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Abstract 1

Abstract

The principal aim of this Thesis is to apply the methods of the statistically consistent
Gutzwiller approximation (SGA) to the description of selected magnetic and supercon-
ducting properties of strongly correlated systems. This is analyzed within two models:
the extended t–J model (the t–J–U and t–J–U–V models) and the two-orbital Ander-
son lattice model (ALM). The first model is used to describe both the appearance of
antiferromagnetic (AF) and charge-density-wave (CDW) states, as well as their coex-
istence/competition with high-temperature superconducting (HTS) states. The second
model describes the magnetism of UGe2 compound, as well as its classical and quantum
critical behaviour. In both of these models we obtain results which are compared semi-
quantitatively (in the case of the extended t–J models) and quantitatively (for ALM
model) with experimental results.

The general structure of the Thesis is as follows. In Part I we introduce the
theoretical models that constitute the methodological approach of this Thesis and we
present the use of SGA method, that modifies the standard renormalized mean-field
Gutzwiller approach (RMFT) to strongly correlated systems. We also show how to
derive the Gutzwiller renormalization factors and we discuss some subtle differences
in the final form of those factors that may occur when either AF or CDW order is
considered. This part ends with Appendix containing details of selected calculations.
Part II presents our original articles relevant to the material discussed in this Thesis.1

Each article is preceded by brief overview.

1According to current Polish law, the PhD Thesis should be a composition of the reviewed articles
published in recognizable journals with a short introduction of the topic made by the author.
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Abstrakt

Głównym celem tej pracy doktorskiej jest opisanie wybranych właściwości magnety-
cznych i nadprzewodzących silnie skorelowanych układów przy pomocy dwóch modeli
teoretycznych: rozszerzonego modelu t–J (a dokładniej modeli t–J–U oraz t–J–U–V )
oraz dwuorbitalowego, sieciowego modelu Andersona (ALM). W tym celu użyto statysty-
cznie konsystentnego przybliżenia Gutzwillera (SGA), które rozszerza standardową
teorię renormalizacji pola średniego (RMFT). Pierwszy z modeli (rozrzerzony model
t–J) został użyty do zbadania stabilności faz antyferromagnetycznej (AF) oraz fali gęs-
tości ładunku (CDW), a także do rozważenia ich współzawodnictwa lub współistnienia
ze stanami wysokotemperaturowego nadprzewodnictwa (HTS). Drugi model (ALM)
posłużył do opisu magnetyzmu w związku UGe2 oraz do wyjaśnienia klasycznych oraz
kwantowych zjawisk krytycznych w tym układzie. W obu przypadkach uzyskano zgod-
ność z wynikami eksperymentalnymi (dla modelu t–J jakościową, a dla ALM ilościową).

Niniejsza praca doktorska podzielona jest na dwie części. W pierwszej zawarte
jest wprowadzenie do tematu pracy, pokazane jest wyprowadzenie użytych modeli
oraz przedstawione są metody użyte do ich rozwiązywania. W części tej pokazane
jest też w jaki sposób wyprowadzić współczynniki renormalizacyjne Gutzwillera,
a także omówiona jest pewna dwuznaczność tego wyprowadzenia gdy układ posiada
dodatkowe symmetrie (przykładowo AF lub CDW). Pokazana jest przyczyna takich
rozbieżności oraz ich możliwy wpływ na uzyskiwane wyniki. Część ta zakończona jest
dodatkiem, w którym umieszczone zostały niektóre szczegółowe rachunki. W części
drugiej zgromadzone są oryginalne publikacje, które stanową główną treść tej rozprawy.
Każdy z artykułów poprzedzony jest krótkim wprowadzeniem.
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List of abbreviations and symbols

symbol explanation

t–J model minimal mathematical model of superconductivity in cuprates
(materials with a quasi-two-dimensional layers of CuO2 such
as La2´xSrxCuO4 or YBa2Cu3O7). This model can be derived
from the Hubbard model or, as an effective model, from the
three-band p-d model.

t–J–U model extension of the t–J model. An additional term, „ U , is intro-
duced, accounting for the on-site Coulomb repulsion between
electrons.

t–J–U–V model extension of the t–J–U model. An additional term, „ V , is
introduced, accounting for the inter-site Coulomb repulsion of
particles located on neighboring sites.

ALM (PAM) Anderson Lattice Model (or Periodic Anderson Model). ALM
(PAM) represents a two-band model, modeling the physics of
heavy fermion compounds. In this Thesis this model was used
to describe magnetism of UGe2.

AF antiferromagnetism or antiferromagnetic phase.

BCS Bardeen–Cooper–Schrieffer theory, the first microscopic theory
of (low-temperature) superconductivity.

CDW (SDW) charge-density (or spin-density) wave state/phase.

CEP critical ending point.

DE-GWF diagrammatic expansion for the Gutzwiller wave function.

DOS density of states (the number of states per interval of energy).

FM1 in the context of the Periodic Anderson Model, the name of
the phase with weak ferromagnetic order, having a half-metallic
character.

FM2 in the context of the Periodic Anderson Model, the name of the
phase with strong ferromagnetic order.

GA (original) Gutzwiller Approximation.
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symbol explanation

HSC high-temperature superconductivity (or high-temperature su-
perconductors).

QCEP quantum critical ending point.

SC superconductivity or superconducting phase.

SGA statistically-consistent Gutzwiller approximation.

TCP tricritical point.

t, t1, t2 the amplitudes of hopping of electrons between the first, second,
and third next nearest neighbors respectively.

J the spin-exchange integral.

U the on-site Coulomb (Hubbard) interaction.

V 1) the inter-site Coulomb repulsion (in of t–J–U–V model) or

2) the hybridization between c and f electrons (in ALM model).

εf atomic level of f -electrons.

µ chemical potential.

Λ the number of sites in the lattice.

ĉiσ pĉ
:

iσq fermionic annihilation (creation) operator for electron with
spin σ located on site i, The operators fulfill the usual
fermion anticommutation relations tâiσ, â

:

jσ1u “ δijδσσ1 , and

tâ:iσ, â
:

jσ1u “ tâiσ, âjσ1u “ 0.

n̂iσ ” â:iσâiσ particle-number operator.

f̂iσ pf̂
:

iσq annihilation (creation) operator for f -electrons in the Periodic
Anderson Model.

n̂fiσ ” f̂ :iσf̂iσ f -electrons number operator (for the Periodic Anderson Model).

b̂iσ pb̂
:

iσq projected fermion operator annihilating (creating) an electron
with spin σ on site i with the restrictions that there is no
electron with opposite spin on that site, b̂iσ ” ĉiσp1 ´ n̂iσ̄q.
The operators b̂iσ and b̂:iσ do not fulfill the anticommutation
relations, instead tb̂iσ, b̂

:

jσ1u “ δij rp1´ n̂iσ̄qδσσ1 ` S
σ̄
i δσ̄σ1s.

ν̂iσ ” b̂:iσ b̂iσ projected-particle number operator, ν̂iσ “ n̂iσp1´ n̂iσ̄q.

Ŝi “ pŜ
x
i , Ŝ

y
i , Ŝ

z
i q spin angular momentum operator.

Ŝσi ” Ŝxi ` iŜ
y
i “ â:iσâiσ̄ circular component of the spin operator flipping the electron

σ̄ Ñ σ on site i in the fermionic representation.
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symbol explanation

Ŝzi ”
1
2pn̂iÒ ´ n̂iÓq z-component of the spin operator in the fermionic representa-

tion.

n̂HFiσ “ n̂iσ ´ xn̂iσy0 in some cases, using the relative occupancy n̂HFiσ , instead of n̂iσ,
can simplifies the notation (for example in calculations within
the DE-GWF approach or in the derivation of the Gutzwiller
renormalization factors).

P̂ “ś

i p1´ n̂iÒn̂iÓq Gutzwiller projection operator in the limit, eliminating entirely
the double occupied-site configurations.

P̂iσ “ 1` x n̂HFiσ n̂HFiσ local projector used to determining the optimal double occu-
pancy probability (d2).

x. . .y ” xΨ| . . . |Ψy short notation for an average of some operators (marked
here as “. . . ”), calculated with respect to the the correlated
(projected) wave function |Ψy.

x. . .y0 ” xΨ0| . . . |Ψ0y short notation for an average of some operators (marked here
as “. . . ”), calculated with respect to the the uncorrelated
(unprojected) wave function |Ψy0.

nσ ” xĉ
:

iσ ĉiσy0 average number of particles (electrons) per site with spin σ.

n “ nÒ ` nÓ number of electrons in the band counted per site.

δ “ 1´ n number of holes per Cu site (the hole doping).

d2 probability of the double occupancy (per site).

χijσ ” xĉ
:

iσ ĉjσy0 average probability of electron hopping with the spin σ between
the sites i and j.

∆ijσ ” xĉiσ ĉjσ̄y0 superconducting gap parameter of paired electrons in real space
located at sites i and j, with opposite spins.
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Additional adopted conventions

In addition to the listed symbols and abbreviations, the following convention of notation
were adopted,

‚ All operators in the Fock space are designated by Latin letters with “hats”,
eg. ĉiσ or Ŝ˘i , etc.

‚ All averages of operators are designated by Latin letters without “hats”,
eg. nσ ” xĉ

:

iσ ĉiσy0.

‚ All vectors, except one instance, are designated by bold letters, eg. Ri is the vector
indicating the position of site i in the lattice, and Ŝi is the vector composed of the
operators pŜxi , Ŝ

y
i , Ŝ

z
i q. There is one exception from this notation. The unit-length

basis vectors are marked differently, by “hats”, eg. the unit vector indicating OX
direction in the Cartesian coordinate system is x̂, etc.

‚ Spin states of electron (S “ 1
2) are labeled as σ “ ˘1 or as Ò (`1) and Ó (´1).

‚ All matrixes are designated by dual font, eg. 1 indicates the identity matrix.

‚ Summation over all:

‚ sites of a lattice is marked as
ř

i,

‚ possible pairs, with pi, jq and pj, iq being counted separately, as
ř

i,j ,

‚ possible pairs i and j, except those for which i “ j, as
ř1
i,j (note the prime)

or as
ř

i‰j ,

‚ nearest neighbors with each pair being counted only once (e.g. when pi, jq is
counted, then pj, iq is not) as

ř

xi,jy,

‚ second nearest neighbors with each pair being counted only once as
ř

xxi,jyy,
etc.

‚ Fourier transform operator to reciprocal (k) space has form,

$

&

%

ĉkσ “
1?
N

ř

i e
´ik¨Ri ĉiσ,

ĉiσ “
1?
N

ř

k e
ik¨Ri ĉkσ.

‚ Summation over all points in reciprocal space means summation over k in the first
Brillouin zone (RBZ). However, when the AF order is considered, the summation
is over half of the original RBZ of the paramagnetic state.
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Chapter 1

Hubbard and related models of
correlated electrons used in the
Thesis

1.1 Introductory remarks: the general approach used in
the Thesis

We start from the question of how to model electronic properties of correlated solid
state systems such as metals or insulators. There are many ways how to approach this
problem, depending on whether we are interested in a precise description of a specific
system or if we rather seek general answers (e.g., explaining why certain phenomena
occur, what is the microscopic description of such processes or what are the essential
conditions for them to appear). To illustrate it,1 Vanadium(III) Oxide, V2O3, at
sufficiently low temperature (below 155 K) is an antiferromagnetic insulator [1–3]. With
increasing temperature or pressure, or with V`3 atoms being increasingly substituted
by Ti`3, a very sharp transition to the metallic state is observed.2 Having an interest in
modeling this very specific transition, we can use e.g., various ab initio methods adapted
to this situation. However, we can also ask general questions, namely: (i) What is the
microscopic mechanism responsible for such a transition? (ii) Why without changing
the number of valence electrons in the system we can have in one situation an insulator
and in another a metal? (iii) Is it essential for the insulator to be antiferromagnetic to
observe such a transition?

To answer those questions and develop an intuition about the underlying micro-
scopic processes that make the system to change its macroscopic properties (for ex-
ample, the conductivity), it can be useful to find a minimal mathematical model to
quantitatively describe such a transition. Such a model should include the necessary
features for the phenomenon to occur, but neglect all details which might have only
quantitative, but not qualitative impact on the final results. The reason for creating

1The problem of metal–insulator transition is not the main topic of this Thesis. This example serves
its purpose only to illustrate the main approach that is used in the Thesis, namely the importance of
finding a minimal model that can describe certain phenomena.
2For a long time it was believed that by changing pressure, doping or temperature in V2O3 one

can reach the same metallic phase, regardless of the specific “path” that was taken on the phase
diagram. However, recently such a belief has been questioned. Using high-resolution x-ray absorption
spectroscopy it was found that the metallic phase reached by increasing the pressure might differ from
that obtained by changing the doping or temperature, cf. Refs. [4,5]. Nevertheless, it is a detail and it
does not depreciate our reasoning.
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such a simplistic model is that it can be solved easier and understood in greater detail
than a more realistic one, giving a cleaner understanding of the key mechanism lead-
ing to the observed behavior. Thus, it represents an essential step in building realistic
models.

In the discussed case of V2O3, the minimal model should include the following
features and simplifications: (i) we assume that our metal is composed of a number of
ions which form a crystal,3 and (ii) the physics is determined by the certain number
of valence electrons which are localized on parent ions. In other words, we construct
a model of an infinite lattice (or net), where each site (or node) can be in one of the four
states, being non-occupied, occupied by one electron with certain spin (here, only `1{2

or ´1{2, marked also as Ò and Ó, representatively), or occupied by two electrons (Ò and
Ó). At each moment, the electrons can “hop” between sites with certain probability
that respect the Pauli exclusion principle and the distance between the sites (further
hops are less likely; also the hops in specific directions might be more probable than in
others).

In the model described above, we can take two opposite limits. In the first one,
we can assume, that electrons with opposite spins do not interact with each other. In
the second limit, we can assume that the electrons interact strongly (and repulsively),
especially if they occupy the same site. Let us now assume that there is exactly one
electron per site and that exactly half of the electrons population have spin up, and the
second half have spin down. In the first limit, the solution can be exact and describes the
free-electron gas limit. In such a case, when the electric field is applied, the electrons can
move freely. In this way, the system is characterized as a simple metal. In the second
limit, when the onsite interaction between electrons with opposite spins is large, in
the ground state each site is single-occupied. Even if electric field is applied, electrons
cannot move, either due to the Pauli exclusion principle or due to the large onsite
interaction of electrons with opposite spins. In such a case, the system is characterized
as an insulator with one particle per site. This is the classic case of the Mott insulator.

Obviously, such a simple model cannot explain the complexity of the V2O3 system,
but it can give us a glimpse into the problem of why the transition between metallic
and insulating states occur and suggests that such transitions may originate from the
electron–electron Coulomb interaction.

In brief, my personal project in this respect was: (1) to analyze selected theoretical
models; (2) to test which of them can be regarded as the minimal model that explains
the occurrences of superconductivity, antiferromagnetism or the charge-density-wave
state; (3) to relate the obtained theoretical results to experiments; and (4) to discuss
which microscopic process might be responsible for the observed phenomena.

We overview next the canonical model of the correlated electrons, the single-band
Hubbard model, as well as the related models of strongly correlated electrons: t–J ,
t–J–U , and t–J–U–V models. Those models will be applied to selected topic related to
high temperature superconductivity.

3Since the metal–insulator transition occurs at low temperature, we neglect here the phonon
excitations of the ions, assuming that they are truly locked in the space and the physics of the system
is determined only by the single-electron dynamics and interactions between electrons.
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1.2 Hubbard model

The basic model described in the foregoing Section was in fact the Hubbard model [6,7],
characterized by the Hamiltonian,

ĤtU “ Ĥkin ` Ĥint “
ÿ

i‰j, σ

tij ĉ
:

iσ ĉjσ ` U
ÿ

i

n̂iÒn̂iÓ, , (1.1)

where i and j label sites, σ spin Ò or Ó, tij is the hopping integral between sites i and
j, and U is the electron–electron onsite Coulomb repulsion magnitude. In the limit
U Ñ 0, the Hubbard Hamiltonian reduces to the free-electron Hamiltonian, that is
easy to diagonalize by taking the Fourier transformation to the the reciprocal lattice,

ĤtU
UÑ 0
ÝÝÝÑ H̃kin “

ÿ

k, σ

εk ĉ
:

kσ ĉkσ, with εk “
1

Λ

ÿ

i‰j

tije
ikpRi´Rjq, (1.2)

where Λ is the number of sites and Ri is a vector indicating the position of the site i. The
exact value of εk depends on geometry of the system. For example, for two-dimensional
square lattice,

εk “ 2t pcospkxaq ` cospkyaqq ` 4t1 cospkxaq cospkyaq ` . . . , (1.3)

where t is the hopping integral between the nearest neighbor sites, t1 is that between the
second nearest neighbor systems, etc. In general, t ă 0 (due to the Coulomb interaction
between the electrons and the ions)4 and |tn`1| ! |tn| (since the overlap of the wave
function decrease rapidly with the increasing distance). Therefore, there is energy gain
if electrons are mobile (when they can propagate through the system, i.e. hop from one
site to another).

On the other hand, in the limit U Ñ 8 the doubly occupied sites increase
essentially the system energy. If we have one electron per site, hopping of electrons is
restricted because each such hopping would involve the creation of a double occupancy.
Therefore, the system becomes an insulator, with electrons localized on their parent
atoms. More careful calculations (that include the virtual hopping of electrons between
the neighboring sites, cf. Ref. [8, 9]) show, that for the square or cubic lattices, the
electron spins organize themselves in an alternating up–down manner, creating an
antiferromagnetic insulator (for example, into the Néel state, cf. Fig. 1.1). All of this
is not a trivial result, since from the point of view of the electronic band theory one
needs to have two electrons per site to reach the band-insulator state. However, in
the described case, the insulator state was reached with one electron per site (such
phenomena is called the Mott metal–insulator transition, cf. Refs. [10–12]).

We have just suggested that for the Hubbard model and for square or cubic system,
two solutions are possible: a metal and an antiferromagnetic insulator. The solution
depends on the value of |t|{U , which can be changed either by modifying the value

4 Formally the hopping term is expressed as

tij “

ż

r

drφpriq

ˆ

´
~2

2m
∇2
` V prq

˙

φprjq,

where φpriq is the Wannier orbital for i-th ion and V prq is the periodic potential energy of the lattice.
Due to the Coulomb attraction of electrons to the ions, V prq is negative. In the described model, all
electrons are described by bound states, therefore the hopping term between the nearest neighbors is
negative.
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Figure 1.1: Schematic representation of the Néel state for a crystal described by two-
dimensional (square) lattice. Spins `1{2 and ´1{2 are represented by the Ò and Ó arrows
respectively.

of U , which can be difficult to accomplish, or by increasing/decreasing the value of
|t|, what can be realized by applying positive/negative pressure, or in other words,
by bringing the atoms closer or further apart. This is an analogous situation to the
case of V2O3 we described in the previous section. Therefore, even if the description
by using the Hubbard model is extremely simplistic and provides only a qualitative
agreement with the experimental results, it can give an idea about the microscopic
effects responsible for such metal–insulator transitions. There are still questions to
be answered, for example whether the Hubbard model with exactly one electron per
site actually describes the V2O3 case in a realistic manner, especially since V`3 ion
possesses two valence electrons. Is there any other mechanism leading to the metal–
insulator transition which may be equally basic? Without answering such questions we
cannot be sure that the intuition we have when solving the Hubbard model is correct
in this very specific situation. Nevertheless, such simple analyzes let us formulate some
interesting hypotheses that can be tested further.

1.3 General properties of high-temperature superconduc-
tors

Superconducting properties were first measured for clean samples of elemental super-
conductors such as Hg, then Pb, Nb, and simple compounds such as NbN, Nb3Sn, V3Si,
with the critical temperature Tc lower than 25 K. Formulation of Bardeen–Cooper–
Schrieffer (BCS) theory in 1957 [13] quantitatively explained the unusual behavior of
those (and similar) materials at low temperature, namely its vanishing resistance, the
Meissner effect, and the exponential behavior of the heat capacity at low temperature
T ă Tc (cf. Fig. 1.2). The main idea was that the superconductivity was an effect of
electrons pairing up (creation of Cooper pairs), induced by the interaction of electrons
with phonons. Since there is an energy gain (energy gap) associated with such a pair
binding, to break the pairs extra energy is required (it explains the increase in heat
capacity). Furthermore, at low temperature, scattering of electrons from impurities
cannot occur (electrons do not have enough energy to break the pairing), therefore the
resistance drops to zero at Tc ą 0.

The BCS theory was a great success and was awarded the Nobel Price in 1972.
However, in 1986 a new challenge for theorists was presented when Bednorz and
Müller discovered in La2´xBaxCuO4 a new type of superconductivity (with Tc « 30 K,
cf. [25,26]), that displayed a number of phenomena that were not described by the BCS
theory. Namely, the superconducting gap without s- but with d-wave symmetry, and a
state with magnetic vortices that occurs in in relatively small applied field H ą Hc1
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Figure 1.2: (a) Temperature dependence of heat capacity from the BCS theory (solid line)
and for the normal state (dashed line), cf. Ref. [14]. Tc stands for the critical temperature
at which a transition from superconducting state to normal state occurs (Figure adapted
from [15]). (b) Measured heat capacity for Al in superconducting state (curved line) and
the normal state (straight line) (Figure taken from Ref. [16]).

Figure 1.3: Magnetization M as a function of the applied magnetic field H. Magnetization
is negative due to the supercurrent screening the field (the Meissner effect). For the type I
superconductors there is a critical value of the magnetic field at which the magnetization
disappears (first order transition, cf. dotted line). For type II superconductors (e.g., the
high-Tc SC) at H “ Hc1 lattice of vortices with quantum magnetic flux are created.
The vortices disappear for much higher values of magnetic field Hc2 (Figure taken from
Ref. [17]).

Figure 1.4: (a) Illustration of the applied magnetic field penetrating normal metal. (b)
Meissner effect for type I superconductor. (c) Meissner effect for type II superconductor.
Vortices are created for magnetic field Hc1 ă H ă Hc2. The yellow arrows illustrate the
shielding supercurrent (Figures taken from Ref. [17]).
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Figure 1.5: Schematic chronology of superconductivity discoveries. On the vertical axis,
the critical temperature is marked. Different colors indicate different classes of materials,
for example, the green dots stand for pure elements and simple compounds, the blue
diamonds are for the cuprates, and the yellow squares for the iron pnictides (Figure taken
from Ref. [17]).

Figure 1.6: Structure of selected cuprates: (a) La2´xSrxCuO4 with the critical temperature
Tc “ 39 K [18], (b) YBa2Cu3O7´δ, with Tc “ 93 K [19] (c) Tl2Ba2CuO6`x, with
Tc “ 81 K [20] (d) HgBa2CuO4, with Tc “ 94 K [21] (e) HgBa2Ca2Cu3O8, with
Tc “ 135 K [22, 23] (and 153 K at 23 GPa) [24] (Figure taken from Ref. [17]).
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Figure 1.7: Schematic shape of electronic wave functions for p (left) and d orbitals (right)
in real-number representation (Figures are taken from Refs. [29, 30]).

(cf. Figs. 1.3 and 1.4). Soon other compounds were discovered, that have similar,
unusual behavior (cf. Fig. 1.5).5 Additionally, unlike the “classical” superconductivity,
that was observed mostly in pure elements or in simple compounds, the new type of
superconductivity was discovered in compounds in which atoms (mostly Cu and Fe)
are arranged in layers (cf. Fig. 1.6).

We focus here only on the compounds with the Cu layers (cuprates). For such
materials, the full theoretical model of superconductivity should include the electronic
structure of both Cu2` ([Ar] 3d94s0) and and O2´ ions ([He] 2s22p6). In the first
approximation, Cu and O atoms form ionic bonds, resulting in the formulation of ions
Cu2` (with total 9 electrons on the d orbitals) and O2´ (with total 6 electrons on p

orbital). However, according to the crystal-field theory, due to the static electric field
from the anion neighbors (O´2) that surrounds every Cu2` ion, the energy of both 3d9

and 2p6 configurations should be split [31, 32]. There are 5 different symmetries of the
electronic wave function possible for 3d and 3 for 2p orbitals (cf. Fig. 1.7). If we take
compounds such as La2´xSrxCuO4, Tl2Ba2CuO6, HgBa2CuO4, and HgBa2Ca2Cu3O8

(cf. again Fig. 1.6), we see that Cu2` ion is surrounded by six O2´ ions, which form
an octahedron. However, due to the strong Jahn-Teller effect [31, 32], such symmetry
is broken into a tetragonal one; the CuO6 cluster structure is stretched along the z-
axis (e.g. for La2´xSrxCuO4, from the initial distance 1.9 Å to 2.4 Å). This results in
a further splitting of the orbitals’ energy (cf. Fig. 1.8). It happens that the strongest
hybridization takes place between the 3d states of x2´ y2 symmetry and the 2p6 states
of in-plane σ symmetry (creating bonding (B) and anti-bonding (AB) hybridized pσ–d
states). The remaining oxygen orbitals do not couple with the cooper orbitals and create
a separate, narrow non-bonding band [31].

In other words, the model of cuprates could have up to 17 bands (five orbital 3d
states from Cu and three 2p states from each of the four O atom surrounding Cu),
however, it is justified to consider only the pdσ band [33, 34] It is also visible on the
energy band diagram (cf. Fig. 1.9 (a) or Ref. [35]). We can see that most of the bands
are placed deeply below (or above) the Fermi energy level εF and thus their contribution
can be neglected. Separating the impact to the total density of states to Cu, O in plane

5The Figure 1.5 shows the situation for 2015. As a side note, there is a controversy about the value of
HgBa2Ca2Cu3O8`δ (Hg1223). First papers showed that the critical temperature is Tc “ 166 K [27,28],
however, recently a paper published in Nature Communications, confirming only Tc “ 153 K, cf.
Ref. [24].
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Figure 1.8: Splitting of the electron configuration 3d9 (left) and 2p6 (right) due to the
crystal field and Jahn-Teller effects. Only in-plane σ-type states from oxygen and x2 ´ y2

states from copper form strong covalent bonds. Therefore, the metallic conduction occurs
only in the x-y plane and theoretical models of superconductivity in cuprates are two
dimensional (Figure taken from [31]).

(x- and y-direction) and O out of plane (z-direction) (cf. Fig. 1.9 (b)), we have another
proof that Cu-Oz adds very little (if at all) to the density of states around the Fermi
level. Therefore, it is safe to assume that the physics of the cuprates is determined just
by the Cu-O plane that can be regarded as sufficient to describe all relevant phenomena,
including the superconductivity.

In summary, for pristine undoped cuprates the electronic structure should comprise
broad bonding and anti-bonding bands (σ and σ˚ in Fig. 1.8) and a narrow non-
bonding oxygen band. All the bands are filled except the anti-bonding (AB) band
that has the highest energy and is half-filled (cf. Fig. 1.10 (a)). According to such a
conceptualization, undoped cuprates should be metallic. However, experiments show
that they are in fact antiferromagnetic (AF) insulators. The process responsible for AF
configuration is the kinetic exchange induced by the virtual d–p–d hopping processes. As
a result, a 3d10–2p5 configuration is created in the intermediate state. Extra electrons
in the d shell experience a strong onsite Coulomb repulsion, typically U „ 8–10 eV,
whereas the width of the bare (uncorrelated) pdσ band is W „ 3 eV [31]. The
Coulomb interaction splits the anti-bonding band into two, with and without the double
occupancies, separated by the energy „ pU´W q (cf. Fig. 1.10 (b)). In effect, the ground
state is not metallic but insulating.

1.4 Derivation of t–J model from the Hubbard model

Experiments show that cuprates are very sensitive to an admixture of different elements.
By substituting certain atoms we can alter the number of electrons in the system. For
example, if in La2´xSrxCuO4 we substitute Sr2` ion for La3` ion, then the number
of electrons in Cu-O plane decreases by one.6 It turns out that a minimal model that
takes into account a single-band split by the onsite Coulomb repulsion and displays
the main features of cuprates (an antiferromagnetic insulator for the half-filled band,
superconducting dome when system is doped) can be directly derived from the Hubbard

6Taking electrons off is like adding holes to the system.
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Figure 1.9: (a) Energy of the band structure for La2CuO4 is calculated using density
functional theory (DFT method; Figure from Ref. [35]). B and AB stand respectively for
bonding and antibonding states. (b) Total (Tot) and projected density of states (DOS) for
La2CuO4 (Figure taken from Ref. [36]). Note, that there is no contribution of electrons
from the Oz orbitals to the total density of electron states around the Fermi level, εF “ 0.

Figure 1.10: (a) Illustration of the p–d electronic band for the case with the onsite electron
repulsion U “ 0. (b) p–d electronic band for U larger than the energy of an anion-cation
charge transfer, ∆. Labels B, NB, AB stand respectively for the bonding, not-bonding, and
anti-bonding bands. LHB and UHB designate the lower and the upper Hubbard subbands.
The lower band is filled by electrons. Upper band represents the double-occupied states
(Figure taken from Ref. [37]). (c) Schematic phase diagram for the cuprates, both doped
by electrons and holes. TN stands for the Neél temperature and T˚ for the pseudo-gap
characteristic temperature (Figure taken from Ref. [38])
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Figure 1.11: Schematic representation of the hopping processes described by Eqs. (1.5a)–
(1.5d), respectively.

model to the limit of large U (cf. original papers, Refs. [39–43]). Here we show the
derivation of that model (called t–J), following Refs. [9, 44].7

In the first step, we shall first define the following projection operators, P̂N “ 1´P̂0,
where P̂0 “

ś

ip1´ n̂iÒn̂iÓq, and n̂iσ “ ĉ:iσ ĉiσ is the particle number operator with spin
σ at site i. P̂0 operator projects wave functions in Fock space onto its subspace, where
the site double occupancies are eliminated. Conversely, the operator P̂N projects the
wave function to the sub-space with the double occupations present.

Note, that the following identities are satisfied: P̂0 ` P̂N “ 1, P̂0P̂N “ 0, and
P̂ 2
α “ P̂α, for α P t0, Nu. Therefore, one can rewrite Hubbard Hamiltonian (1.1) in the

form,

Ĥ ” pP̂0 ` P̂N qĤpP̂0 ` P̂N q “ P̂0ĤP̂0 ` P̂0ĤP̂N ` P̂NĤP̂0 ` P̂NĤP̂N , (1.4)

where in the leading orders,

P̂0ĤP̂0 “
ÿ

i‰j, σ

tij ĉ
:

iσp1´ n̂iσ̄qĉjσp1´ n̂jσ̄q, (1.5a)

P̂0ĤP̂N “
´

P̂NĤP̂0

¯:

“
ÿ

i‰j, σ

tij ĉ
:

iσp1´ n̂iσ̄qĉjσn̂jσ̄, (1.5b)

P̂NĤP̂0 “

´

P̂0ĤP̂N
¯:

“
ÿ

i‰j, σ

tij ĉ
:

iσn̂iσ̄ ĉjσp1´ n̂jσ̄q, (1.5c)

P̂NĤP̂N “
ÿ

i‰j, σ

tij ĉ
:

iσn̂iσ̄ ĉjσn̂jσ̄ ` U
ÿ

i

n̂iÒn̂iÓ. (1.5d)

Using the P̂0 and P̂N operators, the Hamiltonian has been separated into the parts
which describe respectively the hopping of a single electron:

a) from a singly occupied site to an empty site,

b) from a doubly occupied site to an empty site,

c) from a single occupied site to a site containing an electron of opposite spin
(creation of a doubly occupied state but also creation of an empty state),

d) from a doubly occupied site to a site containing an electron of opposite spin
(annihilation and then creation of a doubly occupied site),

as illustrated in Fig. 1.11..

7Another approach to derive t-J model, not from the single-band Hubbard model but from an
extended (three band) Hubbard model (called also as the d–p model) presented in Ref. [45].
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We introduce an auxiliary Hamiltonian,

Ĥε “ P̂0ĤP̂0 ` P̂NĤP̂N
loooooooooomoooooooooon

Ĥ0

`ε
´

P̂0ĤP̂N ` P̂NĤP̂0

¯

loooooooooooomoooooooooooon

Ĥ1

. (1.6)

Note, that for ε “ 1, we obtain the Hubbard Hamiltonian, i.e. Ĥε“1 “ Ĥ. Such notation
allows us to transform the Hamiltonian in the following manner,

H̃ε “ e´iεŜĤeiεŜ “

“ Ĥ0 ` εpĤ1 ` irĤ0, Ŝsq `
1

2
ε2

´

2irĤ1, Ŝs ´ rrĤ0, Ŝs, Ŝs
¯

`Opε3q,
(1.7)

where rÂ, B̂s ” ÂB̂ ´ B̂Â is the commutator, and Ŝ “ Ŝ: is certain (not explicitly
known) Hermitian operator of unitary transformation on H. The eiεŜ term can be
understood as a polynomial function of Ŝ (when is expanded in the Taylor series). All
terms above were grouped according to the power of ε. All terms proportional to εn

with n ě 3 are neglected, as it is marked by Opε3q (cf. the standard big O notation).
Next, we choose Ŝ so that Ĥ1 ` irĤ0, Ŝs ” 0. This condition can be rewritten, using
the P̂0 and P̂N projectors, as a set of four equations,8

P̂0rĤ0, ŜsP̂0 “ 0, (1.8a)

P̂0Ĥ1P̂N ` iP̂0rĤ0, ŜsP̂N “ 0, (1.8b)

P̂NĤ1P̂0 ` iP̂N rĤ0, ŜsP̂0 “ 0, (1.8c)

P̂N rĤ0, ŜsP̂N “ 0. (1.8d)

Since the second and third equations are connected by the Hermitian conjugation,
there are only three unique conditions for the Ŝ operator to be fulfilled. Because
P̂αĤ0P̂β “ δαβP̂αĤ0P̂α, 1 “ P̂0 ` P̂N and P 2

α “ Pα (everywhere α P t0, Nu), one
can write that,

P̂αĤ0ŜP̂β “ P̂αĤ0pP̂0 ` P̂N qŜP̂β “ pP̂αĤ0P̂αqpP̂αŜP̂βq, (1.9)

and consequently the three conditions for Ŝ are,9

pP̂αĤ0P̂αqpP̂αŜP̂αq “ pP̂αŜP̂αqpP̂αĤ0P̂αq, with α P t0, Nu (1.10a)

P̂0Ĥ1P̂N ` ipP̂0Ĥ0P̂0qpP̂0ŜP̂N q ´ ipP̂0ŜP̂N qpP̂NĤ0P̂N q “ 0. (1.10b)

Eq. (1.10a) means that P̂αŜP̂α need to be a function of operators that commute with
P̂αĤ0P̂α. Note, that such function has to have the form P̂αŜP̂α “ fpP̂αq “ a1 ` bP̂α.
From (1.10b), as long as the inverse operator of P̂NĤ0P̂N exists, we have that,

P̂0ŜP̂N “
´

´iP̂0Ĥ1P̂N ` pP̂0Ĥ0P̂0qpP̂0ŜP̂N q
¯

pP̂NĤ0P̂N q
´1. (1.11)

8Note, that in Eqs. (1.8a) and (1.8d) we used the fact that P̂αĤ1P̂α ” 0 for α P t0, Nu
9Note, that the first equations stand for two conditions. So in total we have three of them.
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It it can be solved iteratively,10

$

&

%

pP̂0Ŝ
p1qP̂N q “ ´ipP̂0Ĥ1P̂N qpP̂NĤ0P̂N q

´1,

pP̂0Ŝ
pnqP̂N q “

´

´iP̂0Ĥ1P̂N ` pP̂0Ĥ0P̂0qpP̂0Ŝ
pn´1qP̂N q

¯

pP̂NĤ0P̂N q
´1, for n ą 1.

(1.12)
ŜpnÑ`8q “ Ŝ can be evaluated, as11

P̂0ŜP̂N “ ´i
P̂0Ĥ1P̂N

P̂NĤ0P̂N

`

1` x` x2 ` . . .
˘

“ ´i
P̂0Ĥ1P̂N

P̂NĤ0P̂N ´ P̂0Ĥ0P̂0

« ´
i

U
P̂0Ĥ1P̂N ,

(1.13)
with x “ pP̂0Ĥ0P̂0qpP̂NĤ0P̂N q

´1. In the last step, we have noticed that P̂NĤ0P̂N and
P̂0Ĥ0P̂0 describe the states in the upper and lower subbands of the original model, and
are (on energy scale) separated roughly by U . Replacing operators with a scalar value
is an approximation, valid rigorously only up to the second order in t{U [9, 41].

Taking ε “ 1, the effective H̃ up to the second order in t{U takes the explicit form,

H̃ε“1 ” Ĥ “ pP̂0 ` P̂N qpH0 `
1

2
irĤ1, ŜsqpP̂0 ` P̂N q “

“ P̂0Ĥ0P̂0 ` P̂NĤ0P̂N ´
1

U
P̂0Ĥ1P̂NĤ1P̂0 `

1

U
P̂NĤ1P̂0Ĥ1P̂N `O

ˆ

t3

U2

˙

,

(1.14)

where we neglected the terms proportional to εn with n ě 3, since they describe multiple
hops that lead to higher-order contributions in t{U . In the explicit form, the four terms
of (1.14) are,

P̂0Ĥ0P̂0 “
ÿ

i‰j, σ

tij ĉ
:

iσp1´ n̂iσ̄qĉjσp1´ n̂jσ̄q, (1.15a)

P̂NĤ0P̂N “
ÿ

i‰j, σ

tij ĉ
:

iσn̂iσ̄ ĉjσn̂jσ̄ ` U
ÿ

i

n̂iÒn̂iÓ, (1.15b)

´
1

U
P̂0Ĥ1P̂NĤ1P̂0 “ ´

1

U
P̂0

˜

ÿ

i‰j, σ

tij ĉ
:

iσp1´ n̂iσ̄qĉjσn̂iσ̄

¸

ˆ

ˆ

¨

˝

ÿ

k‰l, σ1

tklĉ
:

kσ1 n̂kσ̄1 ĉlσ1p1´ n̂lσ̄1q

˛

‚P̂0, (1.15c)

1

U
P̂NĤ1P̂0Ĥ1P̂N “

1

U
P̂N

˜

ÿ

i‰j, σ

tij ĉ
:

iσn̂iσ̄ ĉjσp1´ n̂iσ̄q

¸

ˆ

ˆ

¨

˝

ÿ

k‰l, σ1

tklĉ
:

kσ1p1´ n̂kσ̄1qĉlσ1 n̂lσ̄1

˛

‚P̂N . (1.15d)

10It is not obvious at first if this iterative procedure is divergent. However, each of the terms P̂0Ĥ1P̂N ,
P̂NĤ0P̂N or P̂0Ĥ0P̂0 describes a hopping of electrons between sites, as it is shown in Fig. 1.11.
Probability of such hops is finite and the probability of multiple hops goes to zero with the increasing
number of hops. Therefore, we can assume that there exists an unique solution for ŜpnÑ`8q ” Ŝ.
11Since the operators Â and B̂´1 might not commute, Â

B̂
notation might be confusing, since it can

be understood either as pB̂q´1Â or ÂpB̂q´1. Here, such notation stands for ÂpB̂q´1.
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Figure 1.12: Hopping in the second order between two sites described by Eq. (1.15c) or
by Eq. (1.16a) (processes involving three different sites are neglected).

Figure 1.13: Hopping between two sites described by Eq. (1.15d) or by Eq. (1.16b)
(processes involving three different sites are neglected).

The Eqs. (1.15a)–(1.15d) describes:

aq a hopping of single electron between a singly occupied site and an empty site,

bq a hopping of single electron between a doubly occupied site and a singly occupied,

cq a spin exchange between two sites, with the creation of intermediate doubly
occupied state,

dq a transfer of doubly occupied state, with the intermediate creation of two singly
occupied states.

Note, that the process in which three different sites are involved is less likely than
a process that involves only two sites. Furthermore, as we already discussed, among
all two-sites processes, a hopping between the nearest neighbors (n.n.) provides the
largest contribution. Therefore, the Eqs. (1.15c) and (1.15d) can often be replaced by
the leading n.n. term,12

´
1

U
P̂0Ĥ1P̂NĤ1P̂0 « ´

ÿ

i‰j, σ

t2ij
U

´

n̂iσp1´ n̂iσ̄qn̂jσ̄p1´ n̂jσq ´ ĉ
:

iσ ĉiσ̄ ĉ
:

jσ̄ ĉjσ

¯

, (1.16a)

1

U
P̂NĤ1P̂0Ĥ1P̂N «

ÿ

i‰j, σ

t2ij
U

´

n̂iσn̂iσ̄p1´ n̂jσqp1´ n̂jσ̄q ´ ĉ
:

iσ ĉ
:

iσ̄ ĉjσ ĉjσ̄

¯

, (1.16b)

where the sum is over all pairs of neighboring sites. The first equation is written for
ti “ l ^ j “ ku (cf. Eq. (1.15c) and Fig. 1.12), while the second for ti “ l ^ j “ ku

when σ “ σ1 and ti “ k ^ j “ lu when σ “ σ̄1 (cf. Eq. (1.15d) and Fig. 1.13).

12We assumed here also, that tij “ tji, as tij parameters are assumed to be real.
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In sum, we have shown so far, that Hubbard Hamiltonian can be rewritten as,13

Ĥ2-site « P̂0Ĥ0P̂0 ` P̂NĤ0P̂N ´
1

U
P̂0Ĥ1P̂NĤ1P̂0 `

1

U
P̂NĤ1P̂0Ĥ1P̂N «

«
ÿ

i‰j, σ

tij ĉ
:

iσp1´ n̂iσ̄qĉjσp1´ n̂jσ̄q `
ÿ

i‰j, σ

tij ĉ
:

iσn̂iσ̄ ĉjσn̂jσ̄ ` U
ÿ

i

n̂iÒn̂iÓ`

´
ÿ

i‰j, σ

t2ij
U

´

n̂iσp1´ n̂iσ̄qn̂jσ̄p1´ n̂jσq ´ ĉ
:

iσ ĉiσ̄ ĉ
:

jσ̄ ĉjσ

¯

`

`
ÿ

i‰j, σ

t2ij
U

´

n̂iσn̂iσ̄p1´ n̂jσqp1´ n̂jσ̄q ´ ĉ
:

iσ ĉ
:

iσ̄ ĉjσ ĉjσ̄

¯

,

(1.17)

where we neglected terms describing hopping between the sites that are not the nearest
neighbors of each other, multiple hopping (except those described in Figs. 1.12 and
1.13), and processes where more than two sites are involved. Such omission is justified
only if |t|{U ! 1, since the probability of a process describing n correlated electron
hops is proportional to pt{Uqn (cf. Appendix A for the three-site corrections).

We can rewrite the above Hamiltonian for the lowest Hubbard subband, introducing
the following projected operators:

b̂:iσ ” ĉ:iσp1´ n̂iσ̄q, (1.18a)

b̂iσ ” ĉiσp1´ n̂iσ̄q, (1.18b)

ν̂iσ ” b̂:iσ b̂iσ “ n̂iσp1´ n̂iσ̄q, (1.18c)

that describe the creation of a single occupied state with spin σ at site i, the annihilation
of such a state, and projected particle number operator for site i and spin σ, respectively.
Note, that those operators do not anticommute, i.e.,

!

b̂iσ, b̂
:

jσ1

)

“ δij

´

p1´ n̂iσ̄qδσσ1 ` Ŝ
σ̄
i δσ̄σ1

¯

, (1.19a)
!

b̂:iσ, b̂
:

jσ1

)

“

!

b̂iσ, b̂jσ1
)

“ 0. (1.19b)

Using this notation, the spin operator Ŝi “
´

Ŝxi , Ŝ
y
i , Ŝ

z
i

¯T
can now be written as,

Ŝ`i ” Ŝxi ` iŜ
y
i ” ĉ:iÒĉiÓ ” b̂:iÒb̂iÓ, (1.20a)

Ŝ´i ” Ŝxi ´ iŜ
y
i ” ĉ:iÓĉiÒ ” b̂:iÓb̂iÒ, (1.20b)

Ŝzi ”
1

2
pn̂iÒ ´ n̂iÓq ”

1

2
pν̂iÒ ´ ν̂iÓq, (1.20c)

where Ŝ`i is the spin raising operator (it changes spin Ó to Ò), Ŝ´i is the spin lowering
operator (it changes spin Ò to Ó), and Ŝzi expresses the magnetic moment on one site i.14

13For those who wish to see the three-sites corrections, check Refs. [41,46]. For some critical remarks
concerning the importance of the three-site term, cf. Refs. [47, 48]
14Note, that the expressions for the spin component are identical in the original and projected

representations. This is because in such an operation only single-occupied sites are involved.
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As a result, Eq. (1.21) can be written to the form,

´
1

U
P̂0Ĥ1P̂NĤ1P̂0 “ ´

ÿ

xi, jy, σ

2t2ij
U

´

ν̂iσν̂jσ̄ ´ Ŝ
σ
i Ŝ

σ̄
j

¯

“
ÿ

xi, jy

4t2ij
U

ˆ

Ŝi ¨ Ŝj ´
1

4
ν̂iν̂j

˙

,

(1.21)
where ν̂i “ ν̂iÒ ` ν̂iÓ. Note, that

ř

xi, jy denotes summation over all nearest neighbors
with each pair being counted only once (i.e., when pi, jq is counted, then pj, iq is not).15

Thus, the Ĥ2-site Hamiltonian is,

Ĥ2-sitet´J « P̂0Ĥ0P̂0 ´
1

U
P̂0Ĥ1P̂NĤ1P̂0 «

« P̂0

¨

˝t
ÿ

xi, jyσ

´

ĉ:iσ ĉjσ `H.c.
¯

` J
ÿ

xi, jy

ˆ

Ŝi ¨ Ŝj ´
1

4
n̂in̂j

˙

˛

‚P̂0,
(1.22)

where we neglected 1
U P̂NĤP̂N part, since we assumed, that we have |t| ! U and n ď 1.

The expression (1.22) is what is known in the literature as the t–J model. Sometimes
the part „ 1

4 n̂in̂j is disregarded (cf. Ref. [49] covering the importance of that term)
or the hopping between further neighbors is included (cf. Ref. [50, 51] discussing the
impact of such processes). However, in most cases modifications change the results only
to a slight extent.16

1.5 Extension 1: t–J–U model

In the t–J model, derived above, the kinetic exchange integral is related to the values
of the hopping and the onsite Coulomb repulsion, namely J ” 4t2{U . However, if we
use the t–J model to describe the Cu–O structure in cuprates, the above relationship
may be not hold in such a case. Motivated by the microscopic electronic structure of
the cuprates, we could expect that a full model should incorporate the hybridization
processes between the 3d and 2p electronic states. The t–J model does not, and therefore
it can be regarded only as an effective model for the cuprates. The parameter t can be
related to the hopping integral between neighboring Cu ions, U to the onsite Coulomb
repulsion interaction of two electrons located in the same 3d shell of the Cu ion, and
J to the exchange interaction between two electrons from the nearest-neighboring 3d

sites. Therefore, there is no reason to expect, that J ” 4t2{U any more. Instead, the
quantities t, J , and U should be understood as independent parameters,17 as they are
expressed in terms of the 3d level position (εd) relative to that of 2p level (εp), the p–d
hybridization amplitude Vpd, as well as the magnitude of U for d electrons relative to
that for p electrons (Upp).

When the t–J model is derived from the Hubbard model, it is done with the
assumption of large U . In effect, no double occupancies are possible in this model.
However, the value of U measured in real systems might be not large enough to assume,

15In other words,
ř

i‰j 1 “ 2
ř

xi, jy 1, cf. page 11.
16One example, where t1 is necessary, is the topology of the Fermi surface. To get realistic results t1

term needs to be included, (t1 « ´t{4).
17 The value of J can be found either experimentally or from ab initio simulations, cf. e.g. Ref. [31],

specifically Table 7.2, according to which J for cuprates has a value of about 0.15–0.24 eV. Similarly,
it can be found that U has a value of about 6–8 eV (cf. e.g. Ref. [52]) and t about 0.22–0.5 eV. Note
that in calculations, to make it simpler, we define our energy scale with taking |t| “ 1. Then both U
and J are measured not in eV but in units of |t|.
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that all double occupancies are excluded. To include such a possibility in our model, we
can directly add a term that regulates the number of double occupancies, U

ř

i n̂iÒn̂iÓ,
to the t–J Hamiltonian. Such a model is known as t–J–U model,18

Ĥt–J–U “ t
ÿ

xi, jy, σ

´

ĉ:iσ ĉjσ `H.c.
¯

` J
ÿ

xi, jy

ˆ

Ŝi ¨ Ŝj ´
1

4
n̂in̂j

˙

` U
ÿ

i

n̂iÒn̂iÓ, (1.23)

where pairs in
ř

xi, jy are counted only once (cf. page 11). Note that in such a form

we are neglecting the part „ t2{U in P̂NĤP̂N (cf. Eq. (1.15b)), as it is regarded as
a decisively smaller contribution than that coming from the term „ U . In particular,
for U Ñ `8, we restore the original t–J model, since the creation of even a single
double occupancy would cost infinitely large energy; setting U “ 0 and t “ 0, the
Heisenberg model is restored, with J “ 0 a Hubbard model, and with J “ 0 and U “ 0

a free electron gas model. Therefore, the t–J–U model effectively combines the physics
coming from both the Hubbard and t–J models and is particularly useful when U and
the width of the energy band (W ) are the same order of magnitude.

For sake of simplicity, the term ´1
4

ř

xi, jy, σ J n̂in̂j is often neglected (for a critical
study, cf. Ref. [49]). However, as we will see, this term is directly connected to the role
of the intersite Coulomb repulsion, as discussed in the next Section.

The t–J–U model is analyzed in greater details in our paper (cf. Ref. [53]),
that is also included in the second part of this Thesis.

A natural extension of the model (1.23) is to allow for a direct hopping of electrons
between the second and the third nearest neighbors,

Ĥt–t1–t2–J–U “ Ĥt–J–U`t
1

ÿ

xxi, jyy, σ

´

ĉ:iσ ĉjσ `H.c.
¯

`t2
ÿ

xxxi, jyyy, σ

´

ĉ:iσ ĉjσ `H.c.
¯

, (1.24)

where pairs in
ř

xxi, jyy and in
ř

xxxi, jyyy are counted only once (cf. page 11). Note that
considering the antiferromagnetic order (with Q “ pπ, πq) on a square lattice, the t1

and t2 terms represent hopping within the same antiferromagnetic sublattice. Therefore,
we can expect that introducing t1 and t2 terms should not alter the AF stability, but
since those terms contribute directly to electrons’ (hole) motion, they should have an
influence on the quasiparticle dispersion. On the other hand, if we have system with a
short magnetic order (shorter than the range of the hopping) then the transfer process
of electrons due to the t1 and t2 terms may create spin excitations which contribute to
the coherent hole motion (cf. Ref. [54]). It was also found that those additional hopping
terms lead to a better agrement with the ARPES experiments.19

The importance of the additional hopping terms is discussed in greater
detail in our paper (cf. Ref. [51]), that is also included in the second part
of this Thesis.

18Note, that for the t–J model, each term contains a P̂0 projector, that suppresses the double
occupancies, d2. For the t–J–U model, those projectors are not needed, since we can directly control
the ratio of double occupied sites by setting U .
19For the importance of t1, cf. Ref. [55]; for the importance of t2, cf. Ref. [56–60], and for a review

cf. Ref. [37]). Finally, for the sake of simplicity, one can ask what is the impact of including the exchange
term for more distant neighbors. This question was analyzed. First, the estimated value of J 1 in a real
system would be rather small [61]; Second, even if J 1 was significant, for J 1{J ă 0.65 introducing J 1

does not qualitatively change the obtained results [50].
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1.6 Extension 2: t–J–U –V model

A natural extension of the t–J–U model is the model where we include direct intersite
Coulomb repulsion between the electrons on the neighboring sites. The Hamiltonian is
then of the form,

Ĥt–J–U–V “ t
ÿ

xi, jy, σ

´

ĉ:iσ ĉjσ `H.c.
¯

` t1
ÿ

xxi, jyy, σ

´

ĉ:iσ ĉjσ `H.c.
¯

` . . .

` J
ÿ

xi, jy

Ŝi ¨ Ŝj ` U
ÿ

i

n̂iÒn̂iÓ `

ˆ

Ṽ ´
1

4
J

˙

ÿ

xi, jy,σ,σ1

n̂iσn̂jσ1 (1.25)

where where pairs in
ř

xi, jy and in
ř

xxi, jyy are counted only once (cf. page 11), and

where for simplicity we can denote, V ” Ṽ ´ 1
4J . The inter-Coulomb repulsion Ṽ is

usually substantially smaller than the intersite repulsion U and can be similar order to
J . Thus, V can in principle be either negative of positive. In the first approximation,
we could assume that Ṽ « J{4, and therefore make the term „ ninj negligible.

There is another way to justify the t–J–U–V model, not as an extension of t–
J–U model, but rather as a simplification of the d–p model (a three-band model, that
represents the Cu–O plane in cuprates, cf. Refs. [31,62]). The d–p model can be reduced
using the cell-partubation theory to an effective, one band t-J-V model (cf. Ref. [45]).
We can also argue, that the extension of t–J model to the t–J–U (or t–J–U–V ) form
can be also viewed from the physical point of view. Namely, the effective one band
model of correlated fermions contains the general form of narrow d-band Hamiltonian
(cf. Ref. [15], Appendix B), but the parameters are renormalized by interband processes
or are taken in the form discussed above. In particular, the value of exchange integral
comes from superexchange processes [34,63].

1.7 Charge density wave: a brief literature survey

The first time the long-range charge order (CO) was observed was in 1939 in Fe3O4

[64, 65]. Later, CO was found in many transition metal oxides [66]. The interest in
this field grew again, when the charge density wave (CDW) was found in cuprates
[67, 68]. However, despite the growing evidence that the CDW state is a common
feature (cf. Refs. [69–74]), and the theoretical work regarding stability of the CDW
(cf. Refs. [75–79]), we are still very far from a consensus about the nature of that state.

It is observed [72], that CDW in cuprates appears frequently in the proximity of the
superconductivity (SC) phase. This is the case for YBa2Cu3O6.67 (YBCO) [69,72–74],
La2´x´yNdySrxCuO4 (Nd-LSCO), La2´xBaxCuO4 (LBCO), and Bi2Sr2´xLaxCuO6`x

[70, 71]. In all those cases CDW appears for the hole doping around δ “ 1{8 and its
critical temperature is higher than that for SC (cf. Refs. [72, 74]). In the region where
CDW appears, just below the optimal doping, the SC dome has a small, but defined
plateau (cf. Figs. 1.14 and 1.15). CDW and SC have a similar energy scale and those
two phenomena compete with each other, which can be seen when the temperature
dependence of the CDW peak intensity is measured by varying the applied magnetic
field (cf. Fig. 1.16).20 The wave vector of the CDW modulation was measured for YBCO
to be Q « p0, 0.629p1qπq or Q « p0.629p1qπ, 0q in the plane of Cu–O layers [72].21 In
20CDW competes not only with SC but also with the SDW phase, cf. Ref. 73.
21There are also suggestions that CDW should have a checkerboard like structure [80,81].
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Figure 1.14: (a) Phase diagram of YBa2Cu3O7´x on temperature–doping plane. TN
stands for the Néel Temperature, TSDW for the spin density wave, TCDW for the charge
density wave, T˚ for the onset of pseudo-gap state (black squares from the Nernst effect,
purple from the neutron diffraction). TH and TNMR stand for the temperature scales below
which a negative Hall coefficient and field-induced charge order are observed, respectively.
(b) Phase diagram of YBa2Cu3O7´x on a temperature–magnetic–field plane. Tcusp stands
for the temperature below which the CDW is suppressed by SC, while TV L for the
temperature in which vortex liquid is formed. (Figures taken from Ref. [72]).

Figure 1.15: Phase diagram for YBa2Cu3O7´x on a temperature–doping plane. For the
hole doping p ă 0.09 and p ą 0.18 no CDW order was found. The optimal doping for SC is
around po “ 0.16. Note that the CDW presence coincides with the SC plateau appearance
(Figure taken from Ref. [74]).
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Figure 1.16: (a) Temperature dependence of the CDW peak intensity measured for
different magnetic field. Note that when SC is suppressed by magnetic field, CDW intensity
increases. (b) Magnetic field dependence of the CDW peak intensity measured for the
different temperatures. For T “ 2 K there is linear growth of the intensity with the
increasing field (at least in the range H P p0, 17 Tq). For T ą Tc, there is no effect of
the magnetic field on the value of the CDW intensity. (Figure taken from Ref. [72]).

other cuprates, CDW was found to have a similar symmetry, usually in one direction
but with a periodicity that is not a simple multiplication of the lattice constant, i.e.,
the wave vector Q is close, but not equal to, p0, 2π{3q [71, 72]. In the newest work on
this subject (cf. for example Ref. [82]), it is suggested that the situation might be even
more complicated. Namely, there may appear two distinctive CDW orders: one that
appears in each Cu–O layer independently (and is not correlated between layers) and
a second that has a three-dimension nature [83] that appears only at low temperature
and in higher magnetic fields. Moreover, it was also observed that CDW does not
form simple pattern but rather a mosaic of regions with stripes oriented in different
directions [84–87], that CDW order parameter may have d-wave symmetry [80, 88],
and that the CDW appearance may be connected with the presence of the pseudogap
phase [72,89,90].

The stability of the CDW phase in the t–J–U–V model regarding different
Q vector choices is discussed in our article (cf. Ref. [91]), that is also included
in the second part of this Thesis.
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Chapter 2

Methods used in the Thesis

2.1 The Gutzwiller Approach

One of the interesting characteristics of any system, is its ground state energy,

E “
xΨ | H | Ψy

xΨ | Ψy
, (2.1)

where we assumed that our many-particle ground state is |Ψy. In the original Gutzwiller
approach [92, 93], the wave function |Ψy is approximated by |ΨyG, derived from an
uncorrelated, normalized single-particle state. Namely,

|Ψy « |ΨyG “ P̂ |Ψ0y ”
ź

i

P̂i |Ψ0y, (2.2)

where P̂i weights the configuration of given occupancies (∅, Ò, Ó, ÒÓ) of the single lattice
site i. In the general form,

P̂i “ λi,∅p1 ´ n̂iÒqp1 ´ n̂iÓq ` λi,Òn̂iÒp1 ´ n̂iÓq ` λi,Óp1 ´ n̂iÒqn̂iÓ ` λi,dn̂iÒn̂iÓ. (2.3)

Following [94], we assume that P̂ 2
i “ 1`xi n̂

HF
iÒ n̂HFiÓ , where xi is a variational parameter,

and n̂HFiσ ” n̂iσ´niσ. Note that P̂ 2
i acting on the local basis, |∅yi, |Òyi, |Óyi, |ÒÓyi, yields,

λ2
i,∅ “ 1` xi niσniσ̄, (2.4a)

λ2
i,σ “ 1´ xi p1´ niσqniσ̄, (2.4b)

λ2
i,d “ 1` xi p1´ niσqp1´ niσ̄q. (2.4c)

When @i xi “ 0, then the operator P̂ “ 1 and |Ψy “ |Ψ0y, but when xi ă 0, then the
probability that the site i has two electrons is reduced. To keep the average number
of electrons for each site in the system constant, xi ă 0 requires that the number of
the single occupied sites is increased and the number of empty sites is reduced at the
same time. Nevertheless, the exact interpretation of parameter xi is not easy to provide,
therefore we introduce d2

i as the likelihood of double occupancy at site i, namely,

xΨ|n̂iÒn̂iÓ|Ψy ” d2
i . (2.5)
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We can relate d2
i to the xi parameter, since

d2
i “ xΨ|n̂iÒn̂iÓ|Ψy “ xΨ0|P̂in̂iÒn̂iÓP̂i|Ψ0y “ λ2

id niÒniÓ, (2.6)

where we assume that xΨ0|n̂iÒn̂iÓ|Ψ0y ” xn̂iÒn̂iÓy0 “ niÒniÓ. i.e., that there is no local
pairing of electrons, xĉiÒĉiÓy0 “ 0, and that hopping does not change the spin of electron
xĉ:iÒĉiÓy0 “ 0. Using Eqs. (2.4c)–(2.6), we can show now, that

xi ”
d2 ´ niÒniÓ

niÒniÓp1´ niÒqp1´ niÓq
, (2.7)

and as a result we can rewrite the expressions (2.4a)–(2.4c) in the form:

λ2
i,∅ “

1` d2 ´ nσ ´ nσ̄
p1´ nσqp1´ nσ̄q

, (2.8a)

λ2
i,σ “

nσ ´ d
2

nσp1´ nσ̄q
, (2.8b)

λ2
i,d “

d2

nσnσ̄
. (2.8c)

It allows us to calculate that

P̂iĉ
:

iσP̂i “
´

λσn̂iσp1´ n̂iσ̄q ` λdn̂iσn̂iσ̄

¯

ĉ:iσ

´

λσ̄n̂iσ̄p1´ n̂iσq ` λ0p1´ n̂iσqp1´ n̂iσ̄q
¯

“ pαiσ ` βiσn̂
HF
iσ̄ qĉ

:

iσ, (2.9)

where

αiσ “

d

pniσ ´ d2
i qp1´ n` d

2
i q

niσp1´ niσq
` |di|

d

niσ̄ ´ d2
i

niσp1´ niσq
, (2.10)

βiσ “ ´

d

pniσ ´ d2
i qp1´ n` d

2
i q

niσp1´ niσqp1´ niσ̄q2
` |di|

d

niσ̄ ´ d2
i

nσn2
σ̄p1´ nσq

. (2.11)

Note that for P̂iĉiσP̂i we would obtain the same result as above. Now, using the above
expressions, one can calculate the average of any operator. In the next Sections, we
present the result for hopping and spin exchange terms. Another example is presented
in Appendix B.

2.1.1 Example 1: renormalization factor for hopping term

The average of the hopping term is

xĉ:iσ ĉjσy “ xP̂iP̂j ĉ
:

iσ ĉjσP̂iP̂jy0 “ xP̂iĉ
:

iσP̂i P̂j ĉjσP̂jy0 “ αiσαjσxĉ
:

iσ ĉjσy0

` αiσβjσxn̂
HF
iσ̄ ĉ:iσ ĉjσy0 ` αjσβiσxn̂

HF
jσ̄ ĉ:iσ ĉjσy0 ` βiσβjσxn̂

HF
iσ̄ n̂HFjσ̄ ĉ:iσ ĉjσy0, (2.12)

where we denote xΨ| . . . |Ψy ” x. . .y and xΨ0| . . . |Ψ0y ” x. . .y0, in order to make the
expressions easier to read. Using the Wick theorem, we can check that

xn̂HFiσ̄ ĉ:iσ ĉjσy0 “ 0, (2.13a)

αjσβiσxn̂
HF
jσ̄ ĉ:iσ ĉjσy0 “ 0, (2.13b)
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as far as we assume that xĉ:iσ ĉ
:

iσ̄y0 “ 0 and xĉ:iσ ĉjσ̄y0 “ 0, which is usually a natural
expectation (no local pairing of electrons and conservation of spin during hoppings).
The last average, βiσβjσxn̂HFiσ̄ n̂HFjσ̄ ĉ:iσ ĉjσy0, is usually non-zero, but small, and therefore
it can be neglected here. We are left with,

xĉ:iσ ĉjσy « αiσαjσxĉ
:

iσ ĉjσy0, (2.14)

where αiσ is expressed by Eq. (2.10). In the simpler case, where neither AF nor CDW
order is considered, we have αiσ “ αjσ “ α, and,

αiσαjσ ” α2 “ gt ”
n´ 2d2

np1´ n{2q

´

a

1´ n` d2 ` |d|
¯2
, (2.15)

where gt is the Gutzwiller factor for the hopping term, well known from the literature
[34,95–97].

2.1.2 Example 2: the renormalization factor for spin exchange term

In a similar manner, the Gutzwiller factors for other averages can be calculated, for
example for xŜi ¨ Ŝjy. First, we check that

P̂iŜ
`
i P̂i “ P̂iĉ

:

iσ ĉiσ̄P̂i “ λi,σn̂iσp1´ n̂iσ̄q ĉ
:

iσ ĉiσ̄ λi,σ̄n̂iσ̄p1´ n̂iσq “ λi,σλi,σ̄ ĉ
:

iσ ĉiσ̄. (2.16)

The same result will be obtained for Ŝ´i and Ŝ˘j . For simplicity, we consider here only
the AF ordering, for which niσ ” njσ̄, with i and j denoting the nearest neighbors.
Thus,

ÿ

xi,jy

1

2

´

xS`i S
´
j y ` xS

´
i S

`
j y

¯

“ g˘s
ÿ

xi,jy

1

2

´

xS`i S
´
j y0 ` xS

´
i S

`
j y0

¯

, (2.17)

where

g˘s ” λ2
i,σλ

2
i,σ̄ “

pniσ ´ d
2
i qpniσ̄ ´ d

2
i q

niσniσ̄p1´ niσqp1´ niσ̄q
“

niσniσ̄ ´ nd
2
i ` d

4
i

niσniσ̄p1´ niσqp1´ niσ̄q
. (2.18)

Note that because the above expression is invariant under the transformation σ Ñ σ̄,
the g˘s does not depend on the index i choice.

For Ŝzi and for Ŝzj we can obtain,

Λ´1
ÿ

xi,jy

xSzi ¨ S
z
j y “

1

4

ÿ

xi,jy

xP̂iS
z
i P̂i P̂jS

z
j P̂jy0 “

1

4

ÿ

xi,jy,σ,σ1

σσ1xP̂iĉ
:

iσ ĉiσP̂i P̂j ĉ
:

jσ1 ĉjσ1P̂jy0

« ´gz χs χ2 ´ gz∆
s

`

∆2
S `∆2

T

˘

, (2.19)

with

gz χs ”

´

1´ ni,σpλ
2
i,d ´ λ

2
i,σq ´ ni,σ̄pλ

2
i,d ´ λ

2
i,σ̄q ` ni,σpλ

2
d ´ λ

2
i,σqni,σ̄pλ

2
i,d ´ λ

2
i,σ̄q

¯

,(2.20)

gz∆
s ”

´

1´ ni,σpλ
2
i,d ´ λ

2
i,σq ´ ni,σ̄pλ

2
d ´ λ

2
i,σ̄q

`
1

2

´

“

ni,σpλ
2
i,d ´ λ

2
i,σq

‰2
`
“

ni,σ̄pλ
2
d ´ λ

2
i,σ̄q

‰2
¯¯

, (2.21)
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where we neglected terms proportional to χ4, ∆4
S , ∆4

T , and “mixed” terms like nσnσ̄χ2.
The average hopping amplitude for the first nearest neighbors is defined by

χ ” xĉ:iσ ĉjσy0, (2.22)

and the electron pairing amplitude between the nearest neighbors, with spin-singlet
and spin-triplet components, ∆S and ∆T , are defined by

∆ijσ ” xĉiσ ĉjσ̄y0 “ ´τij
`

σ∆S ` e
iQ¨Ri∆T

˘

, (2.23)

where τij ” 1 for j “ i˘ x̂, and τij ” ´1 for j “ i˘ ŷ to ensure the d-wave symmetry
of ∆ijσ (cf. Ref. [53]).

In the simpler, paramagnetic case, @i : niσ “ niσ̄ “ n{2, and

g˘s ” gz χs ” gz∆ ”

ˆ

n´ 2d2

np1´ n{2q

˙2

, (2.24)

which is the well known renormalization factor for spin-exchange term in paramagnetic
cases (cf. Refs. [34, 95–97]).

For more examples of the Gutzwiller factor’s derivation, cf. Appendix B.

2.2 Two ways of defining the Gutzwiller factor in the
presence of extra symmetries

In this Section we show that introducing extra ordering, such as AF or CDW, can
lead to a specific ambiguity in determining the final form of the Gutzwiller factors. We
follow here the material gathered in the Appendix to our paper, Ref. [91], extending
the discussion by additional examples.

For simplicity, we assume in this Section that in our model (Hubbard, t–J–U or
t–J–U–V ) the parameter U Ñ8, what results in d2 Ñ 0. In other words, we consider
the case where the correlated state |Ψy has no double occupancies. Additionally, to
make our arguments easy to follow, we consider only the AF order (no CDW) and
we focus on the example of the Gutzwiller factor for the hopping term that has been
discussed in the previous Section (cf. Eq. (2.15)).

In the Gutzwiller approch, we try to find an operator P̂ , that makes the following
approximation as accurate as possible,

xΨ|ĉ:iσ ĉjσ|Ψy « xΨ0|P̂iĉ
:

iσP̂i P̂j ĉjσP̂j |Ψ0y (2.25)

On the other hand, we can try to find a function gtpniσ, niσ̄, d, . . .q (called the Gutzwiller
renormalization factor), that satisfies the following equation:

xΨ0|P̂iĉ
:

iσP̂i P̂j ĉjσP̂j |Ψ0y ” gt xΨ0|ĉ
:

iσ ĉjσ|Ψ0y. (2.26)

Therefore, the Gutzwiller renormalization factor can be obtained by comparing the
likelihood of a specific process (in this example, hopping) in the correlated |Ψy, and in
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Table 2.1: Likelihood of a site being in the certain state (uncorrelated case |Ψ0y).

state for A sublattice for B sublattice

|Òy or |ÒÓy nAÒ “
1
2pn`mq nBÒ “

1
2pn´mq

|Óy or |ÒÓy nAÓ “
1
2pn´mq nBÓ “

1
2pn`mq

|Òy nAÒp1´ nAÓq nBÒp1´ nBÓq

|Óy nAÓp1´ nAÒq nBÓp1´ nBÒq

|∅y p1´ nAÒqp1´ nAÓq p1´ nBÒqp1´ nBÓq

|ÒÓy nAÒnAÓ nBÒnBÓ

the uncorrelated |Ψ0y states, namely

gtpniσ, niσ̄, d, . . .q «
xΨ|ĉ:iσ ĉjσ|Ψy

xΨ0|ĉ
:

iσ ĉjσ|Ψ0y
. (2.27)

Let us assume that there are on average n electrons per site and the staggered
magnetization is equal to m. We can divide our lattice into two sublattices, A
and B, where the average spin σ for the A sublattice is nAσ “ 1

2pn ` σmq, and
nBσ “ nAσ̄ “

1
2pn´σmq for the B sublattice. For the non-correlated (U “ 0) case |Ψ0y,

on average nÒÓ “ nAÒnAÓ “ nBÒnBÓ sites are double occupied and consequently,
n∅ “ p1´ nAÒqp1´ nAÓq “ p1´ nBÒqp1´ nBÓq sites are empty (cf. Table 2.1).

In the correlated (U ‰ 0) state |Ψy, the likelihood of the double occupancy should
be smaller than that determined for |Ψ0y. The appropriate adjustment is made by
choosing the proper form of the P̂ operator (cf. Refs. [92, 93]). In the specific case of
U Ñ8, no double occupancies should be allowed in the correlated state, which results
in @i λi,d ” 0 (cf. the general form of P̂ operator, Eq. (2.3)). However, by changing the
probability of states to be doubly occupied, we also change the average number of the
electrons in the system. To avoid this, other lambdas, λi,∅, λi,Ò and λi,Ó, need to be
modified as well.

There are two intuitive ways to achieve this:

1. We can “split” every double occupancy, separating the electrons (one Ò and one Ó)
to different, previously empty sites. Such an operation would not change the global
magnetization of the system (the difference between the up and down electrons,
m ” nÒ ´ nÓ) but it would modify the proportion of the number of the single
occupied states |Òy to the number of |Óy states.

2. We can “erase” the double occupancies. However, such action would change the
number of electrons in the system. Therefore, to restore the previous number of
electrons, we can proportionally add up and down electrons to previously empty
sites. This operation would keep the proportion of the number of single occupied
states with spin up to those with spin down, but it would modify the global
magnetization of the system.

Each of the presented schemes leads to a different probability of sites to be in
certain states, as it is presented in the Table 2.2. Note, that in the first scheme, the
proportion of |Òy states is the same as “|Òy or |ÒÓy” states in the Table 2.1. In the
second scheme, after erasing the doubly occupied states, the number of the electrons
has changed from n to n ´ nAσnAσ̄ in the A sublattice and to n ´ nBσnBσ̄ in the B
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Table 2.2: Likelihood of a site being in a certain state (correlated case |Ψy). In the table,
only the results for the A sublattice are shown. For the B sublattice simply nBσ “ nAσ̄.

state scheme 1. (“splitting”) scheme 2. (“erasing”)

|Òy nAÒ “
1
2pn`mq nAÒp1´ nAÓq

n
n´2nAÒnAÓ

|Óy nAÓ “
1
2pn´mq nAÓp1´ nAÒq

n
n´2nAÒnAÓ

|∅y 1´ nAÒ ´ nAÓ 1´ nAÒ ´ nAÓ

|ÒÓy 0 0

sublattice. Therefore, to restore the previous number of electrons in the system, the
probability that the state will have single electron σ was renormalized by the factor
n{pn´ 2nAÒnAÓq ” n{pn´ 2nBÒnBÓq.

It is possible to derive the gt Gutzwiller factor for the hopping term in both schemes.
For the hopping to occur in the correlated state in one site (for example, belonging to the
A sublattice) there needs to be a single electron with the spin σ while the neighboring
site (that belongs the the B sublattice) needs to be empty (or vice versa). Therefore,
by comparing the amplitudes of the bra and the ket contributions of xΨ|ĉ:iσ ĉjσ|Ψy, with
the help of Table 2.2, we can write that in the first scheme,

xΨ|ĉ:iσ ĉjσ|Ψy
p1q
“
?
nAσnBσp1´ nq. (2.28)

while in the second,

xΨ|ĉ:iσ ĉjσ|Ψy
p2q
“

d

nAσp1´ nAσ̄qnBσp1´ nBσ̄q

pn´ 2nAÒnAÓqpn´ 2nBÒnBÓq
np1´ nq. (2.29)

Analagously, we can calculate the hopping probability in the uncorrelated state.
Namely, the hopping can occur when either one site has electron with the spin σ or
is double occupied, and when either the neighboring site is empty or has one electron
with the spin σ̄ (cf. also Ref. [98]). Using Table 2.1, we get,

xΨ0|ĉ
:

iσ ĉjσ|Ψ0y “
a

nAσp1´ nBσqnBσp1´ nAσq. (2.30)

This leads to (cf. Eq. (2.27)) to either

g
p1q
t “

1´ n
a

p1´ nAÒqp1´ nBÒq
, (2.31)

or
g
p2q
t “

1´ n

1´
2nAÒnAÓ

n

”
1´ n

1´
2nBÒnBÓ

n

. (2.32)

Both g
p1q
t and g

p2q
t are present in the literature, for example g

p2q
t in [34, 95, 97, 99],

whereas gp1qt is identical with the zero-order renormalization factors of the DE-GWF
method [94,100–103].

Note that if no AF order is present,

g
p1q
t “ g

p2q
t “

1´ n

1´ n{2
, (2.33)
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and there is no difference between g
p1q
t and g

p2q
t anymore (cf. also Eq. (2.15) and take

d “ 0).

If instead CDW and no AF order were considered, we would simply take in Eqs.
(2.31) and (2.31) that nAσ “ nA and nBσ “ nB such, that nA ‰ nB. In such case
the Gutzwiller factors obtained within the first and the second schemes are different as
well.

The above discussion can be easily generalized for other terms than hopping (cf.
Appendix C).

We have checked that the two schemes lead to substantially different outputs,
especially regarding the stability of the AF phase. In the first scheme the AF phase is
stable in a wide range of doping, from 0 to about δmax “ 0.27 (cf. Ref. [91], while using
the second scheme the AF phase is stable only very close to the half-filled band, with
δmax ă 0.006 (cf. Ref. [53]).

The stability of the AF phase in the t–J–U model with the Gutzwiller
factors derived according to the second schema is discussed in our article,
Ref. [91]. The stability of the AF phase in the second schema is presented
in our article, Ref. [53]. Both articles are included in the second part of the
Thesis.

2.3 Statistically-consistent Gutzwiller approach (SGA)

We show here how to use the statistically-consistent Gutzwiller approach (SGA). Let
us consider the Hubbard model in the ferromagnetic (FM) case,

Ĥ “
ÿ

i‰j, σ

tij ĉ
:

iσ ĉjσ ` U
ÿ

i

n̂iÒn̂iÓ ´
ÿ

iσ

σhĉ:iσ ĉiσ, (2.34)

where h “ 1
2gµBH, withH being the external magnetic field. In the standard Gutzwiller

approach (GA),
E “ xψ|Ĥ|ψy « xψ0|ĤGA|ψ0y, (2.35)

where
ĤGA “

ÿ

i‰j, σ

gt tij ĉ
:

iσ ĉjσ ` ΛUd2 ´
ÿ

iσ

σhĉ:iσ ĉiσ, (2.36)

with gt “ gtpn,m, dq being the Gutzwiller renormalization factor (cf. Eq. (2.14) and
the discussion in Section 2.2), where Λ is the number of sites, n is the average number
of electrons per site, m is the magnetization and d2 is the probability of sites being
doubly occupied.

The Hamiltonian ĤGA can be easily diagonalized,

HGA “
ÿ

kσ

pqσpd, n, mqεk ´ σhqĉ
:

kσ ĉkσ ` ΛUd2, (2.37)

with
εk “ 2t pcospkxaq ` cospkyaqq ` 4t1 cospkxaq cospkyaq ` . . . (2.38)

for the square lattice. We denote here that tij ” t for i and j indicating the nearest
neighbors, tij ” t1 for i and j indicating the second nearest neighbors, etc.
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The grand potential functional for finite temperature T is

F pGAq “ ´
1

β
lnZ, (2.39)

with

Z “ Tr
´

e´βpĤGA´µn̂iq
¯

“
ź

kσ

1
ÿ

ni“0

e´βniE
(GA)
kσ e´βUd

2
“

ź

kσ

´

1` e´βE
(GA)
kσ

¯

e´βUd
2
,

(2.40)
where β ” 1{kBT , with kB being the Boltzmann constant kB « 8.617 ¨10´5 eV/K, and

E
(GA)
kσ “ gσεk ´ σh´ µ. (2.41)

It leads to,

F (GA) “ ´ 1

β

ÿ

kσ

lnp1` e´βE
(GA)
kσ q ` ΛUd2. (2.42)

that can be minimized. The necessary conditions for the minimum of F (GA) are,

ÿ

kσ

Bqσpd, n,mq

Bd
fpEkσqεk “ ´2ΛUd, (2.43a)

ÿ

kσ

Bqσpd, n,mq

Bn
fpEkσqεk “ 0, (2.43b)

ÿ

kσ

Bqσpd, n,mq

Bm
fpEkσqεk “ 0, (2.43c)

where fpEkσq ”
`

1` eβEkσ
˘´1

is the Fermi function.

However, on the other hand, the definition of m and n implies the following
equations,

n “
1

Λ

ÿ

kσ

nkσ “
1

Λ

ÿ

kσ

fpEkσq, (2.44a)

m “
1

Λ

ÿ

kσ

nkσ “
1

Λ

ÿ

kσ

σfpEkσq. (2.44b)

There are in total 5 equations for 3 variables (n, m and d), therefore in the general
case, there is no solution (no such n, m and d that fulfill all of the equations).

The situation can be fixed, as first presented in Ref. [104], introducing constraints
for each mean-field average that appear in calculated energy (cf. Eq. (2.35)). In our
case, the modified Hamiltonian has the form,

Ĥλ “ ĤGA ´
ÿ

i

λn

˜

ÿ

σ

ĉ:iσ ĉiσ ´ n

¸

´
ÿ

i

λm

˜

ÿ

σ

σĉ:iσ ĉiσ ´m

¸

. (2.45)

It leads us to

F pSGAq “ ´
1

β

ÿ

kσ

lnp1` e´βE
pSGAq
kσ q ` Λ

`

λnn` λmm` Ud
2
˘

, (2.46)
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with
E
pSGAq
kσ “ gσεk ´ σph` λmq ´ µ´ λn. (2.47)

The necessary conditions for the minimum of F (SGA) are now,

λn “ ´
1

Λ

ÿ

kσ

Bgσ
Bn

fpE
pSGAq
kσ qεk, (2.48a)

λm “ ´
1

Λ

ÿ

kσ

Bgσ
Bm

fpEkσpSGAqqεk, (2.48b)

n “
1

Λ

ÿ

kσ

fpE
pSGAq
kσ q, (2.48c)

m “
1

Λ

ÿ

kσ

σfpE
pSGAq
kσ q, (2.48d)

d “ ´
1

2ΛU

ÿ

kσ

Bgσ
Bd

fpE
pSGAq
kσ qεk. (2.48e)

There is 5 equations for 5 variables, thus in the general case, the solution may exist
and can be obtained by solving the above equations numerically.

The introduction of the extra Lagrange multipliers to the Hamiltonian renormalized
first by the Gutzwiller factors is the core idea of the statistically consistent Gutzwiller
approach (SGA) (cf. Refs. [104–106]). In SGA we ensure that the averages calculated
in a self-consistent manner coincide with those determined from the variational
minimization principle. That approach was successfully applied in various cases, cf.
Refs. [51, 53,107–113]).

The comparison of GA and SGA for the t–J–U model is presented in the
article Ref. [53], that is also included in the second part of this Thesis.
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Chapter 3

Heavy fermions and Anderson
lattice model

3.1 Introductory remark: heavy fermion materials

Heavy fermion materials are a type of intermetallic compound, containing elements
with partially filled 4f or 5f valence shells. The effective mass of electrons in heavy
fermion materials is enhanced hundreds or thousands times, as compared to the value
expected for the free electron gas. The first discovered heavy fermion material was
CeAl3 [114], but soon other compounds were found [115]. The common characteristic
of these materials is that they exhibit both behavior similar to a simple ideal gas
(e.g., the linear scaling of the specific heat coefficient, cf. Ref. [116]), and to systems
with partly localized electrons (e.g., the mentioned electron mass enhancement and
the Kondo effect). Additionally, in heavy fermions materias, the non-BCS pairing
mechanism was observed (spin-triplet superconductivity), as well as the coexistence
of the SC phase with weak ferromagnetism (FM) [117–119]. First, the SC and FM
phases were believed to always compete with each other. However, as it was observed
latter for UG2 [120], that the FM and SC phases for heavy fermion systems seem to be
strongly intertwined [121–125]. Such phenomena were soon found in other materials,
e.g., in URhGe [126] and in UCoGe [127].

The discoveries regarding FM and SC coexistence have triggered intensive research.
In particular, UGe2 was intensively studied, both theoretically [111–113, 130–143] and
experimentally [121–125]. For this compound, the description of its magnetism is
particularly challenging due to the emerging complex phase diagram (cf. Fig. 3.1).
It comprises two distinct FM phases: with stronger (FM2) and weaker (FM1)
magnetization and SC dome spreading in between them [128]. The phase transitions
from FM2 to FM1 and from FM1 to paramagnetism (PM) at low temperature are
of the first order. When temperature is increased (to above 7K), a metamagnetic
phase transition FM2ÑFM1 is terminated with the critical ending point (CEP) and
instead, crossover behavior can be observed. For higher temperature (about 24 K),
the FM1ÑPM first-order transition changes into the second-order one at the tricritical
point (TCP). Two symmetric lines of critical points starting at TCP are observed by
applying a magnetic field, and lowering the temperature (cf. Fig. 3.1). Those lines form
a characteristic wing-shape structure and end with the quantum critical ending points
(QCEPs) [129,144].
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(a) (b)

Figure 3.1: (a) Schematic, experimentally determined (cf. Refs. [120,128,129]) magnetic
phase diagram for UGe2 on pressure–temperature plane. There are two ferromagnetic
phases (FM1 and FM2), as well as paramegnetic (PM) and superconducting (SC) states.
The order of the transitions has been marked. For details, see main text. (b) Phase diagram
of UGe2 on temperature–pressure–magnetic-field. Gray planes are planes of first order
transition and the solid (red) lines the second order one (Figure taken from Ref. [129]).

3.2 Anderson Lattice model (ALM)

We now discuss the second canonical model of correlated electrons, namely the
Anderson-lattice model. With this model we account explicitly for the influence of
conduction electrons on the correlated, originally atomic f states, and apply the model
to the magnetic state of UGe2. The appropriate Hamiltonian has form,

ĤALM “
ÿ

i‰j, σ

tij ĉ
:

iσ ĉjσ ´
ÿ

i,σ

σhn̂ciσ `
ÿ

i,σ

pεf ´ σhqn̂
f
iσ ` U

ÿ

i

n̂fiÒn̂
f
iÓ

` V
ÿ

i,σ

pf̂ :iσ ĉiσ ` ĉ
:

iσf̂iσq, (3.1)

where h ” 1
2gµ0µBH is the reduced magnetic field, H is the external magnetic field, the

c-index denotes the conducting electrons (thus, n̂ciσ “ ĉ:iσ ĉiσ) and the f -index denotes
the localized (atomic) f -electrons (thus, n̂fiσ “ f̂ :iσf̂iσ). The first term in Eq. (3.1)
represents the hopping of electrons in the conducting band, the second and the third
terms describe the effect of the magnetic field (the Zeeman term) and the atomic level
(εf ) of f -electrons. Note, that only f -electrons experience the Coulomb onsite repulsion
(the fourth term). The last term is the hybridization term, mixing the c- and f -electrons.

Within the statistically consistent approach (SGA), discussed in the previous
Chapter, the effective ALM Hamiltonian has form,

ĤSGA ”
ÿ

k,σ

Ψ:

¨

˝

εck ´ σh´ µ
?
qσ V

?
qσ V εf ´ σh´ µ

˛

‚Ψ` ΛUd2
f

´ λfn

´

ÿ

k,σ

n̂fk,σ ´ Λnf

¯

´ λfm

´

ÿ

k,σ

σn̂fk,σ ´ Λmf

¯

(3.2)

where
?
qσ is the Gutzwiller renormalization factor for f -electrons,

?
qσ “

b

pnf,σ ´ d
2
f qp1´ nf ` d

2
f q ` df

b

nf,σ̄ ´ d
2
f

a

nf,σp1´ nf,σq
. (3.3)
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Furthermore, mf denotes the magnetization of f -electrons and Ψ: ” pĉ:k,σ, f̂
:

k,σq.
We checked [111–113] that the above model is sufficient to describe the magnetic
phase diagram and the position of the classical and quantum critical points for UGe2

compound. Using this model we can also obtain the wing-shape structure described in
Fig. 3.1 (b), as well as provide an explanation for the appearance, sequence, character,
and evolution in an applied magnetic field the ferromagnetic and paramagnetic phases,
as an effect of a competition between the f–f electron Coulomb interaction energy and
the f -conduction electron hybridization.

The magnetic phase diagram obtained for ALM Hamiltonian and the
qualitative comparison of theoretical results with the experimental findings
is presented in Ref. [111]. The phase evolution in the magnetic field and the
description of the critical points is provided in Ref. [112]. The quantitative
comparison of the second-order transition lines joining the TCP and QCEP
points to the experiment is presented in Ref. [113]. All three papers are
included as a part of this Thesis in the second part of this manuscript.
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Appendix A

Three-site corrections for t–J
model

In Section 1.4 the derivation of t–J model was presented, where for simplicity only
hoppings that involve two sites were considered. The natural extension of the model is to
include the terms that describe processes where three sites are involved. Since hopping
between distant sites is less probable than between neighboring sites, we assume that
among those three sites, each site is the nearest neighbor of at least one other site
from that group. The illustrations of such processes are presented in Figs. A.1 and A.2.
Formally, terms describing the three-site hopping can be evaluated from Eqs. (1.15c)
and (1.15d), namely

´
1

U
P̂0Ĥ1P̂NĤ1P̂0

(3-site)
“

´
ÿ

xi, j, ly, σ

4tijtjl
U

ˆ

ĉ:iσp1´ n̂iσ̄qp1´ n̂jσqn̂jσ̄ ĉlσp1´ n̂lσ̄q ´ ĉ
:

iσp1´ n̂iσ̄qĉ
:

jσ̄ ĉjσ ĉlσ̄p1´ n̂lσq

˙

`
ÿ

xk, i, jy, σ

4tijtki
U

ˆ

ĉ:kσn̂kσ̄n̂iσp1´ n̂iσ̄qĉjσn̂jσ̄ ` ĉ
:

kσ̄n̂kσ ĉ
:

iσ ĉiσ̄ ĉjσn̂jσ̄

˙

, (A.1)

and

´
1

U
P̂0Ĥ1P̂NĤ1P̂0

(3-site)
“

“ ´
ÿ

xi, j, ly, σ

4tijtjl
U

ˆ

ĉ:iσp1´n̂iσ̄qp1´n̂jσqn̂jσ̄ ĉlσp1´n̂lσ̄q´ĉ
:

iσp1´n̂iσ̄qĉ
:

jσ̄ ĉjσ ĉlσ̄p1´n̂lσq

˙

`

`
ÿ

xk, i, jy, σ

4tijtki
U

ˆ

ĉ:kσn̂kσ̄n̂iσp1´ n̂iσ̄qĉjσn̂jσ̄ ` ĉ
:

kσ̄n̂kσ ĉ
:

iσ ĉiσ̄ ĉjσn̂jσ̄

˙

. (A.2)

For the simplicity, we assume tij ” t for i and j denoting the nearest neighbors. With
the use of the projected operators notation (cf. Eqs. (1.18a)–(1.18c) and Eqs. (1.20a)–
(1.20c)), expanded by,

B̂:iσ “ ĉ:iσn̂iσ̄, (A.3a)

B̂iσ “ ĉiσn̂iσ̄, (A.3b)

d̂i “ n̂iÒn̂iÓ, (A.3c)

êi “ p1´ n̂iÒqp1´ n̂iÓq, (A.3d)
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Figure A.1: Examples of hopping processes involving three sites, described by Eq. (1.15c).
The remaining four cases can be obtained by changing the spins to the opposite one, ÒØÓ.

Figure A.2: Examples of hopping processes involving three sites, described by Eq. (1.15d).
The remaining four cases can be obtained by changing the spins to the opposite one, ÒØÓ.

we can write the t–J Hamiltonian with the three-site corrections in the following,
compact form,

Ĥ3-site « U
ÿ

i

d̂i`
2t2

U

ÿ

xi, jy, σ

´

b̂:iσ b̂jσ ` B̂
:

iσB̂jσ ` d̂iêj ´ ĉ
:

iσ ĉ
:

iσ̄ ĉjσ ĉjσ̄ ´ ν̂iσν̂jσ̄ ` Ŝ
σ
i Ŝ

σ̄
j

¯

`

`
4t2

U

ÿ

xi, j, ky, σ

ˆ

´ b̂:iσν̂jσ̄ b̂kσ ` b̂
:

iσŜ
σ̄
j b̂kσ̄ ` B̂

:

iσν̂jσB̂kσ ` B̂
:

iσ̄Ŝ
σ
j B̂kσ`

´ b̂:iσd̂j b̂kσ ´ B̂
:

iσ ĉjσ ĉjσ̄ b̂
:

kσ̄ ´ B̂iσ̄ ĉ
:

jσ ĉ
:

jσ̄ b̂kσ ` B̂
:

iσejB̂kσ

˙

. (A.4)
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Appendix B

Another example of Gutzwiller
factor derivation

We show here how to derive the Gutzwiller factors for the term xn̂iσn̂jσ1y, in the presence
of the AF order, motivated by fact, that this topic is rarely (if even) discussed in
the literature. The AF order implies, that niσ ” njσ̄ ” nσ for i and j denoting the
neighboring sites. In such case, using the notation presented in Section 2.1, we can
calculate,

Λ´1
ÿ

xi,jy, σ, σ1

xn̂iσn̂jσ1y “ Λ´1
ÿ

xi,jy, σ, σ1

xP̂in̂iσP̂iP̂j n̂jσ1 P̂jy0 “

“ Λ´1
ÿ

xi,jy, σ, σ1

@`

n̂iσ ` pλ
2
d ´ λ

2
σqn̂iσn̂

HF
iσ̄

˘ `

n̂jσ1 ` pλ2
d ´ λ

2
σ̄1qn̂jσ1 n̂HFjσ̄1

˘D

0

« Λ´1
ÿ

xi,jy, σ

xniσnjσy0 ` xniσnjσ̄y0

`

´

xn̂jσ̄y0xn̂iσ̄n̂
HF
jσ y0 ` xn̂jσ̄y0xn̂iσn̂

HF
jσ y0 ` xn̂iσy0xn̂jσn̂

HF
iσ̄ y0 ` xn̂iσy0xn̂jσ̄n̂

HF
iσ̄ y0

¯

pλ2
d ´ λ

2
σq

` pλ2
d ´ λ

2
σqpλ

2
d ´ λ

2
σ̄qxn̂iσy0xn̂jσy0xn̂

HF
iσ̄ n̂HFjσ̄ y0 ` pλ

2
d ´ λ

2
σqpλ

2
d ´ λ

2
σqxn̂iσy0xn̂jσ̄y0xn̂

HF
iσ̄ n̂HFjσ y0

“ 2n2 ` p´4χ2 ` 4∆2
S ` 4∆2

T q
`

1` nσpλ
2
d ´ λ

2
σq ` nσ̄pλ

2
d ´ λ

2
σ̄q
˘

` 4nσpλ
2
d ´ λ

2
σqnσ̄pλ

2
d ´ λ

2
σ̄qp´χ

2q ` 2
´

“

nσpλ
2
d ´ λ

2
σq
‰2
`
“

nσ̄pλ
2
d ´ λ

2
σ̄q
‰2
¯

p∆2
S `∆2

T q

“ 2n2 ` 4gχv p´χ
2q ` 4g∆

v p∆
2
S `∆2

T q,

(B.1)

where for the definition of χ, ∆S and ∆T cf. Eqs. (2.22)–(2.23), while the Gutzwiller
factors gχv and gv have form,

gχv ”
`

1` nσpλ
2
d ´ λ

2
σq ` nσ̄pλ

2
d ´ λ

2
σ̄q ` nσpλ

2
d ´ λ

2
σqnσ̄pλ

2
d ´ λ

2
σ̄q
˘

, (B.2)

g∆
v ”

ˆ

1` nσpλ
2
d ´ λ

2
σq ` nσ̄pλ

2
d ´ λ

2
σ̄q `

1

2

´

“

nσpλ
2
d ´ λ

2
σq
‰2
`
“

nσ̄pλ
2
d ´ λ

2
σ̄q
‰2
¯

˙

. (B.3)

Note, that the approximate sign in Eq. (B.1) results from the fact, that we neglected
terms proportional to χ4, ∆4

S , ∆4
T or nσnσ̄χ2.

If AF order is not present, then nσ “ nσ̄ “ n{2 and the Eqs. (B.2)–(B.3) are
simplified to the form,

gχv “ g∆
v “

ˆ

2d2 ` np1´ nq

np1´ n{2q

˙2

. (B.4)
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Appendix C

Another example of Gutzwiller
factors derivation ambiguity

We show here the Gutzwiller factors for S`i S
´
j term derived in the two schemes

discussed in Section 2.2. For simplicity, we assume that only AF ordering is present
(no CDW) and we assume that in the correlated state no doubly occupied states are
allowed (U Ñ8).

The first scheme leads to

xS`i S
´
j y “ gs

ÿ

xi,jy

xS`i S
´
j y0, (C.1)

where (cf. Eqs. (2.18) or use tables 2.1 and 2.2 as it was presented in the Section 2.2),

gp1qs “
1

p1´ niσqp1´ njσq
, (C.2)

while the second scheme leads to (use tables 2.1 and 2.2),

gp1qs “

ˆ

n

n´ 2niσnjσ

˙

. (C.3)

When no AF order is considered, then niσ ” niσ̄ ” n{2, and

gp1qs ” gp2qs ” gs “
1

`

1´ n
2

˘2 , (C.4)

what is well know Gutzwiller factor for the spin exchange term (cf. Refs. [34,95,97,99]).
However, when AF ordering is considered, then g

p1q
s ‰ g

p2q
s , and the results differ in

regard to the choice of gp1qs or gp2qs .



54 Rozdział C. Another example of Gutzwiller factors derivation ambiguity



Bibliography 55

Bibliography

[1] D. B. McWhan, T. M. Rice, and J. P. Remeika, Phys. Rev. Lett. 23, 1384 (1969).

[2] D. B. McWhan and J. P. Remeika, Phys. Rev. B 2, 3734 (1970).

[3] D. B. McWhan, A. Menth, J. P. Remeika, W. F. Brinkman, and T. M. Rice,
Phys. Rev. B 7, 1920 (1973).

[4] F. Rodolakis et al., Phys. Rev. Lett. 104, 047401 (2010).

[5] S. Lupi and et al., Nat. Commun. 1, 105 (2010).

[6] J. Hubbard, Proc. R. Soc. A 276, 238 (1963).

[7] J. Hubbard, Proc. R. Soc. A 281, 401 (1964).

[8] P. W. Anderson, Phys. Rev. 115, 2 (1959).

[9] J. Spałek, Acta. Phys. Pol. A 111, 409 (2007).

[10] N. F. Mott, Rev. Mod. Phys. 40, 677 (1968).

[11] N. F. Mott, Metal-Insulator Transitions 2nd edn (London: Taylor and Francis,
1990).

[12] M. Imada, A. Fujimori, and Y. Tokura, Rev. Mod. Phys. 70, 1039 (1998).

[13] J. Bardeen, L. N. Cooper, and J. R. Schrieffer, Phys. Rev. 106, 162 (1957).

[14] D. C. Johnston, Supercond. Sci. Technol 26, 115011 (2013).

[15] J. Spałek, Wstęp do fizyki fazy skondensowanej (Warszawa, PWN, 2015), (in
Polish).

[16] N. E. Phillips, Phys. Rev. 114, 676 (1959).

[17] P. J. Ray, Structural investigation of La(2-x)Sr(x)CuO(4+y) – Following staging
as a function of temperature, Master’s thesis, Niels Bohr Institute, Faculty of
Science, University of Copenhagen, 2011.

[18] R. B. van Dover, R. J. Cava, B. Batlogg, and E. A. Rietman, Phys. Rev. B 35,
5337 (1987).

[19] M. K. Wu et al., Phys. Rev. Lett. 58, 908 (1987).

[20] Z. Z. Sheng et al., Phys. Rev. Lett. 60, 937 (1988).

[21] S. N. Putilin, E. V. Antipov, O. Chmaissem, and M. Mareziow, Nature 362, 226
(1993).



56 Bibliography

[22] A. Schilling, M. Cantoni, J. D. Guo, and H. R. Ott, Mature 363, 56 (1993).

[23] Z. J. Huang et al., Physica C: Supercond. 217, 1 (1993).

[24] A. Yamamoto, N. Takeshita, C. Terakura, and Y. Tokura, Nat. Commun. 6, 8990
(2015).

[25] J. G. Bednorz and K. A. Müller, Physik B Condensed Matter 64, 189 (1986).

[26] H. Takagi, S. ichi Uchida, K. Kitazawa, and S. Tanaka, Japanese Journal of
Applied Physics 26, L123 (1987).

[27] L. Gao et al., Phys. Rev. B 50, 4260 (1994).

[28] M. Monteverde et al., Europhys. Lett. 72, 458 (2005).

[29] N. C. S. of Science and Mathematic, Teachers’ Instructional Graphic Educational
Resource, 2003, online access: http://www.dlt.ncssm.edu/tiger/chem8.htm
(6th April 2016).

[30] Wikibooks, High School Chemistry/Shapes of Atomic Orbitals, 2015,
online access: https://en.wikibooks.org/w/index.php?title=High_School_
Chemistry/Shapes_of_Atomic_Orbitals&oldid=2991510 (6th April 2016).

[31] N. Plakida, High-Temperature Cuprate Superconductors (Springer, 2010), Chap-
ters 5, 7.

[32] E. Pavarini, E. Koch, F. Anders, and M. E. . Jarrell, Correlated electrons: from
models to materials, Schriften des Forschungszentrums Jülich. Reihe Modeling
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Article 1

In this article we introduce the t–J–U model and apply it to the discussion of the
coexistence of hight temperature superconductivity (HTS) with the two-sublattice
antiferromagnetism (AF). We use the statistically consistent Gutzwiller approximation
(SGA) and discuss two alternative ways of implementing it. The AF phase appears
only in a very narrow range of doping δ À 0.006, i.e., in the close vicinity to the
Mott insulating state appearing for δ “ 0 (n “ 1). The upper hole doping δ « 0.3

for the disappearance of the HTS state has also been discussed as a function of U .
We also stress that in the AF-SC coexistent phase, a small spin-triplet component
of the pairing appears. Self-consistent calculations of order parameters and remaining
renormalized characteristics such as the hopping amplitudes and the chemical potential
require solving system of 6 integral equations. All the calculated characteristics are
listed for exemplary values of the microscopic parameters in Table I.
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d-wave superconductivity and its coexistence with antiferromagnetism in the t– J–U model:
Statistically consistent Gutzwiller approach
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We discuss the coexistence of antiferromagnetism and d-wave superconductivity within the so-called
statistically consistent Gutzwiller approximation (SGA) applied to the t–J–U model. In this approach, the
averages calculated in a self-consistent manner coincide with those determined variationally. Such consistency
is not guaranteed within the standard renormalized mean-field theory. With the help of SGA, we show that for
the typical value J/|t | = 1

3 , coexistence of antiferromagnetism (AF) and superconductivity (SC) appears only
for U/|t | > 10.6 and in a very narrow range of doping (δ � 0.006) in the vicinity of the Mott insulating state,
in contrast to some previous reports. In the coexistent AF + SC phase, a staggered spin-triplet component of the
superconducting gap appears also naturally; its value is very small.

DOI: 10.1103/PhysRevB.88.094502 PACS number(s): 71.27.+a, 74.25.Dw, 74.72.Gh

I. INTRODUCTION: RATIONALE FOR t– J–U MODEL

High-temperature superconductivity in cuprates is often
described within the effective t–J model1,2 (for a preliminary
treatment of the topic cf. also Ref. 3). The model justifies a
number of experimental results, such as superconductivity’s
domelike shape on doping-temperature phase diagram,4

non-Fermi-liquid behavior of the normal state for underdoped
and optimally doped systems,5–7 the disappearance of the
pairing gap magnitude in the antiferromagnetic state (albeit
only at the doping δ = 0),7,8 and the doping dependence of
the photoemission spectrum in the antinodal direction.9,10

All of these features represent an attractive starting point for
further analysis (cf. Ref. 11).

In the effective t–J model, the value of the kinetic exchange
integral Jij does not necessarily coincide with the value
Jij = 4t2

ij /U obtained perturbationally from the Hubbard
model.2 Instead, it expresses an effective coupling between
the copper spins in mixed copper-oxygen 3d-2p holes.12

Therefore, one may say that the values of the hopping integral
tij and that of antiferromagnetic exchange Jij in that model
are practically independent. Typically, the ratio |t |/J ≈ 3 is
taken and corresponds to the value U/(8|t |) = 1.5 in the
context of the two-dimensional Hubbard model. However,
after introducing the bare bandwidth W = 8|t | in the tight-
binding approximation for a square lattice, we obtain the
ratio U/W = 1.5, which is not sufficiently large for the
transformation of the original Hubbard model into the t–J

model to be valid in the low order. In that situation, we
are, strictly speaking, not within the strong correlation limit
U/W � 1, in which the t–J model was originally derived.1,2

In order to account properly for the strong electronic
correlations (the bare Hubbard parameter U for Cu2+ ion
is 8–10 eV � W ≈ 2–3 eV), we can add the Hubbard term
U

∑
i n̂i↑n̂i↓ to the t–J model. In this manner, we consider the

exchange integral Jij in this still-effective single-band model
as coming from the full superexchange involving the oxygen
ions rather than from the effective kinetic exchange only (for
critical overview, cf. Ref. 13). This argument may be regarded

as one of the justifications for introducing the t–J–U model,
first used by Daul,14 Basu,15 and Zhang16 (cf. Ref. 17, where
comprehensive justification of the t–J–U is provided).

There is an additional reason for the t–J–U model appli-
cability to the cuprates. Namely, in the starting, bare configu-
ration of CuO2−

2 structural unit, the hybridization between the
antibonding 2pσ states due to oxygen and one-hole (3d9) states
due to Cu is strong, with the hybridization matrix element
|V〈im〉| ∼ 1.5 eV. Therefore, the hybridization contribution to
the hole state itinerancy, at least on the single-particle level,
is essential and hence the effective d–d (Hubbard) interaction
is substantially reduced. In effect, we may safely assume that
U � W instead U � W . In this manner, the basic simplicity
of the single-band model is preserved, as it provides not
only the description of the strongly correlated metallic state
close to the Mott insulating limit, but also reduces to the
correct limit of the Heisenberg magnet of spin 1

2 with strong
antiferromagnetic exchange integral J ≈ 0.1 eV in the absence
of holes (the Mott-Hubbard insulating state). Last but not least,
within the present model we can study the limit U → ∞ and
compare explicitly the results with those of canonical t–J

model.
Antiferromagnetism (AF) and superconductivity (SC) can

coexist in the electron-doped cuprates,18,19 but in the hole-
doped cuprates the two phases are usually separated (cf., e.g.,
the review of Dagotto4). However, in the late 1990s, reports of
a possible coexistence in the cuprates appeared, first vague [cf.
Ref. 20 (La2−xSrxCu1−yZnyO4)], then more convincing [cf.,
e.g., Ref. 21 (La2CuO4+y), Ref. 22 (YBa2Cu3O6.5), or Ref. 23
(YBa2(Cu0.987Co0.013)3Oy+δ)]. Other systems, where the co-
existence has been reported, are organic superconductors,24

heavy-fermion systems,25 iron-based superconductors such as
Ba(Fe1−xRux)2As2 (Ref. 26), Ba0.77K0.23Fe2As2 (Ref. 27),
Ba(Fe1−xCox)2As2 (Refs. 28 and 29), as well as graphene
bilayer systems (cf. Ref. 30).

Our purpose is to undertake a detailed analysis of the
paired (SC) state within the t–J–U model and its coexistence
with the two-sublattice antiferromagnetism in two dimensions.
Detailed studies of the t–J–U model have been carried out by
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ABRAM, KACZMARCZYK, JĘDRAK, AND SPAŁEK PHYSICAL REVIEW B 88, 094502 (2013)

Zhang,16 Gan,31,32 and Bernevig33 who described a transition
from gossamer34 and d-wave35,36 superconductivity to the
Mott insulator. However, the existence of AF order was not
considered in those studies. Some attempts to include AF order
were made by Yuan37 and Heiselberg,38 and very recently by
Voo39 and Liu,40 but in all those works one can question
the authors’ approach. Specifically, the equations used do
not guarantee self-consistency, i.e., the mean-field averages
introduced in a self-consistent manner do not match those
determined variationally.41 We show that the above problem
that appears in the renormalized mean-field theory (RMFT)
formulation can be overcome by introducing constraints that
ensure the statistical consistency between the two above ways
of determining mean-field values. This is the principal concept
of our statistically consistent Gutzwiller approach (SGA).42,43

Using SGA we obtain that the AF phase is stable only
in the presence of SC in a very narrow region close to
the Mott-Hubbard insulating state, corresponding to the
half-filled (undoped) situation. Additionally, in this AF-SC
coexisting phase, a small staggered spin-triplet component of
the superconducting gap appears naturally, in addition to the
predominant spin-singlet component.

The structure of the paper is as follows. In Sec. II, we define
the model and provide definitions of the mean-field parameters.
In Sec. III, we introduce the constraints with the corresponding
Lagrange multipliers to guarantee the consistency of the
self-consistent and the variational procedures of determining
the mean-field parameters. The full minimization procedure
is also outlined there. In Sec. IV, we discuss the numerical
results, as well as provide the values of the introduced
Lagrange multipliers. In Sec. V, we summarize our results
and compare them with those of other studies. In Appendix A,
we discuss the general form of the hopping amplitude and the
superconducting gap, as well as some details of the analytic
calculations required to determine the ground-state energy. In
Appendixes B and C, we show some details of our calculations.
In Appendix D, we present an alternative and equivalent proce-
dure of introducing the Lagrange multipliers to that presented
in the main text. In Appendix E, we list representative values
of the parameters calculated for different phases.

II. t– J–U MODEL AND EFFECTIVE SINGLE-PARTICLE
HAMILTONIAN

We start from the t–J–U model as represented by the
Hamiltonian16,31,32

Ĥ = t
∑

〈i j〉, σ
(ĉ†iσ ĉjσ + H.c.) + J

∑
〈i j〉

Ŝi · Ŝj + U
∑

i

n̂i↑n̂i↓,

(1)

where
∑

〈i j〉 denotes the summation over the nearest-
neighboring sites, t is the nearest-neighbor hopping integral,
J is the effective antiferromagnetic exchange integral, Ŝi is
the spin operator in the fermion representation, and U is the
onsite Coulomb repulsion magnitude.

One methodological remark is in place here. Usually, when
starting from the Hubbard or t–J models and discussing
subsequently the correlated states and phases, one neglects
the intersite repulsive Coulomb interaction ∼K

∑
〈ij〉 n̂i n̂j ,

where n̂i = ∑
σ n̂iσ is the number of particles on site i.

In the strong-correlation limit U � W , the corresponding
transformation to the effective t–J model provides2 the
effective exchange integral Jij = 4t2

ij /(U − K), and since
K ∼ U/3, we have a strong enhancement (∼30%) of the
kinetic exchange integral. Strictly speaking, the contribution
∼K should be then also added to the effective Hamiltonian (1).
However, this term has been neglected, as well as the similar
contribution ∼(J/4)

∑
〈ij〉 n̂i n̂j appearing in the full Dirac

exchange operator2 since we assume that the physically
meaningful regime is that with U � W � K so that any
charge-density-wave instability is irrelevant in this limit.

We study properties of the above Hamiltonian using the
Gutzwiller variational approach,44 in which the trial wave
function has the form34,37,38 |�〉 = P̂G|�0〉, where P̂G is
an operator specifying explicitly the configurations with
double onsite occupancies, and |�0〉 is an eigenstate of a
single-particle Hamiltonian (to be defined later). Since the
correlated state |�〉 is related to |�0〉, the average value of the
Hamiltonian Ĥ can be expressed as

〈�|Ĥ|�〉
〈�|�〉 = 〈�0|P̂GĤP̂G|�0〉

〈�0|P̂ 2
G|�0〉

≈ 〈�0|Ĥeff|�0〉

≡ 〈Ĥeff〉0, (2)

where 〈. . .〉0 means the average evaluated with respect to |�0〉,
and16,31,32,37,38

Ĥeff = gt t
∑

〈i j〉, σ
(ĉ†iσ ĉjσ + H.c.) + gsJ

∑
〈i j〉

Ŝi · Ŝj + Ud2

(3)

is the effective Hamiltonian resulting from the Gutzwiller
approximation44 (GA). In the above formula, d2 ≡ 〈n̂i↑n̂i↓〉0

is the double-occupancy probability, gt and gs are the so-
called Gutzwiller renormalization factors determined by the
statistical counting of configuration with given Nd2, Nw, and
Nr (cf. Refs. 45 and 46):

gt = n − 2d2

n − 2rw

⎛
⎝

√
(1 − w)(1 − n + d2)

1 − r
+

√
wd2

r

⎞
⎠

×
⎛
⎝

√
(1 − r)(1 − n + d2)

1 − w
+

√
rd2

w

⎞
⎠ , (4a)

gs =
(

n − 2d2

n − 2rw

)2

, (4b)

where n is the average number of electrons (occupancy) per
site. To discuss AF order, the lattice is divided into two
interpenetrating sublattices: A, where the majority of spins
are oriented ↑, and B, where the majority of spins are oriented
↓. For sublattice A, r ≡ 〈n̂i↑〉 = 1

2 (n + mAF) and w ≡ 〈n̂i↓〉 =
1
2 (n − mAF), where mAF is the antiferromagnetic (staggered)
spin polarization per site. For sublattice B, the definitions of
w and r are interchanged. Note that the Gutzwiller factor (4b)
has the same form for both 1

2 (Ŝx
i Ŝ

y

j + Ŝx
i Ŝ

y

j ) and Ŝz
i Ŝ

z
j parts of

Ŝi · Ŝj . In a refined approach, two distinct Gutzwiller factors
g

xy
s and gz

x may be considered (cf. Ref. 47). However, in
this paper it is assumed that g

xy
s = gz

x ≡ gs , which is broadly
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accepted (see, e.g., Refs. 16,31,32,37, and 38). The reason is
that the spin-singlet paired state is spin-rotationally invariant
and in the case of coexistent antiferromagnetic state we
limit ourselves to the mean-field-approach paradigm with the
resulting Néel state.

In order to evaluate 〈Ĥeff〉0, we define the average number
of electrons per site with spin σ as

niσ ≡ 〈ĉ†iσ ĉiσ 〉0 = 1
2 (n + σ eiQ·Ri mAF), (5)

with Q ≡ (π,π ), and with Ri denoting position vector of site
i and the following bare (nonrenormalized) quantities: the
hopping amplitude for the nearest neighbors 〈i,j 〉 as

χijσ ≡ 〈ĉ†iσ ĉjσ 〉0 = χAB, (6)

and the pairing order parameter in real space in the form

�ijσ ≡ 〈ĉiσ ĉj σ̄ 〉0 ≡ −τij (σ�S + eiQ·Ri �T ), (7)

where τij ≡ 1 for j = i ± x̂ and τij ≡ −1 for j = i ± ŷ (in
order to ensure the d-wave symmetry). In consequence, the
spin-singlet (�S) and the spin-triplet (�T ) components of the
gap are defined as

τij�S = 1
4 (〈ĉj∈B ↓ĉi∈A↑〉0 + 〈ĉi∈A ↓ĉj∈B↑〉0 + H.c.)

= 1
4τij (�A + �B + H.c.), (8a)

τij�T = 1
4 (〈ĉj∈B ↓ĉi∈A↑〉0 − 〈ĉi∈A ↓ĉj∈B↑〉0 + H.c.)

= 1
4τij (�A − �B + H.c.). (8b)

In some works (e.g., in Refs. 37 and 38), the triplet component
is disregarded. However, since �A represents an average
pairing for majority spins on nearest-neighboring sites and
�B an average pairing of minority spins (when AF order is
present, cf. Fig. 1), the real part of �A and �B might be
different (cf. also the work of Tsonis48 and Aperis49 regarding
the inadequacy of a single-component order parameter to
describe the SC phase). Therefore, in this paper, this more
comprehensive structure is introduced. Nonetheless, in order
to evaluate the significance of introducing the triplet term for

FIG. 1. (Color online) Schematic representation of the difference
between the pairing parameters for the majority-spin electrons (large
arrows) and the minority-spin electrons (small arrows) in the two-
sublattice system with AF order. Since for mAF 
= 0 there may be
that the real part of �A and �B might be different, and a spin-triplet
component of the superconducting order has to be considered [cf.
Eq. (8b)].

the SC gap, the results are compared also with those obtained
for the case when �T is set to zero.

Applying the Wick’s theorem to the Eq. (2), the expec-
tation value 〈Ĥeff〉0 ≡ W can be obtained in the form (see
Appendix A for details)

W

	
= 8gt tχAB + Ud2

− gsJ

(
1

2
m2

AF + 3χ2
AB + 3�2

S − �2
T

)
, (9)

where 	 is the number of atomic sites in the system. Note
that the total energy of this correlated system is composed
of three interdependent parts: (i) the renormalized hopping
energy ∼tgtχAB < 0, (ii) the correlation energy Ud2 > 0,
and (iii) the exchange contribution ∼gsJ lowering both the
energies of AF and SC states. This balance of physical
energies will be amended next by the constraints introducing
the statistical consistency into this mean-field system to
guarantee that the self-consistent and the variational proce-
dures will lead to the same single-particle states (this is the
so-called Bogoliubov principle for the optimal single-particle
states).

To summarize, the process of derivation of the effective
single-particle Hamiltonian (3) is fully justified by its
definition (2) which involves an averaging procedure over
an uncorrelated state |�0〉. This state is selected implicitly.
In general, it is the state with broken symmetry, i.e., with
nonzero values of mAF, �S , and �T . In other words, |�0〉
is defined through the values of order parameters to be
determined either self-consistently or variationally. This is the
usual procedure proposed originally by Bogoliubov50 in his
version of BCS theory and by Slater51 in the theory of itinerant
antiferromagnetism. Here, their simple version of mean theory
becomes more sophisticated since the renormalization factors
contain also the order parameters and in a singular formal form.
This last feature leads to basic formal changes in formulation
of the renormalized mean-field theory, as discussed next.

III. QUASIPARTICLE STATES AND MINIMIZATION
PROCEDURE FOR THE GROUND STATE

Following Refs. 41–43,52, and 53, we write the mean-field
grand Hamiltonian in the form

K̂ ≡ W −
∑

〈i j〉, σ

[
λ

χ

ijσ (ĉ†iσ ĉjσ − χijσ ) + H.c.
]

−
∑

〈i j〉, σ

[
λ�

ijσ (ĉiσ ĉj σ̄ − �ijσ ) + H.c.
]

−
∑
iσ

[
λn

iσ (n̂iσ − niσ )
] − μ

∑
iσ

n̂iσ , (10)

where μ is the chemical potential, and the Lagrange multipliers
{λ} are introduced for each operator whose average appears in
W [Eq. (9)]. The Lagrange multipliers can be interpreted as the
correlation-induced effective fields. We should underline that
the additional terms guarantee that the averages calculated in
a self-consistent manner coincide with those determined from
variational minimization principle of the appropriate free- or
ground-state energy functional. Due to the dependence of the
renormalization factors on the mean-field values, the two ways
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of their calculation do differ, but the introduced constraints en-
sure their equality. In this manner, as said above, the approach
is explicitly in agreement with the Bogoliubov theorem that
the single-particle approach represents the optimal formulation
from the principle of maximal-entropy point of view.42,43 Also,
the fields {λ} are assumed to have the same symmetry as
the broken-symmetry states, to which they are applied [cf.
Eqs. (5), (6), and (7)]. Namely,

λn
iσ = 1

2 (λn + σeiQ·ri λm), (11a)

λ
χ

ijσ = λχ, (11b)

λ�
ijσ = −τij (σλ�S

+ eiQ·ri λ�T
). (11c)

To solve Hamiltonian (10), space Fourier transformation
is performed first. Then, the Hamiltonian is diagonalized
and yields four branches of eigenvalues (details of the
calculations are presented in Appendix B). Next, we define the
generalized grand potential functional at temperature T > 0 as
given by

F = − 1

β
lnZ, with Z = Tr(e−βK̂ ), (12)

with β ≡ 1/kBT . Explicitly, F then has the following form
[cf. Eq. (B7)]:

F/	 = 8gt tχAB − gsJ

(
1

2
m2

AF + 3χ2
AB + 3�2

S − �2
T

)

+ 1

2
λn(n − 1) + 1

2
λmmAF

+ 8(λχχAB + λ�S
�S + λ�T

�T )

− 1

	β

∑
l,k

ln(1 + e−βElk ) + Ud2 − μ. (13)

The necessary conditions for the minimum of F subject to all
constraints are

∂F
∂ �A = 0,

∂F
∂�λ = 0, and

∂F
∂d

= 0, (14)

where the five mean-field parameters are labeled collectively
as �A, and the Lagrange multipliers as �λ [the full form of
Eqs. (14) is presented in Appendix C]. Note that five above
equations (∂F/∂ �A = 0) can be easily eliminated, reducing the
system of algebraic equations to be solved (cf. Appendix C and
discussion in Appendix D).

One should note one nontrivial methodological feature
of the approach contained in the grand Hamiltonian (10).
namely, the effective Hamiltonian (3) appears in it in the
form of expectation value W [cf. Eq. (9)], whereas the
constraints appear in Eq. (10) in the explicit operator form.
This is a nonstandard mean-field version of approach. The
correspondence to and main difference with the standard
renormalized mean-field approach is discussed in Appendix D.

As we are interested in the ground-state properties (T = 0),
we take the T → 0 limit. We have checked that taking β−1 =
kBT = 0.002 |t | is sufficient for practical purposes.54

IV. RESULTS: PHASE DIAGRAM AND MICROSCOPIC
CHARACTERISTICS

The stable phase is determined by the solution which has
the lowest physical free energy defined as minimal value of

F = F0 + μ	n, (15)

where F0 denotes the value of F obtained at the minimum [cf.
conditions (14)].

The minimum of F was obtained numerically using GNU
Scientific Library (GSL),55 and unless stated otherwise, all
calculations were made for t = −1, J = |t |/3, β|t | = 500 on
a two-dimensional square lattice of size 	 = 512 × 512 with
periodic boundary conditions.

A representative phase diagram on the Coulomb repulsion
U–hole doping δ plane is exhibited in Fig. 2. We find three
stable phases: SC, AF, and phase with coexisting SC and AF
order (labeled collectively as AF + SC). The pure AF stable
phase is found only for δ ≡ 1 − n = 0 and U/|t | > 10.6.
The region where the AF + SC appears is limited to a very
close proximity to the Mott insulating state [hole-doping range
δ ∈ (0, 0.006)]. Our results differ significantly from previous
studies (cf., e.g., Refs. 37,38, and 40), where a much wider
coexistence region was reported (dashed line in Fig. 2). The
previous results were an effect of the nonstatistically consisted
RMFT approach used, as also is explained below. Using our
method, such a consistency is achieved, and as a result a
much narrower coexistence regime appears. It squares with
recent experimental studies, where the region of AF + SC
was reported to be narrow {cf., e.g., Bernhard29 [study of
Ba(Fe1−xCox)2As2], where the coexistence region is not wider
than 0.02 (of the hole doping range)}.

For further analysis, we restrict ourselves to U/|t | = 12, as
marked by the dashed vertical line in Fig. 2. In Figs. 3 and 4,
we plot the doping dependence of the mean fields and the
correlation fields. The magnitude of �T is nonzero only in the
region with AF order (i.e., when mAF 
= 0).

FIG. 2. (Color online) Representative phase diagram for the t–J–
U model on the Coulomb repulsion–hole-doping plane. The phases
are labeled as follows: SC: superconducting phase, AF + SC: phase
with coexisting superconducting and antiferromagnetic orders. The
pure stable AF phase is found only for δ = 0 and for U > 10.6|t |.
The value U/|t | = 12 marked by the dashed vertical line is taken in
the subsequent analysis. The solid line is a our result. The dashed line
is the result of previous studies (Refs. 37,38, and 40).
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FIG. 3. (Color online) Selected bare physical quantities χAB , �S ,
�T , mAF, and d2, all as a function of doping δ and for U/|t | = 12. In
the coexistent AF + SC phase we have �S 
= 0, �T 
= 0, and mAF 
=
0. Such phase is stable only in the vicinity of the half-filling, as
detailed in the left panel where δ ∈ [0, 0.01]. On the right panel, we
present overall behavior in the wider range of the doping.

The correlated spin-singlet gap parameter in real space is
defined as

τij�
c
S = 1

4 (〈ĉi∈A ↓ĉj∈B↑〉 − 〈ĉi∈A↑ĉj∈B ↓〉 + H.c.), (16)

where the average is calculated using the Gutzwiller wave
function |�〉, instead of |�0〉. Approximately (within GA),
the correlated (physical) SC order parameters can be expressed
as37,38

�c
S = g��S, and �c

T = g��T , (17)
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for U/|t | = 12. The fields {λ} have nonzero values only when the
corresponding mean fields are also nonzero. Note that on the left panel
μ ∼ W/2 ∼ 4|t |, corresponding to the almost-filled lower Hubbard
subband.

where

g� = n − 2d2

2(n − 2rw)

[(√
(1 − w)(1 − n + d2)

1 − r
+

√
wd2

r

)2

+
(√

(1 − r)(1 − n + d2)

1 − w
+

√
rd2

w

)2]
. (18)

The AF order parameter and the renormalized hopping
parameter are defined in a similar manner, specifically

mc
AF = gm mAF, (19)

χc
AB = gt χAB, (20)

where gt is presented in Eq. (4a) and

gm = n − 2d2

n − 2wr
. (21)

The magnitude of �c
T is about 104 times smaller than the

magnitude of �c
S , so most probably, it may not be observable.

For δ � 1
3 the order parameter �c

S decreases exponentially.
Note a spectacular increase of the hopping probability χc

AB

with increased doping in Fig. 5, leading to an effective Fermi
liquid state for δ � 1

3 .
The nonzero correlated gap at n = 1 for low-U values

provides an evidence for a gossamer superconductivity. The
concept of gossamer superconductivity was introduced by
Laughlin34 and it describes the situation when the pure SC
phase is stable at the half-filling. For U/|t | ≈ 10.6 and n = 1,
where AF + SC phase sets in, the correlated gap �c

S vanishes.
Details of the transition are presented in Fig. 6 (cf. the bottom
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than the value of �c
S .
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FIG. 6. (Color online) Profile of the correlated singlet gap �c
S for

selected values of U/|t | versus hole doping (top). The limiting values
of �c

S and d2 for n ≈ 1 are presented in the bottom panel.

panel). The critical U/|t | value for the disappearance of �S is
marked by the dotted vertical line.

In the sake of completeness, we have drawn for U = 12|t |
in Fig. 7 the components of the total energy [Eq. (13)] to
show that in the underdoped regime the effective hopping
energy Eχ ≡ 8gt |t |χAB , the total exchange contribution ES ≡
gsJ (m2

AF/2 + 3χ2
AB + 3�2

S − �2
T ), and the Coulomb energy

EU = Ud2 are all of comparable magnitude. This is the regime
of strong correlations.

The overall behavior of the obtained characteristics can be
summarized as follows. First, the coexistent AF + SC phase
appears only for the doping δ < 0.006 and transforms into the
pure Mott insulating state (AF) only at the half-filling δ = 0
and large U . The spin-triplet gap component is practically
negligible in the AF + SC phase. Introducing the molecular
fields λχ , λ�S

, and λm (where nonzero), and λn change the
phase diagram in a significant manner which means that the
influence of the consistency constraints on the single-particle
states is important. The spin-singlet d-wave superconductivity
vanishes exponentially for large δ. The optimal doping appears
in the interval δ ∼ 0.1–0.15 and is weakly dependent on U for
U � 12|t |.
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rg
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FIG. 7. (Color online) The optimized component energies com-
posing the total energy [Eq. (9), which represents T → 0 limit of
Eq. (13)]. For discussion, see main text.

V. CONCLUSIONS AND COMMENTS

Using the statistically consistent Gutzwiller approximation
(SGA), we have analyzed in detail the effective Hamiltonian
considered previously in Refs. 37,38, and 40. However, in
contrast to those papers, we have considered a more complete
structure of the SC gap (the components �S and �T ). Also, a
significantly narrower region of the coexistence of AF and
SC is obtained. Furthermore, the critical value of U for
AF + SC appearance is higher, and for J/|t | = 1

3 the value
is about 10.6|t |. We have checked that the bare amplitude
�T is about 103 times smaller than that of �S (similarly,
the order parameters ratio �c

T /�c
S ≈ 10−4). We have checked

that when the �T is omitted, the results do not change in
any significant manner. Therefore, the spin-triplet component
of the superconducting order is most probably not detectable
experimentally.

In previous studies (cf. Refs. 37,38, and 40), a much wider
coexistence region was reported. In this paper, we correct
those predictions (cf. Fig. 2). Namely, we show, that the
previous results were an effect of the nonstatistically consistent
RMFT approach used. Illustratively, in Ref. 37, a minimization
procedure is formulated by setting ∂Evar/∂m = 0, yielding
Eq. (21) in Ref. 37 for m which is different than that defining m

[cf. Eq. (16) in Ref. 37]. We claim that a more correct approach
is provided by SGA, where the Lagrange multipliers are
introduced for each operator for which the average appears in
the effective mean-field Hamiltonian. In other words, without
incorporating the multipliers, the free-energy functional F
is minimized in an overextended Fock space containing,
along with physical configurations, also those that lead to the
statistical inconsistency. Using the constraints introduced by
SGA, this space is limited to a subspace, in which such an
inconsistency does not appear. Hence, the energy obtained
in SGA can either be equal to or even higher than the
energy obtained using nonconsistent approaches. Obviously,
this circumstance should not be used as an argument against
SGA. Different formulations, where the model is solved in a
self-consistent manner, are also presented in Refs. 56 and 57.

As said above, in the SGA method, an effective single-
particle approach with conditions (14) is developed. In such
an approach the question of a pseudogap is not addressed.
This is because (i) the order parameter �S is assumed as
real (i.e., no phase fluctuation appears), and (ii) the collective
spin degrees of freedom are not separated from single-particle
fermionic correlations. In order to address that issue, one
would have to generalize the approach to include, e.g., the spin
sector of the excitations,58 even in the absence of AF order.
As the antiferromagnetism is built into the SGA approach
automatically, work on extension of this approach to include
magnetic fluctuations in the paramagnetic phase is in progress.

One should note that the definition of the Mott (or
Mott-Hubbard) insulator here complements that for the Hub-
bard model within the standard Gutzwiller approximation
(GA) which represents the infinite-dimension variant of the
approach.59 Namely, with an assumption that J 
= 0, we have
a gradual evolution of the antiferromagnetic order parameter
mAF → 1 with the increasing U , i.e., the system evolves
from the Slater to the Mott antiferromagnet. This is what is
also obtained in the saddle-point approximation within the
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slave-boson approach,60 which differs from the standard GA
by incorporating constraints, some of them of similar character
as those introduced here in SGA. In this respect, both SGA
and the saddle-point approximation to slave-boson approach
go beyond GA, albeit not in an explicitly systematic formal
manner.
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APPENDIX A: DEFINITIONS OF THE MEAN FIELDS
AND EVALUATION OF 〈Ĥeff〉0 ≡ W

In the main text, the uniform bond order parameter for i

and j sites indicating the nearest-neighboring sites is defined
as 〈ĉ†iσ ĉjσ 〉0 ≡ χAB . It was assumed that 〈ĉ†iσ ĉjσ 〉0 is real. Let
us consider in this appendix a more general form. Since the
sublattice A contains the sites where the majority spin is ↑ and
the sublattice B the sites where majority spin is ↓, the general
form can be written as

〈ĉ†i∈A↑ĉj∈B↑〉0 = 〈ĉ†j∈B↓ĉi∈A↓〉0 = 〈ĉ†i∈A↓ĉj∈B↓〉∗0 = χo−c,

(A1)

〈ĉ†i∈A↓ĉj∈B↓〉0 = 〈ĉ†j∈B↑ĉi∈A↑〉0 = 〈ĉ†i∈A↑ĉj∈B↑〉∗0 = χc−o,

(A2)

for i and j being the nearest neighbors, where χo−c is an
average of the operator describing the hopping of an electron
from a site, where the average spin is opposite to the spin of
the electron to the site where the average spin is congruent to
the spin of the electron. χo−c describes the opposite situation.
This results in the general expression that

χijσ ≡ 〈ĉ†iσ ĉjσ 〉0 = χAB + iσ eiQ·Ri δχAB, (A3)

where χAB ≡ 1
2 (χo−c + χc−o) and δχAB ≡ 1

2i
(χo−c − χc−o).

The electron-pairing order parameter for the nearest neigh-
bors is defined as

�ij↓ ≡ 〈ĉj ↓ĉi↑〉0 ≡
{

τij �̃A for i ∈ A,

τij �̃B for i ∈ B,
(A4)

where τij ≡ 1 for j = i ± x̂ and τij ≡ −1 for j = i ± ŷ (�ij↑
is defined in similar manner). For the staggered magnetic mo-
ment mAF = 0, one can assume that �̃A = �̃B . However, when
mAF 
= 0, the order parameter �̃A is a product of two operators,
both of which annihilate electrons whose spin is congruent to
the average spin of individual sites. On the contrary, �̃B is
a product of two operators that annihilate electrons whose
spin is opposite to the average spin of individual sites. Hence,
it may be that �̃A 
= �̃B . Also, similar as with the hopping
amplitude, �̃A and �̃B might be complex numbers. Let us
denote �̃A ≡ (�A, δ�A) and �̃B ≡ (�B, δ�B), where the
parameters in brackets are the real and imaginary parts of the
corresponding gaps, respectively.

The only nontrivial part of 〈Ĥeff〉0 [cf. Eq. (3)] can be
evaluated in the form

4〈Ŝi · Ŝj 〉0 ≈ −(〈ĉ†i↓ĉi↓〉0 − 〈ĉ†i↑ĉi↑〉0)2

− (〈ĉ†i↓ĉj↓〉0 + 2〈ĉ†i↑ĉj↑〉0)〈ĉ†j↓ĉi↓〉0

− (2〈ĉ†i↓ĉj↓〉0 + 〈ĉ†i↑ĉj↑〉0)〈ĉ†j↑ĉi↑〉0

− (−〈ĉi↑ĉj↓〉0 + 2〈ĉi↓ĉj↑〉0)〈ĉ†i↑ĉ
†
j↓〉0

− (2〈ĉi↑ĉj↓〉0 − 〈ĉi↓ĉj↑〉0)〈ĉ†i↓ĉ
†
j↑〉0, (A5)

where we have applied the Wick’s theorem and we have
assumed that 〈ĉ†i↑ĉi↓〉0 ≡ 0, 〈ĉi↑ĉi↓〉0 ≡ 0, and 〈ĉi↓ĉj↓〉0 =
〈ĉi↑ĉj↑〉0 ≡ 0. Using the notation introduced above and
Eq. (5), we have

4〈Ŝi · Ŝj 〉0 = −m2
AF − 6χ2

AB + 2(δχAB)2

− |�̃A|2 − |�̃B |2 − 4�̃A�̃B. (A6)

Since the above expression is invariant with respect to the
same rotations of both vectors �̃A and �̃B , one component of
the vectors can be assumed to be eliminated. With the choice
δ�A = 0, we have

�ijσ ≡ 〈ĉiσ ĉj σ̄ 〉0 ≡ −τij (σ�S + eiQ·ri �T )

− τij
1
2 i(σ − eiQ·ri )δ�B, (A7)

where �S ≡ �A + �B and �T ≡ �A − �B .
Therefore, the 〈Ĥeff〉0 ≡ W can be presented in the full

form

W

	
= 8gt tχAB + Ud2 − gsJ

(
1

2
m2

AF + 3χ2
AB − (δχAB)2

+ 3�2
S − �2

T + 1

2
(δ�B)2

)
. (A8)

Introduction of δχAB and δ�B affects the form of selecting
the correlated fields λ

χ

ijσ and λ�
ijσ , and the final set of

necessary conditions for a local minimum of the free energy
[cf. Eqs. (11b), (11c), and (14)]. However, it was found that
the state with the lowest energy (for the considered model)
has always been that with δχAB ≡ 0 and δ�B ≡ 0. Hence, it
is acceptable to neglect both terms and claim that �ijσ and χijσ

are both real. For simplicity and clarity it is how the averages
are presented in the main text. Finally, Eq. (A8) is reduced to
Eq. (9).

APPENDIX B: DETERMINATION OF THE GRAND
POTENTIAL FUNCTIONAL [EQ. (13)]

To diagonalize K̂ [Eq. (10)], we first perform the space
Fourier transform. The result can be rewritten in the following
4 × 4 matrix form:

K̂ = W +
∑

k

′
�̂

†
kM̃k�̂k + 1

2
	[λn(n − 1) + λmmAF]

−	μ + 8	λχχAB + 8	(λ�S
�S + λ�T

�T ), (B1)

where �̂
†
k = (ĉ†k↑,ĉ−k↓,ĉ

†
k+Q↑,ĉ−k+Q↓), the sum is evaluated

over the reduced (magnetic) Brillouin zone (|kx | + |ky | � π ),
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and

M̃k =

⎛
⎜⎜⎜⎝

−λχεk − 1
2λn − μ −λ�S

ηk − 1
2λm λ�T

ηk

−λ�S
ηk λχεk + 1

2λn + μ −λ�T
ηk − 1

2λm

− 1
2λm −λ�T

ηk λχεk − 1
2λn − μ λ�S

ηk

λ�T
ηk − 1

2λm λ�S
ηk −λχεk + 1

2λn + μ

⎞
⎟⎟⎟⎠ , (B2)

where for the square lattice

εk ≡ 2(cos kx + cos ky), (B3a)

ηk ≡ 2(cos kx − cos ky). (B3b)

Diagonalization of M̃k yields four branches of eigenvalues
with their explicit form

Elk ≡ E± ± k = ± 1
2

√
K1k ± 2

√
K2k, (B4)

where l = 1, . . . ,4, and

K1k ≡ 4ε2
kλ

2
χ + (λn + 2μ)2

+ 4η2
k

(
λ2

�S
+ λ2

�T

) + λ2
m, (B5a)

K2k ≡ [
4η2

kλ�S
λ�T

+ λm(λn + 2μ)
]2

+ 4ε2
kλ

2
χ

[
4η2

kλ
2
�T

+ (λn + 2μ)2
]
. (B5b)

The energies {Elk}l=1,...,4 represent quasiparticle bands after all
parameters (mean-field parameters, the Lagrange multipliers,
and d) are determined variationally.

The generalized grand potential functional at temperature
T > 0 is given by

F = − 1

β
lnZ, with Z = Tr(e−βK̂ ), (B6)

and β ≡ 1/kBT , thus,

F/	 = 8gt tχAB − gsJ

(
1

2
m2

AF + 3χ2
AB + 3�2

S − �2
T

)

+ 1

2
λn(n − 1) + 1

2
λmmAF

+ 8(λχχAB + λ�S
�S + λ�T

�T )

− 1

	β

∑
l,k

ln(1 + e−βElk ) + Ud2 − μ. (B7)

APPENDIX C: EXPLICIT FORM OF THE CONDITIONS
FOR THE MINIMUM OF F

The necessary conditions for the minimum of F , subject to
all constraints [introduced in Eq. (10)] are

∂F
∂ �A = 0,

∂F
∂�λ = 0, and

∂F
∂d

= 0, (C1)

where the five mean-field parameters are labeled collectively
as �A, the five Lagrange multipliers as �λ, and d2 is double-
occupancy probability. In explicit form, ∂F/∂ �A = 0 stands

for

λχ = −gt t + 3

4
gsJχAB, (C2a)

λ�S
= 3

4
gsJ�S, (C2b)

λ�T
= −1

4
gsJ�T , (C2c)

λn = −16tχAB

∂gt

∂n

− 2J

(
−1

2
m2

AF − 3χ2
AB − 3�2

S + �2
T

)
∂gs

∂n
, (C2d)

λm = 2gsJmAF − 16tχAB

∂gt

∂mAF

− 2J

(
−1

2
m2

AF − 3χ2
AB − 3�2

S + �2
T

)
∂gs

∂mAF
,

(C2e)

∂F/∂�λ = 0 can be evaluated as

1

	

∑
k,l

f (Elk) ∂λχ
Elk + 8χAB = 0, (C3a)

1

	

∑
k,l

f (Elk) ∂λ�S
Elk + 8�S = 0, (C3b)

1

	

∑
k,l

f (Elk) ∂λ�T
Elk + 8�T = 0, (C3c)

1

	

∑
k,l

f (Elk) ∂λn
Elk − 1

2
(1 − n) = 0, (C3d)

1

	

∑
k,l

f (Elk) ∂λm
Elk + 1

2
mAF = 0, (C3e)

and ∂F/∂d = 0 denotes

2Ud + 8tχAB

∂gt

∂d

+J

(
−1

2
m2

AF − 3χ2
AB − 3�2

S + �2
T

)
∂gs

∂d
= 0, (C4a)

where f (Elk) ≡ 1/(1 + eβElk ). Equations (C2a)–(C2e) can be
used to eliminate the parameters {λ} from the numerical so-
lution procedure, reducing the number of algebraic equations
to six. Consequently, we are left with Eqs. (C3a)–(C3e) (the
conditions ∂F/∂�λ = 0) and Eq. (C4a) (∂F/∂d = 0).
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APPENDIX D: AN ALTERNATIVE PROCEDURE
OF INTRODUCING THE CONSTRAINTS VIA

LAGRANGE MULTIPLIERS

In the main text, we work with the mean-field grand Hamil-
tonian K̂ , defined as K̂ ≡ W − ∑

ι[λι(Ôι − Oι) + H.c.] −
μN̂ , where W ≡ 〈Ĥeff〉0 [cf. Eqs. (3) and (9)], and {Ôι}
are those operators whose averages are used to construct
W . Lagrange multipliers λι are introduced to ensure self-
consistency of the solution, i.e., Oι ≡ 〈Ôι〉0 [cf. Eq. (10)].

Next, in order to find optimal (equilibrium) values of mean
fields, the grand potential functional F = −β−1 lnZ , where
Z = Tr(e−βK̂ ) [cf. Eq. (12)] is subsequently minimized with
respect to mean fields subject to constraints included in K̂ .

An alternative procedure to the one sketched above is to add
the self-consistency preserving constraints directly to ĤMF

eff ,
i.e., to the mean-field approximated Ĥeff . In this formulation,
we have again a separate Lagrange multiplier λ′

ι for each
mean-field average O ′

ι ≡ 〈Ô ′
ι〉0 present in ĤMF

eff . In effect, we
construct the effective mean-field Hamiltonian of the form
Ĥλ ≡ ĤMF

eff − ∑
ι[λ

′
ι(Ô

′
ι − O ′

ι) + H.c.] and the corresponding
mean-field grand Hamiltonian K̂ ′ ≡ Ĥλ − μN̂ . As a next
step, the functional F ′ is constructed (exactly as discussed
above). It should be noted that minimization of F ′ subject to
constraints included in Ĥλ leads to a set of equations different
than Eqs. (C2a)–(C4a). However, those two procedures are
equivalent, i.e., the optimal (equilibrium) values of the mean
fields, corresponding to the minimum of F and F ′ (subject
to the same constraints), coincide. A difference in the results
may occur only for the values of the Lagrange multipliers, but
this does not affect the equilibrium values of the calculated
physical quantities. Hence, the two approaches are formally
equivalent, which can be shown analytically and has also been
verified numerically.

Those two approaches differ also with respect to numerical
execution. Namely, within the first procedure, we can easily
find the functional dependence of Lagrange multipliers �λι on
mean fields Oι (as shown in Appendix C). As a result, the
number of equations to be solved numerically is reduced by
a factor of 2. In the second approach discussed here, the
corresponding equations for �λ′

ι are much more complicated
and it is not possible to solve them analytically. Therefore, one
can not reduce the effort and numerical cost of solving the

TABLE I. Values of the parameters obtained for the SC phase
(U/|t | = 5 and δ = 0.3) (example 1), for SC phase (U/|t | = 12
and δ = 0.03) (example 2), and for the AF + SC phase (U/|t | = 12
and δ = 0.001). The calculations were made for the lattice with
	 = 1024 × 1024 sites. The numerical accuracy is at the last digit
specified.

Variable SC (1) SC (2) AF + SC

χAB 0.1907587 0.1887189 0.1693210
�S 0.00027 0.138176 0.166906
�T 0 0 3.92 × 10−5

μ 0.5664 3.5570 3.37154
mAF 0 0 0.13194
d2 5.22266 × 10−2 8.16196 × 10−3 2.2406 × 10−4

λχ 0.9661403 0.327769 0.168074
λ�S

0 0.1258974 0.160777
λ�T

0 0 1.2595 × 10−5

λn −2.526087 −7.176836 −6.744724
λm 0 0 0.100911
W −1.150925 −0.33669191 −0.233031
gt 0.884438 0.1558210 4.97139 × 10−3

gs 1.713202 3.644549 3.85310
g� 0.884438 0.1558210 4.99912 × 10−3

gm 1.3088937 1.9090702 1.96293
χc

AB 0.1687143 2.94064 × 10−2 8.41761 × 10−4

�c
S 0.00024 2.15306 × 10−2 8.343884 × 10−4

�c
T 0 0 1.960 × 10−8

mc
AF 0 0 0.25900

model at the same time. So, even though the latter method
appears more intuitively appealing, as being more similar to
the standard mean-field approach, we have used the former
method in the discussion in the main text.

APPENDIX E: SUPPLEMENTARY INFORMATION

For the sake of completeness, in Table I we provide the
representative values of the parameters calculated for the
following phases: SC for (U/|t | = 5, δ = 0.1, and U/|t | =
12, δ = 0.03), and AF + SC (U/|t | = 12, δ = 0.001). The
energies in the columns should not be compared directly, as
they correspond to different sets of microscopic parameters.
Numerical accuracy is at the level of the last digit specified.
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This article is a continuation and extension of the previous paper (cf. Ref. [53]), where
t–J–U model was studied. Namely, we consider the additional hopping between the
second nearest neighbors (t–t1–J–U model). The role of the spin-exchange coupling
J and the t1 term is analyzed, as well as the stability of the superconducting (SC)
and antiferromagnetic (AF) phases with respect to the temperature. The critical value
of Coulomb repulsion Ucr for AF+SC region was found proportional to the value of
J in the whole studied range, except the limit of small J , where Ucr grows rapidly
with decreasing value of J . The t1 term appears to have very limited effect on the
stability of phases. For non-zero temperature, additionally to AF, SC and AF+SC
phases, paramagnetic (PM) phase can be found. The increasing temperature reduces
the range of SC and AF phases in favor of PM phase, what is in qualitative agreement
with the experiment. However, even in relatively hight temperature, pockets of SC and
AF region remain stable, what is non-physical result, showing perhaps the limit of
single-band models in description of high-temperature superconductors.
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1. Introduction

One of the basic models for high-temperature super-
conductors and correlated systems is t−J model, which
can be derived from the Hubbard model in the limit of
large Coulomb repulsion U [1, 2]. In the simplest version
the t−J model has the form [1�4]:

Ĥt−J =
∑

i 6=j, σ
P̂0 tij ĉ

†
iσ ĉjσ P̂0

+
∑

i 6=j
Jij P̂0

(
Si · Sj −

1

4
n̂in̂j

)
P̂0, (1)

where tij is the hopping integral, Jij ≡ 4t2ij/U is the

kinetic-exchange integral, and P̂0 =
∏
i(1− n̂i↑n̂i↓) is the

Gutzwiller projector operator eliminating the double site
occupancies. Sometimes, for simplicity, the term 1

4 n̂in̂j is
neglected (cf. discussion of the term's relevance in Ref. [5,
Ch. 9]).
For the Hubbard model, the energy cost for two elec-

trons residing on the same site is equal to U , hence in the
limit of U → +∞ (which was assumed when deriving the
t−J model [1]), the double occupancies are prohibited.

It is realized through the projector P̂0 which eliminates
them. Alternatively, interaction term of the Hubbard
type, U

∑
i n̂i↑n̂i↓, can be added to the Hamiltonian (1)

explicitly. In such situation and for su�ciently large U ,
the energy of the double occupancies is high so that they
e�ectively are not present in the system. In e�ect, the
projector P̂0 can be omitted (cf. e.g. Ref. [6], where such
approach was formulated).
However, one could argue that e.g. for the cuprates,

the term proportional to Jij does not only re�ect the

*e-mail: marcin.abram@uj.edu.pl

kinetic exchange interactions of d-holes in the Cu plane,
but also incorporates e�ects of the Cu�O hybridization,
hence the Jij ≡ 4t2ij/U identity is no longer valid [7].
Furthermore, the Cu-O hybridization can reduce the cost
of double occupancy, and the requirement of large U may
no longer be necessary. Thus, the enlarged Hamiltonian
becomes e�ective and all three parameters, tij , Jij , and
U , can now be treated as independent parameters. This
can be regarded as rationale for introducing the t−J−U
model.
The t−J−U model was extensively studied by

Zhang [8], Gan et al. [9, 10], and Bernevig et al. [11].
However, no antiferromagnetic order was considered in
those works�.
Recently, we have covered the topic (cf. Ref. [13]) and

we have found that in the t−J−U model for su�ciently
large U , a coexistence of antiferromagnetism and super-
conductivity (AF+SC) appears, but only in a very lim-
ited hole-doping (close range to the half-�lled band). The
present article is an extension of the previous work [13].
The model is re�ned to consider also the second nearest-
-neighbor hopping.
The structure of this paper is as follows: in Sect. 2 the

model is de�ned, as well as the approximations leading to
the e�ective single-particle Hamiltonian. In Sect. 3 the
details of the solving procedure are provided. Results and
discussions are presented in Sects. 4 and 5, respectively.

�Some attempts was made by some authors, cf. Ref. [12], but
their method su�ered of some inconsistencies (cf. discussion in
Ref. [13]).

(A-25)
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2. The model and the e�ective single-particle

Hamiltonian

The starting Hamiltonian for t−J−U model has the
form [8�10]:

Ĥ=
∑

i 6=j, σ
tij ĉ
†
iσ ĉjσ+

∑

i 6=j
Jij Si · Sj+U

∑

i

n̂i↑n̂i↓, (2)

where tij denotes the hopping term, Jij the spin-
exchange coupling, U the on-site Coulomb repulsion,

ĉ†iσ (ĉiσ) are creation (annihilation) operators of an elec-

tron on site i and with spin σ; n̂iσ ≡ ĉ†iσ ĉiσ denotes elec-

tron number operator, Si ≡ (Ŝxi , Ŝ
y
i , Ŝ

z
i ) spin operator.

In the fermion representation Ŝσi ≡ 1
2 (Ŝ

x
i +σŜ

y
i ) = ĉ†iσ ĉiσ,

while Ŝzi = 1
2 (n̂i↑ − n̂i↓).

Here, we consider a two-dimensional, square lat-
tice. This is justi�ed since cuprates have a quasi two-
-dimensional structure. We assume that Jij ≡ J/2 if
i, j indicate the nearest neighbors, and Jij = 0 oth-
erwise. We restrict hopping to the �rst (t) and the
second nearest neighbors (t′). We use the Gutzwiller
approach (GA) [14, 15] to obtain an e�ective single-
particle Hamiltonian. Speci�cally, to calculate the av-
erage 〈Ĥ〉 ≡ 〈Ψ | Ĥ | Ψ〉, the form of |Ψ〉 has to be

known. We are assuming that |Ψ〉 ≈ |ΨG〉 ≡ P̂G|Ψ0〉 =∏
i

(
1 − (1 − g)n̂i↑n̂i↓

)
|Ψ0〉, where g is a variational pa-

rameter and |Ψ0〉 is a single-particle wave function. Let
us note that for g = 0 the projector cuts o� all states with
double occupation (two electrons on one site), while for
g = 1 we have simple |ΨG〉 = |Ψ0〉. In GA, we assume
that
〈ΨG | H | ΨG〉
〈ΨG | ΨG〉

= 〈Ψ0 | Ĥe� | Ψ0〉 ≡ 〈Ĥe�〉0, (3)

where

Ĥeff = t
∑

〈i,j〉,σ
giσgjσ

(
ĉ†iσ ĉjσ +H.c.

)

+t′
∑

〈〈i,j〉〉,σ
giσgjσ

(
ĉ†iσ ĉjσ +H.c.

)

+J
∑

〈i, j〉, σ
gsi g

s
j Si · Sj + U

∑

i

n̂i↑n̂i↓, (4)

where
∑
〈i,j〉 and

∑
〈〈i,j〉〉 denotes summation over all

unique pairs of �rst and second nearest neighbors, H.c.
is the Hermitian conjugation, and giσ, g

s
i are renormal-

ization factors [16, 17]

giσ =
√
gsi



√

(1− niσ̄)(1− n+ d2)

1− niσ
+

√
niσ̄ d2

niσ


 ,

(5)

gsi =
n− 2d2

n− 2niσniσ̄
, (6)

with n ≡ 〈n̂i↑ + n̂i↓〉0, d2 ≡ 〈n̂i↑n̂i↓〉0, and

niσ ≡ 〈ĉ†iσ ĉiσ〉0 ≡
1

2

(
n+ σ e iQ·Ri m

)
, (7)

where m is (bare) sublattice magnetization per site,
Q ≡ (π, π), andRi is the position vector of site i. We di-
vide the lattice into two sublattices, A where on average

the spin is up, and B where on average is down (cf. Fig. 1).
Thus ni∈A,σ ≡ 1

2 (n+ σm), and ni∈B,σ ≡ 1
2 (n− σm).

Fig. 1. Schematic interpretation of χ, χAA and χBB

(left part) and ∆A and ∆B (right part). To consider
antiferromagnetism in the system, we can divide the
lattice into two sublattices, A where in average the spin
is up, and B where in average is down. Thus χ denotes
hopping between sites belonging to sublattices A and
B, while χAA and χBB hopping within one sublattice
(A or B, respectively); ∆A denotes pairing of majority
spins (up from sublattice A and down from B), and ∆B

pairing of minority spins (up from B and down from A).

We de�ne average hopping amplitude for the �rst and
the second nearest neighbors (n.n.) as:

χijσ ≡ 〈ĉ†iσ ĉjσ〉0 ≡
{
χ for 1st nearest neighbor,

χS + σ e iQ·RiχT for 2nd nearest neighbor,
(8)

where χ ≡ χAB denotes hopping between sublattices
A and B (or vice versa, cf. left part in Fig. 1); χS ≡
1
2 (χAA + χBB) and χT ≡ 1

2 (χAA − χBB), where χAA and
χBB denotes hopping within one sublattice. We de�ne
also the electron pairing between nearest neighbors as

∆ijσ ≡ 〈ĉiσ ĉjσ̄〉0 = −τij
(
σ∆S + e iQ·Ri∆T

)
, (9)

where τij ≡ 1 for j = i ± x̂, and τij ≡ −1 for j = i ± ŷ
to ensure d-wave symmetry. ∆S ≡ 1

4 (∆A +∆B +H.c.)

and ∆T ≡ 1
4 (∆A −∆B +H.c.), cf. right part in Fig. 1.

We assume that all the above averages: χ, χS , χT , ∆S ,
and ∆T , are real. Finally, we are able to calculate the
average W ≡ 〈Ĥ〉0, which has the form

W

Λ
= 8gttχ+ 4gmax

t′ t′χS + 4gmin
t′ t′χS)

+gsJ

(
−1

2
m2 − 3χ2 − 3∆2

S +∆2
T

)
+ Ud2, (10)

where the renormalization factors gt ≡ gi∈Aσgj∈Bσ,
gmax
t′ ≡ gi∈A↑gj∈A↑, gmin

t′ ≡ gi∈A↓gj∈A↓, and gs ≡
gsi∈Ag

s
j∈B.

3. Statistically-consistent Gutzwiller

approximation

To determine the stable phases and their character-
istics (sublattice magnetization, SC gap, etc.) we con-
struct the grand potential functional, which we next
minimize with respect to all parameters. However, to
ensure that the averages calculated in a self-consistent
manner are equal to those obtained variationally, we
�rst use the so-called statistically-consistent Gutzwiller
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approximation (SGA) (cf. introduction to SGA [18],
and examples of its use in the context of the t−J
model [19, 20], the t−J−U model [13], the Anderson�
Kondo lattice model [21, 22], the extended Hubbard mod-
els [23�25], or the liquid 3He [26]). Here, we impose con-
straints on each average, which is present in Eq. (10).
Hence, our e�ective Hamiltonian takes the form

K̂ =W −
∑

〈i,j〉,σ

(
λχijσ

(
ĉ†iσ ĉjσ − χijσ

)
+H.c.

)

−
∑

〈〈i,j〉〉,σ

(
λχijσ

(
ĉ†iσ ĉjσ − χijσ

)
+H.c.

)

−
∑

〈i,j〉

(
λ∆ijσ (ĉiσ ĉjσ̄ −∆ijσ) +H.c.

)

−
∑

iσ

(λniσ (n̂iσ − niσ))− µ
∑

iσ

n̂iσ, (11)

where we have also introduced the chemical potential
term −µ∑iσ n̂iσ. Symbols {λi} stand for Lagrange mul-
tipliers, having the same form as the corresponding to
them averages, namely

λniσ =
1

2

(
λn + σ e iQ·Riλm

)
, (12a)

λχijσ ≡
{
λχ for 1st n.n.,

λχS
+ σ e iQ·RiλχT

for 2nd n.n.,
(12b)

λ∆ijσ = −τij
(
σλ∆S

+ i e iQ·Riλ∆T

)
. (12c)

In the next step we diagonalize the grand Hamilto-
nian K̂ and construct the grand potential functional

F = − 1
β lnZ, where β = 1/kBT , and Z = Tr

(
e−βK̂

)
.

The minimization conditions for determining all quanti-
ties and Lagrange multiplies are

∂F
∂Ai

= 0,
∂F
∂λi

= 0,
∂F
∂d

= 0, (13)

where {Ai} denote here all 7 averages: χ, χS , χT , ∆S ,
∆T , n, and m, while {λi} denote all Lagrange multipli-
ers λχ, λχS

, λχT
, λ∆S

, λ∆T
, λn, and λm. The system

of equations is solved self-consistently. To determine the
stability of physical phases, free energy has to be calcu-
lated according to the prescription

F = F0 + Λµn, (14)

where F0 is the value of the grand potential functional
F at minimum, and Λ is the number of lattice sites.

4. Results

The numerical calculations were carried out using
GNU Scienti�c Library (GSL) [27] for a two-dimensional,
square lattice of Λ = 512 × 512 size, and unless stated
otherwise, t = −1, J = |t|/3, and β|t| = 1500 (it was
checked that for such large β ≡ 1/kBT we have e�ec-
tively T = 0).
Here, χ, χS , χT , ∆S , ∆T , and m are bare aver-

ages. Renormalized by a proper Gutzwiller factors, they
become order parameters of the corresponding phases.

Thus: χc ≡ gtχ, χ
c
S ≡ gt′χS , χ

c
T ≡ gt′χT , ∆

c
S ≡ g∆∆S ,

∆c
T ≡ g∆∆T , and mc = gmm, where (cf. Eqs. (5)

and (6)), gt ≡ gi∈Aσgj∈Bσ, gt′ ≡ 1
2 (gi∈A↑gj∈A↑ +

gi∈A↓gj∈A↓), g∆ ≡ 1
2 (gi∈A↑gi∈B↓ + gi∈A↓gi∈B↑), and

gm ≡ gsi∈Ag
s
j∈B.

4.1. Results for t−J−U model, for t′ = 0

In the limit of the low temperature (T → 0, i.e.
β → +∞) the SC phase is stable for any value of δ > 0,
U > 0, or J > 0. For su�ciently large Coulomb re-
pulsion (U > Ucr) and for small hole doping (δ < δcr),
a coexistent AF+SC phase can be found (cf. Fig. 2). For
δ = 0 and for U > Ucr we obtain the Mott insulating
state. For δ = 0 and U < Ucr electrons can have double
occupancies (d2 6= 0) and the superconducting pairing
is maintained (such a feature in literature is called the
gossamer superconductivity [28]).

Fig. 2. The AF+SC coexistence region for t′ = 0,
T = 0, and di�erent values of the the exchange cou-
pling J (in units of t).

Fig. 3. In the left part, the e�ect of the spin-exchange
coupling J on the critical hole doping (δcr). In the right
part, the e�ect of J on the critical relative Coulomb
repulsion (Ucr). Let us note that δcr(J) is quasi-linear
in the whole range of the tested parameter, while for
Ucr(J) we observe non-linear behavior for J/|t| < 0.03
(cf. the inset in the right part).

The in�uence of the spin-exchange coupling J on the
range of the coexistence region AF+SC was examined.
δcr is a linear function of J (cf. the left part in Fig. 3),
while the critical Coulomb repulsion Ucr has non-linear
behavior for J/|t| < 0.03 (the value of Ucr grows rapidly
when J decrease, cf. the right part in Fig. 3).



A-28 M. Abram

Fig. 4. In the parts (a)�(c), selected order parameters
as a function of doping δ are presented. Let us note that
∆T 6= 0 only if mc 6= 0. In the part (d), the optimal
doping for a singled SC gap (∆c

S) is shown, as a function
of the exchange coupling J , in U → +∞ limit (red line).
The black line is a numerical �t, f(x) = 0.298(1)x0.5.

For U → +∞ we reproduce the results of the t−J
model. As was checked, even for not too large U the
convergence to t−J model results is su�cient. For in-
stance, for U = 30 our results match those for the t−J
model (so the limit U = +∞) within less than 1% error,
and for U = 100 within an error of less than 0.1%. In
Fig. 4 in parts (a)�(c), the correlated states χc, ∆c

S , ∆
c
T ,

mc, and d2 are presented for U = 100 and β|t| = 1500
(e�ectively U = +∞ and T = 0). Let us note that the
staggered component of the superconducting gap (∆T )
is very small and appears only when mc 6= 0, i.e., in the
AF+SC phase. However, ∆T value is very small when
compared to value of ∆S (there is ∆c

T /∆
c
S < 10−4), thus

its e�ect can be practically neglected�.
In the last part (d) in Fig. 4 we show (red line) the

optimal doping δop for singled SC gap (∆c
S) as a function

of J . The black line in this part is a function f ∼
√
J/|t|,

numerically �tted to the data.

4.2. A signi�cance of the second nearest neighbors
hopping t′

The in�uence of the second nearest neighbors hopping
term t′ is exhibited in Fig. 5. Let us note that the critical
Coulomb repulsion for AF+SC phase (Ucr) is practically
independent of the value of t′ (it was checked, Ucr(t

′ = 0)
and Ucr(t

′ = 1) di�er about 1%). The critical doping

�The free energy F0 in minimum (for T = 0) is equal to W (cf.
Eq. (10)). If ∆c

T /∆c
S ≡ ∆T /∆S < 10−4 then the impact of ∆c

T
for the �nal energy of the solution is about 10−8 smaller than the
impact of ∆c

S . Thus ∆T in practical calculations can be neglected.

Fig. 5. Signi�cance of the second nearest neighbors
hopping. Values of t′ are given in units of t. The pres-
ence of t′ does not change the AF+SC range in qualita-
tive manner.

Fig. 6. The e�ect of the temperature (meassured in
units of |t|) on the stability of SC phase in t−t′−J−U
model (t = −1, t′ = 0.25). The dashed lines correspond
to the range of SC phase for β = 500 (T ∼ 5−12 K),
β = 100 (25−60 K), β = 50 (50−120 K), β = 20
(130−290 K), β = 10 (250−580 K), β = 8 (320−720 K),
β = 6 (420−1000 K).

(δcr) is more susceptible to the value of t′, but note that
the typical value of the t′ ranges from −0.1t to −0.5t (cf.
Ref. [29, Ch. 7.1.2]), and in such a range δcr changes only
about 10%.

4.3. Nonzero temperature

In the limit of the zero temperature, for small U or/and
large δ, the value of the SC order parameter ∆c

S is small,
but still nonzero. Increasing the temperature (decreasing
the parameter β), the paramagnetic (PM) phase appears
in region where the order parameter of SC phase was
weak (cf. Fig. 6). For large T (small β), the range of the
SC phase is reduced to the vicinity of the Mott-insulator
phase (δ & 0, and U > Ucr).
The measured value of the hopping term t for the

cuprates ranges from 0.22 eV to 0.5 eV (cf. Ref. [30,
Ch. 7.1.2]). Hence the β|t| = 1500 corresponds to the
temperature 2�4 K, β|t| = 500 to 5�12 K, β|t| = 100 to
25�60 K, β|t| = 50 to 50�120 K, β|t| = 20 to 130�290 K,
β|t| = 10 to 250�580 K, β|t| = 8 to 320�720 K, β|t| = 6
to 420�1000 K.
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5. Conclusions

In this work, the t−t′−J−U model was studied in
the SGA scheme which plays the role of the mean-�eld
approximation. In the limit of the zero temperature,
three phases were found: superconductivity (SC), coexis-
tent antiferromagnetic-superconducting state (AF+SC),
and the Mott-insulating phase (for the half �lling). The
AF+SC phase exists only for su�ciently large Coulomb
repulsion (U > Ucr) and for small hole doping (δ < δcr).
We have shown how the range of AF+SC coexistence
varies with J and t′. The impact of J was signi�cant,
both for Ucr and for δcr. However, the impact of t′ was
much smaller and in the range of physical values (for
cuprates t′ ∼ 0.1�0.5|t|), it can be marginal.
The impact of the non-zero temperatures was tested.

For T > 0, additionally to SC and AF+SC phases,
a paramagnetic phase (normal phase) appears. The
ranges of SC and AF+SC phases decrease with the tem-
perature, but they remain stable even for relatively high
temperature (≈ 1000 K). Such results, contradictory to
the experiments, can be explained by the used method
(the saddle-point method) and approximations used (the
mean-�eld and the Gutzwiller approximation). To study
more accurately the stability of the phases, more so-
phisticated method should be used (cf. e.g. the dia-
grammatic expansion for Gutzwiller-wave functions (DE-
GWF) [29]).
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Article 3:

It is the first out of three papers, where we study the Anderson lattice model (ALM)
by means of the statistically consistent Gutzwiller approximation (SGA). We compare
our results with the experimental findings for UGe2 compound, namely the magnetic
phase sequence, order of phase transitions and the appearance of critical points, finding
qualitative agreement. We address the problem of the origin of observed ferromagnetic
states in UGe2. Namely, we show that using ALM the phase sequence can be explained
as an effect of competition between the f–f electron Coulomb interaction energy and
the hybridization between the f -electron and the conduction band.
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Ferromagnetism in UGe2: A microscopic model
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The Anderson lattice model is used to explain the principal features of the heavy fermion compound UGe2

by means of the generalized Gutzwiller approach (the statistically consistent Gutzwiller approximation method).
This microscopic approach successfully reproduces the magnetic and electronic properties of this material, in
qualitative agreement with experimental findings from magnetization measurements, neutron scattering, and de
Haas–van Alphen oscillations. Most importantly, it explains the appearance, sequence, character, and evolution
in an applied magnetic field of the observed in UGe2 ferromagnetic and paramagnetic phases as an effect of a
competition between the f -f electron Coulomb interaction energy and f -conduction electron hybridization.

DOI: 10.1103/PhysRevB.90.081114 PACS number(s): 71.27.+a, 75.30.Kz, 71.10.−w

Introduction. The discovery of spin-triplet superconductiv-
ity (SC) inside the ferromagnetic (FM) phase of the heavy
fermion compound UGe2 [1] sparked an intense discussion
about the cause of such a coexistence. Although the spin-triplet
paired phase has been known to appear in condensed 3He [2]
and most likely in Sr2RuO4 [3], until its discovery in UGe2

there was no convincing example for a strongly FM material
hosting SC.

Specifically, the phase diagram for UGe2 on the
temperature-pressure (T -p) plane contains both SC and two
FM phases, with stronger and weaker magnetization [4],
usually referred to as FM2 and FM1, respectively, as well as
a paramagnetic phase (PM), with first-order phase transitions
between them at low temperature, T � 7 K [5]. The FM-SC
coexistence is strongly suggestive of a single mechanism
based on magnetic correlations which is responsible for the
appearance of both FM and SC and thus should be treated
on equal footing, as, e.g., in UGe2 both phases disappear at
the same pressure [1,4]. Another indication of the coupled
nature of both phases is that the SC dome on the T -p plane
coincides with the phase transition between FM2 and FM1 [4].
Thus, we address here in detail the question of the microscopic
origin of the observed ferromagnetism, as it should bring us
closer to determining the mechanism of superconductivity.
The question related to the inclusion of SC requires a separate
study [6,7] (see the discussion at the end).

Experimental observations suggest that the ferromagnetism
in UGe2 has an itinerant nature [1,8,9] and is mediated by
the uranium 5f electrons [1,10,11]. Delocalization of the 5f

electrons can be interpreted as resulting from the hybridization
of the original 5f atomic states with those from the conduction
band [8] derived from p states due to Ge and d-s states due to
U. This is supported by a noticeable difference in the effective
paramagnetic moment per uranium atom in this compound
with respect to the corresponding atomic value for either the
f 3 or f 2 configurations [1], as well as from a fractional
value of the magnetization relative to the atomic-moment
saturation. This means that the Hund’s rule coupling in the
atomic sense is broken, and the itineracy of the 5f electrons

*marcin.wysokinski@uj.edu.pl
†marcin.abram@uj.edu.pl
‡ufspalek@if.uj.edu.pl

is the source of the band ferromagnetism in which Hund’s
ferromagnetic interaction plays a role, in combination with a
stronger intra-atomic Coulomb interaction. Thus, f -electron
orbital degeneracy is not essential, but the role of hybridization
is.

Apart from other theories concerning the origin of FM in
the considered class of materials [12,13], there exists [14]
a phenomenological explanation of the magnetic properties
within a rigid-band Stoner approach, which requires intro-
duction of an ad hoc two-peaked structure of the density of
states (DOS) near the Fermi surface (FS). Our purpose is to
invoke a microscopic description starting from the Anderson-
lattice model (ALM) which is appropriately adapted to the
heavy fermion compound UGe2. This comprises a relatively
simple quasi-two-dimensional electronic structure [15–17].
From such a starting point an effective nonrigid two-band
description arises naturally and allows for a detailed expla-
nation of the magnetic and electronic properties, at least on a
semiquantitative level. Additionally, as the correlations among
5f electrons are sizable, an emergence of the Stoner-like
picture of FM can be accounted for only with the inclusion
of specific features coming from the electronic correlations.
Although the resulting explanation of the physical properties is
semiquantitative in nature, it provides, in our view, a coherent
picture of a number of properties [4,10,11,18,19].

Model. We base our predictions for the ALM on a
variational treatment with the Gutzwiller wave function
|ψG〉 = ∏

i P̂i|ψ0〉, where P̂i is the operator projecting out part
of the double occupancies from the uncorrelated ground state
|ψ0〉 at site i. We have extended the standard approach [20–22]
to the statistically consistent form [23] [statistically consistent
Gutzwiller approximation (SGA) method]. Explicitly, we start
with the ALM Hamiltonian, with an applied magnetic field
introduced via the Zeeman term (h ≡ 1

2gμBH ), i.e.,

Ĥ − μN̂ =
∑
i,j,σ

′
tijĉ

†
i,σ ĉj,σ −

∑
i,σ

(μ + σh)n̂c
i,σ

+
∑
i,σ

(εf − μ − σh)n̂f
i,σ + U

∑
i

n̂
f

i,↑n̂
f

i,↓

+V
∑
i,σ

(f̂ †
i,σ ĉi,σ + ĉ†i,σ f̂i,σ ), (1)
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where the primed sum denotes summation over all lattice
sites i �= j, and f̂ and ĉ are operators related to f and c

orbitals, respectively, with spin σ = ↑,↓. We have also defined
the total number of electrons operator as N̂ , and for the
respective orbitals and spins as n̂

f
i,σ ≡ f̂

†
i,σ f̂i,σ , n̂c

i,σ ≡ ĉ
†
i,σ ĉi,σ .

In our model, we consider the finite intra-f -orbital Coulomb
interaction U , the on-site interorbital hybridization V < 0,
the hopping amplitude between the first (t) and the second
(t ′ = 0.25 |t |) nearest neighboring sites, and the atomic level
for f states placed at εf = −3|t |. In the following |t | is used
as the energy unit.

First, we would like to evaluate the ground-state energy,
EG ≡ 〈ψG | Ĥ | ψG〉/〈ψG | ψG〉. Applying the usual proce-
dure [21,22], called the Gutzwiller approximation (GA), we
simplify the projection to the local sites on which the operators
from (1) act. In that manner one obtains the effective single-
particle Hamiltonian in a momentum space with renormalized
hybridization by the Gutzwiller narrowing factor qσ [24–26],
namely,

ĤGA ≡
∑
k,σ

�†
(

εc
k − σh − μ

√
qσ V

√
qσ V εf − σh − μ

)
� + �Ud2,

(2)

where we have defined �† ≡ (ĉ†k,σ ,f̂
†
k,σ ), and εc

k is the
starting conduction band energy, � denotes the number of
lattice sites, and d2 is the probability of a having doubly
occupied f orbital that we optimize variationally. In order
to ensure that variationally calculated polarization and the
f -level occupancy would coincide with those coming from
the self-consistent procedure [23], we modify our effective
Hamiltonian (2) by introducing additional constraints on the
polarization (mf ) and the number (nf ) of f electrons via the
Lagrange-multiplier method. The effective Hamiltonian with
the constraints now takes the form

ĤSGA

≡ ĤGA − λf
n

(∑
k,σ

n̂
f

k,σ − �nf

)
− λf

m

(∑
k,σ

σ n̂
f

k,σ − �mf

)

=
∑
k,σ

�†
(

εc
k − σh − μ

√
qσ V

√
qσV εf − σ

(
h + λ

f
m

) − λ
f
n − μ

)
�

+�
(
Ud2 + λf

n nf + λf
mmf

)
. (3)

Those constraint parameters λ
f
n and λ

f
m are also determined

variationally. They play the role of nonlinear self-consistent
fields acting on the charge and the spin degrees of freedom,
respectively. Diagonalization of (3) in this spatially homo-
geneous case leads to four branches of eigenenergies, E±

kσ

representing two spin-split hybridized bands E±. In order to
determine the equilibrium properties of the system, we need to
find the minimum of the generalized Landau grand-potential
functional F ,

F
�

= − 1

�β

∑
kσb

ln
[
1 + e−βEb

kσ

] + (
λf

n nf + λf
mmf + Ud2

)
,

(4)

where b = ±. Effectively, it leads to the set of five nonlinear
equations, ∂F/∂
λ = 0 for 
λ ≡ {d,nf ,mf ,λ

f
n ,λ

f
m}. However,

due to the fact that the total number of electrons remains
constant when pressure or the magnetic field is applied, we
need also to satisfy the equation for the chemical potential μ

via the condition

n = 1

�

∑
kbσ

f
(
Eb

kσ

)
, (5)

with f being the Fermi distribution. The equilibrium ther-
modynamic potential functional defines also the ground-state
energy EG = F |0 + �μ0n, where the subscript 0 denotes the
optimal values. After carrying out the minimization, we can
also calculate the total spin polarization from

m ≡ mc + mf = 1

�

∑
kbσ

σf
(
Eb

kσ

)
. (6)

Numerical calculations with a precision of at least 10−7

were carried out for a two-dimensional square lattice of � =
512 × 512 size, and for low temperatures β ≡ 1/kBT � 1500,
emulating the T → 0 limit.

Results. First, we analyze FM and PM solutions in the
absence of field. In Fig. 1 we draw a phase diagram on the total
filling–hybridization strength plane. For weak hybridization,
FM phases are favored due to the negative balance between
the increase of the kinetic and decrease of the Coulomb
energies, caused by a relative shift of the spin-resolved DOS.

FIG. 1. (Color online) Top: Phase diagram on the plane total
filling–hybridization strength for the zero field, containing both
FM and PM phases for U = 5. The color scale denotes total spin
polarization m. Phases are divided by the dashed and the solid
lines. Dashed lines denote the second-order transition, whereas the
solid denotes the first-order transition with the critical points, CP.
Fine dashed lines mark how the phase borders would change for
U = 8. (a)–(c) depict a schematic spin-resolved density of states
corresponding to the phase sequence appearing along the solid vertical
line (from bottom to top).
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FIG. 2. (Color online) (a) Magnetization as a function of hy-
bridization strength for the band filling n = 1.6, and the Coulomb
repulsion U = 5. Both phase transitions induced by the hybridization
change are of first order. (b) Corresponding experimental results from
Ref. [4]. (c) f -orbital filling as a function of hybridization. (d) Square
of DOS at the Fermi level vs |V | through the phase sequence. Inset:
Experimentally measured T 2-term coefficient A of the resistivity vs
pressure from Ref. [18].

This is visualized by the diminution of the spin-subband
overlap up to the FS—cf. Figs. 1(a) and 1(b). The appearance
of a spontaneous polarization, as a result of a competition
between the kinetic and the Coulomb energies, is in fact the
feature of the Stoner mechanism for the band FM onset. In
comparison to the usual single-band (e.g., Hubbard) model,
we can distinguish in a natural manner between the two FM
phases. The first (FM1) appears when the chemical potential
is placed in the hybridization gap, between the spin subbands
of the lower hybridized band, which is characterized also
by magnetization equal to m = 2 − n [cf. Fig. 1(b)]. In that
situation, only the spin-minority carriers are present at and
near the FS. The second phase (FM2) emerges when we further
lower the hybridization and thus the chemical potential enters
the majority spin-subband DOS [cf. Fig. 1(a)], giving rise to a
step (discontinuous) increase in magnetization [cf. Fig. 2(a)].
In the limit of strong hybridization, for a fixed total filling,
when the correlations weaken due to lowering of the f -orbital
average occupancy [nf � 0.85, cf. Fig. 2(c)], the kinetic
energy gain outbalances a subsequent reduction of the average
Coulomb interaction and the PM phase is energetically
favorable. A similar mechanism for the formation of FM and,

in particular, the characterization of phases, was studied before
in Refs. [24–27].

In UGe2 the spacing between Ge and U atoms decreases
with increasing pressure, resulting in an enlargement of their
orbital overlap. Even though other parameters may also be
altered (e.g., εf ), we presume that the main effect of the
pressure exerted on the material can be modeled by a generally
nonlinear concomitant strengthening of the hybridization am-
plitude. Thus, from Fig. 1 it can be seen that for the total filling
n in the range 1.55–1.75, the sequence of phases and the order
of the transitions are the same, as those found experimentally
for UGe2 by increasing the pressure [4,8]. As a representative
band filling we have selected n = 1.6, marked by the vertical
line in Fig. 1. In fact, as we compare the magnetization versus
hybridization along the traced line [cf. Fig. 2(a)] with the
corresponding experimental data [4] [cf. Fig. 2(b)], we find
a good qualitative resemblance. Moreover, the magnetization
differentiation among the orbitals [cf. Fig. 2(a)] is in agreement
with the neutron scattering data [10,11] at ambient pressure
(in our model |V | � 0.5), where it was found that, almost
exclusively, electrons from uranium atoms (f orbital) con-
tribute to the ferromagnetism. In our picture it results from
the fact that the competition between Coulomb repulsion
and hybridization-induced itineracy concerns mainly the f

electrons. Furthermore, as for low hybridization (in the FM2
phase) we obtain a small compensating polarization due to
the c electrons, we suggest that the experimentally observed
small negative magnetization between the uranium atoms at
ambient pressure [11] may come from the delocalized cloud
of conduction electrons.

Our microscopic description of the phase transitions in-
duced by the change of the FS topology also compares
favorably with the electronic-state features of UGe2 derived
from de Haas–van Alphen oscillations [18,19]. In Ref. [18] it
is suggested that the majority spin FS disappears in the FM1
phase, in complete accord with the character of DOS presented
in Fig. 1(b). We also reproduce the feature of an abrupt
change of the FS at the FM1-PM phase transition [18,19]
[cf. Fig. 2(d)]. Namely, here it corresponds to the step change
of the chemical potential position merging into both bands.
Furthermore, in the experimental data at the metamagnetic
phase transition there is an observed significant enhancement
of the quasiparticle mass renormalization [19]. As it is
proportional to the DOS at Fermi level, in Fig. 2(d) we
provide the corresponding behavior, which can be understood
within our model by the chemical potential crossing the
high hybridization peak in the majority spin subband. The
transition then leads to a step change of FS only in the
majority spin subband, while the minority subband evolves
rather continuously, which is also seen experimentally [19].

For the sake of completeness, we have shown in the inset
in Fig. 2(d) the pressure dependence of the T 2 term of
resistivity [18] as it should have roughly the same dependence
as the squared DOS at the FS, versus |V | (we assume that the
Kadowaki-Woods scaling holds). However, the jump that we
obtain at the FM1-PM transition has not been observed in the
resistivity measurements [18].

In the applied field, our model is also in good agreement
with available experimental data for UGe2. In Fig. 3(a)
we display a phase diagram on the hybridization–applied-
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FIG. 3. (Color online) (a) Phase diagram on the applied field–
hybridization strength plane for n = 1.6 and U = 5. The color scale
denotes total spin polarization. The dashed lines mark the phase stabil-
ity thresholds for U = 8. In the inset we show experimental results [4].
(b) Magnetization vs applied field for selected hybridization strengths
when the system is entering into the FM1 to FM2 phase-transition
regime. (c) Evolution of orbital-resolved magnetization with the field
for low hybridization, |V | = 0.5 (mimicking ambient pressure). Note
the very small c-electron polarization up to h � 0.1.

magnetic-field plane that corresponds to that determined
experimentally [4] [cf. the inset of Fig. 3(a)]. Similarly, as
in Ref. [4], the magnetization at the phase transition between
FM1 and FM2 triggered by the applied magnetic field starts
from the same baseline, independently of the hybridization
strength [cf. Fig. 3)]. However, one should note that, due
to the fact that pressure not only changes the hybridization
magnitude but also other microscopic parameters, we are not
able to reproduce the magnetization cascade with increasing
magnetic field when crossing the transitions.

The next feature found in UGe2 at ambient pressure is
an initial lack of measurable polarization on the germanium
atoms with increasing magnetic field, as inferred from the
neutron scattering data [10]. In our model we find a similar
trend. For low hybridization (|V | � 0.5 emulating ambient
pressure), c-electron polarization increases slowly, and even
up to h ≈ 0.1 it is negligible [cf. Fig. 3(c)].

Remarks. With the simple but powerful technique based on
the generalized Gutzwiller ansatz (SGA method), applied to
the Anderson lattice model, we have constructed a microscopic
model of FM in UGe2. Namely, we are able to reproduce
the main experimental features observed at low temperature,
by applying either pressure or magnetic field [cf. Figs. 2(a)
and 3(a)]. FM properties can be explained within the simplest
hybridized two-orbital model, without taking into account the
f -orbital degeneracy, i.e., by effectively incorporating both
the Coulomb and the Hund’s rule interaction into an effective
interaction U , as would also be the case in the Hartree-Fock
approximation [7].

To determine the stability of SC inside the FM phase,
the present approach should be extended to account for the
Hund’s rule interaction explicitly, which can be crucial for
the formation of the unconventional triplet SC [6,7,28,29]. If
this is the case, it can be triggered even by a purely repulsive
Coulomb interaction in conjunction with the residual Hund’s
rule coupling, as discussed in Refs. [28,29]. This issue requires
a separate analysis. Another path for discussing the coexistence
of SC with FM could be going beyond the Gutzwiller approxi-
mation, where we account also for the more distant correlations
when determining the effective Hamiltonian [30,31]. Here, the
central question is whether the spin-triplet pairing should be
treated on the same footing as ferromagnetism, i.e., does it
already appear in a direct space formulation [6,7,28,29] or is it
mediated by collective spin fluctuations in the ferromagnetic
phase [14,32–34] among already well defined quasiparticles.
A crossover from the latter to the former approach is expected
to take place with the increasing strength of the repulsive
Coulomb interaction U.
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Article 4:

It is the second out of three papers, where we study the Anderson lattice model (ALM)
by means of the statistically consistent Gutzwiller approximation (SGA). In this article
we go beyond the T “ 0 limit and we study the classical and quantum critical points.
We find quantitative agreement with the the experiments and we predict the position
of the metamagnetic critical ending point.
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We provide a microscopic description of the magnetic properties of UGe2 and, in particular, of its both classical
and quantum critical behavior. Namely, we account for all the critical points: the critical ending point (CEP) at
the metamagnetic phase transition, the tricritical point, and the quantum critical end point at the ferromagnetic
to paramagnetic phase transition. Their position agrees quantitatively with experiment. Additionally, we predict
that the metamagnetic CEP can be traced down to zero temperature and becomes quantum critical point by a
small decrease of both the total electron concentration and the external pressure. The system properties are then
determined by the quantum critical fluctuations appearing near the instability point of the Fermi surface topology.

DOI: 10.1103/PhysRevB.91.081108 PACS number(s): 71.27.+a, 75.30.Kz, 71.10.−w

Introduction. Attempts to determine the quantum critical
behavior and the corresponding critical points (QCPs) have
attracted much attention due to the unique phenomena with sin-
gular physical properties associated with them as temperature
T → 0 and other parameters (pressure p, applied field H , or
electron concentration n) are varied [1–3]. Additionally, in the
canonical case—the heavy fermion systems—unconventional
superconductivity often appears near those QCPs making the
quantum critical fluctuations the primary pairing inducing
factor. Also, the classical critical points (CCPs) and their
evolution towards QCP provide the testing ground for study
of detailed quantitative behavior of different systems [4,5].

UGe2, in this respect, is one of the unique materials that
exhibit all the above features. Therefore, the explanation of
the magnetic phase diagram and intimately connected critical
points within a single theoretical framework would provide a
complete understanding of this remarkable quantum material
[4,6–9]. The phase diagram on the pressure-temperature
(p-T ) plane comprises two ferromagnetic phases, of weaker
(FM1) and stronger (FM2) magnetization, paramagnetic
phase (PM), as well as the spin-triplet superconducting phase
(SC) [4,6,10]. SC disappears at the same pressure as FM [6]
and the maximum of the superconducting critical temperature
Ts coincides with the critical pressure for the FM2-FM1 phase
transition [7]. Thus, it is strongly suggestive that FM and
SC are strongly intertwined as described by some theoretical
approaches [11–15].

The p-T -H phase diagram for UGe2 comprises the char-
acteristic wing shape [8,9]. Such structure was theoretically
obtained by Belitz et al. [16] within mean-field approach for
a single-band itinerant ferromagnet. However, this approach
cannot account for the two different ferromagnetic phases
appearing in UGe2, as well as for the critical ending point
(CEP), separating the region with a discontinuous drop in
magnetization from a crossover regime [8,17].

In this work we provide a quantitative microscopic descrip-
tion of all magnetic critical properties of UGe2 within the

*marcin.wysokinski@uj.edu.pl
†marcin.abram@uj.edu.pl
‡ufspalek@if.uj.edu.pl

framework of the Anderson lattice model (ALM) treated by
a modified Gutzwiller approach [18], called the statistically
consistent Gutzwiller approximation (SGA) (for a description
of the method and a detailed comparison to the slave-boson
approach, see Ref. [19]; for its applications, see Refs. [20]).
Validity of this model in the context of UGe2 [18] is based
on earlier results: first, on band structure calculations [21,22]
and second, on experimental observations [4,6,23]. The first
feature is a quasi-two-dimensional topology of the Fermi
surface (FS) [21,22] which justifies calculations for a two-
dimensional square lattice. On the other hand, despite the
circumstance that the distance between uranium atoms is above
the Hill limit [4], the experimental value of the paramagnetic
moment per U atom is different from that for either f 3

or f 2 configurations [6,24]. This speaks for the presence
of a sizable hybridization between the initially localized f
electrons and those from the conduction band. For strong
enough hybridization, f electrons contribute essentially to the
heavy itinerant quasiparticle states and play a dominant role
in the magnetic properties [6,10,24].

We provide a coherent explanation of FM and PM phase ap-
pearances as driven by a competition between the hybridization
from one side and the f -f Coulomb local repulsive interaction
from the other [18]. Specifically, we obtain two different FM
phases [15,18,25–28] by varying the predetermined position
of the chemical potential with respect to the peaks in the
quasiparticle density of states (DOS) including the spin-split
subbands. Although, Gutzwiller ansatz in certain regimes
favors antiferromagnetism over FM [25–27,29,30], we restrict
our discussion to the latter phase, because in the considered
range of electron concentration, n � 1.6, FM phase turned out
to have the lowest energy [25,26].

In Fig. 1 we draw schematically the respective DOS for
considered phases. It can be seen clearly that the shape of the
FS (limiting the filled parts) will be vastly different in each
of the phases. Within our approach, most of the properties
of UGe2 at T = 0 can be explained [18] in agreement with
related experiments of magnetization [7], neutron scattering
[10,24], and the de Haas–van Alphen oscillations [31,32]. The
character of the FM1 phase, which we obtain as a half-metallic
type [cf. Fig. 1(b)], is also supported by the band-structure
calculations [22].

In the present work we extend our previous approach [18]
to nonzero temperature and on this basis we determine the

1098-0121/2015/91(8)/081108(5) 081108-1 ©2015 American Physical Society
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character of all phase transitions on the p-T -H diagram
of UGe2, as well as discuss the nature of all the classical
and quantum critical points. We also show that by a small
decrease of electron concentration (by ∼7%), the system
can reach another quantum criticality via a metamagnetic
transition upon changing the pressure. We also predict the
corresponding change in FS topology distinguishing the two
phases of significantly different magnetic susceptibility.

Model. We start from ALM with the Zeeman term included
(h ≡ 1

2gμ0μBH ) in the Hamiltonian

Ĥ − μN̂ =
∑
i,j,σ

′
tijĉ

†
i,σ ĉj,σ −

∑
i,σ

(μ + σh)n̂c
i,σ

+
∑
i,σ

(εf − μ − σh)n̂f
i,σ + U

∑
i

n̂
f

i,↑n̂
f

i,↓

+V
∑
i,σ

(f̂ †
i,σ ĉi,σ + ĉ†i,σ f̂i,σ ), (1)

which comprises dispersive conduction (c) band electrons and
f electrons coming from atomic f shell located at εf < 0. In
the model we include specifically the nearest- (t < 0) and the
second-nearest- (t ′ = 0.25|t |) neighbor hopping amplitudes
between c electrons, f level at εf = −3|t |, sizable f − f

Coulomb repulsion U = 5|t |, and the c − f hybridization V

of the on-site form.
To obtain an effective single particle picture from the

many-body Hamiltonian (1) we use the extended Gutzwiller
approximation (GA) called the SGA (for details, see [19]).
The method was successfully applied to a number of problems
[20]. Formally, we add to the effective Hamiltonian obtained
in GA [33,34], ĤGA, additional constraints on the number of
f electrons and their magnetization by means of the Lagrange
multipliers. It leads to the new effective Hamiltonian ĤSGA of
the form

ĤSGA ≡ ĤGA − λf
n

(∑
k,σ

n̂
f

k,σ − �nf

)
− λf

m

(∑
k,σ

σ n̂
f

k,σ − �mf

)

≡
∑
k,σ

�̂
†
kσ

(
εc

k − σh − μ
√

qσV
√

qσV εf − σ (h + λ
f
m) − λ

f
n − μ

)
�̂kσ + �

(
Ud2 + λf

n nf + λf
mmf

)
, (2)

where �̂
†
kσ ≡ (ĉ†k,σ ,f̂

†
k,σ ). Furthermore, qσ is the hybridization

narrowing factor in the standard form [18,20], and � is a
number of lattice sites.

At nonzero temperature, one needs to minimize the gener-
alized Landau grand-potential functional

F
�

= − 1

�β

∑
kσb

ln
[
1 + e−βEb

kσ

]
+ (

λf
n nf + λf

mmf + Ud2
)
, (3)

where Eb
kσ are four eigenvalues of the effective Hamiltonian

(2) labeled with the spin (σ ) and band (b) indices. λ
f
n and

λ
f
m are the Lagrange multipliers assuring the correct statistical

consistency of equations for nf and mf and play the role of
correlation-induced effective fields [20]. Minimization of F
is carried out with respect to the set of all parameters 
λ ≡
{d,nf ,mf ,λ

f
n ,λ

f
m}. Additionally, as the number of particles in

the system is conserved we have to determine the chemical
potential and adjust it to each of the phases according to the
condition n = 1/�

∑
kbσ f (Eb

kσ ), with f (E) being the Fermi-

FIG. 1. (Color online) Schematic characterization of phases by
their spin-resolved density of states. The arrows label the spin
subbands and the dotted line marks the position of the chemical
potential.

Dirac function. In effect, the model is described by set of six
algebraic equations which are solved with the help of the GSL
library, with typical accuracy 10−11.

The Landau grand-potential functional for the equilibrium
values of the parameters, F0, has the meaning of the physical
grand potential � which is the proper quantity for studying
the system at any temperature, F0 ≡ � ≡ U − T S − μN .
Therefore, the free energy of the system is defined by F =
F0 + μN and the ground-state energy is EG ≡ F (T = 0).

Results. We assume that the main effect of the applied
pressure is emulated by an increase of the hybridization
amplitude |V |, even though other parameters (e.g., εf ) may
also change. However, as our previous results indicate,
hybridization change is the principal factor of the pressure
dependencies observed in UGe2 [18].

In Fig. 2 we plot the phase diagram on the |V | − T plane. In
the low-T regime we are able to reproduce the correct evolution
of both metamagnetic (left) and ferromagnetic to paramagnetic
(right) phase transitions observed in experiment (cf. inset),
together with the respective critical behavior [7–9,17]. The
position of the CCPs is very sensitive to the selected total band
filling, n = nf + nc. Our fitting constraint is the ratio of the
corresponding critical temperatures, TCEP/TTCP ≈ 7 K/24 K
[8]. Consequently, for the band filling n = 1.6, selected in our
previous analysis at T = 0 [18], we obtain agreement of our
calculated ratio under the proviso that experimental values
of the critical temperatures are determined with accuracy
±0.25 K.

Our model does not account for correct curvatures of phase
transitions above CCPs (cf. Fig. 2). This discrepancy can be
attributed to the fact that also other microscopic parameters
can alter when applying pressure, e.g., εf , and to additional
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FIG. 2. (Color online) Top: Phase diagram on hybridization
strength-reduced temperature plane encompassing both FM and
PM phases for total band filling n = 1.6. The correct character of
phase transitions and positions of critical points in UGe2 [7–9,17] is
reproduced. For comparison, we present in the inset the experimental
p-T phase diagram of UGe2 (cf. [7,8]). In (a)–(d) we draw the
magnetization change with the increasing hybridization strength
when the system undergoes phase transition at points indicated

with respective encircled letters . Solid red lines denote
energetically favorable solution, whereas dashed black lines denote
the unstable solutions.

entropic factors important in the case of T > 0 Gutzwiller
projection [35,36].

In our calculations we have used reduced temperature
kBT /|t |. We rescale it to the physical units by relating it
to the experimentally measured values at CCPs [7–9,17].
Accordingly, we also rescale the reduced field 1

2gμBμ0H/|t |
to Tesla units.

At the metamagnetic (FM2-FM1) phase transition we
obtain CEP separating the discontinuous-transition line from
the crossover regime. At low T both solutions with the
weaker and the stronger magnetization coexist in the limited
range of the hybridization strength [cf. Fig. 2(a)]. As the
system approaches the transition from the FM1 side, FS
changes drastically only in one spin subband, in which the
chemical potential crosses the hybridization gap, resulting also
in a discontinuous jump of the total moment m = mf + mc.
With the increasing temperature, the edges of the gap are
gradually smeared out. This leads to a deviation from the
pure half-metallic type of the FM1 phase. The magnetization
is bending towards the trend observed in the FM2 phase,

-30
-20
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T (K)
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FIG. 3. (Color online) (a) Wing structure of the phase transition
planes derived from our model. (b) Comparison of the calculated
dependence of the temperature vs applied magnetic field at the critical
end point (CEP) with the experimental points adopted from [9]. For
comparison, we include also the prediction by Belitz et al. [16], with
the fitting parameters selected on the basis [9]: HQCEP = 18 T and
TTCP = 24 K.

and eventually at CEP it is changing to a crossover line
[cf. Fig. 2(c)].

In the case of FM to PM transition the situation is different
[cf. Figs. 2(b) and 2(d)]. At low temperature, the magnetization
of this half-metallic FM1 phase discontinuously drops to zero
[cf. Fig. 2(b)]. However, with the increasing temperature, the
ferromagnetic solution departs from a sharp half-metallic type
and slowly bends over towards the paramagnetic solution,
eventually reaching the critical point by changing the transition
character to that of second order [cf. Fig. 2(d)]. The just
described critical point is of tricritical character (TCP). This
is because its evolution can be followed by applying the
magnetic field down to T = 0, where it turns into the quantum
critical ending point (QCEP) [cf. Fig. 3(a)]. In this manner, we
have achieved a full characteristic at the wing-shapep-T -H
phase diagram [8,9]. As the detailed form of the hybridization
change with applied pressure is unknown, and in principle
nonlinear, we compare our predicted shape of wings by
tracing the evolution of CEP on the temperature-magnetic
field T h

CEP -μ0HC plane [cf. Fig. 3(b)] and comparing it to the
experimental data [9]. We obtain a satisfactory quantitative
agreement with the experimental points, as well as recover
its proper curvature. For comparison, the results from the
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FIG. 4. (Color online) Top: Evolution of CEP on the |V |-T -δ
plane down to T = 0 and QCP (see main text). Bottom: (a) Change
of magnetization and f electron number as the system undergoes
quantum critical transition. (b) Density of states at QCP. Note the
intermediate character of FS between FM2 and FM1 of the state at
QCP. Encircled letter at top diagram refers to the position of the

curves in panel (a), and respectively at panel (a) to the position
of the DOS in (b).

mean-field approach to the single-band case by Belitz et al.
[16] are also drawn, as is universal explanation of tricritical
behavior of itinerant ferromagnets. Nevertheless, as suggested
by the authors in Ref. [9], the crucial element determining
for UGe2 the correct shape of the wings is the change of FS,
present in our two-band ALM model. We also predict that the
curve of the T h

CEP vs μ0HC dependence has a longer tail than
that estimated in Ref. [9], i.e., that QCEP should be located at
fields around 30 T. Our estimate thus calls for a more precise
determination of the QCEP position.

In fitting to the data in Fig. 3 we have assumed that
the g factor for f electrons gf = 2 (the same as for c

electrons). This assumption is based on the presumption that
for itinerant electrons the crystal-field multiplet structure is
washed out. Parenthetically, taking gf significantly different
provides a worse agreement, but the curvature character
remains unchanged.

In Fig. 4 we draw the evolution of CEP at the metamagnetic
transition with the decrease of both the hybridization and the
electron concentration. The latter quantity is characterized by
the parameter δ = nx−n

n
100%, where n = 1.6 is initial and

nx is the actual concentration. On the V -T -δ phase diagram
the CEP can be followed down to zero temperature, where it
joins the second-order transition line [cf. Fig. 4(a)]. At this
second-order transition the Fermi level for the majority spin
subband is exactly at the border of the gap [cf. Fig. 4(b)].
It means that along this line quantum critical fluctuations of
FS topology are present. In other terms, we have a strong
indication that in the vicinity of the SC dome maximum this
compound exhibits a Lifshitz type of quantum critical behavior.
This quantum critical transition can be associated also with
the specific valence change [cf. Fig. 4(a)]. However, here the
average f electron number changes continuously in contrast
to the discontinuous drop originating from the f -c electron
repulsion [37]. The difference in the origin of Lifshitz type
of ferromagnetic QCP with respect to that considered before
[38,39] is that here it results from the two-band model and
separates different FM phases.

Summary. We have described the phase diagram of UGe2

at nonzero temperature and have determined the location of
the critical points, as well as proposed an additional quantum
critical point for UGe2. With the help of the Anderson lattice
model we are able to reproduce quantitatively all the principal
features of the magnetism in this compound. We also have
determined the location of experimentally observed critical
and quantum critical points, together with a correct order of
the phase transitions related to them.

Although our mean-field approach seems to capture all
the features concerning details of the p-T -H phase diagram
of UGe2, we should note that, in principle, fluctuations of
order parameters can bring quantitative changes to our results.
However, as the phase transitions are induced by the drastic
changes of the Fermi surface, the effect of the fluctuations
should be minor (except near the predicted QCP—cf. Fig. 4)
and may lead to a correction of the CEP and TCP positions.

It should be noted that we have employed an orbitally non-
degenerate ALM. Accounting for the degenerate one would
imply inclusion of the residual Hund’s rule interaction present
in the degenerate ALM model which could be important in
inducing the spin-triplet pairing [40].
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[3] A. Ślebarski and J. Spałek, Phys. Rev. Lett. 95, 046402 (2005).
[4] C. Pfleiderer, Rev. Mod. Phys. 81, 1551 (2009) (Sec. III.A).

[5] J. Spalek, A. Datta, and J. M. Honig, Phys. Rev. Lett. 59, 728
(1987); J. Spałek, Phys. Status Solidi B 243, 78 (2006).

[6] S. S. Saxena, P. Agarwal, K. Ahilan, F. M. Grosche, R. K.
W. Haselwimmer, M. J. Steiner, E. Pugh, I. R. Walker, S. R.
Julian, P. Monthoux, G. G. Lonzarich, A. Huxley, I. Sheikin,
D. Braithwaite, and J. Flouquet, Nature (London) 406, 587
(2000).

081108-4



RAPID COMMUNICATIONS

CRITICALITIES IN THE ITINERANT FERROMAGNET . . . PHYSICAL REVIEW B 91, 081108(R) (2015)

[7] C. Pfleiderer and A. D. Huxley, Phys. Rev. Lett. 89, 147005
(2002).

[8] V. Taufour, D. Aoki, G. Knebel, and J. Flouquet, Phys. Rev. Lett.
105, 217201 (2010).

[9] H. Kotegawa, V. Taufour, D. Aoki, G. Knebel, and J. Flouquet,
J. Phys. Soc. Jpn. 80, 083703 (2011).

[10] A. Huxley, I. Sheikin, E. Ressouche, N. Kernavanois, D.
Braithwaite, R. Calemczuk, and J. Flouquet, Phys. Rev. B 63,
144519 (2001).

[11] T. R. Kirkpatrick, D. Belitz, T. Vojta, and R. Narayanan, Phys.
Rev. Lett. 87, 127003 (2001).

[12] K. Machida and T. Ohmi, Phys. Rev. Lett. 86, 850 (2001).
[13] A. A. Abrikosov, J. Phys: Condens. Matter 13, L943 (2001).
[14] D. Sa, Phys. Rev. B 66, 140505 (2002).
[15] K. G. Sandeman, G. G. Lonzarich, and A. J. Schofield, Phys.

Rev. Lett. 90, 167005 (2003).
[16] D. Belitz, T. R. Kirkpatrick, and J. Rollbühler, Phys. Rev. Lett.

94, 247205 (2005).
[17] F. Hardy, C. Meingast, V. Taufour, J. Flouquet, H. v. Löhneysen,
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[19] J. Jędrak, J. Kaczmarczyk, and J. Spałek, arXiv:1008.0021.
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Article 5:

It is the third papers, where we study the Anderson lattice model (ALM) by means of
the statistically consistent Gutzwiller approximation (SGA). In this paper we study the
robustness of our findings that were described in the previous work (cf. Ref. [112]). We
analyze the influence of the total filling n and the Landé factor gf for f -electrons, finding
that the best results are obtained when gf is close to the value for the free electron
gas. Additionally, we show how changing the value of n alters the relative position of
critical ending point (CEP) and tricritical point (TCP). It allow us to precisely match
the position of CEP and TCP to the experiment, calibrating the energy scale and fixing
the value of n. We are finding, that for such match, the comparison with the experiment
of the second-order transition line that join TCP and QCEP points gives us the best
fit. It can be regarded as an argument, that ALM indeed, is a right choice to describe
the magnetic phases of UGe2.
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a b s t r a c t

In the present work we analyze the second order transition line that connects the tricritical point and the
quantum critical ending point on the temperature–magnetic-field plane in UGe2. For the microscopic
modeling we employ the Anderson lattice model recently shown to provide a fairly complete description
of the full magnetic phase diagram of UGe2 including all the criticalities. The shape of the so-called
tricritical wings, i.e. surfaces of the first-order transitions, previously reported by us to quantitatively
agree with the experimental data, is investigated here with respect to the change of the total filling and
the Landé factor for f electrons which can differ from the free electron value. The analysis of the total
filling dependence demonstrates sensitivity of our prediction when the respective positions of the critical
ending point at the metamagnetic transition and tricritical point are mismatched as compared to the
experiment.

& 2015 Elsevier B.V. All rights reserved.

1. Motivation and overview

Quantum critical phenomena have captured general attention
due to their unique singular properties observed at low tem-
perature (T 0→ ) and near the quantum critical point (QCP) which
is frequently accompanied by the unconventional super-
conductivity (SC) [1]. From this perspective, f-electron compound
UGe2 is a system with phase diagram comprising coexistence of
spin-triplet SC and ferromagnetism (FM) [2–6], as well as an
abundance of critical points (CPs), either of quantum and classical
nature [7]. Experimental studies among others have revealed ex-
istence of the two characteristic classical CPs in the absence of the
field (cf. Fig. 1): (i) the critical ending point (CEP) at 7 K at the
metamagnetic transition separating strong (FM2) and weak mag-
netization (FM1) regions [8–10], and (ii) the tricritical point (TCP)
at the FM to paramagnetic (PM) phase transition located at
T¼24 K. Additionally, with the applied magnetic field the second
order transition line starting from TCP can be followed to T¼0
where it is expected to terminate in a quantum critical ending
point (QCEP) [9,10]. In effect the magnetic phase boundaries in
UGe2 reflect the so-called tricritical wing shape.

Such a complex magnetic phase diagram with all the above
criticalities, both classical and quantum, is particularly challenging

in terms of theoretical modeling. One of the first approaches,
based on the single-band model describing tricritical wings, was
the work by Belitz et al. [11]. However, the microscopic description
of the magnetic phase diagram with all the CPs including also CEP
at the metamagnetic transition, as observed in UGe2, has been
missing until our recent works [13,14].

Our analysis is based on the (two-orbital) Anderson lattice
model (ALM) [13,14], often referred to as the periodic Anderson
model. Findings for UGe2, both from first principle calculations
and experiments are the following: the quasi-two-dimensional
character of the Fermi surface [15], a uniaxial anisotropy for
magnetization [16], U–U interatomic distance above the so-called
Hill limit [1], and the paramagnetic moment per U atom different
from that expected for either f3 or f2 atomic configurations [2,17].
We show in the following that all of these findings can be co-
herently explained within our two-orbital model starting with
originally localized f-states and subsequently being strongly hy-
bridized with the conduction (c) band states on a two dimensional
lattice and with the applied magnetic field accounted for by the
Zeeman term only.

Ferromagnetic order in our model arises from effect of com-
peting hybridization and the f–f interatomic Coulomb repulsion.
The emergence of two distinct ferromagnetic phases is in our
model driven by the changing topology of the Fermi surface [18–
21] which in turn is induced by a relative motion of hybridized and
spin split subbands with the increasing f–c hybridization. The re-
sults obtained from such picture [13] qualitatively agree with the
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majority of UGe2 magnetic and electronic properties, as seen in
neutron scattering [17], de Haas–van Alphen oscillations [22,23],
and magnetization measurements [8]. Also, a semi-metallic char-
acter of the weak FM1 phase is supported by the band-structure
calculations [24]. A similar idea concerning the emergence of two
distinct FM phases in UGe2 was also obtained earlier within the
phenomenological picture based on the Stoner theory in-
corporating a two-peak structure of the density of states in a
single band [25]. In brief, our microscopic model extended to the
case of T 0> [14] describes well emergence of all CPs on the
magnetic phase diagram of UGe2 [8–10] in the semiquantitative
manner [14]. Here we compare in detail our results with the ex-
perimental data, namely predicted second order transition line
joining the TCP with the corresponding QCEP. In particular, we
determine the influence of the following factors: (i) the total band
filling n, and (ii) the value of the Landé factor gf for f states, on the
position of this second-order line. The influence of factor (i) has
the following importance. For exemplary filling n¼1.6 we have
shown [14] that the relative position of the TCP and CEP (cf. Fig. 1)
is the same as that seen in the experiments [9,10]. The important
question is whether such a mutual alignment of those two critical
points is necessary to achieve a good fit and to what extent the
proper curvature of the line joining TCP and QCEP is robust with
respect to the selected band filling. The discussion of the depen-
dence on (ii) has its justification in the not fully resolved nature of
magnetism in heavy-fermion systems in general and UGe2 in
particular. Although it is assumed and widely accepted to be fully
itinerant [2], there is evidence for a partially localized contribution
[24,26]. In such a case, the influence of the orbital effects and their
coupling to the spin should have an influence on gf value.

2. Model and approach

We begin with the orbitally nondegenerate Anderson-lattice
model (ALM) on square lattice and with applied magnetic field
accounted for via the Zeeman splitting (i.e., with the effective field
is h g HB
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where the onsite hybridization is of magnitude V 0< and the
Landé factor for f electrons is gf (the free electron value is g¼2).

The model describes a two-orbital system with the conduction c( )
band arising from the nearest (t) and the second-nearest (t′)
neighbor hoppings, and the strong f–f Coulomb interaction is of
magnitude U. If it is not stated otherwise, we set t t0.25′ = | |,
U t5= | |, t3fϵ = − | |, g g 2f = = , and n n n 1.6
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We also add to the Hamiltonian (1) the usual term with the
chemical potential μ, i.e.,
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The model is solved here by means of statistically consistent
Gutzwiller approximation (SGA) [27–29]. The method was success-
fully applied to the number of problems [30,31]. It is characterized
with the physical transparency and flexibility that it could be also
incorporated into other methods such as EDABI [32,33].

We introduce the Gutzwiller projection acting onto un-
correlated wave function 0ψ| 〉 in the following manner:
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where Gψ| 〉 is the wave function of the correlated ground state. In
effect, we map many-particle correlated Hamiltonian (1) onto an

effective single-particle Hamiltonian SGA
^ acting on uncorrelated

wave function 0ψ| 〉, that, after taking the space Fourier transform, is
as follows:
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, Λ is the number of the system sites, qσ is

the hybridization narrowing factor, and d n n
f f

i i
2

0≡ 〈^ ^ 〉↑ ↓ [31]. Neces-
sary constraints for the f electron number and their magnetic
moment [29] are incorporated by means of the Lagrange multi-
pliers λfn and λfm, respectively. Hamiltonian (4) can be straightfor-
wardly diagonalized with the resulting four eigenvalues Eb

k{ }σ

labeled with the spin ( 1σ = ± ) and hybridized-band (b 1= ± )
indices. For T 0> we construct a generalized Landau grand-
potential functional according to
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→ ≡ { }. Ad-
ditionally, we adjust self-consistently the chemical potential from
the condition of fixing the total number of electrons,
n f E1/ b

b
k kΛ= ∑ ( )σ σ , where f(E) is the Fermi–Dirac function. Finally

the ground state energy is defined by
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Fig. 1. Schematic magnetic phase diagram of UGe2 on pressure–temperature plane
drawn on the basis of the experimental results [9].
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3. Results and discussion

We start our analysis with the discussion on the proper as-
signment of the physical units to the microscopic parameters
provided so far in dimensionless units (i.e. scaled by t| |) to make
the quantitative comparison with the observed UGe2 character-
istics. To do so, we have adjusted them [14] by matching the re-
lative positions of the two classical CPs: TCP and CEP at the fer-
romagnetic transition, as well as attributing the experimentally
measured critical temperatures. Matching the results in physical
units by fixing the position of two critical points we would call a
strong fitting, whereas by fixing the position of just a single of
them a weak fitting.

In our previous works [13,14] we have found that for the total
filling n¼1.6 we could coherently and quantitatively describe the
UGe2 phase diagram. Although, there is no direct experimental
evidence in UGe2 for choosing this particular filling, we have first
matched for chosen n TCP and CEP temperatures according to the
experiment [14] – strong fitting condition –, and second, we have
verified our prediction obtaining agreement of the second-order
transition line joining TCP with QCEP [10] with that measured.
Additionally, the comparison has provided among others the es-
timate of the QCEP appearance about 30 T, i.e., higher than that
suggested in Ref. [10] which is 18 T.

A natural question arises if this test is sensitive to the choice of
n. We show in Fig. 2 that the second-order transition line joining
TCP and QCEP determined for a slightly different total filling than
n¼1.6 deviates significantly from the trend of the experimental
data [10]. Hence indeed, the comparison is very sensitive to the
choice of n. Thus, together with equally sensitive adjustment of
TTCP and TCEP with respect to the choice of n [14], it is unlikely that
our excellent agreement for the single value of parameter n is
fortuitous.

For the sake of completeness and reference to other related
works we include in Fig. 2 the (dashed) curve predicted by the one
of the most successful approaches describing the general tricritical
behavior in itinerant magnetic systems [11,12]. In that procedure,
the necessary inputs are the positions of the two CPs, namely TCP
and QCEP, leading in fact to the strong fitting, but with different
pairs of CPs. However, such fitting can be associated with an error
as the position of the QCEP, in contrast to TCP and CEP, is not ex-
perimentally determined but only extrapolated to 18 T, following
Ref. [10]. Note that this condition in our modeling is satisfied for
the total filling around n 1.55≃ (cf. Fig. 2) if we take the extra-
polated value of the critical field. In this case, the comparison with
results for UGe2 [10] is worse than e.g. for n¼1.6 and the tem-
perature of the CEP is much lower than that determined in ex-
periments [8].

It is worth mentioning that the model employed by us belongs
to the class discussed earlier by Kirkpatrick and Belitz [12] to re-
flect the generic tricriticality in the case of metallic magnets.
Namely, systems in which the conduction electrons are not a
source of the magnetism themselves couple to the magnetically
ordered localized electrons in a second band. The origin of the
first-order transition at low temperature described within the
mean-field theory developed in the Refs. [11,12] is based on the
effect of the soft fermionic modes coupled to the magnetization
fluctuations, and thus differs from our approach. Here the me-
chanism for ferromagnetism is due to the coupling of the con-
duction electrons with localized f states by hybridizing with them
and competing with the f f– Coulomb interaction. This competi-
tion in the Stoner-like manner induces phase transitions asso-
ciated with the abrupt changes of the Fermi surface topology.

The simplest verification of our analysis can be carried out by
means of chemical alloying, i.e., by changing the electron con-
centration in the system. However, the lack of known isostructural
compounds to UGe2 may be an apparent obstacle for such test.
Though, the determination of the tail of the 2nd order line joining
TCP and QCEP for the field larger than 16 T should provide an in-
sight on the issue whether our model correctly predicts the ap-
pearance of QCEP around 30 T [14].

If our model is to be used to understand the magnetism of
other ferromagnetic superconductors: URhGe [34] and UCoGe
[35], it would provide a perfect testing ground of our model as
those compounds have been frequently studied by means of the
chemical substitution [1,3–6].

Finally, we provide a brief analysis of the impact of the Landé
factor value for f electrons, gf, i.e., in the situation when the z
component of the total spin of the system does not commute with
Hamiltonian. In Fig. 3 we present the curves for three different
values of gf. The curve for gf¼2 is plotted as the reference curve
and is based on the results of Ref. [14]. Value of gf is not known for
UGe2 and generally, for complex compounds has a tensor character
which depends on the magnitude of the spin–orbit coupling. For
that reason we restrict our discussion to the comparison when gf is
equal to the free electron value gf¼2, and subsequently when is
lower and higher (cf. Fig. 3) [36]. Specifically, the lower value of
Landé factor g 6/7f = is motivated by that for the Ce-based com-

pounds, where it can be derived for the spin S 1/2= and angular
momentum L¼3, oriented antiparallel and where, strictly speak-
ing, our model is also generally valid, as long as we do not account
for the orbital degeneracy of f states of the uranium-based mate-
rials. As presented in Fig. 3, it seems that any value of g factor for f
states which deviates considerably from the free-electron value
provides much worse agreement with experimental data [10]. In
conclusion, due to predominantly itinerant nature of f electrons in
UGe2 [26], it is very likely that any crystal-field derived multiplet
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structure is washed out and hence the value g 2f ≃ should be
regarded as realistic value. Nevertheless, the problem of double
localized-itinerant nature of f-electrons [24,26] may arise as the
system evolves with the increasing temperature, in comparison to
the pressure evolution at low temperature studied in detail here.

4. Outlook

In the present work we have employed the Anderson lattice
model [13,14] to provide a fairly complete description of the
magnetic phase diagram (p–T–h profiles) of UGe2 including all the
criticalities for this compound. In particular, we study the effect of
the choice of the total filling on the quality of the fit, based on our
model, to the experimental data [10] concerning the second-order
transition line joining the critical points TCP and QCEP. We have
found that our prediction is very sensitive to the change of n,
which leads also to a mismatch of critical temperatures of TCP and
CEP at the metamagnetic transition as compared to the experi-
ment. We infer from this result that our excellent agreement for
the single value of n is unlikely fortuitous. We have also analyzed
the effect of the Landé factor gf value for f electrons. In this case,
any sizable deviation from the free electron value gf¼2 shifts the
theoretical curves away from the experimental points. Thus
treating f electrons as truly itinerant electrons in UGe2 seems to be
fully justified.

Our final remark addresses the problem of the spin-triplet su-
perconductivity (SC) origin occurring in UGe2 [1,2]. We have pre-
dicted in our previous work [14] the appearance of QCP in the
vicinity of the SC dome. It have been proposed that CEP (cf. Fig. 1)
at the metamagnetic phase boundary can be followed down to the
T¼0 by changing both the electron concentration and the hy-
bridization magnitude V| | (cf. Fig. 4). The proposed quantum cri-
tical point is of Lifshitz type as it separates states with two distinct
Fermi-surface topologies. Quantum critical fluctuations or the re-
sidual f–f Hund's rule interaction (neglected here) can become the
possible source of the spin-triplet superconductivity [37–41]. A
detailed and quantitative discussion of the pairing requires a se-
parate analysis.
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Article 6:

In this article we study the t–J–U–V model in the context of stability of superconduct-
ing (SC), antiferromagnetic (AF) and charge density wave (CDW) phases. The model
is solved by means of the statistically consistent Gutzwiller approach (SGA) and the
diagramatic expansion for the Gutzwiller wave function (DE-GWF). We find that the
intersite Coulomb interaction term V is necessary to obtain the stability of the CDW
phase. We study different CDW phase symmetries, showing that for the naive choice
of the modulation vector Q “ pπ, πq no coexistence of CDW with SC can be observed.
Additionally, a different methods of obtaining the Gutzwiller renormalization factors
are analyzed. We point, that in the literature two different form of the Gutzwiller fac-
tors are present when AF or CDW order is analyzed. We show, that those different
form of factors lead to significantly different outputs, especially regarding the stability
region of AF phase. We study the origin of those difference (cf. the second Appendix
of this paper).
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Antiferromagnetism, charge density wave and d-wave superconductivity in the
t–J–U–V model of correlated electrons
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We study the stability of antiferromagnetic (AF), charge density wave (CDW) and supercon-
ducting (SC) states within the extended t-J-U -V model of strongly correlated electrons using the
statistically consistent Gutzwiller approximation (SGA). We concentrate on the role of the intersite
Coulomb interaction term V in stabilizing the CDW phase and show that the CDW phase appears
only above some critical values of V and in a limited hole doping range δ. The effect of the term
V on SC and AF phases is that a stronger interaction suppresses SC, whereas the AF order is not
significantly influenced by its presence. Calculations for the case of pure SC phase have been also
carried out for the same model within the diagrammatic expansion for the Gutzwiller wave function
(DE-GWF) in order to analyze the influence of higher-order correlations beyond the renormalized
mean field approach. In the Appendix we discuss, the specific ambiguity with respect to the choice
of the Gutzwiller factors when either AF or CDW orders are considered within the SGA.

PACS numbers: 71.45.Lr,71.10.Fd,71.10.-w

I. INTRODUCTION

Charge ordering (CO) was observed for the first time
in 1939 in Fe3O4 [1, 2] and since then, it has been com-
monly seen in electronically correlated transition metal
oxides [3]. The interest in this field grew again recently
after discovering the charge density wave (CDW) state
in cuprate high temperature superconductors for under-
doped samples [3–5] (cf. Fig. 1 for reference). Ample ev-
idence shows the role played by CW instability in the
copper based materials [3, 6–11]. It has also been sug-
gested that for certain materials the CDW state may
have a three-dimensional character in nonzero magnetic
field [12, 13]. Furthermore, it is has been argued that
the CDW order parameter is characterized by the d-wave
symmetry [14–16], and that there is a connection between
the pseudogap phase appearance in the cuprates and the
charge ordering [9, 17, 18]. Regarding theoretical analy-
sis, various calculation schemes have been applied to the
Hubbard and t-J models to investigate the stability of
CO states [16, 19–21]. In this respect, the appearance of
the so-called pair-density-wave state has been proposed
(which can coexist with CDW state) and, as it was sug-
gested, lead to the appearance of the pseudogap anomaly
[22, 23]. Finally, it has been implied very recently [24]
that the CDW solution for the t–J model has always
a slightly higher energy than the generic SC+AF solu-
tion. All of this evidence means that a further analysis
of CDW instability in t-J and related models is required
to verify if the widely used methods of approach to this

∗ abram.mj@gmail.com
† michal.zegrodnik@agh.edu.pl
‡ ufspalek@if.uj.edu.pl

phenomena can yield the proper description of uncon-
ventional phases in the copper based materials and to
what extent they cooperate or compete in those quasi-
two-dimensional strongly correlated materials.

Encouraged by our recent results obtained within the
t-J-U model [25, 26], which match well with experimen-
tal results for the cuprates, we concentrate here on the
role of intersite Coulomb repulsion within the t-J-U -V
model. In such a picture the intraatomic (Hubbard) inter-
action magnitude U is not regarded as extremely strong
which means that the limit U/t→∞ cannot be assumed.
In this situation, a straightforward decomposition of the
narrow-band state into the Hubbard subbands, with up-
per subband being unoccupied, is not physically realized
and the t-J model does not follow directly from the per-
turbation expansion of the Hubbard model in powers of
t/U . Instead, the antiferromagnetic kinetic exchange in-
teraction arises from the superexchange via 2pσ states
due to oxygen [27]. Consequently, nonzero double occu-
pancies are allowed for non-half-filled band case and in
such situation the Hubbard term ∼ U is present. This ar-
gument justifies the generalization of the t–J model to
the t–J–U form. The additional term ∼ V is added here
to analyze its importance for the CDW state stability
[28].

In our analysis we have considered the three most im-
portant phases related to the cooper-based high temper-
ature superconducting (HTS) compounds: the antiferro-
magnetic (AF), charge ordered (CDW), and supercon-
ducting (SC) phases. We show that the presence of the
V term is necessary for CDW stability.

In the first part of this paper, the analysis is carried
out with the use of the statistically consistent Gutzwiller
approximation (SGA), which we can account for correla-
tion effects in reasonable computing time (cf. derivation
of SGA method in [29–31] and its various applications in
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Figure 1. (Color online) Experimental phase diagram of
YBa2Cu3O6+x (YBCO) on hole-doping–temperature plane.
The shaded regions represent the superconducting (SC) and
antiferromagnetic (AF) phases (with the Néel temperature
TN ), as well as the region where the spin-density-wave (SDW)
state is observed. Note, that the CDW critical temperature
TCDW is about twice larger than the critical temperature of
SC phase. The pseudogap is marked by T ∗ (black squares
represent the Nernst effect measurements, and the purple
squares the neutron diffraction). Finally, TH stands for the
critical temperature of the large and negative Hall effect,
while TNMR for the temperature scale, below which the field-
induced charge order is observed using NMR (Figure taken
from Ref. 9).

[25, 32–39]). In the second part of the paper, we test the
robustness of the pure superconducting solution, using
a systematic diagrammatic expansion of the Gutzwiller-
wave function (DE-GWF) method. This approach allows
us to go beyond the SGA and to take into account, in
higher orders, non-local correlations. The differences be-
tween SGA and DE-GWF solutions are specified there.
Additionally, in the Appendix A, we discuss the ambi-
guity in choosing the Gutzwiller renormalization factors
when either AF or CDW states are considered. Namely,
we show that different calculations schemes used in the
literature lead to various forms of the Gutzwiller factors,
resulting in different stability regimes of the AF phase.

II. t–J–U–V MODEL

The starting Hamiltonian for the subsequent analysis
has the form,

Ĥt–J–U–V = t ∑⟨i, j⟩, σ (ĉ†iσ ĉjσ +H.c.)

+ t′ ∑⟨⟨i, j⟩⟩, σ (ĉ†iσ ĉjσ +H.c.) + J ∑⟨i, j⟩ Ŝi ⋅ Ŝj
+U∑

i

n̂i↑n̂i↓ + (Ṽ − 1

4
J)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
V

∑⟨i, j⟩,σ,σ′n̂iσn̂jσ′ , (1)

where t and t′ are the hopping amplitudes between the
nearest and the next nearest neighboring sites, J is the
antiferromagnetic exchange integral, and U (Ṽ ) is the on-
site (intersite) Coulomb repulsion magnitude. The stan-
dard second quantization notation is used, where ĉ†iσ and
ĉiσ is the creation and annihilation operator, respectively,
for an electron with spin quantum number σ = ±1 at site
i. Similarly, n̂iσ = ĉ†iσ ĉiσ and Ŝi = (Ŝ+i , Ŝ−i , Ŝzi ), where
Ŝσi ≡ ĉ†iσ ĉiσ̄ and Ŝzi ≡ 1

2
(n̂i↑ − n̂i↓).

As has already been mentioned, the appearance of the
J term in this approach results from the superexchange
via 2pσ states due to oxygen [27]. The finite value of
the Coulomb repulsion U leads to a relatively small but
nonzero population of the upper Hubbard subband [40–
42]. In such a situation the appearance of both the J
and the U terms is admissible in the Hamiltonian. For
V = 0 and when U → ∞, the limit of the t–J model is
recovered. On the other hand, for J = V = 0, we obtain
the limit of the Hubbard model. Nevertheless, our model
is not only constructed as a formal generalization of the
two limits. As can be seen from the numerous estimates
of the model parameters, the typical values of the pa-
rameters of the one-band model are: t = −0.35 eV, and
U = 8–10 eV, so that the ratio of U to the bare band-
width W = 8∣t∣ is U/W ≈ 2.5, i.e., only by the factor of
about two higher than typical required for Mott-Hubbard
localization [43, 44]. In effect, the value of J cannot be
regarded as resulting from the t/U expansion of the (ex-
tended) Hubbard model [45–51], and both J and U can
be treated as independent variables. The last term comes
partially from the derivation of t–J model from the Hub-
bard model (cf. [45–47, 49–52]) and partially represents
an explicit intersite Coulomb repulsion of electrons lo-
cated at neighboring sites (the term ∼ Ṽ ). For simplicity,
we denote V ≡ Ṽ − 1

4
J .

III. METHODS

A. Statistically Consistent Gutzwiller
Approximation (SGA)

To solve the Hamiltonian (1), we first use the statis-
tically consistent Gutzwiller approximation (SGA) [29–
31, 53, 54]). The main idea behind the Gutzwiller ap-
proach is to express the wave function of the system in
the following form

∣Ψ⟩ = P̂ ∣Ψ0⟩ ≡ N∏
k

P̂i ∣Ψ0⟩, (2)



3

where P̂i operator weights the configuration of given oc-
cupancies (0, ↑, ↓, ↑↓) of single lattice site i and ∣Ψ0⟩ is
the non-correlated single particle wave function, gener-
ally assumed in the broken-symmetry state of our choice.
In such a situation, the expectation value of the ground-
state energy of the system is

E = ⟨Ψ∣Ĥ∣Ψ⟩⟨Ψ∣Ψ⟩ = ⟨Ψ0∣P̂ ĤP̂ ∣Ψ0⟩⟨Ψ0∣P̂ 2∣Ψ0⟩ ≈ ⟨Ψ0∣Ĥeff∣Ψ0⟩. (3)

In other words, instead of calculating the average of the
initial Hamiltonian (1) with respect to usually compli-
cated, many-particle, wave function, we choose to modify
that Hamiltonian (presumably by making it more com-
plicated) in order to have the relatively simple task of
calculating its average with respect to the single particle
wave function represented by a single Slater determinant.
In our case, the resultant expectation value is depended
on many quantities,

⟨Ψ0∣Ĥeff
t–J–U–V ∣Ψ0⟩ ≡
W (n, m, δn, dA, dB , χ, χS , χT , ∆S , ∆T ), (4)

where W (. . .) is a functional of a number of mean-field
averages that are explained below (for the explicit form of
W and the details of the calculations see Appendix A).
First, n is the average number of electrons per site, m
is the magnitude of staggered magnetization, and δn is
the order parameter for CDW phase. Those three quan-
tities can be combined together by expressing the local
occupancy in the following manner,

niσ ≡ ⟨ĉ†iσ ĉiσ⟩0 ≡ 1

2
(n + eiQ⋅Ri (σm + δn)) , (5)

where for simplicity, we denote ⟨Ψ0∣ . . . ∣Ψ0⟩ ≡ ⟨. . .⟩0.
The superlattice vector was chosen to be Q = (π, π),
i.e., the lattice is naturally divided into two sublattices,
A and B, such that one sublattice (A) has in average
1
2
(n+m+δn) up (↑) electrons and 1

2
(n−m+δn) down (↓)

electrons, while the second sublattice (B) has in average
1
2
(n−m−δn) up (↑) and 1

2
(n+m−δn) down (↓) electrons.

Second, the double occupancies probability on sublattices
are indicated by dA and dB , respectively. Third, the aver-
age hopping amplitude for the first and the next nearest
neighbors (1st and 2nd n.n.) are defined by

χijσ ≡ ⟨ĉ†iσ ĉjσ⟩0 ≡ { χσ for 1st n.n.,
χS,σ + eiQ⋅RiχT,σ for 2nd n.n.,

(6)
with χS,σ ≡ 1

2
(χAAσ + χBBσ), χT,σ ≡ 1

2
(χAAσ − χBBσ),

where χAAσ and χBBσ denote respectively hopping of
electron with the spin σ within sublattice A and B, and
χABσ ≡ χσ is the hopping between the sublattices (cf.
Fig. 2). Fourth, the electron pairing amplitude between
nearest neighbors, with spin-singlet and triplet compo-
nents ∆S and ∆T are defined by

∆ijσ ≡ ⟨ĉiσ ĉjσ̄⟩0 = −τij (σ∆S + eiQ⋅Ri∆T ) , (7)

Figure 2. (Color online) Schematic interpretation of χABσ ≡
χσ, χAAσ and χBBσ (panel a) and ∆A and ∆B (panel b).
To include antiferromagnetic ordering we divide the lattice
into two sublattices, A where in majority spins are up, and
B where there are down. Thus, χABσ denotes hopping of σ
electron between the sublattices A and B, while χAAσ and
χBBσ the hopping within one sublattice (A or B respectively);
∆A denotes the pairing amplitude of majority spins up from
sublattice A and minority spins down from B, and ∆B pairing
of majority spins up from B and minority spins down from A.
Additionally, if CDW is present, then for site belonging to the
A sublattice the average (total) number of electrons should be
larger by δn, with respect to the neighboring site belonging
to the B sublattice (for clarity, in this picture it was assumed
that δn = 0).

where τij ≡ 1 for j = i ± x̂, and τij ≡ −1 for j = i ± ŷ
to ensure the d-wave symmetry of ∆ijσ, and with ∆S ≡
1
4
(∆A +∆B +H.c.) and ∆T ≡ 1

4
(∆A −∆B +H.c.) (cf.

Fig. 2).
The mean field parameter defined above is determined

numerically by minimizing the system’s ground-state en-
ergy. However, in order to be sure that the self-consistent
conditions are also fulfilled in a variational sense, we in-
troduce additional constraints with the help of the the
Lagrange multiplier method (cf. [29–31]). Such approach
leads to the effective Hamiltonian of the following form

K̂ =W (n, m, . . .) − ∑⟨i,j⟩,σ (λχijσ (ĉ†iσ ĉjσ − χijσ) +H.c.)
− ∑⟨⟨i,j⟩⟩,σ (λχijσ (ĉ†iσ ĉjσ − χijσ) +H.c.)
− ∑⟨i,j⟩ (λ∆

ijσ (ĉiσ ĉjσ̄ −∆ijσ) +H.c.)
−∑
iσ

(λniσ (n̂iσ − niσ)) − µ∑
iσ

n̂iσ. (8)

Such an approach allows us the derive the generalized
grand potential function at temperature T > 0,

F = − 1

β
lnZ, with Z = Tr (e−βK̂) , (9)

with the Landau free energy equal to

F = F0 + µΛn, (10)

where F0 denotes the value of F obtained at the mini-
mum, i.e. when the following conditions are fulfilled,

∂F
∂Ai

= 0,
∂F
∂λi

= 0,
∂F
∂dA

= 0,
∂F
∂dB

= 0, (11)
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where {Ai} denote the mean-field averages while {λi}
refers to the Lagrange multipliers. The set of equations
(11) can be subsequently solved using numerical meth-
ods. The results are presented in the Section IV.

B. Extension: DE-GWF Approach

The SGA method described in the previous Section
should be considered as a more sophisticated form of
the Renormalized Mean Field Theory (RMFT), with the
statistical consistency conditions included explicitly. In
this Section we describe the Diagrammatic Expansion
Gutzwiller Wave Function (DE-GWF) [35, 55–58]. This
method extend our approach beyond RMFT in a sys-
tematic manner by including the nonlocal correlations
in higher orders and thus achieving the full Gutzwiller-
wave-function solution step by step. It is important to
note that the SGA is equivalent to the zeroth order form
of the DE-GWF method. As the full approach is signif-
icantly more complicated than the SGA method, here
we address the solution only for a pure superconduct-
ing phase. The determination of the full phase diagram
is cumbersome within DE-GWF and must be described
separately.

Similarly as before, we are looking for the ground state
of the system in the form given by Eq. (2). The general
form of the P̂ operator takes the form

P̂ ≡∏
i

P̂i =∏
i

∑
Γ

λi,Γ∣Γ⟩ii⟨Γ∣. (12)

The variational parameters λi,Γ ∈ {λi∅, λi↑, λi↓, λi↑↓} cor-
respond to four states from the local basis ∣∅⟩i, ∣↑⟩i, ∣↓⟩i,∣↑↓⟩i, respectively. In our analysis we assume the spatial
homogeneity of the local solutions, so λi,Γ ≡ λΓ. More-
over, we also limit to the spin-isotropic case, which means
that λ↑ = λ↓ = λ. It has been shown by Bünemann et al.
[55], that it is convenient to choose the P̂i operator so
that it fulfills the following relation,

P̂ 2
i = 1 + xd̂HFi , (13)

where x is yet another variational parameter and d̂HFi =
n̂HFi↑ n̂HFi↓ , where n̂HFiσ = n̂iσ − n0 with n0 = ⟨Ψ0∣n̂iσ ∣Ψ0⟩.
Eq. (13) together with the definition (12) allows us to
express the variational parameters λΓ in terms of x (cf.
Appendix A). In this manner, we are left only with one
variational parameter, x, over which we minimize the
ground-state energy of the form from Eq. (3).

Using the condition (13), we can write all the relevant
expectation values, which appear during the evaluation
of Eq. (3), in the form of a power series with respect
to the parameter x. As an example, we show here the
power series for the hopping probability and the intersite
Coulomb interaction term (all the other terms remaining
in the Hamiltonian can be expressed in analogical form,

cf. Ref. 57),

⟨Ψ∣ĉ†iσ ĉjσ ∣Ψ⟩ = ∞∑
k=0

xk

k!
∑′
l1...lk

⟨c̃†iσ c̃jσd̂HFl1...lk⟩0,
⟨Ψ∣n̂iσn̂jσ′ ∣Ψ⟩ = ∞∑

k=0
xk

k!
∑′
l1...lk

⟨ñ†
iσñjσd̂

HF
l1...lk

⟩0,
(14)

where d̂HFl1...lk ≡ d̂HFl1 . . . d̂HFlk with d̂HF∅ ≡ 1, and the primed
sums have the restrictions lp ≠ lp′ and lp ≠ i, j. Also, the
following notation has been used c̃(†)iσ = P̂iĉ(†)iσ P̂i and ñiσ =
P̂in̂iσP̂i. By including the first 4-6 terms of the power
series we are able to calculate with sufficient accuracy
the expectation value of system energy. As one can see
the inclusion of higher order terms (k > 0) leads to the
situation in which the simple expression such as, e.g.,

⟨Ψ∣ĉ†iσ ĉjσ ∣Ψ⟩ = qt⟨Ψ0∣ĉ†iσ ĉjσ ∣Ψ0⟩, (15)

are no longer valid due to the inclusion of nonlocal corre-
lations of the increased range (caused by the appearance
of the d̂HFl1...lk terms inside the expectation values ⟨. . .⟩0).

By using the Wicks theorem for the averages in the
non-correlated state appearing in (14), one can express
the average value of the systems energy in terms of the
paramagnetic and superconducting lines that connect
particular lattice sites, i.e.,

Pij ≡ ⟨ĉ†iσ ĉjσ⟩0, Sij ≡ ⟨ĉ†i↑ĉ†j↓⟩0. (16)

Such a procedure leads in a natural manner to diagram-
matic representation of the energy expectation value, in
which the lattice sites play the role of the vertices of the
diagrams and the superconducting or paramagnetic lines
are interpreted as the edges.

The minimization condition of the ground state energy,
Eq. (3), can be expressed by introducing the effective
single-particle Hamiltonian of the form

Ĥeff = ∑
ijσ

teffij ĉ
†
iσ ĉiσ +∑

ij

(∆eff
ij ĉ

†
i↑ĉ†i↓ +H.c.), (17)

where the microscopic parameters appearing in this
Hamiltonian are defined as

teffij ≡ ∂F
∂Pij

, ∆eff
ij ≡ ∂F

∂Sij
. (18)

By using the concept of the effective Hamiltonian one
can derive the self-consistent equations for Pij and Sij ,
which can be then solved numerically. Such a proce-
dure has to be supplemented with the concomitant
energy minimization with respect the variational pa-
rameter x. After determination the value of the vari-
ational parameter, together with that of the param-
agnetic and superconducting lines, one can evaluate
the so-called correlated superconducting gap defined as
∆G∣ij ≡ ⟨ΨG∣ĉ†i↑ĉ†i↓∣ΨG⟩/⟨ΨG∣ΨG⟩, which represents the
corresponding order parameter.
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It should be noted that during the calculations one
may limit to the terms with lines that correspond to dis-
tances smaller than Rmax, as Pij and Sij with increas-
ing distance ∣∆Rij ∣ = ∣Ri − Rj ∣ lead to systematically
smaller contributions [58]. In our calculations we have
taken ∆R2

max = 10 which for the case of square lattice in
a spatially homogeneous state and for the d-wave pairing
symmetry leads to 5 different superconducting lines. Each
of those lines have their correspondent in the correlated
state. The following notation is used in the subsequent
discussion

∆
(10)
G ≡ ∆G∣ij , for ∆Rij = (1,0)a,

∆
(20)
G ≡ ∆G∣ij , for ∆Rij = (2,0)a,

∆
(30)
G ≡ ∆G∣ij , for ∆Rij = (3,0)a,

∆
(21)
G ≡ ∆G∣ij , for ∆Rij = (2,1)a,

∆
(31)
G ≡ ∆G∣ij , for ∆Rij = (3,1)a,

(19)

where a is the lattice constant.

IV. RESULTS

A. CDW stability in the Statistically Consistent
Gutzwiller Approximation (SGA)

The numerical calculations were carried out for the two
dimensional, square lattice. Unless stated otherwise, t =−1, J = ∣t∣/3, U = 20∣t∣ and β = 1500/∣t∣, where β ≡ 1/kBT .
It was checked that for such choose of β, we reproduce
the T = 0 limit. To obtain the results in physical units, all
the quantities must be multiplied by the corresponding
physical value of ∣t∣ that is 0.35 eV.

In Figure 3, we present the order parameters of the
phases AF, CDW and SC respectively, as well as the dou-
ble occupancy, d (or dA and dB if such value depends on
the sublattice), all as a function of doping, δ ≡ 1−n. The
order parameters for AF and CDW phases are the stag-
gered magnetization m and the difference of the average
number of electrons between the sublattices A and B, δn,
respectively. In case of SC, there are two order parame-
ters (cf. [59, 60]), singlet ∆S and triplet ∆T . Note, that
∆T ≠ 0 only if m ≠ 0 and d splits to dA ≠ dB only if
δn ≠ 0.

In the Figure 3 a), we display the situation in the ab-
sence of the intersite Coulomb interaction term (V = 0),
while in the panels b) and c), the effect of the nonzero
value of V ranging from 0 to 1.5∣t∣. One can see, that
with the increasing value of V , the SC order parameters
are suppressed and in the underdoped region only a pure
AF phase remains [61]. In the Figure 3 d), the CDW or-
der parameter, δn is presented. For V < 1.85∣t∣, no stable
CDW phase is observed, but when V reaches the criti-
cal value around 1.85∣t∣, a region of stable CDW order
appears near δ ≈ 0.47. With further increasing value of
V , the CDW phase regime broadens up. Note, that here

Figure 3. (Color online) Phase diagrams as a function of dop-
ing δ for different values of parameters, as specified. a) AF
and SC phases as well as the proportion of the double occu-
pied sites d2 for V = 0 (note, that in the plot d instead of d2 is
shown). b) and c) superconducting order parameters ∆c

S and
∆c
T , respectively, for selected values of V /∣t∣. d) CDW order

parameter as a function of V /∣t∣. e) the phase diagram for
V /∣t∣ = 2.5. Note that there is no stable SC phase for such a
large value of V .
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both AF and CDW states have the same modulation vec-
tor Q = (π, π).

The Figure 3 e) shows the phase diagram for V /∣t∣ =
2.5. For such relatively large values of V the SC order is
no longer observed and the CDW phase regime is broad.
Note also, that the AF region is barely affected by the
change of the V value in presented range.

We see that the regime of CDW stability with the vec-
tor Q, commensurate with that of AF, order does not re-
flect properly the observed regime of coexistence depicted
in Fig. 1. This question requires a more subtle analysis,
as we show next. It is not strange that the CDW state is
robust around δ = n = 0.5, as then every second site has a
surcharge and thus the intersite interaction is diminished
for δn ≈ n, which is the case of large V . Small values of
V ≲ ∣t∣ acts positively in the sense that it both reduces
the upper concentration of superconductivity disappear-
ance (from δ = 0.45 to 0.3, as required for HTS), as well
as makes the SC phase disappear for δ < 0.1, where AF
phase becomes the only stable phase. On the other hand,
CDW state is not yet stable then. Hence, we have to dis-
cuss the CDW state onset for a realistic value of Q (cf.
next Section).

B. Extension: SC vs. CDW stability

In this subsection we discuss first the robustness of
the pure superconducting phase within the DE-GWF
method, i.e., when going beyond SGA (RMFT form).
First, we show the differences between the SGA and the
DE-GWF for the selected set of the model parameters.
The SC gap parameters obtained in the diagrammatic
approach are displayed in Fig. 4 a). As one can see, the
nearest neighboring pairing amplitude ∆

(10)
G is the domi-

nant one. Nonetheless, the remaining larger-distance con-
tributions are also significant. It should be also noted
that in some doping regions different contributions can be
of opposite sign. For example in the underdoped regime
both ∆

(10)
G and ∆

(30)
G obey exactly the d-wave symmetry,

but with the opposite phase. The situation is different in
SGA method, where the only nonzero pairing contribu-
tion taken into account is the nearest neighboring one.
In Fig. 4 b) we present the evolution of the ∆

(10)
G gap

with increasing order of calculations. The lowest dotted–
dashed line corresponds to the SGA method which is also
equivalent to the zeroth order of the DE-GWF approach.
The differences between the green dotted line (the fourth
order) and the black solid line (the fifth order) are very
small which means that we have achieved a convergence
with the assumed accuracy. As one can see, the two meth-
ods, SGA and DE-GWF, are qualitatively similar, but
the correlations increase the pairing amplitude by 30%–
40%.

In Figure 5 we show the influence of the intersite
Coulomb repulsion term on the stability of the paired
phase within the DE-GWF method. As one can see, the

Figure 4. (Color online) a) the magnitudes of correlated gaps
∆
(mn)
G (cf. Eq. (19)) between different atomic sites as a func-

tion of doping for a selected set of microscopic parameters.
b) evolution of the nearest neighbor correlated gap ∆10

G with
the increasing order k of computations. The zeroth-order
(SGA) results (the lowest line) are equivalent to the zeroth
order DE-GWF approach. Note, that the lower critical con-
centration of the SC order is shown here to be 0 even for V > 0.
This was not the case in the previous Section. The difference
is related to whenever AF order is or is not considered. For
V > 0 the AF order compete with the SC order in underdoped
regions and a pure AF phase wins, as it was shown in Fig. 3,
but if the AF order is not considered, the SC solution can
survive, as it is shown here.

upper critical doping for the disappearance of the super-
conducting phase decreases again significantly when the
term V is included, as in the SGA. One of the differences
between the two considered methods is that inclusion of
the higher order contributions leads to the appearance
of the so-called non-BCS region which is manifested by
the kinetic energy gain at the transition to the SC phase.
The kinetic energy gain is defined by

∆Ekin ≡ ESCG −EPMG , EG ≡ 1

N
∑′
ijσ

tij⟨ĉ†iσ ĉjσ⟩G, (20)

where ESCG and EPMG correspond to the kinetic energies
in the SC and normal (paramagnetic, PM) phases, re-
spectively. For the BCS-like region ∆Ekin > 0, which is
also true for the BCS theory of the phonon-mediated su-
perconductors, whereas ∆Ekin < 0 for the non-BCS re-
gion. The appearance of the non-BCS regime is purely
attributed to the higher-order correlation effects, taken
into account within the DE-GWF method, and cannot be
accounted for within SGA or any other form of RMFT.
It should be noted that the non-BCS behavior has been
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Figure 5. (Color online) a) correlated gap as a function of both
doping (δ) and the intersite Coulomb repulsion (V ). One can
distinguish between two superconducting regimes, BCS-like
and non-BCS which are defined in the main text. b) and c)
contribution to the condensation energy coming from the in-
tersite Coulomb term ∼ V and the exchange term ∼ J , respec-
tively. While the Coulomb repulsion ∼ V increases the energy
of SC with respect to the normal (PM) state, the opposite is
true for the exchange term. In this sense, the Coulomb inter-
actions ∼ V play a destructive role for the pairing, whereas
those ∼ J provide the main role in it, together with the kinetic-
energy gain in the underdoped regime.

detected experimentally [62, 63] for the underdoped sam-
ples, which shows the necessity of including the higher
orders to describe some important aspects of cuprate
physics. We show here also that the intersite Coulomb
repulsion promotes the non-BCS behavior by pushing it
to higher doping values (cf. Fig. 5). So even though the
intersite Coulomb interaction has a destructive effect on
diminishing the condensation energy (cf. Fig. 5 b), it ex-
tends the region of the non-BCS state. In Figures 5 b)
and c) we plot explicitly the contributions to the conden-
sation energy that originate from the intersite Coulomb
repulsion term (V ) and the exchange interaction term
(J), respectively. The Coulomb repulsion term increases
the energy of SC phase with respect to the normal (PM)
state which means that it has a negative influence on the
pairing strength. The opposite is true for the effect of the
exchange term.

Finally, we discuss the effect of symmetry choice for
the CDW ordering. Namely, so far we have assumed the
simplest form of symmetry, with the modulation vector
Q = (π, π), whereas in experiments, the CDW modula-
tion vector is closer to QCDW = ( 2

3
π, 0) [9, 12]. Such a

more realistic situation has been considered here as well,
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Figure 6. (Color online) Phase diagram with the inclusion of
the AF and CDW orders. AF modulation vector is QAF =(π, π) while the one corresponding to the CDW is QCDW =( 2

3
π, 0). Such form of CDW symmetry is close to the observed

in the experiment. Neither SC order or hopping between the
second neighboring sites (t′ = 0) was included here. In the
inset, a difference between the energy of the two considered
solutions and the plain paramagnetic one is presented. Note,
that the energy of AF and CDW solution intersect, indicating
the appearance of the first order transition.

without the inclusion of the SC phase so far, as the cal-
culation of all considered phases is difficult and should be
studied separately. From Fig. 6 we see, that in this altered
scenario the maximum of the CDW order parameter is
shifted towards smaller dopings with respect to the previ-
ous situation. It is an important result since it is observed
that CDW appears in the underdoped regime, close to the
boundary of AF phase (cf. Fig. 1 and [9, 10]). This sug-
gests, that the full description including all phases (and
their possible coexistence) with such choice of the CDW
modulation vector might bring the theory closer to the
experiment. It is an interesting starting point for further
investigations, including the stability of the SC and AF
states. Such a study may constitute a firm test for the
one-band minimal model of HTS.

V. DISCUSSION

We have analyzed stability of AF, SC, CDW (and some
of the possible coexistent phases) within the t–J–U–V
model. For this purpose we have used both SGA and
DE-GWF methods. By using the former approach we
have shown that CDW phase with Q = (π, π) stabilizes
only above certain value of V (the intersite Coulomb
repulsion), which is detrimental to SC phase stability.
With the increasing V , the CDW stability range broad-
ens, while the SC phase is gradually suppressed. It is
consistent with the experimental findings, according to
which CDW and SC compete with each other. However,
it should be mentioned that according to our calculations
the CDW phase becomes stable in the overdoped regime,
while in the experiment this phase is observed for much
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smaller doping values.
In the second half of the article we analyzed the in-

fluence of the higher order terms on the pure SC phase
withing the DE-GWF method. One of the differences be-
tween the DE-GWF and SGA is that in the former ap-
proach, the larger distance contributions to the pairing
in real space appear (cf. Fig. 4), whereas in the SGA
only the nearest neighbor SC gap parameter is present.
The second result is that the magnitude of the SC order
parameter in DE-GWF is enhanced by about 40% com-
pared to the zero order calculations (SGA). It is observed,
that CDW and SC phases coexist [3, 6–11]. However, in
SGA the increase of the V parameter suppresses SC be-
fore CDW appears. Therefore, the inclusion of the higher
order terms that can lead to stability of the coexistent
SC-CDW phase might be necessary.

Regarding the DE-GWF approach, the correlation ef-
fects taken into account through higher-order terms allow
us to reproduce the appearance of the non-BCS behavior
in the underdoped regime seen in the experiment [64–67].
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Appendix A: Form of the W function

Using the SGA method, we need to calculate the full
average of the Hamiltonian ⟨ψ ∣ Ĥt–J–U–V ∣ψ⟩ (cf. Eq. 3),
namely

W = ⟨Ĥt–J–U–V ⟩ = t ∑⟨i, j⟩, σ (⟨ĉ†iσ ĉjσ⟩ +H.c.)
+ t′ ∑⟨⟨i, j⟩⟩, σ (⟨ĉ†iσ ĉjσ⟩ +H.c.) + J ∑⟨i, j⟩⟨Ŝi ⋅ Ŝj⟩
+U∑

i

⟨n̂i↑n̂i↓⟩ + (Ṽ − 1

4
J)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
V

∑⟨i, j⟩,σ,σ′⟨n̂iσn̂jσ′⟩, (A1)

where for simplicity we denote ⟨Ψ∣ . . . ∣Ψ⟩ ≡ ⟨. . .⟩. How-
ever, this task is non-trivial, since the ∣ψ⟩ wave function
is unknown. The standard Gutzwiller procedure in such
cases [53, 54] is to assume, that Ψ = P̂ Ψ0, where Ψ0 is
a simple, non-correlated wave function, and P̂ = ∏i P̂i is
the operator, which changes the likelihood of sites to be
occupied by certain states. In general form,

P̂i = ∑
j

λij ∣Γj⟩i i⟨Γj ∣ = λi,0(1 − n̂i↑)(1 − n̂i↓)+
λi,↑n̂i↑(1 − n̂i↓) + λi,↓(1 − n̂i↑)n̂i↓ + λi,dn̂i↑n̂i↓. (A2)

Following [55], we assume that P̂ 2
i = 1+xi n̂HFi↑ n̂HFi↓ , with

n̂HFiσ ≡ n̂iσ −niσ. Next, P̂ 2
i acting on the local basis, ∣∅⟩i,∣↑⟩i, ∣↓⟩i, ∣↑↓⟩i), one can yields:

λ2
i,0 = 1 + xi niσniσ̄, (A3)

λ2
i,σ = 1 − xi (1 − niσ)niσ̄, (A4)

λ2
i,d = 1 + xi (1 − niσ)(1 − niσ̄), (A5)

where xi is a variational parameter. When ∀i xi = 0, then
the operator P̂ = 1 and ∣Ψ⟩ = ∣Ψ0⟩, but when ∃i xi < 0,
then the likelihood that the site i has two electrons is
reduced. Since the the average number of electrons in
the system should remain constant, xi < 0 requires, that
the number of the single occupied sites is increased and
the number of empty sites is reduced at the same times.

The meaning of parameter xi is not easy to provide,
therefore we introduce d2

i as the likelihood of double oc-
cupancy at site i, namely,

⟨Ψ∣n̂i↑n̂i↓∣Ψ⟩ ≡ d2
i . (A6)

We can relate d2
i to the xi parameter, since

d2
i = ⟨Ψ∣n̂i↑n̂i↓∣Ψ⟩ = ⟨Ψ0∣P̂in̂i↑n̂i↓P̂i∣Ψ0⟩ = λ2

idni↑ni↓, (A7)

where we assumed that ⟨Ψ0∣n̂i↑n̂i↓∣Ψ0⟩ ≡ ⟨n̂i↑n̂i↓⟩0 =
ni↑ni↓, i.e., that the following averages ⟨ĉi↑ĉi↓⟩0 and⟨ĉ†i↑ĉi↓⟩0 are zero. Using Eqs. (A5)–(A7), we can show,
that

xi ≡ d2 − ni↑ni↓
ni↑ni↓(1 − ni↑)(1 − ni↓) , (A8)

and as a result, we can rewrite the expressions (A3)–(A5)
in the form:

λ2
i0 = 1 + d2 − nσ − nσ̄(1 − nσ)(1 − nσ̄) , (A9)

λ2
iσ = nσ − d2

nσ(1 − nσ̄) , (A10)

λ2
id = d2

nσnσ̄
. (A11)

To calculate the averages, that are present in Eq. (A1),
we need one more (partial) result,
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P̂iĉ
†
iσP̂i = (λσn̂iσ(1 − n̂iσ̄) + λdn̂iσn̂iσ̄) ĉ†iσ (λσ̄n̂iσ̄(1 − n̂iσ) + λ0(1 − n̂iσ)(1 − n̂iσ̄)) = (αiσ + βiσn̂HFiσ̄ )ĉ†iσ, (A12)

where

αiσ =
¿ÁÁÀ(niσ − d2

i )(1 − n + d2
i )

niσ(1 − niσ) + ∣di∣
¿ÁÁÀ niσ̄ − d2

i

niσ(1 − niσ) , (A13)

βiσ = −
¿ÁÁÀ (niσ − d2

i )(1 − n + d2
i )

niσ(1 − niσ)(1 − niσ̄)2
+ ∣di∣

¿ÁÁÀ niσ̄ − d2
i

nσn2
σ̄(1 − nσ) . (A14)

Note, that for P̂iĉiσP̂i we would obtain the same result as
above. Now, using above expressions, one can calculate
any average. For example, the average of the hopping
term is

⟨ĉ†iσ ĉjσ⟩ = ⟨P̂iP̂j ĉ†iσ ĉjσP̂iP̂j⟩0 = ⟨P̂iĉ†iσP̂i P̂j ĉjσP̂j⟩0= αiσαjσ⟨ĉ†iσ ĉjσ⟩0 + αiσβjσ⟨n̂HFiσ̄ ĉ†iσ ĉjσ⟩0+ αjσβiσ⟨n̂HFjσ̄ ĉ†iσ ĉjσ⟩0 + βiσβjσ⟨n̂HFiσ̄ n̂HFjσ̄ ĉ†iσ ĉjσ⟩0.
(A15)

Using the Wick theorem, we can check that⟨n̂HFiσ̄ ĉ†iσ ĉjσ⟩0 = 0 and αjσβiσ⟨n̂HFjσ̄ ĉ†iσ ĉjσ⟩0 = 0, as
far as we assume that ⟨ĉ†iσ ĉ†iσ̄⟩0 = 0 and ⟨ĉ†iσ ĉjσ̄⟩0 = 0.
The last average is usually non-zero, but small, therefore
it can be neglected here. We are left with,

⟨ĉ†iσ ĉjσ⟩ ≈ αiσαjσ⟨ĉ†iσ ĉjσ⟩0. (A16)

In the simplest case, where neither AF nor CDW order
is considered, we have αiσ = αjσ = α and

α2 = gt ≡ n − 2d2

n(1 − n/2) (√1 − n + d2 + ∣d∣)2
, (A17)

what is the Gutzwiller factor for hopping part, well
known from the literature [40, 68–70].

In the similar manner, other averages from Eq. (A1)
can be calculated. To give, one more example, we show
here how to calculate the last term, ⟨n̂iσn̂jσ′⟩, that is
perhaps the most non-trivial (and rarely discussed in the
literature). To shorten the length of the expressions, we
will assume here for moment, that we are interested only
in AF order. The generalization for the CDW order (or
others) is not difficult, and it can be left to the reader.
Note, that AF symmetry requires, that nσ from A sub-
lattice is equal to nσ̄ from the B sublattice.

In such case,

Λ−1 ∑⟨i,j⟩, σ, σ′⟨n̂iσn̂jσ′⟩ = Λ−1 ∑⟨i,j⟩, σ, σ′⟨P̂in̂iσP̂iP̂j n̂jσ′ P̂j⟩0 =
= Λ−1 ∑⟨i,j⟩, σ, σ′ ⟨(n̂iσ + (λ2

d − λ2
σ)n̂iσn̂HFiσ̄ ) (n̂jσ′ + (λ2

d − λ2
σ̄′)n̂jσ′ n̂HFjσ̄′ )⟩0

≈ Λ−1 ∑⟨i,j⟩, σ⟨niσnjσ⟩0 + ⟨niσnjσ̄⟩0
+ (⟨n̂jσ̄⟩0⟨n̂iσ̄n̂HFjσ ⟩0 + ⟨n̂jσ̄⟩0⟨n̂iσn̂HFjσ ⟩0 + ⟨n̂iσ⟩0⟨n̂jσn̂HFiσ̄ ⟩0 + ⟨n̂iσ⟩0⟨n̂jσ̄n̂HFiσ̄ ⟩0)(λ2

d − λ2
σ)

+ (λ2
d − λ2

σ)(λ2
d − λ2

σ̄)⟨n̂iσ⟩0⟨n̂jσ⟩0⟨n̂HFiσ̄ n̂HFjσ̄ ⟩0 + (λ2
d − λ2

σ)(λ2
d − λ2

σ)⟨n̂iσ⟩0⟨n̂jσ̄⟩0⟨n̂HFiσ̄ n̂HFjσ ⟩0= 2n2 + (−4χ2 + 4∆2
S + 4∆2

T ) (1 + nσ(λ2
d − λ2

σ) + nσ̄(λ2
d − λ2

σ̄))
+ 4nσ(λ2

d − λ2
σ)nσ̄(λ2

d − λ2
σ̄)(−χ2) + 2 ([nσ(λ2

d − λ2
σ)]2 + [nσ̄(λ2

d − λ2
σ̄)]2) (∆2

S +∆2
T )

= 2n2 + 4gχv (−χ2) + 4g∆
v (∆2

S +∆2
T ),

(A18)

where

gχv ≡ (1 + nσ(λ2
d − λ2

σ) + nσ̄(λ2
d − λ2

σ̄) + nσ(λ2
d − λ2

σ)nσ̄(λ2
d − λ2

σ̄)) , (A19)

g∆
v ≡ (1 + nσ(λ2

d − λ2
σ) + nσ̄(λ2

d − λ2
σ̄) + 1

2
([nσ(λ2

d − λ2
σ)]2 + [nσ̄(λ2

d − λ2
σ̄)]2)) . (A20)

The approximate sign in Eq. (A18) results from the fact, that we neglected terms proportional to χ4, ∆4
S , ∆4

T or
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nσnσ̄χ
2. Note, that if no AF order is considered (m = 0),

then nσ = nσ̄ = n/2 and then

gχv = g∆
v = (2d2 + n(1 − n)

n(1 − n/2) )2

. (A21)

Appendix B: Two ways of defining the Gutzwiller
factor in the presence of extra symmetries

In this Section we show, that introducing extra order-
ing, such as AF or CDW, can lead to a specific ambiguity
in determining the final form of the Gutzwiller factors.
We will explain also, how we decided to choose which of
the form was used in the main text.

For simplicity, we assume in this Section, that in our
model U → ∞, resulting in d → 0. In other words, we
consider the case where the correlated state ∣Ψ⟩ has no
double occupancies. Additionally, to make our arguments
easy to follow, we consider only AF order (no CDW)
and we focus on example of the Gutzwiller factor for
the hopping term, that has been already discussed to
some extent in the previous Section (cf. Eq. (A17)). The
generalization to other states and for another averages
should be straightforward.

In the previous appendix, one of our our objective was
to find an operator P̂ , that makes the following approxi-
mation as close, as possible,

⟨Ψ∣ĉ†iσ ĉjσ ∣Ψ⟩ ≈ ⟨Ψ0∣P̂iĉ†iσP̂i P̂j ĉjσP̂j ∣Ψ0⟩ (B1)

From the other hand, we can find such function
gt(niσ, niσ̄, d, . . .) (called the Gutzwiller renormalization
factor), that

⟨Ψ0∣P̂iĉ†iσP̂i P̂j ĉjσP̂j ∣Ψ0⟩ = gt⟨Ψ0∣ĉ†iσ ĉjσ ∣Ψ0⟩. (B2)

Therefore, the Gutzwiller renormalization factor can be
obtained, by comparison of the likelihood of a specific
process (in this example hopping) in the correlated ∣Ψ⟩,
and in the uncorrelated ∣Ψ0⟩ states, namely

gt(niσ, niσ̄, d, . . .) ≈ ⟨Ψ∣ĉ†iσ ĉjσ ∣Ψ⟩
⟨Ψ0∣ĉ†iσ ĉjσ ∣Ψ0⟩ . (B3)

Let us assume, that there are on average n electrons
per site and the staggered magnetization is equal to m.
For the non correlated case (U = 0), there is in average
nAσ = 1

2
(n + σm) electrons with spin σ per site for the

A sublattice and nBσ = 1
2
(n − σm) for the B sublattice.

Additionally, in average n↑↓ = nA↑nA↓ = nB↑nB↓ sites are
double occupied and consequently, n∅ = (1 − nA↑)(1 −
nA↓) = (1 − nB↑)(1 − nB↓) sites are empty (cf. Table I).

In the correlated state ∣Ψ⟩ (U ≠ 0) the likelihood of
the double occupancy should be smaller than that deter-
mined for ∣Ψ0⟩. The appropriate adjustment is made by
choosing the proper form of the P̂ operator (cf. [53, 54]).
In the specific case of U → ∞, no double occupancies

Table I. Likelihood of a site being in the certain state (uncor-
related case ∣Ψ0⟩).
state for A sublattice for B sublattice∣↑⟩ or ∣↑↓⟩ nA↑ = 1

2
(n +m) nB↑ = 1

2
(n −m)∣↓⟩ or ∣↑↓⟩ nA↓ = 1

2
(n −m) nB↓ = 1

2
(n +m)∣↑⟩ nA↑(1 − nA↓) nB↑(1 − nB↓)∣↓⟩ nA↓(1 − nA↑) nB↓(1 − nB↑)∣∅⟩ (1 − nA↑)(1 − nA↓) (1 − nB↑)(1 − nB↓)∣↑↓⟩ nA↑nA↓ nB↑nB↓

should be allowed in the correlated state, what results in∀i λi,d ≡ 0 (cf. the general form of P̂ operator, Eq. (A2)).
However, by changing the probability of states to be dou-
bly occupied, we change also the average number of the
electrons in the system. To avoid this, other lambdas,
λi,0, λi,↑ and λi,↓, need to be modified as well.

There are two intuitive ways how it can be achieved:

1. We can “split” every double occupancy, separating
the electrons (one ↑ and one ↓) to different, previ-
ously empty sites. Such operation would not change
the global magnetization of the system (the dif-
ference between the up and down electrons, m ≡
n↑ − n↓) but it would modify the proportion of the
number of the single occupied states ∣↑⟩ to the num-
ber of ∣↓⟩ states.

2. We can “erase” the double occupancies. However,
such action would change the number of electrons
in the system. Therefore, to restore the previous
number of electrons, we can proportionally add up
and down electrons to previously empty sites. This
operation would keep the proportion of the number
of single occupied states with spin up to those with
spin down, but it would modify the global magne-
tization of the system.

Each of the presented schemes, leads to the different
probability of sites to be in certain states, as it is pre-
sented in the Table II. Note, that in the first scheme, the
proportion of ∣↑⟩ states is the same as “ ∣↑⟩ or ∣↑↓⟩” states
in the Table I. In the second scheme, after erasing the
doubly occupied states, the number of the electrons has
changed from n to n−nAσnAσ̄ in the A sublattice and to
n−nBσnBσ̄ in the B sublattice. Therefore, to restore the
previous number of electron in the system, the probabil-
ity that the state will have single electron σ was renor-
malized by the factor n/(n−2nA↑nA↓) ≡ n/(n−2nB↑nB↓).

Now, it is possible to derive the gt Gutzwiller factor
for the hopping term in both schemes. For the hopping
to occur in the correlated state, in one site (for example
belonging to the A sublattice) there need to be a single
electron with the spin σ, while the neighboring site (that
belongs the the B sublattice) needs to be empty (or vice
versa). Therefore, by comparing the amplitudes of the
bra and the ket contributions of ⟨Ψ∣ĉ†iσ ĉjσ ∣Ψ⟩, with the
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Table II. Likelihood of a site being in the certain state (cor-
related case ∣Ψ⟩). In the table, only the results for the A sub-
lattice were shown. For the B sublattice simply nBσ = nAσ̄.
state scheme 1. (“splitting”) scheme 2. (“erasing”)∣↑⟩ nA↑ = 1

2
(n +m) nA↑(1 − nA↓) n

n−2nA↑nA↓∣↓⟩ nA↓ = 1
2
(n −m) nA↓(1 − nA↑) n

n−2nA↑nA↓∣∅⟩ 1 − nA↑ − nA↓ 1 − nA↑ − nA↓∣↑↓⟩ 0 0

help of Table II, we can write that in the first scheme,

⟨Ψ∣ĉ†iσ ĉjσ ∣Ψ⟩ (1)= √
nAσnBσ(1 − n). (B4)

while in the second,

⟨Ψ∣ĉ†iσ ĉjσ ∣Ψ⟩ (2)=
¿ÁÁÀ nAσ(1 − nAσ̄)nBσ(1 − nBσ̄)(n − 2nA↑nA↓)(n − 2nB↑nB↓)n(1−n).

(B5)

Analogically, we can calculate the hopping probability
in the uncorrelated state. Namely, the hopping can occur
when either one site has electron with the spin σ or is
double occupied, and when either the neighboring site is
empty or has one electron with the spin σ̄ (cf. also [71]).
Using Table I, we get

⟨Ψ0∣ĉ†iσ ĉjσ ∣Ψ0⟩ = √
nAσ(1 − nBσ)nBσ(1 − nAσ). (B6)

This leads to (cf. Eq. (B3)) to either

g
(1)
t = 1 − n√(1 − nA↑)(1 − nB↑) , (B7)

or

g
(2)
t =

√ (1−nAσ̄)(1−nBσ̄)(1−nAσ)(1−nBσ)(1 − n)√(1 − 2nA↑nA↓
n

)(1 − 2nB↑nB↓
n

) , (B8)

depending on the scheme chosen. Note, that if only AF
order is considered (no CDW), then nA↑ = nB↓, and the
last equation has simpler form,

g
(2)
t = 1 − n

1 − 2nA↑nA↓
n

≡ 1 − n
1 − 2nB↑nB↓

n

. (B9)

Both g(1)t and g(2)t are present in the literature, for exam-
ple g(2)t in [28, 40, 68, 70], whereas g(1)t is identical with
the zero-order renormalization factors of the DE-GWF
method [55–58, 72].

Note, that if no AF order is present,

g
(1)
t = g(2)t = 1 − n

1 − n/2 , (B10)

and there is no difference between g(1)t and g(2)t anymore
(cf. also Eq. (A17) and take d = 0).

If instead, CDW and no AF order were considered,
we would simply take in Eqs. (B7) and (B7) nAσ = nA
and nBσ = nB such, that nA ≠ nB . In such case also
g
(1)
t ≠ g(2)t .
The above discussion, can be easily caried out for other

Gutzwiller factors, that renormalize other averages than
hopping.

It was checked, that the two schemes lead to substan-
tially different outputs, especially regarding the stability
of the AF phase. In the first scheme (used in the main
text of this paper) the AF phase is stable in the wide
range of doping, from 0 to about δmax = 0.27 (cf. Fig. 3).
Using the second scheme, the AF phase is stable only
very close to the half-filling with δmax < 0.006 (cf. our
previous paper [25]).

In this paper, we decided to use the first scheme, since
we wanted to compare our results to those obtained
within the DE-GWF approach. And, as it was mentioned,
in the zeroth-order of DE-GWF method, the renormal-
ization factors for averages are identical to those from the
first scheme.
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Topic of this article goes beyond the scope of this Thesis. However, it is included here
to show that the analytic and numerical methods I have learned during my PhD study
are applicable in various contexts, not only in case of strongly correlated electronic
systems.

In this work we analyze a system of hard spheroplatelets near a hard wall. The main
research question was to predict the orientation of the molecules near the wall, as the
transition from the isotropic to the biaxal nematic phase occurs. The main findings are
that the preferred orientation of the short molecule axes is perpendicular to the wall
and that the biaxality close to the wall can appear only if the phase is biaxal in the
bulk.
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A system of hard spheroplatelets near an impenetrable wall is studied in the low-density Onsager approximation.
Spheroplatelets have optimal shape between rods and plates, and the direct transition from the isotropic to
biaxial nematic phase is present. A simple local approximation for the one-particle distribution function is
used. Analytical results for the surface tension and the entropy contributions are derived. The density and the
order-parameter profiles near the wall are calculated. The preferred orientation of the short molecule axes is
perpendicular to the wall. Biaxiality close to the wall can appear only if the phase is biaxial in the bulk.
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I. INTRODUCTION

Biaxial nematic phases attracting experimental, theoretical,
and computer simulation research since its first prediction by
Freiser [1]. There phases are characterized by an orientational
order along three perpendicular directions and by the existence
of three distinct optical axes. They are very interesting
from both the fundamental and the technological points of
view [2,3]. Biaxial materials could offer a possibility of
fast switching of the second director and better viewing
characteristics.

In practical applications liquid crystals are always placed
in limited space and even a weak interaction with a limiting
surface can change the structure of a liquid crystal near the
boundary. A basic model for a phase boundary is the smooth
hard planar wall. Despite its simplicity it can induce interesting
phenomena.

The behavior of hard biaxial molecule fluids near a hard
surface is poorly understood. In this paper we study the
nematic-wall and the isotropic-wall interfaces assuming that
biaxial molecules interact with one another and with the wall
only via hard-core repulsion. Analytical results for the surface
tension and the entropy contributions are derived. We find the
preferred orientation of the phase composed of the most biaxial
spheroplatelets with the optimal shape between rods and
plates. For such molecules there is the direct transition from
the isotropic phase to the biaxial nematic phase on increasing
the density. The preferred phase orientation minimize the
nematic-wall surface tension. The density and order-parameter
profiles are calculated in the case of the isotropic and the biaxial
nematic phase.

The paper is organized as follows. In Sec. II interfacial
phenomena and biaxial molecules studies are briefly reviewed
in order to provide the background for our studies. In Sec. III
the statistical theory of the phase ordering is provided for
the case of the hard molecules at the hard wall in the low-
density limit. In Sec. IV the theory is applied to the system
of hard spheroplatelets where the direct transition from the
isotropic phase to the biaxial nematic phase is present in the
bulk. Section V contains a summary.

II. BACKGROUND

In order to make the paper self-contained, we collect the rel-
evant definitions and facts concerning interfacial phenomena
and biaxial molecule studies.

A. Fluid interfacial phenomena

There are many fluid interfacial phenomena, such as anchor-
ing, critical adsorption, prewetting, and wetting transitions [4].
The possible structural rearrangements in the vicinity of the
interface are (1) periodic modulations of density, (2) polar
ordering of molecular dipoles, and (3) modifications of the
scalar order parameter [5]. Anchoring is a fixing of the phase
orientation by the surface with lifting the orientation in the bulk
via the elastic forces. In confined geometry, phase transitions
are usually shifted with respect to the transitions observed in
infinite geometry.

Let us consider the case of a second-order transition
from a disordered to an ordered phase. The order parameter
fluctuations appear in the bulk with a correlation length which
diverges at the transition. The correlation length at the surface
becomes infinite in a direction parallel to the surface plane.
This creates an ordered layer at the surface in which the order
parameter decreases exponentially to zero in the bulk over
a penetration length. The penetration length is equal to the
correlation length and thus diverges at the transition. This
phenomenon is called critical adsorption [4].

When the transition is first order, the situation is more
complex. Partial or complete wetting can appear depending
on the values of a contact angle. When one explores the
coexistence curve between phases, one can go from a partial
wetting regime to a complete wetting regime via a wetting
transition.

B. Studies of hard biaxial molecules

Computer simulations studies of anisotropic hard molecules
have confirmed that hard-core interactions are essential for
liquid crystal phase behavior [6]. Over the years a variety of
hard-particle models have been studied theoretically and by
using computer simulations. These investigations have shown
that hard-particle fluids can exhibit many liquid-crystalline
phases, such as uniaxial and biaxial nematic [7], smectic,
crystal, and plastic solid phases [8,9].

Several types of biaxial molecule fluids were investigated:
ellipsoids with three different axes [7,10–13], biaxial Gay-
Berne particles [14–18], rectangular parallelepipeds [19,20],
spheroplatelets, and spherocuboids [21]. Singh and Kumar
developed a theory with a general convex-body coordinate
system that can be used to describe any hard convex
body [22,23]. The results can be utilized in the study of
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structural, thermodynamic, and transport properties of ellip-
soidal fluids.

The hard spheroplatelet is a natural generalization of the
spherocylinder. In 1986 Mulder expressed the pair-excluded
volume at fixed orientation in closed form [24]. Later the
phase diagram of the hard spheroplatelet fluid was proposed
as a result of bifurcation analysis in the low-density Onsager
approximation [25]. The density versus particle biaxiality
phase diagram displays a cusp-shaped biaxial nematic phase
intervening between two uniaxial nematic phases. Holyst and
Poniewierski studied the Landau bicritical point at which a
direct transition from the isotropic phase to the biaxial nematic
phase occurs [26]. A dense system of hard biaxial molecules
(spheroplatelets and ellipsoids) was considered using a density
functional theory. They found that the density of the isotropic
phase at the Landau bicritical point was always higher than
that at the isotropic-nematic transition in the limit of uniaxial
molecules.

In 1991 Taylor extended the pair-excluded volume to
the case of nonidentical spheroplatelets [27]. In the same
year Taylor and Herzfeld studied nematic and smectic order
in a fluid of hard biaxial spheroplatelets [28]. They used
scaled particle theory for the fluid configurational entropy, in
conjunction with a cell description of translational order. When
the possibility of translational order was considered, the phase
diagram displayed three distinct smectic A phases, columnar
and crystalline ordering for higher densities (packing greater
then 0.6). For low and intermediate densities the diagram
was identical with previous findings (the isotropic phase, the
two uniaxial nematic phases separated by the biaxial nematic
phase). The necessity of further studies of the Landau point
region was noted.

In 2009 van der Pol et al. found biaxial nematic and
biaxial smectic phases in a colloidal model system of mineral
goethite particles with a simple boardlike shape and short-
range repulsive interaction [29]. The biaxial nematic phase
was stable over a large concentration range, and the uniaxial
nematic phase was not found. Other studies showed that shape
polidispersity of particles can stabilize the biaxial nematic
phase, and it can induce a novel topology in the phase diagram
[30,31]. Another stabilizing factor is a small tetrahedral
deformation of particles as was shown within the extended
Straley model [32].

Recently Peroukidis et al. calculated the full phase di-
agram of hard biaxial spheroplatelets by means of Monte
Carlo simulations [33,34]. New classes of phase sequences
were identified: I − [N+] − Sm-A, I−[Nb− − Nb+]−Sm-A
(crossover), I − [N−] − Sm-A, I − [N−] − Colx (columnar
phases), I − Cub (cubatic phases). The brackets indicate
phases that may be absent. The most interesting finding was
the crossover between two distinct biaxial nematic states.
The formation of anisotropic supramolecular assemblies was
demonstrated.

C. Hard molecules at the interface

Properties of liquid crystal phases in the bulk and at the
surface generally are not the same. Different physical systems
were studied in the past: fluids with uniaxial molecules in
contact with a single (hard or attractive) wall, confined by two

walls (thin cells) or curved surfaces [35]. Let us recall the main
results concerning solid-fluid interfaces. We will not discuss
nematic free surfaces and thin films.

In 1984 Telo da Gama studied wetting transitions at a
solid-fluid interface using attractive walls and the attractive
forces with a hard core for molecular interactions [36].
The wetting transitions were always weakly first order. In
1988 Poniewierski and Holyst studied a system of hard
spherocylinders in contact with a single hard wall [37].
They used a simple local approximation for the one-particle
distribution function and showed that the preferred orientation
of the nematic director is parallel to the wall. The density and
order-parameter profiles were calculated. The nematic main
order parameter was enhanced near the wall even though the
density was reduced. The wall-induced biaxiality was small in
the interfacial region. Wetting by the nematic phase occurred
at the nematic-isotropic coexistence. Later the stability of the
uniaxial solution close to the wall was investigated in the limit
of very long molecules [38], and the bifurcation point was
found. The nematic-phase–isotropic-phase interface for hard
spherocylinders was studied in Ref. [39].

A hard-rod fluid confined by two parallel wall was studied
by Mao et al. [40]. The aim of this work was to calculate the
depletion force between the plates due to confinement of the
rods. Van Roij et al. investigated the phase behavior of colloidal
hard-rod fluids (L/D = 15) near a single wall and confined in
a slit pore [41–44]. They obtained (1) a wall-induced surface
transition from uniaxial to biaxial symmetry, (2) complete
orientational wetting of the wall-isotropic fluid interface
by a nematic film, and (3) capillary nematization, with a
capillary critical point, induced by confinement in the slit
pore.

The properties of a model suspension of hard colloidal
platelets with continuous orientations and vanishing thickness
were studied using several methods by Reich et al. [45]. It is
interesting that this system is not described well by the Onsager
theory, and a scaling argument known from thin rods does not
hold. The fundamental measure theory density functional was
used, which includes contributions to the free energy that are
of the third order in density.

III. THEORY

The aim of this section is to develop the statistical theory
of the phase ordering for the case of the hard molecules at
the hard wall in the low-density limit. The expressions for the
density, the order parameters, and the surface tension will be
derived.

A. Description of the system

The system of hard spheroplatelets in the presence of a
hard wall is considered. A spheroplatelet can be described as
a rectangular block with dimensions 2a × b × c, capped with
quarter spheres of radius a and half-cylinders with radius a

and lengths b and c such as to produce a piecewise smooth
convex body; see Fig. 1. The position and the orientation of a
spheroplatelet are determined by �r and the three Euler angles
R = (φ,θ,ψ), respectively. Alternatively, the orientation can
be described by the three orthonormal vectors (�l, �m,�n). The z
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front

side

top

FIG. 1. Front, side, and top view of a spheroplatelet.

axis is chosen to be perpendicular to the wall. The density of
the fluid at z = +∞ is ρ0.

The grand thermodynamical potential � as a functional of
the one-particle distribution function ρ(�r,R) has the following
form:

β�{ρ} = βFid{ρ} + βFex{ρ}
+β

∫
d�r dRρ(�r,R)[Vext(�r,R) − μ], (1)

where the ideal gas contribution is

βFid{ρ} =
∫

d�r dRρ(�r,R){ln[�ρ(�r,R)] − 1}, (2)

μ is the chemical potential, β = 1/kBT is the Boltzmann
factor, Vext stands for the external potential, and � is the
(irrelevant) thermal volume of molecules. Fex is the excess part
of the free energy corresponding to the interactions between
molecules. We assume the low-density Onsager approximation
for Fex, i.e.,

βFex = −1

2

∫
d�r1 dR1 d�r2 dR2ρ(�r1,R1)ρ(�r2,R2)f12, (3)

where f12 stands for the Mayer function, which is equal to −1
when two molecules overlap and 0 otherwise. The one-particle
distribution function has the normalization∫

d�r dRρ(�r,R) = N. (4)

The expression for the external potential exerted on a molecule
by the hard wall reads as follows:

Vext(z,R) =
{

+∞ for z < zm(R),

0 for z > zm(R),
(5)

where zm(R) = a + (b|mz| + c|nz|)/2 stands for the minimal
distance between the wall and a molecule of orientation R.
The minimization of �{ρ} with respect to ρ(�r,R) leads to the

integral equation for ρ(�r,R):

ln[�ρ(�r1,R1)] + βVext(�r1,R1)

−
∫

d�r2 dR2ρ(�r2,R2)f12 = βμ. (6)

In the absence of an external potential Eq. (6) has a spatially
uniform solution ρ(�r1,R1) = ρ0f (R), where f (R) is the
orientational distribution function normalized to unity. For
the isotropic phase f (R) = 1/8π2, for the uniaxial nematic
phase f (R) = f (�l · �N,�n · �N ), and for the biaxial nematic
phase f (R) = f (�l · �L,�l · �N,�n · �L,�n · �N ). The unit orthogonal
vectors ( �L, �M, �N ) determine three axes of the D2h symmetry
of the biaxial nematic phase. In the uniaxial nematic phase
with D∞h symmetry only the �N vector survives.

B. The liquid crystal-wall surface tension

When the wall is present, instead of solving Eq. (6), we
approximate ρ(z,R) as follows [37]:

ρ(z,R) = ρ0f (R) exp[−βVext(z,R)]. (7)

Let us note that the density profiles obtained from (7) will not
exhibit the short-range oscillatory behavior that is expected
close to the wall. It is assumed that the directors ( �L, �M, �N ) do
not change throughout the sample. Substitution of (7) into (1)
and subtraction of the bulk term leads to the expression for the
liquid crystal-wall surface tension γ [37],

βγ = −(Srot + Str,id + Str,ex)/kB − β�μ�, (8)

where Srot, Str,id, and Str,ex are the surface entropies per unit
area,

β�μ = βμ − ln[�ρ0/(8π2)]; (9)

� =
∫ ∞

0
dz dR[ρ(z,R) − ρ0f (R)]

= −ρ0

∫
dRf (R)zm(R) (10)

stands for the adsorption [37]. The rotational entropy Srot

comes only from the ideal term in the free energy. According
to the usual convention, the rotational entropy is defined in
such a way that it vanishes for the isotropic phase

Srot/kB = ρ0

∫
dRf (R)zm(R) ln[8π2f (R)]. (11)

The translational entropy have two contributions: Str,id from
the ideal term and Str,ex from the excess term:

Str,id/kB = −ρ0

∫
dRf (R)zm(R), (12)

Str,ex/kB = 1

2
ρ2

0

∫
dR1 dR2f (R1)f (R2)zm(R1)K(R1,R2)

+ 1

2
ρ2

0

∫
dR1 dR2f (R1)f (R2)L(R1,R2), (13)
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where

L(R1,R2) =
∫ ∞

zm(R1)−zm(R2)
dz12 × [z12 − zm(R1)

+ zm(R2)]V (|z12|,R1,R2), (14)

V (|z12|,R1,R2) = −
∫

dx12 dy12f12, (15)

K(R1,R2) = −
∫

dr12f12. (16)

K(R1,R2) is the excluded volume for two spheroplatelets.
V (|z12|,R1,R2) is the intersection of the excluded volume for
two spheroplatelets of orientations R1 and R2 with a plane
parallel to the wall and distant from the center of the excluded
volume by |z12|. The entropy Str,id is negative because the
wall restricts the translational freedom of molecules. The
first (positive) term in Str,ex takes into account the pairs
of molecules, one of which interacts directly with the wall
whereas the other does not. The second (positive) term takes
into account all pairs in which both molecules interact directly
with the wall [37].

The nematic-wall surface tension γ is a function of directors
through the distribution function f (R). The tension should be
minimized with respect to the phase orientation in order to find
the equilibrium value of the phase orientation.

C. The density and the order parameter profiles

In the approximation (7) for the one-particle distribution
function ρ(z,R), the thickness of the interfacial region is
equal to the range of Vext. Outside, the density and the order
parameters are equal to their bulk values. Thus only the range
a � z � a + √

b2 + c2/2 is interesting. For z < a, ρ(z) = 0
and the order parameters are undefined. Integrating ρ(z,R)
over the angular variables, we find that

ρ(z) = ρ0

∫
dRf (R) exp[−βVext(z,R)]. (17)

The orientational distribution function is equal to f (z,R) =
ρ(z,R)/ρ(z) in the interfacial region. The average of any
function A(R) can be calculated as

〈A〉(z) =
∫

dRf (z,R)A(R). (18)

The formula (18) will be used to calculate the order
parameters.

IV. RESULTS

The spheroplatelets are useful objects because many cal-
culations can be done analytically. In this section the most
important results from the literature are recalled and an
exemplary calculations for the spheroplatelets at the hard wall
are presented.

A. Spheroplatelets

The volume of a spheroplatelet is equal to

Vmol = 4πa3/3 + πa2(b + c) + 2abc. (19)

The pair-excluded volume is given by [25]

K(R1,R2) = 32πa3/3 + 8πa2(b + c) + 8abc

+ 4abc{| �m1 × �n2| + |�n1 × �m2|}
+ 4ab2| �m1 × �m2| + 4ac2|�n1 × �n2|
+ b2c{|�l1 · �m2| + | �m1 · �l2|}
+ bc2{|�l1 · �n2| + |�n1 · �l2|}. (20)

The expansion of the excluded volume K(R1,R2) can be
given as

K(R1,R2) =
∑

j

∑
μν

K (j )
μν F (j )

μν

(
R−1

2 R1
)

=
∑
[I ]

K [I ]F [I ]
(
R−1

2 R1
)
, (21)

where the coefficients K
(j )
μν are symmetric in the indices μ

and ν due to the particle interchange symmetry. The invariants
F

(j )
μν = F [I ] are defined in Ref. [46], where the indicator [I ] =

(j,μ,ν) is explained. First indices are [1] = (0,0,0), [2] =
(2,0,0), [3] = (2,0,2), [4] = (2,2,0), and [5] = (2,2,2). The
invariants are related to Wigner functions D

(j )
μν . If j is even,

then 0 � μ,ν � j ,

F
(j )
00 (R) = D

(j )
00 (R), (22)

F
(j )
0ν (R) = 1√

2

[
D

(j )
0ν (R) + D

(j )
0−ν(R)

]
, (23)

F
(j )
μ0 (R) = 1√

2

[
D

(j )
μ0 (R) + D

(j )
−μ0(R)

]
, (24)

F (j )
μν (R) = 1

2

[
D(j )

μν (R) + D
(j )
μ−ν(R)

+D
(j )
−μν(R) + D

(j )
−μ−ν(R)

]
. (25)

If j is odd, then 2 � μ,ν � j ,

F (j )
μν (R) = 1

2

[
D(j )

μν (R) − D
(j )
μ−ν(R)

−D
(j )
−μν(R) + D

(j )
−μ−ν(R)

]
. (26)

The most important excluded volume coefficients have the
form

K
(0)
00 = 32πa3/3 + 8πa2(b + c) + (8 + 2π )abc

+πa(b2 + c2) + b2c + bc2, (27)

K
(2)
00 = (5/16)(b2c − 2bc2 + 2πabc − 2πac2 − πab2/2),

(28)

K
(2)
02 = K

(2)
20 = (5

√
3/16)(bc2 + πabc − πab2/2), (29)

K
(2)
22 = (−15/16)(b2c + πab2/2). (30)

For molecules intermediate between rods and plates, called
the most biaxial molecules, the direct transition from the
isotropic to the biaxial nematic phase is present. In that case
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K
(2)
02 = K

(2)
20 = 0, K

(2)
00 > 0, K

(2)
22 < 0, and

c2 + πac − πab/2 = 0 for b > c. (31)

From the analysis of isotropic-symmetry-breaking bifurca-
tions [25] it is possible to find the transition point from the
isotropic phase to the biaxial nematic phase

ρC = −5/K
(2)
22 for b > c. (32)

We will study physically equivalent systems with b < c

because then it is easier to discuss the values of the order
parameters. The condition for the most biaxial molecules has
the form

b2 + πab − πac/2 = 0 for b < c. (33)

Let us define packing y = ρVmol. We studied two systems
with b < c in order to check that our results do not depend
qualitatively on the molecule elongations (this is important in
the context of the Onsager approximation):

b = 1.5πa, c = 7.5πa, yC = 0.48174 (system A), (34)

b = 2πa, c = 12πa, yC = 0.29437 (system B). (35)

This choice corresponds to the following sets of parame-
ters from Ref. [33]: (l∗,w∗) ≈ (12.78,3.36) for system A;
(l∗,w∗) ≈ (19.85,4.14) for system B.

B. The phase in the bulk

The phase in the bulk is described by a spatially uniform
solution of the form

ln f (R) =
∑

j

∑
μν

S(j )
μν F

(j )
μν (R), (36)

S(j )
μν = −ρ0

∑
σ

K (j )
σν

〈
F (j )

μσ

〉
for j > 0, (37)

〈
F

(0)
00

〉 = 1 (the normalization condition). (38)

According to Mulder [25] and others [47], we can focus on the
j = 2 subspace with four independent parameters S(2)

μν ,

f ∼ exp(S[2]F [2] + S[3]F [3] + S[4]F [4] + S[5]F [5]). (39)

The solution of Eq. (37) should have the orientation min-
imizing the surface tension γ . Equation (37) was solved
numerically for systems A and B by means of the C program.
Multidimensional minimization was done by the downhill
simplex method, implemented in the function amoeba [48].
The dependence of the order parameters on the packing are
presented in Fig. 2 (system A) and in Fig. 3 (system B).

Let us recall the meaning of the order parameters 〈F (2)
μν 〉.

The 〈F (2)
00 〉 order parameter is a measure of the alignment of

the �n molecule axis along the Z axis of the reference frame.
The 〈F (2)

02 〉 order parameter describes the relative distribution
of the �l and the �m axes along the Z axis. Both 〈F (2)

00 〉 and
〈F (2)

02 〉 can be nonzero in the uniaxial nematic phase. The 〈F (2)
20 〉

order parameter describes the relative distribution of the �n axis
along the X and the Y axes. The 〈F (2)

22 〉 order parameter is
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FIG. 2. Order parameters 〈F (2)
μν 〉 (F2μν in the picture) vs packing

in the bulk for system A. The phase orientation for y > yC is
described by the vectors ( �L, �M, �N ) = (�ez, − �ey,�ex). This is the
solution minimizing the surface tension.

related to the distribution of the �l axis along the X axis and the
distribution of the �m axis along the Y axis.

C. Isotropic phase in the bulk

The system is in the isotropic phase (S(j )
μν = 0) for ρ < ρC .

Near the wall the order parameter 〈F (2)
00 〉 decreases from 0 to

−1/2, whereas the order parameter 〈F (2)
02 〉 increases from 0

to
√

3/2. The long molecule axes �n tend to be parallel to the
wall, and the short molecule axes �l tend to be perpendicular to
the wall. The symmetry in the xy plane is not broken, and the
phase is uniaxial. In the interfacial region the density is reduced
and decreases to zero as z → a. The density and the order
parameters profiles for system A are plotted in Fig. 4. In the
case of system B the results are similar. The same profiles for
the uniaxial order parameter 〈F (2)

00 〉 were obtained in the case
of hard spherocylinders by means of Monte Carlo simulations
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FIG. 3. Order parameters 〈F (2)
μν 〉 (F2μν in the picture) vs packing

in the bulk for system B. The phase orientation is the same as in Fig. 2.
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FIG. 4. Density profile ρ(z)/ρ0 and order parameters 〈F (2)
μν 〉

(F2μν in the picture) for the isotropic phase in the bulk (system A).
In the interfacial region the phase is uniaxial, 〈F (2)

20 〉 = 〈F (2)
22 〉 = 0.

The density decreases to zero near the wall. The molecule positions
are in the range z > a.

[43]. We have the additional nonzero order parameter 〈F (2)
02 〉

indicating that our particles are biaxial. The density profiles of
a hard-spherocylinder fluid suggest that a small kink (a density
maximum) at z = a + c/2 is possible for the spheroplatelets.

The surface tension for the isotropic phase is positive and
has the form

βγ = ρ0(a + b/4 + c/4)

+ 1
2ρ2

0 [K [1](a + b/4 + c/4) − L[1][1]]. (40)

The relation between μ and ρ0 in our model, for the case of
the isotropic phase and the weak biaxial nematic phase, is

β�μ = ρ0K
[1] > 0. (41)
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FIG. 5. Density profile ρ(z)/ρ0 and order parameters 〈F (2)
μν 〉

(F2μν in the picture) for the biaxial nematic phase in the bulk
at packing y = 0.6 (system A). In the interfacial region the phase
is biaxial. The density decreases to zero near the wall. The phase
orientation is ( �L, �M, �N) = (�ez, − �ey,�ex).

D. Weak biaxial nematic phase

Let us consider a weak biaxial nematic phase near the
transition point from the isotropic to the biaxial nematic phase:

S(j )
μν � 1 for j > 0, S

(0)
00 = − ln(8π2). (42)

The orientational distribution function f (R) and the order
parameters have a simplified form

f (R) = 1

8π2

[
1 +

∑
j>0

S(j )
μν F

(j )
μν (R)

]
, (43)

〈
F (j )

μν

〉 = S
(j )
μν

2j + 1
. (44)

For the case of the weak biaxial nematic phase, it is possible
to calculate many physical quantities analytically.

E. Alignment close to the wall

Disregarding the problem of the equilibrium phase orien-
tation we can study the alignment close to the wall (z = a)
in the case of the weak biaxial nematic phase in the bulk.
The restrictions imposed on the Euler angles are as follows:
θ = π/2, ψ = 0 or ψ = π , or ψ = 2π . We assume that
the most important are the parameters S(2)

μν and the order
parameters 〈F (2)

μν 〉:
F

(2)
00 (R)|wall = −1/2, (45)

F
(2)
02 (R)|wall =

√
3/2, (46)

F
(2)
20 (R)|wall = cos(2φ)

√
3/2, (47)

F
(2)
22 (R)|wall = cos(2φ)/2. (48)

f (a,φ) = 1

2π

[
1 +

∑
μν

S(2)
μνF

(2)
μν (R)|wall

]
, (49)

〈
F (2)

μν

〉∣∣
wall =

∫ 2π

0
dφf (a,φ)F (2)

μν (R)|wall, (50)

〈
F

(2)
00

〉∣∣
wall = −1/2, (51)

〈
F

(2)
02

〉∣∣
wall =

√
3/2, (52)

〈
F

(2)
20

〉∣∣
wall = [

S
(2)
20

√
3 + S

(2)
22

]√
3π/4, (53)

〈
F

(2)
22

〉∣∣
wall = [

S
(2)
20

√
3 + S

(2)
22

]
π/4. (54)

The order parameters close to the wall can be expressed by the
bulk order parameters by means of Eq. (44):〈

F
(2)
20

〉∣∣
wall = [〈

F
(2)
20

〉√
3 + 〈

F
(2)
22

〉]
5
√

3π/4, (55)

〈
F

(2)
22

〉∣∣
wall = [〈

F
(2)
20

〉√
3 + 〈

F
(2)
22

〉]
5π/4. (56)
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We conclude that biaxiality close to the wall can appear only
if the phase is biaxial in the bulk. Note that the equality
〈F (2)

20 〉|wall = √
3〈F (2)

22 〉|wall is valid also for the strong biaxial
nematic phase.

F. Alignment in the interfacial region

The weak biaxial phase is now considered. It is possible to
calculate almost all parts of the surface tension analytically:

� = −ρ0[(a + b/4 + c/4) + S[2](−b/32 + c/16)

+ S[3](−
√

3b/32)], (57)

Srot/(ρ0kB) = S[2](−b/32 + c/16) + S[3](−
√

3b/32)

+ S[2]S[2](a/5 + 5b/128 + c/16)

+ S[2]S[3](
√

3b/64)

+ S[3]S[3](a/5 + 7b/128 + c/32)

+ S[4]S[4](a/5 + 15b/256 + c/32)

+ S[4]S[5](−7
√

3b/384)

+ S[5]S[5](a/5 + 31b/768 + 13c/24), (58)

Str,id/kB = �, (59)

A(j )
μσ = 1

2j + 1

∑
ν

S(j )
μν K

(j )
σν , (60)

L[I ][J ] =
∫

dR1 dR2
1

(8π2)2
F [I ](R1)F [J ](R2)L(R1,R2),

(61)

2Str,ex/
(
ρ2

0kB

) = K [1](a + b/4 + c/4)

+A[2](−b/32 + c/16) + A[3](−b
√

3/32)

+K [1]S[2](−b/32 + c/16)

+K [1]S[3](−b
√

3/32)

+ S[2]A[2](a/5 + 5b/128 + c/16)

+ (
S[2]A[3] + S[3]A[2]

)
(b

√
3/128)

+ S[3]A[3](a/5 + 7b/128 + c/32)

+ S[4]A[4](a/5 + 15b/256 + c/32)

TABLE I. Table reporting the values of the coefficients L[I ][J ] in
a4 units for system A. Errors estimated are less then 10% . The dagger
symbol (†) points to values that probably go to zero (according to our
tests).

L[I ][J ]/a4 [J ] = [1] [J ] = [2] [J ] = [3] [J ] = [4] [J ] = [5]

[I ] = [1] 26 209 7294 −112 5.16† −4.97†
[I ] = [2] −3415 −1027 214 −0.247† 0.256†
[I ] = [3] 1211 415 −84.4 0.061† 0.214†
[I ] = [4] 11.4† 3.68† −0.622† −213 355
[I ] = [5] −3.16† −0.921† 0.154† 85.5 −94.0

TABLE II. Table reporting the values of the coefficients L[I ][J ] in
a4 units for system B. Errors estimated are less then 10% . The dagger
symbol (†) points to values that probably go to zero (according to our
tests).

L[I ][J ]/a4 [J ] = [1] [J ] = [2] [J ] = [3] [J ] = [4] [J ] = [5]

[I ] = [1] 110 826 32 921 −4264 14.5† −13.9†
[I ] = [2] −15 975 −5075 960 −0.317† 0.002†
[I ] = [3] 5355 2149 −370 −0.094† −0.996†
[I ] = [4] 36.0† 13.2† −1.4† −1026 1911
[I ] = [5] −5.63† −2.55† 0.02† 432 −456

+ (
S[4]A[5] + S[5]A[4]

)
(−7

√
3b/768)

+ S[5]A[5](a/5 + 31b/768 + 13c/24)

+L[1][1] +
5∑

[I ]=2

S[I ]
(
L[1][I ] + L[I ][1]

)

+
5∑

[I ]=2

5∑
[J ]=2

S[I ]S[J ]L[I ][J ]. (62)

The coefficients L[I ][J ] were calculated numerically in two
steps. In the first step, the values of the function L(R1,R2)
were calculated for the selected orientations (R1,R2) by means
of Romberg’s method [48]. The function V (|z12|,R1,R2) was
calculated in the discrete space where the space step length
was a/2 or a/3. In the second step, the Gauss-Legendre
integration in six dimensions (six Euler angles) was applied.
The approximations with four, eight, and 16 nodes per
dimension were checked. The programs were implemented in
Python and C++ languages. In Tables I and II the coefficients
L[I ][J ] are reported, obtained with 16 nodes per dimension.
Errors estimated were less then 10% .

Let us note that in the case of hard ellipsoids the hard
Gaussian overlap (HGO) model [15,49] is often used, because
it is computationally simple and shares some similarities with
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FIG. 6. Surface tension βγ a2 vs packing (system A). The dashed
line describes values calculated for the isotropic phase. The inset
shows the neighborhood of the point yC = 0.48174 with the transition
from the isotropic phase to the biaxial nematic phase.
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FIG. 7. Surface tension βγ a2 vs packing (system B). The dashed
line describes values calculated for the isotropic phase. The inset
shows the neighborhood of the point yC = 0.29437 with the transition
from the isotropic phase to the biaxial nematic phase.

the hard ellipsoid fluid. However, it was shown [50] that
the HGO model turns out to be inappropriate for elongated
molecules (length to breadth ratio above 5). In the case of
spheroplatelets we used known expressions for the excluded
volume and the K [I ] coefficients, but the coefficients L[I ][J ]

were calculated numerically. Inside the formula for the surface
tension there are no terms with K [I ] that mix (S[2],S[3]) with
(S[4],S[5]). Numerical calculations suggest that the same is
true for the terms with L[I ][J ]. The biaxial order parameters
are separated from the uniaxial ones.

The density and the order parameters profiles for system
A, for the biaxial nematic phase in the bulk, are plotted in
Fig. 5. The biaxiality is present also in the interfacial region.
The surface tension for systems A and B is shown in Figs. 6
and 7, respectively. On increasing density, the surface tension
increases, and there is the maximum at the transition (in the
bulk) from the isotropic to the biaxial nematic phase.

For high density, the surface tension decreases, but it can
be attributed to the fact that the low-density approximation is
no longer valid and the order parameters 〈F (j )

μν 〉 with j > 2
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FIG. 8. Comparison of the packing profiles y(z) in the interfacial
region for different phase packing in the bulk (system A).
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FIG. 9. Adsorption �a2 vs packing for systems A and B.

are needed. Note that the closest packing of spheroplatelets in
both systems is greater than 0.9. The density profiles in the
interfacial region for system A are shown in Fig. 8.

The density dependence of the adsorption is shown in
Fig. 9. In the case of the isotropic phase, the adsorption
decreases according to a simple linear formula � = −ρ0(a +
b/4 + c/4). After the transition to the biaxial nematic phase
the adsorption first increases and then again decreases. The
adsorption is finite, and this suggests lack of the wall wetting
[45].

V. SUMMARY

In this paper we presented the statistical theory of hard
molecules near a hard wall in the low-density Onsager approx-
imation. A simple local approximation for the one-particle
distribution function was applied. The theory was used to
study two systems composed of the most biaxial hard sphero-
platelets, where the direct transition from the isotropic phase
to the biaxial nematic phase occurs in the bulk. The density
and the order-parameter profiles near the wall were calculated.

The main result is the description of the phase near a
wall at the transition from the isotropic to the biaxial nematic
phase. Analytical results for the surface tension and the entropy
contributions were presented. The results should not depend
on the low-density approximation because they are the same
for systems with different molecule elongations. The preferred
orientation ( �L, �M, �N ) of the biaxial nematic phase is described
by the condition �L = �ez, where the short molecule axes tend to
be perpendicular to the wall. The uniaxial symmetry along the
axis perpendicular to the wall must be broken spontaneously
in order to set the vectors �M and �N . The phase orientation
imposed by the wall extends into the bulk via the elastic forces.

For the case of the isotropic phase in the bulk, the phase near
the wall is uniaxial because some orientations are excluded by
the presence of the wall. The density profile of the phase in
the interfacial region changes at the transition. If the phase
is biaxial in the bulk, then more molecules can enter the
interfacial region. The complete wetting of the wall by a
nematic film is not expected because the transition from the
isotropic to the biaxial nematic phase is second order and the
adsorption remains finite.
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In order to confirm our predictions computer simulations
of hard spheroplatelets near the wall are needed. It would
be interesting to check the density profiles in the interfacial
region. The validity of the local approximation for the one-
particle distribution function could be also tested. We expect
the short range density oscillations close to the wall.

Another interesting problem is the behavior of the system
composed of less biaxial molecules where, on increasing the
density, the following sequence of transitions is present: the

first-order transition from the isotropic phase to the uniaxial
nematic phase and, next, the second-order transition to the
biaxial nematic phase.
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Brief summary and conclusions

The central focus of our work in this Thesis was to analyze the applicability of:

‚ the single-band models (extended t–J model) of strongly correlated electrons
to the description of high-temperature superconductors (on example of the
cuprates); and

‚ the two-orbital model (Anderson Lattice Model, ALM) to the description of
heavy-fermion systems with application to the UGe2 compounds.

In the first series of articles [51, 53, 91] we have shown that both the t–J–U
and t–J–U–V models reproduce qualitatively the position of antiferromagnetic (AF),
superconducting (SC) and paramagnetic (PM) phases observed in experiment. We
analyzed the problem of the coexistence of AF and SC phases taking different possible
versions of the Gutzwiller renormalization scheme [53,91]. Additionally, we have shown
that the charge density wave (CDW) phase is stabilized in the presence of the intersite
Coulomb repulsion [91].

The second series of articles [111–113] was devoted to the analysis of the applicability
of ALM to the description of magnetic phases of UGe2. We have presented [111], that the
phase sequence observed in the experiment can be explained as an effect of competition
between the f–f electron Coulomb interaction energy and the hybridization between
the f electrons and the electrons from the conduction band. Additionally, we have have
shown [112,113] that the positions of classical and quantum critical points on the phase
diagram of UGe2 obtained within statistically consistent Gutzwiller approximation
(SGA) is in semi-quantitative agreement with the experiment.

Our last article [91], where the analysis of the stability of CDW phase was included,
provides a number of ideas as to what can be addressed in the near future, namely:

‚ We have checked, that when the CDW modulation vector is Q “ pπ, πq, then
with the increasing value of intersite repulsion V , the SC phase disappears before
the CDW phase becomes stable. Therefore, there is no SC+CDW coexistence for
such choice of Q. We have presented, that the choice of Q “ p2

3π, 0q, makes the
CDW phase stable in wider region of parameters. So far, due to the complexity
of calculations, no SC phase was included in this case. We expect that SC phase
could still become stable in such a situation, and possibly SC+CDW coexistence
may be observed. The calculations seems to be quite tedious, but could be worked
out withing a few-month period.

‚ We have checked, that withing DE-GWF approach the SC order parameter
is about 40% larger than that obtained for SGA. However, again due to the
complexity of such task, neither AF nor CDW phase was considered in the full
DE-GWF calculations. Nevertheless, it is possible to extend our solver to include
all (SC, AF and CDW) types of ordering at the same time.
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