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Abstract 

The thesis is focused on proton (1H) spin  relaxation processes in solutions of nitroxide radicals. 

The presented studies include experimental and theoretical parts. 1H spin-lattice relaxation 

measurements have been performed for decalin (decahydronaphtalene), glycerol (propane-1,2,3-

triol) and propylene glycol (propane-1,2-diol) solutions of 4-oxo-TEMPO-d16 (4-oxo-2,2,6,6-

tetramethyl-1-piperidinyloxyl) containing 14N and 15N isotopes, by means of Nuclear Magnetic 

Resonance (NMR) Field Cycling (FC) relaxometry. The Nuclear Magnetic Resonance Dispersion 

(NMRD) experiments have been collected in a broad frequency range (10 kHz – 20 MHz) and in a 

broad range of temperatures dependent on viscosity of the solvent. 

The NMRD data are interpreted in terms of the theory of paramagnetic relaxation enhancement 

(PRE) in solutions of nitroxide radicals [E. Belorizky et al. 1998, D. Kruk et al. 2012, D. Kruk et 

al. 2013]. The theory includes the influence of the hyperfine coupling (isotropic and anisotropic 

parts) between the spin of nitrogen (14N and 15N)  and the unpaired electron spin on the 1H 

relaxation. 1H relaxation in solutions of nitroxide radicals is caused by dipole-dipole interactions 

between the electron spin of the radical and proton spins belonging to the solvent molecules. The 

dipolar interactions are modulated by three processes: translational movement of the solvent and 

solute molecules, their rotational dynamics and electron spin dynamics. The rotational motion plays 

a twofold role. First, it acts as a direct source (besides the translational motion) of fluctuations of 

the proton spin – electron spin dipolar coupling due to non – central positions of the interacting 

spins in the solvent and radical molecules (this effect is referred to as ‘eccentricity effect’). Second, 

the anisotropic part of the hyperfine coupling (between nitrogen and electron spins) modulated by 

the rotational dynamics of the paramagnetic molecules gives rise to the electron spin relaxation 

being the source of modulations of the proton-electron dipole-dipole coupling, and thus affecting 

also, in this indirect way, the 1H relaxation. The electron spin relaxation has been described in terms 

of the Redfield relaxation theory. As far as the role of the hyperfine interaction is concerned, its 

isotropic part affects the electron spin energy level structure and, in consequence, the 1H relaxation.  

The described effects and their influence on the 1H relaxation are, in the thesis, thoroughly discussed 

and simulated. It is demonstrated that the role of the hyperfine coupling (isotropic and anisotropic) 

increases when the dynamics of the system slows down (the isotropic part of the hyperfine coupling 

is of importance already for rather fast dynamics - D12≈10-9 m2/s while the influence of the 

anisotropic part becomes visible when the diffusion coefficient decreases below D12≈5*10-11 m2/s).  

The outlined theory is applied to the large set of experimental data. The data serve as a very 

demanding test of the theory which has to explain different 1H spin-lattice relaxation for the cases 

of 14N and 15N containing nitroxide radicals, assuming the same motional conditions. The analysis 

reveals parameters characterizing translational and rotational dynamics of the solutions (relative 

translational diffusion coefficient of the solvent and solute molecules and rotational correlation 

times). It is demonstrated that NMR relaxometry studies performed on liquids containing 

paramagnetic centers give access to very fast dynamics, not accessible for diamagnetic liquids (i.e. 

in the absence of paramagnetic molecules). 

 

 



 

 
 

  



 

 

 

Streszczenie 

Przedstawiona praca dotyczy procesów relaksacji protonowej (1H) w roztworach rodników 

nitroksylowych. Prezentowane badania zawierają cześć eksperymentalną i teoretyczną. 

Przeprowadzono pomiary szybkości relaksacji protonowej spin – sieć dla roztworów 4-oxo-

TEMPO-d16 (4-oxo-2,2,6,6-tetramethyl-1-piperidinyloxyl) zawierającego izotopy 14N i 15N w 

dekalinie (decahydronaphtalene), glicerolu (propane-1,2,3-triol) i glikolu propylenowym (propane-

1,2-diol) wykorzystując relaksometrię Magnetycznego Rezonansu Jądrowego (MRJ) opartą na 

technice Field Cycling (FC). Pomiary dyspersji szybkości relaksacji przeprowadzone zostały w 

szerokim przedziale częstości (10 kHz – 20 MHz) i temperatur. 

Zebrane dane analizowane są w oparciu o teorię paramagnetycznego wzmocnienia szybkości 

relaksacji (Paramagnetic Relaxation Enhancement – PRE) w roztworach rodników nitroksylowych 

[E. Belorizky et al. 1998, D. Kruk et al. 2012, D. Kruk et al. 2013]. Teoria ta uwzględnia wpływ 

oddziaływania nadsubtelnego (jego części izotropowej i anizotropowej) pomiędzy spinem jądra 

azotu (14N i 15N) i niesparowanym spinem elektronowym na relaksacje protonową. Proces relaksacji 

protonowej w roztworach rodników nitroksylowych jest wywołany oddziaływaniem dipolowym 

pomiędzy spinem elektronowym rodnika i spinami protonów należących do molekuł 

rozpuszczalnika. Oddziaływania te są modulowane przez trzy procesy: dyfuzja translacyjna 

molekuł rozpuszczalnika i molekuł substancji rozpuszczonej, ich dynamika rotacyjna i dynamika 

spinu elektronowego. Dynamika rotacyjna pełni podwójną rolę. Po pierwsze, jest ona bezpośrednim 

źródłem (poza dyfuzją translacyjną) fluktuacji odziaływań dipolowych proton-elektron wskutek ich 

niecentralnej pozycji (tzw. ‘eccentricity effect’). Po drugie, anizotropowa część oddziaływania 

nadsubtelnego, która fluktuuje w czasie wskutek rotacji molekuły rodnika, prowadzi do relaksacji 

elektronowej, która jest czynnikiem modulującym oddziaływania dipolowe proton-elektron, 

wpływając w ten pośredni sposób na relaksacje protonową. Relaksacja elektronowa została opisana 

przy użyciu teorii Redfielda. Izotropowa część oddziaływania nadsubtelnego zmienia układ 

poziomów energetycznych spinu elektronowego, co w konsekwencji wpływa na proces relaksacji 

protonowej molekuł rozpuszczalnika. Opisane efekty i ich wpływ na szybkość relaksacji 

protonowej są w przedstawionej pracy szczegółowo dyskutowane w oparciu o liczne symulacje. 

Pokazano, że wpływ oddziaływania nadsubtelnego (izotropowego oraz anizotropowego) wzrasta, 

kiedy dynamika systemu zwalnia. Część izotropowa oddziaływania staje się istotnym czynnikiem 

gdy współczynnik dyfuzji jest rzędu D12≈10-9 m2/s, a część anizotropowa – gdy współczynnik 

dyfuzji zmaleje do D12≈5*10-11 m2/s. 

Przedstawiona teoria została wykorzystana do analizy obszernego zestawu danych 

eksperymentalnych. Dane te stanowią wymagający test weryfikujący teorię, która w szczególności 

powinna prowadzić do konsystentnej interpretacji danych dla przypadków gdy rodniki 

nitroksylowe zawierają różne izotopy 14N i 15N, dla niezmienionych parametrów dynamicznych. 

Przeprowadzona analiza umożliwia wyznaczenie parametrów charakteryzujących dynamikę 

translacyjna oraz rotacyjną roztworów (względny współczynnik dyfuzji translacyjnej molekuł 

rozpuszczalnika i substancji rozpuszczonej oraz rotacyjne czasy korelacji). Pokazano, że 

relaksometria MRJ zastosowana do cieczy zawierających centra paramagnetyczne pozwala na 

analizę szybkich procesów dynamicznych nieosiągalnych dla cieczy diamagnetycznych (bez 

wprowadzonych molekuł pramagnetycznych). 
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Introduction 
 

This thesis is focused on proton relaxation processes in solutions of nitroxide radicals 

containing 14N and 15N isotopes. Proton relaxation in the paramagnetic solutions is caused 

by dipole – dipole interactions between proton spins belonging to solvent molecules and 

electron spins of the radical molecules. Stochastic fluctuations of these interactions are 

caused by translational dynamics of the interacting molecules, molecular rotation and 

electron spin relaxation (attributed to the anisotropic part of the electron spin – nitrogen 

spin hyperfine interaction). The studies presented in the thesis have two aspects. The first 

one is a development of an advanced theory of proton spin relaxation in solutions of 

nitroxide radicals, valid for an arbitrary resonance frequency, taking into account 

complicated effects of spin interactions mediated by translational and rotational dynamics 

of the solvent and solute molecules. This theory predicts peculiar proton relaxation effects 

which depend on the isotope 14N/15N incorporated into the radical molecules. The isotope 

effect influences the proton relaxation by affecting the energy level structure of the electron 

spin (which is coupled by hyperfine interactions with the nitrogen spin) and by electron 

spin relaxation (caused by the anisotropic part of the hyperfine coupling), which acts as a 

source of modulations (besides the translational and rotational dynamics) of the proton spin 

– electron spin dipole-dipole coupling. In this thesis the theory has been thoroughly tested 

against 1H spin-lattice relaxation experimental data collected for decalin, glycerol and 

propylene-glycol solutions of 4-oxo-TEMPO-d16-
15(14)N. In contrary to “classical” 

relaxation experiments, which are performed at a single magnetic field (resonance 

frequency) the studies have been carried out in a very broad range of frequencies (10kHz – 

20MHz) by employing the Fast Field Cycling technique, which introduces a “new 

dimension” to NMR relaxation experiments – the strength of the magnetic field (resonance 

frequency). The second aspect of the presented studies is the opportunity to investigate 

translational and rotational dynamics of liquids offered by NMR relaxometry, 

demonstrated here for numerous examples.  

As the studies have been carried out with close collaboration with the supervisor, it is 

important to clearly describe the contribution of the author to the work: 

- almost all experimental data presented in the thesis have been collected by the author,  

- the author has participated in the calculations needed for the theory presented in Chapter 

5 (not taking into account the electron spin relaxation),  



 

2 

 

- the numerical implementation of the theory (complemented by data fitting tools) and 

numerous simulations presented in the thesis have been done by the author,  

- analogously, the analysis of the proton relaxation data which did not require including the 

electron spin relaxation has been performed by the author,  

- the more advanced analysis of the proton relaxation data for slower dynamics, when the 

electron spin relaxation is relevant, has been performed by the author in cooperation with 

the supervisor.  

The structure of this thesis is as follows:  

 • Chapter 1 contains theoretical basics of Nuclear Magnetic Resonance (NMR) 

effect, including a phenomenological description of the motion of magnetization vector. 

 • In Chapter 2 the Hamiltonians of the interactions present in the considered spin 

systems are described. The chapter also contains basic definitions of correlation functions 

and spectral densities including examples of these functions for different motional models.  

 • Chapter 3 presents a description of relaxation theory for a two-spin system 

coupled by dipolar interactions. The cases of equivalent (two protons) and non-equivalent 

(electron – proton) spins are considered.  

 • The literature review on NMR relaxation studies on systems including nitroxide 

radicals being most relevant for the thesis is presented in Chapter 4. 

 • Chapter 5 presents the theory of proton relaxation in solutions of nitroxide 

radicals. 

 • Chapter 6 gives a description of the Fast Field Cycling NMR relaxation 

experiments and details of sample preparation.  

 • Chapter 7 presents the data analysis, while Chapter 8 contains summary and 

discussion of the obtained results. 

 • Eventually, in Chapter 9 further perspectives of the studies are outlined. 
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1. Principles of Nuclear Magnetic Resonance 
      

1.1. Nuclear spin in external magnetic field 
 

Nuclei and electrons are characterized by spin quantum numbers, I  and S  respectively.  

The spin determines nuclear and electron magnetic moments: I  and S  [1,2]:  

1)(
2

= II
m

e
g

p

II


  (1) 

1)(
2

= SS
m

e
g

e

eS


  (2) 

where pm  and em  are proton and electron masses, eg  and Ig  are electron and nuclear g-

factors, respectively, while e  is the elementary electron charge. The quantities 
p

p
m

e

2


  

and 
e

B
m

e

2


  are proton and electron Bohr magnetons, while /= PII g   is a 

characteristic constant of a nucleus called gyromagnetic ratio, analogously /= BeS g   is 

referred to as electronic gyromagnetic ratio.  

In an external magnetic field, 0B


, the orientation of the magnetic moment is quantized. For 

a nucleus of spin quantum number I  there are 1)(2 I  states described by magnetic 

quantum numbers IIIImI 1,1,...,,=  . The Im  state is associated with the energy [1-

4]: 

 zIIIm BmBE
I

  == 0





 (3) 

where it is assumed that the direction of the 0B


 field defines the z-axis of a reference system 

(referred to as laboratory frame), i.e.: 0BBz  . The energy levels are equally distant and 

the energy difference yields: 

 zImmI BEEE
II

== 1  (4) 

Analogous expressions describe the electron spin S , i.e.: zSSSm BmBE
S

  == 0





 and 

zSmmS BEEE
SS

== 1 .  

From now on I shall focus on nuclei. Populations of the energy levels are described by 

Boltzmann distribution. For 2/1=I  one obtains [1,3,4]: 
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where N  and N  are populations of the energy levels corresponding to 1/2= Im  and 

1/2=Im  (parallel and antiparallel orientation of the magnetic moment with respect to the 

external magnetic field), Bk  denotes the Boltzmann constant. The resultant nuclear 

magnetization, IM , is a sum of magnetic moments, I , of N  (   NNN ) nuclei 

present in a sample [1,3,4]: 

 1)(
3

== 0

22

 II
Tk

NB
M

B

I
II
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  (6)

 

1.2. Motion of the magnetization vector and Bloch equation 
 

The motion of the magnetization vector  tM I


 in a magnetic field  tB


 is described by the 

Bloch equation [1,3,4]: 

  BM
dt

Md
II

I




=  (7) 

For a static magnetic field,  00,0,=)( BtB


, the solution of Eq. 7 for the magnetization 

components IxM , IyM  and IzM  yields [1,4]:  

  tBMM IIIx 0cos=   (8) 

  tBMM IIIy 0sin=   (9)        

 IIIIz MM =  (10) 

where IM  and ||IM  denote the initial magnetization components in a plane perpendicular 

to 0B


 and along 0B


 ( z -axis), respectively. This set of equations describes precession of 

the magnetization vector IM


 around the direction of the applied magnetic field with  

the angular frequency 0= BIL   (referred to as Larmor frequency). The solution of the 

Bloch equation changes when an additional magnetic field 01 << BB  rotating with an 

angular frequency   in a plane perpendicular to 0B


 is applied: 

),0](sin),(cos[= 111 tBtBB  


. In this case it is convenient to express the solution of the 

Bloch equation in a coordinate system rotating around the z  axis (direction of 0B


) with the 
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frequency   [1]:  

   IyL
Ix M

dt

Md



=  (11) 

   IzIxL

Iy
MBM

dt

Md
1=  


 (12) 

 
IyI

Iz MB
dt

dM


1=   (13) 

where the index “ '” refers to the rotating frame. For  =L  the equations reduce to the 

form [1]: 

 1= BM
dt

Md
II

I







  (14) 

which describes a precession in the magnetic field 1B


 (the 1B


 field is constant in the 

rotating frame).  

The magnetic field 1B


 applied for a time t  (radio-frequency, RF, pulse) can change the 

orientation of the magnetization vector by the angle: 

  tBI 1=  (15) 

In NMR experiments a /2  pulse refers to /2= , analogously a   pulse means  = . 

This description should be extended by taking into account that the nuclear magnetic 

moments interact not only with the external magnetic field but also with each other. 

Molecules, ions and molecular units undergo stochastic motions causing time fluctuations 

of the interactions between the magnetic moments. As a result, transitions between the 

energy levels 
ImE  are induced, leading to changes in the magnetization IM  that are 

referred to as relaxation processes. The Bloch equation including terms describing the 

relaxation processes takes the form [1,4,5]: 

  
21

0=
T

jMiM
k

T

MM
BM

dt

Md IyIxIIz
II

I










  (16) 

where 0IM  denotes equilibrium magnetization. The time constants 1T  and 2T  denote 

longitudinal and transverse relaxation times describing the evolution of the parallel and 

perpendicular magnetization components, respectively. Thus the 1T  parameter is called 

longitudinal (spin-lattice) relaxation time, while 2T  is referred to as transverse (spin-spin) 

relaxation time. The relaxation time 2T  describes how fast the collective movement of 
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individual magnetic moments in the yx   plane becomes incoherent. 

In NMR experiments one can apply various pulse sequencies. To measure the spin-lattice 

relaxation time commonly the inversion-recovery sequence: /2   is used (  denotes 

here the evolution time between the two pulses and can be varied). At 0=t  the 

magnetization 0IM  is directed along the direction of the static magnetic field 0B


. After 

applying a   pulse the magnetization vector is inverted and starts to return to the initial 

state. After time   (the relaxation period) a /2  pulse is applied so the magnetization vector 

rotates in the yx   plane and can be detected. Such experiment is repeated for different 

values of  . A schematic picture of the inversion recovery experiment is shown in Fig. 1.1. 

The evolution of the longitudinal component of the magnetization vector is then described 

by the equation [3,5]: 

  1
/

0 21=)(
T

IIz eMtM


  (17) 

The experiment (pulse sequence) may be repeated after a time RD (Recycle Delay) long 

enough for the system to return to the initial state. It is recommended to apply 15= TRD .  

 

Figure 1.1. Schematic picture of inversion recovery sequence. 

 

The relaxation time 2T  can be measured by applying, for instance, the Hahn sequence [6]. 

First, a transverse magnetization is created by applying a /2  pulse. After a time   the 

movement of the individual spins loses its coherence due to local field inhomogeneities. 

Then a   pulse is applied and the precession is reversed. This implies that after time   

(after the   pulse) the decoherence disappears and the magnetization gives rise to an echo.
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2. Spin interactions 
        

2.1. The spin Hamiltonian 
 

As already anticipated, spin-lattice relaxation is a result of transitions between spin energy 

levels. The energy required for the transitions is provided by fluctuating local magnetic 

fields. Thus the total Hamiltonian describing a spin system has two parts: a time-

independent part (main Hamiltonian) 0 , which defines the energy level structure, 

and a time-dependent part (perturbing Hamiltonian)  t1  describing the interactions 

fluctuating in time: 

    tt 10   (18) 

This work is focused on proton relaxation in solutions of paramagnetic molecules (nitroxide 

radicals). Several interactions between protons and electrons have to be considered. They 

are described below. 

 

2.2. Zeeman and dipolar interactions 
 

The most common 1H relaxation mechanism is provided by magnetic dipolar interactions. 

For a proton ( I ) – electron ( S ) spin system the total Hamiltonian takes the form: 

       
  

10

,



 tSISI DDZZ
 (19) 

where  IZ  and  SZ  are Hamiltonians of proton and electron Zeeman interactions (i.e. 

interactions with an external magnetic field 0B


), respectively, while   tSIDD ,  denotes 

the Hamiltonian of the proton-electron dipole-dipole interaction. In the laboratory frame 

the Zeeman Hamiltonians are expressed as [1,2,4,5]:  

     ZSZZIZ SBSIBI 00 ,    (20) 

They form the main, unperturbed part of the total Hamiltonian, denoted as 0 . The SI   

dipole-dipole Hamiltonian,   tSIDD , , fluctuates in time due to stochastic motion of 

molecules carrying the spins of interest and hence   tSIDD ,  belongs to the time 

dependent (perturbing) part of the Hamiltonian denoted as 1 .  

Dipole-dipole interactions between two magnetic moments 


 and 

  are characterized by 

the energy [1,4,7,8]: 
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53

))(3(
=

r

rr

r
E











 

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 (21) 

where r


 is a vector between the interacting moments. If these magnetic moments (spins) 

belong to the same molecule (intra-molecular coupling), the dipole-dipole interaction 

fluctuates in time only due to the rotational motion of the molecule (provided the molecule 

does not show internal dynamics). For dipoles placed in different molecules (inter-

molecular coupling), time fluctuations of the interaction are dominated by the relative 

translational motion of both molecules. A schematic view of intra- and inter-molecular 

dipolar interactions is presented in Fig. 2.1 for glycerol molecules.  

 

 

Figure 2.1. A schematic view of the inter- and intra-molecular dipole-dipole interactions.  

 

In the laboratory frame the dipole-dipole Hamiltonian has the form [1,2,4,5,9-11]: 

        SITtFatSI mm

m

m

IS

DDDD ,1=),( 22
2

2=





   (22) 

where the two-spin tensor operators ),(2 SITm  are defined as [1,2,4,5,9-11]:  

 







  )(

2

1
2

6

1
=),(2

0 SISISISIT zz  (23a) 

  zz SISISIT  
2

1
=),(2

1   (23b) 

 .
2

1
=),(2

2  IISIT  (23c) 
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The dipole-dipole coupling constant, 
IS

DDa , is defined as:  

 
3

2

0

4
6=

IS

SIIS

DD
r

a





 (24) 

where ISr  is the distance between the interacting spins, I  and S  ( rrIS   in Eq. 21). 

For intra-molecular couplings the ISr  distance does not change in time, but it does for inter-

molecular interactions. The functions  tF m

2

  are expressed in the laboratory frame by 

Wigner rotation matrices [2],   tD DDLm 

2

0, , dependent on a set of Euler angles, DDL , 

describing the orientation of the dipole-dipole (DD) axis with respect to the laboratory (L) 

frame (see Fig. 2.1) [2,12]: 

    )(),(0,= 2

0,

2

0,

2 ttDDF DDLDDLmDDLmm    (25) 

where the Wigner rotation matrices are defined as follows [12-14]: 

         1cos32,,0 212

0,0   tttD DDLDDLDDL   (26a) 

           ttttD DDLDDLDDLDDL  cossin62,,0 2112

1,0



    (26b) 

        tttD DDLDDLDDL  22112

2,0 sin62,,0 

   . (26c) 

For two nuclear spins (e.g. two protons: 1I  and 2I ) the tensor operators of Eq. 22 are 

obtained by replacing I  by 1I  and S  by 2I , S  in Eqs. 23a-c has to be replaced by I  and 

the inter-spin distance refers to the two nuclei. However, it should be kept in mind that due 

to the ratio between the electron and proton gyromagnetic ratios, 657=/ IS  , the dipole-

dipole coupling constant for a system of proton and electron is much larger than for two 

protons. 

 

 

2.4. Hyperfine interactions in nitroxide radicals 
 

In nitroxide radical molecules the unpaired electron is located between oxygen and nitrogen 

nuclei as shown in Fig. 2.2. 
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Figure 2.2. A schematic view of spin interactions for glycerol and 4-oxo-TEMPO 

molecules. 

 

The electron spin S  and the nitrogen spin P  are coupled by hyperfine interactions. The 

hyperfine coupling is a result of two interactions: Fermi contact interaction and dipolar 

coupling. The first mechanism is important when the spin density of the electron is nonzero 

at the position of the nucleus. The isotropic (scalar) part of the hyperfine coupling, 

influences the electron spin energy level structure. The Hamiltonian of the isotropic scalar 

coupling has the form [15-18]: 

 







  )(

2

1
=),( PSPSPSAPS zzisoiso  (27) 

where isoA  denotes the amplitude of the coupling.  

The anisotropic part of the hyperfine coupling ( ),( PSaniso ) is dependent on the orientation 

of the molecule and hence it becomes time dependent as a result of molecular rotation. 

Thus, the total Hamiltonian including all interactions present in the system shown in Fig. 

2.2 consists of five terms [1,2,4,5,9-11,15-18]: 

 
    

10

0 ),(),(),()()(=),(


 PSSIPSSISI anisoDDisoZZ
 (28) 

when one neglects the weak Zeeman interaction of nitrogen. In solutions of nitroxide 

radicals the SI   (proton-electron) dipole-dipole interaction is modulated by the relative 

translational dynamics of the solvent molecule and the nitroxide radical molecule, while 

the anisotropic hyperfine interaction is modulated (as already mentioned) by rotation of the 

nitroxide radical. 
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2.5. Correlation function and spectral density 
  

Stochastic processes (like movement of molecules in liquids) are characterized by time 

dependent correlation functions which are defined as [1,2,5,9,19,20]:  

 dxdxxPtxxPxAxAAtAtC 0000

* )(),,()()(=(0))(=)(   (29) 

where )(tA  is a quantity of interest dependent on a variable  tx  describing the states of 

the system ( x  and 0x  denote the variable at times t  and 0t , respectively). ),,( 0 txxP  is the 

conditional probability that the system is in the state x  at time t  provided that at time zero 

it has been in the state 0x .  

Probabilities of transitions between spin states and hence the relaxation times depend on 

spectral densities, )(J , which are defined as a Fourier transform of corresponding 

correlation functions [1,5,19]: 

 dtetCJ ti 


 )(=)(
0

 (30)

 

2.6. Spectral densities for different motional models 
 

The exact formula of the correlation function depends on the kind of motion (for instance 

rotational or translational diffusion) and the model which is chosen to describe the motion. 

In the simplest case of isotropic rotation the correlation function is exponential [21]: 

           









R

DDLDDLmDDLDDLm

t
DttDtC


 exp

5

1
=0,0,0,,0=)( 2

,0

*2

,0  (31) 

where R  is a characteristic time constant referred to as rotational correlation time. Thus, 

the corresponding spectral density has a Lorentzian form (the factor 1/5 has been omitted) 

[2,21]: 

 .
)(1

=)(
2

R

RJ






 (32) 

For heterogenous systems (characterized by a distribution of correlation times) the 

rotational correlation function is often streched [22]: 

 


























 R

t
tC exp=)(  (33) 

The phenomenological parameter  0,1  reflects the distribution of the correlation times. 

Fourier transform of streched exponential function can be approximated by the Cole-
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Davidson spectral density [23]: 

 
  

  
.

1

arctansin
=)(

/22 






CD

CDJ


 (34) 

The time constant CD  is related to the rotational correlation time 
R  as:  CDR = . For 

1=  the spectral density of Eq. 34 becomes Lorentzian. The deviations of the Cole-

Davidson spectral density from the Lorentzian shape for different values of   versus 

frequency and versus reciprocal temperature are shown in Fig. 2.3 a) and 2.3 b), 

respectively. The values of the spectral density in Fig. 2.3 a) have been normalized in the 

low field limit to unity (divided by  ) to make the differencies at the inflection point more 

visible. In Fig. 2.3 b) the Vogel-Fulcher-Tamman (VFT) equation has been used to simulate 

the temperature dependence of the rotational correlation time R  on temperature T  [24]: 

 













0

0 exp
TT

B
R    (35) 

where 0 , B  and 0T  are phenomenological parameters.  
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Figure 2.3. Spectral densities versus a) frequency and b) reciprocal temperature for 

different values of   parameter. Parameters used for the simulations are:  

a) 910*1= 

R s and b) 
15

0 10*1=  s, 2000=B K, 130=0T K, 20 MHz. The maximum 

is reached at a temperature for which 1R . 

 

As already mentioned, when the interacting spins belong to different molecules, 

translational diffusion is the main process which causes the fluctuations of the dipole-dipole 

interactions. As a result of translational dynamics the inter-spin distance ISr  as well as the 

orientation of the SI   dipole-dipole axis vary in time. Thus the correlation function 
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includes the Euler angles encoded in the Wigner rotation matrices   tD m 2

0,  as well as in 

the inter-spin distance  trIS  [2,5,25-29]: 

 
   

(0)

(0)

)(

)(
=)(

3

2

0,

3

*2

0,

IS

m

IS

m

inter
r

D

tr

tD
tC


 (36) 

The commonly used models describing translational dynamics of molecules is referred to 

as force-free hard-sphere model [26,27]. It assumes that molecules can be treated as hard 

spheres uniformly distributed beyond their distance of the closest approach, ISd , and the 

interacting spins are placed in their centers. In that case the closest distance is given by a 

sum of the radii of the molecules carrying the nuclear and electron spins, Ir  and Sr , 

respectively [30]: SIIS rrd =  (blue line in Fig. 2.4). 

 

 

Figure 2.4. Schematic view of two interacting molecules (glycerol and nitroxide radical 4-

oxo-TEMPO) with inter-spin distances marked by blue line - for the force-free hard-sphere 

model, and by red line - when the eccentricity effect is considered. 

 

The inter-molecular (translational) correlation function resulted from this model is 

described by the formula [27,29,31-33]: 

   du
tu

uuu

u

d

N
tC

transIS

S
trans 











 





2

642

2

03
exp

2981
72  (37) 

where SN  denotes the number of electron spins per unit volume. Since the nitroxide radical 

molecule contains one unpaired electron (spin S ), SN  is equivalent to the molar 

concentration multiplied by Avogadro number, VA : VS AMN ]1000[= ; the factor 1000 
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results from the relationship between dm3 and m3. The translational correlation time trans  

appearing in the formula is defined as 12

2 /= DdIStrans , where 12D  is the relative 

translational diffusion coefficient defined as a sum of self-diffusion coefficients of the 

interacting molecules. For identical molecules the relative diffusion coefficient is twice as 

large as the self-diffusion coefficient, and the distance of closest approach is given by the 

diameter of the molecule. The corresponding spectral density is given as [2,27,29,31-34]:  

  
 

.
2981

72=
24

2

642

2

03
du

u

u

uuu

u

d

N
J

trans

trans

IS

S
trans









 (38) 

It is worth to notice that the spectral density is a superposition of Lorentzian functions 

multiplied by the weight factors 
642

2

2981 uuu

u


.  

The presented force-free hard-sphere model is not always sufficient. The assumption that 

the interacting spins are placed in the centers of the molecules can turn out to be an 

oversimplification. As in real molecules they occupy non-central positions the inter-

molecular dipole-dipole interactions are modulated not only by translational dynamics, but 

also the rotational motion contributes to the fluctuations of the inter-spin vector 

('eccentricity effects') [25,26,31-33,27,35] as shown in Fig. 2.4. A rigorous mathematical 

description of the combined translational-rotational effect on the dipole-dipole coupling 

gives complex solutions with additional distances between the molecular center and the 

positions of the nuclei [25-27]. A compromise between the accuracy of the description and 

its mathematical complexity can be achieved by adding a rotational contribution to the 

translational spectral density [31-33,35]: 

    

 

   



























22
24

2

642

2

03

3inter

1

)(arctansin

3

4

)(2981
72

~
=)(













CD

CD

trans

trans

IS

s

rottrans

IS

s

fdu
u

u

uuu

u

d

N

fJJ
d

N
J

  (39) 

where the factor f  reflects the role of the 'eccentricity effects'. When the spins are placed 

in the center of molecules, 0=f . The factor /34  in Eq. 39 has its source in normalization 

of the spectral densities:     .
~

=  dJdJ transrot    

According to the hydrodynamic model of a molecule considered as a sphere undergoing 
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rotational and translational movement in a viscous medium, the ratio of the translational 

and rotational correlation time is: 9=/ rottrans   [9]. In real systems the ratio is even larger, 

for example for glycerol it was obtained: 5040=/ rottrans   [34].  

To estimate the influence of rotational dynamics on 1H spin-latice relaxation of solvent, the 

ratio between spectral densities describing rotational and translational dynamics (  rotJ  

and  transJ
~

 of Eq. 39) is shown versus frequency Fig. 2.5. For the frequency dependent 

simulations, the rotational correlation times have been chosen in a wide range starting from 

very short values (characteristic for water) up to long correlation times (characteristic for 

viscous solvents near their glass transition temperature). The ratio between translational 

and rotational correlation times yields 40=/ rottrans  . 
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Figure 2.5. Ratio between spectral densities characterizing rotational and translational 

dynamics:     transrot JJ
~

/  versus frequency for 8.0 . 

 

The temperature dependence of the rotational correlation time has been simulated 

according to Eq. 35 with following parameters: 
14

0 10*4.1  s, 310*84.1 B K, 

1320 T K (such parameters have been obtained for glycerol solutions of different 

nitroxide radicals [33]).  
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Due to the fact that Rtrans    at higher frequencies the role of the rotational spectral 

density increases and the ratio     transrot JJ
~

/  exceeds at some frequency the value of 

one (Fig. 2.5). 

The time scale separation of the translational and rotational dynamics allows to decompose 

the overall 1H relaxation dispersion profile (relaxation rate versus frequency) into 

translational and rotational part. 
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Figure 2.6. Ratio between spectral densities describing rotational and translational 

dynamics of the solvent molecules -     transrot JJ
~

/  versus frequency for different values 

of the ratio between translational and rotational correlation times, Rtrans  /  for 1 . As 

a comparison the results obtained for 7.0  and 1/ Rtrans   are shown. 

 

To finish this section it is worth to compare the frequency dependence of     transrot JJ
~

/  

calculated for different values of the ratio between the translational and rotational 

correlation times Rtransx  / . Such comparison is presented in Figure 2.6. The figure 

includes the case of 1x  to clearly show that it differs from those for which Rtrans   . 
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3. Relaxation in different systems 
      

3.1. Density matrix and its evolution in time 
 

A spin system can be characterized by a Hamiltonian. Eigenfunctions of the Hamiltonian 

form a complete basis }{|  , i.e. every state of the spin system can be described as their 

superposition [1,2]: 

   



|)(=)( tct  (40) 

It is convenient to describe a spin state using the concept of density matrix (operator) [1-

4]. Density matrix is a matrix representation of the density operator in a basis formed from 

pairs of the eigenfunctions    referred to as Liouville space [1,2]. The density matrix 

elements are defined as: 

   |)(|=)( tt , (41) 

and they can be calculated from the expression [1,2]: 

  )()(=)( * tctct   (42) 

where the star denotes complex conjugation.  

Time evolution of the density operator )(t  (i.e. evolution of the spin system under a given 

Hamiltonian  ) is described by the Liouville-von Neumann equation [1,2,4]: 

  )(,=)( tit
dt

d
   (43) 

The equation can be presented as a set of coupled differential equations for individual 

density matrix elements (referred to as the Redfield relaxation equation) [1,2,36-38]: 

 )()(=
)(

'''

'

''

' tti
dt

td





 


   (44) 

where '' =     denotes the transition frequency between the eigenstates |  and 

'|  of the spin system. The summation is restricted to the terms for which '' =   . 

The coefficients ''  also form a matrix (its real part is referred to as Redfield relaxation 

matrix) and are given as a combination of spectral densities [2,4,5,9]:  

 

 
).()()()(=

==Re

'''''''''''
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

 (45) 
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The spectral densities   ''J  are defined as: 

    dittJ )(exp'|)(|'|)(|Re=
0

'' 


11  (46) 

where 1  denotes the time dependent part of the spin Hamiltonian, (Eq. 22).

 

3.2. Diamagnetic systems 
 

For a diamagnetic liquid (no unpaired electron spins) the total Hamiltonian includes 

Zeeman couplings for nuclei of spins 1I  and 2I  and a dipole-dipole interaction between 

them (see Section 2): 

 ))(,()()(= 2121 tIIII DDZZ   (47) 

The eigenbasis of the main (unperturbed) part of the Hamiltonian ( )()( 21 II ZZ 0 ) 

contains four functions  21,=|| mmn  where 1m  and 2m  are the magnetic quantum numbers 

for spins 1I  and 2I . A schematic view of the energy levels structure for such system is 

shown in Fig. 3.1 under the assumption that the two spins are equivalent (i.e. they have the 

same resonance frequency, I ). 

 

Figure 3.1. Schematic view of the energy levels structure for two equivalent spins 1/2=I .  

 

To obtain an expression for the spin-lattice relaxation rate (reciprocal relaxation time), 

 I

diamR 1 , for a system of two equivalent spins 1/2=I  the relaxation matrix elements 

have to be calculated by means of Eq. 45. The dimension of the relaxation matrix is 16x16, 

but the spin-lattice relaxation is described by the population block (only for the elements  

 ) of dimension 4x4. The expressions for the relaxation matrix elements R  are given 
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below [2]: 
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The longitudinal magnetization is proportional to the expectation value of the z -

component of the spin operator  zI  ( zzz III 21=  ) that can be expressed by the linear 

combination of the density matrix elements 11  and 44  [2,10]: 

  4411
2

1
=  zI  (49) 

The elements follow the set of equations [2] as a consequence of the formula of Eq. 44: 

 321132231123441144331133221122111111
11 = 


RRRRRR

dt

d
  (50a) 

 
323244232344444444333344222244111144

44 = 


RRRRRR
dt

d
  (50b) 

These equations do not include couplings with the coherences 23  and 32  ( 023   as a 

result of the degenerated energy levels shown in Fig. 3.1). Moreover, due to the fact that 

23441123 = RR  and 32443211 = RR , contributions of these terms cancel anyway. The resulted 

expression for  4411   : 

 
     

    44444411443333441133

222244112211114411114411


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RRRR

RRRR
dt

d




 (51) 

combined with Eq. 48 gives the well-known expression for the spin-lattice relaxation rate 

 I

diamR 1  [1-5,7,9-11]: 

    )(24)(1)(
45

2
=

2

3

2

0
1 II

II

I
I

diam JJII
r

R 





 







 
 (52) 

where IIr  is the interspin distance.
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3.3. Paramagnetic systems 
 

In liquids with paramagnetic centres the dipole-dipole interaction is between two non-

equivalent spins (a proton spin I  and an electron spin S ). For 21S  and assuming that 

the relaxation is caused by dipole-dipole interactions between the proton and electron spins, 

while the energy level structure is determined solely by their Zeeman couplings (Eq. 19), 

the nuclear spin-lattice relaxation rate  I

parR 1  is given by the Solomon-Bloembergen-

Morgan (SBM) formula [1,2,5,20,25,39-41]. 

The eigenbasis of the unperturbed part of the Hamiltonian consists of functions 

 SI mmn ,=||  where Im  and Sm  are the magnetic quantum numbers of proton and 

electron, respectively. As the nuclear and electron resonance frequencies, I  and S , 

respectively, are much different, the degeneracy of the energy levels is removed. As a result 

of Eq. 45, the population block of the relaxation matrix contains now the elements [2]: 
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where      SISI JJJ   211
2

1

8

1

8

1
. Then the evolution of the nuclear 

magnetization (the expectation value of  zI ) is described by the expression [2]:  
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         (54) 

where ISR  is a cross-relaxation rate and the quantities eqzI   and eqzS   denote the 

expectation values of the spins zI  and zS  in the equilibrium state. When the electron spin 
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relaxation is very fast, the term eqzz SS   becomes zero very quickly and the nuclear 

spin relaxation is single exponential with the relaxation rate [1-3,5,11,19,20,25,39-41]:   
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 (55) 

Taking into account that IS  657= , the sum and the difference of the two Larmor 

frequencies can be approximated by electron Larmor frequency and the above formula 

reduces to the form: 
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In a more elaborated form this equation includes electron spin relaxation rates [2,40]. 

Electron spin relaxation acts as an additional source of modulations of the SI   dipole-

dipole interaction and this is reflected by the form of the spectral densities. Assuming that 

the original source of the modulations of the dipolar coupling is rotation and that the 

spectral densities are Lorentzian, one obtains: 

  
 2,

,

1 effc

effc
J







  (57) 

The effective correlation time is defined as: 
e

Reffc R1

11

,     for  IJ   and 
e

Reffc R2

11

,     

for  SJ  , where 
eR1  and 

eR2  denote the electronic spin-lattice and spin-spin relaxation 

rates, respectively [1,2,4,9,40,41]. 

 

3.4. General approach to relaxaton in paramagnetic systems 
 

When there are other spin interactions (besides the Zeeman couplings) contributing to the 

energy level structure of the spin system (for instance the isotropic part of the hyperfine 

interaction – Eq. 27), Eq. 55 describing the nuclear spin-lattice relaxation caused by a 

nuclear spin – electron spin dipole – dipole interaction has to be replaced by a more general 

expression [2,43,49]: 

         .63
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 (58) 

The quantities  Iqqs ,  are referred to as generalized spectral densities, which for isotropic 

rotational dynamics are characterized by a single correlation time, R . They can be 
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obtained as a matrix product [2,21,39,43,44,49]: 

         .Re
12

1
= 111

, qqIqq SMS
S

s



  (59) 

The matrices of Eq. 59 are defined in a basis formed by pairs of the eigenstates of the spin 

system (+ denotes matrix transposition). For 2/1 SI  its dimension is 16. The diagonal 

elements of the matrix  M  are defined as [2,32]: 

     1

'''''

 R

e

I RiM    (60) 

where 
eR ''  are electron spin relaxation rates. The off-diagonal elements are given as: 

   eRM ''''    (61) 

The matrix  1

qS  is a representation of the operators: 

 zSS =1

0  (62a) 

  
 SS

2

1
=1

1
 (62b) 

in the same basis [21,32,37,44-46]. 

 

 

 

 

 

3.5. Relaxation in diamagnetic and paramagnetic systems -  

a comparison 
 

The relaxation rate  I

diamR 1  for short correlation times (fast motion of the interacting 

molecules) is almost field (frequency) independent as shown in Fig. 3.2 a) for 

sR

1110*1=   (characteristic of water; simulations have been calculated for 1H relaxation 

therefore HI   ). For more viscous liquids (longer correlation times) one observes a 

dispersion of relaxation at high frequencies (Fig. 3.2 b)). The value of the distance of closest 

approach was set to Å3=IId  that is between the values presented in literature for water 

[47] and for glycerol [31-34]. The rotational spectral densities were described as Lorentzian 

functions.  
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Figure 3.2.  H

diamR 1  versus proton frequency simulated according to Eq. 52 for  

a) 
1110*1= 

R s and b) 
910*1= 

R s; 3IId Å. Decomposition of the relaxation 

dispersion profile into the  HJ   and  HJ 2  contributions is shown. 

 

In Fig. 3.3 a), b) simulations of  H

parR 1  are presented for the same values of the rotational 

correlation time. 
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Figure 3.3.  H

parR 1  versus proton frequency simulated according to Eq. 56 for  

a) 
1110*1= 

R s and b) 
910*1= 

R s; 3ISd Å. Decomposition of the relaxation 

dispersion profile into the  HJ 3  and  SJ 7  contributions is shown. 

 

 H

parR 1  shows a strong dispersion even for the shorter correlation time. It is caused by 

the term  SJ 7  present in Eq. 56. The electron Larmor frequency, S , is 657 times larger 

than proton Larmor frequency due to the ratio between the proton and electron 

gyromagnetic factors and therefore it leads to a considerable nuclear relaxation dispersion 

for paramagnetic liquids even though the dynamics is pretty fast. In consequence, NMR 
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relaxation studies for liquids containing paramagnetic centres provide information about 

fast dynamics of the solvent which is not accesible otherwise.  

In solutions of paramagnetic species two kinds of dipole-dipole interaction involving the 

solvent protons should be distinguished: the proton-proton ( II  ) interactions between 

solvent molecules and proton-electron ( SI  ) dipole-dipole interactions between the 

solvent and solute (carrying the electron spin) molecules. As a result the overall nuclear 

(proton) relaxation rate )(1 HR   meassured in the experiment is a sum of two contributions: 

      H

par

H

diam

H RRR  111   (63) 

Therefore to obtain the  H

parR 1  relaxation part, the relaxation rate  H

diamR 1  for pure 

solvents should also be measured and then subtracted from )(1 HR  . The value of  H

parR 1  

is proportional to the concentration of the paramagnetic centres [20,26,31]. Thus, it is 

convenient to normalize the obtained  H

parR 1  data to unit concentration (1 mM). The 

normalized relaxation rates are referred to as relaxivity [20,31].
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4. Literature review 
 

The subject of nuclear spin relaxation in the presence of paramagnetic centres begins with 

the pioniering work of Solomon, Bloembergen and Morgan [39,40], referred to as the SBM 

theory. The authors developed the first theory of Paramagnetic Relaxation Enhancement, 

PRE, (enhancement of the nuclear spin relaxation caused by strong dipole-dipole 

interactions with the electron spin of the paramagnetic molecule) pointing out the 

possibility of two-exponential relaxation in systems containing so-called non-equivalent 

spins and introducing the concept of electron spin relaxation acting as an additional (besides 

the molecular dynamics) source of stochastic fluctuations of the nuclear spin-electron spin 

interactions. The electron spin relaxation is treated in the theory as a phenomenological 

parameter. The most serious limitation of this description is that it is valid only at high 

magnetic fields when all other spin interactions are negligible compared to the Zeeman 

coupling. 

As for long time the only way to study NMR relaxation was performing relaxation 

experiments at a single, rather high frequency versus temperature, there was no need for 

developing more general approaches. The situation has drastically changed with the 

emergence of FFC relaxometers [48] that has opened the possibility to perform frequency 

dependent relaxation experiments going down to low frequencies where the spin 

interactions neglected by the SBM approach are of primary importance. The development 

of the FFC technology was accompanied by rapidly growing interest in the development of 

paramagnetic contrast agents for Magnetic Resonance Imaging and FFC relaxation 

experiments have become a tool to probe the efficiency of new candidates for MRI contrast 

agents. These studies have revealed the inaccuracy and the insufficiency of the SBM 

approach – the theory is not even able to explain the appearance of frequency specific 

relaxation maxima beeing the basis of the paramagnetic contrast mechanism, not talking 

about their shapes and properties. This situation has stimulated the development of theories 

of PRE effects in solutions of transition and rare earth metal complexes. The development 

has started from introducing to the SBM theory the concept of frequency dependent 

electron spin relaxation calculated by means of simplified (oversimplified) approaches, but 

explicitly involving zero field splitting interactions (characteristic of paramagnetic systems 

of the electron spin of one or higher) and the time scale of their fluctuations. This was the 

first attempt to go beyond the purely phenomenological treatment of the electron spin 
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relaxation used in the SBM equations. 

Further theoretical development went through several steps, aiming at obtaing a theory of 

PRE which is valid for an arbitrary magnetic field, includes relevant spin interactions and 

can be used for arbitrary motional condition. The theories available at present can be 

divided into two groups: 1) approaches based on the second rank perturbation theory 

[49,50] and approaches using a full solution of the stochastic Liouville equation [51-56]. 

The perturbation approaches are very advanced – they include complex models of zero 

field splitting interactions, but as far as the motional conditions are concerned their validity 

is restricted to the limiting cases of slow and fast dynamics. The expectations of generality 

are fulfilled by the approach based on the Liouville equations, but for the price of high 

conceptual and computational effort. 

Another group of chemical compounds that gained a lot of interest due to their applications 

are nitroxide radicals. The enhancement induced in such systems is smaller in comparison 

to the PRE obtained for systems with transition and rare-earth metal complexes, but by 

introducing nitroxide radicals to liquids, the dynamics of the solvent can be investigated 

provided an appropriate relaxation theory is available. 

The overall proton relaxation rate is a sum of spectral densities being the Fourier transform 

of the correlation functions describing the dynamics of the system. Therefore, to form 

theory of PRE for nitroxide radicals valid for an arbitrary magnetic field, the spectral 

densities describing the translational dynamics of spin bearing molecules had to be 

calculated. It has been done in seminal works of Hwang and Freed [29] and Ayant et al. 

[28]. The dynamical model presented in their works is based on the assumptions that the 

interacting spins are placed in the centers of molecules which are treated as hard spheres. 

In reality, this assumption is not fulfilled. It implies that rotational motion also contributes 

to the modulations of the inter-molecular dipole-dipole interaction. Therefore, the 

definition of the translational spectral density presented in Refs. [28,29] has been extended 

by including the translation – rotation coupling referred to as ‘eccentricity effect’, [25-27]. 

It was experimentally confirmed for many different systems (either in diamagnetic liquids 

[34,35] and in solutions of nitroxide radicals [31-33]). In consequence the PRE effect 

occuring for solutions of nitroxide radicals can be used to study both: the translational as 

well as the rotational dynamics of the system.  

The applicability of the above approach is limited to the high values of the magnetic field 

(like it was for the SBM theory). The low field features of nuclear relaxation resulting from 

interactions with nitroxide radicals have been less intensively investigated and an 
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appropriate description of the PRE effect valid for an arbitrary magnetic field was not 

available for a long time.  

First attempts to face this problem have been made by Belorizky et al. in Ref. [15]. A 

description of PRE effects for solutions of 15N containing radicals taking into account the 

influence of the isotropic hyperfine coupling on the electron spin energy level structure has 

been presented neglecting the electron spin relaxation. Additionally the theory has been 

combined with the low frequency expansion of the translational spectral density into an 

expression linking the relative diffusion coefficient of the solvent and solute molecules to 

a linear slope of the dependence of the proton relaxation rate on square root of frequency, 

observed at low frequencies.  

A more complex description of PRE effects for 14N containing radicals taking into account 

the isotropic part of the hyperfine coupling has been developed by D. Kruk et al. in Ref. 

[32]. In further works of the authors the PRE theory (both for 15N from Ref. [15] and 14N 

from Ref. [32]) has been generalized including the influence of the electron spin relaxation 

on the modulations of the electron spin – proton spin dipole – dipole interaction [31,57]. 

The dominating electron spin relaxation mechanism for nitroxide radicals has been 

provided by the anisotropic part of the electron spin – nitrogen spin hyperfine coupling. 

The modulations of this interaction caused by the overall tumbling of the paramagnetic 

molecule has been considered in Refs. [31,57]. This extended approach has been carefully 

tested against the experimental data. The detailed analysis of 1H NMRD data for several 

solutions differing in dynamic parameters over a broad temperature range has been 

presented in Refs. [31,32,57]. 
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5. Proton relaxation in paramagnetic system with 

hyperfine coupling 
 
 

5.1. Influence of isotropic hyperfine coupling on proton 

relaxation 
 
 

As described in section 3, for proton relaxation caused by the proton spin I  - electron spin 

S  dipole-dipole coupling, the relaxation rate  H

parR 1  is given by the Solomon – 

Bloembergen – Morgan formula (Eq. 56) [1-3,5,11]. This description is valid at high 

magnetic fields when the condition isoS A  is fulfilled. In this range the energy levels 

of the electron spin S  are determined only by the electron Zeeman interaction.  

  

solvent xxA  [MHz] yyA  [MHz] 
zzA  [MHz] 

3

zzyyxx

iso

AAA
A


  [MHz] 

toluene-d8 [58] 11.49 17.10 93.60 40.64 

glycerol-d3-D2O [58] 15.41 15.97 100.33 44.00 

acetone-d6 [58] 13.45 15.13 95.28 41.20 

propylene glycol [57] 10.6 10.6 107.3 42.83 

Table 5.1. Components of hyperfine coupling for deuterated 4-oxo-TEMPO determined 

from ESR experiments [57,58]. 

  

Values of the isotropic part of the hyperfine coupling, isoA , obtained from ESR experiments 

for solutions of nitroxide radicals (deuterated 4-oxo-TEMPO) are of the order  

of 50 MHz (some of them are shown as an example in Table 5.1) [57,58]. Conventional 

Field Cycling experiments are performed in the frequency range of 10 kHz – 20 MHz for 

protons. Due to the value of the ratio between electron and proton gyromagnetic factors  

( 657/ HS  ) it corresponds to the range of 6.5 MHz - 13 GHz for electrons. This means 

that for a significant part of the frequency range the hyperfine coupling of the electron spin 

S  with nitrogen spin P  has to be taken into account.  

As explained in section 2 the unperturbed Hamiltonian of the pair of electron and nitrogen 
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spins PS   consists of two parts [15-18]: 

      PSSPS isoZ ,,0   (64) 

The Zeeman functions PS mmn ,  for the PS   system are determined by the electron 

spin and nitrogen spin magnetic quantum numbers, Sm  and Pm , respectively. For 1/2=P  

(15N) it gives:  ,=|1| ,  ,=|2| ,  ,=|3| ,  ,=|4|  (the abbreviation   instead 

of the 21  and 21  magnetic quantum numbers is used). For 1=P  (14N) the system is 

described by 6 Zeeman functions:  ,1=|1| ,  ,0=|2| ,  1,=|3| ,  ,1=|4| , 

 ,0=|5| ,  1,=|6| . The eigenfunctions i|  of the system resulting from 

diagonalization of the Hamiltonian of Eq. 64 are given as linear combination of the Zeeman 

functions PS mmn , . For the simpler case of 15N ( 1/2=P ) there are four energy levels 

[15,31,32]: 
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where 
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For the case of 14N ( 1=P ) the system is characterized by six energy levels [31,32]: 
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with the hgfedcba ,,,,,,,  coefficients given as: 
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Diagrams of the electron energy levels as a function of 1H frequency for the case of 15N  

( 63=isoA MHz) and 14N ( 45=isoA MHz) are shown in Fig. 5.1. From now on the frequency 

axis corresponds to proton frequency, so the term “proton” is omitted. 
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Figure 5.1. Energy levels diagrams for a system of electron spin S  coupled by hyperfine 

interaction with a) 15N and b) 14N spin P  versus proton frequency. The values of hyperfine 

isotropic (scalar) coupling are: for 15N: 63=isoA MHz and for 14N: 45=isoA MHz. 

 

Proton spin-lattice relaxation rate in solutions of paramagnetic molecules is described by a 

combination of generalized spectral densities defined by Eq. 58. The spectral densities 

 Hmms ,  for translational dynamics are defined in analogy to Eq. 59 as [2,31,51,55,59]: 
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where  1

mS  are matrix representations of the operators 
1

mS : ZSS 1

0 ,   SS 2/11

1 , in the 

eigenbasis of the PS   system, i . This representation can be derived using the 

following expressions [2,31]: 
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and the relationship between the Zeeman basis and the eigenbasis  i , (Eqs. 65 and 67). 

The matrices  M  and  1

mS  are defined in a basis constructed from pairs of the 

eigenfunctions 
ji  , referred to as a Liouville space [2,4,11,36-38,41]. The matrix 

 M  is diagonal with the elements [2,31,49,57]: 

   12

, )(=  transijHijij uiM   (72) 

where jiij EE   are transition frequencies between the energy levels presented in Fig. 

5.1. As Hij    the expressions Hij    can be replaced by ij . Using the outlined 

approach, expressions for the paramagnetically induced proton spin-lattice relaxation rate 

 H

parR 1  for the systems with 15N and 14N have been derived. For the case of 15N the 

expression yields [15,31,32] : 
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while for the case of 14N it is [31,32]: 
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where: 
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The expressions  H

XR ),14(15

1  are introduced for the clarity of descriptions of figures in 

this section and the next ones ( IVIIIIIIx ,,, ). 

Examples of 1H relaxation dispersion profiles,  H

parR 1 , for 15N and 14N are shown  

in Fig. 5.2 a) and b), respectively; for 15N: 63isoA  MHz and for 14N: 45isoA  MHz and 

1 mM concentration of the radical molecules.  
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Figure 5.2. Simulations of 1 H spin-lattice relaxation dispersion profiles,  H

parR 1 , for a) 

15N and b) 14N containing nitroxide radicals. Solid black lines -  H

parR 1  for 0isoA MHz, 

Eq.56; solid red lines - part of Eq. 56 dependent on H  (  HDD JK 3 ); solid orange lines 

- part of Eq. 56 dependent on S  (  SDD JK 7 ). Solid lines –  H

parR 1  for 63isoA MHz 

(green line, 15N, Eq. 73) and for 45isoA MHz (blue line, 14N, Eq. 74); The contributions 

dependent on different transition frequencies are marked as follows: 

a) from Eq. 73: dashed-dotted green line –  H

I

DDRK ,15

1 , dotted green line –

 H

II

DDRK ,15

1 , dashed green line –  H

III

DDRK ,15

1 ; 

b) from Eq. 74: dashed-dotted blue line –  H

I

DDRK ,14

1 , dotted blue line –  H

II

DDRK ,14

1

, dashed blue line –     H

IV

H

III

DD RRK  ,14

1

,14

1  . The simulations have been performed 

for the following parameters: 
910*1 trans s, 4ISd Å, 

10

12 10*6.1 D  m/s2. 
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In both figures the case of 0isoA  MHz when Eq. 73 and Eq. 74 simplify to the SBM 

formula (Eq. 56) is shown with black solid line. It can be easily seen that the isotropic 

hyperfine coupling leads to reduction of  H

parR 1  in the low field range (defined by the 

condition isoS A ). The reduction of the  H

parR 1  for the case of 14N ( 1P ) is larger 

than for the case of 15N ( 2/1P ) and this effect becomes more pronounced for slower 

dynamics as shown in Fig. 5.3.  
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Figure 5.3. Simulations of 1H spin-lattice relaxation dispersion profile,  H

parR 1 , for slow 

dynamics (
810*1 trans s, 4ISd Å, 

11

12 10*6.1 D  m/s2); blue lines – case of 14N  

(Eq. 74); green lines – case of 15N (Eq. 73); dashed lines – the terms: 

    H

III

H

II

DD RRK  ,15

1

,15

1   for 15N and       H

IV

H

III

H

II

DD RRRK  ,14

1

,14

1

,14

1   for 14N; 

dashed-dotted lines – the terms:  H

I

DDRK ,15

1  for 15N and  H

I

DDRK ,14

1  for 14N.

 

  

 

5.2. High and low field limits  
 

Taking into account the values of the isotropic hyperfine coupling constant, isoA , two 

limiting cases can be distinguished: the low field regime in which the amplitude of the 

scalar hyperfine coupling is much larger than the electron Larmor frequency, S   
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( SisoA  ), and the high field regime when the scalar hyperfine coupling is much smaller 

than S  ( SisoA  ). The dependencies of the a , b  coefficients of Eq. 73 (the case of 15N) 

on the 1H frequency are presented in Fig. 5.4 a), analogous dependencies of the coefficients 

ha   (the case of 14N) are shown in Fig. 5.4 b). 
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Figure 5.4. a) The coefficients a and b from Eq. 73 b) ha   from Eq. 74 ( 63isoA  MHz 

for 15N and 45isoA  MHz for 14N) versus 1H frequency. 
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The coefficients reach in the low and high field limits the following values: 

 

low field value coefficients high field value 

15N 

2/1  a  1 

2/1  b  0 

14N 

3/2  a  1 

3/1  b  0 

3/1  c  0 

3/2  d  1 

3/1  e  1 

3/2  f  0 

3/2  
g  0 

3/1  h  1 

 

Table 5.2. Values of the coefficients: a , b  from Eq. 73 and ha   from Eq. 74 in the low 

and high field limits. 

 

Analogously, for the transition frequencies one obtains: 

low field value transition frequencies, ij  high field value 

15N 

isoA  13  S  

isoA  23  S  

isoA  34  0 

0 
12  0 

0 
24  

S  
14N 

2/3 isoA  23  S  

2/3 isoA  45  S  

2/3 isoA  13  S  

2/3 isoA  56  
0 
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2/3 isoA  25  S  

2/3 isoA  34  
0 

0 
12  

0 

0 
46  S  

0 
24  

0 

0 
35  

0 

 

Table 5.3. Values of the transition frequencies, ij , from Eqs. 73 and 74 in the low and 

high field limits. 

  

In consequence, the proton spin relaxation rate,  H

parR 1 , for the case of 15N is given in 

the low field range by the expression [15,32]:  

       isoDDH

par AJJKR 50501   (76) 

while for the case of 14N one gets [32]: 
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In the high field range, the expressions of Eqs. 73 and 74 for the cases of 15N and 14N, 

respectively, converge to the well-known Solomon-Bloembergen-Morgan equation 

[15,32]:  

       SHDDH

par JJKR  731   (77)

 

5.3. Origin of local relaxation enhancement 
 

One can see in Fig. 5.3 that for slow dynamics the relaxation rate,  H

parR 1 , tends to form 

a maximum (a local relaxation enhancement) that is associated with the terms represented 

by the dashed-dotted lines. The apperance of the maximum is a result of an interplay 

between the spectral densities,  HJ  , decreasing with increasing frequency and the 

corresponding prefactors that increase with increasing frequency. The effect is shown in 

Fig 5.5 a), b) for the cases of 15N and 14N, respectively (the values of the spectral density 

have been normalized to 1 in the low field limit). 
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Figure 5.5. a) Dashed-dotted green line -     HJba 
2221  ; dashed grey line - spectral 

density  HJ  ; dotted grey line - weight factor of the spectral density   2221 ba  ;  

b) dashed-dotted blue line 
       
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dashed grey line – spectral density  HJ  ; dotted grey line – weight factor of the spectral 

density 
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; 
810*4 trans s, 4ISd Å, 

12

12 10*0.4 D  m/s2. 
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The relaxation dispersion profile,  H

parR 1 , being a sum of the term shown in Fig. 5.5 and 

the other terms present in Eqs. 73 and 74 (15N and 14N cases, respectively) takes the shape 

presented in Fig. 5.6 a), b) for the cases of 15N and 14N containing radicals, respectively. 

The relaxation maxima are well pronounced.  
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Figure 5.6. 1H relaxation dispersion,  H

parR 1 , for a) 15N and b) 14N. Solid green and blue 

lines -  H

parR 1  according to Eqs. 73 and 74, respectively. Dashed-dotted lines – the 

terms:  H

I

DDRK ,15

1  for 15N and  H

I

DDRK ,14

1  for 14N; dashed lines -  H

III

DDRK ,15

1  for 

15N and     H

IV

H

III

DD RRK  ,14

1

,14

1   for 14N; dotted lines -  H

II

DDRK ,15

1  for 15N and 

 H

II

DDRK ,14

1  for 14N. (
810*4 trans s, 4ISd Å, 

12

12 10*0.4 D  m/s2).
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5.4. Comparison with “classical” relaxation theory 
 

It is interesting to discuss in more details the influence of the hyperfine coupling between 

the electron and nitrogen spins on the 1H relaxation.  

In Fig. 5.7 a), b) the ratio between the relaxation rates  H

parR 1  calculated according to 

Eqs. 73 and 74 (i.e. including the isotropic hyperfine coupling) and the relaxation rates

 H

SBMparR ,

1  calculated using the SBM formula (Eq. 56, here the superscript “SBM” is 

added to distinguish it from the results obtained by Eqs. 73 and 74) is shown for the cases 

of 15N and 14N containing radicals. 
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Figure 5.7. Ratio between  H

parR 1  calculated according to Eq. 73 and 74 and predictions 

of the SBM theory ( )(,

1 H

SBMparR   given by Eq. 56) for a) 15N and b) 14N (the value of 1 is 

marked with dashed black horizontal line). 
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As at higher frequencies the energy level structure is mostly defined by the Zeeman 

interaction, the influence of the hyperfine coupling is less important and eventually the ratio 

reaches one (i.e. Eqs. 73 and 74 converge to the SBM expression). At low frequencies the 

relaxation rates calculated according to Eqs. 73 and 74 are smaler than those predicted by 

the SBM formula. This is a consequence of the energy level structure of the electron spin 

beeing affected (even determined at very low frequencies) by the isotropic hyperfine 

coupling. This effect is more pronounced for slower dynamics when the details of the 

energy level structure are more visible (in the extreme narrowing condition 1c  the 

role of the isotropic hyperfine coupling is minor). 

To illustrate the differences in the effects of the hyperfine coupling for 15N and 14N isotopes, 

the ratio    H

par

H

par RR  N,

1

N,

1

1514

/  versus frequency is shown in Fig. 5.8 for different 

translational correlation times, trans . The ratio is smaller than one – i.e. the 1H relaxation 

in solutions of 14N containing radicals is slower, except for the high frequency range when 

the relaxation rates become equal (and described by the SBM expression, Eq. 56). 

 

 

 

Figure 5.8. Ratio between    H

par

H

par RR  N,

1

N,

1

1514

/  versus proton frequency for different 

values of the translational correlation time, trans . 

   

The correlation times are in the range from water translational correlation time  

(
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high viscosity (like glycerol or propylene glycol at low temperatures, [31-34,57]). For 

shorter correlation time the difference between the 1H relaxation in the case of nitrogen 

isotopes is negligible. For longer correlation times the effect is clearly seen. 

 

5.5. Electron spin relaxation 
 

Electron spin relaxation acts as an additional source of modulations of the electron spin-

proton spin dipole-dipole interaction. In the SBM expression (Eq. 56), the correlation time 

c  is replaced by the effective correlation time: 
e

iceffc R 11

, = .  

The intermolecular spectral density can be modified in a similar way by replacing the factor 

12 

transu   by )( 12 e

itrans Ru   ( 1i  for  HJ   and 2i  for  SJ  ) as follows [2,31-33] (the 

index R is added to distinguish from the spectral density presented in chapter 2, not 

including the electron spin relaxation):  
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The description of the electron spin relaxation becomes more complicated at lower fields 

when the SBM approach breaks down [2,31-33]. Here only the main concept of introducing 

the electron spin relaxation into the theory of the 1H spin-lattice relaxation is briefly 

outlined. For the diagonal part of the matrix  M  (except of the population block of the 

matrix), the following generalisation of the spectral densities has to be applied [2,31-33]: 
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In Eq. 81 its is assumed that '  . For the population block of the matrix  M  one obtains 

for the case of 15N [31]:  
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where ),,,(~ e

Htrans

R Rus   is given as a matrix product:  
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eR  represents here a set of the electron spin relaxation rates 
eR '' ; transH ui  /= 2 . 

Analogously for the case of 14N the equations take the form [31]: 
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where: 
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The electron spin relaxation is primarily caused by the anisotropic part of the electron spin 

- nitrogen spin hyperfine coupling modulated by the rotation of the paramagnetic molecule 

[17]. The individual relaxation rates 
eR ''  are calculated in terms of the Redfield 

relaxation formula, presented in Section 3.1, Eq. 45 [2,4,5,9]. The explicit expressions for 

the electron spin relaxation rates as linear combinations of the electron spin spectral 

densities are given in Ref. [31].  

The electron spin spectral densities  AJ  are given as [31,57]:  
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where  J  is a spectral density describing the rotational motion of the radical molecule 

(it can be the Cole-Davidson spectral density,  CDJ , defined by Eq. 34 or simple Lorentz 

function, Eq. 32). 
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Fig. 5.9 shows a comparison of the 1H spin-lattice relaxation dispersion profiles predicted 

by the SBM theory (Eq. 56), Eqs. 73 and 74 (for the 15N and 14N cases, respectively) taking 

into account the contribution of the isotropic part of the hyperfine coupling to the energy 

level structure of the electron spin, and predictions of the theory including both the isotropic 

and anisotropic part of the hyperfine coupling (i.e. the electron spin relaxation). 
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Figure 5.9. 1H spin-lattice relaxation dispersion profiles predicted by the SBM theory (Eq. 

56, solid black line), the theory including the isotropic part of the hyperfine coupling (solid 

green and blue line, Eq. 73 and 74, respectively) and the extended theory including the 

electron spin relaxation (dashed green and blue lines). 
810*1 trans s, 4ISd Å, 

11

12 10*6.1 D  m/s2. 

 

The figure demonstrates that the electron spin relaxation leads to a further decrease of the 

1H spin-lattice relaxation in the low frequency range due to faster modulations of the proton 

spin-electron spin dipole-dipole coupling. 

Fig. 5.10 shows the ratio between the predictions including the electron spin relaxation, 

and the effect of the isotropic part of the hyperfine coupling and the predictions neglecting 

the electron spin relaxation for different translational correlation times (the ratio between 

trans  and R  was set to 30, the tensor components of the hyperfine coupling yield 

0.22xxA MHz, 0.23yyA MHz and 0.142zzA MHz for 15N and 4.15xxA MHz, 

1.16yyA MHz and 5.99zzA MHz for 14N).  
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Figure 5.10. Ratio between  H

parR 1  obtained for a) 15N and b) 14N after including the 

influence of electron spin relaxation and obtained including only the effect of the isotropic 

part of the hyperfine coupling (the value of 1 is marked with black dashed horizontal line). 

 

The role of the electron spin relaxation is important when the electron spin relaxation time 

becomes of the same order as the translational correlation time. When the rotational (and 

hence translational) dynamics is fast, the electron spin relaxation is slow and then it can be 

neglected. For slower dynamics the electron spin relaxation is faster and then it becomes 

an important component of the fluctuations of the proton spin-electron spin dipole-dipole 

coupling (especially as the dynamics itself becomes slower).  

Eventually, in Fig. 5.11 the ratio between the predictions including both the isotropic and 

anisotropic parts of the hyperfine coupling and the SBM theory is shown to demonstrate 
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the inaccuracy of the latter approach. 
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Figure 5.11. Ratio between ),(1

e

H

par RR   including both the isotropic and anisotropic 

parts of the hyperfine interaction and values of )(1 H

parR   given by SBM formula (Eq.56) 

for a) 15N and b) 14N (the value of 1 is marked with black dashed horizontal line). 

 

At the end of this section, the ratio )(/)( N,

1

N,

1

1514

H

par

H

par RR   versus translational 

correlation time, trans , and versus proton frequency is shown in Fig. 5.12 a) and b), 

respectively, to illustrate the differences in the influence of the isotropic hyperfine coupling 

resulting from 14N and 15N. The first simulations have been performed for several values 
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of frequency. For 1 MHz the ratio is close to one even for very long correlation times. For 

progressively lower frequencies the deviations from unity increase especially for long 

correlation times. The changes are monotonic only for higher frequencies, but the ratio is 

always smaller than one. Also the ratio plotted versus frequency shows a non-monotonic 

behaviour at low and intermediate frequencies for longer trans . 
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Figure 5.12. Ratio )(/)( N,

1

N,

1

1514

H

par

H

par RR   versus a) translational correlation time, trans  

and b) versus frequency; 30/ Rtrans  . 
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Similar comparison is presented in Fig. 5.13. The ratio ),(/),( N,

1

N,

1

1514 e

H

pare

H

par RRRR   

after including the influence of the electron spin relaxation versus translational correlation 

time, trans , and versus frequency is shown in Fig. 5.13 a) and b), respectively. The ratio 

does not change monotically over the entire range of correlation times and frequencies and 

it is always smaller than 1.  
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Figure 5.13. Ratio ),(/),( N,

1

N,

1

1514 e

H

pare

H

par RRRR   obtained after including the influence 

of electron spin relaxation: a) versus correlation time, R , and b) versus frequency; the 

value of 1 is marked with black dashed horizontal line; 
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6. Experimental details 
      

6.1. Principles of NMR Field Cycling relaxation experiments 
 

Standard NMR relaxation experiments are performed at a single frequency. Fast Field 

Cycling (FFC) technology opens the possibility to perform relaxation experiments in a 

broad frequency (magnetic field) range, typically 10 kHz – 20 MHz (for 1H). In 

consequence, by FFC NMR relaxometry one can detect motional processes across a huge 

range of time scales (from ms to ps) [48]. As already explained, frequency dependent 

relaxation studies have the potential to reveal the underlying mechanisms of molecular 

motion (not only its time scale). The dependence of spin-lattice relaxation rate on the 

resonance frequency is referred to as a relaxation dispersion profile. 

A schematic representation of spin-lattice FFC experiments is shown in Fig. 6.1. Two 

sequences can be used: prepolarized sequence (PP) at low and intermediate magnetic field 

and non-polarized (NP) sequence at high magnetic field. 

 

 

Figure 6.1. Schematic view of sequences used in spin-lattice relaxation FFC experiments: 

a) prepolarized (PP) sequence, b) non-polarized (NP)sequence. 

 

The PP sequence consists of three steps: 

1. Polarization: a relatively strong magnetic field, polB , (about 0.5 T) is applied for a 

time 15Tt pol  , i.e. until the magnetization reaches its equilibrium, 0IM  (a value 

predicted by Boltzmann distribution at the field polB , Eq. 6).  

2. Relaxation: the magnetic field is reduced to a lower value relB  that is kept for a 

time  . During the time   the initial magnetization evolves (decreases) towards 

the new equilibrium. The decreasing is characterized by a spin-lattice relaxation 

time, 1T .  
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3. Acquisition: to meassure the value of the magnetization after time  ,  IzM , a 

2/ pulse is applied and the amplitude of the resulting FID (Free Induction Decay) 

signal at the acquisition time, acqt , is registered at a detection (acquisition) field, 

acqB .  

For every relaxation field, relB , this sequence is repeated with varying  , leading to a 

magnetization curve,  IzM , schematically shown in Fig. 6.2. 
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Figure 6.2. Schematic view of a magnetization curve  IzM  obtained using PP sequence. 

The initial magnetization has been set to 10 IM . 

 

When the magnetization curve turns out to be single-exponential (as the symulated curve 

shown in Fig.6.2), the spin-lattice relaxation time, 1T , can be obtained from the formula:  

   1

0

T

IIz eMM






  (121) 

At a high relaxation field, PP sequence is replaced by NP sequence. The field at which this 

switching takes place depends on some technical parameters of the spectrometer. For NP 

sequence 0polB  (as indicated by the name) as shown in Fig. 6.1. b). This implies that the 

magnetization, IzM , increases from almost zero (at Earth magnetic field) to the equilibrium 

at relB  (Fig. 6.3). 
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Figure 6.3. Schematic view of a magnetization curve  IzM  obtained using NP sequence. 

The final magnetization has been set to 1

IzM . 

 

In this case the evolution of the magnetization is described, provided it is single-

exponential, by the expression: 

   1

0

T

IIzIz eMMM






   (122)

   

6.2. Materials and sample preparation 
 
1H spin-lattice relaxation dispersion experiments have been performed for solutions of 

deuterated nitroxide radicals 4-oxo-TEMPO-d16 (TEMPONE, 4-oxo-2,2,6,6-tetramethyl-

1-piperidinyloxyl) containing 15N and 14N isotopes. The structure of the nitroxide radical 

molecule is shown in Fig. 6.4. 

 

Figure 6.4. Sructure of 4-oxo-TEMPO-d16-
15(14)N. The unpaired electron is marked with a 

black dot. 
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Deuterated compounds have been used to eliminate influence of methyl groups of the 

radicals on 1H relaxation. As solvents decalin (decahydronaphtalene, mixture of cis- and 

trans-decalin isomers), glycerol (propane-1,2,3-triol) and propylene glycol (propane-1,2-

diol) have been used. Structures of these compounds are shown in Fig. 6.5. 

 

 

Figure 6.5. Structures of solvents molecules: a) decalin (cis- and trans- isomers) b) glycerol 

and c) propylene glycol. 

 

These liquids undergo glass transition. The melting temperature of decalin is 240mT K 

for cis isomer and 243mT K for trans isomer [60]. The melting point of glycerol is 

9.290mT K however one can cool it down to even lower temperatures avoiding freezing 

[61]. Propylene glycol melts at 214mT K [60].  

All three liquids show considerably different viscosity: at 298 K the viscosities yields 

(3.355/2.107 mPa*s [62], 1412 mPa*s [63], 57.571 mPa*s [64] for decalin, glycerol and 

propylene glycol, respectively. That implies different time-scales of translational diffusion.  

1H spin – lattice relaxation rates have been measured for 4-oxo-TEMPO-d16-
15N  

and 4-oxo-TEMPO-d16-
14N dissolved in decalin, glycerol and propylene glycol in the 

temperature range 244 K - 308 K, 290 K - 363 K, 253 K - 298 K, respectively. The lowest 
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temperature is limited by the melting points of the solvents and by the largest relaxation 

rate accesible to the spectrometer. The highest temperature is limited by the lack of the 

relaxation dispersion. 1H relaxation dispersion profiles for pure solvents have been 

collected for the corresponding temperatures, if not available in the literature. To extract 

the relaxation contribution associated with proton-electron interactions the relaxation rates 

of the pure solvents were subtracted from the relaxation rates obtained for the 

corresponding solution. The following concentrations of the radicals have been used: 20 

mM, 2.7 mM, 5 mM for decalin, glycerol and propylene glycol solutions, respectively. 

Eventually, to confirm that the rates of the paramagnetically induced relaxation are 

proportional to the concentration of the radicals, additional measurements for 1 mM and 5 

mM decalin solutions were performed. 

To avoid oxidation and absorption of water all samples have been degassed and sealed in 

glass tubes. All chemicals (radicals and solvents) were purchased from Sigma-Aldrich.  
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7. Results and analysis 
 

In this section 1H spin-lattice relaxation data for the solutions (and pure solvents for 

comparison) listed in Section 6 are presented and quantitatively analized. A MATLAB 

software is used for the analysis; the source code is included in Appendix A.1.  

 

7.1. Decalin solutions of 4-oxo-TEMPO-d16-15(14)N 
 
1H spin-lattice relaxation dispersion profiles for pure decalin are shown in Fig. 7.1 [65]. 

Frequncy in the axis description refers to 1H resonace frequency (  2/H ) and it has this 

meaning for all figures in this section. 
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Figure 7.1. 1H spin-lattice relaxation dispersion,  H

diamR 1 , for pure decalin (Ref. [65]). 

Reprinted with permission from D. Kruk et al., J. Chem. Phys. 140, 174504 (2014). 

Copyright 2014, AIP Publishing LLC.  

 

The dispersion of the 1H spin-lattice relaxation rates,  H

diamR 1 , is small due to fast 

dynamics of decalin. The relaxation is single exponential. Fig. 7.2 a) and b) shows time 

dependences of the proton magnetization in arbitrary units measured at 244 K and 308 K 

for the highest and lowest frequencies (20 MHz and 10 kHz, respectively). 
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Figure 7.2. 1H magnetization versus time for pure decalin obtained applying a) NP 

sequence at 20 MHz and by b) PP sequence at 10 kHz. Solid lines show single-exponential 

fits.  
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Figure 7.3. 1H spin-lattice relaxation dispersion profiles,  HR 1 , for decalin solutions of 

a), c) 4-oxo-TEMPO-d16-
15N and b), d) 4-oxo-TEMPO-d16-

14N for 20 mM concentration of 

radicals. 

 

In Fig. 7.3 1H spin-lattice relaxation dispersion profiles for decalin solutions of 4-oxo-

TEMPO-d16-
15N (left part) and 4-oxo-TEMPO-d16-

14N (right part) are shown [32].  

The relaxation is single exponential also for the paramagnetic solutions (see Fig. 7.4 a), b), 

c) and d)). Comparing Fig. 7.1 and Fig. 7.3 one can clearly see that the relaxation rates for 

the paramagnetic solutions are much larger (the relaxation is much faster).  
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Figure 7.4. 1H magnetization (in arbitrary units) versus time for 20 mM decalin solutions 

of 4-oxo-TEMPO-d16-
15N (left) and 4-oxo-TEMPO-d16-

14N (right) obtained by a), b) NP 

sequence at 20 MHz and c), d) PP sequence at 10 kHz. Solid red and green lines show 

single-exponential fits for the lowest and highest temperatures, respectively.  

  

The relaxation rates  H

parR 1  have been determined by subtracting the diamagnetic 

contribution  H

diamR 1  (shown in Fig. 7.1) from the total relaxation rate,  HR 1  (Fig. 7.3, 

Eq. 63). According to the theory (Eqs. 73 and 74), the rates of the 1H spin-lattice relaxation 

induced by dipolar couplings of protons with paramagnetic molecules are proportional to 

the concentration, SN , of the last species. This has been experimentally confirmed. As said 

in Section 6, 1H spin-lattice relaxation rates at 20 MHz and 6 MHz have been measured for 

three different concentrations of 4-oxo-TEMPO-d16-
14N in decalin (the full relaxation 

dispersion profile was not collected due to long relaxation times for the low concentration 

of the paramagnetic molecules). The values obtained after subtracting the diamagnetic 

contribution are presented in Fig. 7.5. It is clearly seen that the relaxation rates  H

parR 1  

linearly change with the concentration of the radical. 
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Figure 7.5. Experimental values of 1H relaxation rates originating from proton-electron 

dipolar interactions,  H

parR 1 , in decalin solutions of 4-oxo-TEMPO-d16-
14N versus the 

number SN  of the radical molecules per unit volume.  

 

Then the  H

parR 1  relaxation rates were normalized to 1 mM concentration of the radicals. 

The normalized relaxation rates,  H

normR 1 , are shown in Fig. 7.6 a)-d). From now on, 

when reffering to the equations presented in previous sections it is assumed that the 

concentration of the electron spins is 1 mM.  

The figures contain corresponding theoretical fits. Before explaining the fitting strategy one 

should notice that for decalin the 1H spin-lattice relaxation dispersion profiles for the cases 

of 15N and 14N containing radicals almost coincide as predicted for fast dynamics by the 

theory (Eq. 73 and 74).  

The relaxation rate,  H

normR 1 , depends on six parameters: the distance of closest approach, 

ISd , translational correlation, trans , the parameter f  describing the ‘effective’ influence of 

the rotational motion on the modulations of the proton spin-electron spin dipolar 

interactons, the rotational correlation time, R , the stretching parameter,  , and the 

isotropic hyperfine coupling, isoA  (see Eqs. 73 and 74 for 15N and 14N cases, respectively). 
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Figure 7.6. Normalized (to 1 mM concentration) 1H spin-lattice relaxation dispersion 

profiles,  H

normR 1 , for decalin solutions of a), c) 4-oxo-TEMPO-d16-
15N and b), d) 4-oxo-

TEMPO-d16-
14N with corresponding fits in terms of Eqs. 73 and 74, respectively (Ref. [32]). 

Adopted with permission from D. Kruk et al., J. Chem. Phys. 137, 044512 (2012). 

Copyright 2012, AIP Publishing LLC. 

 

The isotropic hyperfine coupling constant, isoA , has been set to the value of 44isoA MHz 

(14N) and 62isoA MHz (15N) taken from literature [58]. In [58] the isoA  values have been 

determined by means of ESR (Electron Spin Resonance) experiments for 4-oxo-TEMPO-

d16 diluted in a mixture of glycerol and water. The ratio    N/N 1415

isoiso AA  corresponds to 

the ratio between gyromagnetic factors    N/N 1415   that yields 1.4. The value of the 

stretching parameter,  , has been fixed to the literature value of 0.53 for pure decalin [66]. 

This reduces the number of the adjustable parameters to four: ISd , trans , f  and R . 

The rotational motion of the paramagnetic molecules influences the proton spin relaxation 

when the dynamics of the system is relatively slow. Therefore, the rotational contribution 

to the modulations of the proton spin-electron spin dipole-dipole coupling (Eq. 39) has only 

been taken into account for the four lowest temperatures (244 K, 247 K, 250 K and 254 K). 

The proton relaxation data for both cases (15N and 14N containing radicals) have been fitted 
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simultaneously for each temperature using Eqs. 73 and 74, respectively, in terms of the 

same parameters (the dynamics does not depend on the nitrogen isotope). The value of the 

distance of closest approach, ISd , obtained for the individual teperatures has varied between 

4.97 Å – 5.09 Å. As this range is quite narrow it has been fixed to 05.5ISd Å and kept 

temperature independent. The f  value has been ranging from 1.77 to 1.82 and finally it 

has been fixed to 8.1f  for 244 K, 247 K, 250 K and 254 K; at higher temperatures 0f  

(the rotational contribution is neglected). With this assumptions the analysis has been 

repeated with only two adjustable parameters: R  and trans  (the same for 15N and 14N 

cases) at the lower temperatures. For the higher temperatures only the translational 

correlation time has been fitted. This fitting strategy is described in [32].  

The rotational correlation times obtained from the current analysis are included into Table 

7.1. and compared in Fig. 7.7 with literature values from ESR studies [66,67]. They stay in 

good agreement, however one should remember that the rotational correlation time, R , 

obtained from the current analysis describes the combined effect of the rotational dynamics 

of the solvent and radical molecules (both interacting spins: the electron - S  and nuclear - 

I are not placed in the center of the molecule), while the correlation time obtained from 

ESR experiments describes the rotational motion of only the radical molecule. The ratio of 

Rtrans  /  is much higher than theoretically predicted by the hydrodynamic model: 

9/ Rtrans   [9] and it yields about 70/ Rtrans  . This effect has also been reported for 

other liquids [34].
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T  [K] R  [s] trans  [s] ISd  [Å] f  
R

transx



  

12D  [ sm /2 ] 

308 - 2.01*10-10 (1.9%) 5.05 1.8 - 1.24*10-9 (4.4%) 

298 - 2.57*10-10 (1.6%) 5.05 1.8 - 9.86*10-10 (4.3%) 

283 - 3.70*10-10 (2.0%) 5.05 1.8 - 6.79*10-10 (4.5%) 

273 - 5.05*10-10 (1.7%) 5.05 1.8 - 5.04*10-10 (4.4%) 

262 - 6.41**10-10 (3.4%) 5.05 1.8 - 3.82*10-10 (5.3%) 

254 1.30*10-11 (27%) 9.48*10-10 (3.2%) 5.05 1.8 73 2.79*10-10 (5.1%) 

250 1.43*10-11 (23%) 1.06*10-9 (2.7%) 5.05 1.8 74 2.42*10-10 (4.8%) 

247 1.66*10-11 (20%) 1.19*10-9 (2.3%) 5.05 1.8 72 2.20*10-10 (4.6%) 

244 1.91*10-11(18%) 1.32*10-9 (2.3%) 5.05 1.8 69 1.99*10-10 (4.6%) 

 

Table 7.1. Rotational and translational diffusion parameters for decalin solutions of 4-oxo-TEMPO-d16 (
14N and 15N), Ref. [32]. The accuracy of 

the parameters is given in % (the error analysis is described in Appendix A.2). Results obtained neglecting the rotational contribution are separated 

with red horizontal line. Adopted with permission from D. Kruk et al., J. Chem. Phys. 137, 044512 (2012). Copyright 2012, AIP Publishing LLC. 
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Figure 7.7. Rotational correlation times, R , for solution of 4-oxo-TEMPO-d16 in decalin 

(current analysis described in Ref. [32]) compared with the literature data (Refs. [66,67]). 

Adopted with permission from D. Kruk et al., J. Chem. Phys. 137, 044512 (2012). Copyright 

2012, AIP Publishing LLC.  

 

In Fig. 7.8 relative diffusion coefficients, 12D , for decalin and radical molecules (Table 7.1) 

calculated from the relation transISdD /2

12   are compared with literature data obtained by 

means of Pulse Field Gradient (PFG) diffusometry [68]. As relaxation data give relative 

diffusion coefficients, while self-diffusion coefficients are meassured by PFG diffusometry, 

the results from literature were multiplied by factor 2 ( DD 212   for identical molecules; D  - 

self diffusion coefficient). In the present experiments a mixture of cis- and trans-decalin 

isomers was used (the relative diffusion coefficients for pure cis- and trans-decalin are marked 

in Fig. 7.8 with full and open orange diamonds, respectively). The values of 12D  obtained for 

solutions of nitroxide radicals are in good agreement with the values obtained by means of 

PFG diffusometry. 

At this point it is worth stressing that for paramagnetic solutions the relaxation dispersion is 

stronger than for pure diamagnetic solvent (it is so due to the contribution of spectral densities 

taken at frequencies close to that of electron spin frequency,   SHS   , to  H

parR 1  as 
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explained in Section 3). Thus, the NMR relaxometry gives for liquids containing paramagnetic 

centres the possibility to investigate very fast dynamics even when the proton relaxation of the 

corresponding diamagnetic system is already frequency independent.  
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Figure 7.8. Relative translation diffusion coefficient, 12D , for decalin solution of 4-oxo-

TEMPO-d16 (
15N, 14N) obtained from current analysis of  1H spin-lattice relaxation dispersion 

profiles (described in Ref. [32]) compared with literature values (open orange diamonds - 

trans-decalin, Ref. [68]; full orange diamonds – cis-decalin, Ref. [68]); Adopted with 

permission from D. Kruk et al., J. Chem. Phys. 137, 044512 (2012), Copyright 2012, AIP 

Publishing LLC and from D. Kruk et al., J. Chem. Phys. 140, 174504 (2014), Copyright 2014, 

AIP Publishing LLC. 

 

In Fig. 7.9. the relaxation dispersion data for decalin solutions of 4-oxo-TEMPO-d16-
14(15)N at 

the lowest a) and the highest b) temperatures are shown in detail, including the corresponding 

fits. In both figures the predictions for the case of no hyperfine interaction ( 0isoA ) are also 

shown. It can be clearly seen that for slower dynamics the low field reduction of the relaxation 

rates caused by the non-zero scalar hyperfine interaction is larger. At 308 K the effect is small 

and the differences between the 15N and 14N cases almost vanish. 

The reduction is caused by the fact that for 0isoA  at low frequencies the small frequency of 

electron Zeeman splitting is replaced in the spectral densities by the larger hyperfine splitting. 
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The effect vanishes at higher frequencies when the electron Zeeman interaction dominates the 

isotropic hyperfine coupling. 
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Figure 7.9. 1H spin-lattice relaxation dispersion profiles,  H

normR 1 , for decalin solution of 4-

oxo-TEMPO-d16-
14(15)N at a) 244 K and b) 308 K (Ref. [32]). Solid green and blue lines - fits 

for 15N and 14N according to Eqs. 73 and 74, respectively; dashed black line - the 

corresponding predictions for 0isoA . Adopted with permission from D. Kruk et al., J. Chem. 

Phys. 137, 044512 (2012). Copyright 2012, AIP Publishing LLC. 

 

To illustrate how the individual terms of Eqs. 73 and 74 (for the cases of 15N and 14N, 

respectively) contribute to the overall shape of  H

normR 1 , in Figs. 7.10 and 7.11 the  H

normR 1  
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profiles for 14N and 15N at 244 K and 308 K are decomposed into terms marked in Eqs. 73 and 

74 by  H

X

DDRK ),14(15

1  (where IVorIIIIIIX ,, ). 
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Figure 7.10. 1H spin-lattice relaxation dispersion,  H

normR 1 , for decalin solution of 4-oxo-

TEMPO-d16-
15N at a) 244 K and b) 308 K (Ref. [32]). Solid black lines – predictions for 

0isoA ; solid orange lines –  SDD JK 7 ; solid red lines –  HDD JK 3 ; solid green lines – 

fits according to Eq. 73; dashed-dotted green lines –  H

I

DDRK ,15

1 ; dashed green lines – 

 H

III

DDRK ,15

1 ; dotted green lines –  H

II

DDRK ,15

1 . 
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Figure 7.11. 1H spin-lattice relaxation dispersion,  H

normR 1 , for decalin solution of 4-oxo-

TEMPO-d16-
14N at a) 244 K and b) 308 K (Ref. [32]). Solid black lines – predictions for 

0isoA ; solid orange lines -  SDD JK 7 ; solid red lines –  HDD JK 3 ; solid blue lines – fits 

according to Eq. 74; dashed-dotted blue lines -  H

I

DDRK ,14

1 ; dashed blue lines - 

    H

IV

H

III

DD RRK  ,14

1

,14

1   ; dotted blue lines -  H

II

DDRK ,14

1 . 
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At 240 K decalin freezes. Therefore, in order to investigate the 1H relaxation effects caused by 

nitroxide radicals in solution for slower dynamics, more viscous solvents have to be used. The 

results obtained for glycerol and propylene glycol solutions of 4-oxo-TEMPO-d16-
14(15)N are 

presented and analyzed in the next sections.  
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7.2. Glycerol solutions of 4-oxo-TEMPO-d16-15(14)N 
 
1H spin-lattice relaxation dispersion profiles for pure glycerol are shown in Fig.7.12.  
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Figure 7.12. 1H spin-lattice relaxation dispersion,  H

diamR 1 , for pure glycerol (Ref. [31]). 

Adopted with permission from D. Kruk et al., J. Chem. Phys. 138, 124506 (2013), Copyright 

2013, AIP Publishing LLC. 
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The relaxation process is single exponential (Fig. 7.13 shows illustrative time dependences of 

the proton magnetization measured at 290 K and 363 K for the highest and lowest frequencies 

– 20 MHz and 10 kHz). 
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Figure 7.13. 1H magnetization (in arbitrary units) versus time for pure glycerol obtained by a) 

NP sequence at 20 MHz and by b) PP sequence at 10 kHz. Solid lines (red and green) show 

single-exponential fits at 290 K and 363 K, respectively. 
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1H relaxation dispersion profiles for pure glycerol have been measured and thoroughly 

analyzed in Ref. [34] (the data described in Ref. [34] have been collected at different 

tempratures than needed for the current analysis, therefore the 1H relaxation dispersion profiles 

presented in this section have been measured specifically for the purpose of comparison with 

the coresponding results for glycerol solutions of nitroxide radicals). The rotational correlation 

time and the relative diffusion coefficients obtained in [34] for pure glycerol are presented in 

Figs. 7.14 and 7.15 (which also contain results for the paramagnetic solusions that are 

discussed later), respectively, and they provide a reference point for the current analysis of 

proton relaxation in glycerol solutions of 4-oxo-TEMPO-d16-
14(15)N. Furthermore, as a result 

of the analysis described in Ref. [34] the distance of closest approach has been obtained and it 

yelds 5.3IId Å. The ratio between the translational and rotational correlation times varies 

between the values of 40/ Rtrans   and 62/ Rtrans   obtained for the highest and lowest 

temperatures, respectively.  
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Figure 7.14. Rotational correlation times, R , of 4-oxo-TEMPO-d16 dissolved in glycerol 

obtained from the current analysis (blue squares, Refs. [31,32]) and compared with literature 

data. Dashed black line – interpolation by the Vogel-Fulcher-Tamman equation. Reprinted 

with permission from D. Kruk et al., J. Chem. Phys. 138, 124506 (2013), Copyright 2013, AIP 

Publishing LLC. 
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Figure 7.15. Relative diffusion coefficient, 12D , for glycerol solutions of 4-oxo-TEMPO-d16 

obtained from the current analysis (blue squares, described in Refs. [31,32]) and compared 

with literature [34,69]. Dashed black line - interpolation by the Vogel-Fulcher-Tamman 

equation. Reprinted with permission from D. Kruk et al., J. Chem. Phys. 138, 124506 (2013), 

Copyright 2013, AIP Publishing LLC.  
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Figure 7.16. 1H spin-lattice relaxation dispersion,  HR 1 , for glycerol solutions of a), c) 4-

oxo-TEMPO-d16-
15N and b), d) 4-oxo-TEMPO-d16-

14N for 2.7 mM concentration of radicals 

(Ref. [31]). Adopted with permission from D. Kruk et al., J. Chem. Phys. 138, 124506 (2013), 

Copyright 2013, AIP Publishing LLC. 

 

In Fig. 7.16 1H spin-lattice relaxation dispersion profiles collected for glycerol solutions of 4-

oxo-TEMPO-d16-
15N and 4-oxo-TEMPO-d16-

14N are shown. Analogously to the case of 

decalin solutions, the 1H relaxation is single exponential also when glycerol is used as the 

solvent (see Fig. 7.17 a), b), c) and d)).  
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Figure 7.17. 1H magnetization versus time for 2.7 mM glycerol solutions of 4-oxo-TEMPO-

d16-
15N (left) and 4-oxo-TEMPO-d16-

14N (right) obtained by a), b) NP sequence at 20 MHz and 

c), d) PP sequence at 10 kHz. Solid red and green lines show single-exponential fits at 290 K 

and 363 K, respectively. 

 

Comparing Fig. 7.12 and Fig. 7.16 one can clearly see that the relaxation rates for the 

paramagnetic solutions are much larger (the relaxation is much faster) than in pure glycerol. 

At lower temperatures a relaxation maximum appear in the intermediate frequency range.  

Analogously to decalin the relaxation rates  H

parR 1  for the glycerol solutions have been 

determined by subtracting the diamagnetic contribution  H

diamR 1  (shown in Fig.7.12) from 

the overall relaxation profile,  HR 1 . The  H

parR 1  relaxation rates were normalized to  

1 mM concentration of the radicals. The normalized relaxation rates  H

normR 1  are shown in 

Fig. 7.18. The figures contain corresponding theoretical fits (the detailed analysis is presented 

further in). 
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Figure 7.18. 1H relaxation dispersion,  H

normR 1 , for 1 mM glycerol solutions of a), c), e) 4-

oxo-TEMPO-d16-
15N and b), d), f) 4-oxo-TEMPO-d16-

14N with corresponding fits in terms of 

Eqs. 73 and 74, respectively (Refs. [31, 32]). Adopted with permission from D. Kruk et al., J. 

Chem. Phys. 138, 124506 (2013), Copyright 2013, AIP Publishing LLC and from D. Kruk et 

al. J. Chem. Phys. 137, 044512 (2012), Copyright 2012, AIP Publishing LLC. 
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The analysis has been started from the highest temperature of 363 K. The isotropic hyperfine 

coupling constant, isoA , has been set to the same value of 44isoA MHz (14N) and 62isoA

MHz (15N). The value of the stretching parameter,  , has been fixed to the literature value of 

0.67 [34,70]. The adjustable parameters are: ISd , trans , f  and R . The rotational contribution 

to the modulations of the proton spin-electron spin dipolar coupling has to be taken into 

account due to the high viscosity of glycerol. Again, in analogy to decalin, the proton relaxation 

data for both cases (14N and 15N) have been fitted simultaneously for each temperature using 

Eqs. 73 and 74 under the assumption that the adjustable parameters have the same values at 

one temperature. It was possible to keep the distance of closest approach, ISd , and the f  

parameter temperature independent down to 333 K. The strategy of the analysis has been 

described in [31,32]. The obtained values are as follows: 4.3ISd Å and 2.1f , and they are 

very close to those reported in Ref. [33], for proton relaxation rates for glycerol solutions of 

different nitroxide radicals studied at high fields (25 MHz and 15 MHz) versus temperature. 

The obtained values of the fitted parameters and the relative diffusion coefficient, 12D , 

calculated from the relationship transISdD /2

12   are presented in Table 7.2. and compared in 

Fig. 7.14 and 7.15, (the rotational correlation time, R , and the relative diffusion coefficient, 

12D , respectively), with literature data.  

As an illustration the individual terms of Eqs. 73 and 74 leading to the overall relaxation are 

presented in Fig. 7.19 for 338 K. 
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Figure 7.19. 1H spin-lattice relaxation dispersion,  H

normR 1 , for 4-oxo-TEMPO-d16-
15N and 

4-oxo-TEMPO-d16-
14N (open and solid symbols, respectively) in glycerol solution at 338 K 

(Ref. [32]). Solid lines (green and blue) – corresponding fits (according to Eqs. 73 and 74 for 
15N and 14N, respectively); solid black line – prediction for 0isoA ; dashed – dotted blue line 

-  H

I

DDRK ,14

1  from Eq. 74 for 14N; dashed blue line -     H

IV

H

III

DD RRK  ,14

1

,14

1   from Eq. 

74 for 14N ; dotted blue line -  H

II

DDRK ,14

1  from Eq. 74 for 14N; dashed – dotted green line - 

 H

I

DDRK ,15

1  from Eq. 73 for 15N; dashed green line -  H

III

DDRK ,15

1  from Eq. 73 for 15N; 

dotted green line -  H

II

DDRK ,15

1  from Eq. 73 for 15N. 
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T [K] R  [s] trans  [s] ISd  [Å] f  

R

transx



=  

12D  [ sm /2 ] 

  363 
 

3.87*10-11 (34%) 1.19*10-9  (4.6%) 3.40 
 

1.2 
 

31 9.66*10-11  (4.6%) 
   

  353 
 

4.55*10-11  (29%) 1.82*10-9  (4.1%) 3.40 
 

1.2 
 

40 6.31*10-11  (4.1%) 
   

  343 
 

7.0*10-11  (31%) 2.80*10-9  (5.0%) 3.40 
 

1.2 
 

40 4.18*10-11  (5.0%) 
   

  338 
 

9.0*10-11  (18%) 3.69*10-9  (3.0%) 3.40 
 

1.2 
 

41 3.23*10-11  (3.0%) 
   

  333 
 

1.4*10-10  (23%) 5.74*10-9  (4.5%) 3.40 
 

1.2 
 

41 2.36*10-11  (4.5%) 
   

  328 
 

1.97*10-10  (22%) 7.94*10-9 (21%) 3.68 (1.3%) 1.16 (11%) 40 1.81*10-11  (21%) 
 

  323 
 

2.44*10-10  (13%) 1.01*10-8  (17%) 3.69 (1.0%) 1.35 (11%) 41 1.35*10-11  (18%) 
 

  318 
 

3.80*10-10  (11%) 1.35*10-8  (16%) 3.69 (1.6%) 1.27 (11%) 35.5 1.01*10-11  (17%) 
 

  313 
15N 5.10*10-10  (6.7%) 1.92*10-8 (10%) 

3.70 
(1.5%) 

1.38 
(14%) 

38 
7.13*10-12  (10%) 

14N 5.45*10-10 (9.9%) 2.05*10-8  (14%) (1.6%) (13%) 6.68*10-12  (14%) 

  306 
15N 8.44*10-10  (4.3%) 3.53*10-8  (7.0%) 3.70  (1.3%) 1.44  (11%) 

42 
3.88*10-12 (7.5%) 

14N 7.79*10-10  (9.2%) 3.21*10-8  (9.8%) 3.60  (2.0%) 1.50  (15%) 4.04*10-12 (10%) 

  300 
15N 

1.50*10-9  
(4.1%) 

5.67*10-8  
(5.8%) 

3.57 
(1.1%) 

1.45 
(7.5%) 

38 2.25*10-12  
(6.2%) 

14N (6.7%) (9.5%) (1.7%) (11%) (10%) 

  295 
15N 

2.10*10-9  
(11%) 

8.16*10-8  
(10%) 

3.54 
(2.3%) 

1.35 
(14%) 

39 1.54*10-12 
(11%) 

14N (12%) (11%) (2.7%) (17%) (12%) 

  290 
15N 

4.22*10-9  
(17%) 

1.37*10-7   
(18%) 

3.58 
(2.3%) 

1.45 
(10%) 

32 9.36*10-13 
(18%) 

14N (23%) (22%) (4.1%) (17%) (23%) 

 

Table 7.2. Rotational and translational parameters for glycerol solutions of 4-oxo-TEMPO-d16 (
14N and 15N), Refs. [31,32]. The accuracy 

of the parameters is given in %. Red line indicates the temperature for which (and below) electron spin relaxation has been included 

into the analysis. With grey color the temperatures at which the data have been analyzed separately are marked. Adopted with permission 

from D. Kruk et al., J. Chem. Phys. 138, 124506 (2013), Copyright 2013, AIP Publishing LLC and from D. Kruk et al. J. Chem. Phys. 

137, 044512 (2012), Copyright 2012, AIP Publishing LLC. 
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To explicitly demonstrate the role of the rotational contribution to the modulations of the inter-

molecular proton spin-electron spin dipole-dipole interaction reflected by the form of the 

spectral density of Eq. 39, in Fig. 7.20, the overall relaxation dispersion profiles have been 

separated into parts associated with the translational and rotational modulations of the dipolar 

interaction. 
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Figure 7.20. 1H spin-lattice relaxation dispersion,  H

normR 1 , for 4-oxo-TEMPO-d16-
15N and 

4-oxo-TEMPO-d16-
14N (open and solid symbols, respectively) in glycerol solution at 338 K 

(Ref. [32]). Solid lines (green and blue) – corresponding fits (according to Eq. 73 and 74, for 
15N and 14N, respectively); dashed dotted lines – rotational contribution to  H

normR 1 ; dashed 

lines – translational contribution to  H

normR 1 . 

 

For the higher temperatures the relaxation data have been reproduced quite well, but with 

decreasing temperature the quality of the fits gets progressively worse. For 328 K and below 

it was impossible to obtain the sufficient low field reduction of the relaxation rate by taking 

into account only the influence of the isotropic hyperfine interaction. One has to also take into 

account the electron spin relaxation as an additional (besides the translational and rotational 

dynamics) source of modulations of the proton spin-electron spin dipole-dipole interaction.  
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Figure 7.21. A schematic view of the sources of modulations of the proton spin-electron spin 

dipole-dipole interaction. 

 

As one can see from Fig. 7.21, the role of the rotational dynamics is twofold. First, the 

rotational motion contributes to the modulations of the proton spin-electron spin dipole-dipole 

interaction through the eccentricity effects. The rotational corelation time, R , describes the 

combined effect of the rotation of solvent and solute molecules on the dipolar coupling. 

Second, the rotational motion of the paramagnetic molecule leads to fluctuations of the 

anisotropic part of the hyperfine interaction and hence the electron spin relaxation. The 

electron spin relaxation becomes an important source of the modulations of the proton spin-

electron spin dipolar interaction when the dynamics of the system is relatively slow. Taking 

into account that the rotational dynamics of the nitroxide radicals is similar to the rotational 

movement of the solvent molecules (the correlation times describing the two cases are close to 

each other) only one parameter, R , is used in the analysis. 

The relaxation data obtained for lower temperatures (starting from 328 K) have been 
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reproduced by fits performed with the same four adjustable parameters: ISd , trans , f   

and R , however the electron spin relaxation has been taken into account. The values of the 

hyperfine coupling tensor components have been taken from literature: 4.15xxA MHz, 

1.16yyA MHz, 5.99zzA MHz for 14N and 0.22xxA MHz, 0.23yyA MHz, 0.142zzA

MHz for 15N [58,66,71].  

The theory of 1H spin-lattice relaxation in solutions of nitroxide radicals including the effects 

of electron spin relaxation has been presented in [31]. Here (and in Section 5) only the 

underlying concept is outlined. The hyperfine coupling tensor is asymmetrical and its 

components (listed above) give the isotropic part   3/zzyyxxiso AAAA   equal to 44 MHz 

for 15N and 62 MHz for 14N as used in the analysis. The assymetric part modulated by rotation 

of the paramagnetic molecule causes the electronic relaxation which contributes to the efective 

modulations of the proton spin-electron spin dipolar coupling. Thus, the number of the 

adjustable parameters remains unchanged; the parameters are: ISd , trans , f  and R . 

In the temperature range 328 K - 290 K, the relaxation dispersion profiles for the 14N and 15N 

cases have been fitted simoultaneously at each temperature. The obtained values of R  and 

12D  (listed in Table 7.2) are compared in Figs. 7.14 and 7.15 (blue squares) with literature data 

yielding good agreement. In this temperature range it was difficult to keep the parameter f  

temperature independent (the values are presented in Table 7.2). The analysis with electron 

spin relaxation effects included into 1H relaxation theory has been presented in [31].  

At 313 K the low frequency values of the 1H relaxation rates  H

normR 1  for 14N and 15N cases 

become comparable and then for even lower temperatures the relaxation rate for the case of 

15N exceeds the value for the 14N case (the theoretically predicted relation 

   N,0N,0 15

1

14

1  H

norm

H

norm RR   is not fulfilled). This situation may be caused by the 

simplifications of the dynamical model: the eccentricity effects are included into the theory by 

adding a term described by Cole-Davidson spectral density and it was assumed that the solvent 

and radical molecules rotate with the same correlation times, R . Another explanation is 

quadrupole relaxation present for 14N nuclei ( 1S ) and not present for 15N ( 2/1S ) – this 

effect is not included into the theoretical description. To somewhat mitigate the low frequency 

discrepancies between the theoretical predictions and the experimental data for 313 K and  
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306 K slight differences in the parameters, ISd , trans , f  and R  for 14N and 15N cases have 

been allowed. The obtained values are collected in Table 7.2 and shown in Figs. 7.14 and 7.15 

( R  and 12D , respectively).  

In Fig. 7.22 the predictions with neglected electron spin relaxation are presented and compared 

with the fits performed at 306 K. One can clearly see that the electron spin relaxation leads to 

a very considerable reduction of the relaxation rate  H

normR 1  at low frequencies. The 

contribution of the electron spin relaxation makes the effective fluctuations of the dipolar 

interaction faster and this, in consequence, leads to a slower proton relaxation at low 

frequencies. 
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Figure 7.22. 1H spin-lattice relaxation dispersion,  H

normR 1 , for 4-oxo-TEMPO-d16-
15N and 

4-oxo-TEMPO-d16-
14N (open and solid symbols, respectively) in glycerol solution at 306 K  

(Ref. [31]). Solid lines (green and blue) corresponding fits (for 15N and 14N, respectively). 

Black and grey lines - predictions for the cases of 15N and 14N according to Eqs. 73 and 74, 

respectively, neglecting electron spin relaxation. Adopted with permission from D. Kruk et al., 

J. Chem. Phys. 138, 124506 (2013), Copyright 2013, AIP Publishing LLC. 

 

The examples for 313 K and 306 K show that the differences in the parameters ISd , trans , f  

and R  obtained from the analysis performed separately for the 15N and 14N cases are small, 
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therefore it has been decided for the lowest temperatures (300 K, 295 K and 290 K) to come 

back to the analysis of both cases with the same set of parameters. The strategy has been, 

however, modified. The fits are not performed simultaneously, but first the relaxation 

dispersion profiles for the 15N case have been fitted and then the obtained parameters have 

been used to reproduce the relaxation data for the 14N case, at the cost of somewhat worse 

agreement at low frequencies for the last case. The obtained parameters are included into Table 

7.2 and figures 7.14 and 7.15. 

In analogy to Fig. 7.19 in Fig. 7.23 a decomposition of the overall relaxation dispersion profile 

at 300 K (when the electron spin relaxation is taken into account) into individual terms (Eqs. 

73 and 74) is shown.  
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Figure 7.23. 1H spin-lattice relaxation dispersion,  H

normR 1 , for 4-oxo-TEMPO-d16-
15N and 

4-oxo-TEMPO-d16-
14N (open and solid symbols, respectively) in glycerol solution at 300 K 

(Ref. [31]). Solid lines (green and blue) – corresponding fits (according to Eqs. 73 and 74 for 
15N and 14N, respectively); dashed dotted green line -  e

H

I

DD RRK ,,15

1   from Eq. 73; dashed 

green line -  e

H

III

DD RRK ,,15

1   from Eq. 73 ; dotted green line -  e

H

II

DD RRK ,,15

1   from Eq. 

73; dashed - dotted blue line -  e

H

I

DD RRK ,,14

1   from Eq. 74; dashed blue line - 

    e

H

IVe

H

III

DD RRRRK ,, ,14

1

,14

1    from Eq. 74; dotted blue line -  e

H

II

DD RRK ,,14

1   from Eq. 

74. 
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The notation  e

H

I

DD RRK ,,15

1   in the caption of Fig. 7.23 means that the nuclear spectral 

density characterizing the fluctuations of the proton spin – electron spin dipole-dipole 

interaction,  H

RJ  , includes the electron spin relaxation according to theory presented in 

[31].  

The figure shows that, as already explained in Section 5, the relaxation maximum is created 

by the term       H

R

DD

e

H

I

DD JbaKRRK  222,15

1 1
2

3
,   for the case of 15N and 

         
 H

R

DD

e

H

I

DD J
hgfedcba

KRRK 












 











2222
1,

222222222222
,14

1  for the 

case of 14N. The maximum stems from the competition between the prefactors which increase 

with increasing frequency (from 3/2 to 3 for 15N and from 11/9 to 3 for 14N) and the spectral 

density  H

RJ   which decays with increasing frequency.  

Before finishing the discussion of the relaxation data for the glycerol solutions it is worth to 

focus for a while on the subject of the rotational contribution to the modulations of the proton 

spin-electron spin dipolar coupling as for lower temperatures the role of the rotational 

dynamics becomes more significant.  

In Fig. 7.24 the unsuccessful attempt to fit the relaxation data at 318 K without the rotational 

part (setting 0f ) is shown.  

 



Glycerol solutions of 4-oxo-TEMPO-d16-15(14)N 

86 

 

10
4

10
5

10
6

10
7

5

10

15

20

25

30

35

40

 

R
n
o

rm

1
 [

s
-1
m

M
-1
]

frequency [Hz]
 

Figure 7.24. 1H spin-lattice relaxation dispersion,  H

normR 1 , for 4-oxo-TEMPO-d16-
15N in 

glycerol solution at 318 K (Ref. [31]). Solid green line – corresponding fit (according to Eq. 

73); dashed dotted line – translational contribution to  H

normR 1 ; dashed line – rotational 

contribution to  H

normR 1 ; solid black line – result of fitting the data setting 0f , obtained 

parameters: 
810*17.1 trans s, 40.3ISd Å; dashed black line – result of fitting the data 

setting 0f  and neglecting the electron spin relaxation, obtained parameters: 
810*52.1 trans s, 77.3ISd Å. 

 

Eventually, in Fig. 7.25 the rotational contribution to the overall relaxation is shown for the 

lowest temperature of 290 K. The role of this term is apparently significant. 
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Figure 7.25. 1H spin-lattice relaxation dispersion,  H

normR 1 , for 4-oxo-TEMPO-d16-
15N and 

4-oxo-TEMPO-d16-
14N (open and solid symbols, respectively) in glycerol solution at 290 K 

(Ref. [31]). Solid lines (green and blue) – corresponding fits (according to Eqs. 73 and 74, for 
15N and 14N, respectively); dashed dotted lines – translational contribution to  H

normR 1 ; 

dashed lines – rotational contribution to  H

normR 1 ; solid black line – result of fitting the data 

(15N) setting 0f , obtained parameters: 
710*40.1 trans s, 35.3ISd Å. 

 

To test whether the features of the proton relaxation dispersion profiles are universal and 

depend only on dynamical parameters (and not on the solvent) analogous studies have been 

performed for propylene glycol solutions.
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7.3. Propylene glycol solutions of 4-oxo-TEMPO-d16-15(14)N 
 

1H spin-lattice relaxation dispersion profiles for pure propylene glycol are shown in Fig.7.26.  
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Figure 7.26. 1H spin-lattice relaxation dispersion,  H

diamR 1 , for pure propylene glycol  

(Ref. [57]). Adopted with permission from D. Kruk et al., J. Chem. Phys. 139, 244502 (2013), 

Copyright 2013, AIP Publishing LLC. 
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The relaxation is also (in analogy to decalin and glycerol) single exponential (Fig. 7.27 shows 

illustrative time dependences of the proton magnetization measured at 253 K and 298 K for 

the highest and lowest frequencies – 20 MHz and 10 kHz). 
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Figure 7.27. 1H magnetization (in arbitrary units) versus time for pure propylene glycol 

obtained by a) NP sequence at 20 MHz and by b) PP sequence at 10 kHz. Solid red and green 

lines show single-exponential fits at 253 K and 298 K, respectively (for both cases). 



Propylene glycol solutions of 4-oxo-TEMPO-d16-15(14)N 

90 

 

The 1H relaxation rates for pure propylene glycol have been studied in Refs. [72] and [73] 

(again the data presented in Refs. [72] and [73] have been collected at different tempratures 

than needed for the current analysis, therefore the 1H relaxation dispersion profiles presented 

in this section have been measured as a reference for the experiments on the solutions of 

nitroxide radicals).  

1H spin-lattice relaxation dispersion profiles for propylene glycol solutions of 4-oxo-TEMPO-

d16-
15N and 4-oxo-TEMPO-d16-

14N are shown in Fig. 7.28. As it was in the case of decalin and 

glycerol the 1H relaxation is also single exponential (see Fig. 7.29 a), b), c) and d)).  
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Figure 7.28. 1H spin-lattice relaxation dispersion,  HR 1 , for propylene glycol solutions of 

a), c) 4-oxo-TEMPO-d16-
15N and b), d) 4-oxo-TEMPO-d16-

14N for 5 mM concentration of 

radicals (Ref. [57]). Adopted with permission from D. Kruk et al., J. Chem. Phys. 139, 244502 

(2013), Copyright 2013, AIP Publishing LLC. 
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Figure 7.29. 1H magnetization (in arbitrary units) versus time for 5 mM propylene glycol 

solutions of 4-oxo-TEMPO-d16-
15N (left) and 4-oxo-TEMPO-d16-

14N (right) obtained by a), b) 

NP sequence at 20 MHz and c), d) PP sequence at 10 kHz. Solid red and green lines show the 

single-exponential fits at 253 K and 298 K, respectively. 

 

 

 H

parR 1  have been determined in the same way as previously, by subtracting the diamagnetic 

contribution,  H

diamR 1 , (shown in Fig. 7.26) from the total relaxation profile,  HR 1 . Then 

the  H

parR 1  relaxation rates were normalized to 1 mM concentration of the radicals. The 

normalized relaxation rates,  H

normR 1 , are shown in Fig. 7.30 with corresponding theoretical 

fits. 
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Figure 7.30. 1H relaxation dispersion profiles,  H

normR 1 , for 1 mM propylene glycol solutions 

of a), c), e) 4-oxo-TEMPO-d16-
15N and b), d), f) 4-oxo-TEMPO-d16-

14N with corresponding fits 

in terms of Eq. 73 and 74, respectively (Ref. [57]). Adopted with permission from D. Kruk et 

al., J. Chem. Phys. 139, 244502 (2013), Copyright 2013, AIP Publishing LLC. 
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The rotational correlation time, R  at the highest temperature (298 K) is of the order of  

2*10-10 s. For correlation times of this order the rotational contribution to the overall relaxation 

rate,  H

normR 1 , is not negligible (as it has been shown in the previous section for glycerol). 

This is confirmed by Fig. 7.31 in which the result of the attempt to reproduce the  H

normR 1  

relaxation dispersion profile assuming no rotational contribution ( 0f ) are presented. 

Significant discrepancies between the fits and the experimental data are observed at low as 

well as at intermediate frequencies. 
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Figure 7.31. 1H spin-lattice relaxation dispersion profiles,  H

normR 1 , for 1 mM propylene 

glycol solutions of 4-oxo-TEMPO-d16-
15N (open symbols) and 4-oxo-TEMPO-d16-

14N (closed 

symbols) at 298 K (Ref. [57]) with corresponding fits ( 0f ). The translational correlation 

time and the distance of closest approach are in both cases: 
910*53.3 trans s, 32.4ISd Å. 

 

The data sets for all temperatures have been fitted with five adjustable parameters: ISd , trans , 

f , R  and  . Although in Ref. [57] ISd , x , f , R  and   have been chosen as the adjustable 

parameters, both fitting strategies are fully equivalent because of the relationship:  

Rtransx  / . Therefore, for consistency reasons it has been decided in this thesis to refer to  
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ISd , trans , f , R  and   as the adjustable parameters for all cases. 

The components of the anisotropic hyperfine coupling have been fixed to the values obtained 

in ESR experiments performed for the solutions of 4-oxo-TEMPO-d16-
15(14)N in propylene 

glycol ( 6.10xxA MHz, 6.10yyA MHz, 3.107zzA MHz for 14N and 85.14xxA MHz, 

85.14yyA MHz, 2.150zzA MHz for 15N [57]). The analysis has started from the highest 

temperature of 298 K. Down to 273 K the proton relaxation data for both cases (14N and 15N) 

have been fitted simultaneously. As expected, at low temperatures (from 288 K) the electron 

spin relaxation has become significant. 

Three of the five adjustable parameters listed above should be temperature independent:  

ISd , f  and  . After a preliminary five-parameters analysis performed in the temperature 

range of 298 K-253 K, it has been concluded that the best quality of the fits can be obtained 

when the average values of ISd , f , and   are as follows: 35.4ISd Å, 3.1f , and  

45.0 . The stretching parameter is small as already indicated in Ref. [72]. 

Finally the parameters ISd , f , and   have been fixed to the values given above and the 1H 

relaxation data for the 15N and 14N cases have been fitted simultaneously with two adjustable 

parameters: the rotational correlation time, R , and the translational correlation time, trans . 

The obtained parameters are listed in Table 7.3 and the rotational correlation times are shown 

in Fig. 7.32. Using the expression transISdD /2

12  , the values of the relative diffusion 

coefficient have been calculated and compared with literature data in Fig. 7.33. It is particularly 

worth mentioning that for propylene glycol solutions the rotational correlation time has been 

determined also by means of ESR in Ref. [57]. The ratio between the translational and 

rotational correlation times slightly changes with temperature and its value oscillates around 

30/ Rtrans  .  
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Figure 7.32. Rotational correlation times, R , for propylene glycol solutions of 4-oxo-

TEMPO-d16-
15N and 4-oxo-TEMPO-d16-

14N (one value for both 15N and 14N cases) obtained 

from the current analysis of 1H spin-lattice relaxation dispersion data (described in Ref. [57]) 

compared with rotational correlation times for pure propylene glycol and for propylene glycol 

solution of -oxo-TEMPO-d16-
15N and 4-oxo-TEMPO-d16-

14N (from literature, Refs. [57,72]). 

Reprinted with permission from D. Kruk et al., J. Chem. Phys. 139, 244502 (2013), Copyright 

2013, AIP Publishing LLC. 

 

 

Analogously to the situation with glycerol, at some point it was not possible to fully reproduce 

the data with one set of parameters due to the low field values of  H

normR 1  for 14N. Therefore, 

the profile obtained for the case of 15N has been analysed and the obtained set of parameters 

has been used to reproduce the relaxation profile for the 14N case. Due to large discrepancies 

in the low field which have an impact on the accuracy of the parameters, two values of errors 

(separately for 15N and 14N) are given in Table 7.3. 
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Figure 7.33. Relative diffusion coefficient, 12D , for propylene glycol solution of 4-oxo-

TEMPO-d16 (15N, 14N) obtained from the current analysis of the 1H spin-lattice relaxation 

dispersion profiles (Ref. [57]) compared with literature values, Refs. [72,73]. Reprinted with 

permission from D. Kruk et al., J. Chem. Phys. 139, 244502 (2013), Copyright 2013, AIP 

Publishing LLC. 
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T  [K] R  [s] trans  [s] ISd  [Å] f  
R

transx



=  

12D  [ sm /2 ] 

  298 
 

9.07*10-11 (20%) 2.99*10-9 (9.3%) 4.35 1.3 33 6.32*10-11 (10%) 
 

  293 
 

1.18*10-10  (17%) 4.13*10-9  (10%) 4.35 1.3 35 4.58*10-11 (11%) 
 

  288 
 

1.60*10-10  (14%) 5.23*10-9  (11%) 4.35 1.3 33 3.62*10-11 (12%) 
 

  283 
 

2.34*10-10 (10%) 7.93*10-9  (11%) 4.35 1.3 34 2.39*10-11 (12%) 
 

  278 
 

4.29*10-10 (8.6%) 1.23*10-8 (10%) 4.35 1.3 29 1.54*10-11 (11%) 
 

  273 
 

8.49*10-10 (6.7%) 2.39*10-8 (9.8%) 4.35 1.3 28 7.90*10-12 (11%) 
 

  268 
15N 

1.30*10-9 
(5.3%) 

3.64*10-8  
(8.6%) 

4.35 1.3 28 5.20*10-12 
(9.5%) 

14N (5.6%) (9.1%) (10%) 

  263 
15N 

1.58*10-9   
(5.0%) 

5.12*10-8  
(8.0%) 

4.35 1.3 32 3.70*10-12 
(8.9%) 

14N (5.5%) (8.9%) (9.8%) 

  258 
15N 

2.90*10-9 
(7.2%) 

9.57*10-8  
(9.9%) 

4.35 1.3 33 1.98*10-12 
(11%) 

14N (7.5%) (13%) (14%) 

  253 
15N 

5.32*10-9   
(6.5%) 

1.62*10-7  
(12%) 

4.35 1.3 30.5 1.17*10-12 
(13%) 

14N (9.5%) (18%) (18%) 

 

Table 7.3. Rotational and translational parameters for propylene glycol solutions of 4-oxo-TEMPO-d16 (
14N and 15N), Ref. [57]. The 

accuracy of the parameters is given in %. Red line indicates the temperature for which (and below) electron spin relaxation has been 

included into the analysis. Adopted with permission from D. Kruk et al., J. Chem. Phys. 139, 244502 (2013), Copyright 2013, AIP 

Publishing LLC. 
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To reveal the role of the individual terms present in Eqs. 73 and 74 in Fig. 7.34 the 

relaxation dispersion profiles for 288 K have been decomposed analogously to decalin and 

glycerol (Figs. 7.10, 7.11 and 7.19).  
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Figure 7.34. 1H spin-lattice relaxation dispersion profiles,  H

normR 1 , for 4-oxo-TEMPO-

d16-
15N and 4-oxo-TEMPO-d16-

14N (open and solid symbols, respectively) with 

corresponding fits (green and blue solid lines, according to Eqs. 73 and 74, respectively) 

at 288 K (Ref. [57]). Dashed – dotted green line -  e

H

I

DD RRK ,,15

1   from Eq. 73; dashed 

green line -  e

H

III

DD RRK ,,15

1   from Eq. 73; dotted green line -  e

H

II

DD RRK ,,15

1   from Eq. 

73. Dashed blue line –     e

H

IVe

H

III

DD RRRRK ,, ,14

1

,14

1    from Eq. 74; dashed-dotted blue 

line –  e

H

I

DD RRK ,,14

1   from Eq. 74; dotted blue line  e

H

II

DD RRK ,,14

1   from Eq. 74. 

 

Already for 288 K the electron spin relaxation is relevant. It becomes progresively more 

important at lower temperatures – an example for 273 K is shown in Fig. 7.35. 
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Figure 7.35. 1H spin-lattice relaxation dispersion profiles,  H

normR 1 ,  for 4-oxo-TEMPO-

d16-
15N and 4-oxo-TEMPO-d16-

14N (open and solid symbols, respectively) with 

corresponding fits (green and blue solid lines, according to Eqs. 73 and 74, respectively) 

273 K (Ref. [57]). Dashed-dotted green line -  e

H

I

DD RRK ,,15

1   from Eq. 73; dashed green 

line -  e

H

III

DD RRK ,,15

1   from Eq. 73; dotted green line -  e

H

II

DD RRK ,,15

1   from Eq. 73. 

Dashed blue line –     e

H

IVe

H

III

DD RRRRK ,, ,14

1

,14

1    from Eq. 74; dashed-dotted blue 

line –  e

H

I

DD RRK ,,14

1   from Eq. 74; dotted blue line  e

H

II

DD RRK ,,14

1   from Eq. 74. Black 

and grey lines - predictions for case of 15N and 14N according to Eqs. 73 and 74 respectively 

with neglected electron spin relaxation. 

 

The low frequency reduction of the relaxation rate,  H

normR 1 , is already for 273 K very 

significant and the effects of the electron spin relaxation becomes crucial at lower 

temperature (slower dynamics) as shown in Fig. 7.36 for 253 K. 
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Figure 7.36. 1H spin-lattice relaxation dispersion profiles,  H

normR 1 , for 4-oxo-TEMPO-

d16-
15N and 4-oxo-TEMPO-d16-

14N (open and solid symbols, respectively) dissolved in 

propylene glycol with corresponding fits at 253 K (Ref. [57]). Black and grey lines - 

predictions for case of 15N and 14N according to Eqs. 73 and 74, respectively with neglected 

electron spin relaxation. 

 

This is a good moment to remind the origin of the relaxation maximum. As already 

explained, it results from the competition between the spectral density (which decays with 

increasing frequency) and pre-factor (   2221
2

3
ba   for 15N and 

       












 











2222
1

22222222222 hgfedcba
 for 14N) which increases with 

frequency. One can see from Fig. 7.36 that the relaxation maximum appears independently 

of whether the electron spin relaxation is present or not. Nevertheless, in the presence of 

the electron spin relaxation its position is shifted towards higher frequencies as the effective 

correlation time of the modulations of the proton spin – electron spin dipole-dipole coupling 

becomes shorter (due to the contribution of the electron spin relaxation).  

Eventually, in analogy to the case of glycerol, in Fig. 7.37 the contribution to the overall 

relaxation associated with the rotational modulations of the proton spin-electron spin 

dipolar coupling ( 0f , eccentricity effect) is shown for the propylene-glycol solution at 

273 K. The role of the eccentricity effects is undoubtedly relevant.  
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Figure 7.37. 1H spin-lattice relaxation dispersion profiles,  H

normR 1 , for 4-oxo-TEMPO-

d16-
15N and 4-oxo-TEMPO-d16-

14N (open and solid symbols, respectively) dissolved in 

propylene glycol with corresponding fits (Ref. [57]) decomposed into rotational (dashed 

lines) and translational (dashed-dotted lines) contributions at 273 K.  

 

 

1H relaxation dispersion measurements presented in this Section for pure solvent are a result 

of joint work of the author and Roman Meier (who collected most of the NMRD profiles 

for pure glycerol). The experiments for the paramagnetic solutions have been performed 

by the author, as said in the Introduction.
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8. Summary 
 

In the thesis a large set of 1H spin-lattice relaxation dispersion data for solutions of nitroxide 

radicals containing 14N and 15N isotopes is presented. By using different solvents (decalin, 

glycerol, propylene glycol) and performing the experiments for different temperatures, a 

broad range of the timescales of the rotational and translational dynamics of the solvent 

and solute molecules has been covered. The following observations have been made: 

 The relaxation data for solutions of nitroxide radicals (collected in the frequency 

range of  

10 kHz – 20 MHz) show a significant dispersion even when the dynamics is so fast that the 

corresponding data for pure solvents are (almost) frequency independent (
9

12 10*1 D

m/s2). 

 At low frequencies the 1H spin lattice relaxation rates for solutions of 15N containing 

radicals differ from the relaxation rates for the case of 14N containing radicals. This effect 

evolves with temperature (i.e. the time scale of the translational and rotational dynamics). 

For relatively high temperatures (corresponding to the translation diffusion coefficient  of 

about 910*1  m/s2) the 1H spin-lattice relaxation rate for the case of 14N containing radicals 

is somewhat smaller than for the 15N case. This effect  becomes more pronounced for slower 

dynamics, but when the diffusion coefficient reaches a value of about 1210*5   m/s2 the 

relaxation rates become close again and then the relationship gets inverted (the 1H spin-

lattice relaxation rate for the 14N cases becomes larger than for solutions of 15N containing 

radicals). 

 For slower dynamics the relaxation dispersion data show (in both cases: for 14N and 

15N) a maximum at intermediate frequencies (about 200 kHz – 3 MHz). 

These effects are explained and the 1H spin-lattice relaxation dispersion is quantitatively 

analyzed  by means of a comprehensive theory of paramagnetic relaxation enhancement in 

solutions of nitroxide radicals [31,32,57]. The main elements of the theory are outlined in 

the thesis. The relaxation scenario is as follows. The mechanism of the 1H spin-lattice 

relaxation is provided by dipole-dipole interactions between protons of the solvent 

molecules and unpaired electrons of the radical molecules. The dipole-dipole coupling 

fluctuates in time due to relative translational dynamics of the solvent and solute molecules, 

their rotational dynamics and electron spin relaxation. The source of the electron spin 
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relaxation is provided by the anisotropic part of the electron – nitrogen hyperfine coupling 

modulated by rotational dynamics of the paramagnetic molecules, while the isotropic part 

of the hyperfine coupling affects the energy level structure of the electron spin. The electron 

spin relaxation is described by means of the Redfield relaxation theory. In consequence the 

approach is valid when the condition 1Raniso  is fulfilled ( aniso  is the amplitude of the 

anisotropic part of the hyperfine interaction in angular frequency units). In consequence, 

the upper limit of the rotational correlation time yields   910*32 R s. For fast 

dynamics the role of the electron spin relaxation is less significant and for the rotational 

correlation time of the order of 
1010*1 R s it becomes negligible. The theory consists of 

three steps. First, it has been formulated for the simpler case of 15N (the 15N spin yields 

2/1P ) in [15,32], neglecting the electron spin relaxation. Next it has been complemented 

by a counterpart dedicated to the more complex case of 14N containing radicals ( 1P ) 

[32]. Eventually, the approach has been generalized by including the electron spin 

relaxation for both cases [31]. The relative translational diffusion of the interacting 

molecules have been described by the force-free-hard sphere model [26,27]. The rotational 

dynamics modulates the proton-electron dipole-dipole coupling directly, through the 

eccentricity effect,  and, indirectly, through the electron spin relaxation rates. The rotational 

dynamics  has been described by a Cole-Davidson spectral density. 

Numerous simulations have been performed in the thesis, to explain the influence of the 

dynamical and electron spin parameters on the 1H spin-lattice relaxation in different 

frequency ranges. The theory has been used for the analysis of the experimental data. In 

this way translational diffusion coefficients and rotational correlation times have been 

determined. The values of these parameters have been compared with values obtained by 

other methods (taken from literature). The agreement is very good and the analysis of  the 

14N and 15N systems is consistent and it explains the features of the 1H spin-lattice 

relaxation dispersion profiles outlined above.  

 The significant relaxation dispersion observed for the paramagnetic solutions even 

for fast dynamics is caused by the presence of spectral densities taken at the electron spin 

frequency (which is by factor 657 larger than the proton frequency) in the equations 

describing the 1H spin-lattice relaxation. This means that by introducing paramagnetic 

molecules to diamagnetic liquids one can probe a  much faster dynamical processes than 

for pure diamagnetic liquids. 
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 The behavior of the 1H spin-lattice relaxation rates for solutions of 14N and 15N 

containing radicals can be explained by means of the theory as a result of the isotropic part 

of the hyperfine coupling (this explains why the low frequency relaxation rates for the 14N 

case are lower than for the 15N case) and the electron spin relaxation (anisotropic part of 

the hyperfine coupling). The last factor explains why for slower dynamics the ratio between 

the relaxation rates deviates from the value predicted in the absence of the electron spin 

relaxation), but some deviations from the experimental data are observed. They might be 

caused by simplifications of the motional models. It is also possible that interference effects 

between the hyperfine coupling and the quadrupolar coupling of 14N (which is not included 

into presented approach) gives a relevant contribution to the electron spin relaxation. 

 The relaxation maximum is caused by an interplay (competition) between spectral 

densities decaying with increasing frequency and pre-factors in the relaxation formulae 

which increase with increasing frequency. 
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9. Further Perspectives 
 

The intensity of NMR signals can be enhanced through Dynamic Nuclear Polarization 

(DNP) effects in which the large electron spin polarization is transferred to neighbouring 

nuclei [47,74-77]. In most cases monomeric paramagnetic centers (e.g. nitroxide radicals 

or metal ions) are used as a source of the polarization. Molecules containing two 

paramagnetic centers are very promising candidates for increasing the efficiency of the 

polarization transfer. The electron spin and nuclear spin relaxation rates are very important 

factors determining the obtained enhancement of the NMR signal.  

From this perspective, the theory of electronic and nuclear relaxation in solutions of 

monomeric nitroxide radicals is a very good starting point for theoretical modeling of 

relaxation processes in systems containing biradicals. A well-known example of biradicals 

is TOTAPOL (1-(TEMPO-4-oxy)-3-(TEMPO-4-amino)propan-2-ol, Fig. 9.1). The linker 

between the two TEMPO molecules containing unpaired electrons is rather short (the 

analysis of the powder PER line shapes shows that the electron-electron distance is about 

12.8 Å [78]) that leads to strong interactions between the paramagnetic centres. Thus, the 

Hamiltonian of the spin system has to include a term describing the dipole-dipole 

interaction of the two electron spins. 

 

 

Figure 9.1. Structure of TOTAPOL. 

 

In Fig. 9.2 an example of 1 H spin-lattice relaxation dispersion data for propylene-glycol 

solutions of TOTAPOL (biradical) and 4-oxo-TEMPO-d16-
14N (monomeric nitroxide 

radical) is shown. The data have been normalized to the same concentration of 

paramagnetic centres – 10 mM. As TOTAPOL has two unpaired electrons the 

concentration of the TOTAPOL molecules is twice smaller than that of 4-oxo-TEMPO-d16-

14N . The results agree at high magnetic field as expected (the electron Zeeman interactions 

dominate all other interactions within the spin system), but they considerably differ at low 
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and intermediate fields. The 1H relaxation rates for the TOTAPOL solution is smaller as a 

result of a faster modulations of the proton spin-electron spin dipole-dipole coupling caused 

by faster electron spin relaxation resulted from the strong dipolar coupling between the 

electron spins.  
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Figure 9.2. Experimental 1H spin-lattice relaxation dispersion profiles for 10 mM 

propylene glycol solutions of TOTAPOL (open squares) and of 4-oxo-TEMPO-d16-
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14N normalized 
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Appendix 
 

A.1 Program code 

 

Code of the main body of the fitting program: 
 

 

clc; 

tic 

 

load 'dane\prop\n14_298.txt'; 

x=n14_298(:,1)'; 

w=x; 

y=n14_298(:,2)'; 

semilogx(w,y,'ro','Linewidth',2); hold on 

 

x0=[7.0e0  30.0 0.00 0.67 4.5e0]; 

 

lb=[3.10e-1 34.0 0.00 0.44999 3.0e0]; 

ub=[5.70e-1 35.0 2.00 0.45001 7.5e0]; 

 

[pout,resnorm,residual,exitflag,output,lambda,J] = 

lsqcurvefit(@funkcja_relaksacji_14N,x0,w,y,lb,ub); 

 

p=pout; 

disp('tauR0'); disp(p(1)*1e-10); 

disp('x'); disp(p(2)); 

disp('f'); disp(p(3)); 

disp('\beta'); disp(p(4)); 

disp('d_{IS}'); disp(p(5)); 

 

 

sigma=sqrt((1/(length(y)-5))*resnorm*diag(full(inv(J'*J)))); 

 

for i=1:8 

    sigma(i)=100*sigma(i)*pout(i).^(-1); 

end 

 

w=logspace(3,9,100); 

[R1,J_trans,J_rot,J_1t,J_2t,J_3t,J_4t]= funkcja_relaksacji_14N 

(p,w); 

semilogx(w,R1,'k-','Linewidth',2); hold on 

semilogx(w,J_trans,'g.','Linewidth',2); 

semilogx(w,J_rot,'b-','Linewidth',2); 

 

toc 

 

T=[w;R1]; 

f2=fopen('relaksacja14N.txt','w'); 

fprintf(f2,'\n%d\t%d', T); 

fclose(f2); 
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Relaxation functions (Eqs. 73 and 74, respectively) defined in MATLAB: 
 
function [R1,J_trans,J_rot,J_1t,J_2t,J_3t,J_4t,stala,J_1]= 

funkcja_relaksacji_15N (p,w) 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%%%            parameters                                            

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

p(1)=p(1)*1e-10; 

%tauR=p(1); 

%x=p(2); 

%fcd=p(3); 

%beta=p(4); 

%dIS=p(5); 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%%% hyperfine coupling                                               

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

Axx=44e6; %Hz 

Ayy=44e6; 

Azz=44e6; 

 

A=(Axx+Ayy+Azz)/3; 

A=A*2*pi; 

DeltaA=Azz-(1/2)*(Axx+Ayy); 

DeltaA=sqrt(2/3)*DeltaA; 

deltaA=(1/2)*(Axx-Ayy); 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

R1=zeros; 

J_trans=zeros; 

J_rot=zeros; 

wp=2*pi*w; 

 

%%%%%%% constants %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

gammaI=2.67522212e8; 

gammaS=1.760859794e11; 

mi0= 12.566370614e-7;  

Na=6.02214199e23;  

Ni=1.0;  

Ni=Ni*Na;  

hbar=1.054571596e-34;   

dIS=p(5)*1e-10; 

Kdd=(1/10)*((4*pi)/3)*((mi0*gammaI*gammaS*hbar/(4*pi)).^2)*(Ni/(dIS.

^3));  

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

wH=2*pi*w; 

wS=657*wH; 

 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%%%             constants                                            

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

c1=sqrt(0.5*(1+(wS./sqrt(A.^2+wS.^2))));                   

c2=sqrt(0.5*(1-(wS./sqrt(A.^2+wS.^2))));                  
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%%%               frequencies                                        

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

w12=wS./2+A/2-0.5*sqrt(A.^2+wS.^2); 

w21=-w12; 

w13=wS./2+A/2+0.5*sqrt(A.^2+wS.^2); 

w31=-w13; 

w23=sqrt(A.^2+wS.^2); 

w32=-w23; 

w24=wS./2-A./2+0.5*sqrt(A.^2+wS.^2); 

w42=-w24; 

w34=wS./2-A./2-0.5*sqrt(A.^2+wS.^2); 

w43=-w34; 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%%%        total spectral densities – function                       

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

[J_1,J_1_trans,J_1_rot]=J_gest_2(p,wH); 

[J_2,J_2_trans,J_2_rot]=J_gest_2(p,w23-wH); 

[J_3,J_3_trans,J_3_rot]=J_gest_2(p,w23+wH); 

[J_4,J_4_trans,J_4_rot]=J_gest_2(p,w32-wH); 

[J_5,J_5_trans,J_5_rot]=J_gest_2(p,w32+wH); 

[J_6,J_6_trans,J_6_rot]=J_gest_2(p,w31-wH); 

[J_7,J_7_trans,J_7_rot]=J_gest_2(p,w31+wH); 

[J_8,J_8_trans,J_8_rot]=J_gest_2(p,w13+wH); 

[J_9,J_9_trans,J_9_rot]=J_gest_2(p,w13-wH); 

[J_10,J_10_trans,J_10_rot]=J_gest_2(p,w24+wH); 

[J_11,J_11_trans,J_11_rot]=J_gest_2(p,w24-wH); 

[J_12,J_12_trans,J_12_rot]=J_gest_2(p,w42-wH); 

[J_13,J_13_trans,J_13_rot]=J_gest_2(p,w42+wH); 

[J_14,J_14_trans,J_14_rot]=J_gest_2(p,w21-wH); 

[J_15,J_15_trans,J_15_rot]=J_gest_2(p,w21+wH); 

[J_16,J_16_trans,J_16_rot]=J_gest_2(p,w43-wH); 

[J_17,J_17_trans,J_17_rot]=J_gest_2(p,w43+wH); 

[J_18,J_18_trans,J_18_rot]=J_gest_2(p,w12+wH); 

[J_19,J_19_trans,J_19_rot]=J_gest_2(p,w12-wH); 

[J_20,J_20_trans,J_20_rot]=J_gest_2(p,w34+wH); 

[J_21,J_21_trans,J_21_rot]=J_gest_2(p,w34-wH); 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%%%             total spectral densities                             

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

stala=(1+(c1.^2-c2.^2).^2); 

J_1t=(1+(c1.^2-c2.^2).^2).*J_1; 

J_2t=(c1.^2).*(c2.^2).*(J_2+J_3+J_4+J_5); 

J_3t=(1/6)*(c1.^2).*(6*J_6+J_7+6*J_8+J_9+6*J_10+J_11+6*J_12+J_13); 

J_4t=(1/6)*(c2.^2).*(6*J_14+J_15+6*J_16+J_17+6*J_18+J_19+6*J_20+J_21

); 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

 



Appendix 

115 

 

 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%%%             translational spectral densities                     

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

J_1trans=(1+(c1.^2-c2.^2).^2).*J_1_trans; 

J_2trans=(c1.^2).*(c2.^2).*(J_2_trans+J_3_trans+J_4_trans+J_5_trans)

; 

J_3trans=(1/6)*(c1.^2).*(6*J_6_trans+J_7_trans+6*J_8_trans+J_9_trans

+... 

6*J_10_trans+J_11_trans+6*J_12_trans+J_13_trans); 

J_4trans=(1/6)*(c2.^2).*(6*J_14_trans+J_15_trans+6*J_16_trans+... 

J_17_trans+6*J_18_trans+J_19_trans+6*J_20_trans+J_21_trans); 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%%%             rotational spectral densities                        

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

J_1rot=(1+(c1.^2-c2.^2).^2).*J_1_rot; 

J_2rot=(c1.^2).*(c2.^2).*(J_2_rot+J_3_rot+J_4_rot+J_5_rot); 

J_3rot=(1/6)*(c1.^2).*(6*J_6_rot+J_7_rot+6*J_8_rot+J_9_rot+6*J_10_ro

t+... 

J_11_rot+6*J_12_rot+J_13_rot); 

J_4rot=(1/6)*(c2.^2).*(6*J_14_rot+J_15_rot+6*J_16_rot+J_17_rot+... 

6*J_18_rot+J_19_rot+6*J_20_rot+J_21_rot); 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%%%          total relaxation rate                                   

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

R1=Kdd*0.5*3*(J_1t+J_2t+J_3t+J_4t); 

J_trans=Kdd*0.5*3*(J_1trans+J_2trans+J_3trans+J_4trans); 

J_rot=Kdd*0.5*3*(J_1rot+J_2rot+J_3rot+J_4rot); 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

 

J_1t=Kdd*0.5*3*J_1t; 

J_2t=Kdd*0.5*3*J_2t; 

J_3t=Kdd*0.5*3*J_3t; 

J_4t=Kdd*0.5*3*J_4t; 
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function 

[R1,J_trans,J_rot,J_1tot,J_2tot,J_3tot,J_4tot,J_5tot,J_6tot] = 

funkcja_relaksacji_14N (p,w) 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%%%            przypisanie wartości zmiennym                         

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

p(1)=p(1)*1e-10; 

%tauR=p(1); 

%x=p(2); 

%fcd=p(3); 

%beta=p(4); 

dIS=p(5)*1e-10; 

 

Axx=63e6; %Hz 

Ayy=63e6;  

Azz=63e6; 

 

A=(Axx+Ayy+Azz)/3; 

A=A*2*pi; 

DeltaA=Azz-(1/2)*(Axx+Ayy); 

DeltaA=sqrt(2/3)*DeltaA; 

deltaA=(1/2)*(Axx-Ayy); 

R1=zeros; 

J_trans=zeros; 

J_rot=zeros; 

 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%%%     physical constants                                           

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

gammaI=2.67522212e8;  

gammaS=1.760859794e11;  

mi0= 12.566370614e-7;  

Na=6.02214199e23;  

Ni=1.0;  

Ni=Ni*Na;  

hbar=1.054571596e-34;  %stała Plancka 

Kdd=(1/10)*((4*pi)/3)*((mi0*gammaI*gammaS*hbar/(4*pi)).^2)*(Ni/(dIS.

^3));  

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

 

wH=2*pi*w; 

wS=657*wH; 

 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%%%                       alpha, beta etc.                           

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

alpha=(A+2*wS+sqrt(9*A.^2+4*A*wS+4*wS.^2))./(2*sqrt(2)*A); 

beta=(A+2*wS-sqrt(9*A.^2+4*A*wS+4*wS.^2))./(2*sqrt(2)*A); 

gamma=(A-2*wS-sqrt(9*A.^2-4*A*wS+4*wS.^2))./(2*sqrt(2)*A); 

delta=(A-2*wS+sqrt(9*A.^2-4*A*wS+4*wS.^2))./(2*sqrt(2)*A); 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 



Appendix 

117 

 

 

 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%%%                   normalized factors                             

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

la=sqrt(1+beta.*beta); 

lb=sqrt(1+beta.*beta); 

lc=sqrt(1+alpha.*alpha); 

ld=sqrt(1+alpha.*alpha); 

le=sqrt(1+delta.*delta); 

lf=sqrt(1+delta.*delta); 

lg=sqrt(1+gamma.*gamma); 

lh=sqrt(1+gamma.*gamma); 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%%%                         factors                                 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

a=la.^(-1); 

b=beta./lb; 

c=lc.^(-1); 

d=alpha./ld; 

e=le.^(-1); 

f=delta./lf; 

g=lg.^(-1); 

h=gamma./lh; 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%%%              transition frequencies                              

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

w23=sqrt(wS.^2+wS.*A+(9/4)*A^2); 

w45=sqrt(wS.^2-wS.*A+(9/4)*A^2); 

w12=wS./2+3*A/4-(0.5)*sqrt(wS.^2+wS.*A+(9/4)*A^2); 

w13=wS./2+3*A/4+0.5*sqrt(wS.^2+wS.*A+(9/4)*A^2); 

w46=wS./2-3*A/4+0.5*sqrt(wS.^2-wS.*A+(9/4)*A^2); 

w56=wS./2-3*A/4-0.5*sqrt(wS.^2-wS.*A+(9/4)*A^2); 

w24=0.5*sqrt(wS.^2+wS.*A+(9/4)*A^2)-0.5*sqrt(wS.^2-wS.*A+(9/4)*A^2); 

w25=0.5*sqrt(wS.^2+wS.*A+(9/4)*A^2)+0.5*sqrt(wS.^2-wS.*A+(9/4)*A^2); 

w34=-w25; 

w35=-w24; 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%        spectral densities                                        

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

[J_1,J_1_trans,J_1_rot]=J_gest_2(p,wH); 

[J_2,J_2_trans,J_2_rot]=J_gest_2(p,w23-wH); 

[J_3,J_3_trans,J_3_rot]=J_gest_2(p,w23+wH); 

[J_4,J_4_trans,J_4_rot]=J_gest_2(p,w45-wH); 

[J_5,J_5_trans,J_5_rot]=J_gest_2(p,w45+wH); 

[J_6,J_6_trans,J_6_rot]=J_gest_2(p,w12+wH); 

[J_7,J_7_trans,J_7_rot]=J_gest_2(p,w12-wH); 

[J_8,J_8_trans,J_8_rot]=J_gest_2(p,w13+wH); 
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[J_9,J_9_trans,J_9_rot]=J_gest_2(p,w13-wH); 

[J_10,J_10_trans,J_10_rot]=J_gest_2(p,w46+wH); 

[J_11,J_11_trans,J_11_rot]=J_gest_2(p,w46-wH); 

[J_12,J_12_trans,J_12_rot]=J_gest_2(p,w56+wH); 

[J_13,J_13_trans,J_13_rot]=J_gest_2(p,w56-wH); 

[J_14,J_14_trans,J_14_rot]=J_gest_2(p,w24+wH); 

[J_15,J_15_trans,J_15_rot]=J_gest_2(p,w24-wH); 

[J_16,J_16_trans,J_16_rot]=J_gest_2(p,w25+wH); 

[J_17,J_17_trans,J_17_rot]=J_gest_2(p,w25-wH); 

[J_18,J_18_trans,J_18_rot]=J_gest_2(p,w34+wH); 

[J_19,J_19_trans,J_19_rot]=J_gest_2(p,w34-wH); 

[J_20,J_20_trans,J_20_rot]=J_gest_2(p,w35+wH); 

[J_21,J_21_trans,J_21_rot]=J_gest_2(p,w35-wH); 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%%%     spectral densities with factors                              

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

J_1t=(1+0.5*(a.^2-b.^2).^2+0.5*(c.^2-d.^2).^2+0.5*(e.^2-f.^2).^2+... 

0.5*(g.^2-h.^2).^2).*J_1; 

J_2t=((a.*c-b.*d).^2/2).*J_2; 

J_3t=((a.*c-b.*d).^2/2).*J_3; 

J_4t=((e.*g-f.*h).^2/2).*J_4; 

J_5t=((e.*g-f.*h).^2/2).*J_5; 

J_6t=2*(b.^2).*J_6; 

J_7t=(1/3)*(b.^2).*J_7; 

J_8t=2*(d.^2).*J_8; 

J_9t=(1/3)*(d.^2).*J_9; 

J_10t=2*(e.^2).*J_10; 

J_11t=(1/3)*(e.^2).*J_11; 

J_12t=2*(g.^2).*J_12; 

J_13t=(1/3)*(g.^2).*J_13; 

J_14t=2*((a.*f).^2).*J_14; 

J_15t=(1/3)*((a.*f).^2).*J_15; 

J_16t=2*((a.*h).^2).*J_16; 

J_17t=(1/3)*((a.*h).^2).*J_17; 

J_18t=2*((c.*f).^2).*J_18; 

J_19t=(1/3)*((c.*f).^2).*J_19; 

J_20t=2*((c.*h).^2).*J_20; 

J_21t=(1/3)*((c.*h).^2).*J_21; 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%%%             translational spectral densities                     

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

J_1trans=(1+0.5*(a.^2-b.^2).^2+0.5*(c.^2-d.^2).^2+0.5*(e.^2-

f.^2).^2+... 

0.5*(g.^2-h.^2).^2).*J_1_trans; 

J_2trans=((a.*c-b.*d).^2/2).*J_2_trans; 

J_3trans=((a.*c-b.*d).^2/2).*J_3_trans; 

J_4trans=((e.*g-f.*h).^2/2).*J_4_trans; 

J_5trans=((e.*g-f.*h).^2/2).*J_5_trans; 

J_6trans=2*(b.^2).*J_6_trans; 

J_7trans=(1/3)*(b.^2).*J_7_trans; 

J_8trans=2*(d.^2).*J_8_trans; 
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J_9trans=(1/3)*(d.^2).*J_9_trans; 

J_10trans=2*(e.^2).*J_10_trans; 

J_11trans=(1/3)*(e.^2).*J_11_trans; 

J_12trans=2*(g.^2).*J_12_trans; 

J_13trans=(1/3)*(g.^2).*J_13_trans; 

J_14trans=2*((a.*f).^2).*J_14_trans; 

J_15trans=(1/3)*((a.*f).^2).*J_15_trans; 

J_16trans=2*((a.*h).^2).*J_16_trans; 

J_17trans=(1/3)*((a.*h).^2).*J_17_trans; 

J_18trans=2*((c.*f).^2).*J_18_trans; 

J_19trans=(1/3)*((c.*f).^2).*J_19_trans; 

J_20trans=2*((c.*h).^2).*J_20_trans; 

J_21trans=(1/3)*((c.*h).^2).*J_21_trans; 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%%%             rotational spectral densities                        

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

J_1rot=(1+0.5*(a.^2-b.^2).^2+0.5*(c.^2-d.^2).^2+0.5*(e.^2-

f.^2).^2+... 

0.5*(g.^2-h.^2).^2).*J_1_rot; 

J_2rot=((a.*c-b.*d).^2/2).*J_2_rot; 

J_3rot=((a.*c-b.*d).^2/2).*J_3_rot; 

J_4rot=((e.*g-f.*h).^2/2).*J_4_rot; 

J_5rot=((e.*g-f.*h).^2/2).*J_5_rot; 

J_6rot=2*(b.^2).*J_6_rot; 

J_7rot=(1/3)*(b.^2).*J_7_rot; 

J_8rot=2*(d.^2).*J_8_rot; 

J_9rot=(1/3)*(d.^2).*J_9_rot; 

J_10rot=2*(e.^2).*J_10_rot; 

J_11rot=(1/3)*(e.^2).*J_11_rot; 

J_12rot=2*(g.^2).*J_12_rot; 

J_13rot=(1/3)*(g.^2).*J_13_rot; 

J_14rot=2*((a.*f).^2).*J_14_rot; 

J_15rot=(1/3)*((a.*f).^2).*J_15_rot; 

J_16rot=2*((a.*h).^2).*J_16_rot; 

J_17rot=(1/3)*((a.*h).^2).*J_17_rot; 

J_18rot=2*((c.*f).^2).*J_18_rot; 

J_19rot=(1/3)*((c.*f).^2).*J_19_rot; 

J_20rot=2*((c.*h).^2).*J_20_rot; 

J_21rot=(1/3)*((c.*h).^2).*J_21_rot; 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%%%          relaxation rate                                         

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

R1=Kdd*(J_1t+J_2t+J_3t+J_4t+J_5t+J_6t+J_7t+J_8t+J_9t+J_10t+J_11t+... 

J_12t+J_13t+J_14t+J_15t+J_16t+J_17t+J_18t+J_19t+J_20t+J_21t); 

J_trans=Kdd*(J_1trans+J_2trans+J_3trans+J_4trans+J_5trans+J_6trans+.

.. 

J_7trans+J_8trans+J_9trans+J_10trans+J_11trans+J_12trans+J_13trans+.

.. 

J_14trans+J_15trans+J_16trans+J_17trans+J_18trans+J_19trans+... 

J_20trans+J_21trans); 

J_rot=Kdd*(J_1rot+J_2rot+J_3rot+J_4rot+J_5rot+J_6rot+... 

J_7rot+J_8rot+J_9rot+J_10rot+J_11rot+J_12rot+J_13rot+... 

J_14rot+J_15rot+J_16rot+J_17rot+J_18rot+J_19rot+J_20rot+J_21rot); 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
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J_1tot=Kdd*J_1t; 

J_2tot=Kdd*(J_2t+J_3t+J_4t+J_5t); 

J_3tot=Kdd*(J_6t+J_7t+J_8t+J_9t); 

J_4tot=Kdd*(J_10t+J_11t+J_12t+J_13t); 

J_5tot=Kdd*(J_14t+J_15t+J_16t+J_17t); 

J_6tot=Kdd*(J_18t+J_19t+J_20t+J_21t); 

 

 

Generalized spectral density defined in a separate file (Eq. 39): 

 
 
function [J,J_trans,J_rot] = J_gest_2 (p,w) 

 

J=zeros; 

J_trans=zeros; 

J_rot=zeros; 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

tauR=p(1); 

x=p(2); 

fcd=p(3); 

beta=p(4); 

tau=x.*tauR; 

 

 

for i=1:length(w) 

 fun = @(u)u.^4.*tau./((81.+9*u.^2.-

2*u.^4.+u.^6).*(u.^4.+(tau.*w(i)).^2)); 

 Ji(i)=(72*(3/(4*pi)))*quadgk(fun,0,inf); 

end 

 

for i=1:length(w) 

 Jcd(i)= fcd.*(sin(beta*atan(w(i).*tauR./beta)))... 

          /(w(i).*(1+(w(i).*tauR./beta).^2).^(beta/2)); 

end 

 

for i=1:length(w) 

 J(i)=Ji(i)+Jcd(i); 

end 

 

  J_rot=Jcd; 

  J_trans=Ji;        

end 

     

 

Proton relaxation function including electron spin relaxation for 15N and 14N, respectively: 

 
function [Rtotale,Rtrans,Rrot,R0e,R1e,R2e,R3e,R0e_trans,R0e_rot]= 

funkcja_relaksacji_15N_1e (p,w) 

 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

tauR=p(1)*1e-10; 

x=p(2); 

f=p(3); 

beta=p(4); 

%dIS=p(5); 

tau=x*tauR; 
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tauRe=tauR; 

%tauRe=p(6); 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%%% hyperfine coupling                                               

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

Axx=22e6; 

Ayy=23e6; 

Azz=142e6; 

A=(Axx+Ayy+Azz)/3; 

A=A*2*pi; 

Axx=Axx*2*pi; 

Ayy=Ayy*2*pi; 

Azz=Azz*2*pi; 

DeltaA=Azz-(1/2)*(Axx+Ayy); 

DeltaA=2/3*DeltaA*DeltaA+0.5*(Axx-Ayy).^2; 

w=2*pi*w; 

wS=657*w; 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%%%         physical constants                                       

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

gammaI=2.67522212e8; 

gammaS=1.760859794e11;  

mi0= 12.566370614e-7;  

Na=6.02214199e23;  

Ni=1.0;  

Ni=Ni*Na;  

hbar=1.054571596e-34;  

dIS=p(5)*1e-10;   

Kdd=(1/10)*((mi0*gammaI*gammaS*hbar/(4*pi)).^2)*(Ni/(dIS.^3));  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%%%              eigenvectors coefficients                           

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

c1=sqrt(0.5*(1+(wS./sqrt(A.^2+wS.^2))));                   

c2=sqrt(0.5*(1-(wS./sqrt(A.^2+wS.^2))));                   

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%%%               transition frequencies                            

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

w12=wS./2+A/2-0.5*sqrt(A.^2+wS.^2); 

w21=-w12; 

w13=wS./2+A/2+0.5*sqrt(A.^2+wS.^2); 

w31=-w13; 

w23=sqrt(A.^2+wS.^2); 

w32=-w23; 

w24=wS./2-A./2+0.5*sqrt(A.^2+wS.^2); 

w42=-w24; 

w34=wS./2-A./2-0.5*sqrt(A.^2+wS.^2); 

w43=-w34; 

w14=wS; 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%%%   electron relaxation rates                                      

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

R1212=(1/24)*(((c1+c2).^2+1).^2).*Jrotb(tauRe,beta,w*1e-10); 

R1212=R1212+(1/8)*((c1+c2).^2).*Jrotb(tauRe,beta,w12); 

R1212=R1212+(1/16)*((c1-c2).^2).*Jrotb(tauRe,beta,w13); 

R1212=R1212+(1/4)*Jrotb(tauRe,beta,w14); 

R1212=R1212+(1/24)*((c1.^2-c2.^2).^2).*Jrotb(tauRe,beta,w23); 

R1212=R1212+(1/16)*((c1+c2).^2).*Jrotb(tauRe,beta,w24); 

R1212=R1212*DeltaA; 

 

R1313=(1/24)*(((c1-c2).^2+1).^2).*Jrotb(tauRe,beta,w*1e-10); 

R1313=R1313+(1/8)*((c1-c2).^2).*Jrotb(tauRe,beta,w13); 

R1313=R1313+(1/16)*((c1+c2).^2).*Jrotb(tauRe,beta,w12); 

R1313=R1313+(1/4)*Jrotb(tauRe,beta,w14); 

R1313=R1313+(1/24)*((c1.^2-c2.^2).^2).*Jrotb(tauRe,beta,w23); 

R1313=R1313+(1/16)*((c1-c2).^2).*Jrotb(tauRe,beta,w34); 

R1313=R1313*DeltaA; 

 

R2424=(1/24)*(((c1+c2).^2+1).^2).*Jrotb(tauRe,beta,w*1e-10); 

R2424=R2424+(1/8)*((c1+c2).^2).*Jrotb(tauRe,beta,w24); 

R2424=R2424+(1/16)*((c1+c2).^2).*Jrotb(tauRe,beta,w12); 

R2424=R2424+(1/4)*Jrotb(tauRe,beta,w14); 

R2424=R2424+(1/24)*((c1.^2+c2.^2).^2).*Jrotb(tauRe,beta,w23); 

R2424=R2424+(1/16)*((c1-c2).^2).*Jrotb(tauRe,beta,w34); 

R2424=R2424*DeltaA; 

 

R3434=(1/24)*(((c1-c2).^2+1).^2).*Jrotb(tauRe,beta,w*1e-10); 

R3434=R3434+(1/8)*((c1-c2).^2).*Jrotb(tauRe,beta,w34); 

R3434=R3434+(1/16)*((c1-c2).^2).*Jrotb(tauRe,beta,w13); 

R3434=R3434+(1/4)*Jrotb(tauRe,beta,w14); 

R3434=R3434+(1/24)*((c1.^2-c2.^2).^2).*Jrotb(tauRe,beta,w23); 

R3434=R3434+(1/16)*((c1+c2).^2).*Jrotb(tauRe,beta,w24); 

R3434=R3434*DeltaA; 

 

R2323=(1/24)*(((c1+c2).^2+(c1-c2).^2).^2).*Jrotb(tauRe,beta,w*1e-

10); 

R2323=R2323+(1/16)*((c1+c2).^2).*Jrotb(tauRe,beta,w24); 

R2323=R2323+(1/16)*((c1+c2).^2).*Jrotb(tauRe,beta,w12); 

R2323=R2323+(1/16)*((c1-c2).^2).*Jrotb(tauRe,beta,w13); 

R2323=R2323+(1/12)*((c1.^2-c2.^2).^2).*Jrotb(tauRe,beta,w23); 

R2323=R2323+(1/16)*((c1-c2).^2).*Jrotb(tauRe,beta,w34); 

 

R1122=DeltaA*(1/8)*((c1+c2).^2).*Jrotb(tauRe,beta,w12); 

R1133=DeltaA*(1/8)*((c1-c2).^2).*Jrotb(tauRe,beta,w13); 

R1144=DeltaA*(1/2)*Jrotb(tauRe,beta,w14); 

R2233=DeltaA*(1/12)*((c1.^2-c2.^2).^2).*Jrotb(tauRe,beta,w23); 

R2244=DeltaA*(1/8)*((c1+c2).^2).*Jrotb(tauRe,beta,w24); 

R3344=DeltaA*(1/8)*((c1-c2).^2).*Jrotb(tauRe,beta,w34); 

R1111=-R1122-R1133-R1144; 

R2222=-R1122-R2233-R2244; 

R3333=-R1133-R2233-R3344; 

R4444=-R1144-R2244-R3344; 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%%%        spectral densities                                        

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

R0e=3*J_gwI(p,w); 

R0e=R0e+3*(1+(c1.^2-c2.^2).^2).*Jrotb(tauR,beta,w)*f*(pi*20/3); 

R0e=(0.5)*R0e*Kdd; 

R0e_trans=(0.5)*Kdd*3*J_gwI(p,w); 

R0e_rot=(0.5)*Kdd.*3*(1+(c1.^2-

c2.^2).^2).*Jrotb(tauR,beta,w)*f*(pi*20/3); 

 

R1e=12*(c1.^2).*(c2.^2).*(Jtranse(tau,w23,R2323)+f*Jrotb(tauR,beta,w

23)*(pi*20/3)); 

R1e=(0.5)*Kdd*R1e; 

R1e_trans=(0.5)*Kdd*12*(c1.^2).*(c2.^2).*(Jtranse(tau,w23,R2323)); 

R1e_rot=(0.5)*Kdd.*12*(c1.^2).*(c2.^2).*f.*Jrotb(tauR,beta,w23)*(pi*

20/3); 

 

 

R2e=6*(c1.^2).*(Jtranse(tau,w13+w,R1313)+f*Jrotb(tauR,beta,w13+w)*(p

i*20/3)); 

R2e=R2e+6*(c1.^2).*(Jtranse(tau,w24+w,R2424)+f*Jrotb(tauR,beta,w24+w

)*(pi*20/3)); 

R2e=R2e+6*(c2.^2).*(Jtranse(tau,w12+w,R1212)+f*Jrotb(tauR,beta,w12+w

)*(pi*20/3)); 

R2e=R2e+6*(c2.^2).*(Jtranse(tau,w34+w,R3434)+f*Jrotb(tauR,beta,w34+w

)*(pi*20/3)); 

R2e=(0.5)*Kdd*R2e; 

 

R2e_trans=6*(c1.^2).*(Jtranse(tau,w13+w,R1313)); 

R2e_trans=R2e_trans+6*(c1.^2).*(Jtranse(tau,w24+w,R2424)); 

R2e_trans=R2e_trans+6*(c2.^2).*(Jtranse(tau,w12+w,R1212)); 

R2e_trans=R2e_trans+6*(c2.^2).*(Jtranse(tau,w34+w,R3434)); 

R2e_trans=(0.5)*Kdd*R2e_trans; 

 

R2e_rot=6*(c1.^2).*(f*Jrotb(tauR,beta,w13+w)*(pi*20/3)); 

R2e_rot=R2e_rot+6*(c1.^2).*(f*Jrotb(tauR,beta,w24+w)*(pi*20/3)); 

R2e_rot=R2e_rot+6*(c2.^2).*(f*Jrotb(tauR,beta,w12+w)*(pi*20/3)); 

R2e_rot=R2e_rot+6*(c2.^2).*(f*Jrotb(tauR,beta,w34+w)*(pi*20/3)); 

R2e_rot=(0.5)*Kdd*R2e_rot; 

 

 

 

R3e=(c1.^2).*(Jtranse(tau,w13-w,R1313)+f*Jrotb(tauR,beta,w13-

w)*(pi*20/3)); 

R3e=R3e+(c1.^2).*(Jtranse(tau,w24-w,R2424)+f*Jrotb(tauR,beta,w24-

w)*(pi*20/3)); 

R3e=R3e+(c2.^2).*(Jtranse(tau,w12-w,R1212)+f*Jrotb(tauR,beta,w12-

w)*(pi*20/3)); 

R3e=R3e+(c2.^2).*(Jtranse(tau,w34-w,R3434)+f*Jrotb(tauR,beta,w34-

w)*(pi*20/3)); 

R3e=(0.5)*R3e*Kdd; 

 

R3e_trans=(c1.^2).*(Jtranse(tau,w13-w,R1313)); 

R3e_trans=R3e_trans+(c1.^2).*(Jtranse(tau,w24-w,R2424)); 

R3e_trans=R3e_trans+(c2.^2).*(Jtranse(tau,w12-w,R1212)); 

R3e_trans=R3e_trans+(c2.^2).*(Jtranse(tau,w34-w,R3434)); 

R3e_trans=(0.5)*R3e_trans*Kdd; 
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R3e_rot=(c1.^2).*(f*Jrotb(tauR,beta,w13-w)*(pi*20/3)); 

R3e_rot=R3e_rot+(c1.^2).*(f*Jrotb(tauR,beta,w24-w)*(pi*20/3)); 

R3e_rot=R3e_rot+(c2.^2).*(f*Jrotb(tauR,beta,w12-w)*(pi*20/3)); 

R3e_rot=R3e_rot+(c2.^2).*(f*Jrotb(tauR,beta,w34-w)*(pi*20/3)); 

R3e_rot=(0.5)*R3e_rot*Kdd; 

 

Rtotale=R0e+R1e+R2e+R3e; 

Rtrans=R0e_trans+R1e_trans+R2e_trans+R3e_trans; 

Rrot=R0e_rot+R1e_rot+R2e_rot+R3e_rot; 

function [R1,R1_trans, R1_rot,R0e,R1e,R2e,R3e,R4e,R5e] = 

funkcja_relaksacji_14N_1e (p,w) 

 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

tauR=p(1); 

x=p(2); 

fac=p(3); 

beta=p(4); 

dIS=p(5)*1e-10; 

tau=x*tauR; 

tauRe=tauR; 

%tauRe=p(9); 

 

w=2*pi*w; 

wS=657*w; 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%%% hyperfine coupling                                               

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

Axx=15.4e6; 

Ayy=16.1e6; 

Azz=99.5e6; 

A=(Axx+Ayy+Azz)/3; 

A=A*2*pi; 

Axx=Axx*2*pi; 

Ayy=Ayy*2*pi; 

Azz=Azz*2*pi; 

DeltaA=Azz-(1/2)*(Axx+Ayy); 

DeltaA=2/3*DeltaA*DeltaA+0.5*(Axx-Ayy).^2; 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

R1=zeros; 

J_trans=zeros; 

J_rot=zeros; 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%%%     constants                                                    

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

gammaI=2.67522212e8;  

gammaS=1.760859794e11; 

mi0= 12.566370614e-7;  

Na=6.02214199e23;  

Ni=1.0;  

Ni=Ni*Na;  

hbar=1.054571596e-34;   

Kdd=(1/10)*((mi0*gammaI*gammaS*hbar/(4*pi)).^2)*(Ni/(dIS.^3));  

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%%%                       alpha, beta etc..                          

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

alpha=(A+2*wS+sqrt(9*A.^2+4*A*wS+4*wS.^2))./(2*sqrt(2)*A); 

betab=(A+2*wS-sqrt(9*A.^2+4*A*wS+4*wS.^2))./(2*sqrt(2)*A); 

gamma=(A-2*wS-sqrt(9*A.^2-4*A*wS+4*wS.^2))./(2*sqrt(2)*A); 

delta=(A-2*wS+sqrt(9*A.^2-4*A*wS+4*wS.^2))./(2*sqrt(2)*A); 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%%%                   normalized factors                             

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

la=sqrt(1+betab.*betab); 

lb=sqrt(1+betab.*betab); 

lc=sqrt(1+alpha.*alpha); 

ld=sqrt(1+alpha.*alpha); 

le=sqrt(1+delta.*delta); 

lf=sqrt(1+delta.*delta); 

lg=sqrt(1+gamma.*gamma); 

lh=sqrt(1+gamma.*gamma); 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%%%                         factors                                  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

a=la.^(-1); 

b=betab./lb; 

c=lc.^(-1); 

d=alpha./ld; 

e=le.^(-1); 

f=delta./lf; 

g=lg.^(-1); 

h=gamma./lh; 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%%%              frequencies                                         

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

E1=wS./2+A/2; 

E2=0.5*sqrt(wS.^2+wS.*A+(9/4)*A^2)-A/4; 

E3=-0.5*sqrt(wS.^2+wS.*A+(9/4)*A^2)-A/4; 

E4=0.5*sqrt(wS.^2-wS.*A+(9/4)*A^2)-A/4; 

E5=-0.5*sqrt(wS.^2-wS.*A+(9/4)*A^2)-A/4; 

E6=-wS./2+A/2; 

w23=sqrt(wS.^2+wS.*A+(9/4)*A^2); 

w45=sqrt(wS.^2-wS.*A+(9/4)*A^2); 

w12=wS./2+3*A/4-(0.5)*sqrt(wS.^2+wS.*A+(9/4)*A^2); 

w13=wS./2+3*A/4+0.5*sqrt(wS.^2+wS.*A+(9/4)*A^2); 

w46=wS./2-3*A/4+0.5*sqrt(wS.^2-wS.*A+(9/4)*A^2); 

w56=wS./2-3*A/4-0.5*sqrt(wS.^2-wS.*A+(9/4)*A^2); 

w24=0.5*sqrt(wS.^2+wS.*A+(9/4)*A^2)-0.5*sqrt(wS.^2-wS.*A+(9/4)*A^2); 

w25=0.5*sqrt(wS.^2+wS.*A+(9/4)*A^2)+0.5*sqrt(wS.^2-wS.*A+(9/4)*A^2); 

w34=-w25; 

w35=-w24; 

w14=wS./2+3*A/4-0.5*sqrt(wS.^2-wS.*A+(9/4)*A^2); 

w15=wS./2+3*A/4+0.5*sqrt(wS.^2-wS.*A+(9/4)*A^2); 



 

126 

 

w26=E2-E6; 

w36=E3-E6; 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%%% electron relaxation rates                                        

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

R1212=(1/6)*((1+b.*(b+a.*sqrt(2))).^2).*Jrotb(tauRe,beta,w*1e-10); 

R1212=R1212+(1/4)*(a+b*sqrt(2)).^2.*Jrotb(tauRe,beta,w12); 

R1212=R1212+(1/8)*(c+d*sqrt(2)).^2.*Jrotb(tauRe,beta,w13); 

R1212=R1212+(1/2)*f.^2.*Jrotb(tauRe,beta,w14); 

R1212=R1212+(1/2)*h.^2.*Jrotb(tauRe,beta,w15); 

R1212=R1212+(1/12)*((a.*d+b.*c+b.*d.*sqrt(2)).^2).*Jrotb(tauRe,beta,

w23); 

R1212=R1212+(1/8)*(b.*f-a.*e).^2.*Jrotb(tauRe,beta,w24); 

R1212=R1212+(1/8)*(b.*h-a.*g).^2.*Jrotb(tauRe,beta,w25); 

R1212=R1212+(1/2)*a.^2.*Jrotb(tauRe,beta,w26); 

R1212=R1212*DeltaA; 

 

 

R1313=(1/6)*(1+d.*(d+c.*sqrt(2))).^2.*Jrotb(tauRe,beta,w*1e-10); 

R1313=R1313+(1/8)*(a+b.*sqrt(2)).^2.*Jrotb(tauRe,beta,w12); 

R1313=R1313+(1/4)*(c+d.*sqrt(2)).^2.*Jrotb(tauRe,beta,w13); 

R1313=R1313+(1/2)*f.^2.*Jrotb(tauR,beta,w14); 

R1313=R1313+(1/2)*h.^2.*Jrotb(tauR,beta,w15); 

R1313=R1313+(1/12)*(a.*d+b.*c+b.*d.*sqrt(2)).^2.*Jrotb(tauRe,beta,w2

3); 

R1313=R1313+(1/8)*(d.*f-c.*e).^2.*Jrotb(tauRe,beta,w34); 

R1313=R1313+(1/8)*(d.*h-c.*g).^2.*Jrotb(tauRe,beta,w35); 

R1313=R1313+(1/2)*c.^2.*Jrotb(tauRe,beta,w36); 

R1313=R1313*DeltaA; 

 

R2323=(1/6)*(b.*(b+a*sqrt(2))-

d.*(d+c*sqrt(2))).^2.*Jrotb(tauRe,beta,w*1e-10); 

R2323=R2323+(1/8)*(a+b.*sqrt(2)).^2.*Jrotb(tauRe,beta,w12); 

R2323=R2323+(1/6)*(a.*d+b.*c+b.*d.*sqrt(2)).^2.*Jrotb(tauRe,beta,w23

); 

R2323=R2323+(1/8)*(b.*f-a.*e).^2.*Jrotb(tauR,beta,w24); 

R2323=R2323+(1/8)*(b.*h-a.*g).^2.*Jrotb(tauR,beta,w25); 

R2323=R2323+(1/2)*a.^2.*Jrotb(tauRe,beta,w26); 

R2323=R2323+(1/8)*(c+d.*sqrt(2)).*Jrotb(tauR,beta,w13); 

R2323=R2323+(1/8)*(d.*f-c.*e).^2.*Jrotb(tauR,beta,w34); 

R2323=R2323+(1/8)*(d.*h-c.*g).^2.*Jrotb(tauR,beta,w35); 

R2323=R2323+(1/2)*c.^2.*Jrotb(tauR,beta,w36); 

R2323=R2323*DeltaA; 

 

R2424=(1/6)*(b.*(b+a*sqrt(2))-

e.*(e+f.*sqrt(2))).^2.*Jrotb(tauRe,beta,w*1e-10); 

R2424=R2424+(1/8)*(a+b.*sqrt(2)).^2.*Jrotb(tauRe,beta,w12); 

R2424=R2424+(1/6)*(a.*d+b.*c+b.*d.*sqrt(2)).^2.*Jrotb(tauRe,beta,w23

); 

R2424=R2424+(1/4)*(b.*f-a.*e).^2.*Jrotb(tauRe,beta,w24); 

R2424=R2424+(1/8)*(b.*h-a.*g).^2.*Jrotb(tauRe,beta,w25); 

R2424=R2424+(1/2)*a.^2.*Jrotb(tauRe,beta,w26); 

R2424=R2424+(1/2)*f.^2.*Jrotb(tauRe,beta,w14); 

R2424=R2424+(1/8)*(d.*f-c.*e).*Jrotb(tauRe,beta,w34); 
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R2424=R2424+(1/12)*(e.*h+f.*g+e.*g.*sqrt(2)).^2.*Jrotb(tauR,beta,w45

); 

R2424=R2424+(1/8)*(f+e.*sqrt(2)).^2.*Jrotb(tauRe,beta,w46); 

R2424=R2424*DeltaA; 

 

R2525=(1/6)*(b.*(b+a.*sqrt(2))-

g.*(g+h.*sqrt(2))).^2.*Jrotb(tauRe,beta,w*1e-10); 

R2525=R2525+(1/8)*(a+b.*sqrt(2)).^2.*Jrotb(tauRe,beta,w12); 

R2525=R2525+(1/12)*(a.*d+b.*c+b.*d.*sqrt(2)).^2.*Jrotb(tauRe,beta,w2

3); 

R2525=R2525+(1/8)*(b.*f-a.*e).^2.*Jrotb(tauRe,beta,w24); 

R2525=R2525+(1/4)*(b.*h-a.*g).^2.*Jrotb(tauRe,beta,w25); 

R2525=R2525+(1/2)*a.^2.*Jrotb(tauRe,beta,w26); 

R2525=R2525+(1/2)*h.^2.*Jrotb(tauRe,beta,w15); 

R2525=R2525+(1/8)*(d.*h-c.*g).^2.*Jrotb(tauRe,beta,w35); 

R2525=R2525+(1/12)*(e.*h+f.*g+e.*g.*sqrt(2)).*Jrotb(tauRe,beta,w45); 

R2525=R2525+(1/8)*(h+g.*sqrt(2)).*Jrotb(tauRe,beta,w56); 

R2525=R2525*DeltaA; 

 

 

R3434=(1/6)*(d.*(d+c.*sqrt(2))-

e.*(e+f.*sqrt(2))).^2.*Jrotb(tauRe,beta,w*1e-10); 

R3434=R3434+(1/8)*(c+d.*sqrt(2)).^2.*Jrotb(tauRe,beta,w13); 

R3434=R3434+(1/12)*(a.*d+b.*c+b.*d*sqrt(2)).^2.*Jrotb(tauRe,beta,w23

); 

R3434=R3434+(1/4)*(d.*f-c.*e).^2.*Jrotb(tauRe,beta,w34); 

R3434=R3434+(1/8)*(d.*h-c.*g).^2.*Jrotb(tauRe,beta,w35); 

R3434=R3434+(1/2)*c.^2.*Jrotb(tauRe,beta,w36); 

R3434=R3434+(1/2)*f.^2.*Jrotb(tauRe,beta,w14); 

R3434=R3434+(1/8)*(b.*f-a.*e).^2.*Jrotb(tauRe,beta,w24); 

R3434=R3434+(1/12)*(e.*h+f.*g+e.*g.*sqrt(2)).^2.*Jrotb(tauRe,beta,w4

5); 

R3434=R3434+(1/8)*(c+d.*sqrt(2)).^2.*Jrotb(tauRe,beta,w46); 

R3434=R3434*DeltaA; 

 

 

R3535=(1/6)*(d.*(d+c.*sqrt(2))-

g.*(g+f.*sqrt(2))).^2.*Jrotb(tauRe,beta,w*1e-10); 

R3535=R3535+(1/8)*(c+d.*sqrt(2)).*Jrotb(tauRe,beta,w13); 

R3535=R3535+(1/12)*(a.*d+b.*c+b.*d.*sqrt(2)).^2.*Jrotb(tauRe,beta,w2

3); 

R3535=R3535+(1/8)*(d.*f-c.*e).^2.*Jrotb(tauRe,beta,w34); 

R3535=R3535+(1/4)*(d.*h-c.*g).^2.*Jrotb(tauRe,beta,w35); 

R3535=R3535+(1/2)*c.^2.*Jrotb(tauRe,beta,w36); 

R3535=R3535+(1/2)*h.^2.*Jrotb(tauRe,beta,w15); 

R3535=R3535+(1/8)*(b.*h-a.*g).^2.*Jrotb(tauRe,beta,w25); 

R3535=R3535+(1/12)*(e.*h+f.*g+e.*g.*sqrt(2)).*Jrotb(tauRe,beta,w45); 

R3535=R3535+(1/8)*(h+g.*sqrt(2)).^2.*Jrotb(tauRe,beta,w56); 

R3535=R3535*DeltaA; 

 

 

R4545=(1/6)*(e.*(e+f.*sqrt(2))-

g.*(g+h.*sqrt(2))).^2.*Jrotb(tauRe,beta,w*1e-10); 

R4545=R4545+(1/2)*f.^2.*Jrotb(tauRe,beta,w14); 

R4545=R4545+(1/6)*(e.*h+f.*g+e.*g.*sqrt(2)).^2.*Jrotb(tauRe,beta,w45

); 

R4545=R4545+(1/8)*(b.*f-a.*e).^2.*Jrotb(tauRe,beta,w24); 

R4545=R4545+(1/8)*(d.*f-c.*e).^2.*Jrotb(tauRe,beta,w34); 
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R4545=R4545+(1/8)*(f+e.*sqrt(2)).^2.*Jrotb(tauRe,beta,w46); 

R4545=R4545+(1/2)*h.^2.*Jrotb(tauRe,beta,w15); 

R4545=R4545+(1/8)*(b.*h-a.*g).^2.*Jrotb(tauRe,beta,w25); 

R4545=R4545+(1/8)*(d.*h-c.*g).^2.*Jrotb(tauRe,beta,w35); 

R4545=R4545+(1/2)*(h+g.*sqrt(2)).*Jrotb(tauRe,beta,w56); 

R4545=R4545*DeltaA; 

 

 

R4646=(1/6)*(1+e.*(e+f.*sqrt(2))).^2.*Jrotb(tauRe,beta,w*1e-10); 

R4646=R4646+(1/2)*f.^2.*Jrotb(tauRe,beta,w14); 

R4646=R4646+(1/8)*(b.*f-a.*e).^2.*Jrotb(tauRe,beta,w24); 

R4646=R4646+(1/8)*(d.*f-c.*e).^2.*Jrotb(tauRe,beta,w34); 

R4646=R4646+(1/12)*(e.*h+f.*g+e.*g.*sqrt(2)).^2.*Jrotb(tauRe,beta,w4

5); 

R4646=R4646+(1/4)*(f+e.*sqrt(2)).*Jrotb(tauRe,beta,w46); 

R4646=R4646+(1/2)*a.^2.*Jrotb(tauRe,beta,w26); 

R4646=R4646+(1/2)*c.^2.*Jrotb(tauRe,beta,w36); 

R4646=R4646+(1/8)*(h+g.*sqrt(2)).^2.*Jrotb(tauRe,beta,w56); 

R4646=R4646*DeltaA; 

 

R5656=(1/6)*(1+g.*(g+h.*sqrt(2))).^2.*Jrotb(tauRe,beta,w*1e-10); 

R5656=R5656+(1/2)*h.^2.*Jrotb(tauRe,beta,w15); 

R5656=R5656+(1/8)*(b.*h-a.*g).^2.*Jrotb(tauRe,beta,w25); 

R5656=R5656+(1/8)*(d.*h-c.*g).^2.*Jrotb(tauRe,beta,w35); 

R5656=R5656+(1/12)*(e.*h+f.*g+e.*g.*sqrt(2)).*Jrotb(tauRe,beta,w45); 

R5656=R5656+(1/4)*(h+g.*sqrt(2)).^2.*Jrotb(tauRe,beta,w56); 

R5656=R5656+(1/2)*a.^2.*Jrotb(tauRe,beta,w26); 

R5656=R5656+(1/2)*c.^2.*Jrotb(tauRe,beta,w36); 

R5656=R5656+(1/8)*(f+e.*sqrt(2)).*Jrotb(tauRe,beta,w46); 

R5656=R5656*DeltaA; 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

R0e=J_gwI14(p,w); 

R0e=R0e+(1+0.5*(a.^2-b.^2).^2+0.5*(c.^2-d.^2).^2+0.5*(e.^2-

f.^2).^2+0.5*(g.^2-h.^2).^2).*Jrotb(tauR,beta,w)*fac*(pi*20/3); 

R0e=R0e*Kdd; 

 

R0e_trans=J_gwI14(p,w); 

R0e_trans=R0e_trans*Kdd; 

 

R0e_rot=(1+0.5*(a.^2-b.^2).^2+0.5*(c.^2-d.^2).^2+0.5*(e.^2-

f.^2).^2+0.5*(g.^2-h.^2).^2).*Jrotb(tauR,beta,w)*fac*(pi*20/3); 

R0e_rot=R0e_rot*Kdd; 

 

R1e=((a.*c-

b.*d).^2/2).*(Jtranse(tau,w23+w,R2323)+Jrotb(tauR,beta,w23)*fac*(pi*

20/3)); 

R1e=R1e+((a.*c-b.*d).^2/2).*(Jtranse(tau,w23-

w,R2323)+Jrotb(tauR,beta,w23)*fac*(pi*20/3)); 

R1e=R1e+((e.*g-

f.*h).^2/2).*(Jtranse(tau,w45+w,R4545)+Jrotb(tauR,beta,w45)*fac*(pi*

20/3)); 

R1e=R1e+((e.*g-f.*h).^2/2).*(Jtranse(tau,w45-

w,R4545)+Jrotb(tauR,beta,w45)*fac*(pi*20/3)); 

R1e=R1e*Kdd; 

 

R1e_trans=((a.*c-b.*d).^2/2).*(Jtranse(tau,w23+w,R2323)); 
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R1e_trans=R1e_trans+((a.*c-b.*d).^2/2).*(Jtranse(tau,w23-w,R2323)); 

R1e_trans=R1e_trans+((e.*g-f.*h).^2/2).*(Jtranse(tau,w45+w,R4545)); 

R1e_trans=R1e_trans+((e.*g-f.*h).^2/2).*(Jtranse(tau,w45-w,R4545)); 

R1e_trans=R1e_trans*Kdd; 

 

R1e_rot=((a.*c-b.*d).^2/2).*(Jrotb(tauR,beta,w23)*fac*(pi*20/3)); 

R1e_rot=R1e_rot+((a.*c-

b.*d).^2/2).*(Jrotb(tauR,beta,w23)*fac*(pi*20/3)); 

R1e_rot=R1e_rot+((e.*g-

f.*h).^2/2).*(Jrotb(tauR,beta,w45)*fac*(pi*20/3)); 

R1e_rot=R1e_rot+((e.*g-

f.*h).^2/2).*(Jrotb(tauR,beta,w45)*fac*(pi*20/3)); 

R1e_rot=R1e_rot*Kdd; 

 

R2e=2*(b.^2).*(Jtranse(tau,w12+w,R1212)+Jrotb(tauR,beta,w12)*fac*(pi

*20/3)); 

R2e=R2e+(1/3)*(b.^2).*(Jtranse(tau,w12-

w,R1212)+Jrotb(tauR,beta,w12)*fac*(pi*20/3)); 

R2e=R2e+2*(d.^2).*(Jtranse(tau,w13+w,R1313)+Jrotb(tauR,beta,w13)*fac

*(pi*20/3)); 

R2e=R2e+(1/3)*(d.^2).*(Jtranse(tau,w13-

w,R1313)+Jrotb(tauR,beta,w13)*fac*(pi*20/3)); 

R2e=R2e*Kdd; 

 

R2e_rot=2*(b.^2).*(Jrotb(tauR,beta,w12)*fac*(pi*20/3)); 

R2e_rot=R2e_rot+(1/3)*(b.^2).*(Jrotb(tauR,beta,w12)*fac*(pi*20/3)); 

R2e_rot=R2e_rot+2*(d.^2).*(Jrotb(tauR,beta,w13)*fac*(pi*20/3)); 

R2e_rot=R2e_rot+(1/3)*(d.^2).*(Jrotb(tauR,beta,w13)*fac*(pi*20/3)); 

R2e_rot=R2e_rot*Kdd; 

 

R2e_trans=2*(b.^2).*(Jtranse(tau,w12+w,R1212)); 

R2e_trans=R2e_trans+(1/3)*(b.^2).*(Jtranse(tau,w12-w,R1212)); 

R2e_trans=R2e_trans+2*(d.^2).*(Jtranse(tau,w13+w,R1313)); 

R2e_trans=R2e_trans+(1/3)*(d.^2).*(Jtranse(tau,w13-w,R1313)); 

R2e_trans=R2e_trans*Kdd; 

 

R3e=2*(e.^2).*(Jtranse(tau,w46+w,R4646)+Jrotb(tauR,beta,w46)*fac*(pi

*20/3)); 

R3e=R3e+(1/3)*(e.^2).*(Jtranse(tau,w46-

w,R4646)+Jrotb(tauR,beta,w46)*fac*(pi*20/3)); 

R3e=R3e+2*(g.^2).*(Jtranse(tau,w56+w,R5656)+Jrotb(tauR,beta,w56)*fac

*(pi*20/3)); 

R3e=R3e+(1/3)*(g.^2).*(Jtranse(tau,w56-

w,R5656)+Jrotb(tauR,beta,w56)*fac*(pi*20/3)); 

R3e=R3e*Kdd; 

 

R3e_trans=2*(e.^2).*(Jtranse(tau,w46+w,R4646)); 

R3e_trans=R3e_trans+(1/3)*(e.^2).*(Jtranse(tau,w46-w,R4646)); 

R3e_trans=R3e_trans+2*(g.^2).*(Jtranse(tau,w56+w,R5656)); 

R3e_trans=R3e_trans+(1/3)*(g.^2).*(Jtranse(tau,w56-w,R5656)); 

R3e_trans=R3e_trans*Kdd; 

 

R3e_rot=2*(e.^2).*(Jrotb(tauR,beta,w46)*fac*(pi*20/3)); 

R3e_rot=R3e_rot+(1/3)*(e.^2).*(Jrotb(tauR,beta,w46)*fac*(pi*20/3)); 

R3e_rot=R3e_rot+2*(g.^2).*(Jrotb(tauR,beta,w56)*fac*(pi*20/3)); 

R3e_rot=R3e_rot+(1/3)*(g.^2).*(Jrotb(tauR,beta,w56)*fac*(pi*20/3)); 

R3e_rot=R3e_rot*Kdd; 
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R4e=2*((a.*f).^2).*(Jtranse(tau,w24+w,R2424)+Jrotb(tauR,beta,w24)*fa

c*(pi*20/3)); 

R4e=R4e+(1/3)*((a.*f).^2).*(Jtranse(tau,w24-

w,R2424)+Jrotb(tauR,beta,w24)*fac*(pi*20/3)); 

R4e=R4e+2*((a.*h).^2).*(Jtranse(tau,w25+w,R2525)+Jrotb(tauR,beta,w25

)*fac*(pi*20/3)); 

R4e=R4e+(1/3)*((a.*h).^2).*(Jtranse(tau,w25-

w,R2525)+Jrotb(tauR,beta,w25)*fac*(pi*20/3)); 

R4e=R4e*Kdd; 

 

R4e_trans=2*((a.*f).^2).*(Jtranse(tau,w24+w,R2424)); 

R4e_trans=R4e_trans+(1/3)*((a.*f).^2).*(Jtranse(tau,w24-w,R2424)); 

R4e_trans=R4e_trans+2*((a.*h).^2).*(Jtranse(tau,w25+w,R2525)); 

R4e_trans=R4e_trans+(1/3)*((a.*h).^2).*(Jtranse(tau,w25-w,R2525)); 

R4e_trans=R4e_trans*Kdd; 

 

R4e_rot=2*((a.*f).^2).*(Jrotb(tauR,beta,w24)*fac*(pi*20/3)); 

R4e_rot=R4e_rot+(1/3)*((a.*f).^2).*(Jrotb(tauR,beta,w24)*fac*(pi*20/

3)); 

R4e_rot=R4e_rot+2*((a.*h).^2).*(Jrotb(tauR,beta,w25)*fac*(pi*20/3)); 

R4e_rot=R4e_rot+(1/3)*((a.*h).^2).*(Jrotb(tauR,beta,w25)*fac*(pi*20/

3)); 

R4e_rot=R4e_rot*Kdd; 

 

R5e=2*((c.*f).^2).*(Jtranse(tau,w34+w,R3434)+Jrotb(tauR,beta,w34)*fa

c*(pi*20/3)); 

R5e=R5e+(1/3)*((c.*f).^2).*(Jtranse(tau,w34-

w,R3434)+Jrotb(tauR,beta,w34)*fac*(pi*20/3)); 

R5e=R5e+2*((c.*h).^2).*(Jtranse(tau,w35+w,R3535)+Jrotb(tauR,beta,w35

)*fac*(pi*20/3)); 

R5e=R5e+(1/3)*((c.*h).^2).*(Jtranse(tau,w35-

w,R3535)+Jrotb(tauR,beta,w35)*fac*(pi*20/3)); 

R5e=R5e*Kdd; 

 

R5e_trans=2*((c.*f).^2).*(Jtranse(tau,w34+w,R3434)); 

R5e_trans=R5e_trans+(1/3)*((c.*f).^2).*(Jtranse(tau,w34-w,R3434)); 

R5e_trans=R5e_trans+2*((c.*h).^2).*(Jtranse(tau,w35+w,R3535)); 

R5e_trans=R5e_trans+(1/3)*((c.*h).^2).*(Jtranse(tau,w35-w,R3535)); 

R5e_trans=R5e_trans*Kdd; 

 

R5e_rot=2*((c.*f).^2).*(Jrotb(tauR,beta,w34)*fac*(pi*20/3)); 

R5e_rot=R5e_rot+(1/3)*((c.*f).^2).*(Jrotb(tauR,beta,w34)*fac*(pi*20/

3)); 

R5e_rot=R5e_rot+2*((c.*h).^2).*(Jrotb(tauR,beta,w35)*fac*(pi*20/3)); 

R5e_rot=R5e_rot+(1/3)*((c.*h).^2).*(Jrotb(tauR,beta,w35)*fac*(pi*20/

3)); 

R5e_rot=R5e_rot*Kdd; 

 

R1=R0e+R1e+R2e+R3e+R4e+R5e; 

R1_trans=R0e_trans+R1e_trans+R2e_trans+R3e_trans+R4e_trans+R5e_trans

; 

R1_rot=R0e_rot+R1e_rot+R2e_rot+R3e_rot+R4e_rot+R5e_rot; 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
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Spectral density dependent on proton Larmor frequency (Eq. 82) for 15N: 
 

 

function [calka] = J_gwI (p,w) 

 

for i=1:length(w) 

    calka(i)=quadgk(@(u)macierzodw15N(p,w(i),u),0,inf); 

end 

 

end 

 

 

 

function [wynik,R1111,R2222,R3333,R4444] = macierzodw15N (p,w,u) 

 

tauR=p(1)*1e-10; 

x=p(2); 

tau=x*tauR; 

beta=p(4); 

 

Axx=22e6; 

Ayy=23e6; 

Azz=142e6; 

A=(Axx+Ayy+Azz)/3; 

A=A*2*pi; 

Axx=Axx*2*pi; 

Ayy=Ayy*2*pi; 

Azz=Azz*2*pi; 

 

 

DeltaA=Azz-(1/2)*(Axx+Ayy); 

DeltaA=2/3*DeltaA*DeltaA+0.5*(Axx-Ayy).^2; 

 

wS=657*w; 

tauRe=tauR; 

 

c1=sqrt(0.5*(1+(wS./sqrt(A.^2+wS.^2))));                   

c2=sqrt(0.5*(1-(wS./sqrt(A.^2+wS.^2))));                   

w12=wS./2+A/2-0.5*sqrt(A.^2+wS.^2); 

w21=-w12; 

w13=wS./2+A/2+0.5*sqrt(A.^2+wS.^2); 

w31=-w13; 

w23=sqrt(A.^2+wS.^2); 

w32=-w23; 

w24=wS./2-A./2+0.5*sqrt(A.^2+wS.^2); 

w42=-w24; 

w34=wS./2-A./2-0.5*sqrt(A.^2+wS.^2); 

w43=-w34; 

w14=wS; 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

R1122=(1/16)*(c1+c2).^2*Jrotb(tauRe,beta,w12); 

R1122=-2*R1122*DeltaA; 

 

 

R1133=(1/16)*(c1-c2).^2*Jrotb(tauRe,beta,w13); 

R1133=-2*R1133*DeltaA; 
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R1144=(1/4)*Jrotb(tauRe,beta,w14); 

R1144=-2*R1144*DeltaA; 

 

R2233=(1/24)*(c1.^2-c2.^2).^2*Jrotb(tauRe,beta,w23); 

R2233=-2*R2233*DeltaA; 

 

R2244=(1/16)*(c1+c2).^2*Jrotb(tauRe,beta,w24); 

R2244=-2*R2244*DeltaA; 

 

R3344=(1/16)*(c1-c2).^2*Jrotb(tauRe,beta,w34); 

R3344=-2*R3344*DeltaA; 

 

R1111=-R1122-R1133-R1144; 

R2222=-R1122-R2233-R2244; 

R3333=-R1133-R2233-R3344; 

R4444=-R1144-R2244-R3344; 

 

 

 

 

for k=1:length(u) 

 

X1111(k)=(u(k).^2)./tau+R1111+w*1i; 

X2222(k)=(u(k).^2)./tau+R2222+w*1i; 

X3333(k)=(u(k).^2)./tau+R3333+w*1i; 

X4444(k)=(u(k).^2)./tau+R4444+w*1i; 

 

M=[X1111(k) R1122 R1133 R1144; 

   R1122 X2222(k) R2233 R2244; 

   R1133 R2233 X3333(k) R3344; 

   R1144 R2244 R3344 X4444(k);]; 

Modw=inv(M); 

 

v1=[1 c1.^2-c2.^2 c2.^2-c1.^2 -1]; 

v2=v1'; 

Mwynik(k)=(1/2)*v1*Modw*v2; 

MwynikRe(k)=real(Mwynik(k)); 

 

wynik(k)=(72).*(u(k).^2./... 

    (81.+9*u(k).^2.-2*u(k).^4.+u(k).^6)).*(MwynikRe(k)); 

 

end 

end 

 

 

 

Translational spectral density: 
 
function [sum] = Jtranse(tau,w,Rxx) 

 

J=zeros; 

Ji=zeros; 

 

for i=1:length(w) 

par(i)=tau.*Rxx(i); 

end 
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for i=1:length(w) 

sum(i)=0; 

end 

 

for i=1:length(w) 

umin=1.0d-4; 

umax=1.0d3; 

nstep=5000.0d0; 

step=(umax-umin)/nstep; 

u=umin; 

while (u <= umax) 

 

help1(i)=(u.^2)/(81.+9.0*u.^2-2*u.^4+u.^6); 

help1(i)=help1(i)*72.0; 

Jouter(i)=help1(i)*(u.*u+par(i))./((u.*u+par(i)).^2+(w(i)*tau).^2); 

sum(i)=sum(i)+Jouter(i)*step*tau; 

u=u+step; 

 

end 

end 

end 

     

Rotational spectral density: 
 

 
function [J] = Jrotb (tauR,beta,w) 

for i=1:length(w) 

    Jcd(i)= (sin(beta*atan(w(i).*tauR./beta)))/... 

    (w(i).*(1+(w(i).*tauR./beta).^2).^(beta/2)); 

end 

 

J=(1/5)*Jcd; 

end 

     

 

Spectral density dependent on proton Larmor frequency for 14N (Eq. 84): 
 

function [calka] = J_gwI14 (p,w) 

 

for i=1:length(w) 

    calka(i)=quadgk(@(u)macierzodw14(p,w(i),u),0,inf); 

end 

end 

 

 

function [wynik,R1111,R2222,R3333,R4444] = macierzodw14 (p,w,u) 

 

tauR=p(1); 

x=p(2); 

tau=x*tauR; 

beta=p(4); 

Axx=15.4e6; 

Ayy=16.1e6; 

Azz=99.5e6; 

 

A=(Axx+Ayy+Azz)/3; 

A=A*2*pi; 

Axx=Axx*2*pi; 



 

134 

 

Ayy=Ayy*2*pi; 

Azz=Azz*2*pi; 

DeltaA=Azz-(1/2)*(Axx+Ayy); 

DeltaA=2/3*DeltaA*DeltaA+0.5*(Axx-Ayy).^2; 

 

wS=657*w; 

tauRe=tauR; 

 

betab=(A+2*wS+sqrt(9*A.^2+4*A*wS+4*wS.^2))./(2*sqrt(2)*A); 

alpha=(A+2*wS-sqrt(9*A.^2+4*A*wS+4*wS.^2))./(2*sqrt(2)*A); 

delta=(A-2*wS-sqrt(9*A.^2-4*A*wS+4*wS.^2))./(2*sqrt(2)*A); 

gamma=(A-2*wS+sqrt(9*A.^2-4*A*wS+4*wS.^2))./(2*sqrt(2)*A); 

 

 

la=sqrt(1+alpha.*alpha); 

lb=sqrt(1+alpha.*alpha); 

lc=sqrt(1+betab.*betab); 

ld=sqrt(1+betab.*betab); 

le=sqrt(1+gamma.*gamma); 

lf=sqrt(1+gamma.*gamma); 

lg=sqrt(1+delta.*delta); 

lh=sqrt(1+delta.*delta); 

 

 

a=la.^(-1); 

b=alpha./lb; 

c=lc.^(-1); 

d=betab./ld; 

e=le.^(-1); 

f=gamma./lf; 

g=lg.^(-1); 

h=delta./lh; 

 

E1=wS./2+A/2; 

E2=0.5*sqrt(wS.^2+wS.*A+(9/4)*A^2)-A/4; 

E3=-0.5*sqrt(wS.^2+wS.*A+(9/4)*A^2)-A/4; 

E4=0.5*sqrt(wS.^2-wS.*A+(9/4)*A^2)-A/4; 

E5=-0.5*sqrt(wS.^2-wS.*A+(9/4)*A^2)-A/4; 

E6=-wS./2+A/2; 

w23=E2-E3; 

w45=E4-E5; 

w12=E1-E2; 

w13=E1-E3; 

w46=E4-E6; 

w56=E5-E6; 

w24=E2-E4; 

w25=E2-E5; 

w34=E3-E4; 

w35=E3-E5; 

w14=E1-E4; 

w15=E1-E5; 

w26=E2-E6; 

w36=E3-E6;  

 

 

R1122=(1/4)*(a+b.*sqrt(2)).^2.*Jrotb(tauRe,beta,w12); 

R1122=-1*DeltaA*R1122; 
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R1133=(1/4)*(c+d.*sqrt(2)).^2.*Jrotb(tauRe,beta,w13); 

R1133=-1*DeltaA*R1133; 

 

R1144=f.^2.*Jrotb(tauRe,beta,w14); 

R1144=-1*DeltaA*R1144; 

 

R1155=h.^2.*Jrotb(tauRe,beta,w15); 

R1155=-1*DeltaA*R1155; 

 

for m=1:length(w) 

R1166(m)=0; 

End 

 

R2233=(1/6)*(a.*d+c.*b+b.*d.*sqrt(2)).^2.*Jrotb(tauRe,beta,w23); 

R2233=-1*DeltaA*R2233; 

 

R2244=(1/4)*(b.*f-a.*e).^2.*Jrotb(tauRe,beta,w24); 

R2244=-1*DeltaA*R2244; 

 

R2255=(1/4)*(b.*h-a.*g).^2.*Jrotb(tauRe,beta,w25); 

R2255=-1*DeltaA*R2255; 

 

R2266=a.^2.*Jrotb(tauRe,beta,w26); 

R2266=-1*DeltaA*R2266; 

 

R3344=(1/4)*(d.*f-c.*e).^2.*Jrotb(tauRe,beta,w34); 

R3344=-1*DeltaA*R3344; 

 

R3355=(1/4)*(d.*h-c.*g).^2.*Jrotb(tauRe,beta,w35); 

R3355=-1*DeltaA*R3355; 

 

R3366=c.^2.*Jrotb(tauRe,beta,w36); 

R3366=-1*DeltaA*R3366; 

 

R4455=(1/6)*(e.*h+f.*g+e.*g*sqrt(2)).*Jrotb(tauRe,beta,w45); 

R4455=1*DeltaA*R4455; 

 

R4466=(1/4)*(f+e.*sqrt(2)).*Jrotb(tauRe,beta,w46); 

R4466=-1*DeltaA*R4466; 

 

R5566=(1/4)*(h+g.*sqrt(2)).*Jrotb(tauRe,beta,w56); 

R5566=1*DeltaA*R5566; 

 

R1111=-R1122-R1133-R1144-R1155-R1166; 

R2222=-R1122-R2233-R2244-R2255-R2266; 

R3333=-R1133-R2233-R3344-R3355-R3366; 

R4444=-R1144-R2244-R3344-R4455-R4466; 

R5555=-R1155-R2255-R3355-R4455-R5566; 

R6666=-R1166-R2266-R3366-R4466-R5566; 

 

 

for k=1:length(u) 

 

 

X1111(k)=(u(k).^2)./tau+R1111+w*1i; 

X2222(k)=(u(k).^2)./tau+R2222+w*1i; 

X3333(k)=(u(k).^2)./tau+R3333+w*1i; 

X4444(k)=(u(k).^2)./tau+R4444+w*1i; 
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X5555(k)=(u(k).^2)./tau+R5555+w*1i; 

X6666(k)=(u(k).^2)./tau+R6666+w*1i; 

 

M=[X1111(k) R1122 R1133 R1144 R1155 R1166; 

   R1122 X2222(k) R2233 R2244 R2255 R2266; 

   R1133 R2233 X3333(k) R3344 R3355 R3366; 

   R1144 R2244 R3344 X4444(k) R4455 R4466; 

   R1155 R2255 R3355 R4455 X5555(k) R5566; 

   R1166 R2266 R3366 R4466 R5566 X6666(k);]; 

Modw=inv(M); 

 

 

v1=[1/2 0.5*(a.^2-b.^2) 0.5*(c.^2-d.^2) 0.5*(e.^2-f.^2) 0.5*(g.^2-

h.^2) -1/2]; 

v2=v1'; 

Mwynik(k)=(2)*v1*Modw*v2; 

MwynikRe(k)=real(Mwynik(k)); 

 

wynik(k)=(72).*(u(k).^2./... 

    (81.+9*u(k).^2.-2*u(k).^4.+u(k).^6)).*(MwynikRe(k)); 

end 

end 
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A.2 Error analysis 
 

The errors of the fitted coefficients have been estimated in the following way. For a dataset 

of N points (   Niyx ii ,...,1,,  ) a function,  pxf , , has been fitted ( p is the matrix of the 

fitted parameters which have been find using the method of least squares). The least square 

estimator (denoted here as ̂ ) is such set of fitted parameters that minimizes the following 

expression [79,80]: 

  



N

i

ii pxfy
1

2
,      

 (A.1) 

As one of the outputs the lsqurvefit MATLAB function returns the Jacobian matrix. In the 

next step the variance of residuals is calculated [79,80]: 

  






N

i

ii pxfy
kN 1

2
,

1
   

 (A.2) 

Using its values the covariance matrix can be defined [79,80]: 

    1
cov


 JJp T     

 (A.3) 

The pointwise square root of the covariance matrix gives the error estimates of the fitted 

parameters [79,80]: 

   21
cov psp  .    

 (A.4) 

Values of the error estimates ps  have been used to calculate the percentage errors listed in 

Tables 7.1, 7.2 and 7.3. The errors,  12Ds , of the diffusion coefficient have been estimated 

using the equation: 
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