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Chapter 1

Introduction

One of the most important goals of modern nuclear physics is precise study of the forces
acting between nucleons. This fundamental knowledge is necessary for understanding of
properties and interactions of nuclei.

Properties of few-nucleon systems at medium energies are determined by pairwise
nucleon-nucleon (NN) interaction, which is a dominant component. On a basis of the
meson exchange theory, which stems from the Yukawa’s idea [1], models of NN forces
were created. These new generation realistic NN potentials reproduce the NN scattering
data with an impressive precision, expressed by a χ2 per degree of freedom very close
to one. Nowadays, since QCD cannot yet be solved in the nonperturbative regime, the
realistic two-nucleon (2N) potentials, together with the more sophisticated approaches
like coupled-channels (CC) method [2, 3] and the fundamental one based on Chiral Per-
turbation Theory (ChPT) [4, 5], constitute a rich theoretical basis for description of the
NN interaction.

Now, an obvious question needs to be stated, whether these 2N potentials describe the
experimental properties of systems with more than two nucleons. In order to investigate
this problem, the simplest testing ground, the three-nucleon (3N) system was chosen.
As it turned out, even the most fundamental properties, the binding energies of 3H and
3He [6], have not been reproduced in a proper way. This experimental fact was the first
clue for existence and significance of additional dynamics appearing in the presence of the
third nucleon, which is refered to as three-nucleon force (3NF). Further and richer indi-
cations of 3NF existence come from the nucleon-deuteron (Nd) high precision scattering
data for the cross sections and spin observables [7–15]. In this case the first evidence of
3NF effect in scattering was observed when studying minima of the Nd elastic scattering
cross sections for incoming nucleon energies larger than 60 MeV [7]. Quantitative conclu-
sions are nowadays possible due to the fact that rigorous technique of solving the Faddeev
equations with any short range interaction for the 3N system (e.g. [16]) was formulated.
There exist various models of 3NF [17–20] derived from the meson exchange theory, which
combined with the pure NN forces can be used in such calculations. The 3NF potentials
are naturally obtained within the coupled-channel framework, as well as in the Chiral
Perturbation Theory (effective field theory for the NN interaction). Comparisons of the
above calculational approaches with the rich set of the elastic Nd scattering observables
demonstrate the importance of 3NF (see Fig. 1.1), nevertheless reveal discrepancies, es-
pecially in various polarization data [9,10,12,14], but also in certain cross-section angular
distributions [12, 13, 15]. These indigences remain, even if the full available 3N dynamics
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Figure 1.1: Comparison of theoretical predictions and experimental data for the Nd elastic
scattering differential cross section at 65 MeV and 190 MeV beam energy. The two bands
represent the theoretical calculations of the NN potentials with (orange) and without the
3NF model (green) included. Open circles are the nd data [21], full squares and stars are
pd data [22], [23] and [9]. Figure adopted from [24].

is taken into account, what indicates that the 3NF models are still missing some relevant
ingredients.

A natural extension of the experimental program is exploration of the nucleon-deuteron
breakup process, whose final state provides the richest field for verifying and developing
the interaction models. Up to now the experimental activities in this field were limited
to very small fraction of the phase space [25], what did not allow to draw any global

conclusions. The first new generation measurement of the 1H(~d, pp)n breakup reaction in
a wide phase-space region, performed at the beam energy of 130 MeV by the polish-dutch
group provided very interesting data. The results, when compared with the theoretical
predictions showed not only the significance of the 3NF in the experimental cross sections
data [26, 27], but also revealed new unexpected effects. For the configurations character-
ized by small polar angles of the emitted protons and at large relative azimuthal angles
ϕ12 the theoretical predictions strongly underestimate data, while at the small ϕ12 angles,
the data are overestimated - see Fig. 1.2. This kind of disagreements led to a conclusion
that their can be understood qualitatively as the action of the electromagnetic long-range
force, neglected in the mentioned above theories. The first calculations with the Coulomb
interaction included were performed within the coupled-channels approach [29] for the
elastic proton-deuteron scattering. Then their were developed for the pd breakup pro-
cess [30] and clearly confirmed the above conclusion. Moreover, the Coulomb force was
recently implemented in calculations [31] with the realistic AV18 NN potential [32] com-
bined with the Urbana IX 3NF model [19]. Within this approach the observables for the
pd elastic scattering and breakup reactions were predicted and will be shown later in this
Thesis.

In spite of the fact that in the recent years developments of the theoretical models
describing the 3N systems were quite intensive, the experimental data still suggest some
additional aspects of the 3N dynamics, which are not considered in the predictions. In
order to investigate this, a further measurement of the vector and tensor analyzing powers
of the deuteron-proton breakup reaction was performed as the extension of the previous
one. The obtained results [33] stay in good agreement with the theoretical calculations
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in terms of the 3NF effect. In particular, it is true for vector analyzing powers in the
whole studied phase-space. In case of the tensor analyzing powers certain discrepancies
are observed in the region where the Coulomb effects in the cross section case were im-
portant, here, however, their influence is very small. One can therefore conclude that the
procedure of implementation of the electromagnetic interaction in the theoretical models
has not been finally developed yet.

The theoretical approaches, within which the inclusion of the Coulomb interaction
was recently performed need quantitative verification. The best testing region is the part
of the phase-space where the influence of the electromagnetic force is seizable, i.e. the
region of very small polar angles. The new calculations predict quite spectacular effects
connected with the presence of the Coulomb force for the cross sections and rather small
for the analyzing powers - see Fig. 1.3. Furthermore, in case of the polarization observ-
ables various theoretical approaches lead to different behavior of the 3NF (see Fig. 1.4),
what also requires verification.

To meet the above expectations, an experiment was carried out with the use of the
Germanium Wall detector at the Research Center in Jülich. This experimental studies of
the 1H(~d, pp)n breakup reaction with the 130 MeV polarized deuteron beam allowed to
extend the available data base at medium energies to the very forward angular domain
(50 ÷ 140). The investigated region of the phase-space is extremely important to check
the predictions of the Coulomb force influence.

The aim of this dissertation was to determine precise values of the differential cross
sections and the vector analyzing powers for the d − p breakup reaction in the forward
angular region and to compare the results with the theoretical predictions originating
from various approaches which model the 3N system dynamics. The data were obtained
at 135 kinematical configurations in case of the cross section, whereas for vector analyzing
powers Ax and Ay at 42 configurations.

Chapter 2 contains a description of the kinematical relations of the d − p breakup
reaction, as well as theoretical characteristic of the experimental breakup observables.
Chapter 3 contains a brief discussion of the 2N and 3N theoretical approaches which are
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Figure 1.2: Cross sections for three different kinematical configurations of the 1H(~d, pp)n
reaction. Lines represent calculations with (solid) and without (dashed) Coulomb inter-
action included. Figure adopted from [28].
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Figure 1.3: Examples of the predicted in the coupled-channel approach differential cross
sections and analyzing powers of the breakup reaction at 65 MeV/nucleon in the kine-
matical configuration θ1 = 50, θ2 = 50 and ϕ12 = 400. The dashed lines show the results
of the theoretical calculations with the CD Bonn+∆ potential, the solid line represent
the predictions obtained with the Coulomb force included in the formalism.

used for comparisons with the experimental results. Chapter 4 is committed to description
of the experimental setup and technique. Chapter 5 contains presentation of all proce-
dures used in evaluation of the interesting observables. This chapter gives discussion of
the method of obtaining the beam polarization values, as well as of the evaluated vector
analyzing powers for the d− p elastic scattering process. Moreover, it presents a detailed
description of the detection system efficiencies, methods leading to construction of the
kinematical spectra, as well as gives the information about the evaluation of the breakup
observables - the vector analyzing powers Ax and Ay, and the differential cross sections.
Chapter 6 is committed to the global discussion of the results, as well as to the detailed
comparisons of the data with theoretical calculations. Summary and final conclusions
can be found in Chapter 7. Appendix A and Appendix B contain all the results of the
breakup cross sections and vector analyzing powers, respectively, obtained in this Thesis.
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Figure 1.4: Examples of the analyzing powers of the breakup reaction at 65 MeV/nucleon
calculated with the realistic potentials (left panels) and within the ChPT (right panels)
for the kinematical configuration θ1 = 100, θ2 = 50 and ϕ12 = 400. The magenta bands
represent the calculations with the 3NF included in the dynamics, the cyan bands show
the predictions of the pure NN interaction.



Chapter 2

Experimental observables

2.1 Kinematical relations of the 1H(~d, pp)n breakup

reaction

The investigated breakup reaction 1H(~d, pp)n with three free nucleons in the final state
(see Fig. 2.1) is kinematically described by the momenta of the two protons: ~p1, ~p2 and
one neutron: ~p3, what amounts to 9 variables. Energy and momentum conservations in
this case are expressed as follows:

Ed = E1 + E2 + E3 − Eb,

~pd = ~p1 + ~p2 + ~p3, (2.1)

where Ed, E1, E2, E3 denote the kinetic energies of the deuteron, two protons and
neutron, respectively, and Eb = −2.224 MeV is the binding energy of the deuteron.

If one takes into account the above conservation laws and the relation ϕ12 = ϕ1−ϕ2, the
number of independent variables can be reduced to the following five: E1, E2, θ1, θ2, ϕ12.
Due to the fact that in the discussed here experiment the proton energies (E1, E2) and
their directions (polar θ1, θ2 and azimuthal ϕ1, ϕ2 angles) were determined, the final
state of the reaction is over-completely reconstructed. After eliminating E3 in Eq. 2.1
one obtains in the non-relativistic case the following formula:

(m1 + m3)E1 + (m2 + m3)E2 − 2
√

mdm1EdE1 cos θ1 − 2
√

mdm2EdE2 cos θ2

+2
√

m1m2E1E2 cos θ12 = m3Eb + (m3 −md)Ed,

(2.2)

where:
cos θ12 = cos θ1 cos θ2 + sin θ1 sin θ2 cos(ϕ1 − ϕ2),
md - deuteron mass,
m1, m2 - proton masses,
m3 - neutron mass.
If one assumes m1 = m2 = m3 ≡ m and md ≡ 2m, Eq. 2.2 simplifies to:

E1 + E2 −
√

2EdE1 cos θ1 −
√

2EdE2 cos θ2 +
√

E1E2 cos θ12 =
Eb − Ed

2
, (2.3)

9
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Figure 2.1: A schematic view of the breakup reaction with indicated momenta of the
incoming deuteron (~pd) and the outgoing protons (~p1, ~p2) and neutron (~p3). The polar
(θ1 and θ2) and azimuthal (ϕ1 and ϕ2) angles of the two protons are defined in the chosen
reference frame, as well as their relative angle ϕ12 = ϕ1 − ϕ2.

Figure 2.2: Sample set of kinematical relations between the energies of the two protons
for different configurations. The blue arrow represents the arc-length variable S for one
of these kinematics, with its zero value chosen at the minimum of E2.
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what, for one set of angles, is the equation relating the energies of the two measured
protons. This relation corresponds to the so-called kinematical curve i.e. dependency
between the energies E1 and E2 of the outgoing protons for a chosen kinematical con-
figuration θ1, θ2, ϕ12. A few examples of the kinematical curves are shown in Fig. 2.2.
The S − variable defines the arc-length along the individual kinematical curve and is
represented in Fig. 2.2 by the arrow starting at the minimal energy E2, what defines
S=0.

2.2 Elastic scattering process

Elastic d−p scattering reaction is described by two-body kinematics i.e. two particles are
present in the final state of the reaction. In this experiment the initial conditions were
given as (mdeut, mprot, ~pdeut, ~pprot = 0), where the mdeut, mprot are masses of the proton
and deuteron and ~pdeut, ~pprot are the momenta of these particles. The projectile is heavier
than the target mdeut > mprot, thus the obtained from the conservation of energy and
momentum laws kinematical relations describe the so-called inverse kinematic. In Fig.
2.3 such kinematical curves are presented with two distinguished branches. Moreover, the
detector acceptance is marked with the colour dashed lines. The “first” branch refers to
the situation when the high-energy deuteron is detected, whereas the proton is emitted
outside the detector acceptance. The ”second” branch is related to the high-energy proton
accompanied by the low-energy deuteron. In a certain range of the polar angles both
particles reach the detector. In general, if the final state particle is chosen to be detected
at an angle θ1, two-body kinematics determine the unique angle θ2 at which the other
particle emerges as well as both kinetic energies.

2.3 Cross section and analyzing powers

If one considers a reaction with a polarized spin J=1 projectile and an unpolarized
target with three particles in the final state, the general formula for the cross section
σ(ξ, ϕ1, β) in Cartesian coordinate system depends on the cross section for an unpo-
larized beam σ0(ξ), vector analyzing powers Ax(ξ), Ay(ξ), Az(ξ) and tensor analyzing
powers Axy(ξ), Ayz(ξ), Axz(ξ), Axx(ξ), Ayy(ξ) Azz(ξ). ξ represents a set of kinematical
variables, which in the case of the breakup reaction is ξ = (θ1, θ2, ϕ12, S). β angle
describes the orientation of the projectile spin with respect to its momentum. Then, the
general cross section formula can be expressed as follows [34]:

σ(ξ, ϕ1, β) = σ0(ξ) · [1− 3

2
sin β sin ϕ1PzAx(ξ) +

3

2
sin β cos ϕ1PzAy(ξ) +

3

2
cos βPzAz(ξ)

− sin2 β cos ϕ1 sin ϕ1PzzAxy(ξ) + sin β cos β cos ϕ1PzzAyz(ξ)− sin β cos β sin ϕ1PzzAxz(ξ)

+
1

2
(sin2 β sin2 ϕ1 − cos2 β)PzzAxx(ξ) +

1

2
(sin2 β cos2 ϕ1 − cos2 β)PzzAyy(ξ)]. (2.4)

The angles and frame definitions are consistent with the Madison Convention [35]. For the
beam polarization normal to its momentum (β = 900), as it was used in the experiment,
Eq. 2.4 can be rewritten as:
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Figure 2.3: The elastic d−p scattering kinematical relations presented as the dependencies
of θd vs. θp and kinetic energy vs. θlab. The arrows indicate the part of the kinematical
curves refered to as “first“ and ”second” branches within the detector acceptance of the
present experiment (marked by dotted lines).

σ(ξ, ϕ1) = σ0(ξ) · [1− 3

2
sin ϕ1PzAx(ξ) +

3

2
cos ϕ1PzAy(ξ)− cos ϕ1 sin ϕ1PzzAxy(ξ)

+
1

2
sin2 ϕ1PzzAxx(ξ) +

1

2
sin2 ϕ1PzzAxx(ξ) +

1

2
cos2 ϕ1PzzAyy(ξ)]. (2.5)

Pz and Pzz are the vector and tensor polarizations of the deuteron beam, and can be
defined in the source coordinate system by the formulae:

Pz =
N+ −N−

N+ + N0 + N−
, (2.6)
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Pzz =
N+ + N− − 2N0

N+ + N0 + N−
, (2.7)

where N+, N0, N− are the numbers of particles with the spin projection mI : +1, 0, −1,
respectively.

The analyzing powers which appear in Eqs. 2.4 and 2.5 posses the following properties:

• the tensor Axx, Ayy, Azz components satisfy the identity:

Axx(ξ) + Ayy(ξ) + Azz(ξ) = 0, (2.8)

• from parity conservation result the following symmetry rules:

Ax(θ1, θ2, S, ϕ12) = −Ax(θ1, θ2, S, − ϕ12),

Ay(θ1, θ2, S, ϕ12) = Ay(θ1, θ2, S, − ϕ12),

Axx(θ1, θ2, S, ϕ12) = Axx(θ1, θ2, S, − ϕ12),

Axy(θ1, θ2, S, ϕ12) = −Axy(θ1, θ2, S, − ϕ12),

Ayy(θ1, θ2, S, ϕ12) = Ayy(θ1, θ2, S, − ϕ12),

(2.9)

• as a consequence of the above conditions it follows that the Ax and Axy analyz-
ing powers vanish for the coplanar configurations (ϕ12 = 1800), as well as for the
symmetric ones (θ1 = θ2).

For the elastic scattering process, which is the coplanar case (i.e. the relative azimuthal
angle ϕ12 = 1800) with the final state described by only two independent variables, usually
the polar and azimuthal angles θ, ϕ of one of the reaction products, Eq. 2.5 takes a
simplified form:

σ(θ, ϕ) = σ0(θ) · [1 +
3

2
cos ϕPzAy(θ) +

1

2
sin2 ϕPzzAxx(θ) +

1

2
cos2 ϕPzzAyy(θ)], (2.10)

where now all observables (σ, σ0, Ay, Axx, Ayy) refer to the elastic scattering.
The above formula can be expressed in spherical coordinates, also very commonly

used. The relation between the analyzing powers in the spherical and Cartesian coordi-
nates can be found in [34], [36]. Rewritten in that representation Eq. 2.10 takes the form:

σ(θ, ϕ) = σ0(θ) · [1 + iT11(θ)
√

3Pz cos ϕ− T22(θ)

√
3

2
Pzz cos 2ϕ− T20(θ)

√
2

4
Pzz]. (2.11)
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Chapter 3

Theoretical approaches to the 2N
and 3N systems

Properties of few-nucleon systems at medium energy regime are determined mainly by
pairwise NN interactions. The long range part of the NN potential is described with the
meson-exchange theory, whereas the short range is constructed using phenomenological
approaches, with the aim to reproduce a rich set of the NN scattering data. This aim
was achieved with an impressive accuracy of χ2 per data point very close to one. This
kind of a new generation forces, developed within the meson-exchange theory (one-boson
exchange, OBE, or multi-particle exchanges between nucleons), which was first proposed
by Yukawa (see Fig. 3.2, left), are refered to as realistic NN models. They operate on
purely nucleonic degrees of freedom considering the nucleons as stable objects. Nowadays,
there exist many so-called realistic NN potential models, like AV18 [32], CD Bonn [37],
Nijmegen I and II [38].
There exists also a method of extension of the above picture, in which one ∆ isobar is
treated as a stable particle. This approach, called coupled-channels, is based on the real-
istic CD Bonn potential [2, 3].
An alternative and more fundamental approach comes from Chiral Perturbation Theory
(ChPT), which considers the strong forces between the nucleons as interaction between
their constituent quarks. This effective field theory for NN interaction links the quantum
chromodynamics (QCD) and NN interaction phenomenology in the non-perturbative en-
ergy regime.

An obvious step in testing those 2N force models is turning into systems with more
than two nucleons interacting and checking whether the above models correctly repro-
duce experimental data in such environment. The simplest and nontrivial one is the
three-nucleon (3N) system.
The realistic NN forces fail to provide experimental binding energies of few-nucleon sys-
tems and lead to underbinding of 0.5-1 MeV in the cases of 3H and 3He, 2-4 MeV for
4He, [39] and for systems up to A=8, the underbinding is ≈ 10 MeV. Moreover, the re-
alistic NN potentials also do not reproduce the data from nucleon-deuteron (Nd) elastic
scattering for nucleon energies larger than 60 MeV [8, 12, 13, 22, 40–42], especially at the
minima of the cross sections, see Fig. 3.1. The most natural candidate to explain those
disagreements is three nucleon force (3NF), which only affects observables in processes
involving three or more nucleons. There are different models of 3NF, usually refined
versions of the Fujita-Miazawa force [43], in which one of the nucleons is excited into an

15
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Figure 3.1: Comparison of the differential cross section data with the theoretical predic-
tions for the Nd elastic scattering at 108 MeV/nucleon. The dark blue band presents
theoretical calculation based on the realistic NN potentials. The experimental results
(black circles) are Nd elastic scattering data [13]. Figure adopted from [13].

intermediate ∆ via 2π-exchange with both nucleons, see Fig. 3.2 (middle). In a more gen-
eral case the scheme of interaction is as follow: a pion emitted by one nucleon interacts in
a complicated way with a second nucleon and then is absorbed by a third nucleon, see Fig.
3.2 (right). The realistic potentials are supplemented by this additional 3NF dynamic,
what leads to appearance of a new term in the potential energy, which depends in an
irreducible way on the degrees of freedom of all three participating nucleons. In the case
of the alternative coupled-channel approach, the 3N system is described with the explicit
treatment of the degrees of freedom of a single ∆ isobar excitation. In ChPT framework
the non-zero 3NF appears naturally at the next-to-next-to-leading order (NNLO).
In order to obtain in a theoretical way observables which could then be used for interpreta-
tion of the measured 3N system data in terms of nuclear force properties, a new formalism
was introduced by Faddeev [44]. This method of exact treatment of the 3N scattering
problem with any short range interaction is a tool which allows to obtain the theoretical
predictions with high accuracy, not biased by (numerical) simplifications. Quantitative
conclusions are nowadays possible due to the rigorous technique of solving the Faddeev
equations for the 3N system [16].
A brief descriptions of the above mentioned approaches is presented below.

3.1 Realistic potentials

The realistic NN potentials used nowadays, like charge dependent (CD) Bonn [37], AV18
[32], Nijm I and Nijm II [38], describe the long range part of the interaction with the use
of meson-exchange formalism, whereas the implemented short range part is phenomeno-
logical. These 2N forces can be combined with the recent version of the 2π-exchange
Tucson-Melbourne (TM) 3NF model [17, 18, 20], called TM99 3NF. The general expres-
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Figure 3.2: Schematic diagrams of the structure of the nucleon-nucleon interaction (left)
and of the three-nucleon force: the Fujita-Miazawa 3NF (middle) and a general 3NF
model via two-meson exchange (right).

sion for the 2π-exchange 3NF in the TM framework contains four coefficients a, b, c and
d, which are obtained by fitting the π-N scattering data and refer to three terms [45]:

1. a-term - describes the π-N S-wave scattering,

2. b, d-terms - are related to π-N P-wave scattering with the main process
πN → ∆ → πN,

3. c-term - the term which vanishes due to chiral symmetry.

Besides these parameters the TM99 3NF model contains one additional cut-off parameter
ΛTM , expressed in units of the pion mass mπ. Value of ΛTM is adjusted to reproduce the
3H binding energy separately for different NN forces.
When the 3N system dynamics is described with the AV18 NN potential, it is also com-
bined with the Urbana IX 3NF [19]. This force is based on the Fujita-Miazawa model of
an intermediate ∆-excitation in the 2π exchange and includes also a phenomenological
short-range part. More detailed description of the formalism of the 3N system with the
realistic potentials combined with 3NF could be found in [46], [16].

3.2 Coupled-channel formalism (CCP)

The approach, presented in [2, 3], is based on the realistic CD Bonn potential. In this
case the ∆ resonance is treated as a stable particle, in contrary to the realistic CD Bonn
potential mentioned before. The two nucleon channels are coupled to those in which one
nucleon is excited and forms the ∆ isobar - see Fig. 3.3. In the coupled-channel potential
contributions of the transitions between the NN and N∆ states, as well as the exchange
N-∆ potential from direct interaction of the N-∆ states are included.
For the 3N system, creation of a ∆-containing state yields an effective 3NF (see Fig. 3.4,
right), but also so-called two-baryon dispersion (Fig. 3.4, left). These two contributions
usually compete, therefore the net effects of including ∆ isobar in the potential are smaller
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Figure 3.3: Channels considered in construction of the potential, in which single ∆-isobar
degrees of freedom are explicitly taken into account.

Figure 3.4: Three-baryon dispersion effect arising within the coupled channel potential:
two-baryon dispersion (left) and the effective three-body force (right).

than for approaches with the phenomenological 3NF’s.
In this framework the rigorous calculations including the Coulomb interaction have been
performed, see Sec. 3.4.

3.3 Chiral Perturbation Theory

The framework is based on the Lagrangian for Goldstone bosons (pions) and mater field
(nucleons), which is consistent with the broken chiral symmetry of the QCD [47,48]. Two
types of interaction are assumed: long range pion(s) exchanges, with the crucial role of
the chiral symmetry, and contact interactions, with the associated low energy constants
(LEC). Here, the nuclear potential is obtained in a way of a systematic expansion in
terms of momentum variable: (Q/Λ)ν , with Q describing a characteristic momentum of
the interacting system, Λ is connected to the chiral symmetry breaking scale of about 1
GeV and ν is a given expansion order. A non-vanishing 3NF appears at the NNLO (ν=3)
and the full potential at this order can be then written as follow (see Fig. 3.5):

V = V 0 + V 2 + V 3 + V 3NF , (3.1)

where
V 0 - LO (ν=0) is obtained by 1π-exchange part and two contact interactions; it contains
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Figure 3.5: The graphs which appear at different orders and contribute to the ChPT NN
potential. The 3NF arises at the NNLO. Figure adopted from [47].

two LEC’s,
V 2 - NLO (ν=2) is given by 2π-exchanges; it contains seven new LEC’s and corrections
to 1π-exchange are introduced,
V 3 - NNLO (ν=2) is express by subleading 2π-exchange potential with three new LEC’s
and corrections to 1π-exchange,
V 3NF - is appearing in three topologies and with two LEC’s.
The LEC’s appearing at LO and NLO are obtained by fitting the theoretical ChPT NN
potential to the NN data, whereas the three LEC’s characterizing NNLO potential are
determined from πN scattering data [26,27].
This method is unique because it provides a possibility to estimate uncertainties of the
obtained predictions. To this purpose the calculations are performed with a few combina-
tions of the two cut-off parameters [Λ, Λ̃], which are used for regularization of the obtained
potentials. An estimation of uncertainties of the theoretical observables is obtained due to
reasonable choice of the variation intervals of both cut-offs. Up to now within the ChPT
framework a complete description of the NN and 3N systems has been established at the
NNLO. Recently calculations for the NN system have been performed at the next higher
order, N3LO, however, the graphs corresponding to 3NF have not been included yet. For
more details on ChPT see also [49,50], [28], [51].

3.4 Coulomb interaction

The Coulomb force due to its infinite range and slow decrease with the distance of the
two charges is very difficult to include in the theoretical description in the 3N continuum.
The theoretical efforts to overcome these problems have long history (see [29]) and now
some important progress is being achieved. The Coulomb interaction has been included in
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the coupled-channel approach, as well as in the calculations with the AV18 NN potential
combined with the Urbana IX 3NF.
In these calculations a screened Coulomb potential, with the screening radius much larger
than the range of the nuclear potential is used. Then the standard methods for the
short-range forces are applied and the obtained results are corrected to match the un-
screened limit. Recently this idea has been used in the coupled-channel potential and
AV18 NN potential combined with the Urbana IX force calculations, and worked out to
a form providing relevant results for the 3N bound states, elastic proton-deuteron scat-
tering [29, 31, 52] and for the pd breakup reaction [31, 53]. At 130 MeV the predicted
effects for the breakup process are sizable for cross sections in some regions of the phase
space [29,30], [54] and much less prominent for the analyzing powers [55].

3.5 Acting of 3N forces

For 3N and 4N systems the correct binding energies were obtained by introducing the
TM99 or Urbana IX 3NFs. The combined models of NN and 3N potentials (adjusted
to reproduce the 3H binding energy) correctly described the 3He, 4He [6] bound states,
as well as the low energy levels of light (A ≤ 8) nuclei. Similar conclusions are also
obtained within the ChPT and coupled-channel approaches. In the case of ChPT frame-
work inclusion of 3NF graphs leads to an improvement in description of few-nucleon bound
states [56], whereas for the coupled-channel framework the binding energies of 3H, 3He
are much closer to the experimental values when ∆-isobar contributions are included [2].
A brief summary is presented in Tab. 3.1. Binding energies have shown the importance
of 3NF for the nucleus. Further consequences originating from introducing additional
dynamics into 3N system are visible in the Nd elastic scattering data. A large part of
discrepancies appearing in the Nd elastic scattering cross sections can be removed when
the 3NF is included in the 3N Hamiltonian within different frameworks. In several cases
where the NN forces fail to reproduce the observables, the implemented 3NF leads to
significant improvements [7, 8, 10, 12–14], see sample in Fig. 3.6, left. Unfortunately, for

potentials EB [MeV] EB [MeV] EB [MeV]
3H 3He 4He

CDBonn -8.01 -7.29 -26.3
AV18 -7.62 -6.92 -24.3

Nijm II -7.66 -7.01 -24.6
CDBonn+TM99 -8.48 -7.73 -29.2

AV18+TM99 -8.48 -7.76 -28.8
AV18+UIX -8.48 -7.76 -28.5

Nijm II+TM99 -8.39 -7.72 -28.5
CC CDBonn -8.36 -7.64 -28.4

Experiment -8.48 -7.72 -28.3

Table 3.1: Binding energies EB of 3H, 3He and 4He for various realistic potentials with
and without Tucson-Melbourne and Urbana IX three nucleon forces. The experimental
values are listed in the last row.
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various elastic Nd scattering polarization observables discrepancies between the theoret-
ical predictions and experimental data are still present. In some cases inclusion of 3NF
do not improve the theoretical descriptions enough [7, 9, 10, 13, 14] to reproduce the ex-
perimental points or the data are remarkably well described by calculations based on NN
interaction only and including 3NF is unnecessary (see Fig. 3.6, right). For the ChPT
framework, the existing discrepancies indicate the necessity for including the higher order
(at least N3LO) terms for the 3N continuum. In general one can suspect that the spin
structure of the current 3NF models is not yet properly understood.

Relying on the above facts one can conclude that the existing theoretical models still
need more high precision data and it is natural to turn into more complicated Nd breakup
reaction, where the final state offers a ground to detailed investigation of 3NF proper-
ties, especially of the spin structure of the 3NF. Also for this process precise theoretical
predictions for observables are available via exact solutions of the 3N Faddeev equations
for any NN interaction, even with the inclusion of 3NF model [16], as well as with the
Coulomb force, e.g. [53].

Figure 3.6: Comparison of the differential cross section data (left) and polarization ob-
servable Ay (right) with the theoretical predictions for the Nd elastic scattering at 108
MeV/nucleon. The dark blue band presents theoretical calculation based on the realistic
NN potentials, whereas the red one shows the predictions of the NN potentials combined
with the TM99 3NF. The experimental results (black circles) are the Nd elastic scattering
data [13]. Figures adopted from [13].
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Chapter 4

Experimental setup

The data presented in this dissertation come from the experimental runs committed to
investigation of the breakup process 1H(~d, pp)n, carried out at the Forschungszentrum
Jülich GmbH, Germany in 2006 and 2007. The experiments were performed with the
use of COSY (COoler SYnchrotron) accelerator and Germanium Wall detection system.
The experiment was placed outside the storage ring of the accelerator in the Big Karl
spectrometer area.

4.1 COSY accelerator

The cooler synchrotron COSY [57] is a storage ring device used to accelerate polarized
and unpolarized beams of protons and deuterons. Floor plan of the facility is presented
in Fig. 4.1. The ion source provides polarized and unpolarized ions of H− and D−, which
are preaccelerated with the use of the cyclotron JULIC up to the energies of about 45
MeV/A. Then the particles are guided through a 100 m long injection beam line, injected
into the COSY ring and accelerated up to the required energy of 130 MeV. After the ac-
celeration stage the beam was guided through extraction beam lines to the experimental
area of the Big Karl and focused on the target. A full machine cycle (spill) starts from
injection of the beam into COSY and is terminated after the full extraction process. A
typical spill lasts between 5 seconds and one hour.
The synchrotron consists of 24 dipole and 56 quadrupole magnets, which keep the particles
trajectories during acceleration process, as well as sextupole magnets, which enable the
beam deflection and as a result improve the beam optics. Moreover, COSY is equipped
with the electron and stochastic cooling systems in order to improve beam parameters,
what is important for high-precision experiments. For protons or deuterons with momen-
tum up to 600 MeV/c the electron cooling may be applied (energy of electrons is up to
100 keV). For more energetic particles (1500 - 3400 MeV/c) the stochastic cooling can be
used, what minimizes the beam dimensions longitudinally and transversally.

23
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Figure 4.1: A floorplan of the COoler SYnchrotron COSY with the experimental facilities.

4.2 Production of a polarized deuteron beam

The polarized ion source of COSY is a Colliding Beam source (CBS) type, which is able
to produce polarized proton and deuteron beams with all possible combinations of vector
and tensor polarizations.
The polarized ion source, presented schematically in Fig. 4.2, consists of three major
groups of components: the pulsed atomic beam source, the cesium beam source and the
charge-exchange and extraction region. In a first step of production of the polarized
beam, the H2(D2) gas molecules are dissociated into atoms in an inductively coupled
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Figure 4.2: The polarized ion source of COSY.

rf discharge and cooled to about 35 K by passing through an aluminum nozzle. Next
step is production of the electron state polarization of the atoms with the use of a first
sextupole. Due to the atoms magnetic dipole moments some of them are focused (only
atoms with the electron spin state mJ = +1/2) by a second sextupol into the radio fre-
quency transition area, where the nuclear polarization is produced. Afterwards, in the
charge-exchange region, the nuclear polarized hydrogen atoms collide with the neutral Cs:

~H0( ~D0) + Cs0 −→ ~H−( ~D−) + Cs+.

The fast cesium beam needed for the above charge exchange reaction in the solenoid, is
produced inside a vacuum chamber in two steps. First, Cs vapor is thermally ionized
on a hot (11000 C) porous tungsten surface at a potential of about 45 kV and the Cs+

fast beam obtained in this way is focused to the charge exchange region with the use of
quadrupole triplet system. Then, inside a neutralizer, placed between the quadrupoles
and the cesium deflector, the conversion to neutral Cs0 occurs. These high speed atoms
reach the charge exchange region passing through the deflection chamber and collide with
the atomic ~H0( ~D0) beam with high nuclear polarization.

The obtained H−(D−) ions are extracted with the use of electric field into the deflection
chamber, where they are subsequently deflected by 900 in the magnetic deflector and on
the way to the extraction system pass a Wien filter. This filter may be rotated around
the beam axis and the proper spin alignment for injection into the cyclotron Julic can be
selected.
The H−(D−) beam is finally injected into the Julic cyclotron at the energy of 4.5 keV
and preaccelerted up to energy of 45 MeV/A. Next, the H−(D−) beam is guided through
the beam lines and reaches the stripping injector, where the H−(D−) anions are stripped
off two electrons and injected into the COSY accelerator. More detailed description of
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CBS can be found in [58], [59], [60].

4.3 GEM facility

The GEM (Germanium Wall and Electromagnetic Spectrometer) detection system op-
erated in 2006 and 2007 consisted of three high-purity, semiconductor position sensitive
germanium detectors (GeWall) and the Big Karl spectrometer. The technical details can
be found in [61], [62] as well as in [63], [64], [65].
The Big Karl was one of the external facilities, which was using the extracted beam. For
such experiments one of the serious problems in obtaining beam with very good proper-
ties is beam-halo existence, which induces substantial background. To suppress this effect,
the electron cooling was used during the acceleration process. Study of the beam-halo
effect on GeWall detectors was preformed during the first test run in 2006. In spite of
the fact that the deuteron beam was finally focused on the target to a spot described by
σ ≈ 1.0 mm, the tails of the direct beam were still present on the detector. Therefore,
the experiment was utilizing a veto counter, which limited the acceptance of the beam to
its intense core.
In the presented here experiments the spill duration was about one minute and the
deuteron beam with the intensity of 2 · 107/s was focused to a spot with dimensions
(rms): 1.1 mm on x- and 1.0 mm on y-axis.

4.3.1 Big Karl spectrometer and a Dipole Exit counter

The Big Karl spectrometer consisted of two dipole and three quadrupole magnets and
focused particles scattered at polar angles less than 30. In the presented here experiments
it was used to transport the primary deuteron beam to the remote beam dump. The outer
yoke of the first dipole was equipped with an exit window, which enabled the primary
beam to leave the detection system without producing additional background. In order to
monitor the beam intensity (luminosity counters, see 4.3.3) a measurement of the direct
deuteron beam was necessary. With the use of an additional scintillator detector, which
was called Dipole Exit (DE) counter and was placed at the exit window, the measurements
of the direct beam intensity was possible.

4.3.2 Target section

The target construction and operation was worked out at the Institute of Nuclear Physics
(IKP) of the Forschungszentrum Jülich [66], [67]. As a target a cylindrical copper cell with
dimensions: 6 mm diameter and 2 mm thickness, filled with liquid hydrogen was used.
The flat taps were closed by the windows made out of 0.9 µm thin mylar foil (possibly thin
in order to reduce background reactions). To achieve proper pressure conditions inside the
cell, a mechanical stabilization system was applied, which allowed to choose the working
pressure of 0.2 mbar. Under this pressure hydrogen stays liquid in the temperature range
14 K - 16 K. A schematic picture of the target area with the GeWall detectors is presented
in Fig. 4.3.
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Figure 4.3: A schematic view of the target and the GeWall detectors inside the cryostat.

4.3.3 Veto and luminosity counters

Except the elements forming the main part of the detection system, additional detectors
were applied to control the reaction yield.
In order to decrease the trigger rate and select the deuterons which were bombarding
center of the target, a 2 mm thick scintillating veto counter with the central hole of 4 mm
diameter was mounted in front of the LH2 cell, see Fig. 4.4. The signal from the veto
counter was used in trigger conditions for the data acquisition system, see section 4.3.5.
Additional detectors (telescopes called Lumi Right-LR and Lumi Left-LL, see also Fig.
4.4) placed outside the scattering chamber were used for beam intensity monitoring. Each
telescope consisted of two paddles of scintillators acting in coincidence. Simultaneous
measurement of the primary beam with the use of the DE counter (see Sub. 4.3.1)
and the deuterons elastically scattered from the target allowed to obtain dependence of
the beam intensity as a function of the number of counts registered in LR or LL. The
measurements were performed with different beam intensities, reduced to the level at
which DE scintillators work without saturating the photomultipliers (about 105 d/s).
The dependence obtained in this way is linear over 5 orders of beam intensity and this
gives a possibility to calculate the number of deuterons hitting the target by extrapolation
to higher beam intensities.

4.3.4 Germanium Wall

For registering the charged reaction products Germanium Wall detectors were used. The
set of HP germanium detectors had a radial symmetry with respect to the beam axis. A
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Figure 4.4: A schematic view of the Germanium Wall detectors and the axillary detectors:
LR, LL, V eto. Sizes of different elements are not scale.

schematic view of the experimental arrangement is presented in Figs. 4.3 and 4.4. Each
detector possessed a central hole, to allow the beam particles which did not interact with
the target to be dumped via an exit in the side yoke of the first dipole of the magnetic
spectrometer. Dimensions of the holes, the total diameters of the detectors and the dis-
tances from the target define the angular acceptance of the detection system, which was
30 − 140 for the polar and 2π for the azimuthal angles.
The GeWall components were diodes of p−i−n type with the dimensions of the detectors
and distances to the target shown in Table 4.1. Two different types of detectors were used:
a thin transmission detector “Quirl” with an excellent spatial resolution, and two thick
energy detectors “Pizza 1”(E1) and “Pizza 2”(E2) with excellent energy resolutions. The
detectors were operated in vacuum, at the liquid nitrogen temperature. The Quirl detec-
tor was used to determine the position and the energy loss (∆E-detector) of the passing
particles. It was segmented on the front and the rear sides to 2x200 grooves, shaped
as Archimedes spirals, each covering an angular range of 2π (including the central hole
region). The bending direction of the spirals on the front and rear sides are opposite to
each other. Thus, the overlaps of the spirals form an array of about 20000 pixels (central
hole removes approximately half of the potential crossing regions) of the size from 0.011

detector diameter of diameter of total distance to thickness
the hole frontside the hole rearside diameter the target

Quirl 5.0 mm 5.0 mm 36.0 mm 76 mm 1.8 mm
E1 5.4 mm 6.4 mm 53 mm 88.0 mm 15.0 mm
E2 7.5 mm 8.4 mm 77 mm 117.0 mm 14.4 mm

Table 4.1: Characteristics of the GeWall detectors.
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mm2 (the most inner) to about 0.1 mm2. Features of the Quirl detector are presented in
Figs. 4.5 and 4.6. The energy detectors E1 and E2 were divided into 32 segments each
and mainly used for measuring energies of the charged reaction products. Furthermore,
they provided additional azimuthal information. A scheme of the Pizza detector is shown
in Fig. 4.7.
Information on energy losses in different GeWall components can be used for particle iden-
tification, whereas the sum of these energies gives the total kinetic energy of the particle.
Position information from the Quirl detector enables the determination of all three com-
ponents of the momentum versor of the particle (assuming a point-like interaction region
at the target) - distance from the target and the position on Quirl transform directly to
the azimuthal angle φ and the polar angle θ, see Sec. 5.3.

Figure 4.5: A schematic drawing of the Quirl detector with a few spirals of the front
and rear sides marked with their numbers. Areas marked with different colours refer to
different polar angle ranges.
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Figure 4.6: A schematic view of the Quirl detector. For clearness only 50 spirals of the
front and rear sides are drawn.

Figure 4.7: A schematic picture of the pizza energy detector with its division into 32
wedges.
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4.3.5 Electronics

A schematic view of the electronic devices serving the GeWall detectors is presented in
Fig. 4.8. The signals generated by the detector elements i.e. spirals of Quirl or segments
of Pizzas were processed in a few steps. First a charge sensitive preamplifiers (CSPA)
were used to transform the current pulses, produced in the detector by particles, into
voltage signals. These output signals were split into energy and timing branches. The
first one contained the shaper amplifier modules coupled to ADCs (Silena 3314 for the
Pizza detectors and Le Croy 4300B for the Quirl detector, always preceded by a module
Le Croy 3309 PTQ-Peak to Charge Converter), which finally gave the digital information
on the energy deposited in the detector elements. The second branch of the circuit was
used to generate logical signals for multiplicity analysis and triggering system. In the case
of Pizza detectors this branch was equipped with fast filter amplifiers FTA, discriminators
and TDC (Time to Digital Converter) modules. Discriminator modules output signals
were led to the trigger logic. For the Quirl detector branch, discriminators and MALU
units were applied. The MALU (Multiplicity Arithmetic Logic Unit) modules were used
in order to combine the neighbouring hits on the Quirl detector to a cluster and to count
the number of clusters produced in each event. Output signals obtained from the units
are proportional to the cluster multiplicity. MALU output signals were led to the trigger
logic.
The trigger conditions were chosen to be:
T1 ≡ Quirl Front(1) AND Quirl Rear(1) AND E1(1) AND V ETO,
T2 ≡ (Quirl Front(2) OR Quirl Rear(2)) AND E1(1) AND V ETO,
Quirl Front(1) ≡ Quirl Front ≥ 1 (a minimum bias trigger),
Quirl Rear(1) ≡ Quirl Rear ≥ 1,
Quirl Front(2) ≡ Quirl Front ≥ 2,
Quirl Rear(2) ≡ Quirl Rear ≥ 2,
E1(1) ≡ Pizza 1 ≥ 1.
where the inequalities are understood as concerning the detected in a given element cluster
multiplicity. In the experiment the triggers T1 and T2 were individually downscaled by
factor 2x (x=0 for T1 and x=2 for T2) to enhance the coincidence rate with respect to
singles. The digitized data obtained from ADC and TDC units were stored in memories
and then readout by the Data Acquisition system (DAQ). All crates were controlled by a
PC via CAMAC/FERA Crate Controller and had one dedicated Trigger Module, which
informed given Crate Controller when to start the read-out procedure. The numbers
of accepted and rejected events were recorded by the Scaler Module (once per spill) to
obtain information of the system dead time. Finally the data were proceeded to Subevent
and Event Builder Modules, sent to a master PC called Event Manager and written to
computer discs in so-called cluster form (this form could be converted to the event format
by the CLUSTER2EV ENT program during the analysis process). Moreover a sample
of the data was sent to the online analysis performed on a dedicated computer.
All the controlling computers together with the Crate Controllers, Subevent and Event
Builders were connected via fast Experimental Network allowing their communication via
TCP/IP protocol and were synchronized by means of PCI synchronization modules.
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Chapter 5

Data analysis

This Chapter contains description of all procedures which were used in evaluation of
observables interesting for the breakup process: cross sections and analyzing powers, at
chosen kinematical configurations of the two outgoing protons. Moreover, experimental
uncertainties and their sources are discussed along with the methods of their estimations.

5.1 Basics of software analysis

During the experiments data were accumulated in a cluster format written by DAQ and
then converted to an event format using a CLUSTER2EVENT program (see also Chapter
4.3, Section 4.3.5). The next step was application of a C++ program called SORTER
which transforms the data streams to ASCII format, which were finally stored in ROOT
files with the use of Tree structure.
The sorting program is based on three main libraries: XD-package [68], the Gemlib library,
providing matching to the GEM Data Acquisition System [69] and the GWall library, con-
taining the track reconstruction routines for the Germanium Wall detector [69]. In general,
SORTER is divided into two separate programs: a raw sorter (gSort− raw−work) and
a physical sorter (gSort). The raw sorter is able to create output data without any cali-
bration and provides ADC or TDC information only in channel units. This sorter version
is used for preparation of the actual calibration and controlling the detector performance.
The physical sorter provides energy information after applying calibration procedure and
also reconstructs particle trajectories with the use of track reconstruction package.
The output of physical sorter contains the full set of kinematical variables for a given par-
ticle, like the energy deposition in each detector, polar and azimuthal angles, etc.. This
information is used in the next steps of analysis and allows to identify particles (breakup
protons, elastic deuterons and protons) by ∆E−E technique and to create different cuts
for removing background events.

5.2 Reconstruction of the particles trajectories

Detailed description of particles trajectories reconstruction routine is presented in [70],
here only a brief summary is included for clarification of the software steps which are
necessary to understand further material of this Chapter.
Each event is characterized by a number of clusters on every detector i.e. on Quirl Front

33
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(QF), Quirl Rear (QR), Pizza 1 (E1) and Pizza 2 (E2). The cluster consists of a group
of spirals (or sectors) or of a single spiral (a sector) which registered charge signal in
a given event. Thus the neighbouring channels are considered to belong to a cluster if
their energy (ADC channel) is above a certain threshold, value of which is defined for
each individual channel. Therefore, the energy deposited in each detector is a sum of all
energies deposited in elements constituting the cluster. Besides energy, clusters are also
characterized by a mean azimuthal scattering angle Φ̄, calculated as the weighted average
of the angles of the cluster elements, e.g. :

E = E1 + E2 + .... + En, (5.1)

Φ̄ =
φ1 · E1 + φ2 · E2 + ... + φn · En

E1 + E2 + .... + En

, (5.2)

where i=1, 2,...., n enumerates the elements of the cluster, Ei is the energy deposited in
each element and φi is the geometrical azimuthal position of the i-th element (see also
next Section).
Having these parameters calculated for both sides of the Quirl detector, one can identify
the possible crossing points between the front and rear clusters. This information is used
in track generation procedure. All found Quirl crossing points are combined with the
E1 and/or E2 clusters. Also unusual combinations like QF/QR and E2 are possible. A
schematic of the track reconstruction is presented in Fig. 5.1. For selecting the tracks
which are likely to represent real particles, additional conditions are also necessary, like a
proper correspondence between values of ∆E and E1 or ∆E and E1 and E2, which are

Figure 5.1: A sample event, in which a crossing point in the Quirl detector was found and
the adequate sectors of E1 and E2 detectors were matched.
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reflecting the particle ranges. There is also an upper limit imposed on the difference
between the azimuthal angles of the crossing point in Quirl and the E1 cluster and ana-
logically for E1 and E2 clusters.
Before a track was fully reconstructed, additional conditions, which defined class of events
accepted in the further analysis were imposed. In the case of single-track events (elastic
protons or deuterons) only events with one cluster created on each detector were ac-
cepted, whereas for coincident events (two-track breakup events) two clusters on at least
two detectors (Quirl and Pizza 1) were chosen for the next step of analysis. This selection
assured an efficient reduction of accidental events.
Depending on the kinetic energy of a particle, three kinds of tracks can be specified: short
one (only Quirl detector responds), medium one (Quirl and Pizza 1 respond) and long one
(Quirl, Pizza 1 and Pizza 2 respond). For coincident events, combinations of the above
kinds are considered.

5.3 Angular information

Precise knowledge of particle emission angles is crucial for reconstruction of the breakup
and elastic kinematics. For calculation of polar θ and azimuthal φ angles the Quirl
detector, which provides excellent spatial resolution, was used. Active area of Quirl is
divided on both sides into 200 Archimedes spirals, as it was presented in Sec. 4.3.4.
Every spiral covers an angular range of 1800 and the position of the ith spiral is described
with ϕi = 2πi

200
, what defines its angular displacement from the 0th spiral center. For any

crossing point (x, y) between a left- (rear) and a right-bent (front) spiral, the angle ϕ and
the radius r in polar coordinates on the Quirl surface are given as follows:

Figure 5.2: Variables, which are used in reconstruction of the emission angles of particles
from the target point.
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Figure 5.3: Parameters of a crossing point of the front and rear spirals.

for ϕl < ϕr:

ϕ =
1

2
(ϕl + ϕr) + π (5.3)

r = R
1

2π
(ϕl − ϕr) (5.4)

for ϕl ≥ ϕr:

ϕ =
1

2
(ϕl + ϕr) (5.5)

r = R(1− 1

2π
(ϕl − ϕr)) (5.6)

where ϕl and ϕr are defined in Fig. 5.3. To obtain reliable values of the reconstructed
angles, the geometry of the detection system and the reconstruction procedure must be
well known and checked. Thus, to calculate the θ angle, the distance d between the
target point and the Quirl detector (see Fig. 5.2) was measured. To verify the measured
(by optical instruments in vacuum) value, the elastic scattering events were used. First,
based on the theoretical elastic scattering kinematics, the deuteron and proton energy
losses in the GeWall detectors were calculated with the use of SRIM program. As the
result, a theoretical ∆E−E dependencies for different θ angles were produced (examples
are presented in Fig. 5.4). Secondly, different Quirl-target distances were used for the
experimental energy losses reconstruction and confronted with the theoretical calculations.
As a consequence the distance between the Quirl detector and the target was found as
d = 76 mm, in good agreement with the result of the optical measurement.

5.4 Identification of the reaction channels

Particle identification was based on the ∆E − E technique. For that purpose energy-
energy spectra were constructed, using different combinations of the detectors to provide
the energy information. The events of interest are the coincidences of the two protons
from the breakup reaction, and the elastic channel, which, depending on the range of polar
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Figure 5.4: The energy lost in different GeWall components (Q- Quirl 1.8 mm thick, P1 -
Pizza 1 15 mm thick and P2 - Pizza 2 14.4 mm thick) as a function of the kinetic energy
of the measured particles: protons and deuterons.

angles, can be identified as single-track events or deuteron-proton coincidences (two-track
events). In Fig. 5.5 three different identification spectra outside the angular range of the
beam-like background (θ > 70) are presented. Three groups of particles are clearly seen
and separated: the long branch of the breakup protons, the spot of the elastic protons
and, above the proton loci, the spot of the elastic deuterons together with the rest-overs
of the deuteron beam.
In spite of the fact that the beam was focused to a spot with the size described by σ ≈ 1.0
mm, the tails of the direct beam were still visible on the detector, especially for very small
polar angles θ < 70. These events are mainly responsible for accidental coincidences and
can be eliminated by kinematical conditions.
To identify the breakup process, two-track events with at least Quirl and Pizza 1 detectors
responding in each track were selected (two, at least medium, tracks), see also Sec. 5.2.
The result of particle identification in that case is illustrated in Fig. 5.6.
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Figure 5.5: Examples of ∆E−E particle identification spectra for detector angular range
of θ > 70 and for single-track events.
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Figure 5.6: Identification spectrum for
the two-track protons constructed with as-
sumptions specified in the text.
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Figure 5.7: Protons identification spectrum
for the events registered as the short-long
tracks. All assumption are described in the
text.

In the picture the long, “banana“ branch of protons comes from the breakup reaction and
there are almost no elastic particles visible.
Another process of interest is the elastic d-p scattering which, as it was mentioned be-
fore, can be registered as single-track or two-track events. For high-energy protons with
θprot < 70, the coincident low-energy deuterons are stopped in the Quirl detector. These
events belong to the second branch of the elastic kinematics (see Sec. 2.2) and together
with the coplanarity condition ϕpd =| ϕprot − ϕdeut |= 1800, can be very well identified
on the ∆EQuirl versus EPizza1+Pizza2 spectrum. The events were selected as short - long
tracks. In Fig. 5.7 such events of interest can be seen.
The dependency ∆EQuirl versus EPizza1+Pizza2 is also useful for selection of the single-track
events. The events with single protons are characteristic for the range θprot > 70, whereas
the elastic high-energy deuterons are single-track events over the whole detector accep-
tance (the coincident low-energy protons are emitted outside the detector acceptance).
Examples of the identification spectra for single-track events are shown in Fig. 5.5.

5.5 Testing the detection system geometry

To test symmetry of the GeWall detectors, the elastic scattering particles were selected
as single-track and two-track events (see previous section).
With the use of elastic deuterons, an important parameter, the relative azimuthal angle φ0

between Pizza 1 and Pizza 2, which affects the procedure of matching E1 and E2 clusters in
the track reconstruction routine, was established. Geometry, of the sectors of E1 or E2 can
be observed on the Quirl XY - plane, for events selected with the condition of only one E1
(E2) sector responding in an event, see Fig. 5.8. Calculation of the centers of the images
of the E1 and E2 sectors in terms of azimuthal angles Φi characterizing a given sector i,
lead to the experimental dependencies between Φi and the number of the sector for both
detectors. Confronting this findings with the theoretical relations, the φ0 was found to be
−6.70. The two-track events (from the second branch of kinematics - see Sec. 2.2), refer
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Figure 5.8: Response of the Quirl detector in the case of only one sector of Pizza 1 (upper
panel) and Pizza 2 (lower panel) active in an event. For clearness only 16 sectors of the
E1 detector and 8 sectors of the E2 detector are presented. Visible are also a few not
working spirals.

to a high-energy proton accompanied by a low-energy deuteron. For proton polar angles
θp ≤ 70 both particles reach the detector, with the deuteron being stopped in Quirl. Fig.
5.9 illustrates the distribution of the relative azimuthal angle ϕpd = |ϕprot − ϕdeut|. The
events are grouped around ϕpd = 1800 in a prominent peak with only a low background
of accidental coincidences. This global dependency can be inspected in more details in
Fig. 5.10, where the relation ϕprot vs. ϕdeut is shown for several θp angles. The events
populate only the areas with ϕpd = 1800, what demonstrates proper reconstruction of the
azimuthal angles over the whole range and reflects detector symmetry.
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Figure 5.9: Number of counts as a function of ϕpd for the identified proton-deuteron
coincidences.
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Figure 5.10: Azimuthal angle dependencies (ϕd vs. ϕp) of two coincident particles, one of
which is identified as a proton emitted at different θp angles. The populated locies for the
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Figure 5.11: Response of single spirals for Quirl Front and Quirl Rear detectors to the
direct beam. Malfunctioning of front side is visible in double peak structure.

5.6 Energy calibration

Calibration of the GeWall setup is a standard procedure of finding the relation between
the deposited energy and the ADC channel for each individual detector element, i.e.
spiral or segment. For this purpose 130 MeV deuteron direct beam with strongly reduced
intensity was used. Germanium Wall was lit up with an about one millimeter beam spot,
moved over the detector to obtain ADC spectra from all its elements. Typical ADC spec-
tra coming from a calibration run for Quirl Front, Quirl Rear and Pizzas are presented in
Fig. 5.11 and 5.12. The tails on the left side of the peaks correspond to particles hitting
neighbouring elements, what caused that the charge produced in the detector material
was distributed over more than just one element. Obviously, the main peak represents
situations when the full particle energy is deposited in the spiral (sector) of interest.
As it turned out during the experiment the front side of the Quirl detector had been
slightly damaged, so for the further energy analysis only the rear side was used. Because
of the fact that the energy deposited by 128 MeV deuterons (about 2 MeV of the 130
MeV deuteron beam is lost in the 2 mm thick Veto counter) in each GeWall component
is known from the theoretical calculations, calibration coefficients for all spirals and sec-
tors can be easily determined and used in the further analysis. For Pizza 1 and Pizza 2
detectors the theoretical energy losses are 70.4 MeV and 51.1 MeV respectively, whereas
for Quirl detector it is 6.3 MeV. For Quirl detector the energy reconstructed for the direct
deuteron beam has a mean value of 6.7 MeV, therefore it deviates by about 6% from the
theoretical value. For Pizza 1 the reconstructed energy was 69.8 MeV, while for Pizza 2
it was 51.0 MeV, the differences being below 1%.

Elastic scattering deuterons and protons were selected for further tests. This events
are an ideal tool for studying energy reconstruction correctness, because of the fact that
deuteron and proton energy loss in GeWall detectors can be easily calculated, see Sec.
5.3 for details. For each sector of Pizza 1 and Pizza 2 the experimental relation between
the deposited energy and the polar angles of the particles was plotted and compared with
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Figure 5.12: Response of single sectors of Pizza 1 and Pizza 2 detectors to the direct
deuteron beam.

the theoretical one. As the result, correction coefficients for each individual sector were
obtained and applied to the calibration procedure. In Fig. 5.13 the lower panel illustrates
the situation when the experimental elastic kinematic reproduces the theoretical calcula-
tions, what corresponds to the adequate correction coefficient for this sector.

Final test of the calibration exactness was checking how the reconstructed energy
reproduces the breakup kinematics. For this purpose the E1-E2 coincidence spectra for
several configurations of the two protons were created without calibration correction. In
all situations experimental points lay above the theoretical curve (see Fig. 5.14, left
panel). Applying the correction factors (for Pizza detector as above, and correcting also
the Quirl energy response) leads to a perfect agreement between the experimental and
theoretical kinematics (Fig. 5.14, right panel).

5.7 Energy resolution of GeWall detectors

In order to deduce the energy resolution of the GeWall detectors, the 130 MeV deuteron
beam with strongly reduced intensity was used. One has to realize that the resolution is
influenced by charge splitting effect, which causes division of the charge carriers produced
by a particle in the detector material on more than one neighbouring spiral or sector. As
it was mentioned before, the energy of such events is reconstructed by building a cluster
from the responding channels and making the sum of all registered energies. Obviously
the energy resolution is deteriorated with the increase of the cluster size.
Due to the fact that the front part of the Quirl detector was biased with poor resolution
and only Quirl Rear was in fact used, the rear side defines an actual ∆E resolution. Table
5.7 contains information on the determined energy resolution for each GeWall detector.
Second column presents energy resolutions ∆E/E from the individual ADC spectra (see
also Figs. 5.15 and 5.16, left panels). Third column presents the energy resolution for the



5.7. ENERGY RESOLUTION OF GEWALL DETECTORS 43

 (deg)deutθ
4 5 6 7 8 9 10 11 12 13 14

en
er

g
y 

lo
ss

es
 in

  P
iz

za
 1

 (
M

eV
)

60

65

70

75

80

85

90

95
sector number 8

theoretical kinematic

 (deg)deutθ
4 5 6 7 8 9 10 11 12 13 14

en
er

g
y 

lo
ss

es
 in

  P
iz

za
 1

 (
M

eV
)

60

65

70

75

80

85

90

95
sector number 8

theoretical kinematic

Figure 5.13: Theoretical elastic scattering kinematics compared with the experimental
points for a single sector of Pizza 1 detector, before (upper panel) and after (lower panel)
applying the calibration correction.

Figure 5.14: E2 vs. E1 coincidence spectra for two registered protons in the angular
ranges specified in the pictures. The violet lines represents kinematical curve calculated
for the central values of the chosen angular ranges. Difference between the initial (left
panel) and final (right panel) calibration is visible.
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Figure 5.15: Reconstructed energy of the deuteron beam at the Quirl rear detector side
(left panel), and for additional conditions: two spirals register the full energy (middle
panel), three spirals register the full energy (right panel). Lines show the Gaussians fitted
to the peaks - parameters displayed in the panels.

Figure 5.16: Reconstructed energy of the deuteron beam at the Pizza 1 detector (left
panel), and for additional conditions: two sectors register the full energy (middle panel),
three sectors register the full energy (right panel). Lines show the Gaussians fitted to the
peaks - parameters displayed in the panels.

detector ∆E/E ∆E/E ∆E/E ∆E/E
for individual for all for one or two for three

ADC spectrum spirals/sectors spirals/sectors spirals/sectors
[%] [%] [%] [%]

Quirl 14 20 17 22
Pizza 1 5.6 5.9 5.5 7.8
Pizza 2 7.2 7.7 7.8 8.4

Table 5.1: Experimentally determined energy resolutions of the GeWall detectors.

sum of the energies of all spirals or sectors after applying energy reconstruction and clus-
tering procedures (see also Figs. 5.15 and 5.16, middle panels). Fourth column contains
∆E/E in the case of one or two spirals or sectors registering the full energy, whereas the
fifth one is the case of three spirals or sectors registering the full energy (see also Figs.
5.15 and 5.16, right panels).
As one can notice the effect of charge splitting (clustering procedure) causes a broadening
of the reconstructed energy distribution for particles with given energy (130 MeV deuteron
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beam) for Quirl and Pizzas detectors. Another important contribution deteriorating the
energy resolution is the radiation damage, which was not investigated in this experiment.

5.8 Determination of the beam polarization

Knowledge of the beam polarization value is necessary for studies of polarization observ-
ables of the elastic scattering and breakup processes. In order to determine the beam
polarization three kinds of the elastic scattering events were used: single high-energy
deuterons (protons emitted outside the detector acceptance) or protons (accompanied by
the low-energy deuterons stopped in Quirl and not identified), as well as the d− p coinci-
dences. These three groups of particles were identified, selected and prepared for further
study by applying a background subtraction procedure.
Despite the fact that 130 MeV deuteron beam has been produced in a few polariza-
tion states, only pure vector polarized state (Pz, Pzz) = (−2

3
, 0) and unpolarized one

(Pz, Pzz) = (0, 0) were acquired in the statistically sufficient periods. Unfortunately, the
tensor polarized states have been found to be characterized by very low level of polariza-
tion, precluding extraction of the corresponding observables. Consequently, the following
analysis is limited to the two states mentioned above.

5.8.1 Selection of the elastic scattering events

The elastic scattering events were identified using ∆E−E technique, described in details
in Sec. 5.4. Moreover, further energy cuts were defined and imposed to clearly isolate
the events of interest. First, a curve separating the proton loci from the deuteron one
was carefully defined. These two groups of events were projected onto EP1 + EP2 energy
axis. Fig. 5.17 shows examples of such projections for deuterons and protons in selected
angular ranges. As one can notice, the deuteron spectrum contains two kinds of events:
the elastic deuterons localized in a prominent peak and rest-overs of the deuteron beam.
In the proton branch projection spectrum, the elastic protons and the breakup continuum
events are present.
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Figure 5.17: Projections of the elastically scattered protons (left panel) and deuterons
(right panel) onto ∆Pizza1 + ∆Pizza2 (EP1 + EP2) energy axis, for chosen polar angles
θ. Origins of the spectra components are marked in the panels.
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Figure 5.18: Sample spectra presenting the background subtraction methods for the elas-
tically scattered protons (left panel) and deuterons (right panel). The red lines represent
the assumed background functions.
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Figure 5.19: Elastically scattered protons shown as proton-deuteron coincidences (2-tracks
events) below θp = 70 (left panel) and as single-track events (right panel). The border of
θp = 70, separating the two event classes is well distinguishable.

For each polar angle analogous projections were prepared with the integration range
of ∆θ = 10.
In the next step of the analysis background subtraction was performed. For the elastic
protons in their energy spectrum an arbitrary Ea and Eb values (dashed lines in Fig.
5.18, left panel) were chosen for each ∆θ bin, which defined the accepted energy range.
As one can notice, the elastic protons are grouped in a prominent peak with only a low
background of the breakup events. Due to this fact the choice of the integration limits was
not so critical. Between Ea and Eb a linear dependence of background was assumed and
its subtraction in each bin of the spectrum was done. Linear function, which describes
the background fitted to a sample distribution is presented in Fig. 5.18, left panel. Addi-
tionally, due to the fact that the elastic protons are also recognized as p− d coincidences
for θp < 70 (see Fig. 5.19), the relative angle between the two particles ϕpd = 1800 ± 300

was also imposed, as it is shown in Fig. 5.20.
In case of the elastically scattered deuterons background is mainly caused by beam par-
ticles. A typical energy distribution is shown in Fig. 5.18, right panel. Gaussian function
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Figure 5.20: Number of events presented as a function of ϕpd for the proton-deuteron
coincidences for θp < 70. Vertical lines show the range of ϕpd angles accepted in the
analysis.

(red curve in Fig. 5.18 on the right panel) with fixed mean position and fwhm value
was used as a background model and fitted to the deuteron energy distribution at each θ
range. The background events were almost completely eliminated for higher polar angles,
whereas for very small (θ < 70) polar angles the rest-overs of the beam are still present.

5.8.2 Beam polarization

In result of the above procedures, the numbers of the elastically scattered protons and
deuterons at given polar angle θp and azimuthal angle ϕ for polarized and unpolarized
beam states were obtained. They have been relatively normalized to the number of counts
collected in the Veto detector, which is proportional to the beam current. Afterwards, the
event numbers have been corrected for the dead time and scaled by an adequate trigger
factor. On their basis a ratio f θp(ϕ) was constructed:

f θp(ϕ) =
N

θp

pol −N
θp

0

N
θp

0

, (5.7)

where N
θp

pol and N
θp

0 denote final numbers of events evaluated for the polarized and un-
polarized beam, respectively. In the ratio corrections connected with the background
subtraction are significant, whereas all factors constant in time e.g. target thickness, de-
tection efficiency, etc., are cancelled.

In general, number of the elastically scattered events N
θp

pol obtained from polarized
state is described by a formula:

N
θp

pol(ϕ) = N
θp

0 (ϕ) · κ · [1 + iT11(θp).
√

3Pz cos ϕ− T22(θp)

√
3

2
Pzz cos 2ϕ−

−T20(θp)

√
2

4
Pzz], (5.8)

where iT11(θ) and T22(θ), T20(θ) are spherical vector and tensor analyzing powers, and κ
is the ratio of normalization factors for the two states. Due to the fact that only pure
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vector beam polarization state was available in the experiment, the formula 5.8 simplifies
as follows:

N
θp

pol(ϕ) = N
θp

0 · κ · [1 + iT11(θp)
√

3Pz cos ϕ]. (5.9)

Substituting the formula 5.9 into Eq. 5.7 allows to obtain the final expression for the
theoretical dependency f θp(ϕ) as a function of the angle ϕ for vector polarized beam
state:

f θp(ϕ) = κ · iT11(θp)Pz

√
3 cos ϕ + κ− 1. (5.10)

This expression can be rewritten with the use of two parameters a, b, which can be
extracted from a fit of the experimental asymmetry function f θp(ϕ), obtained as in Eq.
5.7:

f θp(ϕ) = a · cos ϕ + b, (5.11)

therefore the Pz value and κ coefficient can be calculated in a very simple way if the
analyzing power iT11 is known:

Pz =
a

(b + 1)iT11

√
3
, (5.12)

κ = b + 1. (5.13)

In the region of very forward polar angles θLAB ≤ 130 values of the elastic scattering
analyzing powers were obtained in the KVI experiment [71,72]. The values for θLAB = 130

(for protons and deuterons) were used here to evaluate final beam polarization. The final
results for the two experimental runs are presented in Fig. 5.21 and summarized in Table
5.2. Additionally, the κ coefficients were estimated in order to control the normalization
procedure. The procedure proves to work reliably taking into consideration their close to
unity values and the errors.

run number (Pz, Pzz) Pz ∆P stat
z Pzz ∆P stat

zz κ ∆κstat

1 (−2
3
, 0) -0.562 0.018 -0.054 0.064 1.0067 0.0025

2 (−2
3
, 0) -0.484 0.027 0.13 0.11 0.9895 0.0046

Table 5.2: Values of the vector beam polarization and of the normalization coefficients κ
obtained for both experimental runs.

5.8.3 Vector analyzing power of the elastic scattering

The extracted beam polarization Pz at one angular point can be further used to determine
iT11 analyzing powers for the 1H(~d, d)p elastic scattering process. Fitting f(ϕ) asymmetry
function at other θ angles within the acceptance of the detector, the iT11 values can be
obtained. These by-product results constitute a valuable contribution to the angular
range of data for this observable in the area not covered by other experiments. Obtained
in this work values, together with other data sets, are presented in Fig. 5.22. The data
agree very well with the theoretical predictions of various approaches. In the very small
angles region one can even tend to deduce correct Coulomb force corrections to the iT11

distribution.
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Figure 5.21: Ratios f(ϕ) for vector polarization state (the nominal polarizations value
(Pz, Pzz) = (−2/3, 0)) obtained for the protons (left panels) and deuterons (right panels)
for one chosen polar angle θLAB = 130. The error bars represent statistical uncertainties.
The lines refer to the results of the fit, as specified in the text. Presented are results from
the first (upper panels) and the second (lower panels) experimental runs.

5.9 Efficiency of the detection system

In order to obtain the absolute values of the breakup cross section, it is necessary to take
into account inefficiency of the detection system. Determining the GeWall detectors effi-
ciencies is a procedure of finding scaling factors for the obtained numbers of the breakup
coincidences Nbr(S, Ω1, Ω2) registered at the angles Ω1 ≡ (θ1, ϕ1) and Ω2 ≡ (θ2, ϕ2).
Probability of detecting a charge particle is connected with a finite efficiency of each
element of the Quirl detector (spiral) and the Pizza detectors (sector). During the exper-
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Figure 5.22: Vector analyzing power iT11 for the d−p elastic scattering at 130 MeV: present
experiment (red circles), KVI data (full red dots) [71] and earlier data sets: RIKEN data
(red triangles ) [73] and data from Ref. [74] (violet squares). Theoretical predictions of
different approaches specified by the legend are also presented.

iment certain spirals or sectors can become inefficient i.e. they can function with lower
efficiency or cease to function at all (“dead” spirals/sectors), what causes quite significant
effect. Additionally, due to the fact that the events of interest are coincidences of two
particles, the obtained clusters, which represent the particles, can overlap if the protons
are at a very small distance from each other (for the relative azimuthal angle ϕ12 ≤ 600).
This factor influences only Quirl and Pizza 1 detectors.
The above effects can affect the measured angular distributions and even distort them.
In order to eliminate their role and compensate the experimental counting rates, the cor-
rection factors and maps of efficiency were prepared for the GeWall components.

5.9.1 Efficiency of the Quirl detector

In the case of the Quirl detector the correction factors were determined mainly with the
use of simulation. This has been achieved in few steps.
In the first step the Monte Carlo simulations of the breakup process were performed with
the use of GEANT 4 package. A software image of the experimental setup, i. e. the
materials, dimensions and distances of all GeWall detectors, was implemented. Then the
simulation was performed for all kinematical configurations which are analyzed in this
dissertation. As the results, all information on the emitted protons, like energy losses in
each GeWall detector, polar and azimuthal angles, were obtained. In order to establish
the size of the ”overlapping cluster” effect and its influence on the breakup cross section
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values, additional routine was used. In this procedure radius of the spots characterizing
the charge splitting on the spirals RQ was assumed to be 0.2 mm (for both sides of the
detector) chosen such, that the experimental distributions of cluster hit multiplicities were
reproduced. The above model is very naive and obtained efficiency factors are biased with
high systematic uncertainties. They only affect cross section distributions for few kine-
matical configurations characterized by the relative angles ϕ12 between 200 and 1000, see
Sec. 5.11 for more details). In order to obtain reliable estimation of the efficiency correc-
tion parameters the model needs further improvements. The inefficiency connected with
the ”dead” (see Fig. 5.23) or noisy spirals of the Quirl detector, were taken into account
in the model. The clusters, which contain any of the damaged spirals were removed from
the analysis. However, events with the clusters containing damaged spirals on the edges
of the given cluster were counted, but they appeared as the ones with the lower energy.
Existence of the two above effects contributes to the efficiency of the Quirl detector and
the associated correction factor (probability of registration of two coincident protons) for
a given configuration is described as follows:

εQ(Ω1, Ω2) = 1− N1(Ω1, Ω2)

N(Ω1, Ω2)
, (5.14)

where N1 denotes the number of the simulated breakup events counted as the ones, which
were affected by the overlapping clusters or by the non-functional spirals, whereas N is
the total number of events for a given configurations of the two protons.
In case of the single-track events there are no such effect like ”overlapping clusters“.
Therefore, the correction factor, which contributes to the total efficiency is connected
only with the existence of ”dead” or noisy spirals of the Quirl detector. In order to
establish the factors, refered to as εsp

Q (θel), an analogous procedure to the one applied for
the two-track events was used with the same value of the parameter RQ. The correction
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Figure 5.23: Events projected on the x-y plane of the Quirl detector. Not working spirals
on both detector sides are visible. The numbers of malfunctioning spirals are indicated
in the picture.
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factors are given by:

εsp
Q (θel) = 1− N1(θ

el)

N(θel)
, (5.15)

where N1 denotes the number of the simulated d− p elastic scattering events, which were
affected by the non-functional spirals, whereas N is the total number of events for a given
polar angle θel of the elastic proton.

5.9.2 Efficiency of Pizza 1 detector

In the case of the Pizza 1 detector the factors εcl
P1(Ω1, Ω2) connected with the “overlapping

clusters“ were determined in the same way as for the Quirl detector. Here, the radius of the
spot characterizing the charge splitting on the sectors was established on the experimental
basis to be 0.5 mm. Additionally, the map of efficiency was obtained. Due to the fact that
there was no trigger for single particle not registered in Pizza 1, only coincident events
were investigated (GW2 trigger condition - see Sec. 4.3.5). For this purpose unusual
tracks were built as a combination of QF/QR and Pizza 2 (incomplete track), and two
kinds of medium track - long track coincidences were counted in the angular ranges of
∆θ = 20, ∆ϕ = 100:

1. (Quirl-Pizza 1) - (Quirl-Pizza 1-Pizza 2) - complete track,

2. (Quirl-Pizza 1) - (Quirl-Pizza 2) - incomplete track with missing Pizza 1 information.

The detection efficiency of Pizza 1 is defined as follows:

εcl
P1(θ, ϕ1) =

NQ−P1−P2(θ, ϕ)

NQ−P1−P2(θ, ϕ) + NQ−P2(θ, ϕ)
, (5.16)

where NQ−P1−P2(θ, ϕ) denotes the number of coincidences of the type 1 and θ, ϕ are
related to the particle with the long track, whereas the NQ−P2(θ, ϕ) defines the number of
coincidences of the type 2. The obtained efficiency in function of ϕ angles for four chosen
θ angles is presented in Fig. 5.25 and for all angular bins the efficiency map is shown in
Fig. 5.24. The efficiency is generally above 85%.

5.9.3 Efficiency of the Pizza 2 detector

In order to obtain the map of efficiency for the Pizza 2 detector the single-track events
were used. Having ∆E(qr) vs E(p1) dependency (see Fig. 5.5 in Sec. 5.4), the elastic
protons were chosen with the ∆E(qr) energy range of 2.5÷ 5.5 MeV and ∆E(p1) energy
range of 30÷48 MeV. These particles have energies large enough to always pass the Pizza
1 and reach the Pizza 2 detector. Thus, the numbers of the elastically scattered protons
were counted in the angular segments of ∆θ = 20, ∆ϕ = 100 separately under the two
following conditions:

1. energy loss in the Pizza 2 detector E(p2) = 0: NQ,P1(θ, ϕ),

2. energy loss in the Pizza 2 detector E(p2) > 0: NQ,P1,P2(θ, ϕ).
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Figure 5.24: Efficiency map of Pizza 1 presented in function of polar (θ) and azimuthal
(ϕ) angles. The range of polar angle θ is from 30 to 140 with the binning of 20 and the
azimuthal angle ϕ covers the full range, with the binning of 100.
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Figure 5.25: Detection efficiency of the Pizza 1 detector for four chosen θ angles.
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The efficiency of Pizza 2 is given as:

εP2(θ, ϕ) =
NQ,P1,P2(θ, ϕ)

NQ,P1,P2(θ, ϕ) + NQ,P1(θ, ϕ)
. (5.17)

The obtained map of Pizza 2 efficiency is presented in Fig. 5.26. The efficiency in function
of ϕ angles for four chosen θ angles is shown in Fig. 5.27. As one can notice, the efficiency
of the Quirl detector clearly influences the efficiency of Pizza 2, what is visible in Figs.
5.26, 5.27 as the “floating“ dips. This effect is connected with the inefficient places on
the Quirl detector plane due to non-functional spirals (see Fig. 5.23), what causes the
movement of the dips with the θ angle. The bending direction of the front or rear spirals
is reflected in the dips movement direction.
Finally the Pizza 2 efficiency was assumed to be constant at a given polar angle and was
calculated from the weighted average of the numbers of counts at several azimuthal angles
(the regions with very low efficiency were omitted). The resulting efficiency values are
marked with red lines in the sample distributions in Fig. 5.27. The efficiency is generally
above 90%, but at the edges of the experimental acceptance it decreases to about 77%.
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Figure 5.26: Efficiency map of Pizza 2 presented in function of polar (θ) and azimuthal
(ϕ) angles. The range of polar angle θ is from 30 to 140 with the binning of 20 and the
azimuthal angle ϕ covers the full range, with the binning of 100.
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Figure 5.27: Detection efficiency of the Pizza 2 detector for four chosen θ angles. The
statistical errors are within the dot size. The red lines correspond to the calculated
weighted averages from the numbers of counts for several azimuthal angles, with regions
of very low efficiency omitted.
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5.10 Evaluation of the breakup observables

In the analysis of the breakup reaction two new variables were introduced in the E1−E2

plane: D denoting the distance of the (E1, E2) point from the theoretical kinematical
curve, and S, which defines the arc-length along the kinematics with the starting point
at the E2 minimum, see Chap. 2. These new variables are presented in Fig. 5.28.

Figure 5.28: A sample E2 vs. E1 energy spectrum for a selected angular configuration of
the breakup process: θ1 = 100, θ2 = 100, ϕ12 = 600. Direction of arc-length S and the
D-axis in one ∆S bin of events integration (schematically marked) are shown.

5.10.1 Selection of events

With the use of the ∆E−E technique, the proton events were chosen (see also Sec. 5.4).
The events grouped on the ∆E(qr) versus E(p1 + p2) spectrum were surrounded by lines
which define an arbitrary area, wide enough to avoid any losses of protons. Fig. 5.29
presents such an identification spectrum with the chosen gate. Two-track events, with
both particles identified as protons, where selected as coincident breakup events.
Both of the selected coincident protons are characterized by their emission angles θ1 and θ2

and their relative azimuthal angle ϕ12, which altogether defines geometrical configuration
of the outgoing protons. In the first step a kinematical spectra E1 vs E2 for certain
two-proton configurations were constructed. The events integration ranges were chosen
for the breakup cross section analysis to be: ∆θ1 = ∆θ2 = 20, ∆ϕ12 = 100 and for the
analyzing powers study as: ∆θ1 = ∆θ2 = 30, ∆ϕ12 = 400. These integration limits are
wide enough to reach good statistical accuracy. As one can notice in Fig. 5.28, the events
are concentrated along the kinematical curve, what proves that the breakup events were
extracted quite cleanly. For further analysis only the events lying within the band of
D-values ranging from −8 MeV to +8 MeV were used, as shown in Fig. 5.30. The
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Figure 5.30: Projection of the events originating from the marked ∆S bin area (presented
in Fig. 5.28) onto D-axis. The accepted range of D-values is indicated with the red lines.

spectrum in Fig. 5.30 was obtained by projecting the events from one slice ∆S=8 MeV
(marked area in Fig. 5.28) onto the D-axis. As one can notice, the breakup events are
grouped in a prominent peak with only a very low background of accidental coincidences.
Due to this fact the choice of the integration limits was not so critical and the selected
ranges were practically the same for all investigated kinematical configurations.

5.10.2 Determination of the breakup cross section

The breakup cross section normalization was performed with the use of the known p− d
elastic scattering cross section data [42]. This procedure was possible due to the fact that
the breakup and elastic scattering reactions were measured simultaneously. Therefore,
a crucial quantity, which had to be determined was the number of the elastic scattering
events. In order to achieve this purpose, elastic deuterons were selected and their numbers
corrected for the background subtraction in a way described in details in Sec. 5.8.1. The
numbers of such events were counted for each polar θ angle within the angular ranges of
∆θ = 20 and ∆ϕ12 = 100.



58 CHAPTER 5. DATA ANALYSIS

The breakup protons grouped around the kinematical curve were divided into ∆S=8 MeV
and projected onto the central kinematic. For a given S−bin in the selected configuration,
number Nbr of the coincident protons was established.

Number of the breakup coincidences Nbr(S, Ω1, Ω2) registered at the Ω1 ≡ (θ1, ϕ1) and
Ω2 ≡ (θ2, ϕ2) and in a given ∆S arc-length bin, could be written as follows:

Nbr(S, Ω1, Ω2) =
i=35∑

i=0

Nbr(S, Ω1, Ω2, ϕ
i
1)

=
d5σ

dΩ1dΩ2dS
(S, θ1, θ2, ϕ12) ·∆Ω1∆Ω2∆S · C(t) · ε(S, Ω1, Ω2),(5.18)

where the sum runs over 100 bins of ϕ1 due to the fact that the cross section does not
depend on that variable - thus, to improve statistics the events can be summed over ϕ1

and for ±ϕ12 configurations. The d5σ
dΩ1dΩ2dS

is the breakup cross section for a chosen an-
gular configuration, ∆Ωj = ∆θj∆ϕjsinθj, j = 1, 2, are the solid angles. The ε(S, Ω1, Ω2)
contains all efficiencies and correction factors (see Chap. 5.9) and is given in general by:

ε(S, Ω1, Ω2) = εQ(Ω1, Ω2) · εcl
P1(Ω1, Ω2)εP2(θ1)εP2(θ2)×

×
i=35∑

i=0

εP1(θ1, ϕ
i
1)(εP1(θ2, ϕ

i
1 + ϕ12) + εP1(θ2, ϕ

i
1 − ϕ12)). (5.19)

The term of the sum given as (εP1(θ2, ϕ
i
1 +ϕ12) + εP1(θ2, ϕ

i
1−ϕ12)) is taking into account

common treatment of the mirror configurations ϕ2 = ϕ1 ± ϕ12. Moreover, one has to
realize that depending on the energy of the protons, efficiency of the Pizza 2 detector can
contribute or not to the total efficiency ε(S, Ω1, Ω2), what leads to the following scenarios:

1. proton number 1 was registered in Pizza 2, whereas proton number 2 reached only
Pizza 1 detector:

ε(S, Ω1, Ω2) = εQ(Ω1, Ω2) · εcl
P1(Ω1, Ω2)εP2(θ1)×

×
i=35∑

i=0

εP1(θ1, ϕ
i
1)(εP1(θ2, ϕ

i
1 + ϕ12) + εP1(θ2, ϕ

i
1 − ϕ12)). (5.20)

2. proton number 2 was registered in Pizza 2, whereas proton number 1 reached only
Pizza 1 detector:

ε(S, Ω1, Ω2) = εQ(Ω1, Ω2) · εcl
P1(Ω1, Ω2)εP2(θ2)×

×
i=35∑

i=0

εP1(θ1, ϕ
i
1)(εP1(θ2, ϕ

i
1 + ϕ12) + εP1(θ2, ϕ

i
1 − ϕ12)). (5.21)

3. both of the detected protons reached only Pizza 1 detector:

ε(S, Ω1, Ω2) = εQ(Ω1, Ω2) · εcl
P1(Ω1, Ω2)×

×
i=35∑

i=0

εP1(θ1, ϕ
i
1)(εP1(θ2, ϕ

i
1 + ϕ12) + εP1(θ2, ϕ

i
1 − ϕ12)). (5.22)
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4. both of the detected protons reached Pizza 2 detector (this situation never occurs):

ε(S, Ω1, Ω2) = εQ(Ω1, Ω2) · εcl
P1(Ω1, Ω2)εP2(θ1)εP2(θ2)×

×
i=35∑

i=0

εP1(θ1, ϕ
i
1)(εP1(θ2, ϕ

i
1 + ϕ12) + εP1(θ2, ϕ

i
1 − ϕ12)). (5.23)

Depending on the situation, one has to apply one of the above formulae.
The C(t) is the factor related to the luminosity, which depends on the total beam

current I0, the density %t and the thickness ∆xt of the target, as well as the electronic
dead time τ . Therefore, the above parameter could be written as follows:

C(t) = (1− τ)I0%t∆xt. (5.24)

In the similar way one can write the number of the elastic scattering events, Nel(Ω
el
1 ),

with the deuteron registered at the angle Ωel
1 (what defines the proton detection angle

Ωel
2 ), which is expressed by:

Nel(Ω
el
1 ) =

i=35∑

i=0

Nel(θ
el
1 , ϕi

1)

=
dσ

dΩel
1

(θel
1 ) ·∆Ωel

1 · C(t) · ε(Ωel
1 , Eel

1 ), (5.25)

where the dσ
dΩel

1
is the elastic scattering cross section, and the other factors are analogous

to the ones defined above.
The ε(Ωel

1 , Eel
1 ) is related to the efficiencies and correction factors obtained with respect

to the single-track events and is expressed as:

ε(Ωel
1 , Eel

1 ) = εsp
Q (θel

1 )εP2(θ
el
1 )

i=35∑

i=0

εP1(θ
el
1 , ϕi

1)εP1(θ
el
1 , ϕi

1 + π), (5.26)

Finally, the breakup cross section could be expressed in terms of the elastic scattering
cross section due to the fact that both of these reactions were measured simultaneously.
Therefore, the factor C(t) is the same in the Eqs. 5.18 and 5.25. Taking advantage of the
above conclusion, the final formula for the differential breakup cross section for a given
angular configuration can be expressed as follows:

d5σ

dΩ1dΩ2dS
(S, θ1, θ2, ϕ12) =

dσel

dΩel
1

(θel
1 ) · Nbr(S, Ω1, Ω2)

Nel(Ωel
1 )

×

× ∆Ωel
1

∆Ω1∆Ω2∆S
· ε(Ωel

1 , Eel
1 )

ε(S, Ω1, Ω2)
. (5.27)

The elastic scattering cross section was taken from [42].
Fig. 5.31 shows a sample breakup cross section distribution for a chosen kinematical
configuration, together with the full set of theoretical calculations. More results are
presented in Appendix A.
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Figure 5.31: Example of the differential breakup cross section for the angular configuration
specified in the picture. Theoretical predictions are shown as bands and lines, as specified
in the legend.

5.10.3 Vector analyzing powers of the breakup process

In the case of the vector analyzing powers analysis the protons grouped around the kine-
matical curve were divided into ∆S bins having width of 16 MeV and projected on the
central kinematics. For a given S− bin in the selected configuration and assumed D− bin
of 16 MeV (see also previous Section), the numbers of the breakup events as a function
of the azimuthal angle ϕ1 have been counted. The width of ϕ1 bin was chosen to be 200.
The obtained numbers of events were normalized to the beam current, corrected for the
dead time and scaled by an adequate trigger factor.
In the next step, the ratios, similar to the ones introduced in the elastic scattering analysis
(see Sec. 5.8.2), were built for each S bin:

f ξ(ϕ1) =
N ξ

pol(ϕ1)−N ξ
0 (ϕ1)

N ξ
0 (ϕ1)

, (5.28)

where (ξ, ϕ1) defines a given kinematical point (θ1, θ2, ϕ12, S, ϕ1) and N ξ
pol(ϕ1), N ξ

0 (ϕ1)
denote the numbers of events for polarized (Pz = −2

3
, Pzz = 0) and unpolarized (Pz =

0, Pzz = 0) beam states, respectively.
For the breakup process f ξ(ϕ1) is in general expressed by the formula:

f ξ(ϕ1) = −3

2
sin ϕ1PzAz(ξ) +

3

2
cos ϕ1PzAy(ξ)

+
1

2
sin2 ϕ1PzzAxx(ξ) +

1

2
cos2 ϕ1PzzAyy(ξ)

− cos ϕ1 sin ϕ1PzzAxy(ξ), (5.29)

where Ax and Ay denote vector analyzing powers, whereas Axx, Ayy and Axy are the
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Figure 5.32: A sample dependency of f ξ combination from Eq. 5.32 vs. cos ϕ1 for 16
MeV wide S-bin centered at 88 MeV for the chosen kinematical configuration specified
in the picture. The solid line represents fit of the linear function 5.32 to the data points
with experimental value of Pz taken from Tab. 5.2. The resulting from the fit value of
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tensor analyzing powers.
The f ξ(ϕ1) dependency for pure vector polarized beam state simplifies to:

f ξ(ϕ1) =
3

2
Pz(Ay(ξ) cos ϕ1 − Ax(ξ) sin ϕ1). (5.30)

Thus, the values of Ax and Ay can be extracted in a very simple way, if one computes
combinations of f ξ(ϕ1) obtained separately for +ϕ12 and −ϕ12 (taking advantage of the
parity restrictions, see Sec. 2.3):

f ξ≡(θ1,θ2,+ϕ12,S)(ϕ1)− f ξ≡(θ1,θ2,−ϕ12,S)(ϕ1) = 3PzAx(ξ) sin ϕ1, (5.31)

f ξ≡(θ1,θ2,+ϕ12,S)(ϕ1) + f ξ≡(θ1,θ2,−ϕ12,S)(ϕ1) = 3PzAy(ξ) cos ϕ1. (5.32)

Using the beam polarization Pz obtained from the elastic scattering analysis (see Sec.
5.8.2), the breakup vector analyzing powers were evaluated from linear fits of the above
combinations of f ξ as functions of the sine or cosine of the first proton azimuthal angle
ϕ1, respectively. A sample dependency of f ξ combination from Eq. 5.32 vs. cos ϕ1 for
one configuration is illustrated in Fig. 5.32. In Fig. 5.33 sample results for the two
vector analyzing powers, Ax and Ay, are shown for one chosen kinematical configuration.
The full sets of the theoretical calculations are also presented. More results are given in
Appendix B.
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Figure 5.33: Examples of the d − p breakup vector analyzing powers Ax and Ay for one
kinematical configuration of the two coincident protons, specified in the legend. Theoret-
ical predictions are shown as bands and lines, as specified in the legend.

5.11 Discussion of possible sources of uncertainties

The observables obtained in the analysis i.e. cross sections and analyzing powers are
affected by statistical and systematic uncertainties in a slightly different way. This section
contains a brief discussion of the potential sources of the above errors.

5.11.1 Statistical uncertainties

The statistical error of the number n of independent events is in this case given by the
Poisson distribution:

∆n =
√

n. (5.33)

For this experiment the number of collected events n was downscaled by an appropriate
factor related to the trigger type (see Sec. 4.3.5). Thus, the real number of events together
with its statistical error can be written as:

N = n · 2x, (5.34)

∆N =
√

n · 2x =
√

N · 2x, (5.35)

where 2x is the downscaling factor, which for the single (elastic) events is equal 4, whereas
for the coincident (breakup) ones is equal to 1.

Statistical uncertainties of the measured cross section distributions comprise the error
of the measured number of the breakup coincidences, as well as statistical uncertainties
of all quantities used in the normalization. These quantities are:

• number of the elastic scattering events,

• efficiencies of the Pizza 1 (obtained from the coincident events) and Pizza 2 detectors
(obtained from the elastic events) - see Sec. 5.9.2. The estimated value of the
statistical errors are around 2% and 0.1%, respectively,
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• values of the elastic scattering cross sections given by Shimizu et al. [42] and used
in normalization. The value of this errors is about 1%.

In the case of the vector analyzing powers, the statistical uncertainties have following
sources:

• the fit procedure, which are the main contributions. The values vary depending on
configuration.

• statistical error of the vector beam polarization Pz, which also contains the statistical
error of the experimentally obtained value of the iT11 analyzing power of the elastic
scattering. The mentioned above values introduced the uncertainties of about 3%
and 1% [72], respectively. See Sec. 5.8.2 for more details,

• statistical error of the normalization factor κ. The estimated value of the statistical
error is about 0.2%, see also Sec. 5.8.2.

5.11.2 Systematic uncertainties

Influence of the systematic errors was reduced significantly by detailed study of the setup
geometry and the detection efficiency. Potential sources of the systematic uncertainties
and their influences on the observables are listed below:

1. Luminosity.
The luminosity (total beam current) is different for the polarized Ipol and unpolarized

I0 states, what is reflected in the normalization factor κ =
Ipol

I0
. It has been checked

that its value is stable in time and does not depend on the downscaling factors
applied to the triggers. κ is obtained in the analysis as a parameter of the fit
(Eq. 5.11) to the elastic scattering data and is directly applicable for the breakup
reaction. Normalization to the luminosity is not expected to cause any systematic
uncertainty on the analyzing power results.

2. Reconstruction of the particle emission angles.
The errors due to the reconstruction of the particle emission angles θ and ϕ originate
from the finite thickness of the target and size of the beam spot on the target.
Moreover, they depend on angular granulation related to the overlapping front and
rear spirals of the Quirl detector, what gives 20000 pixels of the size from 0.011
mm2 to 0.1 mm2 (see Sec. 4.3.4). The determination of the distance between the
target and Quirl also influences the accuracy of the angle reconstruction. This
kind of uncertainties can affects the results only when the reconstructed angles are
shifted from the real ones. The analysis of the elastic scattering events (see Sec.
5.3) allowed for an accurate verification of the measured target-Quirl distance and
confirmed that there is no systematic shift of the reconstructed polar angles. In
conclusion, the accuracy of determination of the azimuthal angle ϕ is connected to
the number of spirals of the Quirl detector (200 spirals on the both sides) and is given
by the formula 2π

200
∼0.0314[rad]∼1.80. In case of the solid angle, the accuracy vary

from 10−6 to 10−5 depending on the size of the pixels. Only systematic uncertainties
originating from determination of the azimuthal angle ϕ can affect the analyzing
power results and are estimated to be below 1%.
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3. Calibration and energy correction procedures.
The errors are related to the determination of the peak centers in the ADC spectra
obtained in the calibration run (see Sec. 5.6) for each GeWall detector. Further
uncertainties could also originate from the determination of the peak centers, when
checking the correctness of the calibration i.e. obtaining the kinematical relations
of the deposited energy vs. θ (polar angle) for the elastic scattering events. This
procedure provided the scaling factors for the energy losses correction - see Sec.
5.6. The obtained uncertainties of the calibration correction procedure were estab-
lished to be about 3%. In conclusion, their influence on the breakup cross section
distributions is less than 1%.

4. Energy cuts.
Selection of the interesting events (protons and deuterons) is connected with impos-
ing different energy cuts or applying defined gates on the ∆E − E spectra. Thus,
“leaking” of interesting particles to and from the identification ranges can be a
source of uncertainties. It has been checked for the identification gate of protons,
that slight changing of the defined region borders introduces the uncertainty of at
most 1%.

5. Background subtraction.
The background subtraction procedure is used for determination of the vector beam
polarization Pz, as well as in normalization of the breakup cross section. In case
of the elastic deuterons, the errors originate from the gaussian extrapolation of the
background below the elastic peak (see Sec. 5.8.1, Fig. 5.18). For the elastic
protons, the linear fit was assumed as the background model and the parameters
obtained in this procedure are the sources of uncertainties (see Sec. 5.8.1, Fig.
5.18). Moreover, the limits of integrating of the breakup peak (see Sec. 5.10.1, Fig.
5.30) for separate slices along S, were chosen arbitrarily, what also can cause addi-
tional errors. The estimated value of uncertainty originating from the background
subtraction procedure is about 1.5%.

6. Efficiencies.
The calculated efficiencies of the detectors are a source of possible errors. The
assumed model (with its parameters) for calculating the factors describing the con-
tribution of different effects to the total efficiency causes very significant systematic
errors, what affects the cross section distributions in a serious way. In order to
estimate their values the calculations were performed for additional two sets of the
parameters RQ (radius of the spot characterizing the charge splitting on the spirals)
and RP1 (radius of the spot in case of the Pizza 1 sectors) - see Sec. 5.9 for more de-
tails. The parameters in this auxiliary calculations were assumed to be RQ = 0.22
mm, RP1 = 0.6 mm and RQ = 0.18 mm, RP1 = 0.4 mm. The estimated values
of the uncertainty obtained for the relative azimuthal angles between the two pro-
tons ϕ12 ≥ 1200 is about 4÷8%. The evaluated values of the systematic errors for
ϕ12 < 1200 are quite large and affect the cross section distributions in a serious way,
what is demonstrated in Fig. 5.34. The model of charge distribution over spirals in
the Quirl detector does not completely reproduce, crucial for the efficiency analysis,
geometrical effects connected with the ”overlapping clusters“. This simple model
needs further developments to be able to produce correction factors in a proper way.
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Therefore, the results of the Quirl efficiency resulting from that model are biased
with rather large systematic uncertainties, which are estimated to be as large as
60% (for 13 configurations) and 35% (for another 8 configurations). Within the dis-
cussed range of ϕ12 < 1200 only a fraction of geometries is affected, corresponding
to the lay out of the spirals. It has been established that the strongest effect is
observed for configurations fulfilling the condition ϕ12

|θ1−θ2| = 10 (60%), and smaller

for a few neighbouring geometries with ϕ12 6= 600 and described by the formula
ϕ12

∆θ+sign(ϕ12−600)∗2 = 10, where ∆θ =| θ1 − θ1 | (35%), (see Table 5.3).

∆θ =| θ1 − θ2 |
ϕ12[

0] 0 2 4 6 8

20 60% 60% 35% - 35%
40 - - 35% 35% -
60 - - - 35% -
80 - - - 35% 60%
100 - - - - 35%

Table 5.3: Systematic uncertainties for configurations very strongly affected by calcu-
lations of the detection system efficiencies. For majority of configurations systematic
uncertainties due to that effect are around 4-8%.
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Figure 5.34: Example of the breakup cross section distribution for the configuration
characterized by very small value of the relative azimuthal angle ϕ12 = 200. The red
points are the experimental data obtained with the model parameters RQ = 0.2 mm,
RP1 = 0.5 mm. The blue and green points refer to the same data, but with parameters
RQ = 0.4 mm, RP1 = 0.18 mm and RQ = 0.6 mm, RP1 = 0.22 mm, respectively. The
dashed line represents the cross section calculated on the basis of CDB+∆+C potential.
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7. Normalization to the elastic scattering.
The breakup cross sections were normalized to the elastic scattering data in order
to obtain the absolute values. Thus, the obtained results are affected by the error
of 1.6% quoted by Shimizu et al. [42].

In determination of the absolute values of the cross section the most significant systematic
uncertainty is due to efficiencies. The other uncertainties discussed above also contribute,
but they are much less important. Therefore, the overall systematic error of the breakup
cross section for a majority of the studied configurations is established to be 5-10%,
depending on the geometry.
Analysis of the polarization observables relies on the determination of rates measured
with the polarized and unpolarized beams. Thus, the advantage of this approach is
obvious i.e. the experimental factors, which appear in the analysis, like efficiency of the
detection system or identification methods (applying different identification cuts in the
∆E − E spectra), as well as uncertainties connected with determination of solid angles
are cancelled. In the ratio given by Eq. 5.28 in Sec. 5.10.3 only corrections connected
with the background subtraction play a significant part and are included in denominator
of the ratio. The overall value of the systematic errors for Ax and Ay is estimated to be
around 1-2%.



Chapter 6

Results

6.1 Experimental results

Experimental results of the cross section values are obtained for 135 kinematical con-
figurations of the two breakup protons. Polar angles θ1 and θ2 of the two protons are
changing between 50 and 140 with the step of 20 and their relative azimuthal angle ϕ12 is
taken in the range from 200 to 1800, with the step of 200. The experimental results were
integrated (see Sec.5.10.3 ) within the ranges of ∆θ1 = ∆θ2 = 20 and ∆ϕ12 = 100 for each
combination of the central values θ1, θ2 and ϕ12. The bin size along the kinematic curve
S was chosen to be 8 MeV.
In the case of vector analyzing powers Ax and Ay, the experimental results were obtained
in 24 kinematical configurations for each observable. In the analysis the event integration
limits were chosen to be ∆θ1 = ∆θ2 = 30 and ∆ϕ12=200. The bin size of the S value was
16 MeV.
The choice of event integration limits enabled to reach quite sufficient statistical accuracy
enabling comparisons with different theoretical predictions.
Sample results of the cross section and analyzing powers Ax and Ay for chosen kinemat-
ical configurations were presented in Sec. 5.10 in Figs. 5.31 and 5.33, together with the
full set of the theoretical calculations. The bulk of such individual comparisons for all
the evaluated configurations for cross section and vector analyzing powers is collected in
Appendix A and Appendix B, respectively.

6.2 Averaging of the theoretical predictions over the

integration limits

The chosen angular ranges which define the geometrical configurations of the breakup
protons are wide enough to obtain quite good statistical accuracy, however, the obtained
results are very sensitive to the averaging effects. Thus, in order to perform reasonable
comparisons of the data with the theoretical models, the averaging over the same limits
had to be applied to the calculated values of the vector analyzing powers and the cross
sections. For that purpose, for each configuration given by the central values of angles
θc
1, θc

2, ϕc
12, the analyzing powers and cross section σ0 values have been calculated for all

combinations of angles θc
1 ± 1

2
∆θ1, θc

2 ± 1
2
∆θ2, ϕc

12 ± 1
2
∆ϕ12 and the central values, with

the step of 1 MeV in variable S. There was, however, one exception for the configurations

67



68 CHAPTER 6. RESULTS

defined by the central values of the polar angles of the two protons equal to θc
1 = 130,

θc
2 = 130. Due to the detection system acceptance (the highest available values of the

polar angle is 13.50) the calculations for this geometry were performed within the ranges

of the polar angles θc
1 = 13+0.50

−10 , θc
2 = 13+0.50

−10 .
It is important to remember that S is defined individually for each kinematical curve,

thus the same values of S for two different combinations of angles are related to two
different pairs of proton energies (E1, E2).
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Figure 6.1: Figures present the results of the theoretical calculations with the AV18 NN
potential combined with the Urbana IX 3NF and with the Coulomb interaction included
(AV18+UIX+C) for two chosen configurations described in the picture. The theoretical
curves marked with red, dark blue and magenta colours refer to various combinations
of the θ1, θ2 and ϕ12 (specified in the legend) within the integration limits, which were
taken into account in the averaging procedure. The thick dark blue lines represent the
calculations for the central configurations, whereas the black ones present the final results
of the averaging approach. The differences between the thick dark blue lines and the
black ones are clearly seen.
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Analyzing power values obtained for a given configuration and S were weighted with
a product of σ0 and the solid angle factor, whereas the cross section values were only
corrected with the the solid angle factor. Finally, the evaluated data were placed on the
E2 vs. E1 plane and projected onto the curve corresponding to the relativistic kinemat-
ics, calculated for the central geometry (θc

1, θc
2, ϕc

12). The importance of the averaging
procedure is demonstrated in Fig. 6.1.
This approach is similar to the analysis of the experimental data, therefore it assures
that averaging of the theoretically calculated vector analyzing powers and cross sections
is equivalent to event integration within the ranges accepted in the analysis. The applied
procedure also projects the results of non-relativistic calculations onto relativistic kine-
matics. In this way they can be directly compared to the S distributions of the data,
without necessity to correct for difference of arc-lengths calculated along relativistic and
non-relativistic kinematic curves.

Moreover, it has been checked that employing of more dense grid of angles for aver-
aging has no influence on the results.

6.3 Comparisons of the results with theory

The obtained cross section values and the vector analyzing power data for the d-p breakup
reaction at 130 MeV were compared to the state-of-the-art theoretical calculations, de-
scribed briefly in Sec. 3. The theoretical predictions were obtained with realistic NN po-
tentials (refered to as 2N), with the NN forces combined with the TM99 3NF (2N+TM99),
as well as with the AV18 potential combined with the Urbana IX 3NF (AV18+UIX) and
also with the Coulomb interaction included (AV18+UIX+C). In addition calculations
within the coupled-channel approach with the CD Bonn + ∆ potential (CDB+∆) and
with the Coulomb force included (CDB+∆+C) were also used in comparisons. Moreover,
the data were confronted with the prediction based on the ChPT framework at two orders:
N2LO and incomplete N3LO.
In the figures the results are presented as bands reflecting the spread of the results of
calculations obtained with the following realistic potentials: CD Bonn, AV18, Nijm I and
Nijm II. In a similar way the above 2N potentials complemented with the TM99 3NF are
presented. The ChPT results are also shown as bands, but in this case width of the band
represents theoretical uncertainty estimated along with the calculations. The remaining
approaches are shown as lines. A sample set of the obtained cross section values and the
analyzing powers were presented in Figs. 5.31 and 5.33, whereas the whole bulk of the
evaluated data is displayed in Appendices A and B, respectively.

In order to quantitatively inspect the description of the whole data set provided by
various models and to identify regions where some interesting effects or problems exist,
the value of χ2 per degree of freedom have been calculated. This kind of calculations
was performed for each observable i.e. Ax, Ay and the cross section, for each type of the
theoretical prediction. In case of the theoretical results presented in the figures as bands,
the χ2 values were calculated with respect to the center of the band.

Table 6.1 presents the global χ2 per degree of freedom for the whole data sets of the
differential cross section and of the polarization observables Ax and Ay. These results are
also shown graphically in Figs. 6.2 and 6.3.

Based on the above information one can draw some global conclusions concerning the



70 CHAPTER 6. RESULTS

THEORY OBSERVABLE
dσ5

dΩ1dΩ2dS
Ax Ay

2N 26.0 0.75 1.57
2N+TM99 26.5 0.75 1.59

ChPT N2LO 18.6 0.76 1.60
ChPT N3LO 17.0 0.75 1.55

CDB+∆ 18.0 0.75 1.56
CDB+∆+C 3.0 0.74 1.55
AV18+UIX 17.3 0.74 1.57

AV18+UIX+C 3.2 0.74 1.54

Table 6.1: Global χ2 per degree of freedom for the experimental cross section and ana-
lyzing powers values with respect to different theoretical predictions. In the case of cross
section important are the differences between various model approaches.
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Figure 6.2: Global χ2/d.o.f. for the cross section data with respect to various model
predictions presented as histogram. See remark in Tab. 6.1 caption.

theoretical description of the data. In case of Ax, all values of χ2/d.o.f agree with each
other and are smallest than 1, what can be due to the overestimated statistical errors.
For Ay the obtained values of χ2/d.o.f are higher, around 1.55, independently on the
considered theoretical prediction. This fact indicates that the calculational approaches
in this case are less successful in describing the data. In general one can conclude that
none of the two vector analyzing powers, Ax and Ay, reveal any significant sensitivity
to the dynamical effects and that they are quite well reproduced by the state-of-the-art
calculations. The calculations predict the small values (in the investigated region) of Ax

and Ay correctly over the whole data set and, in contrast to the obtained cross section
values, no sensitivity to the Coulomb interaction is visible.

The global features of the cross section data were also investigated. Quality of these
data strongly depends on the obtained correction factors related to the efficiencies of
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Figure 6.3: Global χ2/d.o.f. results from Table 6.1 presented as histogram and grouped
with respect to the type of the theoretical model, with colours differentiating between the
Ax and Ay observables.

the detection system. As it was mentioned in Sec. 5.9.1 and discussed in detail in Sec.
5.11, the efficiency analysis provided very high systematic errors, which affect several
breakup configurations characterized by rather small values of the relative azimuthal an-
gles ϕ12 < 1200. Size of this effect depends on the kinematical configuration within the
mentioned above range of ϕ12. The configurations in which the obtained breakup cross
sections are biased with the highest systematic uncertainties are listed in Table 6.2. The
systematic errors connected with these particular configurations are presented in Sec.
5.11, in Table 5.3.
In the χ2/d.o.f. analysis the experimental points belonging to the “unreliable” config-
urations were biased with their systematic uncertainties instead of the statistical ones.
The obtained global value of χ2/d.o.f. with respect to the theories with the Coulomb
interaction included is about 3. The values of χ2/d.o.f. obtained with respect to the
theories without Coulomb interaction included are about six (N2LO, N3LO, CDB+∆,
AV18+UIX) and nine (2N, 2N+TM99) times larger than for the calculations based on
the CDB+∆+C, AV18+UIX+C potentials.

∆θ = θ1 − θ2 [0]
ϕ12 [0] 0 2 4 6 8

20 7/7, 9/9, 11/11 5/7, 7/9, 9/11, 11/13 5/9, 7/11, 9/13 5/13
40 5/9, 7/11, 9/13 5/11, 7/13
60 5/11, 7/13
80 5/11, 7/13 5/13
100 5/13

Table 6.2: The configurations very strongly affected by calculations of the detection sys-
tem efficiencies. The table lists pairs of θ1/θ2 angles (in degrees).
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Figure 6.4: Example of a map of χ2/d.o.f values, calculated for the measured distributions
of the vector analyzing power Ay compared to predictions of the AV18+UIX+C. Cells
of the map refer to individual configurations defined by combination of angles given on
the axes. The same convention is in force for the calculated χ2/d.o.f values of the cross
sections but on a grid used in that case.

In conclusion, only the theories with implemented electromagnetic interaction repro-
duce the experimental data of the cross sections in a reasonable way. Moreover, the
obtained results of χ2/d.o.f. for 2N potentials and for the AV18+UIX predictions can
indicate the importance of the 3NF for the description of the data. In contrary to the
analyzing power results, here the dynamical effects are significant.

These global features can be investigated more carefully with the use of the maps of
χ2/d.o.f values, which were calculated for each individual geometrical configuration of the
two outgoing protons. An example of such a map is shown in Fig. 6.4. The obtained
values of χ2/d.o.f for all configurations are plotted on the θ1, θ2 (polar angles of the two
protons) vs. ϕ12 (the relative azimuthal angle) plane as colour boxes. Colour of each
individual box is related to the χ2/d.o.f value for the whole distribution of the scrutinized
observable (summed along S), calculated with respect to a particular theory. The full set
of such maps for cross sections and polarization observables is presented in the next two
subsections.

6.3.1 The vector analyzing powers - individual configurations

Figs. 6.5 and 6.6 present the full set of the obtained χ2/d.o.f values for each individual
configuration. Based on this maps few conclusions can be drawn. A quite good description
of the vector analyzing power Ax data is confirmed in practically the full studied range
of the phase-space, except two configurations with the uncommonly high value of the
χ2/d.o.f., close to 1.4 for each considered theory. In the case of the vector analyzing
power Ay one can notice that in the majority of the configurations value of the χ2/d.o.f.
is higher than 1, what is true for all used calculations.
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Figure 6.5: Set of χ2/d.o.f. maps, analogical to the example presented in Fig. 6.4,
obtained for vector analyzing powers Ax compared to various theoretical predictions. Ax

for ϕ12 = 1800 is required (parity constraints) to be zero.
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Figure 6.6: Set of χ2/d.o.f. maps, analogical to the example presented in Fig. 6.4,
obtained for vector analyzing powers Ay compared to various theoretical predictions.
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Nevertheless, there are certain configurations with the χ2/d.o.f. smaller than 1, and
only one with extremely high value of the χ2/d.o.f. close to 4.5, what is observed for
all theoretical predictions. One can conclude that there is evidently a problem with the
description of Ay by the presently available theoretical approaches. The obtained values
of the Ax and Ay analyzing powers are very small and as it was mentioned above, they
do not reveal any sensitivity to neither the 3NF nor Coulomb effects in the studied part
of the phase-space.

Apart from the studies of the global χ2 and examinations of the individual kinematical
configurations, the analysis with respect to other kinematical variables was performed.
For that purpose the variables were chosen to be: the energy of the relative motion of the
two protons E12, relative azimuthal angle ϕ12 of the breakup protons, pair of the polar
angles of the two protons θ1, θ2.

In the first case (Fig. 6.7) the χ2/d.o.f. values were calculated for all experimental
points grouped with respect to the energy of the relative motion of the two protons. The
results obtained for Ax presented in Fig. 6.7 are distributed randomly with respect to the
χ2/d.o.f. values, which are smaller than 1 for the majority of the data points. There is no
significant differences observed between the used for comparisons theoretical predictions.
In the case of Ay the majority of the points have χ2/d.o.f. around 1.5. At the highest
E12 values some systematic increase of the χ2/d.o.f. values can be observed, what can be
a hint to certain dynamical origin, missing in the theories.

The data sorted according to the ϕ12 values are presented in Fig. 6.8. The results
are quite consistent with each other considering various theoretical predictions for both
observables. For Ay the distribution is rather random, whereas for Ax the experimental
points agree with each other.
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Figure 6.7: Quality of description of the vector analyzing power data with various the-
oretical predictions (defined in the legend), expressed as dependence of χ2/d.o.f. on the
relative energy of the two breakup protons.
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Figure 6.8: Quality of description of the vector analyzing power data with various the-
oretical predictions (defined in the legend), expressed as dependence of χ2/d.o.f. on the
relative azimuthal angle ϕ12 of the two breakup protons.
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Examining the distributions shown in Fig. 6.9 one can notice that various theoretical
approaches agree with each other, except the one point described with θ1 = 90, θ2 = 90.
Here also random pattern of χ2/d.o.f. distributions is observed.

In conclusion, the investigated region of the phase-space does not reveal any interesting
effects connected with the 3N dynamics and in general the data confirm all theoretical
models.

6.3.2 The cross section values - individual configurations

The conclusion of the importance of the Coulomb force for the description of the experi-
mental data is also confirmed when studying χ2/d.o.f. for the individual configurations.
Such results are presented in Fig. 6.3.2. As one can notice, the smallest values of χ2/d.o.f.
are obtained when the data are compared with the CDB+∆+C and AV18+UIX+C ap-
proaches and, in general, the same pattern is observed for both of the predictions. How-
ever, there exist configurations with quite large values of χ2/d.o.f., which appear for the
ϕ12 ≤ 1200 and can indicate indigences in the model providing the efficiency correction
factors for the cross section data. In the map one can also observe areas characterized by
the values of χ2/d.o.f ≤ 2, which are present in all panels related to different theories. In
these particular configurations different theoretical predictions agree with each other and
do not reveal sensitivity to any dynamical effect. In case of the calculations which do not
take into account the Coulomb force the obtained values of χ2/d.o.f are generally very
high and can even achieve values of χ2/d.o.f≈300. This fact confirms that these models
fail to reproduce the experimental data in the majority of the investigated configurations,
what is reflected in the pattern of the maps related to these theories.
Importance of the Coulomb force for proper description of the experimental data also
demonstrates itself in the analysis with respect to the kinematical variables like relative
azimuthal angle ϕ12 of the breakup protons, pair of the polar angles of the two protons
θ1, θ2 and the energy of the relative motion of the two protons E12. These dependencies
are presented in Figs. 6.11 - 6.13. In the first case (see Fig. 6.11) the obtained values of
χ2/d.o.f for Coulomb-containing predictions are between 2 and 4. One can observe that
for ϕ12 = 800 the inclusion of the electromagnetic interaction almost does not change the
cross sections. In case of the rest of the theoretical predictions one can distinguish two
groups (2N, 2N+TM99, N2LO and CDB+∆, AV18+UIX, N3LO), which provide slightly
different, but generally large values of χ2/d.o.f. Better description is obtained for the
models of the second group. Moreover, quite significant 3NF effects are also visible when
comparing the red and black circles (about 10%), as well as the cyan squares and black
circles.
The obtained dependency of χ2/d.o.f. on different combinations of θ1, θ2 (see Fig. 6.12)
can provide some interesting conclusion. With increasing ∆θ =| θ1 − θ2 | value the
Coulomb effects play less important part in reproducing the experimental data and for
high ∆θ all the theories predict almost the same values of the cross sections.
The results obtained for calculations with respect to the energy of the relative motion of
the two protons E12 (see Fig. 6.13) stay in agreement with the previous conclusions. In
the case of small values of E12 the Coulomb effects are extremely high and disagreement
between the experimental data and theoretical predictions decreases with the increasing
relative energy. For very large E12 ≥ 5.5 MeV the discrepancies are still present, but
become much smaller. This range of E12 corresponds to a quick separation of the two
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Figure 6.11: Quality of description of the cross section data with various theoretical
predictions (defined in the legend), expressed as dependence of χ2/d.o.f. on the relative
azimuthal angle ϕ12. Points with very large χ2/d.o.f. values are scaled down by factors
indicated in the panels.
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Figure 6.13: Quality of description of the cross section data with various theoretical
predictions (defined in the legend), expressed as dependence of χ2/d.o.f. on the relative
energy of the two breakup protons E12. Points with very large χ2/d.o.f. values are scaled
down by factors indicated in the panels.

protons, and therefore is less sensitive to the electromagnetic interaction.
In general, one can conclude that the Coulomb force is a very important ingredient in
the 3N system dynamics. The inclusion of the electromagnetic interaction in the theories
which model the 3N system properties dramatically changes the quality of the data de-
scriptions.
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Chapter 7

Summary and conclusions

The goal of this dissertation was the experimental investigation of the 1H(~d, pp)n breakup
reaction at 130 MeV in the forward angular region. The measurement was performed on
one of the external beam lines of the COSY accelerator in the Research Center Jülich.
The Germanium Wall detection system used in this experiment covered a very narrow
range of the forward angles for the breakup process. As the result of the data analysis
the vector analyzing powers Ax and Ay, as well as the differential cross sections dσ5

dΩ1dΩ2dS

of the investigated reaction have been obtained. The vector analyzing powers have been
evaluated for 42 kinematical configurations resulting in about 300 data points. The val-
ues of cross sections have been analyzed for 145 kinematical configurations, what forms a
data base of about 2700 data points. In addition, as a byproduct of the beam polarization
studies, angular distributions for the iT11 analyzing power of the d− p elastic scattering
process at the same energy have been obtained. These results complemented the existing
data base in the angular area not covered by other experiments.

The results have been compared to the theoretical predictions which model the nuclear
dynamics in various ways. They comprise approaches based on the purely realistic NN
(CD Bonn, AV18, Nijm I, Nijm II) potentials and combining them with the TM99 3NF
and Urbana IX models. Moreover, the data are confronted with the calculations of the
coupled-channel approach obtained with the CD Bonn + ∆ potential and the similar pre-
dictions but including the Coulomb interaction. Finally, they are compared to the results
obtained within the ChPT framework at N2LO including full dynamics and, currently
not complete, at N3LO.

For the vector analyzing powers all the theoretical predictions agree with each other
and do not reveal any sensitivity to the dynamical effects like 3NF or Coulomb interac-
tion. In the case of Ax the theoretical models quite well describe the experimental data,
whereas they fail to reproduce Ay equally well.

From the theoretical point of view, the situation is totally different for the predicted
values of the differential cross sections in the context of the Coulomb force. Only the
models with the Coulomb interaction included (i.e. CD Bonn+∆+C, AV18+UIX+C)
not only stay in good agreement with each other, but also reproduce the evaluated data
in a consistent way. These general conclusions can be drawn already for the configurations
described with ϕ12 ≥ 1200. The most sensitive region of the phase-space characterized by
the geometries with very small relative azimuthal angles ϕ12 turned out to be very chal-
lenging for investigations of such effects. The assumed model which provides correction
factors of the detection system efficiencies to the cross section data, what is crucial in this
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analysis, fails to completely reproduce the overlapping clusters effects of the Quirl detec-
tor and needs further developments. Fortunately, even in the region ϕ12 < 1200 there is a
large number of configurations which are not much affected by the efficiency corrections
and for which absolute values of the cross sections are not biased by large systematic
uncertainties. The results obtained in the χ2/d.o.f analysis confirm the necessity of inclu-
sion of the electromagnetic interaction into the calculations in order to assure reasonable
agreement between the theoretical conclusions and the experimental data. Influences of
the 3NF effects on the cross section data are rather small, but still visible, in the studied
region of the phase-space.



Appendix A

Breakup Cross Sections Results

This Appendix contains experimental results of the differential cross sections for the
reaction 1H(~d, pp)n at 130 MeV. The results are obtained for the two protons registered
at given θ1, θ2 and ϕ12 angles, with the event integration ranges of ∆θ1 = ∆θ2 = 20

and ∆ϕ12 = 100. The evaluated data are compared with a set of theoretical predictions,
presented in the figures as colour bands and lines listed in the included legend. The
experimental results and theoretical calculations are presented as a function of the arc-
length S along the kinematical curve. In the figures the error bars represent the statistical
uncertainties only. Configurations biased with large systematic uncertainties appear in
the sets of figures as the ones with red frames.
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Figure 7.1: The differential breakup cross sections for the same relative azimuthal angle
ϕ12 = 200. Cyan and magenta bands represent calculations based on realistic potentials
(with and without 3NF included, respectively), green and orange - chiral theories (at
N2LO and N3LO, respectively), black lines - calculations of the coupled channel approach
(solid with and dashed without Coulomb interaction included), dashed maroon line -
calculations based on the realistic AV18 potential combined with the Urbana IX 3NF and
dotted violet line - the same predictions, but with the Coulomb force implemented.
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Figure 7.2: Same as in Fig. 7.1, but for ϕ12 = 400.
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Figure 7.3: Same as in Fig. 7.1, but for ϕ12 = 600.
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Figure 7.4: Same as in Fig. 7.1, but for ϕ12 = 800.
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Figure 7.5: Same as in Fig. 7.1, but for ϕ12 = 1000.
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Figure 7.6: Same as in Fig. 7.1, but for ϕ12 = 1200.
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Figure 7.7: Same as in Fig. 7.1, but for ϕ12 = 1400.
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Figure 7.8: Same as in Fig. 7.1, but for ϕ12 = 1600.
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Figure 7.9: Same as in Fig. 7.1, but for ϕ12 = 1800.



Appendix B

Breakup Vector Analyzing Powers Results

This Appendix contains experimental results of the vector analyzing powers for the
reaction 1H(~d, pp)n at 130 MeV. The results are obtained for the two protons registered
at given θ1, θ2 and ϕ12 angles, with the ranges of ∆θ1 = ∆θ2 = 30 and ∆ϕ12 = 400. The
evaluated data are compared with a set of theoretical predictions, which are presented
in the figures as colour bands and lines listed in the included legend. The experimental
results and theoretical calculations are presented as a function of the arc-length S along
the kinematical curve. In the figures the error bars represent the statistical uncertainties
only.
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Figure 7.10: The vector analyzing powers Ax for the same relative azimuthal angle ϕ12 =
600. Cyan and magenta bands represent calculations based on realistic potentials (with
and without 3NF included, respectively), green and orange - chiral theories (at N2LO
and N3LO, respectively), black lines - calculations of the coupled channel approach (solid
with and dashed without Coulomb interaction included), dashed maroon line - calculations
based on the realistic AV18 potential combined with the Urbana IX 3NF and dotted violet
line - the same predictions, but with the Coulomb force implemented.
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Figure 7.11: Results for Ax as in Fig. 7.10, but for ϕ12 = 1000.
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Figure 7.12: Results for Ax as in Fig. 7.10, but for ϕ12 = 1400.
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Figure 7.13: Results for Ay as in Fig. 7.10, but for ϕ12 = 600.
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Figure 7.14: Results for Ay as in Fig. 7.10, but for ϕ12 = 1000.
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Figure 7.15: Results for Ay as in Fig. 7.10, but for ϕ12 = 1400.
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Figure 7.16: Results for Ay as in Fig. 7.10, but for ϕ12 = 1800.
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[36] J. B. England. Metody doświadczalne fizyki ja̧drowej. PWN, 1980.

[37] Y. Song R. Machleidt, F. Sammarruca. Phys. Rev., C53:R1483, 1996.

[38] V. G. J. Stoks et al. Phys. Rev., C49:2950, 1994.
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