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Abstract

High-temperature superconductivity in copper oxides (cuprates, e.g. La2−xSrxCuO4,
YBa2Cu3O6+δ or Bi2Sr2CaCu2O8+δ) remains among the most spectacular phenomena
in condensed matter physics. Since its discovery in 1986, an enormous number (∼ 105)
of papers on the subject have appeared. So far, there is no single, commonly accepted
theory of high-temperature superconductivity. However, it is widely believed that a basic
description of this phenomenon can be provided by a single-band Hubbard model or its
derivative, the t-J model. The latter model is regarded as a minimal microscopic model,
capable of describing the essential aspects of the complex physics of the cuprates.

Unfortunately, in general case, neither of those two models can be solved exactly and
therefore various approximate methods are used. Among them, the so-called mean-field
methods provide a simple, yet fairly reasonable description of the cuprates. In particular,
some of the main qualitative features of the phase diagram and the essential features of
electronic spectrum are roughly reproduced.

A standard mean-field approach to the t-J model, known under the name of renor-
malized mean-field theory (RMFT) goes beyond the Hartree-Fock approximation. Conse-
quently, its fully consistent treatment requires a novel theoretical approach. This has been
our original motivation to develop a general approach to the mean-field models, which is
based on the maximum entropy (MaxEnt) principle. The method is presented in detail
in Part II of this Thesis, and in Part III it is applied to study RMFT of the t-J model.
First, we compare the results obtained within our formalism with those of the frequently
used non-variational approach based entirely on the self-consistent equations. Also, vari-
ous versions of RMFT are compared, and the most satisfactory of them is selected. This
optimal version is subsequently used to study different versions of the original t-J Hamil-
tonian. As a result, upper critical concentration and doping dependence of the selected
physical quantities (e.g. the superconducting gap and the Fermi velocity) is determined at
low temperatures and in the absence of external magnetic field. We compare our findings
both with theoretical results obtained from the Variational Monte Carlo (VMC) methods,
as well as with the experimental data for selected cuprates. We show that the version of
RMFT approach formulated in this Thesis provides a reasonable qualitative and in some
cases semiquantitative rationalization of the principal characteristics of the hole-doped
high-temperature superconductors at the optimal doping and in the overdoped regime.

Possible extensions of the proposed analysis are mentioned at the end.

Keywords: High-Tc superconductivity, cuprates, phase diagram for high-Tc compounds, strongly

correlated fermions, resonating valence-bond (RVB) state, t-J model, Gutzwiller projection, Gutzwiller

approximation, Maximum Entropy (MaxEnt) principle, mean field theory.



Streszczenie

Nadprzewodnictwo wysokotemperaturowe w tlenkach miedzi (krótko: miedzianach, np. La2−xSrxCuO4,

YBa2Cu3O6+δ lub Bi2Sr2CaCu2O8+δ) pozostaje jednym z najbardziej spektakularnych zjawisk w

fizyce materii skondensowanej. Od jego odkrycia w roku 1986, ukaza la siȩ ogromna liczba (∼ 105) prac

poświȩconych tej tematyce. Do tej pory nie istnieje jedna, powszechnie akceptowana teoria nadprze-

wodnictwa wysokotemperaturowego. Niemniej jednak, uważa siȩ prawie powszechnie, iż prawid lowy

opis tego zjawiska można uzyskać w ramach jednopasmowego modelu Hubbarda lub wywodza̧cego siȩ

zeń modelu t-J . Ten ostatni jest uważany także za minimalny model mikroskopowy, zdolny opisać

istotne aspekty struktury stanów elektronowych i zwia̧zanej z nia̧ z lożonej fizyki zwia̧zków na bazie

tlenku miedzi.

Niestety, w ogólnym przypadku, żadnego z wyżej wymienionych modeli nie można rozwia̧zać w

sposób ścis ly, i dlatego też używa siȩ różnych metod przybliżonych. Miedzy innymi, tzw. metody pola

średniego stanowia̧ rozsa̧dny kompromis pomiȩdzy prostota̧ opisu a jego dok ladnościa̧. W szczególności,

z grubsza odtworzone zostaja̧ g lówne cechy diagramu fazowego, a także struktura elektronowa nad-

przewodników na bazie tlenku miedzi.

Standardowa metoda typu pola średniego dla modelu t-J , znana pod nazwa̧ zrenormalizowanej

teorii pola średniego (ang. renormalized mean-field theory, RMFT), wykracza poza przybliżenie

Hartree-Focka. Z tego powodu, w pe lni wewnȩtrznie spójne potraktowanie zrenormalizowanej teorii

pola średniego wymaga nowego podej́scia teoretycznego.

Idea takiego podej́scia stanowi la w tej rozprawie motywacjȩ do rozwiniȩcia ogólnego podej́scia

do metod typu pola średniego, podej́scia opartego na zasadzie maksimum entropii, (MaxEnt) (ang.

maximum entropy principle). Podej́scie to jest szczegó lowo przedstawione w czȩści II rozprawy, zaś w

czȩści III zostaje zastosowane do badania zrenormalizowanej teorii pola średniego dla modelu t-J . W

czȩści III zaczynamy od porównania wyników otrzymanych w ramach naszego formalizmu z wynikami

czȩsto używanego podej́scia niewariacyjnego, opartego w ca lości na tzw. równaniach samouzgod-

nionych Bogoliubowa-de Gennesa. Porównane zostaja̧ także różne wersje RMFT, a nastȩpnie jedna z

nich, o najbardziej z punktu widzenia eksperymentu zadowalaja̧cych w lasnościach, zastosowana jest

do badania różnych wersji pe lnego Hamiltonianu t-J . W rezultacie, w temperaturach bliskich zera

bezwzglȩdnego i przy braku zewnȩtrznego pola magnetycznego, wyznaczona zostaje górna koncentracja

krytyczna i zależności wybranych w lasności fizycznych (np. przerwy nadprzewodza̧cej oraz prȩdkości

Fermiego) od stopnia domieszkowania uk ladu. Nasze wyniki teoretyczne sa̧ nastȩpnie porównane z

wynikami podej́scia typu ’Variational Monte Carlo’ (VMC), a także z danymi doświadczalnymi dla

wybranych miedzianów. Pokazujemy, iż wersja RMFT sformu lowana w tej rozprawie prowadzi do

rozsa̧dnego opisu g lównych cech wysokotemperaturowych nadprzewodników miedziowych domieszko-

wanych dziurowo, oraz jakościowej, a w pewnych przypadkach pó lilościowej, zgodności z doświadcze-

niem, tak przy domieszkowaniu optymalnym, jak i wiȩkszym od optymalnego.

Możliwe uogólnienia zaproponowango tu podej́scia sa̧ przedstawione na końcu rozprawy. Poza

tym, w ca lej rozprawie staramy siȩ omówić krytycznie zasadnicze cechy opisywanego podej́scia.
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które otrzyma lem od Niego na wczesnym etapie pracy nad zagadnieniami przedstawionymi w
niniejszej rozprawie.
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List of frequently used symbols
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DA domain of Ĥ( ~A)
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N̂ particle number operator
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s=1 λs(Tr[ρ̂λÂs] − As) self-consistency preserving constraints
λ1, λ2, . . . , λM Lagrange multipliers
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λ exp

(

− βK̂λ
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mean-field density operator corresponding to K̂λ

Z−1
λ = Tr[exp

(

− βK̂λ

)

] mean-field partition function
pi, qi probability of i-th microstate
b1, b2, . . . , bP variational parameters of the non-mean-field character
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F( ~A,~λ,~b) ≡ −β−1 lnZλ( ~A,~λ,~b) generalized grand potential
~A0, ~λ0, ~b0 optimal (equilibrium) values of ~A, ~λ, and ~b, respectively

K̂λ0 = K̂λ( ~A0, ~λ0,~b0) equilibrium mean-field grand Hamiltonian

ρ̂λ0 = Z−1
λ0 exp(−βK̂λ0) equilibrium mean-field density operator

~A
(0)
sc Optimal solution of the self-consistent equations obtained

within the non-variational (Bogoliubov-de Gennes) approach.
~λ( ~A) optimal solution of the self-consistent equations obtained

within the present approach

Ĥz( ~A) ≡ Ĥλ( ~A,~λ( ~A)) self-consistent mean-field Hamiltonian

ρ̂z( ~A) = ρ̂λ( ~A,~λ( ~A)) self-consistent mean-field density operator

Fz( ~A) ≡ F( ~A,~λ( ~A)) self-consistent grand potential (Landau potential)

Ω(T, V, µ,~h) thermodynamic grand potential

F (T, V,N,~h) = Ω + µN free energy

W ( ~A) = 〈Ĥ( ~A)〉 average value of the mean-field Hamiltonian
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~Ri position vector of the i-th lattice site

|~Ri − ~Rj | = d(i, j) distance between i-th and j-th lattice sites

ĤtJ t-J Hamiltonian

Ĥt kinetic energy part of the t-J Hamiltonian

ĤJ exchange part of the t-J Hamiltonian

Ĥ3 three-site term part of the t-J Hamiltonian

ĤtU Hubbard Hamiltonian

ĤtJU t-J-U Hamiltonian

tij hopping integral between lattice sites labeled by ~Ri and ~Rj

Jij exchange integral between lattice sites labeled by ~Ri and ~Rj

P̂ =
∏

i(1 − n̂i↑n̂i↓) Gutzwiller projection operator
|BCS〉 Bardeen-Cooper-Schrieffer (BCS)-type state

|RVB〉 = P̂ |BCS〉 resonating valence bond state

|Ψ〉 = P̂C |Ψ0〉 correlated trial state

P̂C correlator
|Ψ0〉 eigenstate of a single-particle Hamiltonian

〈Ô〉C ≡ 〈Ψ|Ô|Ψ〉/〈Ψ|Ψ〉 correlated average of operator Ô
〈Ô〉 uncorrelated, (i.e., computed using |Ψ0〉) average of Ô
gO renormalization factor for operator Ô.
gt

ij renormalization factor for the kinetic energy
gJ

ij renormalization factor for the spin exchange interaction
ρ̂0 grand canonical single-particle mixed state

ρ̂C = P̂C ρ̂0P̂C correlated mixed state

ĤR RMFT Hamiltonian

ĤRλ RMFT Hamiltonian supplemented with the constraint terms

Ĥ
(∼)
R = W (χijσ,∆ij , niσ)1̂DH

alternative form of ĤR

Ĥ
(∼)
Rλ alternative form of ĤRλ

W (χijσ,∆ij, niσ) = 〈ĤR〉 = 〈Ĥe〉app
C exact expectation value of ĤR

(approximate expectation value of Ĥe)

χijσ ≡ 〈c†iσcjσ〉 hopping amplitude (bond order parameter)
∆ij ≡ 〈ciσ̄cjσ〉 = 〈cjσ̄ciσ〉 superconducting gap parameter

∆Cij ≡ 〈∆̂ij〉C superconducting order parameter

c†iσ (ciσ) creation (annihilation) operator for electron with spin σ = ±
on the site labeled by ~Ri

n = 〈N̂〉/Λ = N/Λ average number of electrons per lattice site
x = 1 − n hole doping
k quasimomentum
ξk quasiparticle energy in the normal state
Dk superconducting gap
Ek quasiparticle energy
vF Fermi velocity
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Part I

Introduction

1 High-temperature superconductivity of cuprate com-

pounds and its basic theoretical models

1.1 General characteristics

High-temperature (high-Tc) superconductivity, in particular that of the cuprate compounds
(cuprates), is one of the most puzzling and challenging subjects in condensed matter physics
[1, 2, 4, 5, 6, 7, 8]. Since its discovery by Bednorz and Müller in 1986 [9], there is still a large
interest in this field. It is partly due to potentially revolutionary technological applications - for
most of high-Tc cuprate compounds the critical temperature (Tc) exceeds 77K, i.e., the boiling
temperature of liquid nitrogen. From the point of view of a physicist, cuprates are exciting due
to the complex structure and unusual properties of those materials.1

We should mention right at the beginning that it is not our aim here to analyze in detail
the large number of the existing experimental data for the cuprates. Rather, we invoke only
the basic facts and focus on properties, which can be described or even predicted by simple
theoretical models and methods we use.

A number of high-Tc cuprate compounds have been discovered. The most notable are
La2−xSrxCuO4 (LSCO), with the maximal critical temperature Tc (which however depends on
the hole doping x) equal 36K, YBa2Cu3O6+δ (YBCO) with Tc ≤ 91K, and Bi2Sr2CaCu2O8+δ

(BSCCO or more precisely, Bi2212) with Tc ≤ 89K [2]. As suggested by their chemical for-
mulas, all cuprate compounds have one or more CuO2 plains, separated by atoms of other
elements. All exhibit strong tetragonal anisotropy in the c-axis direction, and their quasi-two
dimensional structure seems to be responsible for many of the essential properties of those ma-
terials. Additionally, for some high-Tc compounds, a weaker in-plane anisotropy between a and
b axes may appear (orthorhombic structure). The doping-temperature (x-T ) phase diagram of
all hole-doped2 high-Tc compounds (cf. Fig. 1) have a similar structure [1, 2, 4, 8]. Upon the
hole doping, with the hole concentration x & 0.02−0.05, a generic antiferromagnetic (AF) Mott
insulating state of the undoped parent compound [10, 11] eventually transforms (for x ≈ 0.05)
into a superconducting (SC) state of a dx2−y2 (d-wave) symmetry [12]. Still, even in absence
of the long-range antiferromagnetic (AF) order, the antiferromagnetic correlations seem to be
present in the SC state. The latter, in turn, after reaching a maximal transition temperature
at x ≈ 0.15−0.2, disappears at the upper critical concentration xc ≈ 0.25−0.35, depending on
the compound [13, 14]. In the overdoped regime x & 0.15 − 0.2 the system evolves gradually
from a non-Fermi liquid into a quantum liquid that can be regarded as an unconventional Fermi
liquid [15].

The region of the phase diagram where superconductivity appears is called a ’dome’ due to
its characteristic shape. For some cuprate compounds, antiferromagnetic and superconducting

1Apart from the cuprates, the class of high-temperature superconductors encompasses also the recently
discovered iron-based superconductors, like pnictides, e.g. Ba1−xKxFe2As2 or oxypnictides, e.g. GdFeAsO0.85.
It should be also noted, that organic superconductors, e.g. (TMTSF)2PF6, although having Tc ∼ 1 − 10K,
share many properties with both copper and iron superconductors [4].

2There exist also electron-doped high-Tc cuprate compounds, e.g. Nd2−xCexCuO4 (Tc = 23K). The generic
x-T phase diagram of electron-doped compounds exhibits remarkable quantitative differences as compared to
that of its hole-doped counterpart [2, 3]. Although here we concentrate on the hole-doped case, note that
essentially the same theoretical methods which are developed in this Thesis may also be used to study the
electron-doped compounds.
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Figure 1: Schematic hole doping (x) - temperature (T ) phase diagram of La2−xSrxCuO4, taken
as an example of a generic hole-doped cuprate superconductor. The vertical solid line marks
qualitatively the division into underdoped and the overdoped regimes.

orders occur simultaneously, i.e., we have the AF-SC phase coexistence. For others, the AF
and SC regions of the phase diagram are separated by a disordered (’glassy’) state.

Finally, one of the most intriguing features of the cuprates is the existence of an unconven-
tional normal state, called ’pseudogap’ (PG) or ’spin gap’ [6, 8]. Pseudogap phase is visible in
various experiments [16, 17, 18] above the superconducting dome in the underdoped regime.
In this phase, the gaped behavior in the temperature dependence of the NMR relaxation rate
is observed [8]. Also, both NMR and ARPES experiments show that magnetic excitations are
suppressed in the temperature range Tc < T < T ∗, and that the energy gap is gradually formed
in one-particle excitations below T ∗. The pseudogap behavior is often interpreted as an offset
of the pre-formed pairs with the dx2−y2 -like quasimomentum (k) -dependence as in the SC
phase [8].

1.1.1 Microscopic models of electronic states

In order to provide a theoretical description of the cuprate superconductivity, the Hubbard
model is often invoked. Both the simplest, single-band form [19, 20, 21], as well as the more
realistic three band (d-p model, see [8] and References therein) are used. The former model
results from ascribing a passive role to the electrons on px and py oxygen orbitals and retaining
only the dynamics of electrons on the copper 3dx2−y2 orbitals. In the strong-coupling limit (i.e.,
with the Coulomb interaction dominant over the kinetic energy of the electrons), the single-
band Hubbard model can be transformed into the t-J model [8, 22, 23, 24, 25, 26, 27, 28, 29,
30, 31], which is often regarded as a minimal, purely electronic microscopic model of high-Tc

superconductivity. Unfortunately, as for the most of the realistic models of interacting electrons,
exact solutions of the t-J model are limited to very special choice of the model parameters or to
very small clusters [32]. Consequently, approximate methods of various kinds must be invoked.

1.1.2 Resonating valence bond (RVB) state

A theoretical concept which also seems to be important for the description of high-Tc supercon-
ductivity is that of the resonating valence bond (RVB) state [33]. As mentioned in the latter
Reference, the notion of resonating valence bonds has been introduced by Pauling in the early
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years of quantum chemistry [34, 35], e.g. to explain the nature of the electronic structure of
benzene. In condensed matter physics, the RVB state has been originally used as a possible
variational ground state of the Heisenberg Hamiltonian on frustrated lattices [36, 37]. Later,
it has been proposed by Anderson [38] (cf. also Refs. [39, 40]) as a candidate for the ground
state of a generic strongly-correlated two-dimensional superconductor.

RVB state is as a coherent superposition of electron spin-singlets residing on different pair
of sites (bonds); hence the name. Due to the lack of the long-range magnetic order, it is an
example of a spin-liquid state. On the other hand, RVB state is a Bardeen-Cooper-Schrieffer
(BCS) state [41, 42, 43, 44] with doubly occupied configurations in the real space being excluded
via the so-called Gutzwiller projection [8, 20, 33]. In other words, RVB state may be expected
to play a similar role for a description of the high-Tc superconductors, as its uncorrelated
counterpart, i.e., the BCS state plays in the theory of conventional superconductivity. The
original RVB state may be generalized in several ways, e.g. by including the correlation effects
in a more sophisticated manner or by implementing more complex patterns of the symmetry
breaking [8, 33].

In one dimension (DS = 1), at the half-filling (x = 0), a chain of singlets has lower energy
than the Neel antiferromagnetic state. For DS = 2 this is no longer the case; simple ’static’
singlet covering yields the energy higher than the antiferromagnetic state, nevertheless, the true
RVB state remains competitive to the Neel-ordered state [33]. Consequently, in two dimensions,
the RVB state seems to be a reasonable variational Ansatz for the ground state of t-J and
related models. On the technical level, this idea may be realized in two different ways. First,
the expectation value of any operator (in particular, of the t-J Hamiltonian) in the RVB state
may be computed by means of the Variational Monte Carlo (VMC) method [45, 46, 47, 48,
49, 50, 51, 52, 53, 54, 56, 57]. Alternatively, RVB picture may be implemented by using an
appropriate form of the mean-field (MF) approach.

1.2 Mean-field description of high-Tc superconductors

In this Thesis, we focus on a particular mean-field (MF) approach to the t-J model, known
under the name of the renormalized mean-field theory (RMFT) [8, 33, 58]. RMFT is an effect
of applying Gutzwiller approximation (GA) [20, 59, 60], originally devised for the Hubbard
model, to the t-J model. The resulting single-particle picture is widely used due to its ’clarity
and directness’ [39, 61]. Moreover, RMFT is capable of reproducing the basic qualitative, and
even some quantitative features of phase diagram of the cuprates [8, 33, 39]. This may be quite
surprising, because in contrast to conventional superconductors, such as Al, Sn or Pb, well
described by the BCS theory of a mean-field character, for the cuprates the MF approximation
seems to be less adequate, for the following reason. Namely, conventional superconductors are
characterized by a large coherence length. Therefore, the average distance between Cooper
pairs is much smaller then the pair size (∼ 1000Å), and each pair is immersed in, and interacts
with many other pairs. This is the physical cause of the striking success of the Hartree-Fock
approximation and BCS theory in those systems. On the other hand, high-Tc cuprates are
characterized by a small coherence length, the average pair size is in the range ∼ 10 − 30Å
[7], i.e., it is only moderately greater then the average distance between electrons in the CuO2

plane. Therefore, we cannot invoke the same argument for the validity of the MF approach as
in the case of BCS superconductors, and MF treatment of the cuprates requires an alternative
justification.

The basic question is then whether we can regard RMFT as a satisfactory theoretical de-
scription of high-Tc compounds, despite its simplistic nature and apparent shortages. This
point of view has been advocated strongly by Anderson and coworkers [39, 40, 61], and RMFT
has been, and still is, widely used in studies of the cuprates, cf. e.g. [33, 40, 58, 60, 61, 62,
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63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84]. However,
it has been also pointed out that RMFT can be placed in the Fermi-liquid paradigm (cf. e.g.
[59, 85]), and, as such, is not expected to provide a correct description of the whole phase
diagram, but may work well around and above the optimal doping [86]. Intuitively, with the
increasing doping, charge carriers (holes) become more mobile, and single particle description
works better. On the other hand, with the decreasing doping, charge fluctuations are smaller,
and eventually vanish in the Mott-insulating limit (x = 0). Consequently, one may expect large
phase fluctuations in the wave function describing the superconducting ground state. However,
phase fluctuations are not included in the standard RMFT approach. Finally, similarly to the
original approach of Gutzwiller, RMFT is devised only for T = 0.

Nonetheless, RMFT possess two generic properties of the MF approach, which turn to
be important for the description of the cuprates. Namely, first, it allows for a natural and
relatively simple description of various coexisting or competing symmetry-broken states, which
are encountered in the cuprates. Stripe phases [73, 74, 75] or valence-bond solid [78] are
good examples of the complex symmetry broken patterns that can be described within RMFT.
Second, within this independent-particle picture, a Fermi surface (FS) appears in a natural
manner, and the single-particle spectral properties can be easily addressed. Interestingly, the
notion of the Fermi surface, being one of the most important concepts in solid state physics, is
not limited to the non-interacting or weakly interacting systems. It is known from numerous
photoemission experiments [87, 88, 89, 90, 91, 92, 93], that FS or FS-like structures are present
in the cuprates, despite the presence of strong electron correlations.3

The question is how to modify RMFT in order to reproduce accurately the physical prop-
erties of the cuprates. Several attempts to improve the original formulation of RMFT have
been made, cf. e.g. [63, 66, 71, 76]. Such modifications turned out to be important for a more
realistic description of the RVB state.

1.2.1 Slave-boson theories of the t-J model

At this point we ought to mention another type of the MF approach, which is frequently used
in the context of the t-J model, namely that based on the slave-boson formalism, i.e., the
slave-boson mean-field theory (SBMFT). Historically, SB approach in general, and SBMFT in
particular, where applied to the t-J model as early as in 1987 by Baskaran, Zou, and Anderson
[94], by Baskaran, Anderson, Hsu and Zou [95], and Baskaran and Anderson [96], and later
by Kotliar and Liu [97], and Suzumura, Hasegawa, and Fukuyama [98]. SMBFT techniques
gained popularity, and those early papers were soon followed by many Authors.

Similarly to the RMFT, SBMFT provides a simple way for implementation of the RVB
concept. Also, most versions of SBMFT lead to the predictions similar to those of the simplest
realizations of RMFT approach. Moreover, the standard SBMFT approach is in fact equivalent
to the properly treated corresponding version of RMFT, as discussed in Refs. [99, 100, 101]
and also recently [102].4 Apparently, SBMFT is a finite-temperature approach, in contrast to
RMFT, which was devised to examine the ground state properties of the system. Yet, RMFT
may be formally extended to T > 0, where, however, for various reasons both approaches

3We should rather say that the results of ARPES measurement are interpreted in terms of FS existence, e.g.
by fitting the tight binding dispersion relation to the experimental data.

4Strictly speaking, this is the case for the RMFT [59] and the corresponding SBMFT [103] for the Hubbard
model. In case of the t-J model, some differences between those two approaches appear, e.g. the kinetic energy
is renormalized in a different way, i.e., ∼ x within SBMFT and ∼ 2x/(1 + x) within the simplest version
of RMFT. However, this technical detail is inessential. What is important here is that we can construct a
MF model completely equivalent to that resulting from SBMFT without invoking sophisticated field-theoretic
techniques.
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are not expected to lead to physically meaningful results [100]. Therefore, SBMFT have no
advantage over RMFT, and will not be discussed here.

Beyond the mean-field level, slave boson models provide a valuable tool for studying strongly
correlated systems, as they form a basis for the effective gauge theories for the cuprates and
heavy fermions [104, 105, 106]. However, this topic is outside the scope of the present Thesis.

1.2.2 RMFT versus VMC method

The results of RMFT are often compared with those of VMC approach. VMC method provides
a valuable tool for studying strongly-correlated systems; applied to the cuprate superconductors
it is known to yield a good semiquantitative description of the SC correlated state, cf. Refs.
[45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57]. Within VMC one treats the double occupancy
exclusion in an essentially exact way, and hence this method is often regarded as being superior
to any MF treatment. However, properly constructed and solved RMFT may, at least in
principle, lead to the results similar to those of the VMC. Moreover, RMFT has also some
advantages over VMC approach. First, its results are not limited to small clusters. Second,
it offers an analytic insight into the physical contents of the model and its relevance to the
experiment.

1.2.3 Nonstandard character of RMFT approach

It is important to emphasize at this point, that the RMFT of the t-J model is not of the form
of the standard Hartree-Fock (HF) MF approach. Therefore, a proper solution of RMFT, in
particular of its more advanced versions, constitutes a nontrivial task. For the MF Hamiltonians
of the HF form (cf. Section 4.9 for the precise definition of this term), minimization of the
appropriate MF thermodynamic potential (the ground-state energy in particular) is equivalent
to the approach based on the self-consistent equations (in the theory of superconductivity
known under the name of Bogoliubov-de Gennes (BdG) equations). The latter express the
basic requirement of the internal consistency of the mean-field model. The BCS theory [41, 42]
is a good example of this equivalence. Also, for the HF MF Hamiltonians, the solutions of the
MF model (i.e., the ground states of the MF Hamiltonian, corresponding to different patterns
of symmetry breaking) provide us with the upper bounds on exact free energy (or the ground
state energy in the T → 0 limit). This is ensured by the Bogoliubov-Feynman inequality [107]
and its generalizations [108] (cf. Section 4.10).

In general, neither of the last two statements is true for the RMFT approach. First, the
unwary application of the variational method, i.e., direct minimization of the MF free or ground-
state energy may lead to results that differ from those obtained by solving the self-consistent
BdG equations. Moreover, by applying the Gutzwiller approximation, we may obtain values of
the energy which are lower then the exact ground state energy of the original t-J model.

In such a situation, a non-variational treatment based solely on the BdG equations is fre-
quently selected [63, 68, 73, 74, 75, 78]. However, this way of approach cannot be regarded as
fully satisfactory.
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2 Aim and a scope of the Thesis

A need for a consistent treatment of RMFT motivated us to develop a general method of solving
mean-field (MF) models. Our approach is based on the Maximum entropy principle (MaxEnt)
[109, 110, 111, 112], and may be regarded as a natural extension of the original formulation of
this principle to the non-standard case of the MF approach. Construction of this formalism is
the first principal aim of the present Thesis.5

The formal method of our approach is proposed in Part II, which is organized as follows.
In Section 3 we comment on the origin, role and the nontrivial nature of MF methods in a
general context. In Section 4 we present in detail the MaxEnt-based approach to MF models.
In particular, in short Subsection 4.1, a notion of the MF model and MF Hamiltonian is
formally introduced. Relation between the MaxEnt principle and a standard, non-MF statistical
mechanics is reminded in Subsection 4.2, whereas the application of this principle in the context
of MF statistical mechanics is discussed in Subsection 4.3. In Subsection 4.4 the optimal
(equilibrium) values of mean-field variables and the correct form of the grand-canonical MF
density operator are obtained. Subsection 4.5 is devoted to the construction of the Landau
potential and to analysis of the non-equilibrium situation. Next, in Subsection 4.6 we discuss
MF equilibrium thermodynamics. In Subsection 4.7 we analyze the role of chemical potential
within MF description. In Subsection 4.8 we introduce a notion of equivalence class of the MF
Hamiltonians. This and related concepts allow us, in particular, to reproduce formal results
of other Authors within our approach. Subsection 4.9 is devoted to the important class of
Hartree-Fock MF Hamiltonians, whereas in Subsection 4.10 we comment on relationship of the
present MaxEnt-based variational principle to the variational principle based on the Bogoliubov-
Feynman inequality. Subsection 4.11 contains additional remarks, which are intended to clarify
certain aspects of the present formalism. Section 5 contains summary of Part II.

In Part III, the results of Part II are applied to the RMFT of the t-J model. We begin with
the introduction of different forms of the t-J Hamiltonian and discussion of some of its general
properties (Section 6). Next, in Section 7 we present various trial variational wave functions
used as approximate ground states of the t-J Hamiltonian. It is shown, that a special class
of such wave functions (so-called correlated states) leads in a natural manner to an effective,
single-particle mean-field description in the form RMFT.

In Section 8, on the example of the simplest form of the t-J Hamiltonian, and by using
different versions of RMFT approach, we compare first the results of the present variational
approach with those of the non-variational treatment based on Bogoliubov-de Gennes self-
consistent equations. The following MF states are analyzed: nonmagnetic, homogeneous su-
perconducting state of a d-wave symmetry (dSC), (cf. e.g. Refs. [33, 39, 40, 58, 66, 61, 73,
74, 75, 82, 83], to mention just a few), staggered-flux non-superconducting solution (SF) (cf.
e.g. [8, 33, 62, 75, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124]), and the so-called
Pomeranchuk instability (PI) of the normal state, i.e., the spontaneous breakdown of the C4v

symmetry [33, 125, 126, 127, 128, 129, 130], cf. also Ref. [82].

On the example of those three states we show non-trivial differences between the results
obtained by either different method, or different variant of RMFT. Next, the optimal form of
RMFT is selected and applied within the framework of our method to study various forms of
the t-J model (Section 9). It is also shown, that by making use of the RMFT based on the
original formalism of Ref. [76], we can produce the results comparable to those of VMC and
which are also in reasonable agreement with the experiment. This is the second principal aim
of the present Thesis.

Some supplementary material is provided in Appendices and Supplements (Part IV). In

5Some of our early results may be found in Ref. [113]
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Appendix A (Subsection 11.1) we show, that in the case of mean-field models, the method of
Lagrange multipliers is indispensable for application of the MaxEnt principle. In Appendix
B (Subsection 11.2) we provide the proof of equivalence of two alternative formulas for the
second derivative of the thermodynamic grand potential. In Appendix C (Subsection 11.3) we
explain the way in which different Landau potentials can be constructed for a given mean-field
model. In Appendix D (Subsection 11.4) we present briefly some details of the formalism of
Ref. [76]. Supplement A (Subsection 12.1) is devoted to the analysis of some aspects of the
non-equilibrium situation, not discussed in Section 4.5. In particular, we discuss both thermo-
dynamic and quantum fluctuations and the internal consistency of the mean-field approach. In
Supplement B (Subsection 12.2), we analyze zero-temperature formulation of the MF approach.
Finally, in Supplement C (Subsection 12.3), we illustrate the formalism developed in Section 4
on the example of the MF approach to Ising model.

As mentioned previously, RMFT description is not expected to be an equally legitimate
approach within the entire x-T phase diagram of the cuprates. Consequently, we focus here
only on the low-temperature situation and on the optimally-doped and overdoped regimes which
are believed to exhibit a nonstandard, but essentially Fermi-liquid-type behavior. Therefore,
we neglect any long-range magnetic order, in particular, simple Néel antiferromagnetic order.
We also neglect any effects of the external magnetic field.

Within the model considered here, only a single CuO2 layer is treated. In most cases (with
the exception of the PI phase, analyzed in Section 8.3) we assume the presence of a discrete C4v

rotational symmetry. The superconducting order parameter ∆(kx, ky) is taken to be a singlet of
dx2−y2 symmetry, i.e., changes sign after a rotation of π/2 radians.6 Therefore, we concentrate
rather on generic features of the cuprates in the vicinity of the upper critical concentration xc,
although attempts to obtain material-specific results (by taking appropriate values of the model
parameters) are also made. We analyze mainly the doping dependence of a gap magnitude and
selected features of the quasiparticle spectrum in the superconducting state. The particular
emphasis is put on xc, which value is quite correctly predicted for the realistic values of the
model parameters. This is the first such prediction within RMFT.

Although a consistent treatment of the RMFT of the t-J model was our original motivation,
the formalism presented in Part II is of a general applicability, and may be used to treat
wide class of the mean-field models. It has a number of advantages, not present in standard
formulation of the MF theory. We hope than this method will be found useful in the condensed
matter physics or even beyond the field. A work along these lines is being continued in our
group.

Present Thesis is an extension of our earlier works [82, 83, 84, 113]. It contains (in a
modified and refined form) main part of [113], large parts of [83] and essentially the whole
material presented in [82]. Also, in Ref. [102] the formalism developed here has been used to
show the equivalence of the mean-field approach resulting from the Gutzwiller approximation
to the Hubbard model, with the corresponding slave-boson mean-field theory.

6Despite this particular form of ∆(kx, ky), the MF Hamiltonian, and hence the thermodynamic potentials,
are still C4v-symmetric.
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Part II

Application of maximum entropy
principle to mean-field models

3 Synopsis: qualitative aspects of mean-field theory

3.1 General remarks on mean-field approach

3.1.1 Introductory remarks

A rigorous treatment of even simple models of many interacting particles is usually too difficult.
In such a situation, various approximate methods are to be developed.

We focus here on the so-called mean-field (MF) approach. Within the MF approach, the
original, many-body Hamiltonian is replaced by its simplified MF counterpart, which becomes
tractable. Instead of interacting with each other via full many-body potentials, the particles
(or spins) are allowed to interact only with various ’mean fields’ of semi-classical7 character.
Additionally, mean fields usually have an interpretation of average values of certain operators
appearing in the MF Hamiltonian. Numerical values of such averages are not a priori known
and are to be determined when solving a MF model.

From a historical perspective, methods of an essentially MF character were used first by
van der Waals to derive equation of state for non-ideal gas (1873) [131, 132, 133], and next by
Weiss to describe paramagnetic - ferromagnetic transition (1908) [132, 134, 135], both examples
predate modern quantum mechanics (1925-1927). Probably the best-known example of the
quantum MF approach is the Hartree-Fock (HF) approximation [136, 137], which has been used,
in particular, in the Bardeen-Cooper-Schrieffer (BCS) theory of superconductivity (1957) [41].
However, mean-field methods (mainly in the form of the HF approximation) found numerous
applications not only in the field of solid-state physics, but also in atomic [138], high-energy
[139, 140, 141], and nuclear physics [137, 142], as well as in astrophysics (cf. e.g. [143]) and in
quantum chemistry [144].

MF approach is still widely used, despite the fact, that other approximate methods exist,
with the help of which we are able to treat interactions in a more accurate manner. This is
partly due to the circumstance, that the MF approach is more direct and intuitive then most
of the more sophisticated methods, which usually involve a greater emphasis on numerical
analysis. Presence of explicit analytical formulas (e.g. for the ground state energy) frequently
allows to make certain qualitative predictions, even before the MF model is completely solved.
Also, MF methods are practically not limited by the system size. Therefore, MF approach is
frequently the simplest available tool at hand, even if the proper solution of the MF model
may also turn out to be a highly nontrivial task. However, apart from relative simplicity, there
exist other, deeper and more subtle reasons determining the importance of the MF theory.
This is discussed below, where we also invoke certain facts from both quantum and statistical
mechanics.

3.1.2 Spontaneous symmetry breaking

By spontaneous symmetry breaking we understand a situation, when symmetry of the actual
state of the system is lower then the symmetry of the Hamiltonian. In general, this means that
the symmetry of the ground state is a subgroup of the total symmetry group of the Hamiltonian.

7An attempt to ascribe more precise meaning to this term will be made in what follows.
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This concept plays a central role in many areas of modern physics [132, 133, 145, 146]. Apart
from condensed matter physics, it is also widely used in the realm of high-energy physics and
even in cosmology [147].

To describe spontaneous symmetry breaking in a quantitative manner, Landau introduced
a concept of order parameter [148, 149]. By this term we understand any physical quantity,
which has nonzero value in an ordered, i.e., less symmetric phase, and vanishes on the opposite
side of the transition point or line. Magnetization (i.e., magnetic moment of a given volume of
a specimen) may serve as a good example in the case of ferromagnetic-paramagnetic transition
in the system of interacting spins.

3.1.3 Landau theory

A notion of an order parameter is fundamental for the theory of phase transitions, developed
by Landau in the years 1936-1937 [148, 149]. Within this theory, generalized thermodynamic
potential is introduced, which global minimum with respect to order parameter(s) corresponds
to the equilibrium situation. In contrast to ordinary thermodynamic potentials encountered in
standard thermodynamics (e.g. free energy or grand potential), generalized potentials of Lan-
dau theory8 may depend on some thermodynamic variable and its conjugate variable (related
by the Legendre transformation) at the same time. For example, in the case of magnetically
ordered systems, generalized potential depends on both magnetization (an order parameter)
and the external magnetic field. Only after the minimization is carried out (with respect to
e.g. magnetization), the conjugate variables are no longer independent, e.g. the equilibrium
value of magnetization is a function of magnetic field (and of other thermodynamic variables,
such as the volume or temperature).

Landau theory, even if soon recognized to be quantitatively inaccurate (i.e., it predicts in-
correct values of the critical exponents), had a great impact on theoretical physics [132]. It
was later generalized by Ginzburg and Landau in order to provide a description of supercon-
ductivity [151]. Both Landau and Ginzburg - Landau theories in the original formulation have
phenomenological character, which means that they make almost no assumptions about the
underlying microscopic picture.

However, it may be expected, that there exists a close connection between Landau or
Ginzburg - Landau theory and the microscopic MF models. Mean-field variables frequently
play the role of order parameters, and the results of microscopic MF formulation, before the
mean-fields optimization, are interpreted in terms of the Landau theory, cf. [146]. Also, devel-
opment of Landau approach seems to have been (at least partly) motivated by the microscopic
mean-field models existing at that time, e.g. the Bragg-Williams treatment (1934) of order-
disorder transition in binary alloys [152]. On the other hand, following Gorkov (cf. e.g. [44]),
one may start from the microscopic MF model and derive the corresponding Ginzburg-Landau
functional by applying Green’s function technique within the BCS theory.

In the present Thesis a natural connection between phenomenological description in the
spirit of Landau and Ginzburg, and the microscopic MF models will be established from a
different perspective.

3.1.4 Mean-field approach as a semi-classical description

Apparently, there exists some relationship between spontaneous symmetry breaking and emer-
gence of the classical world from the laws of quantum mechanics.9

8Here by ’Landau theory’ we always understand the theory of phase transitions, and not the theory of Fermi
liquids [150]. For the latter, the full name ’Landau theory of Fermi liquids’ is always used.

9Highly non-trivial relationship between quantum and classical physics is still not resolved. There are many
attempts to solve this problem, e.g. by invoking environmental decoherence (cf. [153] and References therein).
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Obviously, symmetries of classical, macroscopic objects are very different from those which
are present on the quantum level. Following Ref. [157], consider an example of crystalline
state. Microscopic quantum Hamiltonian describing a collection of atoms (or ions) and electrons
exhibits full translational invariance, yet in crystals the full translational symmetry is broken,
and the atoms can form a regular structure.10

Apart from appearance of the crystalline state, for which symmetry-breaking is evident,
essentially the same situation appears in the cases of magnetic ordering or appearance of su-
perconductivity. For example, let us consider Neel state, characterized by a static, long-range
antiferromagnetic order. This state is obviously not an exact eigenstate of the Heisenberg
Hamiltonian (cf. (6.127) in Section 6.135 and (12.282) in Section 12.3), regarded as a minimal
microscopic model of real antiferromagnetically ordered materials. As another example, we
may consider a ferromagnet, which may also be described by a ground state of the Heisenberg
Hamiltonian, with the opposite (negative) sign of the exchange integral. However, the point is,
that in the absence of an external magnetic field, this ground state is highly (strictly speaking,
infinitely) degenerate. By selecting a direction of the spontaneous magnetic moment we break
the SU(2) symmetry of the quantum model.

Using the above examples, we conclude, that the standard (i.e., without the concept of the
symmetry breaking) quantum-mechanical treatment may be inconvenient, or even insufficient to
describe various symmetry-broken states of matter, frequently encountered in condensed matter
physics. Such states, whose existence is experimentally evident, do not correspond to eigenstates
(or at least to unique eigenstates) selected out of the states of those quantum Hamiltonians,
which are regarded as defining correct and essentially complete microscopic models of the
systems in question. Now, it should become more clear, why the symmetry-broken states are
sometimes termed ’(semi-) classical’ states or ’classical condensates’ [157, 158].11 They exhibit
peculiar properties, in particular long-range order and ’rigidity’, i.e., robustness with respect
to external perturbations.

Interestingly, ’classical condensates’ can be modeled using eigenstates of the appropriate
MF Hamiltonians. Existence of long-range order(s) is build into such description in a natural
manner, and existence of the ’classical domain’ is a priori assumed. This means, that when
solving a MF model, we determine the actual optimal values of mean-fields, which may indeed
differ from zero. By doing so, we usually break some of the unitary symmetries originally
present in the microscopic MF Hamiltonian.

Non-zero values of mean-fields may imply that there exists a finite gap in the spectrum
of the MF Hamiltonian. The presence of the gap, in turn, explains the rigidity; the system
remains in the ground state despite the external perturbations, as long as the latter are weak
enough (i.e., characterized by the energy scale smaller than a gap).12

Due to non-zero value of the gap, a difference between pure, single-determinant ground
state of the MF Hamiltonian, and a mixed thermal state is insignificant at low temperatures.
However, mean-field models could be also used to describe the symmetry-broken states at non-
zero temperature, and then obviously both the ground state, and the excited states of the MF
Hamiltonian are required. In the present Thesis, we propose an approach to MF models valid
for arbitrary T > 0.

However, the latter point of view has been critically examined [154, 155, 156]. This fascinating topic is outside
the scope of the present work.

10Obviously, the existence of crystals, or any other macroscopic objects localized in space, also breaks trans-
lational symmetry.

11In Ref. [157] a precise distinction between classical and semi-classical states is made, but we do not follow
this terminology strictly.

12It should be noted that the gap existence is not the necessary, but rather the sufficient condition for the
rigidity of the broken symmetry state. For example, there exist zero-gap superconductors, in which the phase
rigidity of the macroscopic wave function is the principal factor.
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3.1.5 MF formalism as a result of saddle-point approximation

There exits yet another aspect of the classical character of the MF approach. Namely, it is well-
known, that the quantum-mechanical description of a single, spinless particle may be formulated
in terms of path integrals [159]. Conversely, given a quantum-mechanical propagator, we may
distinguish a stationary path, corresponding to the classical trajectory (i.e., one making the
classical action stationary). Similarly, making use of the coherent states of spin, Bose or
Fermi operators, one may express the partition function of a many-body system as a path
integral [160]. Following Fradkin [161], let us consider Hubbard model as an example. One
may apply Hubbard-Stratonovich (HS) transformation when determining the relevant partition
function. This step leads to an equivalent problem, expressed in terms of both fermionic and
auxiliary bosonic fields. Importantly, the partition function expressed in this way is quadratic
in fermionic degrees of freedom, therefore the latter can be integrated out, and one obtains an
effective (Euclidean) action in terms of auxiliary Bose fields introduced by HS transformation.
It turns out, that a saddle-point approximation applied to such an effective action is equivalent
to the Hartree-Fock mean-field approximation [158]. In analogy to the single-particle case,
the path, singled out by means of the saddle-point approximation, is said to correspond to a
’classical’ situation. This is less obvious in the case of many-body system, than for a single
particle, but it still seems to be justified to call the Hartree-Fock approach a ’semi-classical
theory’ [158].

Following Refs. [157, 158], we want to point out here, that it is not the weakness of the
interaction, which justifies MF approach, but rather the existence of a non-zero value of certain
order parameter(s) and a subsequent ability to include the fluctuations around the mean-field
solution to obtain a complete description. In other words, description in terms of the MF states
may be regarded as more than just an approximation to the proper ground- or equilibrium-state
description of some many-body Hamiltonian in the weak-coupling regime, even if this is the
role the MF states often play.

3.1.6 Mean-field approach as a description based on restricted class of quantum
observables

As pointed out in Refs. [162, 163, 164], mean-field theory may also be regarded as an attempt
to describe a physical system by using only quantum operators, which belong to some restricted
class. In the case of fermionic system encountered in the condensed-matter physics, this usually
mean that we use operators which are bilinear in creation or annihilation operators, i.e., our MF
Hamiltonians are of single-particle nature. The latter choice is privileged in connection with
the application of Wick’s theorem [136, 165], but other classes of operators may be preferable
e.g. for the mean-field models of bosonic systems (e.g. for bosons in optical lattices [166]) or
the mean-fields models used in nuclear physics [162, 164].

3.1.7 Statistical mechanics and spontaneous symmetry breaking

It is well known, that for finite systems, standard statistical mechanics does not predict neither
temperature-driven phase transitions, nor the spontaneous symmetry-breaking. Indeed, at the
phase transition point the thermodynamic potentials must be non-analytic functions of the
inverse temperature β ≡ 1/kBT . On the other hand, partition function of the finite system
is a sum of finite number of terms of the form exp(−βEi) or exp(−β(Ei − µNi)). Each such
term, as well as their finite sum is an analytic function of the inverse temperature, therefore
we can never obtain true, ’sharp’ phase transition [132]. Also, in the absence of an external,
symmetry-breaking field, all the micro-states related by the symmetry transformations, with
respect to which the Hamiltonian is invariant, have the same energies and enter the partition
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function with the same weight. As a consequence, order parameters, which are averages of
certain microscopic quantities, cannot retain non-zero values. Ising model [167] in the absence
of the external magnetic field may serve as an example. Because each micro-state has its
spin-reversed partner with exactly the same energy, total magnetization is equal zero.

Therefore, within a standard statistical mechanics, phase transitions and the symmetry-
broken states of matter seem to be intrinsically related to the presence of large, or strictly
speaking, infinite number of microscopic constituents of the system, i.e., to the thermodynamic
limit [132].

3.1.8 Method of quasi-averages

Symmetry-broken quantum states may be obtained by means of the method of quasi-averages
proposed by N. N. Bogoliubov [168, 169]. Quasi-averages are defined in a thermodynamic
limit, and in the presence of an additional, external symmetry-breaking field. Eventually, this
field is turned off after the thermodynamic limit is taken. Importantly, the order of those two
operations cannot be interchanged [145, 168, 169, 170, 157].

However, for many exact (non-MF) models of particular interest, it may be rigorously
shown, that depending on the spatial dimensionality DS and temperature T , the method of
quasi-averages does not yield the symmetry-broken states with a true long-range order. Notable
examples are: a lack of the long range superfluid (superconducting) order in Bose (Fermi)
liquids for DS = 1 and DS = 2 at T > 0 [171], or a lack of antiferro- and ferromagnetic
ordering in the Heisenberg model in DS = 1 (at T ≥ 0) and DS = 2 (at T > 0) [172].
Moreover, various symmetries of the superconducting order parameter are excluded in the two-
dimensional Hubbard model [173, 174, 175]. Also, as pointed out in [176], there is even no
superconductivity of a dx2−y2-wave symmetry in the two-dimensional t-J model, commonly
regarded as a correct minimal model of the high-temperature cuprate superconductors.

Interestingly, in each of the above mentioned cases, the corresponding MF approximations
yield the symmetry-broken solutions easily, and quite insensitively to the system size, dimen-
sionality or temperature. In general, MF approach overestimates range of ordered phases, e.g.
it yields critical temperatures which are far too high. On the other hand, MF methods allow us
to describe symmetry breaking in real systems using simple, low-dimensional models. As dis-
cussed above, this usually would not be case for an exact treatment of full many-body problem,
even if such treatment was technically feasible.

3.1.9 ’More is different’

We may look at the previous discussion, concerning the existence of the ’classical conden-
sates’ and insufficiency of quantum mechanics to describe such states, from even more general
perspective. Namely, following Anderson [145], let us note that it may be technically or con-
ceptually impossible to predict the collective behavior of complex systems, even if we have a
complete knowledge about the interactions between their microscopic constituents. Existence
of a non-zero dipole moment of certain molecules, like ammonia NH3 and its heavier analogs,
(e.g. phosphine, PH3) is a striking example given by Anderson. However, this situation is
encountered not only in chemistry or in solid state physics. Even apparently more fundamental
theories have some phenomenological ingredient build in [145, 157]. For example, in quantum
chromodynamics (QCD), a kind of a MF approach is used to explain the origin of mass of
nucleons (’chiral condensate’) [139].
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3.2 How to solve mean-field models?

Before we may answer this question, first let us define what we mean by ’solution of the MF
model’. Namely, MF model is solved once the optimal values of mean-fields are determined
and the explicit form of the MF density operator is known. Obviously, these two goals are
closely related. MF density operator is required in order to compute expectation value of
any operator, which may be relevant to the problem at hand. At the same time, MF density
operator depends functionally on the mean-field variables. Note, usually the diagonalization of
the MF Hamiltonian is rather straightforward. However, it may be quite problematic, what do
we understand by ’the optimal values of mean-fields’.

3.2.1 Variational principle based on Bogoliubov-Feynman inequality and its gen-
eralizations

At T > 0, MF density operators are frequently used as trial variational states within the
variational principle based on the Bogoliubov-Feynman inequality [107] and its generalizations
[108], cf. also Subsection 4.10. Using the Bogoliubov-Feynman inequality, we obtain an upper
bound for the grand potential Ωe or free energy Fe of the system described by some non-MF
(’exact’) Hamiltonian Ĥe.

13 In other words, from such point of view, MF Hamiltonians and
MF states play only an auxiliary role. However, if the mean-field variables are treated as
variational parameters, their optimal values obtained from Bogoliubov-Feynman principle are
in general not equal to the averages of the corresponding operators, contrary to basic definitions
of mean-fields (we comment more on this point in Subsection 4.10).

One may argue, that what should mainly concern us is the optimal upper bound for the
corresponding thermodynamic potential. Therefore, the internal self-consistency of the MF
model would be of secondary importance and may be ignored. However, in our opinion, this
point of view is unacceptable.

On the other hand, even if the value of free (or the ground state) energy of the MF model is
close to the exact one, it is not guaranteed at all, that the original many-body (’exact’) model
and its MF counterpart are similar with respect to any other property. In such a situation, one
may try to use a dedicated variational principle suited to the optimization of each quantity of
interest [177]. However, in such a case we simultaneously deal with several different variational
principles; one of them is variational principle for the free energy, based on the Bogoliubov-
Feynman inequality. Therefore, in the context of the MF theory, the formalism of Ref. [177]
leads to situation which is qualitatively similar (though technically more complicated) to that
resulting from the application of Bogoliubov-Feynman principle. This route thus not seem to
be the preferable way of solving MF models.

3.2.2 Mean-field description involving only a mean-field Hamiltonian

In the previous paragraphs we have discussed some non-trivial features of the MF formalism.
Namely, we have pointed out that MF models are able to provide a description of the symmetry-
broken phases, which is frequently not the case for the corresponding non-MF models. In other
words, MF models should be considered as being more than just crude approximations to
intractable non-MF models. Therefore, it seems legitimate to consider a situation, when the
system is described entirely in terms of the MF Hamiltonian. Namely, although some ’exact’
(non-MF) Hamiltonian Ĥe may be initially postulated for the problem, (and even being used
to construct the MF Hamiltonian in question), it is eventually disregarded and should not be
required to solve the MF model. In particular, neither the Bogoliubov-Feynman inequality nor

13In T → 0 limit, the Bogoliubov-Feynman principle reduces to the variational principle of quantum mechan-
ics, and we obtain upper bound for the ground state energy.
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its generalizations (T > 0), nor the minimization of the expectation value of Ĥe computed
with respect to the mean-field quantum state (T = 0), should be invoked. Our motivation for
solving the mean-field models ’on their own’ partly comes from the Landau theory. However,
this way of dealing with the MF theory seems to be logical and consistent in its own right.

We are aware, that such point of view on the MF approach may be not convincing to all or
even regarded as questionable. Namely, one may argue, that without a non-MF Hamiltonian
Ĥe we have neither real basis nor a reference point for the analysis of the physical system.
For example, depending on the MF Hamiltonian as well as the way we solve a MF model, the
resulting value of the MF free (ground-state) energy may be even lower then the corresponding
energy of this Ĥe, which is considered as realistic and correct microscopic model of the system in
question. Nonetheless, apart from the arguments given previously, please note that approaches
based de facto entirely on the MF Hamiltonian are still widely applied to study various systems
encountered in condensed matter physics. In particular, the MF models based on the Gutzwiller
approximation (GA) [20, 59] are frequently used to provide an approximate treatment of the
models of strongly correlated fermions, i.e., various forms of the Hubbard model, the related t-J
model within the RMFT picture [33, 58], or of the Anderson model. Similar situation is present
in case of the saddle-point (MF) approximation to various forms of the slave-boson formalism
[33, 103], which also leads to an effective, single-particle picture. In this Thesis, most of the
just raised points are subject of detailed analysis on example of a concrete model.

3.2.3 Approach based on Bogoliubov-de Gennes equations

RMFT of the t-J model may serve as an example of the mean-field theory which is not of the
standard Hartree-Fock form (as defined in Subsection 4.9). In result, the Bogoliubov-Feynman
variational principle is not equivalent to the minimization of the MF grand-potential potential
with respect to the mean-field variables (cf. discussion in Subsection 4.10). Moreover, for
more advanced versions of RMFT, both variational procedures spoil the self-consistency of the
model. In that situation, RMFT is frequently solved by invoking the basic self-consistency
conditions, leading to the self-consistent equations (in the case of the mean-field treatment
of superconductivity termed also Bogoliubov-de Gennes equations) for the values of mean-
fields (cf. Eqs. (4.8) of Subsection 4.3), and no variational procedure is used. However,
this non-variational way of solving MF models, although internally consistent, suffers from
many drawbacks. In fact, a need for a more satisfactory treatment of RMFT was the original
motivation for the construction of the general formalism presented in this Thesis.

3.2.4 Maximum entropy principle

If we decide to base our description entirely on the MF Hamiltonian, its eigenstates represent
all available micro-states of the system. In other words, we try to ’mimic’ an exact description
of the system, originally based on some non-MF many-body Hamiltonian Ĥe, by means of the
properly chosen MF Hamiltonian. In order to solve MF model at T > 0, we need to determine
probability distribution for the microstates of the system. We are concerned mainly with the
equilibrium properties. Accordingly, we construct appropriate canonical or grand canonical
ensemble for the MF situation.

We base our approach on the maximum entropy (MaxEnt) principle [109, 111, 110]. In
general, the MaxEnt principle is one of the cornerstones of Bayesian mathematical statistics. It
allows to construct the optimal probability distribution on the basis of incomplete information
[109, 111, 110]. In particular, it may also be regarded as the basis of statistical physics,
and the latter is treated then as a special case of statistical inference. From this point of
view, canonical density operators of equilibrium statistical mechanics are derived using MaxEnt
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principle [109, 112, 178, 179]. In fact, this route is not only the most convenient, but also
the most general one. It could be relatively easily generalized to treat various non-standard
situations, e.g. the non-equilibrium statistical mechanics [178]. We argue that the MaxEnt
principle should be also used in the case of a mean-field description of the system. However, in
order to carry out the whole procedure, a standard formulation of the MaxEnt principle must
be modified.

It turns out, that such approach to the MF models has a number of attractive features.
First, it allows for a natural interpretation of a given microscopic MF model in terms of the
Landau theory of phase transitions. Namely, for each MF Hamiltonian, a corresponding Landau
potential may be constructed explicitly. Consequently, not only the MF equilibrium thermody-
namics is defined in a consistent manner, but the non-equilibrium situation can also be studied.
Although we consider only the stationary, i.e., time-independent situation, such analysis may
help to reveal the internal limitations of the present MF approach.

We may hope that our description of the equilibrium situation is, by its construction, optimal
from the point of view of mathematical statistics. Any other probability distribution one may
find for a given MF model would be biased, i.e., would contain information which we in fact do
not possess, or some available information would be ignored.

Let us note here, that an approach to MF theory based on the maximum entropy inference,
has been also addressed in the series of papers [162, 163, 164]. Existence of those References
apparently has not been noticed by a condensed matter community. We too became aware of
it only after completing the main parts of the present work. Formalism of those References
differs from ours, nonetheless, both approaches share also some common features. We provide
some discussion of that point in Section 4.8 and in the Summary of Part II.

3.2.5 Optimal effective mean-field picture

It is important to note here, that although the method we propose has been initially devised to
provide the unbiased solution of an a priori given MF model, it may be also used to construct
the optimal (from the point of view of MaxEnt inference) approximation to a given non-MF
many-body Hamiltonian Ĥe. In this manner the rigorous upper bound on the exact free energy,
or (in the T → 0 limit) the ground state energy of Ĥe may be obtained in principle. Also, our
approach may be combined with the one based on the Bogoliubov-Feynman inequality, in such
a way, that the self-consistency of the MF approach is preserved.

3.2.6 Zero temperature situation

Finite-temperature MaxEnt-based formalism constructed here offers also a convenient starting
point for the analysis of T = 0 situation. The latter may be recovered as the T → 0 limit
of the T > 0 case. Such an approach omits many of the difficulties of pure zero-temperature
treatment, as discussed in detail in Sec. 12.2 (Supplement B).

Several examples of zero-temperature, self-consistent variational MF approach can be found
in the literature, cf. e.g. [66, 69, 70, 71, 85]. In each of those References, the Authors make use
of the variational principle of quantum mechanics (minimization of the expectation value of an
appropriate Hamiltonian) for the MF case, and MaxEnt principle is not invoked. Moreover,
the results of Refs. [66, 69, 70, 71, 85] may be obtained within our formalism in the T → 0
limit.

3.3 Summary of synopsis

In summary, the general character and the deductive nature of the modified MaxEnt approach
justifies, in our opinion, its detailed exposition in this Thesis before concrete models are tackled
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explicitly. Most of the results presented in the next Section will be later utilized in Part III.
Topics less related to the contents of Part III are presented in the Appendices and Supplements
(Part IV).
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4 Formalism and method

4.1 Mean-field Hamiltonian

Consider a mean-field (MF) Hamiltonian,

Ĥ(A1, A2, . . . , AM) ≡ Ĥ( ~A), (4.1)

which depends on M mean fields A1, A2, . . . , AM , (A1, A2, . . . , AM) = ~A.14 We assume that the

explicit form of Ĥ( ~A) is a priori known. Each As has an interpretation of expectation value
of the corresponding operator, i.e., As ≡ 〈Âs〉. The averages 〈. . .〉 are defined in the standard
manner, i.e.,

〈Â〉 = Tr[Âρ̂] = Tr[ρ̂Â], (4.2)

where ρ̂ is the MF-density operator, the explicit form of which is not specified as yet, and
has to be subsequently determined. We assume that Âs operators are time-independent in the
Schrödinger picture, i.e., ∂Âs/∂t = 0. Also, without loss of generality, we may assume that

As ∈ R (this can always be achieved by an appropriate choice of Âs operators). Those ~A, for

which Ĥ( ~A) is well-defined will be called a domain of the MF model and denoted by DA.
MF Hamiltonian, together with the lattice of spatial dimension DS and particular geometry

define a MF model. In order to avoid inessential mathematical difficulties related to the un-
derlying algebraic structure, we assume that the dimension DH of the Hilbert space, in which
Ĥ( ~A) is defined, is finite, DH < ∞. Here such restriction is acceptable, as we are mainly
interested in the fermion- or spin models defined on finite (albeit arbitrary large) lattices.15

We also assume that Ĥ( ~A) does not depend explicitly either on time, or on purely statistical
quantities like temperature or chemical potential, unless explicitly stated otherwise.16 At this
point we impose no further restrictions on Ĥ( ~A), and we are not concerned with the problem
of derivation or physical justification of its particular form. However, it turns out that the
method developed here may be useful also for that purpose, see Subsection 4.8.

Our aim here is to describe a physical system only by making use of the mean field Hamil-
tonian Ĥ( ~A). We assume that the system is in contact with a heat bath and possibly with
some particle reservoir.17 Therefore, we will need grand-canonical (GC) ensemble for the case
of MF description of the system. Obviously, GC ensemble is preferred for lattice fermion and
boson models. This feature is even more pronounced in the case of MF models, than for the
standard statistical mechanics, because the average particle number 〈N̂〉 is usually one of the
relevant mean-fields. To avoid confusion, 〈N̂〉 will be denoted by A1, and not by N ; the latter
symbol will be used only for the equilibrium value of the average particle number, appearing
in thermodynamic relations.

Other cases, i.e., micro-canonical and canonical ensembles may be treated analogously (cf.
Sec. 12.3, where the MF model of the spin system is analyzed within canonical ensemble).
Moreover, classical lattice models (e.g. Ising model) may be studied using a formally quantum-
mechanical approach developed here, for the special case of Hamiltonians constructed from
mutually commuting observables.

14We denote mean-fields as a components of a vector ~A mainly in order to have a compact notation. Nontrivial
vector character of ~A will be discussed at the end of Subsection 4.8.

15An extension to the case of infinite, but countable Hilbert space is possible in principle. This would allow
us to treat also the lattice-boson systems. In contrast, the case of uncountable basis cannot be treated within
the present formulation of the method, as then the maximum entropy principle itself must be modified.

16It is sometimes convenient to relax the latter requirement and allow for an explicit T -dependence of the
MF Hamiltonian.

17For simplicity, we assume that only one kind of (fermionic) particles is present. General case may be treated
analogously.
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4.2 MaxEnt principle and statistical mechanics

Before turning to the MF situation, let us remind briefly one particular way in which density
operators of canonical statistical ensembles may be derived within a standard (non-MF) statis-
tical mechanics. This route seems to be the most general as well as the most convenient one;
it also turns out to be particularly convenient in the case of the MF models.

As pointed out by Jaynes [109, 110, 111], canonical density operators may be derived by
invoking maximum entropy principle (MaxEnt) (see also [112, 178]). As an example, let us
consider grand-canonical (GC) ensemble. If Ĥe is the Hamiltonian of the system, then the
following functional

Se = Tr
(

− ρ̂e ln ρ̂e − βρ̂eĤe + µβρ̂eN̂ − ωρ̂e

)

, (4.3)

has the maximum value for true GC density operator ρ̂e. The first term on the r.h.s. of (4.3)
is the von Neumann entropy

SvN (ρ̂) = −Tr(ρ̂ ln ρ̂), (4.4)

whereas the other terms are related to expectation value of the Hamiltonian (〈Ĥe〉e ≡ Tr[ρ̂eĤe])
and particle number operator (〈N̂〉e ≡ Tr[ρ̂eN̂ ] ≡ N). The last term ensures correct normal-
ization (Tr[ρ̂e] = 1). The inverse temperature β = 1/kBT , and the chemical potential µ play
role of the Lagrange multipliers, enforcing the constraints for 〈Ĥe〉e and 〈N̂〉e, respectively.18

In equilibrium, density operator ρ̂e should be a constant of motion (we assume also that
Ĥe does not depend explicitly on time, i.e., ∂Ĥe/∂t = 0). Therefore, the quantum Liouville
equation (von Neumann equation), i.e.,

i~
∂

∂t
ρ̂e(t) = [Ĥe, ρ̂e(t)] (4.5)

implies that ρ̂e should commute with Ĥe. As a consequence, and because also the condition
[Ĥe, µN̂ ] = 0 usually holds for non-MF Hamiltonians, ρ̂e and Ĥe have common eigenbasis. Next,
we vary Se (4.3) with respect to the diagonal elements of density operator, i.e., probabilities,
and obtain the necessary conditions for the extremum of Se (4.3) with respect to ρ̂e. This yields
GC density operator of the form

ρ̂e = Z−1e−β(Ĥe−µN̂), Z = Tr[e−β(Ĥe−µN̂)]. (4.6)

It turns out that ρ̂e (4.6) indeed corresponds to the maximum of (4.3).
Now, let us consider any operator Â which does not depend on time explicitly (in the

Schrödinger picture), i.e., ∂Â(t)/∂t = 0. It could be easily verified, that then the average value
of Â in the mixed state (4.6) is time-independent. Indeed,

〈Â〉t =
∑

i

〈i(t)|ρ̂eÂ|i(t)〉 =
∑

i

〈i(0)|eiĤet/~ρ̂eÂe
−iĤet/~|i(0)〉 (4.7)

=
∑

i

〈i(0)|e−iĤet/~eiĤet/~ρ̂eÂ|i(0)〉 =
∑

i

〈i(0)|ρ̂eÂ|i(0)〉 = 〈Â〉t=0.

18When applying the MaxEnt principle in general inference problems of Bayesian statistics, we usually en-
counter the following situation. A prior information about averages of certain functions (or operators in the
quantum case) is available, and taken into account by imposing appropriate constraints. The Lagrange mul-
tipliers are determined from the requirement, that the resulting probability distribution is consistent with the
knowledge we a priori have. This is exactly the case of 〈N̂〉 = N and µ. However, for 〈Ĥe〉e ≡ U and β a
situation is different due to the physical interpretation of β. Namely, for an open system in thermal equilibrium,
it is usually the temperature, and not the average energy which is experimentally accessible and therefore a
priori known. However, those two ways of approach (i.e., either by fixing U or β) are equivalent. More detailed
discussion of this point may be found in [109].
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Above we have used only the fact, that ρ̂e commutes with Ĥe and is time-independent. This
holds, in particular, when ρ̂e is an operator-valued function of the time-independent Hamilto-
nian, as in the present case.

4.3 Maximum entropy principle in the context of mean-field theory

4.3.1 Mean-field density operator and self-consistency conditions

Now we come back to the MF approach. It may be expected, that a nontrivial ~A-dependence of
the MF Hamiltonian Ĥ( ~A) (4.1) is also inherited by MF density operator ρ̂ = ρ̂( ~A). Regardless
the detailed form of the latter, using Eq. (4.2) we should be able to determine, in particu-
lar, value of each of the mean-fields A1, A2, . . . , AM appearing in ρ̂, by solving the following
equations

〈Âs〉 = As = Tr[Âsρ̂(A1, A2, . . . , AM)], s = 1, 2, . . . ,M. (4.8)

Eqs. (4.8) are termed self-consistency equations or Bogoliubov - de Gennes (BdG) equations.
They guarantee that mean-fields are indeed average values of the corresponding operators.
Obviously, the basic requirement expressed by Eqs. (4.8) should not be ignored, even if this is
sometimes the case.

4.3.2 Incomplete treatment

One may expect, that MF grand-canonical (GC) density operator should be of the form (4.6),

but with Ĥe replaced by Ĥ( ~A). However, this may be the case not. Namely, below we show
that a construction leading to such form of GC ρ̂ is incorrect in general.19

In the present situation we proceed analogously to the standard, non-MF case, i.e., we try
to make use of the MaxEnt principle. In order to do that, we rewrite20 (4.3) with ρ̂e replaced
by MF density operator ρ̂, i.e.,

S = Tr

(

−ρ̂ ln ρ̂− βρ̂Ĥ( ~A) + νρ̂N̂ − ω
(

ρ̂− 1

DH

)

)

, (4.9)

At first, let us forget for a moment about the interpretation of mean-fields as given by (4.8)
and treat each As as some additional, non-variational parameter, which is independent from
probabilities. Additionally, we assume that for all ~A ∈ DA, ρ̂( ~A) is time-independent. Invoking

Eq. (4.5) for the present situation, it follows that ρ̂( ~A) commutes with K̂( ~A) ≡ Ĥ( ~A) − µN̂ .

Then (4.9) may be rewritten in the common eigenbasis of ρ̂( ~A) and K̂( ~A), denoted by {|̃i〉}D
i=1.

This yields

S =

DH
∑

i=1

{

− pi ln pi − βpi

(

[Ĥ( ~A)]ii − µ[N̂ ]ii

)

− ω(pi −
1

DH
)
}

. (4.10)

For any operator Ô, by [Ô]ii we denote 〈̃i|Ô|̃i〉. Next, we maximize (4.10) with respect to each
pi, i = 1, . . . , D, with the condition

∑

j pj = 1 imposed (through ∂ωS = 0). In effect, we indeed

obtain a density operator of the form (4.6) but with Ĥ( ~A) replacing Ĥe, i.e.,

ρ̂( ~A) = Z̃−1 exp
(

− β(Ĥ( ~A) − µN̂)
)

, Z̃ = Tr[exp
(

− β(Ĥ − µN̂)
)

]. (4.11)

Eventually, after (4.11) is obtained, we may come back to the interpretation of each mean-
field A1, A2, . . . , AM as an average value of the corresponding operator Âs. Then, those

19With the exception of MF Hamiltonians of the Hartree-Fock approximation, cf. Subsection 4.9
20We have changed the form of the normalization constraint as compared to (4.3).
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parameters have to be determined self-consistently by using Eqs. (4.8). Thus, we obtain

A1 = A1sc, . . . , AM = AMsc, i.e., ~A = ~Asc. However, the point is that (4.11) with ~A = ~Asc, i.e.,

ρ̂( ~Asc) is not true grand-canonical MF density operator for Ĥ( ~Asc), even it has an apparent
GC form. Obviously, this is because (4.11) has been obtained by neglecting the implicit de-

pendence of ~A (hence, also Ĥ( ~A)) on ρ̂ due to (4.8). This step is often (implicitly) made (cf.
e.g. [68, 73, 74, 75, 78] and [63] for the corresponding approach at T = 0), making the whole
approach not fully consistent.

4.3.3 An attempt to eliminate mean-fields

In order to fix the incompleteness of the approach discussed above, we may try to express
the expectation values As through the corresponding matrix elements of Âs operators and the
probabilities p1, p2, . . . pDH

, using (4.8), i.e.,

〈Âs〉 = As =
∑

i

pi〈i|Âs|i〉. (4.12)

The probabilities become then the only independent variables present in the problem (modulo
the normalization constraint). However, the mean-fields can be explicitly eliminated in favor

of the probabilities only if the eigenbasis of ρ̂, {|i〉}DH

i=1, is ~A-independent. Even if this is the
case, such route is very inconvenient. S given by Eq. (4.9) is then no longer of the canonical

(Gibbs) form due to the term ∼ 〈Ĥ( ~A)〉, which is nonlinear in pi. Consequently, the necessary
conditions for S to have an extremum lead then to a set of nonlinear equations, which usually
cannot be solved analytically. Apart from facing a problem of the numerical solution of large
system of the nonlinear algebraic equations, we have no analytical formulas at our disposal, and
thus, no deeper insight into the general properties of such constructed MF formalism. Moreover,
in a general situation, the ~A-dependence of {|i〉}DH

i=1 makes things even more complicated (some
further details of this subject are provided in Appendix A, Subsection 11.1).

4.3.4 Complete treatment: method of Lagrange multipliers

The above discussion shows, that in the case of the MF models, MaxEnt principle cannot be
applied exactly in a way it is applied in the standard statistical mechanics. We have to search
for the probability distribution that maximizes (4.10), and which additionally fulfills the self-
consistency requirements expressed by Eqs. (4.8). However, the implicit dependence of the
mean-field parameters on probabilities makes the problem nontrivial. In consequence, here we
take an alternative route. We postulate that (4.9) should be maximized also with respect to

mean-fields ~A. Such an approach is motivated by both the Hartree-Fock MF approach, as well
as by the Landau theory of phase transitions.

In order to preserve self-consistency of the approach, we make use of the method of Lagrange
multipliers. Namely, we supplement (4.9) with the constraint term of the form

−βTr[Q̂λ] =
M
∑

s=1

βλs(Tr[ρ̂λÂs] − As). (4.13)

This step indeed ensures that once the constraints are fulfilled, the components of ~A, i.e.,
A1, . . . , AM , are the average values of the corresponding operators Â1, . . . , ÂM . At the same
time, it allows us to treat DH diagonal matrix elements of ρ̂λ, M mean-fields As, and M just
introduced Lagrange multipliers λs as independent variables. In (4.13), ρ̂λ is a new MF density
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operator, its form will be subsequently determined with the help the following functional

Sλ = Tr
(

− ρ̂λ ln ρ̂λ − βρ̂λĤ +

M
∑

s=1

βλsρ̂λ(Âs −As) + βµρ̂λN̂ − ω
(

ρ̂λ − 1

DH

)

)

. (4.14)

Note, that (4.14) has a canonical form, i.e., all the constraints are linear in ρ̂λ. Also, introduction
of additional constraints (4.13) may be regarded as a redefinition of the original MF Hamiltonian
Ĥ according to the prescription

Ĥ → Ĥλ = Ĥ + Q̂λ = Ĥ −
M
∑

s=1

λs(Âs − As). (4.15)

For Ĥλ (4.15) we define also the corresponding grand Hamiltonian K̂λ,

K̂λ ≡ Ĥλ − µN̂. (4.16)

From (4.14) and (4.15) we infer that K̂λ (4.16), and not K̂ ≡ Ĥ − µN̂ should be regarded as a
true MF grand Hamiltonian of the system.

4.3.5 Trivial time dependence of equilibrium mean-field Hamiltonian and density
operator

MF density operator ρ̂λ appearing in (4.14), as well as mean-fields and Lagrange multipliers

should be constants of motion for the equilibrium situation, i.e., for the optimal values of ~A
and ~λ (denoted from now on as ~A = ~A0 and ~λ = ~λ0). Note, that at the very beginning we
have assumed that neither Âs operators, nor the MF Hamiltonian depend explicitly on time.
Additionally, in equilibrium we must have ∂ ~A0/∂t = 0, ∂~λ0/∂t = 0. In such case, from Eq.

(4.5), with ρ̂e → ρ̂λ( ~A0, ~λ0; t) and Ĥe → K̂λ( ~A0, ~λ0; t), it follows that

i~
∂

∂t
ρ̂λ( ~A0, ~λ0; t) = [K̂λ( ~A0, ~λ0; t), ρ̂λ( ~A0, ~λ0; t)] = 0. (4.17)

Therefore, the equilibrium (i.e., true grand-canonical) density operator ρ̂λ( ~A0, ~λ0; t) commutes

with the corresponding equilibrium MF grand Hamiltonian K̂λ( ~A0, ~λ0; t).
However, here we make much stronger assumption, which is crucial for the subsequent

construction of the present formalism. Namely, we assume that for any initial values of ~A and
~λ and for any s = 1, . . . ,M we have

∂〈Âs〉t
∂t

=
∂As(t)

∂t
= 0,

∂λs(t)

∂t
= 0; [K̂λ( ~A,~λ; t), ρ̂λ( ~A,~λ; t)] = 0. (4.18)

In other words, classical variables ~A and ~λ play role of state labels, and have no dynamics (in
Sub-subsection 4.11.1 we argue, that such assumption is indeed internally consistent). As a

consequence of (4.18), for each ~A, ~λ we have

i~
∂

∂t
ρ̂λ( ~A,~λ; t) = [K̂λ( ~A,~λ; t), ρ̂λ( ~A,~λ; t)] = 0. (4.19)

From (4.18) and (4.19) it follows that for each ~A and ~λ the we deal with steady state, i.e., the

mean field variables, the MF grand Hamiltonian K̂λ( ~A,~λ) and the density operator ρ̂λ( ~A,~λ)
are time-independent. Therefore, in what follows, (trivial) time dependence those quantities
will be ignored.
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In particular, the condition (4.19) is satisfied for any ρ̂λ which is an operator-valued function
of K̂λ. Note, that in general we have [Ĥ − µN̂, ρ̂λ] 6= 0, as well as [Ĥλ, N̂ ] 6= 0. Nonetheless,

Eq. (4.19) guarantees, the for any ~A and ~λ there exist common eigenbasis of K̂λ and ρ̂λ, i.e.,

{|i( ~A,~λ)〉}D
i=1.

In order to make our attempt to describe the system solely in terms of the MF (grand)

Hamiltonian K̂λ( ~A,~λ) complete, a remark is in place here. Namely, from the assumptions
made above, it follows that the evolution of the pure MF quantum states (T = 0) is given by

|Ψ(t)〉 = e−itK̂λ( ~A,~λ)/~|Ψ(0)〉. (4.20)

This means, that the time-dependent Schrödinger equation should be always separable into
time-independent equation, and that the time dependence of the eigenvectors |i( ~A,~λ)〉 of

K̂λ( ~A,~λ) is trivial. Within the present approach, it is not legitimate to analyze non-trivially
time-dependent situation, i.e., time evolution of some general state |Ψ(t)〉, not being an eigen-

vector of K̂λ( ~A,~λ) as this would contradict conditions (4.18). This is also discussed in Subsec-
tion 4.11.

4.4 Explicit form of mean-field density operator and the optimal

(equilibrium) values of mean fields

In order to obtain an explicit form of the grand-canonical MF density operator, we have to find
a maximum of Sλ (4.14) subject to the constraints. First, we rewrite (4.14) using the eigenbasis

of K̂λ, {|i( ~A,~λ)〉}DH

i=1 (from now on for simplicity denoted {|i〉}DH

i=1), i.e.,

Sλ =

DH
∑

i=1

{

− qi ln qi − βqi

(

[Ĥ]ii − µ[N̂ ]ii −
M
∑

s=1

λs

(

[Âs]ii − As

)

)

− ω
(

qi −
1

DH

)}

. (4.21)

In the above, we have [N̂ ]ii = 〈i|N̂ |i〉 etc., and qi = [ρ̂λ]ii. Also, we have

[Ĥ ]ii − µ[N̂ ]ii −
M
∑

s=1

λs

(

[Âs]ii − As

)

= Kλ(i). (4.22)

where Kλ(i) is an eigenvalue of K̂λ, i.e., K̂λ|i〉 = Kλ(i)|i〉.
Next, we assume, that at least one maximum of (4.21) subject to the constraints exists,

and that it corresponds to a vanishing gradient of Sλ. Then, the necessary conditions for such
maximum of Sλ are the following. First,

∂Sλ

∂ω
= 1 −

DH
∑

j=1

qj = 0, (4.23)

is the normalization condition. Next, for each j = 1, 2, . . . , DH we have

∂Sλ

∂qj
= −(1 + ω) − ln qj − β[Ĥ]jj + βµ[N̂ ]jj +

M
∑

s=1

βλs

(

[Âs]jj − As

)

= 0. (4.24)

Also, for each w = 1, 2, . . . ,M we have

∂Sλ

∂Aw
= −β

DH
∑

i=1

qi

(

∂[Ĥ ]ii
∂Aw

+ λw

)

= 0, (4.25)
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and
∂Sλ

∂λw
= β

DH
∑

i=1

qi
(

[Âw]ii − Aw

)

= 0. (4.26)

In (4.25) and (4.26), in the terms [K̂λ]ii = 〈i|K̂λ|i〉 = Kλ(i) we have ignored the possible

explicit ~A- and ~λ- dependence of the (normalized) eigenvectors |i〉. This is justified due to the
Hellmann-Feynman theorem [180]. Also, let us point out once more that due to the presence
of Lagrange multipliers λs, the averages As (mean-fields), and probabilities qi = 〈i|ρ̂λ|i〉 are
treated here as independent variables.

4.4.1 Variational parameters of a non- mean-field character

Apart from the mean-fields ~A, mean-field Hamiltonian Ĥ( ~A) may depend also on some extra

variables (b1, b2, . . . , bP ) ≡ ~b, which are not expectation values of operators of the same type
as those used to construct the MF Hamiltonian. For example, for the lattice fermion systems,
this means that bl are not averages of expressions bilinear in fermion creation or annihilation
operators. A lattice (bond) lengths or variational parameters originating from Gutzwiller [20]
or Jastrow [33, 181] correlators present in trial wave functions may serve as examples. Certain
parameters of the MF Hamiltonian, e.g. hopping integrals between more distant neighbors may
be also treated as variational parameters of the same type. If values of b1, b2, . . . , bP are not
a priori known, and are to be predicted within our model, we may treat them as additional
variational parameters, with respect to which Sλ is maximized. Clearly, no corresponding
Lagrange multipliers are required in such case. Explicitly, if the maximum of Sλ with respect
to each bl corresponds to a stationary point21 (i.e., point of vanishing gradient of Sλ), using Eq.
(4.21) we obtain, apart from Eqs. (4.23)-(4.26), P additional necessary conditions of the form

1

β

∂Sλ

∂bl
= −

DH
∑

i=1

qi
∂[Ĥ ]ii
∂bl

= 0. (4.27)

The last equality holds as long as the constraint part Q̂λ of Ĥλ does not depend on bl, which
is usually the case.

Note, that maximization of (4.14) with respect to ~b variables leads us beyond the standard
formulation of the MaxEnt principle, where only the probabilities play role of variational pa-
rameters. Nonetheless, such an extension seems to be legitimate. According to the MaxEnt
philosophy, we look for the maximum of SvN (4.4) prior to constraints of given E = 〈Ĥ〉 and
N = 〈N̂〉. This procedure leads to the one-to-one correspondence between E and β. Alterna-
tively, we work with fixed β and variable E. In any case, the same necessary conditions (4.27)
for the extremum follow.

Also, please note, that maximization of Sλ with respect to ~b is equivalent to the more
familiar procedure, namely to minimization of the corresponding generalized grand potential. It
is well-known, that for given T, V, µ and other thermodynamic variables, e.g. external electric or
magnetic field, in the equilibrium situation the thermodynamic grand potential Ω (4.47) reaches
its minimal value. In the β → ∞ limit, the entropic part of Sλ becomes of no importance and we
are left with minimization of the ground-state energy, i.e., the variational principle of quantum
mechanics for the MF (grand) Hamiltonian.

21Obviously, this may be not the case. As an example, we may invoke MF models describing Fulde-Ferrel-
Larkin- Ovchinnikov (FFLO) type of superconducting state (cf. e.g. Refs. [182, 183] and References therein).
The corresponding MF Hamiltonians depend on the center of mass wave vector ~q of the Cooper pairs, which
appear as a quantum number labeling creation and annihilation operators. In such case it would be very
unnatural to employ the conditions (4.27). Rather, we have to examine each value of ~q separately and select
the one corresponding to maximum of Sλ.
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Sλ (4.14) depends on parameters ~b only through the MF Hamiltonian, similarly to the

dependencies of Sλ on volume V or an external (electric or magnetic) field ~h. However, in

contrast to V or ~h, values of b1, b2, . . . are not specified until the model is solved (one can think

of a family of MF Hamiltonians labeled by ~b). Note, that in general, [Ĥ(~b1), Ĥ(~b2)] 6= 0 for
~b1 6= ~b2.

On the other hand, if the value of some of b1, . . . , bP parameters (say, of bl) becomes known
(which is the case for the standard parameters of the Hamiltonian, like particle mass, Coulomb
or hopping integrals, external fields etc.), we obviously no longer treat bl as a variational
parameter. Then Eq. (4.27) is not obeyed, and we obtained lower value of Sλ, i.e., more
informative probability distribution. In such case we change the notation, i.e., bl → αl as in
Ref. [109]. The following quantity

φl0 =

〈

∂Ĥ

∂αl

〉

0

= − 1

β

(

∂S
∂αl

)

0

(4.28)

corresponds to the optimal MaxEnt estimate of φl ≡ 〈∂Ĥ/∂αl〉. In the above, subscript ’0’
indicates, that we use values of pi, As and λs which are the solution of Eqs.(4.23)-(4.26). In
that way we may determine the value of pressure (then αl = V , the volume of a specimen)

or the magnetic moment (magnetization) with αl = ~hẑ, the z-the component of the external

magnetic field. If parameters ~b are present in a problem, formulas (4.1), (4.2) and (4.8)-(4.26)
may be easily generalized.

4.4.2 Observables with a priori known expectation values

Apart from N = 〈N̂〉 ≡ 〈Â1〉, expectation values of some other Âs operators may be a priori

known (for simplicity, assume that we have one such operator, say Â2). In that situation,

we do not insert the numerical value of 〈Â2〉 into Ĥ( ~A). Instead, in order to ensure that
the value of 〈Â2〉 is consistent with the prior information we have, we add to K̂λ the term
(−ξ2Â2) (analogous to the (−µN̂) term). If we ignore some available information, we obtain
less informative probability distribution. Note, that even if its value becomes known, A2 = 〈Â2〉
is still treated as a variational parameter (see discussion in Subsection 4.7) and Sλ has to be
maximized with respect to all variables As. Otherwise, the standard thermodynamic relations
(cf. Section 4.6) would not be valid. This is in contrast to the case of bl parameters, discussed
in the previous Sub-subsection. The asymmetric treatment of those two types of variables is
simply caused by the fact, that for the bl variables there are no corresponding operators.

4.4.3 Explicit form of functional dependence of mean-field density operator on
~A,~λ and ~b variables

Eqs. (4.23) and (4.24) can be easily solved, and qi and ω may be expressed in terms of ~A, ~λ

and ~b.22 Together with the condition (4.19), this yields a basis-independent form of the MF

density operator ρ̂λ( ~A,~λ,~b) and the corresponding partition function Zλ( ~A,~λ,~b), namely

ρ̂λ( ~A,~λ,~b) = Z−1
λ exp

(

− β(Ĥλ( ~A,~λ,~b) − µN̂)
)

,

Zλ( ~A,~λ,~b) = Tr[exp
(

− β(Ĥλ( ~A,~λ,~b) − µN̂)
)

]. (4.29)

Note, that without the assumption (4.19), which allows to match the algebraic structure of the
Hilbert space with Eqs. (4.23) and (4.24), the above form of ρ̂λ could not be obtained. Next,

22The latter variables are explicitly present only in some of the following formulas.
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we rewrite Eqs. (4.25) and (4.26) as

− 1

β

∂Sλ

∂Aw
= Tr

[

ρ̂λ

( ∂Ĥ

∂Aw
+ λw

)

]

≡
〈

∂Ĥ

∂Aw

〉

+ λw =

〈

∂Ĥλ

∂Aw

〉

= 0, (4.30)

1

β

∂Sλ

∂λw
= Tr[ρ̂λ(Âw − Aw)] ≡

〈

Âw

〉

− Aw =

〈

∂Ĥλ

∂λw

〉

= 0. (4.31)

Similarly, Eqs. (4.27) can be given the form

− 1

β

∂Sλ

∂bl
= Tr

[

ρ̂λ
∂Ĥ

∂bl

]

≡
〈

∂Ĥ

∂bl

〉

=

〈

∂Ĥλ

∂bl

〉

= 0. (4.32)

In the above, and in what follows by
〈

. . .
〉

we understand23 Tr[ρ̂λ(. . .)].

4.4.4 Generalized grand potential

We define the generalized grand potential as

F( ~A,~λ,~b) ≡ −β−1 lnZλ( ~A,~λ,~b) ≡ −β−1Sλ(~q( ~A,~λ,~b), ~A,~λ,~b), (4.33)

with Zλ given by (4.29). Note, that F( ~A,~λ,~b) is a function of the standard thermodynamic

variables T, µ, V, . . . , the mean-field variables ~A, ~λ and other variables of non-MF character,24

i.e., ~b. From now on we will work with F rather then with Sλ. Equations (4.30)-(4.32) may be
thus given the form

∇AF = ~0M , ∇λF = ~0M , and ∇bF = ~0P . (4.34)

In the above, we have ∇A ≡
(

∂
∂A1

, ∂
∂A2

, . . . , ∂
∂AM

)

, and analogously for ∇λ and ∇b. ~0M (~0P )

denotes the M- (P -) dimensional zero vector, i.e., ~0 = (0, 0, . . . , 0). Despite the fact, that
derivatives of K̂λ with respect to As, λs, and bl does not have to commute with K̂λ, Eqs. (4.34)
and (4.30)-(4.32) are equivalent. This is a consequence of the following identity (cf. [178])

∂

∂x
eĈ(x) =

∫ 1

0

dτeτĈ(x)
( ∂

∂x
Ĉ(x)

)

e(1−τ)Ĉ(x), (4.35)

where Ĉ(x) is an arbitrary operator, as well as from invariance of trace with respect to cyclic
permutation of the operators.25

The form of Eqs. (4.30)-(4.32) and (4.34) guarantees that they are valid regardless the
particular choice of the basis states. It is usually most convenient to work in the eigenbasis of
K̂λ, but sometimes an ~A, ~λ-independent basis may be more useful.

In contrast to the non-MF case, where the MaxEnt principle yields a unique solution, by
solving (4.34), for given β, µ, V, . . . (or given the number of lattice sites Λ instead of the volume
V ) and parameters of the Hamiltonian, we usually obtain a finite number26 of stationary points

23Note that this corresponds to 〈. . .〉λ in the notation of Ref. [113].
24within the notation for F we use here, both the thermodynamic parameters, e.g. temperature T or volume

V , as well as the bl variables of Sub-subsection 4.4.1 are usually omitted, i.e., we write F( ~A,~λ).
25Instead of using Eq. (4.35), one may also expand exponents of (4.29) in the Taylor series, compute derivative,

and then make use of the properties of trace operation with respect to each such obtained term.
26This may be not the case e.g. for the superconducting order parameter, represented by a complex number

As + iAs+1 = ∆ = |∆|eiϕ. Then, value of F does not depend on ϕ, which expresses unbroken U(1) symmetry.
Therefore, there exist infinitely many solutions parameterized by ϕ (’flat direction’). Nonetheless, we may
restrict ourselves to real ∆ from the beginning, and then only a simple degeneracy with respect to sign of an
order parameter is present.
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of F . Nonetheless, some of them may not correspond to the physically relevant situations, as
will be discussed later.

Next, we select the solution of (4.34), which is characterized by the lowest value of F .
However, in the absence of external, symmetry-breaking fields, such solution is usually not
unique. In that situation we explicitly break the existing symmetry ’by hand’, i.e., among
the equivalent minima we select the one characterized by well-defined values of the mean-
fields, ~A ≡ ~A0, Lagrange multipliers ~λ ≡ ~λ0, and other variational parameters, ~b ≡ ~b0, which
corresponds to thermodynamic equilibrium. For the most cases of interest, Eqs. (4.34) are
not analytically soluble and we must rely on numerical analysis (see Part III for concrete
applications).

Moreover, Eqs. (4.34) provide only the necessary, not the sufficient conditions for the
existence of the minimum of F (maximum of Sλ (4.14)). Note, that in contrast to the non-MF
case, here the stationary points of F do not have to correspond to the minimum. The explicit
analytical conditions for the existence of maximum of Sλ prior to constraints can be provided,
but in practice it is more convenient to analyze the character of each stationary point separately.

4.4.5 Grand-canonical (equilibrium) mean-field Hamiltonian and density operator

True grand-canonical (equilibrium) mean-field grand Hamiltonian, invoked in Sub-subsection
4.3.5, may be now explicitly defined as

K̂λ0 = K̂λ( ~A0, ~λ0,~b0) = Ĥλ( ~A0, ~λ0,~b0) − µN̂. (4.36)

Consequently, grand-canonical MF density operator, denoted ρ̂λ0, is now given by Eq. (4.29)

with ~A = ~A0, ~λ = ~λ0, and ~b = ~b0, i.e.,

ρ̂λ0 = Z−1
λ0 exp(−βK̂λ0), Zλ0 = Tr[exp(−βK̂λ0)]. (4.37)

Due to the particular choice of the Hamiltonian parameters, Ĥ( ~A) may cease to depend on
some mean field, say As ∈ {A1, . . . , AM}. Than, from (4.30) it follows that the corresponding
Lagrange multiplier vanishes in the equilibrium situation, λs0 = 0. On the other hand, it is
possible that Tr[Âsρ̂λ0] 6= 0, even that Âs does not appear in Ĥ( ~A).

4.4.6 Approach based solely on Bogoliubov-de Gennes self-consistent equations

The results of a non-variational self-consistent approach based on BdG equations (4.8) may be
obtained easily within the present formalism. Namely, by equating the derivatives of F with
respect to all λs to zero, i.e., ∇λF = 0, and then subsequently putting ~λ = ~0, we recover Eqs.
(4.8) with MF density operator ρ̂( ~A) ≡ ρ̂λ( ~A,~λ = ~0). If additional variational parameters of

non-mean field character, b1, b2, . . . , bP are present, we minimize F( ~A,~0,~b) with respect to the
latter variables, in order to find their optimal values (cf. the corresponding Eqs. (4.27) for the
MaxEnt-based fully variational approach). In such a situation, we have to solve the following
set of equations

∇λF( ~A,~0,~b) = ~0M , ∇bF( ~A,~0,~b) = ~0P . (4.38)

The optimal solution of Eqs. (4.38), i.e., ~A and ~b, for which F( ~A,~0,~b) has a minimal value,

will be denoted ~A
(0)
sc and ~b

(0)
sc , respectively. Therefore, the optimal MF (grand) Hamiltonian,

corresponding to K̂λ0 (4.36) of the variational approach reads

K̂(0)
sc = K̂λ( ~A(0)

sc ,~0,
~b(0)sc ) = Ĥ( ~A(0)

sc ,
~b(0)sc ) − µN̂. (4.39)

The optimal MF density operator, corresponding to ρ̂λ0 (4.37), has now the following form

ρ̂(0)
sc =

(

Z(0)
sc

)−1
exp(−βK̂(0)

sc ), Z(0)
sc = Tr[exp(−βK̂(0)

sc )]. (4.40)
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Note, that ρ̂
(0)
sc = ρ̂( ~A

(0)
sc ,~b

(0)
sc ) for ρ̂( ~A,~b) given by Eq. (4.11).27

4.5 Non-equilibrium situation and relation of the present approach

to Landau theory of phase transitions

4.5.1 Self-consistency conditions for arbitrary values of mean-fields

So far, our aim has been to construct the MF density operator (4.29), and, by solving Eqs.

(4.34), to obtain the optimal values of mean-fields ( ~A = ~A0), the Lagrange multipliers (~λ = ~λ0),

and additional variational parameters (~b = ~b0), which correspond to the equilibrium situation.

Here, we will consider a non-equilibrium situation, i.e., DA ∋ ~A 6= ~A0.
28

Within any MF approach without the constraint terms (4.13) present in the MF Hamilto-
nian, a set of permitted values of mean-fields DA reduces usually to a small number of isolated
points, ~A ∈ { ~A(1)

sc , ~A
(2)
sc , . . . , ~A

(R)
sc }, determined by solutions of the self-consistency equations

(4.8). In contrast, within the present approach it is fully legitimate to consider any ~A ∈ DA.

In order to do that, for each ~A, values of ~λ have to be chosen in a way that guarantees, that
the self-consistency conditions (4.8) are fulfilled for each point ~A. Explicitly, we have to solve
Eqs. (4.8) or, equivalently, M of equations (4.34), i.e.,

∂F
∂λ1

= 0,
∂F
∂λ2

= 0, . . . ,
∂F
∂λM

= 0. (4.41)

Note, that Eqs. (4.41) may have no solution. This implies that the particular value of ~A cannot

be obtained consistently within a model under consideration, and consequently, ~A /∈ DA.29

Next, Eqs. (4.41) may have an unique solution. Finally, there may exist p different solutions,
~λ1( ~A), . . . , ~λp( ~A). In such case, we select this solution (denoted by ~λ( ~A)), for which F has

the lowest value. In the two latter cases, for each ~A ∈ DA we can define a self-consistent MF
Hamiltonian

Ĥz( ~A) ≡ Ĥλ( ~A,~λ( ~A)), (4.42)

the corresponding density operator,

ρ̂z( ~A) = ρ̂λ( ~A,~λ( ~A)) = Z−1
z e−β(Ĥz−µN̂), Zz = Tr[e−β(Ĥz−µN̂)], (4.43)

and the self-consistent grand potential

Fz( ~A) ≡ F( ~A,~λ( ~A)) = −β−1 lnZz( ~A). (4.44)

Note, that in order to obtain Fz( ~A) and ρ̂z( ~A), we have to maximize Sλ with respect to the

probabilities only, with the values of all mean-fields being fixed. Therefore, for a given Ĥ( ~A),

ρ̂z( ~A) represents an optimal probability distribution prior to M constraints 〈Âs〉 = As (which

expressed in terms of the generalized grand potential F( ~A,~λ) are given by Eqs. (4.41). The
latter conditions determine values of the Lagrange multipliers.

Fz( ~A) depends both on the standard thermodynamic variables T, V, µ,~h, . . . (by ~h we de-

note the external either magnetic or electric field), as well as on the mean-fields ~A.30 For

27~b variables are not explicitly present in (4.11).
28For simplicity, in what follows, the variational parameters ~b will be omitted in most formulas. They can be

easily reintroduced, if necessary.
29Apart from DA, i.e., set of those ~A, for which Ĥ( ~A) is well-defined, one may define also another set, D∗

A
,

by the condition that if ~A ∈ D∗
A

, then at least one solution of Eqs. (4.41) exists. Obviously, D∗
A

⊆ DA and
usually D∗

A
6= DA, but we will not distinguish between those two sets.

30For a given N , chemical potential µ is determined by Eqs. (4.34), cf. Sec. 4.7.
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simplicity, the former variables, as well as e.g. the number of the lattice sites Λ are omitted, in
analogy with the notation for F( ~A,~λ) in the previous Section. More precise notation, namely

F (Λ)
z (T, V, µ,~h; ~A) or F (Λ)

z (T, V, µ,~h; ~A,~b) will be used only when the distinction between those
two kinds of variables is crucial, e.g. in Sec. 4.6.

4.5.2 Interpretation of Fz( ~A) as Landau potential

Some of the mean-fields have usually a natural interpretation of order parameters (e.g. su-

perconducting gap magnitude, magnetization, etc.). Therefore it is tempting to identify Fz( ~A)
(4.44) with the Landau (grand) potential [148, 149] related to a given microscopic MF Hamilto-

nian Ĥ( ~A). We argue, that such identification is justified and hence we may try to incorporate
the thermodynamic fluctuation into a generalized Landau scheme (details are provided in Sup-
plement A, Subsection 12.1). First, note that we have

∂Fz( ~A)

∂As
=
∂F( ~A,~λ( ~A))

∂As
+

M
∑

t=1

∂F( ~A,~λ( ~A))

∂λt
· ∂λt( ~A)

∂As
. (4.45)

Therefore, if ∂Fz( ~A)/∂As = 0, then from Eqs. (4.41) and (4.45) it follows that we also have

∂Fλ( ~A,~λ( ~A))/∂As = 0, i.e., that Eqs. (4.34) are fulfilled for ~A and ~λ = ~λ( ~A). Conversely, if ~A

and ~λ = ~λ( ~A) form a solution of (4.34), we have ∂Fz( ~A)/∂As = 0. Then, each stationary point

of F( ~A,~λ) as given by (4.34) is in a one-to-one correspondence to a stationary point of Fz( ~A).

Consequently, one may repeat part of the discussion of the previous Section using Fz( ~A) instead

of F( ~A,~λ). Namely, only the minima of Fz( ~A) (both global and local) correspond to acceptable
solutions (stable and meta-stable, respectively), whereas the maxima and saddle points should
be regarded as unphysical. Exactly as in the original Landau approach, the global minimum of
Fz( ~A), (which in an absence of the symmetry-breaking terms must be selected ’by hand’ out
of many equivalent minima) corresponds to the equilibrium situation.

Strictly speaking, we have obtained a more general situation then in the original Landau
theory. First, mean-fields which do not have a natural interpretation of order parameters (e.g.
average (total) particle number, or average kinetic (band) energy) are usually present in a

problem. Also, the original formulation of Landau would be recovered if we expand Fz( ~A)
in powers of the relevant order parameters up to the fourth or the sixth order. If a mean-
field represents physical quantity invariant with respect to the point-symmetry transformations
(i.e., particle density ni on the given site or sub-lattice), also the odd powers of such order

parameter appear in the expansion of Fz( ~A). Yet, all the above mentioned differences are rather

unimportant and we will call Fz( ~A) Landau (grand) potential from now on. Unfortunately, the

explicit form of ~λ( ~A), i.e., the analytical solution of (4.41) is rarely available. Consequently, the

explicit form of Fz( ~A) is usually not feasible either, and one must rely on numerical analysis
(the notable exception is analyzed in Sec. 12.3.)

4.5.3 Incorrect construction of Landau potential

If the self-consistency preserving constraints 4.13 are not present in the MF Hamiltonian,
conditions (4.8) are usually not fulfilled for arbitrary ~A. As a consequence, such MF model is

well-defined only for a finite number of points, ~A ∈ { ~A(1)
sc , ~A

(2)
sc , . . . , ~A

(R)
sc }. For other values of

~A, the model is not internally consistent. However, this fact is sometimes ignored, and it is
assumed that the following function of mean fields,

Fn( ~A) ≡ F( ~A,~0), (4.46)
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in which the self-consistency requirements are disregarded, can play a role of the Landau poten-
tial. Clearly, Fn( ~A) is distinct from Fz( ~A), even for the MF Hamiltonians of the Hartree-Fock
form (cf. Eqs (12.300) and (12.302) in Section 12.3). Needless to say, it is not legitimate to use

Fn( ~A) instead of Fz( ~A).

4.5.4 Final remarks

Further analysis of the nonequilibrium situation, (with the emphasis on the thermodynamic
fluctuations), its relation with the equilibrium situation, as well as further discussion of the
properties of Landau potentials constructed within the present approach, are provided in Ap-
pendix C (Subsection 11.3) and Supplement A (Subsection 12.1).

We have decided to move large part of this material to the Appendices, because it neither
utilized in Part III, nor directly related to its contents. However, the material presented in
the Appendices constitutes indispensable part of the whole formalism, and therefore we have
decided to include it in this Thesis for the sake of completeness.

4.6 Equilibrium thermodynamics

Now we come back to the analysis of thermodynamic equilibrium and discuss the mean-field
thermodynamics. In Subsection 4.4 we have pointed out, that ~A = ~A0, ~λ = ~λ0 and ~b0 = ~b0,
given by the solution of Eqs. (4.34) characterized by the lowest value of F (4.33), correspond

to the equilibrium situation. Clearly, ~A0, ~λ0, and ~b0 usually depend in a non-trivial way on
standard thermodynamic variables like temperature T , volume V , chemical potential µ, and
the external field, denoted ~h.

In Supplement A (Subsection 12.1) we show, that for the most cases of interest, in particular
when the number of mean-fields does not depend on Λ, the equilibrium mean-field description
is expected to be valid in the thermodynamic limit, i.e., Λ, N, V → ∞, N/Λ = n = const.

4.6.1 Grand potential

Making use of the generalized grand potential F(T, V, µ,~h; ~A,~λ,~b) or Landau grand poten-

tial Fz(T, V, µ,~h; ~A,~b), we proceed in a direct analogy with Landau theory and define true

thermodynamic grand potential Ω = Ω(T, V, µ,~h) as

Ω(T, V, µ,~h) = F(T, V, µ,~h; ~A0(T, V, µ,~h), ~λ0(T, V, µ,~h),~b0(T, V, µ,~h))

= Fz(T, V, µ,~h; ~A0(T, V, µ,~h),~b0(T, V, µ,~h)). (4.47)

In what follows we use of F(T, V, µ,~h; ~A,~λ,~b) instead of Fz(T, V, µ,~h; ~A,~b), because usually the
explicit analytical form of the latter can rarely be obtained.

4.6.2 First derivatives of grand potential

Let y ∈ {T, V, µ,~h}.31 We have32

∂Ω

∂y
=

(

∂F
∂y

)

0

+
∑

s

{(

∂F
∂As

)

0

∂As0

∂y
+

(

∂F
∂λs

)

0

∂λs0

∂y

}

. (4.48)

31By ~h we understand here either the three-dimensional vector external field, or its relevant component. By
∂Ω/∂~h we understand, as usual, a vector of partial derivatives of Ω with respect to the components of ~h.

32In this and the following formulas we do not include non-MF variational parameters b1, . . . , bP explicitly.
As previously, the results provided below can be easily generalized if such variables are present.
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In the above, subscript ′0′ indicates that we insert the equilibrium values and Lagrange multi-
pliers of mean-fields after computing the respective derivatives.Terms in curly brackets in Eq.
(4.48) vanish due to (4.34), therefore the implicit dependence of Ω on y via ~A0(y) and ~λ0(y)
does not contribute to (4.48), and we recover the same situation as in a standard, non-MF
statistical mechanics. This is true, as long as Ĥλ does not depend explicitly on T or µ. As a
consequence of Eq. (4.48), proper statistical-mechanical expressions for the entropy, pressure,
average particle number, magnetization and other quantities given by the first derivatives of Ω
are recovered. Note again, that the same situation is encountered in Landau theory. It may
be instructive also to show this directly, i.e., by using the corresponding statistical-mechanical
definitions. For concreteness, consider y = T . We have

(

∂Ω

∂T

)

V,µ

= β2∂β

(

β−1 lnZλ0

)

= βZ−1
λ0 ∂βZλ0 − lnZλ0

= −βZ−1
λ0 Tr[(β∂βK̂λ0 + K̂λ0)e−βK̂λ0] − lnZλ0

= −β2〈∂βK̂λ0〉 − β〈K̂λ0〉 − lnZλ

= −β2〈∂βK̂λ0〉 + 〈ln ρ̂λ0〉 = −β2〈∂βK̂λ0〉 − S. (4.49)

In the above, K̂λ0, ρ̂λ0, and Zλ0 are given by (4.36) and (4.37). Also, we have lnZλ0 = −βΩ,
and 〈K̂λ0〉 = U − µN . Note, that we have implicitly made use of the identity (4.35), as well as
linearity of trace and its invariance with respect to cyclic permutation of operators. In effect,
we obtain a desired result, provided that the term 〈∂βK̂λ0〉 vanishes. Indeed, we have

〈

∂K̂λ0

∂β

〉

=

(

∂K̂λ

∂β

)

0

+

〈

M
∑

s=1

(

∂K̂λ

∂As

∂As0

∂β
+
∂K̂λ

∂λs

∂λs0

∂β

)〉

0

=

(

∂Ĥλ

∂β

)

0

+
M
∑

s=1

(〈

∂Ĥλ

∂As

〉

0

∂As0

∂β
+

〈

∂Ĥλ

∂λs

〉

0

∂λs0

∂β

)

.

(4.50)

If (∂K̂λ/∂β)0 = (∂Ĥλ/∂β)0 = 0, the above expression vanishes due to Eqs. (4.30) and (4.31),

equivalent to Eqs. (4.34). In such a situation, the y-dependence of ~A0 and ~λ0 does not spoil
the standard thermodynamic relations. Consequently, there is a complete equivalence between
the MF statistical mechanics and MF thermodynamics at the level of the first derivatives of
the grand potential Ω. However, it is sometimes convenient to work with Ĥλ, which depends
explicitly on β. Then, if the β-dependent part of Ĥλ is proportional to the unit matrix, it
constitutes additional contribution to total entropy (apart from the single-particle entropy
given by SvN (4.4) with ρ̂ = ρ̂λ). In certain situations, such modification may be required for
a more realistic description of the system.

4.6.3 Second derivatives of grand potential

Second derivatives of Ω require greater care. Let x1, x2 ∈ {T, V, µ,~h}. We may use (4.48) to
compute ∂Ω/∂x1, i.e.,

∂Ω

∂x1

=

(

∂F
∂x1

)

0

. (4.51)
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Next, we take the derivative with respect to x2, and finally put ~A = ~A0, ~λ = ~λ0 again. This
yields

∂2Ω

∂x2∂x1

=
∂

∂x2

(

∂F
∂x1

)

0

=

(

∂2F
∂x2∂x1

)

0

+

+
∑

s

{(

∂2F
∂x1∂As

)

0

∂As0

∂x2
+

(

∂2F
∂x1∂λs

)

0

∂λs0

∂x2

}

. (4.52)

The above formula is apparently asymmetric with respect to x1 and x2. However, it could
be shown (cf. Appendix B, i.e., Subsection 11.2) that (4.52) is equivalent to the following
expression

∂2Ω

∂x2∂x1
=

∂

∂x2

[

(

∂F
∂x1

)

0

+
∑

s

{(

∂F
∂As

)

0

∂As0

∂x1
+

(

∂F
∂λs

)

0

∂λs0

∂x1

}

]

=

=

(

∂2F
∂x1∂x2

)

0

+
∑

s

{(

∂2F
∂x1∂As

)

0

∂As0

∂x2

+

(

∂2F
∂x1∂λs

)

0

∂λs0

∂x2

}

+
∑

s

{(

∂2F
∂x2∂As

)

0

∂As0

∂x1

+

(

∂2F
∂x2∂λs

)

0

∂λs0

∂x1

}

+
∑

s,t

{

(

∂2F
∂At∂As

)

0

∂As0

∂x1

∂At0

∂x2

+

(

∂2F
∂As∂λt

)

0

∂As0

∂x1

∂λt0

∂x2

+

(

∂2F
∂As∂λt

)

0

∂As0

∂x2

∂λt0

∂x1

+

(

∂2F
∂λs∂λt

)

0

∂λs0

∂x1

∂λt0

∂x2

}

+
∑

s

{(

∂F
∂As

)

0

∂2As0

∂x1∂x2
+

(

∂F
∂λs

)

0

∂2λs0

∂x1∂x2

}

. (4.53)

Note, that the last line of the above formula vanishes due to (4.34), but it is explicitly provided
for completeness. Eq. (4.53) may be also obtained if we assume that instead of As0(x1, x2, . . .)
and λs0(x1, x2, . . .), we have some arbitrary functions of x1 and x2, say Asa(x1, x2, . . .) and
λsa(x1, x2, . . .), which are not necessarily the solutions of Eqs. (4.34). Only after computing
the second derivative, we eventually put Asa(. . .) = As0(. . .) and λsa(. . .) = λs0(. . .).

The first term on the r.h.s. of (4.52) has a structure familiar from standard, non-MF with
statistical mechanics. On the other hand, terms in curly brackets are of a purely MF character.

A symmetric form of Eqs. (4.53), together with Eq. (4.48) and (4.52) imply that the
standard Maxwell relations, e.g.

(

∂S

∂V

)

T,µ,~h

=

(

∂p

∂T

)

V,µ,~h

,

(

∂N

∂V

)

T,µ,~h

=

(

∂p

∂µ

)

T,V,~h
(

∂N

∂T

)

V,µ,~h

=

(

∂S

∂µ

)

T,V,~h

,

(

∂ ~M

∂V

)

T,µ,~h

=

(

∂p

∂~h

)

T,V,µ
(

∂ ~M

∂T

)

V,µ,~h

=

(

∂S

∂~h

)

T,V,µ

,

(

∂ ~M

∂µ

)

T,V,~h

=

(

∂N

∂~h

)

T,V,µ

, (4.54)

are valid also in the present case.

4.6.4 Specific heat

For a constant volume and chemical potential, specific heat is defined by

CV µ

T
=

(

∂S

∂T

)

V µ

= −
(

∂2Ω

∂T 2

)

V µ

. (4.55)
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Using an ’asymmetric’ Eq. (4.52) with x1 = x2 = T , we obtain
(

∂S

∂T

)

V µ

= −
(

∂2F
∂T 2

)

0

+
∑

s

{(

∂2F
∂T∂As

)

0

∂As0

∂T
+

(

∂2F
∂T∂λs

)

0

∂λs0

∂T

}

. (4.56)

First term on the r.h.s of (4.56), i.e., −(∂2F/∂T 2)0 corresponds to the expression for CV /T
encountered in a standard statistical mechanics. In the MF case, we have

(

∂2F
∂T 2

)

0

∼ 〈K̂2
λ0〉 − 〈K̂λ0〉2 (4.57)

This part of (4.56) is related to a change of the population of fixed MF energy levels, i.e.,
eigenstates of K̂λ0. The second term on the r.h.s of (4.56) is a genuine MF contribution to
specific heat. It is related to the change of the equilibrium MF Hamiltonian and its eigenvalues
with the varying temperature. This term is present both in the original Landau formulation
[148], where it is responsible for the discontinuity of a specific heat at the phase transition
point, as well as in various MF microscopic models. The notable examples include Bragg -
Williams approximation [152, 184], or the BCS theory [41, 42, 43, 44].

Note, that K̂λ and its derivatives with respect to As and λs usually do non commute.
Therefore, if we want to express the second part of (4.56) in analogy to (4.49), i.e., by invoking
explicitly averages of the relevant operators, the resulting formula, which requires multiple
application of Eq. (4.35), becomes quite complicated, and therefore will not be presented here.
However, such form is not necessary either, as long as we have an analytical formula for F at
our disposal.

4.6.5 Other thermodynamic potentials

Having defined grand potential Ω (Eq. 4.47), we may obtain other thermodynamic potentials
in a standard manner. Helmholtz free energy F is defined as

F (T, V,N,~h) = Ω
(

T, V, µ(T, V,N,~h)
)

+ µ(T, V,N,~h)N. (4.58)

Note, that in the above formula and in what follows, by N we denote equilibrium value of the
particle number, i.e., N = As0 for s = 1. By computing the derivatives of (4.58) with respect to

all thermodynamic variables, i.e. T , V , N , ~h, etc., it may be verified that the above, standard
definition of the free energy is indeed consistent. Namely, having in mind that for equilibrium
situation we have N = −(∂F/∂µ)0, and Eqs. (4.34) are fulfilled (in particular, 0 = (∂F/∂N)0),
we obtain

∂F

∂N
= +

(

∂F
∂µ

)

0

(

∂µ

∂N

)

0

+

(

∂µ

∂N

)

0

N + µ

+
∑

s

{

(

∂F
∂As

)

0

∂A
(F )
s0

∂N
+

(

∂F
∂λs

)

0

∂λ
(F )
s0

∂N

}

= µ. (4.59)

Superscript (F ) indicates that after the Legendre transform µ ↔ N is made, the equilibrium

values of mean-fields A
(F )
s0 and Lagrange multipliers λ

(F )
s0 depend on T, V,N,~h, and not on

T, V, µ,~h. Derivatives with respect to y = T, V,~h may be computed analogously to ∂F/∂N
Eq. (4.59). In this manner we obtain formulas for the entropy, pressure and magnetization,
respectively. The latter quantities can be also defined as average values of the corresponding
operators. Both ways are equivalent; this follows from the analogous relations for Ω. Moreover,
Eq. (4.59) shows, that indeed µ is the proper chemical potential. This issue is also discussed
in. Sec 4.7.

44



If in Eqs. (4.52) and (4.53) we replace Ω by F , such obtained expressions (now with

x1, x2 ∈ {T, V,N,~h}) will still be equivalent. This is because µ does depend neither on the

components of ~A (apart from N = A1(0)), nor on ~λ. When N , and not µ is an independent

variable, the latter is obtained, together with A
(F )
2(0), . . . , A

(F )
M(0) and ~λ

(F )
s(0), i.e. the remaining

components of ~A0 and ~λ0, from Eqs. (4.34). Specific heat is now given by

CV N

T
=

(

∂S

∂T

)

V N

= −
(

∂2F
∂T 2

)

0

+

(

∂2F
∂T∂µ

)

0

∂µ

∂T

+
∑

s

{

(

∂2F
∂T∂As

)

0

∂A
(F )
s0

∂T
+

(

∂2F
∂T∂λs

)

0

∂λ
(F )
s0

∂T

}

. (4.60)

Because in the present situation N and T are independent variables, for s = 1 we have
∂A

(F )
1(0)/∂T = ∂N/∂T = 0. As in a non-MF statistical mechanics, F is more convenient then Ω,

because we usually work with fixed N , and not µ. Moreover, working with the lattice models,
it is convenient to define a particle density as n ≡ N/Λ (where Λ is a number of lattice sites),
and not as ̺ ≡ N/V . For constant V (rigid lattice), we may put the volume of the unit cell
equal unity, then V = Λ and ̺ = n. However, if we want to study thermal expansion of the
lattice, it is much more convenient to work with variable V and the constant pressure and
particle number. In complete analogy to the standard thermodynamics, we can make another
Legendre transform and obtain Gibbs potential (free enthalpy) G as

G(T, p,N,~h) = F (T, V,N,~h) + pV = Ω
(

T, V (T, p,N,~h), µ(T, p,N,~h),~h
)

+ µ(T, p,N,~h)N + pV (T, p,N,~h). (4.61)

In such situation, T, p,N and ~h are the independent thermodynamic variables. Again, one can
easily check that this definition is consistent, e.g. all standard relations for the first derivatives
of G remain valid.

4.6.6 Thermodynamic equilibrium: final remarks

It should be noted, that application of MF thermodynamics requires always some care. Namely,
certain relations, encountered in standard thermodynamics and statistical mechanics, may cease
to be valid in the MF case. For example, it is well-known that the following conditions,

(

∂p

∂V

)

T

< 0, Cp > CV > 0. (4.62)

expressing the stability of matter, should be fulfilled. This is indeed always the case for a
non-MF Hamiltonians. However, for MF models, due to presence of additional terms in the
second derivatives of thermodynamic potentials (cf. the second line of Eq. (4.52)), at least one
of the above inequalities may be violated. Similar situation is present e.g. in the famous van
der Walls description of the hard-sphere gas, or Bragg-Williams model of binary alloy; in both
cases we must invoke Maxwell construction to cure the unphysical predictions of the model (cf.
[146]).

Finally, let us note, that the mutual consistency of statistical mechanics and thermodynam-
ics within the MF description has been analyzed also in Ref. [185], nonetheless, from a different
perspective then presented here.
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4.7 Additional remarks on chemical potential

Within the grand canonical ensemble, a number of particles is fluctuating, but its average value
is fixed and a priori given. In analogy to the case of non-mean-field formalism, also in the
present situation we have achieved this by introducing the chemical potential µ. On the other
hand, MF Hamiltonians frequently depend on the average particle number, i.e., the latter is one
of the relevant mean-fields (denoted A1), and is treated as a variational parameter within our
method. Consequently, the corresponding Lagrange multiplier λ1 ≡ λN must be introduced.
Hence, in order to obtain the solution corresponding to the equilibrium situation, F (which
depends on µ, A1, and λN ) has to be minimized also with respect to A1. Here we provide some
additional arguments for the correctness of such formulation.

Among 2M equations33 (4.34), we have to solve the following

(

∂F
∂N

)

0

= 0,

(

∂F
∂λN

)

0

= 0 ⇔ Tr[N̂ ρ̂λ]0 = A1(0)(µ) = N(µ). (4.63)

Solution of (4.63) yields N(µ), which corresponds to the minimum of F and which at the same
time, according to Eqs. (4.8), is the average of the corresponding operator. µ is determined
from the condition, that N(µ) should be equal to the a priori given value.

As discussed above, µ is true chemical potential, i.e., it appears in thermodynamic relations.
Explicitly, invoking (4.48) for y = µ, we have

∂Ω

∂µ
=

(

∂F
∂µ

)

0

+

(

∂F
∂ ~A

)

0

~̇A0 +

(

∂F
∂~λ

)

0

~̇λ0 =

(

∂F
∂µ

)

0

= −N, (4.64)

where ~̇A0 ≡ ∂ ~A0/∂µ and ~̇λ0 ≡ ∂~λ0/∂µ. Similarly, for F = Ω + µN , treated as a function of its
natural variable N , it can easily be shown that ∂F/∂N = µ, cf. Eq. (4.59). Neither λN , nor
µ̃ ≡ µ+ λN have this property. Note also, that among 2M equations (4.34), only one, i.e.,

(

∂F
∂A1

)

0

=

〈

∂Ĥ

∂A1

〉

+ λN = 0, (4.65)

contains λN not in the combination µ + λN = µ̃. After change of variables (µ, λN) → (µ̃, λN),
the remaining 2M − 1 equations which contain only µ̃ may be solved separately, and the value
of λN (and, consequently, also µ) may be found using (4.65).

Alternatively, if A1 was not treated as a variational parameter, in order to ensure self-
consistency it is sufficient to introduce only one Lagrange multiplier µ̃ related to A1. Then
we deal with the reduced problem involving 2M − 1 equations (4.34), but without Eq. (4.65).
Consequently, the resulting equilibrium values of the remaining mean fields A2(0), . . . , AM(0) and
~λ0 are the same as in the former case. However, the latter way is less satisfactory, as without
making use of (4.65) we obtain additional terms in the standard thermodynamic relations, (e.g.
Eq. (4.64) is no longer valid).

Now, let us consider briefly non-equilibrium situation. Although for A1 the thermodynamic
fluctuations should be usually insignificant, such analysis may also clarify the relation between
µ and λN . For a given value of A1 and µ we solve (4.41), this yields λN = λN( ~A). The latter
condition, however, obviously does not determine the value of µ, as we have one equation

N =
Tr[N̂ exp

(

− β(Ĥλ − (µ+ λN)N̂
)

]

Tr[exp
(

− β(Ĥλ − (µ+ λN)N̂
)

]
, (4.66)

33Once again, for simplicity, we assume b1 = . . . = bP = 0.
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from which we can determine only µ + λN = µ̃. On the other hand, even if the factor
exp(−βλNA1) cancels out in ρ̂z( ~A), and does not appear in (4.66), λN is necessary to ob-
tain the value of F . The natural solution of this problem is to use value of µ given by (4.34)

solved for µ, and not for N . Then, the chemical potential becomes ~A-independent quantity.
Note, however, that it is µ̃, not µ, which appears as a pre-factor multiplying N̂ in K̂λ,

and consequently, in Eq. (4.66).34 In some situations the symmetry arguments may allow to
determine value of µ̃, but not µ. For example, in the case of a single-band lattice-fermion
models with symmetric dispersion relation and at half-filling (one electron per site), it follows
that µ̃ = 0, unlike the standard situation when µ = 0.

The arguments similar to those given above would remain valid in case of any other ob-
servable, which average value is a priori known. On the technical level, this prior information
may be taken into account by using a chemical potential -like term. In particular, the above
discussion may be easily generalized to the situation with more then one kind of particles is
present.

4.8 Equivalence classes of mean-field Hamiltonians

In Subsection 4.5 we have introduced self-consistent MF Hamiltonian Ĥz( ~A) (4.42). It turns

out, that analysis of the properties of both Ĥz( ~A) and the related density operator ρ̂z( ~A) (4.43)
provides deeper insight into the structure of the present formalism.35 Let us now consider a
MF Hamiltonian Ĥ( ~A) (4.1) of the following form

Ĥ( ~A) = Ĥe0 + C0( ~A) · 1̂D +
M
∑

s=1

Cs( ~A)Âs +
M ′
∑

w=1

Gw( ~A)B̂w. (4.67)

In the above, 1̂D is an unit operator, Ĥe0 is an ~A-independent part, whereas C0( ~A), Cs( ~A) and

Gw( ~A) are complex-valued functions of mean-fields ~A. We make a distinction between Âs and

B̂w operators, Ĥ( ~A) does not depend on the average values of the latter, i.e., ∀w, Bw ≡ 〈B̂w〉 /∈
{A1, . . . , AM}. From (4.15) and (4.16), for Ĥ( ~A) (4.67) we obtain

K̂λ( ~A,~λ) = Ĥ( ~A) −
M
∑

s=1

λs(Âs − As) − µN̂

= K̂e0 + Cλ
0 ( ~A,~λ) · 1̂D +

M
∑

s=1

Cλ
s ( ~A,~λ)Âs +

M ′
∑

w=1

Gw( ~A)B̂w, (4.68)

with K̂e0 = Ĥe0 − µN̂ , and

Cλ
0 ( ~A,~λ) = C0( ~A) +

M
∑

s=1

λsAs, Cλ
s ( ~A,~λ) = Cs( ~A) − λs. (4.69)

For a given ~A, the self-consistency equations (4.41) may be rewritten as

At = Tr[Âtρ̂λ( ~A,~λ)] = 〈Ât〉

=
Tr[Ât exp

(

− β(K̂e0 +
∑M

s=1C
λ
s ( ~A)Âs +

∑M ′

w=1Gw( ~A)B̂w)
)

]

Tr[exp
(

− β(K̂e0 +
∑M

s=1C
λ
s ( ~A)Âs +

∑M ′

w=1Gw( ~A)B̂w

)

]
. (4.70)

34This is true as long as the MF Hamiltonian Ĥ( ~A) does not contain a term ∼ N̂ . On the other hand, if such

term (say C1( ~A)N̂) is present, then in the corresponding K̂λ, N̂ is multiplied by C1( ~A) + µ̃.
35For simplicity, again, in the large part of the following discussion, we ignore variational parameters ~b of

a non-MF character. However, modifications caused by the presence of such variables are briefly analyzed in
Sub-subsection 4.8.8.
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for t = 1, 2, . . . ,M . Note also, that the Cλ
0 ( ~A,~λ)1̂D term cancels out. When Eqs. (4.70) are

solved36 for ~λ, we have ~λ = ~λ( ~A), and hence we obtain Cλ
s ( ~A,~λ( ~A)) ≡ Cλ

s ( ~A). In other words,

in the 2M-dimensional space of the mean-field variables ( ~A,~λ), we remain on the hyper-surface

defined by Eqs. (4.41), with ~A ∈ DA.

4.8.1 Universality classes of mean-field Hamiltonians

Let us change the original form of the Cs( ~A) coefficients, according to

Cs( ~A) → C̃s( ~A) s = 0, 1, . . . ,M, (4.71)

but without modifying any of the M ′ functions Gw( ~A). Such step leads to new MF Hamiltonian,

Ĥ(∼)( ~A), for which the corresponding Hamiltonian (4.15), denoted here as Ĥ
(∼)
λ ( ~A,~λ), may be

constructed according to (4.68). Next, we may rewrite Eqs. (4.70) with this new Ĥ
(∼)
λ ( ~A,~λ), and

solve for λ1, . . . , λM , which yields λ1 = λ̃1( ~A), . . . , λM = λ̃M( ~A). Note, that in order to fulfill
Eqs. (4.70), numerical values of the Cλ

s coefficients must remain unchanged by transformations
(4.71), i.e., for s = 1, . . . ,M we must have

Cλ
s ( ~A) ≡ Cs( ~A) − λs( ~A) = C̃s( ~A) − λ̃s( ~A) ≡ C̃λ

s ( ~A). (4.72)

In result, the ~A-dependence of all Cλ
s ( ~A) coefficients is completely determined by the choice of

operators Ĥe0, {Âs}M
s=1, and {B̂w}M ′

w=1, as well as the functional form of the Gw( ~A) functions.

The only ~A-dependent part of such obtained Ĥz( ~A) ≡ Ĥλ( ~A,~λ( ~A)) (4.42), that may be non-

trivially modified by (4.71), is the Cλ
0 ( ~A,~λ( ~A))·1̂D ≡ Cλ

0 ( ~A)·1̂D term. Therefore, F( ~A,~λ( ~A)) ≡
Fz( ~A) (4.44) is usually also altered by transformations (4.71). However, density operator ρ̂z( ~A)

(4.43) is invariant under (4.71). Consequently, for a given ~A, all the averages, also the averages
of the Ĥe0 and B̂w operators are invariant, too.

We will say that all Ĥ( ~A) MF Hamiltonians (4.67) (hence also all the corresponding Ĥλ( ~A,~λ)

and Ĥz( ~A) Hamiltonians), which are constructed from the same set of operators (Ĥe0, {Âs}M
s=1,

and {B̂w}M ′

w=1), and by using the same set of Gw( ~A) functions, belong to the same universality

class.37 MF Hamiltonians Ĥz( ~A) from the same universality class may differ only by the term
proportional to unit an operator.

4.8.2 Equivalence relation

Let us consider now two MF Hamiltonians, Ĥ( ~A) and Ĥ(∼)( ~A), which both belong to the same
universality class. In the previous Sub-subsection we have shown, that after Eqs. (4.70) are

solved, the corresponding self-consistent Hamiltonians Ĥz( ~A) and Ĥ
(∼)
z ( ~A) may differ only by

a Cλ
0 ( ~A) = Cλ

0 ( ~A,~λ( ~A)) term. However, we have also

Cλ
0 ( ~A) ≡ C0( ~A) +

M
∑

s=1

λs( ~A)As =
M
∑

s=1

(

λs( ~A)As − Cs( ~A)As

)

+ C0( ~A) +

M
∑

s=1

Cs( ~A)As = C0( ~A) +

M
∑

s=1

Cs( ~A)As −
M
∑

s=1

Cλ
s ( ~A)As. (4.73)

36We assume that the solution is unique, or if there exist a finite number of solutions, and one of them may
be unambiguously selected, cf. Subsection 4.5.

37This term should not be confused with the one appearing in the renormalization group theory, cf. e.g. [132].
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Because for s > 0, the coefficients Cλ
s ( ~A) are invariants of transformations (4.71), cf. Eq. (4.72),

it follows that Ĥz( ~A) = Ĥ
(∼)
z ( ~A) if only

C0( ~A) +
M
∑

s=1

Cs( ~A)As = C̃0( ~A) +
M
∑

s=1

C̃s( ~A)As. (4.74)

As a consequence of (4.74), we have also

U( ~A) ≡ 〈Ĥz( ~A)〉z ≡ Tr[ρ̂z( ~A) · Ĥz( ~A)] = Ũ( ~A) (4.75)

as well as

Fz( ~A) ≡ −β−1 ln(Tr[e−β(Ĥz−µN̂)]) = F (∼)
z ( ~A) (4.76)

Note, that µ is treated as independent variable, and its value (as well as the value of µ〈N̂〉 = µA1

term) is identical for all such transformed grand Hamiltonians. Consequently, equilibrium values
of mean fields are invariants of those transformations (4.71), for which the condition (4.74) is
obeyed. In other words, all MF Hamiltonians constructed from the same set of operators Ĥe0,
{Âs}M

s=1 and {B̂w}M ′

w=1 by using the same set of Gw( ~A) functions, and additionally characterized

by the same ~A-dependence of 〈Ĥz( ~A)〉z = U( ~A), are equivalent. In this manner we have
identified the equivalence relation, which divides MF Hamiltonian into equivalence classes.
Transformations (4.71) may be viewed in analogy to gauge transformations, not changing the
physical contents of the model.

Let us also note at this point, that for different Hamiltonians from the same equivalence
class, we would obtain, in general, different Bogoliubov-de Gennes equations (4.38), leading

to different optimal values of mean-fields ( ~A
(0)
sc ). This is another serious drawback of the BdG

non-variational method.

4.8.3 Special case of transformations (4.71)

For our purposes, it is sufficient to consider a special class of transformations (4.71), given by

C̃s( ~A) = κsCs( ~A), C̃0( ~A) = C0( ~A) + (1 − κs)Cs( ~A)As,

C̃t( ~A) = Ct( ~A) for t = 1, . . . ,M, t 6= s, (4.77)

and denoted by Rs(κs). For each s, transformations {Rs(κs)}, s = 1, . . . ,M form an Abelian
group, Gs. Indeed, it may be easily shown that Rs(κs)Rs(ωs) = Rs(κsωs), the unity of the
group is es = Rs(1) and that R−1

s (ωs) = Rs(ω
−1
s ). The complete group of transformation is

a direct product of M groups Gs, s = 1, 2, . . . ,M . Obviously, for each Rs(κs), as well as for
the composition of arbitrary number of such transformations, the condition (4.74) is fulfilled,

therefore also U( ~A) = 〈Ĥz( ~A)〉 remains unchanged.

4.8.4 Reduced form of mean-field Hamiltonian

Let us consider now a MF Hamiltonian (4.67), for which

Ĥe0 = 0, and ∀w : Gw = 0. (4.78)

We can apply a sequence of M transformations Rs(κs) (4.77), s = 1, . . . ,M , with κs = 0, i.e.,

Cs( ~A) → C̃s( ~A) = 0, s 6= 0, C0( ~A) → C̃0( ~A) = C0( ~A) +
∑

s

Cs( ~A)As. (4.79)
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This yields Ĥ(∼)( ~A) proportional to the unit matrix, Ĥ(∼)( ~A) = W ( ~A)1̂D, where

W ( ~A) = 〈Ĥ( ~A)〉 = C̃0( ~A). (4.80)

Consequently, we obtain K̂λ (4.16) of the following form

K̂
(∼)
λ ( ~A,~λ) = Ĥ

(∼)
λ ( ~A,~λ) − µN̂ = −

M
∑

s=1

λs(Âs − As) +W ( ~A)1̂D − µN̂. (4.81)

Next, using K̂
(∼)
λ ( ~A,~λ), the corresponding density operator ρ̂λ( ~A,~λ) = ρ̂

(∼)
λ ( ~A,~λ) and partition

function Zλ( ~A,~λ) = Z(∼)
λ ( ~A,~λ) (4.29), as well as generalized grand potential F( ~A,~λ) (4.33)

may be constructed. From the previous discussion it follows, that if the conditions (4.41) are
fulfilled, then K̂λ (4.68) for which the conditions (4.78) are fulfilled, is completely equivalent to

(4.81). Namely, those two Hamiltonians lead to identical Ĥz( ~A), ρ̂z( ~A) and Fz( ~A), therefore

they also yield the same optimal values of mean fields ~A0 and ~λ0 = ~λ( ~A0) ( ~A0 may be formally

obtained from the minimization of Fz( ~A)), and the same equilibrium MF (grand) Hamiltonians
K̂λ0.

Above, we have formally determined the optimal values of the mean-fields using a two-step
procedure. First, for a fixed value of ~A, we have eliminated λ1, . . . , λM using Eqs. (4.31),

which yields ~λ ≡ ~λ( ~A). Then, we have subsequently solved Eqs. (4.30) in order to obtain
~A = ~A0. However, because the complete solution is determined by both (4.30) and (4.31),
or, equivalently, by 2M equations38 (4.34), we may have solved first Eqs. (4.30). For the
Hamiltonian (4.81), we obtain then

λs = λ⋆
s(
~A) = −∂W ( ~A)

∂As
, s = 1, 2, . . . ,M, (4.82)

because ∂W ( ~A)/∂As = ∂〈Ĥ( ~A)〉/∂As = 〈∂Ĥ( ~A)/∂As〉 if only Cs( ~A) 6= 0. In contrast to the

case of Eqs. (4.31), the analytic solutions of Eqs. (4.82) (denoted by λ⋆
s(
~A)) may be easily

obtained, if only an explicit form of W ( ~A) is known. Using ~λ⋆( ~A) ≡ (λ⋆
1( ~A), . . . , λ⋆

M( ~A)) and

Ĥ
(∼)
λ ( ~A,~λ) (4.81), we define

Ĥ
(⋆)
λ ( ~A) = Ĥ

(∼)
λ ( ~A,~λ⋆( ~A)) =

M
∑

s=1

∂W ( ~A)

∂As

(Âs − As) +W ( ~A) · 1̂D. (4.83)

Next, this Hamiltonian may be used to obtain the following density operator

ρ̂
(⋆)
λ ( ~A) ≡ ρ̂λ( ~A,~λ⋆( ~A)), (4.84)

for ρ̂λ( ~A,~λ) (4.29). Using ρ̂
(⋆)
λ ( ~A), in turn, we may determine the equilibrium values of ~A by

solving (usually by means of numerical analysis) the remaining self-consistent equations (4.8).

Summarizing, we may eliminate ~λ in favor of ~A by solving Eqs. (4.30), i.e., Eqs. (4.70).

This yields M functions λs = λs( ~A), s = 1, . . . ,M . However, usually an explicit analytic

form of ~λ( ~A) ≡ (λ1( ~A), . . . , λM( ~A)) cannot be obtained. Alternatively, we may eliminate ~λ
using another condition, i.e., Eqs. (4.30), and for MF Hamiltonian of the form (4.81) we

obtain λs = λ⋆
s( ~A) (4.82). For Ĥ( ~A) of the form (4.78), by using transformations (4.79), we

arrive at the equivalent Hamiltonian Ĥ(∼)( ~A) = W ( ~A)1̂D, and the corresponding Hamiltonian

Ĥ
(⋆)
λ ( ~A) (4.83), i.e. Ĥλ( ~A,~λ) (4.81) with λs = λ⋆

s(
~A) given by (4.82). Obviously, in general,

38For simplicity, ~b variables have been ignored.
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λs( ~A) 6= λ⋆
s(
~A). Consequently, Ĥ

(⋆)
λ ( ~A) (4.83) differs from Ĥz( ~A) (4.42). Ĥ

(⋆)
λ ( ~A) may be used

only in order to obtain the equilibrium values of mean-fields, but has no interpretation for
~A 6= ~A0. Nevertheless, we have

λs( ~A0) = λ⋆
s(
~A0) = −

(

∂W ( ~A)

∂As

)

0

= λs0. (4.85)

Transformations (4.79), leading to Hamiltonian of the form (4.81) are very convenient, as they
reduce (by a factor of two) the number of equations to be solved numerically. Also, we have

an explicit analytical expression for W ( ~A) = U( ~A) at our disposal. Therefore, some of the
properties of the MF model may be inferred solely from the analysis of functional dependence
of W ( ~A) on mean-fields ~A. Moreover, transformations (4.79) allow to compare our formalism
with alternative approaches proposed by other Authors.

4.8.5 Present approach and formalism of Reference [79]

In the (β → ∞) limit, the present finite-temperature approach becomes equivalent to the
true T = 0 analysis, and we may compare it directly e.g. with the formalism of Ref. [79].
Hamiltonian of that Reference rewritten in our notation may be recast in the following general
form

Ĥ
(K)
λ ( ~A) =

M
∑

s=1

∂W ( ~A)

∂As

Âs = −
M
∑

s=1

λ⋆
s(
~A)Âs. (4.86)

Ĥ
(K)
λ ( ~A) differs from Ĥ⋆

λ( ~A) (4.83) only by the term proportional to the unit matrix, i.e.,

(
∑M

s=1 λ
(⋆)
s ( ~A)As + 〈Ĥ( ~A)〉) · 1̂D. Consequently, both (4.83) and (4.86) have the same eigen-

vectors. Presence of −µN̂ term does not change this argument, moreover, when applying
transformations (4.79) we may either transform this term according to µN̂ → µN , or leave it

in the initial form; both ways are equivalent. W ( ~A) ≡ W (K)( ~A) of Ref. [79] has the following
form

W (K)( ~A) ≡ 〈ĤtJ〉app
C = 〈Ψ0|Ĥ(ren)

tJ |Ψ0〉 ≈
〈Ψ0|P̂CĤtJ P̂C |Ψ0〉

〈Ψ0|P̂ 2
C |Ψ0〉

, (4.87)

with Ĥ
(ren)
tJ given by (7.148). The optimal values of the mean-fields ( ~A = ~A0) are obtained by

solving the self-consistency conditions (4.8). In order to do this, it is legitimate to extend the
treatment of Ref. [79] to finite, albeit very low temperatures. The grand-canonical mean-field

density operator ρ̂⋆
λ( ~A) (4.84), constructed either with the help of our Ĥ⋆

λ( ~A) (4.83) or Ĥ
(K)
λ ( ~A)

(4.86) are identical, because the term proportional to unit matrix cancels out. Therefore, both

approaches lead to the same values of ~A0.
Finally, let us note, that in Ref. [79], Ĥ

(K)
λ ( ~A) (4.86) has been derived by varying W (K)( ~A)

(4.87) with respect to 〈Ψ0|, and by using the relation 〈Ψ0|Âs|Ψ0〉 = As. In that manner, the
following Schrödinger equation is obtained,

∂W (K)( ~A)

∂〈Ψ0|
=
∑

s

∂W (K)( ~A)

∂As

∂As

∂〈Ψ0|
=
∑

s

∂W (K)( ~A)

∂As
· Âs|Ψ0〉, (4.88)

in which Ĥ
(K)
λ ( ~A) (4.86) plays the role of an effective MF Hamiltonian.

4.8.6 Generalization of transformations (4.77) to arbitrary form of mean-field
Hamiltonian

Apparently, if the conditions (4.78) are not fulfilled, then Eqs. (4.30) are not equivalent to Eqs.
(4.82), and we cannot eliminate Lagrange multipliers in an analytic fashion by solving Eqs.
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(4.30). However, any Ĥ( ~A) (4.67) may be easily given the form (4.78). In order to do that,

we introduce M ′ + 1 new mean-fields B1, B2, . . . , BM ′, BM ′+1, (B1, B2, . . . , BM ′, BM ′+1) ≡ ~B.
Similarly as in the case of As mean-fields, we demand that after the self-consistency conditions
are fulfilled, Bw ≡ 〈B̂w〉 for w = 1, . . . ,M ′ and BM ′+1 ≡ 〈Ĥe0〉, where the averages 〈. . .〉 are
defined with the help of a density operator, which will be subsequently specified. Therefore, for
the newly introduced mean-fields we should repeat the step leading from Ĥ to Ĥλ (4.15), i.e.,

introduce M ′ + 1 Lagrange multipliers l1, l2, . . . , lM ′, lM ′+1 and supplement Ĥ( ~A) (4.67) with
the constraint terms (4.13). We obtain

Ĥgλ( ~A, ~B,~λ,~l) ≡ Ĥ( ~A) −
M
∑

s=1

λs(Âs − As) −
M ′+1
∑

w=1

lw(B̂w −Bw). (4.89)

Now, M +M ′ + 1 Eqs. (4.30) and M +M ′ + 1 Eqs. (4.31) for Ĥgλ can be written respectively
as

〈∂Ĥgλ(. . .)

∂As

〉

=
〈∂Ĥλ(. . .)

∂As

〉

= 0, s = 1, . . . ,M ;

〈∂Ĥgλ(. . .)

∂Bw

〉

= 0, w = 1, . . . ,M ′ + 1, (4.90)

〈∂Ĥgλ(. . .)

∂λs

〉

=
〈∂Ĥλ(. . .)

∂λs

〉

=
〈

Âs

〉

−As = 0, s = 1, . . . ,M ;

〈∂Ĥgλ(. . .)

∂lw

〉

=
〈

B̂w

〉

− Bw = 0, w = 1, . . . ,M ′ + 1. (4.91)

In the above, all averages 〈B̂w

〉

are defined with the help of ρ̂gλ( ~A, ~B,~λ,~l) given by Eq. (4.29),

in which Ĥλ is replaced by Ĥgλ (4.89). Please note, that first M equations of both (4.90) and

(4.91) are identical with the corresponding equations for Ĥλ( ~A,~λ) (4.68). The former may be

solved for ~λ, this yields ~λ ≡ ~λvAB( ~A, ~B) ≡ ~λvA( ~A). On the other hand, for w = 1, 2, . . . ,M ′ +1,
we have

〈∂Ĥgλ(. . .)

∂Bw

〉

= lw +
〈∂Ĥ( ~A)

∂Bw

〉

= lw = 0. (4.92)

Consequently, for each w, we have also lw0 = 0. Using the latter result, we obtain

Ĥgλ( ~A, ~B,~λAB( ~A, ~B),~l0) = Ĥgλ( ~A, ~B,~λA( ~A),~0) = Ĥλ( ~A,~λA( ~A)). (4.93)

This implies, that the second part of Eqs. (4.91), i.e., M ′ + 1 equations
〈

B̂w

〉

= Bw (which

are just definitions of each of mean fields Bw) have identical solutions for both Ĥλ( ~A,~λ) (4.68)

and the corresponding density operator ρ̂λ( ~A,~λ) (4.29) as well as for Ĥgλ( ~A, ~B,~λ,~l) (4.89) and

the corresponding ρ̂gλ( ~A, ~B,~λ,~l). Therefore, those two MF Hamiltonians lead to the same
optimal values of all mean-fields and Lagrange multipliers, hence also to identical equilibrium
MF Hamiltonians, i.e.,

Ĥgλ( ~A0, ~B0, ~λ0,~l0) = Ĥλ( ~A0, ~λ0). (4.94)

However, in contrast to Ĥλ( ~A,~λ), Ĥgλ( ~A, ~B,~λ,~l) is of the form (4.78), and we can apply to

it the transformations (4.79). This yields MF Hamiltonian Ĥ
(∼)
gλ ( ~A, ~B,~λ,~l) of the form (4.81),

equivalent to (4.89). In order to use all the results obtained up to this point, it is enough to
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re-label mean-fields, Bw → As, s = M + 1, . . . ,M + M ′ + 1, M + M ′ + 1 → M . Nonetheless,
for completeness, we provide explicit formulas in terms of Bw and lw variables. We have

Ĥ
(∼)
gλ ( ~A, ~B,~λ,~l) = −

M
∑

s=1

λs(Âs −As) −
M ′+1
∑

w=1

lw(B̂w − Bw) +W ( ~A, ~B) (4.95)

with

W ( ~A, ~B) = BM ′+1 + C0( ~A) +

M
∑

s=1

Cs( ~A)As +

M ′
∑

w=1

Gw( ~A)Bw. (4.96)

Now, we eliminate Lagrange multipliers λs and lw using Eqs. (4.30), i.e., for each ( ~A, ~B) ∈ DAB
we have39

λs = λ⋆
s( ~A, ~B) = −∂Wg( ~A, ~B)

∂As
, lw = l⋆w( ~A, ~B) = −∂Wg( ~A, ~B)

∂Bt
. (4.97)

From Eqs. (4.97) we obtain l⋆w( ~A, ~B) = −Gw( ~A), l = 1, 2, . . . ,M ′, and l⋆M ′+1(
~A, ~B) = −1.

Therefore we may define Ĥ
(⋆)
gλ ( ~A, ~B) ≡ Ĥ

(∼)
gλ ( ~A, ~B,~λ⋆( ~A, ~B),~l⋆( ~A, ~B)) as

Ĥ
(⋆)
gλ ( ~A, ~B) =

M
∑

s=1

∂Wg( ~A, ~B)

∂As
(Âs − As) +

M ′+1
∑

w=1

Gw( ~A)(B̂w − Bw) +W ( ~A, ~B),

(4.98)

The corresponding density operator is given by

ρ̂
(⋆)
gλ ( ~A, ~B) =

exp
(

− β(Ĥ
(⋆)
gλ ( ~A, ~B) − µN̂)

)

Tr[exp
(

− β(Ĥ
(⋆)
gλ ( ~A, ~B) − µN̂)

)

]
. (4.99)

Finally, making use of ρ̂
(⋆)
gλ ( ~A, ~B) (4.99), we solve the remaining M + M ′ + 1 self-consistency

equations in order to determine the equilibrium values of all the M +M ′ + 1 mean-fields, i.e.,
components of ~A0 and ~B0.

4.8.7 Present approach and formalism of References [162, 163, 164]

The formal results obtained so far allow us also to compare the present formalism with that
of References [162, 163, 164]. A detailed discussion of the differences and similarities between
those two approaches is outside the scope of this Thesis, and will be provided in a separate
publication. However, for completeness, below we comment briefly on some formal aspects of
both methods.

In Refs. [162, 163, 164], expectation values of certain operators, Ôi, i.e., Oi = Tr(ρ̂appÔi)
(Eq. (3.3) of [162]) with respect to the mixed states ρ̂app (Eq. (3.1) of [162]) are considered.
ρ̂app serves as approximation to the intractable density operator ρ̂ (Eqs. (2.8) of of [162]),

constructed from Ôi operators.
Note, that if we assume that the MF Hamiltonian, and consequently, the MF density opera-

tor we consider are of the single-particle character (i.e., bilinear in creation and/or annihilation
operators), then, by applying Wick’s theorem [136, 165] we are able compute (at least in princi-
ple) expectation value of each of the Ôi operators. The case of single-particle MF Hamiltonians

39By DAB we denote the set of M + M ′ + 1 dimensional vectors (A1, A2, . . . , AM , B1, . . . , BM ′+1), for which
Hamiltonian (4.89) is well defined.
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and density operators seems to be the most important from the point of view of applications of
the MF theory in condensed matter physics, which is our main interest. However, single-particle
character of the MF Hamiltonian is not necessary, and e.g. in [162], other types of operators
are considered as well (cf. Section V of the latter Reference). Also within our approach, the
single-particle character of the MF Hamiltonian has not been utilized as yet, and the results
obtained so far remains valid also in the general case.

Assume now, that one of the Ôi operators is some many-body Hamiltonian Ĥe, and that
the ρ̂app (Eq. (3.1) of [162]) is constructed using single-particle operators only. To compare our
approach with that of References [162, 163, 164], we may choose the initial MF Hamiltonian

Ĥ( ~A) in a way that the following condition

〈Ĥe〉 = 〈Ĥ( ~A)〉 ≡W ( ~A), (4.100)

is fulfilled (cf. equation (4.80) of the present Thesis). In such a situation, density operator ρ̂app

(Eq. (3.7) of [162]) and the ’effective’ MF Hamiltonian (Eq. (3.8) of [162]) seems to correspond

to our ρ̂
(⋆)
gλ (4.99) and Ĥ

(⋆)
gλ (4.98), respectively (Ĥ

(⋆)
gλ differs form formula (3.8) of [162] only by

the terms proportional to unit operator, which cancel out in ρ̂
(⋆)
gλ ). This observation suggests,

that at least in certain limits, both approaches should lead to the same results.
Nonetheless, within our approach, W ( ~A) may be an arbitrary function of mean-fields, e.g.

the expectation value of Ĥe with respect to a trial state, which is not a simple mean-field
(uncorrelated) state. The latter case is crucial for the construction of MF approach to the t-J
model, discussed in Part III of the present Thesis. It is unclear to us, if the same is achievable
within the formalism of References [162, 163, 164].

4.8.8 Transformations (4.71) in presence of variational parameters of a non mean-
field character

For completeness, now we are going to discuss, how the results obtained so far in this Section
are modified in the presence of the ~b variables of a non mean-field character, introduced in
Sub-subsection 4.4.1. In the present situation, the coefficients Cs, Gw, as well as the Ĥe0 part
of (4.67) may depend on ~b in a nontrivial way. Therefore, the optimal solution of (4.70), i.e.,
~λ = ~λ( ~A,~b) is also ~b-dependent, and for s = 1, . . . ,M we obtain

Cλ
s ( ~A,~λ( ~A,~b),~b) = Cs( ~A,~b) − λs( ~A,~b) ≡ Cλ

s ( ~A,~b). (4.101)

Using the same arguments as previously, we see that for a given ~A and ~b, transformations (4.71)

applied to some MF Hamiltonian Ĥz( ~A,~b) ≡ Ĥλ( ~A,~λ( ~A,~b),~b) lead to MF Hamiltonians, which
may differ from each other only by the term proportional to unit operator. Therefore, all such
MF Hamiltonians lead to the identical density operator ρ̂z( ~A,~b). Again, the functional form
of the latter is unambiguously defined by the choice of Ĥe0, {Âs}M

s=1, {B̂w}M ′

w=1 operators, as

well as of Gw( ~A,~b) functions. Moreover, for transformations (4.77), in particular for (4.79),

we obtain equivalent MF Hamiltonians, leading to identical Fz( ~A,~b) ≡ F( ~A,~λ( ~A,~b),~b), hence

also to identical ~A0, ~λ0 and ~b0, identical equilibrium MF Hamiltonian Ĥλ0 (4.37) and density
operator ρ̂λ0 (4.37).

Also, the arguments for equivalence of K̂λ( ~A,~λ) (4.68) and Ĥgλ( ~A, ~B,~λ,~l) − µN̂ (4.89)

remain unchanged in the presence of ~b variables. To see this, it is enough to notice that
because ~b appears only in Ĥ( ~A) part of K̂λ( ~A,~λ), Eqs. (4.28) have the same form for both

Ĥλ( ~A,~λ,~b) (4.68) and Ĥgλ( ~A, ~B,~λ,~l,~b) (4.89). However, for MF Hamiltonian of the form (4.78),

the coefficients Cλ
s (4.101) for s = 1, . . . ,M do not depend on~b, and only the term W (. . .) (4.80)

may remain non-trivially ~b-dependent.
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4.8.9 Vector character of mean-fields and Lagrange multipliers

In the present Thesis, from the very beginning we have been using vector notation for both the
mean-fields ~A = (A1, A2, . . . , AM) and the Lagrange multipliers, ~λ = (λ1, λ2, . . . , λM). Yet, so
far we have not exploited the vector character of those quantities.

Frequently, it is convenient to use linear combinations of the original mean fields. Such
transformation of the MF variables, denoted ~X = ~X( ~A) (with the inverse transformation
~A = ~A( ~X)) is related to the corresponding transformation of Âs operators

X̂u =
∑

u

Uw
u Âw ≡ Uw

u Âw, Âs =
∑

t

(U−1)t
sX̂t ≡ (U−1)t

sX̂t. (4.102)

Obviously, (4.102) implies the same transformations for the mean-fields,

Xu =
∑

u

Uw
u Aw ≡ Uw

u Aw, As =
∑

t

(U−1)t
sXt ≡ (U−1)t

sXt. (4.103)

Now let us consider the coefficients Cλ
s ( ~A,~λ) (4.69) appearing in Ĥλ( ~A,~λ) (4.68). Even without

applying transformations (4.79), i.e., without assuming Ĥλ( ~A,~λ) of the form (4.78), we may

formally solve Eqs. (4.30), which yields solution denoted here as ~λ ≡ ~λv( ~A). It is easy to check
that

Cλ
s ( ~A,~λv( ~A)) =

∂〈Ĥ( ~A)〉
∂As

=
∂W ( ~A)

∂As
. (4.104)

In particular, this remains true for Ĥ
(⋆)
λ ( ~A) (4.83), for which we obtain ~λv( ~A) = ~λ⋆( ~A). After

transformation (4.103), we have W ( ~A) →WX( ~X) ≡W ( ~A( ~X)), and ~λ→ ~λX . The term ~X ·~λX

transforms according to (we use Einstein summation convention)

Xu
∂WX( ~X)

∂Xu

= Uw
u Aw

∂W ( ~A( ~X))

∂As

∂As

∂Xu

= Uw
u Aw

∂W ( ~A)

∂As

(U−1)u
s (4.105)

= Uw
u (U−1)u

sAw
∂W ( ~A)

∂As

= δw
s Aw

∂W ( ~A)

∂As

= As
∂W ( ~A)

∂As

.

In above, δw
s is the Kronecker delta. We see, that in equilibrium, the mean-fields and the

corresponding operators transform as contravariant vectors, whereas the Lagrange multipliers
transform as covariant vectors.40 Therefore, the equilibrium MF Hamiltonian is invariant with
respect to transformations (4.103), as the scalar product-like notation of the terms like ~X · ~λX

or ~A ·~λ suggests. The MF Hamiltonian is constructed only from such invariants (clearly, W ( ~A)
also transforms as a scalar), cf. Eqs. (4.81) and (4.83).

4.9 Mean-field Hamiltonians of Hartree-Fock form

In the present Thesis we repeatedly refer to ’Hartree-Fock’ (HF) type of MF Hamiltonians.
Below we explain precisely what we mean by this term. In this Subsection, in order to construct
MF Hamiltonian Ĥ( ~A), we use non-MF Hamiltonian Ĥe of the following form

Ĥe = Ĥ0e +
∑

{κ,γ}
VκγÔκÔγ . (4.106)

We assume that each Ôκ operator is bilinear in creation and/or annihilation operators, and the
summation is taken over all pairs {κ, γ} of multi-indices.

40We do not take this ’tensor notation’ too seriously, and write λs instead of λs.
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We may decouple the interaction term in (4.106) (i.e., replace it by its MF counterpart)
according to41 (cf. Ref. [136])

ÔκÔγ → ÂsAt + AsÂt − AsAt. (4.107)

As = 〈Âs〉 and At = 〈Âs〉 are given by (4.8) for the appropriate MF density operator, and
s = s(κ, γ), t = t(κ, γ). In result, we obtain mean-field Hamiltonian of the following form

Ĥ( ~A) = ĤHF ( ~A) = Ĥ0e +
∑

{s,t}
Ṽst

(

ÂsAt + AsÂt − AsAt

)

. (4.108)

In above, Ĥ0e does not depend on ~A, and Ṽst are linear combinations of matrix elements Vκγ.

Depending on the choice of Âs and Ât operators, Ĥ( ~A) of the form (4.108) is termed the Hartree

or Hartree-Fock (HF) type MF Hamiltonian.

Within the framework of the present method, we add the constraint terms to ĤHF ( ~A), and
obtain Ĥλ (4.15) of the form

ĤHF
λ ( ~A,~λ) = Ĥ0e +

∑

{s,t}
Ṽst

(

ÂsAt + AsÂt − AsAt

)

−
∑

s

λs(Âs − As). (4.109)

Then, one can easily find that Eqs. (4.30) read now

λt0 = −
〈∂ĤHF ( ~A)

∂At

〉

0
= −

〈

∑

s

Ṽst

(

Âs −As

)

〉

0
, t = 1, . . . ,M. (4.110)

From Eqs. (4.31), with Ĥ( ~A) given by (4.108), and from (4.109) it follows that for any t,
λt0 = 0. Also, for Hamiltonian of such form, the solution of M self-consistent equations (4.8)

or (4.31) coincide with the solutions of M equations ∇AF = 0, ~λ = ~0 of the unconstrained
variational approach. This is true, provided that the matrix Ṽst is nonsingular (which can be
always achieved by adding arbitrary small numbers ǫst to Ṽst), as then the only solution of
the set of equations (4.110) is 〈Âs〉 = As, s = 1, . . . ,M (a related discussion of this problem
may be found in [136]). Therefore, for MF Hamiltonian of the Hartree-Fock type, application
of our method for the equilibrium situation is not necessary. Still, it is required to construct
the Landau potential Fz( ~A) and to analyze the non-equilibrium situation, cf. Section 4.5 and
Supplement D (Subsection 12.1).

Obviously, MF Hamiltonian may be of the HF form with respect to only some of its mean-
field variables. The equilibrium values of Lagrange multipliers corresponding to such variables
are equal zero. The above discussion shows also, that the form (4.108) of Ĥ( ~A) seems to
be a privileged one, because such choice automatically yields the self-consistent variational
mean-field scheme without introducing any constraints. On the other hand, in the previous
Subsection it has been shown, that within the framework of the present approach, apparently
very different MF Hamiltonians are in fact completely equivalent, if only they are related by
transformations (4.77). If we apply (4.77) to (4.108), for κ 6= 1 the resulting MF Hamiltonian
will be no longer of the HF form. Consequently, unconstrained variational scheme will be no
longer equivalent to that based on the BdG non-variational treatment, i.e., ∇AF = 0, ~λ = ~0 is
not equivalent to ∇λF = 0, ~λ = ~0. Different values of κ lead to different decoupling schemes,

41The ÔκÔγ term may be decoupled in more than one way (which correspond to different possible contractions
appearing in Wick’s theorem), but this does not change the arguments presented here. Also, e.g. for the Bose-
Hubbard model [166], it is not the interaction term which is decoupled according to (4.107), but the kinetic
energy part. Still, the present conclusions remain valid for the latter case.
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and none of them is privileged from the point of view of the present method. For example,
instead of (4.107) one may postulate a decoupling scheme given by

ÔκÔγ → 1

2
(ÂsAt + AsÂt). (4.111)

Note, that both (4.107) and (4.111) are symmetric in s and t, and both yield identical ex-
pectation value of the interaction term as a function of mean fields, i.e., 〈ÔκÔγ〉 = AsAt.
Additionally, both prescriptions avoid ’double counting’ of the interactions. Therefore, if only
the self-consistency of the variational approach is ensured by the presence of appropriate con-
straint terms, there is no obvious reason why (4.107) should be preferred over (4.111). As
discussed in Subsection 4.8, within our approach the MF model with interaction term given
by (4.111) yields results identical to those obtained for (4.107). Clearly, this would be not the
case for the non-variational treatment based on BdG equations.

Summarizing, a construction of the MF Hamiltonian from its non- MF counterpart Ĥe is
apparently not unique. However, the equivalence of different such obtained MF Hamiltonians
is in fact guaranteed in the framework of our method. Clearly, this is a desired feature. It
is reassuring, that the results do not depend on the choice of the decoupling scheme, which
is quite arbitrary, but only on the set of operators used to construct MF Hamiltonian (which
determines the universality class of this MF Hamiltonian, cf. Sec. 4.8), and on the form of the

functional dependence of W ( ~A) (4.80) on ~A (which determines the equivalence class).

4.10 Relation of the present method to variational principle of Bo-
goliubov and Feynman

In the previous Subsections we have been considering a situation, when the description of
the system is based solely on the MF Hamiltonian, in the sense, that no many-body non-MF
Hamiltonian Ĥe has been required to determine the optimal values of mean-fields, although
Ĥe may has been used to obtain the MF Hamiltonian. However, MF density operators are
sometimes used as trial states within the variational principle based on the Bogoliubov-Feynman
inequality [107, 108] and its generalizations [108]. Therefore, we would like to comment on the
relation between the latter approach and the present MaxEnt-based method.

The Bogoliubov-Feynman inequality may be written as

Ωe ≤ 〈K̂e − K̂a〉a + Ωa = Tr[ρ̂a(K̂e − K̂a)] + Ωa. (4.112)

In the above, Ĥa is a trial (’approximate’) Hamiltonian and 〈. . .〉a ≡ Tr[ρ̂a(. . .)]. We have also
K̂e = Ĥe − µeN̂ , (K̂a = Ĥa − µaN̂), with µe (µa) being the respective chemical potentials. Ωe

and Ωa are the corresponding grand potentials,

Ωe = −β−1 ln Tr[e−β(Ĥe−µeN̂)], Ωa = −β−1 ln Tr[e−β(Ĥa−µaN̂)]. (4.113)

To prove (4.112), one may use Klein inequality,

Tr[ρ̂ ln ρ̂] ≥ Tr[ρ̂ ln σ̂], (4.114)

which holds for arbitrary normalized density operators ρ̂ and σ̂ [186]. Inserting

ρ̂ = ρ̂a = Z−1
a e−β(Ĥa−µaN̂), Za = Tr[exp(−β(Ĥa − µaN̂))],

σ̂ = ρ̂e = Z−1
e e−β(Ĥe−µeN̂), Ze = Tr[exp(−β(Ĥe − µN̂))],
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into (4.114), we obtain (4.112). If one wishes to work with the chemical potential as an inde-
pendent variable, then we have µe = µa ≡ µ, and (4.112) reduces to

Ωe ≤ 〈Ĥe − Ĥa〉a + Ωa = Tr[ρ̂a(Ĥe − Ĥa)] + Ωa. (4.115)

However, usually it is more convenient to have particle number N as an independent variable.
In that case the value of N is assumed to be the same both for the ’exact’ and ’approximate’
model. Also, µa and the unknown µe are not equal in general, as the former quantity is
determined from different condition then the latter, i.e., 〈N̂〉a = N and 〈N̂〉e ≡ Tr[ρ̂eN̂ ] = N ,
respectively. Inequality (4.112) may be then rewritten as

Fe = Ωe + µeN ≤ 〈Ĥe − Ĥa〉a + Ωa + µaN = 〈Ĥe − Ĥa〉a + Fa. (4.116)

Bogoliubov-Feynman inequality provide us with the upper bound for the exact grand potential
Ωe or free energy Fe of the system described by Ĥe. The best trial state ρ̂a is the one minimizing
r.h.s. of (4.115), or (4.116), depending on the choice of independent thermodynamic variable,
µ or N , respectively.

Let us consider now trial density operator ρ̂a depending on some mean-field variables. For
example, we may take ρ̂a = ρ̂( ~A) (4.11). However, if the mean-fields are treated as variational
parameters in an unwary manner, there is no certainty that the basic self-consistency conditions
(4.8) are satisfied. One may do not consider this fact as an important drawback, arguing that
the only role of ρ̂a is to provide the optimal (i.e., the lowest) upper bound for Ωe or Fe.
Therefore, one may not care too much about the internal consistency of the description based
on such obtained MF density operator, and the latter is treated then as an auxiliary quantity.
Still, in our opinion this point of view is unacceptable. Rather, the r.h.s. of (4.115) or (4.116)
with ρ̂a = ρ̂ given (4.11) may be minimized only with respect to the variables of a non-MF
character, b1, . . . , bP , if they are present in a problem at hand.42 In such case, values of the
mean-fields should be obtained in a self-consistent fashion through (4.8).

Still, mean fields can be treated as variational parameters, provided that we are able to
ensure the self-consistency conditions (4.8). The simplest way to achieve this is to use the trial

MF density operators of the form (4.43), with the trial Hamiltonian Ĥa = Ĥz( ~A), yet bearing

no relation to the Ĥe appearing in (4.115) or (4.116). Consequently, ρ̂a = ρ̂z( ~A) (4.43) and

then Ωa = Ωa( ~A) = Fz( ~A) = Fz(T, V, µa,~h; ~A) (4.44). For such choice of ρ̂a, conditions (4.8)

are fulfilled automatically for any value of ~A. Now, again we have to distinguish between the
two cases, i.e., either we choose µe = µa ≡ µ, or 〈N̂〉a = 〈N̂〉e = N ; in the latter case we put
µa ≡ µ. In the former case, we can rewrite (4.115) as

Ωe ≤ Tr
[

ρ̂z( ~A)
(

Ĥe − Ĥz( ~A)
)]

+ Fz( ~A) ≡ Bµ(β, µ, . . . ; ~A), (4.117)

whereas for 〈N̂〉a ≡ 〈N̂〉z = 〈N̂〉e = N , from (4.116) we obtain

Fe ≤ Tr
[

ρ̂z( ~A)
(

Ĥe − Ĥz( ~A)
)]

+ Fz( ~A) + µA1 ≡ BN (β, µ, . . . ; ~A) = Bµ(. . .) + µA1. (4.118)

Note, that before the minimization procedure is carried through, both A1 = 〈N̂〉z (being usually
one of the relevant mean-fields) and µ are independent variables of Fz, Bµ and BN . This remains
in a full analogy to the situation encountered in Subsection 4.8.

To obtain the optimal upper bound for Ωe or Fe, we minimize the r.h.s. of (4.117) or (4.118)

with respect to mean fields. For Bµ, the 2M necessary43 conditions for Bµ(β, µ, . . . ; ~A) to have
a minimum acquire the form

∇ABµ(β, µ, . . . ; ~A) = 0. (4.119)

42In what follows the presence of such variables is ignored for simplicity, but extension to the general case is
straightforward.

43We assume, that the minimum corresponds to a stationary point.
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On the other hand, minimization of BN must be performed in a slightly different manner.
Namely, due to the presence of (−µA1) term, the r.h.s. of (4.118) depends on µ and λ1 only via
µ̃ = µ+ λ1. Therefore, we minimize BN with respect to all mean-fields except A1. We obtain

∂BN (β, µ, . . . ; ~A)

∂A2

= 0, . . . ,
∂BN (β, µ, . . . ; ~A)

∂AM

= 0. (4.120)

To find a relation between the solutions of Eqs. (4.119) and Eqs. (4.120), let us first note, that

the self-consistency conditions (4.41) determine only µ̃( ~A), but not µ and λ1( ~A) separately.
Therefore, the optimal values of the latter two variables cannot be found by solving (4.120).

However, µ may determined from Eqs. (4.119); equation ∂Bµ(β, µ, . . . ; ~A)/∂A1 = 0, not ap-

pearing in (4.120), can be solved either for µ or for N . Because µ is an ~A-independent quantity
(cf. related discussion in Section 4.7), the remaining equations of (4.119) and (4.120) are clearly
identical. Therefore, if we use the same value of µ (e.g. determined from (4.119) for a given
A1 = N) in (4.119) and (4.120), the solutions of the former set of equations would be identical

to those of the latter. The optimal solution, i.e. values of ~A and ~λ( ~A), for which the r.h.s. of

either from (4.115) or (4.116) has the minimal value, will be denoted ~ABF
0 and ~λBF

0 = ~λ( ~ABF
0 ).

Remembering that Ĥz( ~A) = Ĥλ( ~A,~λ( ~A)), we can rewrite (4.115) and (4.116) as

Ωe ≤ Tr
[

ρ̂λ( ~ABF
0 , ~λBF

0 )
(

Ĥe − Ĥλ( ~ABF
0 , ~λBF

0 )
)]

+ F( ~ABF
0 , ~λBF

0 ) (4.121)

and
Fe ≤ Tr

[

ρ̂λ( ~ABF
0 , ~λBF

0 )
(

Ĥe − Ĥλ( ~ABF
0 , ~λBF

0 )
)]

+ F( ~ABF
0 , ~λBF

0 ) + µN. (4.122)

The above discussion remain valid for other inequalities (i.e., various generalizations of (4.112)),
and the corresponding variational principles built upon them, [108]. In such case, one may
also use density operators ρ̂z (4.43) as convenient variational Ansätze. Nonetheless, Sλ (4.14)
together with the corresponding variational principle play a special role, as they determine the
functional form (4.29) and (4.43) of the proper GC MF density operator. If the additional
variational parameters of non-MF character, b1, . . . , bP , are present, we simply minimize the
r.h.s. of (4.115) with respect to each of bl, this step contributes with the additional P equations
appearing in Eqs. (4.119) or (4.120).

A hybrid approach leading to (4.119) and (4.120) is an attempt to find a compromise be-
tween two entirely different points of view on the MF approach. Therefore it cannot be regarded
as fully satisfactory from either side. First, obviously, such approach yields higher upper bound
for Ωe or Fe, than the one resulting from the unconstrained variational procedure with no self-
consistency conditions imposed. Also, note that the exact evaluation of 〈Ĥe − Ĥa〉a may be
impossible in practice, but any approximate ways of evaluating this term may invalidate the
Bogoliubov-Feynman inequality. Consequently, the whole formalism is less natural and trans-
parent than the one founded on MaxEnt principle and based entirely on the MF Hamiltonian.
In particular, natural definitions of the MF thermodynamic potentials as well as connection
with Landau theory of phase transitions are obscured or even lost.

If Bµ( ~A) 6= Fz( ~A), then usually also ~ABF
0 6= ~A0 and ~λBF

0 6= ~λ0, with ~A0 and ~λ0 being the

solutions of Eqs. (4.34). Consequently, ρ̂z( ~ABF
0 ) = ρ̂λ( ~ABF

0 , ~λBF
0 ) is no longer a true grand-

canonical MF density operator for Ĥλ. However, for any pair (Ĥe, Ĥλ), for which

〈Ĥe − Ĥa〉a = 〈Ĥe − Ĥz〉z = 0, (4.123)

we have Ωa( ~A) = Fz( ~A) = Bµ( ~A). In such case the Bogoliubov - Feynman and MaxEnt

variational principles coincide, and the MF density operator ρ̂z( ~A0) = ρ̂λ( ~A0, ~λ0), which is
optimal from the point of view of the MaxEnt inference, provides us also with the upper bound
for exact grand potential Ωe or free energy Fe of Ĥe. This follows immediately from (4.119).
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4.11 Formalism interpretations

Before we summarize this part of the Thesis, some remarks, both of a general, as well as of a
more technical character, are in place here.

4.11.1 Time dependence of mean-field variables

At the early stage of the construction of the present formalism, we have assumed that both mean
fields and Lagrange multipliers are time-independent quantities, and also that [ρ̂λ, Ĥλ] = 0, cf.
Eqs. (4.18). This condition allowed us to obtain an explicit form (4.29) of the density operator

ρ̂λ ≡ ρ̂λ( ~A,~λ,~b). Now we should make an a posteriori check, that the assumptions we have
made, are consistent. Indeed, we may invoke Eq. (4.20), Eq. (4.8) with ρ̂e → ρ̂λ, Ĥe → K̂λ,
and Â→ Âs for each s = 1, . . . ,M , i.e.,

As(t) =
∑

i

〈i(t)|ρ̂λÂs|i(t)〉 =
∑

i

〈i(0)|eitK̂λ/~ρ̂λÂse
−itK̂λ/~|i(0)〉

=
∑

i

〈i(0)|e−itK̂λ/~eitK̂λ/~ρ̂λÂs|i(0)〉 =
∑

i

〈i(0)|ρ̂λÂs|i(0)〉 (4.124)

In principle, depending on the MF model, there may exist solutions of Eqs. (4.124) for which
∂〈Âs〉/∂t = ∂As(t)/∂t 6= 0 and ∂λs(t)/∂t 6= 0. If this was be the case, such solutions should
be rejected within the present approach. However, it is always legitimate to assume constant
As(t) = As and λs(t) = λs, and then check if such assumption is consistent, namely if Eqs.

(4.124) have any solution, i.e., if ~A ∈ DA. Then, both sides of (4.124) are obviously time -
independent, provided that also ∂Âs/∂t = 0.

Therefore, we concentrate only on the stationary situation. This assumption is justified, if
the time scales on which changes of order parameters occur are much larger then the charac-
teristic time scale of the experiment. In such a situation we may assume that ~A appearing in
Ĥ( ~A) is practically time-independent. Obviously, this ceases to be valid if the fluctuations are
too strong. We also comment on this point in Supplement A (Subsection 12.1).

Apparently, it would be tempting to have at our disposal a MF approach which allows for a
non-trivial time dependence of the non-equilibrium values of both ~A and ~λ. For example, some
mechanism, by which the system is driven to the thermodynamic equilibrium during the time
evolution may be build into such formalism. However, compared to the present formulation,
such MF theory would be much more complicated, and its construction is beyond the scope
of this Thesis. Still, we may hope, that within a more complete time-dependent MF theory,
description of the equilibrium situation will be very similar or even the same as the present
one.

4.11.2 Super-selection rules

As mentioned in Section 3, an interpretation of mean-fields as semi-classical quantities imposes
some restrictions on the superposition principle. Namely, it seems natural to postulate that
the coherent superpositions of quantum states corresponding to different values of at least
one of the mean-fields are forbidden, and that such states belong to different and mutually
orthogonal Hilbert spaces. In other words, we postulate the existence of certain super-selection
rules. Similar situation is encountered in some non-MF models, but only in the thermodynamic
limit. For example, in the absence of the external field, the (degenerate) ground state of the
Heisenberg ferromagnet [147] (as well as all of its states having finite number of excitations,
i.e., finite number of reversed spins), related to different directions of the magnetization, are
orthogonal. In contrast, for the MF models, numerical value of a scalar product of two quantum
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states, each of which is characterized by different values of mean-fields, does not have to be
(and is usually not) equal to zero. However, if additionally the model is supplemented with
the above provided interpretation, then for a finite system we may obtain a situation similar to
that encountered in the thermodynamic limit for non-MF Hamiltonians.

4.11.3 Internal consistency of mean-field approach

MF Hamiltonian Ĥ( ~A) (4.1), the self-consistent Hamiltonian Ĥz( ~A) (4.42) and the related MF

density operator ρ̂z( ~A) (4.43) are operator-valued function of the mean-fields A1, . . . , AM , i.e.,

they are characterized by a single, well defined ~A = (A1, A2, . . . , AM) - there is no averaging

over different values of ~A. This simple fact has important consequences for the properties of
the present MF formalism and its physical interpretation.

As pointed out above, when treating mean-fields as semi-classical objects, we should not
make coherent superpositions of the states differing by ~A or ~λ. In fact, we have to exclude any,
either coherent or statistical, mixing of the states characterized by a macroscopically distin-
guishable values of ~A (of course, we have to define precisely what we mean by ’macroscopically
distinguishable’). Therefore, to assure internal consistency of the MF description, each As

should correspond to a weakly-fluctuating physical quantity. Only if the latter condition is
fulfilled, application of the MF approach in the present form is legitimate. This, in turn, im-
poses certain restrictions on the choice of Âs operators. This problem will be discussed also in
Supplement A (Subsection 12.1).

4.11.4 Physical and statistical aspects of MF statistical mechanics

According to Jaynes, the only place where the non-MF statistical mechanics makes contact
with the laws of physics, is the choice of a microscopic Hamiltonian. The remaining part of
the standard statistical-mechanical formalism is just the maximum-entropy inference, ’which
principles are independent of any physical properties’ [109]. A distinction between ’physical’
and ’statistical’ aspects of the MaxEnt-based statistical mechanics can also be made in the
case of the mean-field approach. However, such distinction is not as sharp as in the non-MF
case. Here, the ’physical’ part contains also the choice of the mean fields ~A, which are relevant
for the problem at hand, and therefore required in order to construct the MF Hamiltonian.
Nonetheless, equilibrium values of mean fields ( ~A = ~A0) and Lagrange multipliers (~λ = ~λ0),

and consequently, the equilibrium MF grand Hamiltonian, K̂λ0 = K̂λ( ~A0, ~λ0,~b0) (4.36) are
determined using MaxEnt principle, so they depend on the ’statistical’ aspects of the formalism.
Consequently, eigenstates of K̂λ0 (being pure quantum states) may also depend on temperature,
chemical potential and other quantities of purely statistical origin. This is legitimate, as long
as the formulation is explicitly time-independent.

Note also, that within the standard statistical mechanics, some interaction with the envi-
ronment is usually necessary in order to ensure thermalization. It is also assumed, that such
interaction is weak enough and does not modify energy levels of the system, and therefore it
is not explicitly present in the Hamiltonian [109, 112]. Also in the case of a finite-temperature
mean-field description of the system, some interaction with the environment must be assumed
for the same reason as in the standard situation. Yet, in contrast to the former case, here also
the quantum micro states of the system are affected by such interaction.

It has been claimed that for ~A = ~A0, ~λ = ~λ0 and ~b = ~b0, a density operator ρ̂λ0(β, µ) (4.37),

i.e., ρ̂λ(β, µ; ~A0, ~λ0,~b0), is a proper grand-canonical (GC) MF density operator corresponding

to MF Hamiltonian Ĥ( ~A,~b). This is not the case for ρ̂
(0)
sc (4.40), which has only an apparent

GC form. Here we would like to provide further comments on this issue.
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If we choose a concrete value of 〈Ĥλ〉 = 〈Ĥ〉 = E and 〈N̂〉 = N , we have to determine

Lagrange multipliers β and µ appearing in ρ̂λ0(β, µ) (say β = βλ, µ = µλ) and ρ̂
(0)
sc (β, µ)

(β = βsc, µ = µsc), respectively. Obviously, in general case, βλ 6= βsc and µλ 6= µsc. From the
way both probability distributions are constructed, it should be clear, that for SvN (4.4) we
have

SvN

(

ρ̂λ0(βλ, µλ)
)

≥ SvN

(

ρ̂(0)
sc (βsc, µsc)

)

, (4.125)

with equality for the density matrices of the Hartree-Fock MF models. Also, apart from
ρ̂

(0)
sc (βsc, µsc), any other density operator leading to the same 〈Ĥ〉, obeys inequality (4.125).

The point is that true GC MF density operator, ρ̂λ0(βλ, µλ) (4.37) (from now on denoted
as ρ̂λ0(β, µ)) establishes one-to-one correspondence between E and β, similarly as in the case
of a standard (non-MF) statistical mechanics [109]. Therefore, we can make the Legendre
transformation E ↔ β, and work with a fixed β and variable E instead of fixed E and variable
β. However, In such a situation, depending on the choice of N or µ as an independent variable,
we select the optimal density operator by comparing values of free energy F or grand potential
Ω = F( ~A0, ~λ0,~b0) (4.47), and not of the entropy. Clearly, for fixed β, ρ̂λ0(β, µ) and ρ̂

(0)
sc (β, µ)

may yield different values of E.
The above conclusions are valid both when [Ĥ( ~A), Ĥλ( ~A,~λ)] = 0, i.e., when Ĥ and Ĥλ

have common eigenbasis, as well as in the opposite case, when application of MaxEnt principle
modifies algebraic structure of the model, and when the common eigenbasis of Ĥ and Ĥλ no
longer exists.

4.11.5 Generalized entropies

Originally, MaxEnt principle has been founded on Shannon entropy (in classical case) or on
the von Neumann entropy (in quantum case) [109]. However, MaxEnt principle is sometimes
formulated in a more general form, which makes use of other entropies [187]. In particular,
Tsallis entropy [188], leading to the so-called non-extensive statistical mechanics, gained a
considerable interest in the last decades. The mean-field statistical mechanics may be also
based on one of those alternative definitions of entropy, and this step requires only a small
modification of the present formalism.

4.11.6 Lagrange multipliers as molecular fields

The form of the constraint terms (4.13) suggests an interpretation of Lagrange multipliers as
a kind of molecular fields, coupled to the corresponding mean-fields. However, as shown in
Section 4.8, apparently very different MF Hamiltonians are in fact completely equivalent, and
lead to the same values of all physical quantities that can be computed within a given MF
model.

In contrast to mean-fields, Lagrange multipliers acquire different equilibrium values for
different equivalent MF Hamiltonians. Only certain combinations of λs with the mean-fields
As are invariant, i.e., Cλ

s ( ~A,~λ) (4.69) have the same equilibrium value for all equivalent MF
Hamiltonians. This bears some analogy with the gauge-invariance; only the gauge-invariant
quantities may be given physical interpretation. Similarly, here the only invariant quantities
correspond to observables, e.g. the quasi-particle energies. Equilibrium values of Lagrange
multipliers depend not only on the physical contents of the model but also on its particular
formulation (out of many possible equivalent formulations).
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5 Summary and discussion of Part II

To summarize this part of the Thesis, we have presented a method of solving mean-field (MF)
lattice models. Our approach, founded on the maximum-entropy (MaxEnt) principle, has
been devised for the situation, when description of the system is based entirely on the MF
Hamiltonian. For that purpose, the original formulation of MaxEnt principle must be suitably
generalized. Namely, both the probabilities (diagonal elements of the density operator), as well
as the mean-fields (and possibly also other variables of a non-MF character) are treated as
variational parameters. This step requires an introduction of the additional constraints, which,
first, ensure the self-consistency of the mean-field model, and second, allow to treat mean-field
averages and probabilities as independent variables. By self-consistency we understand that
the optimal values of mean-fields, obtained from the variational procedure, are also expectation
values of the corresponding operators, evaluated by using MF density operator. For an arbitrary
MF model, this is not guaranteed a priori. Quite contrary, variational procedure which consists
of minimization of an appropriate MF thermodynamic potential leads to self-consistent results
only for important, but narrow class of Hartree-Fock MF Hamiltonians.

Modification of the standard MF formalism, which has been proposed here, is fairly straight-
forward, but carries out important consequences. First, from the point of view of Bayesian
mathematical statistics, our method represents an optimal way of solving MF models. Second,
a natural connection between microscopic MF models and Landau theory of phase transitions
is established. On the other hand, within the standard formulation of the mean-field approach,
the requirements of self-consistency are not fulfilled for non-equilibrium values of mean-fields.
This, strictly speaking, does not allow for a consistent interpretation of the results of MF models
in terms of Landau theory, even if this fact is sometimes ignored.

It also becomes possible to analyze the internal limitations of the present MF formalism, and
to estimate, at least in the qualitative manner, the range of its applicability (this is discussed
in Supplement A, i.e., Subsection 12.1).

The underlying variational principle guarantees that the thermodynamic quantities given
by the first derivatives of the equilibrium free energy (or grand potential), i.e., the entropy,
the pressure or the average particle number, are identical with their statistical-mechanical
definitions based on the MF density operator. However, this can no longer hold for the second
derivatives of thermodynamic potentials, i.e., specific heat, magnetic suspectibility, etc., where
additional terms of the mean-field origin appear. Again, similar situation is encountered both
in the Landau theory and microscopic mean-field theories (e.g. BCS theory).

Finally, let us note, that our approach provides also a simple and unique way of constructing
the optimal MF approximation for a given non-MF (many-body) Hamiltonian. For a wide class
of many-body Hamiltonians, this clarification may be achieved by invoking, apart from the
present formalism, only Wick’s theorem.
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Part III

Mean-field theory of t-J model

6 t-J model

In this Section we discuss the t-J model, describing correlated fermions in a single narrow band,
and analyze its different forms. Its relationship to the Hubbard model, the relevance for the
physics of the high-temperature superconducting cuprates as well as its possible extensions and
generalizations, are also discussed. This Chapter represents the principal application of the
original formal method presented in Part II to the model composing the title of the present
Thesis.

6.1 t-J Hamiltonian

Hamiltonian of the t-J model [8, 22, 23, 24, 25, 26, 27, 28, 30, 31, 33] reads

ĤtJ = P̂
{

∑

ijσ

tijc
†
iσcjσ +

∑

〈ij〉
Jij

(

Ŝi · Ŝj −
c1
4
n̂in̂j

)

+ c2Ĥ3

}

P̂ . (6.126)

The first term, Ĥt ≡ P̂
∑

ijσ tijc
†
iσcjσP̂ , is the projected kinetic (band) energy part, the second

ĤJ ≡
∑

〈ij〉
Jij

(

Ŝi · Ŝj −
c1
4
n̂in̂j

)

, (6.127)

expresses the kinetic exchange interaction, whereas the third (Ĥ3) is the so-called correlated

hopping or three-site term. By
∑

ij we denote the double summation over sites, with i 6= j,
whereas by

∑

〈ij〉 summation over the nearest-neighbor bonds (each bond is counted once).
Coefficients c1 and c2, equal either 0 or 1, allow us to select a particular limiting form of the
t-J model. The Gutzwiller projection operator (projector)

P̂ =
∏

i

(1 − n̂i↑n̂i↓), (6.128)

eliminates double occupied sites. An explicit form of Ĥ3 reads

Ĥ3 =
∑

ijk

∑

σ

tijtjk
U

(

b†iσŜ
σ̄
j bkσ̄ − b†iσn̂jσ̄bkσ

)

, (6.129)

with biσ ≡ (1 − n̂iσ̄)ciσ, ν̂iσ ≡ (1 − n̂iσ̄)n̂iσ, ν̂i =
∑

σ ν̂iσ, and Ŝσ
i ≡ b†iσbiσ̄. Hamiltonian (6.126)

in its complete form, i.e., with c1 = c2 = 1 can be recast to the equivalent, more compact and
intuitive form involving real space pairing operators B̂ij (cf. Ref. [27]), defined as

B̂ij ≡
1

2
(bi↑bj↓ − bi↓bj↑) . (6.130)

Namely, we can combine both two- and three- site interactions to obtain

ĤtJ =
(

∑

ijσ

tijb
†
iσbjσ −

∑

ijkσ

2tijtjk
U

B̂†
ijB̂jk

)

. (6.131)
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Note, that due to the presence of P̂ in (6.126), Ĥ3 (6.129) and B̂ij operators may be equivalently

expressed in terms of bare electron operators ciσ instead of biσ, etc. ĤtJ (6.126) with c1 = c2 = 1
has been derived [22] from the single-band Hubbard Hamiltonian [19, 20, 21, 190]

ĤtU =
∑

ijσ

tijc
†
iσcjσ + U

∑

i

n̂i↑n̂i↓, (6.132)

where U
∑

i n̂i↑n̂i↓ is the on-site Coulomb repulsion term. Namely, by applying canonical trans-

formation (CT) [22, 23, 24, 25, 191, 192] to ĤtU , i.e.,

ĤtU → e−iŜĤtUe
iŜ ≡ ĤCT , (6.133)

with Ŝ† = Ŝ, expanding e±iŜ and retaining the terms up to k-th order (up to Ŝk), we obtain
approximate form of ĤCT ,

ĤCT → Ĥ
(k)
tJ ≡

(

1 − iŜ + . . .+
(−i)k

k!
Ŝk
)

ĤtU

(

1 + iŜ + . . .+
(i)k

k!
Ŝk
)

. (6.134)

Ĥ
(k)
tJ is an extended t-J model, in which only the terms up to those of order |t|k/Uk−1 appear.44

The resulting higher-order terms are either the so-called ring-exchange terms [190, 193] or have
a form similar to that of Ĥ3, though more complicated [25]. Higher-order corrections change
also values of Jij parameters, as they include additional contributions to the two-site virtual
hopping.

In the |tij| ≪ U limit, one may keep in ĤCT only the terms proportional to tij , |tij|2/U
and tijtjk/U , and obtain Ĥ

(2)
tJ , i.e., the full t-J Hamiltonian (6.126) with c1 = c2 = 1 and

Jij = 4|tij|2/U [22, 23, 27, 28]. On the other hand, Hamiltonian (6.126) with c1 = c2 = 0, i.e.,
of the following simplified form

ĤtJ ≡ Ĥt + ĤJ = P̂







∑

i,j,σ

tijc
†
iσcjσ +

∑

〈ij〉
Jij Ŝi · Ŝj







P̂ . (6.135)

has been proposed in Ref. [29] as an effective model describing the low-energy physics of the
cuprates. Both (6.135), or (6.126) with c1 = 1, c2 = 0 are used to study high-Tc superconduc-
tivity, and three-site terms are usually disregarded. However, the role of Ĥ3 has not been fully
elucidated [8], and some Authors (cf. e.g. [61, 194, 195]) include also this term. This issue is
discussed in detail below.

Summarizing, the t-J model may be regarded as an effective Hamiltonian, describing the
properties of the Hubbard model with large U at low energies. Due to the exclusion of doubly
occupied sites, the Hilbert space dimension DH is equal 3Λ (strongly correlated metal), and
DH = 2Λ for the limiting case of the Mott-Hubbard insulator (with Λ being a number of lattice
sites) as compared to DH = 4Λ for the original Hubbard model.

6.2 General remarks on t-J model

6.2.1 Effective Hamiltonians: a broader perspective

According to Ref. [191], canonical transformation (6.133) may be regarded in an analogy to
the Foldy - Wouthuysen (FW) transformation [196], used to derive the effective Schrödinger-
Pauli equation from the Dirac equation. The effective Hamiltonian obtained in this manner

44With t = tij .
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from Dirac Hamiltonian, apart from the local external vector and scalar potentials, contains
also terms which are nonlocal, i.e., which involve derivatives of the scalar potential, e.g. the
Zeeman, the spin-orbit and the Darwin terms. In the present case, the non-local (namely,
involving at least two sites) terms, like kinetic exchange or Ĥ3, emerge from purely local (on-
site) Coulomb interaction. This is the price to pay for dealing with the Hilbert space of reduced
dimensionality. On the other hand, in both cases a transparent physical interpretation may
be ascribed to the effective Hamiltonian resulting from CT. For example, for half-filled lattice
(n = 1), in the t≪ U limit, charge fluctuations are frozen, and the Hamiltonian (6.126) reduces
to the Heisenberg Hamiltonian (ĤtJ ≡ ĤJ (6.127) with c1 = 1 and c2 = 0), which is a minimal
model of correlated magnetic insulators [8, 190, 197, 198]. From the form of ĤJ it should be
clear, that in the limit in question, the original electron system behaves like a collection of
interacting spins (charge degrees of freedom are frozen out). This can be deduced in much
more difficult manner by a direct analysis of the original Hubbard Hamiltonian (6.132).

6.2.2 t-J model as a minimal model of cuprate superconductors

As mentioned in the Introduction, ĤtJ , even in its incomplete form, i.e., either (6.135) or
(6.126), with c1 = 1 and c2 = 0, is frequently regarded as a minimal electronic model of the
high Tc compounds [8, 30, 31, 33, 39, 61]. Namely, this Hamiltonian contains all the necessary
ingredients required to explain the physics of a lightly doped Mott-Hubbard insulator. First,
the correlated hopping part Ĥt is responsible for a charge (hole) transport for a nonzero doping.
Next, the kinetic exchange term (6.127) is regarded as the cause of the antiferromagnetism in
the undoped parent compound and at low doping level; here also as a source of the real-space

pairing. Indeed, within the mean-field approach both antiferromagnetism and superconductiv-
ity emerge in a natural manner from the presence of this particular term. Finally, the three-site
term Ĥ3 may be interpreted as a kinetic energy operator for real-space pairs of electrons in a
spin-singlet state, described by B̂ij operators [27].

6.2.3 Nontrivial role of higher-order terms

Note, that even if the reasonable value of |tij|/U in the cuprate compounds is 1/10 or smaller,

it is not obvious that we can neglect the higher-order terms appearing in Ĥ
(k)
tJ . Some of those

terms disappear for half-filling (n = 1), and their influence is weak for small doping. Indeed,
within the MF approach, many terms contain (1 − n)k′

pre-factors, where k′ ≤ k. However,
even if such terms are small for n ≈ 1, they can still affect behavior of the system at larger
doping, e.g. near the upper critical concentration nc = 1 − xc ≈ 0.7 − 0.8. Also, the number
of higher-order terms in Ĥ

(k)
tJ is usually large [24, 25]. Even if the terms of a similar structure

frequently appear with the opposite signs, and therefore their influence is weakened, a net effect
can still be non-negligible.

Moreover, after the MF decomposition of Ĥ
(k)
tJ is made, many different terms in the resulting

MF Hamiltonian are usually related to each term of Ĥ
(k)
tJ . Such terms may partly cancel each

other, but it is hard to estimate the overall effect without detailed calculations. In other words,
factors of combinatorial origin may overcome the smallness of the |tij|/U parameter as well as
the influence of the (1 − n)k′

pre-factors.
According to Ref. [193], the higher-order terms (in particular, the ring-exchange terms), are

important for a successful description of the undoped and lightly doped high-Tc compounds. If
such point of view was accepted, then all the terms up to at least ∼ |t|4/U3 should be included

in an extended t-J Hamiltonian (Ĥ
(4)
tJ ). Next, one may perform the MF analysis of Ĥ

(4)
tJ , at least

for the simplest MF states. It would be interesting to check if the respective MF solutions have
a proper asymptotic behavior with increasing order k of the canonical transformation (6.134).
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This would make the whole MF-approach for the t-J model more formally correct. On the other
hand, there is no certainty, that such procedure ’converges’, i.e., that the smallness of |t|/U
factor eventually overcomes the influence of the large number of terms in the MF Hamiltonian.
Obviously, the inclusion of ’fourth-order’ (∼ |t|4/U3) and omission of the higher-order terms
may still be insufficient.

As pointed above, the MF analysis of the higher-order terms is very tedious and to our
knowledge, has never been fully carried through. Also in this Thesis, our aim is to compare
the results of MF treatment of both ĤtJ (6.126) with c1 = 1, c2 = 1, as well as its simplified

versions: c1 = 0, c2 = 0 and c1 = 1, c2 = 0. Therefore, in what follows we ignore Ĥ
(k)
tJ for k > 2

altogether.

6.2.4 Mean-field treatment of Hubbard model

The above discussion shows that it is not completely clear, which particular form of the t-J
model or its higher-order extensions should be used. Also, MF treatment of a more complicated
versions the t-J model may be very tedious. Moreover, there are certain issues, which are
obviously beyond the domain of applicability of the t-J model (i.e., the interaction-tuned Mott-
Hubbard transition).45 Also, on the MF level dimensionality of the Hilbert space (DH) is not
a limiting factor, and with this respect the t-J model has no advantages over the Hubbard
model. Therefore, one may ask why we do not simply use the latter model instead of the
former? The answer to this question is direct. Namely, in contrast to the t-J model, no
simple MF-treatment of the Hubbard Hamiltonian with positive U0 leads in a natural manner
to the pairing of required d-wave symmetry and a stable superconducting solution. On the
technical level, this is caused by the absence of the exchange term in the starting Hubbard
model. Therefore a MF description of the superconducting state in the cuprates based on the
t-J model is preferred.

6.2.5 t-J-U model

Apart from the Hubbard and the t-J models, the hybrid t-J-U model, defined by the following
Hamiltonian

ĤtJU =
∑

ijσ

tijc
†
iσcjσ +

∑

〈ij〉
Jij Ŝi · Ŝj + U

∑

i

n̂i↑n̂i↓, (6.136)

has been proposed by Zhang [200], cf. also [201]. In contrast to t-J Hamiltonian, ĤtJU cannot
be rigorously derived from any standard microscopic model of correlated fermions. However,
it has been argued (cf. e.g. [202]), that on the MF level, phenomenologically motivated t-J-U
model provides a better description of correlated systems than either the Hubbard or the t-J
model. Note, that the MF treatment of ĤtJU can be formulated in a similar manner to that of
ĤtJ .

6.2.6 Other possible extensions of t-J model

The form of the t-J model, regarded as the derivative of the Hubbard model, depends crucially
on the details of the Hubbard Hamiltonian. The point is, that single-band Hubbard model
(6.132) may be by itself generalized in several ways. Namely, inter-site interactions of various
kind, e.g. density-density Coulomb interaction, direct exchange, and more exotic correlated
(Coulomb-assisted) hopping and pair-hopping terms may be also included [190, 203, 204]. In

45Undoped (n = 1) cuprates are well in the Mott-insulating regime, and we do not have to worry about the
issue the interaction-tuned Mott-Hubbard transition. However, this may be important for other systems, e.g.
organic superconductors [4].
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such a situation, an effective model derived from such extended Hubbard model in the limit of
strong correlations may significantly differ from (6.126). It should be noted, that the additional
terms in the Hubbard Hamiltonian, for example inter-site Coulomb interaction, may be of
comparable magnitude to those which are present in Hamiltonian (6.126). Therefore, such
terms may be important for the physics of strongly correlated systems, cuprate superconductors
in particular. Analysis of the such extended t-J model is also beyond the scope of the present
Thesis (for a simple estimate of the role of intersite Coulomb interaction see [204].
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7 Renormalized mean-field theory (RMFT)

At the beginning of this Section, we discuss quantum states, which are candidates for the
approximate ground state of the t-J model. We show, that particular class of such variational
trial states leads to an effective mean-field description, called the renormalized mean-field theory

(RMFT).
First, we analyze RMFT in its standard formulation, i.e., in the case when the so-called

Gutzwiller renormalization factors gt and gJ can be defined. Next, this formulation is applied
only to the simplest form of the t-J Hamiltonian (6.135), i.e., (6.126) with c1 = 0 and c2 = 0.

Our second aim here is to compare some of the various renormalization schemes proposed
in the literature and eventually, to select the optimal one. In Section 7.4.3 we provide an
alternative formulation of the RMFT approach, based on our original approach of Section 4.8.

7.1 Concept of resonating valence bond (RVB) state and correlated
variational wave functions

In the preceding Section, the t-J model has been introduced as a purely electronic microscopic
model of high-Tc cuprate superconductors. Unfortunately, exact solutions of this model are
limited to very special cases. This is both due to the interaction terms, as well as to the presence
of the projection operator P̂ . Even in the J = 0 limit, ĤtJ (6.135) is not an independent-particle
Hamiltonian. In such a situation, one may try to search for a proper trial wave function, being
an acceptable approximation to the ground state of the t-J model. Such variational state has
been proposed by Anderson [38, 39] in the form

|Ψ〉 ≡ P̂ |Ψ0〉 =
∏

i

(1 − n̂i↑n̂i↓)|BCS〉. (7.137)

In above, |BCS〉 is the Bardeen-Cooper-Schrieffer (BCS)-type state [41], i.e.,

|BCS〉 =
∏

k

(uk + vkc
†
k↑c

†
−k↓)|0〉, (7.138)

with |uk|2 + |vk|2 = 1. Explicit form of uk and vk, being the Bogoliubov coherence factors in
the paired state, depends on the manner in which the BCS state is constructed. |Ψ〉 of the
form (7.137) is termed resonating valence bond (RVB) state and denoted |RVB〉. To keep our
discussion more general, we will consider trial states of the following form

|Ψ〉 = P̂C |Ψ0〉. (7.139)

Uncorrelated state |Ψ0〉 is an eigenstate of a noninteracting, single-particle Hamiltonian ĤR (not
yet specified). |Ψ0〉 may be of a more complicated form then the simple BCS state. Namely, it
may be characterized also by magnetic (in particular, antiferromagnetic) or charge order, or even
more exotic type of ordering (e.g. staggered flux phase (SF), stripe order [54, 73, 74, 75, 199]
or valence-bond solid [78]) Operator P̂C introduces many-body effects (correlations), hence it
is termed the correlator. States of the form (7.139) represent thus a natural generalization of
(7.137) [33]. They will be called correlated states or correlated wave functions.

Each choice of either |Ψ0〉 or P̂C defines different |Ψ〉. One possible form of |Ψ〉 is the
variational state originally proposed by Gutzwiller [20] for the Hubbard model (6.132), i.e.,

|Ψ〉 = P̂G(α)|Ψ0〉 =
∏

i

(

1 − (1 − α)n̂i↑n̂i↓

)

|FS〉. (7.140)
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In above, |Ψ0〉 = |FS〉 is the Fermi-sea wave function. Contrary to P̂ = P̂G(0) appearing in
(7.137), P̂G(α) projects doubly occupied configurations only partially, to a degree dependent
on the value of the variational parameter α.

Another important class of correlated trial states |Ψ〉, generalizing (7.137) are those with
P̂C being in the form of a product of various Jastrow correlators [52, 53, 181], cf. also Eqs.
(25)-(28) of Ref. [33]. Here, we are mainly interested in the generalization of (7.137) proposed
by Fukushima [76]

|Ψ〉 = P̂ (F )(λF
i↑, λ

F
i↓)|Ψ0〉 =

∏

i

(λF
i↑)

n̂
i↑
2 (λF

i↓)
n̂

i↓
2 (1 − n̂i↑n̂i↓)|Ψ0〉. (7.141)

In above, the Gutzwiller projector (6.128) has been replaced by correlator P̂C = P̂ (F ), differing
from P̂ by the presence of the so-called fugacity factors46 λF

iσ [76]. For λF
iσ = 1, P̂ (F ) = P̂ and

then |Ψ〉 (7.141) reduces to (7.137) if only |Ψ0〉 = |BCS〉. However, within the formalism of
Ref. [76], λF

iσ are determined from the additional conditions, e.g. that the projection does not
change the (local) average particle density or particle density and the local magnetic moment
(for more details, see Appendix D, Subsection 11.4.

Finally, let us note, that when the Hubbard model is a starting point of analysis, apart from
partially projected states (7.140), |Ψ̃〉 of the form

|Ψ̃〉 = exp (iS)|Ψ〉 = exp (iS)

(

∏

i

(1 − n̂i↑n̂i↓)

)

|BCS〉, (7.142)

is sometimes used instead |Ψ〉 (7.137), [48, 61]. Doubly occupied sites in |Ψ̃〉 are perturbatively
reintroduced by means of the unitary operator exp (iS) appearing in canonical transformation
(6.133).

Here, because our point of departure is the t-J model, we study only the fully projected
states (7.141). However, note that within the formalism of Ref. [76], extension to the general
case with nonzero double occupancies is also possible, leading to the correlated state of the
form

|Ψ〉 = P̂
(F )
G (α, λF

i↑, λ
F
i↓)|Ψ0〉 =

∏

i

(λF
i↑)

n̂i↑(λF
i↓)

n̂i↓(1 − (1 − α)n̂i↑n̂i↓)|Ψ0〉, (7.143)

which combines features of (7.140) and (7.141). |Ψ〉 of the form (7.143) allows to study both
the Hubbard and the t-J-U model 6.136.

7.2 Mean-field treatment of Gutzwiller projected state

As mentioned in Introduction, the RVB concept may be implemented either by means of the
Variational Monte-Carlo (VMC) methods or by using an appropriate form of mean-field ap-
proach. The latter way is partly motivated by the fact, that expectation values with respect to
|Ψ0〉, and therefore also with respect to |Ψ〉 (7.139) may be evaluated, at least in principle, using
Wick’s theorem [136, 165]. In such case, |Ψ0〉 is an eigenstate of the effective single-particle
RMFT Hamiltonian ĤR, and the latter is obtained from the mean-field treatment of (6.126),
cf. e.g. [33, 58, 63, 66]. This point of view is also taken up here.

The crucial point in the construction of RMFT is an analytic evaluation of expectation
value of arbitrary operator Ô with respect to the correlated variational state |Ψ〉 (7.139), i.e.,

〈Ô〉C ≡ 〈Ψ|Ô|Ψ〉
〈Ψ|Ψ〉 =

〈Ψ0|P̂CÔP̂C |Ψ0〉
〈Ψ0|P̂ 2

C |Ψ0〉
≡ 〈P̂CÔP̂C〉

〈P̂ 2
C〉

. (7.144)

46λF
iσ in (7.141) should not be confused with the Lagrange multipliers appearing within our method.
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Both ĤR and |Ψ0〉 will be subsequently constructed, but are not required at this point. Here,
it is only important, that ĤR is bilinear in fermion creation and/or annihilation operators. In
principle, this feature allows us, by applying Wick’s theorem, to express the correlated averages
〈. . .〉C appearing in (7.146) through the uncorrelated ones, 〈. . .〉. However, usually the latter
step cannot be performed exactly, due to large number (MW ) of all possible contractions, i.e.,
different uncorrelated averages, appearing in the full Wick’s decomposition of 〈Ô〉C (7.144).
Consequently, we evaluate 〈Ô〉C in an approximate way. First, we have to choose M relevant
single-particle operators {Âs} = Â1, . . . , ÂM (M ≪ MW ), the uncorrelated expectation values
(mean fields) of which, i.e.,

〈Â1〉 ≡ A1, . . . , 〈ÂM〉 ≡ AM , 〈Âs〉 ≡ 〈Ψ0|Âs|Ψ0〉, (7.145)

are assumed to have a non-zero value. We may now rewrite (7.144) as

〈Ô〉C ≈ 〈Ô〉app
C ≡ fO( ~A). (7.146)

Note, that even after selecting the set of relevant mean-fields (again denoted as the components

of the vector ~A), there exist still many different possible forms of fO( ~A), corresponding to
different ways of approximate evaluation of 〈Ô〉C. Each prescription of the form (7.146) will be
termed the renormalization scheme (RS). In some cases, 〈Ô〉app

C (7.146) may be given a more
specific form

〈Ô〉C ≈ 〈Ô〉app
C = gO( ~A)

〈Ψ0|Ô|Ψ0〉
〈Ψ0|Ψ0〉

≡ gO( ~A)〈Ô〉, (7.147)

where gO( ~A) is termed the renormalization factor for Ô operator (cf. Eq. (15) of Ref. [33]).
Many different renormalization schemes has been proposed, most of them have a form of

Eq. (7.147). The simplest take into account only the local (site-dependent) mean fields (e.g.
local charge density or magnetization), [33, 78]. Within the more complicated ones, inter-site
contractions (i.e., the mean-field quantities defined on bonds, e.g. the pairing amplitude) are
also included, cf. Refs. [76, 63, 79]. Some renormalization schemes, important from the point
of view of the present work, will be listed and briefly discussed in the next Subsection.

Approximate way of computing correlated averages (7.144) or (7.147) is well known under
the name of Gutzwiller approximation (GA) [20, 33, 59]. It must be noted here, that in most
cases GA is an essentially uncontrolled procedure. Namely, as a consequence of approximate
evaluation of 〈Ô〉C for Ô = Ĥe (e.g. with Ĥe = ĤtJ), it is no longer guaranteed, that fO( ~A)
(7.146) provides an upper bound for the ground state energy of Ĥe. This fact is regarded as
the principal weakness of any GA-based approach.

7.2.1 Exact evaluation of correlated averages and rigorous upper bound for exact
ground state energy

It should be mentioned at this point, that in some cases it is possible to evaluate the correlated
averages (7.144) in an approximation-free manner. Metzner and Vollhardt [205, 206] were able
to compute analytically 〈Ô〉C (7.144) for |Ψ〉 (7.140), Ô = ĤtU (6.132), and DS = 1, i.e for the
Hubbard chain (a detailed discussion and some additional comments to the original papers are
provided also in Ref. [207]). Later, Gebhard [99, 100] developed further the ideas of Metzner
and Vollhardt and proposed a systematic and controlled way of evaluating correlated averages
by means of the so-called 1/DS expansion. Similar approach is being currently developed by
Bünemann, Schickling and Gebhard [208].

Let us also note, that it is much more difficult (or even impossible) to evaluate the numerator
(or denominator) of (7.144) separately, than to compute the whole correlated average. This is
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because only in the latter case, the linked cluster theorem may be applied, which makes the
task executable.

If (7.144) with Ô = Ĥe is computed with no approximations, fO( ~A) provides an exact

upper bound for the ground state energy of Ĥe. Then, (A1, A2, . . . , AM) ≡ ~A may be treated
as variational parameters, with respect to which the r.h.s of (7.146) is being maximized, under
the proviso, that the self-consistency constraints are imposed. From the conditions (7.145) it
should become evident, that the presence of such constraints is necessary.

7.2.2 Projected versus unprojected quantities

Any approach based on the correlated trial wave functions (7.139) has an unavoidable dual
character, in the following sense. Namely, for each physical quantity O, represented by an
operator Ô, a careful distinction should be made between correlated (projected) 〈Ô〉C (7.144)
and uncorrelated (unprojected) 〈Ô〉 averages. Usually, the former have physical interpretation
of e.g. true long-range superconducting order parameter or correlated average kinetic (band)
energy. On the other hand, the unprojected (bare) averages are merely elements of the mathe-
matical formalism. They are the building blocks of the projected averages, they also appear in
quasiparticle spectrum of the resulting RMFT Hamiltonian.

7.3 Standard formulation of renormalized mean-field theory

7.3.1 RMFT Hamiltonian

After the particular RS is selected, our next task is to construct an appropriate single-particle
Hamiltonian ĤR, which is necessary in order to obtain an explicit form of |Ψ0〉. Here we
present the main steps of the standard RMFT approach, i.e., with RS that can be given the
form (7.147), and with λF

iσ = 1 in (7.141). Modifications caused by application of the variational
approach of Part II will be discussed subsequently.

The standard RMFT scheme may be summarized as follows (cf. Fig. 27 of Ref. [33])

1. We start from ĤtJ (6.126), usually in the simplest form (6.135).

2. Next, as an intermediate step, we introduce Hamiltonian, in which the exact projection
has been replaced by renormalization factors gt

ij and gJ
ij, but with the kinetic-exchange

term kept intact, i.e.,

Ĥ
(ren)
tJ =

∑

i,j,σ

gt
ijtijc

†
iσcjσ +

∑

〈ij〉
gJ

ijJij Ŝi · Ŝj . (7.148)

In the above formula, renormalization factors gt
ij and gJ

ij are given by Eq. (7.147), with

Ô = (c†iσcjσ + H.c.) or Ô = Ŝi · Ŝj, respectively. Their explicit form depends on the
approximation used to obtain r.h.s. of (7.147).

Obviously, Hamiltonian (7.148) is constructed in such way, that within the approximation
(7.147) its expectation value with respect to |Ψ0〉 is the same as expectation value of the
t-J Hamiltonian (6.135) evaluated with respect to the correlated state |Ψ〉

〈Ψ0|Ĥ(ren)
tJ |Ψ0〉 ≡ 〈ĤtJ〉app

C ≈ 〈ĤtJ〉C . (7.149)

Nonetheless, due to the presence of the Ŝi · Ŝj terms, Ĥ
(ren)
tJ is still intractable, and must

be simplified further.
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3. The renormalized mean-field t-J Hamiltonian ĤR is obtained from (7.148) by the Hartree-
Fock (HF) -type decoupling (4.107) of the Ŝi · Ŝj terms. This involves the particle-hole

channel, i.e., the bond-order parameter 〈c†iσcjσ〉, but it may also involve the particle-
particle channel 〈ciσcjσ̄〉, i.e., possibility for a nonzero pairing (superconducting solutions).

Finally, in the presence of spin or charge ordering, quantities 〈∑σ σc
†
iσciσ〉 ≡ mi and

n− 〈∑σ c
†
iσciσ〉 ≡ n− ni, where ni is the local electron density, may also acquire nonzero

values. In what follows, we focus on the case with neither magnetic nor charge ordering
(general case may be treated analogously). Explicitly, exchange interaction reads

Ŝi · Ŝj = Ŝx
i Ŝ

x
j + Ŝy

i Ŝ
y
j + Ŝz

i Ŝ
z
j =

1

2
(Ŝ+

i Ŝ
−
j + Ŝ−

i Ŝ
+
j ) + Ŝz

i Ŝ
z
j . (7.150)

For the Ŝσ
i Ŝ

σ̄
j part of Ŝi · Ŝj (with σ̄ = −σ = ±), HF decoupling (4.107) leads to

Ŝσ
i Ŝ

σ̄
j = c†iσciσ̄c

†
jσ̄cjσ → (7.151)

− 〈c†iσcjσ〉c†jσ̄ciσ̄ − 〈c†jσ̄ciσ̄〉c†iσcjσ + 〈c†iσcjσ〉〈c†jσ̄ciσ̄〉
− 〈c†iσc†jσ̄〉ciσ̄cjσ − 〈ciσ̄cjσ〉c†iσc†jσ̄ + 〈ciσ̄cjσ〉〈c†iσc†jσ̄〉.

HF decoupling of the Ŝz
i Ŝ

z
j = 1

4

(

c†i↑ci↑ − c†i↓ci↓)(c
†
i↑ci↑ − c†j↓cj↓) term may be performed

analogously. In the above expressions, c†iσ (cjσ) are ordinary fermion creation (annihila-

tion) operators. As a consequence of approximations made above, ĤR may be taken in a
form [63, 68, 73, 74, 75, 78]

ĤR( ~A) =
∑

〈ij〉σ

(

tijg
t
ijc

†
iσcjσ + H.c.

)

− 3

4
Jijg

J
ij(χjic

†
iσcjσ + H.c. − |χij |2)

−
∑

〈ij〉σ

3

4
Jijg

J
ij(∆ijc

†
jσc

†
iσ̄ + H.c. − |∆ij |2). (7.152)

The mean-fields (A1, . . . AM) = ~A are now respectively, the local electron densities ni, the
hopping amplitudes (bond-order parameter) χijσ, and the RVB gap parameters, ∆ij , both
taken for the nearest neighbors (〈ij〉). Explicitly, in the case of no magnetic or charge
order, two latter quantities are defined as

χijσ ≡ 〈c†iσcjσ〉, ∆ij ≡ 〈ciσ̄cjσ〉 = 〈cjσ̄ciσ〉. (7.153)

Renormalization factors gt
ij and gJ

ij appearing in ĤR( ~A) depend on ni, but may also
depend on χijσ and ∆ij.

4. The ground state |Ψ0〉 of ĤR( ~A) (7.152) is used next in Eq. (7.147) to obtain the renor-
malization factors gO appearing in (7.148). By construction, for 〈Ψ0|Ψ0〉 = 1, we have

〈ĤtJ〉app
C ≡ 〈Ψ0|ĤR|Ψ0〉. (7.154)

The last step completes construction of ĤR. What remains, is the solution of the just con-
structed MF model; we have to determine the optimal values of the mean-fields and the explicit
form of the equilibrium MF density operator. This is discussed in the next Subsection.
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7.4 Solving renormalized mean-field theory: application of MaxEnt-

based variational approach

With an appropriate single-particle mean-field Hamiltonian ĤR at our disposal, we are faced
with the problem of finding the optimal (equilibrium) values of mean-fields appearing in the
model. What is crucial for the present discussion, is that due to the MF treatment of the
Gutzwiller projection, the RMFT Hamiltonian is not of the Hartree-Fock form with respect to
those of its mean-field variables, which appear in the renormalization factors gO. In such case,
the unwary application of the variational procedure is in conflict with the basic requirement
of self-consistency (cf. discussion in the Introduction and in the Section 4.3 of Part II). Con-
sequently, RMFT is frequently solved by invoking a non-variational self-consistent approach
based on the Bogoliubov-de Gennes (BdG) equations [63, 68, 74, 75].

However, this route, apart from its inherent drawbacks, discussed in detail in Part II, en-
counters a difficulty in the case of RMFT formalism of Ref. [76], in the following sense. Namely,
the renormalization scheme of the latter Reference is not of the form (7.147), but of a more
general form (7.146). In general case, this feature does not allow for an unambiguous identifica-
tion of the renormalization factors and hence for the unique construction of an effective RMFT
Hamiltonian within the standard scheme presented above. Obviously, in such a situation, dif-
ferent choices of the renormalization factors yield different RMFT Hamiltonians. Consequently,
within the non-variational self-consistent approach we obtain also different BdG equations 4.8),
and in effect, different predictions of obtained models.

Another possibility is to treat ĤR within the self-consistent MF variational approach intro-
duced in the Part II. Interestingly, in such case the MF Hamiltonian is always uniquely defined
(cf. Subsection 4.8), hence in particular also for the RS of Ref. [76].

7.4.1 Finite temperature and mixed correlated states

Gutzwiller approximation in a form (7.146) or (7.147) is devised to study the ground state
properties of the Hubbard or t-J Hamiltonian at T = 0. However, as discussed in Subsection
12.2, it is legitimate study T = 0 situation as the T → 0 (β → ∞) limit of the T > 0 case.
In order to apply the present finite-temperature formalism to study RMFT of the t-J model,
we have to replace all the pure states appearing in the previous formulas by the corresponding
mixed states, i.e.,

|Ψ0〉〈Ψ0| → ρ̂0, |Ψ〉〈Ψ| → ρ̂C = P̂C ρ̂0P̂C . (7.155)

The explicit form of ρ̂0 will be provided below. Similarly to its pure counterpart |Ψ〉, density
operator ρ̂C is not normalized, i.e., Tr[ρ̂C] 6= 1.

Note, that we do not claim that the RMFT formalism is valid and physically relevant at
arbitrary high temperatures. Here, introduction of the nonzero temperature is a purely formal
step, which is necessary in order to use the present approach based on the MaxEnt principle.
However, solutions obtained for non-zero, but sufficiently low T are for all practical purposes
identical to those of the true T = 0 analysis based on the ground state wave function. Therefore,
all the results obtained in this Thesis refer in fact to the T = 0 situation.

However, let us note, that attempts to generalize the Gutzwiller approximation to finite
temperatures have also been made [202, 209, 210, 211]. In particular, in a recent paper [202],
a finite-temperature treatment of the t-J-U model (6.136) has been proposed. Within this
approach, projected density operator ρ̂C (7.155) is treated as a proper finite-temperature coun-
terpart |Ψ〉. Using ρ̂C, both the entropy and the free energy are computed. Some comments
on the formalism of Ref. [202] are provided in [83]; a more detailed analysis and possible
implementation of TRMFT within our approach is postponed for further studies [212].
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7.4.2 Formalism of Part II: application to t-J model

Now we are ready to apply the formalism developed in Part II to the RMFT of the t-J model.
To make the subsequent discussion self-contained, we recall the key points of our method.

1. We start from a given initial MF Hamiltonian Ĥ( ~A) ≡ Ĥ (4.1), which in the present case
is given by ĤR (7.152). Next, we supplement Ĥ = ĤR with the constraint terms (4.13).
As mentioned previously, non-Hartree-Fock character of ĤR is caused by the presence
of the renormalization factors gt

ij and gt
ij. Consequently, in order to obtain Ĥλ (4.15)

corresponding to ĤR (and from now on denoted by ĤRλ) we introduce the constraint
terms, which involve the mean fields appearing in gt

ij and gJ
ij. Therefore, from (7.152) we

obtain

ĤRλ = ĤR −
∑

i

λ
(n)
i

(

∑

σ

c†iσciσ − ni

)

−
∑

〈ij〉σ

(

λ
(χ)
ij (c†iσcjσ − χij) + H.c.

)

−
∑

〈ij〉σ

(

λ
(∆)
ij (ci−σcjσ − ∆ij) + H.c.

)

. (7.156)

In above, ’H.c.’ stands for ’Hermitian conjugate’.

2. As a next step, MF density operator ρ̂λ ≡ ρ̂Rλ is constructed (cf. Eq. (4.29)). We have

ρ̂Rλ = Z−1
Rλe

−β(ĤRλ−µN̂), ZRλ = Tr[e−β(ĤRλ−µN̂)]. (7.157)

ρ̂Rλ will play the role of ρ̂0 appearing in (7.155).

3. We define generalized Landau grand potential (cf. Eqs. (4.33)), i.e.,

F( ~A,~λ) ≡ −β−1 lnZRλ( ~A,~λ). (7.158)

Next, F( ~A,~λ) is used to obtain the optimal values of ~A, and ~λ, i.e., ~A = ~A0, ~λ = ~λ0.
There are two possibilities:

(a) Within the present variational (var) approach, ~A0 and ~λ0 are given by those solution
of Eqs. (4.34), i.e.,

∇AF = ~0M , ∇λF = ~0M , (7.159)

for which F( ~A,~λ) has the lowest value.

(b) By taking the derivatives with respect to ~λ only, and subsequently putting ~λ = ~0,

∇λF = ~0M , ~λ0 = ~0M , (7.160)

we obtain Bogoliubov-de Genes (BdG) self-consistent (s-c) equations (cf. Eqs. 4.38).

In such case, we denote the optimal values of mean-fields by ~Asc, and the chemical
potential by µ̃ = µsc. The latter quantity corresponds to µ̃ = µ + λ within the var

method.

4. Thermodynamic grand potential Ω(T, V, µ) (4.47) and the free energy F (T, V,N) (4.58)
are defined respectively as

(a) Within the var method we have (cf. Eqs. 4.47 and 4.58)

Ω(T, V, µ) = F(T, V, µ; ~A0(T, V, µ), ~λ0(T, V, µ)), F = Ω + µN. (7.161)
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(b) For the non-variational s-c approach, we have

Ωsc(T, V, µsc) = F(T, V, µ; ~Asc(T, V, µ),~0), Fsc = Ωsc + µscN. (7.162)

Because we work with fixed total particle number N , we mainly use F , and not Ω.

If the Landau potential F (Λ)
z (T, V, µ; ~A) (4.44) is required, it may be constructed, at least

in principle, according to the prescription given in Section 4.5. This task usually have to be
accomplished by means of the numerical analysis. We will not use F (Λ)

z in the subsequent
presentation of the numerical results, but let us note that plots of Landau potential may help
to distinguish the character of the phase transition. This may be difficult from the sole analysis
of the behavior of the order parameter near the transition point. Also, variational parameters
of the non-MF character (~b) will not be used here, consequently we have omitted ~b in Eqs.
(7.161) - (7.156)

Even without a numerical analysis, it can be shown that for most of the choices of gt
ij and

gt
ij, at least one of the Lagrange multipliers appearing in (7.156) has nonzero equilibrium value,

i.e., ~λ0 6= ~0 [113]. Therefore, from the very beginning we may be sure the present variational
approach yields results that differ from those of the non variational s-c treatment.

Summarizing, we modify the standard RMFT scheme as follows. Instead of ĤR (7.152),
we use ĤRλ (7.156). In (7.144) we replace pure by mixed states according to (7.155), with
ρ̂0 = ρ̂Rλ. Next, the generalized Landau potential F (7.158) is constructed, and subsequently
used to obtain Eqs. (7.159). The solution of the latter equations, characterized by the lowest
value of F , provides the optimal set of the mean-fields.

The above scheme may be regarded as a both natural and necessary extension of the stan-
dard RMFT. It allows for the consistent application of the variational method based on the
maximum entropy principle. Also, it allows us to implement both variational (var, Eqs. 7.159)
and non-variational (s-c) approach based on BdG equations, Eqs. (7.160) within a single frame-
work. Therefore, this particular formulation is convenient for a comparison of the var and s-c

methods. This composes our main task in the next Section.

7.4.3 Alternative formulation of renormalized mean-field theory

By making use of the results of Section 4.8, we may formulate RMFT of the t-J model in an
alternative way, which is simpler, more transparent and in many cases better adaptable for
applications. First, let us note that the grand Hamiltonian ĤR − µN̂ corresponding to ĤR

(7.152) is of the form (4.78). Therefore, we may apply transformations (4.77) to ĤR and obtain

new MF Hamiltonian Ĥ
(∼)
R , according to

Ĥ
(∼)
R ≡ 〈ĤR〉1̂DH

= 〈Ĥe〉app
C 1̂DH

≡W (χijσ,∆ij , niσ)1̂DH
. (7.163)

In above, 1̂DH
denotes a unit matrix, which will be omitted for simplicity in the following

formulas. Thus, Ĥ
(∼)
λ (4.81) (denoted from now on as ≡ Ĥ

(∼)
Rλ ), is given by

Ĥ
(∼)
Rλ = −

∑

〈ij〉σ

(

η̃ijσ

(

c†iσcjσ − χijσ

)

+ H.c.
)

−
∑

iσ

λ̃
(n)
iσ

(

n̂iσ − niσ

)

)

−
∑

〈ij〉

(

γ̃ij

(

∆̂ij − ∆ij

)

+ H.c.
)

+W (χijσ,∆ij , niσ). (7.164)

In above, again we have niσ = 〈n̂iσ〉, χijσ = 〈c†iσcjσ〉. However, now the d-wave pairing operators

∆̂ij are defined in a symmetric form (cf. Eq. (6.130)), from which their singlet character is
explicit

∆̂ij =
1

2
(ci↑cj↓ − ci↓cj↑) . (7.165)

76



Consequently, superconducting gap parameter is defined as ∆ij = 〈∆̂ij〉, but this difference
with the previously given one is inessential. The averages 〈. . .〉 in (7.164) are defined with the
help of density operator ρ̂λ = ρ̂0, and not by the ground state |Ψ0〉. Note, that a nontrivial
(i.e., not proportional to 1̂DH

) operator part is provided only by the constraint terms.

Having Ĥ
(∼)
Rλ (7.164) at our disposal, we may easily proceed along the lines of analysis

given in Section 4.8. We can simply use Ĥ
(∼)
Rλ instead of ĤRλ within the standard scheme

supplemented with the MaxEnt variational method (see the previous Subsection).
Formulation of the RMFT of the t-J model presented above may be generalized to other

lattice-fermion models, defined by an arbitrary non-MF ’exact’ many-body Hamiltonian Ĥe,
and to arbitrary trial correlated state ρ̂C (7.155). Therefore, for the sake of completeness and
generality, we summarize below the main steps of this prescription without referring to any
particular Hamiltonian or variational state. Later, this formulation will be used for Ĥe = ĤtJ

and ρ̂C (7.155), with P̂C = P̂
(F )
C appearing in (7.141). The steps are

1. We begin with a given non-MF Hamiltonian Ĥe and the correlator P̂C . Next, we anticipate
the existence of (not yet specified) MF single-particle density operator ρ̂0 (7.155); this
allows us to apply Wick’s theorem [136, 165] in order to compute the following quantity

W (e) ≡ 〈Ĥe〉C ≡ Tr[ρ̂CĤe]

Tr[ρ̂C ]
=

Tr[P̂C ρ̂0P̂CĤe]

Tr[P̂C ρ̂0P̂C ]
=

Tr[ρ̂0P̂CĤeP̂C ]

Tr[P̂C ρ̂0P̂C ]
=

〈P̂CĤeP̂C〉
〈P̂ 2

C〉
. (7.166)

Here, from the very the beginning we use mixed states, ρ̂0 and ρ̂C (7.155), instead of
their pure correspondents |Ψ0〉 and |Ψ〉 . As discussed in Subsection 7.2, due to the large
number (MW ) of the possible contractions, i.e., uncorrelated averages of the operators
bilinear in fermion creation and/or annihilation operators, 〈Ĥe〉C (7.166) usually have
to be computed in an approximate manner. When doing this, we select the relevant
single-particle operators {Âs} = Â1, . . . , ÂM , and the corresponding mean-fields, A1 ≡
〈Â1〉, A2 ≡ 〈Â2〉, . . . , AM ≡ 〈ÂM〉, (A1, A2, . . . , AM) ≡ ~A, M ≪ MW . In effect, W (e) is

approximated by W ( ~A),

W (e) = 〈Ĥe〉C ≈ 〈Ĥe〉app
C ≡W ( ~A), (7.167)

which is a function of the selected mean-fields. Again, for given Ĥe, different choices of
P̂C , as well as various ways of evaluating W ( ~A) yield different RS (7.146) or (7.147).

2. Next, W ( ~A) is supplemented with an operator constraint term for each Âs ∈ {Â1, . . . , ÂM}.
First, this step allows to treat each As as variational parameters. Second, it yields the
MF Hamiltonian of the form (4.81), and the corresponding grand Hamiltonian

K̂
(∼)
Rλ ( ~A,~λ) = Ĥ

(∼)
Rλ ( ~A,~λ) − µN̂ =

M
∑

s=1

λs(Âs − As) +W ( ~A) − µN̂. (7.168)

Note, that the µN̂ term may be included in (7.166) as well, and then its expectation

value appears in W ( ~A), but is no longer present on the operator level in (7.168). This is
a special case of transformations (4.79), which lead to the equivalent MF Hamiltonian,
differing only with respect to the equilibrium value of the Lagrange multiplier λ1, coupled
to Â1 = N̂ .

3. Making use of K̂
(∼)
Rλ (7.168), we construct single-particle density operator ρ̂λ (4.29) in a

standard manner, i.e.,

ρ̂Rλ = Z−1
Rλe

−βK̂
(∼)
Rλ . (7.169)

ρ̂Rλ plays the role of ρ̂0 in (7.166). This step closes the whole scheme.
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Please note, that if 〈Ĥe〉app
C ≡W ( ~A) is computed exactly, it may be regarded as an exact upper

bound for the ground-state energy also in the present case with T > 0. This is because at
sufficiently low T , the entropic part of the free energy is very small, and there is practically no
difference between the ground state energy and the free energy.

The above formulation is particularly convenient in case of the formalism of Ref. [76], which
consist certain prescriptions for the evaluation of (7.166) with Ĥe = ĤtJ . However, in Ref. [76]
a problem of construction of the single-particle effective Hamiltonian was only outlined, though
not fully accomplished. It has been mentioned, that in order to construct and solve RMFT
based on RS of [76], one may utilize formalism of Ref. [71]. Relation of the latter formalism to
the present treatment has been discussed in Subsection 4.8.

Also, as pointed out in Section 4.8, the advantage of the RMFT formulation given by Eqs.
(7.166)-(7.169) is that one can solve half of Eqs. (7.159), (∇AF = 0) analytically, and eliminate
Lagrange multipliers in favor of the mean-fields. Only the latter half of Eqs (7.159), i.e.,
∇λF = 0 must be solved numerically for the mean-fields. However, this particular formulation
cannot be used to obtain the non-variational self-consistent BdG equations. Therefore, it is
applied only in Section 9, after the comparison of the numerical results for both variational and
the non-variational approach is made in Section 8.

7.4.4 Choice of relevant mean-fields

So far, we have made no restriction on the choice of mean-fields 〈Âs〉 = As, s = 1, 2, . . . ,M rel-
evant for the problem at hand. However, as mentioned in Section 7.2, within any approximate
method of computing correlated average values (7.144), the number of mean fields (M), ap-

pearing in W ( ~A) is usually much smaller than MW , the number of all possible different Wick’s
contractions, i.e., averages of fermionic bilinears. If we assume a priori that some mean-field
averages do not appear in W ( ~A), i.e., At = 0 for t = M + 1, . . . ,MW , we may encounter two
situations.

First, after the MF model is solved, it may turn out that indeed At0 = 0, i.e., that the
equilibrium value of At vanishes. This situation may correspond to some unbroken symmetry
present in our model, e.g. the translational symmetry (∀i, j : i ≡ j), or to absence of the
superconducting order (∀i, j : ∆ij = 0). As another examples of such situation, we may invoke
lack of magnetic order (∀i : mi = 0), or the vanishing expectation value of a ’spin flip’ terms,
i.e., Sσ

ij ≡ 〈c†iσcjσ̄〉 = 0, either with i = j or i 6= j (this assumption corresponds to an unique,
i.e., site independent choice of the quantization axis).

However, as already mentioned in Subsection 4.4.5, it may happen, that even if certain As

does not appear in W ( ~A) (i.e., we put As = 0 ’by hand’ when computing W ( ~A)), we may
still obtain nonzero equilibrium value of such mean field, As0 ≡ 〈Âs〉0 6= 0. As an example,
let us consider average hopping of electrons with a given spin σ to the nearest (〈ij〉) and
next-nearest (〈〈ij〉〉) neighbors, χ(1) ≡ ∑

〈ij〉〈c†iσcjσ〉 and χ(3) ≡ ∑

〈〈ij〉〉〈c†iσcjσ〉, respectively.
On a square lattice, assuming translational invariance of the mean-field solution, we have
χ(m) = 〈∑k ǫ

(m)c†kσckσ〉 with m = 1, 3; ǫ(1) = 2(cos kx + cos ky) and ǫ(3) = 4(cos kx cos ky). It
should be clear, that in general we should have χ(1) 6= 0 and within any RMFT approach to the
t-J model this mean-field is always present. On the other hand, in order to simplify W ( ~A), one
may assume χ(3) = 0 from the very beginning. Indeed, χ(3) is rarely present as an independent
mean-field variable in RMFT Hamiltonians. Nonetheless, still, for an arbitrary filling n we
usually obtain χ

(3)
0 6= 0. This property of the model follows solely from the geometry of the

Fermi surface and the particular form of the dispersion relation. Similar remark should be valid
for the hopping or pairing amplitude between further neighbors, but also for the local pairing
amplitude, ∆∗

ii = 〈c†i↑c†i↓〉.
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7.5 Renormalization schemes used in the present work

7.5.1 The simplest from of renormalization factors

In the simplest case, renormalization factors (7.147)) for the kinetic energy (gt
ij) and the spin-

exchange interaction (gJ
ij) depend only on the local hole densities xi ≡ 1 − ni, cf. [33, 58, 64,

65, 67, 68, 70, 72, 73, 78],

gt
ij =

√

4xixj

(xi + 1)(xj + 1)
, gJ

ij =
4

(xi + 1)(xj + 1)
. (7.170)

In the framework of our method, the constraint terms of the following form

Q̂
(n)
i = −λ(n)

iσ

(

(n̂i↑ + n̂i↓) − ni

)

(7.171)

should be added to ĤR( ~A) (7.152) in order to obtain ĤRλ (7.156) (cf. also Ref. [70]). However
Lagrange multiplier λ(n) = λ1 coupled to the total particle number, and distinct from the
chemical potential µ should be introduced even in the homogeneous case (n = ni). Note,
that this is a generic feature of MF models with n-dependent MF Hamiltonian, as discussed
in Subsection 4.7, and in the context of RMFT it has been noticed e.g. in Refs. [58, 70, 85].
Still, for gt and gJ (7.170), and in the case of nonmagnetic, homogeneous states, both var and
s-c methods leads to the same equilibrium values of mean-fields (see the related discussion in
Subsection 4.7).

If magnetic order is present, and renormalization factors depend also on the local magneti-
zation,47 we have to add the constraints of the form

Q̂
(m)
i = −λ(m)

i

(

(n̂i↑ − n̂i↓) − (ni↑ − ni↓)
)

or
∑

σ

Q̂
(n)
iσ = −

∑

σ

λ
(n)
iσ (n̂iσ − niσ), (7.172)

depending on the choice of independent MF variables (ni and mi = ni↑ − ni↓ or ni↑ and ni↓).
Also, from Eq. (4.30), with Aw equal χij or ∆ij , it follows, that for RS (7.170) we have

λ
(χ)
ij0 = λ

(∆)
ij0 = 0. This is because neither χij nor ∆ij appear in gt

ij and gJ
ij.

If, apart form ni (and possibly mi), g
t and gJ depend also on the inter-site mean-field

variables ([63, 66, 74, 75, 76]), the MF Hamiltonian ĤR has to be modified further. Namely,

the constraint terms λ
(χ)
ij (c†iσcjσ − χij) and λ

(∆)
ij (ci−σcjσ − ∆ij) have to be added to ĤR (7.152)

in such case (cf. Eqs. (7.156)), and after the model is solved, we obtain λ
(χ)
ij0 6= 0, λ

(∆)
ij0 6= 0.

7.5.2 Renormalization scheme of Fukushima

As pointed out previously, Gutzwiller approximation used Ref. [76] does not reduce to a simple
multiplication of operators by the corresponding renormalization factors (7.147), but is provided
in a more general form (7.146). For example, for the hopping amplitude for spin-up electrons
we have (Eq. (15) of Ref. [76], but here written using our own notation), i.e.,

〈c†i↑cj↑〉C ≈
√

1 − ni

1 − ni↑

√

1 − nj

1 − nj↑

(

χij↑ − χij↓
χij↑χ

∗
ij↓ + ∆ji∆

∗
ij

(1 − ni↓)(1 − nj↓)

)

, (7.173)

The above form of 〈c†i↑cj↑〉C does not allow for a straightforward identification of the renormal-
ization factor gt. However, we want to compare the variational and non-variational approaches

47We assume, that there exist a unique (global) quantization axis, say z axis. The case of non-collinear
magnetic ordering leads to further modifications.
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also on the example of RMFT based on Ref. [76]. Making use of (7.173) for a simple non-
magnetic states (ni↑ = ni↓ = ni/2, 〈c†i↑cj↑〉 = χij↑ = χij↓ ≡ χij) and real superconducting

pairing amplitude of a singlet character, ∆ij = ∆ji = ∆∗
ji, we may define gt and gJ as

gt
(I)ij =

√

2(1 − ni)

2 − ni

√

2(1 − nj)

2 − nj

(

1 − 4
χ2

ij + ∆2
ij

(2 − ni)(2 − nj)

)

, (7.174)

gJ
(I)ij =

4

(2 − ni)(2 − nj)
. (7.175)

The prescription given by Eqs. (7.174) and (7.175) will be referred to as a RS (I). Further
comments on the formalism of Ref. [76] are provided in Appendix D (Subsection 11.4). Note,
that within our method, and in contrast to the case of the s-c approach, different possible choices
of gt

ij and gJ
ij are equivalent, if only they lead the same functional form of W (χijσ,∆ij , niσ)

(7.163).

7.5.3 Renormalization scheme of Sigrist et al.

Renormalization scheme (I) will be compared with that based on renormalization factors taken
from Ref. [63], namely

gt
(II)ij =

√

4xixj(1 − xi)(1 − xj)

(1 − x2
i )(1 − x2

j ) + 8(1 − xixj)|χij|2 + 16|χij|4
, (7.176)

gJ
(II)ij =

4(1 − xi)(1 − xj)

(1 − x2
i )(1 − x2

j ) + 8xixj(|∆ij |2 − |χij|2) + 16(|∆ij|4 + |χij |4)
, (7.177)

and referred to as RS (II). This RS has been used, among others, in Refs. [63, 74] and [75] and
also in our previous work, [82].

7.5.4 Renormalization scheme of Ogata and Himeda

We want to comment also on the RS proposed by Ogata and Himeda [66]. RMFT based on
this RS has been used to study the coexistence of the d-wave superconductivity and antiferro-
magnetism, and yields the results similar to those of VMC approach. However, this particular
RS has also a serious drawback, as explained below. In the absence of antiferromagnetic order
(m = 0), renormalization factors gt and gJ (Eqs. (2.12)-(2.16) of Ref. [66]) take the form

gt
(III) =

2(1 − n)

2 − n
· (2 − n)2 − 4(∆2 + χ2)

(2 − n)2
, (7.178)

gJ
(III)xy = gJ

z = gJ =
4

(2 − n)2
· a−7(n, χ,∆; p), (7.179)

where

a(n, χ,∆; p) = 1 +
8(1 − n)2(∆2 − χ2) + 16

p
(∆2 + χ2)2

n2(2 − n)2
. (7.180)

In the above equation, p = 1 corresponds to the original version of the formalism (cf. Eqs. 2.14
of Ref. [66]), whereas p = 2 refers to what Authors call a ’slight adjustment’ (Eqs. 2.15). Those
two choices will be denoted here as IIIa and IIIb, respectively. Please note, that even before any
numerical analysis is carried out, it seems very likely that such change seriously modifies the
final results. Namely, although the factor 1/p multiplies an expression 16(∆2 + χ2)2, which is
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expected to be of order of at most 10−3, and the difference between a(n, χ,∆; 1) and a(n, χ,∆; 2)
should be of the same order, the exponent 7 in denominator of gJ

(III) may lead to much larger

difference between values of gJ
(III) for p = 1 and p = 2. Indeed, in Subsection 8.1 it will be

shown that the differences between those two cases are rather pronounced.
Moreover, for us it seems that this ’slight adjustment’ is made ad hoc, and its only jus-

tification is a better consistency of such obtained results with the VMC results. Surely, an
agreement of any RMFT approach with the VMC method should be considered as an advan-
tage. Nonetheless, in our opinion the arbitrary change p = 1 → p = 2 in Eq. (7.180)) lowers
value of the formalism of Ref. [66]. Its another disadvantage is that it has been devised only for
the simplest version of the t-J model (6.135) and for the homogeneous solutions with ∆ = ∆∗,
χ = χ∗. We will analyze the formalism of Ref. [66] very briefly, and only in order to show
the relatively large differences between IIIa and IIIb. In will not be used to obtain any new
results.48

7.5.5 Renormalized superconducting order parameter

Within RMFT, it is not the bare average ∆ij ≡ 〈∆̂ij〉 but rather its correlated counterpart,

∆Cij ≡ 〈∆̂ij〉C , which has an interpretation of the true superconducting order parameter. For
any RS of the form (7.147), we have ∆Cij = g∆∆ij . For the simplest renormalization schemes,
we have g∆

ij = gt
ij [33]. This is also the case for RS (II). On the other hand, within RS (I), for

simple homogeneous, non-magnetic states, the corresponding g∆ factor can be defined as (cf.
Eq. (18) of Ref. [76])

RS(I) g∆
ij =

√

2(1 − ni)

2 − ni

√

2(1 − nj)

2 − nj

(

1 +
4(χijχ

∗
ij + ∆ji∆

∗
ij)

(2 − ni)(2 − nj)

)

, (7.181)

Note, that (7.181) differs from (7.174). Also in Ref. [66], a separate expression for g∆ 6= gt, is
provided (Eq. (6.21) of that Reference).

48It should be noted at this point, that the way in which the mean-field model is solved in Ref. [66] does
not correspond directly to either what we term var method, nor to the non-variational s-c treatment. Authors
introduce two MF Hamiltonian, one MF single-particle Hamiltonian of the RMFT type, and the second of the
Hartree-Fock form. Consequently, two kinds of mean-fields appear, i.e., similarly to our method the number of
the mean-field variables is doubled. It seems that at least for this particular example, the method of Ogata and
Himeda is equivalent to the β → ∞ limit of our method (var). We will not analyzed this issue as inessential
from our point of view. To solve the RMFT model with RS of Ref. [66] we use our var approach.
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8 Results I: Comparison of two methods of approach and

different renormalization schemes

In this Section we present the first part of our numerical analysis. Namely, we analyze the
simplest form of the t-J Hamiltonian (6.135). For that purpose, we use the standard formulation
of RMFT as given by Eq. (7.148)-(7.154). Other forms of the t-J model, including the most
complete form (6.126) with c1 = c2 = 1 are analyzed in Section 9.

In Subsection 8.1 we analyze plain d-wave superconducting state (dSC) with no magnetic
order. Next, in Subsection 8.2 we study the staggered-flux (SF) non-superconducting solution
[62, 75, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 194]. Finally, Subsection 8.3
is devoted to analysis of the Pomeranchuk instability (PI) [125, 126, 127, 128, 129, 130], i.e.,
normal state characterized by the broken discrete rotational C4v symmetry.

On the example of those simple MF states we compare the present variational (var) method
and the non-variational approach based on the BdG self-consistent (s-c) equations. Also, we
compare different renormalization schemes (RS). It will be shown, that the obtained results
depend in a nontrivial way on either different method or different RS.

8.1 Superconducting d-wave (dSC) solution

Solution analyzed in this Subsection possesses full symmetry of the underlying square lattice,
only the superconducting order parameter is assumed to have dx2−y2 symmetry. Consequently,

we are left with three independent mean fields ~A = (n, χ,∆); χx = χ = χy, ∆x = ∆ = −∆y,

and with the same number of the corresponding Lagrange multipliers, ~λ = (λ, λχ, λ∆), where
λχ = λχ

x = λχ
y , and λ∆ = λ∆

x = −λ∆
y . We have also n = ni =

∑

σ〈c†iσciσ〉, χτ = χij, τ = x(y) for
the bonds between the nearest-neighboring sites located along the x (y) direction, respectively,
and ∆τ =

√
2∆ij . χij and ∆ij are given by Eq. 7.153, and all the above quantities are taken

as real. Diagonalization of ĤRλ (7.156), (in the present case denoted Ĥ
(dSC)
Rλ ) yields

Ĥ
(dSC)
Rλ ( ~A,~λ) − µN̂ =

∑

k

Ek(γ̂†k0γ̂k0 + γ̂†k1γ̂k1) +
∑

k

(ξk −Ek) + C( ~A,~λ), (8.182)

with

Ek =
√

ξ2
k +D2

k. (8.183)

ξk and Dk appearing in (8.183) are given by

Dk =
√

2
∑

τ

Dτ cos(kτ), ξk = −2
∑

τ

Tτ cos(kτ ) − µ− λ. (8.184)

Also, we have

Tτ = −t1τg
t
1τ +

3

4
Jτg

J
τ χτ + λχ

τ , Dτ =
3

4
Jτg

J
τ ∆τ + λ∆

τ , (8.185)

C( ~A,~λ) = Λλn+ Λ
∑

τ

(

3

4
Jτg

J
τ (2χ2

τ + ∆2
τ ) + 4χτλ

χ
τ + 2∆τλ

∆
τ

)

. (8.186)

Below we use mainly RS (I) and (II). However, some results for RS IIIa and IIIb are also given
for comparison, and in order to show notable differences between two versions of the formalism
of Ref. [66]. The Gutzwiller renormalization factors read, respectively

gt
(I)τ (n, χτ ,∆τ ) =

2(1 − n)

2 − n

(

1 − 4χ2
τ + 2∆2

τ

(2 − n)2

)

, gJ
(I)τ (n, χτ ,∆τ ) =

4

(2 − n)2
,
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g∆
(I)τ (n, χτ ,∆τ ) =

2(1 − n)

2 − n

(

1 +
4χ2

τ + 2∆2
τ

(2 − n)2

)

, (8.187)

gt
(II)τ (n, χτ ,∆τ ) =

2n(1 − n)

n(2 − n) + 4χ2
τ

,

gJ
(II)τ (n, χτ ,∆τ ) =

4n2

n2(2 − n)2 + (1 − n)2(4∆2
τ − 8χ2

τ ) + 4∆4
τ + 16χ4

τ

. (8.188)

Note, that for RS (II), g∆
τ = gt

τ . Generalized Landau potential (7.158) reads

F (dSC)( ~A,~λ) = C( ~A,~λ) +
∑

k

(

(ξk −Ek) − 2

β
ln
(

1 + e−βEk
))

. (8.189)

Using F (dSC)( ~A,~λ), we may easily obtain Eqs. (4.34), which now read

∂F (dSC)

∂n
= 0,

∂F (dSC)

∂χ
= 0,

∂F (dSC)

∂∆
= 0,

∂F (dSC)

∂λ
= 0,

∂F (dSC)

∂λχ
= 0,

∂F (dSC)

∂λ∆
= 0. (8.190)

Solution of Eqs. (8.190) yields ~A0 = (n, χ0,∆0) and ~λ0 = (λ0, λ
χ
0 , λ

∆
0 ). Note, that the above

equations are solved for µ, not for n, which is a priori known.
Similarly, within the (s-c) approach, the BdG equations (4.38) read now

(

∂F (dSC)

∂λ

)

~λ=~0

= 0,

(

∂F (dSC)

∂λχ

)

~λ=~0

= 0,

(

∂F (dSC)

∂λ∆

)

~λ=~0

= 0 (8.191)

The optimal solution of (8.191) will be denoted (n, χsc,∆sc).

8.1.1 Numerical results

We begin with the analysis of dSC solution at the ’magic doping’, x = 0.125. Equations (8.190)
and (8.191) are solved numerically for the lattice of Λ = ΛxΛy sites, Λx = Λy = 256, with
Jτ = 1 tτ = −3J and for low temperature, βJ = 500. Both dSC solution, as well as the
isotropic normal state (N) (not discussed explicitly here) are present. For that particular value
of doping the staggered flux (SF, cf. Subsection 8.2) state has not been found (var) or has
been found unstable against N state (s-c).

In Tables I and II we provide values of thermodynamic potentials, chemical potential, and
the optimal (equilibrium) values of mean-fields and Lagrange multipliers for dSC solution ob-
tained within both methods (var, s-c) and different renormalization schemes (I, II, IIIa and
IIIb).

Table I. Values of the thermodynamic potentials (per site) for dSC solutions. Ω̃ (F ) stands for
Ω − λN (Ω + µN) for var and Ωs−c (Ωs−c + µscN) for s-c methods, respectively.

Φ var (I) var (II) s-c (I) s-c (II) (IIIa) (IIIb)
Ω/Λ -6.0444 -5.7587 - - -6.7953 -6.5457

Ω̃/Λ -1.0897 -1.0766 -1.0112 -1.0361 -1.1236 -1.1153
F/Λ -1.3432 -1.3661 -1.3399 -1.3647 -1.2864 -1.3119

For fixed n, free energy F is the relevant thermodynamic potential. From the way the solutions
are constructed, we may expect that the value of F obtained for a given RS is always lower
within the var method than within the s-c one. This is fully confirmed by the obtained
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numerical results. Also, value of F determines which solution of (8.190) or (8.191) corresponds
to the stable equilibrium situation. However, free energy should not be used to favor one of the
renormalization schemes. For example, if we compare the values of the F for var method in the
present case, and also invoke its value F 0

var, corresponding to the simplest Gutzwiller factors
(Eq. (7.170), cf. also Ref. [75]), we have that F 0

var = −1.5070 < F II
var < F I

var .49 Obviously, it
does not mean that RS defined by (7.170) should be preferred over RS (I) or RS (II). For the
RMFT Hamiltonians the condition (4.123) is not fulfilled, i.e.,

Tr
[

ρ̂λ( ~A0, ~λ0)
{

ĤtJ − Ĥ( ~A0, ~λ0)
(dSC)
Rλ

}]

6= 0. (8.192)

Consequently, the MF free-energy of the dSC solution cannot be regarded as an upper bound
for the exact free energy of ĤtJ . Indeed, value F 0

var is much lower then the Variational Monte
Carlo (VMC) result (EV MC ≈ −1.33) [75], hence it is very likely that F 0

var is also lower then the
exact value (the latter remark is valid for other renormalization schemes as well). Also, if there
was a good agreement between Fvar obtained within the RMFT for the particular choice of RS,
with the value of F obtained within the VMC approach, it would probably be accidental, and
thus insignificant.50 Values of thermodynamic potentials for RS of Ref. [66] are also given for
comparison ((IIIa) and (IIIb)).

Table II. Values of the equilibrium chemical potentials and MF parameters ( ~A0, ~λ0) for dRVB
solutions. µ̃ stands for λ+ µ (var), and for µsc (s-c).

ϕ var (I) var (II) s-c (I) s-c (II) (IIIa) (IIIb)
µ 5.3729 5.0200 - - 6.2959 5.9814
λ0 -5.6625 -5.3509 - - -6.4820 -6.2061
µ̃0 -0.2897 -0.3309 -0.3757 -0.3755 -0.1860 -0.2247
χ0 0.1941 0.1881 0.1901 0.1907 0.2001 0.1983
λχ

0 -0.1588 -0.1699 - - -0.2622 -0.2242
1√
2
∆0 0.1090 0.1320 0.1257 0.1235 0.0504 0.0788

1√
2
λ∆

0 -0.0892 -0.0111 - - -0.0706 -0.0984

Tτ0 0.8636 0.8487 1.0079 1.0228 0.7280 0.7837√
2Dx0 0.3383 0.5893 0.5957 0.5721 0.0598 0.1450

Let us now analyze Table II. First, we see that within RS (II), |λχ
τ0| is considerably larger than

|λ∆
τ0|, τ = x, y. This indicates that the Hamiltonian (8.182) deviates from the Hartree-Fock

form more with respect to mean-field variable χτ then with respect to ∆τ .51 This is due to
the particular functional form of χτ -dependent, ∆τ -independent renormalization of the hopping
term. Also, the influence of this term is significant, since |t| = 3J . Similar conclusions are valid
for RS (I), but then the χτ - and ∆τ dependences of 〈Ĥ〉 are more symmetric (cf. Eqs. (7.174)
and (7.175), or (8.187), and thus the difference between |λχ

τ0| and |λ∆
τ0| is smaller then for RS

(II).
Large value of |λχ

τ0| significantly affects (via Tτ and Dτ , Eq. (8.185)) the quasi-particle
spectra, cf. Fig 2. Namely, the excitation energies, Ek (8.183), obtained within our method

49In Ref. [75], nonzero temperature (βJ = 500) is also used.
50Let us note once more, that for such low value of temperature we use here, F is practically equal to the

ground-state energy. This is why we compare the VMC results obtained for T = 0, with the RMFT results
obtained for T > 0. In the T → 0 limit, variational principle based on the Bogoliubov-Feynman inequality
reduces to the variational principle of quantum mechanics. Therefore, the above discussion may be repeated for
T = 0 without any changes, with the average in (8.192) being now evaluated with respect to the ground state
of the MF Hamiltonian.

51We have divided ∆τ by 1/
√

2 in order to compare our results directly with the results of Refs. [73, 75],
where slightly different definition of ∆τ has been used.
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Figure 2: Dispersion relations along the main symmetry lines in the Brillouin zone for the
dRVB solutions for a square lattice, of the size Λx = Λy = 256, and for the filling n = 0.875.
Triangles - self-consistent, non-variational results for (I) and (II), red squares (I) and green
circles (II)- the present variational method.

are always lower then those of the BdG self-consistent (s-c) approach (note, that λχ
τ0 · χτ0 < 0

and λ∆
τ0 · ∆τ0 < 0). A related discussion is given in Ref. [66], point (2) of Summary (Section 7

of that Reference).
Although for RS (II) the differences between the methods (var, s-c) are pronounced mainly

in the regions of the Brillouin zone which are not in the vicinity of the Fermi surface (for the
superconducting state, the latter is defined by the condition ξk = 0), the difference of the
tangent at the cone near the point S = (π

2
, π

2
) may be of some significance. However, what is

more important, RS (I) var yields the excitation energies which differ from those obtained in
the remaining cases also along the X-Y direction, i.e., close to the Fermi surface. The reason for
such behavior should be clear from the analysis of Table II. Along the X-Y direction ξk = const
and the main contribution to Ek comes from Dk, the value of which is determined in turn by
Dx and Dy. The absolute values of the latter quantities are low for (I) var.
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Figure 3: Renormalization schemes (I) and (II): Doping dependence of the optimal values of
bond-order parameters χx = χy, the superconducting order parameters ∆x = −∆y, as well
as of their renormalized correspondents gtχx = gtχy and g∆∆x = −g∆∆y, both for the s-c

(triangles) and the var (squares) methods.

Doping dependence of mean-field quantities. Now we are going to discuss the changes
appearing as a function of doping x. The x-dependences of the equilibrium values of mean-fields,
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Figure 4: Doping dependence of the equilibrium values of the bond-order parameter (hopping
correlation function) χx = χy and the superconducting order parameter ∆x = −∆y, for different
renormalization schemes, and obtained within the var method. Data points: red (1)- the
simplest renormalization scheme (Eqs. (7.170)), dark blue (2)- RS I (Eqs. (7.174)) and (7.175)),
green (3)- RS II (Eqs. (7.176) and (7.177)), (4) and (5)- RS IIIa and RS IIIb, respectively (Eqs.
(7.178) and (7.179)). Note the differences between IIIa and IIIb.

i.e., χ0 and ∆0, as well as the physical (renormalized) gap parameter g∆∆0 and renormalized
hopping gtχ for RS (I) and (II) and two methods of approach (var, s-c) are analyzed in Fig.
3. First, let us note, that χ0(x) and gt(x, χ0(x),∆0(x)) · χ0(x) are quite similar for both
renormalization schemes and methods. On the other hand, g∆(x, χ0(x),∆0(x)) · ∆0(x) and
∆0(x) exhibit larger differences. In particular, differences between (I) var and (I) s-c are
notable. Note also, that for (I) var, ∆0 vanishes at the critical concentration xc ≈ 0.27. This is
in a satisfactory agreement with the experimental results. Next, we analyze χ0(x) and ∆0(x)
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Figure 5: Doping dependence of the optimal value of the renormalized superconducting order
parameter ∆C = g∆∆x, for different renormalization schemes, and obtained within the var

method. Data points are labeled as in Fig. 4. Note the differences between IIIa and IIIb, in
particular different value of the upper critical concentration xc.

(Fig. 4) and g∆(x, χ0,∆0) · ∆0(x) (Fig. 5) within var method, for different renormalization
schemes. For RS (I), (IIIa) and (IIIb), we obtain 0.21 < xc < 0.27, in the other cases we have
xc > 0.35.

Doping dependence of free energy and chemical potential. Doping dependence of the
free energy, chemical potential and related mean-field quantities, λ and µ̃ = µ + λ, is shown
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Figure 6: RS II: Doping dependences of the free energy (Fvar, Fs−c), the chemical potentials µ,
µsc as well as that of λ and µ̃ = λ+µ for the dSC state, obtained both within the present (var)
and the (s-c) methods.

in Fig. 6, but only for RS (II). We emphasize once again, the chemical potential µ is the first
derivative of F/Λ with respect to n, unlike in some of the previous mean-fields treatments
[63, 68, 73, 75]. Note that neither µ̃ nor λ have this property, as discussed in Subsection
4.7. Therefore, application of the standard thermodynamic identities and methods (e.g. the
Maxwell construction) is probably not legitimate within such an approach, although this fact
is sometimes ignored (cf. [78]).

8.2 Staggered flux solution

As a next example we analyze the staggered-flux (SF) state, first proposed by Affleck and
Marston [114] as a variational trial MF state for the Heisenberg model on the square lattice.
Later, the SF state has been investigated in a number of papers (cf. e.g. [62, 115, 116, 117, 118,
119, 120, 121, 122, 123, 124, 194]), also because this state has been proposed as a candidate for
the pseudogap phase in the cuprates [118]. SF state is also known to be one of most competitive
(i.e., of lowest energy) states among the non-superconducting, non-magnetic ground states of
the MF Hamiltonian (7.152) for a wide range of the values of its parameters [75]. Moreover,
a state in which superconducting and SF orders coexist, has even lower energy [51]. Also,
for n = 1, as a consequence of the local SU(2) symmetry, SF state is equivalent to the RVB
state of dx2−y2 symmetry (as well as to many other MF states, e.g. s+ id wave state), [8, 58].
Therefore, even if SF state is not a superconducting state, it is very interesting in the context
of the physics of cuprates, and deserves at least a brief analysis. However, here we are going
to use SF state mainly as yet another convenient example, on which the differences between
variational (var) and non-variational (s-c) solutions can be shown. We concentrate on RS (I)
and (II), which, in the absence of superconducting order have quite similar form, and therefore
the modifications caused by a method of solution (var, s-c) become dominant.

The SF state differs from the simplest Fermi sea (N) state by a presence of the complex
hopping amplitude between the nearest neighboring sites

χij = |χ| exp((−1)(ix+jy)iϕ) ≡ ξ1 ± iξ2. (8.193)

Complex χij imply the existence of circulating currents, direction of which changes from one
elementary plaquette52 to another in an alternating fashion. Consequently, a two-sublattice

52By an elementary plaquette we understand a square made of four sites (equivalently, bonds), which side is
equal one lattice constant.
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structure (’orbital antiferromagnet’ [62]) emerges, with the unit cell of the size
√

2a×
√

2a (a
is a lattice constant) in direct space and new folded Brillouin zone (NBZ).

Solving this problem within the framework of our method, we have to add appropriate
constraints to the MF Hamiltonian according to Eq (7.156). This step introduces, apart from
the molecular field λ coupled to n, also a complex Lagrange multiplier ηij = η1∓ iη2, connected
to χij (our sign convention for imaginary part of ηij for each bond is opposite to that for χij).

Thus, we have three independent real mean fields ~A = (n, ξ1, ξ2), and three corresponding real

Lagrange multipliers, ~λ = (λ, η1, η2). In the present case the renormalization factors (7.175)
and (7.177) read, respectively

gt
(I)(n, ξ1, ξ2) =

2(1 − n)

2 − n

(

1 − 4 (ξ2
1 + ξ2

2)

(2 − n)2

)

, gJ
(I)(n, ξ1, ξ2) =

4

(2 − n)2
. (8.194)

gt
(II)(n, ξ1, ξ2) =

2n(1 − n)

n(2 − n) + 4(ξ2
1 + ξ2

2)
,

gJ
(II)(n, ξ1, ξ2) =

4n2

n2(2 − n)2 − 8(1 − n)2(ξ2
1 + ξ2

2) + 16(ξ2
1 + ξ2

2)2
. (8.195)

Diagonalization of ĤRλ (7.156) (in the present case denoted as Ĥ
(SF )
Rλ ), yields

Ĥ
(SF )
Rλ ( ~A,~λ) − µN̂ = C( ~A,~λ) +

NBZ
∑

ksσ

Eksσα̂
†
ksσα̂ksσ, (8.196)

where Eksσ = −µ̃ + s
√

ǫ2k + χ2
k, ǫk = T1Γ+(k), χk = T2Γ−(k), µ̃ ≡ µ + λ, and for each k,

s = ±1 labels two sub-bands (two eigenvalues of the 2 × 2 matrix resulting from the Fourier
transform. Operator α̂†

ksσ (α̂ksσ) creates (annihilates) quasiparticle with the quasimomentum
k, spin σ and the band index s. Also, Γ±(k) ≡ 2(cos(kx) ± cos(ky)), and

T1 = tgt +
3

4
JgJξ1 + η1, T2 =

3

4
JgJξ2 + η2, (8.197)

C( ~A,~λ) = Λ
(

λn + 3gJ(ξ2
1 + ξ2

2) + 8(ξ1η1 + ξ2η2)
)

. (8.198)

Generalized Landau potential (7.158) takes now the following form

F (SF )( ~A,~λ) = C( ~A,~λ) − 1

β

NBZ
∑

ksσ

ln
(

1 + e−βEksσ

)

. (8.199)

Using F (SF )( ~A,~λ), we obtain Eqs. (4.34), which now read

∂F (SF )

∂n
= 0,

∂F (SF )

∂ξ1
= 0,

∂F (SF )

∂ξ2
= 0,

∂F (SF )

∂λ
= 0,

∂F (SF )

∂η1
= 0,

∂F (SF )

∂η2
= 0. (8.200)

Explicit form of the above equations will not be provided here. Solving Eqs. (8.200), we obtain
~A0 ≡ (n, ξ

(0)
1 , ξ

(0)
2 ) and ~λ0 = (λ0, η

(0)
1 , η

(0)
2 ). As usual, for a given n the value of the chemical

potential µ is obtained from Eqs. (8.200).
Similarity, within the (s-c) approach, we have to solve the following BdG equations (4.38)

(

∂F (SF )

∂λ

)

~λ=~0

= 0,

(

∂F (SF )

∂η1

)

~λ=~0

= 0,

(

∂F (SF )

∂η2

)

~λ=~0

= 0. (8.201)

Solution of (8.201) will be denoted ~Asc ≡ (n, ξ
(sc)
1 , ξ

(sc)
2 ).
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8.2.1 Numerical results

As mentioned in Section 8.1, at x = 1/8 the existence of SF solution (ξ
(0)
2 6= 0) of Eqs. (8.200)

has not been numerically confirmed for the var method, whereas for the s-c method the SF
solutions of Eq. (8.201) has higher energy than the Fermi sea (N) solution with ξ

(0)
2 = 0. We

have found that in all four cases the SF → N transition is located at the critical concentration
xc < 0.12. It should be noted here, that by using the simplest renormalization scheme given by
(7.170), one obtains xc ∼ 0.15 (cf. Fig. 2 b of Ref. [75]). However, our numerical procedures
for the var method turned out to be unstable in the vicinity of the xc. For that reason, we
chose doping x = 13/128 (n ≈ 0.898), which is in a safe distance from xc obtained within
each method, but for which the differences between the methods (generally increasing with the
increasing doping) are still pronounced. The parameters of the Hamiltonian are the same as
for the RVB case, except sign convention for t, now t = 3 (t = −3 in the RVB case). We also
use larger lattice, Λx = Λy = 512. Again, we work with low kBT/J = 1/(βJ) = 1/500.

Within the s-c approach the (fictitious) flux is defined as Φ� = 1
2π

∑

〈ij〉∈�
Arg(χij), where

� denotes elementary plaquette (cf. e.g. [75]). Also, for the s-c method with η1 = η2 = 0, we
have

Arg(χij) = arctan

(

ξ2
ξ1

)

= arctan

(

T2

T1 − tgt

)

, (8.202)

the last equality follows from Eqs. (8.197). Interestingly, this equality holds also within the

variational approach with η1 6= 0, η2 6= 0. Namely, it can be shown, that ξ
(0)
1 /ξ

(0)
2 = η

(0)
1 /η

(0)
2 ,

which together with (8.197) yields (8.202). Thus the two possible and a priori different defi-
nitions of Φ� within var method turn out to be equivalent. Antiferromagnetic correlations are
defined on the MF level as

SAF = −3

2
gJ(ξ2

1 + ξ2
2), (8.203)

cf. Refs. [68, 75]. Thermodynamic potentials, the optimal values of the mean-field variables
and related quantities for the SF solution are listed in Tabs. III and IV.

Table III. Equilibrium values of the thermodynamic potentials (per site) for SF solutions, for
n ≈ 0.898. Ω̃ (F ) stands for Ω − λN (Ω + µN) for var and Ωs−c (Ωs−c + µscN) for s-c

methods, respectively.

Φ var (I) var (II) s-c (I) s-c (II)
Ω/Λ -5.90103948 -5.75555848 - -

Ω̃/Λ -0.69003640 -0.71583672 -0.49006797 -0.49344983
F/Λ -1.18762800 -1.16898668 -1.18536044 -1.16599431

Table IV. Values of chemical potentials, optimal MF parameters, and related quantities for
SF solutions at n ≈ 0.898. µ̃ stands for λ+ µ (var), and for µsc (s-c).

ϕ var (I) var (II) s-c (I) s-c (II)
µ 5.24623 5.10505 - -
λ -5.80007 -5.60943 - -
µ̃ -0.55384 -0.50438 -0.77389 -0.74857
ξ1 0.19222 0.19321 0.18805 0.18844
ξ2 0.10298 0.09840 0.11856 0.11731
η1 -0.13476 -0.14848 - -
η2 -0.07220 -0.07562 - -
SAF -0.23514 -0.22522 -0.24436 -0.23527
Φ� 0.31311 0.29987 0.35811 0.35449
T1 0.80695 0.77919 0.92799 0.91123
T2 0.18241 0.16008 0.29312 0.28009
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From Tabs. III and IV we see, that in contrast to the dSC case, now the differences between
renormalization schemes ((I) vs (II)) within each (var, s-c) method are small. This is because
in the absence of ∆ij , the χij -dependences of gt

(I) and gt
(II) are quite similar, and the χij -

dependence of gJ
(II) is weak for doping x ≈ 0.1, thus causing no qualitative and only minor

quantitative differences between the renormalization schemes. On the other hand, the generic
modifications introduced by the variational approach within each RS are more significant.

Namely, from Tab. IV we see, that the s-c method favors SF solution as compared the var

method. This is indicated by smaller values of Φ� and ξ2 obtained within the latter approach.
The two latter quantities, or some combination of them, may serve as an order parameter for
the SF ↔ N transition. Also, T1 and T2 (8.197), which determine the quasi-particle spectra,
are smaller within the var method, and so are the quasi-particle energies.
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Figure 7: Dispersion relations for both upper (Ek+) and lower (Ek−) subbands for the SF
solutions along the main symmetry lines in the Brillouin zone of the square lattice. The lattice
is of the size Λ = ΛxΛy, where Λx = Λy = 512, and the filling is n ≈ 0.898. Triangles- the
self-consistent, non-variational results for (I) and (II), red squares (I) and green circles (II)-
the present variational method. Explicitly, for (Ek+) near the maximum at point M, from the
bottom to the top: (II) var, (I) var, (II) s-c (violet triangles), (I) s-c (dark blue triangles).

Next, let us analyze the dispertion relation (Fig. 7). The characteristic feature of the SF
solution are Dirac cones,53 i.e., regions of the FBZ, where the quasiparticle energy depends
linearly on the absolute value of quasi-momentum, Ekσs = vσs(k̂)|k| (k̂ is the unit vector).
In contrast to the RVB case, now the Dirac cones are pinned exactly at S = (π/2, π/2) (cf.
Fig. 1 of Ref. [75]). Please note, that Fermi velocities in both the nodal ((0, 0) → (π, π)) and
anti-nodal ((0, π) → (π, 0)) directions are smaller within the var method.

8.3 Pomeranchuk instability

So far we have focused on the solutions for which the x and y directions are equivalent.54

However, a spontaneous (i.e., occurring for the x-y symmetric choice of the parameters in the
microscopic Hamiltonian, tx = ty, Jx = Jy, and not accompanied with the lattice distortion)
breakdown of the equivalence of the x- and y- directed correlations is possible already in the

53This term follows from a formal analogy of such spectrum with that of the massless Dirac fermions.
54As mentioned in the Introduction, the dx2−y2 symmetry of the superconducting gap, which imply that

∆x = −∆y does not violate x-y symmetry, because F (dSC) (8.189) is an even function of both ∆x and ∆y.
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normal phase. This is termed the Pomeranchuk instability (PI), [125, 126, 127, 128, 129, 130]
that manifests itself by lowering of the discrete C4v symmetry of the Fermi surface.

It is important to note at this point, that the isotropic (|∆x| = |∆y|) superconducting
solution (dSC) analyzed in Subsection 8.1 is energetically favorable as compared the anisotropic
normal solution analyzed here. The latter is obtained only if the superconducting order is
suppressed ’by hand’ [33]. Also, for the square lattice and x-y symmetric Hamiltonian, the
solution with |∆x| 6= |∆y| has not been found.

Even if PI may seem to be auxiliary from the point of view of the present Thesis (no pairing),
we would like to analyze it briefly, for the following reasons. First, PI is another good example
of the nontrivial differences between the two methods analyzed here (var, s-c) of solving the
MF models. Second, PI is a phenomenon that recently gained a considerable interest, and for
which the t-J model is frequently used as a starting point of the analysis. Moreover, lack of a
discrete rotational symmetry (in that case not spontaneous, but caused by the orthorhombic
lattice distortion) may appear also in the superconducting state. This latter topic, as well as a
more complete analysis of the PI in a normal state will be analyzed elsewhere [212]. Here we
present only our earlier results [82] obtained using RS (II).

In the present case, ~A = (n, χx, χy), and ~λ = (λ, λχ
x , λ

χ
y ). MF Hamiltonian and generalized

Landau potential F (PI)( ~A,~λ) we use here can be obtained from (8.182) and (8.189), by putting
∆x = ∆y = 0, and χx 6= χy, respectively. Consequently, within the var method we solve the
following set of equations

∂F (PI)

∂n
= 0,

∂F (PI)

∂χx
= 0,

∂F (PI)

∂χy
= 0,

∂F (PI)

∂λ
= 0,

∂F (PI)

∂λχ
x

= 0,
∂F (PI)

∂λχ
y

= 0, (8.204)

whereas for the s-c case we have the corresponding BdG equations (4.38)

(

∂F (PI)

∂λ

)

~λ=~0

= 0,

(

∂F (PI)

∂λχ
x

)

~λ=~0

= 0,

(

∂F (PI)

∂λχ
y

)

~λ=~0

= 0. (8.205)

8.3.1 Numerical results

In Fig. 8 (a) the doping dependences of the bond-order parameters χx and χy are displayed for
the x-y symmetric (N) and the symmetry-broken (PI) solution, both within the present (χvar

τ )
and the standard (χs−c

τ ) methods. Within the s-c scheme, PI solution has been found up to
x ≈ 0.091. However, a comparison of the respective free-energy differences, ∆Fs−c ≡ FN

s−c−F PI
s−c

and ∆Fvar ≡ FN
var − F PI

var , (cf. Fig. 8 (a)) reveals that this solution becomes unstable against
the N state for x ≈ 0.021. Therefore the PI → N phase transition is certainly discontinuous.
On the other hand, it seems that within the var treatment, the PI solution does not exist for
x > xvar

c ≈ 0.044, where ∆Fvar ≈ 0, in qualitative agreement with what is expected for the
continuous phase transition.55 Nonetheless, from the above analysis it is clear, that for PI those
two methods of approach (s-c, var) yield qualitatively different predictions.

We have searched for a SF state with the spontaneously broken x-y symmetry, i.e., a coex-
istence of PI and standard SF phase. However, this solution has not been found.

Within our method, we have also examined the ladder system, analyzed in Ref. [63]. The
ladder geometry explicitly breaks the x-y symmetry, and the superconducting ground state

55Within the numerical analysis, due to the unavoidable numerical errors in the close vicinity of the phase
transition, we cannot unambiguously identify the order of the phase transition. This problem may be probably
bypassed by plotting the Landau potential Fz (cf. Section 4.5). This would allow us to infer the order of the
phase transition in a way simpler than a direct analysis of the x-dependence of the order parameter.
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Figure 8: Renormalization scheme (II): doping dependence of bond-order parameters χx and
χy (left), and the free-energy differences ∆F (right) both for x-y symmetric (N) and the x-
y symmetry-broken states (Pomeranchuk instability, PI) within both the present (var, filled
circles) and the non-variational (s-c, triangles) approach, respectively. The vertical line marks
the phase transition within the s-c method. For details, see main text.

is found, for which |∆x| 6= |∆y|. We do not present the results here, not however, that the
modifications introduced by the var approach are qualitatively similar to the those analyzed
so far for the dSC and SF states. For example, the excitation energies Ek are lower within the
var method, as compared to the s-c approach, analyzed in Ref. [63].
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9 Results II: Optimal renormalization scheme and its

application to t-J model

In the previous Section, we have compared results obtained by using various renormalization
schemes (RS). Now, we apply the RS of Ref. [76] to study different forms of the t-J Hamiltonian
(6.126). Also, the role of the next-nearest (t′) and next-next-nearest (t′′) neighbor hopping
integrals is analyzed. The non-variational method based on the BdG equations (7.160) will no
longer be utilized. Consequently, it is convenient to apply an alternative formulation of RMFT,
as given by Eqs. (7.166) - (7.169) (Section 7.4.3). This Section provides the principal results
of this Thesis for the t-J model.

9.1 Non-standard formulation of RMFT approach

9.1.1 RMFT Hamiltonian

Our point of departure is the RMFT Hamiltonian (7.164)

Ĥ
(∼)
Rλ = −

∑

〈ij〉σ

(

η̃ijσ

(

c†iσcjσ − χijσ

)

+ H.c.
)

−
∑

iσ

λ̃
(n)
iσ

(

n̂iσ − niσ

)

)

−
∑

〈ij〉

(

γ̃ij

(

∆̂ij − ∆ij

)

+ H.c.
)

+W (χijσ,∆ij, niσ).

In above, ∆̂ij is given by Eqs. (7.165). To obtain an explicit form of W (χijσ,∆ij , niσ) =

〈ĤtJ〉app
C appearing in (7.163) and (7.164), we assume that the following mean fields and the

corresponding Lagrange multipliers may take non-zero values: χij = ξs and η̃ijσ = η̃ij ≡ ηs,

with s = 1, 3, 5 corresponding to sites with d(i, j) ≡ |~Ri− ~Rj | equal 1,
√

2, and 2 (in units of the

lattice constant a), respectively; ∆ij = 〈∆̂ij〉 = ∆x(y), with ∆x(y) = ±∆ and γ̃ij = γx(y) = ±γ
(dx2−y2 symmetry), both nonzero for d(i, j) = 1 and zero otherwise, as well as niσ = niσ̄ = n/2

and λ̃
(n)
iσ = λ. Therefore, we have

~A = (ξ1, ξ3, ξ5,∆, n), ~λ = (η1, η3, η5, γ, λ). (9.206)

Then, W ( ~A) is obtained by applying formalism of Ref. [76] (for more details, please consult
Appendix D (Subsection 11.4) and the original paper). Explicitly, we have

W ( ~A) = Wt +WJ +W3, (9.207)

where

Wt

Λ
=

16(1 − n)

2 − n

{

t1ξ1

(

1 − 4(∆2 + ξ2
1)

(2 − n)2

)

+
∑

s=3,5

tsysξs

(

1 − 4ξ2
s

(2 − n)2

)

}

, (9.208)

WJ

Λ
= −4J

(

3 (∆2 + ξ2
1) + c1(1 − n)2 (∆2 − ξ2

1)

(2 − n)2

)

− Jc1n
2/2, (9.209)
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and

W3

Λ
= −32c2J

(1 − n)

(2 − n)3
·
{(

1 − n2

4

)

ξ2
1 + (2 − n)ξ2

1ξ3 −
nξ3

3

2

+ nξ3∆
2 +

1

2
nξ3

(

1 − n

2

)2

−
(

1 − n

2

)(

2 − n

2

)

∆2
}

− 16c2J
(1 − n)

(2 − n)3
·
{(

1 − n2

4

)

ξ2
1 + (2 − n)ξ2

1ξ5 −
nξ3

5

2

+ nξ5∆
2 +

1

2
nξ5

(

1 − n

2

)2

+
(

1 − n

2

)(

2 − n

2

)

∆2
}

+ c2
t3J(1 − n)

|t1|
(

1 − n
2

)3 ·
{

ξ1

(

8
(

1 − n

2

)

(

ξ2
1 + ξ2

3

)

+ 4n
(

∆2 − ξ2
1

)

)

+ 16
(n

2
+ 1
)(

1 − n

2

)

ξ1ξ3 + 4n
(

1 − n

2

)2

ξ1

}

(9.210)

In the above formulas, Λ is the number of lattice sites. Parameters y3 and y5 in Wt (9.208),
equal 0 or 1, allow us to select the way in which the hopping integrals to the more distant
neighbors are renormalized. All presented results are for y3 = y5 = 1, but we comment also
on the situation with either y3 or y5 equal zero. The model parameters are J , t1 = t, t3 = t′

and t5 = t′′. Note, that in ĤtJ (6.126) we retain all terms of order of t2/U (∼ J) and tt′/U
(∼ J ′ ≡ Jt3/|t1|), and neglect a smaller terms ∼ (t′)2/U (∼ J ′′ ≡ J(t3/t1)

2). As a consequence,
we obtain the following MF grand Hamiltonian

K̂
(α)
λ ≡ −

∑

〈ij〉s

∑

σ

∑

s

(

η̃s

(

c†iσcjσ − ξs
)

+ H.c.
)

−
∑

〈ij〉

(

γ̃
(

∆̂ij − ∆τ

)

+ H.c.
)

− µ
∑

iσ

n̂iσ

−
∑

iσ

(λ̃n
iσ

(

n̂iσ − n/2
)

)

+W (ξs,∆τ , n). (9.211)

Next, we diagonalize K̂λ (7.164) via the Bogoliubov-Valatin transformation. This step yields

K̂
(α)
λ =

∑

k

Ek(γ̂†k0γ̂k0 + γ̂†k1γ̂k1) +
∑

k

(ξk −Ek) + C(α)( ~A,~λ), (9.212)

with

C(α)( ~A,~λ) = W ( ~A,~λ) + Λ(8
∑

s

ξsηs + 4∆γ + λn). (9.213)

Also, we have

Ek =
√

ξ2
k +D2

k, Dk = −γ
2

Γ−(k),

ξk = − (η1Γ+(k) + η3Θ(k) + η5Γ5(k) + µ̃) , (9.214)

with

Γ±(k) = 2(cos(kx) ± cos(ky)), Θ(k) = 4 cos(kx) cos(ky),

Γ5(k) = 2(cos(2kx) + cos(2ky)), and µ̃ = µ+ λ. (9.215)
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9.1.2 Generalized Landau potential and equations (4.34)

Using K̂
(α)
λ , we obtain the grand-canonical density operator (7.169), i.e., ρ̂λ = Z−1

λ exp(−βK̂(α)
λ ).

Consequently, generalized Landau potential (4.33) has the form

F = F (α) ≡ C(α) +
∑

k

(

(ξk −Ek) − 2

β
ln
(

1 + e−βEk
))

. (9.216)

Eqs. (4.34), i.e., the necessary conditions for F (α) to have a minimum subject to constraints
read now

∂wF (α) = ∂wC
(α) = ~05, (9.217)

∂zF (α) = ~05, (9.218)

where w ∈ {ξ1, ξ3, ξ5,∆, n} and z ∈ {η1, η3, η5, γ, λ}. In contrast to the formulation used
in Section 8, equations (9.217) may be easily solved in an analytic fashion. However, so-
lutions of the remaining Eqs. (9.218) must be determined numerically. The optimal val-

ues of mean fields and Lagrange multipliers will be denoted ~A0 = (ξ
(0)
1 , ξ

(0)
3 , ξ

(0)
5 ,∆(0), n) and

~λ0 = (η
(0)
1 , η

(0)
3 , η

(0)
5 , γ(0), λ(0)), respectively.

Note, that within the present formulation, the quasiparticle energies Ek (9.214) depend
functionally only on the Lagrange multipliers. Nonetheless, the latter become explicitly known
functions of mean-fields after Eqs. (9.217) are solved.

9.1.3 Characteristics of the model: qualitative analysis

The analytical expression for W ( ~A) (9.207) allows us to make some qualitative predictions
concerning the properties of our MF model before any numerical analysis is carried out. This
is because at low T , the entropic part of the free energy is small, and therefore

F ≈ U = W ( ~A0) =
〈

K̂(α)( ~A0)
〉

+ µN. (9.219)

First, from (9.208) we expect a strong tendency to the superconductivity suppression for higher
doping, as SC order leads to the band energy decrease ∼ ∆2. On the other hand, in that regime
the renormalized band energy becomes predominant over the exchange part. In effect, the
normal state is favored over SC for x > xc with xc smaller than obtained within previous MF
treatments [33, 39, 58, 61]. Second, from (9.209) we infer, that the influence of the ν̂iν̂j/4 term
on WJ is small except for the largest doping; this is due to the presence of the (1−n)2 pre-factor
(the other term ∼ n2 merely shifts the chemical potential). On the other hand, W3 (9.210) is
multiplied only by (1− n) = x pre-factor. Consequently, for higher x this term becomes rather
important. This is also due to the large number of distinct three-site terms present for a given
initial site and spin direction (eight for d(i, j) =

√
2, and four for d(i, j) = 2). Also, this part

of W is expected to suppress the SC order, as the term ∼ ∆2 in W3 contains a factor, which is
positive for reasonable values of other mean fields. Therefore, the energy gain of forming the
superconducting state is lower if the Ĥ3 term is present.

9.2 Numerical results

After Eqs. (9.217) are solved analytically for Lagrange multipliers, we solve numerically the
remaining Eqs. (9.218) for the mean fields. Again, we use periodic boundary conditions on the
lattice of Λ = ΛxΛy = 5122 sites, to minimize finite size effects, and assume that kBT = 2·10−3J ,
(practically equivalent to T = 0). Also, in the most cases we take the parameters |t|/J = 3
(corresponding to U/|t| = 12 for the Hubbard model), t′/t = 0 or −0.25, and t′′ = 0 (t′′ 6= 0 is
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consider at the end of Sub-subsection 9.2.2, and |t|/J 6= 3 in Sub-subsection 9.2.3). Additionally,
we take either |t| = 0.3 eV or |t| = 0.4 eV, which correspond roughly to the lower and the upper
limits of the realistic values of this parameter, depending on the compound. Values of |t| close
to 0.4 eV have been determined from the band-structure calculations, [8, 213], whereas |t| = 0.3
eV is used e.g. in Refs. [61] and [48].

To highlight the influence of various forms of the t-J Hamiltonian (6.126), the results for
different values of c1 and c2 are analyzed. The numbers 1, 2, 3 (4, 5, 6) in Figs. 9-12 correspond
to the three separate situations: c1 = c2 = 0, c1 = 1 and c2 = 0, and c1 = c2 = 1, each taken
for t′/t = 0 (t′/t = −0.25), respectively. Explicitly,

(1) c1 = 0, c2 = 0, t′ = 0,
(2) c1 = 1, c2 = 0, t′ = 0,
(3) c1 = 1, c2 = 1, t′ = 0,
(4) c1 = 0, c2 = 0, t′ = −t/4,
(5) c1 = 1, c2 = 0, t′ = −t/4,
(6) c1 = 1, c2 = 1, t′ = −t/4.

9.2.1 Hole concentration x = 0.175

Optimal values of mean field parameters. In Table V we detail the equilibrium values
of the mean fields and Lagrange multipliers for cases 1-6, for x = 0.175, the representative hole
concentration in the overdoped regime. For this particular value of x, in all six cases we obtain
superconducting solution with ∆ 6= 0.

Table V. Equilibrium values of the MF parameters, for x = 0.175.

ϕ 1 2 3 4 5 6

ξ
(0)
1 0.1970 0.1969 0.1990 0.1924 0.1922 0.1944

ξ
(0)
3 0.0468 0.0465 0.0505 0.0241 0.0239 0.0225

ξ
(0)
5 -0.0080 -0.0076 -0.0144 0.0337 0.0340 0.0383

∆
(0)
x 0.0687 0.0708 0.0202 0.0903 0.0919 0.0534

η
(0)
1 1.0080 1.0030 1.2355 1.0031 0.9982 1.1845

η
(0)
3 0.0000 0.0000 0.0803 -0.2223 -0.2223 -0.2118

η
(0)
5 0.0000 0.0000 0.0408 0.0000 0.0000 0.0404

γ
(0)
x 0.1584 0.1665 0.0320 0.2126 0.2205 0.0834
µ̃ -0.4069 -0.4080 -0.2935 -0.8633 -0.8614 -0.9406

A closer look at Table V indicates that presence of the term ∼ c1 in the t-J Hamiltonian has
practically no effect. However, the influence of both nonzero t3, as well as the three-site terms
∼ c2 is substantial. Also, let us note that if ξ3 (ξ5) does not appear in W ( ~A) (9.207), we

have η
(0)
3 = 0 (cases 1 and 2) and η

(0)
5 = 0 (cases 1, 2, 4, 5), which follows from Eqs. (9.217).

However, in all cases 1-6 we still have ξ
(0)
3 6= 0 and ξ

(0)
5 6= 0. This is in agreement with the

discussion provided in Section 7, see 7.4.4. Let us also note, that for cases 3 and 6, W ( ~A)
depends in a non-trivial way on both ξ3 and ξ5, even if t3 = 0 or t5 = 0. This is because the
three-site terms introduce an effective hopping to the next- and second-next nearest neighbor,
even if such hopping is absent in the original Hubbard model.

Quasiparticle dispersion. For the parameters listed in Table V, in Fig. 9 we plot the
dispersion relation of the Bogoliubov quasiparticles. At this particular doping (x = 0.175), the
influence of Ĥ3 on Ek is of comparable magnitude to that of having nonzero t′. Also, although
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Figure 9: Dispersion relations along the main symmetry lines in the Brillouin zone for x = 0.175
(n = 0.825). The various curves are explained in main text. Note, the curves 1 and 2, as well
as 4 and 5 are practically indistinguishable. This means that the role of the term ∼ c1 in WJ

(9.209) is negligible.

there is no visible difference between cases 1 and 2, as well as between 4 and 5, differences
between cases 1, 3, 4, and 6 are rather pronounced.

9.2.2 Doping dependence of mean-field quantities

Superconducting order parameter. Next, we discuss doping -dependence of the renor-
malized SC order parameter 〈∆̂ij〉C ≡ ∆C . In Fig. 10 we plot ∆C for the cases 1-6 specified
above as well as for t3/t1 = t′/t = −0.27 (value being reasonable for BSCCO compounds, [214]),
and J/|t| = 0.3 (curve 7). Note, that the upper critical concentration xc for the cases 4 and
5 is close to the VMC result [48], obtained within the Hubbard model for the corresponding

values of the model parameters, and by using ˜|ψ〉 (7.142) instead of |ψ〉 (7.141).
The presented numerical results (cf. also Table V and Fig. 9) confirm the qualitative

predictions made in Sub-subsection 9.1.3. First, nonzero t′ enhances superconductivity, in
agreement with previous VMC results [50] and other calculations [214]. On the other hand,
Ĥ3 term acts in the opposite direction. The vertical line roughly marks the boundary between
under- and over-doped regimes. Importantly, for |t|/J = 3, t′′ = 0 and different t′/t values,
xc lies in the interval 0.2 . xc . 0.35, depending on the form of ĤtJ , as illustrated in Fig.
10. Those results for xc are in a good overall agreement with the experimental data for the
cuprates, [8, 14]. The small difference between the curves 4 and 5 (as well as between 1 and
2) is that, that in the former cases c1 = 0, and shows an insignificant role of the term ∼ c1.
Note, also, that differences between cases 1-6 become more pronounced with the increasing the
doping x.

Superconducting gap and Fermi velocity. In Fig. 11 we plot the doping dependence of
the SC gap Dk (9.214) for k = (π, 0), and compare our results with the experimental data
[90, 93, 89]. For the selections of t′/t and J/|t| as in Fig. 9, no fully satisfactory agreement
with experiment is achieved in the entire range of x. However, the agreement with experiment
is reasonable for the parameters corresponding to the curves 1, 2, 4 and 5 in the overdoped
regime, both for |t| = 0.3 eV and |t| = 0.4 eV. The overall agreement is also reasonable for the
parameters leading to curve 7. Note, that in all the cases 1-7 the quasiparticle energies obtained
here are decisively lower than those in the standard RMFT formulation (c.f. Ref. [61]). These
differences are caused by both the particular selection of the renormalization scheme, as well as
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Figure 10: Doping dependence of the renormalized superconducting order parameter 〈∆̂〉C ≡
∆C . The curves 1-6 correspond to those in Fig. 1. The curve 7 is for c1 = 1, c2 = 0,
t′/t = −0.27, t′′ = 0, and for J/|t| = 0.3.
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Figure 11: Doping dependences of the SC gapDk at k = (π, 0) for cases 1-6 and for t′/t = −0.27,
and J/|t| = 0.3 (filled diamonds). Large filled circles - experimental data [88]. Note, that in
contradistinction to Ref. [61] no ad hoc introduced scaling factor α = 1/2 is necessary to obtain
a reasonable agreement in the overdoped regime, i.e., to the right of the vertical line.

by the variational method we use. As a consequence, we obtain also lower values of the Fermi
velocity

vF = |∇kξk||k|=kF
=

√
2
(

η1 sin(kF ) + η3 cos(kF ) + 2η5 sin(kF )
)

, (9.220)

calculated for the nodal ((0, 0) → (π, π)) direction. The lattice constant has been taken as
a = a0 = 4Å [61]. The x-dependence of vF is detailed in Fig. 12 for the same set of parameters
as in Figs. 10 and 11, for both |t| = 0.3 eV and |t| = 0.4 eV, and compared with the data
discussed before [61]. The theoretical values are still too low. Also, the x-dependence of both
Dk=(π,0) and vF , obtained within the MF approaches, is stronger than observed in experiment.
This feature is shared with the other mean-field approaches [48, 61]. However, the experimental
values for BSCCO ∼ 1.5 - 1.6 eV Å have also been reported [89, 93], and are quite close to our
results.

Influence of the third-nearest hopping integral t′′. So far, we have assumed that t5 =
t′′ = 0. Now we are going to analyze the influence of a nonzero t′′ on the doping dependence
of the superconducting order parameter 〈∆̂〉C ≡ ∆C . In particular, it is interesting to see
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Figure 12: Doping dependence of Fermi velocity in the nodal ((0, 0) → (π, π)) direction. Ex-
perimental data (cf. [61] and References therein) are marked by diamonds (YBCO), squares
(LSCO) and solid circles (BSCCO).

how t′′ 6= 0 affects value of the upper critical concentration xc. We may expect, that the
role of t′′ is nontrivial, because this parameter determines geometry, or even topology of the
Fermi surface [50, 87]. Therefore, it may affect a delicate balance between the normal and the
superconducting states.

In Fig. 13 we plot the renormalized superconducting gap ∆C as a function of doping for
c1 = 1, c2 = 0, t′/t = −0.27, J/|t| = 0.3, and for different values of t′′, 0.0 ≤ |t′′| ≤ 0.5|t′|, with
t′′t′ < 0. We observe quite strong t′′-dependence of ∆C(x). In particular, xc changes in a non-
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Figure 13: Doping dependence of the renormalized superconducting order parameter ∆C for
c1 = 1, c2 = 0, t′/t = −0.27, J/|t| = 0.3, and for different values of t′′. The curves 1-6
correspond to −t′′/t′ = 0.0, 0.1, 0.2, 0.3, 0.4 and 0.5, respectively.

monotonic manner in the range 0.43 & xc & 0.32. Parenthetically, essentially the same picture
is obtained when the hopping to the next and next-next- nearest neighbors are renormalized
in the simplest way, i.e., with either y3 or y5 in Wt (9.208) equal zero. However, our former
conclusion remains valid. Namely, the value of the upper critical concentration remains in a
reasonable agreement with the experimental data for the cuprates.

99



9.2.3 Dependence of upper critical concentration on value of exchange integral J

To provide an additional support for our conclusions, in Table VI we list the values of xc as
a function of J , for either t′/t = −0.1 (considered to be relevant to the LSCO compound, [8])
or t′/t = −0.27 (value that seems to be more relevant for BSCCO compound).56 Let us note,
that the J- dependence of xc is substantial; critical concentration is roughly proportional to J .

Table VI. Upper critical concentration xc vs. exchange integral J , for either t′ = −0.27t or
t′ = −0.1t. The symbols A (B) label the cases c2 = 0 and c1 = 0 (c1 = 1), respectively,

whereas C means that c1 = c2 = 1.

J/|t| 0.2 0.3 0.333 0.375 0.4
t′/t = −0.1 A 0.18 0.26 0.29 0.32 0.33
t′/t = −0.27 A 0.2 0.31 0.34 0.38 0.4
t′/t = −0.1 B 0.18 0.27 0.3 0.33 0.35
t′/t = −0.27 B 0.2 0.33 0.36 0.4 0.42
t′/t = −0.1 C 0.15 0.21 0.22 0.24 0.25
t′/t = −0.27 C 0.15 0.23 0.26 0.28 0.29

56Such selection of the values of t′/t ratio may seem to be rather arbitrary. The problem of choice of the
values of model parameters for the specific compound is very nontrivial, and will not be discussed in the present
Thesis.
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10 Summary and discussion

10.1 Summary

The aim of this Thesis has been twofold. Our original aim was to provide a description of the
selected properties of the cuprate superconductors within the renormalized mean-field theory
(RMFT) of the t-J model. This topic was discussed in detail in part III. As a ’side subject’
of this investigation, we have developed a new method of approach, which is based on the
maximum entropy (MaxEnt) principle, and which allows to treat MF models considered here
in a way which is both internally consistent and optimal from the point of view of statistical
physics.

The method is presented in detail in Part II of the Thesis. The formal results presented there
are of general validity. Namely, our approach is applicable to any lattice fermion or spin model,
and generalization to the case of lattice boson systems is also possible in principle. Because
Part II has got its own Summary (Section 5), therefore below we summarize and overview only
the contents of Part III.

10.1.1 Comparison of present variational method and non-variational approach
based on self-consistent equations

The formal method developed in Part II has been applied in Part III to the RMFT of the
t-J model. First, on the example of the mean-field treatment of the simplest form of the t-J
Hamiltonian, we have compared two distinct ways of solving mean-field models: the present
variational (var) method, and the non-variational approach based on the Bogoliubov-de Gennes
(BdG) self-consistent (s-c) equations. The latter approach to RMFT has been used by many
Authors in their studies of various symmetry-broken states encountered in the cuprates [63,
73, 74, 75, 78] and elsewhere. Our results show clearly, that there are nontrivial quantitative,
and sometimes even qualitative differences between the var and the s-c approach; therefore,
those two methods cannot be regarded as equivalent. Together with some purely theoretical
arguments in favor of the var approach, discussed in Part II of the Thesis, this observation leads
us to the following conclusion: the s-c method should be abandoned in the future analysis of
strongly correlated systems, and its existing results should be re-examined within the present
var approach.

10.1.2 Comparison of different renormalization schemes

We have compared various RMFT Hamiltonians, differing by the way in which correlated
averages are approximated, i.e., differing by the applied renormalization schemes (RS). It turns
out, that differences between various RS are rather pronounced, for both the var, and for the
s-c method. Therefore, also the energy difference between various symmetry-broken states
may strongly depend on the particular choice of RMFT scheme. Because the value of the
ground state energy (or the free energy) usually serves as the criterion for selecting the optimal
mean-field state, the (in)stability of complex states such as the stripe phases [73, 74, 75] or the
valence-bond solid phase [78] may be an artifact of a particular version of RS that has been
used. This scenario seems to be even more likely due to the circumstance, that the energy
differences between the latter states and some reference state (i.e., homogeneous RVB solution)
are usually small.
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10.1.3 Optimal renormalization scheme

Eventually, we have selected the renormalization scheme (RS) of Fukushima [76], which, in our
opinion is the optimal one among RS considered in the present Thesis. Our choice has been
motivated by a transparent way in which this RS is constructed, and the fact that the formalism
of Ref. [76] may be relatively easily applied to an arbitrary version of the t-J Hamiltonian, e.g.
the complete form of the latter, in which the three-site terms are included. Also, the agreement
of the results obtained previously by Fukushima with those of the VMC method speak in favor
of this particular RS.

Next, the RS of Ref. [76] has been applied to investigate various forms of the t-J Hamilto-
nian, and for different values of model parameters, i.e., t, t′, t′′, and J/t. Our results agree quite
well with those of the earlier VMC studies (some obtained for the Hubbard model but for the
corresponding values of the model parameters, cf. e.g. [48]). For example, doping dependence
of the superconducting order parameter, and, in particular, value of the upper critical concen-
tration xc are close to the VMC results. Also, we have observed the tendency that the nonzero
next-nearest neighbor hopping integral t′, enhances superconductivity, whereas the three-site
term of the t-J Hamiltonian (frequently neglected in the literature) acts in the opposite di-
rection. The influence of the third-nearest neighbor hopping t′′ is more complicated; t′′ 6= 0
enhances superconductivity as compared to the t′′ = 0 case. However, xc depends then on t′′ in
a non-monotonic manner. Also, selected spectral features, e.g. the superconducting gap Dk at
k = (π, 0) or the Fermi velocity vF = |∇kξk||k|=kF

in the nodal ((0, 0) → (π, π)) direction have
been studied and found to be in a semiquantitative agreement with the ARPES measurements
[90, 91, 93], at least in the overdoped regime.

In general, the results obtained within the RMFT turned out to depend quite strongly on
both the various forms of the original t-J model, as well as on choice of the model parameters.
The right choice of the values of model parameters is nontrivial; the values selected here are
identical or close to those selected frequently in the literature.

10.1.4 Limitations of RMFT approach

It must be emphasized here, that even though the RMFT of the t-J model proved to be quite
successful in predicting many physical properties of high-Tc cuprate superconductors, it still
certainly cannot be regarded as a complete description of those compounds.

First, let us note, that the choice of the mean-fields which may have non-zero optimal
(equilibrium) values, i.e being relevant for the problem at hand, is dictated mostly by the
experiment. For example, there is a strong experimental evidence in favor of dx2−y2 symmetry
of the superconducting order parameter in the bulk of the cuprates, and very sparse for other
possible, e.g. dx2−y2 + idxy [12]. Therefore, usually from the very beginning we exclude ’by
hand’ the more exotic symmetries of the superconducting order parameter. However, from
the point of view of a model description, certain symmetry-breaking patterns excluded by the
experimental data are certainly legitimate. Obviously, there is no certainty, that the solution
suggested by experiment would turn out to be the optimal one (i.e., of the lowest energy)
within our MF model for the reasonable choice of the model parameters. In connection with
this, it must be emphasized, that one of the possible extensions of the present approach to
the case a magnetically-ordered states leads to the results which are unphysical in the context
of the physics of cuprates. Namely, recently it has been shown by Kaczmarczyk et al. [216],
that within the so-called local spin-dependent version of the formalism of Ref. [76], the normal
state with saturated, uniform magnetic polarization has lower energy then any state analyzed
in the present Thesis, for the same values of the model parameters. We may still hope, that
the application of an alternative ’local spin-independent constraint’ of Ref. [76] would lead to
different results for the magnetic states. Also, the unphysical predictions may be attributed
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to the fact, that the effects of the orbital magnetism has been neglected. The same problem
is very likely to be present in other versions of RMFT formalism, i.e., for other versions of
Gutzwiller approximation (other renormalization schemes).

RMFT leads to description in terms of an effective, single-particle Hamiltonian. This feature
allows us to address easily all the single-particle properties (e.g. the Fermi surface existence,
quasiparticle dispersion observed in ARPES experiments, or symmetry of the order parameter),
but obviously must be regarded as (rather crude) approximation to the complete description
of the real, strongly-correlated system. Also, for the normal state, single-particle models lead
to the description in the spirit of the Landau theory of Fermi liquids (presence of heavy quasi-
particles). The latter theory, however, is regarded legitimate at most in the overdoped regime
of the phase diagram of the cuprates, as was presented here.

Moreover, as may be intuitively expected, and as has been formally shown in Part II, RMFT
of the t-J model (similarly to any simple MF approach) remains in the paradigm of the Landau
(-Ginzburg-Wilson) theory of phase transitions, with all consequences of this fact. For example,
RMFT may be incapable of providing a proper description of those quantum states, which have
no long-range static order.

Another point is an important role of fluctuations (both quantum and thermal) of the
order parameters. This issue is probably crucial for understanding of either the nature of the
pseudogap phase (cf. e.g. [218]), or the fate of the superconducting state at low doping, and
a disappearance of the antiferromagnetic long-range order with the increasing doping. Still,
inclusion of fluctuations on the mean-fields level seems to be a highly nontrivial task. Despite
some attempts to treat fluctuation within the present method we have made (see the discussion
in Subsection 12.1), resolution of this problem remains unclear for us at the moment.

10.2 Outlook and possible extensions of present work

The approach presented in this Thesis may be generalized and improved in several ways, which
are listed below.

10.2.1 Approximation-free evaluation of correlated averages

What seems to be the most important modification of the present formalism, is the implemen-
tation of a more accurate way of evaluating the correlated averages 〈Ô〉C (7.144), i.e., averages
of operators calculated with respect to the correlated state |Ψ0〉 = P̂C |Ψ0〉 (7.139). Even if an
exact evaluation of 〈Ô〉C may turn out to be impossible in practice, still, we should at least try
to estimate the error in a rigorous way. In this manner, it might be possible to obtain an exact
upper bound for the ground state energy of the t-J Hamiltonian.

10.2.2 Other trial correlated states

In connection with the statements of the previous Sub-subsection, we should mention, that the
RVB state used here (Eq. (7.137)) may be not sufficient as a complete trial variational state for
the t-J model. Namely, the correlation operator P̂C in the correlated trial state (7.139) should
belong to the same class as the Hamiltonian, for which this trial state serves as an approximate
ground state. By this, we understand the following: in contrast to the Hubbard model, the t-J
model contains intersite interaction terms. Consequently, the correlator should also belong to
the class of inter-site operators, which is not the case for the local Gutzwiller projector P̂ (6.128)
[217]. This observation suggests, that within the RMFT approach we should use variational
trial states of a more general form, e.g. containing various Jastrow correlators [33, 181]. Such
states have been already used in some of the VMC studies [53].
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10.2.3 Higher-order corrections to t-J Hamiltonian

As discussed in Section 6.135, t-J Hamiltonian is derived from the Hubbard Hamiltonian in the
strong coupling limit (t ≪ U) by using canonical transformation. When doing this, we retain
only terms ∼ t (kinetic energy part) and ∼ t·(t/U) (interaction part). However, using canonical
transformation we may construct effective Hamiltonians, which contain terms of higher order,
i.e., t · (t/U)k. On the other hand, for the cuprates the reasonable value of t/U is about 1/12,
hence this parameter is not small enough to a priori disregard the higher-order terms in the
effective Hamiltonian. Therefore, investigation of such effective Hamiltonians (at least the one
containing terms up to ∼ t · (t/U)3, e.g. the ring-exchange terms) by means of the appropriate
mean-field approach seems to be desirable, although it may turn out cumbersome.

10.2.4 Analysis a nonzero temperature

The next problem, which also seems to be important as a subject of future analysis, is an
extension of the RMFT approach to arbitrary temperatures. Such formalism would allow us
to study large part of x-T phase diagram of the cuprates, and, in particular, to determine the
critical temperature Tc as a function of doping. As mentioned in Section 7.4.1, attempts to
extend Gutzwiller approximation (GA) to T > 0 have been made in the case of the Hubbard
model [209, 210, 211]. Recently, a similar approach has been proposed for the t-J-U model
[202], hence it is applicable also to the RMFT of the t-J model.

At first glance, it may seem that by using mean-field approach developed in this Thesis,
it is legitimate to study RMFT at arbitrary value of T . Unfortunately, this is not the case.
Although our method is an intrinsically finite-temperature approach, in the case of RMFT of
the t-J model it is not expected to lead to physically reliable predictions at higher temperatures.
This insufficiency is not caused by the flaws of the method, but rather by the nature and origin of
the RMFT approach. The latter, as based on the Gutzwiller approximation, has been originally
devised to study the ground-state properties of the system. Therefore, in this Thesis, we have
addressed only the low temperature case, kBT/J = 0.002, which is practically equivalent to the
true T = 0 situation.

In order to treat consistently arbitrary temperatures, the original method of Gutzwiller
should be modified. In our opinion, this problem has no satisfactory solution as yet, at least
in the case of the fully-projected trial states required for the t-J model. In particular, in the
latter case the formalism of Ref. [202] does not provide a acceptable solution, as discussed in
[83].

Nonetheless, because our method is a natural and convenient formal basis for a finite-
temperature mean-field analysis of any model of correlated lattice fermions, we hope that it
may be also used to construct an appropriate finite-temperature version of RMFT. We should
see the progress along this line in the near future.

10.2.5 More complex symmetry-broken states, lattice geometry, and band struc-
ture

Another natural path to extend the present treatment would be to investigate a more com-
plex lattice geometry and band structure. For example, bilayer structure and orthorhombic
distortion (lack of the C4v-symmetry of CuO2 planes, leading e.g. to the mixed d- and s
wave symmetry of the superconducting order parameter) may be quite easily included within
the present formalism. Both features may be important for more realistic description of the
cuprate superconductors.

Moreover, the ’classical phonons’, i.e., static lattice distortion [199, 204] may be implemented
in a simple way within the present approach. This step may be important for the analysis of
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the C4v-symmetry breaking, not only in the presence of the orthorhombic distortion, but also
spontaneous, as occurring for the x-y symmetric Hamiltonian in the normal state (Pomeranchuk
instability, PI).

Next, apart from the homogeneous, non magnetic resonating-valence bond RVB supercon-
ducting state, C4v-symmetry broken normal PI state, and simple staggered-flux state (SF)
discussed in the present Thesis, other symmetry-broken states may be also studied. In par-
ticular, the antiferromagnetic long-range order (AF), its competition or coexistence with both
the superconducting, staggered-flux or charge order are among those physical properties, which
can be relatively easily described by the present MF approach. Work along these lines is being
carried out in our group at present and will be reported separately.

Finally, let us note, that the investigation of yet more complicated states, like the stripe
phases or valence bond solid phase [78] within the formalism presented in this Thesis should lead
to quantitatively or even qualitatively new results. Also, no attempt to describe the pseudogap
state has been made in the present Thesis.

10.2.6 Ginzburg-Landau potential

Using the results of Section 4.5, we can construct the Ginzburg-Landau (G-L) free-energy
potentials (i.e., a discrete version of the original G-L functional) for the RMFT Hamiltonians.
The Ginzburg-Landau picture for the RMFT approach may be helpful to study, or at least
to visualize, the normal-to-superconducting transition at xc. It would be interesting then to
compare the Ginzburg-Landau approach resulting from the microscopic RMFT description with
the phenomenological G-L theory as given e.g. in Ref. [219].
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Part IV

Appendices and supplementary
material

11 Appendices

11.1 Appendix A: Deficiencies of approach not based on the method
of Lagrange multipliers

In Sub-subsection 4.3.3, we have point out some difficulties arising when one tries to apply
the MaxEnt principle to the MF approach, but without invoking the method of Lagrange
multipliers. For completeness, below we present further comments on that issue.

At first, let us assume, that the eigenbasis of the (yet unknown) MF density operator ρ̂,

i.e., {|i〉}DH

i=1, is ~A-independent. Using {|i〉}DH

i=1, Sλ (4.9) can be written as

S = −
∑

i

(

pi ln pi + β[K̂( ~A)]iipi + ω(pi − 1/DH)
)

, (11.221)

with [Ô]ii ≡ 〈i|Ô|i〉 and [K̂( ~A)]ii = [Ĥ( ~A)]ii −µ[N̂ ]ii. In the present situation, Eqs. (4.12), i.e.,

Tr[ρ̂Âs] = 〈Âs〉 = As =
∑

i

pi[Âs]ii =
∑

i

pi〈i|Âs|i〉, (11.222)

allows us to eliminate As in favor of the probabilities pi, and the latter remain then the only
independent variables. Consequently, the necessary conditions for S to have an extremum read
now

∂S
∂pk

= 0 = − ln pk − β[K̂( ~A)]kk − ω − 1 − β
∑

i

pi

∑

s

[K̂( ~A)]ii
∂As

[Âs]kk, (11.223)

for k = 1, 2, . . . , D and with the normalization condition (
∑

i pi = 1) imposed. However,
equations (11.223) cannot be solved analytically, and thus an explicit functional dependence of

pi on T, V (or Λ), µ,~h, . . . cannot be obtained. Eqs. (11.223) can be rewritten as

pk = Z−1 exp

(

−β([K̂( ~A)]kk +
∑

i

pi

∑

s

∂[K̂( ~A)]ii
∂As

[Âs]kk

)

. (11.224)

Obviously, the probability distribution given by (11.224) is not of a canonical (Gibbs) form.
By defining

−λ̄s =

〈

K̂( ~A)

∂As

〉

=
∑

i

pi
[K̂( ~A)]ii
∂As

, (11.225)

we can rewrite (11.224) as

pk = Z−1 exp
(

− β([K̂( ~A)]kk −
∑

s

λ̄s[Âs]kk

)

. (11.226)

For a given ~A, pk (11.226) has a form similar to that of qk, given by diagonal elements of ρ̂λ

(4.29), i.e.,

qk = Z−1
λ exp

(

− β
(

[K̂( ~A)]kk −
∑

s

λs([Âs]kk − As)
)

)

, (11.227)
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because the constant (independent of k) term present in qk (11.227) and absent in pk (11.226)
can be absorbed in Z−1

λ .
Apparently, by defining (11.225), we have taken a step towards approach of Subsections

4.3 and 4.4. However, first, a route presented here ignores the algebraic structure of the
quantum model. It should be a posteriori checked, if indeed the assumption we have made,
i.e., the existence of an ~A -independent eigenbasis of ρ̂ (which has been used to compute
trace appearing in the above formulas) does not lead to contradiction. This task, however,
is enormously complicated, if not entirely impossible. On the other hand, we cannot assume
a priori, that MF grand Hamiltonian K̂( ~A) commutes with the density matrix, therefore the
eigenbasis of the former operator cannot serve as the eigenbasis of the latter.

If the eigenbasis of ρ̂ is not ~A-independent, the reasoning leading to most of the above
formulas ceases to valid. To see that, let us expand eigenvectors of ρ̂ in some ~A-independent
basis, i.e., |i( ~A)〉 =

∑

l cil(
~A)|l〉 and next rewrite (11.222) in a form

As =
∑

i

pi[Âs]ii =
∑

i

pi〈i( ~A)|Âs|i( ~A)〉 =
∑

i

pi

∑

j,l

c∗ij(
~A)cil( ~A)〈j|Âs|l〉. (11.228)

Apart from very special cases, As variables cannot be expressed as any explicitly known func-
tions of pi.

11.2 Appendix B: Equivalence of two alternative expressions for the
second derivative of thermodynamic grand potential Ω

Below we show the equivalence of two alternative formulas (Eq. (4.52) and Eq. (4.53)) for the
second derivative of the thermodynamic potential Ω with respect to thermodynamic variables
x1, x2 ∈ {T, V, µ,~h, . . .}. Eqs. (4.52) and (4.53) read, respectively

∂2Ω

∂x2∂x1

=
∂

∂x2

(

∂F
∂x1

)

0

=

(

∂2F
∂x2∂x1

)

0

+
∑

s

{(

∂2F
∂x1∂As

)

0

∂As0

∂x2

+

(

∂2F
∂x1∂λs

)

0

∂λs0

∂x2

}

(11.229)

∂2Ω

∂x2∂x1

=
∂

∂x2

[

(

∂F
∂x1

)

0

+
∑

s

{(

∂F
∂As

)

0

∂As0

∂x1

+

(

∂F
∂λs

)

0

∂λs0

∂x1

}

]

=

(

∂2F
∂x1∂x2

)

0

+
∑

s

{(

∂2F
∂x1∂As

)

0

∂As0

∂x2

+

(

∂2F
∂x1∂λs

)

0

∂λs0

∂x2

}

+
∑

s

{(

∂2F
∂x2∂As

)

0

∂As0

∂x1

+

(

∂2F
∂x2∂λs

)

0

∂λs0

∂x1

}

+
∑

s,t

{

(

∂2F
∂At∂As

)

0

∂As0

∂x1

∂At0

∂x2

+

(

∂2F
∂As∂λt

)

0

∂As0

∂x1

∂λt0

∂x2

+

(

∂2F
∂As∂λt

)

0

∂As0

∂x2

∂λt0

∂x1

+

(

∂2F
∂λs∂λt

)

0

∂λs0

∂x1

∂λt0

∂x2

}

+
∑

s

{(

∂F
∂As

)

0

∂2As0

∂x1∂x2
+

(

∂F
∂λs

)

0

∂2λs0

∂x1∂x2

}

. (11.230)

The r.h.s. of (11.229) is asymmetric with respect to x1 and x2. It seems also to be incompatible
with (11.230). However, both features are only apparent. Indeed, for any s we have

0 =
∂

∂x2

(

∂F
∂As

)

0

=

(

∂2F
∂As∂x2

)

0

+
∑

t

{(

∂2F
∂At∂As

)

0

∂At0

∂x2
+

(

∂2F
∂As∂λt

)

0

∂λt0

∂x2

}

. (11.231)
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Multiplying (11.231) by ∂As0/∂x1 and summing over s we obtain

0 =
∑

s

(

∂2F
∂As∂x2

)

0

∂As0

∂x1
+
∑

s,t

{(

∂2F
∂At∂As

)

0

∂As0

∂x1

∂At0

∂x2
+

(

∂2F
∂As∂λt

)

0

∂As0

∂x1

∂λt0

∂x2

}

.

(11.232)
Analogously,

0 =
∂

∂x2

(

∂F
∂λs

)

0

=

(

∂2F
∂λs∂x2

)

0

+
∑

t

{(

∂2F
∂At∂λs

)

0

∂At0

∂x2
+

(

∂2F
∂λt∂λs

)

0

∂λt0

∂x2

}

. (11.233)

Multiplying (11.233) by ∂λs0/∂x1 and summing over s we obtain

0 =

(

∂2F
∂As∂x2

)

0

∂λs0

∂x1

+
∑

s,t

{(

∂2F
∂At∂λs

)

0

∂λs0

∂x1

∂At0

∂x2

+

(

∂2F
∂λs∂λt

)

0

∂λs0

∂x1

∂λt0

∂x2

}

. (11.234)

Changing dummy indices (e.g. s↔ t) if necessary, we identify in (11.230) the terms appearing
on the r.h.s. of Eq. (11.232) and (11.234). Note also, that the last line of (11.230) vanishes
due to (4.34). This completes the proof of the equivalence of Eq. (11.229) and Eq. (11.230)
(or Eq. (4.52) and Eq. (4.53)).

11.3 Appendix C: Generalized thermodynamic potentials and Leg-

endre transformations

Natural thermodynamic variables of Fz( ~A) ≡ Fz(T, V, µ,~h; ~A) (4.44) are identical with those

of the thermodynamic grand potential Ω = Ω(T, V, µ,~h). The relation between Fz and Ω given
by Eqs. (4.47), i.e.,

Fz( ~A0(T, V, µ,~h);T, V, µ,~h) = Ω(T, V, µ,~h), (11.235)

is same as in the original Landau theory. Therefore Fz( ~A) corresponds to Ω(µ, T, η), Eq.
(146.3) of Ref. [148]. Nonetheless, within the original Landau approach, other generalized
thermodynamic potentials are also used, e.g. Φ(p, T, η), Eq. (143.1) of [148] (’Gibbs free

energy potential’), denoted here as G(T, p,N,~h; ~A). Because within the phenomenological ap-
proach of Landau, there exist no underlying microscopic mean-field model, one has a freedom
to choose those thermodynamic variables and the corresponding generalized thermodynamic
potential, which are the most convenient (or natural) for the considered problem. On the

other hand, within the present approach, Fz(T, V, µ,~h; ~A), appearing as the result of the MF
grand-canonical description, has a privileged status. Similarly, free energy Landau potential
Fz(T, V,~h; ~A) would be a natural choice for the canonical ensemble, in a situation when the
average particle number does not appear as one of the mean fields, e.g. for the MF model of
the spin system analyzed in Section 12.3.

If we want to define here the analog of Φ(p, T ; η) of Landau, we have to make Legendre

transformations V ↔ p, µ ↔ N leading from {T, V, µ,~h} to the new set of independent thermo-

dynamic variables, i.e., {T, p,N,~h}. However, in order to do that, we have to construct first the
equilibrium thermodynamic potentials along the lines of Subsection 4.6. Both p and N become
then functions of T, V, µ, and ~h, given by the respective derivatives of Ω = Ω(T, V, µ,~h), cf. Eqs.

(4.48). By inverting those relations, we obtain V (T, p,N,~h) and µ(T, p,N,~h). Consequently,

G(T, p,N,~h; ~A) should be defined as

G(T, p,N,~h; ~A) = Fz(T, V (T, p,N,~h), µ(T, p,N,~h),~h; ~A) + pV + µN. (11.236)
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In the above, N denotes the equilibrium value of the average particle number, and not the
corresponding mean field A1 = 〈N̂〉z. In analogy to Eq. (11.235), we have

G(T, p,N,~h; ~AG
0 (T, p,N,~h)) = G(T, p,N,~h). (11.237)

Superscript G indicates that now ~AG
0 depend on T, p,N,~h, and not on T, V, µ,~h. Even if within

the present approach, G(T, p,N,~h; ~A) appears in a less natural manner than Fz(T, V, µ,~h; ~A),
it may be more convenient in a situation, when the average particle number and pressure are
fixed. If needed, it may be constructed as discussed above.

11.4 Appendix D: Renormalization scheme of Fukushima

Below we provide a more detailed analysis of the RS proposed by Fukushima in Ref. [76].
Within this formalism, Gutzwiller projection operator (projector) P̂ (6.128) is replaced by the
following correlation operator (correlator)57

P̂C = P̂ (F ) =
∏

i

(λF
i↑)

n̂
i↑
2 (λF

i↓)
n̂

i↓
2 (1 − n̂i↑n̂i↓). (11.238)

As a consequence, the correlated trial state (7.140) is replaced by |Ψ〉 (7.141) of the form

|Ψ〉 = P̂ (F )(λF
i↑, λ

F
i↓)|Ψ0〉 =

∏

i

(λF
i↑)

n̂
i↑
2 (λF

i↓)
n̂

i↓
2 (1 − n̂i↑n̂i↓)|Ψ0〉. (11.239)

With the help of |Ψ〉 (11.239) we define the correlated average (Eq. (7.144)) as

〈Ô〉C ≡ 〈Ψ|Ô|Ψ〉
〈Ψ|Ψ〉 =

〈Ψ0|P̂CÔP̂C |Ψ0〉
〈Ψ0|P̂ 2

C |Ψ0〉
. (11.240)

P̂ (F ) differs from P̂ (6.128) by presence of the fugacity factors58 λF
iσ, see also Eqs. (7.141). Such

modification of the standard Gutzwiller projector allows us to enforce the following condition:
the uncorrelated average number of electrons on each lattice site i and each spin direction σ is
equal to the corresponding correlated average, computed within the approximation of Ref. [76]
(see below). Explicitly,

〈n̂iσ〉app
C = 〈n̂iσ〉. (11.241)

There exist few variants of the formalism of Ref. [76]. The condition (11.241) refers to the
’local spin-dependent constraint’. Alternatively, one may choose the ’local spin-independent
constraint’. In such case, we replace n̂iσ in (11.241) by n̂i ≡ n̂i↑ + n̂i↓. Consequently, then
we have only one fugacity factor λF

i for each site. There exist also the corresponding ’global’,
i.e., site-independent variants of both ’spin-dependent’ and ’spin-independent’ constraint, i.e.,
with n̂iσ (n̂i) in (11.241) replaced by

∑

i n̂iσ = N̂σ and
∑

i n̂i = N̂ , respectively. However, for
non-magnetic (ni↑ = ni↓) and homogeneous (niσ = njσ) solutions analyzed in this Thesis, all
the above mentioned variants of the RS of Fukushima are equivalent. Therefore, in our case,
the condition (11.241) reduces to

〈N̂〉app
C = 〈N̂〉 = N. (11.242)

Note, that when |Ψ0〉 is an eigenstate of N̂ , projection does not change N , because [N̂, P̂ ] = 0.
However, this is not the case for |Ψ0〉 of the BCS form, because the latter is an eigenstate of

57All formulas in this Appendix are provided by using our own notation, which differs from that of the original
reference [76].

58Please not confuse those quantities with the Lagrange multipliers introduced within our formalism.
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the Hamiltonian which does not commute with N̂ , [N̂ , ĤBCS] 6= 0. Also, without the fugacity

factors λF
iσ in the projector, due to the approximation used to compute W ( ~A) (7.167), we would

usually have 〈N̂〉app
C 6= 〈N̂〉 even if |Ψ0〉 appearing in |Ψ〉 = P̂ (F )|Ψ0〉 (11.239) was an eigenstate

of N̂ .59 Coming back to Eq. (11.241), we can rewrite it in a form

〈n̂iσ〉C =

〈

λF
iσn̂iσ

(

1 − n̂iσ̄

)
∏

l 6=i

(

P̂
(F )
l

)2〉

〈
∏

l

(

P̂
(F )
l

)2〉 (11.243)

Approximate way of computing (11.243) consist of neglecting all inter-site contractions. This
yields

〈n̂iσ〉C ≈ 〈n̂iσ〉app
C =

λF
iσ

(

1 − niσ̄

)

Ξi
· niσ, (11.244)

where

Ξi =
〈(

P̂
(F )
i

)2〉
= (1 − ni↑)(1 − ni↓) + λF

i↑ni↑(1 − ni↓) + λF
i↓ni↓(1 − ni↑). (11.245)

By solving (11.244) and (11.245) we obtain

λF
iσ =

1 − niσ

1 − ni
, Ξi =

(1 − ni↑)(1 − ni↓)

1 − ni
. (11.246)

Now, using the above results, one can compute various correlated averages (11.240). Note, that
the method of Ref. [76] can be relatively easily applied to the full form of the t-J Hamiltonian
(6.126), as well as to the more complicated symmetry-broken states. Here, we will not provide
details of this procedure, the Reader is encouraged to consult the original paper. Formula for
〈Ĥ3〉app

C , not appearing in the latter paper, is too lengthy to be reproduced here, but for the
special (homogeneous, nonmagnetic) case it is provided in Section 9 (Eq. (9.210)). Also, the
average of the full kinetic exchange term, Eq. (9.209) is a special case of the general expression
for 〈Ŝi · Ŝj − 1

4
n̂in̂j〉app

C . As an example, we invoke only the formula for the renormalization
hopping amplitude

〈c†iσcjσ〉app
C =

√

1 − ni

1 − niσ

√

1 − nj

1 − njσ

(

χijσ − χijσ̄
χijσχijσ̄ + ∆ji∆ij

(1 − niσ̄)(1 − njσ̄)

)

, (11.247)

provided already in Subsection 7.5. Please note, that all formulas in Ref. [76] are provided up
to the second order in the inter-site contractions χ∗

ij , ∆∗
ij , and the estimated corrections are of

order of |χijσ|4 and |∆ij |4. Therefore, all the conditions of the form (11.241) are fulfilled to the
same accuracy. However, the results of Ref. [76] may be, at least in principle, systematically
extended beyond the second order in χij and ∆ij .

59Let us note here, that the condition (11.242) can be also enforced in an alternative manner, cf. [220, 221]
and References therein.
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12 Supplements

12.1 Supplement A: Thermodynamic fluctuations and internal lim-
itations of mean-field description

Below we provide the Reader with the analysis of thermodynamic fluctuations. This issue has
been omitted in the main text, as being weakly related to the main scope of the present Thesis.
The problem is also quite nontrivial, due to the fact, the within the present approach two kinds
of fluctuations are present. On the other hand, even incomplete analysis of the non-equilibrium
situation allows us to establish natural internal limitations on the validity of the mean-field
approach.

12.1.1 Probability of a non-equilibrium MF configuration

Following Landau [148], (see also [133]), we assume that the probability that our system remains

in a state characterized by a mean-field configuration ~A, for a given T, V, µ, and ~h is given by

w(T, V, µ,~h; ~A) ≡ w( ~A) ∼ exp
(

−β∆ΩL(T, V, µ,~h; ~A)
)

. (12.248)

After Landau, by ∆ΩL(T, V, µ; ~A) we denote minimum work required to bring the system from
~A0 to ~A in a reversible manner and assuming constant T , V , µ and external field(s) ~h. In what
follows, it we will be shown that

∆ΩL(T, V, µ,~h; ~A) ≡ Fz(T, V, µ,~h; ~A) − Fz(T, V, µ,~h; ~A0), (12.249)

and, consequently that
w( ~A) ∼ exp

(

− βFz(T, V, µ,~h; ~A)
)

. (12.250)

In order to that, we make use of the results of Ref. [222].60 It will be shown, that Fz( ~A) may

be identified with the ’non-equilibrium grand potential’, Ωn( ~A). To define the latter quantity,

we start from a stable equilibrium situation characterized by ~A = ~A0 and fixed T , V , µ and ~h.
If we want to deal with a reversible process, i.e., the sequence of equilibrium states, we must
introduce additional, external forces. On the technical level, it may be realized by introducing
additional ’source’ terms of the form (−∑s ζsÂs), which are added to the MF Hamiltonian

Ĥz( ~A) (4.42). We define also

Ψ( ~A) ≡ −β−1 ln Tr
[

exp
(

− β(Ĥz( ~A) −
∑

s

ζsÂs − µN̂)
)]

. (12.251)

For each ~A, values of the ’source fields’ ζs = ζs( ~A) will be determined from the condition, that
~A is an equilibrium mean-field configuration in the presence of those additional forces, i.e., that
∇AΨ( ~A) = 0. Then Ψ( ~A) (12.251) becomes a corresponding equilibrium grand potential for ~A.

Next, following Ref. [222], we define the non-equilibrium grand potential Ωn( ~A) as

Ωn( ~A) ≡ Ψ( ~A) − Uζ = Ψ( ~A) +
∑

s

ζsAs. (12.252)

In the above, Uζ = 〈−∑s ζsÂs〉z = −∑s ζsAs is the potential energy of the additional force

fields. To show that indeed Fz( ~A) is identical to Ωn( ~A), we have to invoke the results of

60Although in Ref. [222] the non-mean-field case is analyzed, and the free energy is used instead of a grand
potential, we follow closely the original reasoning of Leontovich and adapt it for the present purposes.
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Subsection 4.8. Namely, after the self-consistency equations (4.41) are solved for each ~A,

MF Hamiltonians Ĥz( ~A) and Ĥz( ~A) −∑s ζs(
~A)Âs belong to the same universality class, and

therefore differ only by a constant term
∑

s ζs(
~A)As. Indeed, in such situation, for each ~A, value

of λs appearing in Ĥz( ~A) is equal to the value of (λs+ζs ≡ λ̃ζ
s) appearing in Ĥz( ~A)−∑s ζs(

~A)Âs.
We obtain a desired result due to obvious relation

Ĥz( ~A) −
∑

s

ζs( ~A)Âs = Ĥ( ~A) −
∑

s

λ̃ζ
s(
~A)
(

Âs −As

)

+
∑

s

ζs( ~A)As. (12.253)

Consequently, for each ~A, also the corresponding functionals Fz( ~A) (4.44) and Ψ( ~A) (12.251)

differ only by the term
∑

s ζsAs, i.e., Ψ( ~A) = Fz( ~A) −∑s ζsAs. Therefore, from (12.252) it

follows that Fz( ~A) = Ωn( ~A) and Ωn( ~A) − Fz(T, V, µ; ~A0) is equal to ∆ΩL(T, V, µ; ~A), as in

[148]. This proves Eq. (12.249). In that way we have argued, that Fz( ~A), defined for a given
microscopic mean-field model according to Eq. (4.44), may be consistently interpreted as a
Landau potential.

12.1.2 ’Classical’ and ’quantum’ probability distributions

Invoking (12.248) or (12.250), we may define

p( ~A ≤ ~A ≤ ~A+ d ~A) ≡ ϕ( ~A)d ~A, ϕ( ~A) = N−1 exp(−βFz( ~A)). (12.254)

~A is a random variable associated with ~A, and N is the normalization constant. In result, we
deal with two entirely different probability distributions. The first is given for each ~A by ρ̂z( ~A).
It yields a (conditional) probability of finding a system in a quantum state |i〉 provided that

values of the classical parameters are equal ~A (therefore, strictly speaking, we should write

|i( ~A)〉 instead of |i〉). The second probability distribution is ϕ( ~A) defined by (12.254), and
related to the probability of a particular value of each of the ’classical’ quantities A1, . . . , AM .
The latter variables may be regarded as constituting some kind of a ’classical phase space’.

12.1.3 Degenerate minima of Fz( ~A)

In the absence of an external, symmetry breaking field ~h (i.e., real magnetic field), ϕ( ~A) (12.254)
is invariant with respect to the allowed symmetry transformations of the mean fields (order
parameters), exactly as in the original Landau approach. However, in the present case the

symmetry of ϕ( ~A) is inherited from microscopic MF Hamiltonian Ĥz( ~A). Namely, two micro-

states, |i( ~A′)〉 and |i( ~A′′)〉 with ~A′ and ~A′′ related by symmetry transformations (e.g. with

As for ~A′ and −As for ~A′′ if Fz( ~A) is even with respect to As), enter the corresponding par-

tition functions Zz( ~A′) and Zz( ~A′′)(4.42) with exactly the same weight. Consequently, we

have Zz( ~A′) = Zz( ~A′′) and Fz( ~A
′) = Fz( ~A′′). This may be also interpreted from the point

of view of MaxEnt inference. Namely, if Ĥz( ~A′) = Ĥz( ~A
′′), no prior information about the

symmetry breaking is encoded in Sλ, hence ~A′ is equivalent to ~A′′ and the resulting probability
distributions p1( ~A′), . . . , pDH

( ~A′) and p1( ~A
′′), . . . , pDH

( ~A′′) are identical. As a consequence, the
’classical’ average values of some of the mean-fields, which could be defined as

As ≡
∫

DA

Asϕ( ~A)d ~A (12.255)

obtained using ϕ( ~A) are equal zero. This feature is obviously connected to the fact, that
the symmetry should be explicitly broken before any classical fluctuations around the equilib-
rium situation can be considered - classical situation corresponds to already broken symmetry.
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Therefore, we have to replace ϕ( ~A) by some other, asymmetric function, ϕ( ~A) → ϕ̃( ~A). Unfor-
tunately, in the general case there is no obvious prescription how to achieve this. One possible
way is to apply Gaussian approximation to ϕ( ~A) in the vicinity of one of the equivalent equi-

librium solutions, i.e., ~A = ~A0. Under certain conditions this step is legitimate, as discussed
below. On the other hand, we may argue that if other regions of DA are also characterized
by large values of ϕ( ~A) (i.e., points in the vicinity of other degenerate minima of Fz( ~A)), they
are separated by very large energy barriers, and hence practically inaccessible for the system
characterized by ~A = ~A0.

This reminds us, that the problem of degenerate states, characterized by the same values of
(generalized) thermodynamic potentials and leading to vanishing averages, is present not only in
non-MF statistical physics, but also within the MF treatment, where it is only somehow ’swept
under the carpet’. Obviously, this is not only the property of the microscopic MF models, it is
also present in the Landau theory.

12.1.4 Dual nature of fluctuations

Having both ρ̂z( ~A) and ϕ( ~A) present in our formalism, we may consider two distinct kinds
of fluctuations. Apart from the above mentioned ’classical’, there appear also ’quantum’ fluc-
tuations. The magnitude of the former is proportional to second moments of ϕ̃( ~A), i.e., to

AsAt−As ·At. For a given ~A, the magnitude of the latter is proportional to Tr[(Âs−As)
2ρ̂z( ~A)].

It turns out, than under certain assumptions about the spatial dependence of the mean-fields,
this dual picture becomes simpler in the thermodynamic (Λ → ∞) limit.

12.1.5 Classical fluctuations: some definitions and notation

To proceed further, we have to analyze a dependence of Fz( ~A) on Λ, in particular in the Λ → ∞
limit. To this end, we have to assume something about the Λ-dependence of a number of mean-
fields M . We have to distinguish two situations; first, M(Λ) = const, and second, when M(Λ)

depends non-trivially on Λ. In the latter case we do not have one function Fz( ~A), but rather

a family of such functions, F (Λ)
z (A1, . . . , AM(Λ)), labeled by Λ.

Within a general notation used up to this point, for s 6= s′, As and As′ may correspond both
to different physical quantities, or to different component of some vector quantity, or finally
to values of the same scalar quantity (or component of the vector) defined on different lattice
sites. For the purpose of the present discussion it is necessary to label the mean-fields in a more
precise manner, which allows to take their spatial dependence into account explicitly. Without
the loss of generality we consider two-dimensional rectangular lattice.

Let our lattice be a rectangle of Λ = ΛxΛy sites. We divide it into NB = NBxNBy blocks of
nB = nBxnBy sites each, hence Λ = NBnB. By lx (ly) we denote the lattice constant, whereas
by Lx (Ly) the length of a side of each block along the x (y) direction, respectively. Therefore
we have Lx = nBxlx and similarly for y-direction. It is now convenient to label each lattice site
by a double vector index ~I = (~R,~r), where ~R is a ’super-lattice’ vector of a given block, and ~r

labels sites within each such block. Therefore, ~R + ~r is a position vector of a given lattice site
labeled by ~I. We also have ~r ≡ kxlxx̂ + kyly ŷ, ~R ≡ KxLxx̂ + KyLyŷ, where 0 ≤ kx ≤ nBx and
0 ≤ Kx ≤ NBx and analogously for y direction (by x̂ (ŷ) we denote the respective unit vectors).
Note, that we usually assume periodic boundary conditions. Now we may write the mean-field
index as s = (q, ~I) = (q, (~R,~r)) where q = 1, . . . , NQ labels different physical quantities (or

components of vector quantities) and ~I is a lattice - site index introduced above.
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12.1.6 Constant number of mean-fields

First, let us consider the case M(Λ) = const. Additionally, we assume that our system is

translationally invariant with respect to the ’super-lattice’ vectors ~R, i.e., the corresponding
sites in different blocks (i.e., having the same ~r) are equivalent. This implies, that the number of
independent MF variables M is bounded, M ≤ NQnB (some mean-fields may be characterized
by higher spatial symmetry then others). In other words, as a consequence of the constant value
of M there exists an exact long-range order in our system. At least those sites are perfectly
correlated, which are connected by the super-lattice vector, i.e., for any Kx and Ky we have

a(q, ~R,~r) = a(q, ~R +KxLxx̂ +KyLy ŷ, ~r) ≡ a(q, ~r). (12.256)

In above, we used ’a’ instead of ’A’ to stress, that a(q, ~R,~r) quantities are local, i.e., defined
on a particular site. Note that the condition (12.256) introduces the ’infrared cutoff’ in our
model, apart from the ’ultraviolet cutoff’ naturally appearing in any lattice model. Moreover,
it is convenient to define the following global mean-field variables as

A(q, ~r) =
∑

~R

a(q, ~R,~r) = NBa(q, ~r) =
Λ

nB
a(q, ~r). (12.257)

If we re-scale the lattice size by a factor γ, i.e., Λ → γΛ, we have indeed

a(q, ~R,~r) → a(q, ~R,~r), A(q, ~r) → γA(q, ~r). (12.258)

Mean-fields A(q, ~r) given by (12.257), which are exactly extensive from definition, will be called
spatially periodic.

Now let us fix value of each A(q, ~r), and re-scale the lattice as in (12.258). For finite Λ,

Fz( ~A) is usually not strictly extensive. For example, for free-fermion models, by increasing
the volume we also change the periodic boundary conditions, hence the allowed values of the
wave vector. Consequently also the value of Fz( ~A) per site is altered. However, usually this
departure from extensive behavior is expected to be small (presumably of order 1/Λ) and vanish
for Λ → ∞. Thus we may write

Fz( ~A; γΛ) ≈ γFz( ~A; Λ), lim
Λ→∞

(

Fz( ~A; γΛ)

Fz( ~A; Λ)

)

= γ (12.259)

with the equality in the thermodynamic limit. As a consequence, in particular we expect
the same behavior for ~A = ~A0, i.e., for the equilibrium values of mean-fields. Therefore, in
the Λ → ∞ limit, thermodynamic potentials (i.e., grand potential Ω, as defined in the next
Section) should become extensive quantities.

Obviously, spatial dependence of the equilibrium values of mean-fields may be character-
ized by a higher translational (or rotational) symmetry than we initially assumed, with the
homogeneous solution as a limiting case. Nonetheless, the symmetry-breaking patterns within
each block may be also quite complicated, as those encountered for stripe phases (cf. e.g. Refs.
[73, 75, 158]) or valence-bond solid phase [78]. Note, that not only in the latter case, but also
even for a simple Neel antiferromagnetic state, the order parameter changes considerably on
the atomic length scale.

If the condition (12.259) is obeyed, from (12.257) and (12.258) it follows that for the equi-
librium (subscript 0) values of the extensive (global) mean-fields we have

lim
Λ→∞

Λ−1A(q, ~r)0 = lim
Λ→∞

1

nB
a(q, ~r)0 > 0. (12.260)
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Now we are in a position to analyze classical fluctuations of those mean-fields, which are char-
acterized by the specific periodic spatial dependence defined by (12.256). First we have to de-

termine the actual equilibrium values of mean fields, ~A = ~A0. We define fz( ~A) ≡ Fz( ~A)/Λ. For

large values of Λ, in most cases fz( ~A) should be practically Λ-independent (cf. Eq. (12.259)).

Then, in order to obtain a Gaussian approximation for ϕ( ~A) → ϕ̃( ~A) ≈ ϕ( ~A)G, we may expand

fz( ~A) up to the second order in the components of ~A− ~A0 around ~A0. This yields

ϕG( ~A) = N−1
G exp

(

− βΛ
{

fz( ~A0) +
1

2

(

~A− ~A0

)TM( ~A0)
(

~A− ~A0

)}

)

. (12.261)

In above, NG is the normalization constant, given by

NG =

∫

DA

e−βΛ
{

fz( ~A0)+
1
2

(

~A− ~A0

)T

M( ~A0)
(

~A− ~A0

)}

d ~A. (12.262)

By M( ~A) we denote matrix of the second derivatives of fz( ~A), i.e.,

(

M( ~A)
)

tw
=
∂2fz( ~A)

∂At∂Aw
. (12.263)

Obviously, for the true equilibrium, M( ~A0) should be positive-definite. Then, for large Λ, it is
legitimate to extend the integration on the r.h.s. of (12.262) behind DA, including unphysical

values of ~A. This is allowed as long as such ~A have a vanishing weight, and then the mul-
tiple integral (12.262) can be easily computed. In the Λ → ∞ limit, regardless the value of

temperature, ϕG( ~A) approaches delta distribution centered at ~A0. Consequently, the second

(and higher) moments of ϕG( ~A) vanish for large Λ, and the ’classical’ fluctuations of order
parameters could be entirely neglected. This is also the necessary condition for the validity of
the equilibrium description, constructed in Subsection 4.6. In other words, apart from the close
vicinity of each of the phase transition points, those ~A which may occur with non-negligible
probability, are practically indistinguishable from ~A0. Other minima, either local or global, are
assumed to be inaccessible due to very large energy barriers separating them. On the other
hand, near the transition points (As0 ≈ 0), Gaussian approximation cannot be valid, and we
encounter all the problems appearing in the original Landau approach.

Let us point out once more, that the above conclusions are valid, provided that the condition
(12.256) is fulfilled. This, however, is equivalent to the introduction of the infrared cutoff in
our model ’by hand’.

12.1.7 Spatial dependence of mean-fields: general case

Now let us consider a general situation, i.e., when the value of (at least) one of the mean-fields
on each site is allowed to be an independent variable. Consequently, we have M ∼ Λ, and some
of the conclusions drawn in the previous Sub-subsection for the case of spatially periodic mean-
field configurations may be no longer valid now. In the present situation, (12.256) does not
hold and fluctuations of arbitrary long-wavelength may be present in the system. Consequently,
there may be either no true long-range order, or it may be essentially weakened.

When considering a particular equilibrium MF configuration ~A = ~A0, we have to estimate
its weight relative to the non-equilibrium ( ~A 6= ~A0) configurations. In other words, for a given
MF model, we have to investigate the influence of classical fluctuations of the mean-fields
on the equilibrium situation. This may depend strongly on e.g. the lattice geometry, value of
external fields or temperature, but obviously also on the particular MF Hamiltonian. Therefore,
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below we can provide only some qualitative analysis.61 Still, it seems that there are two main
possibilities.

First, if only those MF configurations have a non-negligible weight, which are practically
indistinguishable from the equilibrium configuration. Let us introduce some vector norm | ~A|
(its explicit form is not required here) in order to quantify the notion of distance between
different mean-field configurations. Let ε be such a small number, than we consider two spatial
mean-field configurations as practically indistinguishable62 if

| ~A− ~A0| < εmax(| ~A0|, | ~A|) (12.264)

Then, for the situation considered here, the following condition must be satisfied

| ~A− ~A0| ≥ ε · max(| ~A0|, | ~A|) =⇒ Fz( ~A) ≫ Fz( ~A0) ⇔ ϕ̃( ~A) ≪ ϕ̃( ~A0). (12.265)

This means that ϕ̃( ~A) have to be strongly peaked at ~A = ~A0. However, one may argue, that
the above condition alone is not sufficient for the equilibrium situation to be well-defined, i.e.,
not destroyed by the classical fluctuations. It may seem more natural to require much stronger
condition, namely, that

∫

DA\K( ~A0,R( ~A0))

ϕ̃( ~A)d ~A ≪
∫

K( ~A0,R( ~A0))

ϕ̃( ~A)d ~A ∼ 1, (12.266)

with K( ~A0, R( ~A0)) ≡ { ~A : | ~A − ~A0| = R( ~A0), where R( ~A0) is defined as follows: the MF

configurations are macroscopically indistinguishable if | ~A − ~A0| < R( ~A0). Only in such case

we deal with a practically single, well defined value of ~A. This is a necessary condition for a
validity of the MF description.

Apparently, (12.266) have no precise meaning unless we specify the ϕ̃( ~A) function. We

will not comment here on the problem of construction of ϕ̃( ~A) from the original probability

distribution ϕ( ~A) (12.254). In the previous sub-subsection, for M = const, ϕ̃( ~A) has been

constructed in the form of a Gaussian approximation, ϕ̃( ~A) = ϕG( ~A) (12.261).

Obviously, the condition (12.266) cannot be satisfied if we replace ϕ̃( ~A) by ϕ( ~A). For-
tunately, even if only a weaker condition (12.265) is satisfied, we may once again invoke the

argument, that values of ~A, in the vicinity of other degenerate minima of Fz( ~A)) are practically

inaccessible due to large energy barriers. Then, ϕ( ~A) may be replaced by ϕ̃( ~A) of a Gaussian
form, even if the reasoning leading to Eq. (12.261) can no longer be applied now.

Summarizing, we may hope, that for any possible reasonable form ϕ̃( ~A) (not necessarily
a Gaussian), obeying (12.265) the situation is qualitatively similar to that with M = const
and spatially periodic mean-fields, i.e., the equilibrium situation is stable against classical
fluctuations. Note, that from Eq. (12.250) it follows, that for a given model, the above behavior
is more likely to take place at lower temperatures.

One may argue that we probably should average the MF-configurations over many sites
within some ’coarse-graining’ procedure (i.e., by introducing block variables in analogy to the
methods of Renormalization Group theory). However, as already mentioned, within the present
formalism we are not allowed to average over classical field configurations. The averaging
procedure is performed only over the quantum, microscopic degrees of freedom, labeled by
eigenstates |i( ~A)〉 of the MF Hamiltonian.

If (12.266) or the weaker condition (12.265) is not satisfied, the mean-field theory breaks
down. In particular, these conditions are expected to be violated in the vicinity of the phase

61Some insight may be gained from the analysis of the MF Ising model, cf. Sec. 12.3.
62Obviously, the phrase ’practically indistinguishable’ is imprecise. In practice, value of ε depends e.g. on

the details of the experimental situation we try to describe using our formalism.
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transition points. Moreover, within the present formulation, there exist yet another natural lim-
itation of the MF approach, imposing additional restrictions for the allowed MF configurations.
This is analyzed in the next Sub-subsection.

12.1.8 Quantum fluctuations

Presence of ’quantum’ probability distribution given by ρ̂z( ~A) (4.42) allows us to look at the
internal consistency of the MF approach from yet another perspective. Namely, it seems that a
natural necessary condition for the validity of such semi-classical description is that quantum
fluctuations of observables Â1, . . . , ÂM are negligible. More precisely, for any Âs, we should
require that the quantum dispersion σ(Âs), i.e

σ(Âs) =

√

var(Âs) =

√

Tr[(Âs − As)2ρ̂z( ~A)], (12.267)

is small as compared to the expectation value of Âs. In other words, we are allowed to treat
mean-field variables as semi-classical quantities only for those points ~A ∈ DA, for which the
following condition

σ2
r(Âs) ≡

var(Âs)

(As)2
≪ 1, (12.268)

is satisfied (with As 6= 0). Therefore, (12.268) should be fulfilled at least in the vicinity of the

equilibrium solution, ~A = ~A0.
Similarly to the situation encountered in the case of ’classical’ fluctuations, the relative role

of quantum fluctuations, i.e., the behavior of the l.h.s. of (12.268) crucially depends on the
spatial configuration of mean-fields.

For M = const, σ2
r (Âs) should vanish in the Λ → ∞ limit as ∼ 1/Λ. This is expected to

hold for the most lattice mean-field models, under quite general assumptions, e.g finite range of
interactions. Note, that for a given value of ~A, this may be verified in a way essentially identical
to that for the non-MF models. Obviously, (12.268) can never be satisfied for As = 0, as well
as for finite, but small values of As, As ≈ 0 if Λ <∞. However, for nonzero, albeit small As we
always expect σ2

r(Âs) to eventually vanish in the thermodynamic Λ → ∞ limit. Therefore we
may expect that the ’macroscopic’ mean-fields obeying (12.258) are not destroyed by quantum
fluctuations, and for such mean-fields condition (12.268) is satisfied.

On the other hand, for the solutions characterized by an arbitrary spatial dependence of
mean-fields, σ2

r (Âs) may be of the order of unity or larger, regardless the value of Λ, and
even in the Λ → ∞ limit. An example is provided by MF Ising model, cf. Supplement
C, Sub-subsection 12.3.6. Nonetheless, we may expect, that arbitrary MF configuration ~A
is protected against quantum fluctuations as long as it does not depart to much from some
spatially-periodic mean-field configuration ~A(p) obeying (12.264). With the increasing | ~A− ~A(p)|,
quantum fluctuations of at least one mean-field may become pronounced. Eventually such
fluctuation may be of the same order of magnitude as |As − A

(p)
s |/| ~A(p)

s |.
Finally, in the connection with (12.268) we may invoke discussion provided in Chapter XII

of Ref. [148], where the conditions, under which physical quantity x may be assumed to behave
classically, are analyzed. Quantity x is assumed to have vanishing average value, x̄ = 0, and
this averaging procedure seems to correspond to our classical average, defined with the help of
ϕ( ~A). Thus, we may identify x with each of the quantities As−As0. Using arguments based on
the time-energy uncertainty principle, Landau and Lisfshitz arrive at the following condition
(Eq. (110.2) of [148])

T ≫ ~/τ, τ ≫ ~/T, (12.269)

with τ being a rate of change of x, i.e., ẋ ∼ x/τ . Clearly, if τ is finite, the temperature cannot
be too low. However, here due to conditions (4.18), we rather have τ = ∞. Therefore, it seems
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that arbitrary low temperature can be consistently treated within our approach. However, in
the present case, the criterion for the mean-field approach validity should be based not on the
condition (12.269), but rather on (12.267) and (12.268). Please note, that the condition (12.268)
is expected to be satisfied better at lower temperatures. This is because in the T → 0 limit,
quantum fluctuations usually decrease, whereas the magnitude of each of the order parameters
in equilibrium increases.

12.1.9 Fluctuations: summary and final remarks

Summarizing, for a given MF model, the values of the model parameters and thermodynamic
variables, the range of applicability of the MF formalism (i.e., its internal consistency) is deter-

mined by two factors. First, a particular MF configuration ~A may violate condition (12.265).
In such a situation the equilibrium is unstable against ’classical’ fluctuations. Second, for some
~A, ’quantum’ fluctuations may be so pronounced, that they invalidate the assumption of all
mean-fields being well-defined, static quantities. In other words, such MF configurations ~A are
destroyed by the quantum fluctuations.

However, quantum fluctuations should be negligible in the thermodynamic limit, if only
each of the mean-fields As obeys the condition (12.257). Then, each mean-field is well-defined

for large Λ and for arbitrary temperature T < T
(s)
c , except a close vicinity of the corresponding

phase transition point T = T
(s)
c . Also, we may expect that large values of the (macroscopic)

order parameters imply small influence of quantum fluctuations. Again, this may be observed on
the example of the MF Ising model of Sec. 12.3 and the spatial configurations of magnetization
which are close to the uniform, saturated configuration of order parameter.

Analysis of both classical and quantum fluctuations leads us to the following general conclu-
sion. Mean-field, semi-classical description used here works better at low temperatures. With
the increasing temperature, MF description is invalidated by the fluctuations of both classical
and quantum nature. This may be surprising at the first glance, because we usually associate
classical behavior with higher temperatures, and expect genuine quantum effects to appear at
lower temperatures. Nonetheless, the above conclusion is consistent with the previously invoked
remark made in Ref. [158], attributing the validity of MF description to nonzero value(s) of
order parameter(s). It is also consistent with the well-known tendency of the MF models to
overestimate the range of ordered phases (and hence the values of the corresponding critical
temperatures), which, in turn, is commonly attributed to the negligence of the thermodynamic
fluctuations.

12.2 Supplement B: Zero temperature limit of mean-field approach

12.2.1 Introductory remarks

Mean-field models are frequently solved at T = 0, without any reference to a finite-temperature
situation. Such analysis is usually based on the variational principle of quantum mechanics,
cf. e.g. [66, 69, 70, 71, 79, 85, 137]. Obviously, exactly at T = 0 we cannot use the MaxEnt
principle in the present formulation, i.e., based on the maximization of Sλ (4.14). However,
validity of this approach is restored at any T > 0 (β <∞). On the other hand, we need some
elements of MF quantum-mechanical description of pure states at T = 0 in order to construct a
finite-temperature mean-field approach, e.g. to justify statements concerning time evolution of
quantum states, which have been made in Subsection 4.3. Thus, for the sake of completeness,
below we provide a Reader with the particular formulation of the MF theory for T = 0.
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However, we also point out deficiencies of any zero - temperature MF approach. We argue,
that due to both technical and conceptual difficulties that are encountered, it is preferable to
study T = 0 situation as the T → 0 limit of finite-temperature case, i.e., using the MaxEnt-
based formalism of the previous Subsections. This point of view is also supported by the
observation, that for the most of the mean-field models of interest, the equilibrium values of
the MF variables depend very weakly on the temperature near T = 0. From the point of view
of numerical analysis, this is a convenient feature. On the other hand, this fact may indicate
limited applicability of the MF methods for the description of quantum phase transitions.

12.2.2 Assumptions

Similarly to the T > 0 case, we want to base our description of the system entirely on the
a priori given MF Hamiltonian Ĥ( ~A). Thus, we argue the self-consistency requirements as

expressed by Eqs. (4.8) for the appropriate form of ρ̂( ~A) should be fulfilled. Also, we assume
that the state of the system can be described by a state vector, i.e., it is a pure quantum state.
Then the third law of thermodynamics is automatically satisfied, as the von Neumann entropy
of the corresponding density operator is equal zero. Moreover, again, we consider only time-
independent situation. Construction of the non-trivially time-dependent MF formalism requires
separate analysis and is postponed for further studies. Consequently, any pure MF quantum
state we considered is an eigenstate of the MF Hamiltonian, or a coherent superposition of
degenerate eigenstates, characterized with the same value of energy. This ensures that the time
evolution of such quantum state is trivial.63

It seems natural to base the whole approach on the variational principle of quantum me-
chanics. It is well known, that for a non-MF Hamiltonian Ĥe, the time-independent Schrödinger
equation, Ĥe|Ψ〉 = E|Ψ〉 may be derived from the variational principle [223], namely by varying
the following functional

Φe(Ψ) = 〈Ψ|Ĥe − E|Ψ〉 (12.271)

with respect to 〈Ψ| (variation with respect to |Ψ〉 yield a conjugate equation). The normaliza-
tion constraint 〈Ψ|Ψ〉 = 1 is imposed by means of the Lagrange multiplier E, which becomes
equal to one of the eigenvalues of Ĥe.

At this point, we assume, that the same variational principle (after some necessary modifi-
cations, see below) may be also used in the context of the MF models, providing a convenient
way to describe time-independent, situation at T = 0.

12.2.3 Incomplete approach

In order to apply the variational principle based on (12.271) in the present situation, it seems
natural to introduce the following functional

Φ(Ψ, ~A) = 〈Ψ|Ĥ( ~A) − µN̂ |Ψ〉 −E〈Ψ|Ψ〉. (12.272)

To fix the average particle number 〈N̂〉 at the desired value, we have added the (−µN̂) term

to Ĥ( ~A). The presence of this term is usually unavoidable for the mean-field models, e.g. if

63In Subsection 4.3 we have assumed that time evolution of quantum states is given by Eq. (4.20). Exactly
as in the non-MF case, Eq. (4.20) follows from the time-dependent MF Schrödinger equation,

(Ĥ( ~A) − µN̂)|Ψ(t)〉 ≡ K̂( ~A,~λ)|Ψ〉 = i∂t|Ψ(t)〉, (12.270)

provided that K̂( ~A,~λ) does not depend explicitly on time, and that mean-fields and Lagrange multipliers are
time-independent. If the latter condition is not fulfilled, it remains unclear for us, if the time-dependent MF
Schrödinger equation supplemented only with the conditions As(t) = 〈Ψ(t)|Âs|Ψ(t)〉 is sufficient to describe
consistently the time evolution of the system.
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[Ĥ( ~A), N̂ ] 6= 0, or when 〈N̂〉z ≡ A1 is one of the mean-fields. If A1, . . . AM were not treated
as variational parameters, and their implicit dependence on |Ψ〉 was neglected for a moment,
(12.272) may be varied with respect to 〈Ψ|.64 This yields the following time-independent
Schrödinger equation

(Ĥ( ~A) − µN̂)|Ψ〉 ≡ K̂( ~A)|Ψ〉 = E|Ψ〉. (12.273)

By using Eq. (12.273), the ground state |Ψ〉 = |Ψ0〉 ≡ ˜|1〉 and corresponding ground state
energy Ẽ1 may be easily found. Optimal values of the mean-fields A1, . . . AM are then given
by At(sc) ≡ 〈Ψ0|Ât|Ψ0〉. This is in a full analogy with the finite-temperature case, where the

similar treatment led to the density operator of the apparently canonical form (4.6) with Ĥe

replaced by Ĥ( ~A). Again, at T = 0 such an approach seems to be incomplete, because the

implicit dependence of ~A on |Ψ〉 has been neglected. In other words, in contrast to the case of
a non-MF quantum mechanics, Schrödinger equation of the form (12.273) does not follow from
the variational principle.

12.2.4 The method of Lagrange multipliers

Consequently, we proceed still in a direct analogy with the analysis carried out in Subsections
4.3 and 4.4. We augment Ĥ( ~A) with the self-consistency preserving constraints, which allow
to treat A1, . . . As and 〈Ψ| as independent variables. This step, in turn, yields again the

MF Hamiltonian Ĥλ given by (4.15), which replaces Ĥ( ~A). Explicitly, the functional to be
minimized with respect to both 〈Ψ| and A1, . . . As reads now

Φλ(Ψ, ~A,~λ) = 〈Ψ|Ĥ( ~A) −
∑

s

λs(Âs − As) − µN̂ |Ψ〉 −E〈Ψ|Ψ〉. (12.274)

Varying (12.274) with respect to 〈Ψ| we obtain time-independent Schrödinger equation

K̂λ( ~A,~λ)|Ψ〉 = E|Ψ〉, (12.275)

with
K̂λ( ~A) ≡ Ĥ( ~A) −

∑

s

λs(Âs −As) − µN̂. (12.276)

We see, that indeed K̂λ( ~A,~λ) rather than Ĥ( ~A) or Ĥ( ~A) − µN̂ should be identified with the
proper MF Hamiltonian. Taking further the derivatives with respect to As and λs, we obtain

〈

Ψ

∣

∣

∣

∣

∣

(

∂Ĥ( ~A)

∂As
+ λs

)
∣

∣

∣

∣

∣

Ψ

〉

= 0, (12.277)

i.e., the T = 0 limit of Eqs. (4.30), as well as

〈Ψ|Âs|Ψ〉 − As ≡ 〈Âs〉Ψ − As = 0, (12.278)

corresponding to Eqs. (4.31). If additional variational parameters b1, . . . , bP of a non-MF
character are present, we minimize (12.274) also with respect to each bl. This yields

〈

Ψ

∣

∣

∣

∣

∣

(

∂Ĥ( ~A,~b)

∂bl

)
∣

∣

∣

∣

∣

Ψ

〉

= 0, (12.279)

corresponding to Eqs. (4.27). Solution of the initial problem is determined by Eqs. (12.275)-

(12.279), from which we obtain ~A = ~A0, ~λ = ~λ0, ~b = ~b0 and the ground state |Ψ〉 = |Ψ0〉 ≡ |1〉.
Still, below we provide the Reader with additional discussion and further remarks that are in
place at this point.

64By a derivative of Φλ(|Ψ〉, ~A,~λ) with respect to 〈Ψ| we understand, as usual, a vector of partial derivatives
of Φλ with respect to c∗l , where cl are the expansion coefficients of |Ψ〉, i.e., |Ψ〉 =

∑

l ci|l〉 in the basis of |l〉D1 .
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12.2.5 ~A,~λ - independent eigenstates of Ĥλ( ~A)

By solving only Eq. (12.275), we obtain eigenvalues Ei( ~A,~λ) and eigenvectors {|i( ~A,~λ)〉}DH

i=1 of

K̂λ( ~A). This remains in a complete analogy to the T > 0 case, where Eqs. (4.23) and (4.24)

have been used to obtain explicit ~A and ~λ - dependence of the density operator ρ̂λ( ~A,~λ) (4.29).
However, here we have to distinguish between the two situations. In general, the eigenbasis
of Ĥλ( ~A) may be non-trivially ~A or ~λ-dependent.65 Then, at least in principle, we should be

able to solve Eqs. (12.278) for each ~A and i, with |Ψ〉 = |i( ~A,~λ)〉, and we obtain λ = ~λi( ~A)
(note that Eqs. (12.278) may be regarded as a T → 0 limit of Eqs. (4.70)). Consequently, we

should be able to obtain DH functions E
(z)
i ( ~A) ≡ Ei( ~A,~λi( ~A)). We are mainly interested in the

~A-dependence of the ground-state energy, E
(z)
1 ( ~A), which seems to correspond to the ’classical

energy landscape’ of Ref. [157].

However, eigenstates of Ĥλ( ~A) may be also ~A,~λ - independent, e.g. this is the case if we

have [Ĥλ( ~A), Âs] = 0 for some s. In such case, ~λ does not appear on the l.h.s. site of (12.278),

and therefore the latter equations cannot be solved for ~λ. As a consequence, we cannot apply
the formal results of Subsection 4.8, and the existence of universality classes and equivalence
classes of MF Hamiltonians is obscured. Also, only discrete values of the mean fields, equal to
〈i|Âs|i〉, are permitted and the self-consistency conditions (4.8) are fulfilled automatically. A
discrete character of the mean fields is, however, unnatural.

Please note, that the calculus of variations and method of Lagrange multipliers are applica-
ble, and Eqs. (12.275)-(12.278) remain valid in any case, regardless the detailed form of ~A,~λ -

dependence of the eigenvectors of Ĥλ. This is true as long as Φλ(Ψ, ~A,~λ) is differentiable with
respect to all of its variables.

12.2.6 Non-analytical minima

Eqn. (12.277) provides a part of necessary conditions for the existence of the minimum of

Φλ(Ψ, ~A,~λ) (12.274) prior to the self-consistency constraints, provided that Φλ is differentiable
in the neighborhood of such minimum, i.e that the minimum lies in the interior of the domain
DA. This, however, is frequently not the case. True conditional minimum may lay on the
boundary of DA, and thus not correspond to the stationary point of Φλ(Ψ, ~A,~λ). In such case
we are forced to examine carefully the boundary of DA, but this may be difficult if we have to
rely only on the numerical analysis.

This may be understood as follows. At T = 0, minimum of the ground-state energy as a
function of ~A frequently corresponds to the minimal or maximal permitted value of at least one
of the mean fields A1, A2, . . . , AM . Clearly, such minimum is located at the boundary of DA.
For example, this is the case for some MF models describing ferro- or antiferromagnetism, where
the ground state may correspond to saturated magnetization with no spin-wave excitations. In
particular, this situation is present in the MF Ising model, analyzed in Subsection 12.3, but
possibly also in more complex MF models.

On the other hand, at T > 0 the entropic part of F favors thermally excited states. Con-
sequently, at nonzero temperature, minimum of F is no longer located on the boundary of DA
and its analytical character is restored. Then, Eq. (4.30), a finite-temperature counterpart of
(12.277), together with the remaining equations, yield a correct solution. In the language of
Landau theory, finite temperature restores the term ∼ φ4, where φ denotes an order parameter
in question. This is because for many microscopic MF models, the fourth-order term in the
expansion of F in powers of the order parameter As = φ is proportional to T (cf. Eq. (12.301)

65By this we understand that the expansion coefficients of each state |i( ~A,~λ)〉 in a discrete coordinate basis

(or in eigenbasis of any ~A,~λ - independent operator) depend in a nontrivial way on ~A,~λ.
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in Sec. 12.3)), i.e.,
F(φ) = F0 + A(T − Tc)φ

2 + TBφ4 +O(φ6) (12.280)

A < 0 and B > 0 are functions of other mean fields At, t 6= s. Above discussed feature of the
T = 0 analysis is very inconvenient from the point of view of numerical analysis. Therefore,
sometimes a finite-temperature MF formalism is introduced only in order to ensure better
convergence of the numerical procedures, and to avoid the ’open shell’ problem by replacing
step function by the smooth Fermi distribution at T > 0, [73, 74, 75, 78].

12.2.7 Excited states

Another problem arises, when within the zero-temperature MF formalism, excited states are to
be constructed. One may try to use again the variational principle based on (12.274). Then, the
k-th excited state may be obtained by minimization of (12.274) within the subspace orthogonal
to all previously found states of lower energy, i.e., |Ψ1〉, |Ψ2〉, . . . , |Ψk−1〉, where |Ψ1〉 denotes
the ground state (no degeneracy is assumed for simplicity). It can be realized by adding to
(12.274) k−1 additional constraints (again, to achieve this, the method of Lagrange multipliers
may be employed)

〈Ψk|Ψ1〉 = 〈Ψk|Ψ2〉 = . . . 〈Ψk|Ψk−1〉 = 0. (12.281)

However, then, in general, each excited state is characterized by different optimal values of
mean-fields ~A = ~A0i and Lagrange multipliers ~λ = ~λ0i. On the other hand, quantum states
characterized by different values of those semi-classical parameters are in fact eigenstates of
different MF Hamiltonians, moreover, they should be interpreted as states from different Hilbert
spaces, as discussed in Sub-subsection 4.11.2.

To avoid the above mentioned difficulty, one may use the ground-state values of the mean
fields ( ~A = ~A0), Lagrange multipliers (~λ = ~λ0), and the variational parameters of non-MF

character, (~b = ~b0), obtained from the minimization procedure given by Eqs. (12.275)-(12.278).

In such case the eigenbasis may be defined as |i〉 ≡ |i( ~A0, ~λ0)〉. This route corresponds to the
T → 0 limit of the T > 0 situation. Nonetheless, by doing so, we treat the ground and the
excited states in an asymmetric manner; for i = 2, . . . , DH we have 〈i|Âs|i〉 6= As0 = 〈1|Âs|1〉.

12.2.8 Summary: deficiencies of zero-temperature MF approach

Above we have mentioned several problems arising within the MF approach at T = 0. Note,
however, that none of them is present within the corresponding finite-temperature, MaxEnt-
based treatment. Namely, in the latter case, the equilibrium values of both ~A0 and ~λ0 are
determined collectively by all quantum states present in the partition function Zλ (4.29). This
is true even at lowest (albeit finite) temperatures, when the overwhelming contribution to Zλ

comes from the ground state.
If Ĥ( ~A) depends on 〈N̂〉 = A1 or if [Ĥ( ~A), N̂ ] 6= 0, the (−µN̂) term has to be introduced.

As a consequence, pure quantum states may depend on µ, similarity as in the T > 0 case.
It is, however, more natural to introduce µ in the context of a finite-temperature statistical-
mechanical description. Therefore, as long as analysis of the time evolution of mean-fields
is not required, T = 0 formulation of the MF formalism has no advantages over the finite-
temperature, MaxEnt-based treatment. The T → 0 limit of the latter provides a consistent
MF description of the equilibrium properties of the system at T = 0, and allows to avoid caveats
of the purely zero-temperature approach. Note also, that the variational principle used here,
i.e., minimization of (12.274) has been postulated in a direct analogy with the case of a non-
MF description. However, in the case of the MF models, its deeper justification is provided
mainly by the fact, that results of this approach coincide with those of the MaxEnt-based
finite-temperature treatment in the T → 0 limit.
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12.3 Supplement C: Mean-field model of the spin system as an il-

lustrative example for application of the MaxEnt-based varia-
tional approach

On the example of a simple MF treatment of the Heisenberg [190] and Ising [133, 167] models,
we illustrate here the method developed in Part II.

Within the simplest Hartree approximation for the interaction term, both models lead to
the same MF Hamiltonian. The latter describes an ensemble of independent spins, interacting
only with an effective field. Therefore, this approach is essentially a kind of a molecular field
approximation [134, 135]. Interestingly, the results obtained here are formally identical to
those of the Bragg-Williams approximation (BWA) [152] for the Ising model. Consequently,
our method provides alternative derivation of BWA.

Due to the simplicity of the MF model analyzed here, for most of the quantities of interest
explicit analytical formulas become available. This gives us a better insight into the structure
of the present formalism and reveals some of its general features.

12.3.1 Construction of mean-field Hamiltonian

Consider a quantum Heisenberg model, defined on DS-dimensional cubic lattice with Λ sites
by the following Hamiltonian

ĤH =
∑

〈ij〉
Jij
~̂Si · ~̂Sj − ~Bi · ~̂Si. (12.282)

In above, Jij is an exchange integral, ~Bi is an external magnetic field vector on the i-th lattice

site, and ~̂Si is a vector of Pauli matrices, ~̂Si = (σ̂x
i , σ̂

y
i , σ̂

z
i ). The constants ~

2/4 and ~/2 have

been incorporated in the definitions of Jij and ~Bi, respectively. Next, we apply the Hartree-type
MF decoupling (4.107) to (12.282). This yields

ĤH → Ĥ =
∑

〈ij〉
Jij

(

~̂Si · 〈 ~̂Sj〉 + 〈 ~̂Si〉 · ~̂Sj − c〈 ~̂Si〉 · 〈 ~̂Sj〉
)

− ~Bi · ~̂Si. (12.283)

To illustrate certain properties of our approach, we have introduced c ∈ [0, 1]; c = 1 corresponds
to standard Hartree approximation (4.107). Next, we supplement Ĥ with appropriate constraint
terms and obtain MF Hamiltonian Ĥλ (4.15) of the form

Ĥλ = Ĥ −
∑

i

~λi · (~Si − 〈~Si〉). (12.284)

Lagrange multipliers ~λi have a natural interpretation of the local molecular magnetic fields.
We take Jij = −J < 0 for the nearest neighbors, and J = 0 otherwise. Also, ~Bi = Bẑ,

~λi = λẑ, and 〈 ~̂Si〉 = ~Si = mẑ, as we are interested in the simplest solution, which exhibits
full translational symmetry of the underlying lattice, and for which only z- components of
corresponding vector fields retain nonzero values. The sum over bonds is equal half of the sum
over sites,

∑

〈ij〉 = 1
2

∑

i,j(i), therefore summation over j(i) gives just z = 2d, the number of
nearest neighbors of a given site. All those assumptions and simplifications yield

Ĥλ = −
(

Jzm +B + λ
)

∑

i

σ̂z
i + Λ

(1

2
Jzcm2 + λm

)

. (12.285)

By such a brutal approximation we have reduced (12.282) to an effective Hamiltonian describing
the sum of decoupled spins, interacting with the combination of an applied external field and
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molecular fields. Obviously, the same result could be obtained without some intermediate steps,
if instead of (12.282), we chose as a starting point the Ising Hamiltonian,

ĤI =
∑

〈ij〉
Jijσ̂

z
i σ̂

z
j −

∑

i

Biσ̂
z
i . (12.286)

12.3.2 Free energy functional and equilibrium situation

It is a simple exercise to compute the generalized free energy potential (4.33) for the Hamiltonian
(12.285). We obtain

F(m,λ; β,B) = Λ
{Jz

2
cm2 + λm− β−1 ln[2 cosh

(

β(Jzm+B + λ)
)

]
}

. (12.287)

Using (12.287), we obtain equilibrium values of the magnetization (m = m0), and molecular
field (λ = λ0) by solving Eqs. (4.34), which in the present case read

∂F(m,λ)

∂λ
= Λ

{

m− tanh
(

β(Jzm+B + λ)
)}

= 0, (12.288)

∂F(m,λ)

∂m
= Λ

{

(Jzcm + λ) − Jz tanh
(

β(Jzm +B + λ)
)}

= 0. (12.289)

From (12.288) and (12.289) it follows that

λ0 = Jz(1 − c)m0, (12.290)

and, consequently, m0 is a solution of the following equation

m0 − tanh
(

β(Jz(2 − c)m0 +B)
)

= 0. (12.291)

λ0 can be also obtained using (4.30), i.e.,

λ0 = −
〈∂Ĥ

∂m

〉

m=m0

= −Jz(c − 1)m0, (12.292)

which is in agreement with Eq. (12.290). Clearly, for c = 1, λ0 = 0, as expected for HF type
of MF models (cf. discussion in Subsection 4.9). The critical temperature (Curie temperature)
Tc can be now evaluated in a standard manner [136], and for B = 0 we have

kBTc = (2 − c)Jz. (12.293)

For c = 0, Tc is two times larger then a standard MF value (obtained for (c = 1)), as without
subtraction of the ∼ m2 term we largely overestimate the magnetic interactions, which are
already severely overestimated (as compared to an exact solution) by the mean-field approxi-
mation (12.283).

12.3.3 Non-equilibrium situation

Let us consider now a non-equilibrium situation. From the self-consistency equation (12.288),
for m ∈ (−1, 1), we obtain

λ(m) = β−1artanh(m) − Jzm− B. (12.294)
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Therefore, Ĥz(m) = Ĥλ(m,λ(m)) (cf. Eq. (4.42) of Sec. 4.8) reads now

Ĥz(m) = −artanh(m)

β

∑

i

σ̂z
i + Λ

(Jz

2
(c− 2)m2 − Bm +m

artanh(m)

β

)

. (12.295)

From (12.295) we see, then when the requirements of self-consistency are fulfilled, the coupling
of observables (in the present case Ŝz

tot =
∑

i σ̂
z
i , the z-component of the total spin) to the mean

fields (m) apparently changes, as compared to the initial MF Hamiltonian

Ĥ(m) = Ĥλ(m,λ(m) = 0) = −
(

Jzm +B
)

∑

i

σ̂z
i +

Λ

2
Jzcm2, (12.296)

in which the self-consistency requirements are ignored. Note also, that although (12.295) is not
defined for m = ±1, appropriately defined limit β → ∞, m → ±1 of the β−1artanh(m) term
exists, as we will be discussed in what follows.

Landau free energy potential (cf. Eq. (4.44)), Fz(m) = F(m,λ(m)) may be now easily
constructed. After simple manipulations, making use of the following identities

cosh
(

artanh(m)
)

=
1√

1 −m2
, artanh(m) =

1

2
ln

(

1 +m

1 −m

)

, (12.297)

and defining

U(m) ≡ 〈Ĥλ〉 = 〈Ĥz〉 = 〈Ĥ〉 = Λ
(1

2
Jz(c− 2)m2 −Bm

)

, (12.298)

S(m) =
1 +m

2
ln

[

1 +m

2

]

+
1 −m

2
ln

[

1 −m

2

]

. (12.299)

we obtain
Fz(m) = U(m) − Λβ−1S(m). (12.300)

Remarkably, the above formula is identical to that obtained within Bragg - Williams approxi-
mation (BWA) for the Ising model [184]. However, our result is valid for arbitrary value of m
and Λ. Also, Stirling approximation has not been used explicitly66 to derive (12.300). In other
words, BWA respects the self-consistency somewhat ’by accident’, and only in the Λ → ∞ limit,
whereas within our method the self-consistency requirements are fulfilled by construction.

Landau free energy potential (12.300) has the following expansion in powers of m up to the
fourth order

Λ−1Fz(m) ≈ Jz

2
(c− 2)m2 − Bm+

1

2
β−1(m2 +

1

6
m4) − β−1 ln 2

= −kBT ln 2 +
1

2
kB(T − TL

c )m2 +
kBT

12
m4 − Bm. (12.301)

Here TL
c = −k−1

B (c − 2)Jz = Tc. For m → 0 the only remaining term is (−kBT ln 2), the
entropy of the paramagnetic state [184].

Noting that p± = (1 ± m)/2 are the probabilities of finding a value of any si equal to
±1, respectively, we recognize in S(m) (12.299) the binary entropy. This may be expected
for an independent-site model; in accordance with the general discussion in Section 4.8, the
von Neumann (or Shannon) entropy as a function of order parameter (here m) is completely
determined by the set of operators from which the Hamiltonian is constructed (Ŝz

tot =
∑

i σ̂
z
i in

the present case). On the other hand, the form of the internal energy function U(m) in (12.300)

66On the other hand, Stirling formula may be used to justify the form of the binary Shannon entropy, [110],
therefore it is implicitly present in our derivation.

125



is obtained simply by replacing operators in the MF Hamiltonians (either Ĥλ, Ĥz or Ĥ) by
their expectation values. This is possible due to the specific form of Ĥ (12.283) (again, please
consult Eq. (4.78) and a subsequent discussion of this point is Sec. (4.8)). Note, that the limit
m→ ±1 of (12.300) is well-defined, and then Fz(m) → U(m).Using Ĥ(m) = Ĥλ(m,λ(m) = 0),
one may define Fn(m) (4.46),

Fn(m) = Λ−1F(m,λ = 0) = −β−1 ln
(

Tr[exp(−βĤλ(m,λ(m) = 0))]
)

=
Jz

2
cm2 − β−1 ln[2 cosh

(

β(Jzm+B)
)

]. (12.302)

Clearly, (12.300) and (12.302) are not identical. Although F(m,λ = 0) may be used to obtain
the equilibrium value of magnetization (provided that we first put c = 1 in the Hamiltonian
(12.296) to give it the HF form (4.109)), Fn(m) (12.302) has no reasonable interpretation
for m 6= m0. Consequently, F(m,λ = 0) cannot be consistently identified with the Landau
potential, as discussed in Subsection 4.5.

12.3.4 Limit of zero temperature

In the β → ∞ (T → 0) limit, instead of looking for a minimum of Fz(m), one may directly
minimize the ground-state energy, U(m) = Λu(m) ≡ EG(m), i.e., the expectation value of the
MF Hamiltonian

EG(m) = 〈Ĥλ〉 = 〈Ĥz〉z = 〈Ĥ〉 = Λ
(1

2
Jz(c− 2)m2 −Bm

)

. (12.303)

The form of EG(m) may be inferred from Eq. (12.285), by assuming that the self-consistency
conditions are fulfilled, and then when computing the average, the operator Ŝz

tot is simply
replaced by its expectation value 〈Ŝz

tot〉 = Λm. Also, because [Ŝz
tot, Ĥλ] = 0, Λm must be an

eigenvalue of Ŝz
tot. Consequently, for B = 0 and finite, even Λ, the permitted values of m are

m =
±k
Λ
, k = −Λ,−Λ + 2, . . . ,Λ (12.304)

regardless the value of the molecular field λ. Note, that EG(m) (12.303) is well-defined for
m = ±1. Alternatively, for m 6= ±1, (12.303) may be obtained as β → ∞ limit of (12.300).
The same limit applied to (12.295) yields the Hamiltonian, which in each subspace spanned by
the eigenvectors of Ŝz

tot corresponding to the same eigenvalue Λm is proportional to the unit
matrix.

For B = 0, EG(m) has two equivalent minima at m = ±1. Those minima lay at the
boundary of the domain Dm = (−1, 1) and do not correspond to zeros of the derivative of
EG(m), (in the case when that the discreteness of the allowed values of magnetization may
be ignored and the calculus of variations can be applied in order to find extrema of EG(m)).
This is a simple example of a more general situation which may be encounter also in more
complex MF models, as discussed in Supplement B (Subsection 12.2). Note, that within the
finite-temperature treatment based on (12.300), for any nonzero T the analytical character of
the minima at m = m0, |m0| < 1 is restored.

If we restrict ourselves to the pure T = 0 situation, we do not need to know the equilibrium
value of λ = λ0, as we are limited to the eigenstates of Ĥ (or equivalently, Ĥλ). On the other
hand, assuming continuous dependence of λ0 on temperature, λ0(T ), λ0(0) can be found by
taking the limit of its finite-temperature value, given by (12.290)

λ0(T = 0) = lim
T→0

λ0(T ) ≡ lim
m0(T )→1

Jz(1 − c)m0 = Jz(1 − c). (12.305)
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We explicitly assumed, that the symmetry is broken such that a state with m0 = 1 is realized.
Also, from (12.294) and (12.305) we infer that

lim
m0(β)→1,β→∞

β−1arc tanh(m0) = Jz(2 − c) +B. (12.306)

12.3.5 Generalization to m-dependent exchange integral J

Within the present method we obtain self-consistent results for any form of the initial MF
Hamiltonian Ĥ, provided that the assumptions made in Subsection. 4.1 are fulfilled, i.e., Ĥ does
not depend explicitly on time t. Consequently, within a given subclass (here the independent-
site spin models), one may chose a particular MF Hamiltonian, which leads to results being in
the best achievable agreement with either the experimental results or predictions of the exact
models.

In the present case, let us consider the case of m - dependent exchange integral, J = J(m)
(for simplicity, full translational invariance has been assumed). We may also allow for the

dependence of J on parameters ~b, not being the expectation values of any operators, thus for
which self-consistency conditions are no demanded. With such a modification, the form of
the Hamiltonian Ĥ(m) (12.285), λ(m) (12.294), Ĥz(m) (12.295) as well as that of free energy
(12.287) remain the same (obviously, with J → J(m) ≡ J). However, the equations (12.289)
and (12.292) are modified according to

(Jzcm +
1

2
J ′zcm2 + λ) − z(J + J ′m) tanh

(

β(Jzm +B + λ)
)

= 0, (12.307)

λ0 = −
〈∂Ĥ

∂m

〉

m=m0

= Jz(1 − c)m0 +
1

2
J ′z(2 − c)m2

0, (12.308)

with J ′ = dJ/dm. The equilibrium value of magnetization is now given by

m0 = tanh
(

β
(

z(2 − c)(Jm0 +
1

2
J ′m2

0) +B
)

)

. (12.309)

Different forms of J(m) yield in general different values of transition temperature Tc as well as
other characteristics of the system. We will not discuss the choice of J(m) that leads to various
desired properties of the model, nor analyze the general requirements that J(m) should satisfy
as a function of m. Instead, below we quote an example. In Ref. [189], devoted to the problem
of magnetic ordering in rare-earth metals, the Bragg-Williams approximation is used, with

J(m) = m2
(

B0 + 2B1 cosα + 2(B2 − Cm2 cos(2α)
)

)

. (12.310)

In above, B0, B1, B2 are m-independent constants, and b1 = α is an additional variational
parameter. Note, that when solving such MF model, in contrast to Ref. [189] we are not forced
to drop out the quartic term in (12.310). In fact, within our approach, arbitrary form of J(m)
can be consistently analyzed.

12.3.6 General solution with non-uniform magnetization

We now relax the simplifying assumption of the full translational symmetry, which has been
used to derive the Hamiltonian (12.285). We search for the solution characterized by the site-
dependent magnitude of magnetization, but with the same quantization axis (z axis) for each
site. Instead of a single scalar order parameter m we have now Λ such variables, m1, m2, . . .mΛ,
the same number of the Lagrange multipliers, λ1, λ2, . . . λΛ, and values of the external magnetic
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field, B1, B2, . . . BΛ. Most steps proceed analogously as in the homogeneous case. Instead of
(12.285), the MF Hamiltonian augmented with the constraints reads now

Ĥλ =
∑

〈ij〉
Jij

(

σ̂z
imj + σ̂z

jmi − cmimj) −
∑

i

Biσ̂
z
i −

∑

i

λi

(

σ̂z
i −mi)

=
∑

i

(

∑

j

Jijmj −Bi − λi

)

σ̂z
i +

∑

i

(

λimi −
c

2

∑

j

mimj

)

. (12.311)

Having (12.311) at our disposal, we can easily find the explicit form of the generalized Landau
potential, F = F(m1, . . . , mΛ, λ1, . . . , λΛ; β,B1, . . . , BΛ),

F = − 1

β

∑

i

ln
[

2 cosh
(

β
(

∑

j

Jijmj − Bi − λi

)

)

]

+
∑

i

λimi −
c

2

∑

ij

mimj (12.312)

Equating the derivative with respect to λk to zero, we obtain

mk + tanh
(

β
(

∑

j

Jkjmj − Bk − λk

)

)

= 0, (12.313)

which may be easily solved for λk. Inserting the result back into (12.312) and making again
use of identities (12.297) we obtain Landau free energy potential

Fz =
(

1 − c

2

)

∑

ij

miJijmj −
∑

i

Bimi −
∑

i

β−1S(mi). (12.314)

Similarly to the mi = m case, S(mi) appearing in (12.314) has the form of the Shannon entropy,

S(mi) =
1 −mi

2
ln
(1 −mi

2

)

+
1 +mi

2
ln
(1 +mi

2

)

. (12.315)

Again, this particular form of S(mi) results from the single-site character of operators Ŝz
i

appearing in Ĥλ (12.311).
By equating the derivatives of (12.314) with respect to mk to zero, we obtain the set of

coupled, nonlinear equations, which are intractable in general. Putting Jij = −J , for nearest
neighbors and Jij = 0 otherwise, we can rewrite the first term of (12.314) as

∑

ij

miJijmj = −J
∑

ij

mimj = −J
(

∑

i

mi(∆m)i + zm2
i ). (12.316)

∆ is the discrete version of z/2 = d-dimensional Laplace operator,

(∆m)i =
d
∑

ν=1

m(i + ax̂ν) − 2m(i) +m(i− ax̂ν)

a2
, (12.317)

where m(i) ≡ mi, and a denotes the lattice constant. Using the above definitions, and expand-
ing S(mi) up to fourth power in mi, we obtain

FGL =
J

2
(c− 2)

∑

i

(

mi(∆m)i + zm2
i

)

+ kBT
∑

i

(1

2
m2

i +
1

12
m4

i

)

−
∑

i

Bimi. (12.318)

It the limit Λ → ∞, a → 0, and aΛ = const, magnetization becomes a continuous field,
mi → φ(x), x ∈ R

d. Then (12.314) or (12.318) (after integrating by parts and dropping the
surface terms) becomes the Ginzburg-Landau (G-L) functional for the case of one real, scalar
order parameter field φ(x). Strictly speaking, this limit lies beyond the scope of our method.
This is due to the assumption we have made previously, that a dimension DH of the Hilbert
space is finite (here DH = 2Λ). Nonetheless, for the MF model defined by the Hamiltonian
(12.311), formula (12.318) gives the correct discrete form of the G-L functional.
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12.3.7 Quantum fluctuations

As an illustration to the general considerations of Supplement A (Subsection 12.1), let us
estimate the magnitude of quantum fluctuations of an order parameter (magnetization). This
may be done without solving the model in the most general case, i.e., without a detailed
knowledge of the equilibrium configuration (m10, m20, . . .mΛ0). Clearly, at low temperatures,
and for Jij = −J < 0 we expect uniform magnetic state with mi0 = m0 ≈ 1 to minimize

(12.314). For Âs = σ̂z
i , the r.h.s. of Eq. (12.268) reads

σ2
r (σ̂z

i ) =
var(σ̂z

i )

(mi)2
=

1 −m2
i

m2
i

. (12.319)

For mi ≈ 1, σ2
r (σ̂z

i ) ≈ 0, whereas for mi → 0, σ2
r (σ̂z

i ) → ∞. Also, for mi = 0.99, 0.95, 0.9, 0.5
we obtain, respectively σ2

r (σ̂z
i ) = 0.02, 0.11, 0.23, 3. Even for relatively small deviations of

each mi from mi0 ≈ 1, quantum fluctuations are rather pronounced. Also, the inequality
1−mi ≤

√

1 −m2
i holds for 0 ≤ mi ≤ 1, therefore the quantum dispersion exceeds the difference

between a given m and the maximal possible value mi0 = 1. Consequently, uncertainty of mi

due to ’quantum’ fluctuations (∼
√

1 −m2
i ) is always greater then its departure from the

equilibrium value (∼ (1 −mi)).
The above analysis indicates, that MF approach for the Ising model in the form defined

by Ĥλ (12.311), is internally consistent at temperatures, for which the equilibrium mean-field
configuration remains close to the saturated configuration with mi0 = m0 ≈ 1. Only in such a
situation, both the quantum and classical fluctuations could be neglected. If we move towards
the transition (Curie) temperature Tc, fluctuations become so pronounced, that the mean-field
picture loses its validity.
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[5] M. R. Norman and C. Pépin, The electronic nature of high temperature cuprate supercon-

ductors, Rep. Prog. Phys. 66, 1547–1610 (2003).

[6] M. R. Norman, D. Pines, and C. Kallin, The pseudogap: friend or foe of high Tc?, Advances
in Physics, Vol. 54, No. 8, 715–733 , December 2005.

[7] A. J. Leggett, Nature Physics, vol. 2, 134 (2006).

[8] M. Ogata and H. Fukuyama, Rep. Prog. Phys. 71, 036501 (2008) and References therein.

[9] J. G. Bednorz and K. A. Müller, Z. Phys. B 64, 189; J. G. Bednorz and K. A. Müller,
Rev. Mod. Phys. 60, 585.

[10] D. Vaknin, S. K. Sinha, D. E. Moncton, D. C. Johnston, J. M. Newsam, C. R. Safinya,
and H. E. King, Jr., Phys. Rev. Lett. 58, 2802 (1987).

[11] M. A. Kastner and R. J. Birgenau, Rev. Mod. Phys. 70, 897 (1998).

[12] C. C. Tsuei and J. R. Kirtley, Rev. Mod. Phys. 72, 969.

[13] B. Keimer, N. Belk, R. J. Birgeneau, A. Cassanho, C. Y. Chen, M. Greven, M. A. Kastner,
A. Aharony, Y. Endoh, R. W. Erwin, and G. Shirane, Phys Rev. B 46 14034 (1992).

[14] T. Nakano, N. Momono, and M. Ido, J. Phys. Soc. Jpn. 67, 2622, (1998).

[15] A. Fujimori et al., in Physics and Chemistry of Transition Metal Oxides, edited by H.
Fukuyama and M. Nagaosa (Springer Verlag, Berlin, 1999) pp. 111ff.

[16] G. A. Thomas, J. Orenstein, D. H. Rapkine, M. Capizzi, A. J. Millis, R. N. Bhatt, L. F.
Schneemeyer, and J. V. Waszczak, Phys. Rev. Lett. 61, 1313 (1988).

[17] H. Alloul, T. Ohno, and P. Mendels, Phys. Rev. Lett. 63, 1700 (1989).

[18] Ch. Renner, B. Revaz, J.-Y. Genoud, K. Kadowaki, and O. Fischer, Phys. Rev. Lett. 80,
149 (1998).

[19] J. Hubbard, Proc. R. Soc. London, Ser. A 276, 238 (1963); ibid. 281, 401 (1964).

[20] M. C. Gutzwiller, Phys. Rev. Lett. 10, 159 (1963); Phys. Rev. 134, A923 (1964); Phys.
Rev. 137, A1726 (1965).

[21] J. Kanamori, Prog. Theor. Phys. 30, 275 (1963).
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