression of superconductivity is related to electron 
doping in the case of Co impurity, while Ni impurity most likely induces additional strong 
localisation of electrons.1 Changes in the transport properties of these compounds are 
associated with changes in their electronic structure, and two main scenarios are 
distinguished: rigid84,85 and non-rigid band shift31,86. The first is a simple band shift, 
which can alternatively be understood as a Fermi level shift. In the second case, the band 
structure is deformed as a result of more complex interactions. Before our research, the 
literature on FeTexSe1-x only showed the results of nickel doping indicating non-rigid 
band shift31. 
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Figure 2.15. Hall coefficient RH as a function of temperature for FeTexSe1-x  

crystals doped with (a) Co and (b) Ni, and as a function of dopant  

concertation y and for various temperatures for (c) Co and (d) Ni. 

 Taken from Ref. 1. 

The superconductivity in FeTexSe1-x compounds is of particular interest due to its 
reported probable topological nature. The iron-based superconductor FeTe0.45Se0.65 has 
been found to host Dirac-cone-type spin-helical surface states at the Fermi level and the 
surface states of FeTe0.45Se0.65 are topologically superconducting and provide the 
platform for the realisation of Majorana states9. 

2.3.2. CaFe2-xCoxAs2 

Another interesting family of iron-based superconductors is the so-called 122 family 
with the structure type AFe2As2. The representative of these compounds is the CaFeAs2, 
the parent compound in which superconductivity appears with the doping. It is a layered 
compound; Ca atom is bonded in a body-centred cubic geometry to eight equivalent As 
atoms. Fe is bonded to four equivalent As atoms to form FeAs4 tetrahedra. As is bonded 
in an 8-coordinate geometry to four Ba and four Fe atoms. The structure of CaFe2As2 in 
the tetragonal phase is shown in Figure 2.16.  
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Figure 2.16. Crystal structure of CaFe2As2 in the tetragonal phase. 

 
The rich phase diagram of this compound is its distinguishing feature2,34,36. It 

contains paramagnetic phase (P), orthorhombic antiferromagnetic phase (AFM), spin-
density waves and superconductivity. Substitution of cobalt for iron in this compound 
induces superconductivity, and it is observed in a wide range of diagrams that cross 
through both the AFM and P regions. The maximum critical temperature of CaFe2-

xCoxAs2 is about 20	K2. Similar effects are also observed when external pressure is 
applied, in which case superconductivity is observed from 6 kbar3. Phase diagrams for a 
Co-doped and pressurised compound are shown in Figure 2.17. 

  

Figure 2.17. Electronic phase diagram of CaFe2-xCoxAs2,  

left: temperature- Co concertation diagram, right: temperature - pressure diagram.  

Taken from Ref. 2 (left) and 3 (rigth). 
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CaFe2As2 crystallizes in the I4 / mmm tetragonal space group with lattice parameters 

 a = 3.883 Å and c = 11.750 Å2. Below 170 K first-order structural phase transition to a 
low-temperature orthorhombic phase is observed37. This structure is described by the 
Fmmm space group with the lattice parameters a = 5.506	(2), b = 5.450	(2), 
c = 11.664(6)3. The phase diagram also contains a collapsed tetragonal structure 
observed under the application of pressure. For a collapsed tetragonal structure, the 
constant c contracts by 9%87. The differences between the crystal structures in each of the 
phases are shown in Figure 2.18. 

The electronic structure of CaFe2As2 in the tetragonal phase is analogous to that of 
other iron superconductors and consists of two-dimensional cylinders intersecting the 
Fermi level in the canter and corners of the BZ. The band crossing the Fermi level near Γ 
point forms hole-like pockets and the electron pockets at M points3. Changes in the band 
structure caused by the substitution of cobalt for iron are the subject of Chapter 2 of this 
thesis, however, there are many reports in the literature on the observation of the structure 
of a similar compound, BaFe2As2. It has been shown that in the case of BaFe2As2, cobalt 
doping causes a band shift that can be described as a rigid band shift3. In the orthorhombic 
phase, a structure associated with the spin density waves is observed, which manifests 
itself in characteristic petal-like shapes on the Fermi surface5,88. 

 
Figure 2.18. Crystal structure of CaFe2As2 in tetragonal,  

collapsed tetragonal and orthorhombic phase. 

The existence of nontrivial topological has been observed in similar compunds11,89–

95 and theoretical predictions are suggesting the existence of Dirac cones with the same 
chirality at the border of the Brillouin zone. The occurrence of Dirac states in this family 
is related to the physical symmetry and topology of the band structure, which stabilizes 
the ground state of the gapless spin density waves phase12,13. There are experimental 
reports of observations of the Dirac cone in BaFe2As2

96. 
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2.3.3. LaTSb2 (T=Ag, Cu) 

In recent years, properties that develop the idea of a classical topological insulator 
have been predicted in various materials, including layered heavy metal square-lattice 
compounds (A/RE)T(Sb/Bi)2, where A/RE is an alkali metal or a rare earth element and 
T denotes the d-electron transition metal97. Examples of such compounds are LaAgSb2 
and LaCuSb2, for which theoretical calculations predict the existence of Dirac-like 
structures16,98. These compounds are particularly interesting because LaAgSb2 is a charge 
density waves (CDW) material8 and both LaAgSb2 and LaCuSb2 are superconductors6,7 

so there is a possibility of coexistence of these phases with hypothetical Dirac fermions.  

 

Figure 2.19. Crystal structure of LaCuSb2. 

LaCuSb₂ and LaAgSb2 crystallize in the tetragonal P4/nmm space group. The lattice 
constants of LaCuSb2 are reported as a = b = 4.382 Å and c = 10.209 Å99 and for LaAgSb2 

it is a = b = 4.359 Å, and c = 10.787 Å 100. Crystal structure of LaCuSb2 is shown in the 
Figure 2.16. 

In the case of LaAgSb2, a charge density wave phase was determined using the X-
ray scattering study, and two different CDW orderings were observed.  The first one was 
observed below 207 K and developed with wave vector q

1
 ~ 0.026	×	(2π/a) in a-b plane. 

The second appears below 186 K, with q
2
 ~ 0.16	×	(2π/c), and along the c direction8. The 

realisation of the CDW phase can be associated with the nesting of the Fermi surface101. 

The ARPES measurement performed on this material revealed the diamond-shaped Fermi 
surface and linear bands, which have been described as Dirac-like structures14. 

Furthermore, transport and magnetic properties indicate the existence of a topological 
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phase in LaAgSb2
102–104. The signature of Dirac fermions is seen in magnetoresistance, 

Hall resistivity and magneto thermopower. The opposite sign between the Hall resistivity 
and the Seebeck coefficient is observed, indicating a possible multiband effect. Hall 
resistivity analysis suggests that Dirac holes, which dominate electron transport, have 
higher density and higher mobility than conventional electrons104. LaAgSb2 as a host of 
Dirac states is also supported by the first-principles electronic structure study104. Chapter 
3 of this work presents a detailed study of the electronic structure of this compound and 
an explanation of the nature of the observed states. 

LaCuSb2 is a superconductor with the transition temperature 𝑇. = 0.9	𝐾.6 Its Fermi 
surface is similar to that observed for LaAgSb2, and consists of several pockets forming 
the diamond-like shape15,98. It has also been shown that there are several linear bands, 
which are interpreted as a sign of the presence of Dirac fermions in this material. 
Additionally, this thesis was confirmed by observation of the Shubnikov-de Haas (SdH) 
oscillations15. The systematic analysis of the electronic structure of this compound is the 
subject of Chapter 4.  
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3. Experimental Technique 

3.1. Angle-Resolved Photoemission Spectroscopy 

Angle-resolved photoemission spectroscopy (ARPES) is an experimental technique 
that is used to study the electronic structures of the solids. The idea of the method is based 
on the photoelectric effect, a physical phenomenon involving the emission of an electron 
from the surface of a material under the influence of an electromagnetic wave. It was 
originally observed by Heinrich Hertz in 1887 and explained by Albert Einstein in 1905. 
The energy of light is absorbed in the form of quanta. Einstein assumed that removing an 
electron from a metal surface requires some work called a work function, which is a 
material quantity. The remaining energy is carried by the emitted electron. From these 
considerations, the formula follows: 

 𝐸5@&,;U= = ℎ𝜈 − 𝜙, (3.1) 

where 𝐸5@&,;U= – maximal kinetic energy of the emitted electron, ℎ – Planck constant, 𝜈 

– photon frequency, 𝜙 – work function. The energy of photoelectrons depends on the 
frequency of light, and below a certain frequency, no photoelectric effect occurs.  

In the ARPES experiment, a crystalline sample is illuminated with monochromatic 
light, which results in the emission of photoelectrons. The geometry of the system is 
designed to detect the polar (𝜃) and the azimuthal (𝜑) angle at which the electrons escaped 
the sample surface (Figure 3.1). The kinetic energy of photoelectrons is measured using 
a hemispherical electron energy analyzer. Information about emission angles and kinetic 
energy allows us to reconstruct the electronic structure in the k-space.  

 
Figure 3.1. Schematic presentation of the geometry of the ARPES experiment. 
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The photoemission process could be described by two models. The first one is called 
the three-step model, and the photoemission process is divided into three independent 
stages: 

• electron excitation in the bulk, 
• transport of the excited electron to the surface, 
• transition to vacuum through the surface. 

The first step is to excite an electron in the crystal. The electron is in the initial Bloch 
state; due to photon absorption, it is excited to its final state (𝐸V) with an energy equal to 

the sum of the initial energy (𝐸@) and the energy of electromagnetic radiation (ℎ𝜈): 
 𝐸V = 𝐸@ + ℎ𝜈. (3.2) 

The kinetic energy of a photoelectron Ekin can be related to the binding energy EB of the 
electronic state inside a solid by using the law of conservation of energy: 

 𝐸5@& = ℎ𝜈 − 𝜙 − |𝐸-|. (3.3) 

This idea is explained graphically in Figure 3.2.  

For the free electron gas there are no final states because of the single parabolic 
dispersion relation; therefore, simple transitions are possible only with the participation 
of the crystal lattice, which provides the electron final states. Thus, for the optical 
transition between the bulk initial (𝒌@) and final state (𝒌V) described in the extended-zone 

scheme, the following vector is conserved:  
 𝒌V − 𝒌@ = 𝑮. (3.4) 

It should be noted that these considerations were made with the assumption that the 
momentum of the photon is negligible in relation to the momentum of the electron. 

The translational symmetry of the surface in the x-y plane causes the perpendicular 
component of the wave vector is conserved (𝑘∥) in the photoemission process: 
 𝑘/∥ = 𝑘X∥ = 1ℏ®2𝑚	𝐸5@&X 	𝑠𝑖𝑛𝜃X 

(3.5) 

The index S represents the bulk of the crystal, and V represents the vacuum. 

 

Figure 3.2. The diagram of the photoemission process. 

EB – binding energy, EF – Fermi energy, E0 - bottom of the valence band, Ekin – kinetic energy, 

hv – photon energy, V0 – inner potential, 𝜙 – work function, N(E) – density of states.  
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The perpendicular component of the wave vector (𝑘Y) is not conserved due to the 
existence of a potential barrier that breaks the translational symmetry in the direction 
perpendicular to the sample surface (Figure 3.3). It is assumed that the electron in its final 
state is described by the parabolical dispersion both inside the crystal and after it has 
passed into a vacuum. This model introduces the 𝑉$ parameter, called the inner potential. 
It is a parameter of a free electron final state model, which can be interpreted as a potential 
barrier related to surface105, and its value must be determined experimentally. The 
diagram of the model is presented in Figure 3.3. One could use this assumption and the 
near-free-electron description of the final bulk Bloch state to find 𝑘Y:  

 𝐸V(𝒌) = ℏ,𝒌,
#; − |𝐸$| = ℏ,N5∥,I	5.,Q

#;	 − |𝐸$|, (3.6) 

where the electron momenta are defined in the extended-zone scheme and 𝐸$ corresponds 
to the bottom of the valence band. Now, using (3.2) and (3.5) we can write: 

 𝑘Y = 1ℏ�2𝑚(𝐸5@& cos# 𝜃 + 𝑉$). (3.7) 

The inner potential is given by 𝑉$ = |𝐸$| + 𝜙 and corresponds to the bottom of the 
valence band referenced to the vacuum level EV. 

 

  
Figure 3.3. Refraction of the wave vector on the crystal surface. 

The more advanced one-step model uses a quantum mechanics approach to consider 
the initial state of a system in which the electron is in a ground state. This state is denoted 

by 𝜓@Z, it is the N-electron crystal eigenstate. As a result of the interaction with 

electromagnetic radiation, the electron shifts to the final vacuum state 𝜓VZ, which is the 

(N-1) -electron state of the system. The probability of the transition 𝑤V@ 	between the initial 

(𝐸@Z = 𝐸@Z'6 − 𝐸-5, 𝐸-5 – the binding energy of the photoelectron) state and the final 

(𝐸VZ = 𝐸VZ'6 − 𝐸5@&) state is given by the Fermi golden rule: 

 𝑤V@ = #<
ℏ ¯𝜙V5°𝐻°𝜙@5±	𝛿g𝐸VZ − 𝐸@Z − ℎ𝜈h, (3.8) 
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The matrix elements 𝑀V@5[⃗ ≡ ¯𝜙V5°𝐻°𝜙@5± representing the relationship between the 

N-electron state and the (N-1) -electron state. The interaction with the photon is given by 
the following Hamiltonian: 

 𝐻 = 𝑒2𝑚𝑐 (𝑨 ∙ 𝒑 + 𝒑 ∙ 𝑨) = 𝑒𝑚𝑐 𝑨 ∙ 𝒑 (3.9) 

and it is treated as a perturbation. The 𝑨 denotes the electromagnetic vector potential and 
the 𝒑 is the electromagnetic momentum operator. To simplify the problem, it is assumed 
that the photoelectron does not interact with the rest of the electrons. This assumption 
comes down to the fact that the act of photoemission is sudden, the electron is removed 
immediately, and the effective potential of the system changes discontinuously. The 

electron is excited from the orbital 𝜙@𝒌, with the wave vector 𝒌. The wave function of the 

initial state 𝜓@Z then takes the form: 

 𝜓@Z = 𝒜𝜙@5[⃗ 𝜓@Z'6, (3.10) 

where 𝒜 is an antisymmetric operator and is necessary to satisfy the Pauli principle, and 𝜓@Z'6 could be understood as the remains of the N-particle wavefunction after one 
electron was removed. In the same way, we can decompose the wave function 

corresponding to the final (𝜓VZ) state: 

 𝜓VZ = 𝒜𝜙V5[⃗ 𝜓VZ'6. (3.11) 

Using equations (3.10) and (3.11) one can write the matrix elements from (3.8) as: 

 𝑀V@5[⃗ = ¯𝜓VZ°𝐻°𝜓@Z± = ¶𝜙V5[⃗ ·𝐻·𝜙@5[⃗ ¸ ¯𝜓;Z'6°𝜓@Z'6± (3.12) 

where ¶𝜙V5[⃗ ·𝐻·𝜙@5[⃗ ¸ is one electron dipole matric element and ¯𝜓;Z'6°𝜓@Z'6± is (N-

1)electron overlap integral. Hence, using (3.8) one can find the probability of the 
electron's transition from the initial state 𝑖 to the excited state 𝑚: 

Figure 3.4. Diagram of the act of photoemission described with three-step nearly free 

electron model. (a) optical transition in the solid, (b) parabolical final state in the 

vacuum, 

 (c) corresponding photoelectron spectrum. 
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 𝑤V@ = #<
ℏ ∑ ·𝑀V,@5[⃗ ·#∑ °𝑐;,@	°#𝛿(𝐸5 + 𝐸;Z'6 − 𝐸@Z − ℎ𝜈);V,@ , 

(3.13) 

where °𝑐;,@	°# = °¯𝜓;Z'6°𝜓@Z'6±	°#. The total photoemission intensity is proportional to 𝑤V@: 
 𝐼(𝒌, 𝐸5@&) = ∑ 𝑤V@@,] , (3.14) 

For weakly interacting systems, it is assumed that the initial state of the remaining 
electrons is the same as their final state: 𝑐;,@ = 𝛿;,$. This simplification is justified when 

there is no strong correlation between electrons in the system and allows us to reduce 
formula (3.13) to the form: 

 𝑤V@ = #<
ℏ ∑ ·𝑀V,@5[⃗ ·# 𝛿(𝐸5 − (𝐸@ + ℎ𝜈)).V,@ , 

(3.15) 

The emission spectrum of the weakly correlated system consists of several individual 
peaks, the intensity of which depends on the values of the elements of the 𝑴𝒊𝒇 

matrix.105,106  

In the case where °𝑐;,@°# ≠ 0., i.e. for correlated systems, the typical approach is to 

use the formalism of the Green function. Such a function 𝒢(𝑡 − 𝑡2) is interpreted as the 
probability amplitude that the electron added to the system in a Bloch state with 
momentum k at a time 𝑡 = 0 will still be in the same state after time |𝑡 − 𝑡′|. The total 
photoemission intensity (3.14) could be written as:  

 𝐼(𝒌, 𝐸5@&) = #<
ℏ ∑ ·𝑀V,@5[⃗ ·# 𝐴(𝒌,𝜔)V,@ , 

(3.16) 

where 𝐴(𝒌,𝜔) is one particle spectral function and 𝜔 = 𝐸5 − ℎ𝜈. The function 𝒢(𝑡 − 𝑡2) 
could be used to define the retarded Green’s 𝐺(𝒌,𝜔)	function, which is related to the full 
spectral function 𝐴(𝒌,𝜔)	 via: 

 𝐴(𝒌,𝜔) = − 6
< 𝐼𝑚	𝐺(𝒌, 𝜔), (3.17) 

The photoemission probes only the occupied states, so to complete the description Fermi-
Dirac distribution is necessary: 

 𝑓(𝜔) = 6
"//123I6, (3.18) 

𝑇 is temperature and 𝑘` Boltzmann's constant. Taking everything into account, 
photocurrent is proportional to: 

 𝐼(𝒌, 𝜔)~ ·𝑀V,@5[⃗ ·# 𝐴(𝒌,𝜔)𝑓(𝜔). (3.19) 
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3.2. Measurement Systems 

The ARPES measurements included in this doctoral 
dissertation were performed using the two experimental setups. 
The first one is located in the Laboratory of Photoelectron 
Spectroscopy in the Department of Solid-State Physics (Institute 
of Physics, Jagiellonian University in Krakow) and was bought 
due to the financial support from ATOMIN project. The 
experimental setup is equipped with a Scienta R4000 
hemispherical photoelectron energy analyzer with a maximal 
resolution of 1.8 meV and 0.1 ° for energy and angles, respectively. 
Radiation for UPS measurements is provided by the helium lamp, 
hν = 21.2 eV and hν = 40.8 eV for the He I and He II spectral lines, 
respectively. The source of the high-energy photons used in XPS 
measurements is the X-ray tube (hν = 1253.6 eV and hν = 1486.6 eV). The slit of the 
analyzer is vertical, and the detailed geometry of the system is shown in Figure 3.5. The 
samples are cooled with a helium system operating in a closed circuit, which allows one 
to achieve a temperature of about 12 K. The movement of the sample is accomplished 
using a cryogenic manipulator that provides five axes of freedom. The system maintains 
an ultra-high vacuum of the order of 10-11 mbar. The system is equipped with a 
preparation chamber that is used to bombard a sample with argon ions and a heating 
chamber for sample annealing. The photo of the system is presented in Figure 3.6. 

 

 
Figure 3.6. The ARPES measurement system is available in the 

 Laboratory of Photoelectron Spectroscopy 

 in the Department of Solid State Physics (Jagiellonian University). 

Figure 3.5. Geometry of the 
ARPES system in the Department 

of Solid State Physics 
(Jagiellonian University). 
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The second experimental setup is the URANOS 

beamline at the National Synchrotron Radiation Centre 
SOLARIS in Krakow (Poland)107. The light source is an 
elliptically polarizing Apple II quasiperiodic undulator 
that provides radiation in the range of ultraviolet to soft X 
with linear vertical, linear horizontal, circular, or elliptical 
polarization. Monochromatic light in the range from 12 to 
400 eV is obtained using the plane grating 
monochromator (PGM), while for the low energy range 
(8-30 eV), a normal incident monochromator (NIM) is used. Photoelectrons are detected 
by a Scienta DA30L hemispherical analyzer with deflection mapping mode. The slit of 
the analyzer is vertical, the geometry is shown in Figure 3.7. The spectrometer's maximal 
energy and angular resolution are 1.8 meV and 0.1°, respectively, while the real maximal 
energy resolution of the beamline is about 4.5 meV. The samples are mounted to the 
cryogenic manipulator with five degrees of freedom and could be cooled to 6 K with the 
use of liquid helium. The photo of the URANOS beamline is presented in Figure 3.8. 

The end station is equipped with a preparation chamber enabling thermal annealing 
of the sample up to 1800 K, bombardment with argon ions, and vapor deposition of 
elements using two sources. The surface quality could be confirmed with the low-energy 
electron diffraction method (MCP-LEED)108. 
 

 
Figure 3.8. URANOS beamline in the National Synchrotron Radiation Centre 

SOLARIS in Kraków. 

Figure 3.7. The geometry of the URANOS 

end station. 
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Using the Laue method, the single crystals used in the ARPES studies were oriented 
along highly symmetrical directions. A Laue camera working in the geometry of 
backscattered radiation was used. The X-ray radiation source was an X-ray tube with a 
Mo anode. 
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4. Effect of Electron Doping in FeTe1-ySey 

Realized by Co and Ni Substitution 

 

M. Rosmus, R. Kurleto, D. J. Gawryluk, J. Goraus, M. Z. Cieplak, P. Starowicz 

 
I am the first author of the paper, and my participation consisted of performing 

measurements using angle-resolved photoelectron spectroscopy (ARPES), analysing the 
obtained data and the results of theoretical calculations received by the theoretician (J.G.), 
writing code for visualisation and data analysis, preparing figures, discussions, and 
working on the first version of the manuscript together with the supervisor (P.S.). I 
prepared samples for measurements by orientation using the Laue diffraction method 
together with R.K. My contribution to the publication was 55%. 
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5. Observation of Dirac Dispersions in  

Co-doped CaFe2As2 

 

M. Rosmus, N. Olszowska. R. Kurleto, Z. Bukowski, P. Starowicz 

 
I performed angle-resolved photoelectron spectroscopy (ARPES) measurements, 

with the help of N.O. and R.K. I prepared the samples for measurements by orientation 
using the Laue diffraction method. I analyzed the experimental data and developed the 
data processing code. I prepared the first draft of the manuscript and all the figures. I 
participated in the discussion and improvements of the manuscript together with P.S.  My 
contribution to this work was 70%. 
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6. Electronic Band Structure and Surface States 

in Dirac Semimetal LaAgSb2 

M. Rosmus, N. Olszowska, Z. Bukowski, P. Starowicz, P. Piekarz, A. Ptok 

 
I performed measurements of angle-resolved photoelectron spectroscopy (ARPES) 

together with N.O. I prepared the samples for measurements by orientation using the Laue 
diffraction method. I analyzed the experimental data, developed the code for the analysis, 
and attached the experimental drawings. Together with A.P. I compared the data with the 
theoretical results. I participated in work on the first draft of the manuscript. The 
manuscript was corrected and discussed by M.R., N.O., P.S., P.P. and A.P. My 
contribution to the publication was 40%. 
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7. Dirac Dispersions and Fermi Surface Nesting 

in LaCuSb2 

 

M. Rosmus, N. Olszowska, Z. Bukowski, P. Piekarz, A. Ptok, P. Starowicz 

 
I performed measurements of angle-resolved photoelectron spectroscopy (ARPES), 

together with N.O. I prepared the samples for measurements by orientation using the Laue 
diffraction method.  I analyzed the experimental data and compared them with the 
theoretical results obtained by A.P. I developed the code for the data analysis. I prepared 
all the figures and the first draft of the manuscript. I participated in the discussion of the 
manuscript. The manuscript was corrected and discussed by M.R., P.S., P.P. and A.P. My 
contribution to the publication was 55%. 
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8. Summary 

 
This doctoral dissertation contains systematic ARPES studies of the following 

compounds: Fe1-xMxTe1−ySey (M = Co, Ni; y ~ 0.35), CaFe2−xCoxAs2 (x = 0.07, 0.15), 
LaAgSb2 and LaCuSb2. For the tested compounds, the band structure was determined, 
Fermi surfaces were mapped, and experimental data were supported by theoretical 
calculations. 

In the case of the two investigated iron-based superconductors, we observed the 
influence of doping with transition metal atoms on the electron structure; however, the 
observed effects have a different origin. For Fe1-xMxTe1−ySey, along with the addition of 
impurities, we observe deformation of the electronic structure, consisting of shifting the 
bands and changing their slopes, leading to a change in the topology of the Fermi surface. 
Based on the available data, both collected as part of this doctoral thesis, as well as the 
literature on the transport properties of these specific compounds1, it can be assumed that 
the effects are continuous. In the case of the CaFe2−xCoxAs2 samples we examined, the 
change in band structure that we observed was associated with a phase transition caused 
by a specific concentration of Co atoms. Despite examining samples located on the edge 
of a specific region in the phase diagram, we did not observe shifts or distortions of the 
electron structure. This indicates a different mechanism related to doping in these two 
superconductors, in Fe1-xMxTe1−ySey related to scattering on dopants and the introduction 
of additional interactions, while in CaFe2−xCoxAs2 it induces a phase transition.  

We showed that CaFe2As2 hosts a Dirac cone for which there is indication of a 
connection with the phase of spin density waves, however, we did not observe an energy 
gap in the region of the presence of cones and where the characteristic features of the 
nodal SDW phase should be manifested. 

LaCuSb2 and LaAgSb2 crystallize in the same structure, differing only slightly in 
lattice constants. The band structure of both compounds is similar; however, a number of 
differences are observed. The most significant and interesting is the one related to the 
nesting of the outer pocket on the Fermi surface. Surprisingly, it appears less clear for 
LaAgSb2 in which the CDW phase is observed. The inner pocket is also different for both 
of these compounds; for LaCuSb2 it has a richer structure and a three-dimensional 
character, while for LaAgSb2 it is rather two-dimensional and resembles a flattened oval. 

In both compounds, we observed similar nodal lines and linear bands that formed 
characteristic Dirac crossings. The nodal lines are located in the kz direction, Dirac-like 
states can be observed in the vicinity of X! point and at the ΓMÂÂÂÂ path. The existence of these 
states in LaCuSb2 and LaAgSb2 indicates the presence of Dirac fermions in both 
compounds. 
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