SEMESTER 3 (winter), total **340 hours** = **160 O***) + **180 F****), ECTS: **34 (17 O** + **17 F)**

no.	courses	type	hours	ECTS	credit
1.	Photonics – selected trends of modern photonics Interaction of light with dielectrics and metals Surface plasmon Metallic nanoparticles Physical fundamentals and basic properties Manufacturing Applications Metamaterials Physical basis Structure-determined properties Left-handed materials Fabrication & properties Selected applications	lecture&classes	45 O (30l+15c)	5	exam
2	 Thermodynamics and atomistic modelling of structural transformations in crystalline materials Foundations of Statistical Thermodynamics (compendium). Equilibrium Statistical Thermodynamics of multicomponent phases: ideal and regular solutions, Cluster Variation Method (CVM), hierarchy of analytical approximations, Static Concentration Wave (SCW) approach Non-equilibrium thermodynamics of multicomponent phases (kinetics): Path Probability Method (extension of CVM); Static Concentration Wave (SCW) approach (spinodal decomposition and spinodal ordering); Master Equation approach. Monte Carlo techniques in equilibrium and non-equilibrium thermodynamics of multicomponent phases 	lecture&classes	45 O (30l+15c)	5	exam
3	Intellectual Property	lecture	10 O	1	exam
4	Master thesis seminar I	seminar	30 O	2	assessment
5	 X-ray optics X-ray sources nanoµ focus, laser driven, synchrotrons X-ray interaction with matter X-ray optical elements for micro&nanoscale imaging Detectors (1D and 2D - CCD,sCMOS, hybrid pixel) X-ray microscopy and micro & nanotomography X-ray micro & nanospectroscopy X-ray diffraction and the phase problems Coherent X-ray imaging and ptychography 	lecture	300	4	exam
6	Master work laboratory I	laboratory	120 F	10	assessment
7	Polymers Basic features: hierarchical structure, physical states, molar mass; Random walks and stimuli-responsive properties: -ideal and real chains, globule-coil transitions; Molecular origins of visco-elasticity: - chain dynamics and diffusion mechanisms; Self-assembling nanostructured materials: - macro-phase separation of blends, - micro-phase separation of block copolymers.	lecture	30 F	4	exam
8	Photonic materials	seminar	30 F	3	assessment
9	Memristive materials	seminar	30 F	3	assessment

^{*)} O – Obligatory courses (in yellow)

**) F – Facultative courses (in pink)