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1. Introduction

The path integral formulation of quantum mechanics was developed in 1948 by Richard Feynman and
played a crucial role in progress of theoretical physics. The path integral approach to quantum mechanics,
presented in details in book [1] by R.Feynman and A.Hibbs, reveals connection between the elegant
Lagrange approach to classical mechanics and the quantum mechanics. Furthermore, it provides intuitive
insights into behavior of quantum mechanical system for it shows that the matrix element of evolution
operator can be calculated as sum over all trajectories connecting the starting and final state of the
system.

Numerical computation of path integrals in imaginary time formalism with use of Monte Carlo tech-
niques proved to be an efficient way of solving non-perturbative quantum problems, led to development
of the lattice field theory and become a powerful tool in investigation of QCD.

In this thesis we employ the numerical method to evaluate path integrals in a simple context of
one dimensional quantum mechanics, which already exhibits properties that are encountered in study of
more advanced theories.

M. Creutz and B. Freedman considered anharmonic oscillator in [3] in a similar fashion. In [6] a
study of three different Monte Carlo algorithms is presented.

Plan of the thesis is the following. We start with a brief introduction of the path integral formalism,
perform transition to Euclidean time in section 2. Moreover, relationships between operators and func-
tionals, essential in our considerations are examined and derived. In section 3 we present the numerical
method of evaluating the path integrals. Then, in section 4, the presented technique is applied to the
case of harmonic oscillator.
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2. The path integral

2.1. Feynman’s kernel

A wave function of a single one dimensional non-relativistic quantum particle subjected to the potential
V (x) is a solution of the Schrödinger equation:

i~
∂

∂t
ψ(x, t) = Ĥψ(x, t) (2.1)

where the Hamiltonian Ĥ = p̂2

2m
+ V (x̂). If at time t = ta the wave function is ψ(xa, ta), then at time

tb > ta it is given by:

ψ(xb, tb) =

∞∫
−∞

dxK(xb, tb;x, ta)ψ(x, ta), (2.2)

where the kernel function K(xb, tb;xa, ta) can be calculated as the Feynman’s renowned path integral:

K(x, tb;xa, ta) =

∫
xb←xa

Dx(t) exp

(
i

~
S[x(t)]

)
=

∫
xb←xa

Dx(t) exp

(
i

~

(m
2
ẋ(t)2 − V (x(t))

))
, (2.3)

the action S[x(t)] is computed for a trajectory x(t) connecting points (xa, ta) and (xb, tb).
The path integral (2.3) is constructed as follows:

– the time interval [ta, tb] is split into NT steps of length ε and the beginning of each time step is
denoted as ti (i = 0, 1, ..., NT ),

– a position xi is associated with each time ti and points (xi, ti), (xi+1, ti+1) are connected with
straight lines. Provided that x0 = xa and xNT

= xb, a discretized trajectory xNT
(t), which connects

points (xa, ta) and (xb, tb), is defined in this way.

– the value of action is computed for the trajectory obtained from the procedure of time discretization:

S[xNT
(t)] =

∫ tb

ta

dt
(m

2
ẋ(t)2 − V (x(t))

)
=

NT−1∑
j=0

ε

(
m

2

(
xj+1 − xj

ε

)2

− V (xj)

)
+O(ε2) (2.4)

and one claims that the propagator for the trajectory is given by:

KNT
(xb, tb;xa, ta) =

( m

2πi~ε

)NT−1

2

∫
xb←xa

NT−1∏
j=1

dxj exp

(
i

~
S[xNT

(t)]

)
≡

∫
xb←xa

DxNT
(t) exp

(
i

~
S[xNT

(t)]

)
(2.5)

– in the limit NT → ∞, which we refer to as the continuum limit, the discrete time trajectories
can approximate any physical trajectory x(t) connecting points (xa, ta) and (xb, tb), thus the path
integral is defined as the following limit:∫

xb←xa

Dx(t) exp

(
i

~
S[x(t)]

)
= lim

NT→∞

∫
xb←xa

DxNT
(t) exp

(
i

~
S[xNT

(t)]

)
. (2.6)

The integration in (2.5) is carried out over all intermediate points x1, ..., xNT−1, consequently the path
integral can be interpreted as a sum over all paths connecting the points (xa, ta) and (xb, tb).
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2.2. The Wick rotation

The Wick rotation is a procedure of transition to imaginary time and proves to be essential in numerical
calculations of path integrals. The Euclidean time is introduced as:

τ = it, (2.7)

using the above equation in the definition of action one finds:

S[x(t)] =

∫ tb

ta

dt

(
m

2

(
dx

dt

)2

− V (x(t))

)
= i

∫ τb

τa

dτ

(
m

2

(
dx

dτ

)2

+ V (x(τ))

)
≡ iSE[x(t)], (2.8)

the last equality defines the Euclidean action SE.
Real values of τ will be considered, which means that we will be dealing with the evolution of a

quantum system for imaginary values of time t.
The exponent e

i
~S[x(t)] - a complex-valued and oscillatory function of S[x(t)] becomes e−

1
~SE [x(t)] - a

real-valued and exponentially damped function, which is a desired feature in numerical computations.
Another implication of the transition to imaginary time is the fact, that the evolution of a quantum

system is no longer unitary. Denoting by |n〉 the n-th eigenstate of the Hamiltonian Ĥ, i.e. Ĥ|n〉 = En|n〉
(En+1 > En) and assuming that the system has discrete energy spectrum, we find:

|ψ(τb)〉 = e−
1
~ Ĥ(τb−τa)|ψ(τa)〉 = e−

1
~ Ĥ(τb−τa)

∞∑
i=0

cn|n〉 =
∞∑
i=0

e−
1
~En(τb−τa)cn|n〉, (2.9)

where En is the energy of the state |n〉. Unless the state |ψ〉 is orthogonal to |0〉, it is projected to
vacuum for τb → +∞.

In order to simplify notation we will denote the Euclidean time by t and the Euclidean action by S
in the rest of this paper.

2.3. Averages of physical quantities

Our purpose is to evaluate path integrals numerically, we therefore restrict ourselves to the discrete
time trajectories xNT

(t), since limit NT → ∞ cannot be performed on a computer. We intend to
extract physically meaningful information about a quantum system, thus a need to consider operators
representing physical quantities in quantum mechanics, which are related to functionals evaluated for
discretized paths xNT

(t), arises.
Let us define the partition function as:

ZNT
≡
∫
dx

∫
x←x

DxNT
(t) exp

(
−1

~
S[xNT

(t)]

)
≡
∫
DxNT

(t) exp

(
−1

~
S[xNT

(t)]

)
, (2.10)

the integration is carried over paths connecting points (x, t = 0), (x, t = T ) and the result is integrated
over x, the last equality in (2.10) simplifies the notation.

The partition function (2.10) is related to the evolution operator Û(T, 0) = e−ĤT known from the
Schrödinger formulation of quantum mechanics in an interesting way, which will be now shown. The
first step is to note that the action S[xNT

(t)] can be written as a sum of terms depending only on the
values of variables on the neighboring time slices:

ZNT
=

∫
DxNT

(t) exp

(
−1

~

N−1∑
i=0

S(xi+1, xi)

)
=

∫
DxNT

(t)

NT−1∏
i=0

exp

(
−1

~
S(xi+1, xi)

)
, (2.11)
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where
S(xi+1, xi) =

m

2ε
(xi+1 − xi)2 +

ε

2
V (xi+1) +

ε

2
V (xi) +O(ε2). (2.12)

We now assume that there exists an operator on the Hilbert space of states T̂ : H → H such that the
matrix element of T̂ between eigenstates of the position operator x̂ (i.e. x̂|x〉 = x|x〉) reads:

〈x|T̂ |x′〉 =

√
m

2π~ε
exp

(
−1

~
S(x, x′)

)
. (2.13)

The matrix (2.13) is known as the transfer matrix. Employing the momentum operator p̂ as a generator
of translations, equation (2.13) can be rewritten as:

〈x|T̂ |x′〉 =

√
m

2π~ε

∞∫
−∞

d∆e−
ε
2~V (x)e−

∆2

2ε~m〈x|e−
i
~ p̂∆|x′〉e−

ε
2~V (x′) (2.14)

However, the last equation means that T̂ can be expressed as a function of the momentum and position
operators:

T̂ =

√
m

2π~ε
e−

ε
2~V (x̂)

 ∞∫
−∞

d∆e−
∆2

2ε~me−
i
~ p̂∆

 e−
ε
2~V (x̂). (2.15)

Calculating the gaussian integral over ∆ and transforming the result with the aid of the Baker-Hausdorff
formula, one finally obtains:

T̂ = e−
ε
2~V (x̂)e−

ε
~

p̂2

2m e−
ε
2~V (x̂) = e

− 1
~

(
p̂2

2m
+V (x̂)

)
ε+O(ε2)

= e−
1
~ Ĥε+O(ε2). (2.16)

Equations (2.11) and (2.13) imply that

ZNT
= Tr

(
T̂ NT

)
, (2.17)

moreover, using (2.16), we find the desired relationship between the evolution operator and the partition
function:

lim
NT→∞

ZNT
= Tr

(
e−

1
~ ĤT

)
≡ ZT . (2.18)

We now proceed to define the average values of physical quantities. Let A[xNT
(t)] be a functional

evaluated for discretized trajectories. In fact, the functional A[xNT
(t)] is a function of values of positions

of the particle xi at times ti:
A[xNT

(t)] = A(x0, ..., xNT
), (2.19)

since x0, ..., xNT
specify the discretized trajectory. The average value of the functional A[xNT

(t)] is
defined as:

〈A 〉 =
1

ZNT

∫
DxNT

(t) exp

(
−1

~
ε
N−1∑
j=0

(
m

2

(xj+1 − xj)2

ε2
+ V (xj)

))
A[xNT

(t)]. (2.20)

At this point a question about a physical quantity represented by the functional A[xNT
(t)] emerges.

The procedure, that was carried out in order to find the relationship between the partition function and
the evolution operator, can be conveniently generalized in order to find an operator formula for 〈A 〉.
Then, operators, which appear in the operator formula, will reveal the physical significance of A[xNT

(t)].

2285010237(6)



Let us consider an example of a local functional A[xNT
(t)] = f(xk) where f is a smooth function

(we will be particularly interested in the case of f being a polynomial). The path integral (2.20) can be
decomposed as:

1

ZNT

√
m

2π~ε

∫
DxNT−k(t)dxkDxk−1(t)

NT−1∏
i=k+1

(
e−

1
~S(xi+1,xi)

)
e−

1
~S(xk+1,xk)f(xk)

k−1∏
i=0

(
e−

1
~S(xi+1,xi)

)
, (2.21)

however, we already know how to express the integration over x, x1, ...xk−1 and xk+1, ..., xNT−1 in terms of
operators. Hence, one needs to perform the integration over xk. Assuming that there exists an operator
Ô1 : H → H which fulfills the requirement:

〈x|Ô1|x′〉 =

√
m

2π~ε
exp

(
−1

~
S(x, x′)

)
f(x′) (2.22)

and repeating the steps taken in equations (2.14), (2.15) we find that:

Ô1 = e
− 1

~

(
p̂2

2m
+V (x̂)

)
ε+O(ε2)

f(x̂). (2.23)

Consequently, the resulting operator formula reads:

〈f(xk) 〉 =
1

ZNT

Tr
(
T̂ NT−kf(x̂)T̂ k

)
, (2.24)

which in the continuum limit yields

〈f (x(tk)) 〉 =
1

ZT
Tr
(

e−
1
~ Ĥ(T−tk)f(x̂)e−

1
~ Ĥtk

)
, (2.25)

where tk = kε. Therefore, the relationship between the operators and the functionals, which depend
only on one variable xk, is straightforward. Furthermore, it is interesting to note that the trace in (2.25)
is computed for the operator which is the product of f(x̂) in time tk (cf. Heisenberg picture of quantum

mechanics) and e−
1
~ ĤT , which projects to vacuum for T →∞.

The case of functionals depending on two variables xk and xk+1 proves to be more complicated. We
now consider a functional p[xNT

(t)] = mxk+1−xk
ε

, which seems to be a good candidate for a quantity
related with the momentum of a particle. Decomposing the path integral as in eq. (2.21) and assuming
that there exists an operator Ô2 : H → H whose matrix elements are

〈x|Ô2|x′〉 =

√
m

2π~ε
exp

(
−1

~
S(x, x′)

)
m
x′ − x
ε

, (2.26)

we obtain the following relation

Ô2 =

√
m

2π~ε
e−

ε
2~V (x̂)

 ∞∫
−∞

d∆

(
m

∆

ε

)
e−

∆2

2ε~me−
i
~ p̂∆

 e−
ε
2~V (x̂). (2.27)

Substituting ∆′ = ∆ + iε
~ p̂ and performing the integration

√
m

2π~ε

∞∫
−∞

d∆

(
m

∆

ε

)
e−

∆2

2ε~me−
i
~ p̂∆ =

√
m

2π~ε

∞∫
−∞

d∆′
(
m

(∆′ − iε
~ p̂)

ε

)
e−

∆′2
2ε~me−

ε
2m

p̂2

= ip̂e−
ε

2m~ p̂
2

,

(2.28)

3503967630(7)



we find that the functional p[xNT
(t)] indeed corresponds to the momentum at time tk, since its expectation

value reads:

〈 p 〉 = i
1

ZNT

Tr
(
T̂ NT−kp̂T̂ k

)
, (2.29)

Encouraged by (2.29) one may attempt to generalize the idea and consider a functional

p2[xNT
(t)] =

(
m
xk+1 − xk

ε

)2

(2.30)

which looks like a reasonable candidate for a quantity associated with the square of the momentum.
Again, we introduce an operator Ô3 acting in the Hilbert space of states H, with matrix elements given
by:

〈x|Ô3|x′〉 =

√
m

2π~ε
exp

(
−1

~
S(x, x′)

)(
m
x′ − x
ε

)2

, (2.31)

which, in terms of the momentum and position operators, can be expressed as

Ô3 =

√
m

2π~ε
e−

ε
2~V (x̂)

 ∞∫
−∞

d∆

(
m

∆

ε

)2

e−
∆2

2ε~me−
i
~ p̂∆

 e−
ε
2~V (x̂). (2.32)

Substituting ∆′ = ∆ + iε
~ p̂ and performing the integration in eq. (2.32):√

m

2π~ε

∫
d∆

(
m

∆

ε

)2

e−
∆2

2ε~me−
i
~ p̂∆ =

√
m

2π~ε

∫
d∆′

((
m

∆′

ε

)2

− p̂2

)
e−

∆′2
2ε~me−

ε
2m~ p̂

2

=

(
~
ε
− p̂2

)
e−

ε
2m~ p̂

2

(2.33)
we find that the result diverges as 1

ε
. The final operator formula reads:〈(

m
xk+1 − xk

ε

)2
〉

=
1

ZNT

Tr

(
T̂ NT−k

(
~
ε
− p̂2

)
T̂ k
)
. (2.34)

The square of the momentum is an important observable, since it is proportional to the kinetic energy
term in the Hamiltionian, however, the proposed form of functional (2.30) proves to be incorrect since
results which are diverging as ε→ 0 are physically meaningless.

2.4. The point-splitting prescription

The point-splitting prescription is a way of defining a functional corresponding to the square of the
momentum, which originates from the paper [5] of J. Schwinger. The following functional

p2
PS = m

xk+1 − xk
ε

m
xk − xk−1

ε
(2.35)

is considered as the new candidate for a quantity representing the square of momentum.
The path integral:

〈p2
PS〉 =

1

ZNT

∫
DxNT

(t) exp

(
−1

~
εS[xNT

(t)]

)
m
xk+1 − xk

ε
m
xk − xk−1

ε
, (2.36)

can be computed if it is decomposed as

1847278539(8)



〈p2
PS〉 =

1

ZNT

m

2π~ε

∫
DxNT−k−1(t)dxkdxk−1Dxk−2(t)

NT−1∏
i=k+1

(
e−

1
~S(xi+1,xi)

)
e−

1
~S(xk+1,xk)m

xk+1 − xk
ε

×e−
1
~S(xk,xk−1)m

xk − xk−1

ε

k−2∏
i=0

(
e−

1
~S(xi+1,xi)

). (2.37)

Indeed, we already know that integration over Dxk−2(t) and DxNT−k−2(t) yields T̂ k−1 and T̂ NT−k−1

respectively, whereas integration over dxk and dxk−1 results in T̂ ip̂. Therefore, the appropriate operator
formula reads:

〈p2
PS〉 =

1

ZNT

Tr
(
T̂ NT−k ip̂T̂ ip̂ T̂ k−1

)
. (2.38)

Calculating the commutator:[
T̂ , p̂

]
=
[
e−Ĥε+O(ε2), p̂

]
=

~
i

ε

2

(
e−Ĥε+O(ε2)V ′(x̂) + V ′(x̂)e−Ĥε+O(ε2)

)
, (2.39)

we finally arrive at the formula:

〈p2
PS〉 =

1

ZNT

Tr
(
T̂ NT−k

(
−p̂2 +O(ε)

)
T̂ k
)
, (2.40)

which, in the continuum limit, reads:

〈p2
PS〉 =

1

ZT
Tr
(

e−
1
~ Ĥ(T−tk)

(
−p̂2 +O(ε)

)
e−

1
~ Ĥ(tk)

)
, (2.41)

The minus sign in (2.41) originates from the transition to Euclidean time. Concluding, the point-splitting
prescription (2.35) enables us to calculate the expectation value of the square of momentum.

5278995854(9)



3. Numerical evaluation of path integrals

3.1. Calculating path integrals using Monte Carlo methods

We are interested in computing the average value of a physical quantity represented by a functional
A[xNT

(t)], therefore eq. (2.20) is the central point of our interest. The path integral in (2.20) can
be simply viewed as a high-dimensional integral over the variables x0, x1, ..., xNT−1. However, the
integration can be performed analytically only in a few cases. Hence, a numerical method which works
for an arbitrary potential V (x) is employed.

A Monte Carlo method is used in order to calculate the path integral (2.20). Thus the task is to
generate an ensemble of paths xNT

(t) so that the average value 〈A 〉 is equal to the following limit:

〈A 〉 =
1

ZNT

∫
DxNT

(t) exp

(
−1

~
S[xNT

(t)]

)
A[xNT

(t)] = limNsweep→∞
1

Nsweep

Nsweep∑
i=1

A[xiNT
(t)], (3.1)

where xiNT
(t) is the i-th out of Nsweep generated paths. The equation (3.1) holds only if probability

distribution in the ensemble of paths is given by:

P [xNT
(t)] =

1

ZNT

exp

(
−1

~
S[xNT

(t)]

)
. (3.2)

We will now address the question of generation of the ensemble of paths. In order to find paths
that are distributed according to (3.2) we form a Markov chain of trajectories - we start with an initial

trajectory x1
NT

(t) and generate subsequent paths x2
NT

(t), x3
NT

(t), ..., x
Nsweep

NT
(t) . In the Markov chain

the trajectory xiNT
(t) is obtained from the previous one xi−1

NT
(t) according to a certain algorithm, such a

process is characterized by T [x′NT
(t)|xNT

(t)] - the probability of generating trajectory x′NT
(t) if starting

from xNT
(t). Since T [x′NT

(t)|xNT
(t)] is the transition probability, it satisfies the following requirements:

T [x′NT
(t)|xNT

(t)] ≥ 0 and

∫
Dx′NT

(t)T [x′NT
(t)|xNT

(t)] = 1. (3.3)

If, after k steps of the Markov process, probability distribution in the ensemble of paths is given by
Pk[xNT

(t)], then it will be given by:

Pk+1[x′NT
(t)] =

∫
DNT

x(t)T [x′NT
(t)|xNT

(t)]Pk[xNT
(t)], (3.4)

after another step of the Markov process.
Since our goal is to generate paths that are distributed according to (3.2), we impose the following

requirement on the transition probability:

T [x′NT
(t)|xNT

(t)]

T [xNT
(t)|x′NT

(t)]
=
P [x′NT

(t)]

P [xNT
(t)]

. (3.5)

The condition (3.5) is known as the detailed balance condition and it is a sufficient condition for P [xNT
(t)]

to be an equilibrium distribution of the Markov process, because:∫
DxNT

(t)T [x′NT
(t)|xNT

(t)]P [xNT
(t)] = P [x′NT

(t)]

∫
DxNT

(t)T [xNT
(t)|x′NT

(t)] = P [x′NT
(t)]. (3.6)

Having started from an arbitrary trajectory, after sufficiently large number of steps, the equilibrium
distribution of the Markov process will be reached:

P0
T−→ P1

T−→ P2
T−→ ...

T−→ P . (3.7)

3830801301(10)



Since we are interested in measuring A[xNT
(t)] on trajectories distributed according to (3.2) and the

Markov chain was started from an arbitrary trajectory x1
NT

(t), the summation in (3.1) cannot include a
certain number of initially generated trajectories. Therefore, a certain number of steps of the Markov
process is performed and only when the equilibrium is reached and trajectories are being generated with
probability (3.2) do we start to measure our observable. The process of approaching the equilibrium
distribution is called the thermalization process.

3.2. The Metropolis algorithm

The Metropolis algorithm is an algorithm that performs one step of the Markov process considered in
3.1, i.e. it updates a trajectory xkNT

(t) to obtain a new trajectory xk+1
NT

(t).

The trajectory xkNT
(t), defined by the sequence of numbers (x0, ..., xNT

), is updated gradually, in one
step of the algorithm only one value of xj is modified, while the rest remains unchanged. The step of
the algorithm is accomplished in the following way:

– A random number ξ is generated on interval (−1, 1) with uniform probability density. Proposed
new value of xj is set as x′j = xj + ξ∆ where ∆ is a fixed parameter. A trajectory x′kNT

(t) defined
by (x0, ..., xj−1, x

′
j, xj+1, ..., xNT

) is examined.

– Difference between the values of actions for the trajectories x′kNT
(t), xkNT

(t):

δS = S[x′kNT
(t)]− S[xkNT

(t)] (3.8)

is calculated and if δS < 0 then the trajectory x′kNT
(t) is accepted.

– If δS ≥ 0 then a random number r is generated with uniform distribution on the interval (0, 1).

The variable xj is changed to x′j if e−
1
~ δS > r. Otherwise, the previous value of the variable xj is

restored.

Afterwards, the algorithm proceeds to the next lattice site xj+1. The procedure is repeated until all of
the lattice sites (x0, ..., xNT

) are probed and the new trajectory xk+1
NT

(t) is obtained.
Transition probability of a single update of xj of the algorithm reads:

Tj[x
′k
NT

(t)|xkNT
(t)] = min

(
1, e−

1
~ δS
)
. (3.9)

It is easy to see that:

Tj[x
′k
NT

(t)|xkNT
(t)]P [xkNT

(t)] = min
(

e
− 1

~S[xkNT
(t)]
, e
− 1

~S[x′kNT
(t)]
)

= Tj[x
k
NT

(t)|x′kNT
(t)]P [x′kNT

(t)], (3.10)

thus the transition probability Tj[x
′k
NT

(t)|xkNT
(t)] of one step of the algorithm fulfills the requirement

(3.5) and as a result, the transition probability associated with the update of the whole trajectory
T [xk+1

NT
(t)|xkNT

(t)] fulfills the detailed balance condition. Thus, once the thermalization process is com-
pleted, subsequent trajectories generated by the Metropolis algorithm are distributed according to (3.1).

Since in a single step of the Metropolis algorithm only one variable xj is changed, the expression for
δS (3.8) simplifies to:

δS = S[x′kNT
(t)]− S[xkNT

(t)] = ε

((
xj+1 − x′j

ε

)2

−
(
x′j − xj−1

ε

)2

+ V (x′j)− V (xj)

)
, (3.11)

which means that computation of global values of action: S[x′kNT
(t)] and S[xkNT

(t)] in each step of the
algorithm is unnecessary. It is sufficient to calculate δS according to (3.11). This simple observation
considerably improves performance of the Metropolis algorithm.
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3.3. Estimation of statistical errors

Having generated a set of Nsweep paths with the Monte Carlo algorithm, we are ready to start measuring
A[xNT

(t)]. Assuming that paths x1
NT

(t), ..., xNtherm
NT

(t) were generated before the thermalization process

had been completed, whereas trajectories xNtherm+1
NT

(t), ..., x
Nsweep

NT
(t) were generated by the algorithm in

the equilibrium and thus are distributed according to (3.2), the following sequence of measurements is
obtained:

(A[xiNT
(t)] : i = 1, ..., xNtherm

NT
, xNtherm+1

NT
, ..., x

Nsweep

NT
). (3.12)

In order to find the average value 〈A 〉 one may now compute the arithmetic average in (3.1). However,
in numerical computations one deals with a finite Nsweep, hence the number of measurements Nmeas =
Nsweep −Ntherm is also finite, therefore verification of statistical errors plays a crucial role in analysis of
Monte Carlo algorithms results.

Each value of A[xjNT
(t)] (j > Ntherm) in (3.12) corresponds to a random variable Aj. Since trajec-

tories xjNT
(t) were generated by the Markov process in equilibrium, all of these variables have the same

expectation value and variance:
Aj = 〈A 〉 and σ2

Aj = σ2
A, (3.13)

where the overline denotes an average over a set of independent Markov chains. We use the unbiased
estimators for these values from one Markov chain:

Ǎ =
1

Nmeas

Nsweep∑
i=Ntherm+1

Ai and σ̌2
A =

1

Nmeas − 1

Nsweep∑
i=Ntherm+1

(
Ai − Ǎ

)2
. (3.14)

The estimator Ǎ is a random variable itself, as its value changes from one Markov chain to another. The
variance of Ǎ is given by:

σ2
Ǎ

= (Ǎ− 〈A〉)2 =
1

N2
meas

Nsweep∑
i=Ntherm+1

(Ai − 〈A〉)2 +
1

N2
meas

Nsweep∑
i 6=j

i,j=Ntherm+1

(Ai − 〈A〉)(Aj − 〈A〉). (3.15)

An important point is that in the case of trajectories generated with the Monte Carlo algorithm, the vari-
ables Ai, Aj are correlated since the successive trajectories xkNT

(t), xk+1
NT

(t) are obtained from each other.
This leads to non-vanishing autocorrelation function, which, for a set Markov chains in equilibrium, is
defined as:

CA(t) = (Ak − 〈A〉) (Ak+t − 〈A〉). (3.16)

Clearly, in order to calculate CA(t) in numerical computations, one does not average over the set of
independent Markov chains, but rather uses an estimator from one Markov chain:

ČA(t) =
1

Nmeas − t

Nsweep−t∑
i=Ntherm+1

(Ai − Ǎ)(Ai+t − Ǎ). (3.17)

Using the definition of CA(t) (3.16) one continues the calculation of σ2
Ǎ

and according to [4] obtains:

σ2
Ǎ

= 2

(
1

2
+

Nmeas∑
t=1

CA(t)

CA(0)

)
1

Nmeas

σ2
A +O(

1

N2
meas

) ≡ 2τA,int
1

Nmeas

σ2
A, (3.18)

where the last equation defines integrated autocorrelation time τA,int and the term of order O( 1
N2

meas
) is

dropped.
The equation (3.18) has two significant implications. The standard deviation of average value of A

decreases with the number of measurements like 1√
Nmeas

. Moreover, the statistical error (3.18) of the

1295103007(12)



result increases as the autocerrelations between generated trajectories become stronger. This can be
interpreted in the following way: if the measurement was made on Nmeas trajectories and the integrated
autocorrelation time is estimated to be τA,int, then the number of effectively independent measurements
is:

Nindep =
Nmeas

2τA,int
. (3.19)

Concluding, the resulting formula for the average value of the observable Â reads:

〈A 〉 = Ǎ±
√

2τA,int
1

Nmeas

σ2
Ǎ
. (3.20)

This equation shows the way of quoting results which will be adopted in section 4.
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4. Results for harmonic oscillator

In this section we present results obtained with the Monte Carlo method introduced in the section 3
for harmonic oscillator. The method works for an arbitrary potential V (x), we decide to choose the
harmonic oscillator, since analytical solution of the problem is known and thus validity of our results
can be easily verified.

The Hamiltonian of the harmonic oscillator reads:

Ĥ =
1

2m
p̂2 +

1

2
mω2x̂2, (4.1)

where ω is the angular frequency.

4.1. Units and scales of the problem

Three dimensionful quantities appear in the Hamiltonian of harmonic oscillator:

[~] = kg m2 s−1, [m] = kg, [ω] = s−1. (4.2)

The three quantities (4.2) determine the scale of the problem. Solving the physical problem with a
computer demands defining dimensionless quantities, thus the three quantities (4.2) are combined in
order to set units of mass, length, time, etc. and allow us to substitute dimensionful operators with
dimensionless ones:

p̂→ 1√
mω~

p̂, x̂→
√
mω

~
x̂, Ĥ → 1

~ω
Ĥ. (4.3)

After this change any physical quantity becomes dimensionless, for instance, the average value of A
(2.20) in the case of the harmonic oscillator potential reads:

〈A 〉 =
1

ZNT

∫
DNT

x(t) exp

(
−ε

N−1∑
j=0

(
1

2

(xj+1 − xj)2

ε2
+

1

2
x2
j

))
A[xNT

(t)]. (4.4)

Parameters which occur in our computer calculations split naturally into three groups:

– physical quantities: the mass m of the particle inside harmonic potential well, the angular frequency
ω and the time T of evolution of the system. In units defined by (4.3) the mass and angular
frequency are simply m = 1, ω = 1 and we are left with only one physical parameter - the time T .

– parameter associated with the discretization of the trajectory - the number of time steps NT , which
is related to the size of a time step ε:

T = NT ε. (4.5)

– parameters of the Metropolis algorithm, among them the number of generated trajectories Nsweep

is the most important, since it determines the statistical error of our results (3.20).

4.2. Thermalization, autocorrelation and critical slowing down

As pointed out in sec. 3.1, having started the Markov process of generation of paths from an arbitrary
initial trajectory x1

NT
(t), we need to restrain ourselves from measurements until the thermalization

process is completed, since only then the trajectories are generated according to the distribution (3.2).
We observe the process of thermalization of our algorithm by measuring value of certain xj on

subsequently generated trajectories, as function of number of generated paths - Nsweep, as presented in
Figure 1. Figure 2 shows examples of trajectories generated during the process of thermalization and
after the equilibrium was reached.

6533073101(14)
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Nsweep

- 2

- 1

1
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4

x j

Figure 1: The value of xj as function of Nsweep. The initial trajectory is x0
NT

(t) = {4, ..., 4}. This Figure illustrates the
process of thermalization, we see clearly that the algorithm is approaching vicinity of paths with the value of xj between
−2 and 2. In this case the thermalization process is finished when Nsweep ≈ 2000. The parameters are T = 2, NT = 500.
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Figure 2: Paths, i.e. xi as function of i, generated by the Metropolis algorithm during the process of thermalization
presented on the Figure 1 for Nsweep = 100 −i), 1000 −ii), 5000 −iii), 20000 −iv). The trajectories i) and ii) are generated
by the Markov process before reaching equilibrium - such trajectories occur with very small probability (3.2) in the Markov
chain in the equilibrium and virtually do not contribute in measurements of observables. The trajectories iii) and iv) are
generated by the Markov process in equilibrium and are typical trajectories of a quantum particle.
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It is interesting to note that typical trajectories of a quantum particle presented in the Figure 2 are
highly irregular, these paths resemble rather a random walk than a classical motion of the particle. This
fact is in agreement with the equation (2.34) which tells us that no mean of the square of velocity exists
at any point of the trajectory.

As pointed out in section 3.3, we expect that observables measured on subsequently generated tra-
jectories will be autocorrelated. The integrated autocorrelation time τA,int for an observable Â defined
by eq. (3.18) as:

τA,int =
1

2
+

Nsweep∑
t=1

CA(t)

CA(0)
(4.6)

provides information on how strongly the subsequent measurements are correlated.
The autocorrelations are indeed observed in data obtained with the Metropolis algorithm. We inves-

tigate the autocorrelation of measurements of the position operator x̂, Figure 3 shows Cx(t)/Cx(0) as
function of t.

D = 0.5
Τx , int = 30.23

t

0 10 20 30 40
0.0

0.2

0.4

0.6

0.8

1.0
D = 2.0
Τx , int = 10.06

t

0 10 20 30 40
0.0

0.2

0.4
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0.8

1.0

D = 8.0
Τx , int  = 21.09 

t
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C x H t L � C x H 0 L C x H t L � C x H 0 L C x H t L � C x H 0 L

Figure 3: Plot presents Cx(t)/Cx(0) as function of t i.e. the Monte Carlo time separation between subsequently generated
paths. Parameters T = 10 and NT = 60 are fixed, the ∆ parameter which determines the maximum change of xj in one step
of the algorithm is set to 0.5, 2.0, 8.0. In order to minimize the statistical errors one has to minimize the data autocorrelation,
which means that the ∆ parameter must be carefully controlled during computations. Points are connected to guide the
eye.

However, the major problem is the relationship between τA,int and NT , since our aim is to perform
calculation for possibly large NT . Figure 4 shows τx,int as function of NT .
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Figure 4: Plot presents τx,int as function of lattice size NT for T = 10, 20, 50. We see that the autocorrelation time τx,int
is increasing quickly with growing NT . Function fT (NT ) = a (NT )

z
+ b is fitted in each case, obtained exponents z are

displayed on the plots.

We therefore observe that the integrated autocorrelation time τx,int varies as the z-th power of the
lattice size NT . The conclusion is that we observe a phenomenon known as the critical slowing down [4].
According to [4] τA,int is expected to behave as:

τA,int ∼ (NT )z (4.7)

for any observable A. The important message of eq. (4.7) is that the numerical cost of obtaining results
with relatively small statistical errors grows as z-th power of the lattice size NT .
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4.3. Fundamental observables x̂2, p̂2

In this section we are interested in average values of x̂2, p̂2 obtained with the Monte Carlo method.
The Monte Carlo method allows us to compute average values of observables according to eq. (2.20)

for finite NT , moreover, the value of NT cannot be very large, since the computational effort grows as
z-th power of NT , according to eq. (4.7). Consequently, taking the limit NT → ∞, is not feasible.
However, the continuum limit is part of the exact solution of a quantum mechanical problem with use
of path integrals - cf. (2.6). Thus, the crucial question we have to address is how the fact, that we are
restricted to study the system for relatively small values of NT , influences our results.

The continuum limit cannot be performed ona a computer, however, one can examine how the
results depend on the value of NT and expect, that if NT is set to be large enough, the influence of time
discretization will become negligible. Figure 5 shows computed values of the observables 〈x̂2〉, 〈p2

PS〉 as
functions of the lattice size NT .
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Figure 5: Mean values 〈x̂2〉, 〈p2
ps〉 as functions of number of lattice sites NT calculated for T = 10, 20, 50 and fitted

functions fT (NT ).

Indeed, the values of 〈x̂2〉, 〈p2
ps〉 are stabilizing with growing NT . Fitting polynomials in 1

NT
:

fT (NT ) =
3∑
i=0

Pi

(
1

NT

)i
, (4.8)

where Pi are parameters of the fit, allows to extrapolate the Monte Carlo results to NT →∞. Value of
P0 obtained in each fit approximates the continuum limit value:

limNT→∞〈x̂2〉 ≡ 〈x̂2〉CL, and limNT→∞〈p2
ps〉 ≡ 〈p2

ps〉CL (4.9)

2046814394(17)



Obtained in this manner values of 〈x̂2〉CL and 〈p2
ps〉CL are displayed in Table 1. We note, that results

for T = 20 and T = 50 are in agreement within estimated statistical error and their absolute values are
equal to 1

2
. We address the problem of meaning of the physical time T in the next section.

Table 1: Obtained values of 〈x̂2〉CL and 〈p2
ps〉CL

T 10 20 50
〈x2〉CL 0.50428(47) 0.49995(61) 0.50091(56)
〈p2
ps〉CL −0.5034(69) −0.4993(30) −0.4994(31)

It follows from Figure 5 that p2
ps, as being more complicated functional than x2 cf. 2.4, is converging

more slowly to its continuum limit value than x2. Furthermore, we see that with growing T we need to
set bigger and bigger values of NT in order to be able to extract the continuum limit values of observables.
It is interesting to confront this fact with Figure 4 which shows, that the constant a is decreasing as the
value of NT grows. Concluding, all the parameters in the problem are coupled and one has to put the
same numerical effort to obtain physically significant results independently on value of T .

4.4. The ground state of the system

The time T of evolution of the system, the only physical parameter in the problem, plays an important
role for it determines whether the higher energy states are present in our computations.

Calculating the average value of a local functional A[xNT
(t)] = A(xk) in the basis of eigenstates |n〉

of the Hamiltonian Ĥ we find:

〈A 〉 =
1

ZNT

Tr
(

e−Ĥ(T−tk)Âe−Ĥ(tk)
)

=
1

ZNT

∞∑
n=0

〈n|e−ĤT Â|n〉 =
1∑∞

n=0 e−EnT

∞∑
n=0

e−EnT 〈n|Â|n〉. (4.10)

Eigenstates are ordered, En+1 < En, thus:

〈A 〉 → 〈0|Â|0〉, for T → +∞, (4.11)

Therefore, calculation of 〈A 〉 according to eq. (2.20) for sufficiently large T , provides the expected value
of Â in the ground state of the system.

Let us now determine the value of T which is sufficient to separate the ground state of the system.
Denoting the energy gap between n-th excited state and the ground state as: ∆n = En−E0, we rewrite
(4.10) in the following form:

〈A 〉 =
1∑∞

n=0 e−∆nT

∞∑
n=0

e−∆nT 〈n|Â|n〉, (4.12)

The terms in the sums in eq. (4.11) are exponentially suppressed with growing ∆n, thus, the larger
the energy gaps ∆n are, the lower value of T is sufficient to neglect the terms e−∆nT with n > 1. We
therefore see, that the difference between energies of the first excited state and the ground state - ∆1 -
determines the value of T which must be set in order to obtain the expectation value of the observable
Â in the ground state of the system.

Exact value of ∆1 is unknown, since E1 and even E0 are not determined yet. Hence, one cannot a
priori tell which value of T is sufficient to isolate the ground state. We can, however, investigate how the
value of time T influences the average value of certain observable Â and expect that 〈A 〉 is stabilizing
as T is growing larger.

The dependence of 〈H〉 on the value of T will be examined in this section. The functional which
corresponds to the Hamiltonian Ĥ (4.1) at time tk reads:

H[xNT
(t)] = −1

2

(xk+1 − xk)(xk − xk−1)

ε2
+

1

2
x2
k, (4.13)
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where 0 6 k 6 NT and the point splitting prescription (2.41) is used in the kinetic energy term. The
minus sign in the kinetic energy term is an important detail, since it expresses the fact that we study

evolution of the system in imaginary time - the i2 appears in the second derivative d2x(t)
dt2

(cf. section 2.4).
In fact, the negative value of 〈p2

PS〉 has already been observed in section (4.3) and thus, the Hamiltonian
H (4.13) is the sum of two quantities, both of which have the positive expectation value.

The Monte Carlo results are compared with the mean value of 〈H〉 calculated according to (4.10)
i.e. 〈H〉 = 1∑∞

n=0 e−EnT

∑∞
n=0 e−EnTEn, where the values of energies En = 1

2
+ n are obtained from the

well known analytical solution of the time independent Schrödinger equation for the harmonic oscillator.
The summation is performed analytically:

〈H〉 =
1∑∞

n=0 e−( 1
2

+n)T

∞∑
n=0

e−( 1
2

+n)T (
1

2
+ n) = − d

dT
Log

(
∞∑
n=0

e−( 1
2

+n)T

)
=

1

2
Coth

(
T

2

)
. (4.14)
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Figure 6: Mean value of the Hamiltonian 〈Ĥ〉 (4.13) plotted as function of T . The red symbols denote results of our
computations (every point represents the continuum limit value of 〈Ĥ〉 for the corresponding time T ). The function
1
2Coth

(
T
2

)
is plotted in blue.

Figure 6 presents 〈H〉 as function of T . The important message is that 〈H〉 is stabilizing as T is
growing. Furthermore, the Figure 6 provides us with information about the value of T that is needed to
be set in order to neglect the contribution of terms associated with higher energy states in (4.13). The
sufficient value is approximately T ≈ 10.

We are now able to interpret results presented in Table 1 and relate them with energy of the ground
state of the system. The mean value of the kinetic energy in the ground state of the harmonic oscillator
can be calculated according to the virial theorem as:

〈0|1
2
p̂2|0〉 = 〈0|x̂dV (x̂)

dx
|0〉 = 〈0|1

2
x̂2|0〉, (4.15)

which implies that the average value of the Hamiltonian is equal to:

〈0|Ĥ|0〉 = 〈H〉 = 〈x2〉 = −〈p2
PS〉, (4.16)

for the sufficiently large T .
The energy of the ground state is equal to E0 = 1

2
, which is known from the analytical solution of the

harmonic oscillator. As pointed out in section 4.3 〈x̂2〉CL and 〈p2
ps〉CL for T = 20 and T = 50 are, within

estimated statistical errors, equal to 1
2

(or to −1
2

in case of 〈p2
ps〉CL). The absolute values of 〈x̂2〉CL and

〈p2
ps〉CL for T = 10 are slightly bigger than 1

2
which means, that the contribution from the higher energy

states is not entirely negligible for T = 10.
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Concluding, the energy of the ground state of the harmonic oscillator is obtained and equal, as
expected, to 1

2
. At this point the question about energies of the excited states can be addressed. Having

generated results presented in Figure 6 and knowing the relationship between 〈Ĥ〉 and T one could try
to fit function such as:

f(T ) =
1∑Ncut

n=0 e−PnT

Ncut∑
n=0

e−PnTPn, (4.17)

to obtained results, where Pn would be parameters of fit, equal to sought energies En, and Ncut an
arbitrary parameter. Unfortunately, such a method does not work properly even for Ncut = 1 - the fitted
function is highly nonlinear and obtaining values of 〈Ĥ〉 for small T with reasonable statistical errors
requires a lot of numerical effort. The solution of problem of finding energies of higher energy states is
presented in section 4.5.

4.5. Two-point correlation functions

4.5.1. Definition and relation to the higher energy states

Two-point correlation function (or simply two-point function) is a quantity which is evaluated from
measurements of observables at two different times during evolution of system and therefore is dependent
on the time separation t between the measurements. Two-point functions prove to be a convenient way
in calculation of energies of excited states of a quantum system.

Let us consider the two-point correlation function of two local functionals A2[xNT
(t)] = A2(xk) ≡

A2(tk) and A1[xNT
(t)] = A1(x0) ≡ A1(0):

〈A2(tk)A1(0)〉 =
1

ZNT

∫
DxNT

(t)e−S[xNT
(t)]A2(tk)A1(0) =

1

ZNT

Tr
(

e−Ĥ(T−t)Â2eĤtÂ1

)
. (4.18)

The operator formula on the RHS of (4.18) can be obtained by a straightforward generalization of
derivation of (2.25). Even though the order functionals A1(0) and A2(tk) in the path integral (4.18)
can be rearranged, the time succesion of functionals (i.e. both are evaluated at different t) implies the
structure of the operator formula.

The trace in (4.18), computed in the basis of eigenstates of the Hamiltonian, provides information
about energies:

〈A2(tk)A1(0)〉 =
1

ZNT

∞∑
n=0

〈n|e−Ĥ(T−tk)Â2e−ĤtkÂ1|n〉 =
1

ZNT

∞∑
n,m=0

e−EnT e−(Em−En)tk〈n|Â2|m〉〈m|Â1|n〉,

(4.19)
which becomes

〈A2(tk)A1(0)〉 =
∞∑
n=0

e−(En−E0)tk〈0|Â2|n〉〈n|Â1|0〉 for T → +∞. (4.20)

The energy gaps ∆n are the only parameters in relationship between value of the two-point function and
time t, provided that T is sufficiently large. Let us assume, that we are interested in the energy of the
first excited state. If operators Â1 and Â2, such that the matrix elements 〈0|Â2|m〉 and 〈m|Â1|0〉 are
nonzero for m = 1 and are negligible for m 6= 1, were found , then we would be able to determine the
value of ∆1, since one would expect a simple exponential dependence between the value of the two-point
function and time t. Furthermore, we note that even if terms with 〈0|Â2|m〉 and 〈m|Â1|0〉 have to be
taken into account for m 6= 1, the contribution of these terms becomes negligible for sufficiently large
values of t, since ∆m > ∆1.
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4.5.2. The first excited state of the harmonic oscillator

In this section the energy of the first excited state is determined. We consider a two-point function of
A1[xNT

(t)] = x0 and A2[xNT
(t)] = xk. Such a choice of observables enables us to find the value of ∆1.

In our case, the two-point function, according to eq. (4.19), can be expressed as:

Gx̂(tk) ≡ 〈xkx0〉 =
1

ZNT

∞∑
n,m=0

e−EnT e−(Em−En)tk |〈m|x̂|n〉|2. (4.21)

The operator x̂ enables us to determine the value of ∆1 for the harmonic oscillator, since it is a linear
combination of creation and annihilation operators:

x̂ =
1√
2

(
â+ â†

)
, (4.22)

where â and â† are defined in the standard way for the harmonic oscillator. Hence, the matrix element
that appears in (4.21) is nonzero only if m = n ± 1. If considered values of T are sufficiently large to
isolate the ground state of the system, the two-point function becomes:

Gx̂(tk) =
∞∑
n=0

e−(En−E0)tk |〈n|x̂|0〉|2 = e−(E1−E0)tk |〈1|x̂|0〉|2. (4.23)
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Figure 7: Plot presents Log (〈xkx0〉) as function of t for T = 20 and different lattice sizes NT = 60, 80. Fitted straight
lines (4.24) are denoted in blue.We note that equation (4.21) is invariant under substitution t → T − tk, which results in
the mirror symmetry of plots (up to denoted statistical errors).

Figure 7 presents the logarithm of Gx̂(tk) as function of the time interval tk. As expected, we observe
that the value of two-point correlation function is exponentially suppressed as tk grows. Therefore,
functions fNT

(t):

fNT
(t) = Ae−∆̃1t, (4.24)

where A, ∆̃1 are parameters, are fitted to generated in the Monte Carlo simulation data and shown in
the fig. 7. Resulting values of ∆1, equal to obtained values of ∆̃1, are displayed in Table 2.

We note that values of the first energy gap for NT = 60, 80, 100 are, within estimated statistical
errors, equal to 1. We claim that the slightly lower than 1 values of ∆1 for NT = 20, 40 are artifacts of
the discretization of trajectories. Since values of ∆1 for NT = 60, 80, 100 are in agreement we conclude,
that the continuum limit value of ∆1 is a weighted arithmetic mean (with weights 1

σ2
∆1

) of results for

NT = 60, 80, 100:
∆1,CL = 0.99847(59). (4.25)

The value of ∆1,CL is in agreement with the value known from the analytical solution i.e. 1, within 3
estimated standard deviations.
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Table 2: Energy difference between first excited state and ground state ∆E1 and its standard deviation σ∆1
for T = 20.

NT 20 40 60 80 100
∆1 0.9678 0.99174 1.00043 0.9982 0.9956
σ∆1 0.0079 0.00083 0.00093 0.0010 0.0012

4.5.3. The second excited state

We now proceed to find energy of the second excited state of the harmonic oscillator. According to
(4.20), the value of ∆2 can be computed similarly as ∆1 in section 4.5.2, provided that we find operators
Â1 and Â2 with vanishing matrix elements between the ground state and the first excited state: 〈1|Â1|0〉,
〈1|Â2|0〉.

A two-point correlation function of A1[xNT
(t)] = x2

k and A2[xNT
(t)] = x2

0 is considered. The square
of position operator x̂2 can be expressed as:

x̂2 =
1

2

(
â2 + (â†)2 + 2â†â+ 1

)
, (4.26)

with the aid of (4.22). The equation (4.26) means that the matrix element 〈m|x̂2|n〉 is nonzero only if
n = m± 2 or n = m. Thus, in our case, the two-point function can be expressed as:

Gx̂2(tk) = 〈x2
kx

2
0〉 =

∞∑
n=0

e−(En−E0)tk |〈n|x̂2|0〉|2 = |〈0|x̂2|0〉|2 + e−(E2−E0)tk |〈2|x̂2|0〉|2 (4.27)

0 5 10 15 20
0.0

0.2

0.4

0.6

0.8

1.0

0 5 10 15 20
-14

-12

-10

-8

-6

-4

-2

0

t t

Figure 8: Plot on the left presents 〈x2
kx

2
0〉 as function of t for T = 20 and NT = 80. Plot on the right shows

Log
(
〈x2

kx
2
0 − a〉

)
, where a is constant function denoted as blue line on the left plot. The value of a is equal to square of

the matrix element: a = |〈0|x̂2|0〉|2, and as expected (cf. (4.26)) obtained values of a are, within statistical errors, equal
to 1

4 .

Figure 8 presents computed values of the two-point propagator function of observable x̂2. As expected,
the two-point function, after subtraction of term which does not vanish as t becomes large, i.e. 〈x2

tk
x2

0〉−
|〈0|x̂2|0〉|2 depends exponentially on time t and therefore can be used in order to determine the value of
∆2. The value of ∆2 is calculated similarly as ∆1 in section 4.5.2 - exponential functions

fNT
(t) = Ae−∆̃2t (4.28)

are fitted and displayed on the left plot of fig. 8. Parameters ∆̃2 obtained in fitting are equal to desired
values of ∆2. Results are presented in Table 3.
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Table 3: The second energy gap ∆2 and its standard deviation σ∆2
calculated for T = 20.

L 20 40 60 80 100
∆2 1.9415 1.9883 2.0044 2.0056 1.9800
σ∆2 0.0016 0.0051 0.0059 0.0067 0.0075

Again, we observe that results for NT = 60, 80, 100 are in agreement within estimated statistical
errors, while values of ∆2 for NT = 20, 40 are slightly lower. Calculating the continuum limit value of
∆2 as the weighted arithmetic mean of results for NT = 60, 80, 100, we obtain:

∆2,CL = 1.9984(38). (4.29)

The value of ∆2,CL is in agreement with the value known from the analytical solution i.e. 2, within 1
estimated standard deviation.
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5. Summary

In this thesis a way to tackle numerically quantum mechanical problems is presented. A self-contained
description of the Monte Carlo method of evaluation of path integrals is introduced. It is employed
in order to obtain energies of low lying states of one dimensional harmonic oscillator. Our work is
characterized by an emphasis on practical and physical issues encountered in numerical calculation of
path integrals which constitute common problems that have to be addressed in case of similar studies of
more complex theories.

In the first part of this thesis we briefly introduced the path integral approach to quantum mechanics,
which is equivalent to the operator technique. The fundamental correspondence between quantum
mechanical operators and functionals evaluated for trajectories proved to be non-trivial and led us
towards definition of the point-splitting prescription. To our knowledge, the derivation presented in
sections 2.3 and 2.4 is novel. After the transition to the Euclidean time was performed, the factor which
weights trajectories e

i
~S[xNT

(t)] in the path integral became e−
1
~S[xNT

(t)] and thus made the numerical
calculation of path integrals feasible.

The next step was to note that the path integral, in the case of the time discretized trajectory,
is a high dimensional integral over the lattice variables and as such can be evaluated with the Monte
Carlo method. The Metropolis algorithm proved to be both feasible to implement and an efficient
way of generating trajectories, however, in case of systems with a non-local action, performance of the
Metropolis considerably decreases and one uses algorithms which base on different ideas - for instance
the Hybrid Monte Carlo cf. [6].

Finally, having prepared the numerical method, we approached the problem of harmonic oscillator.
We were rather interested in comprehension of the functioning of the Monte Carlo method than in
obtaining excessively accurate results. The first step of analysis was to investigate the process of ther-
malization of the algorithm. It was found that measurements of the position observable on generated
paths stabilize after a certain number of algorithm steps. Once the thermalization process was com-
pleted, we were able to measure physically interesting observables avoiding systematic errors. As one
would expect, data obtained from measurements of an observable on subsequently generated trajectories
were autocorrelated. These autocorrelations were growing stronger as the lattice size NT was increasing,
moreover, the integrated autocorrelation time turned out to be proportional to the power of the lattice
size: τA,int ∼ (NT )z, which means that we encountered the critical slowing down of the algorithm. Then,
the question of impact of the finite NT on our results was addressed. Relationship between the mean
values of observables x̂2, p̂2 and the lattice size was examined, the resulting averages 〈x̂2〉 and 〈p̂2

PS〉 were
found to be converging to their continuum limit values, which are of physical significance. The next
step was to explore the dependence of time T of evolution of the system on our results. We have shown
that the contribution of higher energy states in averages of observables is decreasing as T is becoming
larger and that the value of T sufficient to isolate the ground state is determined by the first energy gap
∆1. Study of the expectation value of the Hamiltonian 〈Ĥ〉 as function of T indicated, that T ≈ 10
is enough to recover the average values in the ground state of the system. Eventually, the two-point
correlation functions were defined and we found that the correlators of x̂ and x̂2 are convenient tool in
determination of energies of the first and the second excited state of the system.

Concluding, this thesis demonstrates that path integrals can be effectively evaluated with use of
Monte Carlo method. The main advantage of the method is it straightforward extension to systems with
more degrees of freedom. A field theory is obtained when the time slicing is replaced by a space-time
lattice. Furthermore, the method can be employed in investigation of non-perturbative problems, which
play a crucial role in QCD. Hadron spectroscopy is an example of such a problem. Hadron masses can
be obtained with use of the two-point function in the similar manner (cf. [2]) as energies of the first and
the second excited states were obtained in this thesis.
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