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Abstract

The thesis is focused on proton (*H) spin relaxation processes in solutions of nitroxide radicals.
The presented studies include experimental and theoretical parts. 'H spin-lattice relaxation
measurements have been performed for decalin (decahydronaphtalene), glycerol (propane-1,2,3-
triol) and propylene glycol (propane-1,2-diol) solutions of 4-oxo-TEMPO-dis (4-0x0-2,2,6,6-
tetramethyl-1-piperidinyloxyl) containing *N and *N isotopes, by means of Nuclear Magnetic
Resonance (NMR) Field Cycling (FC) relaxometry. The Nuclear Magnetic Resonance Dispersion
(NMRD) experiments have been collected in a broad frequency range (10 kHz — 20 MHz) and in a
broad range of temperatures dependent on viscosity of the solvent.

The NMRD data are interpreted in terms of the theory of paramagnetic relaxation enhancement
(PRE) in solutions of nitroxide radicals [E. Belorizky et al. 1998, D. Kruk et al. 2012, D. Kruk et
al. 2013]. The theory includes the influence of the hyperfine coupling (isotropic and anisotropic
parts) between the spin of nitrogen (**N and *N) and the unpaired electron spin on the 'H
relaxation. *H relaxation in solutions of nitroxide radicals is caused by dipole-dipole interactions
between the electron spin of the radical and proton spins belonging to the solvent molecules. The
dipolar interactions are modulated by three processes: translational movement of the solvent and
solute molecules, their rotational dynamics and electron spin dynamics. The rotational motion plays
a twofold role. First, it acts as a direct source (besides the translational motion) of fluctuations of
the proton spin — electron spin dipolar coupling due to non — central positions of the interacting
spins in the solvent and radical molecules (this effect is referred to as ‘eccentricity effect’). Second,
the anisotropic part of the hyperfine coupling (between nitrogen and electron spins) modulated by
the rotational dynamics of the paramagnetic molecules gives rise to the electron spin relaxation
being the source of modulations of the proton-electron dipole-dipole coupling, and thus affecting
also, in this indirect way, the *H relaxation. The electron spin relaxation has been described in terms
of the Redfield relaxation theory. As far as the role of the hyperfine interaction is concerned, its
isotropic part affects the electron spin energy level structure and, in consequence, the H relaxation.

The described effects and their influence on the H relaxation are, in the thesis, thoroughly discussed
and simulated. It is demonstrated that the role of the hyperfine coupling (isotropic and anisotropic)
increases when the dynamics of the system slows down (the isotropic part of the hyperfine coupling
is of importance already for rather fast dynamics - D1,=10° m?%s while the influence of the
anisotropic part becomes visible when the diffusion coefficient decreases below D12=5%1071! m?/s).

The outlined theory is applied to the large set of experimental data. The data serve as a very
demanding test of the theory which has to explain different ‘H spin-lattice relaxation for the cases
of 2N and **N containing nitroxide radicals, assuming the same motional conditions. The analysis
reveals parameters characterizing translational and rotational dynamics of the solutions (relative
translational diffusion coefficient of the solvent and solute molecules and rotational correlation
times). It is demonstrated that NMR relaxometry studies performed on liquids containing
paramagnetic centers give access to very fast dynamics, not accessible for diamagnetic liquids (i.e.
in the absence of paramagnetic molecules).






Streszczenie

Przedstawiona praca dotyczy procesow relaksacji protonowej (*H) w roztworach rodnikéw
nitroksylowych. Prezentowane badania zawierajg cze$¢ eksperymentalng i teoretyczng.
Przeprowadzono pomiary szybkos$ci relaksacji protonowej spin — sie¢ dla roztworow 4-0Xo-
TEMPO-dis (4-0x0-2,2,6,6-tetramethyl-1-piperidinyloxyl) zawierajacego izotopy “N i N w
dekalinie (decahydronaphtalene), glicerolu (propane-1,2,3-triol) i glikolu propylenowym (propane-
1,2-diol) wykorzystujac relaksometri¢ Magnetycznego Rezonansu Jadrowego (MRIJ) opartg na
technice Field Cycling (FC). Pomiary dyspersji szybkosci relaksacji przeprowadzone zostaty w
szerokim przedziale czestosci (10 kHz — 20 MHz) i temperatur.

Zebrane dane analizowane s3 w oparciu o teori¢ paramagnetycznego wzmocnienia szybkosci
relaksacji (Paramagnetic Relaxation Enhancement — PRE) w roztworach rodnikdw nitroksylowych
[E. Belorizky et al. 1998, D. Kruk et al. 2012, D. Kruk et al. 2013]. Teoria ta uwzglednia wptyw
oddzialywania nadsubtelnego (jego czesci izotropowej i anizotropowej) pomiedzy spinem jadra
azotu (**N i *N) i niesparowanym spinem elektronowym na relaksacje protonows. Proces relaksacji
protonowej w roztworach rodnikéw nitroksylowych jest wywotany oddziatywaniem dipolowym
pomigdzy spinem elektronowym rodnika i spinami protonéw nalezacych do molekut
rozpuszczalnika. Oddzialywania te sg3 modulowane przez trzy procesy: dyfuzja translacyjna
molekut rozpuszczalnika i molekut substancji rozpuszczonej, ich dynamika rotacyjna i dynamika
spinu elektronowego. Dynamika rotacyjna peilni podwdjna rolg. Po pierwsze, jest ona bezposrednim
zrodtem (poza dyfuzja translacyjna) fluktuacji odziatywan dipolowych proton-elektron wskutek ich
niecentralnej pozycji (tzw. ‘eccentricity effect’). Po drugie, anizotropowa cze$¢ oddziatywania
nadsubtelnego, ktora fluktuuje w czasie wskutek rotacji molekuty rodnika, prowadzi do relaksacji
elektronowej, ktora jest czynnikiem modulujgcym oddziatywania dipolowe proton-elektron,
wplywajac w ten posredni sposob na relaksacje protonowa. Relaksacja elektronowa zostata opisana
przy uzyciu teorii Redfielda. Izotropowa cze$¢ oddzialywania nadsubtelnego zmienia uktad
poziomoéw energetycznych spinu elektronowego, co w konsekwencji wptywa na proces relaksacji
protonowej molekut rozpuszczalnika. Opisane efekty i ich wptyw na szybkos¢ relaksacji
protonowej sg w przedstawionej pracy szczegdtowo dyskutowane w oparciu o liczne symulacje.
Pokazano, ze wptyw oddziatywania nadsubtelnego (izotropowego oraz anizotropowego) wzrasta,
kiedy dynamika systemu zwalnia. Czg$¢ izotropowa oddziatywania staje si¢ istotnym czynnikiem
gdy wspoétczynnik dyfuzji jest rzedu D12=10° m?%s, a cze$¢ anizotropowa — gdy wspotczynnik
dyfuzji zmaleje do D1,=5*101 m?/s.

Przedstawiona teoria zostala wykorzystana do analizy obszernego zestawu danych
eksperymentalnych. Dane te stanowia wymagajacy test weryfikujacy teorie, ktora w szczegolnosci
powinna prowadzi¢ do konsystentnej interpretacji danych dla przypadkow gdy rodniki
nitroksylowe zawierajg rozne izotopy “N i N, dla niezmienionych parametréw dynamicznych.
Przeprowadzona analiza umozliwia wyznaczenie parametrow charakteryzujacych dynamike
translacyjna oraz rotacyjng roztwordw (wzgledny wspotczynnik dyfuzji translacyjnej molekut
rozpuszczalnika i substancji rozpuszczonej oraz rotacyjne czasy Kkorelacji). Pokazano, ze
relaksometria MRJ zastosowana do cieczy zawierajgcych centra paramagnetyczne pozwala na
analize szybkich proceséw dynamicznych nicosiggalnych dla cieczy diamagnetycznych (bez
wprowadzonych molekul pramagnetycznych).
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Introduction

Introduction

This thesis is focused on proton relaxation processes in solutions of nitroxide radicals
containing ¥*N and °N isotopes. Proton relaxation in the paramagnetic solutions is caused
by dipole — dipole interactions between proton spins belonging to solvent molecules and
electron spins of the radical molecules. Stochastic fluctuations of these interactions are
caused by translational dynamics of the interacting molecules, molecular rotation and
electron spin relaxation (attributed to the anisotropic part of the electron spin — nitrogen
spin hyperfine interaction). The studies presented in the thesis have two aspects. The first
one is a development of an advanced theory of proton spin relaxation in solutions of
nitroxide radicals, valid for an arbitrary resonance frequency, taking into account
complicated effects of spin interactions mediated by translational and rotational dynamics
of the solvent and solute molecules. This theory predicts peculiar proton relaxation effects
which depend on the isotope **N/*®N incorporated into the radical molecules. The isotope
effect influences the proton relaxation by affecting the energy level structure of the electron
spin (which is coupled by hyperfine interactions with the nitrogen spin) and by electron
spin relaxation (caused by the anisotropic part of the hyperfine coupling), which acts as a
source of modulations (besides the translational and rotational dynamics) of the proton spin
— electron spin dipole-dipole coupling. In this thesis the theory has been thoroughly tested
against 'H spin-lattice relaxation experimental data collected for decalin, glycerol and
propylene-glycol solutions of 4-0xo-TEMPO-die-*4N. In contrary to “classical”
relaxation experiments, which are performed at a single magnetic field (resonance
frequency) the studies have been carried out in a very broad range of frequencies (10kHz —
20MHz) by employing the Fast Field Cycling technique, which introduces a “new
dimension” to NMR relaxation experiments — the strength of the magnetic field (resonance
frequency). The second aspect of the presented studies is the opportunity to investigate
translational and rotational dynamics of liquids offered by NMR relaxometry,
demonstrated here for numerous examples.

As the studies have been carried out with close collaboration with the supervisor, it is
important to clearly describe the contribution of the author to the work:

- almost all experimental data presented in the thesis have been collected by the author,

- the author has participated in the calculations needed for the theory presented in Chapter

5 (not taking into account the electron spin relaxation),



- the numerical implementation of the theory (complemented by data fitting tools) and
numerous simulations presented in the thesis have been done by the author,

- analogously, the analysis of the proton relaxation data which did not require including the
electron spin relaxation has been performed by the author,

- the more advanced analysis of the proton relaxation data for slower dynamics, when the
electron spin relaxation is relevant, has been performed by the author in cooperation with
the supervisor.

The structure of this thesis is as follows:

» Chapter 1 contains theoretical basics of Nuclear Magnetic Resonance (NMR)
effect, including a phenomenological description of the motion of magnetization vector.

« In Chapter 2 the Hamiltonians of the interactions present in the considered spin
systems are described. The chapter also contains basic definitions of correlation functions
and spectral densities including examples of these functions for different motional models.

» Chapter 3 presents a description of relaxation theory for a two-spin system
coupled by dipolar interactions. The cases of equivalent (two protons) and non-equivalent
(electron — proton) spins are considered.

* The literature review on NMR relaxation studies on systems including nitroxide
radicals being most relevant for the thesis is presented in Chapter 4.

» Chapter 5 presents the theory of proton relaxation in solutions of nitroxide
radicals.

» Chapter 6 gives a description of the Fast Field Cycling NMR relaxation
experiments and details of sample preparation.

» Chapter 7 presents the data analysis, while Chapter 8 contains summary and
discussion of the obtained results.

* Eventually, in Chapter 9 further perspectives of the studies are outlined.



Principles of Nuclear Magnetic Resonance

1. Principles of Nuclear Magnetic Resonance

1.1. Nuclear spin in external magnetic field

Nuclei and electrons are characterized by spin quantum numbers, | and S respectively.
The spin determines nuclear and electron magnetic moments: x, and ug [1,2]:
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where m and m, are proton and electron masses, g, and g, are electron and nuclear g-
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factors, respectively, while e is the elementary electron charge. The quantities x, = o
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and ,uB:E are proton and electron Bohr magnetons, while y, =g,/ is a

€

characteristic constant of a nucleus called gyromagnetic ratio, analogously ys = g,/ is

referred to as electronic gyromagnetic ratio.

In an external magnetic field, I§O , the orientation of the magnetic moment is quantized. For
a nucleus of spin quantum number | there are (21 +1) states described by magnetic
quantum numbers m, =—I,—I +1,...,1 —1,1 . The m, state is associated with the energy [1-
4]:

E, =—ii, oB,=-m,y,B, 3)

m
where it is assumed that the direction of the §0 field defines the z-axis of a reference system

(referred to as laboratory frame), i.e.: B, = B,. The energy levels are equally distant and
the energy difference yields:

AEI = EmI - Em,—l =" Bz (4)
Analogous expressions describe the electron spin S, i.e.. E, =—gg° B, =-my.B, and

AES = EmS _Ems—l = 7/SBZ'

From now on | shall focus on nuclei. Populations of the energy levels are described by

Boltzmann distribution. For 1 =1/2 one obtains [1,3,4]:
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where N, and N_ are populations of the energy levels corresponding to m, =-1/2 and
m, =1/2 (parallel and antiparallel orientation of the magnetic moment with respect to the
external magnetic field), k; denotes the Boltzmann constant. The resultant nuclear
magnetization, M, is a sum of magnetic moments, x,, of N (N =N, + N_) nuclei

present in a sample [1,3,4]:

yi*BoN |
M, =D = T +1) (6)

1.2. Motion of the magnetization vector and Bloch equation

The motion of the magnetization vector M, (t) in a magnetic field B(t) is described by the
Bloch equation [1,3,4]:

M, (5, 8)

ot ()

For a static magnetic field, B(t)=[0,0,B,], the solution of Eq. 7 for the magnetization

components M, M, and M, yields [1,4]:

Ix 1

M, =M, COS(7| Bot) (8)
M y — -M uSin(?/l Bot) 9)
M, =M, (10)

where M, and M,, denote the initial magnetization components in a plane perpendicular

to éo and along I§0 (z -axis), respectively. This set of equations describes precession of
the magnetization vector M, around the direction of the applied magnetic field with
the angular frequency o, = y,B, (referred to as Larmor frequency). The solution of the
Bloch equation changes when an additional magnetic field B, <<B, rotating with an
angular frequency @ in a plane perpendicular to I§0 is applied:

= [B, cos(at),—B, sin(at),0]. In this case it is convenient to express the solution of the

Bloch equation in a coordinate system rotating around the z axis (direction of éo) with the
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frequency w [1]:

dm !, ,
d—tl = (a),_ - a))M " (12)
dMm |
- @ oM +BM, (12)
dM ,
dtlz =y7,BMj (13)

where the index “'” refers to the rotating frame. For , = @ the equations reduce to the
form [1]:
dM !

at :7|M|'X§1 (14)

which describes a precession in the magnetic field B, (the B, field is constant in the

rotating frame).

The magnetic field I§1 applied for a time t, (radio-frequency, RF, pulse) can change the
orientation of the magnetization vector by the angle:

6=yBt, (15)
In NMR experiments a 772 pulse refers to € = /2, analogously a 7 pulse means 6 =r .
This description should be extended by taking into account that the nuclear magnetic
moments interact not only with the external magnetic field but also with each other.
Molecules, ions and molecular units undergo stochastic motions causing time fluctuations
of the interactions between the magnetic moments. As a result, transitions between the

energy levels E, are induced, leading to changes in the magnetization M, that are

referred to as relaxation processes. The Bloch equation including terms describing the

relaxation processes takes the form [1,4,5]:

q S “M,, -~ M, i+M, ]

dMl =7/| (MI XB)— MlZ Mlo k— IX |yJ (16)
dt T, T,

where M, denotes equilibrium magnetization. The time constants T, and T, denote

longitudinal and transverse relaxation times describing the evolution of the parallel and

perpendicular magnetization components, respectively. Thus the T, parameter is called
longitudinal (spin-lattice) relaxation time, while T, is referred to as transverse (spin-spin)

relaxation time. The relaxation time T, describes how fast the collective movement of
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individual magnetic moments in the x—y plane becomes incoherent.

In NMR experiments one can apply various pulse sequencies. To measure the spin-lattice
relaxation time commonly the inversion-recovery sequence: 7 —z—z2 is used (7 denotes
here the evolution time between the two pulses and can be varied). At t=0 the

magnetization M,, is directed along the direction of the static magnetic field B,. After

applying a 7 pulse the magnetization vector is inverted and starts to return to the initial
state. After time 7 (the relaxation period) a 772 pulse is applied so the magnetization vector

rotates in the x—y plane and can be detected. Such experiment is repeated for different
values of 7. A schematic picture of the inversion recovery experiment is shown in Fig. 1.1.
The evolution of the longitudinal component of the magnetization vector is then described
by the equation [3,5]:

Muay:Mm@—ZéﬂQ (17)
The experiment (pulse sequence) may be repeated after a time RD (Recycle Delay) long

enough for the system to return to the initial state. It is recommended to apply RD =5T, .

Equilibrium
o111

Inversion

v

T /2

T X W time

Figure 1.1. Schematic picture of inversion recovery sequence.

The relaxation time T, can be measured by applying, for instance, the Hahn sequence [6].

First, a transverse magnetization is created by applying a 772 pulse. After a time z the
movement of the individual spins loses its coherence due to local field inhomogeneities.
Then a 7 pulse is applied and the precession is reversed. This implies that after time 7

(after the 7 pulse) the decoherence disappears and the magnetization gives rise to an echo.

6
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2. Spin interactions

2.1. The spin Hamiltonian

As already anticipated, spin-lattice relaxation is a result of transitions between spin energy
levels. The energy required for the transitions is provided by fluctuating local magnetic
fields. Thus the total Hamiltonian describing a spin system has two parts: a time-

independent part (main Hamiltonian) H,, which defines the energy level structure,

and a time-dependent part (perturbing Hamiltonian) Hl(t) describing the interactions
fluctuating in time:

H(t)=H, + H,(t) (18)
This work is focused on proton relaxation in solutions of paramagnetic molecules (nitroxide

radicals). Several interactions between protons and electrons have to be considered. They

are described below.

2.2. Zeeman and dipolar interactions

The most common *H relaxation mechanism is provided by magnetic dipolar interactions.
For a proton (1) — electron (S ) spin system the total Hamiltonian takes the form:

H=H,(1)+H,(S)+Hy(I,S)t) (19)

Hy Hy

where H, (1) and H, (S) are Hamiltonians of proton and electron Zeeman interactions (i.e.

interactions with an external magnetic field B, ), respectively, while H, (1,5 )t) denotes

the Hamiltonian of the proton-electron dipole-dipole interaction. In the laboratory frame

the Zeeman Hamiltonians are expressed as [1,2,4,5]:

H,(1)=7,B,l,, H,(S)=7sB;S, (20)
They form the main, unperturbed part of the total Hamiltonian, denoted as H,. The 1 —S
dipole-dipole Hamiltonian, H,(1,S)t), fluctuates in time due to stochastic motion of
molecules carrying the spins of interest and hence H,,(l,S)t) belongs to the time

dependent (perturbing) part of the Hamiltonian denoted as H, .

Dipole-dipole interactions between two magnetic moments z and z' are characterized by

the energy [1,4,7,8]:



Zeeman and dipolar interactions

E=HoH _3(ae r)s(ﬂ o) @1)
r r

where T is a vector between the interacting moments. If these magnetic moments (spins)
belong to the same molecule (intra-molecular coupling), the dipole-dipole interaction
fluctuates in time only due to the rotational motion of the molecule (provided the molecule
does not show internal dynamics). For dipoles placed in different molecules (inter-
molecular coupling), time fluctuations of the interaction are dominated by the relative
translational motion of both molecules. A schematic view of intra- and inter-molecular

dipolar interactions is presented in Fig. 2.1 for glycerol molecules.

4 Dipole-dipole axis Laboratory axis
Qppy(t)
OH Oy
Ho__ OH—oe™ /HO\/& |
O,’l,/
\ecue’ :l
=N \n\@% !
\2\0

Figure 2.1. A schematic view of the inter- and intra-molecular dipole-dipole interactions.

In the laboratory frame the dipole-dipole Hamiltonian has the form [1,2,4,5,9-11]:

Hoo (1,S)(1)= a5 " (1 F2,0T2(1,S) 22)

m=-2

where the two-spin tensor operators T2(1,S) are defined as [1,2,4,5,9-11]:

T2(1,9) = \/_[ZIS— (.S +IS)} (23a)
T+ﬁ(I,S):$%[IZS++I+SZ] (23b)
T =211, (230)
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The dipole-dipole coupling constant, a5, , is defined as:

\/_ILIO 7|78h (24)

3
A 1g

where I, is the distance between the interacting spins, | and S (rg =r in Eq. 21).

For intra-molecular couplings the 1,y distance does not change in time, but it does for inter-
molecular interactions. The functions F_Zm(t) are expressed in the laboratory frame by

Wigner rotation matrices [2], D? ,(Qqp, (), dependent on a set of Euler angles, Q. ,

describing the orientation of the dipole-dipole (DD) axis with respect to the laboratory (L)
frame (see Fig. 2.1) [2,12]:

F = D5 Qoo )= D5 1 (0, Boor. (0 700 (1) (25)
where the Wigner rotation matrices are defined as follows [12-14]:
D3(0. Ao (1) 7o (1) = 2" [3005 (B (1) 1] (262)
D5..2(0, oo (t). 7o (1) = 7276 sin(Bogy (t))cos(Boo (1) (26b)
D32 (0, Boo. (1), 7001 (1)) = F276* sin* (Bop, (t)). (26¢)

For two nuclear spins (e.g. two protons: I, and 1,) the tensor operators of Eq. 22 are
obtained by replacing | by I, and S by I, 5 in Egs. 23a-c has to be replaced by y, and
the inter-spin distance refers to the two nuclei. However, it should be kept in mind that due
to the ratio between the electron and proton gyromagnetic ratios, y/y, =657, the dipole-

dipole coupling constant for a system of proton and electron is much larger than for two

protons.

2.4. Hyperfine interactions in nitroxide radicals

In nitroxide radical molecules the unpaired electron is located between oxygen and nitrogen

nuclei as shown in Fig. 2.2.
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interactio

Figure 2.2. A schematic view of spin interactions for glycerol and 4-oxo-TEMPO
molecules.

The electron spin S and the nitrogen spin P are coupled by hyperfine interactions. The
hyperfine coupling is a result of two interactions: Fermi contact interaction and dipolar
coupling. The first mechanism is important when the spin density of the electron is nonzero
at the position of the nucleus. The isotropic (scalar) part of the hyperfine coupling,
influences the electron spin energy level structure. The Hamiltonian of the isotropic scalar

coupling has the form [15-18]:
Hiso(s’ P) = Aiso[sz F)z +%(S+P— + S—P+)i| (27)

where A, denotes the amplitude of the coupling.

The anisotropic part of the hyperfine coupling (H,,,,(S, P) ) is dependent on the orientation

of the molecule and hence it becomes time dependent as a result of molecular rotation.

Thus, the total Hamiltonian including all interactions present in the system shown in Fig.

2.2 consists of five terms [1,2,4,5,9-11,15-18]:
H,(1,S)=H,(1)+H,(S)+H,,(S,P)+H,(1,S)+H

1SO
Hy Hy

(S,P) (28)

aniso

when one neglects the weak Zeeman interaction of nitrogen. In solutions of nitroxide
radicals the | —S (proton-electron) dipole-dipole interaction is modulated by the relative
translational dynamics of the solvent molecule and the nitroxide radical molecule, while
the anisotropic hyperfine interaction is modulated (as already mentioned) by rotation of the

nitroxide radical.

10
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2.5. Correlation function and spectral density

Stochastic processes (like movement of molecules in liquids) are characterized by time

dependent correlation functions which are defined as [1,2,5,9,19,20]:

C(t) = (A ()AD)) = [JAX) ACG)P(X, X, 1)P(x, )dxydx (29)
where A(t) is a quantity of interest dependent on a variable x(t) describing the states of
the system (x and X, denote the variable at times t and t,, respectively). P(X, X,,t) is the
conditional probability that the system is in the state x at time t provided that at time zero
it has been in the state X, .

Probabilities of transitions between spin states and hence the relaxation times depend on
spectral densities, J(w), which are defined as a Fourier transform of corresponding

correlation functions [1,5,19]:

J(w) = jo “C(t)e “at (30)

2.6. Spectral densities for different motional models

The exact formula of the correlation function depends on the kind of motion (for instance
rotational or translational diffusion) and the model which is chosen to describe the motion.

In the simplest case of isotropic rotation the correlation function is exponential [21]:

C(t) = <D02,*—m(0’ Boow (t) oo, (t))Dgﬁm(O’ oo 0), 7/DDL(O))> = %eXp(_ L) (31)

TR
where 7, is a characteristic time constant referred to as rotational correlation time. Thus,

the corresponding spectral density has a Lorentzian form (the factor 1/5 has been omitted)
[2,21]:

TR

M= ony

(32)

For heterogenous systems (characterized by a distribution of correlation times) the
rotational correlation function is often streched [22]:

CY
C(t) = exp [— (7—) ] (33)

The phenomenological parameter 3 < (0,1y reflects the distribution of the correlation times.

Fourier transform of streched exponential function can be approximated by the Cole-

11
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Davidson spectral density [23]:

_ sin[Barctan(wr, )]
J(w) = AT (34)
o+ (ores [
The time constant 7, is related to the rotational correlation time 7, as: 7z =7,/ . For
B =1 the spectral density of Eq. 34 becomes Lorentzian. The deviations of the Cole-
Davidson spectral density from the Lorentzian shape for different values of g versus

frequency and versus reciprocal temperature are shown in Fig. 2.3 a) and 2.3 b),
respectively. The values of the spectral density in Fig. 2.3 a) have been normalized in the
low field limit to unity (divided by /) to make the differencies at the inflection point more
visible. In Fig. 2.3 b) the Vogel-Fulcher-Tamman (VFT) equation has been used to simulate

the temperature dependence of the rotational correlation time z, on temperature T [24]:

B
Tp =17, exp(T — ] (35)
0

where 7,, B and T, are phenomenological parameters.
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)

Jintra

10’ 108 10° 10%
frequency [Hz]

R B:l

—— B=0.9
B=0.7

——B=0.5

3.0 3.5 | 4i0 | 4.5 5.0
1000/T [KY]

Figure 2.3. Spectral densities versus a) frequency and b) reciprocal temperature for
different values of B parameter. Parameters used for the simulations are:

a) 7, =1*10°sand b) 7, =1*10*°s, B =2000K, T, =130K, @ =20 MHz. The maximum
is reached at a temperature for which oz, =1.

As already mentioned, when the interacting spins belong to different molecules,

translational diffusion is the main process which causes the fluctuations of the dipole-dipole

interactions. As a result of translational dynamics the inter-spin distance r as well as the

orientation of the I —S dipole-dipole axis vary in time. Thus the correlation function

13
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includes the Euler angles encoded in the Wigner rotation matrices D¢, (Q(t)) as well as in

the inter-spin distance I (t) [2,5,25-29]:

DZ. (Q(t) DZ, (Q(O))> (36)

re@® )

The commonly used models describing translational dynamics of molecules is referred to

Cinter (t) = <

as force-free hard-sphere model [26,27]. It assumes that molecules can be treated as hard
spheres uniformly distributed beyond their distance of the closest approach, d,, and the
interacting spins are placed in their centers. In that case the closest distance is given by a

sum of the radii of the molecules carrying the nuclear and electron spins, r, and rq,

respectively [30]: d,g =1, + 1 (blue line in Fig. 2.4).

i

Figure 2.4. Schematic view of two interacting molecules (glycerol and nitroxide radical 4-
oxo-TEMPO) with inter-spin distances marked by blue line - for the force-free hard-sphere
model, and by red line - when the eccentricity effect is considered.

The inter-molecular (translational) correlation function resulted from this model is
described by the formula [27,29,31-33]:

N u’ u't
Coanst) = 7225 &P, —Ju o
trans( ) d|3s o 81+9U2 _2u4 +U6 Xp( transJ ( )

where Ny denotes the number of electron spins per unit volume. Since the nitroxide radical
molecule contains one unpaired electron (spin S), N is equivalent to the molar

concentration multiplied by Avogadro number, A,: Ny =1000[M]A, ; the factor 1000
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results from the relationship between dm?® and m3. The translational correlation time z,

rans
appearing in the formula is defined as 7,,,,=d3/D,,, where D,, is the relative

translational diffusion coefficient defined as a sum of self-diffusion coefficients of the
interacting molecules. For identical molecules the relative diffusion coefficient is twice as
large as the self-diffusion coefficient, and the distance of closest approach is given by the
diameter of the molecule. The corresponding spectral density is given as [2,27,29,31-34]:

2 2
NS * u u 2—trans
2
dg * 81+9u” —2u* +u® u* +(wr,,,.)

Jyand @)= T2 du. (38)

It is worth to notice that the spectral density is a superposition of Lorentzian functions

2
multiplied by the weight factors

81+9u®—2u*+u®’

The presented force-free hard-sphere model is not always sufficient. The assumption that
the interacting spins are placed in the centers of the molecules can turn out to be an
oversimplification. As in real molecules they occupy non-central positions the inter-
molecular dipole-dipole interactions are modulated not only by translational dynamics, but
also the rotational motion contributes to the fluctuations of the inter-spin vector
(‘eccentricity effects') [25,26,31-33,27,35] as shown in Fig. 2.4. A rigorous mathematical
description of the combined translational-rotational effect on the dipole-dipole coupling
gives complex solutions with additional distances between the molecular center and the
positions of the nuclei [25-27]. A compromise between the accuracy of the description and
its mathematical complexity can be achieved by adding a rotational contribution to the
translational spectral density [31-33,35]:

N
J inter (a)) = d_SS x [J trans(a)) + fJ I‘Ot(a))] =

2 2 .
N3 y J~ ¢ _ U2z, .0, du st 4z sin[Barctan(wryy)]
d 0 81+9u® —2u* +u® u* + (wr,,,,) 3 [ z]g

a)1+(a)rCD)

(39)
where the factor f reflects the role of the 'eccentricity effects'. When the spins are placed

in the center of molecules, f =0. The factor 4473 in Eq. 39 has its source in normalization

of the spectral densities: [J . (o)de = [J,.,(w)do.

According to the hydrodynamic model of a molecule considered as a sphere undergoing
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rotational and translational movement in a viscous medium, the ratio of the translational

and rotational correlation time is: z,.,.J7,,, =9 [9]. In real systems the ratio is even larger,

for example for glycerol it was obtained: 7,,.J/7,,; = 40—50 [34].

To estimate the influence of rotational dynamics on *H spin-latice relaxation of solvent, the

ratio between spectral densities describing rotational and translational dynamics (J,,,(@)

and J,.,.(w) of Eq. 39) is shown versus frequency Fig. 2.5. For the frequency dependent

simulations, the rotational correlation times have been chosen in a wide range starting from
very short values (characteristic for water) up to long correlation times (characteristic for
viscous solvents near their glass transition temperature). The ratio between translational

and rotational correlation times yields z,,,J/7,,, = 40.

[t [S]:

10 1*10™"
i 1*10™%°
5%10™°

E

s 1*10°
241 510°
5

S
-

1*10°
5+10°
1*107
5+107

o
H
T

frequency [Hz]

Figure 2.5. Ratio between spectral densities characterizing rotational and translational
dynamics: J,,,(@ )/ J,..s() versus frequency for 5=0.8.

The temperature dependence of the rotational correlation time has been simulated

according to Eq. 35 with following parameters: 7, =1.4*107*s, B=1.84*10"K,

T, =132K (such parameters have been obtained for glycerol solutions of different

nitroxide radicals [33]).
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Due to the fact that z,.,,, >> 7 at higher frequencies the role of the rotational spectral

density increases and the ratio Jrot(w )/ jtrans(a)) exceeds at some frequency the value of

one (Fig. 2.5).

The time scale separation of the translational and rotational dynamics allows to decompose
the overall 'H relaxation dispersion profile (relaxation rate versus frequency) into
translational and rotational part.

i Ttrans TR:
10t 1
F——9
—~ 20
3 |
2\/ — 40
o 1 a—
= 1l Ttrans/TR_l’ p=0.7
p—% i
S
S
—
0.1F

frequency [Hz]

Figure 2.6. Ratio between spectral densities describing rotational and translational
dynamics of the solvent molecules - J,, (a) )/ Jyans(@) versus frequency for different values

of the ratio between translational and rotational correlation times, 7.,/ 75 for g =1.As
a comparison the results obtained for g =0.7 and 7,/ 7z =1 are shown.

To finish this section it is worth to compare the frequency dependence of J,, (a) )/ J, vans (@)
calculated for different values of the ratio between the translational and rotational

correlation times X=r

trans

/75 . Such comparison is presented in Figure 2.6. The figure

includes the case of x =1 to clearly show that it differs from those for which 7, >> ;.
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3. Relaxation in different systems

3.1. Density matrix and its evolution in time

A spin system can be characterized by a Hamiltonian. Eigenfunctions of the Hamiltonian

form a complete basis {| «)}, i.e. every state of the spin system can be described as their
superposition [1,2]:

Yt)=>c, e (40)
It is convenient to describe a spin state using the concept of density matrix (operator) [1-

4]. Density matrix is a matrix representation of the density operator in a basis formed from

pairs of the eigenfunctions ﬂa><ﬂ|} referred to as Liouville space [1,2]. The density matrix

elements are defined as:

Pos) =L | pt)| B, (41)
and they can be calculated from the expression [1,2]:
P (1) = (c, ()c, (1)) (42)

where the star denotes complex conjugation.

Time evolution of the density operator p(t) (i.e. evolution of the spin system under a given

Hamiltonian H) is described by the Liouville-von Neumann equation [1,2,4]:
d i
5 P® =i, )] (43)

The equation can be presented as a set of coupled differential equations for individual
density matrix elements (referred to as the Redfield relaxation equation) [1,2,36-38]:

do,.(t .
Lesl) = i, 0+ STy ® (@)
BB

where w,, = w, — o, denotes the transition frequency between the eigenstates | «) and
| ') of the spin system. The summation is restricted to the terms for which @, = @,..
The coefficients I, . ,, also form a matrix (its real part is referred to as Redfield relaxation

matrix) and are given as a combination of spectral densities [2,4,5,9]:
Re(raa',b’ﬁ')z Raa'ﬁﬂ' =

- 45
= J e (@p) + 3 e () = Sy D0 0, (@,5) = 6,5 D o (0,). (49)
4 v
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The spectral densities J,,,, ;. () are defined as:

Juapp (@)= ReT<<a|Hl(t)|a'><ﬂ|H1(t—r)|/3'>>exp<—icor)dr (46)

0

where H; denotes the time dependent part of the spin Hamiltonian, (Eq. 22).

3.2. Diamagnetic systems

For a diamagnetic liquid (no unpaired electron spins) the total Hamiltonian includes
Zeeman couplings for nuclei of spins I, and |, and a dipole-dipole interaction between
them (see Section 2):

H=H, (1;)+H; (1;) +Hpp (15, 1,)(t) (47)
The eigenbasis of the main (unperturbed) part of the Hamiltonian (H, =H, (1,)+H,(l,))
contains four functions | n) =|m;, m,) where m, and m, are the magnetic quantum numbers
for spins |, and 1,. A schematic view of the energy levels structure for such system is
shown in Fig. 3.1 under the assumption that the two spins are equivalent (i.e. they have the

same resonance frequency, @, ).

¢l P2 ¢ P33

vl

<

44 P44
I

Figure 3.1. Schematic view of the energy levels structure for two equivalent spins | =1/2.

To obtain an expression for the spin-lattice relaxation rate (reciprocal relaxation time),
Rfiam(a). ) for a system of two equivalent spins | =1/2 the relaxation matrix elements

have to be calculated by means of Eq. 45. The dimension of the relaxation matrix is 16x16,
but the spin-lattice relaxation is described by the population block (only for the elements

P..) Of dimension 4x4. The expressions for the relaxation matrix elements R, ,; are given
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below [2]:
P11
i P2 _
dt| oz
Paa
1 1 1 1 1 i
_Z‘]l(wl)_i‘]z(zwl) §J1(a)l) g‘ll(a)l) EJz(Za)l)
1 1 1 1 1 P
g‘]l(a)l) _EJO(O)_Z‘]l(wI) E‘]O(O) g‘]l(a)l) y Das
1 1 1 1 1
g‘]l(a)l) EJO(O) _E‘Jo(@)_Z‘Jl(wl) é‘]l(a)l) Pa
1 1 1 1 1 Pas
E‘]Z(Zwl) ng(a)l) g‘ll(a)l) _ZJl(wl)_EJz(ZC‘%)
(48)

The longitudinal magnetization is proportional to the expectation value of the z-

component of the spin operator (l,) (1, =1,, +1,,) that can be expressed by the linear

combination of the density matrix elements p,, and p,, [2,10]:

<Iz>:%(pll_p44) (49)

The elements follow the set of equations [2] as a consequence of the formula of Eq. 44:

dp

d{l.l = —R]_ll]pll - R1122p22 - R1133033 - R1144p44 - R1123p23 - R1132p32 (50a)
d

gt44 = _R1144p11 - R2244,022 - R3344p33 — R4444p44 — R2344p23 — R3244p32 (50b)

These equations do not include couplings with the coherences p,, and p,, (@,; =0 asa
result of the degenerated energy levels shown in Fig. 3.1). Moreover, due to the fact that

Ri123 = Rysuq and Ry, = Rs,,,, contributions of these terms cancel anyway. The resulted

expression for (p11 - ,044):

d
a(pll - p44) = (_ Rig+ R1144)p11 + (_ Riigo+ R2244)p22 + (51)

+ (_ R1133 + R3344)p33 + (_ R1144 + R4444)p44
combined with Eq. 48 gives the well-known expression for the spin-lattice relaxation rate

R"™™(e, ) [1-5,7,9-11]:
R™(a, )= 3(_”0 hZ 'ZshJ (1 +1)[J (@) +4 (20,)] (52)
S\ 4rx 1,

where I, is the interspin distance.
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3.3. Paramagnetic systems

In liquids with paramagnetic centres the dipole-dipole interaction is between two non-
equivalent spins (a proton spin | and an electron spin S). For S =1/2 and assuming that

the relaxation is caused by dipole-dipole interactions between the proton and electron spins,

while the energy level structure is determined solely by their Zeeman couplings (Eqg. 19),
the nuclear spin-lattice relaxation rate R/ (e, ) is given by the Solomon-Bloembergen-

Morgan (SBM) formula [1,2,5,20,25,39-41].

The eigenbasis of the unperturbed part of the Hamiltonian consists of functions

|n)=|m,,ms) where m, and mg are the magnetic quantum numbers of proton and

electron, respectively. As the nuclear and electron resonance frequencies, ®, and wj,

respectively, are much different, the degeneracy of the energy levels is removed. As a result

of Eq. 45, the population block of the relaxation matrix contains now the elements [2]:

- 1 1 1 |
A g‘]l(a)s) g‘]l(ml) E‘]Z(a)l +a)$)
P11 1 1 1 Pu
i O - 5\]1((()5) E‘Jo(a)l _a)s) g‘ll(a)l) y Jory: (53)
= 1 1 1
dt| ps, §\]l(a)l) E‘]o(wl —a)s) A g\]l(a)s) Pss3
Lus ) 1 1 Pas
EJZ(a), +COS) ng(a)l) ng(a)S) A

where A=—%Jl(a)l)—%~]1(0)s)—%32(w. +w). Then the evolution of the nuclear

magnetization (the expectation value of (1)) is described by the expression [2]:

i (pll t 00— Pz~ P44) =

= —{i\](ah —a)s)+%~](a)|)+%‘](w| +a)s)}(,011+,022—p33—,044) (54)

(1)~(1;)eq

Ry ((U|)

1 1
+ [EJ (o, + o) _EJ (o, - a)s):|(,011 + Pa3 = P22~ Pas)

(5,)~(5,)eq

Ris (0’|)

where R, is a cross-relaxation rate and the quantities (l,),, and (S,),, denote the

eq

expectation values of the spins |, and S, in the equilibrium state. When the electron spin
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relaxation is very fast, the term (S,)—(S,),, becomes zero very quickly and the nuclear

spin relaxation is single exponential with the relaxation rate [1-3,5,11,19,20,25,39-41]:

RP* (@)= Ry ()= %[f—ﬂ%hj S(S +1)[I (e, — @) +33(@,) +6J (@, + ;)] (55)

Taking into account that wg =657, , the sum and the difference of the two Larmor

frequencies can be approximated by electron Larmor frequency and the above formula

reduces to the form:

R (@)= R, (@)= %[f—ﬁ%”} S(S+1)[3I(@) +7I(@3)]  (56)

In a more elaborated form this equation includes electron spin relaxation rates [2,40].
Electron spin relaxation acts as an additional source of modulations of the | —S dipole-
dipole interaction and this is reflected by the form of the spectral densities. Assuming that
the original source of the modulations of the dipolar coupling is rotation and that the

spectral densities are Lorentzian, one obtains:

3 ()= — et (57)
1+ia)rqeff ’
The effective correlation time is defined as: 7,% =77"+R® for J(@, ) and 7,4 =77" +R¢

for J(w,), where RY and RS denote the electronic spin-lattice and spin-spin relaxation

rates, respectively [1,2,4,9,40,41].

3.4. General approach to relaxaton in paramagnetic systems

When there are other spin interactions (besides the Zeeman couplings) contributing to the
energy level structure of the spin system (for instance the isotropic part of the hyperfine
interaction — Eq. 27), Eqg. 55 describing the nuclear spin-lattice relaxation caused by a
nuclear spin — electron spin dipole — dipole interaction has to be replaced by a more general

expression [2,43,49]:

Ripar(a)l ) = %(f_; %;h) (51,1(a)| )+ 3So,o(a’l )+ 63—1,—1(a)| )) (58)

The quantities s, (coI ) are referred to as generalized spectral densities, which for isotropic

rotational dynamics are characterized by a single correlation time, 7. They can be
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obtained as a matrix product [2,21,39,43,44,49]:

Sy0(@)= Re{[s;]*[M I [s;]} (59)

The matrices of Eq. 59 are defined in a basis formed by pairs of the eigenstates of the spin

25 +1

system (+ denotes matrix transposition). For | =S =1/2 its dimension is 16. The diagonal

elements of the matrix [M] are defined as [2,32]:

[M ]aa'aa‘ = I(a)l - a)aa')+ Re

ad'ad

+75 (60)

where R®

ad'ad

are electron spin relaxation rates. The off-diagonal elements are given as:

[M ]aa‘ﬁﬂ' = Rza'ﬁ’ﬂ' (61)

The matrix [S;] IS a representation of the operators:

Si=s, (62a)
1

sl =5, 620

2= 55 (62b)

in the same basis [21,32,37,44-46].

3.5. Relaxation in diamagnetic and paramagnetic systems -
a comparison

The relaxation rate R""(cv, ) for short correlation times (fast motion of the interacting
molecules) is almost field (frequency) independent as shown in Fig. 3.2 a) for
r, =1*10"'s (characteristic of water; simulations have been calculated for *H relaxation
therefore @, = w, ). For more viscous liquids (longer correlation times) one observes a
dispersion of relaxation at high frequencies (Fig. 3.2 b)). The value of the distance of closest
approach was setto d,, = 3A that is between the values presented in literature for water

[47] and for glycerol [31-34]. The rotational spectral densities were described as Lorentzian

functions.
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Relaxation in diamagnetic and paramagnetic systems — a comparison

10° 10* 10° 10° 10" 10° 10°
proton frequency [Hz]

10° 10* 10° 10° 10" 10® 10°
proton frequency [Hz]

Figure 3.2. Rfiam(a)H) versus proton frequency simulated according to Eq. 52 for
a) 7,=1*10""s and b) 7z, =1*10"s; d, =3A. Decomposition of the relaxation
dispersion profile into the J(a)H) and J(Za)H) contributions is shown.

In Fig. 3.3 ), b) simulations of R"*(a,, ) are presented for the same values of the rotational

correlation time.
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Figure 3.3. Ri"ar(coH) versus proton frequency simulated according to Eg. 56 for
a) 7,=1*10"'s and b) 7, =1*10"°s; d, =3A. Decomposition of the relaxation
dispersion profile into the 3J(@,, ) and 7J(w; ) contributions is shown.

Ri"ar(a)H) shows a strong dispersion even for the shorter correlation time. It is caused by
the term 7J(a)5) present in Eq. 56. The electron Larmor frequency, oy, is 657 times larger

than proton Larmor frequency due to the ratio between the proton and electron
gyromagnetic factors and therefore it leads to a considerable nuclear relaxation dispersion

for paramagnetic liquids even though the dynamics is pretty fast. In consequence, NMR
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relaxation studies for liquids containing paramagnetic centres provide information about

fast dynamics of the solvent which is not accesible otherwise.

In solutions of paramagnetic species two kinds of dipole-dipole interaction involving the
solvent protons should be distinguished: the proton-proton (I —1) interactions between
solvent molecules and proton-electron (1 —S) dipole-dipole interactions between the

solvent and solute (carrying the electron spin) molecules. As a result the overall nuclear
(proton) relaxation rate R, (@) meassured in the experiment is a sum of two contributions:

R1(COH ): Rldiam(wH )+ Rlpar(wH ) (63)
Therefore to obtain the R’ (w,, ) relaxation part, the relaxation rate R**"(eo,, ) for pure
solvents should also be measured and then subtracted from R, (®,,) . The value of R’ (w,, )
is proportional to the concentration of the paramagnetic centres [20,26,31]. Thus, it is

convenient to normalize the obtained R"*(w,, ) data to unit concentration (1 mM). The

normalized relaxation rates are referred to as relaxivity [20,31].
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4. Literature review

The subject of nuclear spin relaxation in the presence of paramagnetic centres begins with
the pioniering work of Solomon, Bloembergen and Morgan [39,40], referred to as the SBM
theory. The authors developed the first theory of Paramagnetic Relaxation Enhancement,
PRE, (enhancement of the nuclear spin relaxation caused by strong dipole-dipole
interactions with the electron spin of the paramagnetic molecule) pointing out the
possibility of two-exponential relaxation in systems containing so-called non-equivalent
spins and introducing the concept of electron spin relaxation acting as an additional (besides
the molecular dynamics) source of stochastic fluctuations of the nuclear spin-electron spin
interactions. The electron spin relaxation is treated in the theory as a phenomenological
parameter. The most serious limitation of this description is that it is valid only at high
magnetic fields when all other spin interactions are negligible compared to the Zeeman
coupling.

As for long time the only way to study NMR relaxation was performing relaxation
experiments at a single, rather high frequency versus temperature, there was no need for
developing more general approaches. The situation has drastically changed with the
emergence of FFC relaxometers [48] that has opened the possibility to perform frequency
dependent relaxation experiments going down to low frequencies where the spin
interactions neglected by the SBM approach are of primary importance. The development
of the FFC technology was accompanied by rapidly growing interest in the development of
paramagnetic contrast agents for Magnetic Resonance Imaging and FFC relaxation
experiments have become a tool to probe the efficiency of new candidates for MRI contrast
agents. These studies have revealed the inaccuracy and the insufficiency of the SBM
approach — the theory is not even able to explain the appearance of frequency specific
relaxation maxima beeing the basis of the paramagnetic contrast mechanism, not talking
about their shapes and properties. This situation has stimulated the development of theories
of PRE effects in solutions of transition and rare earth metal complexes. The development
has started from introducing to the SBM theory the concept of frequency dependent
electron spin relaxation calculated by means of simplified (oversimplified) approaches, but
explicitly involving zero field splitting interactions (characteristic of paramagnetic systems
of the electron spin of one or higher) and the time scale of their fluctuations. This was the

first attempt to go beyond the purely phenomenological treatment of the electron spin

26



relaxation used in the SBM equations.

Further theoretical development went through several steps, aiming at obtaing a theory of
PRE which is valid for an arbitrary magnetic field, includes relevant spin interactions and
can be used for arbitrary motional condition. The theories available at present can be
divided into two groups: 1) approaches based on the second rank perturbation theory
[49,50] and approaches using a full solution of the stochastic Liouville equation [51-56].
The perturbation approaches are very advanced — they include complex models of zero
field splitting interactions, but as far as the motional conditions are concerned their validity
is restricted to the limiting cases of slow and fast dynamics. The expectations of generality
are fulfilled by the approach based on the Liouville equations, but for the price of high
conceptual and computational effort.

Another group of chemical compounds that gained a lot of interest due to their applications
are nitroxide radicals. The enhancement induced in such systems is smaller in comparison
to the PRE obtained for systems with transition and rare-earth metal complexes, but by
introducing nitroxide radicals to liquids, the dynamics of the solvent can be investigated
provided an appropriate relaxation theory is available.

The overall proton relaxation rate is a sum of spectral densities being the Fourier transform
of the correlation functions describing the dynamics of the system. Therefore, to form
theory of PRE for nitroxide radicals valid for an arbitrary magnetic field, the spectral
densities describing the translational dynamics of spin bearing molecules had to be
calculated. It has been done in seminal works of Hwang and Freed [29] and Ayant et al.
[28]. The dynamical model presented in their works is based on the assumptions that the
interacting spins are placed in the centers of molecules which are treated as hard spheres.
In reality, this assumption is not fulfilled. It implies that rotational motion also contributes
to the modulations of the inter-molecular dipole-dipole interaction. Therefore, the
definition of the translational spectral density presented in Refs. [28,29] has been extended
by including the translation — rotation coupling referred to as ‘eccentricity effect’, [25-27].
It was experimentally confirmed for many different systems (either in diamagnetic liquids
[34,35] and in solutions of nitroxide radicals [31-33]). In consequence the PRE effect
occuring for solutions of nitroxide radicals can be used to study both: the translational as
well as the rotational dynamics of the system.

The applicability of the above approach is limited to the high values of the magnetic field
(like it was for the SBM theory). The low field features of nuclear relaxation resulting from

interactions with nitroxide radicals have been less intensively investigated and an
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appropriate description of the PRE effect valid for an arbitrary magnetic field was not
available for a long time.

First attempts to face this problem have been made by Belorizky et al. in Ref. [15]. A
description of PRE effects for solutions of ©*N containing radicals taking into account the
influence of the isotropic hyperfine coupling on the electron spin energy level structure has
been presented neglecting the electron spin relaxation. Additionally the theory has been
combined with the low frequency expansion of the translational spectral density into an
expression linking the relative diffusion coefficient of the solvent and solute molecules to
a linear slope of the dependence of the proton relaxation rate on square root of frequency,
observed at low frequencies.

A more complex description of PRE effects for 14N containing radicals taking into account
the isotropic part of the hyperfine coupling has been developed by D. Kruk et al. in Ref.
[32]. In further works of the authors the PRE theory (both for *N from Ref. [15] and N
from Ref. [32]) has been generalized including the influence of the electron spin relaxation
on the modulations of the electron spin — proton spin dipole — dipole interaction [31,57].
The dominating electron spin relaxation mechanism for nitroxide radicals has been
provided by the anisotropic part of the electron spin — nitrogen spin hyperfine coupling.
The modulations of this interaction caused by the overall tumbling of the paramagnetic
molecule has been considered in Refs. [31,57]. This extended approach has been carefully
tested against the experimental data. The detailed analysis of *H NMRD data for several
solutions differing in dynamic parameters over a broad temperature range has been
presented in Refs. [31,32,57].
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5. Proton relaxation in paramagnetic system with
hyperfine coupling

5.1. Influence of isotropic hyperfine coupling on proton
relaxation

As described in section 3, for proton relaxation caused by the proton spin | - electron spin
S dipole-dipole coupling, the relaxation rate R (), ) is given by the Solomon —
Bloembergen — Morgan formula (Eg. 56) [1-3,5,11]. This description is valid at high

magnetic fields when the condition a3 >> A, is fulfilled. In this range the energy levels

of the electron spin S are determined only by the electron Zeeman interaction.

+A, +

solvent A, [MHZ] A, [MHZ] A [MHZ] Asozw [MHZ]
toluene-ds [58] 11.49 17.10 93.60 40.64
glycerol-ds-D20 [58]  15.41 15.97 100.33 44.00
acetone-ds [58] 13.45 15.13 95.28 41.20
propylene glycol [57] 10.6 10.6 107.3 42.83

Table 5.1. Components of hyperfine coupling for deuterated 4-oxo-TEMPO determined
from ESR experiments [57,58].

Values of the isotropic part of the hyperfine coupling, A,,, obtained from ESR experiments

for solutions of nitroxide radicals (deuterated 4-oxo-TEMPO) are of the order
of 50 MHz (some of them are shown as an example in Table 5.1) [57,58]. Conventional
Field Cycling experiments are performed in the frequency range of 10 kHz — 20 MHz for
protons. Due to the value of the ratio between electron and proton gyromagnetic factors

(75 !y, =657) it corresponds to the range of 6.5 MHz - 13 GHz for electrons. This means

that for a significant part of the frequency range the hyperfine coupling of the electron spin

S with nitrogen spin P has to be taken into account.

As explained in section 2 the unperturbed Hamiltonian of the pair of electron and nitrogen
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spins S —P consists of two parts [15-18]:

H,(S,P)=H,(S)+H,,(S,P) (64)
The Zeeman functions |n) =|mg,m,) for the S—P system are determined by the electron
spin and nitrogen spin magnetic quantum numbers, mg and M, , respectively. For P =1/2
(*°N) it gives: |1y =|++), |2) =|+—), |3) =|—+), |4) =|——) (the abbreviation + instead
of the 1/2 and —1/2 magnetic quantum numbers is used). For P =1 (**N) the system is
described by 6 Zeeman functions: |1y =|+1), [2)=|+0), |3)=+-1, |4)=|-1),
|5) =|-,0), |6)=|-—1). The eigenfunctions |¥;,) of the system resulting from
diagonalization of the Hamiltonian of Eq. 64 are given as linear combination of the Zeeman

functions |n) =|mg, m, ) . For the simpler case of **N (P =1/2) there are four energy levels

[15,31,32]:
= %Jr A:o |P,) =] +,+)
EZZ%M_A:O |P,)=a|+-)+b|-+)
A S S S
i _%+% ¥, =] --)
where

a= 11+L ‘ and b= EI—L E (66)
2| Jol+ A 2| e+ A,

For the case of N (P =1) the system is characterized by six energy levels [31,32]:

30



Proton relaxation in paramagnetic system with hyperfine coupling

E = %+ A‘ZS" | =[+D
EZZ%\/QZ‘§°+a)§+coSASO—AI'° |,y =al|+0)+b|-1)
ESZ—%\/94§°+a)§+a)SAiSO—A2° |W,) =c|+0)+d|-2)
E4=%\/93‘§°+w§—wsAso—% 1, = e|+~1) + f [0
E5:—%\/9§§°+w§—wsAso—% |¥,)=g|+-1+d]|-0)
Ey =2y B ) =D

with the a,b,c,d,e, f,g,h coefficients given as:

a=1+a>)™ b=ca c=1+p)™ d=4

e=(L+y) M f=je g=(1+6) h=g

where

— Aiso + Za)s B \/9Aﬁ§o + 4Aﬁsoa)s + 46052 — Aiso + Za)s + \/gAiio + 4Aisows + 46052

“ 224, & 224,

y= Aiso - 2a)S + \/gAio - 4Aisoa)s + 4a)82 S= Aso - 2(05 - \/gAiio - 4Aisoa)s + 460:
2V2A,, 22A,,

(67)

(68)

(69)

Diagrams of the electron energy levels as a function of *H frequency for the case of °N

(A, =63MHz) and N ( A, = 45 MHz) are shown in Fig. 5.1. From now on the frequency

axis corresponds to proton frequency, so the term “proton” is omitted.
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Figure 5.1. Energy levels diagrams for a system of electron spin S coupled by hyperfine
interaction with a) ®N and b) **N spin P versus proton frequency. The values of hyperfine
isotropic (scalar) coupling are: for °N: A_ = 63MHz and for ““N: A_ = 45MHz.

Proton spin-lattice relaxation rate in solutions of paramagnetic molecules is described by a
combination of generalized spectral densities defined by Eq. 58. The spectral densities
smym(wH) for translational dynamics are defined in analogy to Eq. 59 as [2,31,51,55,59]:

2

N ® u
Sun() =36 2R, T TN [s:lmrslu o)
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where [S;] are matrix representations of the operators S%: St=S,, S% =1/4/2S,, in the

eigenbasis of the S—P system, |‘P,> This representation can be derived using the

following expressions [2,31]:

Sy = Y (Img,mp)(mg,m, | —|-mg, m,){-mg,mj |)
mS>0
Sil = _Zl mS ’ mP><ms _11 mp | (71)
Mg

S}l = Z| mg —1, my )(mg, m; |
Mg

and the relationship between the Zeeman basis and the eigenbasis {]‘P,)} (Egs. 65 and 67).

The matrices [M] and [S%] are defined in a basis constructed from pairs of the

eigenfunctions |‘Pi><‘PJ. ‘ referred to as a Liouville space [2,4,11,36-38,41]. The matrix
[M] is diagonal with the elements [2,31,49,57]:

M5 =i(ey, + @) +Ur ms (72)
where @; = E; —E; are transition frequencies between the energy levels presented in Fig.
5.1. As w; >>aw, the expressions w; £ @, can be replaced by @, . Using the outlined
approach, expressions for the paramagnetically induced proton spin-lattice relaxation rate
R (@, ) for the systems with >N and N have been derived. For the case of °N the
expression yields [15,31,32] :

) RS (@)
§[1+(a2 -b?*)*1 (@, ) +6(ab)* I (@,,)
2 H 23
Rlpar(a)H ): Kop X (73)
+ 223 (0) + 3 (@] + 2610+ (020)]

R115,III (a)H)

while for the case of N it is [31,32]:
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R (@y)
|:1+ (aZ _b2)2 . (CZ _d2)2 N (eZ _ f2)2 . (92 _h2)2 J(a)H)
2 2 2 2
Ri“! (@)
+[(ac—bd)* I (@,,) + (eg — )" J (@,)]
R (@) = Kpp x (74)
R114,III (a)H)

-
+§[b23 (@) + %3 (@15) +€°3 (046) + 9°J (@55)]

#2123 (@) + (@) (@) (¢ (@30) + e0)* 3 )]
R e

where:

2 Y7, ?
Ky, =—S(S+1) =2 7] 75
oo~ g ( )(47[%75 j (75)

The expressions R;*™®* (e, ) are introduced for the clarity of descriptions of figures in

this section and the next ones (x =1, 11, 111,1V).

Examples of 'H relaxation dispersion profiles, R"(w, ), for *®N and N are shown
in Fig. 5.2 a) and b), respectively; for *°N: A, =63 MHz and for *N: A , =45 MHz and

1 mM concentration of the radical molecules.
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Ry (w,) [s7]

frequency [Hz]

Figure 5.2. Simulations of * H spin-lattice relaxation dispersion profiles, Rl"ar(a)H ) for a)
15N and b) 1N containing nitroxide radicals. Solid black lines - R’ (@, ) for A, =0MHz,
Eq.56; solid red lines - part of Eq. 56 dependent on w,, (K,3J(w, )); solid orange lines
- part of Eq. 56 dependent on @, (K 7J(w; )). Solid lines — R (@, ) for A, =63 MHz
(green line, N, Eq. 73) and for A, =45MHz (blue line, N, Eq. 74); The contributions
dependent on different transition frequencies are marked as follows:

a) from Eq. 73: dashed-dotted green line — K ,R®'(@,), dotted green line —

Koo Ri™" (@, ), dashed green line — K ,R™" (a,, );

b) from Eq. 74: dashed-dotted blue line — K, R}*' (@, ), dotted blue line — K, R*" (@}, )
, dashed blue line — K (Rl“"” (0, )+ R*" (@, )) The simulations have been performed
for the following parameters: z,,,,=1*10"s, d,, =4A, D,, =1.6*107"° m/s2.
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In both figures the case of A, =0 MHz when Eq. 73 and Eq. 74 simplify to the SBM
formula (Eq. 56) is shown with black solid line. It can be easily seen that the isotropic
hyperfine coupling leads to reduction of R”*(w,, ) in the low field range (defined by the
condition @ << A,). The reduction of the R"* (@, ) for the case of N (P =1) is larger

than for the case of N (P =1/2) and this effect becomes more pronounced for slower

dynamics as shown in Fig. 5.3.

' b) .

-~_
O C o ol P L i ST T) S

10° 10* 10° 10° 10" 10°
frequency [HZ]

Figure 5.3. Simulations of *H spin-lattice relaxation dispersion profile, Rf’ar(a)H ) for slow
dynamics (z,,,=1*10"s, d, =4A, D,=1.6*10"" m/s?); blue lines — case of N
(Eq. 74); green lines — case of N (Eg. 73); dashed lines — the terms:
KDD(R115'" (a)H )+ o (a)H )) for N and KDD(RllMI (COH )+ ! (COH )+ 4 (C‘)H )) for “N;
dashed-dotted lines — the terms: K R (e, ) for ®N and K, R*' (e, ) for N.

5.2. High and low field limits

Taking into account the values of the isotropic hyperfine coupling constant, A,,, two
limiting cases can be distinguished: the low field regime in which the amplitude of the

scalar hyperfine coupling is much larger than the electron Larmor frequency, s
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(A, >> ), and the high field regime when the scalar hyperfine coupling is much smaller
than o, (A, <<® ). The dependencies of the a, b coefficients of Eqg. 73 (the case of 1°N)

on the H frequency are presented in Fig. 5.4 a), analogous dependencies of the coefficients

a—h (the case of 1*N) are shown in Fig. 5.4 b).

frequency [Hz]

Figure 5.4. a) The coefficients a and b from Eq. 73 b) a—h from Eq. 74 (A, =63 MHz
for N and A, =45 MHz for ¥*N) versus 'H frequency.
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The coefficients reach in the low and high field limits the following values:

low field value coefficients high field value

15N

12 a

/42 b 0
14N

2/3 a 1

~1/43 b 0

1/43 c 0

2/3 d 1

1/43 e 1

2/3 f 0

213 g 0

~1/43 h 1

Table 5.2. Values of the coefficients: a, b from Eq. 73 and a—h from Eq. 74 in the low
and high field limits.

Analogously, for the transition frequencies one obtains:

15N
Aso W3 s
Aiso 6()23 wS
Aiso a)34
0 ZP)
0 @,, o
14N
BAso / 2 0)23 0)5
3A, 12 W45 @s
BAso / 2 0)13 0)5
3A 12 Wsg 0

38



Proton relaxation in paramagnetic system with hyperfine coupling

3A,, /2 5 @
3A,,/2 3,
0 @,
0 D, W
0 @®,,
0 W35

Table 5.3. Values of the transition frequencies, «;, from Egs. 73 and 74 in the low and
high field limits.

In consequence, the proton spin relaxation rate, Rlpar(a)H ) for the case of °N is given in

the low field range by the expression [15,32]:

RF*(ey —0)= Kpp[53(0)+53(A,,)] (76)
while for the case of 14N one gets [32]:
ar 110 160 .(3A,,
Rlp ((oH —> O) = KDD |:E J (O) + E J (%)} . (78)

In the high field range, the expressions of Eqgs. 73 and 74 for the cases of *®N and N,
respectively, converge to the well-known Solomon-Bloembergen-Morgan equation
[15,32]:

Rlpar(a)H _)OO)E Koo [3‘] (a)H )+7‘] (a)s )] (77)

5.3. Origin of local relaxation enhancement

One can see in Fig. 5.3 that for slow dynamics the relaxation rate, R (a), ) tends to form
a maximum (a local relaxation enhancement) that is associated with the terms represented
by the dashed-dotted lines. The apperance of the maximum is a result of an interplay
between the spectral densities, J(a)H), decreasing with increasing frequency and the
corresponding prefactors that increase with increasing frequency. The effect is shown in
Fig 5.5 a), b) for the cases of °N and *N, respectively (the values of the spectral density

have been normalized to 1 in the low field limit).
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Figure 5.5. a) Dashed-dotted green line - b+(a2 —bZ)ZJJ(a)H ); dashed grey line - spectral
density J(a)H); dotted grey line - weight factor of the spectral density tl+(a2 —bz)zJ;

b) dashed-dotted blue line {1+(az _sz)z+(cz ‘20'2)2+(e2 ‘2f2)2+(92_2h2)2}J(wH);

dashed grey line — spectral density J (a)H ) ; dotted grey line — weight factor of the spectral

density {H(az —b2)2 + (C2 _d2)2 + (92 —2f 2)2 + (92 _hzq D Tuans =4%107%s, dg =4A,

2 2 2
D,, =4.0*107* m/s?.
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The relaxation dispersion profile, R"*(w,, ), being a sum of the term shown in Fig. 5.5 and
the other terms present in Egs. 73 and 74 (**N and *N cases, respectively) takes the shape
presented in Fig. 5.6 a), b) for the cases of °N and *N containing radicals, respectively.

The relaxation maxima are well pronounced.

O NP A T LR s/« TVe STt i I = 17 Rl i 2 Pl L
10° 10* 10° 10° 10" 10°
frequency [Hz]

~
o
AL

14N

frequency [Hz]

Figure 5.6. H relaxation dispersion, R (e, ), for a) *N and b) 1N. Solid green and blue
lines - R (w,,) according to Eqgs. 73 and 74, respectively. Dashed-dotted lines — the
terms: K oRi™ (e, ) for ®N and K, Ri*' (e, ) for *N; dashed lines - K ,R™*" (e, ) for
15N and KDD(R114"" (0, )+ R*" (@, )) for 1“N; dotted lines - K ,R*" (@, ) for N and
Koo R (e, ) for “N. (7., =4*10%s, d =4A, D, =4.0%10"? m/s?).
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5.4. Comparison with “classical” relaxation theory

It is interesting to discuss in more details the influence of the hyperfine coupling between

the electron and nitrogen spins on the *H relaxation.

In Fig. 5.7 a), b) the ratio between the relaxation rates R"* (@, ) calculated according to
Egs. 73 and 74 (i.e. including the isotropic hyperfine coupling) and the relaxation rates
RPa"S®™ (@, ) calculated using the SBM formula (Eq. 56, here the superscript “SBM” is

added to distinguish it from the results obtained by Egs. 73 and 74) is shown for the cases
of ©°N and *N containing radicals.

1.0 a)
—~ 0.9
S
§ 0.8
g
x 07 5%10°% s
3 %1 (-8
S 06 1 10_93
5 510° s
X o5 1*10° s
1*10° s
0.4 el
10’ 10°
1.0 b)
—~ 0.9
é |
;) 0.8
|
x 07 5+10° s
- i %1 (-8
\8/ 0.6 1 10-9 S
5 i 5107 s
X o5 1*10° s
1*10°s
04 | Lo sl Lo sl Lo sl Lo sl

10° 10 10° 10° 10’ 10°
frequency [Hz]

Figure 5.7. Ratio between R (w,, ) calculated according to Eq. 73 and 74 and predictions

of the SBM theory (R"*"** (@, ) given by Eq. 56) for a) N and b) **N (the value of 1 is
marked with dashed black horizontal line).
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As at higher frequencies the energy level structure is mostly defined by the Zeeman
interaction, the influence of the hyperfine coupling is less important and eventually the ratio
reaches one (i.e. Egs. 73 and 74 converge to the SBM expression). At low frequencies the
relaxation rates calculated according to Eqs. 73 and 74 are smaler than those predicted by
the SBM formula. This is a consequence of the energy level structure of the electron spin
beeing affected (even determined at very low frequencies) by the isotropic hyperfine

coupling. This effect is more pronounced for slower dynamics when the details of the

energy level structure are more visible (in the extreme narrowing condition w7 <<1 the

role of the isotropic hyperfine coupling is minor).

To illustrate the differences in the effects of the hyperfine coupling for °N and **N isotopes,
the ratio R ™(w, )/ RP*™(w,) versus frequency is shown in Fig. 5.8 for different
translational correlation times, ... The ratio is smaller than one — i.e. the *H relaxation

in solutions of N containing radicals is slower, except for the high frequency range when

the relaxation rates become equal (and described by the SBM expression, Eq. 56).

1.00

-

3
7 095 T

5 1¥10™ s
=~ 1*10% s
é 0.90 1*10-9 S
£ 5¥10° s
[

S 1*10% s
o 085 3*10'8 S

10°  10* 10° 10° 10
proton frequency [Hz]

Figure 5.8. Ratio between RP*" ™ (e, )/ RP*" (e, ) versus proton frequency for different
values of the translational correlation time, 7,,,..

The correlation times are in the range from water translational correlation time

(Tyans *1%107s, [47]) to values somewnhat longer than those characteristic of solvents of
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high viscosity (like glycerol or propylene glycol at low temperatures, [31-34,57]). For
shorter correlation time the difference between the H relaxation in the case of nitrogen

isotopes is negligible. For longer correlation times the effect is clearly seen.

5.5. Electron spin relaxation

Electron spin relaxation acts as an additional source of modulations of the electron spin-
proton spin dipole-dipole interaction. In the SBM expression (Eq. 56), the correlation time

7, is replaced by the effective correlation time: z_y, =7," +R’.

The intermolecular spectral density can be modified in a similar way by replacing the factor
ur k. by Uz +R®) (i=1for J(w,)and i=2 for J(w;)) as follows [2,31-33] (the
index R is added to distinguish from the spectral density presented in chapter 2, not
including the electron spin relaxation):

2 2 e
NS ® u (U + z-transRl )Ttrans

IO s Tyans RE) = 72—
(@4 Tianss R) d|35 0 81+9u”-2u* +u® (u2+TtranSRle)2+(a)HTtrans)2

du (79)

2 2 €

N S J»oo u (U + TtransRZ )Ttrans

-3 2 4, .62 e)2 2
d IS 0 81+9u°—-2u” +u (U + z-transRZ) + (a)S Ttrans)

‘] R(a)s ! Ttransi R;) = 72 dU (80)

The description of the electron spin relaxation becomes more complicated at lower fields
when the SBM approach breaks down [2,31-33]. Here only the main concept of introducing
the electron spin relaxation into the theory of the *H spin-lattice relaxation is briefly

outlined. For the diagonal part of the matrix [M] (except of the population block of the

matrix), the following generalisation of the spectral densities has to be applied [2,31-33]:

Ng u’ ul+z,. Rz
‘] § (a)omc" Ttrans’ Roeza'aa') = _35 2 4 6 2 ( tgans agaa ) trans 2 dU (81)
d 1S 0 81+9u”-2u"+u (U + TtranSRaa'azx') + (a)H Ttrans)

InEq. 81 its is assumed that = &' . For the population block of the matrix [M ] one obtains
for the case of °N [31]:
N (= u’
b+ a’—b? Z}JR W, T =72—=
( RRCT d3 % 81+9u® —2u* +u®

ST(U, Tyane @y, RE)dU  (82)

where $°(U,7,,.. @, R®) is given as a matrix product:
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A+R:,  Ri  Rig R |
. 1 RleZ A + R;ZZZ R§233 R§244
S 00 R)=ORESH]| Ry Rhw  A+R  Rhw | [SH 69)
R16144 Rzez44 R3es44 A+ RZ444

e .
aada'?

R® represents here a set of the electron spin relaxation rates R A=iaw, +U%lz,,,..

Analogously for the case of N the equations take the form [31]:

|:1+ (a2 _2b2)2 . (C2 _d2)2 . (e2 _ f2)2 . (92 _h2)2

2

2

2

:|‘] & (a)H ’Ttrans) =

(84)
N u? ~R
=72—2 S™(U, 7m0 @y, R%)dU
3 2 4 6 ! “trans! “YH !
dg ®© 81+9u°—-2u” +u
where:
~R —_
S (U, 2-trans’ a)l ’ Re) -
- -1
e e e e e e
A + Rllll R1122 Rll33 R1144 R1155 R1166
e e e e e e
R1122 A + R2222 R2233 R2244 R2255 R2266
e e e e e e
1 R1133 R2233 A + R3333 R3344 R3355 R3366
- 1 e e e e e e L. 85
2 Re [SOT R1144 R2244 R3344 A + R4444 R4455 R4466 [SO] ( )
e e e e e e
R1155 R2255 R3355 R4455 A + R5555 R5566
e e e e e e
R1166 R2266 R3366 R4466 R5566 A + R6666

The electron spin relaxation is primarily caused by the anisotropic part of the electron spin
- nitrogen spin hyperfine coupling modulated by the rotation of the paramagnetic molecule

individual relaxation rates R® are calculated in terms of the Redfield

aada'

[17]. The

relaxation formula, presented in Section 3.1, Eq. 45 [2,4,5,9]. The explicit expressions for
the electron spin relaxation rates as linear combinations of the electron spin spectral

densities are given in Ref. [31].
The electron spin spectral densities J*(w) are given as [31,57]:

JA(w)z{g[Au—%(Axxw)} +%<A<X—Axy>2}w(w) )

where J(a)) is a spectral density describing the rotational motion of the radical molecule
(it can be the Cole-Davidson spectral density, J. (@), defined by Eq. 34 or simple Lorentz
function, Eq. 32).
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Fig. 5.9 shows a comparison of the *H spin-lattice relaxation dispersion profiles predicted
by the SBM theory (Eq. 56), Egs. 73 and 74 (for the 1°N and **N cases, respectively) taking
into account the contribution of the isotropic part of the hyperfine coupling to the energy
level structure of the electron spin, and predictions of the theory including both the isotropic

and anisotropic part of the hyperfine coupling (i.e. the electron spin relaxation).

RY(w,) 7]

frequency [Hz]

Figure 5.9. 'H spin-lattice relaxation dispersion profiles predicted by the SBM theory (Eq.
56, solid black line), the theory including the isotropic part of the hyperfine coupling (solid
green and blue line, Eq. 73 and 74, respectively) and the extended theory including the

electron spin relaxation (dashed green and blue lines). z,,.=1*10"s, d.=4A
D,, =1.6*107"" m/s?.

The figure demonstrates that the electron spin relaxation leads to a further decrease of the
1H spin-lattice relaxation in the low frequency range due to faster modulations of the proton

spin-electron spin dipole-dipole coupling.

Fig. 5.10 shows the ratio between the predictions including the electron spin relaxation,
and the effect of the isotropic part of the hyperfine coupling and the predictions neglecting

the electron spin relaxation for different translational correlation times (the ratio between

Tyans @Nd 7, was set to 30, the tensor components of the hyperfine coupling yield
A, =220MHz, A, =23.0MHz and A, =142.0MHz for ®N and A, =154MHz,

A, =16.1MHz and A, =99.5MHz for ¥N).
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Figure 5.10. Ratio between R"*(w,, ) obtained for a) °N and b) 1N after including the

influence of electron spin relaxation and obtained including only the effect of the isotropic
part of the hyperfine coupling (the value of 1 is marked with black dashed horizontal line).

The role of the electron spin relaxation is important when the electron spin relaxation time
becomes of the same order as the translational correlation time. When the rotational (and
hence translational) dynamics is fast, the electron spin relaxation is slow and then it can be
neglected. For slower dynamics the electron spin relaxation is faster and then it becomes
an important component of the fluctuations of the proton spin-electron spin dipole-dipole
coupling (especially as the dynamics itself becomes slower).

Eventually, in Fig. 5.11 the ratio between the predictions including both the isotropic and

anisotropic parts of the hyperfine coupling and the SBM theory is shown to demonstrate
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the inaccuracy of the latter approach.

1.0 a)

0.5

R™(o0,,,RE)/R™(00,)

0.4 L

5%10° s
1*10% s
1*10° s
1*10"° s

04 il T | AN | T | T | T
10° 10* 10° 10° 10’ 10®

frequency [Hz]

Figure 5.11. Ratio between R"*(@,,R*®) including both the isotropic and anisotropic

parts of the hyperfine interaction and values of R™'(w,) given by SBM formula (Eq.56)
for a) °N and b) N (the value of 1 is marked with black dashed horizontal line).

At the end of this section, the ratio RP* ™(a,)/R'" ™(w,) versus translational

correlation time, 7,,,, and versus proton frequency is shown in Fig. 5.12 a) and b),

respectively, to illustrate the differences in the influence of the isotropic hyperfine coupling

resulting from N and *N. The first simulations have been performed for several values
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of frequency. For 1 MHz the ratio is close to one even for very long correlation times. For
progressively lower frequencies the deviations from unity increase especially for long
correlation times. The changes are monotonic only for higher frequencies, but the ratio is
always smaller than one. Also the ratio plotted versus frequency shows a non-monotonic

behaviour at low and intermediate frequencies for longer z,
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Figure 5.12. Ratio R’ ™ (e, )/ R’ ™ (w,,) versus a) translational correlation time, 7,
and b) versus frequency; 7,/ 7z =30.
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Similar comparison is presented in Fig. 5.13. The ratio Rlpar'u'\‘ (a)H,Re)/Rfa“lsN (w,,R®)
after including the influence of the electron spin relaxation versus translational correlation
time, 7,,,, and versus frequency is shown in Fig. 5.13 a) and b), respectively. The ratio

does not change monotically over the entire range of correlation times and frequencies and
it is always smaller than 1.
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Figure 5.13. Ratio RP" ™(w,,,R®)/RP*" N(w,,R®) obtained after including the influence

of electron spin relaxation: a) versus correlation time, 7, and b) versus frequency; the
value of 1 is marked with black dashed horizontal line;

50



Experimental details

6. Experimental details

6.1. Principles of NMR Field Cycling relaxation experiments

Standard NMR relaxation experiments are performed at a single frequency. Fast Field
Cycling (FFC) technology opens the possibility to perform relaxation experiments in a
broad frequency (magnetic field) range, typically 10 kHz — 20 MHz (for H). In
consequence, by FFC NMR relaxometry one can detect motional processes across a huge
range of time scales (from ms to ps) [48]. As already explained, frequency dependent
relaxation studies have the potential to reveal the underlying mechanisms of molecular
motion (not only its time scale). The dependence of spin-lattice relaxation rate on the
resonance frequency is referred to as a relaxation dispersion profile.

A schematic representation of spin-lattice FFC experiments is shown in Fig. 6.1. Two
sequences can be used: prepolarized sequence (PP) at low and intermediate magnetic field

and non-polarized (NP) sequence at high magnetic field.

b)
Bac
Brel -
| 2 -
B,=0 )/ |
tpol L tacq time tpol g tacq time

Figure 6.1. Schematic view of sequences used in spin-lattice relaxation FFC experiments:
a) prepolarized (PP) sequence, b) non-polarized (NP)sequence.

The PP sequence consists of three steps:

1. Polarization: a relatively strong magnetic field, B, (about 0.5 T) is applied for a

time t_,, =5T,, i.e. until the magnetization reaches its equilibrium, M, (a value

pol =

predicted by Boltzmann distribution at the field B, Eg. 6).

pol 1
2. Relaxation: the magnetic field is reduced to a lower value B, that is kept for a

time 7. During the time z the initial magnetization evolves (decreases) towards
the new equilibrium. The decreasing is characterized by a spin-lattice relaxation

time, T, .
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Principles of NMR Field Cycling relaxation experiment

3. Acquisition: to meassure the value of the magnetization after time z, M (z), a

712 pulse is applied and the amplitude of the resulting FID (Free Induction Decay)

signal at the acquisition time, t__, is registered at a detection (acquisition) field,

acq !

B

acq

For every relaxation field, B,,, this sequence is repeated with varying r, leading to a

rel

magnetization curve, M, (z), schematically shown in Fig. 6.2.

Figure 6.2. Schematic view of a magnetization curve M, (r) obtained using PP sequence.
The initial magnetization has been setto M, =1.

When the magnetization curve turns out to be single-exponential (as the symulated curve

shown in Fig.6.2), the spin-lattice relaxation time, T,, can be obtained from the formula:

T

M, (T): M |oeiTT (121)
At a high relaxation field, PP sequence is replaced by NP sequence. The field at which this
switching takes place depends on some technical parameters of the spectrometer. For NP

sequence B, =0 (as indicated by the name) as shown in Fig. 6.1. b). This implies that the

magnetization, M, increases from almost zero (at Earth magnetic field) to the equilibrium

Iz

at B, (Fig. 6.3).
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Figure 6.3. Schematic view of a magnetization curve M, (z) obtained using NP sequence.
The final magnetization has been setto M, =1.

In this case the evolution of the magnetization is described, provided it is single-

exponential, by the expression:

T

M, ()=M;-Me " (122)

6.2. Materials and sample preparation

1H spin-lattice relaxation dispersion experiments have been performed for solutions of
deuterated nitroxide radicals 4-oxo-TEMPO-dis (TEMPONE, 4-0x0-2,2,6,6-tetramethyl-
1-piperidinyloxyl) containing *°N and N isotopes. The structure of the nitroxide radical

molecule is shown in Fig. 6.4.

. O
AL
DJ LD
DSC 71\5(14)N /v G D3
D3C Cl). CD3

Figure 6.4. Sructure of 4-oxo-TEMPO-d16->@N. The unpaired electron is marked with a
black dot.
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Deuterated compounds have been used to eliminate influence of methyl groups of the
radicals on 'H relaxation. As solvents decalin (decahydronaphtalene, mixture of cis- and
trans-decalin isomers), glycerol (propane-1,2,3-triol) and propylene glycol (propane-1,2-

diol) have been used. Structures of these compounds are shown in Fig. 6.5.

a)
H H H
H
H H
H H H
trans
b) c)

OH OH

OH\ /C|3H\ /OH OH CH
CH; CH, \CHQ/ \CH3

Figure 6.5. Structures of solvents molecules: a) decalin (cis- and trans- isomers) b) glycerol
and c) propylene glycol.

These liquids undergo glass transition. The melting temperature of decalin is T,, = 240K
for cis isomer and T =243K for trans isomer [60]. The melting point of glycerol is
T, =290.9K however one can cool it down to even lower temperatures avoiding freezing

[61]. Propylene glycol melts at T, =214 K [60].

All three liquids show considerably different viscosity: at 298 K the viscosities yields
(3.355/2.107 mPa*s [62], 1412 mPa*s [63], 57.571 mPa*s [64] for decalin, glycerol and

propylene glycol, respectively. That implies different time-scales of translational diffusion.

14 spin — lattice relaxation rates have been measured for 4-oxo-TEMPO-dis-°N
and 4-oxo-TEMPO-d16-1*N dissolved in decalin, glycerol and propylene glycol in the
temperature range 244 K - 308 K, 290 K - 363 K, 253 K - 298 K, respectively. The lowest
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temperature is limited by the melting points of the solvents and by the largest relaxation
rate accesible to the spectrometer. The highest temperature is limited by the lack of the
relaxation dispersion. *H relaxation dispersion profiles for pure solvents have been
collected for the corresponding temperatures, if not available in the literature. To extract
the relaxation contribution associated with proton-electron interactions the relaxation rates
of the pure solvents were subtracted from the relaxation rates obtained for the
corresponding solution. The following concentrations of the radicals have been used: 20
mM, 2.7 mM, 5 mM for decalin, glycerol and propylene glycol solutions, respectively.

Eventually, to confirm that the rates of the paramagnetically induced relaxation are
proportional to the concentration of the radicals, additional measurements for 1 mM and 5

mM decalin solutions were performed.

To avoid oxidation and absorption of water all samples have been degassed and sealed in

glass tubes. All chemicals (radicals and solvents) were purchased from Sigma-Aldrich.
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7. Results and analysis

In this section H spin-lattice relaxation data for the solutions (and pure solvents for
comparison) listed in Section 6 are presented and quantitatively analized. A MATLAB
software is used for the analysis; the source code is included in Appendix A.1.

7.1. Decalin solutions of 4-0x0-TEMPO-d1-1>t4N

1H spin-lattice relaxation dispersion profiles for pure decalin are shown in Fig. 7.1 [65].
Frequncy in the axis description refers to *H resonace frequency (w,, /2z) and it has this

meaning for all figures in this section.

REHATHT A K ek, * 244K
* e 247K

*e o % o . *
. teee . . e 250K
'-."_'2_ AAAAAAA“““AAA:’:% A 262K
= Yl e 273K
%D:H - AAAMAAAA“‘““‘“‘M‘MAMAAA“AA“ e 283K
00000000000°00000000000000000000000000, . . 298K
1 o0.00..00000000.0000000000.... [ 308K

- .IIIIIIIIIIIIIIIIIIII.........

IIIIIIII.......

10* 10° 10° 107

frequency [Hz]

Figure 7.1. H spin-lattice relaxation dispersion, R"™"(a,, ), for pure decalin (Ref. [65]).

Reprinted with permission from D. Kruk et al., J. Chem. Phys. 140, 174504 (2014).
Copyright 2014, AIP Publishing LLC.

The dispersion of the 'H spin-lattice relaxation rates, R™"(w, ), is small due to fast

dynamics of decalin. The relaxation is single exponential. Fig. 7.2 a) and b) shows time
dependences of the proton magnetization in arbitrary units measured at 244 K and 308 K

for the highest and lowest frequencies (20 MHz and 10 kHz, respectively).
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1.0 ta) 20MHz
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Figure 7.2. 'H magnetization versus time for pure decalin obtained applying a) NP
sequence at 20 MHz and by b) PP sequence at 10 kHz. Solid lines show single-exponential
fits.
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Figure 7.3. *H spin-lattice relaxation dispersion profiles, R («,, ), for decalin solutions of
a), ¢) 4-0x0-TEMPO-d16-1°N and b), d) 4-0xo-TEMPO-d16-1*N for 20 mM concentration of
radicals.

In Fig. 7.3 *H spin-lattice relaxation dispersion profiles for decalin solutions of 4-oxo-
TEMPO-d1-®N (left part) and 4-oxo-TEMPO-die-**N (right part) are shown [32].

The relaxation is single exponential also for the paramagnetic solutions (see Fig. 7.4 a), b),

¢) and d)). Comparing Fig. 7.1 and Fig. 7.3 one can clearly see that the relaxation rates for

the paramagnetic solutions are much larger (the relaxation is much faster).
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Figure 7.4. 'H magnetization (in arbitrary units) versus time for 20 mM decalin solutions
of 4-0x0-TEMPO-d16-*N (left) and 4-oxo-TEMPO-d1s-1*N (right) obtained by a), b) NP
sequence at 20 MHz and c), d) PP sequence at 10 kHz. Solid red and green lines show
single-exponential fits for the lowest and highest temperatures, respectively.

The relaxation rates Rl"ar(a)H) have been determined by subtracting the diamagnetic

contribution R"™"(,, ) (shown in Fig. 7.1) from the total relaxation rate, R, (@, ) (Fig. 7.3,

Eq. 63). According to the theory (Egs. 73 and 74), the rates of the *H spin-lattice relaxation

induced by dipolar couplings of protons with paramagnetic molecules are proportional to
the concentration, N, of the last species. This has been experimentally confirmed. As said

in Section 6, *H spin-lattice relaxation rates at 20 MHz and 6 MHz have been measured for
three different concentrations of 4-oxo-TEMPO-die-1*N in decalin (the full relaxation
dispersion profile was not collected due to long relaxation times for the low concentration

of the paramagnetic molecules). The values obtained after subtracting the diamagnetic
contribution are presented in Fig. 7.5. It is clearly seen that the relaxation rates R"*(w,, )

linearly change with the concentration of the radical.
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Figure 7.5. Experimental values of H relaxation rates originating from proton-electron
dipolar interactions, R"(w, ), in decalin solutions of 4-oxo-TEMPO-d1s-“N versus the
number N of the radical molecules per unit volume.

Then the R (w,, ) relaxation rates were normalized to 1 mM concentration of the radicals.

The normalized relaxation rates, R1“°rm(a)H), are shown in Fig. 7.6 a)-d). From now on,

when reffering to the equations presented in previous sections it is assumed that the

concentration of the electron spins is 1 mM.

The figures contain corresponding theoretical fits. Before explaining the fitting strategy one
should notice that for decalin the *H spin-lattice relaxation dispersion profiles for the cases
of N and N containing radicals almost coincide as predicted for fast dynamics by the
theory (Eq. 73 and 74).

The relaxation rate, R"™(e,, ), depends on six parameters: the distance of closest approach,
d , translational correlation, z,,,, the parameter f describing the ‘effective’ influence of

the rotational motion on the modulations of the proton spin-electron spin dipolar

interactons, the rotational correlation time, z, the stretching parameter, £, and the

isotropic hyperfine coupling, A,, (see Egs. 73 and 74 for *®N and N cases, respectively).
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Figure 7.6. Normalized (to 1 mM concentration) *H spin-lattice relaxation dispersion
profiles, R™™(w,, ), for decalin solutions of a), ¢) 4-0xo-TEMPO-d16-'°N and b), d) 4-oxo-

TEMPO-d16-1*N with corresponding fits in terms of Egs. 73 and 74, respectively (Ref. [32]).
Adopted with permission from D. Kruk et al., J. Chem. Phys. 137, 044512 (2012).
Copyright 2012, AIP Publishing LLC.

The isotropic hyperfine coupling constant, A, has been set to the value of A, =44 MHz

(**N) and A, =62MHz (**N) taken from literature [58]. In [58] the A, values have been
determined by means of ESR (Electron Spin Resonance) experiments for 4-oxo-TEMPO-

dse diluted in a mixture of glycerol and water. The ratio Aso(lsN)/ ASO(“N) corresponds to

the ratio between gyromagnetic factors ;/(15N)/ ;/(14N) that yields 1.4. The value of the

stretching parameter, £, has been fixed to the literature value of 0.53 for pure decalin [66].

This reduces the number of the adjustable parameters to four: d, 7,,., f and 7.

The rotational motion of the paramagnetic molecules influences the proton spin relaxation
when the dynamics of the system is relatively slow. Therefore, the rotational contribution
to the modulations of the proton spin-electron spin dipole-dipole coupling (Eg. 39) has only
been taken into account for the four lowest temperatures (244 K, 247 K, 250 K and 254 K).

The proton relaxation data for both cases (°N and 1*N containing radicals) have been fitted
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simultaneously for each temperature using Eqgs. 73 and 74, respectively, in terms of the

same parameters (the dynamics does not depend on the nitrogen isotope). The value of the
distance of closest approach, d , obtained for the individual teperatures has varied between
4.97 A —5.09 A. As this range is quite narrow it has been fixed to d, =5.05A and kept
temperature independent. The f value has been ranging from 1.77 to 1.82 and finally it
has been fixedto f =1.8 for 244 K, 247 K, 250 K and 254 K; at higher temperatures f =0
(the rotational contribution is neglected). With this assumptions the analysis has been
repeated with only two adjustable parameters: z, and 7, (the same for *°N and **N
cases) at the lower temperatures. For the higher temperatures only the translational
correlation time has been fitted. This fitting strategy is described in [32].

The rotational correlation times obtained from the current analysis are included into Table
7.1. and compared in Fig. 7.7 with literature values from ESR studies [66,67]. They stay in
good agreement, however one should remember that the rotational correlation time, 7,
obtained from the current analysis describes the combined effect of the rotational dynamics
of the solvent and radical molecules (both interacting spins: the electron - S and nuclear -

| are not placed in the center of the molecule), while the correlation time obtained from
ESR experiments describes the rotational motion of only the radical molecule. The ratio of

Tyans! Tr 1 much higher than theoretically predicted by the hydrodynamic model:

Tyans! 7o =9 [9] and it yields about z,,../7; = 70. This effect has also been reported for

other liquids [34].
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T [K] 7 [s] Tirans [S] dg [A] f h% D,, [m*/s]
308 - 2.01*101° (1.9%) 5.05 1.8 - 1.24*10°° (4.4%)
298 - 2.57*101° (1.6%) 5.05 138 - 9.86*1071° (4.3%)
283 - 3.70*101° (2.0%) 5.05 1.8 - 6.79*101° (4.5%)
273 - 5.05*1071 (1.7%) 5.05 138 - 5.04*1071 (4.4%)
262 - 6.41**1071 (3.4%) 5.05 138 - 3.82*10%0 (5.3%)
254 1.30*10M (27%) 9.48*101° (3.2%) 5.05 1.8 73 2.79*10° (5.1%)
250 1.43*10™ (23%) 1.06*107 (2.7%) 5.05 1.8 74 2.42*101° (4.8%)
247 1.66*10 (20%) 1.19*%107 (2.3%) 5.05 138 72 2.20*10° (4.6%)
244 1.91*10°11(18%) 1.32*10°° (2.3%) 5.05 1.8 69 1.99*10°1° (4.6%)

Table 7.1. Rotational and translational diffusion parameters for decalin solutions of 4-oxo-TEMPO-d1s (}*N and *°N), Ref. [32]. The accuracy of

the parameters is given in % (the error analysis is described in Appendix A.2). Results obtained neglecting the rotational contribution are separated
with red horizontal line. Adopted with permission from D. Kruk et al., J. Chem. Phys. 137, 044512 (2012). Copyright 2012, AIP Publishing LLC.
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Figure 7.7. Rotational correlation times, z., for solution of 4-oxo-TEMPO-dis in decalin

(current analysis described in Ref. [32]) compared with the literature data (Refs. [66,67]).
Adopted with permission from D. Kruk et al., J. Chem. Phys. 137, 044512 (2012). Copyright
2012, AIP Publishing LLC.

In Fig. 7.8 relative diffusion coefficients, D,,, for decalin and radical molecules (Table 7.1)

calculated from the relation D, =d2 /7, are compared with literature data obtained by
means of Pulse Field Gradient (PFG) diffusometry [68]. As relaxation data give relative
diffusion coefficients, while self-diffusion coefficients are meassured by PFG diffusometry,
the results from literature were multiplied by factor 2 ( D,, =2D for identical molecules; D -
self diffusion coefficient). In the present experiments a mixture of cis- and trans-decalin
isomers was used (the relative diffusion coefficients for pure cis- and trans-decalin are marked
in Fig. 7.8 with full and open orange diamonds, respectively). The values of D,, obtained for
solutions of nitroxide radicals are in good agreement with the values obtained by means of
PFG diffusometry.

At this point it is worth stressing that for paramagnetic solutions the relaxation dispersion is
stronger than for pure diamagnetic solvent (it is so due to the contribution of spectral densities

par

taken at frequencies close to that of electron spin frequency, (@5 * @, ); ws,t0 R/ (a)H) as
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explained in Section 3). Thus, the NMR relaxometry gives for liquids containing paramagnetic
centres the possibility to investigate very fast dynamics even when the proton relaxation of the

corresponding diamagnetic system is already frequency independent.
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Figure 7.8. Relative translation diffusion coefficient, D,,, for decalin solution of 4-oxo-

TEMPO-dss (*°N, *N) obtained from current analysis of *H spin-lattice relaxation dispersion
profiles (described in Ref. [32]) compared with literature values (open orange diamonds -
trans-decalin, Ref. [68]; full orange diamonds — cis-decalin, Ref. [68]); Adopted with
permission from D. Kruk et al., J. Chem. Phys. 137, 044512 (2012), Copyright 2012, AIP
Publishing LLC and from D. Kruk et al., J. Chem. Phys. 140, 174504 (2014), Copyright 2014,
AIP Publishing LLC.

In Fig. 7.9. the relaxation dispersion data for decalin solutions of 4-oxo-TEMPO-d1e-*®N at

the lowest a) and the highest b) temperatures are shown in detail, including the corresponding
fits. In both figures the predictions for the case of no hyperfine interaction ( A,, =0) are also

shown. It can be clearly seen that for slower dynamics the low field reduction of the relaxation
rates caused by the non-zero scalar hyperfine interaction is larger. At 308 K the effect is small
and the differences between the >N and N cases almost vanish.

The reduction is caused by the fact that for A, #0 at low frequencies the small frequency of

electron Zeeman splitting is replaced in the spectral densities by the larger hyperfine splitting.
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The effect vanishes at higher frequencies when the electron Zeeman interaction dominates the

isotropic hyperfine coupling.
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Figure 7.9. *H spin-lattice relaxation dispersion profiles, R"™(e,, ), for decalin solution of 4-

0x0-TEMPO-d16-24®N at a) 244 K and b) 308 K (Ref. [32]). Solid green and blue lines - fits
for N and “N according to Egs. 73 and 74, respectively; dashed black line - the

corresponding predictions for A, =0. Adopted with permission from D. Kruk et al., J. Chem.
Phys. 137, 044512 (2012). Copyright 2012, AIP Publishing LLC.

To illustrate how the individual terms of Eqgs. 73 and 74 (for the cases of °N and 4N,

respectively) contribute to the overall shape of R™™(w,, ), in Figs. 7.10 and 7.11 the R"™(e,, )
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profiles for 1*N and °N at 244 K and 308 K are decomposed into terms marked in Egs. 73 and

74 by KooRPPM X (@, ) (where X = 1,11, 111 or IV).
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Figure 7.10. 'H spin-lattice relaxation dispersion, R™(,, ), for decalin solution of 4-oxo-
TEMPO-d16-°N at a) 244 K and b) 308 K (Ref. [32]). Solid black lines — predictions for
A, =0; solid orange lines — K, 7J(e; ); solid red lines — K,3J(w, ); solid green lines —

fits according to Eq. 73; dashed-dotted green lines — Ky Ri*' (@, ); dashed green lines —

KepR*" (o, ); dotted green lines — Ko R™" (e, ).
67



Decalin solutions of 4-0x0-TEMPO-d1-°4N

[s'mM™]

norm
1

R

frequency [Hz]

[s"mM™]

norm
1

L —-"
-

R

1) 308K
0.0 b
10° 10° 10° 10’

frequency [Hz]

Figure 7.11. 'H spin-lattice relaxation dispersion, R/*™(w,, ), for decalin solution of 4-oxo-
TEMPO-d16-1*N at a) 244 K and b) 308 K (Ref. [32]). Solid black lines — predictions for
A,, =0; solid orange lines - KDDYJ(wS); solid red lines — K, 3J(w, ); solid blue lines — fits

according to Eq. 74; dashed-dotted blue lines - K. R!*'(@,); dashed blue lines -
Koo (RX" (@ )+ RH“" (a9, )) ; dotted blue lines - KooRM" ().
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At 240 K decalin freezes. Therefore, in order to investigate the H relaxation effects caused by
nitroxide radicals in solution for slower dynamics, more viscous solvents have to be used. The
results obtained for glycerol and propylene glycol solutions of 4-oxo-TEMPO-d-**®N are

presented and analyzed in the next sections.
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7.2. Glycerol solutions of 4-0x0-TEMPO-d16-°N

H spin-Ilattice relaxation dispersion profiles for pure glycerol are shown in Fig.7.12.
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Figure 7.12. H spin-lattice relaxation dispersion, Rldiam(wH), for pure glycerol (Ref. [31]).

Adopted with permission from D. Kruk et al., J. Chem. Phys. 138, 124506 (2013), Copyright
2013, AIP Publishing LLC.
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The relaxation process is single exponential (Fig. 7.13 shows illustrative time dependences of
the proton magnetization measured at 290 K and 363 K for the highest and lowest frequencies
—20 MHz and 10 kHz).
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Figure 7.13. 'H magnetization (in arbitrary units) versus time for pure glycerol obtained by a)
NP sequence at 20 MHz and by b) PP sequence at 10 kHz. Solid lines (red and green) show
single-exponential fits at 290 K and 363 K, respectively.
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'H relaxation dispersion profiles for pure glycerol have been measured and thoroughly
analyzed in Ref. [34] (the data described in Ref. [34] have been collected at different
tempratures than needed for the current analysis, therefore the H relaxation dispersion profiles
presented in this section have been measured specifically for the purpose of comparison with
the coresponding results for glycerol solutions of nitroxide radicals). The rotational correlation
time and the relative diffusion coefficients obtained in [34] for pure glycerol are presented in
Figs. 7.14 and 7.15 (which also contain results for the paramagnetic solusions that are
discussed later), respectively, and they provide a reference point for the current analysis of
proton relaxation in glycerol solutions of 4-oxo-TEMPO-d6-**®N. Furthermore, as a result
of the analysis described in Ref. [34] the distance of closest approach has been obtained and it

yelds d, ~3.5A. The ratio between the translational and rotational correlation times varies
between the values of z,,../7, =40 and 7,,../75 =62 obtained for the highest and lowest

temperatures, respectively.
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Figure 7.14. Rotational correlation times, 7, of 4-oxo-TEMPO-dis dissolved in glycerol

obtained from the current analysis (blue squares, Refs. [31,32]) and compared with literature
data. Dashed black line — interpolation by the Vogel-Fulcher-Tamman equation. Reprinted
with permission from D. Kruk et al., J. Chem. Phys. 138, 124506 (2013), Copyright 2013, AIP
Publishing LLC.
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Figure 7.15. Relative diffusion coefficient, D,,, for glycerol solutions of 4-oxo-TEMPO-d16

obtained from the current analysis (blue squares, described in Refs. [31,32]) and compared
with literature [34,69]. Dashed black line - interpolation by the Vogel-Fulcher-Tamman
equation. Reprinted with permission from D. Kruk et al., J. Chem. Phys. 138, 124506 (2013),
Copyright 2013, AIP Publishing LLC.
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Figure 7.16. *H spin-lattice relaxation dispersion, R (a, ), for glycerol solutions of a), c) 4-

0x0-TEMPO-d16-1°N and b), d) 4-0x0-TEMPO-d16-1*N for 2.7 mM concentration of radicals
(Ref. [31]). Adopted with permission from D. Kruk et al., J. Chem. Phys. 138, 124506 (2013),
Copyright 2013, AIP Publishing LLC.

In Fig. 7.16 'H spin-lattice relaxation dispersion profiles collected for glycerol solutions of 4-
0X0-TEMPO-d16-°N and 4-oxo-TEMPO-die-1*N are shown. Analogously to the case of
decalin solutions, the H relaxation is single exponential also when glycerol is used as the
solvent (see Fig. 7.17 a), b), c) and d)).
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Figure 7.17. *H magnetization versus time for 2.7 mM glycerol solutions of 4-oxo-TEMPO-
d16-°N (left) and 4-ox0-TEMPO-d16-1*N (right) obtained by a), b) NP sequence at 20 MHz and
c), d) PP sequence at 10 kHz. Solid red and green lines show single-exponential fits at 290 K
and 363 K, respectively.

Comparing Fig. 7.12 and Fig. 7.16 one can clearly see that the relaxation rates for the
paramagnetic solutions are much larger (the relaxation is much faster) than in pure glycerol.

At lower temperatures a relaxation maximum appear in the intermediate frequency range.

Analogously to decalin the relaxation rates R (), ) for the glycerol solutions have been
determined by subtracting the diamagnetic contribution Rldiam(a)H) (shown in Fig.7.12) from
the overall relaxation profile, R (w,). The R’ (@, ) relaxation rates were normalized to

1 mM concentration of the radicals. The normalized relaxation rates R/°™(e,, ) are shown in

Fig. 7.18. The figures contain corresponding theoretical fits (the detailed analysis is presented

further in).
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Figure 7.18. 'H relaxation dispersion, R™(e,, ), for 1 mM glycerol solutions of a), c), ) 4-
0x0-TEMPO-d16-1°N and b), d), f) 4-oxo-TEMPO-d1s-*N with corresponding fits in terms of
Egs. 73 and 74, respectively (Refs. [31, 32]). Adopted with permission from D. Kruk et al., J.
Chem. Phys. 138, 124506 (2013), Copyright 2013, AIP Publishing LLC and from D. Kruk et
al. J. Chem. Phys. 137, 044512 (2012), Copyright 2012, AIP Publishing LLC.
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The analysis has been started from the highest temperature of 363 K. The isotropic hyperfine
coupling constant, A, has been set to the same value of A, =44 MHz (**N) and A, =62
MHz (**N). The value of the stretching parameter, f, has been fixed to the literature value of
0.67 [34,70]. The adjustable parameters are: d,s, 7,..,, f and z. The rotational contribution

to the modulations of the proton spin-electron spin dipolar coupling has to be taken into
account due to the high viscosity of glycerol. Again, in analogy to decalin, the proton relaxation
data for both cases (N and *N) have been fitted simultaneously for each temperature using
Eqgs. 73 and 74 under the assumption that the adjustable parameters have the same values at

one temperature. It was possible to keep the distance of closest approach, d, and the f

parameter temperature independent down to 333 K. The strategy of the analysis has been

described in [31,32]. The obtained values are as follows: d; =3.4Aand f =1.2, and they are

very close to those reported in Ref. [33], for proton relaxation rates for glycerol solutions of
different nitroxide radicals studied at high fields (25 MHz and 15 MHz) versus temperature.

The obtained values of the fitted parameters and the relative diffusion coefficient, D,,,
calculated from the relationship D, =d: /., are presented in Table 7.2. and compared in
Fig. 7.14 and 7.15, (the rotational correlation time, z,, and the relative diffusion coefficient,

D,,, respectively), with literature data.

As an illustration the individual terms of Egs. 73 and 74 leading to the overall relaxation are
presented in Fig. 7.19 for 338 K.
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Figure 7.19. 'H spin-lattice relaxation dispersion, R°™(a,, ), for 4-oxo-TEMPO-d16-°N and

4-0x0-TEMPO-d16-*N (open and solid symbols, respectively) in glycerol solution at 338 K
(Ref. [32]). Solid lines (green and blue) — corresponding fits (according to Eqgs. 73 and 74 for
15N and N, respectively); solid black line — prediction for A, =0; dashed — dotted blue line

- KppR! (@, ) from Eq. 74 for N; dashed blue line - Kop (R (@, )+ RH" (@, ) from Eq.
74 for N ; dotted blue line - K R*" (a, ) from Eq. 74 for 1“N; dashed — dotted green line -
Koo Ri™ (e, ) from Eq. 73 for 1°N; dashed green line - K, R®" (@,, ) from Eq. 73 for °N;
dotted green line - K ,R®" (w, ) from Eq. 73 for N,
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T
T [K] 7p [s] Tirans [5] dis [A] X = —T D,, [m?/s]
R
363 3.87*101 (34%) 1.19*10° (4.6%)  3.40 1.2 31 9.66*10™  (4.6%)
353 4.55*101 (29%) 1.82*10° (4.1%)  3.40 1.2 40 6.31*10  (4.1%)
343 7.0*101 (31%) 2.80*10° (5.0%) 3.40 1.2 40 4.18*101 (5.0%)
338 9.0*10 (18%) 3.69*10° (3.0%)  3.40 1.2 41 3.23*10  (3.0%)
333 1.4*1010 (23%) 5.74*10° (4.5%) 3.40 1.2 41 2.36*1011 (4.5%)
328 1.97*10%0 (22%) 7.94*%10° (21%)  3.68 (13%) 116 (11%) 40 1.81*10™1 (21%)
323 2.44*1010 (13%) 1.01*10°8 (17%) 3.69 (1.0%) 1.35 (11%) 41 1.35*101! (18%)
318 3.80*101° (11%) 1.35*10° (16%)  3.69 (1.6%) 127 (11%) 35.5 1.01*101 (17%)
313 N 5.10*10°  (6.7%) 1.92*10° (10%) 59 (L5%) ;40 (14%) 38 7.13*1012 (10%)
1N 5.45*10%°  (9.9%) 2.05*10® (14%) ' (1.6%) (13%) 6.68*10%2 (14%)
06 N 8.44*10°  (4.3%) 3.53*10® (7.0%)  3.70 (13%) 144 (11%) 1 3.88*10%2  (7.5%)
1N 7.79%101°  (9.2%) 3.21*10°8 (9.8%)  3.60 (2.0%) 150  (15%) 4.04*10%2  (10%)
15
N 1 (4.1%) 18 (5.8%) (1.1%) (7.5%) win1  (6.2%)
300 14N 1.50*10 (6.79%) 5.67*10 (9.5%) 3.57 (17%) 1.45 (11%) 38 2.25%10 (10%)
15
N e (11%) wine  (10%) (2.3%) (14%) winz | (11%)
295 1N 2.10*10 (12%) 8.16*10 (11%) 3.54 (2.7%) 1.35 (17%) 39 1.54*10 (12%)
5N ] (17%) ] (18%) (2.3%) (10%) ] (18%)
* 9 * 7 * 13
290 14N 4.22*10 (23%) 1.37*10 (22%) 3.58 (4.1%) 1.45 (17%) 32 9.36*10 (23%)

Table 7.2. Rotational and translational parameters for glycerol solutions of 4-oxo-TEMPO-ds6 (**N and °N), Refs. [31,32]. The accuracy
of the parameters is given in %. Red line indicates the temperature for which (and below) electron spin relaxation has been included
into the analysis. With grey color the temperatures at which the data have been analyzed separately are marked. Adopted with permission
from D. Kruk et al., J. Chem. Phys. 138, 124506 (2013), Copyright 2013, AIP Publishing LLC and from D. Kruk et al. J. Chem. Phys.
137, 044512 (2012), Copyright 2012, AIP Publishing LLC.
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To explicitly demonstrate the role of the rotational contribution to the modulations of the inter-
molecular proton spin-electron spin dipole-dipole interaction reflected by the form of the
spectral density of Eq. 39, in Fig. 7.20, the overall relaxation dispersion profiles have been
separated into parts associated with the translational and rotational modulations of the dipolar

interaction.
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Figure 7.20. *H spin-lattice relaxation dispersion, R"™(a,, ), for 4-oxo-TEMPO-d16-°N and

4-0x0-TEMPO-d16-1*N (open and solid symbols, respectively) in glycerol solution at 338 K
(Ref. [32]). Solid lines (green and blue) — corresponding fits (according to Eq. 73 and 74, for

15N and 1N, respectively); dashed dotted lines — rotational contribution to R/*™(a), ); dashed
lines — translational contribution to R"™(e,, ).

For the higher temperatures the relaxation data have been reproduced quite well, but with
decreasing temperature the quality of the fits gets progressively worse. For 328 K and below
it was impossible to obtain the sufficient low field reduction of the relaxation rate by taking
into account only the influence of the isotropic hyperfine interaction. One has to also take into
account the electron spin relaxation as an additional (besides the translational and rotational
dynamics) source of modulations of the proton spin-electron spin dipole-dipole interaction.

80



Results and analysis

@ rotation of molecules @

0
i“ /OH
CHa
CH  eccentticity, ,f
H3 CH3
CH H3C | CH

N

OFF fluctuatians of O electron spin

the I-S dipole-dipele elaxation
interaction

Figure 7.21. A schematic view of the sources of modulations of the proton spin-electron spin
dipole-dipole interaction.

As one can see from Fig. 7.21, the role of the rotational dynamics is twofold. First, the
rotational motion contributes to the modulations of the proton spin-electron spin dipole-dipole

interaction through the eccentricity effects. The rotational corelation time, z, describes the

combined effect of the rotation of solvent and solute molecules on the dipolar coupling.
Second, the rotational motion of the paramagnetic molecule leads to fluctuations of the
anisotropic part of the hyperfine interaction and hence the electron spin relaxation. The
electron spin relaxation becomes an important source of the modulations of the proton spin-
electron spin dipolar interaction when the dynamics of the system is relatively slow. Taking
into account that the rotational dynamics of the nitroxide radicals is similar to the rotational
movement of the solvent molecules (the correlation times describing the two cases are close to

each other) only one parameter, 7, is used in the analysis.

The relaxation data obtained for lower temperatures (starting from 328 K) have been
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reproduced by fits performed with the same four adjustable parameters: d,, 7 f

trans?

and z., however the electron spin relaxation has been taken into account. The values of the
hyperfine coupling tensor components have been taken from literature: A, =15.4 MHz,
A, =16.1MHz, A,=995MHz for N and A, =22.0MHz, A, =23.0MHz, A,=142.0
MHz for 15N [58,66,71].

The theory of H spin-lattice relaxation in solutions of nitroxide radicals including the effects
of electron spin relaxation has been presented in [31]. Here (and in Section 5) only the

underlying concept is outlined. The hyperfine coupling tensor is asymmetrical and its
components (listed above) give the isotropic part A, = (A<x +A,+ AZZ)/ 3 equal to 44 MHz
for 1°N and 62 MHz for 1N as used in the analysis. The assymetric part modulated by rotation

of the paramagnetic molecule causes the electronic relaxation which contributes to the efective

modulations of the proton spin-electron spin dipolar coupling. Thus, the number of the
adjustable parameters remains unchanged; the parameters are: d, 7,.., f and 7.

In the temperature range 328 K - 290 K, the relaxation dispersion profiles for the 1*N and *N
cases have been fitted simoultaneously at each temperature. The obtained values of z, and
D,, (listed in Table 7.2) are compared in Figs. 7.14 and 7.15 (blue squares) with literature data
yielding good agreement. In this temperature range it was difficult to keep the parameter f
temperature independent (the values are presented in Table 7.2). The analysis with electron
spin relaxation effects included into 'H relaxation theory has been presented in [31].

At 313 K the low frequency values of the 'H relaxation rates R/°™(e,, ) for N and °N cases
become comparable and then for even lower temperatures the relaxation rate for the case of
N exceeds the value for the N case (the theoretically predicted relation
R, =0,N)< R™™(e, =0,°N) is not fulfilled). This situation may be caused by the
simplifications of the dynamical model: the eccentricity effects are included into the theory by
adding a term described by Cole-Davidson spectral density and it was assumed that the solvent
and radical molecules rotate with the same correlation times, z,. Another explanation is
quadrupole relaxation present for **N nuclei (S =1) and not present for °N (S =1/2) — this
effect is not included into the theoretical description. To somewhat mitigate the low frequency
discrepancies between the theoretical predictions and the experimental data for 313 K and
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306 K slight differences in the parameters, d;, 7,.., f and z, for **N and N cases have
been allowed. The obtained values are collected in Table 7.2 and shown in Figs. 7.14 and 7.15
(7, and D,,, respectively).

In Fig. 7.22 the predictions with neglected electron spin relaxation are presented and compared

with the fits performed at 306 K. One can clearly see that the electron spin relaxation leads to

norm

a very considerable reduction of the relaxation rate R™™(w,) at low frequencies. The
contribution of the electron spin relaxation makes the effective fluctuations of the dipolar
interaction faster and this, in consequence, leads to a slower proton relaxation at low

frequencies.
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Figure 7.22. 'H spin-lattice relaxation dispersion, R*™(a,, ), for 4-oxo-TEMPO-d16-°N and

4-0x0-TEMPO-d16-*N (open and solid symbols, respectively) in glycerol solution at 306 K
(Ref. [31]). Solid lines (green and blue) corresponding fits (for *®N and “N, respectively).
Black and grey lines - predictions for the cases of >N and N according to Egs. 73 and 74,
respectively, neglecting electron spin relaxation. Adopted with permission from D. Kruk et al.,
J. Chem. Phys. 138, 124506 (2013), Copyright 2013, AIP Publishing LLC.

The examples for 313 K and 306 K show that the differences in the parameters dg, 7., f

and 7, obtained from the analysis performed separately for the °N and '*N cases are small,
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therefore it has been decided for the lowest temperatures (300 K, 295 K and 290 K) to come
back to the analysis of both cases with the same set of parameters. The strategy has been,
however, modified. The fits are not performed simultaneously, but first the relaxation
dispersion profiles for the 1°N case have been fitted and then the obtained parameters have
been used to reproduce the relaxation data for the **N case, at the cost of somewhat worse
agreement at low frequencies for the last case. The obtained parameters are included into Table
7.2 and figures 7.14 and 7.15.

In analogy to Fig. 7.19 in Fig. 7.23 a decomposition of the overall relaxation dispersion profile
at 300 K (when the electron spin relaxation is taken into account) into individual terms (Egs.
73 and 74) is shown.
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Figure 7.23. 'H spin-lattice relaxation dispersion, R"™(a,, ), for 4-oxo-TEMPO-d16-°N and

4-0x0-TEMPO-d16-1*N (open and solid symbols, respectively) in glycerol solution at 300 K
(Ref. [31]). Solid lines (green and blue) — corresponding fits (according to Eqs. 73 and 74 for

15N and *N, respectively); dashed dotted green line - K R > (a)H , Re) from Eq. 73; dashed
green line - K oR™" (a)H,Re) from Eq. 73 ; dotted green line - K R™" (a)H,Re) from Eq.
73; dashed - dotted blue line - KDDRf“"(a)H,Re) from Eq. 74; dashed blue line -

KDD(Ril‘“" (a)H : Re)+ 4V (i, Re)) from Eq. 74; dotted blue line - KooR**" (e, R®) from Eq.
74.
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The notation K, 15"(a)H,Re) in the caption of Fig. 7.23 means that the nuclear spectral
density characterizing the fluctuations of the proton spin — electron spin dipole-dipole
interaction, J® (@, ), includes the electron spin relaxation according to theory presented in
[31].

The figure shows that, as already explained in Section 5, the relaxation maximum is created

by the term K, 15"(a)H,Re): KDDS[1+(a2—b2)2]JR(wH) for the case of N and

K ooRM (@, R®) = Ko @ _zbz)z NG _Zdz)z G _2f2)2 +(92_2h2)Z Iw,) for the
case of *N. The maximum stems from the competition between the prefactors which increase
with increasing frequency (from 3/2 to 3 for *°N and from 11/9 to 3 for 24N) and the spectral
density J®(,, ) which decays with increasing frequency.

Before finishing the discussion of the relaxation data for the glycerol solutions it is worth to
focus for a while on the subject of the rotational contribution to the modulations of the proton
spin-electron spin dipolar coupling as for lower temperatures the role of the rotational
dynamics becomes more significant.

In Fig. 7.24 the unsuccessful attempt to fit the relaxation data at 318 K without the rotational

part (setting f =0) is shown.
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Figure 7.24. 'H spin-lattice relaxation dispersion, R'°™(@, ), for 4-ox0-TEMPO-dzs-'°N in
glycerol solution at 318 K (Ref. [31]). Solid green line — corresponding fit (according to Eq.
73); dashed dotted line — translational contribution to R™™(w,, ); dashed line — rotational
contribution to R"™(e,, ); solid black line — result of fitting the data setting f =0, obtained
parameters: 7, =1.17*10"s, d, =3.40A; dashed black line — result of fitting the data
setting f =0 and neglecting the electron spin relaxation, obtained parameters:

=1.52*10°s, d,, =3.77A.

Ttrans

Eventually, in Fig. 7.25 the rotational contribution to the overall relaxation is shown for the

lowest temperature of 290 K. The role of this term is apparently significant.
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Figure 7.25. 'H spin-lattice relaxation dispersion, R"™(a,, ), for 4-oxo-TEMPO-d16-°N and

4-0x0-TEMPO-d16-*N (open and solid symbols, respectively) in glycerol solution at 290 K
(Ref. [31]). Solid lines (green and blue) — corresponding fits (according to Eqgs. 73 and 74, for

15N and N, respectively); dashed dotted lines — translational contribution to R™™(a, );
dashed lines — rotational contribution to R"™(a,, ); solid black line — result of fitting the data
(*°N) setting f =0, obtained parameters: z,,  =1.40*10""s, d =3.35A.

To test whether the features of the proton relaxation dispersion profiles are universal and
depend only on dynamical parameters (and not on the solvent) analogous studies have been

performed for propylene glycol solutions.
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7.3. Propylene glycol solutions of 4-0xo-TEMPO-d16->4N

H spin-lattice relaxation dispersion profiles for pure propylene glycol are shown in Fig.7.26.
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Figure 7.26. 'H spin-lattice relaxation dispersion, R™"(w, ), for pure propylene glycol
(Ref. [57]). Adopted with permission from D. Kruk et al., J. Chem. Phys. 139, 244502 (2013),

Copyright 2013, AIP Publishing LLC.
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The relaxation is also (in analogy to decalin and glycerol) single exponential (Fig. 7.27 shows

illustrative time dependences of the proton magnetization measured at 253 K and 298 K for

the highest and lowest frequencies — 20 MHz and 10 kHz).
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Figure 7.27. 'H magnetization (in arbitrary units) versus time for pure propylene glycol
obtained by a) NP sequence at 20 MHz and by b) PP sequence at 10 kHz. Solid red and green

lines show single-exponential fits at 253 K and 298 K, respectively (for both cases).
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The H relaxation rates for pure propylene glycol have been studied in Refs. [72] and [73]

(again the data presented in Refs. [72] and [73] have been collected at different tempratures

than needed for the current analysis, therefore the *H relaxation dispersion profiles presented

in this section have been measured as a reference for the experiments on the solutions of

nitroxide radicals).

'H spin-lattice relaxation dispersion profiles for propylene glycol solutions of 4-oxo-TEMPO-

d16-°N and 4-0x0-TEMPO-d16-14N are shown in Fig. 7.28. As it was in the case of decalin and

glycerol the *H relaxation is also single exponential (see Fig. 7.29 a), b), ¢) and d)).
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Figure 7.28. H spin-lattice relaxation dispersion, R, (a)H ) for propylene glycol solutions of

a), ¢) 4-0x0-TEMPO-d16-®N and b), d) 4-oxo-TEMPO-d1e-1*N for 5 mM concentration of
radicals (Ref. [57]). Adopted with permission from D. Kruk et al., J. Chem. Phys. 139, 244502

(2013), Copyright 2013, AIP Publishing LLC.
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Figure 7.29. 'H magnetization (in arbitrary units) versus time for 5 mM propylene glycol
solutions of 4-0xo-TEMPO-d16-°N (left) and 4-0xo-TEMPO-d16-1*N (right) obtained by a), b)
NP sequence at 20 MHz and c), d) PP sequence at 10 kHz. Solid red and green lines show the
single-exponential fits at 253 K and 298 K, respectively.

Rl”a'(coH ) have been determined in the same way as previously, by subtracting the diamagnetic
contribution, R™"(e,, ), (shown in Fig. 7.26) from the total relaxation profile, R, (@, ). Then
the R”'(w, ) relaxation rates were normalized to 1 mM concentration of the radicals. The

normalized relaxation rates, R[°™(@, ), are shown in Fig. 7.30 with corresponding theoretical

fits.
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Figure 7.30. 'H relaxation dispersion profiles, R"™(, ), for 1 mM propylene glycol solutions
of a), ¢), €) 4-oxo-TEMPO-d16-°N and b), d), f) 4-oxo-TEMPO-d16-**N with corresponding fits
in terms of Eq. 73 and 74, respectively (Ref. [57]). Adopted with permission from D. Kruk et
al., J. Chem. Phys. 139, 244502 (2013), Copyright 2013, AIP Publishing LLC.
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The rotational correlation time, z, at the highest temperature (298 K) is of the order of
2*1071%s, For correlation times of this order the rotational contribution to the overall relaxation

rate, R"*™(, ), is not negligible (as it has been shown in the previous section for glycerol).

This is confirmed by Fig. 7.31 in which the result of the attempt to reproduce the R™™(a,, )
relaxation dispersion profile assuming no rotational contribution (f =0) are presented.

Significant discrepancies between the fits and the experimental data are observed at low as

well as at intermediate frequencies.
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Figure 7.31. 'H spin-lattice relaxation dispersion profiles, R ™(e,, ), for 1 mM propylene
glycol solutions of 4-oxo-TEMPO-d16-1°N (open symbols) and 4-0xo-TEMPO-d1s-1*N (closed
symbols) at 298 K (Ref. [57]) with corresponding fits ( f =0). The translational correlation

time and the distance of closest approach are in both cases: z,,,.=3.53*10"s, d, =4.32A,

The data sets for all temperatures have been fitted with five adjustable parameters: dg, 7y ans
f, z, and B. Although in Ref. [57] ds, x, f, 7, and B have been chosen as the adjustable
parameters, both fitting strategies are fully equivalent because of the relationship:

X= Ttrans

I 75 . Therefore, for consistency reasons it has been decided in this thesis to refer to
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A Tyanss 1 7 @nd B as the adjustable parameters for all cases.
The components of the anisotropic hyperfine coupling have been fixed to the values obtained
in ESR experiments performed for the solutions of 4-oxo-TEMPO-d16-*¥N in propylene

glycol (A, =10.6MHz, A, =10.6MHz, A,=107.3MHz for N and A, =14.85MHz,

A, =14.85MHz, A, =150.2MHz for °N [57]). The analysis has started from the highest

temperature of 298 K. Down to 273 K the proton relaxation data for both cases (}*N and °N)
have been fitted simultaneously. As expected, at low temperatures (from 288 K) the electron
spin relaxation has become significant.

Three of the five adjustable parameters listed above should be temperature independent:
ds, f and B. After a preliminary five-parameters analysis performed in the temperature
range of 298 K-253 K, it has been concluded that the best quality of the fits can be obtained
when the average values of dg, f, and g are as follows: dg =4.35A, f =13, and
S =0.45. The stretching parameter is small as already indicated in Ref. [72].

Finally the parameters d, f, and B have been fixed to the values given above and the *H
relaxation data for the °N and *N cases have been fitted simultaneously with two adjustable
parameters: the rotational correlation time, z, and the translational correlation time, z,.,.
The obtained parameters are listed in Table 7.3 and the rotational correlation times are shown
in Fig. 7.32. Using the expression D,=d%/z,,., the values of the relative diffusion

coefficient have been calculated and compared with literature data in Fig. 7.33. It is particularly
worth mentioning that for propylene glycol solutions the rotational correlation time has been
determined also by means of ESR in Ref. [57]. The ratio between the translational and
rotational correlation times slightly changes with temperature and its value oscillates around

I7,=30.

Ttrans
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Figure 7.32. Rotational correlation times, z., for propylene glycol solutions of 4-oxo-

TEMPO-d16->N and 4-oxo-TEMPO-d16-**N (one value for both °N and N cases) obtained
from the current analysis of *H spin-lattice relaxation dispersion data (described in Ref. [57])
compared with rotational correlation times for pure propylene glycol and for propylene glycol
solution of -0x0-TEMPO-d16-°N and 4-oxo-TEMPO-di-1*N (from literature, Refs. [57,72]).
Reprinted with permission from D. Kruk et al., J. Chem. Phys. 139, 244502 (2013), Copyright
2013, AIP Publishing LLC.

Analogously to the situation with glycerol, at some point it was not possible to fully reproduce
the data with one set of parameters due to the low field values of R"™(e,, ) for “N. Therefore,

the profile obtained for the case of °N has been analysed and the obtained set of parameters
has been used to reproduce the relaxation profile for the 1N case. Due to large discrepancies
in the low field which have an impact on the accuracy of the parameters, two values of errors

(separately for °N and *N) are given in Table 7.3.
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Figure 7.33. Relative diffusion coefficient, D,,, for propylene glycol solution of 4-oxo-

TEMPO-dis (*°N, N) obtained from the current analysis of the H spin-lattice relaxation
dispersion profiles (Ref. [57]) compared with literature values, Refs. [72,73]. Reprinted with
permission from D. Kruk et al., J. Chem. Phys. 139, 244502 (2013), Copyright 2013, AIP
Publishing LLC.
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T K] 7. [s] 7. [s] de [A] f x:T‘Tf—Zns D,, [m?/s]
298 0.07*10M  (20%)  2.99*10°  (9.3%)  4.35 13 33 6.32%1011  (10%)
293 118%10%0  (17%)  413*10°  (10%)  4.35 13 35 458*101  (11%)
288 160101  (14%) 523*10°  (11%) 435 13 33 362%1011  (12%)
283 234%1010  (10%)  7.93*10°  (11%) 435 13 34 230%10M1  (12%)
278 420%1070  (8.6%) 123*10°  (10%) 435 13 29 154%10™  (11%)
273 849*10%0  (6.7%) 2.39*10°  (9.8%)  4.35 13 28 7.90%10%2  (11%)
268 m 1.30%10° Egg;ﬁ; 3.64%10° ngzﬁg 435 13 28 5.20%10% (ag;f))
263 m 1,58%10° Egg;ﬁ; 5.12%10° Eggzﬁg 4.35 13 32 3.70%102 ggg;ﬁ;
258 m 2.90%10° gé;ﬁ; 9.57%10° ((9155//;’)) 4.35 13 33 1.98*1022 8‘1133
253 m 5.32%10° Egg;ﬁ; 1.62%107 8322; 4.35 13 30.5 1.17*102 ggzﬁg

Table 7.3. Rotational and translational parameters for propylene glycol solutions of 4-oxo-TEMPO-dis (**N and '°N), Ref. [57]. The
accuracy of the parameters is given in %. Red line indicates the temperature for which (and below) electron spin relaxation has been
included into the analysis. Adopted with permission from D. Kruk et al., J. Chem. Phys. 139, 244502 (2013), Copyright 2013, AIP
Publishing LLC.
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To reveal the role of the individual terms present in Egs. 73 and 74 in Fig. 7.34 the
relaxation dispersion profiles for 288 K have been decomposed analogously to decalin and

glycerol (Figs. 7.10, 7.11 and 7.19).

frequency [Hz]

Figure 7.34. 'H spin-lattice relaxation dispersion profiles, R"™(a,, ), for 4-oxo-TEMPO-

die-N and 4-oxo-TEMPO-dis-1*N (open and solid symbols, respectively) with
corresponding fits (green and blue solid lines, according to Egs. 73 and 74, respectively)

at 288 K (Ref. [57]). Dashed — dotted green line - K/ R™' (a)H : Re) from Eq. 73; dashed
green line - K ,R>" (a)H : Re) from Eq. 73; dotted green line - K, R>" (a)H : Re) from Eq.
73. Dashed blue line — Koo (R" (@, R )+ R™" (e, R® ) from Eq. 74; dashed-dotted blue
line — Kyp 14"(a)H : Re) from Eq. 74; dotted blue line K R™*" (a)H : Re) from Eq. 74.

Already for 288 K the electron spin relaxation is relevant. It becomes progresively more

important at lower temperatures — an example for 273 K is shown in Fig. 7.35.
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Figure 7.35. 'H spin-lattice relaxation dispersion profiles, R"™(w, ), for 4-oxo-TEMPO-

die-®°N and 4-oxo-TEMPO-di6-1*N (open and solid symbols, respectively) with
corresponding fits (green and blue solid lines, according to Egs. 73 and 74, respectively)

273 K (Ref. [57]). Dashed-dotted green line - K R>' (a)H : Re) from Eq. 73; dashed green
line - KgpR™" (a)H,Re) from Eq. 73; dotted green line - K, R>" (a)H,Re) from Eq. 73.
Dashed blue line — Koo (R*" (@y,R®)+RA" (w2, R°)) from Eq. 74; dashed-dotted blue

line — Kp “"(a)H,Re) from Eq. 74; dotted blue line K, R*" (coH,Re) from Eq. 74. Black

and grey lines - predictions for case of °N and 1N according to Egs. 73 and 74 respectively
with neglected electron spin relaxation.

The low frequency reduction of the relaxation rate, R'™(e,, ), is already for 273 K very

significant and the effects of the electron spin relaxation becomes crucial at lower

temperature (slower dynamics) as shown in Fig. 7.36 for 253 K.
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Figure 7.36. 'H spin-lattice relaxation dispersion profiles, R"™(e,, ), for 4-oxo-TEMPO-

d1e-°N and 4-oxo-TEMPO-d16-1*N (open and solid symbols, respectively) dissolved in
propylene glycol with corresponding fits at 253 K (Ref. [57]). Black and grey lines -
predictions for case of °N and 1N according to Eqgs. 73 and 74, respectively with neglected
electron spin relaxation.

This is a good moment to remind the origin of the relaxation maximum. As already

explained, it results from the competition between the spectral density (which decays with

increasing  frequency) and  pre-factor (2L+(a2—b2)2] for N  and

1+

2 2
(az ;bz) + (CZ —2d2) + (e2 _Zf 2) + (92 ;h2) for N) which increases with
frequency. One can see from Fig. 7.36 that the relaxation maximum appears independently
of whether the electron spin relaxation is present or not. Nevertheless, in the presence of
the electron spin relaxation its position is shifted towards higher frequencies as the effective
correlation time of the modulations of the proton spin —electron spin dipole-dipole coupling
becomes shorter (due to the contribution of the electron spin relaxation).

Eventually, in analogy to the case of glycerol, in Fig. 7.37 the contribution to the overall
relaxation associated with the rotational modulations of the proton spin-electron spin

dipolar coupling ( f =0, eccentricity effect) is shown for the propylene-glycol solution at

273 K. The role of the eccentricity effects is undoubtedly relevant.
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Figure 7.37. 'H spin-lattice relaxation dispersion profiles, R"™(«,, ), for 4-oxo-TEMPO-

d1e-°N and 4-0xo-TEMPO-di6-1*N (open and solid symbols, respectively) dissolved in
propylene glycol with corresponding fits (Ref. [57]) decomposed into rotational (dashed
lines) and translational (dashed-dotted lines) contributions at 273 K.

H relaxation dispersion measurements presented in this Section for pure solvent are a result
of joint work of the author and Roman Meier (who collected most of the NMRD profiles
for pure glycerol). The experiments for the paramagnetic solutions have been performed

by the author, as said in the Introduction.
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Summary

8. Summary

In the thesis a large set of *H spin-lattice relaxation dispersion data for solutions of nitroxide
radicals containing *N and *°N isotopes is presented. By using different solvents (decalin,
glycerol, propylene glycol) and performing the experiments for different temperatures, a
broad range of the timescales of the rotational and translational dynamics of the solvent
and solute molecules has been covered. The following observations have been made:

e The relaxation data for solutions of nitroxide radicals (collected in the frequency
range of
10 kHz — 20 MHz) show a significant dispersion even when the dynamics is so fast that the
corresponding data for pure solvents are (almost) frequency independent (D, =1*107°
m/s?).

e At low frequencies the *H spin lattice relaxation rates for solutions of °N containing
radicals differ from the relaxation rates for the case of 1*N containing radicals. This effect
evolves with temperature (i.e. the time scale of the translational and rotational dynamics).
For relatively high temperatures (corresponding to the translation diffusion coefficient of

about 1*107° m/s?) the tH spin-lattice relaxation rate for the case of 1*N containing radicals

is somewhat smaller than for the °N case. This effect becomes more pronounced for slower

dynamics, but when the diffusion coefficient reaches a value of about 5*107** m/s? the
relaxation rates become close again and then the relationship gets inverted (the *H spin-
lattice relaxation rate for the *N cases becomes larger than for solutions of °N containing
radicals).

e For slower dynamics the relaxation dispersion data show (in both cases: for N and

5N) a maximum at intermediate frequencies (about 200 kHz — 3 MHz).

These effects are explained and the H spin-lattice relaxation dispersion is quantitatively
analyzed by means of a comprehensive theory of paramagnetic relaxation enhancement in
solutions of nitroxide radicals [31,32,57]. The main elements of the theory are outlined in
the thesis. The relaxation scenario is as follows. The mechanism of the H spin-lattice
relaxation is provided by dipole-dipole interactions between protons of the solvent
molecules and unpaired electrons of the radical molecules. The dipole-dipole coupling
fluctuates in time due to relative translational dynamics of the solvent and solute molecules,

their rotational dynamics and electron spin relaxation. The source of the electron spin
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relaxation is provided by the anisotropic part of the electron — nitrogen hyperfine coupling
modulated by rotational dynamics of the paramagnetic molecules, while the isotropic part
of the hyperfine coupling affects the energy level structure of the electron spin. The electron
spin relaxation is described by means of the Redfield relaxation theory. In consequence the
approach is valid when the condition @, 7z <1 is fulfilled (@, is the amplitude of the
anisotropic part of the hyperfine interaction in angular frequency units). In consequence,
the upper limit of the rotational correlation time yields 7, =(2—-3)*10°s. For fast
dynamics the role of the electron spin relaxation is less significant and for the rotational
correlation time of the order of 7, =1*107"s it becomes negligible. The theory consists of
three steps. First, it has been formulated for the simpler case of °N (the *N spin yields
P =1/2)in[15,32], neglecting the electron spin relaxation. Next it has been complemented
by a counterpart dedicated to the more complex case of N containing radicals (P =1)
[32]. Eventually, the approach has been generalized by including the electron spin
relaxation for both cases [31]. The relative translational diffusion of the interacting
molecules have been described by the force-free-hard sphere model [26,27]. The rotational
dynamics modulates the proton-electron dipole-dipole coupling directly, through the
eccentricity effect, and, indirectly, through the electron spin relaxation rates. The rotational

dynamics has been described by a Cole-Davidson spectral density.

Numerous simulations have been performed in the thesis, to explain the influence of the
dynamical and electron spin parameters on the 'H spin-lattice relaxation in different
frequency ranges. The theory has been used for the analysis of the experimental data. In
this way translational diffusion coefficients and rotational correlation times have been
determined. The values of these parameters have been compared with values obtained by
other methods (taken from literature). The agreement is very good and the analysis of the
14N and N systems is consistent and it explains the features of the *H spin-lattice
relaxation dispersion profiles outlined above.

e The significant relaxation dispersion observed for the paramagnetic solutions even
for fast dynamics is caused by the presence of spectral densities taken at the electron spin
frequency (which is by factor 657 larger than the proton frequency) in the equations
describing the H spin-lattice relaxation. This means that by introducing paramagnetic
molecules to diamagnetic liquids one can probe a much faster dynamical processes than
for pure diamagnetic liquids.

103



Summary

e The behavior of the H spin-lattice relaxation rates for solutions of N and °N
containing radicals can be explained by means of the theory as a result of the isotropic part
of the hyperfine coupling (this explains why the low frequency relaxation rates for the N
case are lower than for the °N case) and the electron spin relaxation (anisotropic part of
the hyperfine coupling). The last factor explains why for slower dynamics the ratio between
the relaxation rates deviates from the value predicted in the absence of the electron spin
relaxation), but some deviations from the experimental data are observed. They might be
caused by simplifications of the motional models. It is also possible that interference effects
between the hyperfine coupling and the quadrupolar coupling of 2N (which is not included
into presented approach) gives a relevant contribution to the electron spin relaxation.

e The relaxation maximum is caused by an interplay (competition) between spectral
densities decaying with increasing frequency and pre-factors in the relaxation formulae

which increase with increasing frequency.
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9. Further Perspectives

The intensity of NMR signals can be enhanced through Dynamic Nuclear Polarization
(DNP) effects in which the large electron spin polarization is transferred to neighbouring
nuclei [47,74-77]. In most cases monomeric paramagnetic centers (e.g. nitroxide radicals
or metal ions) are used as a source of the polarization. Molecules containing two
paramagnetic centers are very promising candidates for increasing the efficiency of the
polarization transfer. The electron spin and nuclear spin relaxation rates are very important
factors determining the obtained enhancement of the NMR signal.

From this perspective, the theory of electronic and nuclear relaxation in solutions of
monomeric nitroxide radicals is a very good starting point for theoretical modeling of
relaxation processes in systems containing biradicals. A well-known example of biradicals
is TOTAPOL (1-(TEMPO-4-oxy)-3-(TEMPO-4-amino)propan-2-ol, Fig. 9.1). The linker
between the two TEMPO molecules containing unpaired electrons is rather short (the
analysis of the powder PER line shapes shows that the electron-electron distance is about
12.8 A [78]) that leads to strong interactions between the paramagnetic centres. Thus, the
Hamiltonian of the spin system has to include a term describing the dipole-dipole

interaction of the two electron spins.

‘O
N N/O'

O/Y\H
OH

Figure 9.1. Structure of TOTAPOL.

In Fig. 9.2 an example of *H spin-lattice relaxation dispersion data for propylene-glycol
solutions of TOTAPOL (biradical) and 4-oxo-TEMPO-d1-1*N (monomeric nitroxide
radical) is shown. The data have been normalized to the same concentration of
paramagnetic centres — 10 mM. As TOTAPOL has two unpaired electrons the
concentration of the TOTAPOL molecules is twice smaller than that of 4-oxo-TEMPO-d16-
14N . The results agree at high magnetic field as expected (the electron Zeeman interactions

dominate all other interactions within the spin system), but they considerably differ at low
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Further perspectives

and intermediate fields. The *H relaxation rates for the TOTAPOL solution is smaller as a
result of a faster modulations of the proton spin-electron spin dipole-dipole coupling caused
by faster electron spin relaxation resulted from the strong dipolar coupling between the

electron spins.

L Nitroxide radicals in propylene glycol at 273K
600 -
- = 4-oxo-TEMPO-d_-*N
o500+ o TOTAPOL
— [ pure propylene glycol
— OgoB0g
.Iﬂ. 400 ‘ DDDDDDDDDDDDDD
2 - 300t
D: | lll.l....
I.. -
200 B Illl.ll.l.llll.....l....
L ..ll..
I..
100}
0..|4 . .......|5 . .......|6 . x’f;x
10 10 10 10

frequency [Hz]

Figure 9.2. Experimental H spin-lattice relaxation dispersion profiles for 10 mM
propylene glycol solutions of TOTAPOL (open squares) and of 4-oxo-TEMPO-di-1*N
(solid squares). Solid red line - the relaxation profile for 4-oxo-TEMPO-d16-1*N normalized
to the same electron spin S concentration as it is for TOTAPOL;
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Appendix

A.1 Program code

Code of the main body of the fitting program:

clc;
tic

load 'dane\prop\nl4 298.txt';

x=nld4 298(:,1)"';

W=X;

y=nld 298(:,2)";

semilogx (w,y,'ro', 'Linewidth',2); hold on

x0=[7.0e0 30.0 0.00 0.67 4.5e0];

1b=[3.10e-1 34.0 0.00 0.44999 3.0e0];
ub=[5.70e-1 35.0 2.00 0.45001 7.5e0];

[pout, resnorm, residual,exitflag, output, lambda, J] =
lsgcurvefit (@funkcja relaksacji 14N, x0,w,y,1lb,ub);

p=pout;
disp('tauR0'); disp(p(l)*1le-10);
disp('x'); disp(p(2));
disp('f'); disp(p(3));
disp('\beta'); disp(p(4));
disp('d {IS}'); disp(p(5));
sigma=sqgrt ((1/ (length (y)-5)) *resnorm*diag (full (inv (J'*J))));
for i=1:8
sigma (1i)=100*sigma (i) *pout (i) .~ (=-1);
end

w=logspace (3,9,100) ;

[R1,J trans,J rot,J 1t,J 2t,J 3t,J 4t]= funkcja relaksacji 14N
(p,w);

semilogx (w,R1, 'k-", '"Linewidth',2); hold on
semilogx(w,J_trans,'g.', 'Linewidth',2);

semilogx (w,J rot, 'b-', 'Linewidth', 2);

toc
T=[w;R1];
f2=fopen ('relaksacjal4dN.txt', 'w');

fprintf (£2, "\n%d\t%d', T);
fclose (f2);
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(p,w)

parameters

[R1,J trans,J rot,J 1t,J 2t,J 3t,J 4t,stala,J 1]=

Relaxation functions (Egs. 73 and 74, respectively) defined in MATLAB:

funkcja relaksacji 15N

Appendix
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sqrt (0.5% (1+ (wS./sqrt (A."24+wS."2))));
sgqrt (0.5* (1-(wS./sqrt (A."24+wS."2))));

cl=
c2=
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’

frequencies

’

wS./2-A./2+0.5*sgrt (A."2+wS."2)

wi2=-w24

w34

’

wS./24A/2+0.5*sgrt (A."2+wS."2) ;

w3l=-wl3
w23

’

sqgrt (A."2+wS."2)

’

wS./2-A./2-0.5*sgrt (A."2+wS."2)

w4 3=-w34

’

wS./2+A/2-0.5*sqrt (A."24+wS."2)

w2l=-wl2

wl3

w32=-w23

wl2
w24
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)
)
)
)
) .
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D

’
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’

)
)
)

J gest 2 (p,w24-wH)

J gest_Z(p,w42—wH);

J gest 2 (p,w42+wH

J gest_Z(p,WZl—wH

J gest 2 (p,w2l+wH

J gest_Z(p,w43—wH

J gest 2 (p,w43+wH

J gest 2 (p,wl2+wH

J gest_Z(p,w12—wH

J gest 2 (p,w34+wH

est_2(p,w34—wH);

J gest_2(p,w23—wH

J gest_Z(p,w23+wH

J gest:2(p,w32—wH
J gest_2(p,w3l—wH);

J gest:Z(p,w31+wH)

J ggst 2(p,w24+wH) ;

o3
]

o)
©°

]
]
]
]
]
]
]
]
]

J gest 2 (p,w32+wH)

J gest 2(p,wl3-wH);

]
]
]
]
]
]
]
]

[J 11,0 11 trans,J 11 rot

[J 12,3 12 trans,J 12 rot

[J 13,0 13 trans,J 13 rot

[J 14,J 14 trans,J 14 rot

[J 15,0 15 trans,J 15 rot

[J 16,0 16 trans,J 16 _rot

[J 17,3 17 trans,J 17 rot

[J 18,0 18 trans,J 18 rot

[J 20,3 20 trans,J 20 rot]

21,J 21 trans,J 21 rot]

[J 4,7 4 trans,J 4 rot

[J 5,J 5 trans,J 5 rot

[J 6,J 6 trans,J 6 rot

[J 7,J 7 trans,J 7 rot
[J 10,J 10 trans,J:IO rot

[J 2,0 2 trans,J 2 rot

[J 3,J 3 trans,J 3 rot

2900000000000
0000000000000

oo
0
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[J 8,0 8 trans,J 8 rot]=J gest 2(p,wl3+wH)

[J1,J 1 trans,J 1 rot]=J gest 2(p,wH);

[J 9,3 9 trans,J 9 rot]
[J 19,0 19 trans,J 19 rot]

J
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total spectral densities
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L*(6*%J 1443 15+6*J 16+J 17+6*J 18+J 19+6*J 20+J 21

J 3t=(1/6)*(cl.”2).*(6*J 6+J 7+6*J 8+J 9+6*J 10+J 11+6*J 12+J 13)

’

J 2t=(cl.”2).*(c2.72).*(J_2+J 3+J 4+J 5);

(1+(cl.”2-c2.%2).72);

J 4t=(1/6)* (c2."2)

J 1t=(1+(cl.”2-c2.72).72).*J 1
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’

’

Kdd*0.5*3* (J ltrans+J 2trans+J 3trans+J 4trans)

Kdd*0.5%3* (J lrot+J 2rot+J 3rot+J 4rot)

Kdd*0.5%3*J 2t

Kdd*0.5*3*J 3t

J 4t=Kdd*0.5*3*J 4t

Kdd*0.5*3*J 1t

J rot

J 2t
J 3t

R1=Kdd*0.5*3* (J 1t+J 2t+J 3t+J 4t)

J trans
J 1t



function

[R1,J trans,J rot,J ltot,J 2tot,J 3tot,J 4tot,J 5tot,J 6tot]

(p,w)

funkcja relaksacji 14N
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rzypisanie wartosci zmiennym
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p(l)*le-10

—_

(1)

0
[ag
=

o° o° — (@
o° o0 — P

o° o

[oF

$fcd=p (3);
$beta

=p (4);

p(5)*1e-10;

dIs=

Axx=63e6; $SHz
Ayy
Azz

=63e6;

=63e6;

’

(Axx+Ayy+Azz) /3

A*2*pi

A
A

’

’

Azz-(1/2)* (Axx+AyY)

sqgrt (2/3) *DeltalA

DeltaA
DeltaA
deltaA

R1

’

(1/2)* (Axx-Ayy) ;

Zeros

’

=Zerosy
Zeros

J trans

J_rot
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2.67522212e8;

gammal

’

1.760859794ell
12.566370614e-7

6.02214199%e23

Ni=1.0
Ni

gammas
mi0
Na

’

’

’

Ni*Na;

%stata Plancka
Kdd=(1/10) * ((4*pi) /3) * ((miO*gammal*gammaS*hbar/ (4*pi)) . 2) * (Ni/ (dIS.

"3)) i

1.054571596e-34;

hbar
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=2*pi*w

wH
wS

657*wH;
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beta etc.
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(A+2*wS+sgrt (9*A."2+4*A*wS+4*wS."2)) ./ (2*sgrt (2) *A)

beta= (A+2*wS-sqrt (9*A."2+4*A*wS+4*wS."2) ) ./ (2*sqrt (2) *A) ;

alpha

(A-2*wS—-sqrt (9*A."2-4*A*wS+4*wS."2)) ./ (2*sqrt (2) *A) ;

delta=(A-2*wS+sgrt (9*A."2-4*A*wS+4*wS."2)) ./ (2*sqrt (2) *A) ;

gamma
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sgrt (1+beta.*beta) ;

la=

sgrt (1+beta. *beta) ;

1b=
1c

’

sgrt (l+alpha.*alpha)

’

sgrt (l+alpha.*alpha)

1d=
le

sgrt (l+delta.*delta);

sgrt (1+delta.*delta);

1f=
1g
1h

sgrt (l+gamma.*gamma) ;

sgrt (l+gamma. *gamma)
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a=la.” (-1)

beta./lb;

b=

lc.”(-1);
d=alpha./1ld

c=

’

le.” (-1);
f=delta./1lf

e=

’
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lg.”(-1)

g
h

gamma./lh;
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sgrt (wS."2+wS.*A+(9/4) *A"2)

w23
wi5
wl2
wl3
w46
wh6
w24
w25

’

sqrt (wS."2-wS.*A+(9/4) *A"2)

’

wS./2+3*A/4-(0.5) *sgrt (wS."2+wS.*A+(9/4) *A"2)
wS./2+3*A/4+0.5*sqrt (wS. "2+wS.*A+ (9/4) *A"2)

’

’

wS./2-3*A/4+0.5%*sqrt (wS."2-wS.*A+(9/4) *A"2)

’

wS./2-3*A/4-0.5%*sgrt (wS."2-wS.*A+(9/4) *A"2)

0.5*sgrt (wS.”"2+wS.*A+(9/4) *A"2)-0.5*sqgrt (wS."2-wS.*A+(9/4) *A"2) ;

0.5*sgrt (wS."2+wS.*A+(9/4) *A*2)+0.5*sqrt (wS."2-wS.*A+(9/4) *A"2) ;

w34=-w25

’
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w35=-w24
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J gest_Z(p,w46—wH

J gest_Z(p,w56+wH

J gest_Z(p,w56—wH);

J gest_2(p,w24+wH);

J gest_Z(p,w24—wH);

J gest_2(p,w25+wH);

J gest_Z(p,w25—wH);

J gest_Z(p,w34+wH);

J gest_Z(p,w34—wH);

J gest_2(p,w35+wH);

est_Z(p,w35—wH);
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©000

J ggst 2 (p,wd6+wH

g
%

=J

e B B B e B e B B B e B e B B}

J gest 2(p,wl3-wH);

[J 11,0 11 trans,J 11 rot

[J 12,3 12 trans,J 12 rot

[J 13,7 13 trans,J 13 rot

[J 14,0 14 trans,J 14 rot

[J 15,0 15 trans,J 15 rot

[J 16,J 16 trans,J 16 rot

[J 17,3 17 trans,J 17 rot

[J 18,0 18 trans,J 18 rot

[J 19,3 19 trans,J 19 rot

[J 20,0 20 trans,J 20 rot
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"2) N2+,

~"2-d."2) ."2+0.5% (e."2-f.

.7240.5% (c.

KT 1

~"2-b."2)
."2)

J 1t=(1+0.5* (a.

*J 2

.12/2)
.N2/2)

a.*c-b.*d)
a.*c-b.*d)

.*J_3;

o — — — ~—

J 5t=(
J_6t

2* (b.
J 7t=(1/3)* (b.

2*(d.”2) .*J_8;

J 9t=(1/3)*(d."2)

J_8t=

2*(e.”2) .*J 10;

J 10t

*J 11,

(1/3)*(e.”2)

J 11t

L*J 12;

=2% (g."2)

J 12t

.*J 13;

(1/3)*(g.72)
2* ((a.*f)

J_13t=

L*J 14;

.N2)

J_ 14t

."2)

.*J 15;

(1/3)* ((a.*f)
2*((a.*h)

J_15t=

.*J 16;

.N2)

J 16t

."2)

*J 17,

=(1/3)* ((a.*h)
2% ((c.*f)

J 17t

.*J 185

.N2)

J 18t

L*J 19;

.N2)

=(1/3)* ((c.*f)
2* ((c.*h)

J_ 19t

.*J 20;

.1 2)

J_20t

=(1/3)*((c.*h).~2).*J 21;

J 21t
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2=

."2+0.5% (e

."2+0.5*% (c."2-d."2)

J ltrans=(1+0.5*(a.”"2-b."2)

A2+, ..
0.5%(g.”2-h."2)

£.72)

."2).*J 1 trans;
J 2trans=((a.*c-b.*d)

.r2/2)
.N2/2)
N2/2)
N2/2)
.*J 6 trans;

.*J 2 trans;

*J B_trans;

J 3trans=((a.*c-b.*d)

*J 4_trans;

J 4trans=((e.*g-f.*h)

*J 5_trans;

J Strans=((e.*g-f.*h)

2% (b."2)

J 7trans=(1/3)*(b."2)

J 6trans

.*J 7 trans;

.*J 8 t?aHs;

=2*(d."2)

J 8trans
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J 9trans=(1/3)*(d.”2).*J 9 trans;

J 10trans=2*(e.”2).*J 10 trans;

J lltrans=(1/3)*(e.”2).*J 11 trans;

J 12trans=2*(g.”2).*J 12 trans;

J 13trans=(1/3)*(g.”2).*J 13 trans;

J l4trans=2*((a.*f).”2).*J 14 trans;

J 15trans=(1/3)*((a.*f).”2).*J 15 trans;
J l6trans=2*((a.*h).”2).*J 16 trans;

J 17trans=(1/3)*((a.*h).”2).*J 17 trans;
J 18trans=2*((c.*f).”2).*J 18 trans;

J 19trans=(1/3)*((c.*f).”2).*J 19 trans;
J 20trans=2*((c.*h).”2).*J 20 trans;

J 21ltrans=( *
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5555555555555 %%5%5%5%5%%%5%5%55%5%%5%5%5%%555555%%%5%5%5%%%5%55%%55%55%%%5%5%%%%
%% rotational spectral densities

5555555555555 %%55%55%5%%%5%5%55%5%%%5%555%%55%5555%5%55555%%5%555%%55%55%%%5%5%%%%
J lrot=(140.5*(a.”2-b."2) ."240.5*% (c.”2-d."2) ."2+0.5% (e. "2~

£f.72) .72+

0.5*(g.”"2-h."2).72).*J 1 rot;
J 2rot=((a.*c-b.*d)."2/2

). *J_
J 3rot=((a.*c-b.*d).”2/2).*J 3 rot;
J 4rot=((e.*g-f.*h)."2/2) .*J 4 rot;
J_5rot=((e.*g—f.*h).A2/2) *J 5 rot;

J 6brot=2*(b.”2).*J 6 rot;
J Trot=(1/3)*(b.”2) .*J 7 rot;

J 8rot=2*(d.”2).*J 8 rot;

J 9rot=(1/3)*(d.”2).*J 9 rot;

J 10rot=2*(e.”2).*J 10 rot;

J llrot=(1/3)*(e.”2).*J 11 rot;
J 12rot=2*(g.”2).*J 12 rot;

J 13rot=(1/3)*(g.”2).*J 13 rot;

J l4rot=2* ((a.*f)."2).*J 14 rot;
J 15rot=(1/3)* ((a.*f).”2) .*J 15 rot;
J 16rot=2*((a.*h)."2).*J 16 rot;
J 17rot=(1/3)* ((a.*h).”2) .*J 17 rot;
J 18rot=2*%((c.*f).”2).*J 18 rot;
J 19rot=(1/3)* ((c.*f).”2) .*J 19 rot;
J 20rot=2*%((c.*h).”2).*J 20 rot;
)

J 21rot=(1/3)*((c.*h).”2).*J 21 rot;

2999099900900 009090900090900009090000000099000090900009000000006090000609 0

£9990909090000900090090000900009090000900000900000000900000900006000009000060800008 0

R1=Kdd* (J 1t+J 2t+J 3t+J 4t+J 5t+J 6t+J 7t+J 8t+J 9t+J 10t+J 11lt+...
J 12t+J 13t+J 14t+J 15t+J _16t+J 17t+J 18t+J 19t+J 20t+J 21t);
J trans=Kdd* (J_ltrans+J 2trans+J 3trans+J 4trans+J Strans+J 6trans+.

J Ttrans+J 8trans+J 9trans+J 10trans+J lltrans+J 1l2trans+J 13trans+.
J l4trans+J 15trans+J l6trans+J 17trans+J 18trans+J 19trans+...

J 20trans+J 2ltrans);
J rot=Kdd*(J lrot+J 2rot+J 3rot+J 4rot+J 5Srot+J 6rot+...

8990900000000000000000000000000000000000009090000000000000000000000000000O0



J ltot=Kdd*J 1t;

J 2tot=Kdd* (J_2t+J 3t+J_4t+J 5t);

J 3tot=Kdd* (J_6t+J 7t+J 8t+J 9t);
J_4tot=Kdd* (J_10t+J_11t+J 12t+J 13t);
J Stot=Kdd* (J 14t+J 15t+J 16t+J 17t);
J 6tot=Kdd* (J 18t+J 19t+J 20t+J 21t);

Generalized spectral density defined in a separate file (Eq. 39):

function [J,J trans,J rot] = J gest 2 (p,w)

J=zeros;
J trans=zeros;

tauR=p (1) ;
x=p(2) ;
fcd=p (3) ;
beta=p(4);
tau=x.*tauR;

for i=1l:1length (w)
fun = Q@(u)u.”4.*tau./ ((81l.49*u.”2.-
2*u.M . +u.”6) . (u. M.+ (tau.*w(l)) ."2));
Ji(i)=(72*(3/ (4*pi))) *quadgk (fun,0, inf) ;
end

for i=1l:length (w)
Jcd(i)= fcd.* (sin(beta*atan(w (i) .*tauR./beta))) ...
/(w(i).*(1+(w(i).*tauR./beta).”2).” (beta/2));
end

for i=1l:1length (w)
J(1)=J1 (1) +Jcd (1) ;
end

J rot=Jcd;

J trans=Ji;
end
Proton relaxation function including electron spin relaxation for *N and N, respectively:
function [Rtotale,Rtrans,Rrot,R0e,Rle,R2e,R3e,R0e trans,ROe rot]=

funkcja relaksacji 15N le (p,w)
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4);
$dIS=p (5);
tau=x*tauR;

e}
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Appendix
tauRe=tauR;
%tauRe=p (6) ;
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Azz—-(1/2)* (Axx+Ayy)
2/3*Delta”A*Delta”A+0.5*% (Axx-Ayy) .2

©0000000000000000
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142e6
(Axx+Ayy+Azz) /3

23e6
A*2*pi

hyperfine coupling
22e6
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657*w
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14
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I3

’

I3

’

1.760859794ell
12.566370614e-7

6.02214199%e23

Ni=1.0
Ni

2.67522212e8

r

1.054571596e-34

p(5)*1e-10
Kdd=(1/10) * ((mi0O*gammal*gammaS*hbar/ (4*pi)) ."2)* (Ni/ (dIS."3))

Ni*Na

gammal
gammas
mi0
Na=
hbar
dIs
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sqgrt (0.5* (1+(wS./sqgrt (A."24+wS."2))))
sgqrt (0.5* (1-(wS./sqrt (A."24+wS."2))))
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c2=
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4

sqgqrt (A."2+wS."2) ;

w32=-w23

’

wS./2-A./2-0.5*sgrt (A."2+wS."2)

w4 3=-w34
wld

wS./2-A./2+0.5*sqrt (A."2+wS."2) ;
wld2=-w24

w34

wS./2+A/2+0.5*sgrt (A."2+wS."2) ;

w3l=-wl3
w23

wS./2+A/2-0.5*sqrt (A."24+wS."2);

w2l=-wl2
=wS3

wl?2
wl3
w24
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.N2+1) .72) . *Jrotb (tauRe, beta,w*1e-10) ;
1+c2) ."2) .*Jrotb (tauRe, beta,wl2) ;

cl-c2) .72) .*Jrotb (tauRe, beta,wl3);

otb (tauRe, beta,wld) ;
(cl.”"2-c2.72).72) .*Jrotb (tauRe, beta,w23);
(cl+c2) .72) .*Jrotb (tauRe, beta,w24);

(((
R1212=R1212+(1/8
R1212=R1212+(1/16
R1212=R1212+(1/4)*J
R1212=R1212+(1/24)*
R1212=R1212+(1/16)*
R1212=R1212*Deltah;

—~ Q N o QO

c
(
(

r
(
(

R1313=(1/24)*(((cl-c2).72+1).72).*Jrotb (tauRe,beta,w*le-10) ;
R1313=R1313+(1/8)* ((cl-c2).”2).*Jrotb (tauRe,beta,wl3);
R1313=R1313+(1/16)* ((cl+c2).”2).*Jrotb (tauRe,beta,wl2);
R1313=R1313+(1/4)*Jrotb (tauRe,beta,wld);
R1313=R1313+(1/24)*((cl.”2-c2.72).72).*Jrotb (tauRe,beta,w23) ;
R1313=R1313+(1/16)*((cl-c2).”2).*Jrotb (tauRe,beta,w34) ;
R1313=R1313*Deltah;

R2424=(1/24)* (((cl+c2).”2+1) .72) .*Jrotb (tauRe,beta,w*le-10) ;
R2424=R2424+ (1/8) * ((cl+c2) .”2) .*Jrotb (tauRe, beta,w24) ;
R2424=R2424+ (1/16) * ((cl+c2) .”2) .*Jrotb (tauRe, beta,wl?2) ;
R2424=R2424+ (1/4) *Jrotb (tauRe, beta,wld) ;

R2424=R2424+ (1/24)* ((cl.”2+c2.72).72) .*Jrotb (tauRe,beta,w23) ;
R2424=R2424+(1/16) *((cl-c2).”2) .*Jrotb (tauRe,beta,w34) ;
R2424=R2424*DeltalAh;

R3434=(1/24)* (((cl-c2).72+1).72) .*Jrotb (tauRe,beta,w*le-10) ;
R3434=R3434+ (1/8)* ((cl-c2).”2).*Jrotb (tauRe,beta,w34);
R3434=R3434+(1/16) *((cl-c2).72) .*Jrotb (tauRe,beta,wl3);
R3434=R3434+ (1/4) *Jrotb (tauRe,beta,wld);

R3434=R3434+ (1/24)* ((cl.”2-c2.72).72) .*Jrotb (tauRe,beta,w23) ;
R3434=R3434+ (1/16) *((cl+c2).”2) .*Jrotb (tauRe, beta,w24) ;
R3434=R3434*Deltah;

R2323=(1/24)* (((cl+c2) .72+ (cl-c2) .72)."2) .*Jrotb (tauRe,beta,w*le-
10);

R2323=R2323+(1/16) * ((cl+c2) .”2) .*Jrotb (tauRe,beta,w24) ;
R2323=R2323+(1/16)* ((cl+c2) .”2).*Jrotb (tauRe,beta,wl2);
R2323=R2323+(1/16)*((cl-c2) .”2).*Jrotb (tauRe, beta,wl3);
R2323=R2323+ (1/12)*((cl.”2-c2.72) .”2) .*Jrotb (tauRe,beta,w23);
R2323=R2323+(1/16)*((cl-c2) .”2).*Jrotb (tauRe, beta,w34) ;

R1122=DeltalA* (1/8)* ((cl+c2) .”2).*Jrotb (tauRe,beta,wl?2);
R1133=DeltaA* (1/8)* ((cl-c2).”2).*Jrotb (tauRe,beta,wl3);
R1144=DeltaA* (1/2)*Jrotb (tauRe,beta,wld) ;

R2233=DeltaA* (1/12)*((cl.”2-c2.72).72) .*Jrotb (tauRe,beta,w23) ;
R2244=DeltalA* (1/8)* ((cl+c2) .”2).*Jrotb (tauRe,beta,w24) ;
R3344=DeltaA* (1/8)* ((cl-c2) .”2).*Jrotb (tauRe, beta,w34) ;
R1111=-R1122-R1133-R1144;

R2222=-R1122-R2233-R2244;

R3333=-R1133-R2233-R3344;

R4444=-R1144-R2244-R3344;
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Appendix

T o
o
(0]
Il
w
>*
o
QO
=

I(p,w);

ROe=R0e+3* (1+(cl.”2-c2.72).72) .*Jrotb (tauR,beta,w) *f* (pi*20/3) ;
ROe=(0.5) *RO0e*Kdd;

ROe trans=(0.5) *Kdd*3*J gwI (p,w);

ROe rot=(0.5) *Kdd.*3* (1+(cl."2-

c2.72) .72) .*Jrotb (tauR, beta,w) *f* (pi*20/3) ;

Rle=12*(cl.”2) .*(c2.72) .* (Jtranse (tau,w23,R2323) +f*Jrotb (tauR, beta,w
23)* (pi*20/3));

Rle=(0.5) *Kdd*Rle;

Rle trans=(0.5)*Kdd*12* (cl.”2).*(c2.72).* (Jtranse(tau,w23,R2323));
Rle rot=(0.5)*Kdd.*12* (cl."2).*(c2.72).*f.*Jrotb (tauR,beta,w23) * (pi*
20/3);

R2e=6* (cl.”2).* (Jtranse (tau,wl3+w,R1313) +f*Jrotb (tauR,beta,wl3+w) * (p
i*20/3));

R2e=R2e+6* (cl.”2) .* (Jtranse (tau,w24+w,R2424)+f*Jrotb (tauR, beta, w24+w
) * (pi*20/3)) ;

R2e=R2e+6* (c2.72) .* (Jtranse (tau,wl2+w,R1212)+f*Jrotb (tauR, beta,wl2+w
) * (pi*20/3)) ;

R2e=R2e+6* (c2.72) .* (Jtranse (tau,w34+w,R3434)+f*Jrotb (tauR, beta, w34+w
) * (pi*20/3));

R2e=(0.5) *Kdd*R2e;

R2e trans=6*(cl.”2).* (Jtranse (tau,wl3+w,R1313));

R2e trans=R2e trans+6*(cl.”2).* (Jtranse (tau,w24+w,R2424));
R2e trans=R2e trans+6* (c2.”2).* (Jtranse(tau,wl2+w,R1212));
R2e trans=R2e trans+6*(c2."2).* (Jtranse (tau,w34+w,R3434))
R2e trans=(0.5) *Kdd*R2e_ trans;

’

R2e_rot=6*(cl.A2).*(f*Jrotb(tauR,beta,w13+w)*(pi*20/3));
R2e_rot=R2e_rot+6*(cl.A2).*(f*Jrotb(tauR,beta,w24+w)*(pi*20/3));
R2e_rot=R2e_rot+6*(c2.A2).*(f*Jrotb(tauR,beta,w12+w)*(pi*20/3));
R2e_rot=R2e_rot+6*(c2.A2).*(f*Jrotb(tauR,beta,w34+w)*(pi*20/3))
R2e rot=(0.5) *Kdd*R2e_rot;

’

R3e=(cl.”2) .*(Jtranse(tau,wl3-w,R1313)+f*Jrotb (tauR, beta,wl3-

w) * (pi*20/3));

R3e=R3e+ (cl.”2) .* (Jtranse (tau,w24-w,R2424)+f*Jrotb (tauR, beta,w24-
w) * (pi*20/3));

R3e=R3e+ (c2.72) .* (Jtranse (tau,wl2-w,R1212)+f*Jrotb (tauR, beta,wl2-
W) * (pi*20/3));

R3e=R3e+ (c2.72) .* (Jtranse (tau,w34-w,R3434)+f*Jrotb (tauR, beta, w34-
W) *(pi*20/3));

R3e=(0.5) *R3e*Kdd;

R3e trans=(cl.”2).*(Jtranse(tau,wl3-w,R1313));

R3e trans=R3e trans+(cl.”2).* (Jtranse(tau,w24-w,R2424));
R3e trans=R3e trans+(c2.”2).* (Jtranse(tau,wl2-w,R1212));
R3e trans=R3e trans+(c2.”2).* (Jtranse(tau,w34-w,R3434));
R3e trans=(0.5) *R3e_ trans*Kdd;
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’

’

R3e rot+(cl.”2).* (£*Jrotb (tauR,beta,w24-w)* (pi*20/3));

’

’

(p,w)

I3

R1 rot,R0e,Rle,R2e,R3e,R4e,R5e]

[R1,R1 trans,

R3e_rot+(c2.A2).*(f*Jrotb(tauR,beta,wlZ—w)*(pi*20/3))

R3e_rot+(02.A2).*(f*Jrotb(tauR,beta,w34—w)*(pi*20/3));

R3e rot=(0.§)*R3e rot*Kdd

ROe+Rle+R2e+R3e
ROe trans+Rle trans+R2e trans+R3e trans

ROe rot+Rle rot+R2e rot+R3e rot

RBe:rot
R3e rot

R3e rot

R3e rot=(cl.”2).* (f*Jrotb (tauR,beta,wl3-w)* (pi*20/3))

funkcja relaksacji 14N le

Rtotale
Rtrans
Rrot
function
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tauR
p(9)

p(l);
p(4);
p(5) *1le-10
x*tauR

p(2);

=p(3);
2*pi*w
=657*w

tauR
=

fac
beta
dIs
tau
tauRe
%tauRe
W=

wS
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Azz-(1/2)* (Axx+AyY)
2/3*DeltaA*Delta”A+0.5*% (Axx-Ayy) . 2

©000000000000000
©00000000000000

15.4e6
16.1e6

99.5e6
(Axx+Ayy+Azz) /3

A*2%pi

hyperfine coupling

Axx*2*pi

Ayy*2*pi
Azz*2*pi

%
0000
©000

%

DeltaA
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Ayy
Azz
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A
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Ayy
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DeltahA
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Zeros
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Zeros

Zeros

J trans
J rot

R1
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4

4

1.760859794ell
12.566370614e-7

6.02214199e23

Ni=1.0

2.67522212e8

I3

1.054571596e-34
(1/10) * ( (mi0*gammal*gammaS*hbar/ (4*pi)) ."2)* (Ni/ (dIS."3))

Ni*Na

gamma I
gammas
miO
Na=
Ni=
hbar
Kdd
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beta etc..

alpha,

(A+2*wS+sqgrt (9*A."2+4*A*wS+4*wS."2)) ./ (2*sgrt (2) *A) ;

alpha
betab
gamma
delta

14

(A+2*wWS—sqgrt (9*A. "2+4*A*wS+4*wS."2) ) ./ (2*sqrt (2) *A)

(A-2*WS—-sqgrt (9*A."2-4*A*wS+4*wS."2)) ./ (2*sqrt (2) *A) ;

(A-2*wS+sqgrt (9*A."2-4*A*wS+4*wS."2)) ./ (2*sqrt (2) *A) ;
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normalized factors

sgrt (1+betab. *betab) ;

la=

sgrt (1+betab. *betab) ;

1b=
1c

’

sgrt (l+alpha.*alpha)

’

sgrt (1+alpha.*alpha)

1d=
le

sgrt (l+delta.*delta);

sgrt (1+delta.*delta);

1f=
1g
lh

sgrt (l+gamma. *gamma) ;

sgrt (l+gamma.*gamma)
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la.” (-1);
b=betab./lb

a=

’

lc.”(-1);
d=alpha./1ld

c=

’

le.”(-1);

e=

’

f=delta./lf
g=lg.” (-1)

I3

gamma./lh;
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frequencies

o° o
o° o\
o° o

’

wS./2+RA/2
E2=0.5*sgrt (wS."2+wS.*A+(9/4) *A*2)-A/4

El=

r

’

-0.5*sgrt (wS."2+wS.*A+(9/4) *A"2)-A/4

E4=0.5*sgrt (wS."2-wS.*A+(9/4) *A*2)-A/4

E3=

r

-0.5*sgrt (wS."2-wS.*A+(9/4) *A"2)-A/4;

E6=-wS./2+A/2

w23
w45
wl2
wl3
wi6
wh6
w24
w25

E5

4

sgrt (wS. 24+wS.*A+(9/4) *A"2)
sqrt (wS."2-wS.*A+(9/4) *A"2)

4

’

’

wS./2+3*A/4-(0.5) *sgrt (wS."2+wS.*A+(9/4) *A"2)
wS./2+3*A/4+0.5*%sgrt (wS."2+wS.*A+ (9/4) *A"2)

’

wS./2-3*A/4+0.5*sgrt (wS."2-wS.*A+ (9/4) *A"2) ;

’

wS./2-3*A/4-0.5*sgrt (wS."2-wS.*A+ (9/4) *A"2)

4

0.5*sgrt (wS."2+wS.*A+(9/4) *A*2) -0.5*sqrt (wS."2-wS.*A+(9/4) *A"2)

0.5*sgrt (wS."2+wS.*A+(9/4) *A"2)+0.5*sqgrt (wS."2-wS.*A+(9/4) *A"2) ;

w34=-w25

’

4

w35=-w24

’

wS./2+3*A/4-0.5%sgrt (wS."2-wS.*A+(9/4) *A"2)

wld
wlb

4

wS./2+3*A/4+0.5*sgrt (wS."2-wS.*A+(9/4) *A"2)
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w26=E2-E6;
w36=E3-E6;

.*sqgrt (2) .
R1212=R1212+(1/4) * (a+tb*sqgrt (2)) ."2.*Jrotb (tauRe,beta,wl2);
R1212=R1212+(1/8) * (c+d*sgrt (2)) ."2.*Jrotb (tauRe,beta,wl3);
R1212=R1212+(1/2)*f.”2.*Jrotb (tauRe,beta,wld) ;
R1212=R1212+(1/2)*h.”2.*Jrotb (tauRe,beta,wlb) ;

R1212=R1212+(1/12) *((a.*d+b.*c+b.*d.*sgrt (2)) .”2) .*Jrotb (tauRe, beta,
w23);

R1212=R1212+(1/8)* (b.*f-a.*e) .”2.*Jrotb (tauRe, beta, w24) ;
R1212=R1212+(1/8) * (b.*h-a.*g) ."2.*Jrotb (tauRe, beta,w25) ;
R1212=R1212+(1/2)*a.”2.*Jrotb (tauRe,beta, w26) ;

R1212=R1212*Deltah;
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R1313=(1/6) * (1+d.* (d+c.*sqgrt(2))) .”2.*Jrotb (tauRe,beta,w*1e-10) ;
R1313=R1313+(1/8)* (a+b.*sqrt (2)) .”2.*Jrotb (tauRe,beta,wl2) ;
R1313=R1313+(1/4) * (c+d.*sqgrt(2)) .”2.*Jrotb (tauRe,beta,wl3) ;
R1313=R1313+(1/2)*f.”2.*Jrotb (tauR,beta,wld) ;
R1313=R1313+(1/2)*h.”2.*Jrotb (tauR,beta,wl5) ;
R1313=R1313+(1/12)* (a.*d+b.*c+b.*d.*sqgrt (2)) ."2.*Jrotb (tauRe, beta, w2
3);

R1313=R1313+(1/8)*(d.*f-c.*e) .”2.*Jrotb (tauRe, beta,w34) ;
R1313=R1313+(1/8)* (d.*h-c.*g) ."2.*Jrotb (tauRe, beta,w35) ;
R1313=R1313+(1/2)*c.”2.*Jrotb (tauRe,beta,w36) ;
R1313=R1313*DeltalA;

R2323=(1/6) * (b.* (b+ta*sqrt (2)) -

d.* (d+c*sqrt(2))) .”2.*Jrotb (tauRe, beta,w*1e-10) ;
R2323=R2323+4+(1/8)* (a+b.*sqrt (2)) ."2.*Jrotb (tauRe, beta,wl2) ;
R2323=R2323+(1/6) * (a.*d+b.*c+b.*d.*sqrt (2)) ."2.*Jrotb (tauRe, beta, w23
) ;
R2323=R2323+(1/8
R2323=R2323+(1/8

) *(b.*f-a.*e) ."2.*Jrotb (tauR, beta,w24) ;

)
R2323=R2323+(1/2)

)

)

)

b.*h-a.*qg).”2.*Jrotb (tauR,beta, w25) ;
.N2.*Jrotb (tauRe,beta,w26) ;
ct+d.*sqgrt (2)) .*Jrotb (tauR,beta,wl3) ;
d.*f-c.*e) ."2.*Jrotb (tauR,beta,w34) ;
R2323=R2323+(1/8 d.*h-c.*qg) .”2.*Jrotb (tauR,beta,w35) ;
R2323=R2323+(1/2)*c.”2.*Jrotb (tauR,beta, w36) ;
R2323=R2323*Deltadh;

R2323=R2323+(1/8

(
(
a
(
R2323=R2323+(1/8) * (
(

*
*
*
*
*
*
*

R2424=(1/6) * (b.* (b+ta*sqrt (2)) -
e.*(e+tf.*sqrt(2))) .”2.*Jrotb (tauRe, beta,w*1e-10) ;
R2424=R2424+(1/8) * (a+b.*sqgrt (2)) .”2.*Jrotb (tauRe,beta,wl?2) ;
R2424=R2424+(1/6) * (a.*d+b.*c+b.*d.*sgrt (2)) ."2.*Jrotb (tauRe, beta, w23
) ;
R2424=R2424+(1/4
R2424=R2424+ (1/8

y*(b.*f-a.*e) ."2.*Jrotb (tauRe,beta,w24);
) *(
R2424=R2424+ (1/2) *a
) *£
) * (

.*h-a.*qg) .”2.*Jrotb (tauRe, beta,w25) ;
~2.*Jrotb (tauRe,beta,w26) ;

~2.*Jrotb (tauRe,beta,wld) ;
Ff-c.*e) . *Jrotb (tauRe, beta,w34) ;

R2424=R2424+(1/2

b
R2424=R2424+(1/8 d
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R2424=R2424+(1/12) * (e.*h+f.*g+e.*g.*sgrt (2)) ."2.*Jrotb (tauR,beta, widb
)7

R2424=R2424+(1/8) * (f+e.*sqgrt(2)) .”2.*Jrotb (tauRe,beta,wdo) ;
R2424=R2424*Deltald;

R2525=(1/6) * (b.* (b+a.*sqrt (2)) -
g.*(g+h.*sqrt(2))) .”2.*Jrotb (tauRe, beta,w*1e-10) ;
R2525=R2525+(1/8) * (a+b.*sqgrt (2)) .”2.*Jrotb (tauRe,beta,wl?2) ;
R2525=R2525+(1/12) * (a.*d+b.*c+b.*d.*sgrt (2)) ."2.*Jrotb (tauRe, beta, w2
3);
R2525=R2525+ (1/8) * (b.*f-a.*e) .”2.*Jrotb (tauRe, beta, w24) ;
R2525=R2525+(1/4) * (b.*h-a.*g) ."2.*Jrotb (tauRe, beta, w25) ;
R2525=R2525+ (1/2)*a.”2.*Jrotb (tauRe,beta, w26) ;

R2525=R2525+ (1/2)*h.”2.*Jrotb (tauRe,beta,wlb) ;
R2525=R2525+(1/8) * (d.*h-c.*g) ."2.*Jrotb (tauRe, beta,w35) ;
R2525=R2525+(1/12) * (e.*h+f.*g+e.*g.*sqgrt (2)) .*Jrotb (tauRe, beta,wdb’) ;
R2525=R2525+(1/8) * (h+g.*sqgrt (2)) .*Jrotb (tauRe, beta, w56) ;
R2525=R2525*Deltadh;

R3434=(1/6) * (d.* (d+c.*sgrt (2)) -
e.*(etf.*sqrt(2))) .”2.*Jrotb (tauRe, beta,w*1e-10) ;
R3434=R3434+(1/8)* (c+d.*sqrt (2)) ."2.*Jrotb (tauRe,beta,wl3) ;
R3434=R3434+(1/12) * (a.*d+b.*c+b.*d*sqrt (2)) ."2.*Jrotb (tauRe, beta, w23
) ;
R3434=R3434+(1/4
R3434=R3434+(1/8

*(d.*f-c.*e) ."2.*Jrotb (tauRe,beta,w34);
*(d.*h-c.*qg) .”2.*Jrotb (tauRe,beta,w35) ;
R3434=R3434+ (1/2)*c.”2.*Jrotb (tauRe,beta,w36) ;

R3434=R3434+ (1/2)*f.~2.*Jrotb (tauRe,beta,wld) ;
R3434=R3434+(1/8)* (b.*f-a.*e) .”2.*Jrotb (tauRe, beta, w24) ;
R3434=R3434+(1/12)* (e.*h+f.*g+e.*g.*sqgrt (2)) ."2.*Jrotb (tauRe, beta, w4
5);

R3434=R3434+(1/8) * (c+d.*sgrt (2)) .”2.*Jrotb (tauRe,beta,wd6) ;
R3434=R3434*Deltah;

—_ — — ~—

R3535=(1/6) * (d.* (d+c.*sgrt (2)) -
g.*(g+f.*sqrt(2))) .”2.*Jrotb (tauRe, beta,w*1e-10) ;
R3535=R3535+(1/8) * (c+d.*sqrt (2)) .*Jrotb (tauRe, beta,wl3) ;
R3535=R3535+(1/12) * (a.*d+b.*c+b.*d.*sqrt (2)) ."2.*Jrotb (tauRe, beta, w2
3);

R3535=R3535+(1/8)* (d.*f-c.*e) .”~2.*Jrotb (tauRe, beta,w34) ;
R3535=R3535+(1/4) * (d.*h-c.*g) ."2.*Jrotb (tauRe, beta,w35) ;
R3535=R3535+ (1/2) *c.”2.*Jrotb (tauRe,beta,w36) ;
R3535=R3535+ (1/2)*h.”2.*Jrotb (tauRe,beta,wlb) ;

*

R3535=R3535+(1/8) * (b.*h-a.*qg) ."2.*Jrotb (tauRe, beta, w25) ;
R3535=R3535+(1/12) * (e.*h+f.*g+e.*g.*sqrt (2)) . *Jrotb (tauRe, beta,w45) ;
R3535=R3535+(1/8) * (h+g.*sqgrt(2)) .”2.*Jrotb (tauRe,beta,wb6) ;
R3535=R3535*DeltaA;

R4545=(1/6) * (e.* (e+f.*sgrt(2)) -
g.*(gt+h.*sqrt(2))) .”2.*Jrotb (tauRe, beta,w*1e-10) ;

R4545=R4545+ (1/2)*f."2.*Jrotb (tauRe,beta,wld) ;

R4545=R4545+(1/6) * (e.*h+f.*g+e.*g.*sqrt (2)) ."2.*Jrotb (tauRe, beta, widb
) ;

R4545=R4545+ (1/8)* (b.*f-a.*e) .”2.*Jrotb (tauRe, beta,w24) ;
R4545=R4545+ (1/8)* (d.*f-c.*e) .”~2.*Jrotb (tauRe, beta,w34) ;
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R4545=R4545+(1/8
R4545=R4545+(1/2

(f+e *sqgrt (2)) .72.*Jrotb (tauRe, beta, w4do6) ;
h.”2.*Jrotb (tauRe,beta,wl5) ;

R4545=R4545+ (1/8 (b.*h-a.*g) ."2.*Jrotb (tauRe, beta,w25) ;

R4545=R4545+(1/8) * (d.*h-c.*qg) .”2.*Jrotb (tauRe, beta,w35) ;

R4545=R4545+(1/2) * (h+g.*sqgrt (2)) .*Jrotb (tauRe, beta, w56) ;

R4545=R4545*Deltah;

) *
) *
) *
) *

R4646=(1/6) * (1+e.* (e+f.*sqgrt(2))) .”2.*Jrotb (tauRe, beta,w*1le-10) ;
R4646=R4646+ (1/2)*f."2.*Jrotb (tauRe,beta,wld) ;

R4646=R4646+ (1/8)* (b.*f-a.*e) .”2.*Jrotb (tauRe, beta, w24) ;
R4646=R4646+ (1/8)* (d.*f-c.*e) .”2.*Jrotb (tauRe, beta,w34) ;
R4646=R4646+(1/12) * (e.*h+f.*g+e.*g.*sqrt (2)) ."2.*Jrotb (tauRe, beta, w4
5);
R4646=R4646+ (1/4)
R4646=R4646+ (1/2)
R4646=R4646+ (1/2)
R4646=R4646+ (1/8)
R4646=R4646*Deltalh;

* (f+e.*sqrt(2)) .*Jrotb (tauRe,beta, wid6) ;

*a. A2 *Jrotb (tauRe, beta,w26) ;

*C. .*Jrotb (tauRe,beta,w36) ;

*(h+g.*sgrt (2)) ."2.*Jrotb (tauRe, beta, wb6) ;
R5656=(1/6) * (1+g.* (g+h.*sqgrt (2))) .”2.*Jrotb (tauRe,beta,w*1le-10) ;
R5656=R5656+ (1/2) *h.”2.*Jrotb (tauRe, beta,wlb) ;
R5656=R5656+(1/8) * (b.*h-a.*g) ."2.*Jrotb (tauRe, beta, w25) ;
R5656=R5656+ (1/8) * (d.*h-c.*g) ."2.*Jrotb (tauRe, beta,w35) ;
R5656=R5656+ (1/12) * (e.*h+f.*g+e.*g.*sqgrt (2)) .*Jrotb (tauRe, beta,wdb’) ;
R5656=R5656+ (1/4) * (h+g.*sgrt (2)) .”2.*Jrotb (tauRe,beta,w56) ;
R5656=R5656+ (1/2) *a.”2.*Jrotb (tauRe, beta,w26) ;
R5656=R5656+ (1/2) *c.”2.*Jrotb (tauRe,beta,w36) ;

R5656=R5656+ (1/8) * (f+e.*sqrt (2)) .*Jrotb (tauRe,beta, wdb6) ;
R5656=R5656*DeltaA;

890000000000000000000000000000000000000000000000000000000000000000000

ROe=J gwIld (p,w);

ROe=R0e+ (1+0.5* (a.”2-b."2) ."2+0.5* (¢."2-d."2) ."24+0.5* (e. "2~
£f.72).72+40.5* (g."2-h."2) .72) .*Jrotb (tauR, beta,w) *fac* (pi*20/3) ;
ROe=R0e*Kdd;

ROe trans=J gwlIld (p,w);
ROe trans=R0Oe trans*Kdd;

ROe rot=(140.5*(a.”2-b."2)."2+0.5* (c.”2-d."2) ."2+0.5* (e. "2~
£.72).72+0.5*%(g.”2-h."2) ."2) .*Jrotb (tauR, beta, w) *fac* (pi*20/3);
ROe rot=R0Oe rot*Kdd;

Rle=((a.*c-

b.*d) .”2/2) .* (Jtranse (tau,w23+w,R2323) +Jrotb (tauR,beta,w23) *fac* (pi*
20/3)):

Rle=Rle+ ((a.*c-b.*d) .”2/2) .* (Jtranse (tau,w23-
w,R2323)+Jrotb (tauR, beta,w23) *fac* (pi*20/3));

Rle=Rle+ ((e.*g-
f.*h).”2/2).*(Jtranse (tau,w45+w,R4545) +Jrotb (tauR,beta,wld5) *fac* (pi*
20/3));

Rle=Rle+ ((e.*g-f.*h) .”2/2) .* (Jtranse (tau,wd5-

w,R4545) +Jrotb (tauR, beta,w45) *fac* (pi*20/3)) ;

Rle=Rle*Kdd;

Rle trans=((a.*c-b.*d).”2/2).* (Jtranse (tau,w23+w,R2323));
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*

I3

Rle trans=Rle trans+((a.*c-b. d).”2/2).*(Jtranse (tau,w23-w,R2323))
Rle trans=Rle trans+((e.*g-f.*h).”2/2).* (Jtranse (tau,w45+w,R4545));
Rle_trans=Rle_trans+((e.*g—f.*h).A2/2).*(Jtranse(tau,w45—w,R4545))
Rle trans=Rle trans*Kdd;

I3

Rle rot=((a.*c-b.*d).”2/2).* (Jrotb(tauR,beta,w23)*fac* (pi*20/3));
Rle rot=Rle rot+((a.*c-

b.*d) .”2/2) .* (Jrotb (tauR,beta,w23) *fac* (pi*20/3));

Rle rot=Rle rot+((e.*g-
f.*h).”2/2).* (Jrotb (tauR,beta,wd5) *fac* (pi*20/3));

Rle rot=Rle rot+((e.*g-
f.*h).”2/2).* (Jrotb (tauR,beta,wd5) *fac* (pi*20/3));

Rle rot=Rle rot*Kdd;

R2e=2* (b.”2) .* (Jtranse (tau,wl2+w,R1212)+Jrotb (tauR,beta,wl2)*fac* (pi
*20/3));

R2e=R2e+ (1/3)* (b.”2) .* (Jtranse (tau,wl2-

w,R1212)+Jrotb (tauR,beta,wl2) *fac* (pi*20/3)) ;

R2e=R2e+2* (d."2) .* (Jtranse (tau,wl3+w,R1313)+Jrotb (tauR,beta,wl3) *fac
* (pi*20/3));

R2e=R2e+ (1/3)*(d.”2) .* (Jtranse (tau,wl3-
w,R1313)+Jrotb (tauR, beta,wl3)*fac* (pi*20/3));

R2e=R2e*Kdd;

R2e_rot=2*(b.A2).*(Jrotb(tauR,beta,w12)*fac*(pi*20/3));

R2e rot=R2e rot+(1/3)*(b."2).* (Jrotb(tauR,beta,wl2)*fac* (pi*20/3));
R2e rot=R2e rot+2*(d.”2).* (Jrotb (tauR,beta,wl3)*fac* (pi*20/3));

R2e rot=R2e rot+(1l/3)*(d.”2).* (Jrotb(tauR,beta,wl3)*fac* (pi*20/3));
R2e rot=R2Z2e rot*Kdd;

R2e trans=2*(b."2).* (Jtranse(tau,wl2+w,R1212));

R2e trans=R2e trans+(1/3)*(b.”2).* (Jtranse (tau,wl2-w,R1212));
R2e trans=R2e trans+2*(d.”2).* (Jtranse(tau,wl3+w,R1313));
R2e_trans=R2e_trans+(1/3)*(d.A2).*(Jtranse(tau,wl3—w,R13l3));
R2e trans=R2e trans*Kdd;

R3e=2*(e.”2) .* (Jtranse (tau,wd6+w,R4646)+Jrotb (tauR,beta,wd6) *fac* (pi
*20/3));

R3e=R3e+ (1/3) * (e.”2) .* (Jtranse (tau, wd6-
w,R4646)+Jrotb (tauR, beta,wd6) *fac* (pi*20/3)) ;

R3e=R3e+2* (g."2) .* (Jtranse (tau,wb6+w,R5656) +tJrotb (tauR,beta,w56) *fac
*(pi*20/3));

R3e=R3e+(1/3)*(g."2) .* (Jtranse (tau,wb6-

w,R5656) +Jrotb (tauR, beta,w56) *fac* (pi*20/3)) ;

R3e=R3e*Kdd;

R3e trans=2*(e.”2).* (Jtranse(tau,w46+w,R4646))
R3e_trans=R3e_trans+(1/3)*(e.A2).*(Jtranse(tau,w46—w,R4646));
R3e trans=R3e trans+2*(g.”2).* (Jtranse(tau,wb56+w,R5656)) ;
R3e_trans=R3e_trans+(1/3)*(g.A2).*(Jtranse(tau,w56—w,R5656));
R3e trans=R3e trans*Kdd;

R3e rot=2*(e.”2).* (Jrotb(tauR,beta,w46)*fac* (pi*20/3));

R3e rot=R3e rot+(1/3)*(e.”2).*(Jrotb(tauR,beta,wd6)*fac* (pi*20/3));
R3e rot=R3e rot+2*(g.”"2).* (Jrotb(tauR,beta,w56)*fac* (pi*20/3));

R3e rot=R3e rot+(1l/3)*(g."2).* (Jrotb(tauR,beta,w56)*fac* (pi*20/3));
R3e rot=R3e rot*Kdd;
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Rde=2*((a.*f) ."2) .* (Jtranse (tau,w24+w,R2424)+Jrotb (tauR,beta,w24) *fa
c* (pi*20/3));

R4e=R4e+ (1/3)*((a.*f) .”2) .*(Jtranse (tau,w24-
w,R2424)+Jrotb (tauR, beta,w24) *fac* (pi*20/3));

R4e=R4e+2* ((a.*h) ."2) .* (Jtranse (tau,w25+w,R2525)+Jrotb (tauR, beta, w25
) *fac* (pi*20/3));

R4e=R4e+ (1/3)*((a.*h) .”2) .* (Jtranse (tau, w25-

w,R2525) +Jrotb (tauR, beta,w25) *fac* (pi*20/3)) ;

R4e=R4e*Kdd;

Rd4e trans=2*((a.*f)."2).*(Jtranse(tau,w24+w,R2424));
R4e_trans=R4e_trans+(1/3)*((a.*f).AZ).*(Jtranse(tau,w24—w,R2424));
R4e trans=R4e trans+2*((a.*h).”2).*(Jtranse(tau,w25+w,R2525));

R4e trans=R4e trans+(1/3)*((a.*h).”2).*(Jtranse(tau,w25-w,R2525));
Rd4e trans=R4e trans*Kdd;

R4e_rot=2*((a.*f).A2).*(Jrotb(tauR,beta,w24)*fac*(pi*20/3));

R4e rot=R4e rot+(1l/3)*((a.*f).”2).*(Jrotb(tauR,beta,w24)*fac* (pi*20/
3));

R4e rot=R4e rot+2*((a.*h).”2).* (Jrotb(tauR,beta,w25)*fac* (pi*20/3));
Rde rot=R4e rot+(1l/3)*((a.*h).”2).*(Jrotb(tauR,beta,w25)*fac* (pi*20/
3));

R4e rot=R4e rot*Kdd;

Rbe=2* ((c.*f) ."2) .*(Jtranse (tau,w34+w,R3434) +Jrotb (tauR,beta,w34) *fa
c* (pi*20/3));

R5e=R5e+ (1/3)* ((c.*f) .”2) .* (Jtranse (tau,w34-
w,R3434)+Jrotb (tauR, beta,w34) *fac* (pi*20/3)) ;

R5e=Rbe+2* ((c.*h) ."2) .* (Jtranse (tau,w35+w,R3535)+Jrotb (tauR, beta, w35
) *fac* (pi*20/3));

R5e=R5e+ (1/3)* ((c.*h) .”2) .* (Jtranse (tau, w35-

w,R3535) +Jrotb (tauR, beta,w35) *fac* (pi*20/3)) ;

R5e=Rbe*Kdd;

Rb5e trans=2*((c.*f)."2).*(Jtranse(tau,w34+w,R3434));
R5e_trans=R5e_trans+(1/3)*((c.*f).A2).*(Jtranse(tau,w34—w,R3434));
Rb5e trans=Rb5e trans+2* ((c.*h).”2).*(Jtranse(tau,w35+w,R3535));
R5e_trans=R5e_trans+(1/3)*((c.*h).A2).*(Jtranse(tau,w35—w,R3535));
R5e trans=R5e trans*Kdd;

R5e rot=2*((c.*f).”2).*(Jrotb(tauR,beta,w34)*fac* (pi*20/3));

R5e rot=R5e rot+(1l/3)*((c.*f).”2).*(Jrotb(tauR,beta,w34)*fac* (pi*20/
3));

R5e rot=R5e rot+2* ((c.*h).”2).* (Jrotb (tauR,beta,w35)*fac* (pi*20/3));
R5e rot=R5e rot+(1/3)*((c.*h).”2).*(Jrotb(tauR,beta,w35)*fac* (pi*20/
3));

R5e rot=R5e rot*Kdd;

R1=R0Oe+Rle+R2e+R3e+R4e+R5e;
R1 trans=R0Oe trans+Rle trans+RZe trans+R3e trans+R4e trans+Rbe trans

8990090000000000000000000000000000000000000000000000000000000000000000020
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Spectral density dependent on proton Larmor frequency (Eq. 82) for 1°N:

function [calka] = J gwl (p,w)

for i=1l:length (w)
calka (i) =quadgk (@ (u) macierzodwl5N (p,w(i),u),0,inf);
end

end

function [wynik,R1111,R2222,R3333,R4444] = macierzodwl5N (p,w,u)

tauR=p(1l) *1e-10;
x=p(2) ;
tau=x*tauR;
beta=p(4) ;

Axx=22e6;
Ayy=23e6;
Azz=142e6;

A= (Axx+Ayy+Azz) /3;
A=A*2*pi;
AxXxX=AXX*2*pi;
Ayy=Ayy*2*pi;
Azz=Azz*2*pi;

DeltaA=Azz-(1/2) * (Axx+AyY) ;
DeltaA=2/3*DeltaA*DeltalA+0.5* (Axx-Ayy) . 2;

wS=657*w;

tauRe=tauR;

cl=sgrt (0.5* (1+ (wS./sgrt (A."2+wS."2))));
c2=sqrt (0.5* (1-(wS./sqrt (A."24+wS."2))));
wl2=wS./24A/2-0.5*sqgrt (A."2+wS."2);
w2l=-wl2;

wl3=wS./2+A/2+0.5*sqrt (A."2+wS."2);
w3l=-wl3;

w23=sqrt (A."24+wS."2);

w32=-w23;

w24=wS./2-A./2+0.5*%sqrt (A."2+wS."2) ;
wd2=-w24;

w34=wS./2-A./2-0.5*sqgrt (A."2+wS."2) ;
wd3=-w34;

R1122=(1/16)* (cl+c2) .”2*Jrotb (tauRe,beta,wl2) ;
R1122=-2*R1122*Deltaldh;

R1133=(1/16)*(cl-c2) .”2*Jrotb (tauRe,beta,wl3) ;
R1133=-2*R1133*Deltald;
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R1144=(1/4)*Jrotb (tauRe,beta,wld) ;
R1144=-2*R1144*Deltalh;

R2233=(1/24)* (cl.”2-c2.72) ."2*Jrotb (tauRe,beta, w23) ;

R2233=-2*R2233*Deltal;

R2244=(1/16) * (cl+c2) .”2*Jrotb (tauRe,beta,w24) ;

R2244=-2*R2244*Deltald;

R3344=(1/16) * (cl-c2) ."2*Jrotb (tauRe, beta,w34) ;

R3344=-2*R3344*Deltal;

R1111=-R1122-R1133-R1144;
R2222=-R1122-R2233-R2244;
R3333=-R1133-R2233-R3344;
R4444=-R1144-R2244-R3344;

for k=1:1length (u)

X1111(k)=(u(k)."2)./tau+R1111+w*1i;
X2222 (k)= (u(k) ."2)./tautR2222+w*11i;
X3333(k)=(u(k)."2)./tau+R3333+w*1i;
X4444 (k)= (u(k)."2)./taut+tR4444+w*11i;

M=[X1111 (k) R1122 R1133 R1144;
R1122 X2222 (k) R2233 R2244;
R1133 R2233 X3333 (k) R3344;
R1144 R2244 R3344 X4444(k);]1:

Modw=inv (M) ;

vl=[1l cl.”"2-c2."2 ¢c2."2-cl.”2 -17];
v2=vl';

Mwynik (k)=(1/2)*vl1*Modw*v2;
MwynikRe (k) =real (Mwynik (k));

wynik (k)=(72).*(u(k).”2./...

(81.+49*u(k).”2.-2*u(k).”4.+u(k) .”6)) .* (MwynikRe (k))

end
end

Translational spectral density:
function [sum] = Jtranse (tau,w,Rxx)

J=zeros;
Ji=zeros;

for i=1l:length (w)

par(i)=tau.*Rxx (1) ;
end
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for i=1l:1length (w)
sum (1) =0;
end

for i=1l:1length (w)
umin=1.0d-4;
umax=1.0d3;
nstep=5000.0d0;

step= (umax-umin) /nstep;
u=umin;

while (u <= umax)

helpl (i)=(u.”2)/(81.49.0*u.”2-2*u.”44+u.”6);

helpl (i)=helpl (i) *72.0;

Jouter (i) =helpl (i) * (u.*ut+par(i)) ./ ((u.*utpar(i)) .2+ (w(i)*tau) .”2);
sum(i)=sum(i)+Jouter (i) *step*tau;

u=ut+step;

end
end
end

Rotational spectral density:

function [J] = Jrotb (tauR,beta,w)
for i=1l:1length (w)
Jcd(i)= (sin(beta*atan (w(i) .*tauR./beta)))/...
(w(i) . *(1+(w(i) .*tauR./beta) .”2).” (beta/2));
end

J=(1/5) *Jcd;
end

Spectral density dependent on proton Larmor frequency for N (Eq. 84):
function [calka] = J gwIl4d (p,w)

for i=1l:1length (w)

calka (i)=quadgk (@ (u)macierzodwld (p,w(i),u),0,inf);
end
end

function [wynik,R1111,R2222,R3333,R4444] = macierzodwl4d (p,w,u)

tauR=p (1) ;
x=p(2);

tau=x*tauR;
beta=p (4);
Axx=15.4e6;
Ayy=16.1e6;
Azz=99.5e6;

A= (Axx+Ayy+Azz)/3;
A=A*2*pi;

AXX=AXX*2*pi;
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Ayy=Ayy*2*pi;
Azz=RAzz*2*pi;

DeltaA=Azz-(1/2) * (Axx+AyY) ;

DeltaA=2/3*Delta”A*Delta”r+0.5*% (Axx-Ayy) .

wS=657*w;
tauRe=tauR;

betab= (A+2*wS+sqgrt (9*A.
alpha= (A+2*wS—-sqrt (9*A.
delta= (A-2*wS—-sqgrt (9*A.
gamma= (A-2*wS+sqgrt (9*A.

la=sqgrt (l+alpha.*alpha)
lb=sgrt (1+alpha.*alpha)
lc=sqgrt (l+betab. *betab)
ld=sqgrt (lt+betab. *betab)
le=sqgrt (l+gamma. *gamma)
lf=sqgrt (l+gamma. *gamma)
lg=sqgrt (l+delta.*delta)
lh=sqgrt (l+delta.*delta)

a=la.” (-1);
b=alpha./lb;
c=lc.”(-1);
d=betab./1d;
e=le.”(-1);
f=gamma./1f;
g=lg.”(-1);
h=delta./lh;

El=wS./2+A/2;

N2+H4AFAFWSHARWS .
N2+4AFAFWSHARWS .
N2=4*AFWS+HA*wS.
N2=4*AFWS+A*wS.

’
’
’
’
’
’
’

’

~2
~2
~2
~2

E2=0.5*sqrt (wS."2+wS.*A+(9/4) *A"2) -A/4;
E3=-0.5*sqgrt (wS."24+wS.*A+(9/4) *A"2)-A/4;
E4=0.5*sqrt (wS."2-wS.*A+(9/4) *A"2) -A/4;
E5=-0.5*sqrt (wS."2-wS.*A+(9/4) *A"2)-A/4;

E6=-wS./2+A/2;
w23=E2-E3;
w4 5=E4-E5;
wl2=E1-E2;
wl3=E1-E3;
w4 6=E4-E6;
wh6=E5-E6;
w24=E2-E4;
w25=E2-E5;
w34=E3-E4;
w35=E3-E5;
wld=E1-E4;
wl5=E1-E5;
w26=E2-E6;
w36=E3-E6;

~ ~— ~— ~—

~ ~— ~— ~—
.

/
./
/
/

(
(
(
(

2*sqgrt (2) *A) ;
2*sqrt (2) *A) ;
2*sqgrt (2) *A) ;
2*sqrt (2) *A) ;

R1122=(1/4) * (a+b.*sqgrt (2)) .”2.*Jrotb (tauRe,beta,wl2) ;

R1122=-1*DeltaA*R1122;

134



Appendix

R1133=(1/4) * (c+d.*sqgrt (2)) .”2.*Jrotb (tauRe,beta,wl3);
R1133=-1*DeltaA*R1133;

R1144=f.~2.*Jrotb (tauRe,beta,wld) ;
R1144=-1*DeltaA*R1144;

R1155=h."2.*Jrotb (tauRe,beta,wlb) ;
R1155=-1*DeltaA*R1155;

for m=1:length (w)
R1166 (m)=0;
End

R2233=(1/6) * (a.*d+c.*b+b.*d.*sgrt (2)) ."2.*Jrotb (tauRe,beta,w23) ;
R2233=-1*DeltaA*R2233;

R2244=(1/4)*(b.*f-a.*e) ."2.*Jrotb (tauRe,beta,w24) ;
R2244=-1*DeltaA*R2244;

R2255=(1/4)* (b.*h-a.*g) .”2.*Jrotb (tauRe, beta,w25) ;
R2255=-1*DeltaA*R2255;

R2266=a.”2.*Jrotb (tauRe,beta, w26) ;
R2266=-1*DeltaA*R2266;

R3344=(1/4)*(d.*f-c.*e) ."2.*Jrotb (tauRe,beta,w34) ;
R3344=-1*DeltaA*R3344;

R3355=(1/4) * (d.*h-c.*g) ."2.*Jrotb (tauRe,beta,w35) ;
R3355=-1*DeltaA*R3355;

R3366=c.”2.*Jrotb (tauRe,beta,w36) ;
R3366=-1*DeltaA*R3366;

R4455=(1/6) * (e.*h+f.*g+e.*g*sqrt (2)) . *Jrotb (tauRe, beta,w45) ;
R4455=1*Delta”A*R4455;

R4466=(1/4)* (f+e.*sqrt (2)) .*Jrotb (tauRe,beta,wdb) ;
R4466=-1*DeltalA*R4466;

R5566=(1/4) * (h+g.*sqgrt (2)) .*Jrotb (tauRe,beta, w56) ;
R5566=1*DeltaA*R5566;

R1111=-R1122-R1133-R1144-R1155-R1166;
R2222=-R1122-R2233-R2244-R2255-R2266;
R3333=-R1133-R2233-R3344-R3355-R3366;
R4444=-R1144-R2244-R3344-R4455-R4466;
R5555=-R1155-R2255-R3355-R4455-R5566;
R6666=-R1166-R2266-R3366-R4466-R5566;

for k=1l:length (u)

X1111(k)=(u(k).”2)./tau+R1111+w*1i;
X2222 (k)= (u(k) ."2)./taut+tR2222+w*11i;
X3333(k)=(u(k)."2)./tau+R3333+w*1i;
X4444 (k)= (u(k)."2)./taut+tR4444+w*11i;
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X5555 (k)
X6666 (k)

(u(k) .”2) ./tau+R5555+w*11i;
(u(k) .”2)./tautR6666+w*1i;

M=[X1111(k) R1122 R1133 R1144 R1155 R11l66;
R1122 X2222 (k) R2233 R2244 R2255 R2266;
R1133 R2233 X3333 (k) R3344 R3355 R3366;
R1144 R2244 R3344 X4444 (k) R4455 R4466;
R1155 R2255 R3355 R4455 X5555 (k) R5566;
R1166 R2266 R3366 R4466 R5566 X6666(k);];

Modw=inv (M) ;

vl=[1/2 0.5*(a.”2-b.”2) 0.5*(c.”2-d.”2) 0.5*(e.”2-f£.72) 0.5*(g."2-
h.”2) -1/21;

v2=vl';

Mwynik (k)=(2) *v1*Modw*v2;

MwynikRe (k)=real (Mwynik (k)) ;

wynik (k)=(72) .*(u(k).”2./...
(81.+9*u(k).”2.-2*u(k) . .+u(k).”6)) .* (MwynikRe (k)) ;

end

end
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A.2 Error analysis

The errors of the fitted coefficients have been estimated in the following way. For a dataset
of N points ((x;, ;). i =1...,N) afunction, f(x, p), has been fitted ( p is the matrix of the
fitted parameters which have been find using the method of least squares). The least square
estimator (denoted here as 3) is such set of fitted parameters that minimizes the following

expression [79,80]:

N

Z(Yi - f(xw p))2

i=1
(A1)
As one of the outputs the Isqurvefit MATLAB function returns the Jacobian matrix. In the

next step the variance of residuals is calculated [79,80]:

(A.2)
Using its values the covariance matrix can be defined [79,80]:
cov(p)=o(373)"
(A.3)
The pointwise square root of the covariance matrix gives the error estimates of the fitted

parameters [79,80]:
s, =(cov(p))*.
(A.4)
Values of the error estimates S, have been used to calculate the percentage errors listed in

Tables 7.1, 7.2 and 7.3. The errors, s(D,, ), of the diffusion coefficient have been estimated

2 2
oD oD
S(D12): \/(ﬁs(d IS )j +[87 - S(Ttrans)j
IS trans

(A.5)

using the equation:
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