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Preface

Networks constitute the backbone of many complex systems of high tech-
nological and intellectual importance in such diverse areas as physics, eco-
nomics, biology, ecology, computer science, and the social sciences. This
variety of networks can be described by the same graph framework, in which
the nodes represent individual elements or units of the system, connected
by links associated with the interactions. The most prominent examples of
computer and communication networks are the World Wide Web (WWW),
an enormous virtual network of web pages connected by hyperlinks, and
the Internet which is a physical network of routers and computers linked
by various cable and wireless connections. Of special interest are social net-
works where individuals act as nodes connected by social relationships; these
include phone call networks, acquaintance networks, and social networking
services, such as Facebook or the more business oriented LinkedIn. Common
examples in biosciences are molecular networks, in specific metabolic path-
ways and genetic regulatory networks, and ecological networks, like food
webs, for instance. Among other typical examples are transportation net-
works, disease spread networks, and citation networks.

Empirical studies of networks have feedback on theoretical developments
aiming to describe and explain the observed features. In particular, recent
advance in computer technology has opened new possibilities to the acqui-
sition and processing of data and made it possible to gather information
about the topology of diverse real-world networks and to analyze them on
a scale far larger than previously possible. It turned out that various, of-
ten completely unrelated systems, share the same common properties such
as the distribution of connections between nodes or the inter-node correla-
tions. For example, it has been found that many of the real-world networks
are scale-free and their degree distribution follows a power-law, where the
degree is the number of connections emerging from a vertex. The most no-
table characteristic of a scale-free network is that nodes with the number
of connections greatly exceeding the average are relatively common within
it and the network consists of a few highly connected hubs to which rest
of the weaker connected nodes attach. All these observations triggered the
interest in various network models, including random graphs—a simple, yet
extremely useful network model. Extensive pedagogical reviews of the field

vii
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of complex networks can be found in Refs. [4–7] and in the books by New-
man [8] and Bornholdt et al. [9]. For more information specifically oriented
towards scale-free networks consult the book by Caldarelli [10].

One of the most fundamental network characteristics is the pattern of
connections. In most kinds of networks a few different types of vertices can
be distinguished according to various features, and it has been observed
that the probability of connection between vertices often depends on them
(cf. Ref. [11]). In particular, vertices may tend to connect to others that are
like them in some way, which is called assortative mixing, or just the oppo-
site: they may connect to others with completely different characteristics,
referred to as disassortative mixing. Such correlations are interesting mainly
because they uncover additional information about the system which may
be inferred based on the knowledge of them.

Particularly important, with regard to network structure, are vertex de-
gree correlations. Interestingly, most of the real-world networks show dis-
assortative mixing by degree, that is, their vertices have the tendency to
connect to others that have very different degrees from their own. The ex-
act reasons for this pattern are not yet known for certain, but there is a
strong indication that it is a consequence of the fact that these networks are
simple graphs, i.e., ones that do not have multiple- and self-connections (see
Ref. [12]). Therefore, the number of edges that can connect the high-degree
vertex pairs is limited.

On the other hand, most social networks have a clear tendency towards
assortativity. This can be put down to the common phenomenon that we
tend to associate preferentially with people who are similar to ourselves in
some way. This in turn results in social networks being divided into groups
of vertices weakly connected with the rest of the network [8]. Roughly
speaking, the degrees of vertices within small groups tend to have lower
degree than vertices in larger groups, so the small groups gather mostly
low-degree vertices connected with other low degree-vertices, and similarly
for high-degree ones. A quantitative description of this mechanism can be
found in Ref. [13].

The study of degree correlations is of vital importance in gaining insight
into the structure and patterns of connections appearing in networks. These
are essential for an in-depth understanding of the behavior and function
of the various complex systems around us, ranging from technological to
biological networks. Obviously, if we could gain such understanding, it would
give us fresh insight into a vast array of complex and previously poorly
understood phenomena.

Random graphs are a network model of common use which mimics the
patterns of connections in real-world networks. They are interesting in their
own right for the light they shed on the structural properties of these net-
works. The simplest random network model are classic random graphs pro-
posed by the Hungarian mathematicians Erdős and Rényi in their seminal
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cycle of papers [14–16]. The model consists of V vertices connected at ran-
dom with L edges, and is characterized by the Poisson degree distribution.
A generalization of this concept are random graphs with arbitrary degree
distributions. Intuitively, these are model networks which are maximally
random under a given set of constraints. The constraints typically include a
prescribed degree distribution; for example, a power-like degree distribution
such as p(q) ∝ q−γ results in a scale-free network. The general random
graph model provides insight into the expected structure of networks of al-
most all kinds and is an excellent tool for investigating all sorts of network
phenomena.

Random graphs are an example of the so-called complex network models,
which have a neither purely regular nor purely random pattern of connec-
tions between their elements. They typically have a much more complex
structure than these of classic random graphs, and display such features as
a heavy tailed degree distribution or internode correlations. In fact, the vast
majority of real-world networks is complex. Moreover, these networks usu-
ally exhibit a relatively small diameter, referred to as the small-world effect.
For example, Milgram showed in his famous 1967 experiment that the aver-
age separation distance in the acquaintance network is around six [17]. The
combination of the compactness and complexity of these systems results in a
wide spectrum of nontraditional and intriguing critical effects. These include
structural changes in networks, various percolation phenomena, emergence
of scale-free topologies, epidemic thresholds, phase transitions in coopera-
tive models defined on networks, and many others. A comprehensive review
of recent progress in the field of critical phenomena occurring in complex
networks can be found in Ref. [18].

There are two natural strategies of modeling complex networks as ran-
dom graphs: the diachronic one, in which the growth of the system is sim-
ulated, and the synchronic one, in which a statistical ensemble of graphs
is constructed. In here we are concerned only with the latter one and in-
vestigate the general random graph model in the conventional framework of
equilibrium statistical mechanics (see Refs. [4, 19–24]). The crucial concept
of this approach is the statistical ensemble of graphs defined by ascribing
statistical weight to each particular configuration of vertices and edges. The
quantities of interest are then expressed as weighted averages over all the
graphs from the ensemble. We conduct our studies by means of both analytic
calculations and numerical simulations.

The thesis is organized as follows. Chapter 1 serves as an introduction
to the fundamental concepts and mathematical tools employed across the
rest of the dissertation. It also settles the notation and defines basic quan-
tities used in the calculations from the subsequent chapters. The presented
material may be logically divided into two parts. The first one, constituted
by Chapters 2 and 3, is based on our two papers [1, 2] and is primar-
ily concerned with structural correlations in connected topologies. We first



x PREFACE

discuss nearest-neighbor correlations in connected random graphs in Chap-
ter 2. Then, in Chapter 3 we specialize to random trees and investigate
correlations at larger distances. By definition, trees are connected graphs
without cycles, where a cycle is a closed path. The second part deals with
critical phenomena occurring in random graphs. Our aim is to construct
and investigate a simple random geometry model exhibiting a geometrical
phase transition. To this end we first introduce an Ising spin model on top
of regular random graphs in Chapter 4. By regular random graphs we
mean maximally random networks composed of vertices which all have the
same degree [3]. In this chapter we are interested in the properties of the
spin system rather than the underlying topology. The considered model
exhibits a mean-field phase transition, which is a direct consequence of the
infinite dimensionality of the system. The actual random graph model with
the geometric phase transition is studied in Chapter 5. It is constituted
by maximally random graphs whose vertex degrees are limited to the val-
ues {2, 3, 4} only. We show that asymptotically the solutions of this model
and the Ising spin system from the previous chapter coincide, and so the
thermodynamic behavior of these two models is identical. However, due to
their different nature and the broken symmetry of the geometrical model,
its correlation functions exhibit some unexpected behavior. A summary
and a brief discussion of the results and prospects is given in Chapter 6.
The dissertation is supplemented by some Appendices providing additional
technical details to the derivations appearing in the course of the thesis.

This dissertation is intended to be mostly self-contained. To make it eas-
ily accessible even for readers from other disciplines, a detailed and compre-
hensive description of the fundamental ideas, theoretical tools, and numeri-
cal methods is provided, mainly in the first introductory chapter. Neverthe-
less, we are aware that since the presented material spans a wide spectrum
of theoretical physics and mathematics, one might find the discussion of
some concepts either too general or insufficient. We encourage an interested
reader to consult the numerous references listed at the end of this thesis and
hope that they prove helpful.

Before we proceed any further, we would like to clarify a few points
concerning the notation used. We write f(n) ∼ g(n) for asymptotic equality
meaning

lim
n→∞

f(n)
g(n)

= 1,

while proportionality is written as f(n) ∝ g(n) implying that f(n) = c g(n),
where c is some constant. The symbol ≈ is reserved for general approxi-
mately equal values. Sometimes, if the meaning is clear from the context,
we omit the arguments of functions for the sake of clarity. Vectors are de-
noted by bold lowercase symbols such as v and φ, while bold capital Latin
letters such as M refer to matrices.
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Chapter 1

Introduction

The study of random graphs is a highly interdisciplinary field that com-
bines ideas from diverse areas, mostly mathematics, physics, and computer
science. This may lead to ambiguity in terminology due to the inconsistent
usages among its practitioners from different disciplines. To avoid or at least
reduce any confusion we briefly define basic terms and concepts, and present
the theoretical foundations for the subsequent calculations.

We begin with Sec. 1.1 introducing the terminology and fundamental
ideas of graph theory which are crucial for essentially all later developments.
Graph theory is a wide branch of mathematics and readers interested in
studying it further might like to look at the books by Bondy [25] and Wil-
son [26].

Then, in Sec. 1.2 we provide some background material on statistical
mechanics. It contains only the very basics of the subject and is primarily
intended to recall some of the main ideas that are mentioned later on. For
further reading please consult any book on statistical physics. Regarding
the problems discussed here we recommend the one by Plischke [27].

Random graphs are introduced in Sec. 1.3. First, we briefly present
classic random graphs, also known as Erdős-Rényi graphs, characterized by
Poisson degree distribution. They have been widely studied and thorough
descriptions of the field can be found in the books by Bollobás [28] and
Janson [29]. For a mathematical introduction specific on random trees, see
the book by Drmota [30]. We then come to the generalized random graph
model, i.e., random graphs with arbitrary degree distribution, which are the
actual object of our study. We present them in the traditional framework
of statistical mechanics—for details please consult Refs. [4, 19–24].

Next, in Sec. 1.4 we come to the notion of correlations in random geome-
tries. We define specific measures used to quantify vertex degree correlations
in random graphs. These include the basic two-point correlation function
(Sec. 1.4.1), its connected version (Sec. 1.4.2), and the joint degree distribu-
tion (Sec. 1.4.3).

1



2 1. INTRODUCTION

For the models of our interest it has not yet been proved possible to find
exact analytic solutions to some of the discussed problems. Our approx-
imate techniques include graphical perturbation expansion and numerical
methods. We deal with the first one in Sec. 1.5. In particular, we show how
one can relate integrals appearing in field theory to an ensemble of graphs—
Feynman diagrams (Sec. 1.5.2), elucidate the role of the symmetry factor
in defining statistical weights of these diagrams (Sec. 1.5.3), and recall the
useful technique of obtaining connected diagrams only (Sec. 1.5.4).

We end this chapter with a discussion of equilibrium Monte Carlo (MC)
simulations of statistical ensembles in Sec. 1.6. We explain the notion of
importance sampling (Sec. 1.6.1), briefly introduce the classic Metropolis
algorithm (Sec. 1.6.2), and present its application to the generation of the
ensemble of random graphs (Sec. 1.6.3). To the end of this section we discuss
some practical issues related to MC simulations, namely equilibration and
measurement (Sec. 1.6.4). In particular, we devote special attention to the
evaluation of statistical errors of MC data when the output is time correlated
(Sec. 1.6.5).

1.1 Fundamentals of graph theory

A graph is, in its simplest form, a collection of points joined together by
lines, as illustrated in Fig. 1.1. In the jargon of the field the points are
referred to as vertices or nodes and the lines are referred to as edges or links.
Throughout this dissertation we will typically denote the number of vertices
in a graph by V and the number of its edges by L. Graphs are sometimes
called networks and we will use these terms interchangeably. Although a
graph can be conveniently described by means of a diagram, its exact form
is immaterial—the only thing that matters is connectivity, that is whether
a given pair of points is joined by a single or more lines, or not.

It follows that there is no unique way of drawing a graph and the relative
positions of points representing vertices and lines representing edges have no
significance. In particular, two edges in a diagram may intersect at a point

vertex

edge

Figure 1.1: A small network composed of eleven vertices and twelve edges.
The position of nodes in the picture is irrelevant and the only information
that matters is connectivity.
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(a)                                                    (b)
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Figure 1.2: Two small networks: (a) a simple graph composed of V = 6
vertices and L = 6 edges; (b) a pseudograph, i.e., a graph with both multi-
and self-edges.

that is not a vertex, which is the case in Fig. 1.1. A graph which can be
drawn on a plane in such a way that no lines cross and its edges meet only
at their endpoints is called planar. The graph in Fig. 1.1 can be rearranged
that way, so it is planar.

A graph does not necessarily need to be connected. It may consist of two
or more separate components disconnected from one another. The exemplary
network in Fig. 1.1 consists of three components, one of which is a single
isolated vertex not connected to the rest of the network. Further in this
section we provide a more formal definition of connected graphs using the
concept of path.

Two or more edges connecting the same pair of vertices are called col-
lectively a multiple edge or shortly multiedge. A self-edge or a loop is an
edge connected with both its ends to one and the same vertex. We shall call
graphs which have multiple edges and loops multigraphs or pseudographs
to distinguish them from simple graphs which have at most a single edge
between any pair of distinct vertices (see Fig. 1.2).

In some applications weighted graphs, in which the connections have
given weights, or directed graphs, in which each edge has a direction, are
considered. In here we restrict ourselves to undirected and unweighted net-
works only where the edges form simple on/off connections between vertices.
However, undirected networks can be thought of as directed networks in
which each undirected edge is represented by a pair of directed ones running
in opposite directions. Such representation is especially useful in computer
programs and we actually employ it in our MC simulations.

A degree of a vertex is the number of edges attached to it. We will
typically denote it by q or k. On simple graphs the degree of a vertex
equals the number of its neighbors, which in general does not hold when
multigraphs are considered. Note that each loop raises the degree of the
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Figure 1.3: A path of length three in a graph. It is a geodesic path, i.e., the
shortest path between these two vertices.

vertex to which it connects by two, as both its ends are counted. Vertices
of degree equal one, that is connected to only one other vertex, are called
external vertices or leaves, and the remaining ones internal vertices. For
instance, the graph shown in Fig. 1.2(a) has one external vertex labeled 2,
and the other vertices are internal ones.

The sum of the degrees of all the vertices in a graph equals the number
of ends of edges, which is twice the total number of edges

2L =
V∑
i=1

ki. (1.1)

On the other hand, the mean degree of a vertex is given by

k̄ =
1
V

V∑
i=1

ki, (1.2)

which combined with Eq. (1.1) yields

k̄ =
2L
V
. (1.3)

This relation will come up repeatedly in later developments.
A path in a graph is a sequence of vertices such that every consecutive

pair of vertices in the sequence is connected by an edge. A path which starts
and ends at the same vertex is called a cycle. The length of a path is the
number of edges traversed along the path (see Fig. 1.3). The geodesic dis-
tance between two vertices on a graph is the shortest path length between
this pair of vertices, i.e., the minimum number of edges one would have to
traverse in order to get from one vertex to the other. Vertices directly con-
nected, called nearest neighbors, have geodesic distance equal one. In most
network models the mean geodesic distance is rather short and increases
logarithmically with the number of vertices in the network, which is referred
to as the small-world effect.
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Now we can introduce a more formal definition of a connected graph,
as mentioned at the beginning of this section. Namely, a graph is said to
be connected if every vertex in it is reachable from every other via some
path through the graph. Conversely, if there is no such path for at least two
vertices, the network is disconnected and consists of components or subgraphs.
Technically, these are subsets of all the vertices of the graph such that there
exists at least one path between each pair of their members, and such that
no other vertex in the graph can be added to the subset while preserving
this property.

One possible representation of a graph is its adjacency or connectivity
matrix. Consider a graph containing N labeled nodes 1, . . . , N . Its adja-
cency matrix is a N × N matrix whose non-diagonal entries Aij count the
number of edges between vertices i and j, whereas the diagonal elements
Aii equal twice the number of loops attached to the i-th vertex. A loop
is counted twice essentially because it is connected with both its ends to
vertex i. For example, the adjacency matrix of the graph from Fig. 1.2(b) is

A =



0 2 0 1 1 1
2 0 0 0 0 0
0 0 2 0 0 0
1 0 0 0 3 0
1 0 0 3 0 1
1 0 0 0 1 2

 . (1.4)

The adjacency matrix of undirected graphs is symmetric, and the degree
of vertex i is given by the sum of elements in the i-th row or column. For
simple graphs all elements are either zero or one, except the diagonal ones,
which are all equal zero.

We also distinguish between labeled graphs, where the vertices have as-
signed different numbers, and unlabeled graphs, where vertices are indistin-
guishable. We will often refer to unlabeled graphs as shapes or topologies.
This is particularly important for the counting problems. For example, the
topologies A and D in Fig. 1.4 have a 1:1 mapping on their labeled counter-
parts, while shapes B and C can be labeled in three distinct ways each. In
simple graphs each link is uniquely determined by its endpoints, so there is
no need to label them additionally. In the case of pseudographs, however,
the labeling of links does matter. This is because of the ambiguity of multi-
edges joining the same vertices and self-edges connected with both ends to
one vertex. These may be freely exchanged unless we explicitly distinguish
the endpoints of each edge. We will call graphs with labeled both vertices
and edges fully labeled graphs.

Depending on some specific characteristics and properties we distinguish
a number of special classes of graphs. Here we mention only one, namely reg-
ular pseudographs, to which we refer in Chapter 4. A regular, simple graph
of degree q, or shortly q-regular graph, is a graph whose all vertices have the
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Figure 1.4: Unlabeled simple graphs with V = 3 vertices and their labeled
counterparts.

same degree q. Regular multigraphs or pseudographs are a generalization of
regular graphs in which multiedges and loops are permitted.

1.1.1 Trees

Trees are connected, simple graphs without cycles. A connected graph is a
tree, if and only if the number of edges L equals the number of nodes V less
one: L = V −1. A tree is a minimal connected graph, so deleting any single
edge disconnects it, while adding an extra edge between any two vertices
creates a cycle. A disconnected graph in which all individual parts are trees
is called a forest.

Probably the most important property of trees for our purposes is that,
since they have no cycles, there is exactly one path between any pair of
vertices, which makes some certain kinds of calculations particularly simple.
By definition trees are simple graphs, so the degree of a vertex in a tree
equals the number of its neighbors.

We distinguish between rooted and unrooted trees (see Fig. 1.5). A
rooted tree is a tree with one node marked, which is called the root. The
presence of the root introduces an ordering in the tree, which may be de-
scribed in terms of generations or levels: the root constitutes the 0-th gen-
eration, its neighbors are the first generation, and so on. In general, a node
at distance k from the root belongs to the k-th generation. For a node at
level k its neighbors at level k+1 are called children or successors, while the
node at level k − 1 to which it connects is its parent.
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(a)                                                (b c))                                                (

root

Figure 1.5: Three different types of trees: (a) a non-rooted, (b) a rooted,
(c) and a planted tree.

Furthermore, if v is a node in a rooted tree T , then v may be consid-
ered as the root of a subtree of T consisting of all iterated successors of
v. This means that rooted trees may be constructed recursively, which is
an extremely useful property to which we will often refer in the upcoming
calculations.

Another important class of trees are planted trees. These are rooted trees
with the root connected (or planted) to an additional phantom node, that
is not taken into account (Fig. 1.5(c)). Usually the additional external node
is omitted and the root is drawn with a stem attached, i.e., a link which has
one loose end. Similarly as for the phantom node, we do not include the
stem into the total number of links in a tree. Nevertheless, it contributes to
the degree of the root.

Trees play an important role in the study of random graphs. For instance,
the local groups of vertices—the so-called small components—form a forest
and we exploit this property in Chapter 2 to derive our results.

In Chapter 4 we will be interested in a special class of trees, namely
Cayley trees. These are regular trees in which each internal vertex has a
constant number of branches q, where q is called the coordination number—
see Fig. 1.6. In physics an infinite Cayley tree is often referred to as a Bethe
lattice [31].

1.2 Basic equilibrium statistical mechanics

Statistical mechanics is primarily concerned with the calculation of proper-
ties of systems composed of very many particles, typically atoms or molecules.
Although these individual particles usually obey simple equations of motion
and the behavior of the entire system is mathematically well defined and
predictable, it is the magnitude of the problem which makes it impossible to
solve the mathematics exactly. Instead of solving the equations of motion,
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Figure 1.6: Cayley tree with coordination number q=3 and five generations.

statistical mechanics attempts to calculate the properties of large systems
by treating them in a probabilistic fashion. Such approach turns out to be
extremely useful because the reasonably probable behavior of such systems
falls into a very narrow range, allowing us to state with very high confidence
that the system of interest will display behavior within that range.

Complex systems can be characterized by the Hamiltonian function H,
expressing the total energy of the system in any particular state. For a sys-
tem in thermal equilibrium at temperature T the probability of the system
being in state µ is given by the Boltzmann distribution,

pµ =
1
Z

e−Eµ/kBT , (1.5)

where Eµ is the energy of state µ given by the Hamiltonian, and kB is the
Boltzmann’s constant. The quantity 1/kBT is traditionally denoted by β
and we will follow that convention. The normalizing factor Z is the partition
function of the system,

Z =
∑
µ

e−βEµ . (1.6)

The average or expectation value of an observable O is given by

〈O〉 =
1
Z

∑
µ

Oµ e−βEµ . (1.7)
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In particular, the internal energy U , which is the expectation value of the
energy itself, is

U ≡ 〈E〉 =
1
Z

∑
µ

Eµ e−βEµ . (1.8)

Apart from the internal energy U we define the free energy F , which can
be directly calculated from the partition function Z,

F = − 1
β

lnZ. (1.9)

The free energy is especially useful, because it relates the system’s conjugate
variables. These are parameters coupled in such a way that the change of one
of them is followed by the response of the counterpart. Suppose that X is
the conjugate variable to Y . They correspond to a term in the Hamiltonian
of the form −XY , thus the expectation value of X is given by

〈X〉 =
1
Z

∑
µ

Xµ e−βEµ =
1
βZ

∂

∂Y

∑
µ

e−βEµ , (1.10)

because of the −XµY term on which the derivative acts on. In terms of the
free energy the above average reads

〈X〉 =
1
β

∂ lnZ
∂Y

= −∂F
∂Y

. (1.11)

This introduces a useful technique of calculating thermal averages, even if
there is no appropriate field coupling to the quantity of interest. We can
simply introduce a fictitious field coupled to that quantity, which we set to
zero after performing the derivative.

The expectation value of some quantity alone does not provide any in-
formation about its fluctuations. These are quantified by the variance

var(X) ≡ 〈X2〉 − 〈X〉2 , (1.12)

which can be calculated from the second derivative of the free energy

∂2F

∂Y 2
= − 1

β

∂

∂Y

(
1
Z

∂Z

∂Y

)
= − 1

β

[
1
Z

∂2Z

∂Y 2
−
(

1
Z

∂Z

∂Y

)2
]

= −β
(
〈X2〉 − 〈X〉2

)
. (1.13)

Combining Eqs. (1.12) and (1.13) we finally get

var(X) = − 1
β

∂2F

∂Y 2
=

1
β

∂ 〈X〉
∂Y

. (1.14)

The bare derivative ∂ 〈X〉 /∂Y is called the susceptibility of X to Y ,

χ ≡ ∂ 〈X〉
∂Y

. (1.15)
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We see that the fluctuations in a variable are proportional to the variable’s
susceptibility, which is known as the linear response theorem. It provides a
practical way of calculating the susceptibility in MC simulations by measur-
ing the fluctuations of a variable.

1.3 Random graphs

In general, a random graph is a model network in which some specific set of
parameters take fixed values, but the graph is random in all other respects
(cf. Ref. [8]). Random graphs constitute a useful tool in exploring various
features of the networks covered by models possessing particular properties
of interest, such as a specified degree distribution, but which are otherwise
random. We may, for instance, specialize to connected random graphs, as in
Chapter 2, or to random trees, that is to acyclic connected random graphs
with L = V − 1 edges, discussed in Chapter 3. Chapters 4 and 5 deal
with some even more specific models: regular random graphs which have
a constant degree across all vertices, but are completely random otherwise,
and a random graph model with restricted vertex degrees intended to exhibit
a geometrical phase transition.

1.3.1 Erdős-Rényi graphs

The simplest example of a random graph is the classic model proposed by
Erdős and Rényi in 1959 [14], in which we fix only the number of vertices
V and the number of edges L. That is, we take V vertices and connect
them with L edges at random. Alternatively, one can think of creating the
network by choosing uniformly at random from the set of all possible graphs
with exactly V vertices and L edges. The original approach is restricted
to simple graphs only, however, a variant with multi- and self-edges is also
possible.

The Erdős-Rényi (ER) model is closely related to the so-called binomial
model, in which we fix not the number but the probability of edges between
vertices (see Refs. [32, 33]). Again we have V vertices, but now we place
an edge between each distinct pair with independent probability. Thus, the
number of edges is not fixed anymore. In the large-size limit these two
models are equivalent (see, e.g., Refs. [21] or [24]), so we may use the latter
one, which is considerably easier to handle mathematically, to infer the
properties of the ER model. For example, one can show (see, e.g., Refs. [34]
or [8]) that the degree distribution in ER random graphs is given by the
Poisson distribution

pk = e−z
zk

k!
, (1.16)
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where z is the mean degree given by Eq. (1.3): z = 2L/V . In fact, ER
graphs are maximally random simple graphs under a single constraint of
fixed mean degree.

In mathematical literature the term random graph means by definition
a graph with Poisson distribution of connections. Here, we prefer to refer to
it as classic or Poisson random graph and reserve the general term random
graph for the maximally random graph with arbitrary degree distribution.

Although classic random graphs are one of the most widely studied model
networks, they have one serious shortcoming: in many ways they are com-
pletely unlike real-world networks. For instance, there is no correlation
between the degrees of vertices, necessarily due to their completely random
formation process. In actual networks, by contrast, the degrees are usually
correlated, as mentioned in the Preface. Another severe divergence is the
shape of the degree distribution. In typical networks encountered in reality
most of vertices have low degrees, yet there is a small fraction of high-degree
hubs in the tail of the distribution. The Poisson random graphs have, on the
other hand, a degree distribution which rapidly decreases at large degrees
and is not heavy-tailed. These differences have a profound effect on various
properties of the networks and make classic random graphs inadequate when
it comes to explain most of the interesting phenomena of real-world systems.
Therefore, in our studies we concentrate on the most general random graph
model allowing for arbitrary degree distribution.

1.3.2 Statistical ensemble of random graphs

The random graph model is defined in terms of the statistical ensemble,
which is constructed by ascribing a statistical weight to each graph from the
given set, proportional to its occurrence probability in random sampling (see
Refs. [19, 22, 24, 35]). When we talk about the properties of random graphs
we mean the expectation values of the observables defined on the statistical
ensemble. These are calculated as weighted averages over all graphs in the
ensemble. For example, the average of an observable O over the ensemble
of random graphs G characterized by the partition function Z is given by

〈O〉 =
1
Z

∑
G∈G

O(G) P (G), (1.17)

where P (G) is the statistical weight associated with graph G, and the par-
tition function equals

Z =
∑
G∈G

P (G). (1.18)

In the above definition of 〈O〉 we have assumed that the observable in ques-
tion is well defined on all graphs from the ensemble G. This is, in general, not
always the case. In such situations we restrict the sum in Eq. (1.17) to the
subset of G containing only those graphs for which O(G) can be measured.
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G

n(G) 72 36 72 36 18 9
π(G) 1/2 1/4 1/2 1/4 1/8 1/16

Table 1.1: Canonical ensemble of pseudographs with V = 3 vertices and
L = 2 edges. n(G) indicates the number of all distinct labelings of each of
the topologies, and π(G) is the corresponding configuration space weight.

The statistical weight of a graph P (G) is often distinguished into two
parts: the configuration space weight π(G) and the functional weight w(G).
The configurational weight is proportional to the uniform probability mea-
sure defined on the configuration space, i.e., a collection of graphs. It tells
us how to choose graphs from a given set with equal probability. One has
to be careful which graphs are meant as equiprobable. For a given number
of vertices there are namely two common choices, depending on whether
the vertices are distinguishable or not. If we consider all nodes as equal we
may define all topologies or shapes to be equiprobable. Alternatively, one
may treat the nodes as distinct by attaching labels to them and consider
such labeled graphs to have the same probability (see Fig. 1.4). Because the
number of possible labelings of a graph depends on its topology, these two
approaches result in two different probability measures. When it comes to
numerical simulations the latter definition is more natural, so we will stick
to the labeled graphs rather than to the bare topologies.

There are V ! ways to permute the indices of a graph with V vertices, so
it is convenient to choose the configurational weight of each labeled graph
equal to 1/V !. The weight of a topology G is then given by the ratio of the
number of its distinct labelings n(G) and the V ! factor: π(G) = n(G)/V !.

In the case of pseudographs the definition of the configuration space
weight becomes even more complex. In the presence of multiple connec-
tions and self-links the edges are no longer unambiguously specified by its
endpoints. Thus, we may label them as well and only treat such fully la-
beled graphs as equiprobable. Their configurational weight becomes then
1/V !(2L)!, as we have to account for the permutations of edges. However,
when multiple edges and loops are present or when the graph possesses
some special symmetries, the number of distinct labelings is smaller than
that, which is illustrated on the example of graphs with three vertices and
two edges in Tab. 1.1. One can show (see, e.g., Ref. [24]) that the config-
uration space weight of the topologies equals the inverse of the symmetry
factor of Feynman diagrams discussed in Sec. 1.5.2.

Let us now come back to the functional weight w(G). It depends ex-



1.4. CORRELATIONS 13

plicitly on the graph’s topology and is typically assumed to factorize into
one-point weights wqi which depend solely on the i-th node degree qi,

w(G) =
V∏
i=1

wqi . (1.19)

Allowing for both the configuration space weight and the functional weight,
the partition function of the ensemble of graphs given by Eq. (1.18) takes
the form

Z =
∑
G∈Gfl

1
V !(2L)!

w(G) =
∑
G∈G

n(G)
V !(2L)!

w(G) =
∑
G∈G

1
s(G)

w(G). (1.20)

By Gfl and G we mean the ensembles of fully labeled and unlabeled graphs,
respectively, and s(G) is the mentioned symmetry factor. For quantities
which depend on the topology of the graph but not on the labeling of nodes,
the average (1.17) becomes

〈O〉 =
1
Z

∑
G∈G

O(G)
1

s(G)

V∏
i=1

wqi , (1.21)

where we have used the explicit expression (1.19) for the functional weight.

1.4 Correlations

Correlation is the measure of dependence between observables in a system.
Its knowledge is interesting and useful because from the practical point of
view correlation means additional information. If two quantities are corre-
lated, the knowledge of one of them implies certain information about the
other one. In a physical system correlation usually indicates the presence
of interactions between its parts. A model example is the Ising spin system
in which local interactions induce long-range correlations leading to a phase
transition.

The situation in random graphs is somewhat different. It is known that
for fluctuating geometries even in the absence of any explicit terms inducing
interactions between vertices their degree may be correlated. These correla-
tions are generated by model constraints rather than by direct interactions.

The observables of our particular interest are vertex degrees of random
graphs and spins of an Ising model defined on these graphs. We investigate if
there is any correlation between the adjoining vertices and vertices at some
distance apart, and how this relation changes with the distance.
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1.4.1 Two-point correlation functions

Correlations can be captured and quantified in a number of ways. Typically,
for a system with fixed coordinates they are expressed by the two-point
correlation function (see, e.g., Ref. [36]). It is defined for some observables
of interest A and B by the thermal average

GAB(i, j) ≡ 〈Ai ·Bj〉 , (1.22)

where Ai and Bj are the observables’ values at sites i and j, respectively. In
general GAB depends on the position vectors i and j of the corresponding
sites. However, for a transitionally invariant and isotropic system it becomes
a function of the distance |i− j| = r between the observables in question,

GAB(r) = 〈A(0) ·B(r)〉 . (1.23)

This is the case of a system on a regular lattice, although a finite lattice
cannot be strictly isotropic. Nevertheless, it appears to be so if its directions
are all equivalent, and the system is probed at a much lower resolution than
that required to resolve individual sites.

Compared to systems with a fixed metric and coordinates, the problem
of defining a correlation function on random geometries is much more chal-
lenging (see Ref. [37]). This is because in fluctuating geometries the distance
between any two points is constantly changing and it is not possible to con-
sider fixed points at some distance apart, as in Eq. (1.23). Instead, a global
correlation measure of the system is introduced, defined by the sum over all
pairs of points at a given distance. For the observables A and B associated
with each vertex it reads

GAB(r) ≡ 1
n

〈∑
i,j

AiBjδd(i,j),r

〉
, (1.24)

where the subscripts label vertices, Ai and Bj are corresponding observables’
values, n is the size of the system, and d(i, j) is the geodesic distance defined
as the length of the shortest path connecting vertices i and j. The above
average is taken over all instances of the geometry (configurations).

It should be emphasized here that the distance dependent correlator
defined above is not just a pure two-point function, as it is the case of fixed
lattice models (cf. Refs. [37, 38]). This is due to the fact that the distance
d(i, j) does depend on the whole configuration rather than on the endpoints
i and j only. Therefore, GAB(r) is highly non-local, which may lead to some
interesting and non-intuitive behavior.

The average number of all pairs of points at distance r can be calculated
from Eq. (1.24) by setting A = B = 1,

G11(r) =
1
n

〈∑
ij

δd(i,j),r

〉
. (1.25)
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It serves to define the average distance-dependent product

〈AB(r)〉 ≡ GAB(r)
G11(r)

, (1.26)

which on random graphs corresponds to the two-point degree probability
distribution described in the following section.

1.4.2 Connected correlation functions

The ordinary two-point correlation function GAB(r) defined in Eq. (1.23)
measures the degree of correlation of two quantities, but does not give any
information about their fluctuations. If the observables in question tend
to be in a specific state the correlator becomes biased by the contribution
from the overall ordering of the system. The remedy to this is to use the
connected correlation function in which the one-point contribution from the
observables separately is subtracted off (see, e.g., Ref. [36]).

The concept of a connected correlation function on random geometries
is, due to the lack of fixed metric, highly non-trivial and there is no one
standard definition corresponding to the fixed lattice counterpart. Instead,
there are different ways to proceed, depending on application (cf. Ref. [37]).
One possibility is to use the definition proposed in Ref. [38],

GABc (r) ≡ 1
G11(r)

〈∑
i,j

[Ai − 〈A(r)〉] [Bj − 〈B(r)〉] δd(i−j),r
〉

= 〈AB(r)〉 − 〈A(r)〉 〈B(r)〉 , (1.27)

where

〈A(r)〉 ≡ G1A(r)
G11(r)

(1.28)

is the origin-independent average of the observable A over a sphere of radius
r. On a fixed lattice this would never depend on the distance, but here it
does. The reason for it is that we associate the functions of the geometry
with the distance, which is itself a function of the geometry. As apparent
from the first line of Eq. (1.27), the connected correlation function measures
the correlation between the fluctuations of the observables.

Although GABc (r) vanishes at large distances as expected, it does not
integrate to susceptibility. This is a desired property, especially for the
models discussed in Chapters 4 and 5. As shown in Ref. [39], this can be
fixed by calculating fluctuations relative to the global averages 〈A〉 and 〈B〉
instead of to their distance-dependent counterparts 〈A(r)〉 and 〈B(r)〉,

GABc′ (r) ≡ 1
G11(r)

〈∑
i,j

(Ai − 〈A〉) (Bj − 〈B〉) δd(i−j),r
〉

= 〈AB(r)〉 − 〈A〉 〈B(r)〉 − 〈B〉 〈A(r)〉+ 〈A〉 〈B〉 . (1.29)
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The average 〈A〉 is the usual mean value of A in a system. Of course, for
fixed geometries 〈A(r)〉 = 〈A〉, and the two connected correlation functions
defined above are identical.

1.4.3 The two-point degree probability distribution

An intuitive correlation measure on an ensemble of graphs is the joint dis-
tribution pq,r(l) describing the probability that a pair of vertices at distance
l apart has degrees q and r,

pq,r(l) ≡
〈
nq,r(l)
n(l)

〉
, (1.30)

where nq,r(l) is the number of pairs of points in a graph which have degrees
(q, r) and are separated by the distance l,

nq,r(l) ≡
∑
i,j∈G

δki,qδkj ,rδd(i−j),l, (1.31)

and n(l) is the total number of all pairs of vertices at distance l,

n(l) ≡
∑
i,j∈G

δd(i−j),l =
∑
q,r

nq,r(l). (1.32)

The two-point degree distribution pq,r(l) is in fact a generalization of the
joint distribution of directly connected vertices proposed in Refs. [40–42] to
distances greater than one. We discuss the special case of pq,r(1) in the
following section in the context of nearest-neighbor correlations.

The average 〈 · 〉 in the definition of the joint probability (1.30) is taken
over the ensemble including only graphs with diameter equal l or more for
which n(l) is non-zero. However, this is not the only possibility of defining
pq,r(l). Another one is to take pairs of vertices from the collection of all
configurations and first calculate the averages 〈nq,r(l)〉 and 〈n(l)〉 separately,
and only then take their ratio,

p̃q,r(l) ≡
〈nq,r(l)〉
〈n(l)〉

. (1.33)

This definition corresponds to the two-point correlation function (1.26) from
the previous section with A = δki,q and B = δkj ,r, i.e.,

p̃q,r(l) =
〈
δki,qδkj ,r

〉
(l). (1.34)

Although the first definition (1.30) seems to be more natural in the context
of random graphs, it is much more difficult to work with. Fortunately, in
most of the typical cases relative fluctuations disappear in the large-volume
limit and the properties of the whole ensemble can be inferred from just
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one large graph (see Refs. [1, 2] and Ref. [43]). For such systems, called
self-averaging, pq,r(l) and p̃q,r(l) are asymptotically equal〈

nq,r(l)
n(l)

〉
∼ 〈nq,r(l)〉

〈n(l)〉
. (1.35)

For independent vertex degrees, the probability pq,r(l) should factorize,

pq,r(l) = pq(l) pr(l), (1.36)

where

pq(l) =
∑
r

pq,r(l) =
∑
r

〈
nq,r(l)
n(l)

〉
=
〈
nq(l)
n(l)

〉
(1.37)

is the probability that the degree of either of the two vertices at distance l
is q, and nq(l) is to be interpreted as a number of pairs of points at distance
l such that one of them has degree q. Using the above relation we can also
write Eq. (1.36) as 〈

nq,r(l)
n(l)

〉
=
〈
nq(l)
n(l)

〉〈
nr(l)
n(l)

〉
. (1.38)

One should, however, keep in mind that this defines the lack of correlations
in the ensemble of graphs. A more appropriate question might be: are the
vertices of individual graphs uncorrelated? The condition for absence of
correlations between vertices in each individual graph G is

nq,r(l)G
n(l)G

=
nq(l)G nr(l)G

[n(l)G]2
, (1.39)

or, after averaging, 〈
nq,r(l)
n(l)

〉
=
〈
nq(l) nr(l)

[n(l)]2

〉
. (1.40)

As already pointed out, for a large class of ensembles conditions (1.38) and
(1.40) are equivalent in the large-volume limit.

In practice, checking the condition (1.36) is tricky as it entails measuring
a two-dimensional distribution with good accuracy. Therefore, we will use
another quantity to express dependencies between nodes in a graph: the
average degree of the vertices at distance l from a vertex of a given degree q,

k̄l(q) ≡
∑
r

〈
r nq,r(l)
nq(l)

〉
. (1.41)

It is defined only for those degrees q and at distances l for which the de-
nominator nq(l) is non-zero. This approach is a generalization of the idea
proposed in Ref. [40] where only correlations at distance l = 1, i.e., between
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degrees at the ends of individual edges, were considered. With reference to
the original formulation k̄l(q) can be also interpreted as the first moment of
the conditional probability

p(r|q; l) =
pq,r(l)
pq(l)

. (1.42)

Namely, using the above definition we may write∑
r

r p(r|q; l) =
∑
r

r pq,r(l)
pq(l)

=
∑
r

〈
r nq,r(l)
n(l)

〉〈
n(l)
nq(l)

〉
, (1.43)

which, assuming self-averaging, yields∑
r

r p(r|q; l) ∼
∑
r

〈
r nq,r(l)
nq(l)

〉
= k̄l(q). (1.44)

If vertex degrees are independent, k̄l(q) does not depend on the degree q
and takes a constant value for a given distance. From the relation (1.40) we
have

k̄l(q) =
∑
r

r

〈
nr(l)
n(l)

〉
. (1.45)

Any deviation from this regularity signals the presence of two-point corre-
lations. Note that for l = 0 Eq. (1.45) simply reduces to the average vertex
degree z,

k̄0(q) =
∑
r

rpr = z, (1.46)

since nr(0) = nr is the number of vertices with degree r, and n(0) = n is
the total number of the graph’s nodes.

Degree-degree correlations may be also conveniently expressed using the
notion of connected two-point probability

p̃cq,r(l) ≡ p̃q,r(l)− p̃q(l) p̃r(l), (1.47)

used to define the connected degree correlation function (cf. Refs. [37, 38,
44]),

p̃cq̄,r̄(l) ≡
∑
q,r

q r p̃cq,r(l). (1.48)

1.4.4 Nearest-neighbor correlations

Let us now focus on correlations between nearest neighbors, i.e., vertices
directly connected. We devote them special attention in Chapter 2, thus,
it will be convenient to introduce a shorthand notation for the quantities
defined in the previous section. Namely, we will omit the distance argument
if equal one, i.e.,

pq,r ≡ pq,r(1), p̃q,r ≡ p̃q,r(1). (1.49)
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The joint probability pq,r can be used to express the probability that a
randomly chosen edge connects two vertices of degrees q and r, which is
given by the symmetric function (2− δq,r)pq,r. If we assume self-averaging,
we have in the asymptotic limit

pq,r =
〈
nq,r
2L

〉
∼ 〈nq,r〉

〈2L〉
= p̃q,r, (1.50)

where nq,r ≡ nq,r(1) is simply the number of links whose ends have degrees
q and r. We use the representation in which each of the L undirected edges
is counted twice as a pair of two opposite directed ones. Therefore,

nq,r = nr,q,
∑
q,r

nq,r = 2L, and
∑
r

nq,r = qnq. (1.51)

Please note that for the canonical ensemble of graphs, in which the number
of links is fixed, Eq. (1.50) turns into an exact equality.

We will express correlations by means of the nearest-neighbor average
degree. From Eq. (1.41) one finds

k̄(q) ≡
∑
r

r

〈
nq,r
q nq

〉
, (1.52)

because nq(1) = q nq is the total number of edges emerging from vertices
with degree q. As we already know, k̄(q) can be alternatively expressed
using the conditional probability (1.42),

k̄(q) ∼
∑
r

r p(r|q) =
∑

r r pq,r∑
r pq,r

. (1.53)

In the absence of correlations between nearest neighbors, Eq. (1.40) takes
the form 〈

nq,r
2L

〉
= qr

〈
nq nr
(2L)2

〉
. (1.54)

This implies that k̄(q) should then equal

k̄(q) =
∑
k

k2

〈
nk
2L

〉
∼ 〈k2〉

〈k〉
. (1.55)

It is interesting to note that the average degree of a neighbor k̄(q) is thus
larger than the average vertex degree 〈k〉. This can be seen from their
difference,

〈k2〉
〈k〉

− 〈k〉 =
1
〈k〉
(
〈k2〉 − 〈k〉2

)
=

σ2
k

〈k〉
≥ 0, (1.56)

because both σ2
k, which is the variance of the degree distribution, and 〈k〉

are non-negative. This result is very counter-intuitive: in a social network,
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for instance, it translates into your friends having on average more friends
than you have!

Any non-trivial dependence of k̄(q) on degree is a signature of correla-
tions between nearest-neighbors. A classification of complex networks ac-
cording to this property was first proposed by Newman in Ref. [45]. When
k̄(q) is an increasing function of q the graph is said to experience assortative
mixing by degree, while a decreasing function k̄(q) is typical of disassortative
mixing. In assortative networks highly connected vertices tend to connect
to other vertices with many connections, and those with few connections to
ones weakly connected. Conversely, disassortative mixing means that high-
degree vertices are more probably connected to low-degree ones and vice
versa.

1.5 Diagrammatic perturbation expansion

In the analytical studies of the properties of the ensembles of random graphs
in Chapters 3–5 we will use methods borrowed from field theory. We formu-
late the problem as a toy field theory in zero dimensions, referred to by the
authors of Refs. [19, 35, 46] as the minifield theory. The chief idea is to relate
the Feynman diagrams appearing in the graphical perturbative expansion of
this theory to the elements of the random graphs’ ensemble [19, 35, 46–50].

We start by introducing the generating function of a zero-dimensional
field theory toy model. It involves integrals that are computed in power
series, each term of which can be put in correspondence with a set of graphs
[51], namely the Feynman diagrams. In the following section we illustrate
this concept by some examples. Section 1.5.3 addresses the issue of sym-
metry factors associated with the generated Feynman diagrams. In the last
section we introduce the generating function of connected random graphs.

1.5.1 The zero-dimensional field theory

In the general case of a k-component real scalar field φ = (φ1, . . . , φk) with
sources J1, . . . , Jk, the normalized vacuum generating function defining the
zero-dimensional field theory is given by

Z(J) = (2π)−
k
2

∫
dkφ e−S , (1.57)

where the integration variables φ1, . . . , φk are just real numbers. The action
S = S0 + SI is composed of the free part

S0 =
1
2

k∑
i=1

k∑
j=1

φi∆−1
ij φj −

k∑
i=1

Jiφi (1.58)
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and the interaction which is typically a polynomial in φ,

SI = −
k∑
i=1

gi
∑
n

λi,n
φni
n!
, n > 1. (1.59)

By assumption g and the real coupling constants λi,n are non-negative.
Thus, strictly speaking, the integral in Eq. (1.57) does not exist. Never-
theless, we shall show that after expansion of the exponential e−S , Z(J) can
be treated as a generating function defining the perturbative series. The
factorials appearing in Eq. (1.59) are a convention which will prove useful
in the Feynman diagram expansion described in the following section.

1.5.2 Feynman rules

The generating function of the ensemble of random graphs is given by the
single-component partition function

Z(J) =
1√
2πκ

∫ +∞

−∞
dφ exp

[
1
κ

(
−1

2
φ2 + Jφ+ e−µ

∑
n>1

wn
φn

n!

)]
. (1.60)

The auxiliary constant κ introduced in the above definition controls the
dependence of Z on the number of loops in the diagrams, which is identical
to the power of κ. By expanding the exponential in Eq. (1.60) in powers of
e−µ,

Z(J) =
1√
2πκ

∫ +∞

−∞
dφ exp

[
1
κ

(
−1

2
φ2 + Jφ

)]
×

[
1 +

e−µ

κ

∑
n

wn
φn

n!
+

1
2!

(
e−µ

κ

)2∑
n,m

wnwm
φn+m

n!m!
+ · · ·

]
, (1.61)

we get a well defined series whose terms are consecutive moments of a Gaus-
sian. Each such integral is equal to a sum of contributions which have a
graphical representation by Feynman diagrams. These are constructed ac-
cording to a set of rules mentioned below. A diagram corresponding to a
term of order e−µV in Eq. (1.61) consists of V labeled nodes connected pair-
wise in all possible ways, including self-connections and multiple connections
between nodes. Each edge introduces a factor κ and each vertex of degree q
introduces a factor e−µwq/κ. Note that the factorials in the interaction part
of the definition (1.60) are cancelled by all possible q! rearrangements of the
labels attached to the edges emerging from the vertex. The total weight of
a Feynman diagram D is then

w(D) =
1

s(D)
κL−V

e−µV

V !

V∏
i=1

wqi , (1.62)
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where E and V are the numbers of edges and vertices in the graph, re-
spectively. When self-connections and multiple connections are present or
the diagram exhibits some symmetries, it has to be multiplied by the so-
called symmetry factor s(D). Its origin and the rules of calculating it are
described in detail in the following section. In the case of non-degenerate
graphs without any symmetries s(D) = 1.

According to the above rules the series representation of Eq. (1.61) reads

Z(J) = Z0(J)
∑
V,L

e−µV

V !
κL−V

∑
D

1
s(D)

V∏
i=1

wqi , (1.63)

where Z0(J) stands for the free field generating function

Z0(J) =
1√
2πκ

∫ +∞

−∞
dφ exp

[
1
κ

(
−1

2
φ2 + Jφ

)]
. (1.64)

Individual terms of the expansion (1.63) can be actually written as appro-
priate order derivatives of Z0(J) with respect to J , which leads to an easy
correspondence with the graphical representation.

Let the example of 3-regular random graphs, i.e., graphs build only of
vertices with degree equal three, serve as an illustration of the method. In
this case the partition function of the ensemble is defined by the φ3 field
generating function

Z(J) =
1√
2π

∫
dφ exp

(
−1

2
φ2 + Jφ+

1
3!
φ3

)
, (1.65)

where for simplicity we have set κ and w3 equal one, and µ = 0. The n-th
term of the expansion in φ3,

Z(J) =
1√
2π

∫
dφ exp

(
−1

2
φ2 + Jφ

) ∞∑
n=0

1
n!

(
1
3!
φ3

)n
, (1.66)

equals the 3n-th derivative of Z0(J), so eventually

Z(J) =
1√
2π

∞∑
n=0

1
n!

1
(3!)n

(
∂3

∂J3

)n ∫
dφ exp

(
−1

2
φ2 + Jφ

)

=
∞∑
n=0

1
n!

1
(3!)n

(
∂3

∂J3

)n
e

1
2
J2

=
∞∑
n=0

1
n!

1
(3!)n

(
∂3

∂J3

)n ∞∑
l=0

1
l!

(
J2

2

)l
,

(1.67)

where we have calculated the Gaussian integral in Z0(J) and performed
series expansion of the resulting exponent.

The above form of Z(J) is especially useful, because it can be directly
translated into the diagrammatic notation using Feynman diagrams [36, 52,
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Figure 1.7: Graphical notation of ∂3/∂J3 and J2.

53]. Let us represent each 3rd derivative by a vertex with 3 line segments at-
tached, and each J2 as a line segment between two sources J (see Fig. 1.7).
A single derivative ∂3/∂J3 acting on a source J annihilates it and con-
nects the now free line end to the segment emerging from the vertex. The
diagrams are constructed by matching the derivatives with the sources in
all possible ways, which corresponds to connecting the vertices to the J2

segments. Suppose now that we distinguish J ’s and their derivatives by
attaching distinct labels to them. Then the number of combinations the 3n
derivatives can act on the 2l sources is (2l)!/(2l − 3n)!. However, many of
such generated expressions are algebraically identical and are represented
by the same diagram. In the end the total resulting counting factor is

n! (3!)n l! 2l, (1.68)

and we would expect it to cancel with the factors from both of the expansions
in Eq. (1.67). However, generally this is not the case. That is because this
procedure leads to an overcounting of the possibilities. This may happen
when some rearrangement of the derivatives leads to the same match-up as
a rearrangement of the sources. This is covered by the symmetry factor.

For vacuum bubbles J = 0 and in the expansion (1.67) only the term
with 2l = 3n survives. This corresponds to diagrams constructed from n
vertices and l = 3n/2 edges by pairing all the free links emerging from the
vertices with the ends of the J2 links. Diagrams representing the first term
of the expansion with n = 2 are depicted in Fig. 1.8.

1.5.3 The symmetry factor

The counting procedure described in the previous section may lead to an
overcounting of the number of diagrams that give identical results, especially
in the presence of loops or multiple connections. This happens when some

HaL HbL

Figure 1.8: Vacuum diagrams of the φ3 theory with n = 2.
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rearrangement of the derivatives results in the same matching to sources as
some rearrangement of the sources. As this is related to some symmetry
property of the diagram, the overcounting factor is called the symmetry
factor.

A general Feynman diagram does not need to be connected and may con-
sist of a product of several connected parts. Let us first focus on determining
the symmetry factor of a connected diagram. Each self-connection accounts
for a factor of 2, because the exchange of the derivatives at the vertex can
be duplicated by the swapping of the edge ends. Similarly, each connec-
tion with multiplicity k introduces a factor k!, since the k! rearrangements
of the links are reproduced by exchanging the derivatives at the vertices.
Additionally, if the diagram exhibits some symmetries, its symmetry fac-
tor is even larger—see the following examples. These symmetries, however,
are not always evident from the picture itself as there are typically many
possibilities to draw a diagram on a plane, so its appearance may vary.

In the general case of a diagram build of more than one connected part
we also have to take into account the possible exchange of vertices and
edges among different connected subdiagrams. However, these will leave the
total diagram unchanged only if the exchanges affect different but identical
connected parts, and they involve all of their vertices and edges. In other
words, there are ni! ways of rearranging ni instances of a subdiagram Ci.
Thus, the resulting total symmetry factor of the diagram D is

s(D) =
∏
i

ni!s(Ci)ni , (1.69)

where the product runs over all connected diagrams.
As an example consider the two diagrams in Fig. 1.8. In the first diagram

(Fig. 1.8(a)) each of the two loops introduces a factor of 2. Furthermore,
the diagram has a left-right symmetry: the swapping of the vertices along
with the loops attached to them can be duplicated by reversing the edge
connecting them. Thus, s = 22 × 2 = 8. The second diagram (Fig. 1.8(b))
consists of two vertices connected by three edges, which accounts for a factor
of 3!. Similarly as in the first example the diagram has a 2-fold symmetry.
The endpoints of each edge can be simultaneously swapped, and the effect
duplicated by exchanging the vertices, which introduces an additional factor
of 2. Altogether, we end up with s = 3!× 2 = 12.

Let us illustrate the present approach by some more complicated cases.
Consider for example the diagram in Fig. 1.9(a). It contains two double-
links contributing a factor of 22. But this diagram exhibits additionally a
left-right and a top-bottom symmetry. Namely, if we exchange the two left
vertices along with the links connecting them for their right counterparts,
and reverse simultaneously the two horizontal links connecting these two
parts, we will end up with a diagram identical to the original one. Similarly,
the exchange of the upper part of the diagram with the bottom one can
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HaL HbL HcL HdL

Figure 1.9: Sample Feynman diagrams with V = 4 vertices and L = 6 links.

be compensated by swapping the vertical edges. Both these symmetries
account for a total factor of 22 each, resulting in s = 22×22 = 16. Now look
at the diagram in Fig. 1.9(b). It has a permutation symmetry accounting
for a factor of 3!: the rearrangements of the edges connected to the middle
vertex can be duplicated by the exchanges of the outer vertices together
with their corresponding loops. This together with the three loops results
in s = 23 × 3! = 48.

An especially interesting case is the diagram in Fig. 1.9(c). It is a con-
nected 3-regular graph, i.e., a cubic graph. All its four vertices have the
same order and are connected to the three remaining vertices, and so they
can be rearranged in 4! ways. Since this effect can be duplicated by swap-
ping the edges and there are no other symmetries, the symmetry factor of
this diagram is s = 4! = 24.

As our last example consider the diagram shown in Fig. 1.9(d). Contrary
to all previous diagrams this one comes in more than one connected com-
ponent. It consists of two different pairs of identical single-vertex diagrams,
four separate components in total. Let us first determine the symmetry fac-
tors associated with the subdiagrams. The symmetry factor of the one-loop
diagram is simply 2. The double-loop of the second diagram introduces a
total factor of 23, because the exchange of the two loops can be compensated
by the rearrangement of the derivatives at the vertex. Recall that each pair
of identical diagrams accounts for an additional factor of 2, so finally the
total symmetry factor of the diagram is s = 2× 22 × 2× (23)2 = 1024.

1.5.4 Connected diagrams

The generating function Z(J) given by Eq. (1.60) defines an ensemble of all
possible graphs, which in general are not connected and consist of a product
of several connected components. Following the arguments of Refs. [36]
and [52] we can show, however, that the subset of connected graphs only is
defined by the logarithm of Z(J).

Let i label the members of the set of all connected diagrams and let
Ci stand for the expression corresponding to the i-th diagram, including its
symmetry factor. Any disconnected diagram is determined by the number of
times ni each of the connected diagrams appears in it. Individual copies of
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identical diagrams can be freely rearranged, so the expression D associated
with the general diagram written in terms of the connected ones is

D({ni}) =
∏
i

(Ci)ni

ni!
. (1.70)

As the partition function is the sum over all possible diagrams,

Z =
∞∑

n1=0

∞∑
n2=0

· · ·D({ni}) =
∞∏
i=1

( ∞∑
ni=0

(Ci)ni

ni!

)
= exp

∑
i

Ci, (1.71)

we have that lnZ contains connected diagrams only.

1.6 Equilibrium Monte Carlo simulations

Monte Carlo (MC) simulations are the most important and widely used nu-
merical methods in statistical physics [54]. They have evolved from the idea
of statistical sampling, which has a much longer history than the computer
and stretches back as far as into the nineteenth century. The name “Monte
Carlo” is relatively recent and was coined by John von Neumann, Nicolas
Metropolis, and Stanis law Ulam in the 1940s while working on neutron diffu-
sion at the Los Alamos National Laboratory. Being a part of the Manhattan
Project their work was secret and so required a code name. This was chosen
after the Monte Carlo Casino in Monaco, and first used in the 1949 paper
by Metropolis and Ulam [55]. Since then the advance in MC techniques is
closely connected with the rapid development of modern computers and the
exponential growth of their computational power.

All MC techniques share the same general concept: given some proba-
bility distribution π on some configuration space we wish to generate many
random samples from π. These methods can be classified as static or dy-
namic. In the dynamic methods the sequence of generated samples is, un-
like in the static methods, not statistically independent but is an outcome
of some stochastic process having π as its unique equilibrium distribution.
This process simulates the thermal fluctuations of the system from state to
state over some period of time. The expectation values of the quantities of
interest can be then calculated as time averages over the states the model
system passes through, provided that the probabilities of these states equal
the real system’s weights. This can be achieved by choosing an appropriate
dynamics of the simulation, i.e., a rule that governs how to change from
one state to another. The main advantage of this method is that we need
to sample only a small subset of the configuration space in order to get de-
cent estimates of the quantities of interest. This, unfortunately, necessarily
introduces statistical errors.
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1.6.1 Importance sampling

The direct calculation of the expectation value 〈Q〉 given by Eq. (1.7) as
a sum over all states of the system is only tractable for small systems. In
larger ones we rather average over a subset of states, typically generated
by a MC procedure which randomly samples from some given probability
distribution pµ. The estimator of the quantity of interest Q is then the
average over the M states the system passes through during the course of a
simulation,

QM =

∑M
i=1Qµip

−1
µi

e−βEµi∑M
i=1 p

−1
µi e−βEµi

. (1.72)

It has the property that it becomes more and more accurate as the number
of sampled states increases,

lim
M→∞

QM = 〈Q〉 . (1.73)

The quality of the estimator QM depends not only on the number of
sampled states M , but also on the probability distribution pµ. By picking
the states which contribute the most to the sum (1.7) and ignoring the rest
we could improve the estimate of 〈Q〉 significantly, even with only a small
number of terms. The idea of picking out only the important states, which
is the essence of MC methods, is called importance sampling.

As it was put forward in Sec. 1.2, typical systems sample only a very
narrow range of configuration space according to the Boltzmann probability
distribution given by Eq. (1.5). If the sample states were picked so that each
one would appear with its correct Boltzmann probability, then the estimator
(1.72) would take a particularly simple form,

QM =
1
M

M∑
i=1

Qµi . (1.74)

This can be achieved by applying the Markov process which, given a
system in state µ, randomly generates a new system’s state ν. The transition
probability P (µ→ ν) does not vary over time and does not take into account
the history of the system, i.e., it depends only on the properties of the
current states µ and ν, and not on any previous states the system has
passed through. Furthermore, it has to obey the conditions of ergodicity
and detailed balance.

The condition of ergodicity requires that it should be possible to reach
any state of the system from any other state in some finite number of steps.
This requirement follows directly from the fact that the Boltzmann proba-
bility of each state is non-zero. In practice this means that although we are
allowed to set some of the transition probabilities of our Markov process to
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zero, we must be careful to leave at least one path of non-zero transition
probabilities between any two states.

The actual mechanism that guarantees that the equilibrated system will
be governed by the Boltzmann probability distribution, rather than any
other distribution, is the condition of detailed balance

pµP (µ→ ν) = pνP (ν → µ). (1.75)

It ensures that the overall rate for the transition from state µ into ν is the
same as for the reverse transition. Its key feature of the condition of detailed
balance is that it forbids dynamics leading to the so-called limit cycles, in
which the equilibrium probability distribution rotates around a number of
different values changing the occupation probabilities of some or all of the
states in a cyclic fashion.

If we now choose the values of pµ to be the Boltzmann probabilities, we
get from the detailed balance condition (1.75) the following constraint

P (µ→ ν)
P (ν → µ)

=
pν
pµ

= e−β(Eν−Eµ), (1.76)

which, as well as the ergodicity and the fact that the Markov process must
always generate some state ν,∑

ν

P (µ→ ν) = 1, (1.77)

restricts the possible choices of transition probabilities. All these constraints
together guarantee that the equilibrium distribution in the Markov process
will be the desired Boltzmann distribution.

The actual choice of the transition probabilities depends on the par-
ticular algorithm used. In the following section we present the Metropolis
algorithm, which was used to perform the simulations from the following
chapters.

1.6.2 The Metropolis algorithm

The Metropolis algorithm, introduced in a 1953 paper by Nicolas Metropolis
and his co-workers [56], is without doubt the most famous and widely used
MC method in statistical physics. It is based on the idea of separating the
probability of proposing a new configuration of the system from the actual
probability of accepting that change. The algorithm works by repeatedly
generating a new state, say ν, and then accepting or rejecting it at random
with the chosen acceptance ratio. If the state is accepted, the system changes
to ν, and if not, it just stays as it is. The whole procedure is repeated
again and again. It is the particular choice of the acceptance ratio which
characterizes the Metropolis algorithm.
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Let us start by splitting the transition probability into two parts,

P (µ→ ν) = g(µ→ ν)A(µ→ ν). (1.78)

The first one, the selection probability g(µ → ν), is the probability that
provided an initial state µ the algorithm will generate a new target state ν,
whereas the acceptance ratio A(µ→ ν) is the probability that the change of
the system to this new state ν will be accepted. We have much of freedom in
choosing the selection probabilities g(µ→ ν) since the constraint of detailed
balance, Eq. (1.76) only fixes their ratio,

P (µ→ ν)
P (ν → µ)

=
g(µ→ ν)A(µ→ ν)
g(ν → µ)A(ν → µ)

. (1.79)

In the Metropolis algorithm we set all the selection probabilities g(µ → ν)
for each of the possible states ν equal. When g(µ → ν) = g(ν → µ) the
selection probabilities in the above equation cancel and we are left with an
appropriate choice of acceptance ratios satisfying Eq. (1.76),

P (µ→ ν)
P (ν → µ)

=
A(µ→ ν)
A(ν → µ)

= e−β(Eν−Eµ). (1.80)

The algorithm will be efficient only if the acceptance ratios are the high-
est possible. Otherwise it will stay most of the time in the state that it is in,
instead of sampling a wide range of different states. Since Eq. (1.80) fixes
only the ratio A(µ → ν)/A(ν → µ), both acceptance ratios can be multi-
plied by the same factor. The way to maximize them is to set the larger of
the two to one, and have the other one take whatever value is necessary to
keep the constraint (1.80) satisfied.

Suppose that from the two considered states µ has higher energy than ν:
Eµ > Eν . Following the above argumentation we set A(ν → µ), which is the
larger of the two acceptance ratios, to one. Then, according to Eq. (1.80),
A(µ → ν) = e−β(Eν−Eµ). The acceptance probabilities of the Metropolis
algorithm are characterized by

A(µ→ ν) =

{
e−β(Eν−Eµ) if Eν − Eµ > 0,
1 otherwise.

(1.81)

This means that moves to states with energy lower than or equal to the
present one are always accepted, and transitions to higher energy states
occur randomly with probability given by the above equation.

1.6.3 Simulating random graphs

Random graphs are generated in MC simulations using a standard ther-
modynamic approach: the graphs are sampled according to their statistical
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weights using the Metropolis algorithm [56]. The statistical weighs depend
on the degrees of individual nodes which makes it easy to construct graphs
with desired degree distributions. We are exclusively concerned with graphs
belonging to the canonical ensemble, that is, graphs with a fixed number of
vertices and edges.

Generally speaking, the program works by recursively generating new
graphs via modifications of the current one. In the jargon of thermody-
namics, the rearrangement of the network can be thought of as a sort of
relaxational dynamics in the system, and the final outcome may be treated
as an equilibrated random graph. The constraints of fixed numbers of ver-
tices and edges are kept using rewiring of edges. This procedure does not
introduce a priori any correlations or bias, provided that the rewiring proba-
bility depends only on the degree of the vertices involved, and the rewirings
are independent.

1.6.4 Equilibration and measurement

The initial state of a MC simulation is often taken to be some arbitrary
configuration, which might be far away from representative. For a system
of spins on a lattice these are typically the T = 0 or the T = ∞ states
corresponding to having all spins aligned or completely randomly oriented,
respectively. These two choices are popular because they are easy to gen-
erate and have a well defined temperature. Although it is not particularly
important from which state we start off, a careful choice may reduce the
time needed to equilibrate the system.

To get a reliable estimate of any quantity of interest at some non-zero
temperature, we must run the simulation for a suitably long time in order to
allow our system to come to equilibrium at the temperature we are interested
in before we begin with the measurements. This may take some time, but
once the system has reached equilibrium, we expect it from the construction
of the Metropolis algorithm to stay within a representative subset of states,
in which its internal energy and other quantities take a relatively narrow
range of values.

Unfortunately, there is no systematic procedure to determine the exact
value of the equilibration time τeq. Its rough estimate can be gained by exam-
ining the change of some quantities of interest over time from the beginning
of the simulation. They will change until the system comes to equilibrium,
at which they only fluctuate around some average value.

A potential pitfall of this method is that we may confuse some metastable
region in which the system becomes trapped with the true equilibrium. This
may happen if the system gets temporarily stuck in a local energy minimum
rather than reaching the global minimum. To avoid such situation, we base
the estimate of τeq on more simulations than one. There are two typical ways
to proceed: one is to start the simulations from different configurations, and
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the other one is to have the same configuration, but run the simulation
with different random generator seeds. This technique avoids the problem
mentioned above, since it will be apparent from the graph if not all of the
systems reached the equilibrium.

Apart from the equilibration time τeq there is another characteristic time
related to MC simulations, namely the autocorrelation, or simply correlation
time τ . It is a consequence of the fact that successive states of a Markov
chain are correlated and only after a certain period of time τ they can
be regarded as statistically independent. Typically, the correlation time is
considerably shorter than the equilibration time, τ < τeq.

The time correlation of some observable O within a Markov chain is
characterized by the normalized autocorrelation function ρ(t). It returns the
correlation coefficient evaluated between the measurements of O performed
on the equilibrated Markov chain {O1,O2, . . . ,On} and its time-shifted copy,

ρ(t) =
∑n−t

i=1

(
Oi − Ō

) (
Oi+t − Ō

)∑n
i=1

(
Oi − Ō

)2 , (1.82)

where Ō is the sample mean,

Ō =
1
n

n∑
i=1

Oi. (1.83)

The autocorrelation function takes values |ρ(t)| ≤ 1, and for uncorrelated
data ρ(t) ≈ 0 for all t > 0 (for a comprehensive discussion see, e.g., Ref. [57]).
Since successive MC states are very similar, they will have a large positive
autocorrelation. On the other hand, for times a long way apart, the states
will probably be completely unrelated, and their autocorrelation will be
close to zero. In fact, the typical time-scale on which the correlation drops
off defines the correlation time. At long distances the autocorrelation is
expected to decay exponentially,

ρ(t) = e−t/τexp , (1.84)

which defines the exponential autocorrelation time

τexp =
∫ ∞

0
dt e−t/τexp . (1.85)

As it is evident from the above definition, there is still a significant corre-
lation between two states taken time τexp apart: it is only a factor of 1/e
lower than the maximum value at t = 0. In order to get independent sam-
ples then, we must draw them at greater intervals, preferably 2τexp. This is
related to the statistical error and discussed further in the following section.
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The time needed to produce a statistically independent sample corre-
sponds to the integrated correlation time introduced in Refs. [58–61],

τint = 1 + 2
λ∑
t=1

ρ(t), (1.86)

where the sum is cut off by the parameter λ such that τint < λ � n. The
reason why the numerical estimator of τint is defined inside a window of
width λ rather than over the whole range of t up to n is that, roughly
speaking, for t � τint each ρ(t) adds a constant amount of noise and little
signal (which dies out exponentially). The choice of λ is a tradeoff between
the bias and the variance of τint. The bias can be minimized by taking λ
large enough so that ρ(t) is negligible for t > λ, while at the same time λ
should be no larger than necessary, in order to keep the variance small (for
the discussion of mathematical details consult Refs. [58, 59]). In practice,
the appropriate value of λ can be found using the “automatic windowing”
algorithm suggested by the authors of Ref. [58]: choose λ to be the smallest
integer satisfying λ ≥ c τint(λ). Typically, it is reasonable to take c around
2 or 3 (cf. Ref. [60]). This procedure works well provided that a sufficient
amount of data is available, at least n = 1000 τint.

Usually τint ≈ 2τexp, so we will use the integrated autocorrelation time to
describe the correlation time τ needed to produce a statistically independent
sample. Roughly speaking, the effective number of independent samples in
a run of length n is around n/τ .

1.6.5 Error estimation

The accuracy of the outcomes of MC simulations depends on the computa-
tional budget involved and it improves with the increase of the simulation
length. This is so because the statistical error of virtually all MC meth-
ods scales with the number of samples n as 1/

√
n, which is an intrinsic

consequence of the central limit theorem.
The principal source of statistical error in MC calculations are the fluc-

tuations of the measured quantity from one time step to the other, just
like in experiments. This suggests the use of similar tools as we would ap-
ply to analyze the results of an experiment performed in laboratory. We
must, however, bear in mind that successive samples in the outcome of a
Markov process are not necessarily independent, and so the formulas used to
evaluate errors of statistically independent data are no longer valid. These
correlations are quantified by the integrated correlation time τ defined in
Eq. (1.86). One can show that once the equilibrium has been attained, the
variance of the sample mean, var(x̄), is by a factor τ larger than it would
be for statistically independent data (see, e.g., Refs. [54, 58]).

However, in the case of more complex measures, such as correlation
functions of the simulated system, this approach turns out to be insufficient.
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A much more versatile and robust method of estimating statistical errors is
the bootstrap method introduced by Efron in 1979 [62–64]. It is a computer-
based resampling procedure used to estimate the properties of a sample
estimator, which enjoys the advantage of being completely automatic. It
does not require any theoretical calculation and is therefore especially useful
for complicated estimators. We briefly sketch the main idea below.

The basic concept behind bootstrapping is to simulate repeated observa-
tions from an unknown probability distribution F using the obtained random
sample x = (x1, x2, . . . , xn) as a basis. This is done by drawing randomly
with replacement from the original sample, called bootstrapping. Suppose
our parameter of interest is θ = t(F ) estimated by θ̂ = s(x), and we would
like to estimate the standard error of θ̂. This can be done as follows. First,
create B bootstrap samples x∗ = (x∗1, x

∗
2, . . . , x

∗
n), which are random samples

of length n drawn from the original dataset x (typically, already B = 100 is
a sufficient number). Next, for each of the bootstrap samples evaluate the
corresponding bootstrap replication of θ̂,

θ̂∗(b) = s(x∗b), b = 1, 2, . . . , B. (1.87)

The bootstrap estimate of the standard error of θ̂ is then given by the sample
standard deviation of the B replications,

ŝeB =

 1
B − 1

B∑
b=1

[
θ̂∗(b)− 1

B

B∑
b′=1

θ̂∗(b′)

]2


1/2

. (1.88)

For a comprehensive introduction to the bootstrap we refer to the book by
Efron [65]. Bootstrapping in the case of dependent data, in particular the
block bootstrap method which proved useful for our purposes, is described
in Ref. [66]. The key idea of block bootstrap is to account for correlations
by resampling the original dataset blockwise.





Chapter 2

Connected random graphs

This chapter is based on the paper [1] Correlations in connected random
graphs by P. Bialas and A. K. Oleś, Phys. Rev. E 77, 036124 (2008).

In general, random graphs are model networks in which some parameters
are fixed, but which are otherwise completely random. A classic example is
the ER ensemble in which the only constraint is the fixed number of vertices
and links, with the links distributed randomly with uniform probability (but
such that no multiple- and self-connections arise). As it was put forward
in Sec. 1.3, vertex degrees of ER graphs follow the Poisson distribution. A
generalization of this concept are graphs with arbitrary degree distributions
(cf. Refs. [19, 20, 35, 67–69]). Random graph models are extremely useful
because they serve as the null hypothesis. For example, it was the deviation
of data collected on the WWW graph from the predictions of the ER model
that triggered the interest in random networks [70]. It implied that the
WWW was not created just by linking web pages at random, but required
the existence of a preferential attachment mechanism [71].

An important characteristic of random graphs is the absence of correla-
tions between neighboring nodes’ degrees, at least for degree distributions
without heavy tails (cf. Ref. [72]). Typically, these graphs are not connected
and consist of a number of separate components. However, some real-world
structures, like the Internet or other communication networks, exist as a
single connected graph. It is therefore interesting to study the properties
of connected random graphs, i.e., random graphs with the additional con-
straint of being connected. A simple argument indicates that correlations
will appear in such graphs. Namely, a neighbor of a node from which only
a single edge emerges must have its degree greater than one, otherwise both
these vertices would form a separate connected component. Similarly, all
neighbors of a node cannot have their degree equal one, as such a hedgehog

35
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(also referred to as a star graph) would form a separate cluster as well (see
Ref. [44]). This obviously leads to correlations. We have studied these cor-
relations numerically in Ref. [34] and derived analytic formulas describing
them in our paper [1]. We repeat all these calculations here and present
them in a slightly more comprehensive way than in the original article.

We begin with Sec. 2.1 discussing the emergence of the giant connected
component in random graphs. Then, in Sec. 2.2 we introduce the generating
function’s method which is used throughout the calculations in this chap-
ter. We apply it in Sec. 2.3 to derive formulas for the average degree and
degree distribution in the giant and non-giant parts of random graphs. We
come to the calculation of correlations in the giant connected component
in Sec. 2.4. The results of the preceding sections are illustrated in Sec. 2.5
by the examples of ER graphs, graphs with exponential degree distribution,
and scale-free networks. In Sec. 2.6 we show how to deal with maximally
random connected graphs by relating them to the giant connected compo-
nent and present a useful and efficient technique of generating such graphs
in MC simulations based on this approach. The chapter ends with Sec. 2.7
addressing the special case of uncorrelated connected random graphs lacking
the vertices with degree equal one, i.e., leaves.

2.1 Connected components

The most important property of random graphs with regard to our purposes
is the emergence of a single connected component gathering an extensive
fraction of all vertices. Consider a random graph with V vertices. When
there are no edges at all the graph is completely disconnected and composed
of V separate components of exactly one vertex each. In the opposite limit,
when there is an edge between each pair of vertices such that every vertex
is directly connected to every other, there is only one single component
which spans the entire graph. Let us now focus at the size of the largest
component in both cases. Apart from the huge size disproportion, there is
an important qualitative difference between them: in the first case its size is
constant and does not depend on the size of the network, while in the second
it is an extensive quantity, i.e., it is proportional to V . When we increase
the number of edges gradually from one extreme to the other an interesting
thing happens: instead of a smooth transition between these two regimes the
largest component undergoes a sudden change akin to a phase transition.
Namely, at some particular network density it switches from constant size
to extensive size.

It has been shown by the authors of Refs. [67] and [68] that above the
percolation threshold given by

〈k2〉 − 2 〈k〉 > 0, (2.1)
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the largest connected component, called the giant connected component, be-
comes extensive and gathers a finite fraction of the whole network. In the
case of ER graphs this condition translates into 〈k〉 > 1. This is directly
related to the Poisson distribution, which has the characteristic that its
variance is equal to its mean, 〈k2〉 − 〈k〉2 = 〈k〉.

It is now interesting to take a closer look at the structure of the network
in the presence of the giant component. One can show using the arguments
from Ref. [8] that there must be at most one component whose size increases
with the size of the network. The rest of the vertices which do not belong
to the giant component are spread among many small components whose
average size is constant and does not change with the size of the network.
The crucial insight on which the calculations from this chapter are based
is that the small components are trees. In other words, they form a forest.
This can be seen by the following argument. Consider a small tree of size
s. As explained above, any additional edge between the vertices of such
a component would create a loop. But the probability of a link emerging
from one of the components’ vertices connecting back to a vertex from this
component is proportional to s/V . For finite s this tends to zero in the
large-V limit.

2.2 Generating functions

Analytical results in this chapter are derived using the generating functions
method described in Refs. [8] and [68]. The most basic generating func-
tion with respect to random graphs is the generating function G0 for the
probability distribution of vertex degrees k. It is defined by the power series

G0(x) = p0 + p1x+ p2x
2 + p3x

3 + . . . =
∞∑
k=0

pkx
k, (2.2)

where pk is the probability that a randomly chosen vertex has degree k.
The generating function G0 encapsulates all information contained in the
discrete probability distribution pk. Individual probabilities pk can be easily
recovered by differentiation:

pk =
1
k!

dkG0

dxk

∣∣∣∣
x=0

. (2.3)

Thus G0(x) is just a different representation of the probability distribution
pk. As it will become apparent from the upcoming calculations, it is much
easier to deal with generating functions than with probability distributions.

There are a number of useful properties of generating functions. The
average of the distribution can be calculated by differentiating its generating



38 2. CONNECTED RANDOM GRAPHS

function and taking x = 1. For example, the average degree 〈k〉 is given by

〈k〉 =
∞∑
k=0

kpk = G′0(1). (2.4)

This generalizes to higher moments which can be calculated from

〈kn〉 =
∞∑
k=0

knpk =
[(
x

d
dx

)n
G0(x)

]
x=1

. (2.5)

Another important property of generating functions which will prove useful
is the following: if the distribution of some observable is generated by a given
generating function then the distribution a sum of m independent realiza-
tions of that observable is generated by the m-th power of that generating
function.

Apart from the vertex degree distribution pk we will be interested in
the probability distributions and their generating functions of some other
quantities, which shed more light on the structure, especially the connec-
tivity, of random graphs. Suppose that instead of a vertex we pick some
edge at random and follow it to the vertex on one of its ends. The number
of edges attached to that vertex other than the one we arrived along, i.e.,
the degree of that vertex less one, is called the excess degree of that vertex.
An interesting question now is: what is the probability distribution qk of
the excess degrees? For a graph containing m edges k of them is connected
to any particular vertex with degree k, so the probability that a randomly
chosen edge leads to such a vertex is k/2m (the factor 2 comes from the fact
that we can choose either of the two ends of each edge). The total number
of vertices with degree k is given by npk, so the probability of an edge being
connected to any vertex of degree k is

npk
k

2m
=
kpk
〈k〉

= qk−1, (2.6)

since the excess degree of a vertex with degree k is k−1. We define G1(x) to
be the generating function for the probability distribution of excess degrees,

G1(x) =
∞∑
k=0

qkx
k =

1
〈k〉

∞∑
k=0

(k + 1)pk+1x
k =

1
〈k〉

∞∑
k=1

kpkx
k−1 =

G′0(x)
G′0(1)

,

(2.7)
where the last equality follows from Eq. (2.4). We will often refer to the
generating function G1(x) in the considerations below.

The generating functions for the small components are of our particular
interest. As already discussed in Sec. 2.1, in a random graph there is at
most one giant component, and the rest of the vertices is spread over many
finite size components. In the large-size limit these small components are
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trees. Let P0(s) be the probability that a randomly chosen vertex belongs
to a small component of size s, and let H0 be its generating function,

H0(x) =
∞∑
s=1

P0(s)xs. (2.8)

Note that since every vertex belongs to a component of size at least one,
the above sum starts from s = 1. Let us also define the generating function
H1(s) for the probability P1(s) that the vertex at the end of a random edge
belongs to a small component of size s after that edge is removed,

H1(x) =
∞∑
s=1

P1(s)xs. (2.9)

In other words, H1(x) generates the size distribution of trees attached to a
random edge. These consist of a single vertex reached by following the initial
edge and may branch into any number of subtrees which share the same size
distribution P1(s). This can be schematically depicted as in Fig. 2.1. The
number of branches is given by the excess degree distribution qk. Using the
aforementioned property of generating functions, the total size distribution
of the subtrees attached is generated by the powers of the generating function
H1(x), leading to the following identity:

H1(x) = xq0 + xq1H1(x) + xq2 [H1(x)]2 + · · · . (2.10)

It can be expressed in a more compact form using the definition of G1(x)
from Eq. (2.7),

H1(x) = xG1

[
H1(x)

]
. (2.11)

If we now take as our starting point some random vertex instead of an edge
then we will have one such component at the end of each outgoing edge,
resulting in

H0(x) = xp0 + xp1H1(x) + xp2 [H1(x)]2 + · · · , (2.12)

which can be also written using G0(x) defined in Eq. (2.2),

H0(x) = xG0

[
H1(x)

]
. (2.13)

The total probability that a vertex reached by following an edge belongs
to a small component of any size is

H1(1) =
∞∑
s=1

P1(s). (2.14)

This quantity will occur frequently in subsequent calculations, so it will be
convenient to use the shorthand notation

u ≡ H1(1). (2.15)
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.  .  .+++= +

Figure 2.1: Graphical representation of the self-consistency condition (2.10)
satisfied by the H1(x) generating function. The probability of a connected
component reached by following a random edge (left-hand side) equals the
sum over probabilities of reaching a single vertex, or a vertex connected to
one, two, or more such components (right-hand side). Figure reproduced
from Ref. [68].

Below the threshold given by Eq. (2.1),

〈k2〉 − 2 〈k〉 > 0, (2.16)

there is no giant component and all connected components are finite trees,
i.e., they form a forest. Then cutting any edge results in two finite parts,
thus u = 1. In general, however, the probabilities P1(x) might not add up
to one. If an edge belongs to the giant component then cutting it will either
result in two infinite parts, or will not split the component at all, accounting
for u < 1.

The fraction of links connected to a finite part of any size on at least one
of their ends is given by u. Now, if an edge belongs to a small component of
size s then both its edges lead to finite components. The probability of such
situation is generated by [H1(x)]2, where we have used again the “powers”
property of generating functions. The actual probability that a randomly
chosen edge belongs to a finite part of arbitrary size, or equivalently the
probability that it does not belong to the giant component, is given by u2.

It follows from Eqs. (2.11) and (2.15) that u is a fixed point of the func-
tion G1(x), that is a point where the function is equal to its own argument,

u = G1(u). (2.17)

Looking at the definition of G1 given by Eq. (2.7) it is easy to note that
this equation is always satisfied by u=1. However, when condition (2.16) is
fulfilled it has a non-trivial solution smaller than 1 as well [68]. As argued,
this signals the appearance of the giant component.

Another quantity to which we will often refer to is the probability that
a randomly chosen vertex belongs to a small component of any size,

h ≡ H0(1). (2.18)
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Similarly as for u, it is not necessarily the case that h = 1 because there
may be a giant component in the network. These two quantities are related
by Eq. (2.13):

h = G0(u). (2.19)

2.3 Degree distribution in connected components

The average degree of vertices inside the giant component and in the finite
remainder can be easily calculated using the results from the previous sec-
tion. Recall that u2 is the probability that a randomly chosen edge belongs
to a finite component, and h is the probability that so does a random vertex.
Consequently, the fraction of edges and vertices in the giant component is
given by 1−u2 and 1−h, respectively. Thus, the expressions for the average
number of links

〈
L(g)

〉
and vertices

〈
V (g)

〉
inside the giant component read〈

L(g)
〉

= (1− u2) L, (2.20)〈
V (g)

〉
= (1− h) V, (2.21)

and in the finite remainder, 〈
L(f)

〉
= u2L, (2.22)〈

V (f)
〉

= h V. (2.23)

The average degree in the giant component z(g) and in the rest of the graph
z(f) are given by:

z(g) =
〈

2L(g)

V (g)

〉
∼ 2

〈
L(g)

〉〈
V (g)

〉 = z
1− u2

1− h
, (2.24)

z(f) =
〈

2L(f)

V (f)

〉
∼ 2

〈
L(f)

〉〈
V (f)

〉 = z
u2

h
, (2.25)

where z = 2L/V is the average degree of the whole graph.
As it was already pointed out, the giant connected component is not a

tree. It contains on average 〈nl〉 independent loops, given by

〈nl〉 =
〈
L(g)

〉
−
〈
V (g)

〉
+ 1 =

[z
2

(1− u2)− 1 + h
]
V + 1. (2.26)

Because all the remaining connected components are trees, this is also the
total number of loops in the whole graph.

The average number of finite connected components 〈nc〉 can be calcu-
lated using information that they form a forest. The number of links in a
forest is L(f) = V (f) − nc, yielding

〈nc〉 =
(
h− u2 z

2

)
V. (2.27)
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Once 〈nc〉 in known, we can derive the formula for the average size 〈s〉 of
the finite connected component,

〈s〉 =
〈
V (f)

nc

〉
∼
〈
V (f)

〉
〈nc〉

=
2h

2h− u2z
. (2.28)

At the next step we derive formulas for the degree distribution in the
giant component pk(g) and in the small components pk(f). Each vertex be-
longs either to the giant component or to the finite ones, thus once we have
found the distribution in either of them we automatically get the other one
from the relation

pk = (1− h)p(g)
k + hp

(f)
k . (2.29)

The degree distribution in the giant component pk(g) has been already cal-
culated by the authors of Ref. [20] using the maximum entropy principle.
However, we find it instructive to re-derive their results applying the gener-
ating function method from the previous chapter.

The key idea is to work only on the non-giant components of the graph.
We will use a tilde to distinguish the quantities applying to them from the
whole-graph counterparts introduced before. The vertex degree distribution
and the excess degree distribution in the finite components are generated
by:

G̃0(x) =
∞∑
k=0

p
(f)
k xk, (2.30)

G̃1(x) =
G̃′0(x)

G̃′0(1)
. (2.31)

Let H̃1(x) be the generating function for the probability P̃1(s) that a ran-
domly chosen vertex from the non-giant part of the graph belongs to com-
ponent of size s, and H̃0(x) be the generating function for the probability
P̃0(s) that an edge leads to such a component. Using similar arguments as
before we can show that these functions satisfy

H̃1(x) = x G̃1

[
H̃1(x)

]
, (2.32)

H̃0(x) = x G̃0

[
H̃1(x)

]
. (2.33)

The probabilities P̃0(s) and P̃1(s) are actually conditional probabilities:
P̃0(s) is the probability that a vertex belongs to a finite component of size s
provided that it belongs to some finite component, and P̃1(s) is the proba-
bility that a link leads into a finite component of size s provided that it leads
into a finite component at all. Thus we can relate them to the previously
introduced probabilities P0(s) and P1(s) by:

P̃0(s) =
P0(s)
h

, (2.34)

P̃1(s) =
P1(s)
u

. (2.35)
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It follows immediately that

H1(x) =
∑
s

P1(s) =
∑
s

uP̃1(s) = uH̃1(x), (2.36)

H0(x) =
∑
s

P0(s) =
∑
s

hP̃0(s) = hH̃0(x). (2.37)

We solve Eqs. (2.30) and (2.31) for pk(f) assuming the following form of
the vertex degree and the excess degree probabilities inside the non-giant
components,

p
(f)
k =

pka
k

G0(a)
, q

(f)
k =

qka
k

G1(a)
, (2.38)

where G0(a) and G1(a) ensure the proper normalization of the distributions.
The corresponding generating functions are then

G̃0(x) =
G0(ax)
G0(a)

, (2.39)

G̃1(x) =
G1(ax)
G1(a)

. (2.40)

Using the above relation for G1(x) we can rewrite Eq. (2.32),

aH̃1(x) = ax
G1

[
aH̃1(x)

]
G1(a)

. (2.41)

Comparing now Eq. (2.41) to Eq. (2.11) we see that both are consistent if

aH̃1(x) = H1

[
ax

G1(a)

]
. (2.42)

Inserting this into (2.36) we get

aH1(x) = uH1

[
ax

G1(a)

]
, (2.43)

because of Eq. (2.17), which can be solved by putting a=u.
It can be easily checked that this solution also satisfies Eq. (2.37). Sub-

stituting the expression for G̃0(x) = G0(ax)/G0(a) into the relation (2.33)
and using Eqs. (2.36), (2.19), and (2.13) we get

hH̃0(x) = hxG̃0

[
H̃1(x)

]
= hx

G0

[
uH̃1(x)

]
G0(u)

= hx
G0

[
H1(x)

]
h

= H0(x).

(2.44)
We have shown that our initial assumption given by Eqs. (2.38) was indeed
correct and is satisfied by a = u. The degree distribution in the non-giant
components is therefore

p
(f)
k =

pku
k

h
, (2.45)



44 2. CONNECTED RANDOM GRAPHS

where we have substituted G0(u) = h. The formula for the degree distribu-
tion in the giant component pk(g) can be obtained from the relation (2.29),

p
(g)
k = pk

1− uk

1− h
. (2.46)

In the limit u→ 1 it reduces to

lim
u→1

p
(g)
k = lim

u→1
pk

1− uk

1−G0(u)
= lim

u→1
pk

kuk−1∑
k kpku

k−1
=

k

〈k〉
pk. (2.47)

In this limit the connected giant cluster is a tree. Recall that Eq. (2.17)
has always the solution u=1, which becomes the only one when G′1(1) = 1.
This is equivalent to ∑

k

kp
(g)
k =

∑
k

k2

〈k〉
pk = 2. (2.48)

2.4 Correlations inside the giant component

The joint probability distribution pq,r(g) inside the giant connected compo-
nent can be derived using the relation that the total number of links in
a graph nq,r(G) is the sum of the number of such links inside the giant
component nq,r(g)(G) and their number in the non-giant part of the graph
nq,r(f)(G),

nq,r(G) = n(g)
q,r(G) + n(f)

q,r (G). (2.49)

We further assume that there are no correlations between vertex degrees in
the graph as a whole and in its finite connected components. This allows
us to factorize the edge probabilities pq,r and pq,r(f). Recall that edges are
represented as opposite directed pairs, i.e.,∑

q,r

nq,r = 2L. (2.50)

From Eq. (1.38) we have then

pq,r =
〈
nq,r
2L

〉
= qr

〈
nq
2L

〉〈
nr
2L

〉
, (2.51)

p(f)
q,r =

〈
nq,r(f)

2L(f)

〉
= qr

〈
nq(f)

2L(f)

〉〈
nr(f)

2L(f)

〉
. (2.52)

Plugging these relations into Eq. (2.49) and using Eqs. (2.20) and (2.22) for
L(g) and L(f), respectively, we get

p(g)
q,r =

〈
nq,r(g)

2L(g)

〉
=

1
1− u2

(〈
nq,r
2L

〉
− u2

〈
nq,r(f)

2L(f)

〉)
=

qr

1− u2

(〈
nq
2L

〉〈
nr
2L

〉
− u2

〈
nq(f)

2L(f)

〉〈
nr(f)

2L(f)

〉)
=

qr

z2(1− u2)

(〈
nq
V

〉〈
nr
V

〉
− 1
u2

〈
nq(f)

V

〉〈
nr(f)

V

〉)
. (2.53)
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Equations (2.23) and (2.45) imply that

nk(f)

V
=
p
(f)
k V (f)

V
= pku

k, (2.54)

so the final formula reads

p(g)
q,r =

qpqrpr
z2

1
(1− u2)

(
1− uqur

u2

)
. (2.55)

We may use this result to obtain k̄(g)(q) from Eq. (1.53),

k̄(g)(q) =
∑

r r p
(g)
q,r∑

r p
(g)
q,r

=
〈k2〉 − 〈k2〉(f)huq−2

〈k〉 − 〈k〉(f) huq−2

=
〈k2〉
z

1
1− uq

(
1− 〈k2〉(f)

〈k2〉
z

z(f)
uq

)
, (2.56)

where the last step follows from the relation between z and z(f) given by
Eq. (2.25).

It is now interesting to look what happens to the correlations when u
takes its extreme values. On one end when u→0 all the edges are contained
inside the giant part, and the probability of finding an edge leading to a finite
connected component vanishes. This corresponds to a graph consisting of
one giant connected component and p0V isolated vertices only. In the u→0
limit k̄(g)(q) does not depend on q,

lim
u→0

k̄(g)(q) =
〈k2〉
z
, (2.57)

so correlations disappear. Since this limit suppresses the formation of leaves,
this indicates that leaves might play an important role in correlations inside
the giant component. In Sec. 2.7 we investigate this issue further and provide
examples backing up this statement.

Conversely, in the opposite limit, when u→1, the giant connected cluster
is a tree, and the above formulas take the form

lim
u→1

p(g)
q,r =

qpqrpr
z2

lim
u→1

1− uq+r−2

1− u2
=
qpqrpr
z2

q + r − 2
2

, (2.58)

and

lim
u→1

k̄(g)(q) = lim
u→1

〈k2〉
z

1
1− uq

(
1−

∑
k k

2pku
k/h

〈k2〉
z

zu2/h
uq
)

=
1
z

lim
u→1

〈k2〉 − uq−2
∑

k k
2pku

k

1− uq

=
1
z

lim
u→1

(q − 2)uq−3
∑

k k
2pku

k + uq−2
∑

k k
3pku

k−1

quq−1

=
1
zq

[
(q − 2) 〈k2〉+ 〈k3〉

]
. (2.59)

This proves that the correlations between nearest neighbors do survive in
the tree-limit.
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2.5 Examples

While deriving the above formulas we have made several assumptions: (i)
the vertex degrees are uncorrelated, (ii) the measured quantities are self-
averaging, and of course (iii) all the derivations are only valid in the large-V
limit. To verify to what extent those assumptions are met and, more impor-
tantly, to check the magnitude of the finite size effects, we have compared
our analytical predictions to the results of MC simulations of moderate-
sized graphs containing V = 5000 vertices. The three different random
graph models considered included: classic ER graphs, graphs with exponen-
tial degree distribution, and scale-free networks governed by a power-law
distribution.

The simulations were performed using the Metropolis algorithm intro-
duced in Sec. 1.6.2, as proposed by the authors of Refs. [35] and [24]. It
applies the Markov chain MC technique to recursively generate graphs with
probabilities proportional to their statistical weights

P (µ) =
V∏
i=1

wqi , (2.60)

where wqi is the one-point weight depending on the i-th vertex degree. The
acceptance ratio A(µ→ ν) for the transformation from graph µ into ν given
by Eq. (1.81) takes in this case the following form

A(µ→ ν) = min
{

1,
P (ν)
P (µ)

}
. (2.61)

We have simulated graphs from the canonical ensemble in which the number
of nodes V and links L is constant. The elementary move used to transform
the graph consisted of rewiring an edge performed as explained below. First,
an edge (i, j) and a vertex k were chosen at random. Then the edge was
detached from j and attached back to k, unless k = i or k = j. Clearly, such
moves do conserve the total number of edges L, and the number of vertices
does not change anyway. The only change is in the degrees of vertices j and
k: qj → qj − 1 and qk → qk + 1. Therefore, the probability of accepting a
move given by Eq. (2.61) reads

A(µ→ ν) = min
{

1,
wqj−1wqk+1

wqjwqk

}
. (2.62)

One can show (see, e.g., Ref. [21]) that for the canonical ensemble of
graphs the desired degree distribution pk can be obtained in the asymptotic
limit simply by choosing the one-points weights to be wq = q! pq. This
allows us to generate random graphs with arbitrary degree distributions in
a straightforward manner.

The results presented in this chapter were obtained using custom imple-
mentations based on Ref. [34] and the program from Ref. [73].



2.5. EXAMPLES 47

2.5.1 Erdős-Rényi graphs

Let the classic random ER graphs serve as the first example. From the
discussion in Sec. 1.3.1 we know that their vertex degrees follow the Poisson
distribution

pk = e−z
zk

k!
, (2.63)

hence the generating function G0(x) defined by Eq. (2.2) is given by

G0(x) =
∞∑
k=0

pkx
k = e−z

∞∑
k=0

(zx)k

k!
= ez(x−1). (2.64)

The second generating function G1(x) can be then readily obtained from
Eq. (2.7),

G1(x) =
G′0(x)
z

= ez(x−1). (2.65)

We see that both these functions are equal in this case, G0(x) = G1(x). It
follows from Eqs. (2.11) and (2.13) that H1(x) = H0(x), so h = u with h
being the closest to one (from below) positive solution of Eq. (2.17),

h = ez(h−1). (2.66)

When u = h the expressions for the average degree inside the giant
component z(g) and in the rest of the graph z(f) given by Eqs. (2.24) and
(2.25) simplify to

z(g) = z(1 + h), z(f) = zh. (2.67)

These are plotted against the average degree of the whole graph in Fig. 2.2
together with data obtained from MC simulations marked as points. The
deviation of MC results for a finite size system from the asymptotic formu-
las does not exceed statistical errors of the simulations, so the agreement
between them is perfect. In Fig. 2.3 we similarly compare the simulation
results of the degree distribution inside the giant component pk(g) to the
analytical formula given by Eq. (2.46). Again, the agreement is very good
without any noticeable finite-size effects.

At this point we find it instructive to derive the expression for the degree
distribution in the non-giant part of the graph p

(f)
k in a simpler and more

elegant way than in Sec. 2.3. Namely, we can use the fact that when we omit
the giant component from our considerations we are left with a graph with
hN vertices and h2L links on average. Since there are no further restrictions,
we can assume that this graph is an ER graph as well. This means that its
degree distribution is again a Poissonian, but now with the mean z(f) = hz,

p
(f)
k = e−z

(f) (z(f))k

k!
= e−hz

zkhk

k!
. (2.68)
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Figure 2.2: Average degree z of full ER graphs (dashed line), their giant
connected component z(g) (upper blue solid line), and the rest z(f) (lower red
solid line) as a function of z. Circles represent the results of MC simulations.
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Figure 2.3: Degree distributions pk and p
(g)
k of ER graphs with average

degree z = 2. Circles and diamonds mark the results of MC simulations
for the giant component and for the full graph, respectively. Solid lines
represent the corresponding analytical solutions.
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Figure 2.4: Average neighbor degree k̄(q) of ER graphs with average degree
z = 2. Circles and diamonds mark the results of MC simulations for the
giant component and for the full graph, respectively. Solid lines represent
the corresponding analytical solutions.

Using the relation (2.66) we obtain the known formula (2.45) with u=h,

p
(f)
k = e−ze−z(h−1) z

khk

k!
= pkh

k−1. (2.69)

Correlations in the giant component are characterized by k̄(g)(q). To
obtain the corresponding formula we first calculate the degree distribution’s
second moment〈

k2
〉

=
∑
k=0

k2e−z
zk

k!
=
∑
k=1

ke−z
zk

(k − 1)!
=
∑
k=0

(k + 1)e−zz
zk

k!

= z

(∑
k

kpk +
∑
k

pk

)
= z(z + 1). (2.70)

The non-giant part of the graph follows the Poisson distribution with the
mean z(f), thus 〈k2〉(f) = z(f)(z(f) + 1). Then from Eq. (2.56) we get

k̄(g)(q) =
z + 1
1− hq

(
1− zh+ 1

z + 1
hq
)
. (2.71)

A representative plot of the correlation functions k̄(q) and k̄(g)(q) for graphs
with z = 2 is presented in Fig. 2.4. One can clearly see the appearance of
correlations in the giant connected component, as advocated in the intro-
duction. The agreement of the MC results (marked in the graph by points)
with the asymptotic formula is again very good.
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2.5.2 Exponential degree distribution

The second relatively simple example are graphs whose vertex degrees k are
exponentially distributed and proportional to e−λk, where λ > 0 is some
constant parameter. The properly normalized distribution is then

pk = (1− e−λ)e−λk, (2.72)

with the average degree given by

z = (1− e−λ)
∞∑
k=0

ke−λk =
1

eλ − 1
. (2.73)

The generating functions of this distribution are

G0(x) = (1− e−λ)
∞∑
k=0

e−λkxk =
1− e−λ

1− xe−λ
, (2.74)

G1(x) =
G′0(x)
z

=
(

1− e−λ

1− xe−λ

)2

= G2
0(x), (2.75)

which implies u=h2, where h is the non-trivial solution of Eq. (2.19),

h =
1− e−λ

1− h2e−λ
. (2.76)

This solution exists only in the giant component regime. The left-hand side
of the condition (2.16) evaluates to

∞∑
k=0

k(k − 2)pk =
3− eλ

(eλ − 1)2
, (2.77)

from which we find that the giant cluster appears when λ< ln 3. Then the
solution of Eq. (2.76) reads

h =
1
2

(√
4eλ − 3− 1

)
, for 1 < eλ < 3. (2.78)

In Fig. 2.5 we plot the average degree of the whole graph z, and its
giant and non-giant parts, z(g) and z(f), respectively, against the inverse of
the exponential parameter λ, κ = λ−1. As in the previous example of ER
graphs, we do not find any visible deviations of the MC simulation results
(rendered by points) from the theoretical predictions (solid lines).

The degree distribution inside the giant component pk(g) and its cor-
relation function k̄(g)(q) together with their whole-graph counterparts are
presented in Figs. 2.6 and 2.7, respectively, on the example of graphs with
λ = 2/3. Also in this case we do not trace any finite-size effects. Although
vertex degrees in the graphs as a whole are uncorrelated, there are strong
disassortative correlations inside the giant component, similarly as in the
case of ER graphs.
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Figure 2.5: Average degree z of graphs with exponential degree distribution
(dashed line), average degree zg of their connected component (upper solid
line), and average degree of the rest zf (lower solid line) as a function of
κ = λ−1. Circles mark the results of MC simulations.
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Figure 2.6: Degree distribution of graphs with exponential degree distribu-
tion with λ=2/3. Circles and diamonds mark the results of MC simulations
for the giant component and for the full graph, respectively. Squares stand
for the special case of connected graphs without leaves described in Sec. 2.7.
Solid lines represent the analytical solutions.
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Figure 2.7: Average neighbor degree k̄(q) of graphs with exponential degree
distribution with λ=2/3. Circles and diamonds mark the results of MC sim-
ulations for the giant component and for the full graph, respectively. Squares
stand for the special case of connected graphs without leaves described in
Sec. 2.7. Solid lines represent the analytical solutions.

2.5.3 Scale-free graphs

The last, but probably the most interesting case are scale-free graphs whose
degree distribution follows a power-law function of the form

pk ∝ k−β, (2.79)

where β is a characteristic degree exponent. While studying them we have
to consider two scenarios: 2<β ≤ 3, and β > 3. In the first one we expect
correlations between node degrees, as pointed out in Refs. [35, 72, 74]. This
invalidates the derivation of pq,r(g) given by Eq. (2.55). Additionally, due to
unbounded degree fluctuations in the limit of infinite network size, the sec-
ond moment 〈k2〉 diverges and so k̄(q) and k̄(g)(q) are not defined. Because
our aim was to investigate the correlations appearing solely as an effect of the
connectedness of graphs, we have decided to concentrate only on the β > 3
case. The former one is, however, equally interesting and merits further
investigation. One line of pursuit is to use the modified configuration model
algorithm proposed in Ref. [72] to generate uncorrelated graphs with heavy
tails. Then one should obtain predictions at least for the joint probability
pq,r which does not contain any divergences. Another possibility would be to
use the V -dependent “cut-off” distribution instead of the “full” distribution
pk ∝ k−β, as proposed in Ref. [75]. This would yield V -dependent results,
but may not be feasible analytically. For β<2 already the first moment of
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the distribution pk is not defined so the generating function approach fails
completely.

In finite-size scale-free networks a bound for the possible maximal degree
exists. This natural cut-off is the value of degree kc above which one expects
to find at most one vertex, as defined by Dorogovtsev et al. [5, 75],

V

∫ ∞

kc

pk dk ∼ 1. (2.80)

This leads to kc(V ) ∼ V 1/(β−1). We can use this value to estimate the
asymptotic behavior of 〈k2〉:

〈
k2
〉
≈
∑
k

k2pk −
∫ ∞

kc(V )
k2pk dk ≈

〈
k2
〉
∞ − cV

−β−3
β−1 , (2.81)

where c is some constant. When β>3 the second moment 〈k2〉 is finite, but
for β close to 3 Eq. (2.81) converges very slowly. Thus, although there are no
correlations, at least in the infinite-size limit [72, 74], we do expect strong
finite-size effects near β = 3. Additionally, MC measurements of degree
distribution at large k are always affected by the strong fluctuations due to
the poor statistics in this region. The characteristic value above which the
fluctuations become strong can be estimated to be around kf ∼ V 1/β [5, 75].
In simulations one can improve this behavior by increasing the number of
runs, nevertheless, one cannot overcome the natural cut-off barrier kc.

To observe these effects we have simulated a system at β=13/4 when 〈k2〉
approaches its asymptotic value as V −1/9. The results of our simulations of
graphs with 5000 vertices are presented in Figs. 2.8 and 2.9. As expected the
data for pk and pk(g) distributions show strong cut-off effects around kc≈44,
but for smaller values of k the agreement with theoretical predictions is
rather good.

Looking at the results for k̄(q) we notice two features: (i) Data for the full
graph show a deviation from a straight line, indicating the presence of some
correlations due to heavy tails. (ii) Data for the giant connected component
show a very strong effect of correlations. The agreement with theoretical
values is very poor, so we have not included them in the picture. This is due
to the described cut-off effect on 〈k2〉. We can obtain a better agreement if
we use the actual value of 〈k2〉 measured in simulations in Eq. (2.56) instead
of its infinite-volume limit.

2.6 Connected graphs

Finally, we come to the calculation of the properties of the maximally ran-
dom connected graphs. To this end we assume that the ensemble of the giant
connected components of the maximal entropy graphs with distribution pk
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Figure 2.8: Degree distribution of scale-free graphs with β = 3.25. Circles
and diamonds mark the results of MC simulations for the giant component
and for the full graph, respectively. Squares stand for the special case of
connected graphs without leaves described in Sec. 2.7. Solid lines represent
the analytical solutions.
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Figure 2.9: k̄(q) for scale-free graphs with β = 3.25. Circles and diamonds
mark the results of MC simulations for the giant component and for the full
graph, respectively. Squares stand for the special case of connected graphs
without leaves described in Sec. 2.7. Solid lines represent the analytical
solutions.
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is a maximal entropy ensemble of connected graphs having distribution pk(g).
We neglect the fluctuations in the number of vertices and links in the giant
component as they decay in the large-size limit. This seems to be a plau-
sible assumption as there are no additional constraints except connectivity.
A more detailed argumentation is provided in Appendix A.1.

On the above assumption we can infer the properties of the maximal
entropy connected random graphs with distribution pk(g) from the properties
of the giant components of the maximal entropy random graphs having
degree distribution pk, related to pk(g) by Eq. (2.46),

p
(g)
k = pk

1− uk

1− h
. (2.82)

This is an opposite situation to what we had before, when we derived the
properties of the giant connected component in graphs with some definite
degree distribution pk. Now pk is unknown and we have to do the reverse—
knowing pk(g) we are seeking for the full graphs’ distribution pk. We can
achieve this in a straightforward way by inverting Eq. (2.82) for k > 0,

pk = p
(g)
k

1− h

1− uk
, (2.83)

and expressing u by the known distribution pk(g). Once we find the rela-
tion for u we could use the normalization condition to calculate h and the
probability of isolated vertices p0. From Eq. (2.17) we have

u =
G′0(u)
G′0(1)

=

∑∞
k=1 p

(g)
k

kuk−1

1−uk∑∞
k=1 p

(g)
k

k
1−uk

. (2.84)

Unfortunately, there is no closed-form solution to the above equation. Never-
theless, we can show by the following arguments that is does have a solution,
which for a given degree distribution pk(g) can be found numerically by an
iterative procedure.

Let us first rewrite Eq. (2.84) in a more friendly form,

∞∑
k=1

p
(g)
k ku

1− uk−2

1− uk
≡ g(u) = 0. (2.85)

Now recall that the possible values of u are within the range 0 ≤ u ≤ 1,
where the boundary values correspond to a graph consisting only of a single
connected part and possibly a bunch of isolated vertices, or one without the
giant component at all, respectively. The values of g(u) in these extreme
points can be calculated yielding

g(0) = −p(g)
1 , (2.86)
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and

lim
u→1

g(u) =
∞∑
k=1

p
(g)
k (k − 2). (2.87)

Because p(g)
1 is non-negative and

∑∞
k=1 p

(g)
k = z(g) ≥ 2, for connected graphs

g(0) is non-positive, and g(1) is non-negative. It follows that equation g(u) =
0 given by (2.85) does have a solution within the allowed range of u.

Once we find u we can calculate h from the normalization of the distri-
bution pk,

1 = p0 + (1−h)
∞∑
k=1

p
(g)
k

1−uk
, (2.88)

and the condition (2.19),

h = p0 + (1−h)
∞∑
k=1

ukp
(g)
k

1−uk
. (2.89)

As it turns out, however, these two equations are not independent. This can
be seen by subtracting Eq. (2.89) from Eq. (2.88). Since

∞∑
k=1

p
(g)
k

1−uk
−

∞∑
k=1

ukp
(g)
k

1−uk
=

∞∑
k=1

p
(g)
k

1−uk

1−uk
= 1, (2.90)

we are eventually left with a tautology. Thus p0 can be treated as a free
parameter and set equal to zero, p0 = 0. Then from Eq. (2.88) we get the
final result

h = 1−

( ∞∑
k=1

p
(g)
k

1− uk

)−1

. (2.91)

2.6.1 Simulating connected graphs

The procedure described in the previous section may be actually used to
generate connected random graphs in an efficient way. Typically, when per-
forming MC simulations of connected graphs with degree distribution pk(g)

one would try to simulate them directly by checking on their connectivity af-
ter every MC step. This is an O(V ) operation as it entails searching through
the entire structure. A more optimal approach is to generate graphs with
distribution pk given by Eq. (2.83) and use the giant connected component.
Although this still requires calculating the connected parts, now this needs
to be done only once before each measurement rather than every elementary
move.

As an example, we have generated connected maximally random graphs
with Poisson degree distribution

p
(g)
k =

0 for k = 0,
1

ez(g) − 1
z(g)k

k!
for k > 0,

(2.92)
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Figure 2.10: Degree distribution pk(g) in the giant connected component.
Circles mark the results of MC simulation, while the solid line denotes the
desired distribution (2.92).

with z(g) ≈ 2.50. Note that because of p0 = 0 the normalization is now
(ez

(g)−1)−1 instead of e−z. Solving Eq. (2.84) numerically we find that in this
case u ≈ 0.1209, h ≈ 0.0341, and z ≈ 2.45. Using the program from Ref. [73]
we have simulated a maximally random graph with 5000/(1−h) ≈ 5177
vertices and 6342 links with degree distribution pk as given by Eq. (2.83).
In a draw of 10 000 independent graphs the average measured size of the
giant component was 5000.24 ± 0.25 with standard deviation ≈ 20. The
results vs. the distribution pk(g) from Eq. (2.92) are presented in Fig. 2.10.
As apparent from the plot, the measured degree distribution in the giant
connected component agrees very well with the desired one.

2.7 Uncorrelated connected graphs

As stated at the beginning of this chapter and in Sec. 2.4, the nature of the
correlations observed in connected random graphs is pure structural and is
related to the presence of leaves. If this mechanism is the only one that
induces correlations, we expect them to vanish in ensembles where leaves
are forbidden.

By setting p1 = 0 we exclude most of the finite connected components.
What is left is one giant connected component and p0V isolated vertices.
This is a simple consequence of the fact that finite connected components
are trees—but there are no trees without leaves, except the degenerated
ones consisting of a single vertex. Then u = 0, since all edges are inside
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the giant component and cutting none of them would split it. Moreover,
h = p0 because the only vertices from the non-giant part of the graph are
these with degree k = 0. Therefore, if we are interested in connected graphs,
it is sufficient to set p0 = 0. Then all the small single-vertex components
vanish and we obtain a graph containing only the giant component, i.e., a
connected graph.

In order to verify our assumptions and compare them with the previous
results we have carried out MC simulations of the same ensembles as in the
examples from Secs. 2.5.2 and 2.5.3, but with p1 explicitly set to zero. The
exponential degree distribution without leaves is defined by

pk =

0 for k ∈ {0, 1},
1− e−λ

e−2λ
e−λk for k > 1.

(2.93)

The results for λ = 2/3 (z ≈ 3.055) are presented in Figs. 2.6 and 2.7
(squares). As predicted, vertices are uncorrelated in stark contrast to the
p1>0 case plotted in the same figures. It is worth noting that now the giant
component fills on average 99.9% of the whole graph.

We have also performed simulations of the scale-free distribution pk ∝
1/k13/4 without leaves. The results are presented in Figs. 2.8 and 2.9
(squares). We see that correlations are very much suppressed compared to
the general case when we permit leaves (presented in the same figures). The
slight remaining correlation is due to long tails, as explained in Sec. 2.5.3.



Chapter 3

Generic random trees

This chapter is based on the paper [2] Long-range disassortative correla-
tions in generic random trees by P. Bialas and A. K. Oleś, Phys. Rev. E
81, 041136 (2010).

In the previous chapter we have calculated correlations in connected ran-
dom graphs concentrating on the joint nearest-neighbor degree probability
distribution. We have showed that the degrees of adjoining nodes are indeed
correlated and that these correlations are of disassortative type. It is, how-
ever, interesting how these correlations propagate to larger distances and
whether they survive in the thermodynamic limit.

Unfortunately, the developed formalism of generating functions does not
allow a simple derivation of the distance dependent correlation functions.
Nevertheless, if we restrict ourselves to connected acyclic graphs, that is,
random trees, it is possible to obtain the desired results applying field theory
methods described in Sec. 1.5. We take advantage of the chief characteristic
of trees, namely the existence of a unique path between any two vertices.
It allows us to construct the partition function of trees with two vertices
of specific degrees marked at some given distance apart, which would be
impossible in the presence of cycles. We can use it to extract the joint
probability distribution p̃q,r(l) introduced in Sec. 1.4.3, which serves us to
define the connected correlation functions. As it turns out, correlations
remain disassortative at all distances and vanish only as an inverse second
power of the distance.

The following section formally introduces the model using the idea from
Sec. 1.5.2 of defining the ensemble of maximal entropy random trees by
means of a minifield theory. We show how the one-point vertex degree
probability distribution pq can be obtained in this formalism, and proceed
on in Sec. 3.2 deriving the distance dependent joint probability distribution

59
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p̃q,r(l). We use it to calculate the average neighbor degree k̄l(q), and define
the connected correlator p̃cq̄,r̄(l). Our approach is illustrated in Sec. 3.3 by
the examples of ER trees and scale-free trees. In the last section we verify
our results for scale-free trees numerically using MC simulations.

3.1 Vertex degree distribution

Consider a canonical ensemble of all labeled trees T (V ) with V vertices. The
normalized statistical weight of a tree is given by the product of the config-
uration space weight 1/V ! and the functional weight defined as a product of
one-point weights wqi depending on vertex degrees qi,

P (T ) = Ω−1
V

1
V !

∏
i∈T

wqi , (3.1)

where the normalization is set by the partition function

ΩV ≡
1
V !

∑
T∈T (V )

∏
i∈T

wqi . (3.2)

The configurational weight is only a matter of convention. As discussed
in Sec. 1.3.2, it is introduced primarily to account for the same statistical
weight of trees that differ from each other only by a permutation of vertex
labels.

We prove in Appendix A.2 that the probability measure (3.1) generates
a maximal-entropy ensemble with some definite degree distribution pq. An
important property of the weight P (T ) is that it factorizes into a product of
individual vertices’ weighs, so it does not introduce any explicit correlations
between them. Thus any observed correlations arise due to the fact that we
restrict ourselves to a specific set of graphs, and not from the measure itself.

We will use the Feynman diagram expansion technique presented in
Sec. 1.5 to calculate ΩV . To this end we introduce the grand-canonical en-
semble generating function Ω(µ) defined by the discrete Laplace transform
of the canonical ensemble’s partition function,

Ω(µ) =
∞∑
V=1

e−µV ΩV , (3.3)

where µ is the chemical potential associated with the nodes. Ω(µ) can
be calculated from the perturbative expansion of the zero-dimensional field
theory generating function given by Eq. (1.60):

e
1
κ
Ω(µ) =

1√
2πκ

∫
dφ exp

[
1
κ

(
−1

2
φ2 + e−µ

∑
q=1

wq
q!
φq

)]
. (3.4)
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+ += .  .  .

Figure 3.1: Graphical representation of Eq. (3.6). Each gray bubble corre-
sponds to the sum over planted trees given by the partition function Z(µ).
The branch without a vertex (small black circle) at one end is the stem.

We have incorporated the degree-one vertices into the sum by setting J =
e−µw1. The expansion in e−µ of the above integral generates Feynman dia-
grams with desired weights and symmetry factors, as described in Sec. 1.5.2.
It contains, however, not only trees but all graphs, including ones which are
not connected or contain loops. As showed in Sec. 1.5.4 we can restrict the
expansion to connected graphs by taking its logarithm. To obtain just trees
we use another expansion in κ. According to Feynman rules for the expres-
sion (3.4), each edge in the graph introduces a factor κ, and each vertex a
factor 1/κ. Together they contribute by a factor κL−V , where L is the num-
ber of edges in the graph. The number of independent loops in the graph is
given by L− V + 1, thus the expansion in powers of κ is a loop expansion:
the leading term groups graphs with no loops, the second one graphs with
one loop, and so on.

In the limit κ → 0 only tree graphs survive and their contribution is
given by the Laplace’s approximation (see Appendix B) of the integral in
Eq. (3.4). The condition of the stationary value of the action is given by

d
dφ

(
−1

2
φ2 + e−µ

∞∑
q=1

wq
q!
φq

)
= 0. (3.5)

Denoting now by Z(µ) the solution of the above equation,

Z(µ) = e−µ
∞∑
q=1

wq
(q − 1)!

Zq−1, (3.6)

we get from Eq. (3.4) for the grand-canonical partition function

Ω(µ) = e−µ
∞∑
q=1

wq
q!
Zq(µ)− 1

2
Z2(µ). (3.7)

The generating function of trees with one external node marked, called
planted trees, is given by ∂Ω(µ)/∂J . Since

Z(µ) =
∂Ω(µ)
∂J

, (3.8)
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it is evident that Z(µ) is the partition function of the ensemble of planted
trees. Equation (3.6) has a nice graphical interpretation presented in Fig. 3.1,
which is often referred to in the literature.

The properties of planted trees and their critical behavior were calculated
in Refs. [46, 76, 77]. The model has two geometrically distinct phases: the
so-called generic or tree phase, and the bush phase. Let us define the positive
definite function

F (Z) ≡
∞∑
q=1

wq
(q − 1)!

Zq−2, (3.9)

and rewrite Eq. (3.6) as
eµ = F (Z). (3.10)

The weights wq are all non-negative by assumption, which implies that F ′(Z)
can have at most one zero for positive Z. It will take its minimal value there,
since F ′′(Z) > 0 as well. It follows that Eq. (3.10) does not have any solution
for µ < µ0, where µ0 corresponds to the minimum given by F ′(Z0) = 0.
Consequently, the partition function Z(µ) must have a singularity at µ0.

In our calculations we restrict ourselves to the generic phase. In this
case the minimum of F (Z) is inside its domain and in the vicinity of Z0 the
function is given by

F (Z) = F (Z0) +
1
2
F ′′(Z0)(Z − Z0)2 + · · · , (3.11)

from which, after inversion, we get the singular behavior of the partition
function around µ0,

Z(µ) ≈ Z0 − Z1

√
∆µ, (3.12)

where
∆µ ≡ µ− µ0, (3.13)

and

Z1 =

√
2F (Z0)
F ′′(Z0)

. (3.14)

The vertex degree distribution of this model was already calculated in
Ref. [78] using the correspondence with the balls in boxes model. We re-
derive it here following a different method presented in Ref. [2]. This ap-
proach is especially useful because it can be easily extended to the case of
two-point correlations studied in Ref. [79].

Let us denote by Ω(q;µ) the partition function of the rooted grand-
canonical ensemble of trees with one vertex of degree q marked,

Ω(q;µ) = wq
∂Ω(µ)
∂wq

= e−µ
wq
q!
Zq(µ). (3.15)

The graphical interpretation of this equation is presented in Fig. 3.2. As
before, gray bubbles correspond to the sum over planted trees given by the
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Figure 3.2: Graphical representation of the partition function Ω(q, µ) given
by Eq. (3.15) for q = 4. Each gray bubble corresponds to the sum over
planted trees given by the partition function Z(µ), and the central black
circle represents the root.

partition function Z(µ). The smaller black circle in the middle represents
the root, which contributes a weight factor e−µw4. The additional inverse
factorial 1/4! comes from the fact that the relative position of branches in
the compound tree is irrelevant. We will use Ω(q;µ) to calculate the degree
distribution pq, which is proportional to the canonical partition function
ΩV (q). Using the expansion (3.12) Eq. (3.15) can be rewritten as

Ω(q;µ) ≈ e−µ
wq
q!
Zq0

(
1− Z1

Z0

√
∆µ
)q

≈ e−µ
wq
q!
Zq0 exp

(
−qZ1

Z0

√
∆µ
)
,

(3.16)
where the second approximation follows from the assumption that Z1

√
∆µ

is only a small correction to Z0, that is, Z1
√

∆µ � Z0. The canonical
partition function ΩV (q) can be now retrieved from the above equation using
the inverse Laplace transform,

L−1
{
Ae−B

√
µ−µ0

}
=

1
2
√
π

AB

V 3/2
exp

(
−B

2

4V
+ µ0V

)
, (3.17)

which in the leading order of V yields

ΩV (q) = CV
wq

(q − 1)!
Zq−1

0 . (3.18)

Please note that the additional factor e−µ appearing in Eq. (3.16) introduces
only a V → V − 1 shift, which is irrelevant in the large-V limit. Since all
q-independent factors can be fixed by normalization, we did not bother to
include them in Eq. (3.18) but rather denote them by CV .

As already mentioned, pq = 1
NΩV (q), where N can be found from the

normalization condition,

N =
∑
q

ΩV (q) = CV
∑
q

wq
(q − 1)!

Zq−1
0 = CV Z0F (Z0). (3.19)
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Thus, the final formula for the desired degree distribution reads

pq =
1

F (Z0)
wqZ

q−2
0

(q − 1)!
. (3.20)

3.2 Correlation functions

Our aim is to calculate the distance-dependent connected correlation func-
tion p̃cq̄,r̄(l) introduced in Sec. 1.4.3,

p̃cq̄,r̄(l) =
∑
q,r

q r p̃cq,r(l), (3.21)

defined by means of the connected two-point probability

p̃cq,r(l) = p̃q,r(l)− p̃q(l) p̃r(l). (3.22)

To this end we have to derive the formula for the joint probability distri-
bution p̃q,r(l) given by Eq. (1.34). We proceed by introducing the partition
function Ωl(q, r;µ) of all trees with two points of degrees q and r marked
such that the distance between these points is l. Note that since only trees
are considered here, there is just one path joining any two vertices.

Applying the approach from the previous section we can use Z(µ) to
express Ωl(q, r;µ) as follows (cf. Ref. [44]). Consider a chain of (l + 1)
vertices. Then the first and the last vertex, to which we will refer to as
the head and the tail, respectively, are at distance l apart. If we now fix
their degrees to be q and r then all the configurations from the ensemble
generated by Ωl(q, r;µ) can be obtained by attaching trees to the vertices
along the path joining the head and the tail in all possible ways.

The partition function Ωl(q, r;µ) is a product of the contributions from
the end-point vertices, which have a definite degree, and the (l− 1) vertices
along the path connecting them, in which case we have to sum over all
possible degrees greater or equal two. Thus one finds

Ωl(q, r;µ) =
e−µwq

(q − 1)!
Zq−1

[
e−µ

∞∑
k=2

wk
(k − 2)!

Zk−2

]l−1
e−µwr

(r − 1)!
Zr−1,

(3.23)
where for the sake of clarity we have omitted the argument of the Z(µ)
function. The factorials appearing in the above equation are due to the fact
that the considered trees are non-planar and so the relative position of the
attached branches does not matter. Equation (3.23) has a neat graphical
form, which for q = 4 and r = 3 is presented in Fig. 3.3.
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Figure 3.3: Graphical representation of the partition function Ωl(q, r;µ)
given by Eq. (3.23) for q = 4 and r = 3. Gray bubbles correspond to the
partition function Z(µ) and the smaller black circles mark the vertices with
degrees q and r; double circles represent the l − 1 vertices along the path
connecting them in which we sum over all possible insertions of the Z(µ)
function (see Fig. 3.4).

= + + ...

Figure 3.4: Double circles denote the summation over all possible insertions
of the Z(µ) function (gray bubbles).

The term containing the sum over all the possible insertions of the Z(µ)
function (see Fig. 3.4) can be rewritten in the following way:

e−µ
∞∑
k=2

wk
(k − 2)!

Zk−2 = e−µ
∂

∂Z
[ZF (Z)] = e−µ

[
F (Z) + Z

∂F (Z)
∂Z

]
.

(3.24)
We can now use relation (3.10) to eliminate F (Z) from the above equation.
Its differentiation with respect to µ gives

eµ =
∂

∂µ
F [Z(µ)] =

∂F (Z)
∂Z

∂Z(µ)
∂µ

, (3.25)

leading to
∂F (Z)
∂Z

= eµ
1

Z ′(µ)
. (3.26)

Inserting Eqs. (3.10) and (3.26) into Eq. (3.24) we finally obtain

e−µ
∞∑
k=2

wk
(k − 2)!

Zk−2 = 1 +
Z(µ)
Z ′(µ)

. (3.27)
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Using the above formula, Eq. (3.23) can be rewritten as

Ωl(q, r;µ) = e−2µ wq
(q − 1)!

wr
(r − 1)!

Zq+r−2

(
1 +

Z

Z ′

)l−1

. (3.28)

Its leading order approximation using the expansion given by Eq. (3.12)
reads

Ωl(q, r;µ) ≈ e−2µ wq
(q − 1)!

wr
(r − 1)!

Zq+r−2
0

(
1− Z1

Z0

√
∆µ
)q+r−2

×
(

1− 2
Z0

Z1

√
∆µ
)l−1

, (3.29)

which can be further approximated by

Ωl(q, r;µ) ≈ e−2µ wq
(q − 1)!

wr
(r − 1)!

Zq+r−2
0

× exp
{
−
[
(q + r − 2)

Z1

Z0
+ 2(l − 1)

Z0

Z1

]√
∆µ
}
. (3.30)

Similarly as we did in the previous section, we can now use the inverse
Laplace transform given by Eq. (3.17) to derive the expression for the canon-
ical partition function, which in the leading order in V reads

Ωl(q, r;V ) ∝ wq
(q − 1)!

wr
(r − 1)!

Zq+r−2
0

[
(q + r − 2)

Z1

Z0
+ 2(l − 1)

Z0

Z1

]
.

(3.31)
Recall now that Z2

1 = 2F (Z0)/F ′′(Z0). We have then

Z2
0

Z2
1

=
Z2

0F
′′(Z0)

2F (Z0)
=

1
2F (Z0)

∑
q=2

(q − 2)(q − 3)
wqZ

q−2
0

(q − 1)!

=
1
2

∑
q

(q − 2)(q − 3) pq =
1
2
(
〈q2〉 − 5 〈q〉+ 6

)
. (3.32)

Using the fact that the average degree for trees equals asymptotically 〈q〉 = 2
we get the final result

Z2
0

Z2
1

=
1
2
(
〈q2〉 − 4

)
. (3.33)

Using this relation and fixing the normalization we obtain from Eq. (3.31)
the expression for the joint probability distribution

p̃q,r(l) = pqpr
(q + r − 2) + (〈q2〉 − 4) (l − 1)

2 + (〈q2〉 − 4) (l − 1)
. (3.34)

Summing now over r we get

p̃q(l) = pq
q + (〈q2〉 − 4) (l − 1)
2 + (〈q2〉 − 4) (l − 1)

. (3.35)
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Using the above results we get the expression for the connected probability
(3.22),

p̃cq,r(l) = −pqpr
(q − 2)(r − 2)

[2 + (〈q2〉 − 4)(l − 1)]2
. (3.36)

Summing p̃cq,r(l) over q and r we finally get the connected correlation func-
tion (1.48),

p̃cq̄,r̄(l) = − (〈q2〉 − 4)2

[2 + (〈q2〉 − 4)(l − 1)]2
. (3.37)

As evident from the above result, the correlations are non-zero and fall off
with the distance as l−2.

Similarly, the average degree of vertices at some distance l from a given
vertex of degree q decreases with distance. If we assume self-averaging we
will obtain asymptotically from the definition (1.41) that

k̄l(q) =
∑
r

〈
r nq,r(l)
nq(l)

〉
∼
∑
r

r 〈nq,r(l)〉
〈nq(l)〉

=
∑
r

rp̃q,r(l)
p̃q(l)

. (3.38)

Using the previous results given by Eqs. (3.34) and (3.35) we then get

k̄l(q) = 2 +
〈q2〉 − 4

q + (〈q2〉 − 4)(l − 1)
. (3.39)

3.3 Examples

In the derivation of the quantities from the previous section we did not
assume any specific form of the weights {wq}, so we expect that the obtained
formulas hold for any choice of the one point-weights, provided that we stay
in the generic phase. In the following sections we illustrate how to apply
these general formulas to some examples with specific weights.

The first, and probably the simplest model are trees with uniformly
weighted nodes for which wq = 1 regardless of the vertex degree q. They
correspond to the classical Erdős-Rényi graphs discussed in Sec. 2.5.1 of the
previous chapter. As the second example we take scale-free trees, follow-
ing a power law degree distribution. Albeit their second moment diverges,
the integrated correlation functions do not vanish. We then compare our
results against numerical simulations and find that they correspond quite
well, taking into account finite size effects.

3.3.1 Erdős-Rényi trees

In the model of uniformly weighted trees we assume that the one point
weights do not depend on vertex degrees and are all equal wq = 1, implying
that all trees from the ensemble share the same weight. In this case

F (Z) =
1
Z

eZ . (3.40)
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It is minimized by Z0 = 1, for which F (Z0) = e. Inserting these values into
Eq. (3.20) we immediately get the degree distribution

pq = e−1 1
(q − 1)!

. (3.41)

To calculate the joint probability distribution and the connected correlation
function we first need to find the second moment 〈q2〉. In the previous
section we have shown that

Z2
0

Z2
1

=
1
2
(
〈q2〉 − 4

)
. (3.42)

Knowing the formula for F (Z) we can calculate the left-hand side of the
above equation directly,

Z2
0

Z2
1

=
Z2

0F
′′(Z0)

2F (Z0)
=

1
2
. (3.43)

Combining Eqs. (3.42) and (3.43) one finds 〈q2〉 = 5. Using this result we
get for the connected two-point probability

p̃cq,r(l) = − 1
e2

(q − 2)(r − 2)
(l + 1)2

1
(q − 1)!

1
(r − 1)!

, (3.44)

and for the associated correlation function

p̃cq̄,r̄(l) = − 1
(l + 1)2

. (3.45)

The average degree of neighbors at distance l from a given vertex is given
by

k̄l(q) = 2 +
1

q + l − 1
. (3.46)

3.3.2 Scale-free trees

Scale-free trees are a subset of a larger ensemble of scale-free graphs. These
are networks whose degree distribution is governed by a power-law function
pq ∝ q−β. We have already investigated the nearest-neighbor correlations in
scale-free graphs in Sec. 2.5.3.

The ensemble of scale-free trees corresponds to the planar graphs studied
in Refs. [76] and [77], and is generated by

wq = q−β(q − 1)!. (3.47)

In such case F (Z), given by Eq. (3.9), is defined in terms of a power series
known as the polylogarithm function Liβ(Z),

F (Z) =
∞∑
q=1

q−βZq−2 =
1
Z2

∞∑
q=1

Zq

qβ
=

1
Z2

Liβ(Z), (3.48)
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which is minimized by Z0 fulfilling the condition

2 Liβ(Z0) = Liβ−1(Z0). (3.49)

The radius of convergence of the polylogarithm function Liβ(Z) equals one.
At the boundary, for Z = 1 and β > 1, it reduces to the Riemann zeta
function,

Liβ(1) = ζ(β). (3.50)

Another property of the polylogarithm is that if α < β, then Liα(Z) >
Liβ(Z). Thus, Eq. (3.49) has a solution for β < βc, where βc ≈ 2.47875 is
given by

2ζ(βc) = ζ(βc − 1). (3.51)

At the critical value of β = βc the partition function Z(µ) does no longer
scale according to Eq. (3.12), so in principle we cannot use the Laplace
transform given by Eq. (3.17) anymore. However, as shown in Ref. [80] the
large-V behavior remains unchanged and we expect our formula to hold in
the large-V limit. From Eq. (3.20) we read-off the degree distribution

pq =
Zq−2

0

F (Z0)
q−β. (3.52)

If now Z0 = 1 then the degree distribution depends on q only by the q−β

term and is scale-free. This corresponds to the critical value βc.
The second moment, which can be calculated from Eqs. (3.42) and (3.43),

〈
q2
〉

= Z2
0

F ′′(Z0)
F (Z0)

+ 4 = 10 +
1

Liβ(Z0)
[Liβ−2(Z0)− 5 Liβ−1(Z0)] , (3.53)

diverges as β → βC . Formula (3.36) leads for l > 1 to

lim
V→∞

p̃cq,r(l) = 0, (3.54)

suggesting that the correlations vanish in the large-V limit. However, this
limit (3.54) is not uniform and the integrated correlation functions do not
disappear:

lim
V→∞

p̃cq̄,r̄(l) = − 1
(l − 1)2

, (3.55)

and

lim
V→∞

k̄l(q) = 2 +
1

l − 1
. (3.56)

Please note that the above results are universal and valid for any kind of
scale-free trees with β < 3.
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3.3.3 Monte Carlo simulations

Analytical results obtained in the previous sections are valid only in the
strict V → ∞ limit and it is clear that for finite trees these formulas will
not hold for any l. We expect that they are valid only at distances much
smaller than the average distance 〈l〉 defined as

〈l〉 =
1
V 2

∑
l

l 〈n(l)〉 . (3.57)

Here 〈n(l)〉 is the ensemble average counting the number of all pairs of
vertices at distance l apart,

〈n(l)〉 =
∑
T∈TV

P (T ) n(l), (3.58)

where P (T ) is the statistical weight of a tree defined by Eq. (3.1). The nor-
malization factor 1/V 2 in Eq. (3.57) compensates the number of all possible
vertex pairs.

According to Ref. [80] the scaling of 〈l〉 with the size of the graph is
described by the Hausdorff or fractal dimension dH ,

〈l〉 ∼ V 1/dH . (3.59)

For the generic trees discussed dH = 2. In the case of scale-free trees con-
sidered in example 2 we expect (cf. Ref. [19])

dH =
1
γ
, γ =

βc − 2
βc − 1

, (3.60)

which results in dH ≈ 3. As already argued in Sec. 2.5.3, the volume depen-
dence in scale-free trees manifests itself by a cut-off in the degree distribution
pq.

Due to a higher value of the Hausdorff dimension dH we expect scale-free
trees to be more prone to finite size effects than the generic ones. They are
a good candidate to verify whether our approach and assumptions made are
legitimate. If the analytical formulas are well reproduced by MC simulations
for scale-free trees, then one should expect similar or even better agreement
for the generic ones.

To check the size dependence we have performed MC simulations of the
ensemble described in Sec. 3.3.2. We have used an algorithm similar to
“baby-universe surgery” (see Ref. [81]). The basic move consisted of picking
an edge at random and cutting it. Then the smaller of the two resulting
trees was grafted on some random vertex of the bigger one. The most time
consuming part of the algorithm was to find which tree was smaller. To save
time, the two trees were traversed simultaneously until one of them was filled
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Figure 3.5: Average degree of neighbors k̄l(q) at distances from l = 2 to 6
in trees with 64 000 (empty symbols) and 128 000 (filled symbols) vertices.
Each symbol denotes different l; straight lines are the predictions given by
Eq. (3.56).

completely. Additionally, to pick the attachment point from the bigger tree
efficiently, the vertices of the trees were marked during the traversal. This
move was supplemented with moves consisting of cutting off leaf nodes and
attaching them to some other parts of the tree. This was much faster as
it did not require traversing the tree. However, the autocorrelation time
for such moves alone was much higher, especially for the scale-free trees.
Because those trees are at the phase transition between the generic and the
crumpled phase [77], the autocorrelation time is high even for the described
tree-grafting algorithm.

In order to observe finite size effects we have simulated trees of various
sizes up to 128 000 vertices. We have concentrated on the average neighbor
degree distribution k̄l(q) and the connected correlation function pcq̄,r̄(l). To
verify the assumption of self-averaging we have measured these quantities
for individual graphs and only then took their average.

Figure 3.5 shows the measured distance dependent average vertex degree
k̄l(q), as defined in Eq. (1.41),

k̄l(q) =
∑
r

〈
r nq,r(l)
nq(l)

〉
, (3.61)

as a function of q for various values of l. The asymptotic solution (3.56) is
plotted with solid lines. The most severe finite size effects occur at short
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Figure 3.6: Connected correlation function pcq̄,r̄(l) for scale-free trees with
64 000 (empty circles) and 128 000 (filled diamonds) vertices. The solid line
represents the prediction given by Eq. (3.55).

distances for l = 2. This is to be expected: for finite V the average
〈
q2
〉

is also finite and so introduces an small correction to the denominator of
Eq. (3.56). The relative influence of this deviation diminishes with distance,
but scales linearly with degree q. Thus, the agreement of MC data with
asymptotic formulas improves with distance and for larger l is rather decent.

The results for the connected correlation function

pcq̄,r̄(l) =
∑
q,r

〈
q r nq,r(l)
n(l)

〉
−

[∑
q

〈
q nq(l)
n(l)

〉]2

(3.62)

are presented in Fig. 3.6. It is well reproduced by our result (3.55) despite
the finite size and the fact that the probabilities in Eq. (3.62) are calculated
on individual graphs rather than on the whole ensemble.



Chapter 4

Ising spins on regular
random graphs

This chapter is based on the paper [3] Correlation functions of Ising
spins on thin graphs by P. Bialas and A. K. Oleś, e-print arXiv:1104.4030
(2011).

Although Ising spins on random graphs have already been studied before
(see, e.g., Refs. [49, 50]), and different aspects of the systems have been
brought up, there has been little contribution to the topic of correlations in
them. In this chapter we introduce and solve the Ising spin model on an en-
semble of regular random graphs. By regular random graphs we do actually
mean pseudographs or multigraphs whose all vertices have the same degree,
say q, but which are otherwise completely random. In particular, they may
contain multiedges and loops. They correspond to the Feynman diagrams
of a φq field theory and we will exploit this analogy in our calculations. This
model is intended to serve as a preparation to the study of a more interesting
and complicated strictly geometrical model of random graphs displaying a
phase transition described in the following chapter.

Some of the presented results have already been obtained by other au-
thors, but we re-derive them here for completeness. We shall show that in the
large-size limit, the leading-order behavior of the Ising model on q-regular
random graphs agrees with the Bethe solution valid for infinite Cayley trees
with coordination number q, called Bethe lattices. This name was coined
by Kurata et al. [82] and Katsura et al. [83] who showed that the prop-
erties of the Ising model on an infinite Cayley tree, for which the surface
effect is ignored, can be exactly calculated by the Bethe approximation (see
Ref. [84]). This solution has a divergent isothermal susceptibility under zero

73
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external field at the critical temperature TB given by Bethe, below which
spontaneous magnetization of the system occurs.

The Bethe solution differs substantially from the solution on finite Cayley
trees. It has been shown (see, e.g., Refs. [85–87]) that the spontaneous
magnetization per spin in a ferromagnetic Ising model on such trees studied
in the large-size limit vanishes at any non-zero temperature, and yet the
susceptibility per spin diverges below a critical temperature, which is less
than TB. The reason for this discrepancy is that in a finite tree the number
of sites on its surface is of the same order as the total number of sites
in the whole system. Because of this, the quantities obtained by taking
the thermodynamic limit of the finite tree are different from those of an
infinite one, for which there is no contribution from the surface. Although
correlation functions on finite Cayley trees have already been studied before
(see Refs. [88, 89]), such systems differ fundamentally from the infinite ones,
as mentioned above. In particular, they do not exhibit a phase transition
observed for the Ising spins on regular random graphs, as we shall show.

The first section introduces and formally defines the model, which is then
solved in Sec. 4.2 by calculating its partition function. Specific properties
of the system, like the magnetization and susceptibility, are calculated in
Secs. 4.2.2 and 4.2.3, respectively. The formulas for the spin-spin correlation
functions are derived in Sec. 4.3 using the similarity to Bethe lattices in the
infinite volume limit. The last Section 4.4 addresses the influence of spins
on the geometry.

4.1 Definition of the model

The Ising model is a classic example of a complex system capable of a phase
transition (see, e.g., Ref. [36] or [27]). It was originally proposed by W. Lenz
in 1920 as a simple model of a ferromagnet. The one-dimensional problem
was first solved by E. Ising [90], while the exact solution for the d = 2 case, in
which an order-disorder transition is observed, was derived by Onsager [91].

The model consists of a set of discrete variables si, called spins, which
are either +1 or −1, also referred to as the up (↑) and down (↓) states. In
the original formulation the spins are arranged on a regular lattice, and each
spin interacts with its nearest neighbors. However, generalized models may
include long-range interactions and more choices for spin values.

In our approach the spins are placed in the vertices of q-regular pseu-
dographs with coordination number q equal or greater than three. Since
there are no other restrictions concerning the geometry and the graphs are
totally random in other aspects, we will refer to them shortly as random
q-regular graphs, bearing in mind that from now on under the term graphs
we actually mean pseudographs. In the presence of an externally imposed



4.1. DEFINITION OF THE MODEL 75

field B the system’s Hamiltonian is

H = −1
2

∑
i,j

Jijsisj −B
∑
i

si. (4.1)

The subscripts label vertices and Jij is the interaction energy between ad-
jacent spins: Jij 6= 0 if two nodes are connected, or Jij = 0 otherwise. The
sign of Jij determines the type of interaction—in ferromagnets Jij > 0 and
the neighboring spins try to align parallel to one another, whereas in the
antiferromagnetic case Jij < 0 and anti-parallel orientation is favored. Each
pair of vertices is counted twice in Eq. (4.1), hence the 1/2 factor.

From now on we focus only on ferromagnetic interactions in the absence
of any external field B. The Hamiltonian (4.1) becomes then

H = −1
2

∑
i,j

Aijsisj , (4.2)

where A is the adjacency or connectivity matrix of the underlying graph,
and we have set Jij = 1 for ferromagnetic interaction.

The partition function of the considered Ising model defined on graphs
with a fixed number of vertices is given by the sum over all q-regular graphs
with n vertices and all the possible arrangements of spins on each graph G,

Zn =
∑
G∈Gfl

∑
s1,...,sn

e−βH(G;s1,...,sn). (4.3)

In fact, the above defined ensemble Gfl is a collection of fully labeled
pseudographs, i.e., graphs which have all vertices and links labeled and may
include multiple- and self-connections. All such graphs are equiprobable and
thus have the same configuration space weight. Some of the label permuta-
tions define the same topologies, so when unlabeled graphs are considered
the weights become distinct. It can be shown (see, e.g., Ref.[24]) that these
weights are identical to the inverse of the symmetry factors s(G) of the cor-
responding Feynman diagrams appearing in the perturbative expansions of
a minifield theory. Thus, the partition function of Ising spins organized on
an ensemble of Feynman diagrams G of a φq field theory is

Zn =
∑
G∈G

1
s(G)

∑
s1,...,sn

e−βH(G;s1,...,sn), (4.4)

and we may use the perturbation theory approach described in Sec. 1.5 to
enumerate them.
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4.2 Solution

The ensemble of q-regular random graphs is identical to φq Feynman dia-
grams of the zero-dimensional field theory described in Sec. 1.5. Thus, if φ+

and φ− fields are associated with the “up” and “down” or +1 and −1 spins,
respectively, the requisite ensemble can be generated from the Feynman
diagram expansion of the grand-canonical partition function

Z(µ) =
1

2π

∫
dφ+dφ−exp

[
−1

2
φT∆−1φ + e−µ

1
q!
(
φq+ + φq−

)]
, (4.5)

where

φ ≡
(
φ+

φ−

)
, (4.6)

and ∆ is the transfer matrix,

∆ ≡

( √
g 1√

g
1√
g

√
g

)
. (4.7)

We use the positive coupling constant g throughout the calculations in ac-
cordance to the convention from Refs. [48, 50]. It is related to β = 1/kBT
by √

g = eβ. (4.8)

In the following we will set kB = 1 and regard

T = 2
1

ln g
(4.9)

as the generalized temperature of the system.
The grand-canonical partition function Z(µ) generates q-regular graphs

of all possible sizes. It is related to the generating function of graphs with
a specific number of vertices n by the discrete Laplace transform,

Z(µ) =
∑
n

e−µnZn. (4.10)

In the following we will be interested in the ensemble of graphs in the asymp-
totic limit n → ∞. The desired partition function Zn can be calculated in
the large-size limit using the Laplace’s integral approximation technique de-
scribed in Appendix B. We start by performing binomial expansion of the
φq terms in Eq. (4.5),

exp
[
e−µ

1
q!
(
φq+ + φq−

)]
=

∞∑
n=0

1
n!

[
e−µ

1
q!
(
φq+ + φq−

)]n
=

∞∑
n=0

e−µn
1

(q!)n

n∑
k=0

φqk+ φ
q(n−k)
−

k!(n− k)!
. (4.11)
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The sum over n reflects the various sizes of graphs in the grand-canonical
ensemble and k is the number of “up” spins. Using relation (4.10) we can
extract from Z(µ) the canonical partition function

Zn =
1

2π
1

(q!)n

n∑
k=0

1
k!(n− k)!

∫
dφ+dφ− e−

1
2
φ T ∆−1φ φqk+ φ

q(n−k)
− . (4.12)

For convenience, from now on we will use the ratio of positive and negative
spins given by z = k/n rather than k. Furthermore, we rescale the fields by
extracting the size dependent factor,

φ± =
√
n ψ±. (4.13)

Since we are interested in the asymptotic limit of n → ∞, we may replace
the sum over k in Eq. (4.12) with an integral over z and rewrite it in the
form

Zn =
n

2π
An

∫ 1

0
dz Bn(z)

∫
dψ+dψ− enf(ψ+,ψ−), (4.14)

where

f(ψ+, ψ−) = −1
2
ψ T∆−1ψ + q [z lnψ+ + (1−z) lnψ−] , (4.15)

and the field independent factors are

An = exp
[
n
(q

2
lnn− ln q!

)]
, (4.16)

Bn(z) =
1

(zn)![(1− z)n]!
. (4.17)

Let (ψ+, ψ−) be the maximum of f(ψ+, ψ−) given by

∂f(ψ+, ψ−)
∂ψ±

= 0, (4.18)

satisfying H(ψ+, ψ−) > 0, where H(ψ+, ψ−) is the value of the determi-
nant of the Hessian matrix of f given by Eq. (B.14). The field integral in
Eq. (4.14) can be now asymptotically approximated using Eq. (B.16),∫

dψ+dψ− enf(ψ+,ψ−) ∼ enf(ψ+,ψ−) 2π

n
√
H(ψ+, ψ−)

, (4.19)

yielding for the partition function

Zn ∼ An

∫ 1

0
dz exp

[
nf(ψ+, ψ−) + lnBn(z)− 1

2
lnH(ψ+, ψ−)

]
. (4.20)
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We are now to find the expression for f(ψ+, ψ−). The condition for the
maximum (4.18) is a system of two quadratic equations. It has in general
four solutions, from which only the one positive in both ψ+ and ψ− has
physical meaning,ψ+(z) =

√
q/2 g−

3
4

[
1 + 2z

(
g2 − 1

)
+
√

1 + 4 (g2 − 1) (1− z)z
] 1

2
,

ψ−(z) = ψ+(1− z).

A straightforward way to proceed would be to plug the above result directly
into Eq. (4.15). However, there is a better way: we may rewrite Eq. (4.18)
in matrix form

∆−1

(
ψ+

ψ−

)
= q

(
z/ψ+

(1− z)/ψ−

)
, (4.21)

and notice that
ψ
T∆−1ψ = q, (4.22)

which simplifies f(ψ+, ψ−) to

f(ψ+, ψ−) = q

[
z lnψ+ + (1− z) lnψ− −

1
2

]
. (4.23)

The logarithm of the Bn(z) term appearing in Eq. (4.20) can be approx-
imated using the Stirling formula

lnn! = n lnn− n+
1
2

ln 2πn+O(n−1), (4.24)

yielding

lnBn(z) = − ln(zn)!− ln [(1− z)n]!

≈ −n [z ln z + (1− z) ln (1− z)]− 1
2

ln z(1− z)

−n(lnn− 1)− ln 2πn. (4.25)

Gathering the results given by Eqs. (4.23) and (4.25) we eventually ob-
tain the partition function Zn in the leading order in n,

Zn ∼ e−nCn

∫ 1

0
dz e−nF (z), (4.26)

where the leading-order approximation of F (z) is given by

F (z) ∼ z ln z + (1− z) ln (1− z)− q
[
z lnψ+ + (1− z) lnψ−

]
, (4.27)

and Cn encapsulates the z independent terms,

Cn = ln q!− (1− lnn)(1− q/2). (4.28)
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Figure 4.1: Plots of the F (z) function for q = 3 and three different values
of g: (a) for g = 2.5, (b) at the transition g = 3, (c) and for g = 3.5.

The next-to-leading corrections to F (z) are calculated in Appendix C.
We know from statistical physics that the partition function of a sys-

tem is proportional to the exponent of its free energy. We also know that
the number of regular random graphs scales with the number of vertices n
faster than en. Therefore, the free energy per spin, which is proportional to
− ln(Zn)/n, diverges, so our system has no thermodynamic limit. Neverthe-
less, because the volume factor does not depend on z it does not contribute
to the expectation values given by

〈O〉 =
1
Zn

e−nCn

∫ 1

0
dzO(z) e−nF (z) =

∫ 1
0dzO(z) e−nF (z)∫ 1

0dz e−nF (z)
. (4.29)

This average can be calculated in the leading order using the familiar Laplace
approximation.

The function F (z) is symmetric around z = 1/2, that is,

F (z) = F (1− z), (4.30)

which directly corresponds to the up-down symmetry: the counter-config-
uration can be simply obtained by simultaneously flipping all spins. For
small values of the coupling parameter F (z) has a minimum at this point (see
Fig. 4.1(a)). When g increases the one minimum splits into two minima, and
the former minimum in the middle becomes now a maximum (Fig. 4.1(c)).
Exactly at the transition F (z) has an inflection point given by F ′′(1/2) = 0.
This solved for g yields the value of the coupling parameter at which the
transition occurs

g =
q

q − 2
. (4.31)

In the next section we shall show that the minima of the F (z) function
correspond to the magnetization of the system and the above value of g
defines the critical coupling at which the order-disorder phase transition
occurs.
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4.2.1 Monte Carlo simulations

In the following sections we study in detail some specific properties of the
model, like the magnetization, susceptibility, and correlation functions. The
analytic formulas describing them are derived in the large-size limit, so for-
mally they apply only to infinite systems. These solutions are supplemented
with data obtained from numerical simulations of finite size-systems. The
performed MC simulations allow us to verify to which extent the assump-
tions made are correct and can be used to systems of finite size.

We have simulated the Ising spin model on q-regular random graphs
using a hybrid Metropolis-type algorithm accounting for both the evolution
of the spins and the changes in the underlying geometry. The elementary
step of the algorithm consists of two parts. In the first switching part (see
Ref. [92]) a pair of edges, say A-B and C-D, is selected randomly with
uniform probability from all the edges in the graph. Next, their endpoints
are cross-exchanged to give A-D and B-C. Such moves preserve the degrees
of the vertices involved assuring that the graph remains regular. They are
always possible, since we permit multiedges and loops. The resulting local
energy change between the initial configuration µ and the final configuration
ν is

Eν − Eµ = −(sAsD + sBsC) + (sAsB + sCsD), (4.32)

where sA, . . . , sD are the spins at the corresponding sites. Following Eq. (1.81),
we do always accept the move when Eν −Eµ < 0 , and transitions to higher
energy configurations occur with the probability

A(µ→ ν) = exp {β [sA(sD − sB) + sC(sB − sD)]} . (4.33)

The second part is the classic single-spin-flip dynamics move (cf. Ref. [54]).
It consists of reversing one randomly chosen spin si with the probability

A(µ→ ν) = min
{

1, exp
(
−2βsi

∑
j 6=i

Aijsj

)}
, (4.34)

where the sum runs over all nearest neighbors of site i (recall that A is the
adjacency matrix of the graph). Because the weight of an edge does not
change when the spins at both its endpoints are flipped simultaneously we
omit in the above calculation self-connections by summing over j distinct
from i.

4.2.2 Magnetization

The net magnetization M of the system is defined by the difference in the
number of up and down spins,

M ≡ k − (n− k) = 2k − n = n (2z − 1) = nm, (4.35)
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where m is the per spin magnetization associated with the order parameter,

m = (2z − 1). (4.36)

Its average value can be calculated from

〈m〉 =

∫ 1
0 dz(2z − 1) e−nF (z)∫ 1

0 dz e−nF (z)
(4.37)

using either Laplace’s approximation around the minimum of F (z) in the
n→∞ limit, or by direct numerical integration for specific n.

Let z0 be the minimum of the F (z) function. Then Taylor’s expansion
of F (z) around z0 up to quadratic order equals

F (z) ≈ F (z0) +
1
2

(z − z0)2F ′′(z0), (4.38)

where we have used the fact that F ′(z0) vanishes at the extremum. The
denominator of Eq. (4.37) evaluates to∫ 1

0
dz e−nF (z) ∼ e−nF (z0)

∫ +∞

−∞
dz e−

1
2
(z−z0)2nF ′′(z0)

= e−nF (z0)

√
2π

nF ′′(z0)
, (4.39)

while the numerator to∫ 1

0
dz (2z − 1) e−nF (z) ∼ e−nF (z0)

∫ +∞

−∞
dz (2z − 1) e−

1
2
(z−z0)2nF ′′(z0)

= (2z0 − 1) e−nF (z0)

√
2π

nF ′′(z0)
, (4.40)

yielding
〈m〉 = 2z0 − 1. (4.41)

Therefore, in the large-size limit magnetization is defined by the value of z
minimizing the free energy function of the system. From now on, we will
use the letter m alone to denote the average magnetization per spin, and
omit the brackets 〈 · 〉 around it, which is a common practice in literature.

In high temperatures, which correspond to the values of the coupling
constant below the value given by Eq. (4.31), the function F (z) has only
one maximum at z0 = 1/2. On average, half of the spins are pointing up-
wards and the other half downwards resulting in the average magnetization
being zero (see Fig. 4.2). When the temperature is lowered, the minimum
splits and moves away from z = 1/2 causing the magnetization to become
non-zero. The system spontaneously chooses either of the two orientations,
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Figure 4.2: Average magnetization per spin m of the Ising model on 3-
regular random graphs as function of the generalized temperature T =
2/ ln g. At the critical temperature Tc the system changes continuously
from the ordered to the disordered phase.

which is called spontaneous symmetry breaking. In fact, the observed be-
havior is typical of the order-disorder phase transition occurring at the crit-
ical temperature Tc, which corresponds to the critical value of the coupling
parameter gc given by Eq. (4.31),

gc =
q

q − 2
. (4.42)

When g < gc the system is in the disordered phase. Intuitively, since all spins
are completely randomly oriented, they cancel each other. After passing the
critical point, ordering in the system appears and the magnetization becomes
finite.

The critical coupling value (4.42) agrees with the results obtained in
Refs. [82, 83] on Bethe lattices. This correspondence was already noticed in
Refs. [48, 50] which suggests that asymptotically the Ising model on random
graphs is equivalent to the Bethe lattice. This might appear surprising,
since our model allows loops and multiple edges, which are absent in the
Bethe lattice. The similarity is even more interesting considering that the
two classes of models are solved by seemingly completely different methods.
However, as argued in Ref. [93] the observed identity can be explained by
the fact that the ratio of the equations for φ+ and φ− fields maximizing the
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action in Eq. (4.5) (called by the authors saddle-point equations),
φ+ =

1
(q − 1)!

(
√
g φq−1

+ +
1
√
g
φq−1
−

)
,

φ− =
1

(q − 1)!

(
1
√
g
φq−1

+ +
√
g φq−1

−

)
,

(4.43)

reproduces the fixed points of the Bethe recursion relation. Intuitively, be-
cause the number of loops scales slower than n, it does not contribute to the
leading order of our asymptotic solution.

Expressions for the magnetization in the ordered phase can be obtained
for specific q from the zeros of F ′(z). For q = 3 we find

m =
g

g − 2

√
g − 3
g + 1

, g > 3, (4.44)

and in the q = 4 case

m =
g

g2 − 2

√
g2 − 4, g > 2. (4.45)

4.2.3 Susceptibility

The susceptibility per site,

χ =
1
n

(〈
M2
〉
− 〈M〉2

)
, (4.46)

can be calculated in a similar fashion to the magnetization using the leading
order approximation of the corresponding integrals,

〈
M2
〉

= n2

∫ 1
0 dz(2z − 1)2 e−nF (z)∫ 1

0 dz e−nF (z)
≈ 4n
F ′′(z0)

+ [n(2z0 − 1)]2 . (4.47)

Combining the above formula with the previous result for magnetization
given by Eq. (4.41) we get

χ =
4

F ′′(z0)
=

4
F ′′
[

1
2(1 +m)

] . (4.48)

In the symmetric phase where m = 0 one obtains

χ =
(

1− q

2
g − 1
g

)−1

, (4.49)

while in the broken symmetry phase the calculations for q = 3 lead to

χ =
4g

(g − 3)(g − 2)2(g + 1)
. (4.50)
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The derivation of a corresponding formula for q = 4 is straightforward.
When comparing analytical results to MC simulations we do actually

use a modified definition of susceptibility

χ̃ =
1
n

(〈
M2
〉
− 〈|M |〉2

)
(4.51)

instead of χ given by Eq. (4.46). This is motivated by the fact that the
average magnetization 〈M〉 is not well defined in numerical simulations. On
a finite lattice it is in principle zero across the whole range of g. Nevertheless,
in the broken symmetry phase its measured value will in general depend on
the algorithm used and the duration of the simulation. The average absolute
value of magnetization is given by the integral

〈|M |〉 = n

∫ 1
0 dz|(2z − 1)| e−nF (z)∫ 1

0 dz e−nF (z)
, (4.52)

and its approximation in the symmetric phase is given by

1
n
〈|M |〉2 =

2
π
χ. (4.53)

In the broken symmetry phase 〈|M |〉 = nm. We plot the resulting expres-
sion for χ̃ (dashed line) together with data obtained from MC simulations
in Fig. 4.3.

Instead of performing saddle-point approximation of the integrals (4.47)
and (4.52), we can integrate them numerically. The results are plotted
in Fig. 4.3 with solid lines. As one can see the agreement is very good
already for small systems, even if we keep only the leading order terms
given by Eq. (4.27). Including higher-order terms does not improve the
result significantly.

4.3 Correlations

The solution of the model coincides in the leading order of n with the Bethe
solution for Ising spins defined on infinite Cayley trees, or Bethe lattices,
with coordination number equal q [48]. Qualitatively this corresponds to
graphs with predominately long cycles, which can be locally considered as
tree-like. Such approximation allows us to derive the correlation functions
using the transfer matrix approach originally proposed for branched poly-
mers [79] assuming that there is only one path between the two vertices of
interest some distance r apart.

The partition function of the Ising model on Cayley trees can be obtained
from that of the model defined on an ensemble of planted trees. These are
trees with an additional external phantom node attached to the root, which
can be thought of as a handle by which the trees are glued together—we
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Figure 4.3: χ̃ as a function of the coupling g for q=3. Circles (blue) render
MC data for graphs of size n = 1000 and squares (red) for those ones of
size n = 8000 vertices. The error bars show statistical uncertainty which
increases near the transition. The solid lines plot the corresponding results
of numerical integration whereas the saddle-point approximation is given by
the dashed line.

shall refer to it as the stem. The partition function of planted trees may be
distinguished into Φ+ and Φ− depending on the value of the spin carried by
the external node. The original partition function Z is then given by the
partition functions of q such trees connected by their stems,

Z =
1
q!
(
Φq

+ + Φq
−
)
. (4.54)

The relative ordering of the individual components is irrelevant, hence the
1/q! factor.

The partition functions Φ± of planted trees decorated by Ising spins can
be recursively defined by:

Φ+ =
1

(q − 1)!

(
√
gΦq−1

+ +
1
√
g

Φq−1
−

)
,

Φ− =
1

(q − 1)!

(
1
√
g

Φq−1
+ +

√
gΦq−1

−

)
.

(4.55)

A graphical representation of these equations is depicted in Fig. 4.4, in which
the generating functions for Cayley trees with coordination number equal
three are shown. The bright bubbles correspond to Φ+, the dark ones to
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+=

+=

Figure 4.4: Graphical representation of the generating equations (4.55) for
coordination number q= 3. The bright bubbles correspond to Φ+ and the
dark ones to Φ−. The bright and dark points are the vertices carrying the
+ and − spins, respectively.

Φ−, and the bright and dark points stand for vertices carrying the “up” and
“down” spins, respectively. In each of Φ± the root can be connected to a
vertex carrying either an “up” or a “down” spin, to which q−1 components
Φ± are attached.

Eqs. (4.55) are analogous to those of Ising spins arranged on branched
polymers [79]. The difference is that here the probability of ending the
branch is zero, which formally means that the considered trees are infinite.
Hence, there is no chemical potential associated with each vertex.

The solution of Eqs. (4.55) depends on the side of the criticality. For
g ≤ gc the system is in the symmetric phase and Φ+ = Φ−. Then both
equations reduce to one,

Φ± =
1

(q − 1)!

(
√
g +

1
√
g

)
Φq−1
± , (4.56)

which can be readily solved yielding

Φq−2
± =

√
g

1 + g
(q − 1)! =

1
2 coshβ

(q − 1)!. (4.57)

When g > gc the symmetry is broken and the functions Φ+ and Φ−
become distinct, resulting in a non-zero net magnetization. Then, however,
the system cannot be solved analytically for general q. A few sample so-
lutions for specific values of q ranging from 3 up to 6 are summarized in
Tab 4.1. Magnetization in the symmetry-broken phase is given by [47],

m =
Φq

+ − Φq
−

Φq
+ + Φq

−
. (4.58)
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q Φ±

3
√
g

g − 1

(
1±

√
g − 3
g + 1

)

4

3
√
g
(
g ±

√
g2 − 4

)
g2 − 1


1
2

5
{

6
√
g

g2 − 1

[
3g + 1−A±

√
−10− 2A+ 2g (g +A)

]} 1
3

where A =
√

5 + g (g + 2)

6
{

30
√
g

g2 − 1

[
3g −

√
4 + g2 ∓

√
−12 + 2g

(
g +

√
4 + g2

)]} 1
4

Table 4.1: Analytical solutions of Eqs. (4.55) in the symmetry-broken phase
for a few sample values of the branching factor q.

If we now substitute into the above equation values from Tab. 4.1, we will
obtain expressions identical to those calculated in Sec. 4.2 for q = 3 and
q = 4 given by Eqs. (4.44) and (4.45).

To proceed with correlation functions let us consider a chain of r + 1
vertices along the path joining points i and j, depicted in Fig. 4.5. To each
of the r−1 intermediate vertices q−2 rooted labeled trees are attached, which
can be freely permuted in (q − 2)! ways. The endpoints are connected to
q−1 such trees. The spin of each vertex may be either “up” or “down”, and
every link is weighted by the usual two-point weight

(√
g
)sisj , where si and

sj are the spins carried by its ends. The sum over all possible arrangements
of spins on the chain can be expressed in matrix notation by

Z(r)ij =
1

[(q − 1)!]2
Φq−1
x

 r−1︷ ︸︸ ︷
∆M · · ·∆M ∆


ij

Φq−1
y , (4.59)

where

M ≡ 1
(q − 2)!

(
Φq−2

+ 0
0 Φq−2

−

)
. (4.60)

It will be convenient to transform Eq. (4.59) into a more compact form using
matrices

M
1
2 =

1√
(q − 2)!

Φ
q−2
2

+ 0

0 Φ
q−2
2

−

 , (4.61)
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1 2 r−1

Figure 4.5: Graphical representation of the correlation function Z(r)ij given
by Eq. (4.59) for q= 3. Bubbles depict Φ± and points stand for individual
vertices connected by links associated with ∆. Only the first and the last
vertex have specific spins and each of them contributes by a 1

2Φ2
± factor.

The spin of the r−1 vertices along the path connecting them can be either
“up” or “down” which is covered by the matrix M.

and
Q̃ ≡ M

1
2 ∆M

1
2 , (4.62)

which allow us to rewrite Z(r)ij in the form

Z(r)ij = (q − 2)!
Φq−1
x M

− 1
2

xx

(q − 1)!

(
M

1
2 ∆M

1
2

)r
ij

M
− 1

2
yy Φq−1

y

(q − 1)!

= (q − 2)!
Φ

q
2
x

(q − 1)!
Qrij

Φ
q
2
y

(q − 1)!
. (4.63)

The matrix power in Eq. (4.63) can be now calculated by diagonalizing Q.
If λ1 and λ2 are the eigenvalues of Q, and the corresponding normalized
eigenvectors are (a, b) and (−b, a), respectively, then

Q = P
(
λ1

λ2

)
P−1, (4.64)

where

P =
(
a −b
b a

)
(4.65)

is the matrix composed of the eigenvectors of Q. For normalized eigenvectors
det P = 1 and we have

P−1 =
(
a b
−b a

)
. (4.66)

It follows that the matrix power Qr can be expressed by the above

Qr =
(
a −b
b a

)(
λr1

λr2

)(
a b
−b a

)
. (4.67)
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Technical details concerning the calculation of eigenvalues and eigenvectors
of Q are given in Appendix D. The final results for λ1 and λ2 are:

λ1 = q − 1 , (4.68)

λ2 = (q − 1)
[ √

g

(q − 1)!
(Φq−2

+ + Φq−2
− )− 1

]
≡ (q − 1) λ̃2 , (4.69)

and the eigenvector is given by

(
a
b

)
=

1√
Φq

+ + Φq
−

Φ
q
2
+

Φ
q
2
−

 . (4.70)

In the following we will concentrate on calculating the ordinary two-
point spin-spin correlators, from which the expression for the connected
correlation function will be derived. To proceed, let us recall the basic
correlators introduced in Secs. 1.4.1 and 1.4.2,

Gss(r) =
1
n

〈∑
i,j

sisjδd(i,j),r

〉
, (4.71)

Gs1(r) =
1
n

〈∑
i,j

siδd(i,j),r

〉
, (4.72)

G11(r) =
1
n

〈∑
ij

δd(i,j),r

〉
. (4.73)

These are useful in defining the distance-dependent averages (1.26) and
(1.28):

〈ss(r)〉 =
Gss(r)
G11(r)

, (4.74)

〈s(r)〉 =
G1s(r)
G11(r)

. (4.75)

For the connected correlation function we will rely on the definition (1.29),

Gssc (r) ≡ 1
G11(r)

〈∑
i,j

(si − 〈s〉) (sj − 〈s〉) δd(i−j),r

〉
= 〈ss(r)〉 − 2m 〈s(r)〉+m2, (4.76)

because it has the property of integrating to susceptibility,∑
r

Gssc (r)G11(r) = χ. (4.77)
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Figure 4.6: Ratio of the correlation function G11(r) obtained from MC
simulations of ensembles of various sizes with q= 3 at gc = 3 to its infinite
volume limit q (q − 1)r−1.

The G11(r) correlation function is a volume-factor: it is the average
number of vertices at the distance r from some given vertex. On an infinite
Cayley tree with fixed geometry it equals

G11(r) = q (q − 1)r−1. (4.78)

Figure 4.6 presents the ratio of G11(r) measured in MC simulations to its
infinite volume limit (4.78). Please note the scaling relation evident from
the graph:

2G11(r;n) = G11(r + 1; 2n). (4.79)

This can be also written as

G11(r) = nF
(

2r

n

)
= n F̃(r ln 2− lnn). (4.80)

The volume factor scales with distance like G11(r) ∝ 2r, which indicates
that the Hausdorff dimension dH of the system, as defined in Eq. (3.59), is
infinite, dH = ∞.

The two-point correlation functions (4.71), (4.72), and (4.73) can be
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expressed using Z(r)ij as:

G11(r) =
1
Z

∑
ij

Z(r)ij , (4.81)

G1s(r) =
1
Z

∑
ij

siZ(r)ij , (4.82)

Gss(r) =
1
Z

∑
ij

sisjZ(r)ij . (4.83)

Substituting the previously derived expression (4.63) for Z(r)ij and per-
forming the summation over spins we readily obtain

G11(r) =
1
Z

λr1(aΦ
q
2
+ + bΦ

q
2
−)2 + λr2(bΦ

q
2
+ − aΦ

q
2
−)2

(q − 1)!(q − 1)
, (4.84)

G1s(r) =
1
Z

λr1(a2Φq
+ − b2Φq

−) + λr2(b2Φq
+ − a2Φq

−)
(q − 1)!(q − 1)

, (4.85)

Gss(r) =
1
Z

λr1(aΦ
q
2
+ − bΦ

q
2
−)2 + λr2(bΦ

q
2
+ + aΦ

q
2
−)2

(q − 1)!(q − 1)
. (4.86)

The above correlation functions can be calculated using the values of λ1, λ2,
a, and b, given by Eqs. (4.68), (4.69), and (4.70) yielding

G11(r) =
1
Z

(q − 1)r−1

(q − 1)!
(
Φq

+ + Φq
−
)
, (4.87)

G1s(r) =
1
Z

(q − 1)r−1

(q − 1)!
(
Φq

+ − Φq
−
)
, (4.88)

Gss(r) =
1
Z

(q − 1)r−1
(
Φq

+ − Φq
−
)2 + 4Φq

+Φq
−λ̃

r
2

(q − 1)!
(
Φq

+ + Φq
−
) . (4.89)

If we now recall the definition of Z (4.54) we will finally obtain for
G11(r) the same result as previously given by Eq. (4.78), which proves the
consistency of the method used. Similarly, the rest of spin-spin correlation
functions reduce to:

G1s(r) = q(q − 1)r−1 Φq
+ − Φq

−
Φq

+ + Φq
−

= m G11(r) , (4.90)

Gss(r) = q(q − 1)r−1

[
4Φq

+Φq
−

(Φq
+ + Φq

−)2
λ̃r2 +

(
Φq

+ − Φq
−

Φq
+ + Φq

−

)2
]

= G11(r)
[

4Φq
+Φq

−
(Φq

+ + Φq
−)2

λ̃r2 +m2

]
. (4.91)
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Figure 4.7: Correlation function 〈ss(r)〉 for q=3. Symbols render MC data
for graphs of size n=256000 in the symmetric phase for g=2.5 (diamonds),
at the transition gc=3 (squares), and in the symmetry-broken phase for g=
3.5 (circles). Solid lines plot the analytical predictions given by Eqs. (4.92)
and (4.94).

In the symmetric phase, when m = 0 and Φ+ = Φ− are given by
Eq. (4.57), we immediately get

〈ss(r)〉 =
Gss(r)
G11(r)

=
(
g − 1
g + 1

)r
= tanhr β, (4.92)

which agrees with the result obtained in Ref. [88] and coincides with the
correlation function of an Ising spin chain (cf. Ref. [94]). It is easy to check
that the relation (4.77) is satisfied by the above function.

Combining Eqs. (4.90) and (4.91) with the definition of the connected
correlation function (4.76) we get

Gssc (r) =
4Φq

+Φq
−

(Φq
+ + Φq

−)2
λ̃r2. (4.93)

Using the values from Tab. 4.1 we obtain in the symmetry-broken phase for
q = 3,

〈ss(r)〉 =
4

(g − 2)2(g + 1)
1

(g − 1)r
+m2, (4.94)

and for q = 4,

〈ss(r)〉 =
4

(g2 − 2)2
1

(g2 − 1)r
+m2. (4.95)
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Figure 4.8: Correlation function 〈ss(r)〉 at the transition g = gc for different
values of q. Points represent MC results for graphs of size n= 64000 while
the solid lines plot the analytical predictions. Please note that for q=6 the
maximum encountered distance (the diameter of the graph) is r=9.

Although similar formulas can be derived for higher values of q, they are
much more complicated.

The range of fluctuations of the order parameter of the system are char-
acterized by correlation length ξ defined by (see, e.g., Refs. [27, 36])

Gssc (r) ∝ e−r/ξ. (4.96)

The correlation length of Ising spins on Bethe lattices is finite for all values
of g and does not diverge at the phase transition unlike in typical models
studied in statistical physics. This might appear surprising, but it is an
intrinsic property of the model related to the fact that the diameter of the
system scales with the number of sites as ln(n). Accounting for it, we shall
rather use the Gss(r) correlation function to extract the correlation length,
for which ξ diverges at the critical point gc as expected.

Figure 4.7 plots the correlation function 〈ss(r)〉 for q = 3 and different
values of g. As one can see the agreement with MC results is very good.
In Fig. 4.8 correlation functions for different q’s at the respective transition
points g = gc are compared. Again, MC results match the asymptotic pre-
dictions. The small discrepancies diminish with the increase of the graphs’
size.
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Figure 4.9: Average number of loops nl in graphs of size n=32000 vertices
and q = 3. The black points represent MC data and the dashed red line
marks the transition point β=βc.

4.4 Influence of spins on geometry

On a finite tree spins can be integrated out exactly and the resulting factor
does not depend on the shape of the tree. This means that the spins do
not have any influence on the geometry. The situation changes when cycles
are allowed, which is especially obvious for loops, i.e., links attached at
both ends to the same vertex. Without any spins or β = 0 one can show
combinatorially that the expected number of such loops on a graph equals
(q − 1)/2. For positive β, however, we should observe an enhancement as
each loop contributes the eβ factor to the partition function contrary to links
joining different vertices which can have different spins. For β →∞ all the
spins have the same sign and again the geometry decouples.

In Fig. 4.9 we plot the average number of loops nl as a function of β.
The results agree qualitatively with the above scenario. Nevertheless, one
should note that while looking pronounced this is still only a 1/n effect. The
number of loops is independent of n and negligible in the large volume limit.



Chapter 5

Random graph model with a
phase transition

In the previous chapter we have discussed an Ising spin model arranged
on regular random graphs. The order parameter of that model is the spin
value at each vertex and we have shown that the system undergoes a phase
transition between the ordered and disordered phase. The topology of the
underlying graphs is locally tree-like: in the large-volume limit the cycles
become predominately long, so they have virtually no influence on the spin
structure. Similarly, as the number of loops and multiple edges scales slower
than n these local degeneracies are negligible as well. All this results in
the behavior of the model identical to Bethe lattices with corresponding
coordination number.

In this chapter we study a similar, but purely geometrical model. Geo-
metrical in this context means that the geometry configuration itself deter-
mines the state of the system and no additional spin structure is introduced.
Unlike in the Ising model previously discussed, we do not restrict ourselves
to regular graphs anymore and allow vertices with varying number of neigh-
bors. As a consequence, we may now associate the order parameter of the
system with vertex degrees.

One possible choice is to distinguish between two types of vertices: ones
with odd degrees and ones with even degrees. The simplest model imple-
menting this concept are random graphs with vertex degrees equal 2, 3, and
4. We shall solve the model and show that in the leading order the solution
coincides with the solution derived for the Ising model defined φ3 Feynman
diagrams from the previous chapter. Thus, asymptotically both models are
thermodynamically equivalent and exhibit the same critical behavior.

Nevertheless, although the solutions of these two models coincide, qual-
itatively they are completely different, and so the nature of the phase tran-
sition observed: it consists in a rearrangement of the graph’s geometrical

95



96 5. RANDOM GRAPH MODEL WITH A PHASE TRANSITION

structure rather than the alignment of the spins. The proposed model is
useful in the sense that there are only few models exhibiting an exclusively
geometrical phase transition.

5.1 Definition of the model

Let us consider unlabeled graphs G(n) of size n and average vertex degree
equal 〈q〉 = 3. For a fixed number of vertices the number of edges is definite
and equal l = 1

2 〈q〉n = 3
2n, which implies that n has to be even. Further-

more, we narrow the set of possible vertex degrees by allowing vertices with
degrees 2, 3, and 4 only. There are no further restrictions considering the
topology. In particular, multigraphs containing multiple edges and loops are
covered by this definition. Similarly as in the previous chapter, we will refer
to these graphs shortly as random graphs.

One could ask, why not just take graphs build of vertices having only two
distinct degree values, say 3 and 4, for example? Then, however, it would be
impossible to keep the number of vertices and links simultaneously constant
leading to problems with numerical simulations and with the thermodynamic
limit.

The smallest possible ensemble of the described type is that for n = 2
presented in Fig. 5.1. It consists of four graphs in total, three of which
are connected, and one has two separate components. The next in size
ensemble is that with n = 4, as for n = 3 it would be impossible to keep the
desired average vertex degree equal 3. All of the fifty-five graphs forming the
ensemble are depicted in Fig. 5.2, and the corresponding symmetry factors
listed in Tab. 5.1.

The number of non-isomorphic shapes grows rapidly with the increase of
the graphs’ size n (by definition, isomorphic graphs differ from each other
only by vertex and edge labels). We have checked that there are 1072 topolo-
gies made up of six vertices, but found it hard to enumerate all the possi-
bilities in acceptable time for graphs as small as n = 8 already.

1 2 3 4

Figure 5.1: Ensemble of all graphs with n = 2 vertices. Topologies 1,
2, and 3 are connected, whereas topology 4 has two separate components.
The corresponding symmetry factors are as follows: s(1) = 4, s(2) = 8,
s(3) = 12, s(4) = 16.
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So far we have considered unlabeled graphs. These are identical to the
corresponding Feynman diagrams containing vertices of degree 2, 3, and 4,
which are generated by the perturbative expansion of integrals appearing
in the zero-dimensional field theory as discussed in Sec. 1.5. This analogy
provides a useful way to enumerate them systematically and we will make
use of it in the following section.

In the following we will be actually interested in the properties of the
canonical ensemble of fully labeled random graphs Gfl(n) defined by the
canonical partition function

Z(n) =
1

n!(2l)!

∑
G∈Gfl(n)

w(G), (5.1)

where 1/n!(2l)! accounts for the possible permutations of indices. The
weights w(G) of individual graphs depend on their properties and are dis-
cussed in detail later on. When it comes to pure topology, all the graphs
from this ensemble share the same structural weight and are equiprobable.
Each shape from the former unlabeled ensemble corresponds to a number of
such labeled graphs. These two ensembles can be related by the symmetry
factors s(G) associated with Feynman diagrams (see Sec. 1.5.3). The par-
tition function of the labeled ensemble (5.1) is equivalent to the partition
function of the unlabeled topologies G(n), i.e., Feynman diagrams, weighted
by symmetry factors,

Z(n) =
∑

G∈G(n)

1
s(G)

w(G). (5.2)

The main reason why it is convenient to work with labeled diagrams rather
than bare topologies is that the former ones are the native representation of
graphs in numerical simulations.

Now we come back to the weights w(G). They depend solely on the
graph’s topology and are a product of one-point and two-point weights,

w(G) =
∏
i∈G

wqi
∏

{j,k}∈G

wqj ,qk , (5.3)

where qi is the i-th vertex degree, and by {j, k} we mean the edge join-
ing vertices i and j. The model is parametrized by two variables σ and g
corresponding to one- and two-point weights, respectively.

The one-point weights are assigned to vertices in a way that each vertex
of odd degree contributes by a σ factor, while every vertex having an even
degree carries σ−1. Formally,

wq =


σ if q = 3,
σ−1 if q ∈ {2, 4},
0 otherwise.
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1 2 3 4 5 6 7

8 9 10 11 12 13 14

15 16 17 18 19 20 21

22 23 24 25 26 27 28

29 30 31 32 33 34 35

36 37 38 39 40 41 42

43 44 45 46 47 48 49

50 51 52 53 54 55

Figure 5.2: Ensemble of all graphs with n = 4 vertices. Topologies 1–27
are connected, 28–48 and 49–54 have two and three separate components,
respectively, and the last one consists of 4 disjoint vertices. The correspond-
ing symmetry factors are listed in Tab. 5.1. The diagrams were plotted and
their corresponding symmetry factors calculated using the Mathematica
package FeynArts [95].
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Symmetry factor s Topology No.

2 1

4 2, 3, 4, 5, 6

8 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17

12 18, 19, 20

16 21, 22, 23, 24, 25, 28, 29, 30, 31, 32

24 26, 33, 34

32 35, 36, 37, 38, 39, 40

48 27, 41

64 42, 43, 44, 49

96 45

128 46, 50, 51

192 47, 52

288 48

384 53

512 54

1024 55

Table 5.1: Symmetry factors of the graphs from the n = 4 ensemble in
Fig. 5.2.

Such a choice narrows the possible degrees of graph’s vertices down to 2, 3,
and 4 only. From now on we will shortly refer to vertices having degree 3 as
odd vertices, and those with even degrees as even vertices.

The two-point weights are symmetric and parametrized by the coupling
strength g. Each edge connecting vertices of the same type, i.e., both having
odd/even degrees, carries a

√
g factor, whereas edges joining vertices of

different parity are weighted by 1√
g . This can be summarized by

wqi,qj = g
1
2
−[(qi+qj) mod 2]. (5.4)

5.2 Solution

As it was put forward in the previous section, the graphs from the intro-
duced ensemble are identical with Feynman diagrams appearing in zero-
dimensional field theory. Therefore, the partition function of the model can
be generated by similar means as the partition function of the Ising spins on
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regular random graphs from the previous chapter given by Eq. (4.5). The
difference is that now the fields do not distinguish between spins put on
vertices but between vertex degrees. Thus, after relating the odd and even
vertices to the φo and φe fields, respectively, the grand-canonical partition
function Z(µ) is given by the perturbative expansion of the integral,

Z(µ) =
1

2π

∫
dφodφe exp

{
−1

2
φT∆−1φ+ e−µ

[
σ

3!
φ3
o +

1
σ

(
1
2!
φ2
e +

1
4!
φ4
e

)]}
.

(5.5)
Here

φ ≡
(
φo
φe

)
, (5.6)

and ∆ defines the transfer matrix identical to the previous one (4.7),

∆ ≡

(√
g 1√

g
1√
g

√
g

)
. (5.7)

Let n be the total number of vertices in a graph and k be the number of odd
vertices. Following the scheme from Chapter 4 we rewrite the σ dependend
part of the exponent in Eq. (5.5) as infinite series and perform binomial
expansion of the resulting expression:
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φ3k
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In the above we have used the fact that since vertices with even degrees
are evenly distributed between the ones having degree two and those with
degree four, the number of vertices in each of the classes equals (n− k)/2.

We may now extract the canonical partition function Zn of graphs with
a specific number of vertices n using the relation (4.10),

Zn =
1

2π

n∑
k=0

σ2k−n 1
k!

[(
n− k

2

)
!
]−2 1

6k 48
n−k

2

×
∫ +∞

−∞
dφodφe e−

1
2
φ T ∆−1φ φ3k

o φ3(n−k)
e . (5.9)
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Likewise for the Ising spin model from the previous chapter, it is convenient
to switch to the rescaled fields,

ψo,e ≡
1√
n
φo,e, (5.10)

and use the fraction of odd vertices,

z ≡ k

n
,

rather than their number k. In these new variables the partition function
Zn takes in the asymptotic limit n→∞ the form

Zn =
n

2π
An

∫ 1

0
dz Bn(z)

∫
dψodψe enf(ψo,ψe), (5.11)

where

f(ψo, ψe) = −1
2
ψ T∆−1ψ + 3 [z lnψo + (1−z) lnψe] , (5.12)

and

An = exp
(

3
2
n lnn

)
, (5.13)

Bn(z) = σ2k−n 1
k!

[(
n− k

2

)
!
]−2 1

6k 48
n−k

2

. (5.14)

The function f(ψo, ψe) given by Eq. (5.12) is identical to the correspond-
ing function of the Ising model given by Eq. (4.15) for q = 3. Therefore, we
may almost immediately write the final result for the partition function

Zn ∼ e−nCn

∫ 1

0
dz e−nF (z), (5.15)

where F (z) is now given by

F (z) ∼ −3
[
z lnψo + (1− z) lnψe

]
− 1
n

lnBn(z), (5.16)

and ψo, ψe denote the extremum of the f function. We still have to calculate
the lnBn(z) term in F (z). Its leading order in n approximation using the
Stirling formula (4.24) yields

1
n

lnBn(z) ∼ −z ln z − (1− z) ln (1− z) + z

(
2 lnσ − 1

2
ln 3
)

+ 1− ln (2
√

3σ n). (5.17)
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By plugging the above expansion into Eq. (5.16) and drawing outside the
integral the terms which do not depend on z we get for F (z) in the leading
order,

F (z) ∼ z ln z + (1− z) ln (1− z)− 3
[
z lnψo + (1− z) lnψe

]
−z
(

2 lnσ − 1
2

ln 3
)
, (5.18)

and for the volume factor

Cn = − ln
[
π
(
3n eσ2

)−n
2

]
. (5.19)

We shall now compare Eq. (5.18) to the corresponding expression for the
Ising model FIsing(z) with coordination number q = 3 from Chapter 4. Both
models differ by

FIsing(z)− F (z) = z

(
2 lnσ − 1

2
ln 3
)
, (5.20)

which is the F (z) = F (1−z) symmetry breaking term. Using the analogy to
spin systems we may write σ = eh and interpret h as the externally applied
magnetic field. When

σc = 4
√

3 (5.21)

the difference (5.20) cancels and in the leading order in n approximation the
considered model is equivalent to the previously discussed Ising model on
3-regular random graphs. However, unlike in the spin model, the symmetry
is retained only in the leading order and broken by higher-order terms.

Figure 5.3 contains plots of the F (z) function for various values of the
g and σ parameters. We already know the critical coupling value from the
Ising model: it is given by Eq. (4.42) and for q = 3 reads gc = 3. The
external field σ controls the strength of the asymmetric term in F (z), which
depends linearly on z. For σ < σc it is an increasing function in z and a
decreasing one for σ > σc. It contributes to the free energy function either
by raising its values at the z → 1 end (top row of Fig. 5.3) or by lowering it
(bottom row of Fig. 5.3).

The order parameter of the model m is now the per spin difference in
odd and even vertices in the system. It can be approximated in a similar
fashion as in the case of the Ising model by the value of z0 minimizing the
F (z) function,

m = 2z0 − 1. (5.22)

We plot the above expression for m in the (g, σ) parameter space in Fig. 5.4,
where one immediately recognizes the phase transition with increasing g. A
section of this surface in the plane of σ = σc is shown in Fig. 5.5, where
points obtained from MC simulations are additionally rendered. We see that
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Figure 5.3: Plots of the F (z) function in a (σ, g) parameter grid. σ changes
between the rows: in the first one σ = 1.2, in the middle one σc = 4

√
3, and

in the last one σ = 1.4. Each of the rows contains plots for three different
values of g: below the critical point for g = 2.5, at the transition for gc = 3,
and in the broken symmetry phase for g = 3.5.
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Figure 5.4: The relationship between the average magnetization m and the
parameters g and σ. Figure 5.5 shows a section of this surface in the plane
of σ = σc, whereas Fig. 5.6 shows two sections at g = gc and g > gc.
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Figure 5.5: The magnetization per spin m as a function of g. This pic-
ture corresponds to the previous one for the Ising spin system (cf. Fig. 4.2)
with the difference that now we plot the magnetization as a function of the
coupling parameter g rather than the generalized temperature T = 2/ ln g.
Points represent MC simulation results of a system of size n = 64000.
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Figure 5.6: The magnetization per spin m as a function of σ. The solid line
corresponds to the critical value of the coupling parameter gc = 3, and the
dashed line to g = 3.5. Points represent MC simulation results of a system
of size n = 64000.
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Figure 5.7: Correlation function 〈ss(r)〉. Symbols render MC simulation
results for a system of size n = 128000. Solid lines plot the analytical
predictions for the Ising model given by Eqs. (4.92) and (4.94).

at the critical value gc the system changes continuously from the disordered
to the ordered phase.

Above the critical coupling value gc the magnetization m is a discontin-
uous function of σ. Figure 5.6 contains plots of the average magnetization
m as a function of σ at the criticality g = gc and in the ordered phase for
g = 3.5. When we vary σ the system changes suddenly at σc = 4

√
3 from

the even to the odd configuration. It is evident that σ plays the role of
a switching parameter determining the type of ordering in the system: its
values above σc select the odd phase, while the even phase is favored by
σ < σc.

In the following section we shall compare the asymptotic approximation
developed for the Ising spin model to numerical results obtained from MC
simulations of the random graph model from this chapter.

5.3 Monte Carlo simulations

We have found that in the asymptotic limit of infinite system size and for
σ = σc the solution of the random graph model with a phase transition from
the current chapter is identical to the solution of the Ising model arranged
on regular random graphs. Therefore, we expect both models to exhibit the
same behavior and we may infer the properties of the former one using the
formulas developed for the Ising spins. This is especially useful in the case
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Figure 5.8: Correlation function 〈ss(r)〉 in the broken symmetry phase.
Points render MC results for various system sizes, while the solid line denotes
the analytic formula (4.94). Statistical errors are not larger than the size of
the points.

of the quantities for which we do not know a simple derivation of analytic
formulas, in particular the correlation functions. The method from the
previous chapter applied to calculate them does not work anymore, as there
is no way to impose the condition of the numbers of vertices with degrees
2 and 4 being equal. It is interesting to confront the asymptotic results
derived in Chapter 4 with MC simulations of the current model and see to
which extent these two match.

At this point we would like to stress that although the mathematical
description of these two models is the same, their nature of the underlying
systems is completely different. While for the Ising model the orientation
of spins determines the behavior of the system, in the random graph model
the geometrical rearrangement of the network itself is crucial.

In order to gain insight in the behavior of the correlation functions we
have performed numerical simulations of the model using a Metropolis type
algorithm, similar to these ones from the previous chapters. The elementary
updates of the network were carried out using edge rewiring performed as
follows. First, a random edge, say A-B, and a new attachment point C were
drawn. In order to keep the constrains of the model, the edge was detached
from its endpoint B and attached back to C only if the degree of B was
greater than two, and the degree of the destination point C was smaller than
four. If not the case, the move was skipped but still counted to ensure the
detailed balance condition, similarly as in the situation when B = C, which
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does not change the system at all. Actual updates were performed according
to the Metropolis probability given by Eq. (1.81). The local change of the
network’s weight was calculated by iterating through the connections of the
detachment point B and the attachment point C accounting for some special
cases arising due to degeneracies in the form of loops and multiedges and
situations when B and C are nearest neighbors.

We compare the numerical results obtained for the correlation function
〈ss(r)〉 of the current random graph model to the analytic formulas (4.92)
and (4.94) derived for the Ising spin model from Chapter 4. In the disordered
phase and at the transition, the asymptotic predictions of the previous spin
model are rather well reproduced by the numerical simulations of the current
geometrical one—see Fig. 5.7. However, in the ordered phase we notice some
discrepancies; these are plotted for better visibility in a magnified scale in
Fig. 5.8. It is evident from the plot that this deviation does not diminish
with the increase of the size n of the system and tends asymptotically to
a curve laying significantly below the theoretical one for the Ising model.
Note that the convergence is rather slow since the scaling of the diameter of
the system is logarithmic in n.

Summarizing, the observed differences between the spin and the geo-
metrical model can be explained by the fundamentally different nature of
these two models. In particular, in the geometric model of random graphs
the symmetry is, unlike in the Ising model, not exact and broken by higher-
order terms. In a spin system each configuration has its reversed counterpart
obtained simply by flipping all the spins. In the geometrical model, on the
other hand, such an analogy does no longer exist since there is no simple
one-to-one correspondence between a given topology and one with the op-
posite ratio of odd to even vertices. Obviously, one cannot just exchange
the odd vertices for the even ones and vice versa, since the connectivity of
the resulting graph would be undetermined.



Chapter 6

Summary and Conclusions

In the first part of this dissertation we were primarily concerned with the
study of structural correlations in connected random graphs with arbitrary
degree distribution. We have calculated them analytically and showed that
even though there are no explicit interactions between nodes in the system,
their degree is correlated. These correlations are of disassortative type and
are induced by the additional structural constraint of being connected.

In Chapter 2, in particular, we have derived analytic formulas for the
joint probability distribution quantifying nearest-neighbor degree correla-
tions in maximally random connected graphs by relating them to the giant
connected component. This extends the results obtained previously by the
authors of Refs. [20, 68, 69]. Our research strongly indicates that these cor-
relations are related to the presence of leaves, i.e., nodes with degree one. We
have found a very firm support for this conjecture: correlations disappear in
MC simulations of connected graphs with explicitly forbidden leaves. This
suggests that the only reason for the observed correlations is the absence
of small two-vertex components and hedgehogs—components composed of a
central vertex and a number of leaves attached to it. This has been already
stated by Bia las in Ref. [44], where the author has shown that in the grand-
canonical ensemble of arbitrary-sized trees, in which hedgehogs are present,
correlations vanish. This is a very interesting issue which clearly deserves
further attention.

We have concluded Chapter 2 by suggesting a novel and effective
method of generating maximally random connected graphs with desired de-
gree distribution pk(g) based on the Metropolis algorithm. Namely, using
the formulas from Sec. 2.6 we first calculate the degree distribution pk of
a disconnected ensemble, whose giant connected component will have the
required degree distribution pk(g). Then, instead of generating connected
graphs directly, we simulate the larger disconnected ones and use their gi-
ant component. This is by far more efficient as we do not have to check
each time whether the rewiring does not disconnect the graph, which is an

109
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O(N) operation. Therefore, the described procedure reduces the execution
time drastically and allows one to simulate even large connected graphs in
reasonable time.

In Chapter 3 we have extended our study of nearest-neighbor correla-
tions from the previous chapter to greater distances by specializing to ran-
dom trees from the generic phase. We have calculated them exactly in the
large-size limit and showed that they remain disassortative at all distances
and vanish only as an inverse second power of the distance. The appearance
of the long-range correlations in generic trees is puzzling, since normally
power-like or scale-free behavior of correlations manifests itself near a phase
transition. However, the studied trees are, except for the scale-free ones,
not critical (cf. Refs. [77, 78, 96]). Although the mechanism of the correla-
tions between adjoining vertices is rather easy to explain, it remains to be
understood how this effect propagates to larger distances.

The correlations observed in connected random graphs are an exam-
ple of the so-called structural or kinematic correlations which are a conse-
quence of some global constraints. They should be contrasted with dynamic
correlations whose origin are local two-point interactions between vertices
and which can be generated by ascribing two-point weights to links [79].
This distinction might be vital, for example, in simplicial quantum gravity
where degree-degree correlations correspond to curvature-curvature corre-
lations (see, e.g., Ref. [38]). Since the simplicial manifolds are connected
by definition, curvature correlations could be attributed to the above de-
scribed mechanism rather than to some kind of gravitational interaction
(cf. Refs. [44, 97]). We deeply believe that our results will help in clarifying
such issues and in interpreting data obtained from MC simulations.

In the remainder of the thesis we have focused on critical phenomena
occurring in random geometries. Our ultimate goal was to construct and
investigate a random geometry model with a geometrical phase transition
within its pattern of connections. To this end we have adopted connected
random graphs with additional restrictions imposed on vertex degrees.

In order to gain experience and to train our intuition we have first con-
sidered in Chapter 4 classic Ising spins in the environment of regular ran-
dom graphs, i.e., maximally random (pseudo)graphs with fixed connectivity
q. In the large-volume limit this model is formally equivalent to the Ising
model on the Bethe lattice. Nevertheless, it has the advantage that it is
well defined, has a genuine mean-field phase transition, and can be easily
simulated using MC methods. We have calculated the partition function of
the model illustrating the approach in which regular random graphs were
related to corresponding Feynman diagrams appearing in the graphical per-
turbation expansion of integrals from quantum field theory. Additionally,
we have derived expressions for correlation functions in both the symmetric
and the symmetry-broken phase with less formal methods than the ones
traditionally used (cf. Ref. [88]). From these calculations we got a picture of
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the phase transition. The correlation function 〈ss(r)〉 does not exhibit any
critical behavior: the correlation length is finite for any finite coupling g.
Nevertheless, the volume factor G11(r) grows exponentially and this growth
compensates the decay of the correlation function 〈ss(r)〉. As we increase
r by one, the influence of the spins at this distance drops by a factor of
(g − 1)/(g + 1). At the same time, however, their number increases by a
factor of q − 1. When these rates are equal, that is, when

g + 1
g − 1

= q − 1, (6.1)

all shells of spins contribute equally and we observe the phase transition.
One can check that the above condition is equivalent to the expression (4.31)
for the critical value

gc =
q

q − 2
. (6.2)

Finally, we have moved on in Chapter 5 to the random graph model
with a geometrical phase transition. By dividing vertices according to their
degree into odd and even classes and by identifying these two with the two
possible spin orientations in the Ising model we have showed that thermo-
dynamically the geometrical model is identical with the Ising model on top
of regular random graphs. Unfortunately, we did not manage to calculate
the correlations analytically as there is no easy way to adopt the method
used to calculate them in the previous chapter to the model considered
here. Despite this, we have compared the outcome of MC simulations to
the previous analytic results obtained for the Ising model and found that
the agreement of these two near the phase transition and in the symmetric
phase is remarkably good. However, in the ordered phase the two systems
exhibit some discrepancies. These can be accounted to the fundamental
differences of the models. To be specific, the symmetry in the geometrical
model is, unlike in the Ising model, not exact. It is broken by the higher-
order terms of the F (z) function, so formally F (z) = F (1 − z) only in the
thermodynamic limit. Moreover, there is no one-to-one correspondence be-
tween shapes from the odd and even phases, as it is the case in the Ising
spin system, where the counter-configuration is simply obtained by flipping
all spins. It is clearly desirable to fully understand the observed behavior
of the correlations within the geometrical model. Such understanding could
be profitable in future research of some more sophisticated models.

In conclusion, the obtained results are clearly a valuable contribution to
the evolving field of complex networks. Nevertheless, as we have pointed
out, there are still open questions left which merit further studies. The
work in this area is strongly motivated by the desire to better understand
the structure of various real-world systems and processes occurring in them.





Appendix A

Maximal entropy ensembles

A.1 Giant connected components

We show by the following argumentation that the giant connected compo-
nents of a maximal entropy ensemble of random graphs form themselves a
maximal entropy ensemble. Let P (G) define a maximal entropy ensemble
G of graphs with V vertices, L links, and vertex degree distribution pk. We
assume that the probability P (G) factorizes into a product of all the G’s
connected components’ weights,

P (G) =
∏
C∈G

Pc(C). (A.1)

Furthermore, let Gc be the ensemble of all giant connected components.
In the thermodynamic limit we can neglect the fluctuations and assume that
all graphs in this ensemble have V (g) vertices and L(g) links, and that their
degree distribution is given by pk(g). Because of the property (A.1), the
entropy of the whole ensemble (G, P ),

S = −
∑
G∈G

P (G) lnP (G), (A.2)

consists of the entropy of the giant connected component ensemble (Gc, Pc)
and the rest,

S = S(g) + S(f). (A.3)

Suppose now that there exists another measure P ′c defined on the ensem-
ble Gc such that the entropy

S(g)′ = −
∑
G∈Gc

P ′c(G) lnP ′c(G) (A.4)

is greater than the original one S(g), but the vertex degree probability dis-
tribution remains unchanged. Then we could define a new probability on
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the ensemble G such that

P ′(G) = P ′c(C
(g))

∏
C 6=C(g)

Pc(C), (A.5)

where C(g) stands for the giant connected component of graph G. The
degree distribution of the (G, P ′) ensemble would be the same as that of the
(G, P ) ensemble, but according to (A.3), its entropy would be greater. This
contradicts the assumption that (G, P ) is the maximal entropy ensemble. It
follows that the ensemble of giant connected components must be a maximal
entropy ensemble.

A.2 Generic random trees

For a given a set of weights wq and a fixed number of vertices V the ensem-
ble defined by the probability distribution P (T ) has a well defined degree
distribution

pq =
1
V

∑
T∈T

nq(T )P (T ), (A.6)

where nq(T ) is the number of vertices with degree q in the tree T . In
the asymptotic limit of large V this distribution is given by Eq. (3.20).
Reference [20] contains a proof that the probability distribution P (T ) given
by Eq. (3.1),

P (T ) = Ω−1
V

1
V !

∏
i∈T

wqi , (A.7)

maximizes entropy among all the measures producing the distribution pq.
Their arguments are repeated here for completeness.

We want to maximize the entropy

S = −
∑
T∈T

P (T ) lnP (T ) (A.8)

under the constraints given by Eq. (A.6) and
∑

T P (T ) = 1. This is a typical
optimization problem which can be solved using the Lagrange multipliers
method (see, e.g., Refs. [98] or [99]). Thus we are seeking a stationary point,
i.e., a point where all the partial derivatives are zero, of the expression

−
∑
T∈T

P (T ) lnP (T ) +λ

[∑
T∈T

P (T )− 1

]
+

V∑
q=1

λq

[∑
T∈T

nq(T )P (T )− pqV

]
,

(A.9)
where λ and λq are the Lagrange multipliers. Differentiating the above with
respect to P (T ) we get for each T ∈ T ,

lnP (T ) = λ− 1 +
∑
q

λqnq(T ), (A.10)
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leading to
P (T ) = eλ−1

∏
q

eλqnq(T ). (A.11)

We see that for the choice

eλ−1 = Ω−1
V

1
V !
, and eλq = wq, (A.12)

we reproduce Eq. (A.7). It is, however, not obvious if this solution is unique.
We prove that it is indeed as follows. Let us assume that we have another set
of weights w̃q that produces the same probability distribution pq, as given
by Eq. (3.20),

pq =
1

F (Z0)
wqZ

q
0

(q − 1)!
=

1
F (Z̃0)

w̃qZ̃0
q

(q − 1)!
. (A.13)

It follows that

w̃q =
F (Z̃0)
F (Z0)

(
Z0

Z̃0

)q
wq, (A.14)

hence ∏
i∈T

w̃qi =
∏
i∈T

F (Z̃0)
F (Z0)

(
Z0

Z̃0

)qi
wqi

=
[
F (Z̃0)
F (Z0)

]V(Z0

Z̃0

)P
i∈T qi ∏

i∈T
wqi . (A.15)

But this gives identical probability measure to the original one (A.7) because
for every tree

∑
i∈T qi = 2(V − 1), so the constant factor before the product

is canceled by the normalization.



Appendix B

Laplace’s integral
approximation method

Laplace’s approximation method is a technique used to estimate integrals of
the form

I(n) =
∫ b

a
dxenf(x) (B.1)

for large n, where the variable of integration x is real and f(x) is some
twice-differentiable real function independent of n.

The main idea behind this method is that if f(x) has a unique global
maximum at x0 inside the interval [a, b] then at this point the integrand
will be exponentially larger than at any other points within the region of
integration. Consequently, the dominant contribution to the integral will
come from the values of x near x0, and the contribution from the rest will
be asymptotically negligible as n→∞. Thus, to evaluate the integral (B.1)
approximately, it is crucial to approximate f(x) accurately near x0.

Assuming that f(x) exhibits a unique global maximum at x0 we start
by replacing the original integral over [a, b] with an integral over a small
neighborhood of x0 as n→∞,

I(n) ≈
∫ x0+ε

x0−ε
dx enf(x). (B.2)

For ε sufficiently small we can perform Taylor’s expansion of f(x) around
x0,

f(x) = f(x0) + f ′(x0)(x− x0) +
1
2
f ′′(x0)(x− x0)2 +O(x3). (B.3)

Since f(x) has a maximum at x0, the first derivative of f vanishes at x0 and
the above equation can be approximated up to quadratic order by

f(x) ≈ f(x0) +
1
2
f ′′(x0)(x− x0)2. (B.4)
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Plugging this into Eq. (B.2) we obtain

I(n) ≈ enf(x0)

∫ x0+ε

x0−ε
dx e

1
2
f ′′(x0)(x−x0)2 . (B.5)

We may extend the limits of integration of the integral in Eq. (B.5) to go
from −∞ to +∞ as the exponent in the integrand decays very fast away
from the maximum. Recall that f ′′(x0) < 0, so the resulting integral is a
Gaussian integral which can be readily calculated,∫ +∞

−∞
dx e

1
2
f ′′(x0)(x−x0)2 =

√
2π

n |f ′′(x0)|
. (B.6)

Thus finally, to the leading order,

I(n) ∼ enf(x0)

√
2π

n |f ′′(x0)|
as n→∞. (B.7)

The described procedure can be applied to determine the asymptotics of
the integral

I(n) =
∫∫ +∞

−∞
dxdy enf(x,y), (B.8)

where f(x, y) is now a real function of two arguments. Let (x0, y0) be the
point at which f(x, y) has a unique global maximum. Then the integral over
the whole XY plane can be approximated by an integral over a small region
around this point,

I(n) ≈
∫ x0+ε

x0−ε

∫ y0+σ

y0−σ
dxdy enf(x,y), (B.9)

where ε and σ are some small positive constants. We proceed by expanding
f(x, y) around (x0, y0) using Taylor series,

f(x, y) =
∞∑
k=0

{
1
k!

[
(x− x0)

∂

∂x′
+ (y − y0)

∂

∂y′

]k
f(x′, y′)

}
x′=x0
y′=y0

, (B.10)

from which the approximation up to quadratic order follows,

f(x, y) ≈ f(x0, y0) + ∆x∆yfxy(x0, y0)

+
1
2
[
(∆x)2fxx(x0, y0) + (∆y)2fyy(x0, y0)

]
, (B.11)

where ∆x ≡ x − x0, ∆y ≡ y − y0, and we have used the fact that the
first derivative vanishes at the maximum. Substituting f(x, y) back into
Eq. (B.9) we get

I(n) ≈ enf(x0,y0)

∫∫
dxdyen{∆x∆yfxy(x0,y0)+ 1

2 [(∆x)2fxx(x0,y0)+(∆y)2fyy(x0,y0)]}.
(B.12)
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Since the significant contribution to the latter integral comes only from a
small neighborhood of (x0, y0), its limits of integration can be extended and
it can be treated as a Gaussian-type integral. Let us introduce the shorthand
notation using the Hessian matrix (see Ref. [98]),

H(f) ≡

(
∂2f
∂x2

∂2f
∂x∂y

∂2f
∂y∂x

∂2f
∂y2

)
, (B.13)

and denote its determinant at the critical point by

H(x0, y0) ≡

∣∣∣∣∣ ∂
2f
∂x2

∂2f
∂x∂y

∂2f
∂y∂x

∂2f
∂y2

∣∣∣∣∣x=x0
y=y0

= fxx(x0, y0)fyy(x0, y0)− f2
xy(x0, y0). (B.14)

Then, if H(x0, y0) > 0, the integral in Eq. (B.12) is convergent and equals

2π
n
√
H(x0, y0)

. (B.15)

This yields the final result

I(n) ∼ enf(x0,y0) 2π
n
√
H(x0, y0)

. (B.16)



Appendix C

Next-to-leading corrections
to F (z)

The next-to-leading corrections to the F (z) function defined in Eq. (4.26) are
of order n−1. They are produced by the Hessian term and the non-leading
terms in the Stirling approximation of lnBn(z) given by Eq. (4.25).

The Hessian matrix of f(ψ+, ψ−) given by Eq. (4.15) has the form

H = −∆−1 − q

(
z/ψ2

+ 0
0 (1− z)/ψ2

−

)
, (C.1)

and its determinant at (ψ+, ψ−) equals

H(ψ+, ψ−) =
g

g2 − 1

[
1 + q

√
g

(
z

ψ
2
+

+
1−z
ψ

2
−

)]
+ q2

z (1−z)(
ψ−ψ+

)2
=

g

g2 − 1
1 + 4(g2 − 1)(1− z)z −

√
1 + 4(g2 − 1)(1− z)z

(g2 − 1)(1− z)z
.

(C.2)
Allowing for this correction and the contribution from the O(1) term in the
Stirling formula (4.25), the approximation of the F (z) function reads

F (z) ≈ z ln z + (1− z) ln (1− z)− q
[
z lnψ+ + (1− z) lnψ−

]
+ 1

2n

{
lnH(ψ+, ψ−) + ln [z (1− z)]

}
. (C.3)
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Eigensystem of matrix Q

To begin with, let us rewrite Eq. (4.55) in matrix form(
Φ+

Φ−

)
=

1
(q − 1)!

(√
gΦq−2

+
1√
gΦq−2

−
1√
gΦq−2

+
√
gΦq−2

−

)
·
(

Φ+

Φ−

)
≡ A ·

(
Φ+

Φ−

)
. (D.1)

If now v is an eigenvector of matrix A with eigenvalue λ then from the
defining relation

λv = Av (D.2)

it follows that A has an eigenvalue equal one with corresponding eigenvector
proportional to (Φ+,Φ−). We are interested in calculating eigenvectors of
matrix Q defined in Eq. (4.62)

Q = M
1
2 ∆M

1
2 =

1
(q − 2)!

 √
gΦq−2

+
1√
g (Φ+Φ−)

q−2
2

1√
g (Φ+Φ−)

q−2
2

√
gΦq−2

−

 . (D.3)

This can be done by relating it to matrix A

Qij = (q − 1)Aij

(
Φi

Φj

)q−2
2

(D.4)

and transforming the eigenequation (D.2)

λvi =
∑
j

Aijvj =
∑
j

q − 1
q − 1

(
Φi

Φj

Φj

Φi

) q−2
2

Aijvj =
1

q − 1

∑
j

Qij

(
Φj

Φi

) q−2
2

vj

(D.5)
yielding

(q − 1)λΦ
q−2
2

i vi =
∑
j

QijΦ
q−2
2

j vj . (D.6)

This can be written in form of an eigenequation

λ̃ṽ = Qṽ (D.7)
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where
λ̃ ≡ (q − 1)λ, ṽi ≡ Φ

q−2
2

i vi, (D.8)

relate the eigenvalues and eigenvectors of the two matrices. The above im-
plies that Q has an eigenvalue λ1 = q−1 with the corresponding normalized
eigenvector

v1 =
(
a
b

)
=

1√
Φq

+ + Φq
−

Φ
q
2
+

Φ
q
2
−

 . (D.9)

The second eigenvector v2 perpendicular to v1 is

v2 =
(
−b
a

)
=

1√
Φq

+ + Φq
−

−Φ
q
2
−

Φ
q
2
+

 . (D.10)

By multiplying it by Q and applying Eq. (4.55) to the third line below we
can easily obtain the second eigenvalue

Q · v2 =
1√

Φq
+ + Φq

−

1
(q − 2)!

 √
gΦq−2

+
1√
g (Φ+Φ−)

q−2
2

1√
g (Φ+Φ−)

q−2
2

√
gΦq−2

−

−Φ
q
2
−

Φ
q
2
+



=
1√

Φq
+ + Φq

−

1
(q − 2)!


−Φ

q
2
−

(
√
gΦq−2

+ − 1
√
g

Φq−1
+ /Φ−

)
Φ

q
2
+

(
√
gΦq−2

− − 1
√
g

Φq−1
− /Φ+

)


=
1√

Φq
+ + Φq

−

q − 1
(q − 1)!


−Φ

q
2
−

(
√
gΦq−2

+ +
√
gΦq−2

− −√gΦq−2
− − 1

√
g

Φq−1
+

Φ−

)

Φ
q
2
+

(
√
gΦq−2

− +
√
gΦq−2

+ −√gΦq−2
+ − 1

√
g

Φq−1
−

Φ+

)


=
q − 1√

Φq
+ + Φq

−


−Φ

q
2
−

[ √
g

(q − 1)!

(
Φq−2

+ + Φq−2
−

)
− 1
]

Φ
q
2
+

[ √
g

(q − 1)!

(
Φq−2
− + Φq−2

+

)
− 1
]


= (q − 1)
[ √

g

(q − 1)!

(
Φq−2

+ + Φq−2
−

)
− 1
]

1√
Φq

+ + Φq
−

−Φ
q
2
−

Φ
q
2
+

 , (D.11)

so finally

λ2 = (q − 1)
[ √

g

(q − 1)!
(Φq−2

+ + Φq−2
− )− 1

]
. (D.12)
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Interscience series in discrete mathematics and optimization, John Wi-
ley.

[30] Drmota, M. (2009) Random Trees: An Interplay between Combinatorics
and Probability . Springer.

[31] Baxter, R. (1982) Exactly Solved Models in Statistical Mechanics. Aca-
demic Press.

[32] Solomonoff, R. and Rapoport, A. (1951) Connectivity of random nets.
B. Math. Biol., 13, 107–117.



BIBLIOGRAPHY 127

[33] Gilbert, E. N. (1959) Random graphs. Ann. Math. Stat., 30, 1141–1144.
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