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Abstract

Random processes or their fingerprints are ubiquitous in nature. Many systems are either too com-
plex to be described deterministically or exhibit inherent randomness. These systems can be de-
scribed in the language of stochastic processes, using stochastic force (noise).

This thesis discusses representative phenomena induced by Lévy noise with special attention
to stationary states in single-well potentials and escape problems. Selected systems are analyzed
mainly using numerical simulations of the Langevin equation. However, analytical results are also
provided if possible.

Stationary states in single-well potentials have been studied in overdamped and full dynamic
regimes. For the overdamped case, numerical evidence for existence of the non-equilibrium sta-
tionary states of modality higher than two are presented along with phenomenological arguments
when their emergence is possible. For the underdamped case, stationary states in quartic potential
are studied both for linear and nonlinear friction. Conditions assuring the emergence of bimodality
in both cases are presented and discussed.

The second part of the thesis focuses on two archetypal escape processes. For the inertial motion
in the finite interval analysis of mean first passage time and escape characteristics are presented.
We showed that the qualitative behavior of mean first passage time is similar for all values of the
stability index. Finally, forward and backward transition rates for a double-well potential system
are analyzed. For the overdamped limit, deviations from weak noise approximation are discussed.
For the full dynamic, an approximated analytical formula is presented, showing that the ratio of
forward and backward transition rates depends on both potential barrier height and width. The
approximation is compared with numerical simulations.





Streszczenie

Procesy stochastyczne lub ich ślady są widoczne w otaczającym nas świecie. Wiele układów jest
albo zbyt złożonych, aby można je było opisać deterministycznie, albo wykazuje wbudowaną
losowość. Układy te można opisać językiem procesów stochastycznych, używając siły losowej
(szumu).

Niniejsza praca omawia typowe zjawiska indukowane przez szum Lévy’ego, ze szczególnym
uwzględnieniem stanów stacjonarnych w potencjałach jednodołkowych i zagadnień pierwszej ucieczki.
Wybrane układy analizowane są głównie za pomocą symulacji numerycznych równania Langevina.
Jednakże w miarę możliwości przedstawione są również wyniki analityczne.

Stany stacjonarne w potencjałach jednodołkowych badane były w reżimie przetłumionym i w ob-
szarze pełnej dynamiki. W przypadku przetłumionym przedstawiono numeryczne dowody na ist-
nienie nierównowagowych stacjonarnych stanów o modalności wyższej niż dwa, wraz z argumen-
tami fenomenologicznymi, kiedy ich pojawienie się jest możliwe. Stany stacjonarne w przypadku
nieprzetłumionym w potencjale czwartego stopnia są badane zarówno w obszarze tarcia liniowego,
jak i nieliniowego. Ponadto przedstawiono i omówiono warunki zapewniające pojawienie się bi-
modalności w obu przypadkach.

Druga część pracy skupia się na dwóch archetypicznych procesach ucieczki. Dla inercjalnego
ruchu w skończonym przedziale przedstawiono analizę średniego pierwszego czasu wyjścia i cha-
rakterystyki ucieczki. Pokazano, że jakościowe zachowanie średniego pierwszego czasu wyjścia
jest podobne dla wszystkich wartości wykładnika stabilności. W końcu, analizowana jest szybkości
przejścia między stanami dla ruchu w potencjałem dwudołkowym. W granicy ruchu przetłumio-
nego omówiono odchylenia od przybliżenia słabego szumu. Dla pełnej dynamiki przedstawiono
przybliżony wzór analityczny, pokazujący, że stosunek szybkości przejścia zależy zarówno od wy-
sokości bariery potencjału, jak i jego szerokości. Przybliżenie jest porównywane z symulacjami
numerycznymi.



List of Abbreviations
FPT first passage time
GWN Gaussian white noise
LHP last hitting point
MFPT mean first passage time
RAP randomly accelerated process
FFPS fractional Fokker-Planck-Smoluchowski (equation)
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Chapter 1

Introduction

Random processes or their fingerprints are ubiquitous in nature. They can be used to describe or
approximate movement of people [1, 2], searching (foraging) strategies of animals [3, 4], chemical
reactions [5,6], climate changes [7], diffusion in turbulent media [8,9] and many processes in body
cells [10–12], just to name few. The above systems are related through the presence of interactions
that are too complex to describe deterministically or they are simply random. Therefore, such
interactions can be efficiently approximated by noise. A very simple yet useful type of noise is
Gaussian white noise (GWN), η(t). Its statistical properties are determined by a normal distribution
with zero mean value, i.e., ⟨η(t)⟩ = 0. Moreover, GWN is uncorrelated, i.e. ⟨η(t)η(s)⟩ = σδ(t−s),
where σ is a standard deviation of normal distribution and represents the noise intensity. GWN is
widely used to describe equilibrium systems. However, many systems exhibit non-equilibrium
behavior and they cannot be described by GWN. Therefore generalization of GWN is required for
their analysis. One of possible options is (white) Lévy noise. The α-stable (Lévy) type noise is
a formal time derivative of the Lévy process, whose increments are independent and identically
distributed according to the α-stable density [13, 14]. The α-stable density p(x) is defined by the
characteristic function (ϕ(k) = ⟨eikx⟩)

ϕ(k) =

{
exp

[
ikµ− σα|k|α

(
1− iβsgn(k) tan πα

2

)]
for α ∈ (0, 1) ∪ (1, 2]

exp
[
ikµ− σ|k|

(
1− iβ 2

π
sgn(k) ln |k|

)]
for α = 1

. (1.1)

In Eq. (1.1), α ∈ (0, 2] stands for stability index, while β (β ∈ [−1, 1]) is the skewness parameter.
Finally, σ and µ are scale and location parameters respectively. In the further discussion we will
limit ourselves to symmetric distributions without drift, i.e., β = 0 and µ = 0. In this case Eq. (1.1)
simplifies to

ϕ(k) = exp [−σα|k|α] . (1.2)

For α < 2, α-stable distributions have asymptotic behavior of the power law type, i.e., P (x) ∼
|x|−(α+1). Therefore, only fractional moments of order ν smaller than α are finite (ν < α), i.e.,
⟨|x|ν⟩ < ∞. In general, inverting the Fourier transform of a characteristic function given by
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Eq. (1.2) is a challenging task [15, 16]. Simple analytical formulae for α-stable distributions are
known only for few cases. For example, for α = 1 we obtain a Cauchy distribution and for α = 2

– a normal density. The inclusion of the Gaussian noise as a special case is one reason to consider
Lévy flights as an extension of the stochastic system to non-equilibrium regimes. However, and
more importantly the α-stable distributions, used to describe Lévy flights, possess nice mathem-
atical properties and they share many arithmetic features with the normal distribution. The most
important are self-similarity and (generalized) central limit theorem.

To describe evolution of the system we need an equation of motion of the particle under action
of deterministic and stochastic forces. For the random walk, it takes the form of the Langevin
equation, which is the stochastic analog of the Newton’s Second Law [17]

d2x(t)

dt2
= −γ

dx(t)

dt
− V ′(x) + ζ(t), (1.3)

where γ is a friction coefficient and V (x) is a deterministic potential. In general the potential can
also be a function of time, i.e., V (x, t), however in the following thesis we will limit ourselves to a
time independent case. Term ζ(t) in the equation (1.3) describes the stochastic driving. In our con-
siderations ζ(t) is a symmetric Lévy noise, discussed in more detail in the previous paragraph. The
process described by Eq. (1.3) is called underdamped. On the other hand, usually, an overdamped
limit of Eq. (1.3) is considered, for which the friction coefficient γ ≫ 1. For the overdamped
regime the Langevin equation (1.3) simplifies to the typical form [17]

dx(t)

dt
= −V ′(x) + ζ(t). (1.4)

Complementary to the underdamped Langevin equation (1.3) the evolution of the probability
P (x, v, t) density is described by the fractional Fokker-Planck-Smoluchowski equation [14,18,19]

∂P (x, v, t)

∂t
=

(
−v

∂

∂x
+

∂

∂v
(γv − V ′(x)) + σα ∂α

∂|v|α
)
P (x, v, t), (1.5)

where the Riesz-Weil fractional derivative [18,20] is defined via the Fourier transform Fk

(
∂αf(x)
∂|x|α

)
=

−|k|αFk(f(x)). For the overdamped case the fractional Fokker-Planck-Smoluchowski equation has
form [18, 21]

∂P (x, t)

∂t
=

(
− ∂

∂x
V ′(x) + σα ∂α

∂|x|α
)
P (x, t), (1.6)

where analogously like in Eq. (1.5), the fractional derivative is defined by Fourier transform.
Usually solving Langevin (Eq (1.3)) or fractional Fokker-Planck-Smoluchowski (Eq (1.5))

equation is very difficult and, except in special cases, it is impossible to get a general analytical
formula. Therefore, many problems require a numerical approach. On the one hand, the devel-
opment of numerical methods for fractional partial differential equations has enabled construction
of the numerical solution of the fractional Fokker-Planck-Smoluchowski equation [22, 23]. On the
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other hand, the Euler-Maruyama scheme [13,24] allows to generate trajectories from the Langevin
equation, from which, inter alia, P (x, t) or P (x, v, t) can be extracted. Here, the implementation
of the latter method will be presented. Let us start by rewriting the Eq. (1.3) in the discretized form

{
vi+1 = vi − (γvi + V ′(xi))∆t+ σ (∆t)1/α ζi

xi+1 = xi + vi∆t
, (1.7)

where ζi is the sequence of independent and identically distributed α-stable random variables with
the unit width (σ = 1) and ∆t is the integration times step. Random variables following α-stable
densities can be generated using the Chambers-Mallows-Stuck method [13,24–27]. The first equa-
tion of (1.7) describes the azevolution of velocity and contains the stochastic part.Therefore, it
should be approximated using the Euler-Maruyama scheme [13, 24]. To generate a full traject-
ory, the second (spatial) part of Eq (1.7)) is constructed trajectory-wise. The trajectory generation
procedure can be repeated many times. From the set of generated trajectories, required quantities
such as probability density, median energy or distribution of first exit times, to name a few, can
be obtained. Since the Langevin dynamics allows the analysis of many quantities characterizing
stochastic systems, their detailed discussion is addressed in the chapters dedicated to the individual
issues.

A key element for applying the Euler-Maruyama scheme to approximate Lévy processes is the
ability to generate random numbers ζi from the α-stable distribution. Let V and W be two inde-
pendent random variables. V is generated from uniform distribution on the interval (−π/2, π/2),
while W is distributed according to exponential distribution with a unit mean [13, 24, 26, 27]. For
α ̸= 1 the formula reads

ζ = Dα,β,σ
sin(αV + αCα,β)

cos1/α V

(
cos((1− α)V − αCα,β)

W

) 1−α
α

, (1.8)

where

Cα,β =
arctan

(
β tan πα

2

)

α
(1.9)

and
Dα,β,σ = σ

[
cos
(
arctan

(
β tan

πα

2

))]−1/α

. (1.10)

The case of α = 1 needs to be considered separately. Random numbers generated from the
α-stable distribution with α = 1 and any β ∈ [−1, 1] can be obtained form

ζ =
2σ

π

[(π
2
+ βV

)
tanV − β ln

(
πW cosV

π + 2βV

)]
. (1.11)
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Chapter 2

Stationary States

For the noise perturbed systems one, one may wonder about their long-time properties. For
instance, for the particle which moves in the certain potential V (x), it i possible to verify existence
of stationary states and their properties. If the stationary state exists, the probability density is time
independent, and therefore the left-hand side of the FFPS equation vanishes, i.e.,

∂P (x, v, t)

∂t
≡ 0. (2.1)

Consequently, in this chapter we will use simplified notation for probability densities in stationary
states P (x) ≡ P (x, t → ∞) for the overdamped case and P (x, v) ≡ P (x, v, t → ∞) for the
underdamped case.

Stationary states for the additive GWN in the potential V (x) are given by the Boltzmann-Gibbs
distribution [28]

P (x, v) = Z exp

(
−E

σ

)
= Z exp

(
−

v2

2
+ V (x)

σ2

)
, (2.2)

as long as V (x) → ∞ when |x| → ∞. In the Eq. (2.2), Z is a normalization factor. Therefore,
stationary states are known as long as one is able to calculate Z . For the non-Gaussian, α-stable
noises, the problem of the stationary state is more difficult to solve. First, in order to assure the
existence of stationary states, it is not sufficient to assume V (x) → ∞ for |x| → ∞ [29]. The
condition necessary for the existence of stationary states under the influence of Lévy noise has
been extensively studied in the overdamped regime for the power-law potentials [29]

V (x) ∝ |x|c. (2.3)

It has been demonstrated that the stationary state exists only for c > 2 − α. Even if a stationary
state exists, the analytical form of its distribution may be challenging to obtain. Therefore, analyt-
ical formulae for stationary states are known only for few potentials. The simplest examples are
overdamped motion in an infinite rectangular potential well [30] and the harmonic oscillator in the
regime of overdamped and full dynamics [31, 32].
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In the overdamped regime, there is another important potential for which stationary state is
known. It is quartic potential with the Cauchy driving, i.e., V (x) = x4/4 and α-stable noise with
α = 1. In this case the stationary probability density reads [33–37]

Pα=1(x) =
1

πσ
1
3

[(
xσ− 1

3

)4
−
(
xσ− 1

3

)2
+ 1

] . (2.4)

The probability density given by Eq. (2.4) exhibits an unexpected property. Although the quartic
potential has only one minimum, the solution (2.4) has two spatially separated maxima located at
±σ

1
3/
√
2. This behavior is in contradiction to the intuition which one may have based on GWN,

since the density (2.2) has the same number of maxima as V (x) minima. Moreover, bimodality is
observed in the overdamped regime for any α < 2 and in any potential of the xn/n type [33–38] or
even for

V (x) =
x4

4
+ a

x2

2
(2.5)

with a > 0 if a < ac = 0.794 [34].
These results rise an important question whether it is possible to obtain states of higher modality

than 2 in a single-well potential. In [A.1] we explored this possibility. As a starting point we have
used the observation made in [33] that for a quartic potential the locations of the modal values in
the steady state coincide with the location of the curvature maxima, where the curvature κ(x) of
the potential V (x) is defined as

κ(x) =
V ′′(x)

[1 + V ′(x)2]3/2
. (2.6)

We assumed that the number of modes in the stationary state is not larger than the number of
maxima of the potential curvature. In addition, the curvature maxima determines the likely position
of the modal values. Unfortunately, the number of curvature maxima itself is not sufficient to
assure the multimodal state. They need to be adequately spatially separated. Otherwise, modes of a
stationary state can interfere, resulting in a smaller number of peaks in the stationary state than the
number of maxima in the potential curvature. Therefore, the condition on the number of maxima
of the potential curvature needs to be accompanied by additional numerical tests.

Using this assumption, we constructed a few fine-tuned, single-well potentials discussed below,
for which stationary state has modality higher than two. We started with the potential

V (x) = x2 − ax4 + x6, (2.7)

where a <
√
3. The upper limit on a ensures a single-well potential. However, even for a <

√
3 ≈

1.73, produced states demonstrate predicted trimodality. An example of such behavior is shown in
the Fig. 2.1, where for a = 19/11 three modes are well-visible. Trimodality can be observed as
long as a > ac. For a < ac, the stationary state is unimodal since the outer peaks have merged
with the central one. From the numerical simulations, it can be estimated that ac ∈ (1.17, 1.2].
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Unfortunately, due to inherent uncertainties of our methodology, it is difficult to provide a better
estimation.

-2 -1 1 2

-0.02

0.02

0.04

0.06

0.08

Figure 2.1: The stationary state for the potential given by Eq. (2.7) with a = 19/11, i.e., V (x) =

x2 − 19/11x4 + x6, subject to the Cauchy driving (α-stable noise with α = 1) and σ = 1 (dots)
along with the potential profile V (x) (blue solid line) and the potential curvature κ(x) (orange
dashed line), see Eq. (2.6).

Analogously, using the maximal curvature argument, it is possible to produce potentials leading
to a higher modality. An example of the potential generating four modes is

V (x) =
7

6
x4 − 2x6 + x8. (2.8)

The stationary state for the potential (2.8) is shown in Fig. 2.2. The stationary distribution consists
of two distinct outer peaks and two smaller inner peaks. Since it behaves like x4 for x → 0, the
stationary state has a minimum at x = 0, see Eq. (2.4). [A.1] also shows also two examples of
fine-tuned, polynomial potentials of the 10th order, generating five-modal stationary states. Un-
fortunately, modality higher than five requires very steep potentials, which pose a problem for
numerical simulations. To circumvent this problem, we implemented ‘glued’ potentials composed
of pieces of the quartic potential. For such a potential one may an generate arbitrary high modality.
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-2 -1 1 2

0.2

0.4

0.6

Figure 2.2: The same as in Fig. 2.1 for the potential given by Eq. (2.8), i.e.,V (x) = 7
6
x4−2x6+x8.

For example,

V (x) =





1
4
(x+ 3)4 + 3

4
for x < −3

1
4
(x+ 2)4 + 1

2
for −3 ⩽ x < −2

1
4
(x+ 1)4 + 1

4
for −2 ⩽ x < −1

x4

4
for |x| ⩽ 1

1
4
(x− 1)4 + 1

4
for 1 < x ⩽ 2

1
4
(x− 2)4 + 1

2
for 2 < x ⩽ 3

1
4
(x− 3)4 + 3

4
for x > 3

(2.9)

results in the emergence of an eight-modal stationary state, see Fig. 2.3. Due to its segmented
nature, stationary density in the potential given by Eq. (2.9) can be understood as a composition
of behaviors for the quartic potential in each part individually. It is also important that the time of
deterministic sliding from the distant segment to the one closer to the origin is infinite. However, in
such a ‘glued’ potential, the curvature argument holds. More examples of stationary states obtained
using ‘glued’ potentials, together with a broader discussion, can be found in [A.1].
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-6 -4 -2 2 4 6

0.2

0.4

0.6

0.8

Figure 2.3: The same as in Fig. 2.1 for the potential given by Eq. (2.9).

2.1 Linear Friction

The multimodality of the stationary states in the system driven by α-stable noise were intens-
ively investigated in the overdamped regime. However, this topic was not explored in the under-
damped case. This issue was addressed in [A.2], where we considered the underdamped Langevin
equation (1.3) with the potential given by Eq. (2.5) and the Cauchy noise (α = 1). Stationary states
were estimated from numerical simulations of the Langevin equation using the schema given by
Eq. (1.7).

Indeed, also the underdamped process can produce bimodal stationary states in the single-well
potential. Fig. 2.4 shows plots of stationary states together with velocity and position marginal
distributions for V (x) given by Eq. (2.5) a = 0 and γ = 1 (left column) or γ = 6 (right column).
Parameters are chosen in such a way to present two distinct regimes observed in the system. On the
one hand, γ = 1 corresponds to a weak damping limit, for which stationary states are unimodal.
On the other hand, γ = 6, displays bimodality, characteristic for large damping. It is worth noting
that γ does not need to be very large for the emergence of bimodality. Transition between unim-
odal and bimodal regimes is very smooth. With decreasing γ outer peaks are getting smaller and
finally disappear. The decrease in γ is not the only protocol of moving the system from bimodal to
unimodal stationary states. Also, the increasing value of a may lead to transition to unimodal state.
This behavior is analogous to the overdamped case, where a critical parameter ac separating two
regimes was also observed. Since the modality of the stationary state depends on two parameters it
is convenient to present the results in the form of a phase diagram, see Fig. 2.5. Blue corresponds to
the bimodal stationary state, while the white area represents parameters resulting in the unimodal
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stationary state. Using the diagram, see Fig. 2.5, one can easily identify the two modality transition
scenarios described earlier.

The analysis of full probability densities allowed for a qualitative investigation of the system’s
behavior. However, quantitative analysis is easier to perform in one dimension. Therefore, the
study of stationary states was complemented by examination of position and velocity marginal dis-
tributions. Position marginal distribution for a = 0 may be compared with the analytical solution
given by Eq (2.4), since for large γ, results for the overdamped limit should be restored. Indeed,
even for finite, although large, γ position marginal distribution follows the curve given by an over-
damped solution very well. Moreover, bimodality is recorded for relatively small γ, i.e., γ > 1.5,
although the effect is weaker. Finding the right estimate for a velocity marginal distribution is not
as obvious. The limiting case for which the velocity distribution would be known is the motion in
the absence of the deterministic potential V (x). In this case, the velocity marginal distribution has
the non-trivial long-time solution, despite lack of full stationary state

P (v) =
1

π

σ̃

σ̃2 + v2
, (2.10)

where
σ̃ = σ/γ. (2.11)

More precisely, due to linear friction, velocity attains the stationary density which is of (rescaled)
Cauchy type. Analogous reasoning can be carried out for any α, showing that for linear friction
P (v) is given by the α-stable distribution with the same stability index α as the noise. At the same
time, due to absence of the deterministic force the particle cannot be confined. The application
of the (deterministic) force-free approximation for motion in a quartic potential is not ideal due to
presence of the deterministic force. Yet, comparison between force-free solution and simulations
for the quartic potential shows some similarity between the actual velocity marginal distribution and
the properly rescaled Cauchy distribution (2.10). This similarity is well visible in the power-law
tails of the distribution, while some disagreement appears in the central part.

Finally, the analysis of the velocity marginal distribution is important in understanding the
mechanism of emergence of bimodal states in underdamped systems. This mechanism is described
in detail in sections II and III of [A.2]. In short, it is based on the fact that particles with high
velocity penetrate the outer part of the potential (|x| ≫ 1), but for a sufficiently high damping
factor γ they lose their velocity quickly and are unable to return efficiently to the origin. This is
manifested in the heavy tails and the narrow central part of the velocity marginal distribution.
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Figure 2.4: Panels (a) – (d) depict the stationary probability densities P (x, v) as 3D-plot and the
heat map. Panels (e) – (f) show the velocity marginal densities P (v) (points) with the asymptotic
density (2.10) (solid line) while panels (g) – (h) present the position marginal distributions P (x)

(points) with the asymptotic density (2.4). The damping parameter γ is set to γ = 1 (left column)
and γ = 6 (right column).
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Figure 2.5: The phase diagram bimodal–unimodal stationary states for underdamped motion in
potential given by Eq. (2.5), i.e., V (x) = x4/4 + ax2/2. The blue region represents values of
parameters a and γ for which the full stationary state is bimodal.
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2.2 Nonlinear Friction

Up to now we have considered linear friction as it is widely used and leads to simple intuitive
overdamped limit. However other forms of damping are also studied in the literature [39]. There-
fore, in [A.3], the model considered in Sec. 2.1 was reformulated for the nonlinear friction. For this
purpose, we substituted the linear friction term −γv with a more general velocity-dependent term
T (v), i.e. {

ẋ(t) = v(t)

v̇(t) = T (v)− V ′(x) + ζ(t)
. (2.12)

If we consider the deterministic force-free case, i.e. V (x) ≡ 0, the velocity part of the Eq. (2.12)
reduces to

v̇(t) = T (v) + ζ(t). (2.13)

One can easily see that in Eq. (2.13) T (v) plays the similar role to the deterministic force −V ′(x) in
the overdamped regime, see Eq. (1.4). Therefore, the generalized v-potential can be used to relate
overdamped solutions to the velocity marginal distribution P (v). It is important to emphasize that,
despite its similarity to the external force in the overdamped limit, the velocity dependent friction
T (v) is always dissipative, i.e., T (v)v < 0 – the ‘friction force’ T (v) is opposite to velocity.
Moreover, similarly to the Sec. 2.1 we focus on ζ(t) being the Cauchy noise (α = 1).

One of the simplest yet frequently used [39] form of T (v) is

T (v) = −γsgn(v)|v|κ−1 (κ > 1), (2.14)

which corresponds in the overdamped case to the |x|κ/κ potential well and for κ = 2 reduces to
the previously considered linear friction. From studies of the overdamped motion, it is known that
for κ < 2 − α, there is no stationary velocity distribution [29]. Therefore, in further studies, we
will focus on κ > 2, and especially κ = 4, for which the analytical result of Eq (2.4) can be used.

Let us start with κ = 4 and the quartic potential V (x) = x4/4. From the analogy to the
overdamped case, one may expect bimodality in the velocity marginal distribution. As one can see
in the Fig. 2.6, indeed, this is the case. With the increasing γ, the velocity marginal distribution
better resembles the shape given by Eq. (2.4) with the scale parameter σ rescaled as in Eq. (2.11).
One may also wonder if there is multimodality in the spatial part, which is determined by the
velocity distribution and the quartic potential V (x). However, even for very large sigma, there is
no spatial multimodality, i.e., the position marginal distribution is unimodal. This behavior is also
visible in the full stationary density. Modal values of the full stationary states are separated only
along the velocity.

The modality is not the only phenomenon that may be analyzed by the analogy to the over-
damped motion. The solution (2.4) exhibits the power-law behavior of the x−4 type. Therefore,
all moments of the order lower than 4th exist. The same asymptotics is observed in the marginal
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velocity distribution for the nonlinear friction with κ = 4. This leads to the finite mean value of
the kinetic energy since the kinetic energy is proportional to ⟨v2⟩. Moreover, the rapid decay of
position marginal distribution suggests that the mean value of potential energy ⟨V (x)⟩ is finite as
well. Unfortunately, due to numerical instability produced by rare events when particle penetrates
distant points i.e. |x| ≫ 0, in the [A.3] we relied on robust measures i.e., medians of energies.
Both medians of potential and kinetic energy are exponentially decreasing functions of γ. How-
ever, the median of the potential energy decays faster, and it is an order of magnitude smaller than
the median of kinetic energy.

We explore simultaneous action of linear and nonlinear friction. To reach this aim we have used

T (v) = −γ(v3 + av), (2.15)

where a controls the relative strength of the linear part. The aforementioned form of friction T (v),
given by Eq. (2.15), resembles the deterministic force −V ′(x) with V (x) given by Eq. (2.5). There-
fore, one may expect a transition between bimodality and unimodality in velocities. Similarly to
the overdamped motion, such a transition has been recorded, indicating that a plays a role of the
control parameter determining the modality of the velocity marginal distribution. Nevertheless,
even for a corresponding to unimodal velocity marginal distribution and large γ, there is no spatial
bimodality in the full stationary state. This can be easily explained in the context of the mechanism
of linear friction described in the last paragraph of the Sec. 2.1. In order to induce multimodality
for the linear friction, large velocities are important as they allow penetration of outer parts of the
potential, i.e., |x| ≫ 1. For the nonlinear damping given by Eq. (2.15), the quartic part efficiently
eliminates large velocities and therefore removes a crucial mechanism responsible for emergence
of multimodality.

Finally, we have examined motion of a stochastic particle under action of the Cauchy noise with
the friction term given by a polynomial steeper than cubic

T (v) = −γ

(
6v5 − 76

11
v3 + 2v

)
. (2.16)

One can easily see that despite its complex form this damping force is dissipative. Moreover,
friction given by Eq. (2.16) resembles the deterministic force −V ′(x) with V (x) given by Eq. (2.7)
with a = 19/11. In the overdamped case this potential leads to the trimodal stationary state.
Therefore, in the underdamped motion with friction given by Eq. (2.16), a pronounced trimodality
can be observed in the velocity marginal distribution P (v), see Fig. 2.7. This rich behavior is
reflected in the full stationary density, where one can observe three peaks separated in the velocity
direction. The two outer peaks (|v| ≫ 0) behave similarly to the friction given by Eq. (2.15).
Despite separation in the velocity direction, they are located at x = 0, and therefore there is no
spatial multimodality for v ̸= 0. On the other hand, the central mode of the velocity marginal
distribution corresponds to particles which, due to small velocity, behave similarly to the process
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Figure 2.6: Panels (a) – (d) show the stationary probability densities P (x, v) for the nonlinear
friction T (v) = −γv3 as 3D-plots and the heat maps. Additionally, the velocity marginal densities
P (v) (points) with the asymptotic density (2.4) (solid line) is depicted in the panels (e) – (f), while
the position marginal distributions P (x) (points) is shown in the panels (g) – (h). The damping
parameter γ is set to γ = 1 (left column) and γ = 6 (right column).

with linear friction. Therefore, for v ≈ 0, the full probability density P (x, v) has two maxima,
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as P (x = 0, v = 0) is a saddle point. Thus, stationary density P (x, v) has four modal values,
separated both spatially and in the velocity direction. At the same time, the position marginal
distribution P (x) remains unimodal.
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Figure 2.7: The stationary density P (x, v) as 3D-plots (a) and the heat maps (b) together with
velocity P (v) (c) and position P (x) (d) marginal densities for T (v) given by Eq. (2.16) with γ = 4.



Chapter 3

Escape Kinetics

Various types of escape problems are widely studied within the theory of stochastic processes.
They are considered in systems where the domain of motion is somehow restricted, and a particle
is able to leave it. Therefore, the process in such a system is studied as long as the particle stays
within the given domain. Shape and properties of the domain depend on a particular problem.
However, there are common quantities which can be used to describe escape dynamics. One of
them is the distribution of first passage times (FPT) τ , which is the distribution of times when the
particle escapes from the given domain for the first time. From the distribution or large sample
of first passage times it is possible to calculate various characteristics of the escape process. In
general, distribution of FPT could be of the heavy tailed type and therefore it may not have any
moments, particularly the first one. The simplest example of a system in which all moments of the
FPT distribution diverge is the escape of the Brownian particle from the semi-axis in the absence of
external forces [40, 41]. However, for the system perturbed by GWN or Lévy noise, if the domain
of motion is finite or the potential prevents the particle from penetrating the space away from the
boundary, typically the mean value exists. In these cases, the escape problem can be conveniently
described by a single characteristic – the mean first passage time (MFPT), which is formally defined
as

T = ⟨τ⟩ = ⟨min{t : x(0) = x0 ∧ x(t) ̸∈Σ}⟩, (3.1)

where Σ stands for the domain of motion and x0 ∈ Σ is the initial position.
If the MFPT is not sufficient to characterize the escape problem, other quantities can be used.

For a discontinuous process, the particle can leave the domain of motion without visiting the vi-
cinity of the boundary. Therefore, it is useful to pose a question about distribution of the so called
last hitting points (LHP). LHP is the last point visited by a particle before leaving the domain of
motion. Examination of the LHP distribution can provide deeper insight into a system’s dynamics.
In particular, it can be used for the overdamped Lévy flights to assess the role played by single
jump escapes. The LHP distribution for the escape from the finite interval restricted by two ab-
sorbing boundaries (Σ = [−1, 1]) is depicted in the Fig. 3.1. As α decreases, the peaks located
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at the boundaries weaken, while the central peak becomes more pronounced. This is due to the
increasing importance of the single jump escapes for small α. However, LHP also has its own
limitations. They are especially well visible for the continuous trajectories, for which last visited
points are located on boundaries. Therefore, for the escape from the bounded domain, the distribu-
tion of LHP is just a sum of the Dirac deltas centered on the boundaries with coefficients equal to
the probabilities of escaping through a particular boundary. These coefficients define the so called
splitting probability. For the fully symmetric problem on the finite interval, the splitting probability
is equal to 0.5 since probabilities of escaping through both ends are the same. Therefore, deviations
from 0.5 indicate asymmetries in the system dynamics.

0

1

2

3

4

5

−1 −0.5 0 0.5 1

p(
x
la
st
)

xlast

α = 0.1
α = 0.5
α = 1.0
α = 1.5
α = 2.0

Figure 3.1: The last hitting point density P (xlast) for the escape from the finite interval [−1, 1] for
σ = 0.1.

Underdamped Lévy flights, which are the main topic of this thesis, are continuous in the posi-
tion x(t), therefore LHP distribution is not very insightful in their description. Analysis of the full
dynamic allows us to study properties of one more variable during escape – velocity. The distribu-
tion of escape velocities may display complex and unexpected behavior. This issue is covered in
the next section (3.1) and [A.4].

3.1 Underdamped Escape from the Finite Interval

One of the basic examples of systems in which the escape dynamics is analyzed is the escape
of the free particle from the finite interval restricted by two absorbing boundaries. Due to the
system symmetries, the domain of motion Σ can be chosen in numerous ways. In [A.4] we choose
Σ = [−l, l]. Due to the final size of the domain of motion and assumed driving type, the MFPT is
finite, and therefore it is one of the main quantities describing the system. The analytical formula
for the MFPT for any α is known in the overdamped limit [42–46], and it reads

T (x) =
(l2 − x2

0)
α/2

Γ(1 + α)σα
, (3.2)
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where x0 is the initial position.
The escape from the finite interval restricted by two absorbing boundaries can be extended to

the regime of full dynamics. The underdamped random walk in the finite interval is described by
four parameters – the interval half-width l, the friction coefficient γ, the noise intensity σ and the
stability index α. However, the number of parameters can be significantly reduced in dimensionless
units {

x̃ = x/l

t̃ = γt
. (3.3)

As one can see, the only free parameter, because α is fixed, is the dimensionless noise intensity σ̃,
which is expressed by dimensional variables as

σ̃ =
σ

lγ(1+α)/α
.

Unfortunately, these variables cannot be applied in the undamped limit, i.e., for γ = 0. In this case
another set of dimensionless variables is used

{
x̃ = x/l

t̃ = t/
[
l
σ

] α
1+α

. (3.4)

Consequently, for the undamped escape problem there are no free parameters for fixed α. In the
mathematical literature, undamped process, or so called randomly accelerated process (RAP) [47,
48], for arbitrary α is often called integrated Lévy process, while the case with α = 2 has many
names – integrated Brownian motion [49,50] or integrated Wiener process. Only for the RAP with
Gaussian driving, analytical solution for the MFPT is known [48–50]. Since the general formula
for any v0 is very complicated, here, we will present only v0 = 0 case. After transformation of the
original [0, l] setup considered in [49, 50] to the [−l, l] and passing to the dimensionless variables,
see [A.4], the formula for the MFPT with v0 = 0 reads

T (x, 0) =
2

31/6Γ(7/3)

[
1 + x

2

]1/6 [
1− x

2

]1/6
(3.5)

×
{

2F

(
1,−1

3
;
7

6
;
1 + x

2

)
+ 2F

(
1,−1

3
;
7

6
;
1− x

2

)}
,

where 2F (a, b; c;x) is the Gauss hypergeometric function [51].
[A.4] extends the analysis of the underdamped escape from the finite interval to the Lévy driv-

ing. Qualitatively, MFPTs behave very similarly for every value of the stability index α. However,
the relations between MFPTs for different values of the stability index α depend on the specific
value of the (dimensionless) parameter σ. Fig. 3.2 shows MFPT for different values of the stability
index α and σ = 1. Solid line represents analytical solution for the Gaussian driven RAP with
v0 = 0, see Eq. (3.5). Based on the examination of Fig. 3.2, one may expect that decreasing α

lowers the MFPT, but it is not always the case. Order of MFPT surfaces depends on the initial
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position and the (dimensionless) noise intensity σ. For example, for σ = 4 with v0 = 0 order of
MFPTs as function of α is reversed in comparison to σ = 1 case. This difference decreases as the
initial velocity increases, and the order of the curves is eventually reversed.

MFPT is not the only quantity describing escape dynamics. For the underdamped motion, as
was mentioned at the beginning of this chapter, one may also ask questions about escape velocity
and escape energy. To conveniently describe these quantities with one number, their medians were
analyzed in [A.4]. For the velocity, we also used the ratio of interquantile widths

R =
v0.5 − v0.1
v0.9 − v0.5

, (3.6)

where v... indicates quantiles of a given order q (0 < q < 1) of the exit velocity, e.g., vq(t) is defined
by

q =

∫ vq(t)

−∞
p(v; t)dv. (3.7)

In the above equation, p(v; t) stands for the exit velocity distribution. The ratio defined by Eq. (3.6)
measures the fraction of widths of intervals containing 40% of the exit velocities above (v0.9− v0.5)
and below (v0.5 − v0.1) the median (v0.5). Therefore, the closer R is to unity, the more symmetrical
the distribution is. The median of escape velocity does not display any significant dependence on
the value of the stability index α. Contrary to the median, the symmetry of the escape velocity
distribution may significantly change with α. To be more precise, for the small value of stability
index α, e.g., for α = 0.5, the distribution of the exit velocity is almost symmetric, i.e., R ≈ 1.
With the increasing α, asymmetry increases, as it is easier to escape through the nearest boundary.
However, symmetry can be reintroduced to the escape velocity distribution twofold. On the one
hand, R = 1 for every value of stability index α when initial conditions are set to v0 = 0 and
x0 = 0, due to the system’s symmetry. On the other hand, the escape velocity distribution is more
symmetric for large |v0|, as it becomes narrower due to the short time before escape, see MFPT
Fig. 3.2. Finally, the median of escape energy for small values of initial conditions x0 and v0 is
very sensitive to α and rapidly decreases with the increasing value of the stability index. However,
for large value of v0, median is almost insensitive to α and increases to infinity with increasing
|v0|. Between these two regions one may find minimal value of median of escape energy usually
for v0 ̸= 0, see Fig. 3.3.
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Figure 3.2: The MFPT T (x0, v0) as a function of the initial condition (x0, v0) for various values of
the stability index α (α ∈ {0.5, 1, 1.5, 2}) from the lowest to highest MFPT respectively. Bottom
part shows cross-sections for v0 = 0 (b), v0 = 1 (c), v0 = 2 (d) and v0 = 3 (e). The scale parameter
σ is set to σ = 1.
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Figure 3.3: Median of exit energy E0.5 as a function of the initial condition (x0, v0) for various
values of the stability index α (α ∈ {0.5, 1, 1.5, 2} (orange, blue, green, red)). Bottom part shows
cross-sections for v0 = 0 (b), v0 = 1 (c), v0 = 2 (d) and v0 = 3 (e). The scale parameter σ is set to
σ = 1.
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3.2 Anomalous Diffusion in a Double-well Potential

One of the fundamental escape problems is the transition over the potential barrier. It can
be examined for example in a double-well potential, see Fig. 3.5. The escape can be described
using MFPTs Tij or transition rates kij , where i, j = 1, 2 are indexes of initial and final minimum
respectively. To be more precise, for instance, k12 describes the transition rate from, e.g., left
minimum to the right minimum and vice versa for k21 – from right to left. Consequently, k12 and
k21 represent forward and backward transition rates, see Fig. 3.5. For weak enough noise (small σ),
the transition rates and MFPTs can be connected by simple relation [6]

kij =
1

Tij

. (3.8)

Finally, one can calculate the ratio of transition rates

κ =
k12
k21

=
T21

T12

. (3.9)

For the Gaussian white noise in the overdamped limit, analytical formula for the ratio of transition
rates is known [52]

κ ∝ exp

(
−E2 − E1

σ2

)
. (3.10)

Please note that even though forward and backward transition rates depend on the barrier height,
the ratio of transition rates does not depend on the barrier height [6]. Moreover, this model is used
as a stochastic model of chemical reactions as Eq. (3.10) corresponds to Arrhenious formula [53].
In this interpretation, the transition rate becomes a reaction rate.

The GWN driving is not the only case where analytical results are known. In the weak noise
limit, Lévy noise can be decomposed using the Wiener process (central part of the jump length
distribution) and compound Poisson process (long jumps controlled by the tails of the jump length
distribution) [54, 55]. Importantly in the σ → 0 limit, the transition over the potential barrier is
possible only due to a single extreme kick [54–56]. Using the power-law asymptotics of α-stable
density, the probability of a random jump larger than x0 is given by

P (x > x0) ∼ x−α
0 . (3.11)

Therefore, for the overdamped Lévy flights in the weak noise regime, the analytical formula for the
ratio of transition rates can be derived [54–56]

κ =
k12
k21

=

(
l2
l1

)α

. (3.12)

Our main goal in [A.5] was to verify how weak noise behavior predicted by Eq. (3.12) changes
when small kicks cannot be neglected. The role played by small kicks can be controlled in two main
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ways. More straightforward method requires increasing σ. The other way requires simultaneous
action of (additive) Lévy (ζ(t)) and Gaussian (η(t)) noise. The corresponding Langevin equation
takes the form

dx(t)

dt
= −V ′(x) + σζ(t) + η(t). (3.13)

Please note that the GWN intensity is set to unity while Lévy noise intensity σ is written explicitly
for clarity. In this setup the GWN can be interpreted as thermal (internal) noise while the Lévy part
describes external (athermal) noise. In our analysis we have used

V (x) = 128x4 − 64x2 + ax, (3.14)

where a controls the potential asymmetry, depths of minima and their location. The coefficients of
the polynomial, see Eq. (3.14), have been chosen to ensure that recrossing events are rare. In order
to eliminate recrossing events, the potential wells have to be deep enough and the barrier region
sufficiently narrow [57]. In such a case, a particle spends the majority of time in the vicinity of
potential wells. Consequently, the motion in a double-well potential can be approximated as a two
states process. For the two-state process probability of being to the left from the potential barrier
P1 and to the right P2 satisfy the following condition

k12
k21

=
P2

P1

, (3.15)

which implies from the master equation [58]. Therefore, the comparison between κ = k12/k21 and
P = P2/P1 can be used to verify if states are properly separated.

Fig. 3.4 shows ratio of transition rates κ for combined Gaussian and Lévy drivings with the
Lévy noise intensity σ = 1 and σ = 10 as a function of stability index α. The parameter a in
the potential (3.14) is set to a = 10. Points correspond to the numerical results while the blue
solid line represents weak noise approximation given Eq (3.12). In both cases discrepancy between
formula (3.12) and numerical results is significant. Moreover, for σ = 10 and α > 1 weak noise
approximation breaks even in absence of GWN, see [A.5], as central part of the Lévy distribution is
too wide to consider single jump escape as the main protocol of transition between potential wells.
The problem of weak noise approximation in the overdamped motion has been further analyzed
in [59].

The similar approach to the one used to derive Eq. (3.12) was applied in the [A.6] to construct
the approximated formula for the underdamped process. Contrary to the overdamped case, now
instead of long stochastic jump, we are looking for a single noise ‘kick’ giving rise to the velocity
necessary to escape from the potential well, see Fig. 3.6. To escape from the ith minimum a particle
without the initial velocity needs to harvest energy necessary to surmount the potential barrier, see
Fig. 3.6. In the absence of friction, the adequate formula reads

mv2

2
⩾ Eb − Ei = ∆Ei. (3.16)
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Figure 3.4: Symbols represent the ratios P of occupation probabilities (■) and κ of transition rates
(•) for the double-well potential (3.14) with a = 10, i.e., V (x) = 128x4 − 64x2 + 10x. Solid blue
lines show the theoretical ‘width ratio’ scaling (see Eq. (3.12)). Subsequent panels correspond to
various values of the σ parameter scaling the strength of Lévy noise: σ = 1 (top panel – (a)) and
σ = 10 (bottom panel – (b)).

Figure 3.5: Schematic sketch of the potential given by Eq. (3.21), used in numerical studies of
noise induced escape kinetics for underdamped process.

During the motion the energy is dissipated by friction, and therefore, the minimal initial velocity
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v0 needs to be larger

v0 = v +
γ

m

∫ t0+δt

t0

v(t)dt, (3.17)

where δt (δt ≫ 0) is the time necessary to reach the top of the potential barrier. Assuming that
initially a particle is located in the vicinity of the potential well, the integration over time gives the
distance between the initial position xi and the potential barrier xb, i.e., li. Consequently, the initial
velocity reads

v0 = v +
γ

m
li. (3.18)

Combining Eqs. (3.16) and (3.18), we get the following estimate for the minimal initial velocity v0

v0 =

√
2∆Ei

m
+

γ

m
li. (3.19)

Fig. 3.6 shows exemplary trajectories underlying the escape events.
If the particle starts in the ith minimum, i.e., x(t0) = xi, the probability of velocity change

larger than v0 is equal to the transition rate kij , as v0 is the minimal velocity required for the
transition over potential barrier from the ith minimum. Therefore, similarly to the overdamped
case, the ratio κ for the underdamped process reads

κ =
k12
k21

=

(√
2∆E2 + γ

√
ml2√

2∆E1 + γ
√
ml1

)α

. (3.20)

From Eq. (3.20), it implies that the ratio of transition rates κ depends not only on the energy of the
states, like for the overdamped escape induced by the action of GWN or on the barrier width like
for the overdamped Lévy process but on all parameters describing the system. Moreover, in the
strong friction limit, i.e., γ → ∞, Eq. (3.20) reduces to the overdamped formula (3.12).

To verify the quality of the approximation given by Eq. (3.20), numerical simulations of Langevin
equation were conducted. For this purpose, a fine-tailored potential was used

V (x) =





4h1

[
x4

4l41
− x2

2l21

]
x < 0

4h2

[
x4

4l42
− x2

2l22

]
x ⩾ 0

. (3.21)

Potential given by Eq. (3.21) allows easy control of its depths and distances between minima and the
maximum. Parameters h1 and h2 control depths of the left and right minimum respectively, while
l1 and l2 represent distances between the potential maximum and the corresponding minimum. The
top of the potential barrier is located at xb = 0. The potential given by Eq. (3.21) is schematically
depicted in Fig. 3.5.

Fig. 3.7 shows the ratio of transition rates for different values of left and right potential well
depths h1 and h2. Remaining parameters were set to l1 = 1, l2 = 1, γ = 1 and σ = 0.2. It is clearly
visible that despite many assumptions in the derivation, the formula given by Eq (3.20) (solid lines)
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Figure 3.6: Sample trajectories of the particle moving in the potential (3.21) with l1 = l2 = 1,
h1 = 12 and h2 = 8. The stability index α is equal to α = 1 and the damping coefficient γ is set to
γ = 1 (top panel — (a)) and γ = 5 (bottom panel — (b)). Horizontal lines show minimal velocities
for forward (solid orange) and backward (dashed blue) transitions which are given by Eq. (3.19).

approximates results obtained from numerical simulations (points) fairly accurately. However, the
weak noise approximation breaks down for much smaller σ than in the overdamped case, see [A.5].
Examination of κ for varying friction strength γ and widths l1, l2 also shows agreement between
approximation (3.20) and simulation results, see [A.6]. Moreover, even if results differ from the
formula (3.20) for given set of parameters, they still qualitatively follow the predicted scaling.
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Figure 3.7: The ratio κ(α) of transition rates from minima of the potential (3.21) to the barrier top
as a function of the stability index α. Various points correspond to numerical results for different
depths of potential wells, i.e., different values of h1 and h2, while lines plot the scaling given by
Eq. (3.20). Simulation parameters l1 = 1, and l2 = 1, γ = 1 and σ = 0.2.



Chapter 4

Concluding Remarks

The main motif of this thesis was to examine unusual phenomena induced by the Lévy noise
with the special emphasis on the stationary states in single-well potentials and escape problems.

One of the counter intuitive phenomena is that the overdamped Lévy flights in single-well
potentials might produce bimodal stationary states. In the chapter 2, we extended the phenomen-
ological argument linking the number and position of modal values with the curvature maxima of
the potential under consideration. The number of modal values of a stationary state in a given
potential cannot be larger than the number of maxima of this potential curvature, but, it might be
smaller. Using this hypothesis, we constructed a few fine-tuned, single-well potentials for which
non-equilibrium stationary states have modality larger than two. Moreover, we analyzed how the
aforementioned overdamped phenomena of multimodality translates to the full (underdamped) dy-
namics regime, with special attention to the quartic potential. We have demonstrated that for small
linear friction bimodality in the quartic potential is not observed. However, it can be restored for
finite and not very large friction. Contrary to the linear friction, superlinear friction cannot produce
spatially bimodal stationary states. Bimodality in the velocities can be observed as long as the
linear addition is not too large. This phenomenon was explained by the analogy to the overdamped
regime.

Regarding escape problems, we considered two archetypal models – the escape from a finite
interval and diffusion in a double-well potential. Detailed examination of the underdamped escape
process driven by Lévy noise indicates that the mean first passage time displays limited sensitivity
to the exact value of the stability index α. Therefore, despite very different velocity distributions,
the qualitative system properties are very close to the properties of the randomly accelerated pro-
cess. Nevertheless, the increase in the scale parameter (the only significant parameter besides the
stability index α) can differentiate results corresponding to various values of α. On the one hand,
for the Lévy-driven inertial process, medians of the escape velocity are weakly sensitive to the sta-
bility index α. On the other hand, analysis of the asymmetry of the escape velocity distributions
shows a high level of responsivity to the stability index. In contrast to velocities, the studies of
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the medians of escape energies display significant sensitivity to the value of the stability index α,
especially for small initial velocities. Finally, the median of the escape energy can decrease with
the increasing value of the initial velocity.

We have also studied escape kinetics in a double-well potential, in the weak noise limit. The
ratio of forward and backward transition rates between two states for the Lévy driven overdamped
kinetics in a double-well potential depends only on the potential barrier width. In the [A.5] we
examined possible protocols of breaking these properties in the overdamped system. We have
numerically shown that both increase of noise intensity σ and addition of the GWN term leads to
the violation of the ‘width’ formula. Also, for an underdamped process, the ratio of transition rates
does not only depend on potential barrier width but also on its height. We derived an approximate
formula describing the observed behavior of the ratio of transition rates for the weak noise (small
σ). Comparison with numerical simulations shows that despite its limitations, the obtained formula
can well approximate behavior for a wide range of parameters and give insight into the system
dynamics.

Phenomena described by stochastic processes are ubiquitous in nature. They often cannot be
described using equilibrium noise. Therefore, it is important to better understand non-equilibrium
noises. The non-equilibrium Lévy processes were intensively studied in the overdamped regime.
Here, we extended studies on the stationary states in single-well potentials and escape problems
in the presence of Lévy noise to the full dynamics regime. Exploration of the Lévy processes
in the underdamped regime may extend our knowledge about phenomena described by heavy-
tailed noise, like searching strategies or stochastic optimization. Further studies should address
simultaneous action of Lévy driving and stochastic resetting with the emphasis on underdamped
regime.
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[12] A. Fuliński and P. F. Góra, Phys. Rev. E 64, 011905 (2001).

[13] A. Janicki and A. Weron, Simulation and chaotic behavior of α-stable stochastic processes
(Marcel Dekker, New York, 1994).



36 BIBLIOGRAPHY

[14] G. Samorodnitsky and M. S. Taqqu, Stable non-Gaussian random processes: Stochastic mod-
els with infinite variance (Chapman and Hall, New York, 1994).

[15] K. A. Penson and K. Górska, Phys. Rev. Lett. 105, 210604 (2010).

[16] K. Górska and K. A. Penson, Phys. Rev. E 83, 061125 (2011).

[17] C. W. Gardiner, Handbook of Stochastic Methods for Physics, Chemistry and the Natural
Sciences, Vol. 13 of Springer Series in Synergetics, 3rd ed. (Springer-Verlag, Berlin, 2004).

[18] I. Podlubny, Fractional differential equations (Academic Press, San Diego, 1999).

[19] V. V. Yanovsky, A. V. Chechkin, D. Schertzer, and A. V. Tur, Physica A 282, 13 (2000).

[20] S. G. Samko, A. A. Kilbas, and O. I. Marichev, Fractional integrals and derivatives. Theory
and applications. (Gordon and Breach Science Publishers, Yverdon, 1993).

[21] A. A. Kilbas, H. M. Srivastava, and J. J. Trujillo, Theory and applications of fractional dif-
ferential equations, Volume 204 (North-Holland Mathematics Studies) (Elsevier Science Inc.,
New York, 2006).

[22] A. Padash, A. V. Chechkin, B. Dybiec, I. Pavlyukevich, B. Shokri, and R. Metzler, J. Phys.
A: Math. Theor. 52, 454004 (2019).

[23] A. Padash, A. V. Chechkin, B. Dybiec, M. Magdziarz, B. Shokri, and R. Metzler, J. Phys. A
53, 275002 (2020).

[24] A. Janicki, Numerical and statistical approximation of stochastic differential equations with
non-Gaussian measures (Hugo Steinhaus Centre for Stochastic Methods, Wrocław, 1996).

[25] J. M. Chambers, C. L. Mallows, and B. W. Stuck, J. Am. Stat. Assoc. 71, 340 (1976).

[26] R. Weron, Statist. Probab. Lett. 28, 165 (1996).

[27] R. Weron, Research Report HSC Wroclaw University of Technology 1, 1 (1996).

[28] H. Risken, The Fokker-Planck equation. Methods of solution and application (Springer Ver-
lag, Berlin, 19996).

[29] B. Dybiec, A. V. Chechkin, and I. M. Sokolov, J. Stat. Mech. P07008 (2010).

[30] S. I. Denisov, W. Horsthemke, and P. Hänggi, Phys. Rev. E 77, 061112 (2008).

[31] I. M. Sokolov, B. Dybiec, and W. Ebeling, Phys. Rev. E 83, 041118 (2011).



BIBLIOGRAPHY 37

[32] S. Zozor and C. Vignat, Phys. Rev. E 84, 031115 (2011).

[33] A. V. Chechkin, J. Klafter, V. Y. Gonchar, R. Metzler, and L. V. Tanatarov, Chem. Phys. 284,
233 (2002).

[34] A. V. Chechkin, J. Klafter, V. Y. Gonchar, R. Metzler, and L. V. Tanatarov, Phys. Rev. E 67,
010102(R) (2003).

[35] A. V. Chechkin, V. Y. Gonchar, J. Klafter, R. Metzler, and L. V. Tanatarov, J. Stat. Phys. 115,
1505 (2004).

[36] A. V. Chechkin, V. Y. Gonchar, J. Klafter, and R. Metzler, in Fractals, Diffusion, and Relax-
ation in Disordered Complex Systems: Advances in Chemical Physics, Part B, edited by W.
T. Coffey and Y. P. Kalmykov (John Wiley & Sons, New York, 2006), Vol. 133, pp. 439–496.

[37] A. V. Chechkin, R. Metzler, J. Klafter, and V. Y. Gonchar, in Anomalous transport: Found-
ations and applications, edited by R. Klages, G. Radons, and I. M. Sokolov (Wiley-VCH,
Weinheim, 2008), pp. 129–162.

[38] A. A. Dubkov and B. Spagnolo, Acta Phys. Pol. B 38, 1745 (2007).

[39] F.-J. Elmer, J. Phys. A: Math.Gen. 30, 6057 (1997).

[40] E. Sparre Andersen, Math. Scand. 1, 263 (1953).

[41] E. Sparre Andersen, Math. Scand. 2, 195 (1954).

[42] R. K. Getoor, Trans. Am. Math. Soc. 101, 75 (1961).

[43] H. Widom, Trans. Am. Math. Soc. 98, 430 (1961).

[44] H. Kesten, Illinois J. Math. 5, 267 (1961).

[45] H. Kesten, Illinois J. Math. 5, 246 (1961).

[46] A. Zoia, A. Rosso, and M. Kardar, Phys. Rev. E 76, 021116 (2007).

[47] T. Burkhardt, J. Phys. A: Math. Gen. 26, L1157 (1993).

[48] T. W. Burkhardt, in First-Passage Phenomena and Their Applications, edited by R. Metzler,
S. Redner, and G. Oshanin (World Scientific, Singapore, 2014), pp. 21–44.

[49] J. Masoliver and J. M. Porrà, Phys. Rev. Lett. 75, 189 (1995).

[50] J. Masoliver and J. M. Porrà, Phys. Rev. E 53, 2243 (1996).



38 BIBLIOGRAPHY

[51] M. Abramowitz and I. A. Stegun, Handbook of mathematical functions with formulas, graphs,
and mathematical tables (Dover Publications, New York, 1964), Vol. 55.

[52] H. A. Kramers, Physica (Utrecht) 7, 284 (1940).

[53] S. Arrhenius, Z. Phys. Chem. 4U, 226 (1889).

[54] P. Imkeller and I. Pavlyukevich, Stoch. Proc. Appl. 116, 611 (2006).

[55] P. Imkeller and I. Pavlyukevich, J. Phys. A: Math. Gen. 39, L237 (2006).

[56] P. D. Ditlevsen, Phys. Rev. E 60, 172 (1999).

[57] B. Dybiec, E. Gudowska-Nowak, and P. Hänggi, Phys. Rev. E 75, 021109 (2007).

[58] K. Huang, Statistical mechanics (John Wiley, New York, 1963).

[59] K. Capała, A. Padash, A. V. Chechkin, B. Shokri, R. Metzler, and B. Dybiec, Chaos 30,
123103 (2020).



Multimodal stationary states in symmetric single-well
potentials driven by Cauchy noise
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Abstract. Stationary states for a particle moving in a single-well, steeper than
parabolic, potential driven by Lévy noise can be bi-modal. Here, we explore in
details conditions that are required in order to induce multimodal stationary states
having more than two modal values. Phenomenological arguments determining
necessary conditions for emergence of stationary states of higher multimodality are
provided. Basing on these arguments, appropriate symmetric single-well potentials are
constructed. Finally, using numerical methods it is verified that stationary states have
anticipated multimodality.

Keywords : stationary states, fractional dynamics, Lévy flights
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1. Introduction

A particle immersed into a liquid constantly interacts with other particles of its
environment. These collision results in the irregular, observable motion of a test particle,
which is called the Brownian motion. The theory of the Brownian motion had been
rigorously and independently developed by Einstein [1] and Smoluchowski [2] in series
of papers which made fundamental contributions to kinetic theory of matter, theory of
fluctuations and nonequilibrium statistical mechanics.

The Brownian motion is an example of a continuous-space and a continuous-time
Markov process with independent increments. Brownian motion can be described by
the simplest form of the overdamped Langevin equation

ẋ = ξ(t), (1)

where ξ(t) is the Gaussian white noise. In the theory of stochastic processes, the
Brownian motion is the Wiener process. In Eq. (1), ξ(t) is the so called noise which is
used as efficient way of approximation of not fully known interactions of a test particle
with its environment. Increasing number of observations suggest that fluctuations in
real systems do not need to follow the Gaussian law. The natural generalization of the
Gaussian density is provided by the α-stable density [3, 4] which lead to the so called
Lévy flights.

Lévy flights correspond to summation of uncorrelated random steps drawn from
a heavy tailed density. Typically it is assumed that tails are of the power-law type.
Therefore, Lévy flights extends Brownian motion for which the step increments are
Gaussian. A simple scaling argument shows that, unlike Gaussian Wiener process, Lévy
flights are characterized by infinite variance, so that the width of the diffusive “packet”
must be understood in terms of some fractional moments or the interquartile distance
[5]. The infinite variance of free Lévy flights is responsible for peculiar properties of
systems driven by Lévy noise, see [6, 7] and below. Therefore, the scenario of Lévy
flights should be contrasted with the complementary model of Lévy walks [8], which
assures finite and constant propagation velocity.

Theory of Lévy flights has been developed in a series of papers including among
others [9–16]. Lévy flights have been studied in various contexts [17] with applications
ranging from economy and finance [18] to superdiffusion of micellar systems [19], studies
of turbulence [20], description of photons in hot atomic vapors [21] and laser cooling
[22, 23]. These studies included not only experimental [24] but also various theoretical
aspects [25–28] of Lévy flights.

A test particle might be not only perturbed by the noise but also it can be driven
by the deterministic force, e.g. f(x) = −V ′(x), which is to be added to the right hand
side of Eq. (1). The overdamped Langevin equation

ẋ(t) = −V ′(x) + ξ(t) (2)

is a one of fundamental equation in theory of stochastic systems. In Eq. (2), −V ′(x)

stands for the deterministic force, while ξ(t) denotes, as in Eq. (1), the stochastic term.
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In the limit of vanishing noise strength the motion of an overdamped particle becomes
deterministic and especially simple. The deterministic force drives a particle along the
potential slope, e.g. to a minimum of the potential which is stable. Presence of noise
introduces randomization of trajectories. Moreover, it changes stability of minima of the
potential. Combined action of a Gaussian white noise and deterministic forces produces
stationary states in potential wells which are of the Boltzman Gibbs type. Replacement
of the Gaussian driving with Lévy noise significantly alters conditions for existence,
properties and shape of stationary states [13, 29–32]. Eq. (2) provides foundations of the
Kramers rate theory [33, 34], which can be also generalized to the non-equilibrium, Lévy
flight regime [35, 36]. Furthermore, Eq. (2) can be extended for time dependent forces
resulting in plenitude of noise-induced effects like stochastic resonance [37], resonant
activation [38] and ratcheting effect [39].

In this paper we are analyzing the problem of stationary states in stochastic systems
described by an overdamped Langeving equation. The problem we aim to address
is whether action of nonequilibrium noises of α-stable type can induce multimodal
stationary states in symmetric single-well potentials. Despite the fact that the conclusive
answer to this problem is known for a long time, it is still unknown whether it is possible
to observe multimodal states characterized by more than two modal values. Within the
current manuscript we are filling this gap. In the next section (Sec 2) a model under
studies with required theory is presented. Section Results (Sec. 3) provides obtained
results proving that for a properly tailored symmetric single-well potentials one can
produce tri- and higher modal stationary states. The manuscript is closed with Summary
and Conclusions (Sec. 4).

2. Model

We are studying the system described by Eq. (2) in which the Gaussian white noise
is replaced by a more general noise of the α-stable type [7, 32, 40]. From the whole
class of α-stable noises we concentrate on symmetric ones [3, 4, 6]. α-stable white noise
is a formal time derivative of the α-stable process, whose increments are distributed
according to an α-stable density, which is uni-modal, heavy-tailed probability density.
The characteristic function of the symmetric α-stable variables [3, 4] is given by

ϕ(k) = eiσ
α|k|α , (3)

where α (0 < α 6 2) is the stability index determining the exponent characterizing
power-law decay of α-stable densities, which for α < 2 is of |x|−(α+1) type. The scale
parameter σ controls the distribution width. For α < 2, the variance of an α-stable
density is infinite, thus the distribution width needs to be understood as the interquantile
width. For α = 2, the characteristic function (3) reduces to the characteristic function
of the normal (Gaussian) density. The case of α = 1 corresponds to the Cauchy
distribution. Increments of an α-stable process are distributed according to the α-
stable density with the characteristic function ϕ(k) = exp(i∆tσα|k|α). Therefore, the
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Langevin equation (2) can be approximated by [3, 41]

x(t+ ∆t) = x(t)− V ′(x)∆t+ ξt∆t
1/α, (4)

where ξt represents a sequence of independent identically distributed random variables
[42–44] following the α-stable density, see Eq. (3).

Complementary to the Langevin equation, the evolution of the probability density
is described by the fractional Smoluchowski-Fokker-Planck equation [4, 15, 45]

∂p(x, t)

∂t
= − ∂

∂x
V ′(x, t)p(x, t) + σα

∂αp(x, t)

∂|x|α , (5)

where the fractional Riesz-Weil derivative [45, 46] is defined via the Fourier transform
Fk
(
∂αf(x)
∂|x|α

)
= −|k|αFk (f(x)) .

For systems driven by the Gaussian white noise, i.e. the α-stable noise with
α = 2, stationary states exist for any potential V (x) having the property V (x) → ∞
as |x| → ∞. Moreover, stationary states are of the Boltzmann-Gibbs type, i.e.
ln p(x) ∝ −V (x). Systems driven by an α-stable noise display very different properties
than their Gaussian white noise-driven counterparts. First of all, for a single-well
potential of |x|n type, the exponent n characterizing the steepness of the potential
needs to be large enough in order to produce stationary states [47]. More precisely, the
following relation needs to be satisfied

n > 2− α. (6)

Furthermore, if a stationary state exists it is not of the Boltzmann-Gibbs type [25].
In analogy with systems driven by Gaussian white noise, for n = 2 stationary

states for systems driven by α-stable noise reproduce the noise distribution. Therefore,
stationary states are given by the rescaled α-stable density with the same stability index
α like the driving noise [30]. In addition to n = 2, the formulas for the stationary state
is known for V (x) = x4/4 driven by the Cauchy noise, i.e. the α-stable noise with α = 1.
The appropriate formula [29–31] for the stationary density reads

pα=1(x) =
1

πσ1/3 [(x/σ1/3)4 − (x/σ1/3)2 + 1]
. (7)

The probability density (7) is a bi-modal density. Bi-modality is a general property
of stationary states in steeper than parabolic potentials subject to the action of Lévy
noises [29, 30]. Consequently, the stationary state produced in a symmetric single-well
potential does not reproduce the symmetry of the potential, i.e. it is not uni-modal, see
Fig. 1. The transition between uni-modal and bi-modal stationary states takes place at
n = 2. For n > 2 stationary states are bi-modal with the minimum at the origin, while
for 2− α < n < 2 they are uni-modal with the maximum at the origin. In double-well
potentials, stationary states are bi-modal [48, 49] Finally, for an infinite rectangular
potential well the stationary state is

p(x) =
Γ(α)(2L)1−α(L2 − x2)α/2−1

Γ2(α)
, (8)
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Figure 1. Stationary state for the quartic potential V (x) = x4/4 subject to action
of the α-stable driving with α=1 (Cauchy noise) and σ = 1 (dots), quartic potential
(blue solid line), exact solution (7) (green solid line) and the potential curvature (orange
dashed line). Simulation parameters: N = 106, ∆t = 10−3 and tmax = 100.

see [50], where Γ(. . .) is the Euler-Gamma function. In the special case of α = 1, the
stationary state, see Eq. (8), is given by the arcsin distribution.

The infinite rectangular potential well with impenetrable boundaries located at
x = ±L can be obtained as n→∞ limit of the symmetric single-well potential

Vn(x) =
(x/L)2n

2n
, (9)

for which stationary states for α = 1 are also known [51]. Detailed examination of
such a transition allow one to see how stationary states in systems driven by α-stable
noise emerges [52]. Additionally, Eq. (7) provides an example that demonstrates the
influence of the scale parameter on the shape of stationary states. From Eq. (7), one
can conclude that with the increasing σ maxima of probability density (7) shift toward
larger absolute values of arguments. This displacement is related to the fact that for
the large σ more probability mass is shifted to the tails of the jump length distribution,
thus making central part of the distribution less prominent. Analogously, the increase
in the exponent characterizing steepness of the potential n, see Eq. (9), moves maxima
of the stationary states towards x = ±L. Finally, in the limit of n = ∞ maxima are
located exactly at boundaries, i.e. ±L, see Eq. (8).

In short, the stationary state is determined by the interplay between random and
deterministic forces. The deterministic force is defined by a static potential V (x), while a
stochastic force arises due to noise. Since the studied system is overdamped, see Eq. (2),
the deterministic force is responsible for sliding down of a particle to the potential
minimum. The random force resulting from the noise ξ(t) is the only force which can
move a particle away from the minimum of the potential. Therefore, the competition
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between random excursion and deterministic sliding defines the shape of a stationary
state. This mechanism is related to the decomposition of α-stable noises [53–55].

The above mentioned description presents a general mechanism responsible for the
shape of stationary states. This mechanism is of very general type and as a such do
not provide simple estimates for positions of maxima of stationary states. Therefore,
we extend a phenomenological arguments [29, 31] which could provide more information
about stationary states, e.g. about positions of modal values.

As a test bench we use the quartic x4/4 potential well perturbed by the Cauchy
noise with σ = 1, for which the stationary state is given by Eq. (7). Fig. 1 presents
results of computer simulations (dots), the quartic potential (blue solid line) and the
potential curvature (orange dashed line). For a plane curve given by V (x), the curvature
is

κ(x) =
V ′′(x)

[1 + V ′(x)2]3/2
. (10)

In order to increase clarity of Fig. 1, the curvature κ(x) is divided by a constant. From
Fig. 1 it is clearly visible that maxima of stationary state are located closely to the
maxima of the curvature of V (x), see [29, 31]. For further reference, let us call x̄i i-th
value of x for which curvature κ(x) has its local maximum. The significant likelihood of
concentrating of probability mass near maxima of curvature comes from the fact that
maximum of curvature describes a point where a transition from dominance of almost
vertical to flat behaviour of the potential takes place. This is especially well visible for
the infinite rectangular potential well because at the point of maximal curvature the
potential changes from the horizontal to the vertical (reflecting boundary). Potential
slope is directly connected with the change of a particle position, see Eq. (2), while the
curvature describes how rapidly movement of the particle changes at a small distance.
Therefore, a maximum of the curvature establish a point where a change of a particle
position is the most hampered. Please notice, that the conjecture associating maxima
of the potential curvature with modal values of stationary states [31] confirm also uni-
modal — bi-modal transition at n = 2 for single-well potentials of |x|n/n type.

Due to peculiar properties of systems driven by α-stable noises one can inquire
about possibility of producing multimodal stationary states in symmetric single-well
potentials. In the following section we show that for properly tailored symmetric single-
well potentials it is possible to produce stationary states having more than two modal
values.

3. Results

In this section we show numerically that for special types of symmetric single-well
potentials it is possible to obtain multimodal stationary states characterized by more
than two modal values. In particular, we demonstrate sample symmetric, differentiable,
single-well potentials (Sec. 3.1) resulting in three-modal, four-modal and five-modal
stationary states. Moreover, we show “glued” symmetric single-well potentials (Sec. 3.2)
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which are also able to produce multimodal stationary states. All considered potentials
are symmetric single-well, i.e. the only one minimum of the potential is located at
x = 0. Importantly, for x > 0 (x < 0) potentials are non-decaying (non-decreasing)
functions of x with the non-monotonous dependence of the curvature characterized by
several maxima.

Sample potentials used in further numerical studies are pre-selected by the curvature
condition and then numerically fine-tuned. The requirement of several maxima of the
potential curvature is necessary to obtain a multimodal stationary state. Unfortunately,
this condition solely could be not sufficient. For instance, maxima of the potential
curvature need to be adequately separated. Otherwise, maxima of a stationary state
can interfere resulting in smaller number of peaks in the stationary state than the
number of maxima in the potential curvature. Therefore, the condition on the number
of maxima of the potential curvature needs to be accompanied by additional numerical
tests. Exemplary values of the potential parameters, used in further studies, represent
sample values of coefficients resulting in pronounced stationary states having required
number of modal values.

3.1. Continuous differentiable potentials

Three mods Let us start with the overdamped Langevin equation (2) with the
symmetric single-well potential

V (x) = x2 − ax4 + x6. (11)

The above potential has one minimum located at x = 0 and three points in which the
curvature has its local maxima. We use numerical methods in order to find stationary
states for the system described by Eq. (2).

Numerical results for the potential (11) with a = 19/11 together with the potential
profile are shown in Fig. 2. As it is visible in Fig. 2, the stationary state has three well
visible peaks. One of them is located at the minimum of the potential at x = 0 which
is also the local maximum of the potential curvature. For small value of x the potential
(11) can be approximated by the parabolic part. Therefore, dynamics of a particle at
x ≈ 0 is of the same type like the motion in the parabolic potential, which results in the
emergence of the single peak at x = 0. Two other peaks appear near to two remaining
maxima of curvature of the potential due to action of the deterministic force produced
by outer (|x| > 1) parts of the potential.

The parameter a in Eq. (11) is adjusted to assure that the potential V (x) is still of
a single-well type and the stationary state is tri-modal. For a = 19/11 the potential (11)
is close of having three minima, since for a >

√
3 the potential has three minima. In the

case of a >
√

3, the stationary state is tri-modal. Consequently, a =
√

3 gives the upper
bound of the domain of the a parameter. For a < 0, the stationary state is unimodal.
Therefore, we had to consider 0 < a <

√
3. Finally, we have performed additional

simulations in order to find the critical value of the a parameter for a transition between
tri-modal and unimodal stationary state. From our simulations, we see that the critical
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Figure 2. The stationary state for the potential given by Eq. (11) with a = 19/11

subject to the α-stable driving with α=1 (Cauchy noise) and σ = 1 (dots), the potential
profile (blue solid line) and the potential curvature (orange dashed line). Simulation
parameters: N = 106, ∆t = 10−3, tmax = 100.

value is located between 1.17 < ac ≤ 1.20. Unfortunately, due to inherent uncertainties
of our methodology, it is very hard to provide a better estimate.
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Figure 3. The same as in Fig. 2 for a = 1.

Different situations is observed for the potential given by Eq. (11) with a = 1,
which is smaller than ac, see Fig. 3. The potential still has one minimum at x = 0.
The curvature has three maxima: x̄0 and x̄±. The maximum x̄0 located at x = 0 is
dominating and remaining points of maximal curvature x̄±1 are closer to each other
than for a = 19/11, see Fig. 2. Relative changes in the curvature are also smaller than
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for a = 19/11. In Fig. 3, there is only one maximum of the stationary density located at
the origin because of different curvature profile than in Fig. 2. In other words, maxima
of curvature are not distanced (separated) enough to induce tri-modal stationary state.
Nevertheless, the influence of curvature is still visible. More precisely, for x < 0, in the
range where curvature decays from its local maximum x̄− to its global minimum the
stationary density increases slower than in the areas of growing curvature. The very
similar effect is observed for x > 0, where the decay of the stationary density is slower
in the interval where the curvature grows.

Four mods As a sample potential with the single minimum located at x = 0 and four
maxima of the curvature we use

V (x) =
7

6
x4 − 2x6 + x8. (12)

Since the potential (12) has four maxima of the curvature, we are expecting that a
stationary state will have four modal values. Indeed, in Fig. 4 four maxima of the
stationary density located near points of the maximal curvature are visible. Maxima
located at x ≈ ±1 are significantly higher than maxima at x ≈ ±0.4, because the
curvature at these points is substantially smaller. In contrast to the potential considered
in the previous subsection, the probability density has minimum at x = 0 due to
minimum of the potential curvature. Alternatively, shape of the stationary density
around x = 0 can be explained by the analysis of the potential. The potential given
by Eq. (12), for small x, behaves like x4 while the potential given by Eq. (11) like x2

resulting in the maximum of stationary density in the former case and minimum of
stationary denity in the current case.

-2 -1 1 2

0.2

0.4

0.6

Figure 4. The stationary state for the potential (12) subject to the α-stable driving
with α=1 (Cauchy noise) and σ = 1 (dots), potential profile (blue solid line) and
the potential curvature (orange dashed line). Simulation parameters: N = 9.6 × 104,
∆t = 10−6, tmax = 100.

APPENDIX A. ARTICLES 47



Multimodal stationary states in symmetric single-well potentials driven by Cauchy noise10

Five mods In order to produce five modal values in the stationary state we use a
potential

V (x) = 13.4789x2 − 24.8828x4 + 22.6289x6

− 8.125x8 + x10 (13)

having five maxima of the curvature. As it is confirmed by Fig. 5, the stationary state
corresponding to the potential (13) has five modal values. Additional Fig. 6 examines
in more details the sensitivity of the stationary state to the scale parameter σ, which
is ten times larger than in Fig. 5. Increase in the scale parameter decreases the height
of the central maximum and spreads outer peaks. The decrease of the central peak
in the stationary state is related to the central part of distribution of random pulses.
More precisely, for larger values of the scale parameter σ, peaks of α-stable densities
become lower and wider transferring effectively a part of the probability mass to tails of
distributions. This in turn, can spread outer peaks of stationary densities and increase
their height as it can be deducted from comparison of Figs. 5 and 6.
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Figure 5. The stationary state for the potential (13) subject to the α-stable driving
with α=1 (Cauchy noise) and σ = 1 (dots), potential profile (blue solid line) and
the potential curvature (orange dashed line). Simulation parameters: N = 9.6 × 104,
∆t = 10−6, tmax = 100.

Next, considered sample potential which allow for the emergence of a five-modal
stationary state can be

V (x) = 49.0625x2 − 69.5313x4 + 43.4414x6

− 11.125x8 + x10. (14)

Stationary states corresponding to the potential (14) are presented in Figs. 7 and 8. As
in the previous case, see Eq. (13), the increase in the scale parameter σ decreases the
height of the central peak and makes outer peaks more pronounced. Therefore, for large
σ in the stationary state there are five well visible peaks, see Fig. 8.
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Figure 6. The same as in Fig. 5 for σ = 10.

-2 -1 1 2

-0.2

-0.1

0.1

0.2

0.3

0.4

0.5

Figure 7. The stationary state for the potential (14) subject to the α-stable driving
with α=1 (Cauchy noise) and σ = 1 (dots), potential profile (blue solid line) and
the potential curvature (orange dashed line). Simulation parameters: N = 9.6 × 104,
∆t = 10−6, tmax = 100.

3.2. “Glued” potentials

Stationary states with more than two modal values can be also produced in continuous
non-differentiable “glued” potentials. For instance, let us consider the potential given
by

V (x) =





(x+1)4

16
+ 1

4
for x < 1

x4

4
for |x| 6 1

(x−1)4
16

+ 1
4

for x > 1

. (15)
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Figure 8. The same as in Fig. 7 for σ = 10.

The stationary state, along with the potential profile and the potential curvature is
depicted in Fig. 9. The potential (15) consist of tailored x4 parts. For small x, the
stationary state is determined by the part of the potential located at |x| < 1. This part
of the potential is quartic, thus it produces two maxima. Two further maxima, at larger
absolute values of arguments, are produced by outer parts of the potential well. On
the one hand, one can see the stationary state as an outcome of competition between
two parts (inner and outer) of the potential, which are responsible for the emergence
of modal values. On the other hand, it is possible to provide alternative explanation
based on competition between deterministic and random forces. The inner part of the
potential produces two maxima in an analogous way like the x4/4 potential, see Fig. 1.
If a particle, due to random force, escapes to a distant point it starts to slide down
towards x = 0. The time scale associated with the deterministic sliding is infinite making
probability mass to concentrate on almost horizontal part of the potential close to |x| = 1

giving rise to two outer maxima of the stationary state, see Fig. 9. For a potential given
by Eq. (15), replacement of the quartic part at |x| < 1 with the parabolic potential
destroys inner maxima of the stationary state. The inner part of the stationary density
is uni-modal, which is consistent with results for the parabolic potential. Finally, also
the phenomenological interpretation based on the potential curvature works. Maxima
of the stationary states are located close to maxima of the potential curvature.

The mechanism responsible for emergence of maxima of the stationary state in
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Fig. 9 can be further extended. For example, the following potential

V (x) =





1
4
(x+ 3)4 + 3

4
for x < −3

1
4
(x+ 2)4 + 1

2
for −3 6 x < −2

1
4
(x+ 1)4 + 1

4
for −2 6 x < −1

x4

4
for |x| 6 1

1
4
(x− 1)4 + 1

4
for 1 < x 6 2

1
4
(x− 2)4 + 1

2
for 2 < x 6 3

1
4
(x− 3)4 + 3

4
for x > 3

(16)

results in emergence of eight-modal stationary state, see Fig. 10, see Fig. 10. The
procedure of tailoring potentials, see Eqs. (15) and (16), can be further continued. Please
note, however, that outer maxima are the strongest because they aggregate particles
sliding down from the whole outer parts of the potential.
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Figure 9. The stationary state for the potential given by (15) subject to the α-stable
driving with α=1 (Cauchy noise) and σ = 1 (dots), the potential profile (blue solid line)
and the potential curvature (orange dashed line). Simulation parameters: N = 106,
∆t = 10−3, tmax = 100.

4. Summary and Conclusion

It is well known that stationary states in systems driven by Lévy noise can display
intriguing properties [13, 29–32]. Almost twenty years ago it was proved that stationary
states of non-harmonic Lévy, e.g. quartic, oscillators can be bi-modal [29]. Nevertheless,
so far, it has not been verified if stationary states in symmetric single-well potential can
be characterized by more than two modal values. The current manuscript provides
conclusive and positive answer to this problem.

We have grounded our considerations on a condition of existence of modal values
which attribute maxima of probability density to maxima in the potential curvature
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Figure 10. The same as in Fig. 9 for the potential given by Eq. (16).

[31]. In the next step this conjecture has been used to construct symmetric single-well
potentials resulting in desired multimodality. Finally, we have numerically investigated
properties of stationary states proving that stationary states indeed have anticipated
multimodality. This step is necessary because the curvature condition might be not
sufficient to acquire anticipated multi-modality. Therefore, the final test and fine-tuning
of potential parameters need to be performed manually. All considered potential assured
existence of stationary states, because every potential for large |x| is steeper than x4

which is well above the minimal steepness ensuring existence of stationary states.
Peaks in the stationary state which are located close to the origin are determined

by the behaviour of the potential at small x. Therefore, if the dominating part of the
potential at x ≈ 0 is steeper than parabolic the stationary state has a minimum at the
origin what is especially well visible for the quartic potential. In contrast, for potentials
less steep than parabolic, the stationary state has a global maximum at the origin. In
general, modal values of stationary states are located in the vicinity of maxima of the
potential curvature. The mechanism of emergence of multimodal stationary states is
better visible for “glued” potentials than for continuous differentiable potentials.

Within simulations, we have focused on the Cauchy noise which is a special example
of the Lévy noise with the stability index α = 1. However, similar considerations can
be performed for other allowed values of the stability index. In the limiting case of
α = 2, the α-stable noise becomes the Gaussian white noise. Therefore, stationary
states become of the Boltzmann-Gibbs type and for single-well potentials they are single-
modal.

Obtained findings indicate that the stationary state in a single-well potential can
be of non-trivial, multimodal type. Therefore, it might be important to asses the
role of multi-modal stationary states in noise-induced effects. This problem seems to
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be especially relevant in the context of averaging over equilibrium initial conditions,
sensitivity to initial conditions or the problem of transition over the potential barrier.
For the Kramers problem, the issue of placing the boundary which discriminate states
[48, 56] might be further complicated due to multi-modality of stationary states.
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Stationary states for underdamped anharmonic oscillators driven by
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Using numerical methods, we have studied stationary states in the underdamped anharmonic stochastic oscillators
driven by Cauchy noise. Shape of stationary states depend both on the potential type and the damping. If the damping
is strong enough, for potential wells which in the overdamped regime produce multimodal stationary states, stationary
states in the underdamped regime can be multimodal with the same number of modes like in the overdamped regime.
For the parabolic potential, the stationary density is always unimodal and it is given by the two dimensional α-stable
density. For the mixture of quartic and parabolic single-well potentials the stationary density can be bimodal. Never-
theless, the parabolic addition, which is strong enough, can destroy bimodlity of the stationary state.

PACS numbers: 05.40.Fb, 05.10.Gg, 02.50.-r, 02.50.Ey,

The increasing number of observations shows that fluc-
tuations in complex systems do not need to follow the
Gaussian distribution but display power-law behavior. T
he non-equilibrium fluctuations can be approximated and
modeled by α-stable (Lévy) noise. Properties of dynam-
ical systems driven by Lévy noise are significantly dif-
ferent from their Gaussian white noise driven counter-
parts. This is especially well visible in noise induced ef-
fects but also in stationary states. Here, we study the
archetypal models of anharmonic, inertial stochastic oscil-
lators driven by the Lévy noise. Therefore, within the cur-
rent manuscript we extend understanding of uderdamped,
Lévy noise driven systems. We demonstrate that station-
ary states strongly deviate from the Boltzmann-Gibbs dis-
tribution as in single-well potentials multimodal station-
ary densities can be observed. Moreover, contrary to
the Gaussian driving, stationary densities depend on the
damping. Finally, we show under which conditions sta-
tionary states in singe-well potentials can be multimodal.

I. INTRODUCTION

The overdamped Langevin eqution

ẋ(t) = −V ′(x) + ζ(t). (1)

is the archetypal equation in the theory of stochastic sys-
tems. It describes the evolution of the position x(t) of the
overdamped, noise driven particle moving in the potential
V (x). The potential V (x) produces the deterministic force
f(x) = −V ′(x), while ζ(t) stands for the noise, which ap-
proximates (random) interactions of the observed particle with
its environment. In the simplest realms it is assumed that
the noise ζ(t) is white and Gaussian1,2. For such a noise
〈ζ(t)〉 = 0 and 〈ζ(t)ζ(s)〉 = σ2δ(t− s).

a)Electronic mail: karol@th.if.uj.edu.pl
b)Electronic mail: bartek@th.if.uj.edu.pl

Numerous extensions of Eq. (1) to time dependent forces
f(x, t) account for description of various noise induced ef-
fects: stochastic resonance3, resonant activation4, ratcheting
effect5–7, to name a few. Eq. (1) also underlines descrip-
tion of stationary states in noisy systems, which constitute the
main topic of current research. If ζ(t) is the Gaussian white
noise, a stationary state exists for any potential well such that
V (x) → ∞ as |x| → ∞. It is given by the Boltzmann-Gibbs
distribution, i.e. P (x) ∝ exp[−V (x)/σ2], see Refs. 1 and 8.

Noise in Eq. (1) does not need to be Gaussian. A nat-
ural generalization of the Gaussian white noise is provided
by the Lévy noise. α-stable, Lévy type noise is a non-
equilibrium noise which is the formal time derivative of the
α-stable process L(t), see Ref. 9, whose probability density
follow an α-stable density9,10 with the scale parameter which
grows in time. The characteristic function (Fourier transform)
φ(k) = 〈exp[ikL(t)]〉 of symmetric Lévy process is given by

φ(k) = exp [−σα(t)|k|α] . (2)

Symmetric α-stable densities are unimodal probability densi-
ties with power-law tails. The stability index α (0 < α 6 2)
describes the tails asymptotic which for α < 2 is of |x|−(α+1)

type. The scale parameter σ controls the distribution width.
For the Lévy motion it grows in time as σ(t) = σ0t

1/α,
where σ0 is the scale parameter characterizing the strength
of Lévy noise ζ(t). More precisely, increments of the Lévy
process ∆L = L(t + ∆t) − L(t) are distributed accord-
ing to the α-stable density with the characteristic function
exp[∆tσα0 |k|α]. For α < 2, the variance of an α-stable den-
sity is infinite, thus the distribution width can be defined by
the interquantile width or fractional moments only9,11. For
α = 2, the Lévy noise is equivalent to the Gaussian white
noise. In the most general scenario, not considered here, the
Lévy noise can be asymmetric and shifted9,11. Non-gaussian,
heavy tailed fluctuations have been observed in numerous
experimental setups12–17 and used in description of multiple
phenomena18–20, for a review see Ref. 21. Moreover, in the
last two decades theory of systems driven by the Lévy noise
has been significantly advanced22–34.

The problem of stationary states in overdamped systems
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driven by α-stable noises has been studied for the long time.
It is well known that stationary states do not exist for all
type of potential wells. Moreover, if they exist, they are
not of the Boltzmann-Gibbs type31. For single-well poten-
tials of V (x) = |x|ν/ν type (ν > 0) stationary states ex-
ist for sufficiently large ν. Surprisingly, the limiting ν de-
pends on the stability index α. Stationary states exist for
ν > 2 − α, see Ref. 35. For some potential wells exact for-
mulas for stationary states are known. For ν = 2 the sta-
tionary state reproduces the noise pulses distribution, i.e. it
is given by the α-stable density with the same stability index
α36–38 as the noise ζ(t). For ν > 2 stationary states, even
in single-well potentials, are no longer unimodal36,37,39. For
V (x) = x4/4 and α = 1 (Cauchy noise) the stationary state
is given by27,36,37,40,41

Pα=1(x) =
1

πσ
1/3
0

[(
x/σ

1/3
0

)4
−
(
x/σ

1/3
0

)2
+ 1

] . (3)

Probability density given by Eq. (3) has two maxima at x =

±σ1/3
0 /
√

2. For more general, polynomial, single-well poten-
tials of xν/ν type, with ν = 4n or ν = 4n + 2 (where n
is integer and positive), stationary states are also bimodal and
given by finite series42. For the parabolic addition to the quar-
tic potential

V (x) =
x4

4
+ a

x2

2
with a > 0, (4)

there is a critical value of ac = 0.794 such that for a > ac the
stationary state is no-longer bimodal36,37,40.

For the system described by the Langevin equation (1), one
can numerically estimate the time dependent probability den-
sity of finding a particle in the vicinity of x at time t under the
initial condition x(t0) = x0 as P (x, t|x0, t0) = 〈δ(x−x(t))〉.
The time evolution of the probability density P (x, t|x0, t0)
is described by the fractional Smoluchowski-Fokker-Planck
equation11,29,43

∂P

∂t
= − ∂

∂x
V ′(x, t)P + σα

∂αP

∂|x|α . (5)

The fractional operator ∂α/∂|x|α is the fractional Riesz-Weil
derivative43,44 which can be defined via the Fourier transform
Fk
(
∂αf(x)
∂|x|α

)
= −|k|αFk (f(x)) .

Equation (1) is the large damping limit of the full Langevin
equation45,46

ẍ(t) = −γẋ(t)− V ′(x) + ζ(t). (6)

Please note that in the case of full dynamics with α = 2 the
noise strength σ depends on the damping parameter γ, as they
are linked by the fluctuation dissipation relation46,47. Con-
trary to the Gaussian case, for α < 2, damping and strength
of fluctuations are two independent parameters. The time evo-
lution of the full probability density associated with Eq. (6) is
described by the fractional Kramers equation. The joint prob-
ability density P = P (x, v, t|x0, v0, t0) evolves according to

the fractional Kramers equation46,48

∂P

∂t
=

[
−v ∂

∂x
+

∂

∂v
(γv + V ′(x)) + σα

∂α

∂|v|α
]
P. (7)

Stationary states for the model described by Eq. (6) and as-
sociated with the diffusion equation (7) exist for every value
of the stability index α, under the condition that V (x) grows
to infinity fast enough. For example, the parabolic poten-
tial is sufficient. For α = 2 steady states are given by the
Boltzmann-Gibbs distribution under the condition that the po-
tential V (x) satisfies the same constraint as in the overdamped
case. For V (x) = x2/2, the stationary state is given by the 2D
α-stable density49,50 with the non-trivial, γ-dependent, spec-
tral measure11.

Within the current manuscript, we extend analysis of un-
derdamped, anharmonic stochastic oscillators driven by Lévy
noise. We focus on the Cauchy noise with the noise strength
σ0 = 1, as it allows for easy comparison of limiting cases.
We explore the model in the weak damping limit, and through
increasing the damping coefficient, we study how results for
overdamped regime are restored. Thanks to this, we extend
our understanding of anomalous underdamped setups, which
are less studied that overdamped models. Our numerical anal-
ysis are included in Section Results (Sec. II). The manuscript
is closed with Summary and Conclusions (Sec. III) and ac-
companied with the Appendix.

II. RESULTS

The system described by the full Langevin eqaution (6) can
be studied for any value of the stability index α. For α = 2,
the α-stable noise is equivalent to the Gaussian white noise. In
such a case, for any V (x) such that V (x) → ∞ as |x| → ∞,
the stationary state exits and it is given by the Boltzmann-
Gibbs distribution

P (x, v) ∝ exp

[
− 1

σ2

(
v2

2
+ V (x)

)]
. (8)

The damping parameter γ controls the rate of reaching the sta-
tionary state, but it does not affect the shape of stationary state.
Moreover, in the stationary state, see Eq. (8), despite the func-
tional dependence ẋ = v, the position and the velocity are sta-
tistically independent, because the stationary density factor-
izes. The very different situation is observed for α < 2. Due
to presence of damping, the stationary state exist for a poten-
tial V (x) such that V (x) → ∞ as |x| → ∞ fast enough. For
instance, the parabolic potential is sufficient to produce sta-
tionary states. For a fixed potential, the shape of the stationary
state depends on the value of γ. Moreover, in the stationary
state, velocity and position are no longer statistically indepen-
dent. This behaviour is especially well visible for the under-
damped stochastic harmonic oscillator49,51, when stationary
states are non-elliptical, 2D α-stable densities11 characterized
by non-trivial spectral measures50.

Exploration of the full dynamics, allow us to verify un-
der which conditions stationary states reproduce steady states
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FIG. 1. Stationary probability density P (x, v) as 3D-plot and heat
map (top panels), velocity marginal density P (v) (points) with the
asymptotic density (A8) (solid line) and the position marginal distri-
bution P (x) (points) with the asymptotic density (3). The damping
parameter γ is set to γ = 1.

-4 -2 2 4

0.5

1.0

1.5

2.0

-4 -2 2 4

0.1

0.2

0.3

0.4

FIG. 2. The same as in Fig. 1 for γ = 6.

recorded in overdamped systems. We restrict ourselves
mainly to α = 1, because for the simplest overdamped sys-
tems driven by the Cauchy noise exact results are known.
Such a special choice simplifies the comparison of numerical
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results with known asymptotic regimes.
Results presented in this section have been constructed nu-

merically by simulations of the underdamped Langevin equa-
tion (9). The part with the α-stable noise, e.g. v̇ = −γv −
V ′(x) + ζ(t), has been integrated with the stochastic Euler-
Maryuama method9,10. The positions x(t) have been con-
structed trajectorywise from v(t) realizations. The Langevin
equation (6) has been integrated with the integration time step
∆t = 10−3 and averaged over N = 107 realizations. From
constructed trajectories time dependent and stationary states
have been constructed.

The case of ν = 2 was explicitly studied in Refs. 49 and 50,
where it was shown that the stationary density is given by the
2D α-stable density. Therefore, we start with the stochastic,
underdamped, quartic oscillator (V (x) = x4/4) driven by the
Cauchy noise ζ(t). The Langevin equation, Eq. (6), can be
rewritten as

{
v̇(t) = −γv − x3 + ζ(t)
ẋ(t) = v(t)

. (9)

One might expect that, analogously like in the overdamped
case, the stationary state for Eq. (9) could be bimodal also
in the underdamped regime. By exploring dependence of the
shape of the stationary state on the damping parameter, we
will show that it is not always the case. On the one hand, in
the absence of damping (γ = 0) there is no stationary state for
the model described by Eq. (9) because the diffusive packet
expands boundlessly. On the other hand, Eq. (9) in the strong
damping limit γ →∞ reduces to the well-known problem of
the overdamped Cauchy oscillator36,37

ẋ(t) = −x3 + ζ(t). (10)

As it was mentioned in the introduction, this model has the
bimodal stationary state given by Eq. (3). Nevertheless, it is
unknown what happens for weak damping (small γ) and how
the transition from weak to strong damping is reflected in the
shape of stationary densities.

Figure 1 presents the stationary state for the model de-
scribed by Eq. (9) with γ = 1. Subsequent panels (from
top to bottom) present the 3D surface, 2D heat map and
marginal P (v) and P (x) densities. The stationary density is
unimodal and it reflects symmetries of the potential. The ve-
locity marginal, P (v), and position marginal, P (x), densities
are unimodal as well. Solid lines in bottom panels of Fig. 1
present the limiting velocity distribution, see Eq. (A8), and the
stationary state for the overdamped quartic Cauchy oscilator,
see Eq. (3). For γ = 1, limiting marginal densities differ from
recorded P (v) and P (x) marginal densities.

For the increasing damping γ, distributions of a veloc-
ity become narrower, because the acceleration of the parti-
cle becomes hindered. This is confirmed by Eq. (A7), which
demonstrates that, with the increasing γ, the scale parameter σ
is reduced. At the same time, the impact of rare ‘long jumps’
in velocity becomes limited. This is reflected in the shape of
position marginal distribution, which becomes similar to the
solution of the overdamped quartic Cauchy oscillator. The in-
crease in γ leads eventually to appearance of bimodality in

P (x) at γ ≈ 1.5. Maxima of the full probability density still
are placed at v = 0 but x = 0 becomes saddle point (max-
imum in the velocity distribution and local minimum in the
position density). Just above γ = 1.5 maxima are located
near x = 0 and their height is practically negligible. Never-
theless, the further increase in the damping parameter makes
them more pronounced. With increasing γ, maxima moves
towards larger |x| and become well separated from the back-
ground. Finally, for even larger γ (γ � 1.5) the damping
starts to play the dominating role in Eq. (9), and the process
becomes practically overdamped. This effect is recorded al-
ready for γ = 6, see Fig. 2. It is well-visible in the velocity
marginal distribution, where already for γ = 6 most of prob-
ability mass is concentrated around v = 0. At the same time,
the position marginal distribution is similar to the solution of
the overdamped Cauchy oscillator, which is given by Eq. (3).
Consequently, a particle most likely has zero velocity, v = 0,
and it is most likely localized around x = ±1/

√
2 which is

the position of the maxima of probability density for the over-
damped Cauchy oscillator with σ0 = 1. The bend shape of
P (x, v) density, see the second from the top panel of Fig. 2,
is produced by the deterministic force. For instance, if x� 0
there is a strong deterministic force towards origin. This nega-
tive restoring force is responsible for the large (negative) value
of the velocity. Analogously, for x � 0, the force and the
velocity are positive. Moreover, as demonstrated in bottom
panels of Fig. 2, for large friction coefficient, i.e. γ = 6, lim-
iting marginal densities, see Eqs. (A8) and (3), are similar to
observed P (v) and P (x) marginal densities.

The emergence of a multimimodal stationary state is an ef-
fect of the combined action of all three (deterministic, damp-
ing and random) forces which are included in Eq. (9). Noise
pulses occasionally give a particle significant velocity, allow-
ing it to move far from the potential minimum. Deterministic
force −x3 is the restoring force. It pulls the particle back to
the potential minimum, thus, it is responsible for the particle
acceleration. The larger distance from the origin, the larger
acceleration is. Simultaneously, with the increase in the ve-
locity, the damping increases. Therefore, the damping and the
deterministic force counterbalance. If the damping coefficient
is large enough, the time needed to deterministically slide to
the minimum of the potential becomes infinite. The proba-
bility of visiting the origin can be increased due to random
pulses. Nevertheless, during the sliding the stochastic force
typically displaces the particle further away before it reaches
x = 0. For sufficient large γ the number of trajectories not
reaching x = 0 becomes larger than the number of trajectories
which visited the potential minimum. This leads to accumu-
lation of the probability mass outside the potential minimum
and emergence of two modal values.

The transition between unimodal and bimodal stationary
state, induced by the increase in the damping coefficient γ,
can be also explained in terms of velocity marginal distribu-
tion. Due to “heavy tails” of the velocity distribution, “long
jumps” (abrupt changes) in the velocity are observed. Be-
cause of huge value of the deterministic force f(x) = −x3 at
|x| � 1, displacements to |x| > 1 are produced by tails of the
velocity distribution. At the same time, with the increasing γ,
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the central (v ≈ 0) part of the velocity distributions becomes
narrow, see Eq. (A7). As a consequence, sudden changes in
velocity becomes prevailing making the return to the poten-
tial minimum unlikely. This in turn produce the transfer of
the probability mass outside the vicinity of the potential min-
imum. In contrast, for small γ, the P (v) distribution is wide,
i.e. a lot of the probability mass is located in vicinity of v ≈ 0.
A particle makes a lot of short jumps which are not sufficient
to move a particle to distant points. Consequently, observed
stationary states are unimodal. Nevertheless, the limit of van-
ishing damping requires further studies.

The system described by Eq. (9) is characterized by two re-
laxation times τv and τx, see Ref. 23. The damping coefficient
controls the rate of velocity relaxation which is characterized
by the relaxation time τv ∝ 1/γ. At the same time, the relax-
ation in the x is described by τx ∝ (γL/σ)α, where L is the
typical system size. Situations considered in Figs. 1 and 2 dif-
fer not only in shape of stationary states but also in relaxation
times. In Fig. 1 the stationary distribution P (x) is reached
before P (v) while in Fig. 2 the velocity relaxation is faster
than the spatial relaxation. Nevertheless, we leave for the fur-
ther studies the detailed examination of the issue of velocity
and spatial relaxations in uderdamped Langevin dynamics in
single-well potentials.

The potential used in Eq. (9) is the special case of more
general binomial potential

V (x) =
x4

4
+ a

x2

2
. (11)

In the overdamped regime, for the potential given by Eq. (11),
there exists a critical value ac = 0.794, such that stationary
state is unimodal for every a > ac, see Ref. 37. Consequently,
the increase in the strength of the parabolic addition to the
quartic potential induce bimodal — unimodal transition. In
the underdamped regime described by Eq. (6), one can also
explore how results with a = 0 generalize to a 6= 0 case.
We expect that for a > 0 the critical value of the damping
parameter γ for which the probability function becomes bi-
modal should increase in comparison to the a = 0 case, when
γ ≈ 1.5. Indeed, bimodality is observed in simulations with a
larger γ. For example, for a = 0.5 a bimodal stationary state
is recorded for γ ≈ 4, see Fig. 3.

A pronounced difference from the a = 0 case is visible for
the parameter a close to the critical value ac. For instance, for
a = 0.7, the full probability density function has two maxima,
see top panel of Fig. 4. At the same time, position and velocity
marginal densities remain unimodal, even for very large γ, see
bottom panel of Fig. 4.

Moreover, for a < 0, another counter-intuitive effect is ob-
served. Due to double-well shape of the potential given by
Eq. (11) with a < 0 one may expect bimodal stationary state.
Nevertheless, if the damping coefficient γ is sufficiently small,
the probability density seems to be unimodal. Fig. 5 shows
results for a = −0.2 and γ = 0.5. For a small value of the
damping parameter γ, energy is slowly dissipated and the ve-
locity (because of the damping) slowly changes. Therefore, a
particle with a little help from the noise can easily surmount
the potential barrier and penetrate neighborhood of both po-

tential minima (unless a � 0 and α . 2). When a is further
reduced, the stationary state becomes clearly bimodal.
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FIG. 3. The stationary state and marginal densities for the potential
given by Eq. (11) with a = 0.5 and γ = 4.
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FIG. 4. The same as in Fig. 3 for a = 0.7 and γ = 30.

In order to elucidate the role of parameters: a in the poten-
tial (11) and the damping γ in the full Langevin equation (6),
Fig. 6 presents the phase diagram. Blue region represents bi-
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FIG. 5. The same as in Fig. 3 for a = −0.2 and γ = 0.5.

modal stationary states, while the white region corresponds to
unimodal stationary states. For a < 0.5, the value of damping
coefficient γ for which bimodality appears increases slowly.
For a > 0.5 the growth of critical damping becomes rapid.
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At the same time bimodality of position marginal distribution
is not observed. Finally, for a > ac = 0.794, the station-
ary states are unimodal regardless of the value of the damping
parameter.

0.0 0.2 0.4 0.6 0.8 1.0
0

1

2

3

4

5

6

FIG. 6. The phase diagram for V (x) = x4/4 + ax2/2. The blue
region represents values of parameter a and γ for which the full sta-
tionary state is bimodal.

In the context of the potential (11), it important to discuss
the role of the stability index α in more details. Changes in
model properties due to α are milder than due to a. Similarly
to the overdamped motion, in the potential given by Eq. (9),
see Ref. 36, with the increasing value of α, height of peaks de-
crease and finally they disappear. At the same time, there is no
change in the friction coefficient γ for which transition from
unimodal to bimodal stationary state occurs or this change is
to small to be visible in presented simulations.

We have also examined single-well polynomial potentials.
For instance we have used

V (x) = x6 − 19

11
x4 + x2, (12)

which in the overdamped regime results in the trimodal sta-
tionary state39. For the potential given by Eq. (12) behaviour
is very similar as for V (x) = x4/4. For a small value of
the damping coefficient γ, stationary states reflect symmetry
of the potential. When γ is large enough additional maxima
of stationary density appear. The exemplary stationary state
for the potential given by Eq. (12) with γ = 2 is depicted
in Fig. 7. With the decreasing γ, local minima of P (x) at
x ≈ ±0.6 becomes shallower. Finally, for sufficiently small γ
they disappear (results not shown).

Finally, we have explored the motion in the infinite rectan-
gular potential well. In such a case the motion is restricted
in space, because the particle is located within the finite in-
terval. During interactions with reflecting walls, the velocity
changes its sign. One can expect that, for finite damping, the
position marginal density P (x) is uniform while the velocity
marginal density P (v) is the same as for a free particle. Such a

shape of marginal densities is confirmed by the Kramers equa-
tion because the stationary density P (x, v) = CP (v) satisfies
Eq. (7). The very different situation is observed in the γ →∞
limit. In such a case the motion becomes overdamped. The
particle is characterized by the position only. For α = 2,
P (x) is uniform, while for α < 2 it is u-shaped with modes
at reflecting boundaries52. Indeed, for finite damping, results
of computer simulation show that P (x, v) = 1

2LP (v), where
2L is the width of the infinite rectangular potential well and
P (v) is the same as for the free particle, i.e. it is given by the
α-stable density with scale parameter which grows in time.

III. SUMMARY AND CONCLUSIONS

Using numerical methods for the Langevin equation, we
have studied stationary states in the underdamped anharmonic
stochastic oscillators. Analogously like in the overdamped
case, stationary states exist for potential wells which are steep
enough. Potential wells which asymptotically grow faster
than quadratic are sufficient to produce stationary states. For
the parabolic potential, the stationary state exists as well and
it is given by the 2D α-stable density. Within these stud-
ies, we have used potentials with dominating terms x4 or x6,
which are well above minimal required steepness. The prob-
lem of minimal steepness of the potential which is sufficient
to produce stationary states in underdamped stochastic oscil-
lators remains open. We expect that the condition on ν in
V (x) = |x|ν/ν should be not weaker than for the overdamped
case, i.e. ν > 2− α.

In order to produce multimodal stationary state, e.g. mul-
timodal position marginal density P (x), system dynamics
needs to be close to the overdamped regime, i.e. the marginal
density P (v) needs to be narrow. This mean that the damp-
ing coefficient γ needs to be large enough. Multimodal sta-
tionary states in a single-well potential emerge, when parti-
cles are unlikely to be found in the vicinity of the potential
minimum. If the motion is close to the overdamped (narrow
P (v)), analogously like in the overdamped stochastic oscil-
lators, for ν > 2, time required to deterministically slide to
x = 0 is practically infinite. The sliding is also interrupted
by random jumps, which further decrease chances of reaching
the minimum of the potential. Therefore, for ν > 2 and γ
large enough, stationary states can be multimodal. For large
γ, the motion practically becomes overdamped – the velocity
marginal density P (v) is characterized by the narrow central
part, see Eq. (A7), while it still has power-law tails. In the
limit of γ → ∞ position marginal densities P (x) reproduce
those one of overdamped systems. Appreciable, this equiv-
alence is recorded for finite γ. Therefore, for appropriately
selected potentials39 stationary densities can be characterized
by more than two modes. Consequently, it is possible to fine-
tune the potential to produce any given number of modes.
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FIG. 7. The stationary state and marginal densities for the potential
given by Eq. (12) and γ = 2.
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Appendix A: Stationary states in the parabolic potential

In the case of the linear friction, the evolution of the veloc-
ity is described by the following Langevin equation

dv

dt
= −γv − V ′(x) + σ0ζ(t), (A1)

where ζ(t) is the α-stable noise. Disregarding −V ′(x) in
Eq. (A1) results in the linear Langevin equation which is asso-
ciated with the following Smoluchowski-Fokker-Planck equa-
tion

∂P (v, t)

∂t
=

∂

∂v
[γvP (v, t)] + σα0

∂αP (v, t)

∂|v|α . (A2)

The stationary state fulfills

0 =
d

dv
[γvP (v, t)] + σα0

dαP (v, t)

d|v|α . (A3)

Eq. (A3) in the Fourier space reads

γk
dP̂ (k)

dk
= −σα0 |k|αP̂ (k), (A4)

where P̂ (k) is the Fourier transform P̂ (k) =∫∞
−∞ P (v)eikvdv. The characteristic function P̂ (k) sat-

isfies

dP̂ (k)

dk
= −σ

α
0

γ
sign(k)|k|α−1P̂ (k). (A5)

The solution of Eq. (A5) is given by

P̂ (k) = exp

[
−σ

α
0

γα
|k|α

]
, (A6)

which is the characteristic function of the symmetric α-stable
distribution, see Eq. (2), with the scale parameter

σ =
σ0

(γα)1/α
. (A7)

Consequently, with the increasing γ, the stationary distribu-
tion becomes narrower. For instance, for the Cauchy noise
(α = 1), the stationary density is the Cauchy distribution

P (v) =
1

π

σ

σ2 + v2
. (A8)
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Nonlinear friction in underdamped anharmonic stochastic oscillators
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Non-equilibrium stationary states of overdamped anharmonic stochastic oscillators driven by Lévy noise are typically
multimodal. The very same situation is recorded for an underdamped Lévy noise driven motion in single-well poten-
tials with linear friction. Within current manuscript we relax the assumption that the friction experienced by a particle
is linear. Using computer simulations, we study underdamped motions in single-well potentials in the regime of non-
linear friction. We demonstrate that it is relatively easy to observe multimodality in the velocity distribution as it is
determined by the friction itself and it is the same as the multimodality in the overdamped case with the analogous de-
terministic force. Contrary to the velocity marginal density, it is more difficult to induce multimodality in the position.
Nevertheless, for a fine-tuned nonlinear friction, the spatial multimodality can be recorded.

PACS numbers: 05.40.Fb, 05.10.Gg, 02.50.-r, 02.50.Ey,

Properties of dynamical systems driven by Lévy noise
are very different from their Gaussian white noise driven
counterparts. For instance, in the overdamped regime,
in order to bound Lévy flights the potential well needs to
be steep enough. Surprisingly, for single-well potentials
steeper than parabolic non-equilibrium stationary states
(NESS) are bimodal. Properties of overdamped systems
are better explored than properties of underdamped sys-
tems. Therefore, within the current manuscript, we con-
tinue studies on the Lévy noise driven dynamics in un-
derdamped systems in the regime of linear and nonlinear
friction. Using heuristic arguments and numerical simu-
lations, we explore the role of underlying assumptions and
study NESS properties along with conditions for their exis-
tence. We demonstrate that, in the underdamped regime,
it is easy to induce bimodality in the velocity probability
distribution function (PDF), because the phenomenon is
determined solely by the form of velocity-dependent fric-
tion. Contrary to the multimodality in the velocity, nonlin-
ear friction typically results in unimodal marginal position
distributions. Nevertheless, for suitably predefined non-
linear friction, spatially-separated modes in PDF can be
generated. Furthermore, superlinear friction is shown to
weaken the condition on the steepness of single-well poten-
tials which are capable of bounding underdamped Lévy
noise driven motions.

I. INTRODUCTION AND MODEL

Motion of a stochastic particle in the presence of a conser-
vative force, damping and thermal fluctuations is conveniently
described by the Langevin equation

ẍ(t) = −γẋ(t)− V ′(x) + ζ(t), (1)

a)Electronic mail: karol@th.if.uj.edu.pl
b)Electronic mail: bartek@th.if.uj.edu.pl
c)Electronic mail: ewa.gudowska-nowak@uj.edu.pl

where γ (γ > 0) is the damping, ζ(t) stands for the noise
and the unit mass term m = 1 is assumed. By attribut-
ing thermal origin to the fluctuations of the stochastic force,
ζ(t) can be modeled as Gaussian and white with 〈ζ(t)〉 = 0
and 〈ζ(t)ζ(s)〉 = γσ2δ(t − s), as damping γ and strength
of fluctuations σ are then connected by a celebrated Ein-
stein’s relation1,2. Presence of noise randomizes trajectories
(x(t), ẋ(t) = v(t)) making them different even for the same
initial conditions. Consequently, an ensemble of particles im-
mersed in a given (x(0), v(0)) point starts to diffuse. Erratic
trajectories of the ensemble do not allow for the measurement
of the particle’s velocity, while it is possible to measure the
mean-square displacement from the initial position and show
that it is growing linearly in time.

The time evolution of the full probability density associated
with Eq. (1) is described by the Kramers equation1

∂P

∂t
=

[
−v ∂

∂x
+

∂

∂v
(γv + V ′(x)) + γσ2 ∂

2

∂v2

]
P, (2)

where P = P (x, v, t|x0, v0, t0).
Stationary states for the model described by Eq. (1) and as-

sociated long-time solutions to the diffusion equation (2) ex-
ist for any confining potential V (x) increasing to infinity as
|x| → ∞. More importantly, they are given by the equilib-
rium Boltzmann-Gibbs distribution, thus establishing a rela-
tion with thermodynamics:

P (x, v) ∝ exp

[
− 1

σ2

(
v2

2
+ V (x)

)]
. (3)

The form of the stationary density given by Eq. (3) clearly
indicates that velocity and position are statistically indepen-
dent. Moreover, in the system described by Eq. (1) with the
Gaussian white noise, the condition of detailed balance is
fulfilled3,4. These two, important equilibrium properties are
not satisfied under action of Lévy noises5–9.

Within the current manuscript, using methods of stochastic
dynamics, we will be exploring properties of non-equilibrium
stationary states (NESS) for models described by the full, un-
derdamped Langevin equation in the regime of nonlinear dis-
sipative force. Models of that type refer to non-equilibrium
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cases where the friction is not a constant but a function of the
velocities γ = T (v) and the Einstein relation is no longer
fulfilled. Interesting applications of models of Brownian mo-
tion with nonlinear friction have been addressed in various
fields: mechanical devices like microspeakers and vibration
isolation systems and energy harvesters10, self-organized sys-
tems exhibiting sustained oscillations11, description of motion
of charged particles in plasma12 or active Brownian motion
models of biological motors13.

To start with, let us briefly recollect a special limit of Eq. (1)
with the strong damping. At strong friction the velocity can be
adiabatically eliminated14 from Eq. (1) resulting in the over-
damped Langevin equation

γẋ(t) = −V ′(x) + ζ(t). (4)

The motion described by Eq. (4) is spatially diffusive and fully
characterized by the position only. The time evolution of the
probability density P (x, t|x0, t0) = 〈δ(x−x(t))〉 ≡ P fulfills
the Smoluchowski-Fokker-Planck equation

∂P

∂t
=

1

γ

∂

∂x

[
−V ′(x) + σ2 ∂

∂x

]
P, (5)

with the stationary solution given again by the Boltzmann-
Gibbs form

P (x) ∝ exp

[
−V (x)

σ2

]
. (6)

In more general realms the noise ζ(t) does not need to be
Gaussian. For example it can be of the Lévy, α-stable type.
The symmetric Lévy noise is the formal time derivative of the
symmetric α-stable motion L(t), see Ref. 15, whose charac-
teristic function φ(k) = 〈exp[ikL(t)]〉 is

φ(k) = exp [−tσα|k|α] (7)

with the parameter σ scaling the strength of fluctuations. Fol-
lowing this definition ζ(t) is a symmetric, Markov α-stable
noise which turns into a standard Gaussian form for α = 2.
However, unlike standard Brownian motions for which the
mean-square displacement (MSD) grows linearly in time, the
dispersion of the position in the Lévy motion (cf. Eq. (4) with
V (x) ≡ 0) diverges and the width of the resulting asymp-
totic Lévy (super)-diffusion must be characterized by some
fractional moments16–18 or the interquantile distance. Sym-
metric α-stable densities are unimodal probability densities
which for α < 2 exhibit a power-law asymptotics with tails
decaying as |x|−(α+1). Moreover, for Lévy noise driven sys-
tems, the condition of detailed balance is not satisfied5,8

In case of motions described by the Langevin equations and
perturbed by a generalized Lévy noise, the associated diffu-
sion equations (2) and (5) become fractional Smoluchowski-
Fokker-Planck or Kramers equations18–20. In Eq. (2), ∂2/∂v2

is then replaced by ∂α/∂|v|α, see Ref. 21, while in Eq. (5)
∂2/∂x2 is exchanged with ∂α/∂|x|α, see Ref. 22 and 23. The
Riesz-Weil ∂α/∂|x|α fractional derivative19,24 is defined via
the Fourier transform Fk

(
∂αf(x)
∂|x|α

)
= −|k|αFk (f(x)) .

The significant differences in statistical properties of sys-
tems driven by non-Gaussian Lévy fluctuations, and in partic-
ular divergence of the second moment, imply lack of a sim-
ple Einstein’s fluctuation-dissipation relation between fluctu-
ations’ strength and magnitude of dissipation8,9,25,26. Accord-
ingly, in Eqs. (1) and (2), the damping γ and the noise strength
σ have to be interpreted as independent parameters. Conse-
quently, for α < 2, in Eq. (2) γσ2∂2/∂v2 → σα∂α/∂|v|α,
while in Eq. (5) σ2∂2/∂x2 → σα∂α/∂|x|α.

Lévy processes have been massively studied on theoret-
ical and numerical levels22,23,25,27–31. Because of signifi-
cant likelihood of observation of long jumps, Lévy noises
and Lévy statistics can be successfully applied to description
of catastrophic events like economic crises32,33, outburst of
epidemics34 or climate changes35. The significant number of
observations confirms presence of non-Gaussian fluctuations
in the variety of complex dynamical systems and experimen-
tal setups. Among others, Lévy flights have been recorded
in financial time series36, rotating flows37, superdiffusion of
micellar systems38, transmission of light in polidispersive
materials39, photon scattering in hot atomic vapors40, disper-
sal patterns of humans and animals41,42, laser cooling43,44,
gaze dynamics45 and search strategies46,47.

In the overdamped regime described by Eqs. (4) and (5)
and under the action of an harmonic potential V (x) = x2/2,
NESS in the presence of additive Lévy noises are given by
the rescaled α-stable density with the same stability index α
as the noise25,48–50. This is a natural consequence of action
of the deterministic linear force and the generalized central
limit theorem51. In a more general potential wells the turnover
from unimodal to bimodal non-equilibrium stationary proba-
bility densities occurs52. As an exemplary case, we refer to
Lévy flights in the potential V (x) = x4/4, when the Langevin
equation takes the following form

γẋ(t) = −x3(t) + ζ(t). (8)

For the Lévy noise with α = 1 (Cauchy noise), the NESS of
the system can be readily derived31,48,49,52,53 and is given by

Pα=1(x) =
1

πσ1/3
[
(x/σ1/3)4 − (x/σ1/3)2 + 1

] . (9)

The probability density (9) is the symmetric bimodal distribu-
tion with modes at x = ±σ1/3/

√
2 and the power-law asymp-

totics P (|x|) ∝ |x|−4. The observed bimodality (9) is related
to the general property of the Lévy noise — induced bifurca-
tion in modality of the corresponding PDF for t → ∞, see
Refs. 48, 49, and 54. In more general single-well potentials
— NESS (their PDFs) can be characterized by more than two
modes55.

The multimodality of NESS in overdamped systems calls
to inquire whether PDFs in underdamped regime can be mul-
timodal. As it was shown in earlier works6,56, for V (x) =
x2/2, NESS P (x, v) are given by the 2D α-stable density17,57,
whose marginal densities are unimodal and given by 1D α-
stable densities — in an analogy to their Gaussian white noise-
driven cases. Contrary to the stationary states in Gaussian
white noise driven systems, see Eq. (3), under action of Lévy
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noises two dimensional non-equilibrium stationary densities
P (x, v) do not factorize. Therefore, position and veloc-
ity are not statistically independent6. In Ref. 6, due to di-
vergence of covariance, the level of dependence was mea-
sured by the codifference17,58. The nonlinear friction could
increase the statistical dependence between position and ve-
locity, as already the combined action of nonlinear friction
and Gaussian white noise59 introduces dependence. More-
over, we expect that in systems with full dynamics, analo-
gously like in overdamped models5,8, the condition of detailed
balance is violated. Nevertheless, these issues (level of de-
pendence and detailed balance) need further verification. In
Ref. 60, we have extended studies on underdamped systems
under action of Lévy noises and have analyzed properties of
non-equilibrium stationary PDFs for anharmonic potentials in
the case of linear damping . We have shown that in the system
described by Eq. (1), i.e., in the regime of linear friction, the
non-equilibrium stationary state can be multimodal under the
condition that damping is strong enough. The constraint of
the strong damping is related to the fact that for infinite damp-
ing (γ → ∞) the motion described by Eq. (1) becomes over-
damped and the corresponding Lévy noise driven motion in
single-well potentials (steeper than parabolic) NESS become
at least “bimodal” for long times55. In practical realizations
though, this bimodality is observed for the finite damping.

The problem of multimodality of NESS, which is posed
here, is related to the more general issue of existence of NESS.
We can ask the question what is the minimal steepness n of the
potential allowing for bounding of underdamped Lévy flights.
The problem of the potential steepness is related to the fric-
tion. The friction in Eq. (1) is linear. Consequently, the veloc-
ity v changes according to

v̇(t) = −γv(t)− V ′(x) + ζ(t). (10)

In general, steady state for the system described by Eq. (10)
is unknown. Nevertheless, some intuitive insight might be
gain by considering the motion of a free particle, i.e., the case
where deterministic force −V ′(x) is omitted. If we disregard
the deterministic force −V ′(x) in Eq. (10) we get the follow-
ing equation

v̇(t) = −γv(t) + ζ(t), (11)

which can be used to approximate P (v) densities. The quality
of such approximation increases with the increase in γ, see
Figs. 1 – 2. Under such an approximation, the evolution of
the velocity v(t) is described by the same equation like the
evolution of the position x(t) in the overdamped dynamics in
the parabolic potential, see Eq. (4). Therefore, the steady state
density P (v) is given by the α-stable density with the same
stability index α like the noise ζ(t), see Refs. 48–50, and the
rescaled scale parameter

σ =
σ0

(γα)1/α
, (12)

where σ0 is the scale parameter of the Lévy noise ζ(t) in
Eq. (11). For γ = 0 there is no stationary velocity distri-
bution, but the velocity is still distributed according to the

α-stable density with the scale parameter growing in time as
σ(t) = σ0t

1/α. Consequently, for γ = 0, there is no stationary
state for the underdamped model described by Eq. (10). For
γ > 0, with the linear friction, the P (v) density is very well
approximated by the α-stable density. Therefore, for the lin-
ear friction, the problem of existence of NESS for the model
described by Eq. (1) is equivalent to the problem of existence
of NESS for the overdamped motion in V (x), see Eq. (4) and
Ref. 61. Consequently, for n > 2 − α non-equilibrium sta-
tionary states exist.

In more elaborate situation the friction term T (v) in Eq. (1)
does not need to be linear62–67. In such a case the Langevin
equation (1) generalizes to

{
ẋ(t) = v(t)
v̇(t) = T (v)− V ′(x) + ζ(t)

. (13)

As an example, the dynamical behavior of a mechanical sys-
tem with dry friction has been described68 by

T (v) = −γ sign(v)|v|κ−1 (κ > 0). (14)

The linear friction corresponds to κ = 2. The friction T (v)
can be seen as an analog of the deterministic force −V ′(x) in
the overdamped regime, compare Eq. (4) and the second line
of Eq. (13). Consequently, it is possible to find the generalized
v-potential. Following this analogy, it is possible to relate the
problem of existence of the steady state density P (v) to the
problem of existence of NESS in the overdamped dynamics.
Therefore, in order to bound velocity, the condition on κ is the
same as the condition on n in V (x) = |x|n/n, i.e.,

κ > 2− α. (15)

Furthermore, for κ > 4−α, marginal densities P (v) are char-
acterized by the finite variance, see Refs. 48 and 61. There-
fore, we can consider the sub-linear friction with κ bounded
from below, i.e., 2 − α < κ < 2. In such a case the density
P (v) exists and most likely, for n > 2−α, a non-equilibrium
stationary state P (x, v) also exists. The regime of super-linear
friction, κ > 2, which is studied within the current manuscrip,
is more transparent than the sub-linear case. For κ > 2,
the density P (v) asymptotically behaves as a power-law with
lighter tails than noise in Eq. (13). In other words, for κ > 2,
tails of P (v) distribution decay faster than tails of the α-stable
density associated with the Lévy noise ζ(t) in Eq. (1). For ex-
ample, for T (v) = −γv3 with α = 1, asymptotics of P (v) is
P (|v|) ∝ |v|−4, see Eq. (9). Therefore, we can speculate that
the minimal exponent in the potential V (x) = |x|n/2 is still
bounded from below (n > 0) but now it can be smaller than
2 − α. For instance, for κ = 4 the variance of P (v) is finite,
therefore we expect that P (x) exists for any n > 0, what is
confirmed by numerical simulations (results not shown).

In the next section (Sec. II) we present results of our
analysis of non-equilibrium stationary states (NESS) for
anharmonic stochastic oscillators under nonlinear friction.
The manuscript is closed with Summary and Conclusions
(Sec. III).
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II. RESULTS

In what follows, we relax the assumption of linear friction
and assume that friction depends nonlinearly on the particle
velocity. We start with T (v) = −γv3. Such a system is de-
scribed by the following Langevin equation

{
ẋ(t) = v(t)
v̇(t) = −γv3(t)− x3(t) + ζ(t)

. (16)

Results of simulations depicted in Figs. 1 and 2 are signif-
icantly different from results for the linear friction with the
same potential V (x) and the same noise, i.e., the Cauchy noise
(α = 1), see Ref. 60. If one disregards the deterministic
−x3 force, the Langevin equation for the velocity evolution
becomes similar to the overdamped equation (8) with the posi-
tion x replaced by the velocity v. Therefore, we could expect
that, analogously to the bimodal non-equilibrium stationary
density P (x) associated with Eq. (8), the velocity marginal
density P (v) becomes also bimodal. This bimodality is also
reflected in the shape of the full probability density: In the
top panel of Figs. 1 and 2, there are two maxima separated
only in the velocity direction. For γ = 1 (Fig. 1), there is
no multimodality in the position marginal PDF. Contrary to
the case of linear friction, see Ref. 60, the increase in γ does
not induce bimodal steady states in the position marginal dis-
tribution even for γ = 6 (Fig. 2). The change in γ affects
only widths of marginal distributions but it does not change
its modality tails’ asymptotics. When the damping increases,
position probability densities P (x) become localized around
minimum of the deterministic potential.

Altogether, in contrast to results of former investigations,60

we observe bounding of velocities induced by nonlinear dis-
sipation, i.e., for κ > 4 − α, velocity is characterized by the
finite variance. Nonlinear friction regularizes the stochastic
motion subject to Lévy noise (probability of large velocities
decays faster than the tails of the noise distribution) and leads
to the form of the marginal stationary density P (v) with non-
vanishing most likely (modal) velocities. This observation re-
mains in a strong opposition to unimodal distribution charac-
terizing stationary velocities in a domain of linear friction.

At the same time the position marginal non-equilibrium sta-
tionary densities P (x) are very different from their linearly
damped counterparts, compare bottom panels of Figs. 1, 2 and
especially of Fig. 7 with appropriate densities in the regime of
linear friction.60 For instance, the marginal P (x) density in
Fig. 2 is unimodal, while for linear friction with the same
potential and under the action of the same noise it is bi-
modal. Moreover, numerically estimated P (x) are narrower
and, most likely, do not display power-law asymptotics, be-
cause nonlinear damping, more efficiently cuts off probability
of observing large velocities.

In analogy to the Langevin dynamics with linear friction,
the lack of bimodality in the position marginal distribution
can be better understood in terms of the analysis of the veloc-
ity marginal distribution: Even for the large value of the fric-
tion parameter γ, the velocity distribution is bimodal. There-
fore, occurrence of non-zero velocity is very likely and con-
sequently more trajectories visit x = 0 as large velocity helps

-4 -2 2 4

0.1

0.2

0.3

0.4

-4 -2 2 4

0.1

0.2

0.3

0.4

FIG. 1. Non-equilibrium stationary probability density P (x, v)
as the 3D-plot and the 2D map (top panels), the velocity non-
equilibrium stationary marginal density P (v) (points) with the an-
alytical solution (9) with σ given by Eq. (12) (solid line) and the
position non-equilibrium stationary marginal density P (x) (bottom
panels). The driving noise is the Cauchy noise, i.e., the Lévy noise
with α = 1. The damping parameter γ is set to γ = 1.
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FIG. 2. The same as in Fig. 1 for γ = 6.

to reach the origin. Therefore, instead of minimum of P (x) at
the origin, there is a maximum. In the deterministic dynam-
ics, i.e., for ζ(t) ≡ 0, the nonlinear damping secures obser-
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FIG. 3. Median of the kinetic energy E(0.5)k (top panel) and potential
energy E(0.5)p (bottom panel) as a function of friction parameter γ for
the system described by Eq. (16).

FIG. 4. Ratio P (x, v)/[P (x)P (v)], see Fig. 1, quantifying depar-
ture from the corresponding Boltzmann-Gibbs equilibrium stationary
states, for which P (x, v)/[P (x)P (v)] ≡ 1.

vation of long lasting, persistent oscillations in x(t), even at
large values of γ. As a result, and contrary to the overdamped
case, a trajectory reaches the potential minimum in a finite
time. In consequence, the likelihood of returning to initial po-
sition before next “long jump” is not negligible. Existence
of two modal values in the velocity marginal distribution may
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as the 3D-plot and the 2D map (top panels), the velocity non-
equilibrium stationary marginal density P (v) and the position non-
equilibrium stationary marginal density P (x) (bottom panels). The
driving noise is the Cauchy noise, i.e., the Lévy noise with α = 1,
while the friction term is given by Eq. (17) with γ = 4 and a = 0.2.
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FIG. 6. The same as in Fig. 5 for γ = 6.
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be attributed to these oscillations which occur between noise
pulses inducing transition between the modes69.

The velocity marginal distributions P (v) depicted in Figs. 1
and 2 deviate from the analytical solution (9) with the scale
parameter given by Eq. (12), especially in the central part.
Eq. (9) is the solution of the Eq. (11), which differs from
the second line of Eq. (16) by disregarding the deterministic
force, while simulations are performed for the whole dynam-
ics, i.e., the deterministic force −V ′(x) is also taken into ac-
count. The discrepancy between results of simulations and
non-equilibrium stationary density given by Eq. (9) is pro-
duced by the deterministic force −V ′(x). In the force free
case, −V ′(x) ≡ 0, a perfect agreement is observed. More-
over, with the increasing damping the level of disagreement
decreases, see Fig. 1 and 2, because for larger γ the velocity
distribution is narrower and, most importantly, it equilibrates
faster20.

Let us further analyze statistical properties of kinetic Ek and
potential Ep energies of such a system. Analogously to posi-
tion x and velocity v, also kinetic Ek and potential Ep energies
are now random variables. Their distributions can be calcu-
lated by use of PDFs P (x, v) and suitable transformation of
variables. Due to a |v|−4 asymptotic of the velocity marginal
distribution, see Eq. (16), the mean value of kinetic energy
(〈Ek〉 = 〈v2〉/2) exists. Moreover, a very fast decay of tails of
the position PDF suggests that also the mean value of the po-
tential energy (〈E〉p = 〈V (x)〉) should exist. As it is demon-
strated in figures, velocity and positions distribution are well
localized. Nevertheless, it is very difficult to calculate numer-
ically mean values of kinetic and potential energies. Regard-
less of the integration time step ∆t, there is a non-negligible
probability of observing very strong noise pulses which are re-
sponsible for the occurrence of very large velocities and long
displacements resulting in the possibility of reaching distant
positions. These extreme events make the numerical calcula-
tion of the average energies ill posed. Already a single ex-
treme observation makes averages to explode in an uncontrol-
lable way. Therefore, instead of calculating averages, we have
employed medians of kinetic (E(0.5)k ) and potential (E(0.5)p ) en-
ergies as they are robust parameters to rare but extreme events
(outliers). Fig. 3, please note log-linear scale, presents medi-
ans of energy distributions as functions of damping parameter
γ for the process described by Eq. (16). Both medians E(0.5)k

and E(0.5)p exponentially decrease with the increasing γ. Note
that the median of kinetic energy E(0.5)k is about order of mag-
nitude larger then the median of potential energy E(0.5)p . One
may also observe that E(0.5)p decays faster that E(0.5)k . This
difference may be deduced from marginal distributions: First,
most of the probability mass is located in the (−1, 1) interval,
both for position and velocity. Therefore, due to the relation
between the velocity v and the kinetic energy (Ek = v2/2)
and the position x and the potential energy (Ep = x4/4), most
of the probability mass for energies is located in the [0, 1) in-
tervals. For the argument from the [0, 1) interval, the function
x4 increases slower than v2, thus, if the velocity and posi-
tion marginal distribution were the same, one could expect
the lower value of the median of the potential energy than the

corresponding median of the kinetic energy. However, both
distributions differ significantly. Due to fast-decaying tails of
the position marginal distribution, probability mass for the po-
tential energy is concentrated near 0. At the same time, for the
kinetic energy, the probability mass is moved towards larger
values of v, because of power-law tails and bimodality of the
velocity probability density. These differences produce signif-
icantly higher value of the median of kinetic energy in com-
parison to the median of the potential energy.

In Ref. 6 it was demonstrated that the non-equilibrium sta-
tionary states for the Lévy harmonic oscillator (under linear
friction) are given by the 2D α-stable densities and position
and velocity are not statistically independent. The analogous
situation is observed for anharmonic Lévy oscillators in the
regime of nonlinear friction, which are studied within the cur-
rent manuscript. In order to prove statistical dependence of
x and v we have plotted the ratio of the full non-equilibrium
stationary probability density P (x, y) and marginal densities
P (x), P (v), i.e., P (x, y)/[P (x)P (y)], see Fig. 4. Close in-
spection of Fig. 4 clearly indicates that position x and ve-
locity v are not independent and the joint PDF assumes non-
Boltzmann form. Despite the fact that for studied anharmonic
Lévy oscillators under nonlinear damping variances of x and
v exist, the statistical properties of cross-correlation xv cannot
be reliably calculated. Therefore, we have limited ourselves
to depicting the sample ratio of probability densities leaving
the problem of quantifying the dependence between x and v
for further studies.

The parabolic addition to the quartic potential destroys the
multimodality of overdamped steady states48,49,52. Therefore,
we check the mixture of cubic and linear friction

T (v) = −γ(v3 + av) (a > 0). (17)

Analogously to the overdamped setup48, increase in a above
a critical value ac (ac = 0.794) destroys bimodality in the
velocity marginal density P (v). Moreover, for a > ac, not
only P (v) but also the full non-equilibrium stationary density
P (x, v) becomes unimodal. In contrast, for 0 < a < ac,
the velocity PDF P (v), as well as the full density P (x, v) are
multimodal. At the same time, the marginal position distribu-
tion P (x) is unimodal, see Figs. 1 – 2 and 5 – 6, which present
results for the Cauchy noise.

Finally, we have examined motion of a Langevin particle
under action of the Cauchy noise with the velocity dependent
friction term given by a polynomial steeper than cubic. For
that purpose we have used the following set of equations
{
ẋ(t) = v(t)
v̇(t) = −γ

[
6v5 − 76

11v
3 + 2v

]
− x3(t) + ζ(t)

. (18)

The friction term was chosen in a such way that, in the absence
of −x3 force, the velocity marginal density is trimodal55.
Such a choice of the friction was primarily motivated by pos-
sibility of examination of the probability density behavior for
the system in which velocity marginal distribution has both
zero and non-zero modal values. Numerical simulations con-
firm that, even in the presence of a quartic potential V (x), the
velocity marginal distribution remains trimodal. Therefore,
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basing on the marginal velocity distribution, the probability
mass or the concentration of particles may be divided into two
distinct groups. The first group, with velocities correspond-
ing to the outer maxima (|v| � 0) of the velocity marginal
distribution, behaves very similar like particles described by
Eq. (16). They produce two modal values corresponding to
these velocities. At the same time, in the spatial domain, those
modes produce a single peak at x = 0, so that the spatial mul-
timodality for v 6= 0 is not observed. The second group of
particles includes those ones with the velocity close to zero
(represented by the central mode of the velocity marginal dis-
tribution). Due to small velocities, dynamics of particles from
the second group can be similar to the overdamped motion.
For v ≈ 0, the full probability density P (x, v) has two max-
ima as P (x, v ≈ 0) depends nonmonotonously on x. At the
same time, the position marginal distribution P (x) remains
unimodal, see Fig. 7, which shows NESS and marginal densi-
ties for Eq. (18) with γ = 4. Fig. 7 demonstrates the strong
trimodality in the marginal steady density P (v), which was al-
ready discussed above and in Ref. 55. The position marginal
distribution P (x) stays unimodal, despite of two modal val-
ues of the full probability density with modes at non-zero po-
sitions. In total, the model described by Eq. (18) has four
modes — two at v ≈ 0 and two at v 6= 0.

The nonlinear friction used in Eq. (18), i.e.,

T (v) = −γ
[
6v5 − 76

11
v3 + 2v

]
. (19)

is a nonmonotonous function of v. Clearly, such a nonlinear
friction only dissipate energy, i.e., it does not lead to the ac-
tive Lévy motion70,71. In Ref. 55 it was shown that, in the
overdamped system, the deterministic force given by Eq. (19)
with v replaced by x produces trimodal non-equilibrium sta-
tionary state. In accordance with these findings, for the un-
derdamped motion, the velocity distribution is also trimodal
with modes located at the same locations as in the under-
damped model. Now, presence of three modes in overdamped
systems55 can be reinterpreted. The most likely values of ve-
locities are those corresponding to the minimal friction. Un-
fortunately, this simple intuitive explanation is of the qualita-
tive type only, because its prediction on the position of modal
values are significantly worse than arguments based on the ex-
tremes of the potential curvature48,52,55.

III. SUMMARY AND CONCLUSIONS

Here we have analyzed numerically stochastic dynamics
of underdamped stochastic oscillators subject to velocity-
dependent nonlinear damping and additive Lévy white noise.

So far, it is known that non-equilibrium stationary states
(NESS) for overdamped anharmonic stochastic oscillators,
V (x) = |x|n/n, driven by Lévy noise exist for n > 2 −
α. More importantly, at n = 2, the corresponding non-
equilibrium stationary PDFs change from unimodal to bi-
modal forms. Emergence of bimodal NESS for n > 2 can
be intuitively explained in the limit of a vanishing noise. In
the weak noise limit, for n > 2, time of deterministic sliding
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FIG. 7. The non-equilibrium stationary states and marginal densities
for T (v) given by Eq. (19) with γ = 4. The driving noise is the
Cauchy noise, i.e., the Lévy noise with α = 1.

from |x| > 0 to the origin is infinite. The competition between
deterministic sliding and escapes induced by noise pulses is

74 APPENDIX A. ARTICLES



9

responsible for depletion of the probability of finding a par-
ticle at x = 0. In consequence, P (x) has a local minimum
at x = 0 and the distribution becomes bimodal. Putting it
differently, for overdamped motion in single-well potentials,
difficulty in reaching origin is responsible for emergence of
bimodal NESS. The very same scenario is observed for under-
damped dynamics. However, in this situation, due to non-zero
velocity, a trajectory can more easily visit the origin. In conse-
quence, it is harder to observe multimimodal non-equilibrium
stationary states in underdamped motions than in the over-
damped motions. Moreover, nonlinear friction additionally
hampers emergence of multimodal steady states.

Stochastic underdamped systems are characterized by a ve-
locity and a position, which are distributed according to some
probability density. If the particle moves in the external poten-
tial and this movement is subject to damping, the probability
density can asymptotically attain the stationary density. For
Lévy noise, this takes place under the condition that nonlinear
friction is strong enough and the potential grows sufficiently
fast. The problem of multimodality of NESS for the under-
damped dynamics is more complex than for the overdamped
dynamics, because one can ask about multimodality in the full
probability density P (x, v) or in marginal non-equilibrium
stationary densities P (x) and P (v).

For underdamped motion in the regime of the nonlinear
friction it is easy to record multimodality in the velocity, and
consequently in the full density, as this feature is mainly deter-
mined by the friction term. At the same time the spatial multi-
modality is more difficult to be induce. Importantly, in the un-
derdamped system the non-equilibrium stationary P (v) den-
sities, despite action of the additional deterministic = V ′(x)
force, are practically the same as P (x) densities for analo-
gous overdamped systems, i.e., for overdamped systems with
the same deterministic force as friction, i.e., −V ′(x) = T (x).
For instance, for the linear friction, P (v) densities are of the
α-stable type. Nevertheless, some differences between non-
equilibrium stationary P (x) in overdamped systems and P (v)
in the underdamped system can be produced by the determin-
istic force −V ′(x), which accompanies action of friction in
the equation describing time evolution of the velocity.

As the main type of nonlinear friction we have used T (v) =
−γ sign(v)|v|κ−1, which for κ > 2 is responsible for obser-
vation of multimodal velocity marginal densities P (v). Nev-
ertheless, the multimodality in v do not transfer into spatial
multimodality of non-equilibrium stationary states. The in-
crease in damping coefficient γ not only influences the modal-
ity of NESS but also affects the energy distribution widths, cf.
Fig. 3. The width of energy distribution is the decaying func-
tion of γ. At the same time, the median of kinetic energy is
order of magnitude larger than the median of potential energy,
because kinetic energy is quadratic in the velocity while the
potential energy is quartic function of the position. Moreover
tails of velocity distribution are heavier than tails of position
distribution. The addition of a linear component to such a
friction form, T (v) = −γ sign(v)|v|κ−1 − γav, is capable of
destroying the velocity multimodality, as can be clearly visi-
ble for κ = 4, cf. Fig. 2 vs. Fig. 6. Eventually, higher order
damping, e.g., damping given by Eq. (19), produces trimodal

NESS in the velocity with one mode at v ≈ 0 and two modes
at |v| > 0. On the one hand, particles with v ≈ 0 are close
to be overdamped and consequently, due to the potential cubic
force,−V ′(x) = −x3, they follow a bimodal distribution. On
the other hand, particles with |v| > 0 are distributed according
to a unimodal density. The full density P (x, v) has four modal
values because for v = 0 additional spatial multimodality is
produced.

Finally, in the limit of γ → ∞, velocity becomes over-
damped. Actually, already for finite γ, the motion becomes
practically overdamped. Therefore, in the case of linear fric-
tion, the non-equilibrium stationary density P (x) approaches
the one characterizing overdamped motion in the very same
potential. For the nonlinear friction the situation is very
different. Due to nonlinearity of the damping, overdamped
Langevin equation is not restored in the strong friction limit.
Consequently, non-equilibrium stationary state for nonlinear
friction is different that the steady state for the overdamped
motion in the very same potential.
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The escape from a given domain is one of the fundamental problems in statistical physics and the theory of stochastic
processes. Here, we explore properties of the escape of an inertial particle driven by Lévy noise from a bounded domain,
restricted by two absorbing boundaries. Presence of two absorbing boundaries assures that the escape process can be
characterized by the finite mean first passage time. The detailed analysis of escape kinetics shows that properties of
the mean first passage time for the integrated Ornstein–Uhlenbeck process driven by Lévy noise are closely related to
properties of the integrated Lévy motions which, in turn, are close to properties of the integrated Wiener process. The
extensive studies of the mean first passage time were complemented by examination of the escape velocity and energy
along with their sensitivity to initial conditions.

PACS numbers: 05.40.Fb, 05.10.Gg, 02.50.-r, 02.50.Ey,

Widely studied, first escape and first arrival processes
form the basis of multiple physical phenomena with prac-
tical applications. Extensive exploration of the first escape
of an inertial particle from bounded domains under the
action of symmetric Lévy noises reveals universality, as
measured by the mean first passage time, of escape kinet-
ics in equilibrium and non-equilibrium domains. These
similarities are due to the continuity of the integrated pro-
cesses, which partially reduce the significance of the dis-
continuity of velocity in underdamped systems driven by
Lévy noises. However, the study of other escape charac-
teristics like velocity or energy at the moment of first es-
cape shows their high sensitivity to the stability index α as
well as a dependence on initial conditions. These studies
demonstrate potentially counterintuitive properties of es-
cape kinetics as, for instance, the slowest escape does not
need to correspond to the lowest median of the escape en-
ergy.

I. INTRODUCTION

Stochastic methods1,2 are widely used in the description of
various systems which are too complicated to treat them ex-
actly, or their dynamics contain an intrinsic random compo-
nent. The Newton equation plays a fundamental role in clas-
sical mechanics. It describes the fully deterministic dynamics,
nevertheless it can be easily extended to account for random
perturbations. The Newton equation supplemented by the
random component is referred to as the Langevin equation3.
Typically, it is assumed that the noise is white and Gaussian,
but multiple non-white or non-Gaussian extensions have been
suggested4,5.

The Langevin equation3 is studied in two main regimes: the
overdamped regime and in the regime of full (underdamped)

a)Electronic mail: karol@th.if.uj.edu.pl
b)Electronic mail: bartek@th.if.uj.edu.pl

dynamics. In the overdamped domain, a random walker is
fully characterized by its position only, while in the under-
damped regime by position and velocity. Therefore, over-
damped situations are simpler to analyze than the full dynam-
ics. Nevertheless, already the overdamped Langevin equation
can be used to describe and explain various noise-induced ef-
fects, like noise-enhanced stability6–8, resonant activation9,10

and stochastic resetting11–13. These phenomena do not ex-
haust all noise induced effects14–16, but they are the most rele-
vant in the context of current research, where we focus on the
problems of first escape from bounded domains17.

In the overdamped regime, under the action of the Gaus-
sian white noise, one can study the free motion, which corre-
sponds to the Wiener process2, or motion in a force field, e.g.,
Ornstein–Uhlenbeck process1. Escape properties of such ran-
dom motions in bounded and half-bounded domains are well
known and widely studied18 also in non-equilibrium realms19.
Contrary to the overdamped motion, on the one hand, the
regime of full dynamics is more intuitive, as it incorporates
velocity and position. Consequently, some of the everyday
intuitions can be easily transferred to provide a qualitative un-
derstanding of stochastic dynamics. On the other hand, such
processes are more complex to analyze and simulate. Regime
of underdamped (full) dynamics can be also referred to as
the integrated process20 or randomly accelerated process21,22

since typically it is assumed that the noise affects the veloc-
ity evolution only while the position is the integral of the ve-
locity. Moreover, in the full regime it is possible to study
undamped21,23–27 and damped motions28–30. Randomly accel-
erated motion of a free particle corresponds to the integrated
Wiener process, while the damped motion to the integrated
Ornstein–Uhlenbeck process. Action of the additional deter-
ministic force results in the forced motions31–33.

Escape processes from bounded (interval), and semi-
bounded (half-line) domains are very different. In the regime
of Markovian diffusion, the escape from a finite interval is
characterized by the finite mean first passage time and an ex-
ponential distribution of first passage times34. At the same
time, the escape from a half-line cannot be characterized by
the mean first passage time as it diverges. The first pas-
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sage time density is given by the Lévy–Smirnoff (inverse-
Gaussian) distribution35–39 and it has power-law asymptotics
with the exponent −3/2. The asymptotics of the first pas-
sage time density is universal as the same tail asymptotics is
recorded for any symmetric Markovian drivings37,40–42. The
similar generality is observed for the integrated Ornstein–
Uhlenbeck process driven by weak Lévy noise28. In the over-
damped regime, exit conditions are imposed on the position,
as it is only one possibility. In the underdamped regime there
are more options, since stopping conditions can be imposed
on the position26,43,44 or on the velocity27–29.

Here, we study the properties of full (underdamped) dy-
namics in bounded domains restricted by two absorbing
boundaries with the absorption condition imposed on the posi-
tion. We relax the assumption regarding the noise type, there-
fore the driving noise can be of the more general α-stable type,
containing the white Gaussian noise as a special case36,45,46.
Consequently, our studies extend the works on the integrated
Ornstein–Uhlenbeck process driven by Lévy noise28 to do-
mains restricted by two absorbing boundaries. Our studies
rely on numerical methods, because, to the best of our knowl-
edge, the analytical solution for the MFPT for the integrated
Ornstein–Uhlenbeck process driven by the Lévy noise is un-
known. Contrary to the underdamped case, in the regime of
the overdamepd dynamics analytical results are known not
only for symmetric drivings47 but also for the escape under
action of asymmetric Lévy flights48,49. The model under
study is presented in the next section (Sec. II – Model). Re-
sults of computer simulations are provided in Sec. III (Re-
sults). The paper is closed with Summary and Conclusions
(Sec. IV). Technical information is moved to the Appendices.

II. MODEL

We study the archetypal, underdamped Lévy noise-driven
escape of a free particle from the finite interval [−l, l]. The
Langevin equation50,51 describing the motion of a single par-
ticle reads

mẍ(t) = −γẋ(t) + σζ(t), (1)

where x is the particle position (x ∈ [−l, l]). ζ(t) stands for
the symmetric α-stable (Lévy type) noise, and σ measures the
strength of fluctuations. The Lévy noise is the formal time
derivative of the α-stable motion L(t), see Ref. 52, with the
characteristic function given by

φ(k) = 〈exp[ikL(t)]〉 = exp [−t|k|α] . (2)

In the Eq (2), α (0 < α 6 2) stands for the stability index,
which controls the tail asymptotics of α-stable densities36,45.
For α < 2, asymptotic behavior is of the power-law type,
with the exponent −(α + 1). The case of α = 2 corresponds
to the Gaussian white noise, i.e., 〈ζ(t)ζ(s)〉α=2 = δ(t − s).
Furthermore, using the transformation

{
x̃ = x/l,
t̃ = γt/m

, (3)

Eq. (1) can be transformed to the dimensionless variables x̃
and t̃. In such variables (after dropping tildes)

ẍ(t) = −ẋ(t) + σζ(t), (4)

where the dimensionless fluctuation strength is expressed by
dimensional variables as

σm1/α

lγ(1+α)/α
,

see Appendix A. Consequently, in addition to the stability in-
dex α, the only one parameter in Eq. (4) is the dimensionless
strength of fluctuations σ. The case of γ = 0, see Eq. (1),
should be treated separately. In the dimensionless units, for
the undamped motion (γ = 0) one gets

ẍ(t) = ζ(t), (5)

where
{
x̃ = x/l,

t̃ = t/
[
ml
σ

] α
1+α

. (6)

Consequently, there are no free parameters in the undamped
system, see Appendix A.

In dimensionless units, the escape from the (−l, l) interval
is transformed into the problem of escape from the (−1, 1)
interval. The problem of escape is studied in the regime of the
full dynamics under the action of linear friction, therefore the
particle is characterized by the position x and velocity v = ẋ.
The central quantity of interest is the mean first passage time
(MFPT) T (x0, v0)

T (x0, v0) = 〈tfp(x0, v0)〉 (7)
= 〈min{t > 0 : x(0) = x0 ∧ v(0) = v0 ∧ |x(t)| > 1}〉.

The mean first passage time T (x0, v0) is the average of first
passage times tfp(x0, v0). The first passage time tfp(x0, v0)
is recorded when a particle leaves the domain of motion, i.e.,
the (−1, 1) interval, for the first time. Since the motion is
underdamped, the first passage time depends on the full ini-
tial condition (x0, v0). In the dimensionless units, the motion
starts in the (−1, 1) interval, i.e., x0 ∈ (−1, 1), while the ve-
locity can attains any value, i.e., v(0) ∈ R. The studied model
extends examination of the exit time properties of the inertial
equilibrium process driven by Gaussian white noise24,25,53 to
the non-equilibrium domain, i.e., to the situation where the
driving noise is of the out-of-equilibrium type.

Eq. (4) can be rewritten as a set of two first-order equations
{
v̇(t) = −v(t) + σζ(t)
ẋ(t) = v(t)

. (8)

The first line of Eq. (8) describes the evolution of the veloc-
ity. The velocity equation is the analogue of the overdamped
Langevin equation describing the noise-driven motion in the
parabolic (V (x) = x2/2) potential54–56. Using this analogy,
the velocity can attain the stationary distribution given by the
α-stable density with the same stability index α54–56 as the
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noise ζ(t). The characteristic function of stationary velocity
distribution reads

φv(k) = exp

[
−σ

α

α
|k|α

]
, (9)

which is the characteristic function of the symmetric α-stable
distribution, see Eq. (2), with the scale parameter σ′

σ′ = σα−1/α. (10)

The asymptotic behavior of p(v) is given by

p(v) ∼ σαΓ(α+ 1)

π
sin

πα

2
× 1

|v|α+1
. (11)

The exact shape of the velocity distribution is sensitive to the
initial velocity, furthermore it can be affected by the absorp-
tion at x = ±1. The initial velocity shifts the modal value to
nonzero locations, while the absorption can efficiently inhibit
the achievement of a stationary velocity distribution, making
it narrower. Nevertheless, the velocity distribution is of the
α-stable type with the same value of the stability index α as
the driving noise, because the instantaneous velocity is a lin-
ear transformation of α-stable variables. Moreover, the scale
parameter characterizing the instantaneous velocity distribu-
tion cannot be larger than the scale parameter characterizing
the stationary velocity distribution, i.e., σα−1/α.

The first line of Eq. (8) shows that v is the the α-stable ana-
log of the Ornstein–Uhlenbeck process57, i.e., the so-called
Lévy-driven Ornstein–Uhlenbeck process58,59. Moreover, due
to the condition x(t) =

∫ t
v(s)ds, the x(t) is the so-called

integrated process, i.e., the integrated Lévy-driven Ornstein–
Uhlenbeck process28. In the case of γ = 0, see Eq. (1), v(t)
is given by the α-stable process, while x(t) is the integrated
α-stable motion. The special case of α = 2 corresponds to:
the integrated Ornstein–Uhlenbeck process (γ > 0) or the in-
tegrated Wiener process (γ = 0). Analogously, α = 1 gives
rise to the integrated Cauchy process (γ = 0) or the integrated
Ornstein–Uhlenbeck–Cauchy process (γ > 0). The stopping
condition, see Eq. (8), is imposed on the particle position. The
system described by Eq. (4), is studied as long as |x| < 1.

III. RESULTS

The model described by Eq. (4) is studied by means of
computer simulations. The velocity part, containing the
α-stable noise, is approximated using the Euler-Maruyama
scheme45,60, while the spatial part is constructed trajectory-
wise51. The MFPTs T (x0, v0) are calculated as the average
value of the collected first passage times tfp(x0, v0). Each first
passage time tfp(x0, v0) is estimated from a single trajectory
x(t) (x(0) = x0 and v(0) = v0), which is simulated as long
as |x(t)| < 1. The averaging is performed over the ensemble
of N = 106 first passage times obtained from N trajectories
constructed with the integration time step ∆t = 10−3.

The main quantity characterizing the escape kinetics is the
mean first passage, see Eq. (8). The mean first passage time
depends on both the value of the stability index α and the
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FIG. 1. The mean first passage time (MFPT) T (x0, 0) for integrated
α-stable motions. Various points correspond to various values of the
stability index α (α ∈ {0.5, 1, 1.5, 2}) from the lowest to highest
MFPT respectively. Solid lines show the theoretical formula for α =
2 (integrated Wiener process), see Eq. (13).

strength of fluctuations σ. Since the motion is restricted to
the (−1, 1) interval, the initial position x0 belongs to (−1, 1).
There are no constraints on the initial velocity v0. It can be
directed towards any of the absorbing boundaries.

We start our analysis with the undamped motion, i.e., with
the integrated α-stable motion (Sec. III A), which for α =
2 corresponds to the integrated Wiener process. Next, we
switch to the problem of inertial damped motion, i.e., the in-
tegrated Ornstein–Uhlenbeck process driven by Lévy noise
(Sec. III B).

A. Integrated α-stable motion

The integrated α-stable motion corresponds to γ = 0 in
Eq. (1). In dimensionless units, see Appendix A, it is de-
scribed by the following Langevin equation

ẍ(t) = ζ(t). (12)

Eq. (12) with α = 2 describes the integrated Wiener process.
More precisely, ζα=2(t) =

√
2ξ(t) (where ξ(t) stands for the

standard Gaussian white noise) as the α-stable density with
α = 2 is the normal distribution with the standard deviation√

2. Such a process has been studied in Refs. 24 and 25, where
the exact, up to quadrature, formula for the MFPT with any
allowed value of x0 and v0 has been derived. The general
formula24,25 significantly simplifies for v0 = 0, see Eq. (B3).
After transformation of the [0, l] setup24,25 to the [−l, l] and
passing to dimensionless variables, see Appendix A, the for-
mula for the MFPT with v0 = 0 reads

T (x, 0) =
2

31/6Γ(7/3)

[
1 + x

2

]1/6 [
1− x

2

]1/6
(13)

×
{

2F

(
1,−1

3
;

7

6
;

1 + x

2

)
+ 2F

(
1,−1

3
;

7

6
;

1− x
2

)}
,

where 2F (a, b; c;x) is the Gauss hypergeometric function61.
For more details see Appendix B.
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Fig. 1 shows dependence of the mean first passage time
on x0 for various values of the stability index α (α ∈
{0, 5, 1, 1.5, 2} – from bottom to the top) with the fixed ini-
tial velocity v0, i..e, v0 = 0. The solid line depicts the MFPT
for α = 2 given by Eq. (13). With the decreasing value of
the stability index α (in dimensionless variables) the MFPT
decreases, i.e., the escape on average becomes faster. Never-
theless, the qualitative dependence of the MFPT on x0 with
various values of α is similar. In dimensional units, the order
of MFPT curves is sensitive to the system parameters.

B. Integrated Ornstein–Uhlenbeck Lévy-driven process
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FIG. 2. The MFPT T (x0, v0) as a function of the initial con-
dition (x0, v0) for various values of the stability index α (α ∈
{0.5, 1, 1.5, 2}) from the lowest to highest MFPT respectively. Bot-
tom part shows cross-sections for v0 = 0 (top left), v0 = 1 (top
right), v0 = 2 (bottom left) and v0 = 3 (bottom right). The scale
parameter σ is set to σ = 1.

Fig. 2 depicts the MFPT for the damped motion de-
scribed by Eq. (4) as the function of the initial condition
(x0, v0) for representative values of the stability index α (α ∈
{0.5, 1, 1.5, 2} from bottom to top). Moreover, the bottom
panel of Fig. 2 shows cross-sections corresponding to vari-
ous initial velocities: v0 = 0 (top left), v0 = 1 (top right),
v0 = 2 (bottom left) and v0 = 3 (bottom right). Addition-
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FIG. 3. The same as in Fig. 2 for σ = 4.

ally the cross-section for v0 = 0 is accompanied by the exact
curve showing MFPT for the integrated Wiener process, see
Eq. (13). Analogously, like for the integrated α-stable motion,
the MFPT surfaces are symmetric with respect to exchange
(x0, v0) with (−x0,−v0), i.e.,

T (x0, v0) = T (−x0,−v0). (14)

The relation given by Eq. (14) arises due to symmetry of the
experimental setup and system dynamics. From Fig. 2, espe-
cially from cross-sections, it is clearly visible that the MFPT
is sensitive to the exact value of the stability index α. For
σ = 1, decrease in the value of the stability index α facilitates
the escape kinetics. For v0 = 0 MFPT curves are symmetric
along x0 = 0, moreover quantitative dependence of MFPT on
x0 with v0 = 0 is the same as for the integrated Wiener pro-
cess with v0 = 0. The initial (positive) velocity significantly
accelerates the escape process for positive x0 and slows down
escapes with negative x0.

Fig. 3 presents dependence of the MFPT on the initial con-
ditions for the noise strength σ = 4, which is significantly
larger than the one considered in Fig. 2. The change in
σ not only facilitates escape in comparison to σ = 1, but
changes the order of surfaces in the 3D plot and curves in
cross-sections. For σ = 4, with v0 = 0, the fastest escape is
recorded for Gaussian noise (α = 2). Moreover, contrary to
smaller σ (e.g., σ = 1), this time MFPT is decreasing function
of α. Subsequent Fig. 4 demonstrates that for the fixed value
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of the stability index α, alterations in the scale parameter can
produce well visible changes in the mean first passage time,
especially for not too large initial velocities.

The subsequent Fig. 4 explores the sensitivity of the mean
first passage time to the strength of fluctuations under the ac-
tion of the Cauchy noise (α-stable noise with α = 1). Due to
the property given by Eq. (14), Fig. 4 shows results for v0 > 0
only. The highest sensitivity to the fluctuation strength is
recorded, when a particle starts its motion far from the bound-
ary which is crossed during the escape from the domain of
motion, see Fig. 5. With the increasing |v0| the level of sensi-
tivity decreases. Finally, for very large v0 results with various
scale parameters σ are indistinguishable.

FIG. 4. The MFPT as a function of the initial condition (x0, v0)
for the fixed value of the stability index α = 1 (Cauchy noise) and
various strengths of fluctuations σ (σ ∈ {0.5, 1, 2} (orange, blue,
green).

The particle escaping from the (−1, 1) interval can exit via
the left or right boundary. The tendency to exit via a particu-
lar boundary can be quantified by the splitting probability πR.
For instance, πR measures the fraction of escapes via the right
boundary. At the same time, the fraction of escapes via the left
boundary can be calculated as πL = 1− πR. The dependence
of the splitting probability πR on the initial condition (x0, v0)
is depicted in Fig. 5. The top panel shows the results for the
Cauchy (α = 1) noise, while the bottom one for the Gaus-
sian (α = 2) noise. Positive initial velocity favors escape via
the right boundary. This tendency is especially visible for the
initial positions near the right boundary. The change in the
value of the stability index α from α = 1 (top panel) to α = 2
(bottom panel) does not change the qualitative dependence of
the splitting probability on the initial condition. Only small
quantitative changes are visible in the situation when a mo-
tion starts near the boundary with the initial velocity pointing
to the more distant boundary.

The stopping condition is imposed on the particle position
x(t), see Eq. (8), which is continuous as the integral of the
velocity. Due to the continuity of trajectories, every trajectory
hits the absorbing boundary. Therefore, the last hitting point

FIG. 5. The probability πR that the particle escapes from the finite
interval (−1, 1) through the right boundary, i.e., x = 1, as a function
of the initial condition (x0, v0) for the fixed value of the stability
index α = 1 (Cauchy noise – top panel) and α = 2 (Gaussian noise
– bottom panel). The scale parameter σ is set to σ = 1.

density is given by πRδ(x−1)+(1−πR)δ(1−x), where πR
is the probability to escape through the right boundary. Nev-
ertheless, the escape is not only characterized by the splitting
probability, see Fig. 5, but also by the exit velocity, i.e., the
instantaneous velocity at the moment of the first escape. The
distribution of the exit velocities is determined by the instan-
taneous velocity distribution, which is given by the symmetric
α-stable density, and the initial condition (x0, v0). The initial
condition is capable of introducing asymmetry to the exit ve-
locity distribution. For x0 = 0 with v0 = 0, the distribution
of exit velocities is symmetric.

Fig. 6 presents the median (v0.5) of exit velocities as a func-
tion of the initial condition (x0, v0). Various surfaces in the
top panel of Fig. 6 correspond to various values of the stabil-
ity index α (α ∈ {0.5, 1, 1.5, 2}). α-stable distributions with
such values of stability indices are very different. Neverthe-
less, the medians of the exit velocities are quite similar, which
is further corroborated by cross-sections depicted in the bot-
tom panel of Fig. 6. Unexpectedly, for some values of the
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initial velocity, e.g., v0 = 1, there is a local minimum of the
median (v0.5) of the exit velocity, see bottom row of Fig. 6.
As it is visible from the splitting probability, see Fig. 5, cross
sections in Fig. 6 correspond to the situations when the first
escape takes place via both absorbing boundaries. The level
of competition is sensitive both to the initial position and the
initial velocity as they determine which part of the velocity
distribution is responsible for the final jump. If a particle is
close to the boundary it can (most likely) leave the domain
of motion with a small velocity through the closest boundary
or it can escape via the distant boundary with a large velocity
with the opposite sign. The chances of escaping via the more
distant boundary are decreasing with the increasing α making
local minima of v0.5 shallower and shifted to larger x0, see
bottom left panel of Fig. 6.

In order to further explore properties of exit velocity, we
have calculated the ratio of interquantile widths

R =
v0.5 − v0.1
v0.9 − v0.5

, (15)

where v... indicates quantiles of a given order q (0 < q < 1)
of the exit velocity, e.g., vq(t) is defined by

q =

∫ vq(t)

−∞
p(v; t)dv. (16)

In the above equation, p(v; t) stands for exit velocity distri-
bution. The ratio defined by Eq. (15) measures the fraction
of widths of intervals containing 40% of the exit velocities
above (v0.9 − v0.5) and below (v0.5 − v0.1) the median (v0.5).
Its value reflects the symmetry of the exit velocity distribu-
tion: for R = 1, the intervals’ widths in the numerator and
the denominator are the same. If R < 1 the exit velocity
density is skewed to the right, while for R > 1 to the left.
Fig. 7 depicts the interquantile width ratios, which show that
the width ratio R is sensitive to the exact value of the stabil-
ity index α. For α = 0.5 the ratio of interquantile widths is
practically equal to 1, as with decreasing α exit velocities be-
come more symmetric. Finally, in the limit of α → 0, the
ratio R is equal to 1, because the escape events become po-
sition independent. In the opposite limit of α → 2, the es-
cape process strongly depends on the initial position, because
it is easier to escape via the closest boundary. Fig. 6 and 7
present results for v0 > 0 because results for v0 < 0 can
be obtained by symmetry. For instance, quantiles of order q
(0 < q < 1) are connected with quantiles of order 1−q by the
relation vq(x0, v0) = −v1−q(−x0,−v0) from which implies
thatR(−x0,−v0) = 1/R(x0, v0).

From analysis of Fig. 7, supported by the examination of
the splitting probability (Fig. 5) and median of the exit veloc-
ity (Fig. 6), it can be deduced that there are two mechanisms
which can produce R ≈ 1. One, the most intuitive, is re-
lated to the symmetry of the exit velocity. This mechanism is
observed for v0.5 = 0, where the instantaneous velocity distri-
bution is symmetric and approximately half of escapes are via
the left (right) boundary with negative (positive) velocities.
Such a behavior is the strongest for x0 ≈ 0 and v0 ≈ 0, and
the decrease in αwidens the domain whereR ≈ 1. The other

mechanism is related to the initial velocity. For large |v0| the
mean first passage time is small and it is mainly determined by
the initial velocity, which determines the time dependence of
the median of the velocity distribution. The nonzero median
of the velocity distribution forces the median of the position
distribution to move towards one of the absorbing boundaries.
This in turn facilitates the escape. Moreover, the escape time
is so short that the width (as measured by the interquantile
width) of the velocity distribution is small and median quite
large that escapes are performed over one of the boundaries
determined by the initial condition. In overall, the median of
exit velocity is significant and, simultaneously, the exit ve-
locities follow narrow, symmetric along the median, density
making R again close to 1. In other regions, where escapes
are performed via both absorbing boundaries, we can see the
competition between escapes to the left and to the right.
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FIG. 6. Medians of the exit velocity v0.5 as a function of the ini-
tial condition (x0, v0) for various values of the stability index α
(α ∈ {0.5, 1, 1.5, 2} (orange, blue, green, red)) (top panel) and
cross-sections for v0 = 1 (bottom left) and v0 = 2 (bottom right).
The scale parameter σ is set to σ = 1.

Finally, to further study the properties of escape kinetics,
we have inspected energies at the moment of boundary cross-
ing. Fig. 8 shows median of the energy distributions along
with sample cross-sections. One may think that the slowest es-
capes (largest MFPTs) correspond to the lowest median of the
escape energy. However, it is not the case. For the initial con-
ditions (x0, v0) corresponding to longest escape time, there
is a local maximum (hump) in the median of the escape en-
ergy. Such a maximum originates due to slow escapes. More
precisely, a particle spends a lot of time within the interval.
During that time a chance for an abrupt change in the velocity
increases and the particle is likely to leave the domain of mo-
tion with a large velocity (and energy). Height of the hump
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FIG. 7. Interquantile widths ratiosR = (v0.5 − v0.1)/(v0.9 − v0.5)
for α ∈ {0.5, 1, 1.5, 2} (top panel) and cross-sections for v0 = 1
(bottom left) and v0 = 2 (bottom right). The scale parameter σ is set
to σ = 1.

in the median of energy is very sensitive to the stability in-
dex α and decays rapidly with its decreasing value, therefore,
in the top panel of the Fig. 8, maximum is well visible only
for α = 0.5. In general, for a fixed initial condition located
within the hump, the median of the exit energy decays with
the decreasing value of the stability index α. Consequently,
the smallest α curve is the predominant one. After removing
results corresponding to α = 0.5 the hump with α = 1.0 starts
to prevail. Nevertheless, the qualitative dependence of the me-
dian of the exit energy is quite similar. The biggest qualitative
differences start to appear when α approaches 2.

Interestingly, the well-defined hump in the median of en-
ergy distribution is placed within a gutter. The trough rises up-
wards with increasing modulus of the initial velocity. There-
fore, starting from the top of the hump, with the increasing
(decreasing) initial velocity median decreases, attains mini-
mum value and finally it starts to increase. This indicates that
the increase in the value of the initial velocity v0 does not al-
ways lead to the larger escape energy. As it is clearly visible
in Fig. 8, escapes with largest initial velocities, see Fig. 2, are
performed with the largest energies. Moreover, the medians
of the escape energy in this case are insensitive to the stabil-
ity index α and, therefore, they are indistinguishable in the
plot. It suggests that escapes energies for large v0 are mainly
controlled by the initial condition.

IV. SUMMARY AND CONCLUSIONS

In the weak noise limit of the integrated Ornstein–
Uhlenbeck process driven by Lévy noise, the distribution of
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FIG. 8. Median of exit energy E0.5 as a function of the initial
condition (x0, v0) for various values of the stability index α (α ∈
{0.5, 1, 1.5, 2} (orange, blue, green, red)). Bottom part shows cross-
sections for v0 = 0 (top left), v0 = 1 (top right), v0 = 2 (bottom
left) and v0 = 3 (bottom right). The scale parameter σ is set to
σ = 1.

first passage times from the half-line attains the universal
form28, which is independent of the driving noise type. This
is related to the general properties of escape kinetics from the
half-line under symmetric Markovian drivings. Such escapes
are characterized by first passage time densities with the uni-
versal power-law asymptotics predicted by the Sparre Ander-
sen scaling37,40–42. Due to the heavy tail of the first passage
time density, the first passage density has a power-law asymp-
totic with the exponent −3/2. The escape from the half-line
cannot be characterized by the mean first passage time as this
quantity diverges.

Using numerical methods, we have studied the properties of
underdamped Lévy noise-driven escape from finite intervals
restricted by two absorbing boundaries. For such a process,
contrary to the escape from the half-line, the exit time distri-
butions have exponential asymptotics making the mean first
passage time well defined characteristics. Detailed examina-
tion of the integrated Lévy-driven Ornstein–Uhlenbeck pro-
cess indicates that the mean first passage time displays limited
sensitivity to the exact value of the stability index α. There-
fore, despite very different velocity distributions, the qualita-

APPENDIX A. ARTICLES 83



8

tive system properties are very close to the properties of the
integrated Wiener process. Nevertheless, the increase in the
scale parameter (the only significant parameter besides α) can
differentiate results corresponding to various values of the sta-
bility index α. The symmetry of the domain of motion and
system dynamics is responsible for additional symmetries of
the mean first passage times with respect to the initial condi-
tions.

The extensive analysis of the mean first passage time was
supplemented by examination of the escape velocities and en-
ergies along with their sensitivity to the initial conditions. On
the one hand, for the Lévy-driven Ornstein–Uhlenbeck pro-
cess, medians of the escape velocity are weakly sensitive to
the stability index α. On the other hand, analysis of the asym-
metry of the escape velocity distributions show a high level
of sensitivity to the stability index. In particular, distributions
change from almost always symmetric (small α) to possibly
strongly dependent on the initial condition (α . 2). Putting it
differently, for large α, depending on the initial condition, the
escape velocity distribution can be symmetric or not. For ex-
ample, for the same initial position, the escape velocity distri-
bution can be asymmetric (small initial velocity) and symmet-
ric (large initial velocity). In contrast to velocities, the studies
of escape energies manifest significant sensitivity of the me-
dians to the value of the stability index α, especially for small
initial velocities. Finally, the median of the escape energy can
decrease with the increasing value of initial velocity.

Appendix A: Dimensionless units

The dimensional Langevin equation

mẍ(t) = −γẋ(t) + σζ(t), (A1)

can be transformed to dimensionless units x̃ and t̃ by rescaling
the space variable x and time t

{
x̃ = x

x0

t̃ = x
t0

. (A2)

The noise term is a formal time derivative of the α-stable mo-
tion, which is a 1/α self-similar process. Therefore, it trans-
forms as

σζ(t) = σ
dL(t)

dt
= σ

d

dt
L(t0t̃) = σ

d

dt
t

1
α
0 L(t̃) (A3)

= σt
1
α
0

d

dt
L(t̃) = σt

1
α
0

dt̃

dt

d

dt̃
L(t̃)

= σt
1
α−1
0 ζ(t̃).

At the same time standard derivatives account the following
forms

m
d2x(t)

d2t
= m

x0
t20

d2x̃

dt̃2
(A4)

and

γ
dx(t)

dt
= γ

x0
t0

dx̃

dt̃
. (A5)

After substituting in Eq. (A1) one gets

m
x0
t20

d2x̃

dt̃2
= −γ x0

t0

dx̃

dt̃
+ σt

1
α−1
0 ζ(t̃). (A6)

Dividing both sides by mx0

t20
and dropping tildes result in

d2x

dt2
= −γ t0

m

dx

dt
+
σt

1+ 1
α

0

mx0
ζ(t). (A7)

Since we are interested in the exploration of escape from
[−l, l] interval we set x0 to l, thus x̃ = x

l . Consequently,
in the dimensionless units, we are studying escape from the
(−1, 1) interval. For γ > 0, setting γ t0m to 1 one gets t0 = m

γ

and

t̃ =
γ

m
t. (A8)

Moreover, for γ > 0 one finds the rescaled σ̃

σ̃ =
σt

1+ 1
α

0

mx0
=

σm
1
α

lγ1+
1
α

. (A9)

The case of γ = 0 needs to be considered separately. We still
use x̃ = x

l , while the time transformation is found from the
condition

σt
1+ 1

α
0

mx0
= 1 (A10)

resulting in

t0 =
[mx0
σ

] α
1+α

=

[
ml

σ

] α
1+α

. (A11)

In summary, in the dimensionless units, for γ > 0, one has

ẍ(t) = −ẋ(t) + σζ(t), (A12)

while for γ = 0

ẍ(t) = ζ(t). (A13)

For the sake of simplicity, in the above equations, the tildes
have been dropped out. The motion is continued as long as
|x| < 1. Therefore, the damped motion is characterized by
the dimensionless σ only, while in the undamped case there
are no free parameters.

The α-stable density with α = 2 reduces to the nor-
mal (Gaussian) distribution with the standard deviation

√
2.

Therefore, special care is required if one wants to compare
results for α-stable driving with α = 2 to results derived un-
der action of the Gaussian white noise. The factor

√
2, see

Eq. (A11), needs to be accounted for.

Appendix B: Integrated Brownian motion (random
acceleration process)

In Refs. 24 and 25 the problem of escape of the integrated
Wiener (random acceleration process22) process from [0, l]
has been studied. For

ẍ(t) = ξ(t), (B1)
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with 〈ξ(t)ξ(s)〉 = Dδ(t − s) the closed (up to quadrature)
formula for the MFPT has been derived. In the case of v0 = 0
the general formula simplifies to

T (x, 0) =
41/6

31/6Γ(7/3)

[
2l2

D

]1/3 [x
l

]1/6 [
1− x

l

]1/6
(B2)

×
{

2F

(
1,−1

3
;

7

6
;
x

l

)
+ 2F

(
1,−1

3
;

7

6
; 1− x

l

)}
,

where 2F (a, b; c;x) is the Gauss hypergeometric function61.
The formula (B2) can be transformed to the setup used in

the main text by rescaling the interval width, i.e., l → 2l,
and exchanging x → l + x and D → 2σ2 (because α-stable
density with α = 2 is the normal distribution with the variance
equal to 2) resulting in

T (x, 0) =
41/6

31/6Γ(7/3)

[
4l2

σ2

]1/3 [
l + x

2l

]1/6 [
l − x

2l

]1/6
(B3)

×
{

2F

(
1,−1

3
;

7

6
;
l + x

2l

)
+ 2F

(
1,−1

3
;

7

6
;
l − x

2l

)}
.

Eq. (B3) gives the formula for the MFPT with v0 = 0 in
the dimensional units corresponding to the setup studied in
the main text (escape from [−l, l] under action of α-stable
noise). Eq. (B3) can be transformed to dimensionless units
by identifying x/l with dimensionless position and dividing
the whole formula by t0 given by Eq. (A11) with m = 1, i.e.,
t0 = (l/σ)2/3 since in24,25 particle mass is set to unity, see
Eq. (B1). All these operations are equivalent to setting σ = 1
and l = 1 in Eq. (B3). Such a substitution is consistent with
the dimensionless Langevin equation, which for the integrated
α-stable motion does not have any free parameters.
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Peculiarities of escape kinetics in the presence of athermal noises
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Marian Smoluchowski Institute of Physics, and Mark Kac Center for Complex Systems Research, Jagiellonian University,
ul. St. Łojasiewicza 11, 30–348 Kraków, Poland

(Dated: 14 March 2022)

Stochastic evolution of various dynamic systems and reaction networks is commonly described in terms of noise as-
sisted escape of an overdamped particle from a potential well, as devised by the paradigmatic Langevin equation in
which additive Gaussian stochastic force reproduces effects of thermal fluctuations from the reservoir. When imple-
mented for systems close to equilibrium, the approach correctly explains emergence of Boltzmann distribution for the
ensemble of trajectories generated by Langevin equation and relates intensity of the noise strength to the mobility. This
scenario can be further generalized to include effects of non-Gaussian, burst-like forcing modeled by Lévy noise. In
this case however, the pulsatile additive noise cannot be treated as the internal (thermal), since the relation between the
strength of the friction and variance of the noise is violated. Heavy tails of Lévy noise distributions not only facilitate
escape kinetics, but more importantly, change the escape protocol by altering final stationary state to a non-Boltzmann,
non-equilibrium form. As a result, contrary to the kinetics induced by a Gaussian white noise, escape rates in en-
vironments with Lévy noise are determined not by the barrier height, but instead, by the barrier width. We further
discuss consequences of simultaneous action of thermal and Lévy noises on statistics of passage times and population
of reactants in double-well potentials.

PACS numbers: 05.40.Fb, 05.10.Gg, 02.50.-r, 02.50.Ey,

Noise induced escape over a static potential barrier is
the scenario underlying various fluctuations induced ef-
fects. Numerous research explored Gaussian noise and
Lévy noise driven kinetics in double-well potential wells.
These two kinetics fundamentally differs, as they cor-
respond to the continuous (Gaussian) and discontinuous
(Lévy) trajectories which in turn are responsible for very
different escape protocols. Here, we study the archetypal
models of overdamped, stochastic dynamics in double-well
potentials driven by a single Lévy noise or a mixture of
Lévy and Gaussian noises. Therefore, within the current
studies, we extend understanding of escape processes over
a static potential barrier. We explore the role of underly-
ing assumptions by comparing results of numerical sim-
ulations with asymptotic scaling predicted by various ap-
proximations. We show how the escape protocol is affected
by abnormally long jumps (outliers) and what is the role
of the central part of the jump length distribution. We
demonstrate that for the combined action of Gaussian and
Lévy noise sources various asymptotic regimes can be ob-
tained.

I. INTRODUCTION

Non-Gaussian Lévy noises and Lévy statistics are fre-
quently objects of studies in the context of extreme, catas-
trophic events like economic crises1,2, outburst of epidemics3

or millennial climate changes4. The increasing number of ob-
servations indicates presence of non-Gaussian fluctuations in

a)Electronic mail: karol@th.if.uj.edu.pl
b)Electronic mail: bartek@th.if.uj.edu.pl
c)Electronic mail: ewa.gudowska-nowak@uj.edu.pl

the variety of complex dynamical systems ranging from fi-
nancial time series5 and recordings of turbulent behavior6, su-
perdiffusion of micellar systems7 and transmission of light
in polidispersive materials8, to photon scattering in hot
atomic vapors9, anomalous diffusion in laser cooling10,11,
gaze dynamics12 and memory retrieval in humans13. As a
natural generalization of the Brownian motion, the Lévy pro-
cess is characterized by uncorrelated jumps sampled from the
heavy-tailed, stable distribution of lengths and has been ex-
tensively studied in a large number of theoretical and numer-
ical considerations14–21. Contrary to the Wiener process – a
mathematical abstract of the Brownian motion – trajectories
in the Lévy motion are discontinuous, thus representative for
pulsatile, irregular flickering. Whereas a prominent feature
of the Brownian motion is a linear growth of the variance of
the position with time – this growth becomes faster (superlin-
ear) for Lévy motion. Also, unlike equilibrium noise which
refers to the jump sizes distributed according to the Gaussian
statistics of finite variance, its nonequilibrium counterpart, the
Lévy (non-Gaussian) noise, describes the processes with large
outliers and has diverging variance.

Importantly, Lévy motions (called otherwise Lévy flights
(LF)) have been shown to break detailed balance and mi-
croscopic reversibility22,23. Lack of detailed balance for the
Langevin dynamics with Lévy flights has important thermo-
dynamic consequences: In static, periodic potentials with bro-
ken spatial symmetry solely action of the Lévy noise induces
the directed transport24. The key element of the ratcheting
effect25,26 is the acceleration of the escape process into the di-
rection of the steeper slope of the potential. This acceleration
of the transport over the narrower potential barrier plays an
important role in the Lévy noise driven Kramers problem4. In
the weak noise limit, escape from the potential well induced
by Lévy noise is always faster27 than the analogous process
induced by the Gaussian white noise and the most probable
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escape path is executed via a single long jump. This causes
the mean first passage time (MFPT) to depend dominantly on
the barrier width δ, i.e. T ∝ δα instead of barrier height
∆E, i.e. T ∝ exp(β∆E), typical for the Kramers kinetics
in the presence of thermal (Gaussian) noise. A similar, fully
tractable analytically, solution to the first passage time prob-
lem is observed for escapes from bounded domains under the
action of Lévy flights28–32.

In line with Kramers approach the kinetic mechanism of a
chemical reaction is described by means of a diffusion process
along an internal coordinate x whose stationary states before
and after the reaction correspond to the minima of a double-
well potential V (x) located at x1 and x2 and separated by an
energy barrier33, see Fig. 1. Assuming local equilibrium in the
internal space allows one to formulate the Gibbs equation and
identify the diffusion currents in terms of kinetic equations
balancing the reactant and product concentrations34. Further-
more, derivation of rate constants for forward and reverse re-
actions gives the ratio (the equilibrium constant)

k+/k− = exp[β(V (x1)− V (x2))] (1)

which in the ideal case depends only on system’s temperature
via the Boltzmann coefficient β.

Within the paper we discuss escape from the potential
wells induced/affected by Lévy noises and analyze depar-
ture from equilibrium kinetics as expressed by the above
equilibrium constant. Asymptotic properties of systems
driven by Lévy noise can be studied by the known Lévy-Itô
decomposition35,36 of Lévy flights in terms of the sum of a
Poisson compound process and a Gaussian white noise. Con-
sequently, anomalous long jumps, which determine escape
kinetics over the barriers, are represented by the Poissonian
component of the noise.

The paper starts with an introduction of a generic model
system described by a Langevin equation (Section II), fol-
lowed by presentation of simulations’ details. Results derived
for various double-well potentials are discussed in Section III.
In the same Section asymptotic properties of escape kinetics
affected by the combined action of the Lévy and Gaussian
noises are analyzed. The paper concludes with a summary
(Section IV) referring to main results and potential research
areas.

II. MODEL

The barrier-crossing is modeled in terms of spatially diffu-
sive (overdamped) motion of a particle subject to the deter-
ministic force field f(x) = −V ′(x) and a fluctuating force
ξ(t) describing interactions of the system with its environ-
ment:

dx

dt
= −dV (x)

dx
+ σξ(t). (2)

Here σ is a parameter measuring intensity of fluctuations
which equals σ =

√
2/β for the motion of a Brownian parti-

cle in the strong friction limit.

We further assume that fluctuating force ξ(t) is not Gaus-
sian but instead, can be represented as a formal time derivative
of the symmetric α-stable motion37 L(t), whose characteristic
function φ(k) = 〈exp[ikL(t)]〉 attains the form

φ(k) = exp (−tσα|k|α) . (3)

The stochastic process {X(t), t > 0} described by Eq. (2)
has increments

∆x = x(t+ ∆t)− x(t) (4)

= −V ′(x(t))∆t+ ∆t1/ασξt,

where ξt represents a sequence of independent, identically
distributed random variables38–40 following the symmetric α-
stable density41,42 with the unity scale parameter. The scale
parameter σ becomes an independent, external parameter. For
a clarity of the presentation, the scale parameter σ in Eqs. (2)
and (4) is extracted from the noise definition, see Eq. (3).

Main properties of the escape kinetics can be drawn from
the analysis of Eq. (4): For a motion in a piecewise-linear
potential starting in the left potential minimum, see Fig. 1, the
Euler approximation (4) reduces to

∆x = −∆E1

δ1
∆t+ ∆t1/ασξt, (5)

where ∆E1 = Eb − E1 is the depth of the left potential well.
Without loss of generality, we can assume that Eb = 0, see
top panel of Fig. 1. The transition between potential wells in-
cludes the surmounting of the potential barrier, while the slid-
ing along the potential slope is expected to be instantaneous.
Accordingly, the transition from the left to the right minimum
of the potential is recorded for trajectories for which

∆x > δ1, (6)

where δ1 is the distance from the left minimum of the poten-
tial to the barrier top. From the discretization scheme (4) and
Eq. (6) one gets the following condition

−∆E1

δ1
∆t+ ∆t1/ασξ > δ1, (7)

which results in

ξ > ξ1 =
1

σ∆t1/α−1

[
δ1
∆t

+
∆E1

δ1

]
. (8)

For the symmetric α-stable density, the probability of observ-
ing a jump larger than ξ1 is

P (ξ > ξ1) ∝ ξ−α1 . (9)

Consequently, from Eq. (8) one obtains

P (ξ > ξ1) ∝
(
δ1
∆t

+
∆E1

δ1

)−α
. (10)

Analogously, for backward passages

P (ξ > ξ2) ∝
(
δ2
∆t

+
∆E2

δ2

)−α
. (11)
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FIG. 1. Piecewise-linear, double-well potential (top panel) and the
continuous double-well potential (bottom panel) used in the study.
The continuous potential V (x) = 128x4 − 64x2 + ax, is given by
Eq. (21) with the parameter a controlling the potential asymmetry.
Here, the solid line corresponds to a = 1 and the dashed line to
a = 10.

Eqs. (10) and (11) define escape (transition) rates k12, k21

from the left/right potential wells:
(
δ2 + ∆E2

δ2
∆t

δ1 + ∆E1

δ1
∆t

)α
∝ k12

k21
(12)

For a typical chemical reaction scheme between reactants (R)
and products (P ), R
 P , the ratio k12/k21 can be related at
equilibrium to the mass action law and the equilibrium con-
centration of species43

k12

k21
=
P2

P1
. (13)

Here P1 and P2 are (equilibrium, steady state) probabilities
of finding the system in either (left/right) potential wells. The

probability P1(t) that the system is in the left state is given by

P1(t) =

∫ xb

−∞
p(x, t)dx, (14)

where p(x, t) is a time dependent probability density of find-
ing a particle at time t in the vicinity of x, and xb is the point
separating left and right states. Analogously, the formula for
P2(t) reads

P2(t) =

∫ ∞

xb

p(x, t)dx = 1− P1(t). (15)

If stationary P1 and P2 exist, they are obtained from the above
integrals in the t → ∞ limit with p(x, t) replaced by the sta-
tionary density p(x).

For a fixed potential barrier Eq. (12) reduces, in the ∆t→ 0
limit, to the situation considered in4,35,36

P2

P1
=
k12

k21
∝
(
δ2
δ1

)α
. (16)

At the same time, for fixed ∆t and a high barrier (∆E �
1/∆t) one may obtain44

P2

P1
=
k12

k21
∝
(

∆E2

∆E1

)α
. (17)

The scalings predicted by Eqs. (16) and (17) should be con-
trasted with the Gaussian white noise limit, in which the ratio
of Kramers rates33,45 leads to

P2

P1
=
k12

k21
∝ exp

[
E2 − E1

σ2

]
. (18)

Within the stochastic description of chemical kinetics, the
transition rates can be conveniently defined in terms of inverse
of the mean first passage time (MFPT), e.g. k12 = T−1

12 where

T12 = 〈τ〉 (19)
= 〈min{τ : x(0) = x1 = −δ1 and x(τ) > xb}〉.

For Gaussian noise (α = 2) entering Eq. (2) the MFPT can be
calculated exactly46 and reads

T (x0 → xb) =
1

σ2

∫ xb

x0

dz exp
[
V (z)/σ2

]
(20)

×
∫ z

−∞
dy exp

[
−V (y)/σ2

]
,

while for α < 2 one needs to rely either on stochastic simu-
lations and scaling analysis47,48 or on a numerical solution of
the corresponding fractional diffusion equation.

For the purpose of further analysis we define quotients
P = P2/P1 and T = T (x1)/T (x2) = k12/k21, where in
the last expression indices refer to the location of the left/right
minimum of the potential. In order to consider Lévy fluctua-
tions embedded in confining (steep) potentials securing exis-
tence of variances of stationary states, we analyze motion in a
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piecewise-linear (cf. Fig. 1) and in a continuous double-well
potential

V (x) = 128x4 − 64x2 + ax. (21)

In the latter form of V (x) the parameter a controls the poten-
tial asymmetry, depths of minima and their location. The co-
efficients of the polynomial terms have been chosen to secure
that recrossing events are rare, for which the potential wells
have to be deep enough and the barrier region sufficiently
narrow61. Otherwise, especially for Gaussian white noise,
discrimination between states is less apparent. It should be
stressed that both forms of potentials are sufficient to restrain
the trajectories of Lévy flights from infinite escapes49–52 by
introducing impermeable boundaries and (or) deep wells con-
fining the motion.

III. RESULTS

Results included in following subsections have been con-
structed numerically by methods of stochastic dynamics.
Eq. (2) was integrated by the Euler-Maryuama method, see
Eq. (4), with the time step of integration ∆t = 10−5 and av-
eraged over 104 – 105 repetitions. We start with the study
of properties of anomalous kinetics in piecewise-linear and
continuous potentials driven by a single Lévy noise only
(Sec. III A). Next, we focus on the combined action of Gaus-
sian white noise and Lévy noise (Sec. III B). Finally, in or-
der to further explore role of combined action of two noise
sources we confront results of Lévy noise-driven kinetics with
the problem of escape from a finite interval (Sec. III C).

A. Escape induced by Lévy noise

Figure 1 presents a sample piecewise-linear (top panel) and
a continuous (bottom panel) double-well potentials. For con-
venience we choose a potential with maximum at xb = 0 and
the maximal value Eb = 0. For such a potential we can eas-
ily control the ratio of widths δ2/δ1 and depths of potential
wells. The potential depicted in the top panel of Fig. 1 gives
the full flexibility and allows verification of various hypoth-
esis regarding stochastic dynamics. The continuous double-
well potentials given by Eq. (21) with a = 1 (blue solid line)
and a = 10 (orange dashed line) are depicted in the bottom
panel of Fig. 1. For a = 1, the depths of potential wells
are ∆E1 ≈ 8.5, ∆E2 ≈ 7.5 and the ratio of locations of
minima δ2/δ1 ≈ 0.98. Analogously, for a = 10, we have
∆E1 ≈ 13.2, ∆E2 ≈ 3.2 and δ2/δ1 ≈ 0.85. Piecewise-
linear and continuous setups differs mainly with respect to the
relative depth of potential wells and shape of the potential for
x < x1 and x > x2 due to the way of restricting the do-
main of motion, compare top versus bottom panel of Fig. 1
and Eq. (21).

Results of numerical simulations with various parameters
characterizing the piecewise-linear double-well potential, see
Fig. 1, are depicted in top and middle panels of Fig. 2.

These results are compared and confronted with appropriate
asymptotic formulas, see Eqs. (16), (17) and the full formula
(12). Finally, findings for the piecewise-linear potential are
also confronted with results for the continuous potential with
a = 1, see bottom panel of Fig 2.
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FIG. 2. Symbols represent the ratios P of occupation probabilities
(�) and T of transition rates (•). Results of simulations are displayed
with points while lines show various theoretical scalings discussed in
the text: “full” (green dot-dashed, see Eq. (12)), “width ratio” (blue
solid, see Eq. (16)) and “depth ratio” (orange dashed, see Eq. (17)).
Subsequent panels correspond to various setups: piecewise-linear
potential with ∆E1 = 8.5, ∆E2 = 7.5, x1 = 0.25 and x2 = 0.75
(top panel), piecewise-linear potential with ∆E1 = 85000, ∆E2 =
75000, x1 = 0.7 and x2 = 0.7 (middle) and the continuous po-
tential (21) with a = 1 (bottom). The red triangle (N) and the green
rhombus (�) in the top panel depict analytical evaluation ofP , T , re-
spectively, derived with the stationary p(x) for the Gaussian (α = 2)
noise.

Top panel of Fig. 2 presents results for ∆E1 = 8.5, ∆E2 =
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FIG. 3. Survival probability, i.e. complementary cumulative den-
sity of first passage times (top panel) and exemplary trajectories for
α = 2 (middle panel) and α = 1 (bottom panel) for a continuous
potential (21) with a = 1. The trajectory for α = 1 has been plotted
with symbols, in order to emphasise its discontinuity.

7.5, x1 = 0.25 and x2 = 0.75. Orange dots depict the ra-
tio (P = P2/P1) of occupation probabilities whereas blue
dots represent the ratio (T = T (x1)/T (x2) = k12/k21) of
transition rates. The blue solid line shows the “width ratio”
(δ2/δ1)α predicted by Eq. (16), while the orange dashed line
depicts the “depth ratio” (∆E1/∆E2)α given by Eq. (17). For
small values of the stability index α, blue dots and orange
squares coincide, while for α > 1.3 they start to differ. The
scaling predicted by Eq. (16) is confirmed by numerical sim-
ulations with α < 1.3. In the top panel of Fig. 2 there are
two additional points. There is a red triangle corresponding to
the analytically calculated value of MFPTs for α = 2. More-
over, using the stationary p(x) ∝ exp(−V (x)/σ2) represen-
tative for this case we can evaluate P1 and P2 from Eqs. (14)
and (15).

The green symbol (rhombus) in the top panel of Fig. 2 indi-
cates ratio T calculated from Eq. (20). The ratios of reaction
rates, calculated by use of exact formulas valid for α = 2,
significantly differ from the prediction of “width ratio” given
by Eq. (16), but they are close to the “depth ratio” scaling pre-
dicted by Eq. (17), see the red triangle and the green rhombus
in the top panel of Fig. 2.

Relations given by Eqs. (12) and the ratioP hold only when
transitions between potential wells are performed in a single
long jump4,53. This condition is well satisfied in the limit of
vanishing noise intensity for deep potential wells, when the
particle is driven by the Lévy noise with the small value of
the stability index α. Contrary to small α, for α large enough
the central part of a noise distribution plays an increasingly
important role, as for growing α more probability mass is lo-
cated around x = 0. If a slope of the potential barrier is not
steep enough, multiple-step re-crossings of the barrier become
more frequent54. Therefore, not only Eq. (13) does not hold
but also transitions from a shallower potential well become
more probable.

The middle panel of Fig. 2 presents results for a deep po-
tential well. In contrast to the top panel of Fig. 2, there is an
additional green dot-dashed line corresponding to the full for-
mula given by Eq. (12). For a very deep potential well, the α
dependence predicted by Eq. (12) is the closest to the results
of stochastic simulations. It indicates existence of the regime
where effects of the barrier width and barrier height contribute
to the evaluated rate. This regime corresponds to a finite dis-
cretization time step ∆t fulfilling the additional constraint

δ ∼ ∆E∆t. (22)

Otherwise, in the limit of ∆t → 0, the “width ratio” scaling
predicted by Eq. (16) is visible.

The bottom panel of Fig. 2 presents results for the poten-
tial (21) with a = 1 along with two lines corresponding to
limiting scaling given by Eqs. (16) (blue solid line) and (17)
(orange dashed line). For a = 1 with α < 2, numerical re-
sults obtained by use of the “in-well” population method or
the MFPT (P versus T ) are coherent. Furthermore, for α < 2,
calculated ratios are very close to the “width ratio” prediction
of Eq. (16). Note, that despite the approximation (16) is valid
in the limit of vanishing noise4,27,35 it seems to work very well
also for finite noise strength σ47,48.

The escape process is Markovian and characterized by fi-
nite MFPT, consequently first passage time distributions are
exponential61. This characteristics can be observed by analy-
sis of the survival probabilities depicted in Fig. 3. Top panel
of Fig. 3 presents sample survival probabilities (the probabil-
ity that a particle remains within the initial potential well up
to time t) under Cauchy (α = 1) and Gaussian (α = 2) driv-
ings for escape events over the continuous potential given by
Eq. (21) with a = 1. Inspection of trajectories reveals dif-
ference in escape scenario induced by Gaussian and Cauchy
noises. Trajectories under action of the Gaussian noise are
continuous and a particle surmounts the potential barrier in a
series of subsequent jumps. For the Cauchy driving, the tra-
jectory is discontinuous and escape is typically performed in
a single long jump. Moreover, for α = 1, a particle can make
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distant excursions to outer points. Replacement of the con-
tinuous potential with the piece-wise liner, see top panel of
Fig. 1, bounds the motion to the finite interval restricted by
minima of the potential.

B. Additive thermal and Lévy noise

The scaling of the ratio of escape rates, see Eqs. (12) and
(16) is derived using the asymptotic properties of α-stable
densities. Such a derivation disregard the central part of the
random force distribution. The central part of the jump length
distribution control short jumps which are responsible for pen-
etration of the potential barrier4. Therefore, in the current sub-
section, we assume that the particle is driven by two stochastic
forces55–58, so that the Langevin equation assumes the form

dx

dt
= −V ′(x) + σξ(t) + η(t). (23)

As in Eq. (2), ξ(t) stands for the Lévy noise whereas the ad-
ditional, independent term η(t) is assumed to be the Gaussian
white noise, describing thermal fluctuations in the system. In
such a setup the Gaussian white noise can be considered as the
internal noise, while the Lévy noise is the external fluctuating
force. Putting it differently, parameters of the Gaussian noise
are defined (with help of fluctuation dissipation theorem) by
internal parameters, while parameters of the Lévy noise are
externally controlled58,59. For the sake of clarity, from now on
we assume that the intensity of the Gaussian fluctuations stays
fixed, i.e. it is set to unity. The scale parameter σ describes
then the strength of the external Lévy noise with respect to the
intensity of thermal fluctuations. As the reference case for the
study of a combined action of two independent noise sources,
we use the continuous potential of Sec. III A, see Eq. (21) and
bottom panel of Fig. 1. Therefore, we use the same potential
as in the bottom panel of Fig. 2, i.e. the potential given by
Eq. (21) with a = 1 or a = 10. Please note, that the model
studied in bottom panel of Fig. 2 corresponds to Eq. (23) with
η(t) ≡ 0 and a = 1.

First, we verify how the combined action of two noises
changes properties of trajectories. Fig. 4 presents a sample
trajectory for a particle moving in a potential (21) with a = 1
driven by simultaneous action of Cauchy and Gaussian noise.
In contrast to pure Cauchy driving, see bottom panel of Fig. 3,
trajectory explores more vicinity of potential’s minima. More-
over, due to Gaussian component of the stochastic driving a
particle is more likely to visit neighborhood of the potential
barrier. Nevertheless, majority of escape event is still per-
formed in a single long jump, but now the last visited point
before escape from a potential well is typically closer to the
boundary than for pure Cauchy driving.

Comparison of bottom panel of Fig. 2 and top panel of
Fig. 5 reveals that incorporation of the additional Gaussian
noise source significantly weakens the agreement between the
prediction of “width ratio” given by Eq. (16) and results of
computer simulations. The presence of the Gaussian noise
changes the escape scenario by increasing chances of an es-
cape in a sequence of jumps60. Consequently, due to the in-

creased width of the central part of the jump length distribu-
tion, the role played by the tails of Lévy distribution is de-
pleted, what in turn results in stronger deviations from the
“width ratio” predicted by Eq. (16). These deviations are am-
plified for all values of the stability index α, except the spe-
cial case of α = 2. For α = 2, the Lévy noise is equiva-
lent to the Gaussian white noise. Therefore, the presence of
two Gaussian noise sources facilitate escape kinetics as they
can be combined in the single Gaussian white noise with the
increased width. The increased width of the resultant Gaus-
sian white noise, with help of fluctuation dissipation theorem,
can be attributed to the increase in the system temperature.
Please, note that the situation is more subtle for the under-
damped models, which are not studied here. For the potential
given by Eq. (21) with a = 1, the scaling predicted by Eq. (16)
is very similar to the ratio given by Eq. (18).

In the middle panel of Fig. 5, the scale parameter σ is re-
duced to σ = 0.1. For lower σ the central part of the jump
length distribution, amplified due to presence of the Gaussian
white noise, is even more prominent. In the middle panel of
Fig. 5, deviations between the weak noise theory, see Eq. (16)
and the actual scaling are amplified. In order to assure that
the increased disagreement is due to presence of the Gaussian
component we have performed additional simulations with
σ = 0.1 and η ≡ 0. For σ = 0.1 and η ≡ 0, we obtained
results which are quantitatively indistinguishable from those
one included in the bottom panel of Fig. 2. This effect in-
dicates that the increased disagreement in the middle panel of
Fig. 5 is produced by the action of the Gaussian, thermal white
noise. Moreover, it demonstrates that the approximation given
by Eq. (16), which is derived in the σ → 0 limit, works pretty
well for finite σ, see bottom panel of Fig. 2.

The bottom panel of Fig. 5 examines the model for σ = 10.
The agreement between results of computer simulations and
Eq. (16) seems to be restored. Unfortunately, this agreement is
a coincidence due to the potential shape and the combined ac-
tion of two very different effects. First of all, tails of the jump
length distribution leads to the scaling predicted by Eq. (16).
Nevertheless, due to a large value of the scale parameter σ,
also the central part of the jump length distribution becomes
non-negligible. The influence of the central part of the jump
length distribution on the escape kinetics can be quantified by
the MFPT for a system driven by a Gaussian noise with some
effective4 σeff . Due to the shape of the potential, more pre-
cisely almost symmetric location of potential’s minima, both
scalings (16) and (18) give similar approximations for the ra-
tio of reaction rates.

To eliminate this accidental agreement, the potential (21)
with a = 10 was used. Now minima of the potential have
depth of ∆E1 ≈ 13.2 and ∆E2 ≈ 3.2 and their locations are
not as symmetric as for a = 1, see bottom panel of Fig. 1.
As it is clearly visible in Fig. 6, the results of computer sim-
ulations with a = 10 and σ = 1 differ from Eq. (16). The
pronounced disagreement is produced by the Gaussian white
noise component, which increases likelihood of continuous
(instead of single jump) transition over the potential barrier.
Furthermore, for a = 10, the right potential well is shallow,
what further increases deviations from the scaling given by
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Eq. (16). In the middle panel of Fig. 6 the scale parameter σ
is increased to σ = 10. Paradoxically, the disagreement be-
tween the asymptotic scaling and results of computer simula-
tions, due to a presence of the Gaussian white noise, is further
amplified by the Lévy noise. More precisely, for σ = 10, the
assumption of a weak noise, which is crucial for asymptotics
predicted by Eq. (16), does not hold, even without the Gaus-
sian white noise.

The agreement between results of computer simulations
and the asymptotic scaling (16) can be reintroduced by dis-
regarding the Gaussian white noise source, i.e. by setting
η(t) ≡ 0 as in the bottom panel of Fig. 6. For instance, for
a = 10 with σ = 1 the agreement is significant (results not
shown). At the same time for the increased σ = 10 the accor-
dance is observed for α < 1, see bottom panel of Fig. 6. For
α > 1 with σ = 10 the central part of the Lévy distribution is
too wide to make the single jump escape scenario dominating
what in turn introduces violations of Eq. (16).

FIG. 4. Sample trajectory for a particle moving in the continuous
double-well potential (21) with a = 1 driven by simultaneous action
of Cauchy (α = 1) and Gaussian (α = 2) noises.

From the examination of the escape kinetics driven by the
combined action of two independent Lévy and Gaussian noise
sources we can deduct following scenarios resulting in the vi-
olation of “width ratio” given by Eq. (16): (i) addition of the
Gaussian white noise source, (ii) increasing of the scale pa-
rameter in the Lévy noise and (iii) decreasing depth of po-
tential wells. The scenarios (i) and (ii) are related, because
both of them increase the width of the central part of the jump
length distribution which is responsible for the penetration of
the potential barrier, see Ref. 4. Consequently, elimination of
the Gaussian noise, under the condition that σ is small enough,
reintroduces the scaling given by Eq. (16), see Fig. 2 and bot-
tom panel of Fig. 6. Nevertheless, due to finite σ, when α→ 2
even in Fig. 2 and bottom panel of Fig. 6 violations of Eq. (16)
are visible. These violations can be decreased by the reduc-
ing the scale parameter σ. Finally, the scenario (iii) breaks the
two state approximation as “in-well” densities become wide.

In the Ref. 61, we have studied the model of escape kinet-
ics induced by general α-stable noises in a symmetric double-
well potential given by Eq. (21) with a = 0. In particular,
for a particle starting in one of the potential wells we have
calculated the ratio R = Tw−w/Tw−b of mean first pas-
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FIG. 5. Symbols represent the ratios P of occupation probabilities
(�) and T of transition rates (•) for the continuous double-well po-
tential (21) with a = 1. Solid lines show the theoretical “width ratio”
scaling (blue solid, see Eq. (16)). Subsequent panels correspond to
various values of the σ parameter scaling the strength of Lévy noise:
σ = 1 (top panel), σ = 0.1 (middle panel) and σ = 10 (bottom
panel). The legend is included in the bottom panel.

sage times for well-bottom-to-well-bottom Tw−w and well-
bottom-to-barrier-top Tw−b escape scenarios. For the Gaus-
sian white noise such a ratio is equal to two, i.e. R = 2, see
45. Action of the Lévy noise breaks this property of escape
kinetics in double-well potentials — the ratio of MFPTs be-
comes smaller than two. Addition of the Gaussian white noise
(with the scale parameter set to unity) to the model considered
in Ref. 61 increases the value of the ratio of mean first passage
times approximately by 10%. The ratio has increased because
the additional Gaussian white noise increased the role played
by the central part of the jump length distribution. Neverthe-
less, the ratioR is still smaller than two, see Fig. 7. For more
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FIG. 6. The same as in Fig. 5 for a = 10 with σ = 1 (top panel),
σ = 10 (middle panel) and σ = 10 with η(t) ≡ 0 (bottom panel).
The legend is included in the bottom panel.

details see Ref. 61.

C. Escape from finite intervals

From the examination of the escape kinetics induced by a
mixture of noises it can be deducted that addition of thermal
noise changes the escape kinetics. Presence of the additional
thermal noise changes the escape protocol from a single long
jump scenario to a sequence of shorter jumps controlled by
the central part of the jump length distribution. In order to
elucidate this issue in more details, we switch to the archety-
pal model of escape from the finite interval [−L,L]. Initially a
particle is located in the middle of the interval, i.e. x(0) = 0,
and the motion is continued until |x| < L. The exact formula
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FIG. 7. RatioR of mean first passage times for well-bottom-to-well-
bottom Tw−w and well-bottom-to-barrier-top Tw−b for the Lévy
noise (empty points) and mixture of Gaussian and Lévy noises (full
symbols) for the symmetric double-well potential given by Eq. (21)
with a = 0. For more details see Ref. 61.
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FIG. 8. Mean first passage time 〈τ〉 for the escape from the finite
interval [−1, 1] (top panel) and the last hitting point density p(xlast)
for σ = 0.1 (bottom panel). Solid lines in the top panel correspond to
the exact, theoretical formula, see Eq. (20). Other parameters: initial
condition x(0) = 0, time step of integration ∆t = 10−4 and number
of repetitions N = 105.

for the MFPT reads

〈τ〉 =
1

Γ(1 + α)

Lα

σα
, (24)

see Refs. 28–32. Furthermore, the intuitive argumentation
supporting Eq. (24) is included in the Appendix A. In ad-
dition to the MFPT, we studied the last hitting point densities
p(xlast), where xlast is the last point visited before leaving
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the [−1, 1] interval. Top panel of Fig. 8 presents MFPT as
a function of the stability index α for L = 1 with σ = 1
and σ = 0.1. Results of computer simulations nicely fol-
low theoretical curve given by Eq. (24) with L = 1. Re-
sults for σ = 1 are presented in the main plot, while for
σ = 0.1 in the inset, as values of MFPT for σ = 0.1 are
significantly larger than for σ = 1. For σ = 0.1 escape ki-
netics slows down with the increase of the stability index α
because (L/σ)α = (1/0.1)α = 10α is a growing function of
the stability index α, see Eq. (24).

The bottom panel of Fig. 8 shows the last hitting point den-
sity for σ = 0.1. The p(xlast) distribution for σ = 1.0 is
practically the same as for σ = 0.1, therefore we show the
distribution for σ = 0.1 only. For processes with continuous
trajectories xlast = ±L because the escape is performed by
approaching of one of the absorbing boundaries. The very dif-
ferent situation is observed for Lévy flights, which have dis-
continuous trajectories. The most probable xlast is the origin,
as x(0) = 0, but with the increasing α, maxima at the borders
emerge. The escape from the vicinity of the initial position
can be dominating, but the escape itself is it not immediate.
For example, for α = 0.5, on average the escape occurred af-
ter approx 104 jumps since ∆t = 10−4. Initial short jumps
(controlled by the central part of the jump length distribution)
resulted in the spreading of the last visited point around the
initial condition. Bottom panel of Fig. 8 confirms that, for
small values of the stability index α (α < 1), the escape from
the vicinity of the initial position is the most probable. The
different situation is observed for α > 1 when the random
walker is very likely to approach absorbing boundaries.

In the next step, using the model of Lévy noise induced es-
cape, we study the differences between escape protocols for
single noise and mixture of noises induced escape. We use
mixture of two Lévy noises characterized by stability indices
α1 and α2 with σ1 = σ2 = 1 or σ1 = 1, σ2 = 0.1. Mixture
of two independent Lévy noises can be replaced by a single
Lévy noise if only they are characterized by the same stability
index α. For α1 = α2, the sum of two independent identically
distributed α-stable random variables is distributed according
to the α-stable density with the same α and the scale parame-
ter

σ = [σα1 + σα2 ]
1/α
, (25)

Therefore, using Eq. (24) with σ given by Eq. (25) it is possi-
ble to calculate the exact value of the MFPT.

Figure 9 presents results for escape driven by two noises.
Subsequent columns correspond to different values of scale
parameters: σ1 = σ2 = 1 (left column) and σ1 = 1, σ2 = 0.1
(right column). Top panel presents MFPT as function of sta-
bility indicesα1 andα2. Second from the top panel show sam-
ple cross-section of the MFPT surface. For α1 = α2 results
of computer simulations (points) nicely follow exact results
(solid lines), see Eqs. (24) and (25). Finally, bottom panels
depict last hitting point densities p(xlast) with α1 = 0.5 and
α1 = 1.5. For σ1 = σ2, the MFPT surface is symmetric with
respect to the interchange of α1 and α2, otherwise it is not
symmetric along the diagonal. For σ2 = 0.1, the escape is
slower because the width of the jump length distribution is re-
duced in comparison to σ2 = 1, compare left and right panels
of Fig. 9.

Examination of the last hitting point density shows that ad-
dition of the second noise can modify the escape scenario.
For example, for α = 0.5, the most probable is escape from
the vicinity of the initial position, see bottom panel of Fig. 8.
The bottom panel of Fig. 8 should be contrasted with the sec-
ond from the bottom panel of Fig. 9 which present last hitting
point densities for α1 = 0.5. First of all, addition of the ther-
mal noise (Lévy noise with α = 2), produce peaks at bound-
aries both for σ2 = 1 and σ2 = 0.1, although for σ2 = 0.1
their height is lower. For σ2 = 1 already addition of Lévy
noise with α > 1 produces modes at boundaries, while for
σ2 = 0.1 the first noise significantly weakens the action of the
second one.

Bottom panels of Fig. 9 presents last hitting point densities
p(xlast) for a free particle in finite interval, while the model
studied in Secs. III A and III B correspond to the motion in
double-well potentials. Nevertheless, already examination of
the free motion is very instructive. It clearly shows that tra-
jectories become more continuous-like with addition of the
second noise with a larger value of the stability index α. Con-
trary to the free motion, in the case of external force, emer-
gence of peaks at boundaries will be weakened because there
is an external, deterministic, force pushing particles back to
the potential minimum. Moreover, due to the outer part of the
potential, on the outer side of minima particles experience the
restoring force pushing them back to minima of the potential.
This in turn increases the fraction of escape events from the
potential minima, i.e. it amplifies p(xlast) at xlast ≈ x1 and
xlast ≈ x2.
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FIG. 9. Mean first passage time 〈τ〉 for the escape from the finite interval [−1, 1] (top panel), cross-section of the MFPT(α1, α2) surface
(second from the top panel), and the last hitting point densities p(xlast) (bottom panels). Solid lines in the second from the top panel correspond
to the exact, theoretical formula, see Eq. (24). Other parameters: initial condition x(0) = 0, time step of integration ∆t = 10−4 and number
of repetitions N = 105. Columns correspond to various values of the scale parameters: σ1 = σ2 = 1 (left column) and σ1 = 1, σ2 = 0.1
(right column).
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IV. SUMMARY AND CONCLUSIONS

The noise induced escape over a potential barrier is an
archetypal process modeling many phenomena. In particular,
it is a key element of the Kramers theory of chemical kinetics.
According to the Kramers theory, the reaction rate depends
primarily on the relative height ∆E of the potential barrier
separating states, k ∝ exp(−β∆E), and decreases with the
increasing barrier height. Such a dependence of the reaction
rate is typical for systems driven by thermal fluctuations rep-
resented in the form of the Gaussian white noise. The escape
scenarios driven by non-Gaussian Lévy noises differ signifi-
cantly from those induced by thermal fluctuations, in the sense
that for weak noises the escape events are performed in single
long jumps. Consequently, the reaction rate is not sensitive
to the barrier height but to the barrier width, i.e. k ∝ δ−α.
Despite the fact that this approximation is derived in the weak
noise limit, it also works pretty well for finite noise strengths.
In a combined action of Lévy and Gaussian noises one ob-
serves competition between Lévy noise induced long jumps
and contributions of short-length displacements secured by
Gaussian part of fluctuations. As a result, trajectories sur-
mounting the potential start to penetrate the barrier and the
escape rate becomes sensitive to the barrier height. The very
same behavior is observed for the noise induced escape from
finite intervals where addition of noise with lighter tails in-
creases probability of approaching absorbing boundaries be-
cause the likelihood of approaching absorbing boundaries is
controlled by the central part of the jump length distribution
which is amplified by the additional noise source.

Divergent moments of Lévy statistics and Lévy motion
seem to stay in conflict with energetic and thermodynam-
ics of the stochastic differential equation of the Langevin
type23,44,57,58. Yet, accumulating evidence shows that Marko-
vian Lévy flights (LFs) with distribution of jumps emerging
from the generalized version of the central limit theorem are
well suited representations of complex phenomena, to name
just a few recent applications of LFs in description of men-
tal searches62, analysis of free neutron output in a fusion ex-
periment with a deuteron plasma56, investigations of gene-
regulatory networks63 or examination of self-regulatory mo-
tion of insects64.

Long displacements of walkers in fractional dynamics on
networks have been shown to improve efficiency to reach any
node of the network by inducing small world properties66, in-
dependently of the network structure. This observation is cru-
cial in developing algorithms for optimization based on Lévy
flights techniques. A similar statement can be drawn from
the data analysis of option markets which indicate that disper-
sal of asset prices in actively traded markets is influenced by
Lévy flights or tempered Lévy flights1,67. Also here, the LFs
driven Langevin equation seems to be a proper model of stud-
ies, despite infinite variance of fluctuations. The environments
powered by Lévy noise can be natural sources of epicatalytic
reactions44: whereas in a common catalysis the establishment
of equilibrium is speed up by lowering the barrier between
two states, in epicatalysis the effect can be achieved by alter-
ing the steady state distribution alike to our analysis in Sec-

tion II. Since also description of various critical phenomena
requires non-local interactions in space (and time) – it seems
plausible to further carefully explore pros and cons of using
LF models in realistic applications.
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Appendix A: Mean escape time

The two state approximation along with the assumption that
escape is performed via the single long jump can be used to
calculate the mean first passage time of a free particle from a
bounded domain. For the system described by the Eq. (2) the
escape takes place under the condition

σξ∆t1/α > δ (A1)

leading to

ξ > ξ0 =
δ

σ
∆t−1/α. (A2)

For the α stable density the probability of performing jump
longer than ξ0 is p = P (ξ > ξ0) = ξ−α0 . Therefore, we
obtain the estimation

p = P (ξ > ξ0) =
δ−α

σ−α
∆t. (A3)

In order to calculate the mean first passage time, it is necessary
to calculate the average number of jumps needed to escape for
the first time. The number of jumps k required to escape for
the first time follows the geometric distribution

pk = (1− p)k−1p, (A4)

because the escape is performed after (k − 1) unsuccessful
trails. The mean number of jumps is

〈k〉 =

∞∑

k=1

pkk =
1

p
. (A5)

Since, jumps are performed every ∆t the MFPT 〈τ〉 is

〈τ〉 = ∆t〈k〉 =
∆t

p
=
δα

σα
. (A6)

Alternatively, Eq. (A6) can be derived by investigating scal-
ing of 〈x2〉 with the increasing number of jumps, see Refs. 5
and 65. Formula (20) resembles the general formula for the

APPENDIX A. ARTICLES 97



12

MFPT28–32 for a particle starting in the middle of the interval
of half-width δ subject to the action of Lévy noise

〈τ〉 =
δα

Γ(1 + α)σα
. (A7)

The considerations leading to Eq. (20) do not take into ac-
count the process of surmounting the potential barrier. Conse-
quently, the escape from the potential well should be not faster
than the constructed estimate, see Eqs. (A6) and (A7).
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Underdamped, anomalous kinetics in double-well potentials
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The noise driven motion in a bistable potential acts as the archetypal model of various physical phenomena.
Here, we contrast properties of the overdamped escape dynamics with the full (underdamped) dynamics. In the
weak noise limit, for the overdamped particle driven by a non-equilibrium, α-stable noise the ratio of forward
and backward transition rates depends only on the width of a potential barrier separating both minima. Using
analytical and numerical methods, we show that in the regime of full dynamics, contrary to the overdamped case,
the ratio of transition rates depends both on widths and heights of the potential barrier separating minima of the
double-well potential. The derived analytical formula for the ratio of transition rates is corroborated by extensive
numerical simulations. Results of numerical simulations especially well follow the analytical predictions in the
weak noise limit when the most probable escape scenario is via a single, strong, noise-kick, which is sufficient
to induce a quasi-deterministic transition over the potential barrier. Such an escape trajectory can be analyzed
in terms of the instantaneous velocity, which is fully characterized by its density function which is of the same
type as the probability density underlying the noise distribution.

PACS numbers: 05.40.Fb, 05.10.Gg, 02.50.-r, 02.50.Ey,

I. INTRODUCTION

A noise induced escape of a particle is one of archetypal
problems in stochastic dynamics. It underlines various noise
driven effects. Among others, it was studied by H. A. Kramers
in the case of the Gaussian white noise (GWN) in overdamped
(large viscosity) and underdamped (small viscosity) regimes
[1]. In these cases, the “velocity of chemical reactions” (re-
action rate) depends only on the height of the barrier separat-
ing reactants. Moreover, in the overdamped regime, the ob-
tained formula for the reaction rate can be interpreted as the
Arrhenius equation [2]. Therefore, the stochastic motion in
the double-well potential can be used as an effective model
of chemical reactions. Since then, the noise induced escape
of a particle was intensively studied in the overdamped [3, 4]
and underdamped [4–7] regimes as well as in quantum setups
[8–10].

The Gaussian white noise is a very special representative
of the more general family of α-stable white noises. Except
the Gaussian white noise, α-stable noises have the so-called
“heavy tails”, i.e., they allow for occurrence of extreme events
with a significantly larger probability than the Gaussian dis-
tribution. For instance, noise induced displacements under
Lévy noises with 0 < α < 2 follow the power-law distri-
bution with the exponent −(α+ 1). Consequently, for α < 2,
only fractional moments of order ν which is smaller than α
exist [11, 12], i.e. 〈|x|ν〉 < ∞. Power-law, heavy-tails of α-
stable densities are responsible not only for divergence of mo-
ments, but also for discontinuity of paths of processes driven
by Lévy noises [13]. In particular, in the overdamped and un-
derdamped regime, position or velocity, respectively, is dis-
continuous. Finiteness of higher order moments can be rein-

∗ karol@th.if.uj.edu.pl
† bartek@th.if.uj.edu.pl

troduced by the so called truncated (tempered) Lévy flights
[14–20].

Heavy-tailed, Lévy type fluctuations, similarly to the equi-
librium, thermal GWN noise, leads to many surprising noise-
induced phenomena like ratcheting effect [21–23], stochas-
tic resonance [24] or resonant activation [25]. Non-Gaussian,
heavy-tailed fluctuations have been observed in plenitude of
experimental setups ranging from disordered media [26], bi-
ological systems [27], rotating flows [28], optical systems
and materials [29, 30], physiological applications [31], finan-
cial time series [32–34], dispersal patterns of humans and
animals [35, 36], laser cooling [37] to gaze dynamics [38]
and search strategies [39, 40]. They are studied both ex-
perimentally [28, 38, 41] and theoretically [42–47] includ-
ing the problem of fluctuation-dissipation relations in non-
equilibrium systems [48–52]. Consequently, despite some
nonphysical features of Lévy flights, e.g., infinite propagation
velocity, due to their well-known mathematical properties,
e.g., self similarity, infinite divisibility and generalized cen-
tral limit theorem, α-stable noises are widely applied in var-
ious models displaying anomalous fluctuations or describing
anomalous diffusion. One may also consider their more phys-
ical counterparts, namely Lévy walks [53], for which “long
jumps” are performed with finite velocity. Despite this differ-
ence, such systems can still exhibit some similar phenomena
to Lévy flights [54, 55].

One might expect that α-stable noise can significantly
change properties of escape kinetics in overdamped systems.
Indeed, contrary to the Gaussian white noise driving, for
which the rate of reaction rates depends only on the depth of
the potential well [1], under α-stable noise the ratio of tran-
sition rates is sensitive to the width of the potential barrier
[56–59]. In the weak noise limit, i.e., when the noise inten-
sity tends to 0, the dependence of the ratio of transition rates
solely on the width of the potential barrier can be demon-
strated [57, 58]. This relation holds also for finite noise inten-
sity, as long as noise intensity is much smaller that the depth
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of the potential well [60], however the combined action of the
Lévy noise and the Gaussian noise might reintroduce the sen-
sitivity of the ratio of transition rates to the barrier height [61].

In the regime of full dynamics, a particle is characterized
both by the velocity and the position. Depending on the noise
type, the velocity can be discontinuous, e.g., for Lévy noises
with α < 2. At the same time, the position is continuous,
which might change properties of the same models in com-
parison to their overdamped counterparts. In this manuscript,
we extend the discussion on the underdamped kinetics driven
by Lévy noises in double-well potentials. In the next sec-
tion (Sec. II Model) we derive the relation between transition
rates in the weak noise limit given by Eq. (10), which is the
main result of this manuscript. In the Sec. III (Results) we
present extensive comparisons between the derived approxi-
mate formula obtained in Sec. II and results of numerical sim-
ulations. The manuscript is closed with Summary and Con-
clusions (Sec. IV).

II. MODEL

The Langevin equation [62] provides description of a par-
ticle motion in a noisy environment. In the underdamped
regime, the Langevin equation takes the following form

mẍ(t) = −γẋ(t)− V ′(x) + σζ(t), (1)

where −V ′(x) is the deterministic force acting on a particle,
while ζ(t) stands for the noise (random force), which approx-
imates interactions of the test particle with its environment.
The scale parameter σ (σ > 0) controls the strength of fluctu-
ations. In Eq. (1), x has the dimension of length, t of time,
[V (x)] = [energy]. Remaining parameters have following
units: [γ] = mass/time, [σ] = length×mass/(time)1+

1
α and

[ζ] = time
1
α−1. We assume that the noise ζ(t) is of white,

α-stable, Lévy type, i.e., it generalizes the Gaussian white
noise [11, 12]. Contrary to the case of α = 2, when σ and
γ are related by the Sutherland-Einstein-Smoluchowski for-
mula [63–65], in the non-equilibrium regime, i.e., for α < 2,
σ and γ are two independent parameters. Moreover, we re-
strict ourselves to symmetric α-stable noise only, which is the
formal time derivative of the symmetric α-stable motion L(t),
see [13], whose characteristic function is given by

φ(k) = 〈exp[ikL(t)]〉 = exp [−t|k|α] . (2)

The stability index α (0 < α 6 2) controls the noise asymp-
totics. Importantly, for α = 2, the α-stable noise trans-
forms into the standard Gaussian white noise [11, 12]. In-
crements of the symmetric α-stable motion L(t), i.e., ∆L =
L(t+ ∆t)−L(t), are independent and identically distributed
according to a symmetric α-stable density with the character-
istic function given by Eq. (2) with t replaced by ∆t. Sym-
metric α-stable densities are unimodal probability densities
which for α < 2 exhibit a power-law asymptotics with tails
decaying as |ζ|−(α+1), see [11, 12]. Consequently, for α < 2,
all moments of order greater than α, e.g., variance, diverge.

Equation (1) can be rewritten as the set of two first order
equations

{
mv̇(t) = −γv(t)− V ′(x) + σζ(t)
ẋ(t) = v(t)

. (3)

The deterministic force −V ′(x) is produced by the fixed,
double-well, potential V (x), with two minima located at x1
and x2 (V (x1) = E1 and V (x2) = E2) and a single local
maximum at xb (x1 < xb < x2 and V (xb) = Eb), see Fig. 1.
Without the loss of generality it can be assumed that xb = 0
and V (xb) = 0. Furthermore, we assume that both, the poten-
tial barrier separating potential minima and outer (large |x|)
parts of the potential are steep enough to assure that the par-
ticle position is limited to the neighborhood of potential min-
ima.

FIG. 1. Schematic sketch of the potential, see Eq. (16), used in nu-
merical studies of noise induced escape kinetics.

Using Eq. (3), we study the problem of noise induced es-
cape over the static potential barrier, with the special attention
to the weak noise limit. Under the weak noise approximation,
the Lévy noise can be effectively decomposed into the Wiener
part (small, bounded jumps) and the compound Poisson pro-
cess (spikes) [57, 58]. More precisely, the Lévy-Khintchine
formula [66] shows that a Lévy process L(t) is built by three
independent components: a linear drift (deterministic mo-
tion), a Brownian motion and a Lévy jump process. Further-
more, in [57, 58], it has been shown that for the small σ it is
possible to introduce a threshold δ(σ) such that all subthresh-
old pulses are considered as background, while suprathresh-
old pulses build spikes. The small jumps part makes infinitely
many jumps on any time interval of positive length, but the ab-
solute value of these jumps is bounded. In [57, 58], it has been
proved that, for appropriately chosen δ(σ), the variance of the
background (small jumps) part vanishes in the limit of σ → 0.
Consequently, between the two subsequent large spikes, the
particle is subjected only to a background noise, which, for
small σ, is so weak that the motion of a particle is almost de-
terministic. Moreover, time lags between the two subsequent
spikes are so large that the particle practically reaches the bot-
tom of the potential well (underdamped dynamics) or velocity
drops almost to zero (full dynamics). Therefore, in the weak
noise limit, the only scenario capable of inducing the escape
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is when a strong enough spike “kicks” the particle. Impor-
tantly, the weak noise regime is recorded already for finite,
although small, values of the scale parameter σ. The exact
value of the σ for which agreement with predictions corre-
sponding to σ → 0 is recorded depends on the setup under
study. The detailed discussion of the decomposition proce-
dure can be found in Refs. [57, Sec. 2], [58, Sec. 3] or [67,
Sec. 3.1]. In overall, the bounded jump component part is re-
sponsible for short displacements, while the Poisson part con-
trols long jumps. For the Lévy noise, characterized by the
stability index α (0 < α < 2), the probability of recording an
event ξ larger than ζ is given by

P (ξ > ζ) ∼ ζ−α. (4)

In the weak noise limit, the protocol of escaping over the
potential barrier is based on a single long “jump” in the veloc-
ity, which in a single, strong “kick”, gives the particle kinetic
energy sufficient to overpass the potential barrier determinis-
tically. More precisely, we assume that initially a particle has
velocity v0, and it is located in the ith minimum of the poten-
tial. From this point, it moves deterministically to the top of
the potential barrier. During the motion to the top of the bar-
rier, it loses some of its energy due to the friction. Moreover,
it is perturbed by the small jumps component, which typically
is weak enough not to suppress the transition over the poten-
tial barrier. If we disregard the friction, the minimal velocity,
which is sufficient to produce the transition from the ith min-
imum to the barrier top, reads

mv2

2
> Eb − Ei = ∆Ei. (5)

During the motion the energy is dissipated by friction, there-
fore, the minimal initial velocity v0 needs to be larger

v0 = v +
γ

m

∫ t0+δt

t0

v(t)dt, (6)

where δt (δt� 0) is the time necessary to reach the top of the
potential barrier. The integration over time gives the distance
between the initial position xi and the potential barrier xb, i.e.,
li. Consequently, the initial velocity reads

v0 = v +
γ

m
li. (7)

Combining Eqs. (5) and (7), we get the following estimate for
the minimal initial velocity v0

v0 =

√
2∆Ei
m

+
γ

m
li. (8)

Equation (1) describes the full (underdamped) dynamics in
the regime of linear damping. For a free particle under lin-
ear friction, the velocity is distributed according to the α-
stable density with the same stability index α as the noise,
see Refs. [68–70] and Appendix A. The deterministic force
−V ′(x), see the first line of Eq. (3), affects the shape of
the stationary velocity distribution. For the weak noise, i.e.,

small σ, the majority of particles are localized in the vicin-
ity of potential minima, where the deterministic force is small
and can be neglected. Consequently, in the weak noise limit,
we can assume that the velocity is distributed according to
the α-stable density, while for the larger σ it can be approx-
imated by the α-stable density. Please note, that such a situ-
ation corresponds to the diverging mean energy 〈E〉, because
α-stable densities with α < 2 are characterized by the di-
verging variance. The divergence of mean energy does not
affect our considerations, because we calculate the probabil-
ity of recording a minimal instantaneous energy. The condi-
tion on the minimal instantaneous energy can be transformed
into the equivalent condition on the instantaneous velocity, see
Eq. (9), which is easier to utilize, due to known asymptotic be-
havior of α-stable densities, see Eq. (4) and (A9). As the first
approximation, we assume that the large initial velocity is di-
rected towards the potential barrier. If the potential barrier is
narrow, and outer parts of the potential are steep, the particle
is unlikely to explore positions placed beyond minima, i.e.,
|x| � |xi|. Consequently, the large velocity is most likely to
be directed towards the potential barrier. As it will be shown
later, the transition initiated by the abrupt velocity towards the
potential barrier is the most probable and the approximation
based on this assumption, see Eq. (10), works very well. If
the velocity is not large enough, the particle could be reversed
prior to reaching the top of the potential barrier. On the one
hand, transitions over the potential barrier are produced by
extreme velocities, which are ruled by the tail of the velocity
distribution. On the other hand, a particle during its motion to
the barrier top is subject to damping and to continuous small
perturbations, controlled by the central part of the α-stable
density, i.e., the Gaussian like part. Employing Eq. (4), we
find the probability that the velocity larger than the minimal
value v0 is recorded

P (v > v0) ∼
(√

2∆Ei
m

+
γ

m
li

)−α
. (9)

If the initial position of the particle is in the ith minimum, i.e.,
x(t0) = xi, the probability given by Eq. (9) is equal to the
transition rate kij . Therefore the ratio, κ, of forward, k12, and
backward, k21, transition reads

κ =
k12
k21

=

(√
2∆E2 + γ

√
ml2√

2∆E1 + γ
√
ml1

)α
. (10)

The derivation of Eq. (10), assumes that the particle is wan-
dering around a minimum of the potential and waiting for the
extreme velocity larger than v0, see Eq. (8). If the particle
velocity is larger than v0, it can overpass the potential barrier
practically in the deterministic manner. For γ →∞, Eq. (10)
reduces to the well-known overdamped limit, where the ra-
tio of transition rates depends only on the ratio of distances
between potential minima and the barrier top [56–58], i.e.,

κ =
k12
k21

=

(
l2
l1

)α
. (11)

For weak enough noise (small σ), transition rates and their
ratio can be calculated using the relationship with the mean
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first passage times (MFPT), see [3]. For the particle starting in
the left minimum x1 of the potential the MFPT, T12, is defined
as

T12 = 〈τ〉 = 〈min{τ : x(0) = −l1 ∧ x(τ) > 0}〉. (12)

Therefore, the forward transition rate, k12, is given by

k12 =
1

T12
. (13)

Definitions of the MFPT from the right potential well, T21,
and the backward transition rate, k21, are analogous to the
definition of T12 and k12. Finally, from numerically estimated
MFPTs the ratio of transition rates can be calculated

κ =
k12
k21

=
T21
T12

. (14)

The mean first passage times T12 and T21 can be obtained
using numerical simulations of the Langevin equation, which
can be rewritten in the discretized form
{
vi+1 = vi −

[
(γvi + V ′(xi))∆t+ σ (∆t)

1/α
ζi

]
/m

xi+1 = xi + vi+1∆t
,

(15)
where ζi is the sequence of independent and identically dis-
tributed α-stable random variables and ∆t is the integration
times step, which is significantly smaller than the transition
time, i.e., ∆t� δt. The velocity part, containing the α-stable
noise, is approximated using the Euler-Maruyama scheme
[12, 71], while the spatial part is constructed trajectory-wise.
In order to estimate the required MFPT T12 (T21) trajectories
x(t) are generated using the approximation (15), with the ini-
tial condition x(0) = −l1 (x(0) = l2) and v(0) = 0, as long
as x(t) < xb (x(t) > xb). From the ensemble of first pas-
sage times, the mean first passage times and their ratios are
calculated. Within computer simulations, it is assumed that
the particle mass is set to m = 1.

The approximation given by Eq. (10) suggests that the ratio
of escape rates depends both on depths of potential wells and
distances between minima and the maximum of the potential.
Therefore, we use such a potential which allows easy control
of its depths and distances between minima and the maximum

V (x) =





4h1

[
x4

4l41
− x2

2l21

]
x < 0

4h2

[
x4

4l42
− x2

2l22

]
x > 0

. (16)

Parameters h1 and h2 control depths of the left and right mini-
mum respectively, while l1 and l2 represent distances between
the potential maximum and the corresponding minimum. The
top of the potential barrier is located at xb = 0. The potential
given by Eq. (16) is schematically depicted in Fig. 1.

Numerical results were obtained by use of the discretized
version of the Langevin equation, see Eq. (15). Simula-
tions were performed mainly with the integration time step
∆t = 10−3, which is significantly smaller than the transi-
tion time δt. Nevertheless, some of them were repeated with

the smaller integration time step, i.e., ∆t = 10−4. Such an
integration time step was sufficient to ensure stability of the
Euler-Maruyama method. Final results were averaged over
N = 105− 106 realizations. For simplicity, we have assumed
m = 1 and γ = 1 (except situations when it is varied). Re-
maining parameters: l1, l2, h1, h2 and σ varied among sim-
ulations. Their exact values are provided within the text and
figures’ captions.

III. RESULTS

We start our studies with the inspection of trajectories of
the process generated by Eq. (1) under Cauchy (α = 1) noise,
see Fig. 2. The top panel shows results for γ = 1, while
in the bottom panel the damping is set to γ = 5. Since the
motion is perturbed by the α-stable noise, the velocity v(t)
is discontinuous, while the position x(t), x(t) =

∫
v(t)dt, is

continuous. First of all, with the increasing damping, the par-
ticle motion becomes more restricted, i.e., the particle is most
likely to be found in the vicinity of one of the potential wells
because position fluctuates less. At the same time, the par-
ticle loses its velocity and energy faster, what is manifested
by faster decay and lower amplitude of velocity oscillations in
the bottom panel. Inspection of trajectories confirms that, in
order to overpass the potential barrier, the instantaneous ve-
locity needs to be large enough and, interestingly, it can be
directed both towards the top of the potential barrier (bottom
panel) or outwards (top panel). Horizontal lines in Fig. 2 de-
pict minimal values of velocities towards the potential barrier,
see Eq. (8), which are sufficient to induce a transition over
the potential barrier. Due to the potential asymmetry, minimal
forward (from the left to the right) and backward (from the
right to the left) velocities are different. Moreover, because
of the damping, the minimal velocity in the direction of the
boundary is smaller than the minimal velocity in the opposite
direction.

The top panel of Fig. 2 shows the situation when the ini-
tial large velocity is pointing in the opposite direction than
the potential barrier. After a strong noise pulse at t ≈ 7,
a particle initially moves to the right. It gets to the reversal
point, in which the velocity drops to zero and the motion is
reversed. The particle returns to the right minimum of the po-
tential, where it has the negative velocity equal to the minimal
backward velocity. Consequently, it continues its motion to-
wards the potential barrier, which is successfully overpassed.
After passing the potential barrier, due to the deterministic
force, the particle accelerates. In the bottom panel of Fig. 2
the initial velocity after a strong pulse at t ≈ 2.5 is equal
to the minimal backward velocity and it is directed towards
the potential barrier. Consequently, the particle can success-
fully pass from the right to the left minimum of the potential.
Moreover, during the sliding from the barrier top to the left
minimum of the potential, the velocity is perturbed a couple
of times, e.g., at t ≈ 2.72, t ≈ 2.82 and t ≈ 3.1 discon-
tinuities in v(t) are visible. Fig. 2 clearly confirms that the
assumption of the “single-jump” escape is fully legitimate.

Figure 3 compares numerically calculated ratio of transi-
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FIG. 2. Sample trajectories of the particle moving in the potential
(16) with l1 = l2 = 1, h1 = 12 and h2 = 8. The stability index α
is equal to α = 1 and the damping coefficient γ is set to γ = 1 (top
panel — (a)) and γ = 5 (bottom panel — (b)). Horizontal lines show
minimal velocities for forward (solid orange) and backward (dashed
blue) transitions which are given by Eq. (8). More details in the text.

tion rates (points) with predictions of Eq. (10) (lines) as a
function of the stability index α. It corresponds to fixed dis-
tances between minima and the maximum of the potential
(l1 = 1 = l2 = 1) and various potential depths (h1 and
h2). Parameters h1 and h2, characterizing depths of poten-
tial wells, were chosen in such a way that both are of the same
order, and their values are significantly larger than the scale
parameter σ = 0.2, i.e., h1 � 0.2 and h2 � 0.2. Such a
choice of parameters ensures that weak noise approximation
can be employed. Fig. 3 clearly shows that the ratio of tran-
sition rates depends on depths of both potential wells. For
α > 1, there is a perfect agreement between results of simula-
tions and the formula (10). For small values of the stability in-
dex α (α < 1), there are some discrepancies. More precisely,
the numerically estimated ratio of transition rates is slightly
larger than the expected scaling given by Eq. (10).

Lack of the full agreement between predictions of Eq. (10)
and numerical results, for small α, post the question about va-
lidity of all undertaken assumptions used to derive Eq. (10).
First of all, the potential (16) is not completely impenetrable
at large |x|. A random walker can explore outer parts of the
potential corresponding to x < −l1 or x > l2. This could
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FIG. 3. Ratio κ(α) of transition rates from minima of the potential
(16) to the barrier top as a function of the stability index α. Var-
ious points correspond to numerical results for different depths of
potential wells, i.e., different values of h1 and h2, while lines plot
the scaling given by Eq. (10). Simulation parameters l1 = 1, and
l2 = 1, γ = 1 and σ = 0.2.

indicate why the lack of full agreement is recorded for small
α, for which the central part of the velocity distribution is nar-
rower, and its tails are heavier. For the large enough velocity
directing outwards of the barrier top, a particle may explore
the outer part of the potential and still overpass the potential
barrier, see the top panel of Fig. 2. To verify the role of ex-
ploration of outer parts of the potential, the potential (16) was
modified by the addition of reflecting boundaries in (i) min-
ima of the potential, i.e., at −l1 and l2, or (ii) at the same dis-
tance from the potential minima as the potential barrier i.e.,
at −2l1 and 2l2. The first option improves the agreement for
small α, see red squares in Fig. 4. At the same time, it de-
stroys the agreement for α → 2. In the scenario (ii), ratios of
transition rates are indistinguishable (results not shown) from
results obtained in the unrestricted dynamics, see Fig. 3. This
is in accordance with the observed dependence of x(t), see
Fig. 2, which is restricted to |x(t)| < 2.

Placing reflecting boundaries in minima of the potential
confirms that, indeed, the differences for small α between the
scaling given by Eq. (10) and numerical simulations in Fig. 3
come from particles having the velocity directed outwards
from the potential barrier. Probability of recording an initial
velocity pointing outward the potential barrier which is suffi-
cient to induce a successful transition over the potential barrier
can be calculated in the similar manner as in Eq. (9), but this
time a particle moves along a different (longer) path. We can
assume that the particle reverses its motion at |x| = 2li, i.e.,
at −2l1 or 2l2, because as it was demonstrated in the scenario
(ii) introduction of reflecting boundaries placed at −2l1 and
2l2 produced the same results as unrestricted dynamics, see
Fig. 2. Therefore, the trajectory length is 3li and Eq. (8) is
replaced by

P (v > v0) ∼
(√

2∆Ei
m

+ 3
γ

m
li

)−α
. (17)

Finally, taking into account that the initial velocity can be di-
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FIG. 4. The same as in Fig. 3, i.e., κ(α), for various space re-
strictions. Black dots (•) represent unrestricted motion, while red
squares (�) correspond to the motion restricted by reflecting bound-
aries placed in the minima of the potential. Lines present scallings
given by Eq. (10) (solid green line) and Eq. (18) (dashed orange line).
Simulations parameters h1 = 8, h2 = 12, l1 = 1, l2 = 1, γ = 1
and σ = 0.2.

rected towards or outwards the potential barrier, from Eqs. (9)
and (17), the ratio of transition rates reads

κ =

(√
2∆E1 + γl1

)−α
+
(√

2∆E1 + 3γl1
)−α

(√
2∆E2 + γl2

)−α
+
(√

2∆E2 + 3γl2
)−α . (18)

Fig. 4 compares scalings given by Eq. (10) and Eq. (18) with
results of numerical simulations for the unrestricted (black
dots) and the restricted space (red squares), i.e., the interval
[−l1, l2]. For α > 1 agreement between simulations in the
unrestricted space (black dots) and Eq. (10) is clearly visible,
as it was already presented in Fig. 3 and discussed within this
section. For small α, one might observe, that results of nu-
merical simulations are closer to predictions of Eq. (18) than
to the scaling given by Eq. (10), corroborating that, indeed,
a part of trajectories explores outer (|x| > |li|) parts of the
space. This effect is further confirmed by the restricted mo-
tion with α < 0.5 which, up to numerical precision, follow
the prediction of Eq. (10). Therefore, results obtained for the
dynamics in the unrestricted space (black dots) interpolates
between scalings given by Eq. (18) (small α, see the inset of
Fig. 4) and Eq. (10) (large α, see the main plot in Fig. 4) with
some points, corresponding to intermediate α, laying between
these two curves. As already mentioned, results of simula-
tions with reflecting boundaries placed in minima of the po-
tential (red squares) follow scaling given by Eq. (10) for small
α only. Contrary to α < 1, for α > 1, the introduction of the
reflecting boundaries destroys the agreement with the theo-
retical scaling. The disagreement stems from two effects: (i)
with increasing α spikes become weaker and more frequent
and (ii) bounded fluctuations play a larger role. Consequently,
a particle is most likely to be found not in the potential mini-
mum but closer to the barrier. This in turn effectively reduces
the width and the height of the potential barrier.

Formula (10) indicates that the ratio of transition rates de-
pends both on the barrier heights and distances between min-
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FIG. 5. The same as in Fig. 3, i.e., κ(α), for various distances
between potential minima and the maximum. Simulation parameters
h1 = 8, h2 = 12, γ = 1 and σ = 0.2.

ima and the maximum of the potential. So far we have ex-
plored the validity of Eq. (10) for various heights of the po-
tential barrier. Now, we study the correctness of the scaling
predicted by Eq. (10) on changes in the distance between min-
ima and the maximum of the potential. Fig. 5 shows ratios of
transition rates for various widths l1 and l2 with fixed depths
h1 = 8, h2 = 12 and σ = 0.2. In general, results of computer
simulations qualitatively follow the scaling given by Eq. (10).
Nevertheless, quantitative deviations are especially well visi-
ble in situations when l1/l2 � 1, e.g., l1/l2 = 2 or l1/l2 = 3.
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FIG. 6. The same as in Fig. 3, i.e., κ(α), for various values of the
scale parameter. Simulation parameters h1 = 8, h2 = 12, l1 = 1,
l2 = 1 and γ = 1.

The ratio of transition rates, see Eq. (10), was derived in
the weak noise (σ → 0) limit. Nevertheless, computer sim-
ulations have confirmed the validity of Eq. (10) for small but
finite values of the scale parameter σ. Therefore, we have
checked if results obtained under the weak noise approxima-
tion holds for larger σ, and how the ratio of transition rates
behaves in this case. Fig. 6 presents ratios of transition rates
for various values of the scale parameter σ. For α < 1 results
for all used values of σ follow the scaling given by Eq. (10).
The situation changes for α > 1, because the agreement be-

104 APPENDIX A. ARTICLES



7

tween results of computer simulations and Eq. (10) is recorded
only for small values of σ, e.g., σ = 0.1 and σ = 0.2. Re-
sults for σ = 0.5 are still very close to the scaling given by
Eq. (10), however, one may observe that the ratio of transi-
tion rates is slightly smaller than the weak noise prediction.
This deviation amplifies with the increasing σ, and for σ = 1
results diverge quickly from the weak noise scaling. The am-
plification of deviations is very similar to the behavior in the
overdamped regime [61] and can be attributed to the violation
of the weak noise approximation, i.e., for large σ, transitions
occur not only via a single change in the velocity, but also due
to a series of smaller “kicks”. Consequently, Eq. (9) cannot
be straight forward applied.

Finally, we estimate numerically the ratio of transition rates
for the increasing damping strength. In the limit of γ → ∞,
Eq. (3) correctly reduces to the overdamped Langevin equa-
tion, for which the ratio of transition rates is given by Eq. (11).
Therefore, from Eq. (10) one might expect a smooth, steady
transition to the ratio of transition rates for the overdamped
limit, i.e., to Eq. (11). As it is clearly visible from Fig. 7,
the transition is not smooth. With the increasing γ, the ra-
tio of transition rates increases. For small values of the fric-
tion parameter γ, simulation results reproduce predictions of
Eq. (10), but with the increasing γ results of simulations de-
viate from the prediction given by Eq. (10). In particular, for
γ = 5, numerically estimated ratios of transition rates fol-
low predictions of Eq. (10) with γ = 10 almost precisely. For
γ = 10, with α < 0.75, the ratio of transition rates reached the
overdamped limit. Simultaneously, for α > 0.75, κ(α) signif-
icantly deviates both from the underdamped and overdamped
scalings. In overall, this indicates that the overdamped limit is
reached already for a finite damping, but the critical value of γ
depends on the stability index α. In particular, for small α the
overdamped limit is reached faster. Otherwise for γ smaller
than critical, results are sensitive not only to the stability in-
dex α but also to the damping strengths, see Fig. 7.
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FIG. 7. The same as in Fig. 3, i.e., κ(α), for various values of
the friction coefficient γ. Simulation parameters h1 = 8, h2 = 12,
l1 = 1, l2 = 1 and σ = 0.2. The purple dashed line corresponds to
overdamped scaling given by Eq. (11).

IV. SUMMARY AND CONCLUSIONS

The escape of a particle from the potential well is possible
due to action of the noise. The escape protocol is sensitive
both to the noise type (Gaussian versus Lévy) and dynamic
type (overdamped versus underdamped). In the overdamped
regime a particle is fully characterized by the position. The
particle can jump over the potential barrier or surmount it.
Therefore, during the escape from the potential well a particle
is either waiting for the strong enough noise pulse (Lévy) or
for a sequence of small kicks (Gaussian driving). In the un-
derdamped regime, the particle needs to harvest energy which
is sufficient to overpass the potential barrier. Analogously like
in the underdamped regime, the particle steadily accumulates
energy (Gaussian noise) or it waits for the abrupt jump in the
velocity (Lévy driving).

The most significant difference between Lévy noise and
Gaussian noise induced escape is recorded in the overdamped
case. Lévy process with α < 2 has discontinuous trajectories,
while paths of the Brownian motion are continuous. In the
weak noise limit, under α-stable noise, the ratio of reaction
rates depends on the barrier widths, because the particle waits
for the jump which is long enough as it is the main escape
protocol. Consequently, the escape time is insensitive to the
barrier height. The escape under Gaussian white noise follows
a completely different scenario. The particle escapes via a se-
quence of short jumps, therefore the transition rate is sensitive
to the barrier height.

The underdamped regime is very different from the over-
damped regime, because in the underdamped regime the tra-
jectory x(t) is continuous both under Lévy and Gaussian driv-
ings. The escaping particle needs to harvest sufficient energy
to pass over the potential barrier. Therefore, the ratio of the
escape rates is sensitive to the barrier height, also in the weak
noise limit, both under Gaussian and Lévy drivings, as the bar-
rier height defines the amount of energy which needs to be ac-
cumulated. Various regimes (overdamped and underdamped)
and various drivings (Gaussian and Lévy) are compared in
Tab. I.

Gaussian Lévy
overdamped ratio of transition

rates depends on
difference of the

potential well
depths

ratio of transition
rates depends on

ratio of the potential
well widths

underdamped ratio of transition
rates depends on

the potential barrier
heights

ratio of transition
rates depends on the

potential barriers
heights and widths

TABLE I. The compilation of information on dependence of the ra-
tio of transition rates in double-well potentials for various escape
scenarios (Gaussian driving vs Lévy driving) and various regimes
(overdamped vs underdamped).

In the weak noise limit, under action of Lévy noise a par-
ticle typically escapes due to a single rapid change in the
velocity. Using asymptotic properties of α-stable densities,
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we have derived the formula for the ratio of escape rates, see
Eq. (10), which is the main result of current research. It shows
that the ratio of the escape rates depends both on the barrier
widths and heights, but the sensitivity to the barrier width is
larger. In the limit of the large friction the derived formula
correctly reduces to the result already known for the over-
damped dynamics, i.e., the ratio of transition rates depends
on the width of the potential barrier only [56]. The obtained
formula works very well under the assumption that the studied
process, more precisely its spatial part, can be approximated
as the two state process. Consequently, the potential barrier
separating minima and outer parts of the potential needs to be
steep enough. Deviations from the derived formula are espe-
cially visible when a particle position is not restricted to the
vicinity of the potential minima. It happens when the restor-
ing force is not large enough, or noise cannot be considered as
weak.
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Appendix A: Velocity distribution

In the regime of full dynamics, under linear friction, the
velocity evolves according to

dv

dt
= −γv − V ′(x) + σζ(t), (A1)

see Eq. (3). If we omit the deterministic force −V ′(x) in
Eq. (A1), the Langevin equation is associated with the follow-
ing velocity-fractional Smoluchowski-Fokker-Planck equa-

tion

∂P (v, t)

∂t
=

∂

∂v
[γvP (v, t)] + σα

∂αP (v, t)

∂|v|α . (A2)

In the stationary state one has

0 =
d

dv
[γvP (v)] + σα

dαP (v)

d|v|α . (A3)

In the Fourier space Eq. (A3) reads

γk
dP̂ (k)

dk
= −σα|k|αP̂ (k), (A4)

where P̂ (k) is the Fourier transform P̂ (k) =∫∞
−∞ P (v)eikvdv. The characteristic function P̂ (k) of

the stationary distribution P (v) satisfies

dP̂ (k)

dk
= −σ

α

γ
sign(k)|k|α−1P̂ (k). (A5)

The solution of Eq. (A5) is given by

P̂ (k) = exp

[
−σ

α

γα
|k|α

]
, (A6)

which is the characteristic function of the symmetric α-stable
distribution, see Eq. (2), with the scale parameter σ′

σ′ =
σ

(γα)1/α
. (A7)

With the increasing γ, the stationary distribution becomes nar-
rower. For instance, for the Cauchy noise (α = 1), the station-
ary density is the Cauchy distribution

P (v) =
1

π

σ′

(σ′)2 + v2
. (A8)

In more general cases, the asymptotic behavior of P (v) is
given by

P (v) ∼ σαΓ(α+ 1)

π
sin

πα

2
× 1

|v|α+1
. (A9)

Eq. (4) implies from Eq. (A9).
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