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Abstract

This work is dedicated to a dynamo action and a magnetic field evolution in
different types of galaxies, namely in barred and ringed galaxies. The gas distribution
as well as magnetic field structures are significantly different in barred and ringed
galaxies than in normal spiral galaxies. To understand correctly physical processes
occurring in galaxies we cannot focus only on normal spiral galaxies, but we have to
study more complicated cases like bars and rings in galaxies.

The thesis presents the global evolution of the magnetic field and the interstellar
medium of barred and ringed galaxies in the presence of nonaxisymmetric compo-
nents of the gravitational potential, i.e. the bar and/or the oval. The magnetohydro-
dynamical dynamo is driven by cosmic rays, which are continuously supplied to the
galactic disk by supernovae remnants. Additionally, a weak, dipolar and randomly
oriented magnetic field is injected to the galactic disk during supernovae explosions.
No magnetic field is present at the beginning of simulations. To compare my re-
sults directly with the observed properties of galaxies I constructed realistic maps of
high-frequency polarized radio emission.

The main result is that the cosmic ray driven dynamo can amplify weak magnetic
fields up to a few µG within a few Gyr in barred and ringed galaxies. In the case
of the fastest amplification the e-folding time is equal to 104 Myr and the magnetic
field reaches equipartition at time t ∼ 1.8 Gyr. A completely random initial magnetic
field evolves into large scale structures. In most models the even (quadrupole-type)
configuration of the magnetic field with respect to the galactic plane can be observed.
Only in one model the odd (dipole-type) symmetry is obtained.

The modelled magnetic field configuration resembles maps of the polarized in-
tensity observed in barred galaxies. The modelled polarization vectors are distributed
along the bar and between spiral gaseous arms. The drift of magnetic arms is ob-
served during the whole simulation time. In the case of the simulated ringed galaxy
NGC 4736, the cosmic ray driven dynamo also works, however the obtained syn-
thetic polarization maps do not reflect all properties of the magnetic field visible
in observations. To better reproduce all observational futures in NGC 4736 more
complex numerical analysis is needed.

Many theoretical studies suggest that the galactic dynamo is responsible for the
most of observational properties of the magnetic field in barred and ringed galaxies.
For the first time this prediction is confirmed numerically and the obtained results
are present below in this dissertation.
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Chapter 1

Astrophysical context

1.1 Introduction

Magnetic fields are ubiquitous and exist in a wide variety of plasma environments. Both
observations and numerical simulations indicate that magnetic fields are major agents in
the interstellar and intracluster media. Magnetic fields play a crucial role in many astro-
physical processes and bodies, e.g. they are vital in a formation of stars, as they remove
an excess of angular momentum and stabilize gas clouds which results in reducing the star
formation efficiency to the observed values (Price & Bate 2009), they are also probably
crucial in protoplanetary disks, accretion disks, a formation and stability of jets, super-
nova (SN) remnants and galaxies. The idea of the global magnetic field of the Milky Way
was proposed about 50 years ago, and that of external spiral galaxies about 30 years ago.
It now seems clear that ordered, microgauss-level magnetic fields are common in spiral
(normal and barred) galaxy disks and halos (Beck 2009b). It is wildly accepted that un-
derstanding the role of magnetic fields in the formation and structure of galaxies is central
to understanding the evolution of galaxies. Although in the last decade, there has been
significant progress in studies of magnetic fields of galaxies, many important questions,
especially about magnetic field structures in barred and ringed galaxies, remain unan-
swered. For instance, we still do not know when were the first magnetic fields generated
(in young galaxies or in the early Universe before galaxies were formed) or how important
magnetic fields are for the physics of galaxies (do they influence a structure formation or
a gas outflow). Most of the observed properties of magnetic fields in barred and ringed
galaxies can be theoretically explained by the dynamo action and the gas distribution dis-
turbed by the nonaxisymmetric gravitational potential of the bar and/or oval (Beck et al.
2002). However, global numerical simulations confirming this predication have not been
made until now.

1
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1.2 General observational properties of barred galax-

ies

Bars are ubiquitous and occur in all types of disk galaxies, from early to late Hubble types
(Sandage & Bedke 1988). They can be found in large lenticular galaxies (Aguerri et al.
2005), in a significant fraction of spiral galaxies (Eskridge et al. 2000) and even in almost
all Magellanic-type galaxies (Odewahn 1996; Valenzuela et al. 2007). In optical images
almost half of all the nearby disk galaxies are barred (Marinova & Jogee 2007; Reese
et al. 2007; Barazza et al. 2008). However, when near-infrared (NIR) images are used the
fraction of barred galaxies increases to about 70% (Eskridge et al. 2000; Knapen et al.
2000; Menéndez-Delmestre et al. 2007). This is caused by the fact, that NIR observations
are more sensitive to older stellar populations which are usually major parts of bars. The
main properties of barred galaxies, such as the size of the bar relative to the galaxy size,
the number of spiral arms in the outer disk, the degree of overall symmetry or the gas and
dust content can be significantly different in different galaxies.

1.2.1 Dynamical structure

Bars are astrophysically important not only because they are very common in disk gala-
xies, but also because they can significantly affect a gas distribution. Radio observations
of barred galaxies show that gas is accumulated in the central part of the disk and forms
elongated structure called a bar (Sellwood & Wilkinson 1993). Bars are elongated, thus
the gravitational potential produced by them is nonaxisymmetric. This potential causes
that in the inner part of the disk the offset leading shocks are created, which are respon-
sible for significant compression of the gas observed as dust lanes (Sandage 1961; Beck
et al. 2002). The key role of a bar in formation of structures mentioned above was con-
firmed by numerical models (Athanassoula 1992; Piner et al. 1995). In those models the
relation between the size of a bar and the degree of curvature of a main dust lanes was
found, namely stronger bars have straighter dust lanes. Additionally, it is thought that
the gravitational potential of a rotating bar drives interstellar gas through torques and dy-
namical resonances into spiral arms and rings, which are visible in observations of barred
galaxies (e.g Erwin & Sparke 2002). Various theoretical studies (Lindblad 1960; Toomre
1969; Athanassoula 1992; Romero-Gómez et al. 2007; Kulesza-Żydzik et al. 2009, 2010)
have shown that spiral arms are created due to the gas redistribution caused by a stellar
bar. The observational correlation between bars and spirals is hard to be confirmed and
has been widely considered in the literature. Some authors (Block et al. 2004; Buta et al.
2005, 2009) claimed that the correlation between a bar and a spiral exists while others
(Seigar et al. 2003; Durbala et al. 2009) did not find any correlation. The recent and more
detailed studies of observations made by Salo et al. (2010) have confirmed that spiral arms
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are driven by the bar both in early and late type of barred galaxies.
The length of the major axis of the bar abar is always smaller than the total galaxy size

R25, where R25 is a diameter at which the surface brightness of the galaxy falls below 25
magnitudes per square second of arc in blue (Elmegreen & Elmegreen 1985). Taking into
account the above property, barred galaxies can be divided into two groups: early type
galaxies when the ratio abar/R25 ranges from 0.2 to 0.3 and late type galaxies with the
ratio abar/R25 larger than 0.3 and smaller than 0.6. What is more, for early type galaxies
the ratio of the bar’s major abar and minor bbar axes is between bbar/abar = 0.3 − 0.1,
while bar in late type galaxies are more elliptical, shorter and weaker than their earlier
counterparts (Sellwood & Wilkinson 1993).

The bar pattern speed Ωb is one of the most important parameters which plays crucial
role in the evolution of barred galaxies. The disk of a galaxy rotates differentially with
the circular angular velocity Ω, while the bar rotates like a solid body. Resonances oc-
cur where the circular angular velocity of the disk and the bar pattern speed satisfy the
following relationship of commensurability:

• Ω = Ωb - the most fundamental resonance called corotation radius (CR),

• Ω = Ωb − κ/2 - the so-called Inner Lindblad1 Resonance (ILR),

• Ω = Ωb + κ/2 - the so-called Outer Lindblad Resonance (OLR),

where
κ =

2Ω

R
d

dR
(R2Ω) (1.1)

is the epicyclic frequency and R is the radial coordinate. One of the most important rela-
tion which was found is that bars end just before the position of CR, thus R = RCR/abar =

1.2 ± 0.2 (e.g Lindblad et al. 1996). What is more, the gas content is accumulated at
resonances and a long-lived spiral structure can only exist between the ILR and the OLR
(Sellwood & Wilkinson 1993).

The bar pattern speed controls a barred galaxy’s dynamics and morphology, thus it is
very important to determine Ωb correctly. Usually, the bar pattern speed is parametrized
by the ratio of the corotation radius RCR to the length of the bar abar mentioned above.
Following Corsini et al. (2007), longer bars end near the CR (1.0 ≤ R ≤ 1.4) and are called
fast, while slow bars are shorter (R > 1.4). To specify the bar rotation parameter R the bar
pattern speed, which is very hard to measure, is required. For late type barred galaxies a
variety of indirect methods is used to determine the pattern speed of bars (Corsini 2010).
They are based on the gas distribution and kinematics and allow to specify the value of the
pattern speed from e.g. location of rings (Vega Beltrán et al. 1998) or from a comparison
of velocity field data to dynamical models of a gas flow (Lindblad et al. 1996). The

1Named after Bertil Lindblad 1895-1965.
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bar pattern speed can also be measured directly using the Tremaine-Weinberg method
(Tremaine & Weinberg 1984), however this method is used mainly for early type barred
galaxies (Corsini et al. 2007).

Many observations have shown (e.g Tubbs 1982) that the star formation rate (SFR) is
not uniform in barred galaxies. Gas is driven to the centre by the bar’s gravity torques,
where it is transformed into young stars. For late type barred galaxies the star formation
regions are observed along the whole bar, while for early type barred galaxies star forma-
tion regions are visible near the centre and/or at the ends of the bar. However, the average
global SFR in barred galaxies is similar to the one found in unbarred galaxies (Phillips
1996).

1.2.2 Rings formation

About 50% of all spiral disk galaxies possess ring-like or pseudoring-like patterns (de
Vaucouleurs 1963). Rings are usually related to barred galaxies, however they can also
be found in nonbarred systems (Buta & Combes 1996). They are divided into three major
categories: nuclear, inner and outer, and were classified by Buta (1986) as nr, r, and R,
respectively. Nuclear rings surround the nucleus and are much smaller in size than the
bar. The radius of the nuclear ring cannot be larger than one-quarter the size of the bar
(Knapen 2010). Inner rings occur near the ends of the bar, while outer rings are the largest
rings and they are bigger than the bar. When the structure of outer rings is unclosed or
incomplete they are referred to as pseudorings and denoted by R′.

It is generally accepted that galactic rings are formed in galactic disks due to gravita-
tional torques from bar-like patterns. The origin of the ring-like pattern has been studied
by many authors (e.g. Schwarz 1981, 1985; Buta 1999). They suggested that rings are
created by gas accumulation at the Lindblad resonances. Then, the ILR is linked to nu-
clear rings, the CR is associated with inner rings and the OLR is related to outer rings.
Although, density waves have been commonly assumed to be responsible for formation
of rings in barred galaxies, another theoretical model was proposed by Romero-Gómez
et al. (2006, 2007). In this model rings are related to the invariant manifolds of orbits near
unstable Lagrangian points. The same model is also used to explain the generation of
two-armed, grand design spirals in barred galaxies. This theory is a possible alternative,
however, to decide which one from the theories mentioned above is better (or maybe they
complete each other), more theoretical and observational work is necessary (Athanassoula
et al. 2009).

Rings in nonbarred systems may be related to resonances effects produced by a spiral
mode. They also may be induced by tidal actions from a gravitationally bounded compan-
ion (Silchenko & Moiseev 2006) or by a past bar which is now dissolved (Athanassoula
1996).
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Rings in nonbarred as well as in barred galaxies are active zones of star formation.
Gas accumulated in rings usually changes phase from neutral to molecular as it is sub-
mitted to higher pressures. This may result in a strong enhancement of the SFR in rings.
Recent results obtained by Grouchy et al. (2010) have shown that the SFR in rings (both
in barred and nonbarred galaxies) depends weakly or does not depend on the strength of
a nonaxisymmetric perturbation.

1.3 Magnetic fields in galaxies

Magnetic fields are ubiquitous in spiral, barred (Beck et al. 2002) and irregular galax-
ies (Chyży et al. 2000, 2003). They control the creation of structures in the interstellar
medium as well as the distribution of cosmic rays. Magnetic fields in galaxies need illu-
mination to be detectable and can be observed using indirect methods only. Information
about magnetic fields distribution and strength is usually obtained from polarized emis-
sion at optical, infrared, submillimeter and radio wavelengths (Sofue et al. 1986; Beck
2009b). The optical polarization of star light is caused by the alignment of interstel-
lar dust grains by magnetic fields in the interstellar medium (Davis & Greenstein 1951).
However, light can also be polarized by simple scattering and it is difficult to estimate
how much of the polarization is in fact due to magnetic alignment. Polarization mea-
surements at infrared and submillimeter wavelengths are not affected by scattered light,
hence the polarization originates in emission of dust particles aligned by a magnetic field
(e.g Hildebrand et al. 2000). At radio wavelengths linearly polarized waves are produced
by relativistic electrons accelerated in magnetic fields (synchrotron emission, Pacholczyk
(1970)). The Faraday effect can be used to determine the strength and direction of the
regular magnetic field component along the line of sight (Beck 2009a). The most direct
method to measure the strength of magnetic fields in gas clouds of the Milky Way and
in sturburst galaxies is the Zeeman splitting of spectral emission lines (Robishaw et al.
2008).

The large scale structure of the magnetic field in galaxies is generally represented as
a superposition of modes with different azimuthal and vertical field directions and sym-
metries. In disks of galaxies the axisymmetric spiral (ASS) mode is the strongest mode,
however the bisymmetric spiral mode (BSS) or a mixture of both with a preponderance of
one of the two shapes is also observed. In Figure 1.1 a schematic view of the ASS and the
BSS mode is presented. Rotation measure observations show that the ASS magnetic field
exists in several galaxies, e.g., in M31 (Sofue &Takano 1981), IC 342 (Sokoloff et al.
1992) or LMC (Gaensler et al. 2004). The BSS mode has been with no doubt observed
only in one galaxy, namely in M81 (Sokoloff et al. 1992). Many others observations indi-
cate that the BSS mode can also exists in few more galaxies, e.g., in M33 or NGC 2276
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Figure 1.1: The bisymmetric (BSS, two left figures) and the axisymmetric (ASS, two right figures)
magnetic field spirals. In the BSS mode the magnetic field is directed inwards along one gaseous
arm and outwards along the other one. In the ASS mode the direction of the magnetic field is the
same in the whole galactic disk and in different galaxies can be directed inwards or outwards.

Figure 1.2: The even (quadrupolar, left figure) and the odd (dipolar, right figure) symmetry of the
magnetic field with respect to the galactic plane. The direction of the magnetic field is marked by
symbols: � - out of the page and ⊗ - into the page.

(Hummel & Beck 1995). The vertical symmetry perpendicular to the disk plane can be
the even (quadrupolar) or the odd (dipolar) (Figure 1.2). It appears that galactic magnetic
fields should have the even symmetry rather than the odd one. This is caused by the fact
that global magnetic fields of spherical objects (including stars and planets) are likely to
be predominantly dipolar, whereas those of flat objects (spiral galaxies) are quadrupolar.
Although a clear ASS or BSS mode was detected in several galaxies, most of magnetic
field structures seem to be a superposition of different dynamo modes. This may be a
result of many processes occurring in disks of galaxies which may be correlated with
density waves, shocks, bars or even with collisions and interactions of galaxies (Beck
et al. 1996; Krause 2004).

1.3.1 Interstellar medium

Magnetic fields are one of three basic agents of interstellar media (ISM) of galaxies. The
other two components are cosmic ray gas and ordinary matter (gas and dust) (Duric 1999).
A cosmic ray gas consists of relativistic electrons, protons and heavier atomic nuclei. The
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galactic cosmic ray energy density is 1 eVcm−3 and the corresponding number density
is about 10−10 cm−3. This value is significantly smaller than the average thermal density
(0.1 − 1 cm−3), thus cosmic rays are weightless pressure components of the ISM. Since
cosmic rays are usually charged particles, they are affected by the Lorentz force, i.e. they
are coupled to magnetic fields. Because of the high electric conductivity of plasma, mag-
netic field lines follow plasma flows (the frozen-in condition). Thus magnetic fields are
also coupled to the thermal background plasma. Consequently, three main components
of the ISM, magnetic fields, gas and cosmic rays are dynamically coupled, i.e. an energy
excess of each component can be converted into energy of other two components until
equilibrium is reached (Hanasz & Lesch 2000). In other words, the cosmic ray gas is an
essential dynamical ingredient of the ISM of galaxies because its energy density is com-
parable to the energy density of the magnetic field, thus the magnetic field and cosmic
rays are in equipartition.

The strength of the total and regular magnetic field can be derived from the intensity
of the total synchrotron emission if the equipartition mentioned above between the energy
densities of the total magnetic field and the total cosmic rays is assumed (Beck & Krause
2005). Then, the typical average strength of the total magnetic field in spiral galaxies is

about 10 µG (Beck 2009b). Mean equipartition strengths of the total magnetic field range
from about 5 µG in radiofaint galaxies, like M33 (Buczilowski & Beck 1991), up to about
30 µG in gas rich galaxies with high star formation rates, like M51 (Fletcher et al. 2004).

1.3.2 Magnetic fields in barred galaxies

The nonaxisymmetric gravitational potential of the stellar bar strongly influences not only
the motion of gas and stars in a galaxy, but also the magnetic field distribution. Radio
polarization observations of barred galaxies (e.g Beck et al. 2002, 2005; Harnett et al.
2004) show that their magnetic field topology is significantly more complicated than in
the case of grand-design spiral galaxies.

The first systematic observations of the polarized radio emission from a sample of 20
barred galaxies was made by Beck et al. (2002). Little or no polarized radio emission
was detected in galaxies with large bars but small amount of gas and low star formation
rate (NGC 1300 and 1433) or in small galaxies (NGC 1313, 1493 and 5068). In other
galaxies the radio continuum morphology is formed as a result of star formation in spiral
arms. The nearby barred galaxy NGC 1365 is the best example in this sample. In Fig. 1.3
the total (left panel) and polarized (right panel) intensity as well as the observed magnetic
field vectors (dashes) for NGC 1365 galaxy are overlayed onto an optical image (both
Figures were taken from Beck et al. (2002)). According to Fig. 1.3 the main magnetic field
features observed in NGC 1365 can be summarized as follows. The polarized emission
is strongest in the central part of the galaxy, where the bar is present. In this region the
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Figure 1.3: Left panel: The total intensity contours and magnetic field vectors of NGC 1365 at
λ = 6.2 cm superimposed on the optical image. Right panel: The polarization map at λ = 6.2 cm
of the barred galaxy NGC 1365. Polarized intensity (contours) and polarization angles (dashes)
are superimposed on the optical image and were taken from (Beck et al. 2002).

polarized emission forms ridges coinciding with the dust lanes along the leading edges
of the bar. The observed enhancement of the polarized emission is probably caused by
shock compression of isotropic random fields into anisotropic ones. In the radio ridges
the total radio intensity is also very strong and this amplification can be explained by
shearing and shock compression of the isotropic random magnetic field. What is more,
the enhancement of the total intensity is much higher than that of the polarized intensity.
This disparity is observed because the regular magnetic field is strong enough to resist
shearing and hence the amplification of the total magnetic field by shear is reduced2.
Using the same argument, the difference between the magnetic and velocity fields in the
dense gas in front of the ridges can be explained. The polarization vectors change quickly
their pitch angles in the bar region whenever they are located upstream the dust lanes
and this results in the depolarization valley where the polarized emission almost vanishes.
Near shear shock areas the regions of vanishing polarized intensity are also observed. In
the outer disk magnetic field vectors form a spiral pattern with the maxima of emission
along spiral gaseous arms and in interarm regions. This spiral shape of the magnetic field
and large pitch angles indicate that the galactic dynamo works in this galaxy. Similar
properties of a magnetic field have been also observed in NGC 1672, NGC 7552 and
NGC 1097. Polarization maps of the latter galaxy show that in the southern bar the value
of pitch angle violently jumps from about −15° to about −75°(Beck et al. 2005). This

2Strong regular magnetic field is coupled to diffuse gas and decoupled from dense gas. This causes that
the Maxwell stress is strong enough to resist the development of a shear flow in diffuse gas (Beck et al.
2005).
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Figure 1.4: The polarization map at 8.46 GHz of the ringed galaxy NGC 4736 taken from Chyży
& Buta (2008). The polarized intensity (contours) and polarization angles (dashes) are superim-
posed on the Hα image (Knapen et al. 2003).

behaviour may result from shearing of the regular magnetic field.
The average total (polarized and unpolarized) magnetic field strength for this sample

of barred galaxies is 10 ± 3 µG and is comparable to the mean equipartition value of
11± 4 µG obtained for the sample of 146 late type galaxies (Fitt & Alexander 1993). The
average regular magnetic field, calculated from polarized radio emission, is equal to 2.5±
0.8 µG. The strongest total magnetic field is detected in the central star-forming regions
(about 60 µG in NGC 1097) and in the radio ridges along bars of galaxies (20 µG− 30 µG
in NGC 1365). In spiral arms of barred galaxies the total magnetic field is about 20 µG,
while the regular one is 4 µG.

1.3.3 Coherent spiral magnetic field in NGC 4736

Radio observations of the magnetic field distribution in ringed galaxies are excellent ex-
amples which can help us understand and explain the process of the generation of mag-
netic fields in disk galaxies. Figure 1.4 shows the distribution of the polarization angle and
the polarized intensity superimposed onto the column density of gas within the nearest and
the largest ringed galaxy NGC 4736 (Chyży & Buta 2008). This galaxy possesses a well
visible inner gaseous ring with active zones of star formation. The magnetic field does not
follow the gas distribution as expected under the assumption of passively advected mag-
netic fields and what is usually observed in grand-design spirals. Instead magnetic vectors
cross the inner ring at a remarkably large and constant pitch angle of about −35°. Addi-
tionally, the distribution of the Faraday rotation measure is asymmetric and the strength
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of the magnetic field is up to 30 µG and 13 µG in the total and regular magnetic field, re-
spectively. The magnetic field properties mentioned above strongly support the idea that
the observed magnetic field structure within ringed galaxy NGC 4736 is caused by a pure
large-scale MHD dynamo action (Chyży & Buta 2008).

1.4 Dynamo action in galaxies

To explain the origin of magnetic fields in galaxies two major models have been proposed:
a primordial field and the dynamo theory (Kronberg 1994). The first model assumes that
the large scale magnetic field observed in galaxies is just a primordial magnetic field
twisted by a differential rotation. However, this very simple theory cannot explain the
basic properties of the magnetic field in galaxies. For example, the large scale mag-
netic fields observed in galaxies have pitch angles (p = arctan Br/BΦ) between −10° and
−35° 3 (Beck 1993), while the magnetic spiral produced by the differential rotation of
the primordial field has the pitch angle of the order of −1° (Shukurov 2002). The main
argument against this model is the decay time of the large scale primordial magnetic field.
If the primordial magnetic field does not need any support except the differential rotation,
then due to the turbulent diffusivity any ordered magnetic field component will disappear
within about 0.7 Gyr (Rohde et al. 1998). On the other hand, the dynamo theory is capable
of maintaining and reproducing observed large scale magnetic fields in galaxies. Thus, to
explain observational properties of the magnetic field in spiral, barred and ringed galaxies
the dynamo action is necessary. To sum up, it is thought that the dynamo action can be
responsible for the following observational properties of the large scale magnetic field in
galaxies (most of them cannot be explained using the primordial magnetic field model):

• amplification of galactic magnetic fields up to several µG within a lifetime of a few
Gyr,

• maintenance of the created magnetic fields in a steady state (magnetic energy in a
turbulent flow rapidly cascades towards small scales and dissipates),

• large magnetic pitch angles between −10° and −35° (Beck 1993),

• vertical symmetry: even (quadrupolar) or odd (dipolar) of the observed regular
magnetic field with respect to the plane of a galaxy,

• azimuthal symmetry: the ASS or the BSS mode, the dynamo theory favours the
ASS mode, while the primordial theory the BSS mode,

3The negative value of the pitch angle indicates that the magnetic spiral is trailing with respect to the
galactic rotation.
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• magnetic field which does not follow the gas distribution, i.e. magnetic fields in
NGC 4736 crossing the inner gaseous ring without any change of their direction
(Chyży & Buta 2008) or magnetic arms in NGC 1365 which are located between
gaseous spirals and the central part of the galaxy (Beck et al. 2002).

1.5 Cosmic ray driven dynamo

One of the most common approaches to the dynamo problem is the mean field dynamo
model. The mean field dynamo theory (Ruzmaikin et al. 1988) can explain magnetic
fields in many contexts: the Earth, the Sun, or stars. In galaxies the mean field dynamo
allows the generation of the regular large scale magnetic field as a result of the joint action
of differential rotation Ω and helical turbulent motions of interstellar gas (the so-called α-
effect). However, in the case of galaxies the classical kinematic dynamo gives rather small
timescale of the magnetic field amplification, i.e., about 109 yr. This timescale is too long
to explain strong magnetic fields in high redshift galaxies beyond z = 1 (Bernet et al.
2008). A faster amplification is possible when the cosmic ray driven dynamo (Parker
1992; Hanasz et al. 2004, 2006) is used. This dynamo is based on two principle effects:
First, the cosmic ray energy is continuously supplied by SNe remnants to the galactic disk,
which becomes unstable due to the Parker instability. Second, the fast turbulent magnetic
reconnection (Lazarian & Vishniac 1999; Kowal et al. 2009) allows small scale loops of
a magnetic field to merge into large scale coherent structures in the limit of vanishing
resistivity.

Another model of the fast galactic dynamo, the so-called supernova driven dynamo,
was proposed by Gressel et al. (2008). In their model they assumed that the thermal
energy is injected to the galactic disk during a SN explosion, while the cosmic ray com-
ponent is neglected (this is in contrast to the cosmic ray driven dynamo model, where
the cosmic ray energy is introduced to the galactic disk during a SN explosion, while the
thermal energy is not taken into account). In the supernova driven dynamo the authors
also applied a cooling and a heating function to reflect the multi-phase nature of the ISM.
Numerical simulations in the shearing box approximation have shown that the supernova
driven dynamo causes an exponential amplification of a magnetic field and can explain
many observational features of magnetic fields in galaxies. However, in their method the
time step for the cooling and the heating functions is very small. In fact, the computa-
tional cost of the global simulation of the supernova driven dynamo in barred and ringed
galaxies far exceeds the amount of computational resources available4.

4All numerical simulations presented here have been performed on the GALERA supercomputer in
TASK Academic Computer Centre in Gdańsk. The GALERA cluster consists of 5376 cores.
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1.5.1 Parker instability

The cosmic ray gas plays essential roles in the dynamics of the ISM because the energy
density of cosmic rays is of the same order as that of the magnetic field and thermal gas
(see Subsection 1.3.1). Relativistic electrons in the cosmic ray gas are accelerated by
shocks which are produced during SNe explosions (Reynolds 1996). It was estimated
that about 10 − 50% of the total 1051 erg kinetic energy output from a single SN is con-
verted to the cosmic ray energy (Jones et al. 1998). What is more, Giacalone & Jokipii
(1999) showed that the cosmic ray gas diffuses anisotropically along magnetic field lines.
Parker (1966, 1967) proposed that the ISM (which is composed of gas, magnetic fields
and cosmic rays) stratified by vertical gravity in galactic disks becomes unstable against
the Parker instability (PI). The reason for the instability is the buoyancy of the weightless
ISM components, i.e. a magnetic field and cosmic rays. Although, the contribution of
these components to the total pressure is significant, they do not contribute to the mass
density of the ISM. When the PI works in a galactic disk, magnetic lobes are formed,
which extend outward the disk to the distance of an order of 1 kpc. For a more detailed
description of the PI I refer the reader to Appendix B.0.2.

1.5.2 Fast magnetic reconnection

In order to allow the cosmic ray driven dynamo to work smoothly, magnetic reconnec-
tion must proceed at speeds characteristic of local dynamical velocities. In other words
the reconnection rate has to be comparable to the local Alfvén velocity. In that case,
the magnetic reconnection is fast, which means that it does not depend on the resistivity
or depends on the resistivity logarithmically (see Parker 1979). The first three dimen-
sional (3D) model of the fast magnetic reconnection was proposed by Lazarian & Vish-
niac (1999). Their model is based on the Sweet-Parker reconnection scheme, where two
oppositely directed magnetic field lines are brought into contact. However, it also includes
effects of turbulence and substructure in the magnetic field. In this model the reconnection
rate does not depend on the resistivity, but is determined only by turbulence, in particular
by its strength and an injection scale. The results of numerical analysis (Kowal et al. 2009)
confirmed that the reconnection rate in the Lazarian & Vishniac (1999) model is insensi-
tive to the resistivity and depends only on turbulence properties. It is important to note
that the magnetic reconnection model described above is fast only in 3D. Reconnection
in 2D depends on the resistivity and is not fast (Kulpa-Dybeł et al. 2010).

1.5.3 Numerical model of the cosmic ray driven dynamo

The original concept of the fast cosmic ray driven dynamo was proposed by Parker (1992).
Several researchers have approached this problem numerically, e.g. Hanasz et al. (2004,
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2006); Otmianowska-Mazur et al. (2007); Siejkowski et al. (2010). According to authors
listed above this dynamo involves the following elements. Cosmic rays are continuously
supplied to the galactic disk due to SNe explosions. As was mentioned above the galactic
disk stratified by gravity is unstable against the PI. Buoyancy effects induce the formation
of magnetic loops in the frozen-in, predominantly horizontal magnetic fields. The rotation
of the interstellar gas causes that magnetic field loops are twisted by the Coriolis force.
Next, due to the fast magnetic reconnection small scale magnetic loops merge to form the
large scale radial magnetic field component. The newly created magnetic field component
is stretched by differential rotation, which results in the amplification of the large scale
toroidal magnetic field component. Combined action of these effects is sufficient to trigger
the exponential growth of the large scale magnetic field on timescales of 140 − 250 Myr
(Hanasz et al. 2006), which are comparable to the galactic rotation period.

Many 3D MHD numerical simulations in the shearing-box approximation have shown
that the cosmic ray driven dynamo can exponentially amplify weak magnetic fields up to
a few µG within a few Gyr in spiral galaxies (Hanasz et al. 2004, 2006, 2009a) as well
as in irregular galaxies (Siejkowski et al. 2010). What is more, some of the observed
magnetic fields’ properties such as extended halo structures of edge-on galaxies, the so
called X-shaped structures (Soida 2005; Krause 2009), can be explained using the cosmic
ray driven dynamo (Otmianowska-Mazur et al. 2009). The first complete global-scale
3D numerical model of the cosmic ray driven dynamo has been demonstrated recently
by Hanasz et al. (2009b). These simulations have given very interesting results and have
shown that the CR driven dynamo is one of the most promising processes responsible for
the amplification and maintance of galactic magnetic fields.

1.5.4 Seed fields

Any dynamo requires a seed field, however, the origin of the first magnetic fields in the
Universe is still one of the most challenging problems in modern astrophysics (e.g Kulsrud
& Zweibel 2008). Two different views on the generation of seed fields are being taken
into account: one possibility is that seed fields can be essentially of cosmological (pri-
mordial) origin and the other possibility is that seed fields are generated in astrophysical
processes occurring in the ISM. A variety of cosmological processes taking place in the
early Universe were proposed. For example, magnetic fields may be generated in various
phase transition, like the electroweak transition (Quashnock et. al. 1989) and the quark-
hadron phase transition (Quashnock et. al. 1989), or during the Inflation era (Turner &
Widrow 1988). These processes lead to the creation of very tiny magnetic fields of about
10−20 − 10−25 G (Widrow 2002; Subramanian 2010).

Another possibility is the generation of the seed fields due to astrophysical processes,
such as the Biermann battery (Syrovatskii 1970; Xu et al. 2008). In this scenario, even
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if magnetic fields are initially absent in a star, a weak field is produced via the Biermann
mechanism due to different inertia of electrons and ions. The newly created tiny magnetic
fields are amplified by stellar dynamo. Next, a star may explode as a SN and release
magnetized material which spreads into the ISM. Reese (1987) suggested that Crab-type
SNe remnants have fields of an order of 10−4 G. He also estimated that in the early stage
of the galactic evolution there could be 106 randomly oriented SNe remnants similar to the
Crab Nebula, which may lead to rather significant seed fields of an order of 10−9 G. The
recent simulations made by Hanasz et al. (2009b) have shown that small scale magnetic
fields of stellar origin can be amplified exponentially by the cosmic ray driven dynamo to
the observed values. It means that SNe explosions can produce a sufficiently strong seed
field for the cosmic ray dynamo action.



Chapter 2

Numerical setup

2.1 Method

I performed all numerical simulations with the aid of the Godunov code (Kowal et al.
2009) based on the following methods:

• a third higher-order shock-capturing Godunov-type scheme and the essentially non
oscillatory spatial reconstruction (see Londrillo & Del Zanna 2000; Del Zanna et al.
2003),

• a multi-state Harten-Lax-van Leer (HLLD) approximate Riemann solver for isother-
mal MHD equations (Mignone 2007),

• a second higher-order Runge-Kutta time integration (see Del Zanna et al. 2003).

The divergence of a magnetic field must vanish everywhere at all times (∇ · ~B = 0). This
condition is satisfied when the field interpolated constraint transport (CT) scheme based
on the staggered grid is used (see Evans & Hawley 1988). All these methods together
cause that the Godunov code is very efficient, robust and numerically stable. Additionally,
the Godunov code has been extensively tested and successfully used by several authors
(Kowal et al. 2009; Kulesza-Żydzik et al. 2009; Falceta-Gonçalvesal et al. 2010; Kulesza-
Żydzik et al. 2010) working on different astrophysical processes.

During my calculations I used two clusters:

• the OCTOPUS cluster (48 CPUs) in the Astronomical Observatory of the Jagiel-
lonian University - test problems,

• the GALERA supercomputer (5376 CPUs) in TASK Academic Computer Centre
in Gdańsk - main simulations.

One simulation performed on the GALERA cluster takes approximately 74k CPU hours.

15
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2.1.1 Basic equations

I investigated the evolution of galaxies using the magnetized fluid approximation gov-
erned by the isothermal non-ideal MHD equations of the form

∂ρ

∂t
+ ∇ ·

(
ρ~υ

)
= 0, (2.1)

∂~υ
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+

(
~υ · ∇

)
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8π
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+
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4πρ
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(
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)
, (2.3)

∂~B
∂t

= ∇ ×
(
~υ × ~B − η∇ × ~B

)
, (2.4)

∇ · ~B = 0 (2.5)

where ~υ is the large-scale velocity of gas, ρ is the gas density distribution, p is the gas
pressure, pcr is the cosmic ray pressure, Φ is the gravitational potential, ~B is the magnetic
induction, e is the energy and η is the turbulent magnetic diffusivity. As I described in
Section 1.3.1 cosmic rays are weightless, thus they only contribute to the total pressure
(not to the total mass) and are included in the gas motion equation as ∇pcr (Berezinski
et al. 1990). In all presented simulations I use an isothermal equation of state

p = ρc2
s , (2.6)

where cs is the constant, isothermal sound speed.

2.1.2 Transport of the cosmic ray component

To make the set of MHD Eqn. (2.1:2.5) complete the part responsible for the cosmic ray
transport was added to them. Following Schlickeiser & Lerche (1985) the propagation of
the cosmic ray component in the ISM is described by the diffusion-advection equation

∂ecr

∂t
+ ∇(ecr~υ) = ∇(K̂∇ecr) − pcr(∇ · ~υ) + CRsource, (2.7)

where ecr is the cosmic ray density, pcr = (γcr − 1)ecr is the cosmic ray pressure, K̂ is
the diffusion tensor, ~υ is the gas velocity and CRsource is the source term for cosmic ray
energy. I assume that the cosmic ray energy is added to the system by SNe explosions
(see Subsection 2.1.4). The adiabatic index γcr for the cosmic ray fluid is set to be 14/9.

Following Ryu et al. (2003) the anisotropic diffusion of the cosmic ray gas is described
by diffusion tensor K̂ as

Ki j = K⊥δi j + (K‖ − K⊥)nin j, (2.8)
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where K⊥ and K‖ are perpendicular and parallel (with respect to the local magnetic field
direction) cosmic ray diffusion coefficients and ni = Bi/B are components of the unit
vectors tangent to magnetic field lines.

I added the cosmic ray diffusion algorithm to the Godunov code using the implemen-
tation method proposed by Hanasz & Lesch (2003) (see Appendix B.0.1).

2.1.3 Gravitational potentials

Parameter Φ in Eqn. 2.2 represents the total gravitational potential of the modelled galaxy.
It can be divided into two parts: an axisymmetric and nonaxisymmetric one. The axisym-
metric component consists of the rotating disk of stars, the large and massive halo and the
central bulge. In all models the halo potential Φh has the same form as the bulge potential
Φb and is described by a Plummer sphere

Φb,h = −
GMb,h√

x2 + y2 + z2 + a2
b,h

, (2.9)

where b, h stands for the bulge and the halo (respectively), M is the mass of each compo-
nent, x, y, z are Cartesian coordinates and ab,h corresponds to the length scale of the bulge
and the halo. Depending on the model the stellar disk potential Φd is represented by the
isochrone potential of the form

Φd = −
GMd

ad +

√
a2

d + x2 + y2
, (2.10)

or by the Miyamoto-Nagai potential (Miyamoto & Nagai 1975) of the form

Φd = −
GMd√

x2 + y2 + (ad +

√
z2 + b2

d)2

, (2.11)

where Md is the disk total mass, ad is the disk scalelength, bd is the disk scaleheight.
The nonaxisymmetric component of the gravitational potential, i.e. the bar or the oval

is modelled using a second-order (n = 2) Ferrers (1877) ellipsoid whose density ρ(x)
distribution is

ρ(x) =

ρc(1 − m2)2 , m < 1

0 , m ≥ 1
, (2.12)

where, ρc = 105
32π

GMb
abc is the central density, Mb is the bar (oval) total mass and

m2 =
x2

a2 +
y2

b2 +
z2

c2 , (2.13)

with a > b ≥ c as the respective semi-axes.
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The corresponding potential is expressed by the integral

Φb = −πGabc
ρc

n + 1

∫ ∞

λ

du
∆(u)

(1 − m2(u))n+1, (2.14)

where

m2(u) =
x2

a2 + u
+

y2

b2 + u
+

z2

c2 + u
, (2.15)

∆2(u) = (a2 + u)(b2 + u)(c2 + u), (2.16)

n = 2 (second order Ferrers ellipsoid) and λ is the unique positive solution of

m2(λ) = 1, (2.17)

outside of the bar (m ≥ 1) and λ = 0 inside the bar. If we put a > b > c in Eqn. 2.12:2.16
we obtain an ellipsoid, however for a > b = c we get a prolate spheroid.

2.1.4 SNe explosions

To determine the SNe probability distribution and its rate I use the Schmid (1959) law in
the form of

ΣS FR ∝ Σ
n
gas (2.18)

where ΣS FR is the surface density of the star formation, Σgas is the surface density of
gas and n = 1 ÷ 1.4 (Kennicutt 1998). Consequently, from Eqn. 2.18 I obtain that the
probability of a single SN event is proportional to the local gas density.

Each SN explosion is a localized source of cosmic rays with uniform distribution in
xy coordinates and Gaussian distribution in z coordinate. In all models I assume that
10% of 1051 erg SN kinetic energy output is converted into the cosmic ray energy, while
the thermal energy from SNe explosions is neglected. In some models also weak and
randomly oriented magnetic vector potential is injected during SNe explosions. Following
Jackson (1999) and Kowalik & Hanasz (2007) the magnetic vector potential A of a dipolar
magnetic field produced by a single SN explosion can be expressed as

A(r, φ, θ) = A0
r sin θ

(r2
S N + r2 + 2rrS N sin θ)3/2

eφ, (2.19)

where rS N is the size of the SN remnant, r, θ and φ are spherical coordinates and A0 is the
amplitude. Parameter rS N also denotes the half-width of the Gaussian profile describing
the distribution of the injected cosmic ray energy.

To obtain a model that is fully repeatable, a random distribution of SNe explosions is
initialized using the same ’seed’1. Then the pseudo-random generator produces the same
succession of random numbers used in the SNe explosions algorithm.

1Seed is the argument which initializes the pseudo-random number generator.
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2.1.5 Polarization maps

Using the synthetic radio polarization maps, the obtained results can be compared directly
with the observed properties of galaxies. To obtain the intensity and the polarization angle
of B-vectors I integrated Stokes parameters along the line of sight and next I smoothed
them with a Gaussian beam (see Appendix B.0.1). In all models I used the same position
angle θ = 90° and two different inclinations: i = 0° (face-on) and i = 90° (edge-on).
I assumed that the intrinsic polarization degree of synchrotron emission is 70% and energy
spectral index of relativistic electrons γ = 2.8. All quantities (the magnetic field, the
cosmic ray energy and the density of gas) needed for calculations of polarization maps
were obtained during numerical simulations.

2.2 Initial conditions

In all models time is measured in Gyr, while mass, length, velocity and magnetic field
are expressed in M�, kpc, km s−1 and µG, respectively. The speed of sound is set to cs =

5.12 km s−1 and the initial gas density at the galactic midplane ρ0 is equal to 1.0nH cm−3,
where nH is a hydrogen atom. Following several detailed reviews of the theory of cosmic
ray diffusion (e.g. Strong et al. 2007), the values of the cosmic ray diffusion coefficients
assumed in all simulations are: K‖ = 3 × 1028 cm2s−1 = 100 kpc2 Gyr−1 and K⊥ = 3 ×
1026 cm2s−1 = 1 kpc2 Gyr−1, while the resistivity coefficient η is set to be 3 · 1024 cm2s−1 =

0.1 kpc2 Gyr−1. According to the assumption that the cosmic ray pressure is equal to the
gas pressure

β =
pcr

pgas
(2.20)

I assume that β is constant and equal to 1. Additionally, along all directions I apply
outflow boundary conditions. To obtain the most realistic results in all of the simulations
I assume that no initial magnetic field is present (α = pmag/pgas = 0) but the weak and
randomly oriented magnetic field is introduced to the disk in 10% of SNe explosions (see
Section 2.1.4). At the beginning of the calculation of all models the magnetic field is not
present. It is added later to the galactic disk through randomly oriented SNe explosions
in the period of time 0.1 Gyr − 1.1 Gyr. During this period weak 10−5 µG and dipolar
magnetic field is supplied in 10 % of SNe remnants. After t = 1.1 Gyr dipolar magnetic
field is no longer injected because, due to the dynamo action, its contribution starts to be
insignificant.

Parameters described above are the same in the model of a barred and a ringed galaxy.
However, there are many other parameters which vary in those models. All of those
parameters are listed in below descriptions of the barred and ringed galaxy models.
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Figure 2.1: The rotation curve (left panel) and the angular frequency (right panel) for the modelled
barred galaxy. The solid horizontal line Ωbar = 30 km s−1kpc−1 determines the resonances which
positions is given in Table 2.1.

2.2.1 Numerical model of a barred galaxy

I numerically investigated the cosmic ray driven dynamo model in barred galaxies in a
computational domain which covers 30 kpc × 30 kpc × 7.5 kpc of space with 300 × 300 ×
75 cells of a 3D Cartesian grid, which gives 100 pc of spatial resolution in each direction.
As I mentioned above, our model of a barred galaxy consists of four components: a large
and massive halo, a central bulge, a rotating disk of stars and a bar. They are represented
by different analytical gravitational potentials (see Section 2.1.3): the halo and the bulge
components are described by two Plummer spheres, the stellar disk is represented by
the isochrone gravitational potential, the bar is defined by the prolate spheroid. The bar
component is introduced into the galaxy gradually in time, until it reaches its final mass
Mbar (from t = 0.1 Gyr to t = 0.4 Gyr). In order to conserve the total mass of the galaxy
I reduce the mass of the bulge, having Mbar(t) + Mb(t) = const during the calculations.
The bar rotates with a constant angular speed Ωbar = 30 km s−1kpc−1, which determines
the values of RILR = 4 kpc, RCR = 5 kpc and ROLR = 6 kpc. In Figure 2.1 the rotation
curve of gas (left panel) generated by gravitational potentials as well as the position of
Lindblad resonances (right panel) are present. The obtained rotation curve has a velocity
peak (228 km s−1) at radii 1.0− 1.5 kpc and stays approximately flat up to large distances.
This shape of the rotation curve is similar to the one usually observed in barred and non-
barred spiral galaxies (Sofue et al. 1999). All quantities which characterize the model of
the barred galaxy are summarized in Table 2.1.

In the beginning the modelled galactic disk is in hydrostatic equilibrium (Figure 2.2,
left panel). The density and velocity field resulting from the total gravitational potential
are shown in Figure 2.2. The galactic disk extends up to RBG where the gas density
distribution is being cut down. I made five different simulations of the barred galaxy. In
each of them I analyze the evolution of the barred galaxy for a different SN frequency
fS N . Following Ferrière (1998) the observed SN frequency for the Galaxy is 1/445 yr−1
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parameter name value units
Md disk mass 4.0 · 1010 M�
ad length scale of the disk 0.6 kpc
Mb bulge mass 1.5 · 1010 M�
ab length scale of the bulge 5.0 kpc
Mh halo mass 1.2 · 1011 M�
ah length scale of the halo 15.0 kpc
Mbar bar mass 1.5 · 1010 M�
abar length scale of bar major axis 6.0 kpc
bbar length scale of bar minor axis 3.0 kpc
cbar length scale of bar vertical axis 2.5 kpc
Ωbar bar angular velocity 30.0 km s−1kpc−1

CR corotation radius 6.0 kpc
IILR Inner Inner Lindblad Resonance 0.4 kpc
OILR Outer Inner Lindblad Resonance 3.0 kpc
OLR Outer Lindblad Resonance 8.5 kpc
RBG galaxy radius 13.5 kpc

Table 2.1: Adopted parameters for the barred galaxy model.

Figure 2.2: The initial distribution of the density with overploted vectors of the velocity field for
the modelled barred galaxy.
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Model fS N[ yr−1]
BS1 1/25
BS2 1/50
BS3 1/100

BS4 (RM) 1/200
BS5 1/500

Table 2.2: Parameters of the barred galaxy simulations presented in this thesis. Subsequent
columns show: simulation name and the SN frequency fS N .

for Type I and 1/52 yr−1 for Type II SNe. Taking into account both types of SNe, one
explosion is expected every 47 years. In my simulations I use the following values of
the SN frequency: fS N = 1/25 yr−1 for model BS1 fS N = 1/50 yr−1 for model BS2,
fS N = 1/100 yr−1 for model BS3, fS N = 1/200 yr−1 for model BS4 and fS N = 1/500 yr−1

for model BS5. The time frequency of SN explosion fS N equal to 25 means that one
SN explodes per 25 years. Because the modelled barred galaxy has slightly smaller size
than the Milky Way, three of the values above of the SN frequency are smaller than those
observed in our Galaxy. In Table 2.2 all models of the barred galaxy presented in this
thesis are listed.

2.2.2 Numerical model of the ringed galaxy NGC 4736

NGC 4736 (M94) is a bright, nearby ringed galaxy classified as (R)SAB(rs)ab type by
Buta et al. (2007). Although, this galaxy is a member of a large group of galaxies Canis
Venatici I (Geller & Huchra 1983) it does not possess any sizable nearby companions.
NGC 4736 also shows no signs of recent mergers or close interactions, which means that
all observed morphological structures are triggered by an intrinsic mechanism occurring
in the galaxy. Optical, ultraviolet and infrared photographs (Trujillo et al. 2009) show that
this galaxy consists of certain features, e.g. an inner and an outer ring and an extensive
spiral structure. The object has been made the subject of numerous studies and several
good reviews about its morphology can be found in the literature (e.g. Mulder & van
Driel 1993; Möllenhoff et al. 1995). Using optical and HI observations Bosma et al.
(1977) identified five morphological regions in this system:

1. A bright central region within a radius of RGR < 480 pc (15” at a distance of 6.3 Mpc
as used by Gerin et al. (1991)) where the evidence of recent star formation activity
has been found (see Beckman et al. 1991). The isophotal twisting in this region
could be the consequence of sub-structures, such as a triaxial bulge (Beckman et al.
1991) or a long central bar (Kormendy 1993; Möllenhoff et al. 1995).
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2. The zone of an inner spiral structure, 480 pc < RGR < 1.6 kpc (15” to 50”) bounded
by the inner ring where the majority of HII regions and young blue objects (char-
acteristic for strong star formation) are located. Several interpretations have been
proposed to explain the origin of the inner ring. van der Kruit (1976) suggested
that ring-like structures in NGC 4736 are the manifestation of nuclear activity. On
the other hand, using Fabry-Perot data, Buta (1988) concluded that the inner ring is
related to the ILR produced by some nonaxisymmetric gravitational potential.

3. An outer spiral structure with a multiple arm pattern 1.6 kpc < RGR < 6.4 kpc (50”
to 200”). This region probably forms a massive oval disk with an axis ratio of 0.8.
The nonaxisymmetric gravitational potential produced by the oval disk could be
responsible for the existence of the inner and the outer ring. In fact, simulations
made by Gerin et al. (1991); Gu et al. (1996) show that stable and long-lived rings
located at the ILR and the OLR are created due to this potential.

4. A gap of lower surface brightness.

5. A faint outer ring at RGR ∼ 10.6 kpc (330”), which (as was mentioned above) is cre-
ated due to the nonaxisymmetric gravitational potential of the oval disk. However,
recent investigation of non-optical data made by Trujillo et al. (2009) strongly sup-
port the idea that the outer part of the galaxy is formed by an extensive structure of
spiral arms rather than by a closed stellar ring. Trujillo et al. (2009) presented also
the numerical model in which the oval distrotion is responsible for the development
of spiral arms and for the inner ring formation.

Following observations of NGC 4736, the modelled ringed galaxy consists of five com-
ponents: the large and massive halo, the central bulge, the outer disk, the oval distortion
and the small bar. As in the case of the barred galaxy, the halo and the bulge are described
by Plummer spheres, however the disk is modelled using the Miyamoto & Nagai poten-
tial (Eqn. 2.11). Parameters in gravitational potentials (masses and length scales) have
essentially been chosen by fitting the observed rotation curve with the model potentials
described above. In Figure 2.3 (left panel) the obtained rotation curve for the adopted val-
ues of the parameters (see Table 2.3) is shown. Similar values of masses and length scales
were retrieved from the fit to the stellar mass surface density by Trujillo et al. (2009).

The nonaxisymmetric perturbing gravitational potential from the oval distortion can
be described by a very mild ellipsoid bar. In this case the bar major aoval, minor boval

and vertical coval axes are equal to 4.8 kpc, 4.1 kpc and 0.5 kpc, respectively. The obtained
axis ratio is equal to 0.85 and is consistent with observations made by Bosma et al. (1977).
The additional weak bar component is represent by prolate spheroid with abar = 0.6 kpc
and bbar = cbar = 0.4 kpc. Taking into account the above nonaxisymmetric gravitational
potentials, we obtain a so-called double-barred galaxy, where the smaller bar is nested
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Figure 2.3: The rotation curve (left panel) and the angular frequency (right panel) for the mod-
elled ringed galaxy. Solid horizontal lines Ωbar = 40 km s−1kpc−1 and Ωoval = 175 km s−1kpc−1

determine the resonances which positions are given in Table 2.3.

inside the larger bar (here the oval). Many authors (e.g. Shlosman et al. 1989) have
studied the dynamically possible pattern speeds of double bars and have concluded that
the “inner“ small bar should rotate much faster than the “outer“ large bar.

The most important issue in the presented model of the ringed galaxy is the deter-
mination of the bar and the oval pattern speeds which can explain a number of features
in NGC 4736. Several pattern speeds for the bar and oval distortions have been pro-
posed in the literature. In the case of the oval disk the suggested value of the pattern
speed Ωoval ranges from 35 km s−1kpc−1 (Waller et al. 2001) to 56 km s−1kpc−1 (Mul-
der & Combes 1996). The pattern speed Ωoval adopted in my simulations is equal to
40 km s−1kpc−1 and agrees nicely with previous studies made by Trujillo et al. (2009),
where Ωoval = 38 km s−1kpc−1. Using this pattern speed, the following positions of Lind-
blad resonances and CR are obtained: RIILR = 0.4 kpc, ROILR = 1.8 kpc, ROLR = 7.7 kpc
and RCR = 4.4 kpc. Comparing these numbers with observations of NGC 4736 made by
Bosma et al. (1977) I get quite good agreement. Additionally, using the given sequence
of resonances I obtain the following ratios: RCR/Roval = 0.92 and ROLR/RCR = 1.75.
These ratios match well the theoretical values proposed by Buta & Combes (1996), where
RCR/Roval = 1.04 and ROLR/RCR = 1.70.

The inner bar rotates much faster than the outer oval disk and, what is more, the OLR
of the inner bar should coincide with the OILR of the oval disk. To meet these two con-
straints, the pattern speed of the inner bar in my model is set to be Ωbar = 175 km s−1kpc−1.
Because, I do not use the same numerical model of NGC 4736 as the one used by previous
authors, the bar angular velocity is lower than that applied by Möllenhoff et al. (1995),
where Ωbar = 290 km s−1kpc−1. In the resonance-diagram (Figure 2.3, right panel) loca-
tions of Lindblad resonances produced by the inner bar and the oval disk are marked.

Both nonaxisymmetric gravitational potentials are introduced into the galaxy slowly in
time (from t = 0.1 Gyr to t = 0.4 Gyr), until they reach their final masses Mbar and Moval.
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parameter name value units
Md disk mass 3.5 · 1010 M�
ad length scale of the disk 5.5 kpc
bd height scale of the disk 0.5 kpc
Mb bulge mass 1.7 · 1010 M�
ab length scale of the bulge 0.5 kpc
Mh halo mass 2.0 · 1011 M�
ah length scale of the halo 25.0 kpc
Mbar bar mass 7.5 · 109 M�
abar length scale of bar major axis 0.6 kpc
bbar length scale of bar minor axis 0.4 kpc
cbar length scale of bar vertical axis 0.4 kpc
Ωbar bar angular velocity 175.0 km s−1kpc−1

CR corotation radius 1.2 kpc
ILR Inner Lindblad Resonance – kpc
OLR Outer Lindblad Resonance 1.8 kpc
Moval oval mass 3.5 · 1010 M�
aoval length scale of oval major axis 4.8 kpc
boval length scale of oval minor axis 4.1 kpc
coval length scale of oval vertical axis 0.5 kpc
Ωoval oval angular velocity 40.0 km s−1kpc−1

CR corotation radius 4.4 kpc
IILR Inner Lindblad Resonance 0.4 kpc
OILR Inner Lindblad Resonance 1.8 kpc
OLR Outer Lindblad Resonance 7.7 kpc
RRG galaxy radius 11.5 kpc

Table 2.3: Adopted parameters for the ringed galaxy NGC 4736 model.

In order to conserve the total mass of the galaxy I reduce the bulge mass and the disk mass,
having Mbar(t) + Mb(t) = const and Moval(t) + Md(t) = const during the calculations. All
quantities which characterize the model of the ringed galaxy are summarized in Table 2.3.
Computational domain covers 26 kpc × 26 kpc × 6.4 kpc of space with 256 × 256 × 64
cells of 3D Cartesian grid, which gives 100 pc of spatial resolution in each direction.
Initially, the modelled ringed galaxy is in hydrostatic equilibrium (Figure 2.4, left panel).
The density and velocity field resulting from the total gravitational potential are shown
in Figure 2.4. The galactic disk extends up to RRG where the gas density distribution is
being cut down. As in the case of the barred galaxy, I tested the evolution of the ringed
galaxy for five different SN frequencies. In my simulations I use the following values
of the SN frequency: fS N = 1/50 yr−1 for model RS1 fS N = 1/100 yr−1 for model RS2,
fS N = 1/200 yr−1 for model RS3, fS N = 1/300 yr−1 for model RS4 and fS N = 1/500 yr−1

for model RS5. The time frequency of SN explosion fS N equal to 50 means that one SN
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Figure 2.4: The initial distribution of the density with overploted vectors of the velocity field for
the modelled ringed galaxy.

Model fS N[ yr−1]
RS1 1/50
RS2 1/100
RS3 1/200
RS4 1/300
RS5 1/500

Table 2.4: Parameters of ringed galaxy simulations presented in this thesis. Subsequent columns
show: simulation name and the SN frequency fS N .

explodes per 50 years. In Table 2.4 all models of the ringed galaxy presented in this thesis
are listed.



Chapter 3

Results

3.1 Simulations of the barred galaxy

In the following section the outcome of simulations of the barred galaxy evolution is
discussed. An overview of the various models can be found in Table 2.2, where five
models with different SN frequency are listed. For all of these models the distribution
of the gas density and cosmic ray energy density, polarization maps, pitch angles, the
distribution of the toroidal magnetic field component and the growth rate of the magnetic
field energy are studied. All simulations are stopped when the magnetic field reaches
the equipartition, thus, depending on the model, between t = 4 Gyr and t = 6 Gyr. By
testing many different models the range of SN frequency fS N for which the magnetic field
amplification in barred galaxies is most efficient can be determined.

3.1.1 General evolution for the reference model RM (BS4)

To show basic dynamical and magnetic features of the simulated barred galaxy I present
below the complete description of the time evolution of the reference model RM (BS4,
fS N = 1/200 yr−1). I chose this model as the main model because, in my opinion, it is
the best example from the available sample of the barred galaxy models (see Table 2.2).
During the first stage of all simulations, ahead I start to activate SNe explosions or nonax-
isymmetrical gravitational potentials, the system evolves to reach a dynamical equilibrium
between gas and cosmic rays. After that time (t = 0.1 Gyr) the influence of the cosmic
ray driven dynamo action on the evolution of the barred galaxy model can be studied in
detail.

27
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Figure 3.1: The logarithm of the gas density and the gas velocity field (vectors) in vertical and
horizontal slices through the disk center for selected time steps for the reference model RM (BS4).
The gas density is expressed in units of hydrogen atom per cubic centimeter (1.0nH cm−3).

3.1.1.1 Gas density and velocity field

To present and shortly describe basic dynamical features of the reference model RM,
I show the logarithm of the gas density distribution and velocity field for selected time
steps of galactic evolution (see Figure 3.1). In the galactic midplane the well defined
structures, i.e., spiral arms, dust lanes and the central bulge, are visible and change their
appearance during the whole simulation time. As it was mentioned in the previous sec-
tion (Section 2.2.1), the bar is introduced into the galaxy gradually in time from 0.1 Gyr
to 0.4 Gyr (it takes about 1.2 rotation of the bar). During this time two arc-like struc-
tures appear in the central part of the galaxy (see the time step t = 0.25 Gyr, Figure 3.1).
From time step t = 0.4 Gyr the mass of the bar does not change. Additionally, the nonax-
isymmetric gravitational potential produced by the bar has a strong influence on the gas
distribution in the disk. Namely, two arcs formed earlier evolve into two streams of gas
along the leading edges of the bar. These gas density structures can be identified with
the dust lanes (very well defined at time steps t = 0.5 Gyr and t = 1.75 Gyr, Figure 3.1),
with strong density enhancements at their outer ends and in the galactic center. Density
enhancements are also observed in the outer galactic disk, where spiral arms are gener-
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ated. Initially, at time t = 0.5 Gyr (Figure 3.1) gaseous spiral arms are thick and slightly
disturbed by the SN activity. At later time steps outer spiral arms are still well defined,
however due to SNe explosions their structures are not plain and many discontinuities can
be observed (e.g., time steps t = 2.75 Gyr or t = 4.25 Gyr, Figure 3.1).

The presence of the bar strongly disturbs the gas velocity field. Rapid changes of the
velocity direction can be seen in the innermost region of the bar (e.g., time steps 1.75 Gyr
or 2.75 Gyr, Figure 3.1). Gas flows out of the centre just before it passes through the
shock, and then it turns back into the centre along the leading edge of the bar. Addition-
ally, as the simulation proceeds gas streams inside the bar are less visible, while shocks
in these regions are still strong, which is confirmed by velocity vectors pattern (see time
steps 1.75 Gyr or 2.75 Gyr, Figure 3.1). During a few rotations of the bar almost the whole
gas from the central part of the galaxy transfers to its outer regions and to its nucleus. In
vertical slices the configuration of velocity field vectors indicates that the gas component
outflows above and below the central part of the disk. Indeed, the gas component is ini-
tially located mainly in the disk plane (see the time step t = 0.5 Gyr, Figure 3.1), but at
later time steps (e.g., time steps 2.75 Gyr or 5.5 Gyr, Figure 3.1) is subsequently trans-
ferred by SNe explosions from the galactic disk to the galactic halo. The vertical wind
produced by SNe remnants triggers the mass outflow, whose averaged rate is equal to
1.1M� per year.

3.1.1.2 Distribution of the cosmic ray energy density

The logarithm of the cosmic ray energy density distribution for the evolution of the ref-
erence model RM is shown in Figure 3.2. Presented time steps are the same as those for
the gas density distribution (see Figure 3.1). The enhancement of the cosmic ray energy
and the gas density are visible in the same regions (compare Figure 3.1 and Figure 3.2).
Again, all main features of the barred galaxy are present during the whole simulation time,
however, well defined spiral arms at time steps t = 0.5 Gyr, t = 1.75 Gyr and t = 2.75 Gyr
in Figure 3.2 are less visible at later time steps. As the simulation proceeds most of the
cosmic ray gas is transported to the central part of the galaxy (compare e.g., time steps
0.25 Gyr and 5.5 Gyr, Figure 3.2). Additionally, some amount of the cosmic ray gas is
also transferred to the outer part of the galaxy. In contrast to the gas distribution, the cos-
mic ray gas is present both in the galactic disk and galactic halo from the very beginning
of the simulation, which can be noticed in all vertical planes in Figure 3.1. At each time
step in Figure 3.2 traces of the SN activity can be observed. They are indicated by the
growth of the cosmic ray energy density and visible as small spots. Star formation rate
enhancements correspond to high gas density regions. It is clearly visible at the time step
t = 0.5 Gyr in Figure 3.2 and harder to see at later time steps, when the contrast between
injected and already present cosmic ray gas is smaller than the initial one.
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Figure 3.2: The logarithm of the cosmic ray energy density distribution in vertical and horizontal
slices through the disk center for selected time steps for the reference model RM (BS4). The
cosmic ray energy density is expressed in units of electron volt per cubic centimeter eVcm−3.

3.1.1.3 Amplification and structure of the magnetic field

At the beginning of the calculation of the reference model RM the magnetic field is not
present. As mentioned in Section 2.2, it is added later to the galactic disk through ran-
domly oriented SNe explosions in the period of time 0.1 Gyr − 1.1 Gyr. After t = 1.1 Gyr
the dipolar magnetic field is no longer injected because, due to the dynamo action, its
contribution starts to be insignificant. In Figure 3.3 the toroidal magnetic field component
in horizontal and vertical slices is plotted. Red colour represents regions with the positive
toroidal magnetic field, blue with negative one, while unmagnetized regions of the volume
are white. At time steps t = 0.5 Gyr and t = 1.0 Gyr the toroidal magnetic field is mostly
random, as it originates from randomly oriented magnetic dipoles. The ordered magnetic
field is visible in the inner part of the galaxy, where it follows the gas distribution, namely
the bar and dust lanes. In this area the magnetic field also reaches the highest values
during the whole simulation time. At later time step t = 2.0 Gyr (Figure 3.3) the toroidal
magnetic field component forms well defined magnetic arms which can be observed till
the end of the simulation. The total magnetic field in magnetic arms is approximately ten
times weaker than the magnetic field in the bar region (compare Table 3.1 and Table 3.2).
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Figure 3.3: The distribution of the toroidal magnetic field in vertical and horizontal slices through the disk center
for selected times steps for the reference model RM (BS4). Red colour represents regions with the positive toroidal
magnetic field, blue with negative, while unmagnetized regions of the volume are white. To enhance weaker structures
of the magnetic field in the outer galactic disk (e.g. magnetic arms) the colour scale in magnetic field maps is saturated.
The maximum magnetic field strengths in galactic bar and in magnetic arms for selected times steps are given in
Table 3.1 and Table 3.2, respectively.
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Gas motions in the bar region generate shocks which together with the dynamo action
cause that the magnetic field is strongest in this area.

Due to the nonaxisymmetric gravitational potential of the bar and the cosmic ray
driven dynamo, the positive toroidal magnetic field component gradually reaches higher
values, both in the bar and magnetic arms. Additionally, in the galactic disk and halo the
volume occupied by the positive toroidal magnetic field component expands continuously
till the end of the simulation. Reversals of the magnetic field can be observed at a few time
steps. For instance, at time steps t = 1.5 Gyr (Figure 3.3) and t = 2.0 Gyr (Figure 3.3) in
the very inner part of the bar the negative toroidal magnetic field component is present.
However, these reversals disappear almost completely at subsequent time steps. More-
over, due to influence of the nonaxisymmetric gravitational potential, magnetic reversals
are visible between the bar and magnetic arms at time steps t = 4.75 Gyr or t = 6.0 Gyr in
Figure 3.3.

In vertical slices at the beginning of the calculation the mainly randomly distributed
toroidal magnetic field is present. Next, at the time step t = 1.5 Gyr (Figure 3.3) the odd
(dipole-type) configuration of the magnetic field with respect to the galactic plane can be
observed. However, this configuration is not permanent and from the time step t = 2.0 Gyr
in Figure 3.3 the even (quadruple-like) symmetry of the magnetic field is dominant. Ad-
ditionally, in vertical slices small reversals appear during the whole simulation time.

The cosmic ray driven dynamo action in barred galaxies causes that the total magnetic
field (left panel, Figure 3.4) and azimuthal flux (right panel, Figure 3.4) grow exponen-
tially. The magnetic field starts to increase at time t = 0.1 Gyr, thus at the beginning of the
introducing magnetic dipoles to the galactic disk through SNe explosions. The first phase
of the growth is very rapid because the magnetic energy, generated by injected dipoles,
accumulates quickly (left panel, Figure 3.4). The second phase of the growth is due to
the pure cosmic ray driven dynamo action and lasts until a saturation level is reached at
time t = 4.5 Gyr. Between t = 1.45 Gyr and t = 1.72 Gyr the total magnetic energy stops
to grow and even decreases. This may be caused by the change of the magnetic field
symmetry with respect to the galactic plane: from dipole-like into quadrupole-like (see
vertical slices in Figure 3.3 for time steps t = 1.0 Gyr, t = 1.5 Gyr and t = 2.0 Gyr).

The growth of the regular magnetic field due to any dynamo process is defined by
the amplification of the azimuthal magnetic flux component (Figure 3.4, right panel).
The regular magnetic field grows up on an average timescale (e-folding time) equal to
300 Myr (see Table 3.3). At the beginning of the simulation, especially from t = 0.1 Gyr
to t = 0.6 Gyr, the magnetic flux rapidly changes sign and its absolute value differen-
tiates randomly around the exponential curve. Between t = 0.72 Gyr and t = 1.32 Gyr
the magnetic flux does not increase and remains at the same level. These time intervals
correspond to time steps in which reversals and the even symmetry of the toroidal mag-
netic field are visible (see Figure 3.3). After the time step t = 1.32 Gyr the growth of the
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Figure 3.4: The time evolution of the total magnetic field energy B2 (left panel) and the mean
azimuthal flux Bφ (right panel) calculated for the reference model RM (BS4).

magnetic flux is clearly exponential and lasts until the equipartition is reached.

3.1.1.4 Polarization maps

In Figure 3.5 I present the magnetic field evolution in time as seen in radio polarymetry for
the reference model RM for the same time steps as in Figure 3.3. Polarization maps show
the distribution of the polarization angle and polarized intensity superimposed onto the
column density during 6.0 Gyr of galactic evolution. All face-on and edge-on polarization
maps have been smoothed down to the resolution 40′′. Black colour represents regions
with the lowest density, while yellow with the highest one. At first, the magnetic field
maxima correspond to the gas density enhancements, where SNe explosions are located,
what can be easily seen at the time step t = 0.5 Gyr (Figure 3.5). At this time step, the
magnetic field is present in the gaseous arms as well as in the central part of the galaxy.
Additionally, no regular magnetic field is observed in the interarm region. However, at the
next time step (t = 1.0 Gyr, Figure 3.5) magnetic arms start to detach from gaseous spirals
and drift into the interarm region. Thus, at time step t = 1.5 Gyr magnetic spiral is clearly
visible between the bar and gaseous arms. The drift of magnetic arms is continuous and
takes place during the whole simulation time. Its shape changes slightly during the time
evolution. For instance, at time steps t = 2.0 Gyr or 4.25 Gyr (Figure 3.5) magnetic spiral
is defined in the interam region, while at time steps t = 5.25 Gyr or 6.0 Gyr (Figure 3.5) it
is less visible because it connects with the inner magnetic structures.

The drift of magnetic arms into the interarm area was described in a number of papers
(e.g. Kulesza-Żydzik et al. 2009, 2010), where authors concluded that this behaviour is
caused by a difference in the angular velocity of magnetic arms and the gaseous spiral.
Namely, magnetic arms do not corotate with a gaseous spiral structure, but they follow the
general gas motion in the disk, which has a slightly lower angular velocity. However, in
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Figure 3.5: Face-on and edge-on polarization maps at λ = 6.2 cm for selected times steps for the reference model
RM (BS4). Polarized intensity (contours) and polarization angles (dashes) are superimposed onto column density plots.
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these papers no dynamo action was included. Taking into account the cosmic ray driven
dynamo action the similar effect was obtained, but contrary to the previous studies, this
effect is observed during the whole simulation time, not only in a short period of the
calculation. This difference can be explained as follows. SNe explosions in gaseous arms
continuously produce the random magnetic field, which due to the cosmic ray driven
dynamo action becomes regular. This regular field is also continuously shifted to the
interarm region. Thus, due to the dynamo action and galaxy rotation the magnetic spiral
is visible in the zone between the bar and gaseous arms during the whole evolution (see
e.g. the time step t = 4.25 Gyr in Figure 3.5).

In edge-on maps in Figure 3.5 extended structures of polarization vectors are present.
Near the disk plane the magnetic field is mainly parallel to the disk, while in the halo
vertical magnetic field component can also be seen (see e.g. the time step t = 3.75 Gyr in
Figure 3.5). A strong vertical field in the halo is probably transported by an outflow from
the galactic disk. The most extended structures are apparent at the late time steps of the
calculation (see time steps t = 5.25 Gyr or t = 6.0 Gyr in Figure 3.5).

Magnetic field vectors in the disk plane are not always parallel to the disk. At later
time steps (from t = 4.25 Gyr, Figure 3.5), in the bar region, the configuration of the
magnetic field changes very rapidly and magnetic field vectors perpendicular to the disk
plane are visible (see e.g. the time step t = 4.75 Gyr in Figure 3.5). The observed variation
of pitch angles is probably caused by large amount of SNe explosions in this region.
Namely, the excess of the cosmic ray gas can trigger a very fast outflow from the disk
plane in the bar region, which may change the direction of magnetic field vectors.

3.1.1.5 Pitch angles

In order to analyze and compare pitch angles of magnetic and gaseous arms the obtained
results are shown in the frame of azimuthal angle in the disk and ln(r) (r being the galac-
tocentric distance). In this case the logarithmic spiral is represented by a straight line
inclined by its pitch angle. In Figure 3.6 the gas density (integrated along the line of
sight) with over-plotted contours of the polarized intensity and B-vectors for four time
steps (t = 0.75, 1.50, 2.25, 5.5 Gyr) are visible. Following these time steps the obvious
drift of magnetic field arms into the interarm region occurs (between r = 6.9 kpc and
r = 9.5 kpc). In fact, initially (t = 0.75 Gyr, Figure 3.6) magnetic and gaseous arms pos-
sess similar pitch angles which are of an order of ∼ −13°. However, at later time steps
magnetic structures move to the interarm region and significantly decrease their pitch an-
gles. Additionally, the estimated mean pitch angle (averaged over azimuthal angle and
radius in the galaxy’s plane) changes only slightly during the evolution of the galaxy and
ranges between −7° and −8°.



CHAPTER 3. RESULTS 36

Figure 3.6: The distribution of the polarized intensity and B-vector orientations for the reference
model RM (BS4) superimposed onto the gas density at λ = 6.2 cm in the frame of azimuthal angle
in the disk and ln(r). The map has been smoothed to the resolution 40′′.

3.1.2 Dependence on the SN frequency

To check how the overall evolution of the barred galaxy and the e-folding time depend
on SNe explosions I made several simulations with different values of the SN frequency
fS N (see models BS in Table 2.2). Simulation series BS were performed for the following
values of SN frequency: fS N = 1/25 yr−1 for model BS1 fS N = 1/50 yr−1 for model BS2,
fS N = 1/100 yr−1 for model BS3, fS N = 1/200 yr−1 for model BS4 and fS N = 1/500 yr−1

for model BS5. The rest of the input parameters had the same value in all these models.

Gas and cosmic ray density. Gaseous structures produced during the galactic evolu-
tion of BS models are very similar. In all cases the nonaxisymmetric gravitational poten-
tial of the bar influences the gas density distribution and triggers the accumulation of the
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Figure 3.7: The logarithm of the gas density and the velocity field (vectors) in vertical and hor-
izontal slices through the disk center at the time step t = 4.0 Gyr for BS models evolution. Top
left, middle and right panels correspond to models BS1, BS2 and BS3, respectively, while bottom
left and bottom right to models BS4 (RM) and BS5, respectively. The gas density is expressed in
units of hydrogen atom per cubic centimeter (1.0nH cm−3).

gas in the bar region and the creation of gaseous arms. The velocity vectors distribution
also does not change with different SN activity. The overall time evolution of the gas and
velocity field in BS models is almost the same as in the case of the reference model RM
(see Section 3.1.1.1) and is not repeated here.

Although the evolution of gaseous structure looks very similar in all BS models, there
are some differences. In Figure 3.7 I present the logarithm of the gas density distribution
and velocity field at the time step t = 4.0 Gyr for five BS models. To compare the obtained
results the same scale values are used in all models. For the highest SN rate (model BS1,
top left panel, Figure 3.7) gaseous arms are short and thick, while for the lowest SN
activity (model BS5, bottom right panel, Figure 3.7) gaseous arms are thin, long and form
an outer ring. In the case of BS3 and BS4 models gaseous spiral is more disordered by
SNe explosions than in the other cases. What is more, the enhancement of the gas in
the very inner part of the galaxy as well as in the bar region depends on the SN activity.
Namely, the higher the SN rate the more gas is transported to the inner part of the galaxy,
which can be seen in vertical slices (Figure 3.7). Additionally, for the lowest SN activity
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gas accumulates closer to the CR radius than to the central part of the galaxy (model BS5,
bottom right panel, Figure 3.7). The averaged mass outflow rate grows with increasing
SN frequency (Table 3.3). In fact, for model BS1 with the highest SN rate the overall
rate of the mass outflow is 4.7M� per year, while for model BS5 with the lowest SN
activity the overall rate of the mass outflow is only 0.6M� per year. The cosmic ray gas
density distribution is not significantly different in BS models and is similar to that of the
reference model RM (see Figure 3.2).

Magnetic field evolution: toroidal field, growth rate, polarization maps, pitch
angles In Figures 3.8, 3.9, 3.10, 3.3 and 3.11 the toroidal magnetic field component in
horizontal and vertical slices as well as face-on and edge-on polarization maps are shown
for BS1, BS2, BS3, BS4 (RM) and BS5 models, respectively. In all models the magnetic
field is injected to the galactic disk using the same conditions as in the reference model
RM. Model BS4 (RM) was precisely described in the previous Subsection (3.1.1.3).

In the case of model BS1, with the highest SN activity ( fS N = 1/25 yr−1), the initial
random toroidal magnetic field component (Figure 3.8, top row, the time step t = 0.5 Gyr)
evolves into well ordered structures. In the middle of the calculation two magnetic re-
gions with opposite magnetic field direction can be observed (see time steps t = 1.75 Gyr
or t = 2.0 Gyr, Figure 3.8, top row). In the very inner part of the bar, a volume with
the positive toroidal magnetic field component is present, both in horizontal and vertical
slices. The inner area is encircled by the zone occupied by the negative toroidal mag-
netic field. At next time steps (from t = 2.5 Gyr to t = 4.5 Gyr, Figure 3.8, second row)
the large scale magnetic field is of even (quadrupole-like) parity with respect to the disk
midplane. It is important to note, that no magnetic arms can be observed in BS1 model.
Indeed, the amplification of the magnetic field occurs only in the bar region (Figure 3.8,
top and second rows). The lack of magnetic arms is also obvious in polarizations maps
(Figure 3.8, third and bottom rows). Although gaseous arms are present during the whole
simulation time, no magnetic arms can be observed and, in consequence, there is no drift
of magnetic arms into the interarm region. This fact is probably caused by a very high
SN rate which I applied to this model. Namely, a large number of SNe explosions effi-
ciently introduce turbulent magnetic field to the galactic disk. In the bar region, due to
strong shearing and gas compression, turbulent magnetic field is able to evolve into the
large scale magnetic field. On the other hand, physical conditions in the outer part of the
galactic disk are not sufficient to transform turbulent magnetic fields produced in gaseous
arms into regular fields.

The time evolution of the magnetic field for models BS2 ( fS N = 1/50 yr−1), BS4
(RM, fS N = 1/200 yr−1) and BS5 ( fS N = 1/500 yr−1) looks very similar (compare top
and second rows in Figures 3.9, 3.3 and 3.11). In all cases the obtained magnetic fields
throughout the disk and halo of the barred galaxy are of even (quadrupole-like) symmetry.
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Figure 3.8: Top panles: The distribution of the toroidal magnetic field in vertical and horizontal slices through the
disk centre for selected times steps for model BS1. Red colour represents regions with the positive toroidal magnetic
field, blue with negative, while unmagnetized regions of the volume are white. To enhance weaker structures of the
magnetic field in the outer galactic disk (e.g. magnetic arms) the colour scale in magnetic field maps is saturated. The
maximum magnetic field strengths in galactic bar and in magnetic arms for selected times steps are given in Table 3.1
and Table 3.2, respectively. Bottom panles: Face-on and edge-on polarization maps at λ = 6.2 cm for selected times
steps for the model BS1. Polarized intensity (contours) and polarization angles (dashes) are superimposed onto column
density plots.
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Figure 3.9: Top panles: The distribution of the toroidal magnetic field in vertical and horizontal slices through the
disk centre for selected times steps for model BS2. Red colour represents regions with the positive toroidal magnetic
field, blue with negative, while unmagnetized regions of the volume are white. To enhance weaker structures of the
magnetic field in the outer galactic disk (e.g. magnetic arms) the colour scale in magnetic field maps is saturated. The
maximum magnetic field strengths in galactic bar and in magnetic arms for selected times steps are given in Table 3.1
and Table 3.2, respectively. Bottom panles: Face-on and edge-on polarization maps at λ = 6.2 cm for selected times
steps for the model BS2. Polarized intensity (contours) and polarization angles (dashes) are superimposed onto column
density plots.
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Figure 3.10: Top panles: The distribution of the toroidal magnetic field in vertical and horizontal slices through the
disk centre for selected times steps for model BS3. Red colour represents regions with the positive toroidal magnetic
field, blue with negative, while unmagnetized regions of the volume are white. To enhance weaker structures of the
magnetic field in the outer galactic disk (e.g. magnetic arms) the colour scale in magnetic field maps is saturated.
Bottom panles: Face-on and edge-on polarization maps at λ = 6.2 cm for selected times steps for the model BS3.
Polarized intensity (contours) and polarization angles (dashes) are superimposed onto column density plots.
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Figure 3.11: Top panles: The distribution of the toroidal magnetic field in vertical and horizontal slices through the
disk centre for selected times steps for model BS5. Red colour represents regions with the positive toroidal magnetic
field, blue with negative, while unmagnetized regions of the volume are white. To enhance weaker structures of the
magnetic field in the outer galactic disk (e.g. magnetic arms) the colour scale in magnetic field maps is saturated. The
maximum magnetic field strengths in galactic bar and in magnetic arms for selected times steps are given in Table 3.1
and Table 3.2, respectively. Bottom panles: Face-on and edge-on polarization maps at λ = 6.2 cm for selected times
steps for the model BS5. Polarized intensity (contours) and polarization angles (dashes) are superimposed onto column
density plots.
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What is more, in each model generation of magnetic arms can be observed (see e.g. the
time step t = 3.75 Gyr in second row in Figure 3.9 or the time step t = 4.25 Gyr in top
row in Figure 3.3 or the time step t = 5.75 Gyr in second row in Figure 3.11). However,
in model BS2 magnetic arms are weaker and thinner than in models BS4 (RM) and BS5.
In the case of polarization maps (see third and bottom rows in Figures 3.9, 3.3 and 3.11)
magnetic arms and their drift to the interarm region can be observed in face-on maps in all
models. Additionally, polarization vectors in edge-on maps reveal the so-called X-shaped
structure.

An odd (dipole-type) configuration of the magnetic field with respect to the galactic
plane appears in all models in the early stage of evolution. However, only in model BS3
( fS N = 1/100 yr−1) this configuration is observed from the time step t = 2.0 Gyr (top row
in Figure 3.10) and lasts till the end of the simulation. The obtained symmetry of the
magnetic field in model BS3 causes that the toroidal magnetic field in the galactic disk
(Figure 3.10, top and second rows) often changes sign during the evolution. For instance,
at first (t = 2.0 Gyr, top row in Figure 3.10) the toroidal magnetic field component in
magnetic arms is positive in the southern arm and negative in the northern one, next it
is positive (t = 3.75 Gyr, top row in Figure 3.10) or negative (t = 4.75 Gyr, second row
in Figure 3.10) in both arms and, finally, (t = 6.0 Gyr, second row in Figure 3.10) it is
again positive in the southern arm and negative in the northern arm. Reversals of magnetic
field are also visible in the bar region almost at each time step. The presence of magnetic
reversals in the galactic plane results from the vertical configuration of the magnetic field.
Namely, in regions where the magnetic field from zones below the disk dominates, the
negative toroidal magnetic field is observed in the galactic plane. On the other hand, in
areas where the magnetic field above the galactic disk dominates, the positive toroidal
magnetic field appears in the galactic plane.

In Table 3.1 and Table 3.2 maximum magnetic field strengths in magnetic arms and
galactic bar for selected time steps for all BS models are present. The highest values of
the magnetic field are reached for models with a strong SN activity. For models BS1
( fS N = 1/25 yr−1) and BS2 ( fS N = 1/50 yr−1) the maximum magnetic field strengths in
the bar region are 88.8 µG and 85.1 µG, respectively. On the other hand, for models with
moderate (BS3, fS N = 1/100 yr−1 and BS4, fS N = 1/200 yr−1) and low (BS5, fS N =

1/500 yr−1) values of SN rate the maximum magnetic field strengths in the bar region
are equal to 71.3 µG, 53.4 µG and 59.3 µG, respectively. In the case of magnetic arms,
the maximum magnetic field strengths (9.5 µG) is obtained for model BS4 (RM). Similar
values are observed for model BS3 (5.9 µG) and BS5 (8.6 µG). For models with high SN
activity the maximum field in magnetic arms is weaker, about 2.1 µG in model BS2 or
almost none (4.7 · 10−2 µG) in the case of model BS1. Maximum values of the magnetic
field obtained for BS models are shown in Table 3.3.

For model BS1 ( fS N = 1/25 yr−1), with the strongest magnetic field in the bar, the
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Model
BS1 BS2 BS3 BS4 (RM) BS5

fS N[ yr−1] 1/25 1/50 1/100 1/200 1/500
Time [ Gyr] Bbar

ϕ [ µG]
0.25 1.6 · 10−3 1.2 · 10−3 1.1 · 10−3 1.0 · 10−3 4.6 · 10−4

0.50 5.3 · 10−3 3.4 · 10−3 5.2 · 10−3 1.9 · 10−3 3.3 · 10−3

0.75 9.8 · 10−3 4.6 · 10−3 8.9 · 10−3 2.7 · 10−3 4.1 · 10−3

1.00 1.9 · 10−2 1.6 · 10−2 2.1 · 10−2 3.6 · 10−3 4.1 · 10−3

1.25 2.3 · 10−2 4.0 · 10−2 2.8 · 10−2 1.2 · 10−2 4.8 · 10−3

1.50 5.6 · 10−2 4.1 · 10−2 7.8 · 10−2 3.8 · 10−2 9.0 · 10−3

1.75 7.9 · 10−2 4.3 · 10−1 3.9 · 10−2 2.1 · 10−2 1.0 · 10−2

2.00 1.5 · 10−1 6.8 · 10−1 6.5 · 10−2 1.1 · 10−2 1.4 · 10−2

2.25 1.4 · 10−1 1.9 7.5 · 10−2 2.4 · 10−2 3.0 · 10−2

2.50 4.0 · 10−1 6.4 1.6 · 10−1 1.1 · 10−1 6.9 · 10−2

2.75 3.8 17.5 2.5 · 10−1 2.5 · 10−1 9.3 · 10−2

3.00 12.3 55.3 7.9 · 10−1 1.2 1.7 · 10−1

3.25 57.6 45.1 1.1 2.1 3.1 · 10−1

3.50 64.7 55.5 2.6 6.9 5.3 · 10−1

3.75 71.6 61.9 2.8 20.4 9.6 · 10−1

4.00 85.0 85.1 4.0 50.6 2.3
4.25 88.8 82.1 9.1 53.2 5.2
4.50 87.3 78.7 19.6 52.1 12.1
4.75 85.1 – 36.2 47.3 24.6
5.00 – – 61.0 50.8 31.4
5.25 – – 52.6 51.4 51.8
5.50 – – 59.3 50.1 45.3
5.75 – – 71.3 45.1 54.2
6.00 – – 67.4 53.4 59.3

Table 3.1: The maximum magnetic field strengths in the galactic bar for selected time steps for
models with different SN frequency fS N (see models BS in Table 2.2).

lowest value of the mean magnetic field is obtained Bmean = 3.7 µG (see Table 3.3). This
is a consequence of a very low magnetic field (of an order of 10−2 µG) in the outer part of
the disk, outside the CR radius. On the other hand, for model BS4 ( fS N = 1/200 yr−1) the
mean magnetic field reaches the highest value Bmean = 10.2 µG (see Table 3.3). Contrary
to BS1 model, in BS4 model the strong value of the magnetic field in the spiral structure
area (Barms

ϕ ) increases the mean magnetic field. For models BS2, BS3 and BS5 values
of the mean magnetic field are very similar and approximately equal to ∼ 7 µG (see Ta-
ble 3.3). Additionally, the estimated mean pitch angle (averaged over azimuthal angle
and radius in the galaxy’s plane) grows with increasing SN activity and ranges between
−13° for model BS1 and −6° for model BS5 (see last column in Table 3.3).

In Figure 3.12 the evolution of the total flux (bottom panel) of the azimuthal magnetic
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Figure 3.12: The time evolution of the total magnetic energy B2 (top panel) and the mean az-
imuthal flux Bφ (bottom panel) for different values of the SN frequency fS N in the simulation series
BS. The colour curves represent respectively cases of fS N = 1/25 yr−1 (BS1), fS N = 1/50 yr−1

(BS2), fS N = 1/100 yr−1 (BS3), fS N = 1/200 yr−1 (BS4) and fS N = 1/500 yr−1 (BS5).
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Model
BS1 BS2 BS3 BS4 (RM) BS5

fS N[ yr−1] 1/25 1/50 1/100 1/200 1/500
Time [ Gyr] Barms

ϕ [ µG]
0.25 6.9 · 10−4 4.9 · 10−4 4.9 · 10−4 4.5 · 10−4 4.1 · 10−4

0.50 6.6 · 10−4 9.6 · 10−4 6.2 · 10−4 7.9 · 10−4 5.5 · 10−4

0.75 6.5 · 10−4 7.1 · 10−4 9.6 · 10−4 7.4 · 10−4 7.9 · 10−4

1.00 5.0 · 10−4 5.3 · 10−4 5.5 · 10−4 4.9 · 10−4 8.7 · 10−4

1.25 3.5 · 10−4 5.2 · 10−4 3.2 · 10−4 5.1 · 10−4 6.7 · 10−4

1.50 3.9 · 10−4 3.5 · 10−4 4.1 · 10−4 4.4 · 10−4 8.8 · 10−4

1.75 5.4 · 10−4 1.8 · 10−3 1.2 · 10−3 2.5 · 10−3 1.7 · 10−3

2.00 1.7 · 10−4 3.2 · 10−3 4.0 · 10−3 9.2 · 10−3 5.8 · 10−3

2.25 1.1 · 10−4 3.2 · 10−2 6.8 · 10−3 1.6 · 10−2 2.9 · 10−2

2.50 5.5 · 10−5 1.8 · 10−1 5.0 · 10−2 3.8 · 10−2 3.9 · 10−2

2.75 2.6 · 10−4 7.1 · 10−1 1.4 · 10−1 1.1 · 10−1 8.2 · 10−2

3.00 3.8 · 10−3 9.3 · 10−1 4.3 · 10−1 1.9 · 10−1 1.4 · 10−1

3.25 8.0 · 10−3 1.7 7.1 · 10−1 3.1 · 10−1 2.9 · 10−1

3.50 4.7 · 10−2 2.1 1.9 6.8 · 10−1 3.9 · 10−1

3.75 2.2 · 10−2 1.3 2.3 1.8 7.2 · 10−1

4.00 7.2 · 10−3 1.4 2.4 2.7 1.2
4.25 3.5 · 10−3 1.8 5.9 5.5 2.3
4.50 5.1 · 10−3 1.7 5.6 7.6 3.4
4.75 – – 5.5 9.1 5.4
5.00 – – 4.6 9.2 6.8
5.25 – – 4.9 9.5 7.8
5.50 – – 3.8 8.9 7.9
5.75 – – 3.7 7.3 8.4
6.00 – – 2.9 8.7 8.6

Table 3.2: The maximum magnetic field strengths in magnetic arms for selected time steps for
models with different SN frequency fS N (see models BS in Table 2.2).

field component and the total magnetic field energy (top panel) for all BS models are
shown. It is apparent that for all models a very similar exponential growth is obtained.
The fastest amplification of the total magnetic field is observed for models with the highest
SN rate, namely for models BS1 and BS2. In these cases the magnetic field reaches an
equipartition approximately at time t ∼ 3.1 − 3.3 Gyr. The equipartition in models BS3
and BS4 (RM) is achieved approximately one Gyr later than in models BS1 and BS2. For
model BS5, with the lowest SN rate, the magnetic field energy attains its saturation value
at time t ∼ 5.5 Gyr.

The final saturation levels of the magnetic flux are the same as in the case of the total
magnetic energy. The e-folding times of magnetic flux deduced from the bottom panel
of Figure 3.12 are respectively 230 Myr for model BS1 ( fS N = 1/25 yr−1), 194 Myr for
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Model fS N τ Mlost max Bbar
ϕ max Barms

ϕ Bmean −p
[ yr−1] [ Myr] [M� yr−1] [ µG] [ µG] [ µG] [°]

BS1 1/25 230 4.7 88.8 4.7 · 10−2 3.7 12 − 13
BS2 1/50 194 3.2 85.1 2.1 6.4 10 − 11
BS3 1/100 326 1.7 71.3 5.9 7.1 9 − 10
BS4 1/200 300 1.1 53.4 9.5 10.2 7 − 8
BS5 1/500 360 0.6 59.3 8.6 7.9 6 − 7

Table 3.3: Overview of the obtained parameters characterizing BS models. Subsequent columns
show: the model name, the SN frequency fS N , e-folding time τ, the rate of the mass outflow Mlost,
the maximum magnetic field in the galactic bar max Bbar

ϕ and in magnetic arms max Barms
ϕ , the

mean magnetic field Bmean (equipartition state) and pitch angles p.

model BS2 ( fS N = 1/50 yr−1), 326 Myr for model BS3 ( fS N = 1/100 yr−1), 300 Myr for
model BS4 ( fS N = 1/200 yr−1) and 360 Myr for model BS5 ( fS N = 1/500 yr−1) (see Ta-
ble 3.3). It can be noticed that by changing the number of SNe explosions, one does not
get significantly different results. In fact, in all simulations two regions of growth of the
magnetic flux can be distinguished. The first period starts at the beginning of calculations
and lasts until time t ∼ 2.0 Gyr (bottom panel in Figure 3.12). During this time inter-
val the magnetic flux changes sign and its absolute value variates randomly around the
exponential curve. These variations are associated with the evolution of magnetic field
structures. Namely, in all models during this time the initial random toroidal magnetic
field component evolves and forms large scale magnetic structures with odd symmetry
with respect to the galactic plane. Reversals of the magnetic field are also visible, mostly
in the bar region, almost at each time step until t = 2.0 Gyr (bottom panel in Figure 3.12).
On the other hand, after time t ∼ 2.0 Gyr the total azimuthal flux stops to reverse. Then
the toroidal magnetic field direction becomes almost uniform and reversals, if any, are
very weak and small (see panels in second row in Figures 3.8, 3.9, 3.3 and 3.11). The
only exception is model BS3 where variations of the magnetic flux as well as reversals of
the toroidal magnetic field component (Figure 3.10) are visible during the whole simula-
tion time. At the end of the calculation, when the magnetic field reaches an equipartition,
two periods with strong variations of the magnetic flux sign can be observed. What is
more, in model BS3 the level at which the magnetic flux is in the saturation regime is ten
times smaller than the equipartition level for other models.

The above results show that the magnetic field amplification in barred galaxies is
relatively insensitive to the magnitude of SN rate. It means that the cosmic ray driven
dynamo process is efficient for a wide range of SN activity.
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3.2 Simulations of the ringed galaxy - NGC 4736

According to Chyży & Buta (2008) the observed configuration of the magnetic field in
the ringed galaxy NGC 4736 may be explained by the pure dynamo action. In this section
I revise this statement by checking how the cosmic ray driven dynamo influences the
magnetic field and gas distributions in the ringed galaxy NGC 4736.

In the case of simulations of the barred galaxy I selected one model that, in my opin-
ion, represents the best example from the sample of the barred galaxy models. However,
for simulations of the ringed galaxy it is very hard to choose one reference model. Thus,
below I describe the time evolution of all models of the ringed galaxy. As in the case of
the barred galaxy I run several models with different SN frequency. An overview of the
various models can be found in Table 2.4. The distribution of the gas density and cosmic
ray energy density, polarization maps, pitch angles, the distribution of the toroidal mag-
netic field component and the growth rate of the magnetic energy are studied in the case
of each model. Although in some models of the ringed galaxy magnetic field reaches the
equipartition very fast (around 2 Gyr), all simulations are stopped at time t = 6 Gyr.

3.2.1 Gas dynamics and cosmic ray energy density - inner and

outer rings

During the first stage of all simulations, when SNe explosions or nonaxisymmetrical grav-
itational potentials of the bar and oval are not present, the system evolves to reach dynam-
ical equilibrium between gas and cosmic rays. After that time (t = 0.1 Gyr) the influence
of the cosmic ray driven dynamo action on the evolution of the ringed galaxy model can
be studied in detail.

In this section basic dynamical features of all models of the ringed galaxy are de-
scribed. The distribution of the logarithm of the gas density with overplotted vectors
of the velocity field in vertical and horizontal slices through the disk centre for selected
time steps is shown in top and third panels in figures: model RS1 ( fS N = 1/50 yr−1) Fig-
ure 3.13, model RS2 ( fS N = 1/100 yr−1) Figure 3.14, model RS3 ( fS N = 1/200 yr−1) Fig-
ure 3.15, model RS4 ( fS N = 1/300 yr−1) Figure 3.16 and model RS5 ( fS N = 1/500 yr−1)
Figure 3.17. In the same figures in second and bottom panels I present the corresponding
gas density distribution through the disk centre in the x and y directions. In order to im-
prove readability of plots in second and bottom panels in Figures 3.13, 3.14, 3.15, 3.16
and 3.17 after the time step t = 0.2 Gyr the inner very dense part (where the small bar
is present) is not being taken into account. Moreover, the position of the ILR and OLR
Lindblad resonances is marked by red and green lines, respectively.

At the beginning of all simulations, the ringed galaxy is in magnetohydrodynamic
equilibrium. From t = 0.1 Gyr to t = 0.4 Gyr the oval and the small bar are gradually
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Figure 3.13: Top and third panels: The logarithm of the gas density and the gas velocity field
(vectors) in vertical and horizontal slices through the disk centre for selected time steps for model
RS1. The gas density is expressed in units of hydrogen atom per cubic centimeter (1.0nH cm−3).
Second and bottom panels: The distribution of the gas density through the disk centre in the x
(black line) and y (blue line) directions for selected time steps for model RS1.
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Figure 3.14: Top and third panels: The logarithm of the gas density and the gas velocity field
(vectors) in vertical and horizontal slices through the disk centre for selected time steps for model
RS2. The gas density is expressed in units of hydrogen atom per cubic centimeter (1.0nH cm−3).
Second and bottom panels: The distribution of the gas density through the disk centre in the x
(black line) and y (blue line) directions for selected time steps for model RS2.
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Figure 3.15: Top and third panels: The logarithm of the gas density and the gas velocity field
(vectors) in vertical and horizontal slices through the disk centre for selected time steps for model
RS3. The gas density is expressed in units of hydrogen atom per cubic centimeter (1.0nH cm−3).
Second and bottom panels: The distribution of the gas density through the disk centre in the x
(black line) and y (blue line) directions for selected time steps for model RS3.
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Figure 3.16: Top and third panels: The logarithm of the gas density and the gas velocity field
(vectors) in vertical and horizontal slices through the disk centre for selected time steps for model
RS4. The gas density is expressed in units of hydrogen atom per cubic centimeter (1.0nH cm−3).
Second and bottom panels: The distribution of the gas density through the disk centre in the x
(black line) and y (blue line) directions for selected time steps for model RS4.
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Figure 3.17: Top and third panels: The logarithm of the gas density and the gas velocity field
(vectors) in vertical and horizontal slices through the disk centre for selected time steps for model
RS5. The gas density is expressed in units of hydrogen atom per cubic centimeter (1.0nH cm−3).
Second and bottom panels: The distribution of the gas density through the disk centre in the x
(black line) and y (blue line) directions for selected time steps for model RS5.
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introduced into the galaxy. As a result, nonaxisymmetrical gravitational potentials of the
small bar and the oval disturb the initial configuration of the gas density in the galactic
disk. Initially, the gas distribution looks very similar in all models of the ringed galaxy.
Namely, in the region where the oval is present the intense accumulation of gas can be
observed (see the time step t = 0.2 Gyr in top panel in Figures: 3.13, 3.14, 3.15, 3.16 and
3.17). The amount of gas collected in the oval region is similar in all models, which is
visible for the time step t = 0.2 Gyr in second panel in Figures 3.13, 3.14, 3.15, 3.16 and
3.17.

When the bar and the oval reach their final masses (at time t = 0.4 Gyr) their influence
on the gas distribution is very strong. The nonaxisymmetric gravitational potential of
the oval triggers the formation of the outer spiral structure and the inner ring. On the
other hand, the nonaxisymmetric gravitational potential of the small central bar supports
the formation of the inner ring. It is also responsible for the presence of the inner spiral
structure and gas accumulation in the inner part of the galaxy. The shape and evolution of
these gaseous structures strictly depend on the SN activity.

At the time step t = 1.0 Gyr in all models the bar with the inner spiral structure, the in-
ner ring, the outer spiral arms and the outer ring are visible (see top panel in Figures 3.13,
3.14, 3.15, 3.16 and 3.17). Moreover, between the oval and the outer ring the gap in gas
density is present. Initially, in all models, the inner ring has an elongated shape and its
thickness is about 2 kpc. It can be noticed from the time step t = 1.0 Gyr in second panel
in Figures 3.13, 3.14, 3.15, 3.16 and 3.17 that, depending on the position, the inner ring
extends from 1 kpc up to 3 kpc in y direction or from 2 kpc up to 4 kpc in x direction. The
amount of mass accumulated in the inner ring is very similar in all models of the ringed
galaxy, which can also be seen in the figures mentioned above. However, the shape of the
outer spiral structure is not the same in different models and depends on the SN activity.
Namely, for model RS1 (with the highest SN rate, fS N = 1/50 yr−1) the outer spiral arms
are highly perturbed and form a very faint outer ring (see the time step t = 1.0 Gyr in top
panel in Figure 3.13). For model RS2 ( fS N = 1/100 yr−1) the outer spiral structure is less
disturbed than that for model RS1, but the outer ring is still very faint. On the other hand,
for models RS3 ( fS N = 1/200 yr−1), RS4 ( fS N = 1/300 yr−1) and RS5 ( fS N = 1/500 yr−1)
the outer spiral structure and the outer ring are coherent and clearly visible. The outer
ring is formed as the result of tight winding of spiral arms and is obviously associated
with the OLR which is located at R = 7.7 kpc. This is clearly visible e.g. for the time
step t = 1.0 Gyr in second panel in Figure 3.14, where gaseous arms are well-defined.
Moreover, the amount of gas accumulated in the OLR increases with the decreasing SN
activity which can be seen at the time step t = 1.0 Gyr in second panel in Figures 3.13,
3.14, 3.15, 3.16 and 3.17.

As was mentioned above, gas is accumulated in the inner ring due to the combined
action of the oval and the bar. In fact, negative torques drive the gas from the region
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between the CR and the OILR of the oval to the OILR, while positive torques between
the galactic centre and the OILR of the oval cause the flow of the gas from this region to
the OILR. Thus, as simulations proceed the inner ring becomes smaller and thinner. The
final shape of the inner ring is very similar in all models, however the time evolution is not
the same and differs in different models of the ringed galaxy. Namely, the period of time
during which the inner ring changes its appearance and the amount of mass accumulated
in the inner ring region are determined by the SN rate. For the highest SN activity (model
RS1, fS N = 1/50 yr−1, Figure 3.13) the inner ring observed at the time step t = 1.0 Gyr
becomes thinner, smaller and less elliptical in a very short period of time equal to 0.8 Gyr.
At the time step t = 1.8 Gyr (third panel in Figure 3.13) the presented ring spans between
R = 1 kpc and R = 2 kpc and its width is about 1 kpc (see the time step t = 1.8 Gyr in
bottom row in Figure 3.13). The period of time during which the ring reaches its final
shape grows with decreasing SN activity. In fact, for models SD2 ( fS N = 1/100 yr−1), SD3
( fS N = 1/200 yr−1), SD4 ( fS N = 1/300 yr−1) and SD5 ( fS N = 1/500 yr−1) the mentioned
time period is equal to 1.3 Gyr, 1.9 Gyr, 2.3 Gyr and 2.8 Gyr, respectively. Thus, the final
ring is observed at time steps: t = 2.3 Gyr for model SD2 (third panel in Figure 3.14),
t = 2.9 Gyr for model SD3 (third panel in Figure 3.15), t = 3.3 Gyr for model SD4
(third panel in Figure 3.16) and t = 3.8 Gyr for model SD5 (third panel in Figure 3.17).
According to the previously mentioned time steps, the highest amount of gas in the inner
ring is collected for model SD1 with the strongest SN activity, while the smallest for
model SD5 with the lowest SN rate (compare bottom panels in Figures 3.13, 3.14, 3.15,
3.16 and 3.17). What is more, the final location of the inner ring corresponds to the
position of the OILR which is equal to 1.8 kpc.

The inner ring is not observed during the whole simulation time. Shortly after the
ring reaches its final mass, it starts to disappear. The last time step presented in third
panel in Figures 3.13, 3.14, 3.15, 3.16 and 3.17 shows the appearance of the modeled
ringed galaxy when the inner ring is no longer observed. The highest density region is
indicated by the small bar and the inner spiral structure. Contrary to this, the outer ring is
observed during the whole simulation time in all models. What is more, in all models the
gas density is higher in the inner ring than in the outer faint ring (see e.g. all time steps in
second and bottom panels in Figure 3.15).

Initially, in vertical slices, gas is mainly located in the galactic plane (see the time step
t = 0.2 Gyr in vertical slices in Figures 3.13, 3.14, 3.15, 3.16 and 3.17). During the time
evolution of the ringed galaxy gas is subsequently transferred from the galactic disk to
the galactic halo by SNe explosions (see e.g., the time step t = 2.8 Gyr in Figure 3.16
or t = 3.8 Gyr in Figure 3.17). The configuration of velocity field vectors in vertical
slices also indicates that the gas component outflows above and below the central part
of the disk. The vertical wind produced by SNe remnants triggers mass outflow, which
the averaged rate grows with increasing SN frequency (Table 3.4). The obtained values
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are: 3.4M� per year for model RS1 with the highest SN rate, 3.1M� per year for the RS2
model, 1.3M� per year for the RS3 model, 1.0M� per year for the RS4 model and 0.7M�
per year for the RS5 model with the lowest SN activity.

The cosmic ray energy density distribution obtained for the ringed galaxy models is
shown in Figure 3.18. In all models the cosmic ray energy density enhancements are
visible in the same regions where the gas density is increasing (compare e.g. the time
step t = 2.3 Gyr in bottom row in Figure 3.14 with the second plot in the top row in
Figure 3.18). Thus, for models SD1, SD2, SD3, SD4 and SD5 only one time step with
the cosmic ray energy density distribution is present. Selected time steps correspond
to the evolution period when the inner ring reaches its final shape. As was mentioned
above, the growth of the cosmic ray energy density is observed mainly in the high density
regions. The cosmic ray gas is accumulated in the central part of the galaxy, where the bar
is present. The inner ring and spiral arms are indicated by the enhancement of the cosmic
ray energy density. For the model SD1 with the highest SN activity spiral arms are short
and thick (first plot in the top row in Figure 3.18). Additionally, spiral arms become
thinner and longer with the decreasing SN rate (compare e.g. model RS2 - second plot in
the top row in Figure 3.18 with model RS5 - last plot in the bottom row in Figure 3.18).

3.2.2 Structure of the magnetic field

The distribution of the toroidal magnetic field component in vertical and horizontal slices
through the disk centre is shown for models RS1, RS2, RS3, RS4 and RS5 in top and sec-
ond panels in Figures 3.19, 3.20, 3.21, 3.22 and 3.23, respectively. Red colour represents
regions with the positive toroidal magnetic field, blue with negative, while unmagnetized
regions of the volume are shown in white. No magnetic field is present at the beginning of
simulations and it is injected to the galactic disk using conditions described in Section 2.2.

In all models the evolution of the toroidal magnetic field component looks very similar
in horizontal slices. In all cases the initial toroidal magnetic field is unordered and highly
perturbed as it emerges from randomly oriented SNe explosions. This random configura-
tion of the toroidal magnetic field component is well visible at the time step t = 0.2 Gyr in
top row in Figures 3.19, 3.20, 3.21, 3.22 and 3.23. However, at the same time step in the
central part of the galaxy small regions with ordered magnetic field can also be observed.

At the next time step, t = 1.0 Gyr, most of the volume of the ringed galaxy is occupied
by the large scale magnetic field. In all models the well ordered toroidal magnetic field
appears in the oval and spiral structure regions (see the time step t = 1.0 Gyr in top row
in Figures 3.19, 3.20, 3.21, 3.22 and 3.23). The toroidal magnetic field component in
the oval region is entirely negative for models RS2 (top row in Figure 3.20) and RS4
(top row in Figure 3.22), while for model RS3 (top row in Figure 3.21) it is completely
positive. In the central part of the galaxy reversals of the magnetic field are visible for
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Figure 3.18: The logarithm of the cosmic ray energy density distribution in vertical and horizontal
slices through the disk center for selected time steps for the ringed galaxy models RS1, RS2, RS3,
RS4 and RS5. The selected time steps correspond to the period when the inner ring reaches its final
shape, thus for the time step t = 1.8 Gyr, t = 2.3 Gyr, t = 2.9 Gyr, t = 3.3 Gyr and t = 3.8 Gyr for
models RS1, RS2, RS3, RS4 and RS5, respectively. The cosmic ray energy density is expressed
in units of electron volt per cubic centimeter eVcm−3.

models RS1 (top row in Figure 3.19) and RS5 (top row Figure 3.23). The magnetic arms
as well as reversals between the oval region and magnetic arms can be observed in all
models. For models RS1 (top and second rows in Figure 3.20), RS2 (top and second
rows in Figure 3.21), RS4 (top and second rows in Figure 3.22) and RS5 (top and second
rows in Figure 3.23) the toroidal magnetic field component in magnetic arms is negative,
whereas in reversals it is positive. On the other hand, for the model RS3 (top and second
rows in Figure 3.22) the positive toroidal magnetic field component appears in magnetic
arms, whereas in reversals it is negative.

As the simulations proceed the well ordered toroidal magnetic field is gradually ob-
served at larger radii in the ringed galaxy. At time steps: t = 1.6 Gyr for model RS1 (top
row in Figure 3.19), t = 1.9 Gyr for model RS2 (top row in Figure 3.20), t = 2.5 Gyr for
model RS3 (top row in Figure 3.21), t = 2.8 Gyr for model RS4 (top row in Figure 3.22)
and t = 3.2 Gyr for model RS5 (top row in Figure 3.23) magnetic arms merge and form
the magnetic ring. The observed magnetic ring corresponds to the gaseous outer ring vis-
ible in polarization maps (compare e.g. the time step t = 2.5 Gyr in top and third rows in
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Figure 3.19: Top panles: The distribution of the toroidal magnetic field in vertical and horizontal slices through the
disk centre for selected times steps for model RS1. Red colour represents regions with the positive toroidal magnetic
field, blue with negative, while unmagnetized regions of the volume are white. To enhance weaker structures of the
magnetic field in the outer galactic disk the colour scale in magnetic field maps is saturated. Bottom panles: Face-on
and edge-on polarization maps at λ = 6.2 cm for selected times steps for the model RS1. Polarized intensity (contours)
and polarization angles (dashes) are superimposed onto column density plots.



CHAPTER 3. RESULTS 59

Figure 3.20: Top panles: The distribution of the toroidal magnetic field in vertical and horizontal slices through the
disk centre for selected times steps for model RS2. Red colour represents regions with the positive toroidal magnetic
field, blue with negative, while unmagnetized regions of the volume are white. To enhance weaker structures of the
magnetic field in the outer galactic disk the colour scale in magnetic field maps is saturated. Bottom panles: Face-on
and edge-on polarization maps at λ = 6.2 cm for selected times steps for the model RS2. Polarized intensity (contours)
and polarization angles (dashes) are superimposed onto column density plots.
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Figure 3.21: Top panles: The distribution of the toroidal magnetic field in vertical and horizontal slices through the
disk centre for selected times steps for model RS3. Red colour represents regions with the positive toroidal magnetic
field, blue with negative, while unmagnetized regions of the volume are white. To enhance weaker structures of the
magnetic field in the outer galactic disk the colour scale in magnetic field maps is saturated. Bottom panles: Face-on
and edge-on polarization maps at λ = 6.2 cm for selected times steps for the model RS3. Polarized intensity (contours)
and polarization angles (dashes) are superimposed onto column density plots.
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Figure 3.22: Top panles: The distribution of the toroidal magnetic field in vertical and horizontal slices through the
disk centre for selected times steps for model RS4. Red colour represents regions with the positive toroidal magnetic
field, blue with negative, while unmagnetized regions of the volume are white. To enhance weaker structures of the
magnetic field in the outer galactic disk the colour scale in magnetic field maps is saturated. Bottom panles: Face-on
and edge-on polarization maps at λ = 6.2 cm for selected times steps for the model RS4. Polarized intensity (contours)
and polarization angles (dashes) are superimposed onto column density plots.
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Figure 3.23: Top panles: The distribution of the toroidal magnetic field in vertical and horizontal slices through the
disk centre for selected times steps for model RS5. Red colour represents regions with the positive toroidal magnetic
field, blue with negative, while unmagnetized regions of the volume are white. To enhance weaker structures of the
magnetic field in the outer galactic disk the colour scale in magnetic field maps is saturated. Bottom panles: Face-on
and edge-on polarization maps at λ = 6.2 cm for selected times steps for the model RS5. Polarized intensity (contours)
and polarization angles (dashes) are superimposed onto column density plots.
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Figure 3.21 for model RS3 or the time step t = 3.2 Gyr in top and third rows in Figure 3.23
for the model RS5). Reversals in the central part of the galaxy, visible at the time step
t = 1.0 Gyr in models RS1 (top row in Figure 3.19) and RS5 (top row in Figure 3.23), are
no longer observed. However, in all models the nonaxisymmetrical gravitational poten-
tial of the bar causes that in the central part of the ringed galaxy the unmagnetized region,
indicated by white colour, appears. On the other hand, reversals between the oval and
magnetic arms are still visible in all models (see e.g. the time step t = 2.5 Gyr in top row
in Figure 3.21).

During the further evolution of the magnetic field reversals between the oval region
and the outer gaseous ring become smaller and finally almost disappear. This can be seen
e.g. for model RS5 at the time step t = 3.5 Gyr (second row in Figure 3.23) when the
magnetic reversals are roughly located in the gap with the lowest density (compare the
time step t = 3.5 Gyr in second and third rows in Figure 3.23). At the next time step,
t = 3.8 Gyr, magnetic reversals are smaller and at the last time step t = 5.0 Gyr they are
completely invisible (see second row in Figure 3.23).

At the last time step t = 5.0 Gyr the large scale magnetic filed is observed in the whole
volume of the ringed galaxy, even in the region where the gas density is very low (the
area between the oval and the outer gaseous ring). Very small reversals are still present
in models RS1 (second row in Figure 3.19), RS2 (second row in Figure 3.20) and RS3
(second row in Figure 3.21). In the case of models RS4 (second row in Figure 3.22) and
RS5 (second row in Figure 3.23) no reversals are visible. The presence of the reversals in
models RS1, RS2 and RS3 is probably caused by large amount of SNe explosions which
very efficiently perturb the regular magnetic field in the galactic disk, which may result in
reversal formation.

In vertical slices at the beginning of calculations the mainly randomly distributed
toroidal magnetic field is present. An even (quadrupole-like) symmetry of the magnetic
field with respect to the galactic plane appears in all models in the early stage of evolution
(see vertical slices for the time step t = 1.0 Gyr in top row in Figures 3.19, 3.20, 3.21, 3.22
and 3.23) and is observed till the end of simulations (see vertical slices for the time step
t = 5.0 Gyr in top row in Figures 3.19, 3.20, 3.21, 3.22 and 3.23). Additionally, in vertical
slices magnetic field reversals are present during the whole simulation time. This rever-
sals separate the unmagnetized region above and below the the central part of the galaxy
and regions with the well ordered magnetic field in the outer part of the disk. This can be
easily seen e.g. for the time step t = 3.5 Gyr for model RS5 (second row in Figure 3.23) or
for the time step t = 5.0 Gyr for model RS2 (second row in Figure 3.20). Moreover, small
reversals in vertical slices also appear from time to time in the outer part of the galactic
disk (e.g. the time step t = 5.0 Gyr for model RS1, second row in Figure 3.19).
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3.2.3 Polarization maps and pitch angles

In third and bottom panels in Figures 3.19, 3.20, 3.21, 3.22 and 3.23 I present the mag-
netic field evolution as seen in radio polarymetry. Polarization maps show the distribution
of the polarization angle and polarized intensity superimposed onto the column density.
All face-on and edge-on polarization maps have been smoothed down to the resolution of
40′′. Black colour represents regions with the lowest density and yellow the ones with the
highest density. The chosen time steps are the same as those selected for the toroidal mag-
netic field (top and second rows in Figures 3.19, 3.20, 3.21, 3.22 and 3.23) and gas density
distribution (Figures 3.13, 3.14, 3.15, 3.16 and 3.17). Comparing the column density pre-
sented in vertical and horizontal slices in third and bottom panels in Figures 3.19, 3.20,
3.21, 3.22 and 3.23 with the gas density through the disk centre in vertical and horizontal
slices in Figures 3.13, 3.14, 3.15, 3.16 and 3.17 one can notice significant differences.
First of all, in the case of third and bottom rows in Figures 3.19, 3.20, 3.21, 3.22 and 3.23,
where the column density is shown, outer spiral structures form thick and well defined
outer rings, which extend between R ∼ 8 kpc and R ∼ 11 kpc. These outer rings are
significantly less visible in Figures 3.13, 3.14, 3.15, 3.16 and 3.17, where the gas density
distribution through the disk centre is plotted. The distinction described above is visible
by comparing e.g. the time step t = 3.3 Gyr in Figure 3.16 and in bottom panel in Fig-
ure 3.22. What is more, for model SD5 (model with the lowest SN rate, fS N = 1/500 yr−1)
the inner ring is very faint in the column density but is well defined in the case of the gas
density distribution through the disk center (compare e.g. the time step t = 3.8 Gyr in
Figure 3.17 and in bottom row in Figure 3.23). Similarly, in the case of model RS4
( fS N = 1/300 yr−1) the inner ring in the column density (Figure 3.22) is less visible than
this observed for the same model in the gas density distribution through the disk centre
(Figure 3.16). For the other models, RS1 fS N = 1/50 yr−1, RS2 fS N = 1/100 yr−1 and
RS3 fS N = 1/200 yr−1, with a high SN activity, the inner ring is well defined both in the
column density plots and in the gas density distribution through the disk center.

Polarization maps in third and bottom panels in Figures 3.19, 3.20, 3.21, 3.22 and
3.23 show that magnetic field maxima at first appear in the central part of the galaxy (see
the time step t = 0.2 Gyr). At the next time step t = 1.0 Gyr the magnetic field maxima
correspond to the gas density enhancements, where SNe explosions are located. Indeed,
the magnetic field is present in gaseous arms as well as in the oval region. Additionally,
for models RS1, RS2, RS3 and RS4 the regular magnetic field is also observed in the
interarm region (see the time step t = 1.0 Gyr in third panel in Figures 3.19, 3.20, 3.21
and 3.22, respectively). For model RS5 (with the lowest SN activity) no regular magnetic
field is observed in the zone between the oval and gaseous arms. (Figure 3.23). For the
further time steps the drift of magnetic arms into the interarm region is no longer visible in
models RS1, RS2, RS3 and RS4. Instead, in the area between the oval and gaseous arms,
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regions with vanishing polarized intensity are observed. These zones correspond to areas
where magnetic reversals are present (compare e.g. the time step t = 2.1 Gyr for model
RS2 in second and bottom rows in Figure 3.20 or the time step t = 3.3 Gyr for model
RS4 in second and bottom rows in Figure 3.22). As simulations proceed, the polarized
emission gradually occupies the largest volume of the ringed galaxy and finally in the
whole galactic disk the polarized intensity is observed (see e.g. the time step t = 5.0 Gyr
in bottom row in Figure 3.19).

Polarization vectors in face-on maps in third and bottom panels in Figures 3.19, 3.20,
3.21, 3.22 and 3.23 indicate the mean magnetic field direction and reveal a regular spiral
structure. Polarization vectors are rather aligned along the gaseous structures, e.g. they
follow the gas distribution in the inner ring. Additionally, the estimated mean pitch angle
(averaged over azimuthal angle and radius in the galaxy’s plane) changes slightly during
the evolution of the ringed galaxy and depending on model ranges between −6° and −13°.

Edge-on polarization maps for models RS1, RS2, RS3, RS4 and RS5 are shown in
third and bottom rows in Figures 3.19, 3.20, 3.21, 3.22 and 3.23, respectively. In all
models in vertical slices the extended structures of polarization vectors are present. At
the time step t = 1.0 Gyr (third row in Figures 3.19, 3.20, 3.21, 3.22 and 3.23) the
magnetic field in the disk plane is mainly parallel to the disk, while the vertical magnetic
field component can be seen in the halo. However, at later time steps the magnetic field
in the disk plane is no longer parallel to the galactic disk. Indeed, the configuration of the
magnetic field changes very rapidly and the magnetic field vectors are highly inclined with
respect to the galactic disk (see e.g. the time step t = 2.3 Gyr in bottom row in Figure 3.19
or the time step t = 3.3 Gyr in bottom row in Figure 3.22). The most extended structures
are apparent at the last time step of the calculation (see the time step t = 5.0 Gyr in bottom
row in Figures 3.19, 3.20, 3.21, 3.22 and 3.23).

3.2.4 Amplification and strength of the magnetic field

In Figure 3.24 I present the exponential growth of the total magnetic energy (top panel)
and the azimuthal flux (bottom panel) for all models of the ringed galaxy. As in the
case of the barred galaxy the initial growth of the magnetic field (visible at the time step
t = 0.1 Gyr, top panel in Figure 3.24) is caused by fast accumulation of the magnetic
energy generated by injected dipoles. After the time step t = 0.1 Gyr the magnetic field
in all models increases only due to the dynamo action. It is apparent that in the case of
the ringed galaxy the rate of the amplification of the total magnetic field depends on the
SN activity. Thus, the magnetic field reaches equipartition approximately at time steps
t ∼ 1.9 Gyr, t ∼ 2.3 Gyr, t ∼ 2.9 Gyr, t ∼ 3.5 Gyr and t ∼ 4.0 Gyr for RS1, RS2, RS3, RS4
and RS5 models, respectively (see top panel in Figure 3.24). The obtained equipartition
times correspond to moments when the inner ring reaches its final shape (compare e.g.
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Figure 3.24: The time evolution of the total magnetic energy B2 (top panel) and the mean az-
imuthal flux Bφ (bottom panel) for different values of the SN frequency fS N in the simulation series
RS. The colour curves represent respectively cases of fS N = 1/50 yr−1 (RS1), fS N = 1/100 yr−1

(RS2), fS N = 1/200 yr−1 (RS3), fS N = 1/300 yr−1 (RS4) , fS N = 1/500 yr−1 (RS5).
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Model fS N τ Mlost max Bir
ϕ i max Bod

ϕ Bmean −p
[ yr−1] [ Myr] [M� yr−1] [ µG] [ µG] [ µG] [°]

RS1 1/50 104 3.4 33.1 10.1 13.8 12 − 13
RS2 1/100 133 3.1 28.7 10.0 14.4 10 − 11
RS3 1/200 164 1.3 32.9 11.3 14.2 9 − 10
RS4 1/300 196 1.0 20.3 10.9 14.6 7 − 8
RS5 1/500 230 0.7 17.0 11.6 14.5 6 − 7

Table 3.4: Overview of the obtained parameters characterizing RS models. Subsequent columns
show: the model name, the SN frequency fS N , the e-folding time τ, the rate of the mass outflow
Mlost, the maximum magnetic field in the inner ring max Bir

ϕ and in outer disk (outside the oval)
max Bod

ϕ , the mean magnetic field Bmean (equipartition state) and pitch angles p.

the time step t = 2.3 Gyr in Figure 3.14 and the dark blue line in top panel in Figure 3.24).
Additionally, during the equipartition state the cosmic ray driven dynamo maintains the
magnetic field in a steady state.

The cosmic ray driven dynamo action in the ringed galaxy also influences the am-
plification of the azimuthal magnetic flux component (Figure 3.24, bottom panel). The
regular magnetic field grows up on an average e-folding time of t = 104 Myr, t = 133 Myr,
t = 164 Myr, t = 196 Myr and t = 230 Myr for RS1, RS2, RS3, RS4 and RS5 models, re-
spectively (see Table 3.4). At the beginning of all simulations, especially from t = 0.1 Gyr
to t = 1.0 Gyr (Figure 3.24, bottom panel), the magnetic flux rapidly changes sign and
its absolute value differentiates randomly around the exponential curve. The observed
variation is probably caused by the random magnetic field which evolves into large scale
magnetic structures with odd symmetry with respect to the galactic plane. After the time
step t ∼ 1.0 Gyr the total azimuthal flux almost stops to reverse which corresponds to the
well developed regular magnetic field structures (compare e.g., the time step t = 2.5 Gyr
in top row in Figure 3.21 with the blue line in bottom panel in Figure 3.24). Small
variations of the total azimuthal flux correspond to reversals which appear in the toroidal
magnetic field distribution in different time steps in Figures 3.19, 3.20, 3.21, 3.22 and
3.23. Moreover, the final saturation levels of the magnetic flux are the same as in the case
of the total magnetic energy (compare top and bottom panels in Figure 3.24).

In fourth, fifth and sixth column in Table 3.4 I present the value of the maximum
magnetic field in the inner ring Bir

ϕ and in the outer disk (outside the oval) Bod
ϕ as well as the

mean magnetic field Bmean, respectively. All above values are calculated at the time step
when the inner ring reaches its final shape and the magnetic field attains the equipartition.
As was mentioned above, this time step differs among models and is equal to: t = 1.8 Gyr
for model RS1, t = 2.3 Gyr for model RS2, t = 2.9 Gyr for model RS3, t = 3.3 Gyr
for model RS4 and t = 3.8 Gyr for model RS5. The mean magnetic field as well as the
maximum value of the toroidal magnetic field in the outer disk (outside the oval region)
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are very similar in all models of the ringed galaxy. According to Table 3.4 the mean
magnetic field varies between 10.0 µG and 11.6 µG while maximum value of Bod

ϕ ranges
from 13.8 µG up to 14.6 µG. On the other hand, the maximum value of the magnetic
field in the inner ring depends on the SN activity. Indeed, the highest value of the Bir

ϕ is
equal to 33.1 µG and is obtained for model RS1 (with the strongest SN activity) while the
lowest value 17.0 µG is obtained for model RS5 (with the lowest SN rate) (compare rows
in fourth column in Table 3.4).



Chapter 4

Discussion

In the previous section I have shown that the cosmic ray driven dynamo can amplify
a weak magnetic field seeded by small scale magnetic dipoles introduced through SNe
explosions. Having included a cosmic ray gas supplied in SNe remnants, the cosmic ray
driven dynamo triggers an exponential growth of the magnetic field up to a few µG within
few Gyr in barred and ringed galaxies. As a result of the dynamo action, large scale
magnetic fields develop in the galactic disk and in the surrounding galactic halo. Results
obtained in simulations described in this thesis can be compared with observations as well
as with previous numerical studies.

4.1 Barred galaxies - relation to observations and other

works

The most important part of this thesis is a comparison of the obtained magnetic field con-
figuration with observations of real galaxies. In most of models the regular magnetic field
shows the ASS symmetry. A clear ASS mode has been also found in real galaxies M31
(Sofue &Takano 1981) and IC342 (Krause et al. 1989). Model BD1 ( fS N = 1/100 yr−1)
seems to have a superposition of different modes (Figure 3.10). The dominance of ASS
field configuration can be seen at the time step t = 3.75 Gyr, whereas of BSS mode at the
time step t = 6.0 Gyr. A mixture of magnetic modes is observed in most of real spiral
galaxies. However, the overbearing dominance of the ASS symmetry in presented nu-
merical models is not surprising as the axisymmetric mode can be excited most easily by
dynamo action (Krause 2003). To better reproduce complex configurations of magnetic
fields observed in real galaxies more physical processes occurring in the ISM should be
taken into account.

The edge-on distribution of the toroidal magnetic field is displayed in the first two
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rows in Figures 3.9, 3.10, 3.11 and in Figure 3.5. In models SD1, SD2, SD4 and SD5 the
toroidal magnetic field component has the same direction above and below the galactic
disk. This configuration corresponds to the even (quadrupole-type) symmetry of magnetic
fields in galaxies. It is believed that the even symmetry should exist in most of spiral
galaxies. This conjecture was supported by many theoretical studies (e.g. Ruzmaikin
et al. 1988) and by most of observational evidence (e.g. Beck 2009c; Heesen et al. 2009)
as well as by a number of numerical investigations (e.g. Brandenburg et al. 1993). The
quadrupole-like symmetry was also obtained by Hanasz et al. (2009b) who studied the
cosmic ray driven dynamo in normal spiral galaxies.

Results presented in this thesis confirm that the cosmic ray driven dynamo can also
produce the odd symmetries of magnetic fields in barred galaxies. In the case of model
SD1 the toroidal magnetic field component has different direction above and below the
disk plane, what reveals the odd (dipole-type) configuration of the magnetic field with
respect to the galactic plane. Following Moss et al. (2010) the odd symmetry of the
magnetic field in galaxies can also be explained by the dynamo theory.

Several researches have studied numerically the evolution of the magnetic field in
barred galaxies without the inclusion of the dynamo action. Otmianowska-Mazur et al.
(1997, 2002) made N-body simulations and found that the magnetic field is weak in the
bar region and concentrates in spiral arms in the interarm space. They also proposed
the mechanism responsible for detaching of magnetic arms from the gaseous spiral and
their drift into the interarm region. Namely, magnetic arms drift into the interarm space
due to the difference between the pattern speed of the bar (together with gaseous arms)
and the rotation speed of the disk. This process repeats a few times during galactic life.
Similar results were obtained in 3D non-linear MHD numerical simulations taking into
account back-reaction of the magnetic field to gas (Kulesza-Żydzik et al. 2009, 2010).
Results presented in this thesis show that magnetic arms between gaseous spiral and the
bar are observed in most of the barred galaxy simulations (see third and bottom rows in
Figures 3.9, 3.10, 3.11 and in Figure 3.5). The drift of magnetic arms is caused by the
same mechanism as was proposed by Otmianowska-Mazur et al. (2002) and Kulesza-
Żydzik et al. (2009, 2010). However, in my simulations magnetic arms are continuously
present in the interarm region, while in the work done by Otmianowska-Mazur et al.
(2002) and Kulesza-Żydzik et al. (2009, 2010) magnetic arms appear periodically be-
tween the gaseous spiral and the bar. This distinction is probably due to the cosmic ray
driven dynamo action, which continuously supplies random magnetic field in gaseous
arms through SNe explosions. This field is constantly being transformed into a regular
field and observed as magnetic spiral in the interarm area. Only in one model, BS1, no
magnetic arms can be identified in gaseous arms or in the interarm area (third and bottom
rows in Figure 3.8). The lack of magnetic arms can be caused by the very strong star
formation rate ( fS N = 1/25 yr−1) applied in this model. If SNe explosions continuously
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and violently generate random magnetic field, physical processes occurring in the outer
part of the galaxy are too slow to transform it into a regular field. In that case the po-
larized magnetic field is visible only in the bar region. Results obtained for model SD1
resemble the observed radio polarization structure which is visible in barred galaxies, e.g.
in NGC 986 (Beck et al. 2002). In this barred galaxy the polarized emission is observed
only in the inner bar. What is more, following Kohno et al. (2008) the star formation rate
in NGC 986 is high and could still be in a growing phase.

Moss et al. (1998, 1999, 2001, 2007) analyzed the role of the mean-field dynamo
theory in generation and maintenance of the large-scale magnetic fields in barred galaxies.
Moreover, they prepared global polarization maps in order to compare them directly with
radio observations of NGC 1365. Although the whole range of input parameters was
studied, none of them gave configuration of vectors of the polarization similar to the
observed one. Contrary to their work, the calculated synthetic face-on polarization maps
of barred galaxies presented in this thesis bear some resemblance to observations. The
obtained results can be compared directly with observations of NGC 1365 and NGC 1097
(Beck et al. 2005), as these galaxies show roughly similar magnetic structures. Although,
the modelled barred galaxy possesses different properties, e.g. it is much smaller than
NGC 1365 or NGC 1097, the following similarities can be highlighted:

• The polarized radio emission is strongest in the inner part of the bar and in radio
ridges that approximately follow the dust lanes indicated by the enhancement of the
gas density (see e.g. time step t = 2.5 Gyr in Figure 3.5). The enhancement of the
polarized intensity in the radio ridges may be caused by compression of random
fields in shocks.

• Magnetic field vectors change quickly their pitch angles whenever they are located
upstream to the dust lanes. This is visible almost at every time step in each simu-
lation. In a real observation strong changes of magnetic field orientation results in
depolarization valley within the telescope beam. In the case of synthetic polariza-
tion maps this effect is almost invisible. Small depolarization valley appears very
rarely and an example of one is visible e.g. at the time step t = 4.25 Gyr in the
bottom row in Figure 3.10.

• In the outer part of the disk magnetic vectors form a spiral pattern with maxima of
polarized intensity along spiral gaseous arms and in interarm regions (see third and
bottom rows in Figures 3.9, 3.10, 3.11 and in Figure 3.5).

• The total magnetic field reaches maximum values in the central part of the galaxy
and depending on a model it ranges between 53.4 µG and 88.8 µG (see Table 3.1).
The obtained values are very similar to those observed in real galaxies, e.g. in NGC
1365 the total magnetic field in the central region is about 60 µG.
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• In spiral arms the maximum value of the total magnetic field taken from simulations
ranges between 2.1 µG and 8.6 µG (see Table 3.2). These values are slightly smaller
than those obtained from observations, where the total magnetic field in arms is
about 20 µG. This distinction may be caused by differences in sizes of modelled and
real galaxies. As mentioned above, the modelled barred galaxies are much smaller
than NGC 1365 or NGC 1097. Thus, gaseous arms and corresponding magnetic
arms in NGC 1365 and NGC 1097 are stronger than those obtained in numerical
simulations.

• The average equipartition strength in modelled barred galaxies is between 3.7 µG
and 12.1 µG (see Table 3.3). For comparison, the average total magnetic field
strength for the sample of 20 barred galaxies is 10 ± 0.3 µG (Beck et al. 2002).

Polarization vectors in the edge-on view reveal the so-called X-shaped structure. It ap-
pears in the modelled galaxy as a result of buoyancy driven by cosmic rays via the PI. The
galactic wind emerging from the disk is modified by the differential rotation in the halo
and by the dynamo action. It is responsible for the transport of the magnetic field together
with the cosmic ray gas to the galactic halo. The X-shaped configuration of the magnetic
field is observed in radio-continuum emission at centimeter wavelengths of edge-on spi-
ral galaxies (Tüllmann et al. 2000; Soida 2005; Krause et al. 2006). Edge-on synthetic
radio maps obtained in this thesis bear some resemblance to radio maps of edge-on galax-
ies NGC 5775 (Soida 2005) or NGC 253 (Heesen et al. 2009). In both in synthetic and
real maps the orientation of the magnetic field vectors is parallel in the disk and at small
distances from the galactic midplane. On the other hand, the vertical field component
becomes important with increasing radius and height above and below the galactic plane.
Similar results were obtained by Hanasz et al. (2009b) and Otmianowska-Mazur et al.
(2009). They claimed that using the cosmic ray driven dynamo the X-type structures can
be successfully reproduced in spiral galaxies. Simulations presented in this thesis confirm
this finding and extend it to barred and ringed (see Section 4.2) galaxies.

Edge-on spiral galaxies with very high (e.g. NGC 4666) and much smaller (e.g. NGC
4217) star formation rate possess very similar X-shaped configuration of the magnetic
field. Contrary to this, synthetic edge-on polarization maps obtained for model BS1 with
the highest SN activity differ from those calculated for other models with lower SN rates.
For models BS2 ( fS N = 1/50 yr−1) , BS3 ( fS N = 1/100 yr−1), BS4 ( fS N = 1/200 yr−1) and
BS5 ( fS N = 1/500 yr−1) the vertical magnetic field component occurs at large galactic
radii, while for model BS1 ( fS N = 1/25 yr−1) it is present only in the bar region.

The X-shaped magnetic field configuration in a starburst galaxy NGC 4631 is slightly
different from those observed in galaxies mentioned above. In fact, magnetic vectors
cross the disk plane at almost right angle. Soida (2005) suggested that this behaviour
of B-vectors may indicate the dipolar symmetry of the magnetic field. However, in my
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simulations the X-shaped structures produced in the case of the dipolar and quadrupolar
symmetry are very similar. No significant differences can be noted, thus the magnetic
field configuration visible in edge-on maps of NGC 4631 may result from some physical
processes occurring in the galactic disk rather than from the symmetry of the magnetic
field.

In the barred galaxy simulations no significant dependence of the growth rate on the
SN frequency can be observed. For models SD1, SD2, SD3, SD4 and SD5 the large scale
magnetic field grows on timescales 230 Myr, 194 Myr, 326 Myr, 300 Myr and 360 Myr,
respectively. The overall e-folding times presented in this thesis are comparable to values
obtained in other numerical experiments. Hanasz et al. (2006, 2009a) made shearing box
simulations of the cosmic ray driven dynamo and found that the e-folding timescale in
normal spiral galaxies is about 150 − 250 Myr. Very similar results were presented by
Gressel et al. (2008) who made galactic dynamo simulations in the box model and took
into account turbulent ISM driven by multiple clustered SNe explosions. The box sim-
ulations of Siejkowski et al. (2010) showed that the exponential growth of the magnetic
field in irregular galaxies is slower than in the case of spiral galaxies and ranges between
300 Myr and 600 Myr. In all shearing box experiments the e-folding time of the amplifi-
cation mechanism shows only a minor dependence on the SN activity. Additionally, the
time scale of the exponential growth of the large scale magnetic field in global simula-
tions of the cosmic ray driven dynamo in normal spiral galaxies (Hanasz et al. 2009b) is
270 Myr.

The mean pitch angle calculated in simulations of the barred galaxy varies between
−6° and −13°. These values are smaller than the observed values by up to −30°, however
similar results were also found by Hanasz et al. (2006), who estimated pitch angles to
be ∼ 5°. Obtained values of pitch angles in the barred galaxy simulations are almost
independent of the SN frequency. On the other hand, the SN activity has significant
influence on the overall rate of the mass outflow.

The mass outflow rate caused by galactic winds produced during SNe explosions in
the barred galaxy simulations ranges from 0.6 to 4.7 M� yr−1. The overall rate of the mass
outflow grows with the increasing SN activity in the galactic disk. Galactic scale outflows
(galactic winds) from galactic disks are common phenomena and can be observed both
in nearby galaxies (Tüllmann et al. 2006) and in the high-redshift universe (Tapken et al.
2007). Following observations, one of the main sources of galactic winds are SNe explo-
sions (e.g. Matsubayash et al. 2009). According to the recent review of galactic winds
(Bland-Hawthorn et al. 2007) the mass outflow rate ranges between 0.1 to 10 M� yr−1.
Additionally, the authors suggested that the outflow rate increases with increasing star
formation rate. Results presented in this thesis support this statement and perfectly fit to
the observed values.

In all models of the barred galaxy enhancements of the cosmic ray energy density cor-
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respond to regions with the highest gas density. Similar results were obtained by Hanasz
et al. (2009b) who also studied numerically the cosmic ray driven dynamo but in the case
of normal spiral galaxies.

Although the crucial aim of this thesis was to investigate the evolution of magnetic
field structures, an agreement with the earlier, dynamical studies of this problem is also
very important. All the basic dynamical features of the modelled barred galaxy are very
similar to those constructed by Athanassoula (1992). The nonaxisymmetric gravitational
potential of the bar triggers the formation of dust lanes along the leading edges of the bar
and spiral arms propagating in the outer parts of the galactic disk, outside the bar. The
same characteristic structures were obtained by many authors who studied the dynami-
cal properties of barred galaxies (Athanassoula 1996; Otmianowska-Mazur et al. 2002;
Romero-Gómez et al. 2006, 2007; Kulesza-Żydzik et al. 2009, 2010). What is more, the
value of the SN rate has significant influence on the gas distribution in the barred galaxy.
For the highest SN rate ( fS N = 1/25 yr−1, model SD1) gaseous arms are shorter than
those in models with lower SN activity. Moreover, the transport of gas from the outer
part to the central part of the galaxy is most efficient for the model with the highest SN
rate and decreases with decreasing SN activity. For model SD5, with the lowest SN rate
( fS N = 1/500 yr−1) gaseous arms form outer ring whose position corresponds to the OLR
location. Thus, the existence of the outer ring in barred galaxies is also determined by the
SN activity.

4.2 Ringed galaxy NGC 4736 - successes and prob-

lems with the dynamo model

According to many theoretical and numerical studies (e.g. Schwarz 1981, 1985; Buta
1999) rings in barred galaxies are formed at the ILR and OLR. The distribution of the
gas density through the disk centre (Figures 3.13, 3.14, 3.15, 3.16 and 3.17) as well as
the column density (third and bottom rows in Figures 3.19, 3.20, 3.21, 3.22 and 3.23)
obtained for all models of the ringed galaxy confirm this assumption. Indeed the outer
ring is located between R ∼ 8 kpc and R ∼ 11 kpc and is obviously associated with the
OLR which is located at R = 7.7 kpc (see e.g. model RS2 for the time step t = 2.3 Gyr
in third panel in Figure 3.20 or model RS5 for the time step t = 3.8 Gyr in third panel
in Figure 3.23). The outer ring is formed only due to the action of the oval. Since no
strong torques act beyond the OLR the outer ring is not limited outside the OLR and is
quite wide (∼ 3 kpc). The inner ring is less wide than the outer one and extends between
R ∼ 1.0 kpc and R ∼ 2 kpc (see e.g. model RS3 for the time step t = 2.8 Gyr in third panel
in Figure 3.21). As in the case of the outer ring, the position of the inner ring corresponds
to the OILR of the oval and the OLR of the bar, which are located at the same radius
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R = 1.8 kpc.
Following Bosma et al. (1977), real observations of NGC 4736 show that the inner

ring is located at R ∼ 1.6 kpc while the outer one at R ∼ 10.6 kpc. Positions of rings
obtained in this thesis are very similar to these found from observations of NGC 4736.
Moreover, the shape of the two rings is slightly elliptical which corresponds to observa-
tions of NGC 4736. Another morphological regions of NGC 4736 identified by Bosma
et al. (1977) are also reproduced in the presented simulations of the ringed galaxy. In fact,
using the numerical model of the ringed galaxy NGC 4736 (presented in Section 2.2.2)
I was able to get the following structures observed in NGC 4736:

• The central part of the galaxy within a radii R < 0.6 kpc is very bright as in this
region the small bar is present.

• The inner spiral structure which is induced by the nonaxisymmetrical gravitational
potential of the small bar and is encircled by the inner ring. It ranges between
R ∼ 0.6 and R ∼ 1.5 kpc and it is best visible in the middle of simulations (see e.g.
the time step t = 1.9 Gyr in third row in Figure 3.22).

• The inner ring located between R ∼ 1.0 kpc and R ∼ 2.0 kpc thus close to the OLR
of the inner bar and the OILR of the oval (see e.g. the time step t = 2.3 Gyr in
bottom row in Figure 3.20).

• The outer spiral structure which results from the nonaxisymmetrical gravitational
potential of the oval. In different models the shape of gaseous arms is distorted or
coherent.

• Between the oval disk and outer spiral arms the gap of lower surface density is
visible.

• The outer faint ring which is formed as a result of tight winding of spiral arms and
is located near the OLR and beyond (see e.g. the time step t = 3.8 Gyr in bottom
row in Figure 3.23).

The concept that Lindblad resonances are responsible for positions of the inner and
outer rings in the ringed galaxy NGC 4736 is not new and was studied by many authors.
The pioneering work in this field were the numerical studies by Gerin et al. (1991). The
authors made N-body simulations and found that the nonaxisymmetrical gravitational
potential of the oval perturbs the distribution of gas and gathers it in rings at Lindblad
resonances. Contrary to my model, in their simulations the formation of the inner ring is
very rapid while it takes much longer to form the outer one. On the other hand, similarly
to results presented in this thesis, Gerin et al. (1991) showed that the inner ring disappears
during further time evolution and that the outer ring is much wider than the inner one.
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Mulder & Combes (1996) used the model of NGC 4736 proposed by Gerin et al.
(1991) and increased the resolution in the inner part of the galaxy. Their results are very
similar to those described by Gerin et al. (1991) and again confirm that the inner and outer
rings are seen to form at the inner and outer Lindblad resonances.

Gu et al. (1996) made the test-particle simulation of NGC 4736 and obtained almost
the same positions of the inner and outer rings as the ones presented in this thesis. Addi-
tionally, similarly to my results the outer ring in Gu et al. (1996) work is wide with radius
R ∼ 7.5 kpc to R ∼ 10 kpc.

The resent hydrodynamic simulations of NGC 4736 were made by Trujillo et al.
(2009). They performed SPH simulations and used almost the same models of gravi-
tational potentials as the ones I apply in this thesis. They found that the oval distortion
can lead to creation of spiral arms and the inner ring which is located close to the inner
Lindblad resonance.

The distribution and motion of gas in the ringed galaxy models strictly depend on the
SN activity. The amount of gas accumulated in the inner ring grows with the increasing
SN rate, thus for model RS1 ( fS N = 1/50 yr−1) the inner ring is significantly denser than
the inner ring in model RS5 ( fS N = 1/500 yr−1). The opposite situation takes place in the
case of the outer ring for which the highest amount of gas gathers for model RS5 ( fS N =

1/500 yr−1) while the lowest for model RS1 ( fS N = 1/50 yr−1). The moment in time in
which the inner ring reaches its final shape is also determined by the SN activity. Namely,
the faster formation of the inner ring is observed for model RS1 (with the highest SN rate)
whereas the slowest one for model RS5 (with the lowest number of SNe explosions).
Additionally, the transport of gas from the outer part to the central part of the ringed
galaxy is the most efficient for the model with the highest SN rate and decreases with the
decreasing SN activity.

The mass outflow rate, caused by galactic winds emerging from SNe explosions in
the ringed galaxy simulations, grows with the increasing SN activity and ranges from 0.7
to 3.4 M� yr−1. The obtained values are similar to these calculated for the barred galaxy
simulations and are comparable with observations of real galaxies (Bland-Hawthorn et al.
2007). Moreover, in all models of the ringed galaxy regions where the cosmic ray energy
density is enhanced correspond to areas with the highest gas density. Similar results are
present in the case of the barred galaxy (see the previous Subsection 4.1) and in the case
of normal spiral galaxies (Hanasz et al. 2009b).

A radio observation of NGC 4736 was made by Chyży & Buta (2008). In my simula-
tions I was able to reproduce some of the observational properties of the magnetic field in
NGC 4736. First of all, in both numerical simulations and in radio observations the total
magnetic field is strongest in the inner ring. Chyży & Buta (2008) found that the total
magnetic field in the starbursting ring varies from 18 µG to even 30 µG. Using the cosmic
ray driven dynamo model I obtained very similar values which depending on the model
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range between 17.0 µG (model RS5 with the lowest SN rate) to 33.1 µG (model RS1 with
the highest SN activity, see Table 3.4). There is also a good agreement between the mean
total magnetic field estimated by Chyży & Buta (2008) and the one calculated for the
modelled ringed galaxy. In fact, Chyży & Buta (2008) suggested that the total mean field
in NGC 4736 is equal to 17 µG, whereas in my simulations this field is approximately
∼ 14 µG and it does not depend on the SN rate. Additionally, the cosmic ray driven dy-
namo is very efficient in the modelled ringed galaxy. The faster amplification occurs for
model RS1 (with the highest SN activity), where the e-folding time equals 104 Myr. This
very rapid growth of the total azimuthal flux causes that the magnetic field reaches the
equipartition level at time t ∼ 1.8 Gyr and confirms that the cosmic ray driven dynamo
can be responsible for strong magnetic fields observed in early type galaxies.

The distribution of the Faraday rotation measure in NGC 4736 indicates that this
galaxy possesses the large scale magnetic field which may result only from the dynamo
action (Chyży & Buta 2008). The distribution of the toroidal magnetic field component
obtained for modelled ringed galaxy (top and third rows in Figures 3.19, 3.20, 3.21, 3.22
and 3.23) confirms that the cosmic ray driven dynamo can produce the large scale mag-
netic field visible in observations of NGC 4736 as a coherent rotation measure pattern.
The highly symmetric magnetic field observed in NGC 4736 can also be explained by the
cosmic ray driven dynamo action. The large symmetry of the simulated magnetic field in
NGC 4736 is visible in top and second rows in Figures 3.19, 3.20, 3.21, 3.22 and 3.23.

High sensitivity radio polarimetric data reveal a coherent magnetic spiral structure in
the inner part of NGC 4736 (Chyży & Buta 2008). The polarized radio emission shows
that the magnetic field in the central part of NGC 4736 does not follow the gas distribution.
Indeed, B-vectors cross the inner ring without changing their direction and with a constant
and large pitch angle of about −35°. Unfortunately, using the cosmic ray driven dynamo
model the observed configuration of the polarized magnetic field cannot be reproduced.
Face-on synthetic polarization maps (third and bottom rows in Figures 3.19, 3.20, 3.21,
3.22 and 3.23) indicate that magnetic vectors are aligned along the inner ring and follow
the gas distribution. Additionally, the obtained values of the pitch angle (between −6° and
−13°, Table 3.4) are significantly smaller than these estimated from observations of NGC
4736 (−35°, Chyży & Buta (2008)).

The failure of the cosmic ray driven dynamo process in reproducing the structure of
the polarized magnetic field in the inner part of the galaxy and large pitch angles may be
explained by insufficient number of processes taken into account. Certainly, in NGC 4736
the galactic dynamo works and is responsible for most of the observational properties
of the magnetic field. However, the coherent spiral structure in the inner part of the
galaxy may be formed before the inner ring appears. When the inner ring is formed, the
magnetic field vectors may not change their direction immediately. In fact, the magnetic
field can ”remember“ past conditions in the galaxy (Wezgowiec et al. 2007). Moreover,
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the formation of the inner ring may not be related to secular evolutionary processes in
the galaxy. Yu-Ting Wu (2010) made N-body simulations and suggested that rings may
be formed during a head-on collision of a spiral galaxy and a dwarf galaxy. In that case
the evolution of the galaxy may be described as follows. Before the collision, the spiral
galaxy possesses a clear pattern of the ordered magnetic field of spiral shape created due
to the galactic dynamo action. After the head-on interaction with the dwarf galaxy the
inner ring can form gradually, while the magnetic field vectors still reveal a coherent
spiral pattern and cross the inner ring without changing their direction. This situation is
not permanent and after some time the magnetic field starts to be aligned along the inner
ring. Unfortunately, this prediction is in disagreement with observations of NGC 4736
which show no signs of recent mergers or close interactions. In order to confirm these
statements more numerical simulations including head-on collisions are needed. What
is more, a larger sample of observations of the distribution of magnetic fields in ringed
galaxies will also help to better understand all phenomena that lead to the magnetic field
configuration in NGC 4736.

On the other hand, increasing the resolution of the presented simulations of the ringed
galaxy NGC 4736 may drive to better results. Unfortunately, simulations with resolution
two times larger than the one presented in this thesis require much longer computational
time ∼ 300k CPU hours. In order to perform high-resolution simulations of NGC 4736
an access to the fastest supercomputers as well as the improvement of the Godunov code
are needed.

Face-on polarization maps indicate that the polarized magnetic field is present in the
whole modelled ringed galaxy (see third and bottom rows in Figures 3.19, 3.20, 3.21, 3.22
and 3.23). Although the magnetic field is visible in the gaseous arms during the whole
simulation time, the drift of magnetic arms into the interarm region takes place only in
the early phase of evolution in models RS1, RS2, RS3 and RS4. At later time steps, after
t = 1.0 Gyr, no drift of the magnetic field, similar to that observed in the barred galaxy
simulations, can be detected. It may be caused by very limited space between the oval
and the outer ring which is insufficient to allow magnetic arms to drift into the interarm
region.

Polarization vectors in the edge-on view reveal the so-called X-shaped structure (see
vertical slices in third and bottom rows in Figures 3.19, 3.20, 3.21, 3.22 and 3.23). This
configuration of the magnetic field results from a galactic wind action and is also observed
in the barred galaxy simulations (to more precise description see the previous Section 4.1).

The even (quadrupole-type) symmetry of the magnetic field with respect to the galac-
tic plane is visible in vertical slices in Figures 3.19, 3.20, 3.21, 3.22 and 3.23). The
obtained symmetry is natural in the dynamo theory (e.g. Ruzmaikin et al. 1988) and has
been observed in many galaxies (e.g. Beck 2009c; Heesen et al. 2009). It has also been
obtained in numerical studies of the cosmic ray driven dynamo in barred galaxies (see the
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previous Section 4.1) and in normal spiral galaxies (Hanasz et al. 2009b).



Chapter 5

Summary and Conclusions

This thesis presents a sample of numerical simulations of the cosmic ray driven dynamo
in barred and ringed galaxies. The main findings of this thesis are:

• The polarized radio emission visible in face-on synthetic polarization maps indi-
cates that the cosmic ray driven dynamo may be responsible for many magnetic
structures visible in real observations of barred galaxies.

• In the case of the simulated barred galaxy the drift of magnetic arms is observed
during the whole simulation time. On the other hand, for simulations of the ringed
galaxy, magnetic arms detach from gaseous arms and drift into the interarm space
only during the early stage of evolution.

• The synthetic edge-on radio maps of polarized emission computed for barred and
ringed galaxies show that the cosmic ray driven dynamo can reproduce the vertical
magnetic field structures observed in edge-on barred and ringed galaxies.

• The large scale magnetic field grows in barred and ringed galaxies on a timescale
comparable to that obtained for normal spiral and irregular galaxies. In the case of
the simulated barred galaxy there is no significant dependence on the SN rate, while
for simulations of the ringed galaxy the number of SNe explosions influences the
growth rate of the magnetic field.

• The cosmic ray driven dynamo triggers a very fast exponential growth of the mag-
netic field in galaxies. Both in barred and ringed galaxies the faster amplification
is obtained for the SN frequency fS N = 1/50 yr−1 and the corresponding e-folding
time is 194 Myr and 104 Myr, respectively. The last value confirms that the cosmic
ray driven dynamo may reproduce strong magnetic field even in early type galaxies.

80
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• During the equipartition state the cosmic ray driven dynamo maintains the magnetic
field in a steady state.

• Presented simulations show that the seed field of stellar origin is sufficiently strong
to be amplified by the cosmic ray driven dynamo to values observed in real galaxies.

• In the case of the simulated barred galaxy, the average equipartition strength of the
magnetic field and the maximum value of the total magnetic field in magnetic arms
as well as in the bar are consistent with observational values.

• Both in simulations of the barred and the ringed galaxy the distribution of gas and
cosmic ray energy density as well as the overall rate of mass outflow are determined
by the SN activity.

• Using the numerical model of NGC 4736 presented in Section 2.2.2 it is possible to
reproduce the observed gaseous structures of this galaxy, i.e., the inner ring which
encircles the inner spiral structure, the outer spiral structure, the outer ring and the
gap in density between the oval and the outer ring.

• The spiral coherent structure which does not follow the gas distribution in the inner
ring in NGC 4736 cannot be reproduced using the cosmic ray driven dynamo model
only. Another processes, such as galactic interactions, have to be taken into account.
High-resolution simulations may also lead to better results.

• The total magnetic field in the inner ring as well as the mean magnetic field have
values very similar to those observed in NGC 4736.

• In accordance with theoretical studies the quadrupole-like symmetry of the mag-
netic field is preferred in numerical studies of the galactic dynamo. The even sym-
metry of the magnetic field with respect to the midplane is visible in most of sim-
ulations of barred and ringed galaxies. Only in one model of the barred galaxy the
odd symmetry of the magnetic field is observed.

• Magnetic field reversals are visible in barred and ringed galaxies’ simulations. De-
pending on the model they can be observed during the whole simulation time or
appear from time to time.

This thesis shows that the cosmic ray driven dynamo is a powerful mechanism for ampli-
fying galactic magnetic fields. Using the cosmic ray driven dynamo many observational
magnetic futures of barred and ringed galaxies can be reproduced. Additionally, the idea
that the seed field may be of stellar origin was confirmed again in the presented studies.
Prepared numerical simulations provide a good basis for further research.



Appendix A

Polarization maps

To obtain synthetic radio maps from simulations results at first I have to rotate the galactic
disk to the position defined by an inclination and a position angle. Next I calculate the
magnetic field component perpendicular to the line of sight B⊥. In my model the line of
sight corresponds to the z-direction which points towards an observer at infinity. Then the
perpendicular component of the magnetic field in Cartesian coordinate system is given by
B⊥ =

√
B2

x + B2
y . The synchrotron emissivity εI can be written as

εI ∝ ne,crB
(γ+1)/2
⊥ , (A.1)

where γ is the energy spectral index of the relativistic electrons and ne,cr is the number
density of cosmic ray electrons. I assume that the distribution of cosmic ray electrons is
proportional to the energy density of cosmic rays ecr. Then, the synchrotron emissivity is
described as

εI ∝ ecrB
(γ+1)/2
⊥ . (A.2)

The Faraday rotation ψ of polarized emission along the line of sight is given by equation

ψ = Cλ2
∫

ne,thB‖dz, (A.3)

where dz is the small distance in the z direction, B‖ = Bz is the magnetic field component
parallel to the line of sight, C = 0.812 rad m−2 cm3 µG−1 pc−1 is the constant (see Ehle
& Beck 1993), λ is the wavelength and ne,th is the number density of thermal electrons.
I assume that the distribution of thermal electrons is proportional to gas density, then

ψ = 0.812λ2
∫

ρBzdz. (A.4)

After computing εI and ψ I calculate Stokes parameters Q and U which are proportional
to the following integrals along the line of sight (see Longair 1994, e.g.)

Q =

∫
εI cos(2ψ)dz, (A.5)
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U =

∫
εI sin(2ψ)dz. (A.6)

Finally, I convolve the synthetic Stokes parameters with a Gaussian beam of HPBW of
40′′ to qualitatively match the finite resolution of observed maps.



Appendix B

Cosmic ray transport in the Godunov
code

The original version of the Godunov code written by Kowal et al. (2009) does not include
several routines needed in my simulations, i.e. gravity (a module calculating gravitational
potential produced by each component of a galaxy as well as a module responsible for
disturbance of a gravitational potential by its nonaxisymmetrical part coming from the bar
and/or the oval), the cosmic ray transport, or distribution of SNe remnants. All modules
responsible for above processes were added to the Godunov code. The most important is
algorithm which allows to use cosmic rays. The description of routines which calculate
the cosmic ray transport in the Godunov code is reported below.

B.0.1 Incorporation of cosmic ray transport using Hanasz & Lesch

(2003) method

The cosmic ray implementation to the Godunov code is based on the method proposed by
Hanasz & Lesch (2003) which was adopted into the Zeus code (Stone & Norman 1992a,b)
and the Piernik (Hanasz et al. 2009b) code. This algorithm was successfully tested in both
codes by many authors working on galactic dynamo problems (Hanasz et al. 2004, 2009b;
Otmianowska-Mazur et al. 2009; Siejkowski et al. 2010). Because this algorithm was
precisely presented by Hanasz & Lesch (2003) here I only briefly describe the method,
highlighting the differences between the Zeus and the Godunov code.

As mentioned in Section 2.1.2 the propagation of the cosmic ray component in the
ISM is described by the diffusion-advection equation 2.7. Comparing this equation to
the energy equation 2.3 one can notice that they are similar, except the diffusion term
∇(K̂∇ecr). Thus, numerical algorithms of the cosmic ray and energy transport are almost
the same and only the additional diffusion term in the cosmic ray transport requires an
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extra routine.
The numerical algorithm which incorporates the diffusion of cosmic rays along the

magnetic field lines can be divided into few steps. All steps are calculated separately
for each cell faces, what results from positions of vector field components in numerical
codes. Namely, to satisfy the ∇ · ~B = 0 to machine precision the magnetic field is located
at cell interfaces. The correct centering of the magnetic field is crucial for any numerical
simulations and it is slightly different in the Zeus and the Godunove code. Lets assume
that cell centers are denoted by (i, j, k) ≡ (xi, y j, zk), then the magnetic field in the Zeus
code is stored in arrays

Bx(i, j, k) = Bx
i−1/2, j,k, (B.1)

By(i, j, k) = By
i, j−1/2,k,

Bz(i, j, k) = Bz
i, j,k−1/2,

while for the Godunov code the position of the magnetic field is given by

Bx(i, j, k) = Bx
i+1/2, j,k, (B.2)

By(i, j, k) = By
i, j+1/2,k,

Bz(i, j, k) = Bz
i, j,k+1/2.

This little difference in the Zeus and the Godunov code causes that the algorithm proposed
by Hanasz & Lesch (2003) needs minor modifications, which are presented below.

At first step the Godunov code computes the diffusion tensor Ki j = K⊥δi j + (K‖ −
K⊥)nin j, where K⊥ and K‖ are parallel and perpendicular (with respect to the local mag-
netic field direction) cosmic ray diffusion coefficients and ni = Bi/B are components of the
unit vectors tangent to magnetic field lines. The magnetic field component on x direction1

faces in the Godunov code is given by

Bx(i, j, k) = Bx(i, j, k), (B.3)

+0.25(By(i, j, k) + By(i + 1, j, k) + By(i + 1, j − 1, k) + By(i, j − 1, k))

+0.25(Bz(i, j, k) + Bz(i + 1, j, k) + Bz(i + 1, j, k − 1) + Bz(i, j, k − 1)).

In the next step the gradient of cosmic ray energy density is calculated. In the Godunov
code the cosmic ray energy density is positioned at the center of each cell. Thus, to
compute cosmic-ray diffusive fluxes across cell interfaces the cosmic ray energy density
should be interpolated from the cell center to the corresponding cell interface. Addi-
tionally, for stability of the whole algorithm in the Godunov code the monotinization of

1The magnetic field component on y and z directions faces is computed in the analogous way.
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derivatives is applied. Then, the gradient of cosmic ray energy density in the x-direction2

is given by

∇ecr(i, j, k) =
∂ecr(i, j, k)

∂x
+
∂ecr(i, j, k)

∂y
+
∂ecr(i, j, k)

∂z
. (B.4)

The corresponding derivatives can be written in the form

∂ecr(i, j, k)
∂x

=
ecr(i + 1, j, k) − ecr(i, j, k)

x(i) − x(i − 1)
, (B.5)

∂ecr(i, j, k)
∂y

=
1
4

(
∂lecr(i, j, k)

∂ly
+
∂recr(i, j, k)

∂ry

)
(B.6)

×

(
1 +

(
1,
∂lecr(i, j, k)

∂ly
∂recr(i, j, k)

∂ry

))
,

∂ecr(i, j, k)
∂z

=
1
4

(
∂lecr(i, j, k)

∂lz
+
∂recr(i, j, k)

∂rz

)
(B.7)

×

(
1 +

(
1,
∂lecr(i, j, k)

∂lz
∂recr(i, j, k)

∂rz

))
,

where left and right derivatives are given by

∂lecr(i, j, k)
∂ly

=
1
2

ecr(i, j + 1, k) − ecr(i, j, k) + ecr(i + 1, j + 1, k) − ecr(i + 1, j, k)
y( j) − y( j − 1)

, (B.8)

∂recr(i, j, k)
∂ry

=
1
2

ecr(i, j, k) − ecr(i, j − 1, k) + ecr(i + 1, j, k) − ecr(i + 1, j − 1, k)
y( j) − y( j − 1)

, (B.9)

∂lecr(i, j, k)
∂lz

=
1
2

ecr(i, j, k + 1) − ecr(i, j, k) + ecr(i + 1, j, k + 1) − ecr(i + 1, j, k)
z(k) − z(k − 1)

, (B.10)

∂recr(i, j, k)
∂rz

=
1
2

ecr(i, j, k) − ecr(i, j, k − 1) + ecr(i + 1, j, k) − ecr(i + 1, j, k − 1)
z(k) − z(k − 1)

. (B.11)

The time step limit for the cosmic ray diffusion is calculated using the following sta-
bility condition

∆tcr ≤ Ccr
(min(∆x,∆y,∆z)2

K
, (B.12)

where Ccr = 0.5 is the Courant number corresponding to the diffusion problem.
The above limitation of the time step for the cosmic ray transport depends on the par-

allel diffusion coefficient K‖. It means that using realistic values of the parallel diffusion
coefficient K‖ relatively very small time step is obtained. Therefore, to reduce the com-
putational cost the diffusion term in Eqn. 2.7 can be calculated using implicit method.
The iterative method of solving set of linear equations, the so-called biconjugate gradient

2The gradient of cosmic ray energy density on y and z directions faces is computed in the analogous
way.
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stabilized method of van der Vorst (1992), often abbreviated as BiCGSTAB, (see Ap-
pendix B.0.2) was added to the Godunov code by Grzegorz Kowal. Using this algorithm
the time step is not limited by the parallel diffusion coefficient K‖ and the computational
cost as well as memory requirement are very low (see Appendix B.0.3). However, numer-
ical simulations have shown that for high resolution cases the implicit method is unfortu-
nately slower than the explicit one. To obtain the same accuracy of implicit and explicit
methods in high resolution cases, the implicit method needs many iterations, what does
not influence on the time step but significantly prolongs the computational time. Thus, in
most of simulations the explicit method of solving the cosmic ray transport is used.

B.0.2 Implicit method - Unpreconditioned BiCGSTAB of Van der

Vors

An iterative method of solving set of linear equations is based on iteration. At the start
of the algorithm an initial estimation of parameters is assumed and next equations are
solved. The newly obtained values of parameters are inserted back into equations and the
process repeats until the desired approximate solution is reached. During each process the
error in the approximate solution is reduced. The iterative method discussed here is the
unpreconditioned biconjugate gradient stabilized (BiCGSTAB) method of van der Vorst
(1992), which solves iteratively equations

Ax = b, (B.13)

where A is a matrix, b is a source vector and x is a solution variable for which we seek
the solution. BiCGSTAB starts with an initial guess x0 which determines the true residual

r0 = b − Ax0. (B.14)

The arbitrary vector r0 is chosen to satisfy the relation

(r0, r0) , 0, (B.15)

e.g. r0 = r0. In addition, the other variables are defined as:

v0 = p0 = 0, ρ0 = ω0 = α = 1. (B.16)

To compute the approximate solution in each iteration step (from i = 1 to i = imax) the
following sequence of operations are made

ρi = (r0, ri−1). (B.17)

Then define

β =

(
ρi

ρi−1

) (
α

ωi−1

)
(B.18)
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and solve pi from
pi = ri−1 + β(pi−1 − ωivi−1). (B.19)

Next calculate
vi = Api (B.20)

and
α =

ρi

(r0, vi)
. (B.21)

Solve s from
s = ri−1 − αvi (B.22)

and calculate
t = As. (B.23)

Then the optimal value for ωi is given by

ωi =
(t, s)
(t, t)

. (B.24)

In each iteration step the approximation xi is corrected by search correction

xi = xi−1 + αpi − ωis. (B.25)

If xi is accurate enough then the algorithm stops, otherwise

ri = s − ωit (B.26)

and the process repeats again. In the GODUNOV code for test problems the desired
accuracy and the maximum iteration step are set to be 10−16 and 1000, respectively.

B.0.3 Test problems

Below I present test problems of the numerical algorithm for the cosmic ray diffusion-
advection problem taken form Hanasz & Lesch (2003). From samples of test problems
I made two: the active cosmic ray transport along an inclined magnetic field and the active
cosmic ray transport in a vertically stratified atmosphere. All parameters as well as the
initial configuration applied in both test problems are the same like these presented in
Hanasz & Lesch (2003) and are not describe here again.

B.0.3.1 Active cosmic ray transport along an inclined magnetic field

In Figure B.1 the initial distribution of the cosmic ray energy density with magnetic field
vectors (top panels) and the gas density with velocity field vectors (bottom panels) are
shown. Middle and right panels in Figure B.1 correspond to explicit and implicit methods
of solving the cosmic ray diffusion, respectively. The initial configuration of the cosmic
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Figure B.1: The distribution of the cosmic ray energy density with overplotted vectors of magnetic
field (top panels) and the distribution of the gas density with overplotted vectors of velocity field
(bottom panels). Left panels represent the initial configuration of the cosmic ray energy density
and gas density adopted to the active cosmic ray transport problem. Middle and right panels show
results obtained for the active cosmic ray transport at t = 40 Myr for explicit (middle panels) and
implicit (right panels) methods of solving the cosmic ray diffusion.

ray energy density is not uniform, but the enhancement of cosmic ray energy density is
visible in the center of the computational box (the initial peak in this distribution repre-
sents a single SN explosion). On the other hand, initially the gas density distribution is
uniform and no velocity field is present (~v = 0.0). At the time step t = 40 Myr, due to
the coupling of cosmic rays to gas and magnetic field, these configurations change sig-
nificantly. First of all, the velocity of the gas increases and gas accelerates preferentially
along magnetic field lines. Additionally, gas is removed from the center of the compu-
tational box and accumulates outside the inner hole, upper-left and lower-right corners
of bottom panels in Figure B.1. The acceleration and outflow of gas from the injection
region is caused by the cosmic ray pressure. This pressure is also responsible for broaden-
ing of the cosmic ray profile across the magnetic field lines as well as for the enhancement
of the cosmic ray energy density in regions where the velocity field is accelerated the most
efficiently. What is more, no significant differences between implicit and explicit meth-
ods of solving the diffusion of cosmic rays is visible (compare middle and right panels in
Figure B.1).



APPENDIX B. COSMIC RAY TRANSPORT IN THE GODUNOV CODE 90

Figure B.2: The distribution of the cosmic ray energy density with overplotted vectors of the
magnetic field in a gravitationally stratified galactic disk. The left panel represents the initial
configuration of the cosmic ray energy density, middle and right panels show results obtained at
the time step t = 100 Myr for explicit (middle panel) and implicit (right panel) methods of solving
the cosmic ray diffusion.

B.0.3.2 Cosmic ray action in a gravitationally stratified galactic disk

This test problem is similar to that presented above, the only difference is that in this case
a uniform vertical gravity is taken into account. As a results the initial distribution of the
gas density is not uniform, but the gas is vertically stratified.

In Figure B.2 the evolution of the cosmic ray energy density in the case of explicit
(middle panel) and explicit (right panel) methods is shown. Cosmic rays injected into the
spherical volume of SN remnant diffuse anisotropically along the large-scale magnetic
field and cause the formation of a fluxtube. Due to an excess of cosmic ray pressure
the thermal gas outflows along the fluxtube from the SN injection center. The region
becomes less dense than the surrounding medium and its central part starts to rise against
the vertical gravity. At t = 100 Myr the flux tube forms a well defined Parker loop. The
evolution of the cosmic ray energy density as well as the shape of the Parker loop are the
same for implicit and explicit methods. However, the computational cost of the explicit
method is eight times greater than for the implicit method.
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109

Athanassoula, E., 1992, MNRAS, 259, 345

Athanassoula, E., 1996, In: Barred Galaxies / Eds. Buta R., Crocker D. A., & Elmegreen
B. G., ASP Conf. Proc. 91, 309
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Beckman, J. E., Varela, A. M., Muñoz-Tuñón, C., Vilchez, J. M. & Cepa, J., 1991, A&A,
245, 436

91



BIBLIOGRAPHY 92

Berezinski, V. S., Bulanov, S. V., Dogiel, V. A., Ginzburg, V. L.,Ptuskin, V. S., Astro-
physics of cosmic rays, Amsterdam:North-Holland, 1990.

Bernet, M. L., Miniati, F., Lilly, S. J., Kronberg, P. P. & Dessauges-Zavadsky, M., 2008,
Nature, 454, 302

Bland-Hawthorn, J., Veilleux, S. & Cecil, G., 2007, Ap&SS, 311, 87

Block, D. L., Buta, R., Knapen, J. H., Elmegreen, D. M., Elmegreen, B. G., & Puerari,
I., 2004, AJ, 128, 183

Bosma, A., van der Hulst, J. M. & Sullivan III, W.T., 1977, A&A, 57, 373

Brandenburg, A., Donner, K. J., Moss, D. et al., 1993, A&A, 271, 36

Buczilowski, U. R., Beck, R., 1991, A&A, 241, 47

Buta, R., 1986, ApJS, 61, 609

Buta, R., 1988, ApJS, 66, 233

Buta, R., 1999, Ap&SS, 269/270, 79

Buta, R. & Combes, F., 1996, Fundamentals of Cosmic Physics, 17, 95

Buta, R., Vasylyev, S., Salo, H. & Laurikainen, E., 2005, AJ, 130, 506

Buta, R., Corwin, H. G. & Odewahn, S. C., 2007, The de Vaucouleurs Atlas of Galaxies,
Cambridge University Press

Buta, R., Knapen, J. H., Elmegreen, B. G., Salo, H., Laurikainen, E., Elmegreen, D. M.,
Puerari, I. & Block, D. L., 2009, AJ, 137, 4487
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