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ForewordQuestions related to the pra
ti
al use of quantum me
hani
s have grown ex-tremely popular among physi
ists in the past two de
ades. The literature onthe subje
t is extensive, but it seems not to make use of the advan
es of 
om-putational algebrai
 geometry, whi
h is quite a natural framework when dealingwith algebrai
 varieties like the set of produ
t states. The la
k of general in-terest 
an be partly attributed to the little popularity of algebrai
 geometryamong the physi
ists working in the �eld, and partly to the fa
t that fun
-tions used as entanglement measures are not polynomials. Another reason maybe the appearan
e of pairs of 
omplex 
onjugate variables like z and z̄ in thepolynomial equations that prevail in quantum information s
ien
e, in
luding theKnill-La�amme equations, equations for Mutually Unbiased Bases and Symmet-ri
 Informationally Complete ve
tors, or for expli
itly �nding produ
t ve
torsin the kernel of an entanglement witness. This makes the equations not trulypolynomial, but fun
tions of both z and z̄ at the same time and thus apparentlymore di�
ult to solve. An important aim of the thesis is to present a numberof spe
i�
 questions that 
an nevertheless be solved using results from algebrai
geometry, and in parti
ular the te
hnique of Groebner bases. The main result,on the other hand, whi
h is a 
hara
terization of PPT bound entangled statesof minimal rank, equal four, makes substantial use of Bezout's theorem, whi
h
an be des
ribed as a basi
 theorem in interse
tion theory. We also present afew problems solved by elementary algebra tri
ks.The stru
ture of the thesis is the following. The �rst part, 
onsisting of three
hapters, dis
usses the basi
s of the theory of quantum entanglement, its pra
-ti
al uses, and the phenomenon of bound entanglement. In Chapter 1, the fo
usis on questions related to lo
al realisti
 models of quantum me
hani
s. I famil-iarize the reader with separable quantum states and separability 
riteria. Later,we 
onsider developments that go beyond the so-
alled separability paradigm.In other words, we take a trip outside the reign of quantum entanglement. InChapter 2, I brie�y des
ribe the ideas behind several pra
ti
al appli
ations ofquantum entanglement, su
h as quantum 
ryptography, quantum teleportationand dense 
oding, as well as quantum metrology. In Chapter 3, I in
luded basi
information about the distillation of quantum entanglement and about boundentangled states.Chapter 4 starts the se
ond part of the thesis, whi
h 
an be regarded as a2



standalone introdu
tion to algebrai
 geometry for non-pra
titioners. I tried tomake this part as rigorous as possible, however, in a number of pla
es I had torefer to literature for proofs. The 
hapter begins from the de�nition of an a�nevariety and its ideal, and we pro
eed to the de�nition of a monomial orderingand a Groebner basis. I introdu
e the S-pair 
riterion and the Bu
hbergeralgorithm, whi
h 
an be used to �nd Groebner bases of an ideal. In the end ofChapter 4, it should be
ome 
lear why Groebner basis te
hniques 
an be usefulfor solving systems of polynomial equations. In Chapter 5, the fo
us is on thebasi
s of interse
tion theory. I try to explain how the dimension of an a�ne orproje
tive variety relate to the number of monomials of 
ertain total degree notin the 
orresponding ideal. I also introdu
e the important notion of the degree ofa proje
tive variety. A theorem that two proje
tive varieties of 
omplementarydimension interse
t appears as well. Finally, I give the Bezout's theorem in asimple form, whi
h plays an important role later, in Chapter 9.Part III of the thesis, whi
h starts with Chapter 6, mostly 
ontains theoriginal results obtained and toy examples solved by the author. I �rst give a
hara
terization theorem for a 
lass of 
onvex 
ones of maps from n×n to m×mmatri
es, whi
h appear as k-positive and k-superpositive maps in the theoryof entanglement. Next, in Chapter 7, we present three algebrai
 problems inthe theory of quantum information, all of whi
h 
an be solved by hand. They
on
ern the following subje
ts:� Produ
t numeri
al range for a three-parameter family of operators,� Higher order numeri
al ranges (HONR) for three-by-three matri
es,� Separable state of length three and S
hmidt rank four.In Chapter 8, we apply the Groebner basis approa
h to several types of equationsthat are of interest for the quantum information 
ommunity. The problems wemanage to solve relate to:� Compression subspa
es for Quantum Error Corre
tion (QEC),� Completely Entangled Subspa
es (CES),� Maximally entangled states in a linear subspa
e,� Mutually Unbiased Bases (MUBs),� Symmetri
 Informationally Complete ve
tors (SICs).It should be kept in mind that the last two of the above subje
ts are presentedhere in a fully expository manner, be
ause better solutions by other authorswere available in the literature before I started my proje
t. Finally, Chapter 9,whi
h is the 
ore element of the thesis, 
ontains a proof of the above mentionedtheorem relating positive-partial-transpose (PPT) states of minimal rank, equalfour, to so-
alled Unextendible Produ
t Bases (UPBs). I present a proof that thementioned states 
an always be (sto
hasti
) lo
ally transformed to proje
tions3



onto a subspa
e orthogonal to a UPB. On the way to prove the theorem, Bezout'stheorem is applied, and some general observations 
on
erning PPT states andso-
alled general Unextendible Produ
t Bases are made. I 
on
lude on page143 and subsequently give a list of papers I published as a part of my PhDproje
t. Most of them have strong relations to the results presented in thisthesis. However, some of the 
ontents has never been published.There are a few people and organizations who helped me to su

eed in myresear
h proje
t. Looking ba
k in time, I 
an 
ertainly say that my wholePhD studies were marked with a fair amount of good lu
k. Under di�erent
ir
umstan
es, it would have been mu
h more di�
ult, if not impossible, to
omplete the thesis. Hen
e, I must �rst mention the support I re
eived fromthe Foundation for Polish S
ien
e. Thanks to them, I was able to travel, meetother s
ientists, and to live a de
ent life for the most of the duration of mystudies. Part of my 
ontra
t with the foundation was a visit to Sto
kholm,where I got to know Jan Myrheim and Per Øyvind Sollid. Few months later,our intera
tion turned out to be very fruitful and resulted in a proof of Theorem9.27 of Chapter 9, whi
h is the ba
kbone of the thesis. This 
ould probablyhave never been possible, had I not re
eived additional support from Sto
kholmUniversity and the University of Oslo, all thanks to Ingemar Bengtsson andErling Størmer. I wish to thank Ingemar for making a great dis
ussion partnerduring my months in Sweden, and Erling for his grand hospitality during mytwo visits to Norway. It is Oslo where my best ideas were provisionally formed,in
luding the results of Chapters 6 and 9. For the �rst visit there, I re
eivedadditional funding from the S
holarship and Training Fund, operated by theFoundation for the Development of the Edu
ation System, whi
h I am sin
erelythankful for. It is also indisputable that the su

ess of my resear
h 
ru
iallydepended on the 
onstant support by my supervisor, Karol �y
zkowski. Hisen
ouragement, wise judgment and great amount of understanding are di�
ultto overvalue. Besides the above, I owe spe
ial personal thanks to Per ØyvindSollid for 
areful proofreading and dete
ting a �aw in a preliminary version of themanus
ript on PPT states of rank four, in
luded here as the 
ru
ial Chapter 9.In the end, I wish to warmly thank my parents and my younger brotherMi
haª, who were always there to help me when I needed it, espe
ially duringthe sad days of my illness. Thank you!
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Part IBasi
s of quantumentanglement theory
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Chapter 1Fundamental questions1.1 Lo
al hidden variablesSome strange 
onsequen
es of quantum me
hani
s have bothered physi
ists fromthe very beginning of quantum theory. A 
lassi
al example of this is the Ein-stein, Podolsky and Rosen paper [1℄, where the authors argue that the quantumdes
ription of reality must be in
omplete if we a

ept two rather natural prop-erties every physi
al theory should have. The �rst is the prin
iple of physi
alreality, whi
h says that properties of physi
al systems su
h as spin dire
tionor energy 
an be predi
ted with 
ertainty before 
arrying out the 
orrespond-ing measurement. They are elements of physi
al reality. The se
ond prin
iple
onsidered by Einstein, Podolsky and Rosen is that of lo
ality, whi
h refers tothe requirement that every system has its own properties, independently of anyoperations 
arried out on other, spatially separated systems. To see where theabove two prin
iples 
lash with the pi
ture of reality given by quantum me
han-i
s, let us 
onsider a quantum system 
onsisting of two two-level1 subsystems
A and B, initially prepared in the so-
alled Bell state ∣Φ+⟩ = (∣00⟩ + ∣11⟩) /√2.If the holder of the �rst subsystem measures it in the basis {∣0⟩ , ∣1⟩}, he or sheobtains the result 0 or 1, both with probability 1/2. This is not too surpris-ing and may well happen in 
lassi
al physi
s, however assuming that the state
∣Φ+⟩ does not 
ontain a 
omplete information about the degrees of freedom ofthe system. What is somewhat more interesting, is the predi
tion of quantumme
hani
s that after 0 or 1 is measured in the subsystem A using the {∣0⟩ , ∣1⟩}basis, a 
orresponding measurement on the B side yields identi
ally the sameresult as the aforementioned measurement on the A side. More generally, theholders of A and B never get two distin
t results if they measure in the samebasis. This is possible to re
on
ile with the prin
iple of lo
ality only if we a

eptthat the out
omes of all possible measurements on the A and B sides are knownbeforehand, i.e. before any measurements are done. It is possible to 
omparethis to a ma
ros
opi
 situation where a fa
tory produ
es table tennis bats in1we denote the levels by 0 and 1 6



Figure 1.1: A lo
al realisti
 model: table tennis set fa
tory at work.two 
olors, say red and green, puts every single one into a box and groups theseboxes into pairs with bats of the same 
olor inside. It then sells these pairswithout dis
losing what 
olour the bats inside a parti
ular pair of boxes are.The buyer of a table tennis set knows for sure what he or she has are two batsin the same 
olour, but does not know anything more. As soon as one of theboxes is opened, the 
olour of the bat inside the se
ond box is revealed to thebuyer. No matter how realisti
 the whole situation might seem in real life, it is
learly not ex
luded by 
lassi
al physi
s, and it 
losely resembles the experimentwith two two-level systems in the state (∣00⟩ + ∣11⟩) /√2, with 0 
orrespondingto green and 1 
orresponding to red, or the other way round. Our aim in thefollowing will be to shortly explain why a 
lassi
al model similar to the tabletennis set fa
tory 
annot nevertheless give us a proper des
ription of the phe-nomena predi
ted by quantum me
hani
s. In order for the dis
ussion to staygeneral, let us introdu
e the following de�nition.De�nition 1.1. A lo
al hidden variable model of an experiment on a bipar-tite system (
onsisting of parts A and B) is a probability spa
e (Ω,Σ, P ) and aset of fun
tions SxA ∶ Ω→R and Sy
B
∶ Ω→R, where x and y refer to the possiblemeasurement setups on subsystems A and B, respe
tively and SxA (λ), SyB (λ)
orrespond to the measurements' out
omes. Here λ represents the �hidden vari-ables� or the true 
lassi
al degrees of freedom of the system. Assuming that themeasurement setup is �xed to x for A and to y for B, the 
orrelation 
oe�
ientbetween the measurement out
omes is given by the following formula

ǫ (x, y) = ∫
Ω
SxA (λ)SyB (λ)dP (λ) . (1.1)To make a 
onne
tion to the table tennis set fa
tory model, let us mentionthat λ in formula (1.1) 
orresponds to a �mode� of the fa
tory, whi
h is eitherthe produ
tion of a pair of green bats or the produ
tion a red pair. The �mode�is hidden from the buyer a table tennis set, just as the additional degrees offreedom, represented by λ, are supposed to be hidden from the user of quantum7



me
hani
s. In the following, however, we show that it is possible, by a simplemathemati
al argument, to refute the idea of a lo
al hidden variable model forquantum me
hani
s.To this aim, let us 
onsider a system 
onsisting of two spin-1/2 parti
les,initially prepared in the state ∣Φ+⟩ = (∣00⟩ + ∣11⟩) /√2, where ∣0⟩, ∣1⟩ representthe ±1 eigenstates of the operator σz. We measure the spin of the �rst parti
lein the dire
tion a⃗ and the spin of the se
ond parti
le in the dire
tion b⃗. The
orresponding observables are a⃗ ⋅ σ⃗A and b⃗ ⋅ σ⃗B , where the subs
ripts A, B referto operators on the �rst and the se
ond subsystem, respe
tively. The 
orrelation
oe�
ient between the two measurements, as predi
ted by quantum me
hani
s,is
ǫ̃ (a⃗, b⃗) = ⟨Φ+∣ (a⃗ ⋅ σ⃗A)(b⃗ ⋅ σ⃗B) ∣Φ+⟩ = a1b1 − a2b2 + a3b3, (1.2)where the numbers ai, bi for i = 1,2,3 denote the 
oordinates of the ve
tors a⃗and b⃗, resp. For the spe
i�
 
hoi
e of the ve
tors a⃗ = [sinα,0, cosα] and b⃗ =[sinβ,0, cosβ], we get ǫ̃ (a⃗, b⃗) = ǫ̃ (α,β) = cos (β − α). Let us now suppose thatthis form of 
orrelation fun
tion 
an be reprodu
ed by a lo
al hidden variablemodel. Thus we need to have a probability spa
e (Ω,Σ, P ) and a set of fun
tions

SαA ∶ λ ↦ SαA (λ) and SβB ∶ λ ↦ S
β
B
(λ) giving the measurement out
omes of thespin measurements for a �xed 
hoi
e of the hidden variables λ. Sin
e a spinmeasurement 
an only give ±1 as an answer, we have SαA (λ) ∈ {−1,+1}, SβB (λ) ∈{−1,+1}. Let us now 
onsider the following 
ombination of the fun
tions SαAand SβB,

Sα2

A (λ) [Sβ1

B (λ) + Sβ2

B (λ)] + Sα1

A (λ) [Sβ1

B (λ) − Sβ2

B (λ)] . (1.3)It is easy to see that for �xed λ, one of the expressions in squared bra
ketsequals 0, while the other one is equal to ±2. All in all, the whole expression in(1.3) equals ±2. Therefore we have, assuming that the hidden variable modelwe 
onsider des
ribes the quantum me
hani
al world, the following inequalityfor the previously 
onsidered 
orrelation fun
tions,
∣ǫ̃ (α2, β1) + ǫ̃ (α2, β2) + ǫ̃ (α1, β1) − ǫ̃ (α1, β2)∣ ⩽
⩽ ∫

Ω
∣Sα2

A
(λ) [Sβ1

B
(λ) + Sβ2

B
(λ)] + Sα1

A
(λ) [Sβ1

B
(λ) − Sβ2

B
(λ)]∣ ⩽ 2. (1.4)The above is the famous CHSH inequality, named for J. F. Clauser, M. A. Horne,A. Shimony and R. A. Holt [2℄. For the 
hoi
e α1 = 45○, β1 = 90○, α2 = 135○and β2 = 180○, one 
an readily 
he
k that the 
orrelation fun
tions predi
ted byquantum me
hani
s do not obey (1.4), sin
e

∣ǫ̃ (α2, β1) + ǫ̃ (α2, β2) + ǫ̃ (α1, β1) − ǫ̃ (α1, β2)∣ = 2√2. (1.5)Moreover, the above violation of the CHSH inequality is the maximum allowedby quantum me
hani
s [3℄. The value 2
√
2 in (1.5), 
alled the Tsirelson bound,is in 
lear 
ontradi
tion with the assumption that quantum me
hani
s 
an be8



des
ribed as a lo
al hidden variable theory. Thus, we are lead to the 
on-
lusion that there exists no lo
al realisti
 model for quantum me
hani
s. Thequestion whether the quantum me
hani
al 
orrelations are really observed inexperiments, and how to 
lose the possible experimental loopholes, is the sub-je
t of a separate �eld of resear
h, with the �rst and most famous experimentsdone by the A. Aspe
t group [4℄.1.2 Separable states and separability 
riteriaOur next topi
 is 
losely related to hidden variable models, and was �rst studiedby R. Werner in the late 80s [5℄. He introdu
ed a 
lass of mixed states, whi
h he
alled 
lassi
ally 
orrelated, but they are now generally referred to as separable.De�nition 1.2. A state represented by a density matrix ρ on a bipartite spa
eK⊗H is 
alled separable if and only if it 
an be written as a 
onvex 
ombinationof proje
tions onto produ
t states, i.e. a sum
ρ =

n

∑
i=1

λi ∣φi ⊗ψi⟩ ⟨φi ⊗ ψi∣ (1.6)with n �nite, λi ⩾ 0, ∑ni=1 λi = 1 and φi ∈ K, ψi ∈H.A
tually, in [5℄, in�nite sums of the type (1.6) were 
onsidered, but it followsfrom Carathéodory's theorem (
f. e.g. [6, Chapter 13℄) that any su
h sum 
anbe rewritten as a �nite one. A generalization of De�nition 1.2 to a multipartitesetting is immediate.De�nition 1.3. A state represented by a density matrix ρ on a multipartitespa
e K1 ⊗ . . .⊗Kk is 
alled separable if and only if it 
an be written as a sum
ρ =

n

∑
i=1

λi ∣φ1i ⊗ . . .⊗ φki ⟩ ⟨φ1i ⊗ . . .⊗ φki ∣ (1.7)with n �nite, λi ⩾ 0, ∑ni=1 λi = 1 and φli ∈ Kl ∀l=1,2,...,k.It is now also generally a

epted that states whi
h are not of the form givenin De�nitions 1.2 and 1.3 are 
alled entangled.De�nition 1.4. A state represented by a density matrix ρ on a multipartitespa
e K1⊗ . . .⊗Kk is 
alled entangled if and only if it 
annot be written in theform (1.7).In 
ase of pure states ρ, it 
an be shown [7℄ (
f. also [8℄) that the property ofbeing entangled implies the la
k of a lo
al realisti
 model of the lo
al measure-ments one 
an perform on ρ. More pre
isely, for a pure entangled state ρ, therealways exists a Bell-type inequality2 that is not ful�lled by the 
orrelation fun
-tions resulting from ρ. However, if mixed states ρ are taken into 
onsideration,2like the CHSH inequality we 
onsidered in Se
tion 1.19



it was the main subje
t of the work [5℄ to show that there exist entangled stateswhi
h do admit a lo
al realisti
 des
ription. It should also be noted that in thepaper [5℄, the author never used the word �entangled� himself. It may thus berather surprising to hear that what is now generally a

epted as a synonymof something quantum-like, something entangled, was born for the purpose toshow that it 
an sometimes be des
ribed in a fully 
lassi
al way. Fortunately, theapparent paradox was partially resolved by [9℄, where the author showed thatsometimes hidden nonlo
ality in quantum states 
an be revealed by sequentialmeasurements. A step in a similar dire
tion was also taken by N. Gisin, whoshowed that lo
al intera
tion 
an turn a state that does not violate any Bell-type inequality into one that is nonlo
al [10℄. Additional justi�
ation for theimportan
e of the notion of inseparability was provided by L. Masanes [11, 12℄,who showed that entangled states are always useful for 
ertain tasks in quantuminformation pro
essing. Finally, the question about nonlo
ality of all bipartiteentangled states was settled in the paper [13℄, by Masanes, Liang and Doherty.They managed to prove that bipartite entangled states ρ are pre
isely thosewhi
h do violate some inequality of CHSH type, possibly after they are tensormultiplied by some state σ that does not violate any CHSH inequality itself.Being more pre
ise,
ρ is entangled ⇐⇒ ρ⊗ σ violates a CHSH type inequality (1.8)where σ does not violate any inequality of CHSH type, even after it undergoesarbitrary sto
hasti
 lo
al operations with 
ommuni
ation [13℄. Note that thetensor multipli
ation by σ only plays a role of a 
atalyst in the pro
ess ofdis
overing the nonlo
ality of ρ. Hen
e, it is legitimate to say that all bipartiteentangled states have some kind of non-lo
ally realisti
 properties, and vi
e versa.Be
ause of the result by Masanes, Liang and Doherty, we feel it is well-justi�ed to a

ept the de�nition of entangled states as it is. Hen
e we 
onformto the separability paradigm. However, we shall go ba
k to the question ofseparability versus lo
al realism when we dis
uss distillation of entanglement inSe
tion 3.1. We should also give additional 
redit to the Werner's paper [5℄ andmention the famous family of states the author used to prove his result. Theyare now 
alled Werner states and are of the simple form

W = 1

d3 − d [(d −Ξ)1 + (dΞ − 1)V ] (1.9)where Ξ ∈ [−1,1], d is the dimensionality of the Hilbert spa
e K su
h that Wis de�ned on K ⊗ K, and V ∶= ∑di,1=1 ∣i⟩ ⟨j∣ ⊗ ∣j⟩ ⟨i∣. The 
hoi
e of the spe
i�
parametrization in (1.9) is motivated by the equality Ξ = Tr (WV ). A distin
tivefuture of the Werner states is that they are invariant under the transformation
W ↦ (U ⊗U)W (U∗ ⊗U∗) for an arbitrary unitary U . In [5℄, it was shownthat the state W is separable for Ξ ⩾ 0 and entangled otherwise. Moreover,for Ξ = −1 + (d + 1) /d2 it admits a hidden variable des
ription. Sin
e −1 +(d + 1) /d2 ⩽ −1/4 ⩽ 0, the 
orresponding W is entangled and at the same timeit 
an be des
ribed in a lo
al realisti
 manner.10



Despite the above paradoxi
al property of some entangled states, it be
amewidely a

epted that the distin
tion between entanglement and separabilityplays a fundamental role in the theory of quantum information. Entanglementdete
tion has be
ome the subje
t of a separate resear
h area, whi
h we wouldvery sparsely explore in the rest of this se
tion. Mu
h more information 
an befound in review arti
les like [14, 15℄.Probably the most famous separability test is the PPT 
riterion by A.Peres [16℄, where PPT stands for �positive partial transpose�. The 
riterionwas qui
kly proved by the Horode
ki family to be a ne
essary and su�
ient
ondition in the 
ase of 2 × 2 and 2 × 3 systems3 [18℄. The 
riterion simply saysthat a density matrix ρ on a bipartite spa
e K⊗K, if separable, must be positiveunder the following transformation
ρ ↦ (id⊗t)ρ, (1.10)where t denotes the transposition map in B (K). Thus, if the partial transpose

ρT2 ∶= (id⊗t)ρ of a density matrix ρ is found not to be positive, we know that
ρ is entangled. Let us state this as a proposition.Proposition 1.5 (PPT 
riterion). If a state ρ a
ting on a bipartite spa
e K⊗Kis separable, the partial transpose of ρ, given by the r.h.s. of (1.10), must be apositive operator.States whi
h do not satisfy the impli
ation of Proposition 1.5 are 
alledNPT entangled, where NPT stands for �negative partial transpose�. It wasa natural question to ask whether there exists entangled states with positivepartial transpose (PPT). For 2 × 2 and 2 × 3 systems, this is impossible by [18℄,but for 3 × 3 systems, a PPT entangled state was found by P. Horode
ki [19℄.Di�erent examples were earlier studied, in a slightly di�erent 
ontext, by E.Størmer [20℄ and M.-D. Choi [21℄. In order to prove his result, the author of [19℄needed a di�erent separability test than the PPT 
riterion. What he used isnow 
alled the range 
riterion for separability.Proposition 1.6 (Range 
riterion). For a separable state ρ on a bipartite spa
eK⊗K, there must exist a set of produ
t ve
tors φi⊗ψi that span the range of ρ,
R (ρ). In addition to that, the partially 
onjugated ve
tors φi ⊗ψ∗i need to spanthe range of ρT2 , R (ρT2).A whole family of separability 
riteria 
an be derived from the followingresult by the Horode
ki family [18℄, whi
h generalises the PPT 
riterion.Proposition 1.7 (Positive maps 
riterion). A separable state ρ on a bipartitespa
e K ⊗K is separable if and only if

(id⊗Λ)ρ ⩾ 0 (1.11)for all linear maps Λ ∶ B (K)→ B (K) that preserve the positivity of opera-tors.3
f. [17℄ for a ni
e explanation in the 2 × 2 
ase11



Maps that preserve positivity of operators are 
alled positive maps, and hen
ethe name of the 
riterion. One of the main results of this thesis, presented inChapter 6, is a broad generalization of the positive maps 
riterion for di�erentsub
lasses of the set of all density matri
es, in
luding states of S
hmidt rank
k [22℄.The problem with 
ondition (1.11) is that it needs to be 
he
ked for allpositive maps, whi
h is impossible as long as we do not know their full stru
ture.However, for a �xed 
hoi
e of the map Λ, the positive maps 
riterion alwaysgives a ne
essary 
ondition for separability. An example of this is when Λ (ρ) =1Trρ − ρ, so-
alled redu
tion map. For su
h 
hoi
e of the positive map, weget [23℄Proposition 1.8 (Redu
tion 
riterion). A separable state on a bipartite spa
ehas to ful�ll the following 
ondition

(TrBρ)⊗ 1 − ρ ⩾ 0, (1.12)where TrB denotes the partial tra
e of ρ with respe
t to the se
ond subsystem,(TrAρ)ij = ∑k ρik,jk .Another possible 
hoi
e of Λ is Λ ∶ ρ ↦ 1Trρ − ρ − V ρtV ∗, so-
alled Breuer-Hall map [24,25℄. Here ρt stands for the transposition of ρ and V is an antisym-metri
, unitary matrix, V t = −V . Su
h matri
es V only exist if the dimensionof the spa
e K is even.Yet another, experimentally feasible approa
h to the dis
rimination of theset of separable states is by the use of so-
alled entanglement witnesses. Anentanglement witness4 is an operatorW on a multipartite spa
e K1⊗K2⊗. . .⊗Kkwith the property
⟨φ1 ⊗ φ2 ⊗ . . . ⊗ φk ∣W ∣φ1 ⊗ φ2 ⊗ . . .⊗ φk⟩ ⩾ 0 (1.13)for all φ1, . . . , φk in K1, . . . , K2, resp. In terms of su
h operators, we have thefollowing separability 
riterionProposition 1.9 (Entanglement witness 
riterion). A density matrix ρ on amultipartite spa
e K1 ⊗ K2 ⊗ . . . ⊗ Kk is separable if and only if the followinginequality, Tr (Wρ) ⩾ 0 (1.14)holds for all witnesses W on K1 ⊗K2 ⊗ . . .⊗Kk.A big advantage of witnesses over positive maps is that the tra
e on thel.h.s. of (1.14) 
an be measured in an experiment as an expe
tation value ofan observable. Moreover, one 
an often �nd an optimal de
omposition of thewitness into lo
ally measurable quantities [26, 27℄, i.e. a de
omposition of theform

W =
r

∑
l=1

γlX
l
1 ⊗X l

2 ⊗ . . .⊗X l
k (1.15)4not to 
onfuse with the Werner state introdu
ed earlier12



with r minimal. One 
an also ask whether a witness W is optimal in the sensethat for no other witness W ′ the inequality Tr (Wρ) < 0 implies Tr (W ′ρ) < 0[28℄.Nevertheless, we should note that by the Jamioªkowski-Choi isomorphism[29,30℄ (
f. also [31℄), every witness has a 
orresponding positive map ΛW , andthe 
orresponding positive map 
riterion (id⊗ΛW )ρ ⩾ 0 is mu
h stronger thanthe 
riterion Tr (Wρ) ⩾ 0. However, the �rst 
riterion is mu
h more di�
ult tomeasure in an experiment [32℄.To �nish, let us explain a relation of the CHSH inequality, introdu
ed inSe
tion 1.1, to entanglement witnesses. It was �rst pointed out in [33℄ thatBell-type inequalities 
an be per
eived as ve
tors in the Farkas lemma [6℄, dis-
riminating between the set of 
orrelations with a lo
al realisti
 des
ription andthe quantum 
orrelations. The Farkas ve
tors 
an in turn be related to observ-ables, whi
h have the interpretation of witnesses. In the parti
ular 
ase of theCHSH inequality, the Terhal's theory boils down to the observation that theexpression ǫ̃ (α2, β1) + ǫ̃ (α2, β2) + ǫ̃ (α1, β1) − ǫ̃ (α1, β2) in equation (1.4) 
an bewritten in the form Tr (Bρ), where
B ∶= a⃗1 ⋅ σ⃗ ⊗ (b⃗1 + b⃗2) ⋅ σ⃗ − a⃗2 ⋅ σ⃗ ⊗ (b⃗2 − b⃗1) ⋅ σ⃗ (1.16)is the CHSH operator, �rst introdu
ed in [34℄, and a⃗1, a⃗2, b⃗1 and b⃗2 are thespin dire
tion ve
tors, 
orresponding to the previously used dete
tor angles α1,

α2, β1 and β2, respe
tively. Using B, one 
an easily 
onstru
t the operator
W = 21 − B, whi
h is a witness a

ording to the CHSH inequality and the fa
tthat all separable states admit a hidden variable des
ription. Moreover, theinequality Tr(Wρ) = 2 −Tr (Bρ) < 0 (1.17)observed for some state ρ, does not only indi
ate that ρ is entangled, but alsothat it is nonlo
al. Thus W plays a double role of an entanglement and nonlo-
ality witness.1.3 Beyond quantum entanglementQuestions beyond the separability paradigm, or even beyond the frames of quan-tum me
hani
s, have been 
onsidered in the quantum information literaturesin
e the early days of the subje
t. A well-known example of this is the famouspaper [35℄ by Popes
u and Rohrli
h, where nonlo
ality is 
onsidered as a possi-ble axiom for quantum me
hani
s. More pre
isely, the authors 
onsider nonlo
altheories that do obey relativisti
 
ausality. It turns out that there 
an exist,at least in prin
iple, theories of this type whi
h are not identi
al to quantumme
hani
s. To explain this in more detail, let us brie�y repeat the simpli�edversion of the argument in [35℄, as it was presented in a later paper [36℄.We 
onsider a theory of a pair of spin- 1

2
parti
les whi
h yields, for somereason, identi
al probabilities for the measurement out
omes ↑↑ and ↓↓, as well asidenti
al probabilities for the out
omes ↓↑, ↑↓, no matter what the measurement13



bases in the �rst and the se
ond subsystem are. Su
h 
hoi
e pre
ludes thepossibility of supraluminal 
ommuni
ation using the two parti
les. We say thatthere are only non-signalling 
orrelations (
f. e.g. [37℄) between them. Another
onsequen
e is that the respe
tive 
orrelation fun
tion ǫmust depend only on therelative angle θ between the �rst and the se
ond measuring devi
e. Moreover,it has to ful�ll ǫ (π − θ) = −ǫ (θ). One possible 
hoi
e of su
h a fun
tion is [36℄,
ǫ (θ) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1 for θ ∈ [0, π

4
]

2 (1 − 2x
π
) for θ ∈ (π

4
, 3π

4
)

−1 for θ ∈ [ 3π
4
, π] (1.18)By 
hoosing the su

essive angles α1 = 0, β1 = π4 , α2 = π
2
and β2 = 3π

4
in an EPRexperiment of the type dis
ussed in Se
tion 1.1, we get

∣ǫ (α2 − β1) + ǫ (α2 − β2) + ǫ (α1 − β1) − ǫ (α1 − β2)∣ = 4 (1.19)as an analogue of equation (1.5). However, this time the violation of the 
lassi
albound (1.4) is bigger than possible in quantum me
hani
s. Thus, a theory witha 
orrelation fun
tion of the form (1.18) obeys relativisti
 
ausality, yet it is not
onsistent with the quantum-me
hani
al des
ription of the world.The above dis
ussion shows that it is not possible to reprodu
e the laws ofquantum me
hani
s just by using the prin
iple of non-signalling. The Popes
u-Rohrli
h 
orrelations 
onstitute a toy model, useful for demonstrating this fa
t.However, after the seminal paper [35℄, a fair amount of work [37�44℄ has beendevoted to understanding the properties of Popes
u-Rohrli
h 
orrelations andhow they would a�e
t 
ommuni
ation 
omplexity, had they been present inreality. Usually, su
h questions are formulated in the language of so-
allednonlo
al boxes. In order to demystify this new notion, let us explain that anonlo
al box 
orresponding to the pre
ise Popes
u-Rohrli
h setup dis
ussedabove, looks as in Figure 1.2. It is an imaginary devi
e with two inputs a, b andtwo (random) outputs x, y that satisfy 
ertain relation. The inputs, whi
h takevalues 0 or 1, 
orrespond to the measurement setups for the �rst and the se
ondparti
le, respe
tively. For example, a = 0 means that the spin of the �rst parti
leis measured in a basis rotated by α1. Similarly, b = 1 indi
ates a measurementbasis for the se
ond parti
le is rotated by β2. The outputs x and y, on the otherhand, 
orrespond to the measurement results ↑ or ↓. For example, y = 1 indi
atesthat spin ↑ was measured for the se
ond parti
le. A qui
k thought revealsthat the above �box�, 
alled mod2NLB in [45℄, is just a more abstra
t way toexpress the properties of an imaginary EPR experiment with 
orrelations givenby the fun
tion (1.18). The only mathemati
al 
ontent of any su
h box, notne
essarily related to the 
orrelation fun
tion (1.18), is a 
onditional probabilityfun
tion p (xy ab) that ful�lls so-
alled non-signalling 
onditions that guaranteethe impossibility of supraluminal 
ommuni
ation, 
f. [37℄. Generalizations to amultipartite s
enario are immediate.Notably, mod2NLB was postulated as a unit of nonlo
ality [46℄, somewhatsimilar to the role played by the Bell singlet 1/√2 (∣↑↓⟩ + ∣↓↑⟩) in entanglement14



Figure 1.2: A nonlo
al box 
orresponding to the Popes
u-Rohrli
h thoughtexperimenttheory. However, it was immediately realized [46℄ that not all multipartite boxes
an be simulated using a number of 
opies of mod2NLB. Moreover, in [45℄ theauthors showed that in the bipartite s
enario, there does not exist a �nite setof nonlo
al boxes that 
ould be used to simulate all bipartite nonlo
al boxes.Interestingly, in the proof presented in [45℄ the Hilbert basis theorem was used,whi
h also appears in Se
tion 4.2 of this thesis as Theorem 4.18.As intelle
tually appealing as they are, general nonlo
al boxes do not seem tohave a 
ounterpart in the real world. Still, most of the dis
ussion by the quantuminformation 
ommunity does stay within the framework of quantum me
hani
s,but not ne
essarily 
on
entrates on entanglement. In parti
ular, it was qui
klyre
ognized that there exist nonlo
al phenomena in quantum me
hani
s whi
h
annot be explained by the presen
e of entanglement. In the well-known paper[47℄, the authors show an example of a family of nine mutually orthogonalbipartite produ
t states that 
annot be distinguished using lo
al measurementsand 
lassi
al 
ommuni
ation by the two parties. They 
all this phenomenon�nonlo
ality without entanglement�, hen
e pointing out to the di�eren
e betweenthe two notions that tended to be taken as equivalent. However, it should bekept in mind that nonlo
ality in terms of the violation of Bell inequalities is very
losely related, if not equivalent, to the property of being entangled. We brie�yexplained this in Se
tion 1.1, where we referred to a paper by L. Masanes, Y.-C.Liang and A. C. Doherty [13℄. Therefore, the notion of nonlo
ality in [47℄ andin the resear
h we des
ribe in the rest of this se
tion, signi�
antly di�ers fromwhat was traditionally per
eived as the equivalent of being nonlo
al, i.e. theviolation of Bell inequalities and the la
k of a lo
al realisti
 des
ription.In more re
ent days, the study of nonlo
ality largely revolves around itstwo quantitative measures, whi
h are the quantum dis
ord, introdu
ed by �urekand Ollivier in [48℄, and the quantum de�
it, studied by Oppenheim and the15



Horode
ki family [49℄. For a re
ent review arti
le on the subje
t, 
onsult [50℄.The basi
 idea behind the quantum dis
ord is that two expressions for so-
alledmutual information that are equivalent in the 
ase of 
lassi
al probability dis-tributions, do not ne
essarily give the same answer when generalized to thequantum s
enario. Indeed, let us de�ne the entropy of a 
lassi
al random vari-able A as
H (A) = −∑

a

p (A = a) log p (A = a) (1.20)and the 
onditional entropy of A with respe
t to another 
lassi
al variable B as
H (A B) =∑

b

p (B = b)H (A B = b) , (1.21)where H (A B = b) is the entropy of the variable A 
onditioned on a parti
ularvalue b of the variable B. We de�ne the mutual information of the variables Aand B as
J (A ∶ B) =H (A) −H (A B) (1.22)A little inspe
tion shows that in the 
ase of 
lassi
al probability distributions,the above expression is equivalent to

I (A ∶ B) =H (A) +H (B)−H (A,B) , (1.23)where H (A,B) stays for the entropy of the 
olle
tive variable (A,B). Thus wehave I (A ∶ B) = J (A ∶ B) for arbitrary 
lassi
al variables A and B. However,as pointed out in [48℄, the equality between the two expressions for mutualinformation does not generally hold in a quantum world.To show this, let us 
onsider a bipartite quantum system des
ribed by adensity matrix ρAB. The states of the subsystems are given by the partialtra
es of ρAB, ρA = TrB ρAB and ρB = TrA ρAB. We immediately see that aquantum analogue of (1.23) is
I (ρAB) =H (ρA) +H (ρB) −H (ρAB) (1.24)where H (ρ) ∶= −Tr (ρ log ρ). However, it is not obvious how to generalize

J (A ∶ B) to the quantum 
ase. The reason behind this is that the quantumsubsystem B 
an be measured in various bases, and one of them has to besele
ted before a sum similar to the ∑b in formula (1.21) is 
al
ulated. Thuswe have a whole family of 
onditional entropies H (ρAB {Πb}), where {Πb} isan arbitrary 
omplete set of one-dimensional proje
tions on the subsystem B,satisfying ∑bΠb = 1. Expli
itly, H (ρAB {Πb}) is given by
H (ρAB {Πb}) =∑

b

pbH ((1⊗Πb)ρAB (1⊗Πb)
pb

) (1.25)where pb = Tr ((1⊗Πb) ρAB) is the probability to obtain a result b in a mea-surement 
orresponding to {Πb}. Simply be
ause the H (ρAB {Πb}) are not16



all equal, there is no single quantum analogue of J (A ∶ B). Instead, we have afamily of mutual information analogues, given by
J (ρAB {Πb}) =H (ρA) −H (ρAB {Πb}) (1.26)The supremum

CB (ρAB) = sup
{Πb}

J (ρAB {Πb}) (1.27)
an be 
onsidered as a measure of 
lassi
al 
orrelations [48,51℄. Note that therealso exists a related quantity CA (ρAB) where the roles of A and B have beeninter
hanged. The quantum dis
ord is now de�ned as the di�eren
e between
I (ρAB) and CB (ρAB),

DB (ρAB) = I (ρAB) −CB (ρAB) (1.28)Alternatively, the name �dis
ord� may refer to
DA (ρAB) = I (ρAB) −CA (ρAB) (1.29)although the two quantities DA and DB do not generally 
oin
ide.Due to the equality I (A ∶ B) = J (A ∶ B) valid in the 
lassi
al world, the non-vanishing of the dis
ord for ρAB is a sign of quantumness of the state. Unlikeseparability, the vanishing of the dis
ord only o

urs for a measure zero subsetof the set of all states [52℄. In parti
ular, DA and DB vanish simultaneously ifand only if ρAB has an eigenbasis 
onsisting of produ
t ve
tors, i.e.
ρAB =∑

i,j

λi,j ∣φi⟩ ⟨φi∣⊗ ∣ψj⟩ ⟨ψj ∣ (1.30)where λij ⩾ 0, while φi and ψj 
onstitute bases for the �rst and the se
ondsubsystem, respe
tively. Su
h states are 
alled 
lassi
ally 
orrelated [53℄. Theyalso play an important role in the alternative framework for 
orrelation studies,developed by Oppenheim and the Horode
ki family [49, 53℄.It is in general not easy to evaluate the quantum dis
ord, but some resultshave been obtained e.g. for 2 × 2 systems [54, 55℄. Several 
onditions for zeroand non-zero quantum dis
ord are known as well [52, 56, 57℄, and a missingoperational interpretation of the quantity has been provided in [58℄ in terms ofa quantum state merging proto
ol.Quantum de�
it, on the other hand, has had a relatively 
lear physi
al inter-pretation from the very beginning when it was introdu
ed in [49℄. The quantityis believed to be equal to the amount of work whi
h 
an be extra
ted from amultipartite quantum state ρ globally, minus the amount of work the parties
an draw lo
ally, possibly after transforming the state by an allowed family oftransformations. This des
ription may seem a little vague, but on the mathe-mati
al side, the dis
ussion 
an easily be made more rigorous. For a quantumstate ρ in a d-dimensional spa
e, we de�ne
I (ρ) = log2 d −H (ρ) (1.31)17



as the information 
ontained in ρ. For the allowed family of transformations,we take so-
alled 
losed lo
al operations and 
lassi
al 
ommuni
ation family,CLOCC for short [53℄. They 
an be de
omposed into two basi
 types of opera-tionsi) Lo
al unitary transformationsii) Sending subsystems down a 
ompletely dephasing 
hannel (i.e. a 
hannelthat destroys all non-diagonal elements of the transformed density matrixin some basis)Let us denote this family by CL. In the bipartite s
enario, the quantum de�
itof a quantum state ρAB is de�ned as
∆ (ρAB) = I (ρAB) − sup

Φ∈CL
(I (TrA (Φ (ρAB))) + I (TrB (Φ (ρAB)))) (1.32)or equivalently

∆ (ρAB) = inf
Φ∈CL

(H (TrA (Φ (ρAB))) +H (TrB (Φ (ρAB)))) −H (ρAB) (1.33)Generalizations to multipartite 
ases are immediate. Similarly to the dis
ord,the de�
it vanishes for 
lassi
ally 
orrelated states, i.e. states of the form (1.30).Moreover, as explained in [53℄, reversible CLOCC transforms of 
lassi
ally 
or-related states play an important role in evaluation of ∆ for a given state ρ.On the physi
s side, the theoreti
al possibility to draw a maximal amount
kT ⋅ I (ρ) of work from a heat bath in temperature T using a state ρ is awidely believed 
onje
ture. It has been partly 
on�rmed by papers like [59℄and [60℄. Hen
e, it seems plausible that the quantum de�
it really has thephysi
al interpretation we mentioned earlier, but one should remain 
autions.The mathemati
al stru
ture of the quantity, however, remains inta
t in either
ase.Before we 
lose this 
hapter, we should de�nitely mention that the prin
ipleof non-signalling, whi
h appeared in the dis
ussion by Popes
u and Rohrli
h,
an be repla
ed by so-
alled information 
ausality prin
iple, whi
h is strongerthan no-signalling and pre
ludes 
orrelations that are not allowed by quantumme
hani
s [61℄. Hen
e, information 
ausality may possibly be 
onsidered asan axiom for quantum theory [61, 62℄, unlike the non-signalling prin
iple [35℄.However, this topi
 goes beyond the s
ope of this thesis.

18



Chapter 2Pra
ti
al appli
ations2.1 Quantum 
ryptographyThe idea of quantum 
ryptography or quantum key distribution, �rst putforward in the famous 1984 paper [63℄ by Bennett and Brassard, has its originsin an early work by S. Wiesner [64℄. The main observation behind it was thattwo photon polarization bases, say R and D for re
tilinear and diagonal, 
an besele
ted in su
h a way that photons fully polarized with respe
t to one of themgive totally random results when measured in the other basis, and vi
e versa.Equally important was the fa
t that quantum measurements a�e
t the measuredsystems in general. Bennett and Brassard used these quantum-me
hani
al fea-tures to 
onstru
t a proto
ol, now 
alled BB84, whi
h allows two parties thatdo not initially share any se
rets, to generate a random string of bits that isknown to both of them, but not to anyone else. Su
h bits 
an subsequently beused as a shared se
ret key for perfe
tly se
ure 
lassi
al data transmission. Letus 
all the two parties A and B, or Ali
e and Bob. The proto
ol designed byBennett and Brassard 
onsists in the following steps:1. Ali
e and Bob agree on two polarization bases, say R and D, whi
h arerotated by 45○ with respe
t to ea
h other. Let us denote the 
orrespond-ing pure polarization photon states by ∣↔⟩, ∣↕⟩ for the R basis and ∣⤡⟩ =
1/√2 (∣↔⟩ + ∣↕⟩), ∣⤢⟩ = 1/√2 (∣↔⟩ − ∣↕⟩) for the D basis.2. Ali
e generates random sequen
es of bits, {ai}ni=1 and {bj}nj=1, using a 
las-si
al random number generator.3. Bob generates a random sequen
e of bits {ck}nk=1, also using a 
lassi
al gen-erator.4. Ali
e then begins to send photons to Bob. The polarization state of the i-thphoton is 
hosen a

ording to the values of the random bits ai and bi. Thebit ai determines whi
h polarization basis is used, with ai = 0 standing forthe R and ai = 1 for the D basis. The bit bi determines whether the �rst or19



Random bits (0,0) (0,1) (1,0) (1,1)Photon sent ∣↔⟩ ∣↕⟩ ∣⤡⟩ ∣⤢⟩Table 2.1: Photon polarization states 
hoi
es 
orresponding to Ali
e's randombits (ai, bi).the se
ond pure polarization state with respe
t to the given basis is 
hosen.Table 2.1 summarizes on Ali
e's 
hoi
e of photon, depending on (ai, bi).5. Bob measures the re
eived i-th photon in the R or D basis, depending on thevalue of ci. When ci = 0, Bob uses R. Otherwise, he uses D. The �rst ve
torin the sele
ted basis (∣↔⟩ or ∣⤡⟩) is assigned the measurement result 0, whilethe remaining ve
tor (∣↕⟩ or ∣⤢⟩) is assigned 1. If Bob happens to 
hoose thesame basis as Ali
e did (i.e. ai = ci), his measurement result exa
tly mat
hes
bi, assuming the photon transmission was not disrupted nor interfered withby an eavesdropper.6. After measuring all the n photons, Bob publi
ly dis
loses the bits ci, andAli
e does the same with ai. Thus done, they know whi
h measurementbases they used for individual photons and 
an single out the 
ases wheretheir basis 
hoi
es were identi
al. On average, they would have 
hosen thesame basis in n/2 
ases.7. As their se
ret key, Ali
e and Bob 
hoose the bits bi for whi
h ai = ci. Theyboth know these bits, as a result of using identi
al measurement bases.The power of the above proto
ol 
omes from the fa
t that any interferen
e by aneavesdropper would very likely have been dete
ted by Ali
e and Bob, providedthat they perform an additional 
orre
tness 
he
k before they agree on the key.The required additional pro
edure 
an be summarized as follows:7.' After performing Step 6., Ali
e and Bob sele
t a random subset of the indi
es
i for whi
h ai = ci. Assume the sele
ted indi
es are {ik}mk=1. Ali
e publi
lydis
loses the bits {bik}mk=1, and Bob dis
loses the 
orresponding measurementresults he obtained. If both mat
h, the transmission is assumed to be perfe
tand the remaining bits for whi
h ai = ci are used as a se
ret key. Otherwise,it is assumed that someone was eavesdropping, and the results of the wholese
ret key generation pro
edure are dis
arded.An exemplary run of the pro
edure 
onsisting of steps 1.-7., with 7.' in
luded,is presented in Table 2.2. Note that in real life appli
ations, it is impossible toavoid transmission errors, even if there is no one eavesdropping. Hen
e, a generalstrategy has to be developed to deal with transmission/eavesdropping errors, astrategy that would allow to produ
e a se
ret key, even if the transmission doesnot work perfe
tly. Suitable tools, borrowed from 
lassi
al 
oding theory, weredis
overed some years after the advent of BB84 [65℄. They are very generallydes
ribed as information re
on
iliation and priva
y ampli�
ation. Formore details, 
f. [65℄. 20



{ai} 1 0 1 1 0 1 0 1 0{bi} 0 1 1 0 1 0 1 1 0{ci} 1 1 1 0 0 0 1 0 1Ali
e's 
hoi
e of basis D R D D R D R D RAli
e's photon state ⤡ ↕ ⤢ ⤡ ↕ ⤡ ↕ ⤢ ↔Bob's 
hoi
e of basis D D D R R R D R DBob's result 0 ∗ 1 ∗ 1 ∗ ∗ ∗ ∗The same basis? Y N Y N Y N N N NRandomly sele
ted bits 1Do they mat
h? YSe
ure key 0 1Table 2.2: An exemplary run of the BB84 proto
ol. The symbol ∗ denotes thefa
t that either 0 or 1 
ould have been obtained. The letters Y and N stand for�Yes� and �No�.We need to point out that in the above pro
edures, no use of entangle-ment was made. However, in the early nineties, A. Ekert proposed the �rstentanglement-based quantum key distribution proto
ol, known as E91 [66℄. Al-though the general idea behind E91 is the same as for BB84, there are severalkey di�eren
es:1) Instead of leaving the photon state preparation to Ali
e, both parties areassigned the identi
al task of measuring a subsystem in a two-partite maxi-mally entangled photon state (∣00⟩ + ∣11⟩) /√2. The state is assumed to beexternally given. Ali
e measures the �rst and Bob the se
ond subsystem.2) Three instead of two photon polarization bases are used at random by Ali
eand Bob. In 
ase of Ali
e, the polarizer angles φA1 = 0○, φA2 = 45○ and φA3 = 90○are used. For Bob, it is φB1 = 45○, φB2 = 90○ and φB3 = 135○.3) Bob and Ali
e publi
ly dis
lose whi
h bases they used in whi
h measure-ment round. Then, they reveal the measurement results for whi
h di�erentmeasurement setups were used. This permits them to 
al
ulate the CHSHquantity
E (φA3 , φB3 ) +E (φA3 , φB1 ) +E (φA1 , φB3 ) −E (φA1 , φB1 ) , (2.1)where E (φ,ψ) is the 
orrelation 
oe�
ient between the measurement resultsfor Ali
e and Bob when their polarizer angles are φ and ψ, respe
tively. Asin the example dis
ussed in Se
tion 1.1, the value of the fun
tion (2.1) fora truly maximally entangled sour
e state is 2

√
2. By testing whether theequality between 2

√
2 and (2.1) really o

urs, Bob and Ali
e make sure thatno eavesdropping takes pla
e, nor that the sour
e is 
orrupted.4) If there is (an approximate) equality between (2.1) and its theoreti
al value,the results whi
h Bob and Ali
e obtained when they measured in the same21



bases, should be perfe
tly 
orrelated. They were not publi
ly dis
losed sofar, so they 
an be used as a se
ret key.Shortly after Ekert published his paper, Bennett, Brassard and Mermin [67℄suggested another entanglement-based proto
ol, now 
alled BBM92, whi
h isbasi
ally a version of BB84 that exploits the properties of entangled quantumstates. Thus, the di�eren
e from BB84 des
ribed by item 1) above still exists,but the other ones do not.It is natural to ask how the above two-qubit key distribution methods gen-eralize to higher dimensional quantum systems. The question was addressedby the authors of the paper [68℄, who used so-
alled mutually unbiased bases(MUBs) as a higher dimensional analogue of the pair of bases {∣↔⟩ , ∣↕⟩} and{∣⤡⟩ , ∣⤢⟩}. Let us explain that two orthonormal bases {φi}di=1 and {ψj}dj=1 ofCd are 
alled unbiased if and only if the following equality
∣⟨φi, ψj⟩∣2 = 1

d
(2.2)holds for all i and j. The unbiasedness 
ondition guarantees the desirable prop-erty that an element of one of the bases gives fully random results when mea-sured in the other basis.There 
an exist at most d + 1 mutually unbiased bases in Cd [69℄. We shalldis
uss some of their further aspe
ts in Se
tion 8.4. Either a pair of them, ormore 
an be used to design quantum key distribution proto
ols based on d-dimensional quantum systems [68℄. These proto
ols do not di�er signi�
antlyfrom the qubit ones. Let us also remark that in the qubit setting, there arethree MUBs available, so that there exists an alternative to BB84 that uses sixquantum states instead of four. This possibility was �rst studied in a paper byBruss [70℄.2.2 Quantum teleportation and dense 
odingAs our next example of how the laws of quantum me
hani
s 
an be used forpra
ti
al purposes, we shall dis
uss the two inter
onne
ted 
on
epts of dense
oding [71℄ and quantum state teleportation [72℄.In its most basi
 form, dense 
oding permits two parties, say Ali
e andBob, to ex
hange two 
lassi
al bits of information by just transmitting onequbit. The fundamental tri
k behind this feature is the use of one-sided Paulitransformations, a
ting on a maximally entangled state. We have

(1⊗ 1) ∣Φ+⟩ = ∣Φ+⟩ , (σx ⊗ 1) ∣Φ+⟩ = ∣Ψ+⟩ , (2.3)(σy ⊗ 1) ∣Φ+⟩ = −i ∣Ψ−⟩ , (σz ⊗ 1) ∣Φ+⟩ = ∣Φ−⟩ ,so that the four states resulting from one-sided Pauli a
tion on ∣Φ+⟩ are perfe
tlydistinguishable. Hen
e, they 
an 
arry two bits of 
lassi
al information. In thedense 
oding s
heme proposed in [71℄, Ali
e and Bob initially share a maximally22



entangled state ∣Φ+⟩ of a two-partite system, and ea
h of them has a

ess to onlyone of the subsystems. Ali
e then performs one of the four Pauli transformationson her subsystem, and sends the subsystem to Bob. After this step, Bob isin possession of one of the two-partite maximally entangled states from thelist (2.3). Be
ause these states 
an be perfe
tly distinguished by a quantummeasurement, Bob 
an in prin
iple tell whi
h of the four Pauli operations Ali
eused. Consequently, two bits of 
lassi
al information have been transmitted,even though only one qubit was ex
hanged between Ali
e and Bob.The aim of quantum state teleportation is, on the other hand, to transmitan unknown quantum state ∣ψ⟩ between the two parties. In the basi
 qubitteleportation model [72℄, the required resour
es are a maximally entangled state,i.e. ∣Ψ−⟩ = (∣01⟩ − ∣10⟩) /√2, whi
h is shared between Ali
e an Bob, and thestate to be teleported, initially held by Ali
e. Altogether, they have a tripartitesystem, initially in the state ∣ψ⟩ ∣Ψ−⟩. The �rst two subsystems are 
ontrolledby Ali
e, and the third one by Bob. In order to teleport ∣ψ⟩ to Bob, Ali
eperforms a measurement on the �rst two qubits, using the measurement basis{∣Φ+⟩ , ∣Φ−⟩ , ∣Ψ+⟩ , ∣Ψ−⟩}. She then 
ommuni
ates the result to Bob. Providedthis information, Bob 
an re
over ∣ψ⟩ by performing a suitable unitary rotationon his subsystem. To see that this is a
tually the 
ase, it su�
es to noti
e thefollowing identity
∣ψ⟩ ∣Ψ−⟩ = 1

2
(− ∣Ψ−⟩ ∣ψ⟩ − ∣Ψ+⟩σz ∣ψ⟩ + ∣Φ−⟩σx ∣ψ⟩ − i ∣Φ+⟩σy ∣ψ⟩) (2.4)After the Ali
e's measurement on the �rst two qubits, Bob's subsystem is inone of the states − ∣ψ⟩, −σz ∣ψ⟩, σx ∣ψ⟩, −iσy ∣ψ⟩. Moreover, Ali
e 
an perfe
tlydi�erentiate between these four 
ases, as she knows whi
h of the states ∣Ψ−⟩,∣Ψ+⟩, ∣Φ−⟩ and ∣Φ+⟩ she got in her measurement. If she is so kind to share thisknowledge with Bob, he 
an then re
over the state ∣ψ⟩ by simply undoing thesuitable rotation σx, σy or σz , if his state is not already a multiple of ∣ψ⟩.Naturally, the above dense 
oding and teleportation s
hemes for qubits areexpe
ted to have generalizations to higher dimensional systems. Su
h gen-eralizations do indeed exist and for the so-
alled tight type, they have been
ompletely 
hara
terized by Werner [73℄. Moreover, he showed that there is aone-to-one 
orresponden
e between tight dense 
oding and tight teleportations
hemes. In order to fully understand his result, we �rst need to explain whata general dense 
oding and teleportation s
heme is.De�nition 2.1. Let X be a set of d2 elements. A tight quantum teleportations
heme 
onsists of� A density operator ω on Cd ⊗Cd� A 
olle
tion of 
ompletely positive and tra
e preserving maps Tx, x ∈ X ,a
ting on operators on Cd� A 
olle
tion of observables Fx on Cd⊗Cd, x ∈ X , su
h that for all densityoperators ρ on Cd and all operators A on Cd, the following equality holds

∑
x∈X

Tr((ρ⊗ ω) (Fx ⊗ Tx (A))) = Tr(ρA) (2.5)23



De�nition 2.2. Let X be a set of d2 elements. A tight dense 
oding s
heme
onsists of the same elements as a tight quantum teleportation s
heme, howeverthe 
ondition (2.5) is repla
ed byTr (ω (Tx ⊗ 1) (Fy)) = δxy (2.6)for all x, y ∈ XNote that in the above mentioned example of a dense 
oding s
heme forqubits, we had {Fx}x∈X = {∣Φ+⟩ ⟨Φ+∣ , ∣Ψ+⟩ ⟨Ψ+∣ , ∣Ψ−⟩ ⟨Ψ−∣ , ∣Φ−⟩ ⟨Φ−∣}. We usedthe maximally entangled state ω = ∣Φ+⟩ ⟨Φ+∣ and the transformations {Tx}x∈X ={1,Adσx
,Adσy

,Adσz
}, where Adσx

∶ ρ ↦ σ∗xρσx, and similarly for σy and
σz . In the qubit teleportation s
heme, on the other hand, we had {Fx}x∈X ={∣Ψ−⟩ ⟨Ψ−∣ , ∣Ψ+⟩ ⟨Ψ+∣ , ∣Φ−⟩ ⟨Φ−∣ , ∣Φ+⟩ ⟨Φ+∣}, ω = ∣Ψ−⟩ ⟨Ψ−∣, as well as {Tx}x∈X ={1,Adσz

,Adσx
,Adσy

}Werner proves the following general result [73℄.Theorem 2.3. All tight teleportation or dense 
oding s
hemes in Cd are ob-tained by 
hoosing ω = ∣Ω⟩ ⟨Ω∣ for a maximally entangled state ∣Ω⟩ ∈Cd⊗Cd, Fx =∣Φx⟩ ⟨Φx∣ for an orthonormal basis of maximally entangled states {∣Φx⟩}x∈X ⊂Cd ⊗Cd and Tx = AdUx
, where Ux is 
hosen su
h that ∣Φx⟩ = (Ux ⊗ 1) ∣Ω⟩.In Parti
ular, Theorem 2.3 applies that there is a one-to-one 
orresponden
ebetween tight teleportation and dense 
oding s
hemes. Every su
h s
heme needsa basis of maximally entangled states. Let us remark that Werner proposed a
onstru
tion of su
h bases, based on Latin squares and 
omplex Hadamardmatri
es, whi
h also appear in the 
ontext of mutually unbiased bases, to bedis
ussed in more detail in Se
tion 8.4.2.3 Quantum metrologyIn the last se
tion 
on
erning pra
ti
al appli
ations of quantum entanglement,we shall give an example of how entanglement 
an be used to in
rease phasesensitivity in a photon interferometry experiment. Our dis
ussion is based onthe paper [74℄ by Gerry and Benmoussa, but we make a few remarks aboutrelated work by other authors. The very simple experimental setup we wouldlike to dis
uss is depi
ted in Figure 2.1. It 
onsists of two photodete
tors, a beamsplitter, and a phase shifter. Together, they make up a simple interferometer.An important part of the experiment is also the photoni
 quantum state whi
his fed into the arms of the interferometer, as well as the observable one 
al
ulatesusing the measurement results from the photodete
tors. The aim is to estimatethe phase φ, indu
ed by the phase shifter on single photons. Su
h phase mayresult e.g. from propagation through a thin layer of a medium that has an indexof refra
tion greater than the environment. In the following, we argue that theestimation of φ 
an be made more pre
ise if one does exploit entanglementbetween N photons impinging on the beam splitter, instead of just repeatingsingle-photon measurements N times. 24



Figure 2.1: A simple experimental setup for photon interferometry. The aim ofthe experiment is to estimate the phase φ using an appropriate input state andmeasurementWe shall use the quantum-me
hani
al des
ription of the opti
al experimentin Figure 2.1, the basi
s for whi
h 
an be found in the textbook [75, Chapter 6.℄.In this formalism, the quantum state of the photons leaving the beam splitter isdes
ribed as an element of a two-parti
le Fo
k spa
e, with 
reation/annihilationoperators a/a∗ and b/b∗ 
orresponding to the upper and the lower output armof the interferometer, respe
tively. It should lead to no 
onfusion if we 
all theupper and the lower arm itself a and b for 
onvenien
e (
f. Figure 2.1). The
orresponding 
reation/annihilation operators satisfy the 
ommutation relations
[a, a∗] = [b, b∗] = 1 [a, b] = [a∗, b] = [a, b∗] = [a∗, b∗] = 0 (2.7)The va
uum state ∣0,0⟩ 
orresponds to no photons in arms a and b, and itsatis�es a ∣0,0⟩ = b ∣0,0⟩ = 0. We assume that ∣0,0⟩ is normalized. Photonnumber states are subsequently de�ned as

∣n,m⟩ = (a∗)n (b∗)m√
n!m!

∣0,0⟩ (2.8)They have the 
lear interpretation of states with n photons in arm a and mphotons in arm b of the interferometer. An analogous 
onstru
tion works forthe upper and lower input arm of the interferometer, whi
h we 
all b′ and a′, thesame as the 
orresponding annihilation operators. Note that the upper arm isdenoted with b′ and not with a′, the same as in Figure 2.1. The 
orrespondingphoton number states are denoted with ∣n,m⟩′.In a

ordan
e with [75℄, if we have an input state ∣Φ⟩ = f (a′∗, b′∗) ∣0,0⟩′ forsome fun
tion f of the 
reation operators a′∗ and b′∗, then the output state ofthe interferometer equals
UBSU (φ) f (a∗, b∗) ∣0,0⟩ , (2.9)25



where UBS = exp (iπ (a∗b + ab∗) /4) and U (φ) = exp (iφb∗b). Note that we usethe same fun
tion f , but we evaluate it for the 
reation operators a∗ and b∗,not for a′∗, b′∗. By a slight abuse of notation, we 
an therefore write (2.9) as
UBSU (φ) ∣Φ⟩ and 
onsider the interferometer as a unitary transformation onthe input state, whi
h yields an output in the output Fo
k spa
e. Let us denote∣Ψ (φ)⟩ ∶= UBSU (φ) ∣Φ⟩ The estimation of φ boils down to the 
al
ulation ofthe expe
tation value of an appropriately 
hosen observable O on ∣Ψ (φ)⟩, fromwhi
h we re
over φ, i.e. we measure ⟨O⟩ (φ) ∶= ⟨Ψ (φ)∣O ∣Ψ (φ)⟩ and equate it tothe theoreti
ally predi
ted value of ⟨Ψ (φ̃)∣O ∣Ψ (φ̃)⟩ for some φ̃. The number φ̃gives us an estimate of φ. A widely applied formula for error propagation thenprovides us with an estimate of the error of φ̃,

∆φ̃ = ∆O (φ̃)
∣ d⟨O⟩(φ)

dφ
(φ̃)∣ , (2.10)where ∆O =

√⟨O2⟩ − ⟨O⟩2 is the standard deviation of O. As shown in [74℄,the 
hoi
e ∣Φ⟩ = 1√
2
(∣N,0⟩ + ∣0,N⟩) (2.11)allows for a signi�
ant improvement in the pre
ision of the measurement of φover a s
enario where single-photon states of the type (2.11) are measured Ntimes. The states (2.11) are 
alled NOON states [76℄ for obvious reasons. Itis not easy to 
reate them [77℄, but signi�
ant progress has been made in thatarea in re
ent years, 
f. e.g. [78℄. In the following, we will brie�y explain howthe result of [74℄ was obtained.We already know whi
h state ∣Φ⟩ to use, but we have not yet spe
i�ed theoperator O to measure. A suitable 
hoi
e was suggested in [79℄, and it is

O = exp (iπb∗b) (2.12)Note that b∗b is simply the photon number operator for the lower output arm, sothe expe
tation value of O 
an be estimated from experiment by measuring thenumber nb of 
li
ks in the lower dete
tor and 
al
ulating exp (iπnb) = (−1)nb . Of
ourse, the experiment has to be repeated many times to get a reliable estimate,equal to the average of the expressions (−1)nb over individual runs. Note thatwe assume that photodete
tors are perfe
tly e�
ient, i.e. no photons are lost.On
e we know ∣Φ⟩ and O, it is not very di�
ult to 
al
ulate ⟨Ψ (φ)∣O ∣Ψ (φ)⟩.In order to simplify the 
al
ulation, one 
an introdu
e
J0 = a

∗a + b∗b
2

, J1 = a
∗b + ab∗

2
, J2 = a

∗b − ab∗
2i

, J3 = a
∗a − b∗b

2
(2.13)The operators Ji with i = 1,2,3 were introdu
ed by S
hwinger [80℄ and theysatisfy the angular momentum 
ommutation relations, [Jk, Jl] = i∑m εklmJm.The operator J0 
ommutes with all of them and has the interpretation of thetotal photon number observable (divided by two).26



From the very useful Hadamard lemma (
f. e.g. [81℄)
eXY e−X = e[X,⋅]Y = Y + [X,Y ] + 1

2!
[X, [X,Y ]] + . . . (2.14)and the 
ommutation relations (2.7), one qui
kly obtains the following equalities

eiπJ2a∗e−iπJ2 = −b∗, eiπJ2b∗eiπJ2 = a∗, (2.15)whi
h give us
eiπJ2 ∣n,m⟩ = eiπJ2

(a∗)n (b∗)m√
n!m!

∣0,0⟩ =
= e

iπJ2 (a∗)n e−iπJ2eiπJ2 (b∗)m e−iπJ2√
n!m!

eiπJ2 ∣0,0⟩ =
= (−b∗)n (a∗)m√

n!m!
∣0,0⟩ = (−1)n ∣m,n⟩ , (2.16)where we also used the equality eiπJ2 ∣0,0⟩ = ∣0,0⟩. Another relation whi
hfollows from (2.14) is

e−i
π
2
J1J3e

iπ
2
J1 = J2 (2.17)With (2.16) and (2.17) at hand, we 
an easily 
al
ulate ⟨Ψ (φ)∣O ∣Ψ (φ)⟩. Indeed,sin
e b∗b = J0 − J3 and J0 
ommutes with all Ji, we get

⟨Ψ (φ)∣O ∣Ψ (φ)⟩ =
= 1

2
(⟨N,0∣ + ⟨0,N ∣)U (φ)∗U∗BSeiπ(J0−J3)UBSU (φ) (∣N,0⟩ + ∣0,N⟩) =

= 1

2
(⟨N,0∣ + e−iNφ ⟨0,N ∣) e−iπ2 J1eiπ(J0−J3)eiπ2 J1 (∣N,0⟩ + eiNφ ∣0,N⟩) =
= 1

2
(⟨0,N ∣ + e−iNφ ⟨N,0∣)eiπ(J0−J2) (∣N,0⟩ + eiNφ ∣0,N⟩) =

= 1

2
(⟨0,N ∣ + e−iNφ ⟨N,0∣)e−iπJ2eiπJ0 (∣N,0⟩ + eiNφ ∣0,N⟩) =

= 1

2
((−1)N ⟨0,N ∣ + e−iNφ ⟨N,0∣) eiN2 π (∣N,0⟩ + eiNφ ∣0,N⟩) =

= e
iNφ + (−1)N e−iNφ

2iN
(2.18)Thus ⟨O⟩ (φ) = (−1)N−12 sinφ for N odd and ⟨O⟩ (φ) = (−1)N2 cosφ for N even.These fun
tions readily allow us to re
over φ̃ from ⟨O⟩ (φ̃), up to a multiple of

π/N . Sin
e O2 = 1, we have ⟨O2⟩ = 1 and formula (2.10) yields the followingestimate for the error of φ̃,
∆φ̃ = 1

N
(2.19)27



The above equality holds for both N even and N odd. The ∝ 1/N dependen
ein formula (2.19) 
orresponds to so-
alled Heisenberg limit, whi
h is widely a
-
epted as the minimum phase estimation error allowed by quantum me
han-i
s [82�84℄. On the 
ontrary, by simply repeating a single photon experiment
N times, one gets a pre
ision ∆φ̃ ∝ 1/√N , so-
alled shot-noise or standardquantum limit, whi
h is signi�
antly worse than (2.19) for large N . In this way,entanglement between the photons fed into the arms of the interferometer 
anin
rease the phase sensitivity in the experiment by a fa
tor of √N . Comparedto one single photon experiment, the sensitivity is in
reased N times. A verypra
ti
al use of this feature was proposed in [85℄, where the authors suggestthat NOON states 
ould be used to imprint details of minimum resolution Ntimes better than usual in photolithography. In parti
ular, di�ra
tion patternsresulting from the use of NOON states would have the minimum resolution Ntimes greater than those obtained with unentangled photons. This was 
alledquantum lithography in [85℄. However, the original argument of [85℄ has re
entlymet with some 
riti
ism [86℄, and it is argued that in pra
ti
e, the e�
ien
y ofquantum lithography would be rather low.

28



Chapter 3Distillability and boundentanglement3.1 Distillation of quantum entanglementAs we have seen above, a 
entral role in the most popular quantum tasks, in
lud-ing quantum 
ryptography and teleportation, is played by maximally entangledstates. However, states en
ountered in pra
ti
e never mat
h perfe
tly those usedin the theory, due to experiment imperfe
tions. In the early days of quantuminformation s
ien
e therefore, it appeared to be 
ru
ial to answer the questionwhether a noisy entangled state 
an somehow be �puri�ed� to yield one thatis 
loser to being maximally entangled. A partially a�rmative answer to thisquestion was �rst provided in [87℄ for the 
ase of two qubits and re�ned by theauthors of [88℄. A method suitable for bipartite systems of arbitrary dimension,based on the redu
tion 
riterion for separability, was later presented in [23℄.Let us brie�y dis
uss a puri�
ation, or distillation proto
ol developed by theauthors of [87℄. The pro
edure starts with an arbitrary mixed state ρ of twoqubits. The following steps are designed to yield a state whi
h is 
loser to ∣Φ+⟩in a sense des
ribed below. However, it should be stressed that the method onlyworks provided that ⟨Φ+∣ρ ∣Φ+⟩ > 1
2
, i.e. ρ is not too far from Φ+ at the outset.We 
all the parameter ⟨Φ+∣ρ ∣Φ+⟩ the �delity of ρ with respe
t to the maximallyentangled state ∣Φ+⟩.1) First, we apply a lo
al unitary rotation σy to the se
ond 
omponent of ρ.This yields ρ′ = (1⊗ σy)ρ (1⊗ σy)∗, a state whi
h is as 
lose to ∣Ψ−⟩ =(∣01⟩ − ∣10⟩) /√2 as ρ was to ∣Φ+⟩, in the sense that ⟨Ψ−∣ρ′ ∣Ψ−⟩ = ⟨Φ+∣ρ ∣Φ+⟩.2) Se
ond, we apply a random bilateral SU (2) rotation to ρ′, whi
h e�e
tivelyyields

ρ′′ = ∫ (U ⊗U)ρ′ (U ⊗U)∗ dU, (3.1)where dU refers to the Haar measure. In pra
ti
e, the same goal 
an be29



s1 ●
s2 ●
t1

t2Figure 3.1: A BXOR gate applied to a pair of sour
e (s1, s2) and a pair of targetqubits (t1, t2).a
hieved by randomly 
hoosing the identity and bilateral σx, σy and σzrotations. The result of (3.1) is obviously U ⊗ U -invariant, whi
h impliesthat it must be one of the Werner states (1.9). In the 2 × 2 
ase 
onsideredhere, the Werner states take the spe
i�
 form
F ∣Ψ−⟩ ⟨Ψ−∣ + 1 − F

3
(∣Ψ+⟩ ⟨Ψ+∣ + ∣Φ+⟩ ⟨Φ+∣ + ∣Φ−⟩ ⟨Φ−∣) , (3.2)where ∣Ψ+⟩ = (∣01⟩ + ∣10⟩) /√2 and Φ− = (∣00⟩ − ∣11⟩) /√2. Therefore ρ′′ is ofthe form given above, with F = ⟨Ψ−∣ρ′′ ∣Ψ−⟩ = ⟨Ψ−∣ρ′ ∣Ψ−⟩. The last equalityfollows from the fa
t that ∣Ψ−⟩ is an U ⊗U -invariant state.3) In the next step, a unilateral σy rotation takes ρ′′ to ρ(3) = (1⊗ σy)ρ′′ (1⊗ σy)∗.In this way, the mostly ∣Φ−⟩ state is 
onverted to a mostly ∣Φ+⟩ one.4) Next, we take two 
opies of ρ(3), prepared in the way des
ribed above, anduse one of them as a �sour
e� and the se
ond one as a �target� for a BXORgate, depi
ted in Figure 3.1. A BXOR gate simply 
onsists of two CNOTgates, applied to distin
t pairs of sour
e and target qubits.5) Next, the target pair of qubits is lo
ally measured in the σz basis, as depi
tedin Figure 3.2, whi
h also in
ludes the BXOR operation des
ribed above. If

t1t2

● s1s2 ●Figure 3.2: BXOR operation followed by the measurement of the pair of targetqubits.the results are the same for the qubits t1 and t2, the remaining sour
e pair(s1, s2) is kept. Otherwise, it is dis
arded.6) If in the previous step the sour
e pair was kept, it is transformed to analmost ∣Ψ−⟩ state by a unilateral σy rotation. Next, it is made rotationallysymmetri
 by applying random bilateral SU (2) rotations, as in equation(3.1). Let us 
all the resulting state ρ(4). The 
orresponding parameter Fin formula (3.2) is then equal to
F (4) = F 2 + 1

9
(1 −F )2

F 2 + 2
3
F (1 −F ) + 5

9
(1 −F )2 , (3.3)30



whi
h ex
eeds F over the range (1/2,1). Thus ρ(4) is 
loser to Ψ− than ρ′ inthe sense that ⟨Ψ−∣ρ(4) ∣Ψ−⟩ > ⟨Ψ−∣ρ′ ∣Ψ−⟩.7) In the last step, the almost ∣Ψ−⟩ state ρ(4) is 
onverted ba
k to an almost∣Φ+⟩ one by a unilateral σy rotation. We 
all the resulting state ρ(5). The
orresponding parameter ⟨Φ+∣ρ(5) ∣Φ+⟩ is bigger than ⟨Φ+∣ρ ∣Φ+⟩. Thus, theresulting state is 
loser to ∣Φ+⟩ than ρ was.As a result, by repeating the above pro
edure, states whi
h are arbitrarily 
loseto Φ+ 
an be obtained. Nevertheless, the number of 
opies of ρ needed for theinput grows very fast as the expe
ted �delity goes to 1. Thus, for pra
ti
alpurposes, another pro
edure of distillation was designed by the authors of [87℄,whi
h more e�
iently uses the statisti
al properties of ρ. However, it needsa small input of ∣Φ+⟩ states, whi
h may be obtained by the method des
ribedabove. The mentioned pro
edure 
onsists of two rounds of BXOR tests per-formed on suitably 
hosen subsets of the whole supply of ρ states, using theprepuri�ed ∣Φ+⟩ states as targets. It also uses unilateral and bilateral σy rota-tions, as well as unilateral σz rotations to 
orre
t the dis
repan
ies from ∣Φ+⟩dete
ted by the BXOR operations. More details of the pro
edure 
an be foundin [87℄. All in all, from a theorist point of view, it is su�
ient to say that allmixed states ρ of two qubits with ⟨Φ+∣ρ ∣Φ+⟩ > 1/2 
an be distilled to the maxi-mally entangled state. This result was further extended, by using the te
hniqueof lo
al �lters [10℄, to arbitrary entangled states of two qubits [88℄. In this way,the authors of [88℄ showed that any entangled state of two qubits has some formof nonlo
ality, whi
h is revealed by the distillation pro
edure. Note that a sim-ilar result for bipartite states of arbitrary dimension would have resolved theparadox of Werner's paper [5℄, whi
h we dis
ussed in Se
tion 1.2. However, itwas qui
kly realized that the existen
e of PPT entangled states, �rst revealed tothe physi
ist' 
ommunity by the paper [19℄, immediately pre
ludes the des
ribedstrategy from working [89℄. Let us brie�y explain why this is the 
ase.In an ideal 
ase, given a sour
e 
hara
terized by a bipartite density matrix
ρ, we have at our disposal the tensor produ
t states ρ⊗n for arbitrary n. Themost general transformation one 
an perform on ρ⊗n using only lo
al operationsand 
lassi
al 
ommuni
ation is of the form [90℄

ρ⊗n ↦ Θ (ρ⊗n) ∶= 1

M
∑
i

(Ai ⊗Bi)ρ⊗n (Ai ⊗Bi)∗ , (3.4)where Ai and Bi map into image spa
e in the �rst and the se
ond subsystem,respe
tively. In the 
ase of entanglement distillation, both the image spa
esare C2, as we want to obtain the state ∣Φ+⟩, living in C2 ⊗ C2. Therefore,
Ai ∶ K⊗n → C2 and Bi ∶ H⊗n → C2, assuming that ρ lives on K ⊗ H. Nowassume that ρ has a positive partial transpose. Thus, ρ⊗n is a PPT state as well.One 
an also easily noti
e that the mapping ρ⊗n ↦ ∑i (Ai ⊗Bi)ρ⊗n (Ai ⊗Bi)∗preserves the positivity of the partial transpose of ρ⊗n. Hen
e the state on theright-hand side of (3.4) is a PPT state living on C2 ⊗C2. Consequently, it isseparable [18℄ and 
annot be distilled (
f. also the dis
ussion in Se
tion 1.2). Inthis way we have proved the following [89℄.31



Proposition 3.1. No PPT state living on a bipartite spa
e K⊗H 
an be distilledto ∣Φ+⟩.As a result, all PPT entangled states, in
luding those presented in [19℄,
annot be distilled to ∣Φ+⟩, even though they are not separable. Due to theirundistillability, the states are 
alled bound entangled. For them, the paradoxfrom the Werner's paper [5℄ 
annot be resolved by using distillation proto
ols.Let us mention, however, that the original Werner states are positive partialtranspose if and only if they are separable. This still does not allow us to 
on-
lude that all entangled Werner states 
an be distilled to ∣Φ+⟩, as there mightexist NPT bound entangled states, i.e. undistillable states whi
h are not PPT.This has be
ome a 
entral, still unresolved problem in the theory of entangle-ment, so-
alled NPT bound entanglement existen
e problem. A
tually, it wasdemonstrated in [91℄ (
f. also [92℄) that the question whether there exist NPTbound entangled states only needs to be answered for the Werner family ofstates, sin
e all the other ones 
an be brought to the Werner form by transfor-mations that do preserve the positivity of the partial transpose. However, itturns out that the question for Werner states be
omes in
reasingly di�
ult toanswer as the parameter Ξ in the de�nition (1.9) tends to the boundary value
0. Namely, it was proved in [91℄ that for any n ∈N, there exists ε > 0 su
h thatthe state W from eq. (1.9) with Ξ ∈ (0, ε) 
annot be distilled using operationsof the form (3.4) on W⊗n (however, some of these states may be distillableusing n + 1 or more 
opies of W ). Sin
e then, 
onsiderable e�orts have beenmade to prove or disprove the existen
e of NPT bound entangled states, noneof whi
h have lead to a 
on
lusive answer [93�98℄. Moreover, two 
ontradi
torystatements 
on
erning the problem 
an be found in the preprints [99,100℄, noneof whi
h is 
orre
t. One thing beyond any doubt is that the question of distill-ability intimately relates to the stru
ture of 2-positive maps, i.e. positive maps
Λ ∶ B (K) → B (H) with the property that the map
B (C2 ⊗K) ∋ [ A11 A12

A21 A22
]↦ [ Λ (A11) Λ (A12)

Λ (A21) Λ (A22) ] ∈ B (C2 ⊗H) , (3.5)denoted with id2⊗Λ, is also positive. To see the relation of 2-positivity todistillability, let us �rst note the following 
hara
terization of distillable states[89, 91℄.Proposition 3.2. A state with a density matrix ρ on K ⊗H is distillable ifand only if there exists a �nite n and two-dimensional proje
tions P1, P2 inK⊗n and H⊗n, resp. su
h that ρ′ = (P1 ⊗P2)ρ (P1 ⊗P2)∗, supported on a 2×2-dimensional spa
e, is entangled. The last 
ondition is equivalent to the statementthat there exists a ve
tor ∣ψ⟩ ∈ K⊗H of the form ∣ξ1⟩ ∣χ1⟩+ ∣ξ2⟩ ∣χ2⟩ in K⊗n⊗H⊗nsu
h that ⟨ψ∣ (ρ⊗n)T2 ∣ψ⟩ < 0, (3.6)where T2 denotes the partial transpose with respe
t to the se
ond subsystem,(1⊗ t)⊗n. 32



Proof. As we mentioned above, the most general distillation operation one 
anperform on ρ⊗n is of the form (3.4). In order for the transformed state Θ (ρ⊗n)transformed to be entangled, and thus distillable (remember that end up withstates on C2 ⊗ C2), at least one of the terms ρi ∶= (Ai ⊗Bi)ρ⊗n (Ai ⊗Bi)∗,supported on a 2×2-dimensional subspa
e, needs to be entangled. The operators
Ai and Bi are of the form ∣e0⟩ ⟨α1∣+ ∣e1⟩ ⟨α2∣ and ∣e0⟩ ⟨β1∣+ ∣e1⟩ ⟨β2∣, where α1, α2belong toK and β1, β2 belong toH. Let us denote with P1 and P2 the proje
tionsonto the subspa
es span{α1, α2} and span{β1, β2}, respe
tively. We have

ρi = (Ai ⊗Bi) (P1 ⊗ P2) ρ⊗n (P1 ⊗P2) (Ai ⊗Bi)∗ (3.7)Sin
e a produ
t transformation 
annot 
onvert a separable state into an en-tangled one, we must have that ρ′i ∶= (P1 ⊗ P2) ρ⊗n (P1 ⊗P2) is entangled. Thisproves the ne
essity in the �rst part of the proposition. In order to prove the suf-�
ien
y, it is enough to noti
e that the proje
ted state (P1 ⊗ P2) ρ⊗n (P1 ⊗P2),if entangled, 
an be distilled, be
ause it is supported on a 2 × 2-dimensionalsubspa
e.To prove the se
ond part of the proposition, we observe the following. Be-
ause ρ′i is supported on a 2 × 2-dimensional subspa
e (P1 ⊗ P2)K⊗n ⊗H⊗n, ane
essary and su�
ient 
ondition for ρ′i to be entangled is that it does not havea positive partial transpose. The partial transpose equals
(ρ′i)T2 = (P1 ⊗ P̄2)(ρ⊗n)T2 (P1 ⊗ P̄2) , (3.8)where P̄2 denotes an operator represented by the 
omplex 
onjugated matrix of

P2. Thus P̄2 is also a two-dimensional proje
tion.The above operator is not positive if and only if there exists a ve
tor of theform ∣ψ⟩ = ∣ξ1⟩ ∣χ1⟩ + ∣ξ2⟩ ∣χ2⟩ in (P1 ⊗ P̄2)K⊗n ⊗H⊗n that ful�lls the inequality⟨ψ∣ (ρ′i)T2 ∣ψ⟩ < 0. This simply follows be
ause all the ve
tors in (P1 ⊗ P̄2)K⊗n⊗H⊗n are of the form ξ1 ⊗ χ1 + ξ2 ⊗ χ2, i.e. are of S
hmidt rank 2. But⟨ψ∣ (ρ′i)T2 ∣ψ⟩ = ⟨ψ∣ (ρ⊗n)T2 ∣ψ⟩ a

ording to our 
hoi
e of ψ, whi
h �nishes theproof of the se
ond part of the proposition.Another way of phrasing the above result is that the operator (ρ⊗n)T2 is not
2-blo
k positive for some n (
f. e.g. [101℄). By k-blo
k positivity of an operator
X on a bipartite Hilbert spa
e K1 ⊗K2 we mean the property that ⟨φ∣X ∣φ⟩ ⩾ 0for all φ of the form ∑ki=1 ∣ξi⟩ ∣χi⟩ (in parti
ular, we 
an 
hoose K1 = K⊗n andK2 =H⊗n). Thus, by Proposition 3.2, a state ρ on K⊗H is distillable if for some
n the state ρ⊗n is not 2-blo
k positive. Sin
e 2-blo
k positive operators are ina one-to-one Jamioªkowski-Choi 
orresponden
e to 2-positive maps [101, 102℄,there is a dire
t link between distillability of entanglement and the property ofnot being a 2-positive map. For additional insights, 
onsult [95℄.It was qui
kly realized [103℄ that bound entanglement, even though it isuseless for entanglement distillation, 
an be used to improve �delity of a givendistillable ( = free entangled) state ̺free in a pro
ess very similar to the onedepi
ted in Figure 3.2. To this aim, a 
opy of the free entangled state ̺free33



UXOR σα
UXOR

̺freeFigure 3.3: Bound entanglement a
tivation pro
edure illustrated.together with a 
opy of a bound entangled state σα are passed as inputs tothe 
ir
uit in Figure 3.3, where UXOR (ei ⊗ ej) = ei ⊗ ei+j mod n, an analogue ofthe CNOT gate used in Fig 3.2. Later, the target pair (the upper one in Fig.3.3) is measured in the basis {e1, e2, . . . , en}. If both measurements agree, thesour
e pair (initially in the state ̺free) is kept and assumes a new state ρ′freeof higher �delity. Otherwise, it is dis
arded an the whole pro
edure fails. Ifthe run was su

essful, the des
ribed steps are repeated for ̺′free and another
opy of σα as the sour
e and the target pair, respe
tively. It 
an be shown thata sequen
e of su

essful runs of the above s
heme leads, with a nonvanishingprobability, to a state of an arbitrary high �delity. This phenomenon is 
alledbound entanglement a
tivation [103℄. The pre
ise form of the states ̺free and
σα will be given in Se
tion 3.2.3.2 Examples of bound entangled statesWe already know from the previous se
tion that the question about the exis-ten
e of undistillable states with negative partial transpose is still an unsolvedproblem in the theory of entanglement. Thus no example of an NPT boundentangled state is known. On the other hand, numerous su

essful e�orts havebeen made to give expli
it examples of bound entangled states that do obey thePPT 
riterion. Here, we give a list of referen
es where the known examples 
anbe found. For some of them, we provide the reader with the pre
ise form of thestate and brie�y dis
uss how it was proved to be entangled.Probably the most famous example in the physi
s literature is the 3 × 3Horode
ki state, named after P. Horode
ki work [19℄. The name refers to aone-parameter family of states, given in the 
anoni
al produ
t basis of C3 ⊗C3by the matri
es

̺a = 1

8a + 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a 0 0 0 a 0 0 0 a

0 a 0 0 0 0 0 0 0

0 0 a 0 0 0 0 0 0

0 0 0 a 0 0 0 0 0

a 0 0 0 a 0 0 0 a

0 0 0 0 0 a 0 0 0

0 0 0 0 0 0 1+a
2

0
√
1−a2

2

0 0 0 0 0 0 0 a 0

a 0 0 0 a 0
√
1−a2

2
0 1+a

2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (3.9)
where 0 < a < 1. As we already mentioned in Se
tion 1.2, the state ̺a 
an beproved to be entangled by using the range 
riterion, whi
h is our Proposition 1.6.34



Indeed, with some amount of algebra [19℄, one 
an show that the ve
tors in
R (̺T2

a ), the range of ̺T2

a , belong to one of the following families
A [ 1 s 0 ] ⊗ [ 1 s 0 ] , A, s ∈ C, s ≠ 0 (3.10)
F [ 0 0 1 ] ⊗ [ 1 0 x ] , F ∈C (3.11)
D [ 0 1 0 ] ⊗ [ 0 1 0 ] , D ∈C (3.12)
A [ 1 0 0 ] ⊗ [ 1 0 0 ] , A ∈C (3.13)

C [ 1 0 t ] ⊗ [ 1
t
+ 1
x

0 1 ] , C, t ∈C, t ≠ 0 (3.14)where x ∶= √(1 + a) (1 − a). The partially 
onjugated ve
tors (3.10)-(3.14)do not span the range of ̺a, as they 
annot be linearly 
ombined to yield
[ 0 0 1 ] ⊗ [ 0 1 0 ], whi
h is an element of R (̺a). In this way, the au-thor of [19℄ arrived at a 
ontradi
tion with the range 
riterion for the state ̺T2

a .Hen
e ̺T2

a was proved to be entangled, so that ̺a is entangled as well. A similarmethod was later used in the paper [104℄, whi
h 
ontains �rst examples of 3× 3PPT entangled states of types (5,5) and (6,6). Here (m,n) means that a PPTstate ρ has rank m, while the rank of ρT2 equals n. The redu
tion 
riterionwas also employed, in a very straightforward way, to prove inseparability of afamily of PPT 
hessboard states, introdu
ed in [105℄. They are states of theform 1
N ∑4

i=1 ∣Vi⟩ ⟨Vi∣, where
V1 = [ m 0 s 0 n 0 0 0 0 ] , (3.15)
V2 = [ 0 a 0 b 0 c 0 0 0 ] , (3.16)
V3 = [ n∗ 0 0 0 −m∗ 0 t 0 0 ] , (3.17)
V4 = [ 0 b∗ 0 −a∗ 0 0 0 d 0 ] . (3.18)A

ording to the main result of the thesis, Theorem 9.27, the 
hessboard statesare of the type (4,4) and they are lo
ally equivalent to states arising from theUnextendible Produ
t Basis 
onstru
tion to be dis
ussed below.Shortly after the �rst example of a bound entangled state in the physi
sliterature, C. H. Bennett and 
oworkers [106℄ proposed a fully algorithmi
 wayto 
onstru
t more su
h examples. The method relies on the notion of an Unex-tendible Produ
t Basis, whi
h is formally de�ned in the following way.De�nition 3.3. An Unextendible Produ
t Basis, UBP for short, is a set ofmutually orthogonal produ
t ve
tors {φi1 ⊗ . . . ⊗ φin}ki=1 in a multipartite Hilbertspa
e K1⊗. . .⊗Kn su
h that the orthogonal 
omplement (span{φi1 ⊗ . . .⊗ φin}ki=1)�does not 
ontain a produ
t ve
tor.Given a UPB in a bipartite spa
e, it is straightforward to give an exampleof a PPT entangled state. 35



Proposition 3.4. Let {φi1 ⊗ φi2}ki=1 be an Unextendible Produ
t Basis in K⊗H.The proje
tion
πUPB = 1 − k

∑
i=1

∣φi1 ⊗ φi2⟩ ⟨φi1 ⊗ φi2∣ (3.19)de�nes a PPT bound entangled state ρUPB = πUPB/N , where N is a suitablenormalization fa
tor.The proposition follows be
ause the subspa
e on whi
h ρUPB proje
ts, 
on-tains no produ
t ve
tor. Hen
e, using the range 
riterion, the state proportionalto (3.19) is entangled. The fa
t that it also has a positive partial transpose 
anbe 
he
ked by a simple 
al
ulation. Indeed,
πT2UPB = 1 − k

∑
i=1

∣φi1 ⊗ (φi2)∗⟩ ⟨φi1 ⊗ (φi2)∗∣ , (3.20)where ∗ denotes 
omponentwise 
onjugation, is another proje
tion, hen
e posi-tive de�nite. Generalizations to a multipartite setting are immediate.In the main part of the thesis, we prove Theorem 9.27, whi
h says that allPPT bound entangled states of rank 4 in 3 × 3 systems are lo
ally equivalentto states of the form (3.19). This means that any su
h state is proportional to(A⊗B)πUPB (A⊗B)∗ for some UPB and some SL (3,C) transformations Aand B. In this way we obtain a full 
hara
terization of simplest PPT entangledstates, as all PPT states of ranks ⩽ 3 are separable [107℄.As far as the above examples are 
onsidered, the redu
tion 
riterion seemsto be the only way to prove that a given PPT state is entangled. But in reality,it is not the only one known in literature. Another distinguished approa
h tothe problem is by using so-
alled inde
omposable positive maps. By the positivemaps 
riterion, the existen
e of a positive map Λ su
h that (id⊗Λ)ρ /⩾ 0 impliesinseparability of a state ρ. It is pre
isely in this way that the earliest examples ofPPT entangled states [20,21℄ were obtained by mathemati
ians1. The exemplaryPPT entangled state given in [20℄ is of the form
x =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2µ 0 0 0 2µ 0 0 0 2µ

0 4µ2 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0

2µ 0 0 0 2µ 0 0 0 2µ

0 0 0 0 0 4µ2 0 0 0

0 0 0 0 0 0 4µ2 0 0

0 0 0 0 0 0 0 1 0

2µ 0 0 0 2µ 0 0 0 2µ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (3.21)
1Note however that the name �bound entanglement� was not used until [89℄36



whi
h 
an be more 
on
isely written as x = 2µ ∣Φ+⟩ ⟨Φ+∣ + 4µ2σ+ + σ−, where
σ+ = 1

3
(∣01⟩ ⟨01∣ + ∣12⟩ ⟨12∣ + ∣20⟩ ⟨20∣) (3.22)

σ− = 1

3
(∣10⟩ ⟨10∣+ ∣21⟩ ⟨21∣ + ∣02⟩ ⟨02∣) (3.23)and ∣Φ+⟩ stands for the maximally entangled ve
tor, ∣Φ+⟩ = (∑2

i=0 ∣ii⟩) /√3.A slightly modi�ed family of states σα = 2
7
∣Φ+⟩ ⟨Φ+∣+ α

7
σ+ + 5−α

7
σ− was laterused to demonstrate the phenomenon of bound entanglement a
tivation [103℄,whi
h we brie�y des
ribed in Se
tion 3.1. The authors of [103℄ also used a relatedfamily ρfree = F ∣Φ+⟩ ⟨Φ+∣ + (1 −F )σ+ as their input free entangled states.Another notable example of a 
lass of PPT entangled states revealed byinde
omposable positive maps was given in [108℄. We should also mention aseries of papers by K.-C. Ha and 
o-workers [109�111℄, where the authors developa possible general approa
h to 
onstru
ting PPT entangled states from fa
es ofthe 
one of all de
omposable positive maps. In parti
ular, they 
onsider a familyof generalized Choi maps, introdu
ed in [112℄ and use them to 
onstru
t the
orresponding bound states. For the de�nition of de
omposability and relatednotions, 
he
k e.g. [101℄.
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Part IIA brief introdu
tion toalgebrai
 geometry

38



Chapter 4Varieties, Ideals andGroebner bases4.1 PreliminariesJust as we mentioned in previous parts of the thesis, problems en
ounteredin the theory of quantum 
hannels, measurement and entanglement are oftenof purely algebrai
 nature. More pre
isely, they pertain to the existen
e ofsolutions of 
ertain algebrai
 equations or, for example, to positivity of a numberof polynomials. In order to answer su
h questions in an e�e
tive way, one 
anuses te
hniques su
h as Groebner bases or resultans, whi
h we brie�y dis
uss inthe following. By their e�e
tiveness we mean the fa
t that a de
isive answer to aquestion is obtained in a �nite, though sometimes rather high, number of steps.We also in
lude a proof of Bezout's theorem, whi
h we later use to prove themain result of the thesis, 
on
erning PPT bound entangled states of minimalrank.Before we introdu
e the ideas of Groebner bases, let us begin with an intro-du
tion to basi
 notions of algebrai
 geometry. A more 
omprehensive treat-ment of the subje
t 
an be found in a book like [113℄, whi
h we re
ommend toeveryone new to the subje
t. By K [x1, x2, . . . , xn] we shall denote the set of
n-variate polynomials in the variables x1, . . . , xn and 
oe�
ients in K. The twomain 
ases 
onsidered in this thesis are K = C and K =R. With this notation,let us de�ne the basi
 obje
t of algebrai
 geometry.De�nition 4.1. By an a�ne variety we mean a subset of Kn de�ned by aset of equations

f1 (x1, . . . , xn) = 0, . . . , fd (x1, . . . , xn) = 0 (4.1)We shall denote it by V(f1, . . . , fd)We 
an give a simple, although not an entirely trivial example of an a�ne39
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Figure 4.1: A twisted 
ubi
 
urve in R3.variety in Rn (or Cn), whi
h reappears, in somewhat generalized form of arational normal 
urve, in one of the papers related to the thesis [114℄.Example 4.2 (Twisted 
ubi
). The a�ne variety de�ned by the set of equations
y − x2 = 0, z − x3 = 0 (4.2)is 
alled the twisted 
ubi
 
urve.As we will explain, a 
on
ept intimately related to a�ne varieties is that ofideals. An ideal 
an be regarded as a generalization of a linear subspa
e, wherethe arbitrary s
alar fa
tors in linear 
ombinations are repla
ed by arbitrarypolynomials. More formally, we have the following de�nition.De�nition 4.3 (Ideal). A subset I ⊂K [x1, . . . , xn](i) 0 ∈ I(ii) f, g ∈ I ⇒ f + g ∈ I(iii) f ∈ I ∧ h ∈K [x1, . . . , xn]⇒ hf ∈ Iis 
alled an ideal in K [x1, . . . , xn].It turns out (
f. Theorem 4.18) that all ideals I ⊂K [x1, . . . , xn] are �nitelygenerated, whi
h means that there always exists a �nite set f1, . . . , fd ∈K [x1, . . . , xn]su
h that all elements of I 
an be written in the form ∑di=1 hifi with hi ∈K [x1, . . . , xn] and no element of K [x1, . . . , xn] ∖ I is of that form. Let usmake it more formal.De�nition 4.4. For a subset A ⊂ K [x1, . . . , xn], we denote by ⟨A⟩ the idealgenerated by A, whi
h is by de�nition the minimal ideal in
luding A. If A ={f1, . . . , fd}, we write ⟨A⟩ = ⟨f1, . . . , fd⟩ and say that the ideal ⟨f1, . . . , fd⟩ is�nitely generated. Equivalently, ⟨f1, . . . , fd⟩ 
onsists of all elements of the form

∑di=1 hifi, where hi ∈K [x1, . . . , xd] for all i.40



Proof. Only the last statement needs a proof. First of all, let us denote by⟨f1, . . . , fd⟩′ the set of all elements of the form ∑di=1 hifi. Clearly, by the de�-nition of an ideal, we have ⟨f1, . . . , fd⟩′ ⊂ ⟨f1, . . . , fd⟩. Let us also observe that⟨f1, . . . , fd⟩′ is an ideal. Sin
e ⟨f1, . . . , fd⟩ is by de�nition the smallest ideal 
on-taining f1, . . . , fd, we must have ⟨f1, . . . , fd⟩′ ⊃ ⟨f1, . . . , fd⟩, whi
h gives us theequality ⟨f1, . . . , fd⟩′ = ⟨f1, . . . , fd⟩.A �xed ideal I may have various sets of generators. One of the 
ru
ial ob-servations of algebrai
 geometry is that the variety de�ned by a set of equations
f1 (x1, . . . , xn) = 0, . . . , fd (x1, . . . , xd) = 0 depends only on the ideal ⟨f1, . . . , fd⟩and not on the parti
ular set of generators.Proposition 4.5. Let ⟨f1, . . . , fd⟩ = ⟨g1, . . . , gl⟩. In su
h 
ase V(f1, . . . , fd) =
V(g1, . . . , gl)Proof. From the last part of De�nition 4.4 we know that gi = ∑dj=1 hijfj forsome polynomials hij . Thus (x1, . . . , xn) ∈ V(f1, . . . , fd) implies (x1, . . . , xn) ∈
V(g1, . . . , gl). Consequently, V(f1, . . . , fd) ⊂ V(g1, . . . , gl). The inverse in
lu-sion 
an be obtained in a similar way.Apart from ⟨f1, . . . , fd⟩, there exists another ideal intimately related to
V(f1, . . . , fd), namely the ideal of polynomials that vanish on V(f1, . . . , fd).De�nition 4.6. Let V = V(f1, . . . , fd) be an a�ne variety in Kn. The idealof V is by de�nition

I (V ) = {f ∈K [x1, . . . , xd] ∣f (x1, . . . , xn) = 0 ∀(x1,...,xn)∈V } (4.3)The above de�nition is easily generalized to arbitrary subsets in pla
e of V .De�nition 4.7. Let S be a subset of Kn. The ideal of S is by de�nition
I (S) = {f ∈K [x1, . . . , xd] ∣f (x1, . . . , xn) = 0 ∀(x1,...,xn)∈S} (4.4)We leave it as an exer
ise for the reader to prove that I (S) is an ideal.Moreover, the maps V ∶ I ↦ V (I) and V ∶ S ↦ I (S) are in
lusion reversing.We also have the followingProposition 4.8. For any a�ne variety V ⊂K [x1, . . . , xn], we have

V (I (V )) = V (4.5)Proof. We know that V = V (⟨f1, . . . , fd⟩) and ⟨f1, . . . , fd⟩ ⊂ I (V ) be
ause allthe polynomials fi vanish on V . Consequently,V (⟨f1, . . . , fd⟩) ⊃V (I (V )) sin
e
I ↦V (I) is in
lusion-reversing. On the other hand, the in
lusion V ⊂V (I (V ))follows dire
tly from the fa
t that every f ∈ I (V ) vanishes on V .We 
an also 
hara
terize V (I (S)) for arbitrary subsets S of Kn.Proposition 4.9. For S ⊂ Kn, the a�ne variety V (I (S)) is the smallestvariety that 
ontains S. 41



Proof. LetW be an a�ne variety su
h that S ⊂W . Sin
e I is in
lusion-reversing,we have I (S) ⊃ I (W ). Moreover, V (I (S)) ⊂V (I (W )) be
ause I is in
lusion-reversing. Finally, V (I (W )) = W , by Proposition 4.8 and the fa
t that W isan a�ne variety. Thus V (I (S)) ⊂ W for any a�ne variety W that 
ontains
S. A natural question to ask is whether I (V(f1, . . . , fd)) = ⟨f1, . . . , fd⟩. Theanswer in general is no, however, under algebrai
ally 
losed �elds like C, thereis a pre
ise 
riterion, 
alled Nullstellensatz, whi
h allows to 
he
k whether theequality o

urs. It 
an be found in Theorem 4.35 of Se
tion 4.3.A number of other questions 
ome very naturally with the notions of an idealand an a�ne variety. Let us give a list of three of them, whi
h will be answeredto in the following.1) Does every ideal in K [x1, . . . , xn] have a �nite set of generators? In otherwords, 
an we always write I = ⟨f1, . . . , fd⟩ for some polynomials f1, . . . , fd?2) How 
an we 
he
k whether a given polynomial f ∈K [x1, . . . , xn] belongs toan ideal I?3) How 
an we solve a system of polynomial equations f1 (x1, . . . , xn) = 0, . . . ,

fd (x1, . . . , xn) = 0, i.e. �nd a parametri
 des
ription of (a part of) the a�nevariety de�ned by the equations. Under whi
h 
onditions solutions do existat all?In order to better understand the above questions, it is useful to give a shortsummary of how they are answered in the univariate 
ase, K [x]. First of all,let us mention that the leading term of f =∑di=1 αixi ∈K [x] (αi ∈K∖{0}) is byde�nition equal to αdxd, the leading 
oe�
ient is αd and the leading monomialis xd. Let us denote them by LT (f), LC (f) and LM (f), respe
tively. Let usalso denote the degree of F by deg f . Given two univariate polynomials f , g,there is a unique way of writing f as
f = qg + r (4.6)where q, r ∈ K [x] and either r = 0 or deg r < deg g. The 
lassi
al divisionalgorithm in K [x] that produ
es q and r given f and g 
onsists in the stepsgiven in Figure 4.2q=0r=fwhile r<>0 and LT(g) divides LT(r) doq=r+LT(r)/LT(g)r=r-(LT(r)/LT(g))gFigure 4.2: Polynomial division algorithm in K [x]We 
an now answer question one in the 
ase of univariate polynomials.42



Proposition 4.10. Every ideal in K [x] is generated by a single polynomial f ,whi
h is the polynomial of lowest degree in I.Proof. Clearly, there must exist a polynomial of lowest degree in I. Let usdenote it by g. We shall prove that I = ⟨g⟩. Clearly, ⟨g⟩ ⊂ I. If there existed apolynomial f ∈ K [x] ∖ ⟨f⟩, we 
ould divide f by g and produ
e a polynomial
r as in formula (4.6). Sin
e f /∈ ⟨g⟩, r ≠ 0. It would satisfy deg r < deg g and
r = f − qg ∈ I, whi
h is a 
ontradi
tion, be
ause we assumed that g is thepolynomial of minimal degree in I.Question two also has an immediate answer in the univariate 
ase. Sin
eevery ideal in K [x] is of the form ⟨g⟩ for some g ∈K [x], it is su�
ient to dividean arbitrary polynomial f by g to 
he
k whether f belongs to the ideal or not.If r = 0, it belongs to the ideal, and if r ≠ 0, it does not. As it is well known frombasi
 algebra 
ourses, solutions to univariate polynomial equations of the form
f (x) = 0 always exist in 
ase of K = C and other algebrai
ally 
losed �elds, butmay fail to exist when the base �eld is not algebrai
ally 
losed. Expli
it generalsolutions in C are only known for f of degree up to 4 as a 
onsequen
e of theAbel-Ru�ni theorem, 
f. e.g. [115℄. Note that the question, whether solutionsexist or not, starts to be non-trivial if we pass to multiple polynomial equationsor a multivariate setting, even if the base �eld is algebrai
ally 
losed (e.g. whenit equals C). In su
h 
ase, the te
hniques of Groebner bases and resultants areof mu
h help. We shall dis
uss both in subsequent se
tions of the thesis.4.2 Monomial orders and Groebner basesLet us now pass from one-variable polynomials, dis
ussed at the end of theprevious subse
tion, to the multivariate setting. We shall avoid ex
ess notationby using the symbol xα with multi-indi
es (α1, . . . , αn) in pla
e of xα1

1 ⋅ . . . ⋅xαn
n .In order to introdu
e an analogue of the division algorithm in K [x], we need tospe
ify what is a leading term of a multivariate polynomial. Unlike for univariatepolynomials, the notions of the leading term, leading 
oe�
ient or monomialare not uniquely de�ned. There are many possible 
hoi
es and one needs tospe
ify an ordering of monomial terms in order to do multivariate polynomialdivision in a sensible way. The orderings also have to respe
t the multipli
ativeand additive stru
ture of K [x1, . . . , xn], so they ful�ll a number of 
onstraints.In su
h 
ase we 
all them monomial orderings.De�nition 4.11 (Monomial ordering). Amonomial ordering inK [x1, . . . , xn]is any relation > on the set of monomials in K [x1, . . . , xn] whi
h ful�lls(i) the ordering > is linear, whi
h means that for any monomials xα and xβ,

α ≠ β, either xα < xβ or xα > xβ.(ii) If xα > xβ then xα+γ = xαxγ > xβxγ = xβ+γ for any multi-index γ.(iii) The relation > is w well-ordering, whi
h means that for any set of mono-mials {xα}α∈A, there exists a smallest element under the ordering >.43



In the following, we introdu
e three most 
ommon examples of monomialorderings.Example 4.12 (Lexi
ographi
 order). Let xα and xβ be monomials inK [x1, . . . , xn].We have xα >lex xβ if and only if α − β has the left-most nonzero entrypositive.Example 4.13 (Graded lexi
ographi
 order). Let xα and xβ be monomials inK [x1, . . . , xn]. We have xα >grlex xβ if and only if
∣α∣ = n

∑
i=1

αi >
n

∑
j=1

βj = ∣β∣ or ∣α∣ = ∣β∣ and xα >lex xβ , (4.7)where ∣α∣ denotes the total degree of xα. In other words xα >grlex xβ if and onlyif xα has a higher total degree than xβ or has the same total degreeand xα >lex xβ.Example 4.14 (Graded Reverse Lexi
ographi
 Order). Let xα and xβ be mono-mials in K [x1, . . . , xn]. We have xα >grevlex xβ if and only if
∣α∣ = n

∑
i=1

αi >
n

∑
j=1

βj = ∣β∣ or ∣α∣ = ∣β∣ , (4.8)and in α − β the right-most nonzero entry is negative.We 
an now introdu
e an analogue of the univariate division algorithm inFigure 4.2. Let f and g1, . . . , gd ∈K [x1, . . . , xn] be arbitrary and �x a monomialordering in K [x1, . . . , xn]. There exist qi ∈ K [x1, . . . , xn], i = 1,2, . . . , d and
r ∈K [x1, . . . , xn] su
h that

f =
d

∑
i=1

qigi + r (4.9)and no monomial of r is divisible by any of the leading monomials LM (gi).Moreover, LM (qigi) ⩽ LM (f) ∀i. Obviously, r and qi in the above formula areanalogues of r and q in equation (4.6), while the 
ondition on monomial termsof r 
orresponds to deg r < deg g in the univariate setting. An algorithm whi
hgives a de
omposition of the form (4.9) is shown in Figure 4.2.In short, the algorithm tries to divide the leading term of f by theleading terms of gi, i = 1, . . . , d. If this is not possible, the leading term isadded to the division remainder and the whole pro
edure repeated from thebeginning. Note that the ordering of the polynomials g1, . . . , gd has an in�uen
eon the result of division. In parti
ular, the remainder r may depend on how thepolynomials g1, . . . , gd are ordered and thus is not uniquely de�ned. The lastfeature 
an be seen in the following exampleExample 4.15. Let g1 = xy + 1, g2 = y2 − 1, f = xy2 − x and the take the >lexorder in K [x, y]. The multivariate division algorithm gives us
xy2 − x = y ⋅ (xy + 1)+ 0 ⋅ (y2 − 1) + (−x − y) . (4.10)44



for i=1 to d do q_i=0r=0p=fwhile p<>0 do {divisiono
urred=0for j=2 to d doif LT(g_i) divides LT(p) do {divisiono
urred=1q_i=g_i+LT(p)/LT(q_i)p=p-LT(p)/LT(q_i)}if not divisiono
urred=1 do {r=r+LT(p)p=p-LT(p)}} Figure 4.3: A division algorithm in K [x1, . . . , xn]However, with the 
hoi
e g2 = xy + 1, g1 = y2 − 1, f = xy2 − x, we get
xy2 − x = x ⋅ (y2 − 1) + 0 ⋅ (xy + 1) + 0 (4.11)instead.We see from (4.10) and (4.11) that the 
ondition f ∈ ⟨g1, . . . , gd⟩ is notequivalent to r = 0. We shall see that with a proper 
hoi
e of the ideal basis, aGroebner basis, both 
onditions 
an be made equivalent and the remainder

r 
eases to be ordering dependent, though it still depends on the parti
ularmonomial order we 
hoose in K [x1, . . . , xn].First, we need to introdu
e the notion of monomial ideals and investigatetheir basi
 properties. Amonomial ideal is simply the ideal generated by a setof monomials in K [x1, . . . , xn]. More formally, we have the following de�nitionDe�nition 4.16 (Monomial ideal). Let A be a subset of Zn 
onsisting of 
om-ponentwise nonnegative elements. A monomial ideal 
orresponding to A is thesmallest ideal in K [x1, . . . , xd] 
ontaining {xα}α∈A.We shall denote by ⟨xα⟩a∈A the monomial ideal generated by {xα}α∈A. Itturns out that all monomial ideals admit a �nite set of generators. This is the
ontents of the following Di
kson's lemma.Lemma 4.17 (Di
kson's). Let I = ⟨xα⟩α∈A be a monomial ideal. There existsa �nite set α1, . . . , αd ∈ A su
h that I = ⟨xα1 , . . . , xαd⟩Proof. Can be found in algebrai
 geometry textbooks like [113℄.45



With the Di
kson's lemma at hand, one 
an prove a key theorem aboutideals in K [x1, . . . , xn].Theorem 4.18 (Hilbert basis theorem). Every ideal I ⊂ K [x1, . . . , xn] is�nitely generated. Thus, there exist g1, . . . , gd ∈ I su
h that I = ⟨g1, . . . , gd⟩. Inparti
ular, every g1, . . . , gd with the property ⟨LT (f)⟩f∈I = ⟨LT (g1) , . . . ,LT (gd)⟩form an admissible set of generators of I.Proof. Consider the monomial ideal J = ⟨LT (f)⟩f∈I . A

ording to Di
kson'slemma, there exist a �nite set of generators of J , whi
h are ne
essarily of theform LT (g1) , . . .LT (gd). We shall prove that g1, . . . , gd generate I. If that wasnot the 
ase, there would exist f ∈ K [x1, . . . , xn] ∖ ⟨g1, . . . gd⟩. Let us divide
f by g1, . . . , gd using the algorithm given in Figure 4.2. It ne
essarily givesus f = ∑i qigi + r with r ≠ 0 by our assumption that f is not in ⟨g1, . . . gd⟩.However, r = f −∑i qigi is an element of f and thus LT (f) an element of J . Itmust therefore be divisible by one of the generators of J . That is, it must bedivisible by one of the LT (gi), whi
h is a 
ontradi
tion be
ause of the propertiesof the remainder r on division by g1, . . . , gd.We 
an also prove the following useful resultCorollary 4.19 (As
ending 
hain 
ondition). Let I1 ⊂ I2 ⊂ I3 ⊂ . . . be a sequen
eof ideals in K [x1, . . . , xn]. The sequen
e stabilizes for some �nite i, i.e. Ii = Ii+nfor all n ⩾ 0.Proof. It is easy to 
he
k that the set I ∶= ⋃+∞j=1 Ij is an ideal in K [x1, . . . , xn].A

ording to the above theorem, there exists a �nite basis g1, . . . , gd of I. A
-
ording to the de�nition of I, we must have gj ∈ Iij for some ij ⩾ 1. Let us
hoose i = max{i1, . . . , id}. Sin
e I = ⟨g1, . . . , gd⟩ and gj ∈ Ii for all i = 1, . . . , d,we 
learly see that I = ⋃ij=1 Ij . Thus, Ik = Ii for all k ⩾ i.In the spirit of Theorem 4.18, a Groebner basis is de�ned as a �nitesubset g1, . . . , gd of an ideal I with the property that ⟨LT (g1) , . . . ,LT (gd)⟩ =⟨LT (f)⟩f∈I .De�nition 4.20 (Groebner basis). Let I ⊂K [x1, . . . , xn] be an ideal. A Groeb-ner basis of I is a �nite subset g1, . . . , gd ∈ I su
h that ⟨LT (g1) , . . . ,LT (gd)⟩ =⟨LT (f)⟩f∈I . In other words, a Groebner basis is a �nite set of polynomials in Iwith the property that their leading terms generate the ideal of leading terms ofpolynomials in I.Let us list a few properties of Groebner bases.1) A Groebner basis of an ideal I generates I. In other words, it is a basis ofthe ideal in the usual sense,2) There exists a Groebner basis an an arbitrary ideal I ⊂K [x1, . . . , xn],3) The remainder of f ∈K [x1, . . . , xn] on division by a Groebner basis g1, . . . , gd ∈

I is uniquely de�ned. 46



Points one and two follow dire
tly from the proof of Theorem 4.18. We shallgive a more formal version of point three in the following proposition [113℄.Proposition 4.21. Let G = {g1, . . . , gd} be a Groebner basis for an ideal I ⊂K [x1, . . . , xn] and let f ∈K [x1, . . . , xn]. Then there is a unique r ∈K [x1, . . . , xn]with the following two properties(i) No term of r is divisible by any of LT (g1) , . . . ,LT (gd),(ii) There is g ∈ I su
h that f = g + r.In parti
ular, the polynomial r is the remainder on division of f by G, no matterhow the elements of G are listed when using the division algorithm.Proof. An r with the properties (i) and (ii) 
an be obtained using the divisionalgorithm shown in Figure 4.2. Let us prove the uniqueness of r. Assume, onthe 
ontrary, that for some f ∈ I, f = g + r = g′ + r′ where r′ ≠ r and both (g, r)and (g′, r′) satisfy (i) and (ii). Thus r − r′ = g′ − g is an element of I withLT (r − r′) ≠ 0. By the de�nition of a Groebner basis and r − r′ ∈ I, the leadingterm must be divisible by some LT (gi), i = 1, . . . , d, whi
h is a 
ontradi
tion,be
ause by (i), the monomials of r and r′ are not divisible by any LT (gi).Note that by now, we already have an answer to the ideal membershipquestion (number two) raised on page 42. Provided a Groebner basis G, wesimply divide f by G using the division algorithm of Figure 4.2 and 
he
kwhether r = 0 or not. Let us state this as a proposition.Proposition 4.22. Let G be a Groebner basis of an ideal I ⊂K [x1, . . . , xn]. Apolynomial f ∈ K [x1, . . . , xn] belongs to I if and only if the remainder of f ondivision by G equals 0.Proof. If the remainder is zero, we 
learly have f = ∑i qigi ∈ I. On the otherhand, assume that f is an element of I and r ≠ 0. In su
h 
ase, LT (r) ≠ 0 andLT (r) ≠ ⟨LT (g1) , . . . ,LT (gd)⟩We will see shortly that a Groebner basis of an ideal 
an be found by Bu
h-berger's algorithm [116℄ in a �nite number of steps. Thus the ideal member-ship problem 
an also be solved in a �nite number of steps by 
al
ulating theremainder of f on division by a Groebner basis. For future 
onvenien
e, let usdenote su
h remainder by fG.In the light of the above developments, it is important to know whi
h basesof an ideal are Groebner bases, and how to �nd a Groebner basis of a givenideal, possibly of a ni
e form and unique in some sense. Fortunately, there existsimple answers to all these questions and we shall explain them in the following.First, we introdu
e the notion of so-
alled S-polynomial [116℄.47



l=d; m=dfor i=1 to l do g_i=f_irepeat {l=mfor i=1 to l dofor j=1 to l do {if (r=Remainder(Spolynomial(g_i,g_j),{g_1,...,g_l}))<>0do {Append({g_1,g_2,...,g_l},r)m=l+1}}} until l=mFigure 4.4: A rudimentary algorithm for 
al
ulation of a Groebner basis of anideal ⟨f1, . . . , fd⟩, given here a

ording to [113℄.De�nition 4.23 (S-polynomial). Given two polynomials f, g ∈ K [x1, . . . , xn]and some monomial order >, take xα = LM (f) and xβ = LM (g). The S-polynomial of f and g is de�ned to be
S (f, g) ∶= xγLT (f)f − xγLT (g)g, (4.12)where γ is a multi-index (γ1, . . . , γn) de�ned su
h that γi = max (αi, βi) for

α = (α1, . . . , αn) and β = (β1, . . . , βn)The S-polynomial is de�ned su
h that a 
an
ellation of leading terms of fand g o

urs, and some new leading terms 
an possibly be produ
ed.Let us now state without a proof a key result of Groebner basis theory, 
alledBu
hberger's S-pair 
riterion [116℄.Theorem 4.24 (S-pair 
riterion). A basis F = (f1, . . . , fd) of an ideal I ⊂K [x1, . . . , xn] is a Groebner basis of I if and only if
S (fi, fj)F = 0∀i,j∈{1,...,d} (4.13)The above 
riterion suggests an algorithm how to �nd a Groebner basis ofan ideal I, given a set of generators f1, . . . , fd. If we 
al
ulate all the possibleremainders S (fi, fj)(f1,f2,...) and some of them turn out to be nonzero, we addthem to (f1, f2, . . .) and repeat the whole pro
edure for the extended set ofgenerators. At some point, this extension pro
edure should terminate, and the

S-pair 
riterion tells us that we have obtained a Groebner basis of the ideal I.A more pre
ise des
ription of the algorithm is shown in Figure 4.4. We alsostate its 
orre
tness as a separate theorem.48



Theorem 4.25 (Bu
hberger's algorithm). The algorithm given in Figure 4.4returns a Groebner basis ⟨g1, . . . , gr⟩ of the ideal I = ⟨f1, . . . , fd⟩ in a �nitenumber of stepsProof. The additional elements gi, i > d, produ
ed by the algorithm, belong to
I. This follows indu
tively be
ause at ea
h step the S-polynomials S (gi, gj)and their remainders S (gi, gj)(g1,g2,...) belong to the same ideal as (g1, g2, . . .)do. Moreover, the algorithm terminates if and only if at some point all theremainders S (gi, gj)(g1,g2,...) vanish, whi
h is equivalent to say, by Theorem4.24, that the set (g1, g2, . . .) is a Groebner basis of the ideal I. Thus, we onlyneed to show that the algorithm terminates. This will be done with help of theas
ending 
hain 
ondition, Corollary 4.19.Let us try to assume that a sequen
e g1, g2, . . . , gd, gd+1, . . . produ
ed by thealgorithm does not terminate. We have a 
orresponding sequen
e of ideals

⟨LT (g1) ,LT (g2) , . . . ,LT (gd)⟩ , (4.14)⟨LT (g1) ,LT (g2) , . . . ,LT (gd) ,LT (gd+1)⟩ , (4.15)
. . .⟨LT (g1) ,LT (g2) , . . . ,LT (gd) ,LT (gd+1) ,LT (gd+2)⟩ , (4.16)
. . .whi
h must stabilize a

ording to Corollary 4.19. However, the algorithm inFigure 4.4 works is su
h a way that whenever an element gl+1 is added to asequen
e g1, g2, . . . , gd, gd+1, . . . , gl, its leading term LT (gl+1) is not divisible byany of the leading terms LT (g1) ,LT (g2) , . . . ,LT (gd) ,LT (gd+1) , . . . ,LT (gl).Thus

⟨LT (g1) ,LT (g2) , . . . ,LT (gd) ,LT (gd+1) , . . . ,LT (gl)⟩ ≠
≠ ⟨LT (g1) ,LT (g2) , . . . ,LT (gd) ,LT (gd+1) , . . . ,LT (gl) ,LT (gl+1)⟩ (4.17)for all l ⩾ d. This shows that (4.14)-(4.16) forms a stri
tly in
reasing sequen
eof ideals in K [x1, . . . , xn], whi
h is impossible a

ording to the as
ending 
hain
ondition. The only possible solution is that the algorithm always terminates, sothat it never produ
es an in�nite sequen
e of polynomials g1, g2, . . . , gd, gd+1, . . .The Groebner bases obtained by the algorithm in Figure 4.4 are not optimalin many respe
ts. First of all, di�erent bases 
an be obtained, depending onthe 
hoi
e of the order of the inputs f1, . . . , fd. Moreover, it may happen that apolynomial g in the output sequen
e G = {g1, . . . , gl} has a leading term LT (g)whi
h divisible by some of the leading terms of the polynomials in G ∖ {g}.In su
h 
ase G ∖ {g} is another Groebner basis of the ideal ⟨f1, . . . , fd⟩ witha smaller number of elements. A Groebner basis where no su
h redu
tion ispossible and all the leading 
oe�
ients are equal to unity, is 
alled a minimalGroebner basis. 49



De�nition 4.26 (Minimal Groebner basis). A Groebner basis G = {g1, . . . , gl}of an ideal in K [x1, . . . , xn] with LC (gi) = 1∀i is 
alled minimal if and onlyif for any element g ∈ G, the leading term LT (g) is not divisible by any of theleading terms of the polynomials in G ∖ {g}.Clearly, a minimal Groebner basis of an ideal I 
an be obtained from anarbitrary Groebner basis G of I by �rst normalizing the leading terms and thenremoving all the elements whi
h have their leading term divisible by the leadingterm of some other polynomial in G. It 
an be proved [113℄ that the minimalGroebner bases of an ideal I have identi
al sets of leading 
oe�
ients, howeverthere usually exist multiple minimal Groebner bases of a given ideal I. Thisambiguity 
an be entirely removed if we impose one further 
ondition on theGroebner basis we are looking for.De�nition 4.27 (Redu
ed Groebner basis). A minimal Groebner basis G ofan ideal I is 
alled redu
ed if and only if for all g ∈ G, no monomial of g isdivisible by any of the leading terms of polynomials in G ∖ {g}.With this de�nition, we haveProposition 4.28. There exists a unique redu
ed Groebner basis of anyideal I ⊂K [x1, . . . , xn]. Moreover, given a minimal Groebner basis G′ of I, theredu
ed Groebner basis G 
an be found by the following pro
edurefor all g in G' dog=Remainder(g,G\{g})Proof. Can be found in [113℄.Let us mention that Proposition 4.28 provides one with an algorithmi
 wayto solve the ideal equality problem. Given two ideals I = ⟨f1, . . . , fd⟩ and
J = ⟨e1, . . . , ec⟩, one has the equality I = J if and only if the 
orrespondingredu
ed Groebner bases, whi
h 
an be 
omputed in a �nite number of steps, areequal.We see that Groebner bases allow us to answer a number of questions, in-
luding the ideal membership and ideal equality problems. Moreover, it turnsout that they 
an be used to �nd solutions to sets of polynomial equations,whi
h is very interesting from a pra
ti
al perspe
tive and it will turn out to be
ru
ial in some parts of the thesis. A simplest way to see how Groebner bases
an be used for this new task is to look into a 
on
rete example. Consider thefollowing set of polynomial equations:

xy2 − z = 0, (4.18)
xz + y2 = 0, (4.19)
xy − 1 = 0. (4.20)A Groebner basis 
al
ulation using the lexi
ographi
 order with x > y > z forthe ideal ⟨xy2 − z, xz + y2, xy − 1⟩ provides us with {1 + z2, y − z, x + z}. Sin
e50



these polynomials generate the same ideal as the polynomials in (4.18)-(4.20),we have an equivalent set of equations:
z2 + 1 = 0, y − z = 0, x + z = 0. (4.21)The equations (4.18)-(4.20) do not look mu
h more 
ompli
ated than those in(4.21), but at a �rst glan
e, it is not 
lear how to solve them. On the other hand,the �rst equation in (4.21) involves only the variable z and it 
learly has onlytwo solutions, z = ±i. The solutions hen
e obtained 
an later be substitutedfor z in the latter two equations in (4.21). In this way, one 
an determinethe 
orresponding values of x and y and �nd all solutions to the initial set ofpolynomial equations. Our aim in the following will be to explain that a similarphenomenon o

urs in general when the lexi
ographi
al ordering of monomialsis used for the 
al
ulation of Groebner bases.4.3 Elimination idealsFor a given ideal I = ⟨f1, . . . , fd⟩, we de�ne the k-th elimination ideal Ik as theinterse
tion I∩K [xk+1, . . . , xn]. In other words, we pi
k up all polynomials in Ithat involve only the variables xk+1, . . . , xn, or equivalently, they do not involve

x1, . . . , xk. In the simple example dis
ussed above, we 
learly had z2 + 1 ∈ I2.The following theorem tells us that Groebner bases 
al
ulated with respe
t toa lexi
ographi
al order provide us with mu
h information about eliminationideals.Theorem 4.29. Let I ⊂K [x1, . . . , xn] be an ideal with a Groebner basis G withrespe
t to the lexi
ographi
al order where x1 > x2 > . . . > xn. Then, for every
k = 1,2, . . . , n the set

Gk = G ∩K [x1, . . . , xn] (4.22)is a Groebner basis of the k-th elimination ideal Ik.Proof. By 
onstru
tion of Gk and Ik, we have the in
lusion Gk ⊂ Ik. It su�
esto show that the monomial ideal ⟨LT (f)⟩f∈Ik of leading terms of Ik is generatedby ⟨LT (g)⟩g∈Gk
. For every f ∈ Ik, the leading term LT (f) is a polynomial inthe variables xk+1, . . . , xn only. Sin
e G is a Groebner basis of I, there mustexist a g in G su
h that LT (g) divides LT (f), and the leading term LT (g) mustne
essarily be a monomial in xk+1, . . . , xn. Be
ause we are using lexi
ographi
alorder with x1 > x2 > . . . > xn, all the other monomials of g do not involve thevariables x1, . . . , xk. Hen
e g is a polynomial in xk+1, . . . , xn, g ∈ Gk.The importan
e of elimination ideals was obvious in the simple example wedis
ussed above, where I2 = ⟨z2 + 1⟩, and it generally follows from their relationto proje
tions of a�ne varieties inKn onto �axes� in the high dimensional spa
e.In terms of solving polynomial equations, we obtain partial solutions in a smaller51



number of variables and try to extend them to a full solution. More formally,we de�ne the k-th proje
tion map πk by the formula
πk ∶Kn ∋ (x1, . . . , xn) ↦ (xk+1, . . . , xn) ∈Kn−k. (4.23)We have the followingProposition 4.30. Let I = ⟨f1, . . . , fd⟩ be an ideal in K [x1, . . . , xn]. Let

V (I) =V (f1, . . . , fn) be the 
orresponding a�ne variety. We have
πk (V (I)) ⊂V (Ik) , (4.24)where V (Ik) is the a�ne variety 
orresponding to the k-th elimination ideal Ik.Proof. We want to show that f (πk (x1, . . . , xk)) = 0 for all (x1, . . . , xk) ∈ V (I)and f ∈ Ik. Sin
e f ∈ I, we have f (x1, . . . , xn) = 0. But f involves onlythe variables xk+1, . . . , xn, whi
h gives us f (x1, . . . , xn) = f (xk+1, . . . , xn) =

f (πk (x1, . . . , xn)) = 0.The above proposition, although simple, tells us something important about
V (I). A proje
tion ofV (I) ontoKn−k is 
ontained in the a�ne varietyV (Ik),whi
h is sometimes possible to determine expli
itly, as in the 
ase of I2 = ⟨z2 + 1⟩dis
ussed above. In this way, V (Ik) 
an be regarded as an easily 
omputableapproximation of πk (V (f1, . . . , fd)). To make the statement more pre
ise, weneed some extra knowledge. Let us start with the following theorem.Theorem 4.31 (The Weak Nullstellensatz). Let K be an algebrai
ally 
losed�eld and let I ⊂ K [x1, . . . , xn] be an ideal satisfying V (I) = ∅. Then I =K [x1, . . . , xn].Proof. Can be found in algebrai
 geometry textbooks like [113℄ or [117℄.Intuitively speaking, the Weak Nullstellensatz asserts that the variety V (I)
orresponding to an ideal I ⊂ K [x1, . . . , xn] is an empty set if and only if I
ontains all polynomials in K [x1, . . . , xn]. Thus, a set of polynomial equations
f1 = 0, . . . , fd = 0 has no solutions in Kn if and only if the ideal generated by
f1, . . . , fn is the whole K [x1, . . . , xn].Let us point out that the Weak Nullstellensatz allows us to answer the im-portant question about the existen
e of solutions to systems of polynomial equa-tions. We have the followingProposition 4.32 (Consisten
y 
ondition). Let f1, . . . , fd be a set of polyno-mials in K [x1, . . . , xn] over an algebrai
ally 
losed �eld K. The system ofequations

f1 (x1, . . . , xn) = 0, f2 (x1, . . . , xn) = 0, . . . , fd (x1, . . . , xn) = 0 (4.25)has no solution in Kn if and only if the redu
ed Groebner basis of ⟨f1, . . . , fd⟩with respe
t to some monomial order equals {1}. In su
h 
ase we say that thesystem (4.25) is in
onsistent. 52



Proof. If a Groebner basis of ⟨f1, . . . , fd⟩ equals {1}, then 
learly the set of equa-tions (4.25) have no solutions in K. Conversely, if V (f1, . . . , fd) is the emptyset, by the Weak Nullstellensatz we know that ⟨f1, . . . , fd⟩ =K [x1, . . . , xn]. ByProposition 4.28, there is a unique redu
ed Groebner basis of ⟨f1, . . . , fd⟩. Sin
e{1} is the redu
ed Groebner basis of K [x1, . . . , xn], it must be the redu
edGroebner basis of ⟨f1, . . . , fd⟩.Note that the above proposition provides us with an algorithmi
 way to 
he
k
onsisten
y of a set of polynomial equations f (x1, . . . , xn) = 0, . . . , f (x1, . . . , xn) =
0 over an algebrai
ally 
losed �eld K. We simply 
al
ulate the redu
ed Groeb-ner basis of the ideal ⟨f1, . . . , fd⟩ and 
he
k whether it equals {1} or not. If so,the system of equations is in
onsistent. Otherwise, there exists a solution inKn.By a 
lever tri
k, the Weak Nullstellensatz is equivalent to the followingmu
h 
elebrated resultTheorem 4.33 (Hilbert's Nullstellensatz). Let K be an algebrai
ally 
losed�eld. Consider f1, . . . , fd ∈K [x1, . . . , xd]. If f is a polynomial that vanishes on
V (f1, . . . , fd), then there exists m ⩾ 1 su
h that

fm ∈ ⟨f1, . . . , fd⟩ (4.26)In other words, if f ∈ I (V (f1, . . . , fd)), then the in
lusion (4.26) holds for some
m ⩾ 1.Proof. Consider the ideal

Ĩ = ⟨f1, . . . , fd,1 − yf⟩ ⊂K [x1, . . . , xn, y] (4.27)where f, f1, . . . , fd are as above. It is not di�
ult to 
he
k that V (Ĩ) = ∅. It isso be
ause f vanishes whenever f1 = f2 = . . . = fd = 0, and hen
e 1 − yf = 1 ≠ 0in su
h 
ase. By the Weak Nullstellensatz, we have 1 ∈ Ĩ. Therefore
1 =

d

∑
i=1

pifi + q (1 − yf) (4.28)for some polynomials pi, q ∈K [x1, . . . , xn, y]. Now set y → 1/f (x1, . . . , xn). Therelation (4.28) implies that
1 =

d

∑
i=1

pi (x1, . . . , xn,1/f)fi. (4.29)If we multiply both sides of (4.29) by fm, where m is 
hosen su�
iently largeto 
lear all the denominators, we get
fm =

s

∑
i=1

Aifi (4.30)for some polynomials Ai ∈K [x1, . . . , xn]. Thus fm ∈ ⟨f1, . . . , fd⟩.53



Another way to formulate the Hilbert's Nullstellensatz is by means of rad-i
als.De�nition 4.34. Let I ⊂K [x1, . . . , xn] be an ideal. The radi
al of I, denotedby √I, is the set √
I = {f ∃m⩾1fm ∈ I} (4.31)We leave it as an exer
ise for the reader to prove that √I is an ideal and√

I =
√√

I. We 
all an ideal J with the property J = √J a radi
al ideal.Thus, √I is a radi
al ideal. We 
an now formulate a version of Theorem 4.33,often simply 
alled the Nullstellensatz.Theorem 4.35 (The Nullstellensatz). Let K be an algebrai
ally 
losed �eld. If
I is an ideal in K [x1, . . . , xn], then

I (V (I)) =√I (4.32)Proof. We 
ertainly have √I ⊂ I (V (I)) be
ause f ∈ √I implies that fm ∈ I.Therefore fm = 0 = f on V (I). Conversely, suppose that f ∈ I (V (I)). ByHilbert's Nullstellensatz, there exists an integer m ⩾ 1 su
h that fm ∈ I. Thismeans that f ∈√I.With the help of Proposition 4.9 and the above results, we 
an now spe
ifywhat we meant by saying that V (Ik) is an approximation of the proje
tion
πk (V (I)).Theorem 4.36. Let I = ⟨f1, . . . , fd⟩ be an ideal in K [x1, . . . , xn] and V (I) the
orresponding a�ne variety. Let Ik be the k-th elimination ideal of I. Then
V (Ik) is the smallest a�ne variety 
ontaining πk (V (I)).Proof. In view of Proposition 4.9, we must show that V (Ik) = V (I (πk (V ))).By Proposition 4.30, we have πk (V ) ⊂ V (Ik). Sin
e V (I (πk (V ))) is thesmallest variety 
ontaining πk (V ), it follows that V (I (πk (V ))) ⊂V (Ik).On the other hand, let f be an element of I (πk (V )), thus a polynomialin xk+1, . . . , xn that vanishes on πk (V ). When 
onsidered as an element ofK [x1, . . . , xn], f 
ertainly vanishes on all of V = V (f1, . . . , fd). By the Null-stellensatz, fm ∈ ⟨f1, . . . , fd⟩ for some m ⩾ 0. Sin
e f does not involve variables
x1, . . . , xk, fm does not either. As a 
onsequen
e, fm is in the k-th eliminationideal Ik. This implies that f ∈√Ik. The in
lusion is true for any f ∈ I (πk (V )),so I (πk (V )) ⊂ √Ik. Consequently V (Ik) = V (√Ik) ⊂ V (I (πk (V ))), wherewe used the fa
t that V ∶ I ↦V (I) is in
lusion-reversing, as well as the equality
V (I) =V (√I).The above theorem tells us that the variety V (Ik) 
orresponding to the
k-th elimination ideal gives us the best approximation, among all varieties inKn−k, of a proje
tion of V (I) onto Kn−k. Therefore elimination ideals shouldbe expe
ted to be helpful in solving systems of polynomial equations.54



Chapter 5A little interse
tion theory5.1 Dimension and degree of a varietyIn the present se
tion, we are going to introdu
e two basi
 properties of algebrai
varieties, whi
h are their dimension and degree. Before we do so, we needto introdu
e a distin
tion between proje
tive and a�ne varieties, whi
h has notyet appeared in our introdu
tion to algebrai
 geometry. First, however, it isne
essary to de�ne the notion of a proje
tive spa
e. Note that we 
hooseto work with the set of 
omplex numbers, C, and polynomials with 
omplex
oe�
ients, C [x1, . . . , xn], but we 
ould as well have 
hosen a di�erent �eld ofs
alars.De�nition 5.1 (Complex proje
tive spa
e). Let n be a positive integer. Theproje
tive spa
e Pn−1 equals the set of equivalen
e 
lasses of Cn ∖{0} under theequivalen
e relation
(x1, . . . , xn) ∼ (x′1, . . . , x′n)⇔ ∃z∈C∖{0} (x1, . . . , xn) = z (x′1, . . . , x′n) (5.1)The elements of Pn−1 are often written simply as [X1, . . . ,Xn], where an el-ement (X1, . . . ,Xn) ∈Cn of an equivalen
e 
lass is 
onveniently identi�ed withthe 
lass itself, however the square bra
kets and 
apital letters indi
ate thatwe are dealing with the proje
tive spa
e. The variables X1, . . . ,Xn are 
alledhomogeneous 
oordinates in Pn−1. This is easy to understand if we noti
ethat, given a set of homogeneous polynomials h1, . . . , hk ∈ C [x1, . . . , xn], wemay naturally identify the 
orresponding variety V (h1, . . . , hk) with a subset ofPn−1 and write it as {[X1, . . . ,Xn]∀ih (X1, . . . ,Xn) = 0}. We 
all su
h subsetsproje
tive varieties for obvious reasons, and we do not spe
ify whether they be-long to Cn or Pn−1 as long as this is not ne
essary. More general varieties in Cn,not ne
essarily de�ned by the vanishing of a set of homogeneous polynomials,are 
alled a�ne varieties, in a

ordan
e with De�nition 4.1.De�nition 5.2 (Proje
tive variety). Let h1, . . . , hk ∈ C [x1, . . . , xn] be a set ofhomogeneous polynomials. The set of elements of Pn−1 
orresponding to the55



points (x1, . . . , xn) with the property h1 (x1, . . . , xn) = 0, . . . , hn (x1, . . . , xn) = 0is 
alled a proje
tive variety. One 
an write it as
{[X1, . . . ,Xn] h1 (X1, . . . ,Xn) = 0, . . . , hk (X1, . . . ,Xn) = 0} (5.2)A shorter notation, V (h1, . . . , hk), whi
h does not expli
itly refer to the propertyof being a proje
tive variety, is also used.One typi
al example of a proje
tive variety is the Segre variety.Example 5.3 (Segre variety). Let n, m be positive integers. The Segre varietyin P(m+1)(n+1)−1 is the image of Pn ×Pm under the mapping

S ∶ [X0, . . . ,Xn] × [Y0, . . . , Ym]↦ [X0Y0,X1Y0, . . . ,XnY0,X0Y1, . . . ,XnYm](5.3)Alternatively, it is the proje
tive variety in P(m+1)(n+1)−1, de�ned by the van-ishing of the homogeneous polynomials
Zi,jZk,l −Zi,lZk,j (5.4)where Z0,0, Z1,0, . . . , Zn,0, Z0,1, . . . , Zn,m is the set of homogeneous 
oordinatesin P(m+1)(n+1)−1. We denote it by Σn,mNote that in quantum entanglement theory, Σm,n 
orresponds to the set ofpure separable states in Cn+1 ⊗Cm+1.We 
an pro
eed to the de�nition of the dimension of an algebrai
, i.e. pro-je
tive or a�ne, variety. De�nitions will be slightly di�erent for a�ne andproje
tive varieties, and it is somewhat more 
onvenient to start from the a�ne
ase. Similar to the situation with the Di
kson's lemma (Lemma 4.17), it willalso be useful to dis
uss varieties 
orresponding to monomial ideals �rst. As weknow from Lemma 4.17, monomial ideals are �nitely generated by some mono-mials, hen
e for a monomial ideal I in C [x1, . . . , xn], we 
an always assumethat
I = ⟨xα1

, . . . , xα
l⟩ , (5.5)where we used the multi-index notation introdu
ed in Se
tion 4.2, with αi =(αi1, . . . , αin) for all i. It follows that V (I) = ⋂li=1V (xαi), where ea
h V (xαi)has a simple des
ription as ⋃αi

j
≠0Hj , Hj = {(x1, . . . , xn) ∈ Cn xj = 0}. Thus wehave
V (I) = l

⋂
i=1
⋃
αi

j
≠0

Hj (5.6)By interse
ting Hj for di�erent j's, we get
Hj1 ∩ . . . ∩Hjp = {(x1, . . . , xn) ∈Cn xj1 = 0, . . . , xjp = 0} =∶Hj1...jp , (5.7)whi
h is a linear subspa
e of dimension n−p. If some of the ji's were equal, thedimension of the subspa
e would have in
reased a

ordingly. From equations56



(5.6) and (5.7), it follows that V (I) for a monomial ideal I is a union of sub-spa
es of the form Hj1...jp . We identify the dimension of V (I) as the maximumdimension of a subspa
e Hj1...jp in
luded in V (I). A little thought reveals thatthis number 
an be 
al
ulated expli
itly, and it equals n− ∣J ∣, where ∣J ∣ denotesthe minimum number of elements in a subset J ⊂ {1,2, . . . , n} with the property
∀i∃j∈J αij ≠ 0. Thus, for a monomial ideal I, we have

dimV (I) = n − ∣J ∣ , (5.8)and there is a simple way to 
al
ulate ∣J ∣ from the generators of I.A very important insight by Hilbert was that there exists an alternative wayto obtain dimV (I), whi
h relates to the number of monomials of total degreelower or equal s not in I. To explain this in more detail, we need to introdu
esome extra notation. First of all, we de�ne
C (I) = {α ∈Nn xα ∉ I} , (5.9)i.e. the set of multi-indi
es 
orresponding to the monomials not in I. We willalso be using a basis of multi-indi
es, ei ∶= [0, . . . ,1, . . . ,0], with 1 on the i-thposition and zeros elsewhere, and the notation

[ei1 , . . . , eir ] ∶= {a1ei1 + . . . + areir aj ∈N∀j=1,...,r} (5.10)for so-
alled 
oordinate subspa
es. Their translates by α = (α1, . . . , αn) ∈Nn willbe denoted, in a natural way, by α + [ei1 , . . . , eir ]. When using this notation,it is assumed that αij = 0 for all j = 1, . . . , r, so that α is perpendi
ular to the
oordinate subspa
e. We have the following.Proposition 5.4. Let I ⊂ C [x1, . . . , xn]be a monomial ideal.i) The set {(x1, . . . , xn) ∈ Cn xj = 0∀j∉{i1,...,ir}}, whi
h 
an also be denotedas Hl1...ln−r with {l1, . . . , ln−r} = {1,2, . . . , n} ∖ {i1, . . . , ir}, is 
ontained in
V (I) if and only if [ei1 , . . . , eir ] ⊂ C (I)ii) The dimension V (I) is the dimension of the largest 
oordinate subspa
e in
C (I)Proof. We �rst prove i). Let us assume that Hl1...ln−r with {l1, . . . , ln−r} ={1,2, . . . , n} ∖ {i1, . . . , ir} is in V (I). In parti
ular, the point (x1, . . . , xn) with
oordinates

xi =
⎧⎪⎪⎨⎪⎪⎩
1, if i ∈ {i1, . . . , ir}
0, if i ∉ {i1, . . . , ir} (5.11)belongs to V (I). Assume [ei1 , . . . , eir ] ∉ C (I). If so, there must exist amonomial xα ∈ I su
h that α belongs to [ei1 , . . . , eir ]. However, all su
hmonomials give 1 when evaluated on (x1, . . . , xn) from equation (5.11), whi
hleads to a 
ontradi
tion with (x1, . . . , xn) ∈ V (I). Thus we have proved the

⇒ impli
ation in i). Conversely, if [ei1 , . . . , eir ] ∈ C (I), it means that ev-ery monomial in I is of nonzero degree in some of the variables xl1 , . . . , xln−r ,57



Figure 5.1: A s
hemati
 pi
ture of the monomial ideal ⟨x2y5, x4y3⟩ in C [x, y].
{l1, . . . , ln−r} = {1,2, . . . , n} ∖ {i1, . . . , ir}. Therefore, the monomials in I give
0 when evaluated on elements of Hl1...ln−r . In other words, Hl1...ln−r ⊂ V (I),whi
h proves the ⇐ impli
ation in part i) of the theorem. Part ii) follows im-mediately from i), sin
e dimV (I) is de�ned as the maximum dimension of asubspa
eHl1...ln−r in
luded inV (I). If {l1, . . . , ln−r} = {1,2, . . . , n}∖{i1, . . . , ir},the dimension of Hl1...ln−r equals r, whi
h is pre
isely the dimension of the 
o-ordinate subspa
e [ei1 , . . . , eir ].An illustrative pi
ture of a monomial ideal I = ⟨x2y5, x4y3⟩ in C [x, y] ispresented in Figure 5.1. Empty dots denote the monomials with multi-indi
esin C (I), and bla
k dots 
orrespond to monomials in I. Generalizing from thisexample, it is easy to believe in the following proposition, whi
h we give withouta proof [113℄.Proposition 5.5. For any monomial ideal I ⊂ C [x1, . . . , xn], the set C (I)
an be written as a �nite (not ne
essarily disjoint) union of translates T i =
αi + [eji

1

, . . . , ejiri
] of some 
oordinate subspa
es [eji

1

, . . . , ejiri
].We 
laim that the number of elements (α1, . . . , αn) ∈ C (I) with the property∣α∣ ∶= ∑ni=1 αi ⩽ s 
an be expressed, for s su�
ently large, as a polynomial

a0s
d + a1sd−1 + . . . + ad of degree dimV (I), with a0 > 0. Equivalently, thenumber of monomials of total degree no larger than s, not in I, is given by su
hpolynomial for s su�
iently large.Proposition 5.6. Let I ⊂ C [x1, . . . , xn] be a monomial ideal. Denote by

aHFI (s) the number of multi-indi
es α = (α1, . . . , αn) ∈ Nn in C (I) with theproperty ∣α∣ ⩽ s. For s su�
iently large, aHFI (s) 
an be written as a polynomial
a0s

d + a1sd−1 + . . . + ad, (5.12)58



where a0 > 0 and d equals the dimension of V (I). The fun
tion aHFI (s)and the polynomial (5.12) are 
alled the (a�ne) Hilbert fun
tion and the(a�ne) Hilbert polynomial of I, respe
tively. The latter will be denoted by
aHPI .Proof. To prove the statement, we �rst noti
e that the number of multi-indi
es(α1, . . . , αn) with the property ∣α∣ ⩽ s is equal to (n+s

s
). From this, it is easyto 
on
lude that the number of multi-indi
es α su
h that ∣α∣ ⩽ s and α ∈ αi +[eji

1

, . . . , ejiri
] equals

(ri + s − ∣αi∣
s − ∣αi∣ ) = 1

ri!
(ri + s − ∣αi∣) (ri + s − ∣αi∣ − 1) ⋅ . . . ⋅ (s − ∣αi∣ + 1) (5.13)for s su�
iently large. Thus, the above formula gives pre
isely an expressionfor the number of multi-indi
es ∣α∣ ⩽ s in the translates T i from Proposition 5.5.Of 
ourse, it 
an be applied to other translates as well. Note that (5.13) is apolynomial in s of degree ri, whi
h is pre
isely the dimension of the 
oordinatesubspa
e [eji

1

, . . . , ejiri
].For 
onvenien
e, let us denote the set of multi-indi
es ∣α∣ ⩽ s in T i by T i⩽s.By the well-known in
lusion-ex
lusion prin
iple from 
ombinatori
s, we get

aHFI (s) =∑
i

∣T i⩽s∣ +∑
i<j

∣T i⩽s ∩ T j⩽s∣ + ∑
i<j<k

∣T i⩽s ∩ T j⩽s ∩ T k⩽s∣ + . . . (5.14)A key point is now that T i⩽s ∩ T j⩽s as well as T i⩽s ∩ T j⩽s ∩ T k⩽s and higher-orderinterse
tions are either empty, or equal to T⩽s for some translated 
oordinatespa
e T of dimension < ri, simply be
ause T i⩽s∩T j⩽s and higher-order interse
tionsare either empty or equal to some 
oordinate spa
e T of the mentioned property.By (5.13), the se
ond and further terms in the sum on the right-hand side of(5.14) are equal to some polynomials of degrees < max ({ri}) for s su�
ientlylarge. Hen
e, for s su�
iently large, they 
annot 
an
el the leading term of
∑i ∣T i⩽s∣, whi
h sum is also a polynomial, of degree max ({ri}) and a positiveleading term. The last statement is again a 
onsequen
e of formula (5.13). Allin all, for s su�
iently large, the sum in (5.14) is given by a polynomial of degree
max ({ri}) with a nonnegative leading 
oe�
ient.The degree of the Hilbert polynomial, whi
h we obtained in the above proof,is equal to the maximum dimension of a 
oordinate subspa
e in C (I). ByProposition 5.4, this is equal to dimV (I). Thus we have obtained an alternative
hara
terization of the dimension of a variety 
orresponding to a monomialideal, whi
h 
an be rather 
onveniently generalized to all a�ne varieties. Beforewe dis
uss the general a�ne 
ase however, it is important to noti
e that thevarieties 
orresponding to monomial ideals in C [x1, . . . , xn] 
an be regardedas proje
tive varieties in Pn−1 as well. If we look at them in this way, thede�nition of their dimension needs to be slightly modi�ed. First of all, we
all n − 1 the proje
tive dimension of Pn−1. It is therefore natural to 
all59



d − 1 the proje
tive dimension of a d-dimensional linear subspa
e of Cn, whenwe regard it as a subset of Pn−1. Consequently, the proje
tive dimension of
V (I) for a monomial ideal I in C [x1, . . . , xn] is de�ned as d− 1, where d is themaximum dimension of a linear subspa
e 
ontained in V (I). Following (5.8),the proje
tive dimension 
an be 
al
ulated as n − ∣J ∣ − 1. On the other hand,using the Hilbert approa
h, we 
an 
al
ulate the proje
tive dimension of I asthe degree of the polynomial

HPI (s) ∶= aHPI (s) − aHPI (s − 1) , (5.15)whi
h is 
alled simply the Hilbert polynomial of I. For s su�
iently large,it equals the number of monomials not in I and of total degree equal s. Thelast de�nition of proje
tive dimension of a variety 
orresponding to a monomialideal is the one whi
h 
onveniently generalizes to all proje
tive varieties.Let us also note that the Hilbert polynomial and a�ne Hilbert polynomialare 
ustomarily written in the form
HPI (s) = d−1∑

i=0

bi( s

d − 1 − i) and aHPI (s) = d

∑
i=0

ai( s

d − i), (5.16)where bi, ai ∈ Z, b0 > 0, a0 > 0 and d = dimV (I). The possibility to write theHilbert polynomials in the above form is a dire
t 
onsequen
e of the fa
t that ageneral polynomial p (s) of degree d that takes integer values for integer s 
anbe written as aHPI (s) in (5.16) [113℄.After the above lengthy dis
ussion of monomial ideals, we 
an smoothlyde�ne the dimension of arbitrary proje
tive or a�ne varieties. Given an ideal
I ⊂ C [x1, . . . , xn], we de�ne its a�ne Hilbert fun
tion as

aHFI (s) = dimC [x1, . . . , xn]⩽s − dim I⩽s, (5.17)where C [x1, . . . , xn]⩽s is the set of polynomials of degree ⩽ s, I⩽s equals I ∩C [x1, . . . , xn]⩽s, and dim refers to the dimensionality of these sets when re-garded as C-linear subspa
es of C [x1, . . . , xn]. For monomial ideals I, it iseasy to see that the above de�nition of aHFI 
oin
ides with the one we gaveearlier. A key observation is that for general I, the Hilbert fun
tion of I 
anbe 
omputed from a suitably 
hosen monomial ideal. Similar to the situationwe en
ountered in the proof of the Hilbert basis theorem (Theorem 4.18), themonomial of leading terms ⟨LT (f)⟩f∈I with respe
t to some monomial ordering
> turns out to be of great importan
e. However, in the a�ne 
ase, we addition-ally need to assume that > is a graded order, i.e. xα > xβ whenever ∣α∣ > ∣β∣.We then have the following result.Proposition 5.7. Let I ⊂ C [x1, . . . , xn] be an ideal and let > be a graded orderon C [x1, . . . , xn]. The monomial ideal ⟨LT (I)⟩f∈I has the same a�ne Hilbertfun
tion as I.Proof. Can be found in [113, Chapter 9, �3℄.60



From the above proposition and the earlier dis
ussion about monomial ideals,we 
on
lude that for s su�
iently large, aHFI (s) equals aHP⟨LT(f)⟩
f∈I
(s), theHilbert polynomial of ⟨LT (f)⟩f∈I . We 
all the same fun
tion the a�ne Hilbertpolynomial of I and denote it by aHPI . The same as in equation (5.16), aHPI
an be written as a sum of terms ai( sd−i) with ai ∈ Z, a0 > 0. For 
losed s
alar�elds like C, the dimension of the a�ne variety V (I) is now simply de�ned asthe degree of aHPI , 
f. Theorem 8 in [113, Chapter 9, �3℄.De�nition 5.8 (Dimension of an a�ne variety). Let I ⊂ C [x1, . . . , xn] be anideal in C [x1, . . . , xn]. Let aHPI be the polynomial whi
h equals aHFI(s) forlarge s. The dimension of V (I) is de�ned to be equal to the degree of aHFI .Su
h de�ned dimension 
an be 
al
ulated from the generators of I. A suit-able pro
edure 
onsists of two elementary steps:1. Choose a graded monomial order in C [x1, . . . , xn] su
h as the graded lex-i
ographi
 order of Example 4.13 or graded reverse lexi
ographi
 order ofExample 4.14. Compute a Groebner basis {g1, . . . , gt} of I using the sele
tedordering.2. Compute the maximal dimension of a subspa
e Hi1,...,ir 
ontained in thevarietyV (⟨LT (g1) , . . . ,LT (gt)⟩), using the approa
h outlined above formula(5.8).To de�ne the dimension of a general proje
tive variety, we 
an pro
eed sim-ilar as above. First, we denote by C [x1, . . . , xn]s the set of all homogeneouspolynomials of total degree s, together with the zero polynomial. We also set

Is = I ∩C [x1, . . . , xn]s for an ideal I, generated by homogeneous polynomials.The Hilbert fun
tion of I is de�ned as
HFI (s) = dimC [x1, . . . , xn]s − dim Is, (5.18)where dim refers to the dimension as a C-linear subspa
e of C [x1, . . . , xn]. Infull analogy to Proposition 5.7, we have [113, Chapter 9, �3℄Proposition 5.9. Let I ∈ C [x1, . . . , xn] be an ideal generated by homogeneouspolynomials. Consider any monomial order > in C [x1, . . . , xn]. The mono-mial ideal ⟨LT (f)⟩f∈I has the same Hilbert fun
tion as I.Note that this time, unlike in the a�ne 
ase, it is possible to use any mono-mial ordering to obtain the desired monomial ideal.For monomial ideals like ⟨LT (f)⟩f∈I , the above de�nition of Hilbert fun
tion
oin
ides with the one we gave previously. It immediately follows that for large

s, HFI (s) equals HP⟨LT(f)⟩
f∈I
(s), where HP refers to the Hilbert polynomial,whi
h we have already de�ned for monomial ideals. To no surprise, we 
all thelatter fun
tion the Hilbert polynomial of I and denote it with HPI . By theformula on the left-hand side of (5.16), we 
an write the Hilbert polynomial ofan arbitrary ideal I generated by homogeneous polynomials as

HPI (s) = d

∑
i=0

bi( s

d − i − 1
) (5.19)61



for some d ∈ N, bi ∈ Z and b0 > 0. For algebrai
ally 
losed s
alar �elds like C,we de�ne the proje
tive dimension of V (I) simply as the degree of HPI , i.e.
d − 1 in the above formula.De�nition 5.10 (Proje
tive dimension). Let I ⊂C [x1, . . . , xn] be a monomialgenerated by homogeneous polynomials. Let HPI (s) be the polynomial whi
hequals HFI (s) for large s (i.e. the Hilbert polynomial of I). The proje
tivedimension of the proje
tive variety V (I) is de�ned to be equal to the degreeof HPI .Again, the dimension of a proje
tive variety V (I) 
an be 
al
ulated by apro
edure 
ompletely analogous to the one we outlined for a�ne varieties. Theproje
tive dimension is well behaved under many operations, 
f. [113, Chapter9, �4℄ and it plays a key role in the following elegant result (
f. Theorem 7.2in [118℄).Theorem 5.11. Let V and U be two proje
tive varieties in Pn. Let r and s bethe proje
tive dimensions of V and U , respe
tively. If r + s ⩾ n, the interse
tion
V ∩ U is nonempty and of dimension ⩾ r + s − n.Another important 
hara
teristi
 of a proje
tive variety, whi
h 
an be reado� its Hilbert polynomial, is the degree.De�nition 5.12 (Degree). Let I ⊂ C [x1, . . . , xn] be a monomial generatedby homogeneous polynomials. Let HPI be the Hilbert polynomial of I. Write
HPI (s) as in (5.19),

HPI (s) = d

∑
i=0

bi( s

d − i − 1
), (5.20)where bi ∈ Z, b0 > 0. The degree of the proje
tive variety V (I) is de�ned to beequal to b0 � the leading term of HPI .As we shall learn from Se
tion 5.3, the degree of a proje
tive variety V ⊂ Pnof dimension d equals, under 
ertain assumptions, the number of interse
tionpoints of V with a proje
tive variety U of 
omplementary dimension n − d.In the thesis, we are parti
ularly interested in Segre varieties. The followingremark tells us about their dimension and degree.Remark 5.13 (Dimension and degree of a Segre variety). Let Σn,m denote theSegre variety in Pn ×Pm ≅ P(m+1)(n+1)−1. The proje
tive dimension of Σn,m is

n +m whereas its degree equals (m+n
n
).A short dis
ussion of the above fa
ts 
an be found in the 
lassi
al textbookby J. Harris [117, Le
tures 12 and 18℄.5.2 Tangent spa
es. SmoothnessThe notion of the tangent spa
e to a 
urve or a surfa
e in R3 is somethingintuitively well understood. As we will see, it 
an be easily generalized to a�ne62



and proje
tive varieties. We 
hoose to work with C as the �eld of s
alars, butde�nitions 
an as well be formulated for general �elds K in pla
e of 
omplexnumbers.Let us start with an a�ne variety V ⊂ Cn and 
onsider the ideal I = I (V ),i.e. the set of polynomials f ∈ C [x1, . . . , xn] that vanish on V . We know fromthe Hilbert basis theorem that I is �nitely generated, so we 
an write it as⟨f1, . . . , fl⟩ for some polynomials fi.De�nition 5.14. Let p be a point in an a�ne variety V ⊂ C [x1, . . . , xn]. TheZariski tangent spa
e to V at p is de�ned as
TpV ∶= {v ∈Cn (df) (v) = 0∀f∈I(V )} , (5.21)where df denotes the derivative of a polynomial f . Equivalently,
TpV ∶= {v ∈ Cn (dfi) (v) = 0∀i=1,2,...,l} , (5.22)where f1, . . . , fl is a set of generators of I (V ).Note that the 
al
ulation of df or dfi 
an be done in a purely formal manner,sin
e we are dealing with polynomials.De�nition 5.15. Let V and p be as in De�nition 5.14. We 
all p + TpV thea�ne tangent spa
e to V at p. More expli
itly, the a�ne tangent spa
e isde�ned as

aTpV ∶= {q ∈Cn (df) (q − p) = 0∀f∈I(V )} = {q ∈Cn (dfi) (q − p) = 0∀i} (5.23)Using the Zariski tangent spa
e to V at p, we 
an de�ne what it means for
p to be smooth.De�nition 5.16. Let V ⊂ Cn be an a�ne variety of (a�ne) dimension dimVand su
h that p ∈ V . We 
all p a smooth point of V if and only if dim (TpV ) =
dimV .Given a set of generators of the ideal I (V ), smoothness of a p ∈ V 
an readilybe 
he
ked by the following Ja
obi 
riterion, 
f. e.g. [119℄Proposition 5.17 (Ja
obi 
riterion for smoothness). Let V ⊂ Cn be an a�nevariety of (a�ne) dimension dimV , su
h that I (V ) = {f1, . . . , fl}. A point
p ∈ V is smooth if and only if the rank of the matrix

[ ∂fi
∂xj
]

i=1,2,...,l

j=1,2,...,n

(5.24)is equal to n − dimV .For proje
tive varieties, de�nitions of the tangent spa
e and smoothness arevery similar to the ones presented above. To de�ne the proje
tive tangent spa
eto a proje
tive variety V ⊂ Pn, 
onsider �rst a dehomogenized version of the63



polynomials in I (V). Namely, for a homogeneous polynomial h ∈ I (V ) takingpoints [X0,X1, . . . ,Xn] ∈ Pn as input and and giving h (X0,X1, . . . ,Xn) asoutput, let us de�ne h̃ ⊂C [x1, . . . , xn] by the formula
h̃ (x1, . . . , xn) ∶= h (1, x1, . . . , xn) . (5.25)Consider the a�ne variety Ṽ ⊂ Cn 
onsisting of the 
ommon zeros of the poly-nomials h̃, h ∈ I (V). Its a�ne tangent spa
e at a point z = (z1, . . . , zn) equals

TzṼ = {(y1, . . . , yn) n

∑
i=1

∂h̃

∂xi
(z) ⋅ (yi − zi) = 0∀h∈I(V)} . (5.26)To get a proje
tivized version of TxṼ, we 
an homogenize the de�ning polyno-mial equations in (5.26), i.e. 
onsider

{[Y0, Y1, . . . , Yn] n

∑
i=1

∂h̃

∂xi
(z) ⋅ (Yi − ziY0) = 0∀h∈I(V)} . (5.27)as a proje
tive analogue of TzṼ . A key observation is now that partial derivativesof a homogeneous polynomial h of degree d satisfy the following Euler relations

n

∑
i=0

∂h

∂Xi

(Z0, Z1, . . . , Zn)Zi = d ⋅ F (Z0, Z1, . . . , Zn) . (5.28)In parti
ular, the above relation 
an be applied to [Z0, Z1, . . . , Zn] = [1, z1, . . . , zn]to yield
n

∑
i=1

∂h̃

∂xi
(z) zi = − ∂h

∂X0

(z) , (5.29)where we used the fa
t that h̃ vanishes at (1, z1, . . . , zn). We 
an use (5.29) andthe identity ∂h̃/∂xi (z) = ∂h/∂Xi (Z), where Z = [1, z1, . . . , zn] to rewrite (5.27)as
{[Y0, Y1, . . . , Yn] n

∑
i=0

∂h

∂Xi

(Z)Yi = 0∀h∈I(V)} . (5.30)The tangent spa
e to a proje
tive variety V at a point Z = [Z0, . . . , Zn] isnow simply de�ned by formula (5.30) with the requirement Z = [1, z1, . . . , zn]dropped. Thus we have the following de�nitionDe�nition 5.18. Let V ⊂ Pn be a proje
tive variety and let Z be an element of
V. Let us write the elements of Pn as [X0,X1, . . . ,Xn]. The proje
tive tangentspa
e to V at a point Z ∈ V is de�ned as the following subspa
e of Pn,TZV ∶= {[Y0, Y1, . . . , Yn] n

∑
i=0

∂h

∂Xi

(Z)Yi = 0∀h∈I(V )} . (5.31)Alternatively, given a set of generators h1, . . . , hl of I (V ), we 
an restate thede�nition (5.31) asTZV ∶= {[Y0, Y1, . . . , Yn] n

∑
i=0

∂hj

∂Xi

(Z)Yi = 0∀j=1,2,...,l} . (5.32)64



Similar as in the a�ne 
ase, the smoothness of a point Z ∈ V is de�ned by asuitable 
ondition for the dimension of TZV .De�nition 5.19. Let V ⊂ Pn be a proje
tive variety of proje
tive dimension
dimV. A point Z ∈ V is 
alled a smooth point of V if and only if the proje
tivedimension of TZV equals dimV.Clearly, there exists a proje
tive analogue of the Ja
obi 
riterion for smooth-ness [119℄. We state it as the following proposition.Proposition 5.20 (Proje
tive Ja
obi 
riterion). Let V ⊂ Pn be a proje
tivevariety of proje
tive dimension dimV, su
h that I (V ) = {h1, . . . , hl}. A point
Z ∈ V is smooth if and only if the rank of the matrix

[ ∂hi
∂Xj

]
i=1,2,...,l

j=0,1,...,n

(5.33)is equal to n − dimV.Let us dis
uss the above notions in the example of Segre varieties, whi
h is
ru
ial for the main result of the thesis.Example 5.21 (Segre varieties). The tangent spa
e to the Segre variety Σn,m ⊂P(n+1)(m+1)−1 at a point S ([X0, . . . ,Xn] , [Y0, . . . , Ym]) ∶= S (X,Y ) is spannedby the points S (X,Y ′) and S (X ′, Y ) with X ′ ∈ Pn and Y ′ ∈ Pm arbitrary.In parti
ular, it follows that Σn,m is smooth at every point Z ∈ Σn,m, for all
m,n ∈N.Proof. A linear transformation X × Y ↦ AX ×BY , with A and B nonsingularlinear maps, brings X × Y to [0, . . . ,0,1] × [0, . . . ,0,1]. At the same time, ittransforms all the pairs of the form X ′ × Y and X ×Y ′ to X ′′ × [0, . . . ,0,1] and[0, . . . ,0,1] × Y ′′ with X ′′ = AX ′ and Y ′′ = BY ′. These AX ′ and BY ′ still runover all elements of Pn and Pm if X ′ and Y ′ 
an be taken as arbitrary. Asa result, we see that it is su�
ient to prove our assertions about Σn,m for thesingle point Z0 = S ([0, . . . ,0,1] × [0, . . . ,0,1]), and the rest will follow. Re
allthat Σn,m is de�ned as the 
ommon zero of the polynomials

hijkl ∶= ZijZkl −ZilZkj , (5.34)where 0 ⩽ i < k ⩽ n, 0 ⩽ j < l ⩽m and Z00, Z01, . . . , Z0m, Z10, . . . , Znm denote thehomogeneous 
oordinates in P(n+1)(m+1)−1. The 
al
ulation of the derivative of
hijkl at the point S ([0, . . . ,0,1] × [0, . . . ,0,1]) is very simple. We have

∂hijkl

∂Zab
(Z0) = δaiδbjδknδlm, (5.35)where i < n, j < m and δ denotes the Krone
ker delta. As it is not di�
ult tosee, points in P(n+1)(m+1)−1 with 
oordinates Z00, Z01, . . . , Z0m, Z10, . . . , Znm donot satisfy

n

∑
a=1

m

∑
b=1

∂hijkl

∂Zab
(Z0)Zab = 0 (5.36)65



Figure 5.2: A s
hemati
 pi
ture showing the di�eren
e between a transverseand not a transverse interse
tion.if Zab ≠ 0 for some a < n and b < m. All other points in P(n+1)(m+1)−1,with vanishing Zab whenever a < n and b < m, do satisfy (5.36). As it isnot di�
ult to 
he
k, all su
h points 
an be written as linear 
ombinations of
S ([0, . . . ,0,1] × Y ′′) and S (X ′′ × [0, . . . ,0,1]) for some X ′′ ∈ Pn or Y ′′ ∈ Pm,and all points of the latter form do satisfy (5.36). Hen
e, they are good 
andi-dates for a basis of TZ0

Σn,m. However, to remain in 
omplian
e with the abovede�nition of proje
tive tangent spa
e, we should prove that points of the form
S ([0, . . . ,0,1] × Y ′′) and S (X ′′ × [0, . . . ,0,1]) satisfy an analogue of (5.36),

n

∑
a=1

m

∑
b=1

∂h

∂Zab
(Z0)Zab = 0 (5.37)for all elements h of I (Σn,m). However, this easily follows be
ause the points

Z0 + λS ([0, . . . ,0,1] × Y ′′) and Z0 + λS (X ′′ × [0, . . . ,0,1]) are again elementsof Σn,m, for all λ ∈ C. In 
on
lusion, the tangent spa
e to Σn,m at Z0 isspanned by elements of P(n+1)(m+1)−1 of the form S ([0, . . . ,0,1] × Y ′′) and
S (X ′′ × [0, . . . ,0,1]). From them, we 
an 
hoose a basis, 
onsisting of m+n+ 1elements, so the proje
tive dimension of TZ0

Σn,m is m + n. Thus, Σn,m issmooth at Z0. By our earlier 
omments, the same applies to any point Z of
Σn,m. Moreover, the tangent spa
es TZΣn,m have the asserted form for all
Z ∈ Σn,m.In Se
tion 9.4, we are going to use the above 
hara
terization of the tangentspa
e of Σn,m to make a key step in the proof of the strongest result of thethesis, whi
h is Theorem 9.27.5.3 Bezout's theoremIn the last part of our basi
 introdu
tion to interse
tion theory, we will dis
ussa powerful theorem that allows, among others, to 
al
ulate the number of in-terse
tion points between two proje
tive varieties of 
omplementary dimension.The theorem works under 
ertain assumptions. To explain them, we need tointrodu
e the notion of transverse interse
tion of two proje
tive varieties.66



De�nition 5.22 (Transverse interse
tion). Let V and U be two proje
tive va-rieties in Pn of 
omplementary dimension, i.e. dimV + dimU = n where dimrefers to the proje
tive dimension of a variety. We say that V and U interse
ttransversely if and only if for any Z ∈ V ∩ U , the tangent spa
es TZV andTZU span Pn.Figure 5.2 in the previous page shows, in a s
hemati
 way, the di�eren
e be-tween a transverse interse
tion of two varieties and a one whi
h is not transverse.There also exists the notion of generi
 transverse interse
tion [117, Chapter 18℄.It plays a role in the formulation of Bezout's theorem, whi
h is the result men-tioned at the beginning of this se
tion. However, we think for the purpose ofthis thesis, it is su�
ient to state Bezout's theorem in its very basi
 form, whi
hwe do in the following. For more general formulations, 
onsult the 
lassi
al bookby J. Harris [117, Chapter 18℄.Theorem 5.23 (Bezout). Let V and U be two proje
tive varieties in Pn of
omplementary dimension, i.e. dimV + dimU = n where dim refers to the pro-je
tive dimension of a variety. Let the degrees of V and U be c and d. Assumethat V and U interse
t transversely. In su
h 
ase, V ∩ U 
onsists of pre
isely
cd points.We also have the immediateCorollary 5.24. Let V be a proje
tive variety in Pn of proje
tive dimension
dimV and let P be a proje
tive plane of 
omplementary dimension, i.e. dimV +
dimP = n, where dim refers to the proje
tive dimension of a variety. Let thedegree of V be d. Assume that V and P interse
t transversely. In su
h 
ase,
V ∩P 
onsists of pre
isely d points.The above 
orollary of Bezout's theorem proves to be a key ingredient inthe proof of the main result of the thesis, whi
h we present in Chapter 9. Note,on
e again, that there exists a very general version of Bezout's theorem, whi
hrefers to so-
alled interse
tion multipli
ities [117℄ and does not require the twoproje
tive varieties to be of 
omplementary dimension. However, this topi
 isbeyond the fo
us of the thesis.
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Part IIIResults obtained andexamples solved
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Chapter 6A stru
ture theorem for a
lass of 
ones of positive mapsIn Se
tions 1.2, 3.1 and 3.2 of the introdu
tory Part I of the thesis, we refered tothe notion of positive maps, i.e. maps that preserve the set of positive-de�nitematri
es. It may seem that positive maps are perfe
tly suited for the des
riptionof physi
al pro
esses, as they map density matri
es into density matri
es, orpositive de�nite matri
es at least. However, a more 
areful analysis, whi
h 
anbe found e.g. in [31℄, shows that the �rst impression is wrong. It turns outthat a physi
al pro
ess that 
an be des
ribed as a map Φ ∶ ρ ↦ Φ (ρ) mustne
essarily have Φ not only positive, but also 
ompletely positive. By 
ompletepositive positivity of a Φ we mean the property that the map
⎡⎢⎢⎢⎢⎢⎢⎢⎣

A11 A12 . . . A1n

A21 A22 . . . A2n

⋮ ⋮ ⋱ ⋮
An1 An2 . . . Ann

⎤⎥⎥⎥⎥⎥⎥⎥⎦
↦
⎡⎢⎢⎢⎢⎢⎢⎢⎣

Φ (A11) Φ (A12) . . . Φ (A1n)
Φ (A21) Φ (A22) . . . Φ (A2n)
⋮ ⋮ ⋱ ⋮

Φ (An1) Φ (An2) . . . Φ (Ann)

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, (6.1)mapping operators on Cn ⊗ K into operators on the same spa
e, is positivefor arbitrary n. Here K denotes the spa
e in whi
h ρ lives. To see that for

Φ 
orresponding to a physi
al pro
ess the map (6.1) must indeed be positivefor all n, one 
an imagine two very distant quantum systems, whi
h do notintera
t at the present moment. However, they may have intera
ted in thepast. Let one of them be des
ribed by states on K, and let the other one bean n-dimensional system with states on Cn. The initial state of the 
ompositesystem 
an in prin
iple be an arbitrary state on Cn⊗K. The map a
ting on the
omposite system when the �rst subsystem undergoes the pro
ess Φ and these
ond subsystem remains untou
h, is given by 1 ⊗Φ. Here 1 denotes identityon n×n matri
es. This is pre
isely the map (6.1), and it must be positive sin
e,as we mentioned, the initial state of the 
omposite system 
an be arbitrary.Nevertheless, we have already seen that maps whi
h are positive, but not
ompletely positive are not useless in the theory of quantum information. In69



Se
tion 1.2 we explained the role of entanglement witnesses, whi
h 
orrespondto positive but not 
ompletely positive maps, for entanglement dete
tion. Onthe other hand, in Se
tion 3.1 we showed a dire
t 
onne
tion of distillabilityof quantum states to the property of being 2-positive. In the following, weintrodu
e a unifying framework for 
ompletely positive, 2-positive and severalother natural 
lasses of positive maps. The idea 
omes from an early workby Størmer [120℄ and 
onsists in distinguishing the 
lass of 
ones with 
ertainsymmetry property. They are 
alled mapping 
ones, and in the 
ontext dis-
ussed here, 
ones with a mapping 
one symmetry or m
s-
ones, due to a minordi�eren
e from the original de�nition by Størmer.Let us des
ribe the setup for our dis
ussion. Let K and H be two Hilbertspa
es. We denote with ⟨., .⟩ the inner produ
t in K or H. In the following, weshall assume that K and H are �nite-dimensional and thus equivalent to Cmand Cn for some m,n ∈ N, dimK = m, dimH = n. We also �x orthonormalbases {fj}mj=1 and {ei}ni=1 of K and H, respe
tively. Thus we have a very spe-
i�
 setting for our dis
ussion, but we shall keep the abstra
t notation of Hilbertspa
es, hoping to bring the attention of the reader to possible generalizations tothe in�nite-dimensional 
ase. Let us denote with B (K) and B (H) the spa
es ofbounded operators on K and H respe
tively, and 
hoose their 
anoni
al bases{fkl}mk,l=1, {eij}ni,j=1. That is, fkl (ej) = δljfk and similarly for the eij . Positiveelements of B (K) are operators A ∈ B (K) su
h that ⟨v,A (v)⟩ ⩾ 0∀v∈H. Sim-ilarly for elements of B (H). The sets of positive elements of B (K) and B (H)will be denoted by B (K)+ and B (H)+. In the �nite-dimensional 
ase, thereexists a natural inner produ
t in B (K), given by the formula
⟨A,B⟩′ ∶= Tr (AB∗) (6.2)for A,B ∈ B (K). An identi
al de�nition works for A,B ∈ B (H) and we do notdistinguish notationally between the inner produ
ts in B (H) and B (K). Notethat the bases {fkl}mk,l=1 and {eij}ni,j=1 are orthonormal with respe
t to ⟨., .⟩′.In the following, we will be mostly dealing with linear maps from B (K) to

B (H). Be
ause of the �nite-dimensionality assumption, they are all elements of
B (B (K) ,B (H)), the spa
e of bounded operators from B (K) to B (H). Given amap Φ ∈ B (B (K) ,B (H)), we de�ne its 
onjugate Φ∗ as a map from B (H) into
B (K) satisfying ⟨A,Φ (B)⟩′ = ⟨Φ∗ (A) ,B⟩′ for all A ∈ B (H) and B ∈ B (K). Inour setting, there also exists a natural inner produ
t in B (B (K) ,B (H)), givenby the formula

⟨Φ,Ψ⟩′′ ∶= m

∑
k,l=1

⟨Φ (fkl) ,Ψ (fkl)⟩′ . (6.3)Note that the spa
es B (B (H) ,B (K)), B (B (K)) and B (B (H)) 
an be endowedwith analogous inner produ
ts and we shall not notationally distinguish betweenthem. The following proposition summarizes a few elementary fa
ts about ⟨., .⟩′′that will be useful for our later dis
ussion.Proposition 6.1. For all Φ,Ψ ∈ B (B (K) ,B (H)) and α ∈ B (B (H)), β ∈
B (B (K)), and ○ denoting the 
omposition of maps, one has the following equal-ities 70



1. ⟨Φ ○ β,Ψ⟩′′ = ⟨β,Φ∗ ○Ψ⟩′′ = ⟨Ψ∗ ○Φ, β∗⟩′′,2. ⟨α ○Φ,Ψ⟩′′ = ⟨α,Ψ ○Φ∗⟩′′ = ⟨Φ ○Ψ∗, α∗⟩′′,3. ⟨α ○Φ ○ β,Ψ⟩′′ = ⟨Φ, α∗ ○Ψ ○ β∗⟩′′.Proof. The �rst equality in point one follows dire
tly from ⟨Φ ○ β (fkl) ,Ψ (fkl)⟩′ =⟨β (fkl) ,Φ∗ ○Ψ (fkl)⟩′ and the de�nition of ⟨., .⟩′′, eq. (6.3). To prove the otherequalities, we 
an use a simple lemma.Lemma 6.2. For any �nite-dimensional Hilbert spa
es K, H and maps Φ,Ψ ∈
B (B (K) ,B (H)), we have

⟨Φ,Ψ⟩′′ = ⟨Ψ∗,Φ∗⟩′′ . (6.4)Proof. Starting from the de�nition of ⟨., .⟩′′, we get
⟨Φ,Ψ⟩′′ = m

∑
k,l=1

⟨Φ (fkl) ,Ψ (fkl)⟩′ = n

∑
i,j=1

n

∑
m,n=1

m

∑
k,l=1

Φij,klΨmn,kl ⟨eij , emn⟩′ =
=

n

∑
i,j=1

m

∑
k,l=1

Φij,klΨij,kl =
n

∑
i,j=1

m

∑
k,l=1

m

∑
r,s=1

Φij,rsΨij,kl ⟨frs, fkl⟩′ =
=

n

∑
i,j=1

m

∑
k,l=1

m

∑
r,s=1

⟨Ψij,rsfr,s,Φij,klfkl⟩′ = n

∑
i,j=1

⟨Ψ∗ (eij) ,Φ∗ (eij)⟩′ , (6.5)where the last equality follows be
ause Φ∗ (eij) = ∑mk,l=1Φij,klfkl as a 
onse-quen
e of ⟨fkl,Φ∗ (eij)⟩′ = ⟨Φ (fkl) , eij⟩′ = ∑mr,s=1Φrs,kl ⟨ers, eij⟩′ = Φij,kl. Sim-ilarly, Ψ∗ (eij) = ∑mr,s=1Φij,rsfrs holds. The �nal expression in (6.5) 
learlyequals ⟨Ψ∗,Φ∗⟩′′.Note that the assertion of Lemma 6.2 holds for any 
hoi
e of K and H, andthus also when the two �nite-dimensional Hilbert spa
es are di�erent from the
K and H referred to in the statement of the proposition. Using the lemma, weget ⟨β,Φ∗ ○Ψ⟩′′ = ⟨Ψ∗ ○Φ, β∗⟩′′, whi
h proves the se
ond equality in point one.Furthermore,
⟨α ○Φ,Ψ⟩′′ = ⟨Ψ∗,Φ∗ ○ α∗⟩′′ = ⟨Φ∗ ○ α∗,Ψ∗⟩′′ =

= ⟨α∗,Φ ○Ψ∗⟩′′ = ⟨Φ ○Ψ∗, α∗⟩′′ = ⟨α,Ψ ○Φ∗⟩′′ , (6.6)where we su

essively used Lemma 6.2, the 
onjugate symmetry of ⟨., .⟩′′, the�rst equation in point one, the 
onjugate symmetry again, and �nally Lemma6.2 for the se
ond time. Obviously, the �rst, the �fth and the sixth term inequation (6.6) are the same as in point two of the proposition. Hen
e the onlyremaining thing to prove is point three. We have
⟨α ○Φ ○ β,Ψ⟩′′ = ⟨α,Ψ ○ β∗ ○Φ∗⟩′′ = ⟨β ○Ψ∗ ○ α,Φ∗⟩′′ = ⟨Φ, α∗ ○Ψ ○ β∗⟩′′ ,(6.7)71



where we used the two properties ⟨α ○Φ,Ψ⟩′′ = ⟨α,Ψ ○Φ∗⟩′′ with Φ → Φ ○ β,⟨β,Φ∗ ○Ψ⟩′′ = ⟨Φ ○ β,Ψ⟩′′ with β → α, Φ → β ○ Ψ∗ and Ψ → Φ∗, and �nallyLemma 6.2.Consider the tensor produ
t K⊗H. This spa
e has a natural inner produ
t,inherited from K and H, and an orthonormal basis {fkl ⊗ eij}n;mi,j=1;k,l=1. Simi-larly to B (K) and B (H), the spa
e B (K⊗H) of bounded operators on K ⊗His endowed with a natural Hilbert-S
hmidt produ
t, de�ned by formula (6.2)with A,B ∈ B (K⊗H). We shall again denote the inner produ
t with ⟨., .⟩′ toavoid ex
ess notation. As we explained in previous se
tions, there exists a one-to-one 
orresponden
e between linear maps Φ of B (K) into B (H) and elementsof B (K⊗H), given by
Φ ↦ CΦ ∶=

m

∑
k,l=1

fkl ⊗Φ (fkl) . (6.8)The symbol CΦ denotes the Choi matrix of Φ [30℄ and the mapping J ∶ Φ↦ CΦ issometimes 
alled the Jamioªkowski-Choi isomorphism [29℄. In fa
t, J is not onlyan isomorphism, but also an isometry between B (B (K) ,B (H)) and B (K⊗H)in the sense of Hilbert-S
hmidt type inner produ
ts. One has the followingLemma 6.3. The Jamioªkowski-Choi isomorphism is an isometry. One has
⟨Φ,Ψ⟩′′ = ⟨CΦ,CΨ⟩′ (6.9)for all Φ,Ψ ∈ B (B (K) ,B (H)) (with CΦ,CΨ ∈ B (K⊗H)).Proof. By the de�nition of CΦ and CΨ,

⟨CΦ,CΨ⟩′ = ⟨ m

∑
k,l=1

fkl ⊗Φ (fkl) , m

∑
r,s=1

frs ⊗Ψ (frs)⟩′ = . . . (6.10)Sin
e Tr ((A⊗A′) (B ⊗B′)∗) = Tr (AB∗)Tr (A′B′∗) for arbitrary A,B ∈ B (K)and A′,B′ ∈ B (H), by formula (6.2) we have
. . . =

m

∑
k,l=1

m

∑
r,s=1

⟨fkl, frs⟩′ ⟨Φ (fkl) ,Ψ (frs)⟩′ = m

∑
k,l=1

⟨Φ (fkl) ,Ψ (fkl)⟩′ , (6.11)where we used orthonormality of {fkl}mk,l=1. The last expression equals ⟨Φ,Ψ⟩′′by de�nition (6.3).Let us re
all that a linear map Φ from B (K) to B (H) is 
alled positive if itpreserves positivity of operators, whi
h means Φ (B (K)+) ⊂ B (H)+. Moreover,
Φ is 
alled k-positive if Φ ⊗ idMk(C) is positive as a map from B (K) ⊗Mk (C)into B (H) ⊗Mk (C), where Mk (C) denotes the spa
e of k × k matri
es with
omplex entries and id refers to the identity map. A map Φ is 
alled 
ompletelypositive if it is k-positive for all k ∈N. From the Choi's theorem on 
ompletelypositive maps [30℄ (
f. also Lemma 6.7) it follows that every su
h map has a72



representation Φ = ∑iAdVi
as a sum of 
onjugation maps, AdVi

∶ ρ ↦ ViρV
∗

iwith Vi ∈ B (K,H). Conversely, every map Φ of the form ∑iAdVi
is 
ompletelypositive. If all the Vi's 
an be 
hosen of rank ⩽ k for some k ∈ N, Φ is said tobe k-superpositive [101℄. One-superpositive maps are simply 
alled superpositive[121℄. The sets of positive, k-positive, 
ompletely positive, k-superpositive andsuperpositive maps from B (K) to B (H) will be denoted with P (B (K) ,B (H)),

Pk (B (K) ,B (H)), CP (B (K) ,B (H)), SPk (B (K) ,B (H)), SP (B (K) ,B (H))or P , Pk, CP, SPk, SP for short. It is 
lear that all of them are 
losed 
onvex
ones 
ontained in P (B (K) ,B (H)). They also share a more spe
ial propertythat the produ
t Υ ○ Φ ○Ω of Φ ∈ C, Υ ∈ CP (B (H)) and Ω ∈ CP (B (K)) is anelement of C again, where C stands for one of the sets P , Pk, CP, SPk and
SP (
f. e.g. [101℄). Thus, following rather 
losely the original de�nition byStørmer [120℄, we makeDe�nition 6.4. A 
one with a mapping 
one symmetry, or an m
s-
onefor short, is de�ned as a 
losed 
onvex 
one C in P (B (K) ,B (H)), di�erent from{0}, su
h that

Υ ○Φ ○Ω ∈ C (6.12)for all Φ ∈ C, Υ ∈ CP (B (H)) and Ω ∈ CP (B (K)).In the following, the 
onvexity assumption 
ould sometimes be skept, andwe do in
lude appropriate 
omments.Note that the set of positive maps from B (K) into B (H) is 
ontained inthe real-linear subspa
e HP (B (K) ,B (H)) ⊂ B (B (K) ,B (H)) (HP for short)
onsisting of all Hermiti
ity-preserving maps, i.e. Φ su
h that Φ (X∗) = Φ (X)∗.Moreover, the image of HP (B (K) ,B (H)) by J ∶ Φ ↦ CΦ equals the set of self-adjoint elements of B (K ⊗H) [122℄. Therefore ⟨., .⟩′′ indu
es a symmetri
 innerprodu
t on HP (B (K) ,B (H)) (
f. Property 6.3). By de�nition, all mapping
ones are subsets of P and thus of HP. Sin
e HP is a �nite-dimensional spa
eover R with a symmetri
 inner produ
t ⟨., .⟩′′, one 
an easily apply to it toolsof 
onvex analysis. In parti
ular, given any 
one C ⊂ HP, one de�nes its dual
C○ as the 
one of elements Ψ ∈ HP su
h that ⟨Ψ,Φ⟩′′ ⩾ 0 for all Φ ∈ C,

C
○ ∶= {Ψ ∈ HP (B (K) ,B (H)) ⟨Ψ,Φ⟩′′ ⩾ 0∀Φ∈C} . (6.13)Obviously, C○ is 
losed and 
onvex. It has a 
lear geometri
al interpretation asthe 
onvex 
one spanned by the normals to the supporting hyperplanes for C.The dual 
one has a well-known 
ounterpart in 
onvex analysis [6℄, C⋆ = −C○,whi
h is 
alled the polar of C. We have the followingLemma 6.5. Let C be a 
losed 
onvex 
one. Then C = C○○.Proof. The formula C○○ = C is equivalent to C⋆⋆ = C for a 
losed 
onvex 
one C.The latter equality is a known fa
t in 
onvex analysis. A proof 
an be founde.g. in [6℄ (Theorem 14.1).It 
an be shown (
f. e.g. [101℄) that a duality relation P○k = SPk holds forall k ∈ N. The 
onverse relation SP○k = Pk is also true, as a 
onsequen
e of73



Property 6.5. In parti
ular, for k = 1 we get SP○ = P and P○ = SP . Taking
k = min{m,n}, one obtains CP○ = CP, whi
h is in a

ordan
e with Choi'stheorem on 
ompletely positive maps [30℄ and with Property 6.3.In the following, we shall be interested in duality relations between m
s-
ones. This is in general a well-posed problem, be
ause the operation C → C○a
ts within the �m
s� 
lass. We haveProposition 6.6. Let C ⊂ P (B (K) ,B (H)) be an arbitrary m
s-
one. Then
C○, de�ned as in (6.13), is an m
s-
one as well.Proof. Let Ψ be an element of C○. First we prove that Υ ○Ψ ○Ω ∈ C○ for all Υ ∈
CP (B (H)) and Ω ∈ CP (B (K)). We have Υ∗ ∈ CP (B (H)) and Ω∗ ∈ CP (B (K))be
ause the sets of 
ompletely positive maps are ∗-invariant. Therefore Υ∗ ○Φ○
Ω∗ ∈ C for an arbitrary element Φ of the 
one C. By the de�nition (6.13) of C○,we have ⟨Ψ,Υ∗ ○Φ ○Ω∗⟩′′ ⩾ 0∀Φ∈C . Using Proposition 6.1, point three, we 
anrewrite this as ⟨Υ ○Ψ ○Ω,Φ⟩′′ ⩾ 0∀Φ∈C . (6.14)A

ording to de�nition (6.13), 
ondition (6.14) means that Υ ○ Ψ ○ Ω ∈ C○.This holds for arbitrary Υ ∈ CP (B (H)) and Ω ∈ CP (B (K)). The only thingwhi
h is left to prove is C○ ⊂ P (B (K) ,B (H)). The in
lusion holds be
auseevery m
s-
one C 
ontains all the 
onjugation maps AdV with rankV = 1.Consequently, C○ ⊂ 
onvhull{AdV rankV = 1}○ = SP○ = P . To show thatindeed {AdV rankV = 1} ⊂ C for any m
s-
one C, take an arbitrary nonzero
Φ ∈ C. There must exist normalized ve
tors υ ∈ K and ω ∈ H su
h that⟨∣ω⟩ ⟨ω∣ ,Φ (∣υ⟩ ⟨υ∣)⟩′ ⩾ 0, where ∣υ⟩ ⟨υ∣ and ∣ω⟩ ⟨ω∣ are orthogonal proje
tions ontothe one-dimensional subspa
es spanned by υ and ω. Denote χ ∶= ⟨∣ω⟩ ⟨ω∣ ,Φ (∣υ⟩ ⟨υ∣)⟩′.Consider a pair of maps, U ∶ K ∋ a ↦ ⟨a, υ′⟩υ ∈ K and W ∶ H ∋ b ↦ ⟨b,ω⟩ω′ ∈ H,where υ′ and ω′ are arbitrary normalized ve
tors in K and H. A map Φ′, de�nedas λ/χ (AdW ○Φ ○AdU) a
ts in the following way, Φ′ ∶ ρ ↦ λ ⟨∣υ′⟩ ⟨υ′∣ , ρ⟩′ ∣ω′⟩ ⟨ω′∣or Φ′ = AdV with V ∶ K ∋ c ↦ λ ⟨υ′, c⟩ω′. Any rank one operator V 
an be writ-ten in the latter form for some υ′ and ω′. But Φ′ is an element of C be
ause ofthe assumption that C is an m
s-
one. Thus indeed AdV ∈ C for all V ∈ B (K,H)su
h that rankV = 1. In the 
ase of K = H and mapping 
ones C as in theoriginal de�nition by Størmer, the in
lusion AdV ∈ C follows from Lemma 2.4in [120℄. Note that we never used 
onvexity of C in the proof.Using the lemmas introdu
ed above, we 
an almost immediately prove asurprising 
hara
terization theorem for m
s-
ones, whi
h was strongly suggestedby earlier results on the subje
t [101,123,124℄. It holds without any additionalassumptions about the 
one, and is noteworthy as it links the 
ondition that twomaps Φ, Ψ lay in a pair of dual m
s-
ones to the fa
t that the produ
t Ψ∗ ○Φis a CP map. Thus it reveals a 
onne
tion between 
onvex geometry and a fa
twhi
h is more likely to be 
alled algebrai
 than geometri
al. Before we pro
eedwith the proof, let us show a simple lemma, whi
h is a version of [125, Lemma1(i)℄ for K ≠ H. 74



Lemma 6.7. Let V ∶ K ∋ a ↦∑ni=1∑mj=1 Vij ⟨a, fj⟩ ei ∈ H be an arbitrary operatorin B (B (K) ,B (H)) and 
onsider the map AdV ∶ ρ↦ V ρV ∗. Then
CAdV

= ∣υ⟩ ⟨υ∣ , (6.15)where υ = ∑ni=1∑mj=1 Vijfj ⊗ ei is a ve
tor in K ⊗H and ∣υ⟩ ⟨υ∣ ∶ w ↦ ⟨w,υ⟩ υ isproportional to an orthogonal proje
tion onto the subspa
e spanned by υ.Proof. Obviously, the map V ∗ a
ts in the following way,
V ∗ ∶H ∋ b↦

n

∑
i=1

m

∑
j=1

Vij ⟨b, ei⟩ fj ∈ K. (6.16)Thus
V fklV

∗ ∶H ∋ b↦
n

∑
i,r=1

m

∑
j,s=1

Vrs ⟨fkl (fj) , fs⟩Vij ⟨b, ei⟩ er ∈ H, (6.17)where the last expression is easily veri�ed to be equal to ∑ni,r=1 VrkVil ⟨b, ei⟩ er.Thus we have V fklV ∗ = ∑ni,r=1 VrkVileri and by the de�nition (6.8) of the Choimatrix,
CAdV

=
m

∑
k,l=1

n

∑
i,r=1

VrkVilfkl ⊗ eri = ∣υ⟩ ⟨υ∣ , (6.18)with υ = ∑ni=1∑mj=1 Vijfj ⊗ ei. A proof of the last equality in (6.18) is left as anelementary exer
ise for the reader.We are ready to prove the following result, whi
h is an extension of Theo-rem 1 in [123℄.Theorem 6.8. Let C ⊂ P (B (K) ,B (H)) be an m
s-
one. The following 
ondi-tions are equivalent,1. Φ ∈ C,2. Ψ∗ ○Φ ∈ CP (B (K)) for all Ψ ∈ C○,3. Φ ○Ψ∗ ∈ CP (B (H)) for all Ψ ∈ C○.Proof. We �rst show 1⇔ 2. Let us start with 2⇒ 1. Sin
e Ψ∗ ○Φ ∈ CP ∀Ψ∈C○ ,we 
an use the fa
ts that CP○ = CP and id ∈ CP to get
⟨Ψ∗ ○Φ, id⟩′′ ⩾ 0∀Ψ∈C○ . (6.19)By using point one of Proposition 6.1 with the identity map id substituted for

β, we get ⟨Φ,Ψ⟩′′ ⩾ 0∀Ψ∈C○ , whi
h means that Φ ∈ C○○. But C○○ = C be
ause C isa 
losed 
onvex 
one and Property 6.5 holds. Hen
e Φ ∈ C. The proof of 1⇒ 2strongly builds on the assumption that C has the mapping 
one symmetry. ByProposition 6.6, we know that C○ is an m
s-
one as well. Therefore Ψ○AdV ∈ C○for an arbitraryΨ ∈ C○ and V ∈ B (K). We have ⟨Ψ ○AdV ,Φ⟩′′ ⩾ 0∀V ∈B(K)∀Ψ∈C○ .75



By Proposition 6.1, point one, we get ⟨Ψ ○AdV ,Φ⟩′′ = ⟨AdV ,Ψ∗ ○Φ⟩′′. UsingProperty 6.3 and Lemma 6.7 with H = K, the last term 
an be rewritten as
⟨AdV ,Ψ∗ ○Φ⟩′′ = ⟨CAdV

,CΨ∗○Φ⟩′ = ⟨∣v⟩ ⟨v∣ ,CΨ∗○Φ⟩′ = ⟨υ,CΨ∗○Φ (υ)⟩ , (6.20)where υ = ∑mi,j=1 Vijfj ⊗ fi for V ∶ K ∋ a ↦ ∑mi,j=1 Vij ⟨a, fj⟩ fi ∈ K. The ve
tor
υ ∈ K⊗K 
an be arbitrary, sin
e we do not assume anything about the operator
V . Consequently, the 
ondition ⟨Ψ ○AdV ,Φ⟩′′ ⩾ 0∀V ∈B(K)∀Ψ∈C○ is equivalent to

⟨υ,CΨ∗○Φ (υ)⟩ ⩾ 0∀υ∈K⊗K ∀Ψ∈C○ , (6.21)whi
h means that CΨ∗○Φ ∈ B (K ⊗K)+ for all Ψ ∈ C○. By the Choi theoremon 
ompletely positive maps [30℄, Ψ∗ ○ Φ ∈ CP (B (K)) for all Ψ ∈ C○. Thuswe have �nished proving that 1⇔ 2. The proof of the equivalen
e 1⇔ 3 onlyneeds a minor modi�
ation of the above argument. Instead of using point one ofProposition 6.1, point two of the same proposition has to be used. Other detailsare pra
ti
ally the same as above and we shall not give them expli
itly.In 
ase of H = K and a ∗-invariant m
s-
one C ∈ P (B (K)), Theorem 6.8 
anbe further simpli�ed.Theorem 6.9. Let C ⊂ P (B (K)) be a ∗-invariant m
s-
one. Then the following
onditions are equivalent,1. Φ ∈ C,2. Ψ ○Φ ∈ CP (B (K)) for all Ψ ∈ C○,3. Φ ○Ψ ∈ CP (B (K)) for all Ψ ∈ C○.Proof. Obvious from Theorem 6.8.This result was earlier known for Pk (B (K)) and SPk (B (K)) [101℄, andinexpli
itly for all so-
alled symmetri
 (and 
onvex) mapping 
ones [124℄. Asit was pointed to the author by Erling Størmer, in the 
ase of k-positive maps,not ne
essarily from B (K) into itself, an even stronger 
hara
terization of thetype of Theorems 6.8 and 6.9 is valid. First, we have the simpleTheorem 6.10. The following 
onditions are equivalent1. Φ ∈ Pk (B (K) ,B (H)),2. AdV ∗ ○Φ ∈ CP (B (K)) for all V ∈ B (K,H) su
h that rankV ⩽ k,3. Φ ○AdV ∗ ∈ CP (B (H)) for all V ∈ B (K,H) su
h that rankV ⩽ k.Proof. Obvious from Theorem 6.8. The duality relation
Pk (B (K) ,B (H))○ = SPk (B (K) ,B (H)) =

= 
onvhull{AdV ∣V ∈ B (K,H) , rankV ⩽ k} (6.22)holds (
f. [101℄) and we 
an substitute Ψ in Theorem 6.8 with AdV , rankV ⩽ k.We also use the elementary fa
t that Ad∗V = AdV ∗ .76



The next result on k-positive maps seems to be less obvious.Theorem 6.11. Denote with Πk (K) and Πk (H) the sets of k-dimensionalproje
tions in K and H, resp. The following 
onditions are equivalent1. Φ ∈ Pk (B (K) ,B (H)),2. AdE ○Φ ∈ CP (B (K) ,B (H)) for all E ∈ Πk (H),3. Φ ○AdF ∈ CP (B (K) ,B (H)) for all F ∈ Πk (K),4. AdE ○Φ ○AdF ∈ CP (B (K) ,B (H)) for all E ∈ Πk (H), F ∈ Πk (K).Proof. We shall prove the equivalen
e 1⇔ 4. The other ones follow analogously.Sin
e CP○ = CP and any CP map 
an be written as ∑iAdVi
with Vi arbitrary,the 
ondition AdE ○Φ ○AdF ∈ CP (B (K) ,B (H)) is equivalent to

⟨AdE ○ Φ ○AdF ,AdV ⟩′′ ⩾ 0∀E∈Πk(H),F ∈Πk(K)∀V ∈B(K,H). (6.23)By Proposition 6.1, point three, equation (6.23) 
an be rewritten as
⟨Φ,AdEV F ⟩′′ ⩾ 0∀E∈Πk(H),F ∈Πk(K)∀V ∈B(K,H), (6.24)where we used the fa
t that AdE ○AdV ○AdF = AdEV F and the self-adjointnessof E and F . Note that U = EV F is an element of B (K,H) of rank ⩽ k.Conversely, every map in U ∈ B (K,H) of rank ⩽ k 
an be written in the form

EV F for some V ∈ B (K,H), E ∈ Πk (H) and F ∈ Πk (K). It is su�
ient totake V = U and E, F as the range and rank proje
tions for U , resp. Thereforethe 
ondition (6.24) is equivalent to ⟨Φ,AdU ⟩′′ ⩾ 0 for all U ∈ B (K,H) s.t.rankU ⩽ 0. But this is the same as ⟨Φ,Ψ⟩′′ ⩾ 0 for all Ψ ∈ SPk (B (K) ,B (H)),or Φ ∈ SPk (B (K) ,B (H))○ = Pk (B (K) ,B (H)). Thus 1⇔ 4.Let us note that Theorem 6.8 
an be per
eived as a very broad generalizationof the so-
alled positive maps entanglement 
riterion by the Horode
kifamily [18℄. To see this, we prove the following generalProposition 6.12 (Generalized positive maps 
riterion). Let C be an m
s-
onein P (B (K) ,B (H)). An operator ρ ∈ B (K⊗H) belongs to the image J (C) ifand only if the following 
ondition
(Ψ∗ ⊗ id) ρ ∈ B+ (K ⊗K) (6.25)holds for all Ψ ∈ C○.Proof. The proof relies on Theorem 6.8 and the formula (6.8) for the isomor-phism J . Let us note that

(Ψ∗ ⊗ id)ρ = (Ψ∗ ⊗ id) (J−1 (ρ)⊗ id) m

∑
k,l=1

fkl ⊗ fkl = J (Ψ∗ ○ J−1 (ρ)) (6.26)77



wherem denotes the dimension of the spa
e K. Thus the 
ondition (Ψ∗ ⊗ id)ρ ∈
B+ (K ⊗K) is the same as J (Ψ∗ ○ J−1 (ρ)) ∈ B+ (K ⊗K), whi
h is equivalent, bythe Choi theorem on 
ompletely positive maps [30℄, to Ψ∗○J−1 (ρ) ∈ CP (B (K)).If the last in
lusion holds for all Ψ ∈ C○, we know by Theorem 6.8 that J−1 (ρ)is in C, or ρ ∈ J (C). Conversely, if ρ is in J (C), then J−1 (ρ) belongs to C.By Theorem 6.8, Ψ∗ ⊗ J−1 (ρ) belongs to CP (B (K)) for all Ψ ∈ C○, whi
h isequivalent to J (Ψ∗ ⊗ J−1 (ρ)) ∈ B+ (K⊗K) a

ording to the Choi theorem on
ompletely positive maps. By formula (6.26) the last expression is equivalent to(Ψ∗ ⊗ id)ρ ∈ B+ (K ⊗K) for all Ψ ∈ C○.Remark 6.13. For the 
hoi
e C = SP (B (K)), the above theorem redu
es to thepositive maps 
riterion by Horode

y [18℄. We have the following equivalen
e

ρ is separable ⇔ (Ψ⊗ 1)ρ ∈ B+ (K)∀Ψ∈P(B(K)) (6.27)Proof. Follows from Proposition 6.12 if we re
all that the set of separable oper-ators equals J (SP (B (K))) and the dual of SP (B (K)) is P (B (K)) [101℄.
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Chapter 7Algebrai
 problems solved byhand
7.1 Produ
t numeri
al range for a three-parameterfamily of operatorsProdu
t numeri
al range is a 
on
ept derived from the well-known numeri
alrange (
f. e.g. [126℄). For an operator A on a Hilbert spa
e H, the numeri
alrange of A is by de�nition the set of numbers whi
h 
an be obtained as ⟨v,A (v)⟩for some ve
tor v ∈ H of unit norm. A

ordingly, for an operator A on a bipartitespa
e H1 ⊗H2 the produ
t numeri
al range is de�ned as

Λ⊗ (A) = {⟨v ⊗ u,A (v ⊗ u)⟩ v ∈ H1, u ∈ H2, ∣v∣ = ∣u∣ = 1} (7.1)A generalization to a multipartite setting is possible and very straightforward.The de�nition was introdu
ed in [127℄ and demonstrated to have various linksto problems in the quantum information s
ien
e [128℄, in
luding the evaluationof minimum output entropy [129℄, 
he
king whether two unitary operations arelo
ally distinguishable [130, 131℄ or the identi�
ation of lo
al dark spa
es anderror 
orre
ting 
odes [132,133℄. In the present se
tion we analyti
ally 
al
ulatethe produ
t numeri
al range for a three-parameter family of 4×4 matri
es intro-du
ed in [134℄. In order to obtain expli
it formulas, some additional 
onstraintsneed to put on the parameters of the matri
es. We take
F =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

F00,00 F00,01 F00,10 F00,11

F01,00 F01,01 F01,10 F01,11

F10,00 F10,01 F10,10 F10,11

F11,00 F11,01 F11,10 F11,11

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1
2

a 0 0

ā 1
2

b 0

0 b̄ 1
2

c

0 0 c̄ 1
2

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥⎦
, (7.2)79



whi
h represent operators on H1 ⊗H2 = C2 ⊗C2. In order to �nd Λ⊗ (F ), we�rst 
al
ulate the quantities (F (2)u )
αγ

∶= Fαβγδūβuδ. The result is
F (2)u (a, b, c) = ⎡⎢⎢⎢⎢⎣

1
2
(∣u1∣2 + ∣u2∣2) a ∣u1∣2 + c ∣u2∣2 + b̄u1ū2

ā ∣u1∣2 + c̄ ∣u2∣2 + bū1u2 1
2
(∣u1∣2 + ∣u2∣2)

⎤
⎥
⎥
⎥
⎥⎦ . (7.3)To 
al
ulate the produ
t numeri
al range of F , we only need to �nd the maxi-mum and the minimum of ⟨v ⊗ u,F (u⊗ v)⟩ = ⟨v,F (2)u (v)⟩, where u, v ∈C2 and

∣u∣ = ∣v∣ = 1. Obviously, TrF (2)u = ∣u1∣2+∣u2∣2 = ∣u∣2 = 1 for all u that meet the 
on-straint ∣u∣ = 1. The 
hara
teristi
 polynomial of F (2)u is λ2−TrF (2)u λ+detF (2)u =

λ2 − λ + detF
(2)
u , whi
h has the roots
λ± =

1 ±
√
1 − 4detF

(2)
u

2
=
1 ± ∣a ∣u1∣2 + c ∣u2∣2 + b̄u1ū2∣

2
. (7.4)The last equality follows from a dire
t 
al
ulation of the determinant of F (2)u ,

detF
(2)
u = 1

4
−∣a ∣u1∣2 + c ∣u2∣2 + b̄u1ū2∣2. We see that the produ
t numeri
al rangeof F (2)u is

[1 −M
2

,
1 +M

2
] , (7.5)where M = max∣u∣=1 ∣a ∣u1∣2 + c ∣u2∣2 + b̄u1ū2∣. Hen
e to determine the produ
tnumeri
al range of F (2)u , it is enough to 
al
ulate the maximum of the expression∣a ∣u1∣2 + c ∣u2∣2 + b̄u1ū2∣ over the elements (u1, u2) ∈ C2 with unit norm. Firstwe observe that for x ∶= ∣u1∣, y ∶= ∣u2∣ �xed, the fun
tion ∣a ∣u1∣2 + c ∣u2∣2 + b̄u1ū2∣attains the maximum value ∣ax2 + cy2∣+∣b∣xy. Thus the 
al
ulation ofM redu
esto �nding the maximum of ∣ax2 + cy2∣+ ∣b∣xy over x, y ∈R nonnegative and su
hthat x2+y2 = 1. Equivalently, we may skip the nonnegativity 
ondition on x and

y, substitute x→ cosφ, y → sinφ and maximize ∣a cos2 φ + c sin2 φ∣+ ∣b∣ sinφ cosφover real φ. Using simple algebra, it is easy to show that ∣a cos2 φ + c sin2 φ∣ +∣b∣ sinφ cosφ is equal to 1
2
(∣(a + c) + (a − c) cosψ∣ + ∣b∣ sinψ) for ψ = 2φ. Themaximum of this expression over ψ ∈ R 
an be easily found if a and c satisfyone of the following 
onditions,a) ∣a∣ = ∣c∣ orb) a = rc for real r.In the 
ase a), we get ∣(a + c) + (a − c) cosψ∣ =√∣a + c∣2 + ∣a − c∣2 cos2ψ, and thuswe are left with the problem of maximizing

f (ψ) ∶= 1

2
(√∣a + c∣2 + ∣a − c∣2 cos2 ψ + ∣b∣ sinψ) (7.6)80



over real ψ. The maximum 
an be 
al
ulated expli
itly. The result reads
M =max

ψ∈R f (ψ) = ⎧⎪⎪⎪⎨⎪⎪⎪⎩∣b∣ + ∣a + c∣ , ∣b∣ ∣a + c∣ > ∣a − c∣2√∣b∣2 + ∣a − c∣2√1 + ∣a+c∣2∣a−c∣2 , ∣b∣ ∣a + c∣ ⩽ ∣a − c∣2 . (7.7)Here we only outline how (7.7) was obtained. The �rst derivative of f is
f ′ (ψ) = 1

2

⎛⎜⎝
∣a − c∣2 sinψ cosψ√∣a + c∣2 + ∣a − c∣2 cos2 ψ + ∣b∣ cosψ⎞⎟⎠ , (7.8)and there are either two or four solutions to the equation f ′ (ψ) = 0 in [0,2π),depending on the sign of the expression ∣b∣ ∣a + c∣− ∣a − c∣2. If inequality ∣b∣ ∣a + c∣−∣a − c∣2 > 0 holds, we get a single maximum, equal to ∣b∣+∣a + c∣, at ψ = π/2. Let usde�ne ψ0 = arccos(√∣a−c∣4−∣b∣2∣a+c∣2∣a−c∣√∣a−c∣2+∣b∣2 ). When ∣b∣ ∣a + c∣ − ∣a − c∣2 < 0, the maximumat ψ = π/2 turns into a minimum, but two new maxima of f appear at ψ = ψ0and ψ = π −ψ0. The value of f in both of these maxima is the same and equals√∣b∣2 + ∣a − c∣2√1 + ∣a+c∣2∣a−c∣2 . Thus we have explained formula (7.7) but for the
ase ∣b∣ ∣a + c∣ = ∣a − c∣2. With little additional e�ort, it 
an be shown that (7.7)also works in that spe
ial 
ase. Therefore (7.7) is true whenever ∣a∣ = ∣c∣ and wehave found the produ
t numeri
al range (7.5) of F in the 
ase a).When a = rc for real r, it is even simpler to 
al
ulate M than in the situa-tion 
onsidered above. Sin
e then we have the equality ∣(a + c) + (a − c) cosψ∣ =∣∣a + c∣ + ∣a − c∣ cosψ∣, we 
an �rst maximize the expression

1

2
(∣∣a + c∣ + ∣a − c∣ cosψ∣ + ∣b∣ sinψ) (7.9)while keeping s ∶= ∣sinψ∣ and c ∶= ∣cosψ∣ 
onstant. This yields

1

2
(∣a + c∣ + ∣a − c∣ c + ∣b∣ s) (7.10)and we are left with the task of maximizing this expression over all nonnegative

s, c su
h that s2 + c2 = 1 holds. The 
al
ulation of the maximum is elementary,so we only give the �nal result,
M = 1

2
(∣a + c∣ +√∣a − c∣2 + ∣b∣2) . (7.11)Hen
e we have obtained the produ
t numeri
al range (7.5) of F in the 
ase b).In the 
ase of general a, b, c ∈C, it does not seem easy to 
al
ulate the produ
tnumeri
al range of F .For the 
ases where the 
al
ulation of the produ
t numeri
al range of Fturned out to be possible, the results obtained 
an be used to �nd a part of theboundary of the set of entanglement witnesses. Namely, one 
an 
onsider the81



minimal λ ∈ R su
h that W (λ) = (1 − λ)F + λ1 is positive on produ
t ve
tors.From (7.5), it is not di�
ult to see that the appropriate λ equals M−1
M+1

, whi
h we
an expli
itly 
al
ulate under 
ertain assumptions on a, b and c. With a littlemore e�ort, the above argument also shows how to expli
itly �nd the spe
i�
produ
t ve
tors v⊗u that satisfy ⟨v ⊗ u,W (λ) (v ⊗ u)⟩ = 0. The set of produ
tve
tors v ⊗ u that satisfy ⟨v ⊗ u,W (v ⊗ u)⟩ = 0 for an entanglement witness Woften turns out to be important when 
onsidering the optimality of W [28℄.7.2 Higher order numeri
al ranges and 
ode 
ar-riers for the qutrit 
aseWe already know from the introdu
tion to Chapter 6 that physi
al pro
essesin quantum systems are best des
ribed by 
ompletely positive maps. Everysu
h map, if not simply a unitary transformation, 
an be understood as somekind of noisy evolution indu
ed upon the system by an environment. Morepre
isely, two initially orthogonal pure states of the system are often no longerorthogonal after the evolution, whi
h is an analogue of a spontaneous bit �ipin 
lassi
al 
omputing. A way to deal with the noise in a 
lassi
al setting is byrepresenting the logi
al 0 and 1 by multiple physi
al bits, for example 000 and
111, resp. Even if one of those is physi
ally �ipped, there is su�
ient informationin the remaining ones to re
over the initial value 0 or 1. An identi
al solutionen
ounters severe di�
ulties in the quantum setting, sin
e by the no-
loningtheorem [135℄, there exists no transformation that 
ould transform an arbitraryquantum state ρ into ρ⊗ ρ, let alone ρ⊗ ρ⊗ ρ.However, nothing prevents us from en
oding, in the qubit 
ase, an arbitrarypure state a ∣0⟩ + b ∣1⟩ of a qubit as a ∣000⟩ + b ∣111⟩. In this way, a similarresistan
e to single bit �ips as in the 
lassi
al 
ase is a
hieved, sin
e the setof bit-�ipped states ∣000⟩ is orthogonal to the bit-�ipped ∣111⟩. This is thebasi
 idea behind quantum error 
orre
tion [136, 137℄, but more details needto be a

ounted for before it really works. For a �xed 
ompletely positivetransformation Φ, des
ribing the noise a�e
ting a quantum system, a general
riterion for quantum error 
orre
tion was provided in the paper [132℄ by E.Knill and R. La�amme. Note that by the Choi theorem on 
ompletely positivemaps [30℄, the map Φ 
an be written in the form Φ ∶ ρ ↦ ∑iA∗i ρAi for someoperators Ai on the spa
e in whi
h ρ lives. The Knill-La�amme 
riterion nowsays that we 
an en
ode a d-dimensional quantum states and send them throughthe �quantum 
hannel� des
ribed by Φ if and only if the 
onditions

PkA
∗

iAjPk = λijPk ∀i,j (7.12)hold for some k-dimensional proje
tion Pk and a set of numbers λij ∈ C.The equations (7.12) are 
alled Knill-La�amme equations a

ordingly. All ofthem are of the form PkMPk = λPk, where M is some matrix and λ a 
on-stant. This problem is a generalization of the eigenvalue problem and, moregenerally, of the question about the so-
alled numeri
al range of an operator,82



Λ1 (M) ∶= {⟨ψ∣M ∣ψ⟩ψ ∈H}, where ψ runs over all ve
tors of unit norm in therespe
tive Hilbert spa
e H. We already mentioned numeri
al ranges in Se
tion7.1. Be
ause of the form of Knill-La�amme 
onditions, it is natural to introdu
eso-
alled higher order numeri
al ranges [138℄ (HONR),
Λk (M) ∶= {λ∣∃Pk

PkMPk = λPk} . (7.13)where Pk is a k-dimensional proje
tion. It is also important to know the de-s
ription of the set of all proje
tions whi
h give rise to some λ in the aboveformula. We denote the set of su
h proje
tions by Πk (M) and 
all it a 
ode
arrier, be
ause it relates to the set of all possible error 
orre
ting subspa
es.
Πk (M) ∶= {Pk ∣∃Pk

PkMPk = λPk} . (7.14)In the following, we are going to show how to �nd Λ2 (M) and Π2 (M) foran arbitrary matrix M of order three. By solving the problem for k = 2, weshall give a full des
ription of higher order numeri
al ranges and 
ode 
arriersfor 3 × 3 matri
es. This is so be
ause the other 
ases, k = 1,3, are trivial.Let us �rst observe that for a general matrix M , not ne
essarily of orderthree, the equation PkMPk = λPk is equivalent to
⎧⎪⎪⎨⎪⎪⎩
Pk

M+M
∗

2
Pk = ξPk

Pk
M−M∗

2i
Pk = ζPk

, (7.15)where ζ and ξ are real numbers. In this way, the 
ompression equation PkMPk =
λPk is transformed into a pair of 
ompression equations for Hermitian matri
es
M+M∗

2
and M−M∗

2i
. Thus by solving the 
ompression equations for a generalHermitian matrix H of respe
tive dimension and �nding Πk (H) and Λk (H),we may hope to be able to �nd Πk (M) and Λk (M) for a general matrix Mjust by interse
ting Πk (M+M∗

2
) and Πk (M−M∗

2i
) and reading o� the ζ's and ξ's
orresponding the elements in the interse
tion. Note that an almost 
ompletedes
ription of 
ode 
arriers and numeri
al ranges for Hermitian matri
es ofarbitrary dimension was obtained in [138℄. In the present se
tion, however,we shall give an alternative proof in the 
ase of dimension 3, whi
h is mainlyjusti�ed by the fa
t that we solve algebrai
 equations.Let us �rst 
onsider a Hermitian 3×3 matrix H with three distin
t eigenval-ues λ1 < λ2 < λ3 and the 
orresponding eigenve
tors ∣x1⟩ , ∣x2⟩ , ∣x3⟩. By addinga fa
tor proportional to identity to H , we may assume that all the λi's arenonzero. We know from [138℄ that Λ2 (H) = {λ2}. We shall �nd Π2 (H).Note that the 
ondition P2HP2 = λ2P2 is equivalent to the existen
e ofve
tors ∣v1⟩ , ∣v2⟩ su
h that

⟨vi, vj⟩ = δij and ⟨vi,H (vj)⟩ = λ2δij . (7.16)If we denote with vni the n-th 
oordinate of vi with respe
t to the basis (∣x1⟩ , ∣x2⟩),83




onditions (7.16) 
an be rewritten as
3

∑
k=1

∣vki ∣2 = 1, ∑3
k=1 λk ∣vki ∣2 = λ2, (7.17)

3

∑
k=1

v̄k1v
k
2 = 0, ∑3

k=1 λk v̄
k
1v
k
2 = 0, (7.18)with i = 1,2. By appropriately transforming a solution of (7.17) and (7.18)a

ording to the following pres
ription: vk1 → vk1e
iφk vk2 → vk2e

iφk , we 
an getanother solution, where v1 has real numbers as 
oe�
ients. Indeed, the trans-formations of the form given above do not a�e
t equalities (7.17) and (7.18),and the phases eiphik 
an be 
hosen as v̄k1 / ∣vk1 ∣ to make all the 
oordinates vk1real. Therefore in the following, we assume that all the 
oordinates of v1 arereal.From equations (7.18) it follows that
(λ1 − λ2)v1i v1j + (λ3 − λ2)v2i v2i = 0, (7.19)where we removed the bars over vk1 using the reality assumption explained above.Equation (7.19) implies the existen
e of a phase eiψ su
h that the numbers eiψv12and eiψv22 are real. Moreover, the �rst equation in (7.18) now implies that also

eiψv2j has to be a real number. We 
an now transform v2 a

ording to thefollowing pres
ription v2 → e−iψv2 and obtain another solution to equations(7.17) and (7.18), where both v1 and v2 have real 
oe�
ients. Consequently, itis possible �rst to �nd all real solutions to the following set of equations,
3

∑
k=1

(vki )2 = 1, ∑3
k=1 λk (vki )2 = λ2, (7.20)

3

∑
k=1

vk1v
k
2 = 0, ∑3

k=1 λkv
k
1v
k
2 = 0 (7.21)and later re
over all the solutions to (7.17) and (7.18) by transforming thevariables a

ording to the pres
ription vk1 → eiφkvk1 and vk2 → ei(φk−ψ)vk2 witharbitrary angles φk and ψ. This follows be
ause the transformations of the typejust des
ribed do not a�e
t equations (7.17) and (7.18) and on the other hand,they allow us to bring any solution of (7.17) and (7.18) to a real solution of equa-tions (7.20) and (7.21). Thus, let us look for real solutions of equations (7.20)and (7.21). By multiplying the �rst equation in (7.21) by λ2 and subtra
tingthe result from the se
ond equation in the same line, one easily gets

v11v
1
2 =

λ3 − λ2
λ2 − λ1 v

3
i v

3
2 . (7.22)Substitution of this equality ba
k to the �rst equation in (7.21) yields

v11v
1
2 = −

λ3 − λ2
λ3 − λ1 v

2
1v

2
2 and v31v

3
2 = −

λ2 − λ1
λ3 − λ1 v

2
1v

2
2 . (7.23)84



In a similar fashion, equations (7.20) give us
(v1i )2 = λ3 − λ2λ3 − λ1 (1 − (v2i )2) and (v3i )2 = λ2 − λ1λ3 − λ1 (1 − (v2i )2) . (7.24)If we multiply the �rst equation in (7.24) for i = 1 by the same equation but for

i = 2, we obtain
(v11v12)2 = (λ3 − λ2λ3 − λ1 )

2 (1 − (v21)2)(1 − (v22)2) . (7.25)In a similar way
(v31v32)2 = (λ2 − λ1

λ3 − λ1 )
2 (1 − (v21)2)(1 − (v22)2) . (7.26)On the other hand, we may square the equations in (7.23) to obtain

(v11v12)2 = (λ3 − λ2
λ3 − λ1 )

2 (v21v22)2 and (v31v32)2 = (λ2 − λ1
λ3 − λ1 )

2 (v21v22)2 (7.27)Now we 
an subtra
t the �rst equation in (7.27) from (7.25) and the se
ondequation in (7.27) from (7.26) to get
(λ3 − λ2
λ3 − λ1 )

2 ((1 − (v21)2)(1 − (v22)2) − (v21v22)2) = 0, (7.28)
(λ2 − λ1
λ3 − λ1 )

2 ((1 − (v21)2)(1 − (v22)2) − (v21v22)2) = 0. (7.29)A

ording to our assumption λ1 < λ2 < λ3, the fa
tors λ3−λ2

λ3−λ1

and λ2−λ1

λ3−λ1

arenon-zero. Therefore the equations (7.28) and (7.29) are equivalent to
(1 − (v21)2)(1 − (v22)2) − (v21v22)2 = 1 − (v21)2 − (v22)2 = 0. (7.30)The solution of (7.30) is of the form v21 = cosγ, v22 = sinγ for an arbitrary γ.We 
an substitute this in (7.24) to obtain a general solution to equations (7.20)and (7.21) in the following form,⎡⎢⎢⎢⎢⎢⎣

v11
v21
v31

⎤
⎥
⎥
⎥
⎥
⎥⎦
=
⎡⎢⎢⎢⎢⎢⎣
s1κ sinγ

s2 cosγ

s3η sinγ

⎤
⎥
⎥
⎥
⎥
⎥⎦
and ⎡⎢⎢⎢⎢⎢⎣ s1sκ cosγ−s2s sinγ

s3sη cosγ

⎤
⎥
⎥
⎥
⎥
⎥⎦
, (7.31)where si = ±1 and s = ±1 are arbitrary and we have introdu
ed the notation

κ ∶=
√

λ3−λ2

λ3−λ1

and η ∶=
√

λ2−λ1

λ3−λ1

. Note that we have used equations (7.24) toestablish sign relations between the 
oordinates of v1 and v2.Now, if we re
all the dis
ussion pre
eding equations (7.20) and (7.21), we
an re
over a general solution to (7.16) by introdu
ing 
omplex phases ba
k into(7.31) ⎡⎢⎢⎢⎢⎢⎣
v11
v21
v31

⎤
⎥
⎥
⎥
⎥
⎥⎦
=
⎡⎢⎢⎢⎢⎢⎣
eiφ1κ sin γ

eiφ2 cosγ

eiφ3η sinγ

⎤
⎥
⎥
⎥
⎥
⎥⎦
and ⎡⎢⎢⎢⎢⎢⎣ ei(φ1−ψ)κ cosγ

−ei(φ2−ψ) sinγ
ei(φ3−ψ)η cosγ

⎤
⎥
⎥
⎥
⎥
⎥⎦
, (7.32)85



where the phases φi and ψ are arbitrary.Sin
e we are interested in Π2 (H) rather than the ve
tors vi, it is su�
ientfor us to know that v1 and v2 given in (7.32) span the two-dimensional subspa
espan{∣x1⟩ , κeiφ ∣x1⟩ + η ∣x3⟩} . (7.33)with φ arbitrary.In this way we obtain the following des
ription of Π2.Proposition 7.1. Let H be a Hermitian operator on C3 with eigenvalues λ1 <
λ2 < λ3 and the 
orresponding eigenve
tors ∣x1⟩ , ∣x2⟩ , ∣x3⟩. The rank 2 
ode
arrier of H is given as

Π2 (H) = {P2 ∃φ∈RP2 proje
ts onto span{∣x2⟩ , κeiφ ∣x1⟩ + η ∣x3⟩}} . (7.34)Obviously, two orthogonal proje
tions are equal i� they proje
t onto thesame subspa
e. Furthermore, two linear subspa
es are identi
al if and onlyif all the ve
tors spanning one of the subspa
es are linearly dependent of theve
tors spanning the se
ond subspa
e. Using Proposition 7.1, we 
an now �ndthe interse
tion of rank 2 
ode 
arriers of two distin
t Hermitian operators onC3. We haveProposition 7.2. Let H, H ′ be Hermitian operators on C3 with eigenvalues
λ1 < λ2 < λ3, λ′1 < λ′2 < λ′3, respe
tively. Let the 
orresponding eigenve
tors be
∣x1⟩ , ∣x2⟩ , ∣x3⟩ (∣x′1⟩ , ∣x′2⟩ , ∣x′3⟩). Let κ ∶= √λ3−λ2

λ3−λ1

, η ∶= √λ2−λ1

λ3−λ1

, κ′ ∶=√λ′
3
−λ′

2

λ′
3
−λ′

1

,
η′ ∶=

√
λ′
2
−λ′

1

λ′
3
−λ′

1

. The interse
tion Π2 (H) ∩ Π2 (H ′) is nonempty if and only ifthere exist φ,φ′ ∈R su
h that the family of ve
tors
{∣x2⟩ , κeiφ ∣x1⟩ + η ∣x3⟩ , ∣x′2⟩} , (7.35)as well as the family of ve
tors

{∣x2⟩ , κeiφ ∣x1⟩ + η ∣x3⟩ , κeiφ′ ∣x′1⟩ + η′ ∣x′3⟩} (7.36)are linearly dependent. If this is the 
ase,
Π2 (H) ∩Π2 (H ′) = {∣x2⟩ ⟨x2∣ + ∣χ⟩ ⟨χ∣ ∣χ⟩ = κeiφ ∣x1⟩ + η ∣x3⟩ , φ ∈ Ξ} (7.37)where Ξ is the set of all φ ∈R su
h that there exists ψ for whi
h the families ofve
tors {∣x2⟩ , κeiφ ∣x1⟩ + η ∣x3⟩ , ∣x′2⟩} (7.38)and {∣x2⟩ , κeiφ ∣x1⟩ + η ∣x3⟩ , κeiφ′ ∣x′1⟩ + η′ ∣x′3⟩} (7.39)are both linearly dependent. 86



Proof. Obvious from Proposition 7.1Note that the above results have been derived using the assumption λ1 < λ2 <
λ3 (λ′1 < λ′2 < λ′3) about the eigenvalues of H (H ′, resp.). However, in 
ase thatthese assumptions do not hold, we 
an still easily give a des
ription of Π2 (H)(Π2 (H ′)) and �nd Π2 (H) ∩ Π2 (H ′). First of all, if H or H ′ is proportionalto identity, the 
orresponding 
ode 
arrier equals the set of all two-dimensionalproje
tions in C3. It is also easy to prove the following proposition.Proposition 7.3. Let H be a Hermitian operator on C3 with eigenvalues λ1 =
λ2 < λ3 or λ1 < λ2 = λ3. Then Π2 (H) 
onsists of an orthogonal proje
tion ontothe eigenspa
e 
orresponding to λ2.We leave the proof of the proposition as an exer
ise for the reader (it isenough to 
he
k what 
onditions (7.17) imply when exa
tly two of the eigen-values are equal). We should noti
e that formulas (7.32) still apply, so we 
aneasily generalize Proposition 7.2 to a situation where the eigenvalues of H (or
H ′) are not all distin
t.Proposition 7.4. Let H, H ′ be Hermitian operators on C3 with eigenvalues
λ1 ⩽ λ2 ⩽ λ3, λ′1 ⩽ λ′2 ⩽ λ′3, respe
tively. Assume that neither H nor H ′ isproportional to identity. Let the 
orresponding eigenve
tors be ∣x1⟩ , ∣x2⟩ , ∣x3⟩(∣x′1⟩ , ∣x′2⟩ , ∣x′3⟩). Let κ ∶= √λ3−λ2

λ3−λ1

, η ∶= √λ2−λ1

λ3−λ1

, κ′ ∶=√λ′
3
−λ′

2

λ′
3
−λ′

1

, η′ ∶=√λ′
2
−λ′

1

λ′
3
−λ′

1

.The interse
tion Π2 (H)∩Π2 (H ′) is nonempty if and only if there exist φ,φ′ ∈Rsu
h that the family of ve
tors
{∣x2⟩ , κeiφ ∣x1⟩ + η ∣x3⟩ , ∣x′2⟩} , (7.40)as well as the family of ve
tors

{∣x2⟩ , κeiφ ∣x1⟩ + η ∣x3⟩ , κeiφ′ ∣x′1⟩ + η′ ∣x′3⟩} (7.41)are linearly dependent. If this is the 
ase,
Π2 (H) ∩ (H ′) = {∣x2⟩ ⟨x2∣ + ∣χ⟩ ⟨χ∣ ∣χ⟩ = κeiφ ∣x1⟩ + η ∣x3⟩ , φ ∈ Ξ} (7.42)where Ξ is the set of all φ ∈R su
h that there exists ψ for whi
h the families ofve
tors {∣x2⟩ , κeiφ ∣x1⟩ + η ∣x3⟩ , ∣x′2⟩} (7.43)and {∣x2⟩ , κeiφ ∣x1⟩ + η ∣x3⟩ , κeiφ′ ∣x′1⟩ + η′ ∣x′3⟩} (7.44)are both linearly dependent.The 
ase of H or H ′ proportional to identity, whi
h we ex
luded in the aboveproposition, 
an be handled in an obvious way. Thus we have fully 
hara
terizedthe interse
tion Π2 (H) ∩ Π2 (X ′) for a pair of Hermitian operators on C3.Following the dis
ussion after equations (7.15), we 
an now use Proposition 7.4to obtain the numeri
al rangeΛ2 (M) for an arbitrary (not ne
essarily Hermitianor normal) matrix of dimension three. Let us dis
uss this in an example.87



Example 7.5. Consider the Jordan matrix
J =
⎡⎢⎢⎢⎢⎢⎣
0 0 0

1 0 0

0 1 0

⎤
⎥
⎥
⎥
⎥
⎥⎦
. (7.45)The se
ond order numeri
al range Λ2 (J) equals {0} and the 
orresponding
ode 
arrier 
onsists of a single element, Π2 (J) = {∣1⟩ ⟨1∣ + ∣2⟩ ⟨2∣}, where ∣1⟩ =

1√
2
[1,0,1], ∣2⟩ = 1√

2
[1,0,−1].Proof. We have

J + J∗
2
= 1

2

⎡⎢⎢⎢⎢⎢⎣
0 1 0

1 0 1

0 1 0

⎤
⎥
⎥
⎥
⎥
⎥⎦
=∶H and J − J∗

2i
= 1

2

⎡⎢⎢⎢⎢⎢⎣
0 i 0

−i 0 i

0 −i 0

⎤
⎥
⎥
⎥
⎥
⎥⎦
=∶H ′. (7.46)Let us denote the eigenvalues of H with λ1 ⩽ λ2 ⩽ λ3 and the 
orrespondingeigenve
tors with v1, v2, v3. For H ′, similarly de�ne λ′1 ⩽ λ′2 ⩽ λ′3 and theeigenve
tors v′1, v′2, v′3. One 
an easily 
he
k that

λ1 = λ′1 = −
√
2, λ2 = λ′2 = 0, λ3 = λ′3 =

√
2. (7.47)Thus κ = η = κ′ = η′ = 1/√2. The eigenve
tors of H and H ′ are

v1 = 1

2
[1,√2,1] , v2 = 1

2
[−1,0,1] , v3 = 1

2
[1,−√2,1] , (7.48)

v′1 =
1

2
[1,√2i,−1] , v′2 = 1

2
[1,0,1] , v′3 =

1

2
[−1,√2i,1] , (7.49)We 
an now easily 
he
k that the equations

det

⎡⎢⎢⎢⎢⎢⎢⎣
− 1√

2
0 1√

2
1
2
(eiφ + 1) 1√

2
(eiφ − 1) 1

2
(eiφ + 1)

1√
2

0 1√
2

⎤
⎥
⎥
⎥
⎥
⎥
⎥⎦
= 0, (7.50)

det

⎡⎢⎢⎢⎢⎢⎢⎣
− 1√

2
0 1√

2
1
2
(eiφ + 1) 1√

2
(eiφ − 1) 1

2
(eiφ + 1)

1
2
(eiφ′ − 1) i√

2
(eiφ′ + 1) − 1

2
(eiφ′ − 1)

⎤
⎥
⎥
⎥
⎥
⎥
⎥⎦
= 0. (7.51)have a single solution in [0; 2π) × [0; 2π), whi
h is (φ,φ′) = (0, π). This 
orre-sponds to the subspa
e in the assertion of the theorem.Note that with the methods des
ribed in this se
tion, it is possible to �ndsolutions to Knill-La�amme equations or prove their non-existen
e for all qutritquantum 
hannels Φ. As proud as it sounds, the solutions will however almostnever exist. It should also be kept in mind that solving the problems for allqutrit 
hannels simply means �nding all qutrit 
hannels that allow for en
odingof a single qubit. This is quite a simple setup.88



7.3 A separable state of length fourand S
hmidt rank threeIn Se
tion 1.2, we introdu
ed the 
on
ept of separability and dis
ussed somefundamental subtleties about the distin
tion between separable and entangledquantum states. Here, we 
onsider so-
alled length of a separable state, whi
h isthe minimum number of terms in its separable de
omposition. More pre
isely,we have the following.De�nition 7.6 (Length of a separable state). Let ρ be a separable state on abipartite spa
e K⊗H. Thus, ρ 
an be written as
ρ =

l

∑
i=1

ρi ⊗ ξi (7.52)for some l and some positive operators ρi, ξi on K, H, resp. The length of ρis the minimum number l in a de
omposition of the form (7.52).A generalization to a multipartite setting is straightforward, but we shallnot dis
uss on this point here. Given a density matrix ρ on a bipartite spa
e, itis in general very di�
ult to tell whether and how it de
omposes into a 
onvexsum of produ
ts of positive operators. Su

essful attempts in this dire
tion 
anbe made in the situation des
ribed in [107℄, but in general, no exa
t way to�nd an optimal de
omposition of the form (7.52) is known. In parti
ular, it isdi�
ult to determine the length l of ρ. On the other hand, it is fairly simple to�nd a minimal de
omposition of ρ of the form
ρ =

r

∑
i=1

Fi ⊗Gi, (7.53)where Fi, Gi are Hermitian, but not required to be positive. The minimalnumber r in the de
omposition (7.53) will be 
alled the S
hmidt rank of ρ.The name originates from the well-known S
hmidt de
omposition of ve
tors,for whi
h (7.53) is an analogue.Intuitively, the length and the S
hmidt rank of ρ do not look entirely inde-pendent. Indeed, in [139℄ we showed that separable states of small lengths ⩽ 3ne
essarily have their S
hmidt rank equal to their length. In the present se
-tion, we give an example of a state of S
hmidt rank 3 and length 4. This showsthat the mentioned result for lengths ⩽ 3 
annot be further generalized. Su
h
on
lusion should be expe
ted from the beginning, but the 
on
rete example israther illustrative.Example 7.7. Consider the following 4 × 4 diagonal matri
es
δ1 = diag(1,0,1,0) , δ2 = diag(0,1,0,1) , (7.54)
δ3 = diag(1,1,0,0) , δ4 = diag (0,0,1,1) .89



Let ρ be a density matrix on C4 ⊗C4 of the form
ρ ∶= 1

16

4

∑
i=1

δi ⊗ δi. (7.55)This bipartite state is separable, has length l = 4 and S
hmidt rank r = 3.Proof. Obviously, ρ is separable. For further 
onvenien
e, let us denote thelength of ρ with l and its S
hmidt rank with r. We �rst prove that the S
hmidtrank of ρ is 3, whi
h is equivalent to proving that the S
hmidt rank of ρ̃ ∶= 16ρis 3. For that purpose, we observe that the operators δi in (7.54) are linearlydependent. For example, we 
an write δ4 as a linear 
ombination of δ1, δ2 and
δ3,

δ4 = δ1 + δ2 − δ3. (7.56)We 
an put (7.56) in (7.55) and use distributivity of the tensor produ
t to get
ρ̃ = δ1 ⊗ (2δ1 + δ2 − δ3) + δ2 ⊗ (δ1 + 2δ2 − δ3) + δ3 ⊗ (2δ3 − δ1 − δ2) , (7.57)From (7.57), we de�nitely see that ρ̃ has S
hmidt rank lower than four. But thematri
es 2δ1 + δ2 − δ3, δ1 + 2δ2 − δ3 and δ1 + δ2 − 2δ3 are linearly independent1,just as the matri
es δ1, δ2 and δ3 are. This implies that the number of produ
tterms in (7.57) 
annot be redu
ed any further. Consequently, the S
hmidt rankof ρ̃ and hen
e of ρ is 3, r = 3.Of 
ourse, the length of ρ is not lower than r, so we have l ⩾ 3. On theother hand, (7.55) is an expression for ρ as a sum of four produ
ts of positiveoperators δi. Therefore l 
annot be higher than 4 and the only possibilities leftare l = 3 and l = 4. In the following we show that l = 3 is ex
luded. Put it in adi�erent way, ρ 
annot be written as

ρ1 ⊗ ξ1 + ρ2 ⊗ ξ2 + ρ3 ⊗ ξ3, (7.58)with ρi and ξi positive for i = 1,2,3. It will be more 
onvenient to show that ρ̃
annot be written in the form (7.58) with all ξi, ρi positive. To prove this, letus assume that a de
omposition of ρ of the form (7.58) exists. We should stressthat (7.57) is not an example of su
h a de
omposition be
ause 2δ3 − δ1 − δ2 isnot positive. The operators ρi and ξi are Hermitian, so we 
an write them as
ρi = ∑16

j=1 α
j
iHj and ξi = ∑16

j=1 β
j
iHj , where αji , βji ∈R∀i,j , and {Hj}16j=1 is a basisof the R-linear spa
e of Hermitian operators on C4 su
h that

H1 = diag (1,0,0,0) , H2 = diag (0,1,0,0) , (7.59)
H3 = diag (0,0,1,0) , H4 = diag(0,0,0,1) .and Hj 's for j ⩾ 5 have only o�-diagonal elements nonzero. Be
ause of theform (7.54) of the operators δi, ρ̃ does not have any o�-diagonal elements and1the matrix ⎡⎢⎢⎢

⎢
⎢
⎣

2 1 −1

1 2 −1

1 1 −2

⎤
⎥
⎥
⎥
⎥
⎥
⎦

has a nonzero determinant90



the de
omposition of ρ̃ in the basis {Hk ⊗Hl}16k,l=1 of all Hermitian operatorson C4 ⊗ C4 does not in
lude any terms with k ⩾ 5 nor with l ⩾ 5. If thereare any terms in
luding Hk with k ⩾ 5 in ρi or ξi, they must eventually 
an
elout in the tensor produ
t (7.58). Therefore we may use ρ̃i ∶= ∑4
j=1 α

j
iHj and

ξ̃i ∶= ∑4
j=1 β

j
iHj instead of ρi and ξi. The relation (7.58) still holds when ρi isrepla
ed with ρ̃i and ξi with ξ̃i. Positivity of ρ̃i and ξ̃i follows from the fa
t thatthey are diagonal parts of positive operators. We see that ∑4

i=1 ρ̃i ⊗ ξ̃i equals
ρ̃, and it is also a sum of produ
ts of positive operators. Consequently, if thereexists a de
omposition of ρ̃ of the form (7.58) with ρi and ξi positive, anotherde
omposition with diagonal and positive ρi and ξi must also exist. Thereforewe 
an restri
t our dis
ussion to de
ompositions of the form

ρ̃ =
3

∑
i=1

4

∑
j,k=1

α
j
iHj ⊗ βki Hk =

3

∑
i=1

4

∑
j,k=1

α
j
iβ
k
jHj ⊗Hk, (7.60)with αjj ⩾ 0 and βki ⩾ 0. Based on the de�nition (7.55), it 
an be easily 
he
kedthat

ρ̃ =
4

∑
j,k=1

AjkHj ⊗Hk, (7.61)with A11 = A22 = A33 = A44 = 2, A14 = A41 = A23 = A32 = 0 and Aij = 1 forthe remaining eight 
oe�
ient pairs (i, j). In order for equation (7.60) to beful�lled, we must have
4

∑
i=1

α
j
iβ
k
i = Ajk ∀j,k∈{1,2,3,4}. (7.62)To see the 
onsequen
es of (7.62), let us introdu
e ve
tors αj ∈R3 and βk ∈R3with 
oordinates {αji}3i=1 and {βki }3i=1, respe
tively. The 
onditions (7.62) 
anbe written as

α1 ⋅ β1 = α2 ⋅ β2 = α3 ⋅ β3 = α4 ⋅ β4 = 2, (7.63)
α1 ⋅ β4 = α4 ⋅ β1 = α2 ⋅ β3 = α3 ⋅ β2 = 0, (7.64)
α1 ⋅ β2 = α1 ⋅ β3 = α4 ⋅ β2 = α4 ⋅ β3 = 1, (7.65)
α2 ⋅ β1 = α2 ⋅ β4 = α3 ⋅ β1 = α3 ⋅ β4 = 1. (7.66)Keeping in mind nonnegativity of αji 's and βki 's, we 
an draw some further
on
lusions about these numbers. First of all, we should noti
e that two realve
tors with nonnegative 
oordinates are orthogonal if and only if a nonvanishing
oordinate of one of the ve
tors 
orresponds to a vanishing 
oordinate of theother ve
tor and vi
e versa. As a 
onsequen
e of this and (7.64), ea
h of theve
tors αi and βi must have a vanishing 
oordinate. On the other hand, be
auseof the formula (7.63) neither of the ve
tors 
an be zero. In other words, ea
h ofthem must have a nonvanishing 
oordinate. We are left with αi's and βj 's whi
hhave either one or two nonzero 
oordinates. Let us 
onsider �rst a situation in91



whi
h one of the ve
tors has two nonzero 
oordinates. Without any loss ofgenerality we assume the ve
tor to be α1 and we put α1
1 = 0, α1

2 > 0, α1
3 > 0.Be
ause of (7.64), β4

1 > 0, β4
2 = 0, β4

3 = 0. This in turn implies α2
1 > 0, α3

1 > 0 and
α4
1 > 0 as a 
onsequen
e of (7.63), (7.65) and (7.66). Therefore β3

1 = 0, β2
1 = 0and β1

1 = 0. If α2
2 = α2

3 = 0, the equality α2 ⋅ β1 = 1 
annot hold. One of the
oordinates α2
2, α2

3 must be nonzero. We may assume α2
3 > 0, so that we have

α2
1 > 0, α2

2 = 0, α2
3 > 0. From (7.64) it follows that β3

1 = 0, β3
2 > 0, β3

3 = 0. Using(7.63) we get α3
2 > 0 while (7.65) yields α4

2 > 0. We have obtained α3
1 > 0 and

α3
2 > 0, whi
h implies α3

3 = 0. But now (7.64) gives us β2
1 = 0, β2

2 = 0, β2
3 > 0 andfrom α4 ⋅ β2 = 1 we get α4

3 > 0.In the su

essive steps above we obtained α4
1 > 0, α4

2 > 0 and �nally theinequality α4
3 > 0. This is in 
ontradi
tion with (7.64), so our initial assumptionabout the existen
e of a ve
tor αi (or βi) with two nonzero 
oordinates, 
annotbe true for solutions of the equations (7.63)-(7.66). None of the ve
tors αi, βi 
anhave two nonvanishing 
oordinates. The only possibility we have not ex
ludedyet is that of all the ve
tors αi, βi having pre
isely one nonzero 
oordinate ea
h.Let us assume that this is the 
ase and 
on
entrate on αi's. Be
ause of the fa
tthat αi's are of dimension three, there must exist a pair of indi
es i ≠ j su
hthat αi is proportional to αj . Without loss of generality we may assume thateither α1 = α2 or α1 = α4 holds. The �rst possibility is ex
luded be
ause ofthe equalities α1 ⋅ β4 = 0 and α2 ⋅ β4 = 1. The se
ond is in 
ontradi
tion with

α1 ⋅β4 = 0 and α1 ⋅α1 = 2. Thus we have ex
luded the only remaining possibilityfor αi's and we 
on
lude that (7.62) has no solutions of the desired properties
α
j
i , β

k
i ⩾ 0∀i,j,k. Consequently, ρ̃ 
annot be written in the form (7.58) with ρi'sand ξi's positive. The same holds for ρ. Hen
e l > 3, whi
h in turn implies l = 4be
ause l ⩽ 4. This proves our assertions about ρ.
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Chapter 8Algebrai
 problems solved byusing Groebner bases8.1 Compression equations � a spe
ial 
aseIn Se
tion 7.2, we de�ned the notion of a 
ode 
arrier of an operator and outlinedhow it is related to the problem of �nding solutions of generalized eigenvalueproblems. Notably, the paper [138℄ 
ontains an almost 
omplete des
riptionof 
ode 
arriers for Hermitian operators. Therefore, following similar steps tothose des
ribed in Se
tion 7.2, one may attempt to �nd a general solution toa 
ompression equation PkMPk = λPk by �rst splitting M into its Hermitian
MH ∶= (M +M∗) /2 and anti-Hermitian part MA ∶= (M −M∗) /2i and solvingthe respe
tive 
ompression equations

⎧⎪⎪⎨⎪⎪⎩
PkMHPk = ξMH

PkMAPk = ζMA

(8.1)separately. Next, the sets of possible proje
tors Πk (MA) and Πk (MH) maybe interse
ted to yield Πk (M). For a more detailed des
ription of the methodand for the de�nition of Πk, 
f. Se
tion 7.2. Finally, if we start with a systemof equations of the form PkM
(i)Pk = λiPk for i = 1,2, . . . instead of a singleone, we may �rst determine Πk (M (i)) following the steps des
ribed above andthen �nd the solutions to the initial set of equations by interse
ting Π (M (i))for i = 1,2, . . . .The des
ribed pro
edure turns out to be rather di�
ult to implement inpra
ti
e. However, in the present se
tion we present a very simpli�ed examplewhere the method works. Let k = 2. Let us also take H1 and H2 to be twoHermitian operators on C4. We assume that H1 and H2 
ommute, so thatthey have a 
ommon eigenbasis {v1, v2, v3, v4}. Moreover, let the respe
tiveeigenvalues for H1 ful�ll λ1 < λ2 < λ3 < λ4, while for H2 we have χ1 < χ2 < χ3 <

χ4. In su
h 
ase, it is relatively easy to �nd all possible solutions of the set of93



equations
P2H1P2 = ξP2 ∧ P2H2P2 = ζP2. (8.2)This 
an be done using the te
hnique of Groebner bases dis
ussed in Part II ofthe thesis.In the setting des
ribed above, the general 
hara
terization of 
ode 
arriersin
luded in [138, Se
tion 4℄ redu
es to

Π (H1) = {span{ v1√
λ − λ1

+ eiφ ( av3√
λ3 − λ

− b̄v4√
λ4 − λ

) , v2√
λ − λ2

+

+eiφ ( bv3√
λ3 − λ

+ āv4√
λ4 − λ

)} λ ∈ (λ2, λ3) , φ ∈R, ∣a∣2 + ∣b∣2 = 1} . (8.3)Similarly for H2,
Π (H2) = {span{ v1√

χ − χ1

+ eiψ ( cv3√
χ3 − χ − d̄v4√

χ4 − χ) , v2√
χ − χ2

+

+eiψ ( dv3√
χ3 − χ + c̄v4√

χ4 − χ)}χ ∈ (χ2, χ3) , ψ ∈ R, ∣c∣2 + ∣d∣2 = 1} . (8.4)The question whether there exists a P2 that satis�es the set of equations (8.2) isequivalent to the existen
e of an identi
al pair of subspa
es in the sets Π2 (H1)and Π2 (H2), given by the equations (8.3) and (8.4). Fortunately, the existen
e
an easily be 
he
ked. Due to the spe
i�
 form of the subspa
es in formulas(8.3) and (8.4), the interse
tion of Π2 (H1) and Π2 (H2) is nonempty if andonly if the following equations are satis�ed for some admissible values of a, b, c,
d, φ, ψ, λ and χ.

eiφa

√
λ − λ1
λ3 − λ = e

iψc

√
χ − χ1

χ3 − χ, eiφb̄

√
λ − λ1
λ4 − λ = e

iψ d̄

√
χ − χ1

χ4 − χ, (8.5)
eiφb

√
λ − λ2
λ3 − λ = e

iψd

√
χ − χ2

χ3 − χ, eiφā

√
λ − λ2
λ4 − λ = e

iψ c̄

√
χ − χ2

χ4 − χ. (8.6)The formulas above imply a weaker set of equations
∣a∣2 λ − λ1

λ3 − λ = ∣c∣2 χ − χ1

χ3 − χ, ∣b∣2 λ − λ1
λ4 − λ = ∣d∣2 χ − χ1

χ4 − χ, (8.7)
∣b∣2 λ − λ2

λ3 − λ = ∣d∣2 χ − χ2

χ3 − χ, ∣a∣2 λ − λ2
λ4 − λ = ∣c∣2 χ − χ2

χ4 − χ. (8.8)whi
h 
an be rewritten in the form
αh3l1 = γh1l3, βh4l1 = δh1l4, βh3l2 = δh2l3, αh4l2 = γh2l4. (8.9)In the above expression, we the following notation was used: α ∶= ∣a∣2, β ∶= ∣b∣2,

γ = ∣c∣2, δ = ∣d∣2, l1 ∶= λ − λ1, l2 ∶= λ − λ2, l3 ∶= λ3 − λ, l4 ∶= λ4 − λ. The newly94



introdu
ed variables α, β, γ, δ and li, hi for i = 1,2,3,4 must be nonnegativeand ful�ll the additional 
onditions
α + β = 1, γ + δ = 1, (8.10)

l1 − l2 = λ2 − λ1, l2 + l3 = λ3 − λ2, l3 − l4 = λ3 − λ4, (8.11)
h1 − h2 = χ2 − χ1, h2 + h3 = χ3 − χ2, h3 − h4 = χ3 − χ4. (8.12)The approa
h we take in the following is to solve (8.9) together with (8.10)�(8.12) as if α, β, γ, δ and li, hi for i = 1,2,3,4 were allowed to take arbitraryvalues in C. Next, we look for real, nonnegative solutions. Note that the equal-ities (8.9), as well as (8.10)�(8.12), 
an be rewritten as polynomial equationsin the variables α, β, γ, δ and li, hi. Therefore, for �xed values of λi and χi,

i = 1,2,3,4, we 
an try to solve the equations (8.9), (8.10)�(8.12) using theGroebner basis approa
h des
ribed in Chapter 4. As an example, let us 
on-sider λ1 = 1, λ2 = 2, λ3 = 3, λ4 = 4 and χ1 = 1, χ2 = 4, χ3 = 9, χ4 = 16. Then, aGroebner basis 
al
ulation in C [l1, . . . , l4, h1, . . . , h4, α, β, γ, δ] for the equations(8.9) and (8.10)�(8.12) gives the following result,
{2560δ − 5184δ2 + 112δ3 + 1704δ4 − 224δ5 − 102δ6 + 9δ7,−1 + γ + δ,

940800β − 11503040δ + 2125136δ2 + 3603128δ3 − 630848δ4 − 223842δ5 + 20691δ6,

−940800+940800α+11503040δ−2125136δ2−3603128δ3+630848δ4+223842δ5+
− 20691δ6,−302400+ 236720δ + 108512δ2 − 45044δ3 − 16046δ4 + 141δ5 + 117δ6+
+ 33600h4,−67200+ 236720δ + 108512δ2 − 45044δ3 − 16046δ4 + 141δ5 + 117δ6+
+ 33600h3,−100800− 236720δ − 108512δ2 + 45044δ3 + 16046δ4 − 141δ5 − 117δ6+
+ 33600h2,−201600− 236720δ − 108512δ2 + 45044δ3 + 16046δ4 − 141δ5 − 117δ6+
+33600h1,−4032000−7312320δ+3861328δ2+2882424δ3−887584δ4−221586δ5+
+22563δ6+2688000l4,−1344000−7312320δ+3861328δ2+2882424δ3−887584δ4+
−221586δ5+22563δ6+2688000l3,−1344000+7312320δ−3861328δ2−2882424δ3+

+ 887584δ4 + 221586δ5 − 22563δ6 + 2688000l2,−4032000+ 7312320δ+
−3861328δ2 − 2882424δ3 + 887584δ4 + 221586δ5 − 22563δ6 + 2688000l1} .(8.13)A

ording to what we learned in Chapter 4, we get a set of equations equiva-lent to (8.9) and (8.10)�(8.12) by equating the above polynomials to zero. Asexpe
ted, the �rst polynomial in (8.13) only involves the variable δ. Moreover,its seven roots 
an be expli
itly found. They are equal to −4, −2, 0, 2, 8/3,

1/3 (19 −√301), 1/3 (19 +√301). The stru
ture of the remaining equations re-sulting from the Groebner basis (8.13) is su
h that after we �nd δ, the admissiblevalues of the other variables 
an be determined by simple substitution. In thisway we get the following solutions (l1, . . . , l4, h1, . . . , h4, α, β, γ, δ)1) (3,2,−1,0,15,12,−7,0,−0.714286,1.71429,−1,2),95



2) (2,1,0,1,8,5,0,7,2.14286,−1.14286,3,−2),3) (1.5,0.5,0.5,1.5,6,3,2,9,1,0,1,0),4) (1,0,1,2,3,0,5,12,3,−2,5,−4),5) (0,−1,2,3,0,−3,8,15,−1,2,−1.66667,2.66667),6) (2.31747,1.31747,−0.317468,0.682532,1.91266,−1.08734,6.08734,
13.0873,0.478479,0.521521,−11.1165,12.1165),7) (0.582532,−0.417468,1.41747,2.41747,10.5873,7.58734,−2.58734,
4.41266,−4.47848,5.47848,0.449784,0.550216).The numeri
al values for the solutions were 
al
ulated using exa
t algebrai
expressions. As we 
an see, only solution number 3 has all its 
oordinatesnonnegative. Thus, if there exists a solution to equations (8.5) and (8.6), therespe
tive values of a, b, c, d, λ and χ must be su
h that ∣a∣2 = α = 1, ∣b∣2 = β = 0,∣c∣2 = γ = 1, ∣d∣2 = δ = 0, as well as λ−λ1 = λ− 1 = l1 = 3/2, χ−χ1 = χ− 1 = h1 = 6.Hen
e λ = 5/2, χ = 7. The formulas (8.5) and (8.6) take the form

eiφeiµ

¿ÁÁÀ3/2
1/2 = eiψeiν

√
6

2
, eiφe−iµ

¿ÁÁÀ1/2
3/2 = eiψe−iν

√
3

9
, (8.14)where we introdu
ed eiµ ∶= a and eiν ∶= c. There are only two equations left,sin
e the se
ond one in (8.5) and the �rst one in (8.6) are trivially ful�lled for

b = d = 0. Clearly, the equalities in (8.14) are equivalent to ei(φ+µ−ψ−ν) = 1and ei(φ−µ−ψ+ν) = 1, or φ + µ − ψ − ν = 0 mod 2π and φ − µ − ψ + ν = 0 mod 2π,respe
tively. From the last two formulas, we get φ − ψ = 0 mod 2π and µ − ν =
0 mod 2π, whi
h means that φ = ψ + nπ and µ = ν +mπ for some m,n ∈ Z.Moreover, φ+µ−ψ−ν = 0 mod 2π implies that m = n mod 2. In 
on
lusion, thefull set of solutions are parametrized by the two angles ψ and ν. The solutionsare of the formspan⎧⎪⎪⎨⎪⎪⎩√2

3
v1 + ei(ψ+ν)

√
2v3,
√
2v2 + ei(ψ−ν)

√
2

3
v3

⎫⎪⎪⎬⎪⎪⎭ (8.15)The 
orresponding 
ompression value ξ for H1 is 5/2, while for H2, we get ζ = 7.Further investigation of equations (8.5) and (8.6) in Mathemati
a suggests thatfor any 
hoi
e of the eigenvalues of H1 and H2, su
h that λ1 < λ2 < λ3 < λ4 and
χ1 < χ2 < χ3 < χ4, there exists a single family of solutions to equations (8.5) and(8.6), either with a = c = 0 or with b = d = 0. By 
hoosing the eigenvalues fromthe set of rational numbers, we seem always to obtain polynomial equations thatare exa
tly solvable. 96



8.2 Completely Entangled Subspa
esLinear subspa
es without a produ
t ve
tor are 
alled Completely EntangledSubspa
es or CES for short. In the present se
tion, we shall dis
uss the ques-tion how to 
he
k whether a given subspa
e is a CES or not. In parti
ular,we shall give an example of a one-parameter family of subspa
es of C3 ⊗ C4and 
hara
terize the values of the parameter for whi
h the subspa
e and itsorthogonal 
omplement are 
ompletely entangled.Let us start with the general question about the existen
e of a produ
t ve
-tor in a linear subspa
e. Both the set of produ
t states and a linear subspa
eare proje
tive varieties and it should be possible to determine their interse
-tion using the te
hniques des
ribed above. An approa
h we su

essfully usedwas very straightforward. The general algorithm we applied is shown in Figure8.1. The main idea is to write a set of polynomial equations, 
orrespondingto [a1, . . . an] ⊗ [b1, . . . , bm] ∈ V for a subspa
e V and then generate the 
or-responding Groebner basis. The answer 
an often be read from the output.A

ording to Proposition 4.32, a ne
essary and su�
ient 
ondition for a set ofpolynomial equations to have a solution (over Cn) is that the 
orrespondingredu
ed Groebner basis be di�erent from {1}.symbols1={a1,a2,...,an}symbols2={b1,b2,...,bm}symbols12=Union(symbols1,symbols2)produ
tve
tor=Krone
kerProdu
t(symbols1,symbols2)subspa
e={{v11,v12,...,v1nm},{v21,v22,...,v2nm},......,{vd1,vd2,...,vdnm}}positivematrix=Transpose(subspa
e).subspa
eDiagonalize positivematrixChoose eigenve
tors=={{w11,w12,...,w1nm},{w21,w22,...,w2nm},...,{w(mn-d)1,w(mn-d)2,...,w(mn-d)nm}}
orresponding to eigenvalue 0Cal
ulate polynomialequations=eigenve
tors.produ
tve
torFor i=1 to n doFor j=1 to m doCal
ulate GroebnerBasis[{polynomialequations,ai-1,bj-1}℄Figure 8.1: An algorithm for testing whether a given linear subspa
e admitsprodu
t ve
tors in the bipartite 
ase.As a 
areful reader would noti
e, more than a single Groebner basis is a
tu-ally 
al
ulated, and ea
h of them has some additional polynomials. This is so be-
ause they are di�erent dehomogenizations of the set of equations wi ⋅(a⊗ b) = 0,
i = 1, . . . , nm−d, whi
h 
orresponds to a⊗b ∈ V . We dehomogenize the equationsin order to eliminate trivial solutions, 
orresponding to a zero �produ
t� ve
tor.97



Moreover, after dehomogenization produ
t ve
tors that are a multiple of ea
hother appear as a single solution, whi
h is a desirable feature. For example, ifwe dehomogenize by adding the polynomials a1 − 1 and b1 − 1, we 
apture allprodu
t ve
tors a ⊗ b with the �rst 
oordinate in a and b nonvanishing. Themethod 
an be generalized in an obvious way to the multipartite 
ase.In the sequel, we give details of the pro
edure for the parti
ular 
ase ofprodu
t ve
tors in a family V (z) of six-dimensional subspa
es of C3 ⊗C4. Inthis 
ase, we 
an avoid 
onsidering 3 × 4 = 12 di�erent dehomogenizations andwe get away with only four, three of whi
h are di�erent from those we wouldnormally have used with the algorithm in Figure 8.1. The elements of the family
V (z) we 
onsider are subspa
es spanned by the ve
tors
{v1 (z) , . . . , v6 (z)} =

= {e1 ⊗ e1 + e2 ⊗ e2, e2 ⊗ e1 + ze3 ⊗ e2, e3 ⊗ e1 + z2e1 ⊗ e3
e1 ⊗ e2 + z3e3 ⊗ e4, e2 ⊗ e3 + z4e1 ⊗ e4, e3 ⊗ e3 + z5e2 ⊗ e4} , (8.16)where z ∈ C ∖ {0}. As it 
an be easily 
he
ked, the orthogonal 
omplement

V (z)� is spanned by the ve
tors
{w1 (z) , . . . ,w6 (z)} =

= {e1 ⊗ e1 − e2 ⊗ e2, z̄e2 ⊗ e1 − e3 ⊗ e2, z̄2e3 ⊗ e1 − e1 ⊗ e3
z̄3e1 ⊗ e2 − e3 ⊗ e4, z̄4e2 ⊗ e3 − e1 ⊗ e4, z̄5e3 ⊗ e3 − e2 ⊗ e4} . (8.17)Consider produ
t ve
tors of the form p = [a1, a2, a3] ⊗ [b1, b2, b3, b4]. The 
on-dition p ∈ V (z) is equivalent to p ⋅ wi = 0 ∀i=1,...,6, whi
h is a set of ho-mogeneous polynomial equations. We would like to �nd their solutions with[a1, a2, a3] ≠ [0,0,0] and [b1, b2, b3, b4] ≠ [0,0,0,0]. A possible way to a
hievethis goal is to: i) add the polynomials a1−1 and b1−1 or equivalently, to substi-tute a1 → 1, b1 → 1. This gives us a dehomogenized set of polynomial equations,whi
h 
apture all the nontrivial solutions of p ⋅wi = 0 ∀i=1,...,6, apart from thosewith a1 = 0 or b1 = 0. In order to a

ount for the possible de�
it, one needs to
onsider other dehomogenizations. One way to do it is to pro
eed as in Figure8.1 and dehomogenize in 12 di�erent ways. However, in the 
ase we 
onsiderit is easier to do the following substitutions: ii) a1 → 0 and b1 → 1, iii) a1 → 1and b1 → 0 and iv) a1 → 0, b1 → 0. Equivalently, one adds ii) a1 and b1 − 1, iii)

a1 − 1 and b1, iv) a1 and b1 to the ideal generated by the equations p ⋅wi = 0 for
i = 1, . . . ,6. The set of polynomials p ⋅wi reads
{b1a1 − b2a2,−b2a3 + b1a2z̄,−a1b3 + b1a3z̄2,−a3b4 + a1b2z̄3,

−a1b4 + a2b3z̄4,−a2b4 + b3a3z̄5,−1 + b1,−1 + a1} . (8.18)After dehomogenization i) and 
al
ulation of the 
orresponding Groebner basis98



in the ring C [a1, . . . , an, b1, . . . , bm, z̄], we get
{−z̄3 + z̄5,−b4 + b4z̄2, b24 − z̄3,−b3 + b3z̄2, b33 − z̄4,−b3b4 + b2z̄3,

− b3 + b2b4, b2b3 − b23b4z̄,−1 + b1,−b3 + a3z̄2,−b3b4 + a3b4,
− b23 + b3a3, b22a3 − z̄,−b23z̄ + a23z̄, a33 − z̄4,−b2a3 + a2z̄,

a2b4 − b23z̄, a2b3 − b4,−1 + b2a2,−1 + a1} . (8.19)We 
learly see that after a substitution of a parti
ular value of z, the �rstelement of the basis is a nonzero 
onstant in C unless the substituted valueis a solution of the equation −z3 + z5 = 0. This implies that 1 is in the idealgenerated by {p ⋅w1, . . . p ⋅w6, a1 − 1, b1 − 1} unless z = 0 or z = ±1. This impliesthat there is no solution to the 
orresponding equations for almost all 
hoi
es of
z. Equivalently, there is no produ
t ve
tor a⊗b with the �rst 
oordinate of a and
b nonvanishing in V (z) unless z = 0 or z = ±1. Obviously, there exist produ
tve
tors in V (z) when z = 0, be
ause the ve
tors vi (0) are of a produ
t form.Thus we have already ex
luded z = 0 in the de�nition of V (z) given above. For
z = 1, we get the following Groebner basis in the ring C [a1, . . . , an, b1, . . . , bm]

{−1 + b24,−1 + b33, b2 − b3b4,−1 + b1,−b3 + a3, a2 − b23b4,−1 + a1} . (8.20)It is easy to see that the above equations have six solutions, 
orresponding tothe 
hoi
es of b4 = ±1 and b3 = e 2πi
3
n, n = 1,2,3. Thus there are six produ
tve
tors a⊗ b with nonvanishing �rst 
oordinates of a and b in V (z). Similarlyfor z = −1, we get the following Groebner basis

{1 + b24,−1 + b33, b2 + b3b4,−1 + b1,−b3 + a3, a2 − b23b4,−1 + a1} . (8.21)Again, there are six produ
t ve
tors a⊗ b with nonvanishing �rst 
oordinates of
a and b in V (−1).We still need to 
onsider the dehomogenizations ii)-iv) for a general V (z).In the 
ase ii), we get the following Groebner basis

{−1 + b1, a3z̄2, a3b4, b22a3, b1a23z̄,−b2a3 + a2z̄, a2b4, b2a2, a1} . (8.22)A solution for z ≠ 0must ne
essarily have a3 = 0, whi
h implies that −b2a3+a2z̄ =
a2z. Therefore also a2 = 0. Thus V (z) admits no produ
t ve
tor a ⊗ b withnonvanishing �rst 
oordinate in b and vanishing �rst 
oordinate in a. In the
ase iii), we get the following Groebner basis in C [a1, . . . , an, b1, . . . , bm, z̄]

{b4, b3, b2z̄3, b1, b2a3, b2a2,−1 + a1} . (8.23)One immediately sees that for z ≠ 0, the above polynomials vanish only if
b1 = b2 = b3 = b4 = 0, whi
h again gives a zero produ
t ve
tor. Therefore, thereare no produ
t ve
tors a⊗b with vanishing �rst 
oordinate of b and nonvanishing�rst 
oordinate of a in V (z) for z ≠ 0. We only need to 
onsider the last 
ase,number iv), when the �rst 
oordinates of both a and b vanish. The 
orrespondingGroebner basis reads

{b1, a3b4, b23a3z̄9, b2a3, b3a23z̄5, a2b4 − b3a3z̄5, a2b3z̄4, b2a2, a1} . (8.24)99



If a3 ≠ 0, we see from the �rst four polynomials that b1 = b2 = b3 = b4 = 0.Therefore we must have a3 = 0 in order to obtain a nonzero ve
tor a⊗b. However,a substitution of a3 = 0 to (8.24) yields {b1, a2b4, a2b3z4, b2a2, a1}. We see thatthese polynomials vanish simultaneously only if a2 = 0 or b1 = b2 = b3 = b4 = 0.In either 
ase, a⊗ b vanishes. Thus, there are no nonzero produ
t ve
tors a⊗ bwith vanishing �rst 
oordinates of a and b in V (z) for z ≠ 0.We 
an summarize our results by saying that V (z) is a CES for all z /∈{−1,0,1}. We 
an also easily repeat the above des
ribed pro
edure for thesubspa
e V (z)� and obtain an analogous result. In this 
ase (V (z)�)� = V (z),so the r�le of the ve
tors wi (z) is played by the ve
tors vi (z). Otherwise, the
al
ulation is almost the same. We obtain the following four Groebner Bases.
i) {−z3 + z5,−b4 + b4z2, b24 − z3,−b3 + b3z2, b33 − z4, (8.25)

−b3b4 + b2z3,−b3 + b2b4, b2b3 − b23b4z,−1 + b1,−b3 + a3z2, (8.26)
−b3b4 + a3b4,−b23 + b3a3, b22a3 − z,−b23z + a23z, a33 − z4, (8.27)
−b2a3 + a2z, a2b4 − b23z, a2b3 − b4,−1 + b2a2,−1 + a1} , (8.28)

ii) {−1 + b1, a3z2, a3b4, b22a3, b2a23z,−b2a3 + a2z, a2b4, b2a2, a1} , (8.29)
iii) {b4, b3, b2z3, b1, b2a3, b2a2,−1 + a1} , (8.30)
iv) {b1, a3b4, b23a3z9, b2a3, b3a23z5, a2b4 − b3a3z5, a2b3z4, b2a2, a1} . (8.31)with the notation i)-iv) referring to dehomogenizations of types i)-iv), as de-s
ribed above. An argument very similar to the one given above shows thatthere are no produ
t ve
tors in V (z)�, as long as z /∈ {−1,0,1}. The 
ase z = 0is ex
luded by assumption, whereas for z = ±1 it 
an again be 
he
ked that thereare six produ
t ve
tors in the subspa
e in question, whi
h this time is V (z)�.The results of the present se
tion 
an be summarized by saying that, 
on-
erning the 3× 4 CES problem 
onsidered above, the family of subspa
es V (z),

z ∈ C ∖ {0}, spanned by the ve
tors (8.16), 
onsists of CES, with the ex-
eption of z ∈ {−1,1}. Moreover, the orthogonal 
omplement V (z)� is also
ompletely entangled for z /∈ {−1,1}.8.3 Maximally entangled states in linear subspa
esIn the previous se
tion, we dis
ussed the existen
e of produ
t ve
tors in linearsubspa
es. It is natural to ask somewhat opposite question, under whi
h 
on-ditions a linear subspa
e admits maximally entangled ve
tors, i.e. ve
tors ofthe form ∑ni=1 ei⊗ fi, where the summation goes from 1 to the dimension of thesubsystems and {ei}ni=1 and {fi}ni=1 are orthonormal bases for the �rst and these
ond subsystem, respe
tively. By solving two examples, we will show that theproblem 
an be ta
kled using the te
hniques of Groebner bases.Let us start with a subspa
e orthogonal to an Unextendible Produ
t Basis inC3 ⊗C3, i.e. to a set of orthogonal produ
t ve
tors su
h that no other produ
tve
tor in C3 ⊗C3 is orthogonal to all of them. We shall dis
uss Unextendible100



Produ
t Bases in more detail in Chapter 9 and here we restri
t our attention tothe question whether there exist maximally entangled ve
tors in the orthogonal
omplement of a parti
ular UPB, given by
{v0 ⊗ v2, v1 ⊗ v0, v2 ⊗ v3, v3 ⊗ v1, v4 ⊗ v4} , (8.32)where

v0 =
⎡⎢⎢⎢⎢⎢⎣
1

0

0

⎤
⎥
⎥
⎥
⎥
⎥⎦
, v1 =

⎡⎢⎢⎢⎢⎢⎣
1√
2

0
1√
2

⎤
⎥
⎥
⎥
⎥
⎥⎦
, v2 =

⎡⎢⎢⎢⎢⎢⎣
0
1√
2
1√
2

⎤
⎥
⎥
⎥
⎥
⎥⎦
, v3 =

⎡⎢⎢⎢⎢⎢⎣
0

1

0

⎤
⎥
⎥
⎥
⎥
⎥⎦
, v4 =

⎡⎢⎢⎢⎢⎢⎢⎣
1√
3
1√
3

− 1√
3

⎤
⎥
⎥
⎥
⎥
⎥
⎥⎦
. (8.33)It will be 
lear from the following dis
ussion that the methods we use 
an beapplied in a mu
h more general setting.One 
an easily see that a ve
tor ∑i,j Aijei ⊗ ej ∈ C3 ⊗ C3 is maximallyentangled if and only if the matrix A = [Aij] is unitary. This yields a set ofpolynomial equations ∑3

j=1AijĀkj = δik on the matrix elements Aij and their
omplex 
onjugates Āij . Another set of equations 
omes from the orthogonality
onditions to the UPB given in (8.32) and (8.33). The equations are linear and
an be solved expli
itly, whi
h we leave as a simple exer
ise to the reader. Theanswer is
[Aij] =

⎡⎢⎢⎢⎢⎢⎣
a b −b
d e −d
−a −e −2(a + b + d + e)

⎤
⎥
⎥
⎥
⎥
⎥⎦
, (8.34)where a, b, d, e are arbitrary 
omplex parameters. The 
onditions ∑3

j=1AijĀkj =
δik for i = k imply

aā + 2bb̄ − 2dd̄ − eē = 0, (8.35)
2dd̄ + eē − aā − eē − 2 (a + b + d + e) (a + b + d + e) = 0. (8.36)For i < k, we have the following equations ∑3

j=1AijĀkj = 0,
ad̄ + b(e + d) = 0, (8.37)

aā + bē − 2b(a + b + d + e) = 0, (8.38)
dā + eē − 2d(a + b + d + e) = 0. (8.39)The 
ru
ial observation now is that the 
omplex 
onjugates of (8.37)-(8.38)
onsist an independent set of equations if a, b, d, e and ā, b̄, d̄, ē are per
eived as

8 independent 
omplex variables. This is the approa
h we are going to take inthe following. The 
omplex 
onjugates of (8.37)-(8.38) read
ād + b̄(e + d) = 0, (8.40)

āa + b̄e − 2b̄(a + b + d + e) = 0, (8.41)
d̄a + ēe − 2d̄(a + b + d + e) = 0. (8.42)101



A Groebner basis 
al
ulation in C [a, ā, b, b̄, d, d̄, e, ē] for the nine polynomials in(8.35)-(8.42) yields the following basis
{eē3, e2ē2, e3ē, d̄eē2, d̄e2ē, d̄e3, d̄2eē, d̄2e2, d̄3e, dē3, deē2, de2ē,

dd̄ē2, dd̄eē, dd̄e2, dd̄2ē, dd̄2e, dd̄3, d2ē2, d2eē, d2d̄ē, d2d̄e, d2d̄2, d3ē, d3d̄, b̄eē2, b̄e2ē,

b̄e3,−2dd̄2 + 5b̄d̄e − 4dd̄ē − 2b̄eē + 3d̄eē, b̄d + 2dd̄ − b̄e + 2dē − eē, b̄2eē, b̄2e2, b̄3e,
394dd̄2 − 270b̄2e − 80d̄2e − 172dd̄ē − 531b̄eē + 324d̄eē + 90bē2 − 120dē2 + 320eē2,

be2ē, bd̄ + 2dd̄ + 2d̄e − bē − eē,−2d2d̄ − 4dd̄e + 5bdē − 2beē + 3deē,

− 256dd̄2 + 270b̄2e + 20d̄2e + 180bb̄ē + 88dd̄ē + 459b̄eē − 441d̄eē + 120dē2−
260eē2,46d2d̄ + 60bb̄e − 28dd̄e + 30b̄e2 − 20d2ē − 24beē − 39deē + 20e2ē,

180bb̄2 + 464dd̄2 + 90b̄2e + 20d̄2e + 448dd̄ē − 171b̄eē − 81d̄eē + 120dē2 − 80eē2,

− 394d2d̄ + 172dd̄e − 90b̄e2 + 120d̄e2 + 270b2ē + 80d2ē + 531beē− 324deē− 320e2ē,

540b2b̄ + 1786d2d̄ + 1172dd̄e + 90b̄e2 + 240d̄e2 − 20d2ē − 1044beē+ 81deē + 80e2ē,

96dd̄2 − 90b̄2e − 20d̄2e − 48dd̄ē + 20āeē − 149b̄eē + 161d̄eē − 40dē2 + 100eē2,

718d2d̄ + 716dd̄e + 120āe2 + 330b̄e2 + 360d̄e2 − 260d2ē − 612beē− 387deē+ 410e2ē,

108dd̄2 − 90b̄2e + 40ād̄e + 20d̄2e − 64dd̄ē − 157b̄eē + 163d̄eē − 40dē2 + 80eē2,

ād − 2dd̄ + 2b̄e − 2dē + eē,−16dd̄2 + 4āb̄e + 26b̄2e + 4d̄2e + 16dd̄ē+
45b̄eē − 37d̄eē + 8dē2 − 20eē2,2āb + 4bb̄ − 6dd̄ − 4d̄e + 3bē + eē,

− 247dd̄2 + 20ā2e + 190b̄2e + 20d̄2e + 86dd̄ē + 333b̄eē − 357d̄eē + 80dē2 − 215eē2,

− 22bb̄+ 36dd̄+ 4āe− 6b̄e+ 12d̄e+ 4aē− 6bē+ 12dē+ 5eē, ad̄− 2dd̄− 2d̄e+ 2bē+ eē,
2ab̄ + 4bb̄ − 6dd̄ + 3b̄e − 4dē + eē, aā + 2bb̄ − 2dd̄ − eē} . (8.43)Although the above formulas look very 
ompli
ated, some of the polynomialsin the ideal generated by (8.35)-(8.42) are of a very simple form. In parti
ular,we obtain the 
orresponding equations eē = 0 and d3d̄ = 0 whi
h 
learly imply

e = 0 and d = 0 if we re
all the interpretation of ē and d̄ as 
omplex 
onjugatesof e and d, resp. A substitution of {e → 0, ē→ 0, d→ 0, d̄ → 0} in (8.43) yields
{180bb̄2,540b2b̄,2āb + 4bb̄,−22bb̄,2ab̄ + 4bb̄, aā + 2bb̄} , (8.44)where we removed all the zero polynomials. Again, be
ause of the appearan
eof the polynomial 180bb̄2, a solution must have b = 0 and b̄ = 0. When this issubstituted to (8.44), we obtain a single nonzero polynomial aā, whi
h in turnapplies a = 0. In summary, the only solution to the initial set of equationssatisfying the 
onstraint that a, b, d, e and ā, b̄, d̄, ē are 
omplex 
onjugate is thezero matrix. Sin
e it is 
learly not unitary, we 
on
lude that there exist nounitary matri
es of the form (8.34). This is equivalent to say that there are nomaximally entangled states in the orthogonal 
omplement of the UPB givenby the formulas (8.32) and (8.33).The example dis
ussed above, although rather elegant mathemati
ally, mayseem unsatisfa
tory from the point of view of quantum information s
ien
e.102



A natural question to ask is whether there exist Unextendible Produ
t Basesin the 3 × 3 
ase whi
h admit a maximally entangled ve
tor in their orthogonal
omplement. It turns out that the method presented above is powerful enough togive a a�rmative answer to the question.Consider the following one-parameterfamily of Unextendible Produ
t Bases in C3 ⊗C3.
[ φ1 φ2 φ3 φ4 φ5
ψ1 ψ2 ψ3 ψ4 ψ5

] =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 z 1 0

0 1 0 1 1

0 0 1 −z̄ 1

0 1 1 1 0

1 0 0 1 1

1 1 0 −1 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥⎦
, (8.45)where z ∈C ∖ {0} is arbitrary and we used the notation φ

ψ
for a produ
t ve
tor

φ⊗ ψ, whi
h is pra
ti
al here. Note that the ve
tors are not normalized.Our aim in the following is to de
ide whether the orthogonal 
omplement tothe UPB in (8.45) 
ontains a maximally entangled state for some z ∈ C∖ {0} ornot. Orthogonality 
onditions to the subspa
e spanned by φ1 ⊗ ψ1, . . . , φ5 ⊗ ψ5are a set of linear equations and 
an be solved expli
itly. The result is
[Aij] =

⎡⎢⎢⎢⎢⎢⎣
a b −b
d e −d
−az −ez − b

z̄
− d
z̄
− a+b+d+e+azz̄+ezz̄

z̄

⎤
⎥
⎥
⎥
⎥
⎥⎦
, (8.46)where Aij denote the 
oordinates of a ve
tor ∑i,j Aijei ⊗ ej ∈C3 ⊗C3.Taking the 
onjugate transpose of (8.46) and multiplying by the matrix(8.46) itself, we get the 
onditions for [Aij] to be unitary, or ∑i,j Aijei ⊗ ej tobe maximally entangled, in the form

dd̄ + a(ā + āzz̄) = 1,
d̄e + ā(b + ezz̄) = 0,

−dd̄ + a(ā + āzz̄) + ā(b + 2d + e + ezz̄) = 0,
dē + a(b̄ + ēzz̄) = 0,
bb̄ + eē(1 + zz̄) = 1

−b(b̄ − 2ē) + ē(a + d + e + azz̄ + ezz̄) = 0,
−dd̄ + a(ā + b̄ + 2d̄ + ē + āzz̄ + ēzz̄) = 0,
−bb̄ + e(ā + 2b̄ + d̄ + ē + āzz̄ + ēzz̄) = 0,

bb̄ + dd̄ + (a + 2b + 2d + e + azz̄ + ezz̄)(ā + 2b̄ + 2d̄ + ē + āzz̄ + ēzz̄)
zz̄

= 1.The last expression is not a polynomial in a, ā, b, b̄, d, d̄, e, ē, z, z̄, but 
an be easilytransformed to
bb̄zz̄ + dd̄zz̄ + (a + 2b + 2d + e + azz̄ + ezz̄)(ā + 2b̄ + 2d̄ + ē + āzz̄ + ēzz̄) = zz̄,if we remember that by assumption z ≠ 0. Thus we get a set of nine polynomialequations in the variables a, ā, b, b̄, d, d̄, e, ē, z, z̄, equivalent to the 
ondition that103



∑i,j Aijei ⊗ ej be maximally entangled. Next, we 
al
ulate the 
orrespondingGroebner basis in C [a, ā, b, b̄, d, d̄, e, ē, z, z̄], where we take a, ā, b, b̄, d, d̄, e, ē, z, z̄as a set of independent variables. In other words, we forget that numbers like
a and ā are 
onjugate, and try to impose this 
ondition only after a 
al
ulationof the Groebner basis. The basis reads
{−12x − 5x2 + 2x3,−27 + 27eē − 12x + 18eēx + 4x2,

− 14580− 5832eē+ 729e2ē2 + 13122e3ē3 + 6561e4ē4 − 11688x+ 3872x2,

7776d̄+ 8424ē− 405eē2 − 4374e2ē3 − 3645e3ē4 + 3792ēx − 496ēx2,

7776d+ 8424e− 405e2ē − 4374e3ē2 − 3645e4ē3 + 3792ex− 496ex2,

3888b̄− 3078ē− 567eē2 + 2187e2ē3 + 1458e3ē4 + 978ēx + 436ēx2,

3888b− 3078e− 567e2ē + 2187e3ē2 + 1458e4ē3 + 978ex+ 436ex2,

1296ā+ 4536ē− 1053eē2 − 1458e2ē3 − 729e3ē4 + 1968ēx − 848ēx2,

1296a + 4536e− 1053e2ē − 1458e3ē2 − 729e4ē3 + 1968ex− 848ex2} , (8.47)where we introdu
ed the notation x ∶= zz̄. From the �rst polynomial we see thata solution 
an exist only if x ∈ {− 3
2
,0,4}. But x = − 3

2
is impossible a

ording toour de�nition of x, and x = 0 is ex
luded by the assumption z ≠ 0. Thereforemaximally entangled ve
tors in the orthogonal 
omplement to the UPB in (8.45)
an exist only if x = ∣z∣2 = 4, thus if ∣z∣ = 2. If we substitute x = 4 in (8.47) and
al
ulate the Groebner basis of the resulting polynomials inC [a, ā, b, b̄, d, d̄, e, ē],we get {−1 + 9eē, d̄ + 2ē, d + 2e, b̄ + 2ē, b + 2e, ā − ē, a − e}. (8.48)Clearly, all the polynomials 
an be made zero by 
hoosing e = e

iφ

3
, d = −2e,

b = −2e and a = e. Therefore there exist a single, up to an overall phase fa
tor,maximally entangled state in the orthogonal 
omplement of the UPB in (8.45).It has the following 
oordinate matrix
[Aij] = 1

3

⎡⎢⎢⎢⎢⎢⎣
1 −2 2

−2 1 2

−2 −2 −1

⎤
⎥
⎥
⎥
⎥
⎥⎦
. (8.49)In summary, we have shown that the UBP given in equation (8.45) does notadmit a maximally entangled ve
tor in its 
omplement, with the only ex
ep-tion of ∣z∣ = 2. When ∣z∣ = 2, there is a maximally entangled ve
tor in theorthogonal 
omplement of the UPB (8.45), whi
h has a 
oordinate matrix ofthe form (8.49).8.4 Mutually Unbiased BasesAs we already explained in Se
tion 2.1, a generalization of quantum 
ryptogra-phy proto
ols su
h as BB84 to multidimensional quantum systems [68℄ relies on104



the notion of mutually unbiased bases, MUBs for short. Two orthonormal bases{ψi}di=1, {φj}dj=1 of Cd are said to be (mutually) unbiased if and only if
∣⟨ψi, φj⟩∣2 = 1

d
(8.50)holds for all i, j ∈ {1,2, . . . , d}. The importan
e of the above relation for quantumstate determination has been �rst pointed out by Ivanovi¢ [140℄, who also provedthe existen
e of d+1 mutually unbiased bases in Cd when d is a prime number.Later, Wootters and Fields [69℄ showed that there are at most d + 1 mutuallyunbiased bases in Cd and gave examples of full sets of MUBs when d is aprime power. Moreover, they demonstrated that quantum state determinationusing a full set of MUBs is optimal in the sense of giving minimum statisti
alerrors. A broader view of the known 
onstru
tions of MUBs was then providedin [141℄, where the authors related MUBs to 
lasses of pairwise orthogonal and
ommuting unitary matri
es. The main e�orts in the �eld 
on
entrated onproving or disproving the existen
e of maximal sets of MUBs in non-primepower dimensions [142�147℄, whi
h still remains an open problem. However, onthe basis of the extensive sear
hes presented in [147℄, the existen
e of four, letalone seven, MUBs in C6 is almost 
ertainly ex
luded.In the present se
tion, we brie�y des
ribe how the authors of [147℄ used thete
hnique of Groebner bases to provide a large number of examples where aset of two MUBs in C6 
annot be extended to a set of four. We �rst needto introdu
e the notion of 
omplex Hadamard matri
es (
f. e.g. [148℄). Su
hmatri
es are by de�nition unitaries H with the property that ∣Hij ∣ = 1/√d for allmatrix elements Hij of H . It is easy to noti
e that for any Hadamard matrix H ,the 
anoni
al basis {e1, . . . , ed} and the 
olumns of H , {H1, . . . ,Hd}, 
onstitutea pair of MUBs. Any other basis mutually unbiased with respe
t to these two,must also 
onsist of 
olumns of some 
omplex Hadamard matrix. Now, thestrategy applied in [147℄ was the following:1) Sele
t a known Hadamard matrix H in Cd, the vast majority of whi
h 
anbe found in the online 
atalogue [149℄,2) Parametrize a general, up to a phase, ve
tor in Cd mutually unbiased withrespe
t to {e1, . . . , ed}, as

v = 1√
d
[ 1 x1 + iy1 x2 + iy2 ⋯ xd−1 + iyd−1 ]T , (8.51)with T denoting matrix transposition, xi, yi ∈R and x2i + y2i = 1,3) Multiply v from the left by H∗ and equate the squared moduluses of the
oordinates of the resulting ve
tor to 1/d. This gives a set of polynomialequations in xi and yi, equivalent to the unbiasedness 
ondition

∣⟨Hk, v⟩∣2 = 1

d
(8.52)for k = 1,2, . . . , d, 105



4) Solve the resulting equations, together with x2i + y2i = 1, i = 1,2, . . . , d− 1, for
xi, yi ∈ R. In this way, the set of all ve
tors in Cd unbiased with respe
t to{e1, . . . , ed} and {H1, . . . ,Hd} is obtained,5) Che
k whether it is possible to arrange the resulting ve
tors in d-tuplesthat 
onsist MUBs, and how many su
h MUBs 
an be obtained altogether,in
luding {e1, . . . , ed} and {H1, . . . ,Hd}.The authors of [147℄ worked mainly with the 
ase d = 6, but the above steps
an be followed also when the MUB problem in dimension di�erent from 6 is
onsidered. For purely expository purposes, in order not to resort to numeri
alsolutions ne
essary in C6, we shall now explain how the above method yields a
omplete set of MUBs in C3, whi
h is well-known to exist [140℄. This is in 
on-trast with the main �ndings of [147℄ in dimension 6, where the authors 
on
ludethat for no single one of the nearly 6000 Hadamard matri
es H they studied,there exists more than three mutually unbiased bases in
luding {e1, . . . , e6} and{H1, . . . ,H6}.Up to some simple invarian
es (for more details, 
f. e.g. [148℄), there onlyexists one Hadamard matrix when d = 3, whi
h is the Fourier matrix

F3 = 1√
3

⎡⎢⎢⎢⎢⎢⎣
1 1 1

1 ω ω2

1 ω2 ω

⎤
⎥
⎥
⎥
⎥
⎥⎦
, (8.53)where ω = e2πi/3. The 
orresponding unbiasedness 
onditions ∣⟨F j3 , v⟩∣2 = 1/3read

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

−2 + 2x1 + x21 + 2x2 + 2x1x2 + x22 + y21 + 2y1y2 + y22 = 0,
−2 − x1 + x21 − x2 − x1x2 + x22 +

√
3y1 −

√
3x2y1 + y21+

−√3y2 +√3x1y2 − y1y2 + y22 = 0,
−2 − x1 + x21 − x2 − x1x2 + x22 −

√
3y1 +

√
3x2y1 + y21+

+√3y2 −√3x1y2 − y1y2 + y22 = 0.
(8.54)If we take into a

ount the relations x21 + y21 = 1 and x22 + y22 = 1, the aboveequations take the form

⎧⎪⎪⎪⎨⎪⎪⎪⎩
x1 + x2 + x1x2 + y1y2 = 0,

x1 + x2 + x1x2 + y1y2 −
√
3 (y1 − x2y1 − y2 + x1y2) = 0,

x1 + x2 + x1x2 + y1y2 +
√
3 (y1 − x2y1 − y2 + x1y2) = 0. (8.55)whi
h are 
learly equivalent to the following system of equations

{ x1 + x2 + x1x2 + y1y2 = 0,
y1 − x2y1 − y2 + x1y2 = 0. (8.56)Taking the above equalities together with x21 +y21 = 1 and x22 +y22 = 1, we get the106



following set of polynomial equations⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
x21 + y21 = 0,
x22 + y22 = 0,

x1 + x2 + x1x2 + y1y2 = 0,
y1 − x2y1 − y2 + x1y2 = 0.

(8.57)As we know from Chapter 4, a possible approa
h to solving equations like (8.57)is by the 
al
ulation of the 
orresponding Groebner basis, preferably with re-spe
t to the lexi
ographi
 order. The result is
{−3y2 + 4y32 ,−1 + x2 + 2y22 ,−3 + 4y21 − 4y1y2 + 4y22,1 + 2x1 + 4y1y2 − 4y22} .(8.58)By equating the above polynomials to zero, we get a system of equations equiv-alent to (8.57), whi
h 
an be readily solved by ba
kward substitution. The
orresponding solutions (x1, y1, x2, y2) are the elements of the following set
{(−1

2
,−
√
3

2
,1,0) ,(−1

2
,

√
3

2
,1,0) ,(1,0,−1

2
,−
√
3

2
) ,

(−1
2
,−
√
3

2
,−1

2
,−
√
3

2
) ,(1,0,−1

2
,

√
3

2
) ,(−1

2
,

√
3

2
,−1

2
,

√
3

2
)} . (8.59)Hen
e, we get six ve
tors in total that are unbiased with respe
t to {e1, e2, e3}and {F 1

3 , F
2
3 , F

3
3 }. Expli
itly, we have the following ve
tors

v1 = 1√
3

⎡⎢⎢⎢⎢⎢⎣
1

ω2

1

⎤
⎥
⎥
⎥
⎥
⎥⎦
, v2 = 1√

3

⎡⎢⎢⎢⎢⎢⎣
1

ω

1

⎤
⎥
⎥
⎥
⎥
⎥⎦
, v3 = 1√

3

⎡⎢⎢⎢⎢⎢⎣
1

1

ω2

⎤
⎥
⎥
⎥
⎥
⎥⎦
, (8.60)

v4 = 1√
3

⎡⎢⎢⎢⎢⎢⎣
1

ω2

ω2

⎤
⎥
⎥
⎥
⎥
⎥⎦
, v5 = 1√

3

⎡⎢⎢⎢⎢⎢⎣
1

1

ω

⎤
⎥
⎥
⎥
⎥
⎥⎦
, v6 = 1√

3

⎡⎢⎢⎢⎢⎢⎣
1

ω

ω

⎤
⎥
⎥
⎥
⎥
⎥⎦
. (8.61)By examining the inner produ
ts ⟨vi, vj⟩ for i, j ∈ {1, . . . ,6}, we get to the
on
lusion that {v1, v3, v6} and {v2, v4, v5} are two orthonormal bases, mutuallyunbiased with respe
t to ea
h other. Consequently, all the four bases {e1, e2, e3},{F 1

3 , F
2
3 , F

3
3 }, {v1, v3, v6} and {v2, v4, v5} together 
onstitute a full set of MUBsin C3.The authors of [147℄ followed the same path of reasoning as in the exampledes
ribed above, however they worked with d = 6 and needed to resort to nu-meri
al methods in order to obtain the solutions of the respe
tive polynomialequations. In their 
ase, it turned out not to be possible to �nd four mutu-ally unbiased bases, starting from {e1, . . . , e6} and {H1, . . . ,H6} for any 6 × 6Hadamard matrix H they examined.8.5 Symmetri
 Informationally Complete ve
torsWhen dis
ussing the appli
ations of polynomial equations in quantum infor-mation s
ien
e, it seems impossible to negle
t the prominent role they play in107



the resear
h on so-
alled Symmetri
 Informationally Complete Positive Oper-ator Valued Measures, or SIC-POVMs for short. A SIC-POVM in Cd is byde�nition a set of normalized ve
tors {ψi}d2i=1 with the property
∣⟨ψi, ψj⟩∣2 = 1

d + 1
(8.62)for all i, j ∈ {1, . . . , d}, i ≠ j. The �rst generally re
ognized work on SIC POVMs,although it uses a di�erent name for the same obje
t, is by Zauner [150℄, whofamously states a (stronger) version of the following 
onje
tureConje
ture 1 (Zauner). For every dimension d ⩾ 2 there exists a SIC-POVMwhose elements are the orbit of a ve
tor ψ0 under the Heisenberg group, whi
h
onsists of elements ωaXbZc, where a, b, c ∈ {0,1, . . . , d − 1}, ω = e2πi/d and

X =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 ⋯ 0 1

1 0 ⋯ 0 0

0 1 ⋯ 0 0

⋮ ⋮ ⋱ ⋮ ⋮

0 0 ⋯ 1 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥⎦
, Z =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 ⋯ 0 0

0 ω ⋯ 0 0

⋮ ⋮ ⋱ ⋮ ⋮

0 0 ⋯ ωd−1 0

0 0 ⋯ 0 ωd

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥⎦

(8.63)
The term SIC-POVM was 
oined by the authors of [151℄, and SIC-POVMsbe
ame popular as a 
onsequen
e of the usefulness for quantum state tomog-raphy [152℄ and the ri
h mathemati
al stru
ture they have [153�155℄. In thefollowing, we outline how they relate to polynomial equations and we solve avery simpli�ed example where it is possible to �nd expli
it algebrai
 expressionsfor ve
tors 
onstituting a SIC-POVM. Note, however, that the example we solveis only a sub
ase of the general solution for d = 3, provided in [151℄.An approa
h to sear
hing SIC-POVM ve
tors su

essfully applied in paperslike [142℄ and [156℄ starts from writing (8.62) as a set of polynomial equations forthe real and imaginary parts of the 
oe�
ients of the ve
tors ψi. Su
h equationsmay 
ontain a reasonably small number of variables only if the ve
tors ψi are notassumed to be independent. The standard way to follow 
onsists in assumingthat the requested SIC-POVM satis�es the Zauner 
onje
ture, therefore all the

ψi, i = 1,2, . . . , d, are determined by a single ve
tor ψ0, 
alled the �du
ial. Inthis way, the number of real variables in the polynomial equations is redu
edto 2d − 1, where the fa
tor −1 
omes from the fa
t that we 
an take the �rst
oe�
ient of ψ0 to be real without a�e
ting the whole SIC-POVM 
onstru
tionas des
ribed by Conje
ture 1. Further simpli�
ations also follow from the fullstatement of the Zauner 
onje
ture, whi
h involves elements of the Cli�ordgroup, 
f. e.g. [153℄.In the following, we show how to �nd an exemplary SIC-POVM in dimension
3 by solving a set of polynomial equations, based on the ideas sket
hed above.Sin
e a general form of SIC-POVMs in C3 is known [151℄, our dis
ussion shouldbe per
eived as a purely expository one, aimed at giving a rough pi
ture of whathappens in real s
ien
e appli
ations. 108



In our very simpli�ed example, we are looking for 9 normalized ve
tors{ψ1, . . . , ψ9} ⊂ C3 that would satisfy ∣⟨ψi, ψj⟩∣2 = 1/4 for all i ≠ j. As ex-plained above, the related polynomial equations be
ome mu
h easier to ta
kle ifa form of Conje
ture 1 is assumed to hold. Hen
e, instead of looking for generalsets of nine ve
tors ψi ∈ C3, we assume that {ψ1, . . . , ψ9} is equal to the set{XnZmψ0 m,n ∈ {0,1,2}}, where ψ0 = [ a x + iy z + it ]T is a normalized�du
ial ve
tor in C3, a,x, y, z, t ∈R, and
X =

⎡⎢⎢⎢⎢⎢⎣
0 0 1

1 0 0

0 1 0

⎤
⎥
⎥
⎥
⎥
⎥⎦
, Z =

⎡⎢⎢⎢⎢⎢⎣
1 0 0

0 − 1−
√
3i

2
0

0 0 − 1+
√
3i

2

⎤
⎥
⎥
⎥
⎥
⎥⎦
. (8.64)Under the above assumption, the equations ∣⟨ψi, ψj⟩∣2 = 1/4 be
ome equivalentto ∣⟨ψ0,X

nZmψ0⟩∣2 = 1/4 for all su
h that n ≠ 0 or m ≠ 0. The latter implyanother set of equalities, ∣⟨ψ0,X
nZmψ0⟩∣2 = ∣⟨ψ0,X

n′Zm
′

ψ0⟩∣2, where n ≠ 0 or
m ≠ 0 and n′ ≠ 0 or m′ ≠ 0. In our 
ase, the last set of equations take the expli
itform

(tx+a(−t+y)−yz)2− 3

4
(t2−x2

−y
2
+z

2)2− 1

4
(−2a2+t2+x2

+y
2
+z

2)2+(ty+xz+a(x+z))2=0,
3(t2−x2

−y2+z2)2+(−2a2+t2+x2
+y2+z2)2−(t(−√3x+y)+(x+√3y)z+a(−√3t−2x+z))2+

−(−t(x+√3y)+(−√3x+y)z+a(t+2y+√3z))2)=0,
2
√
3a(−t2y+yz(−2x+z)+t(x2

−y2−2xz)+a(tx+yz))=0,
(tx+√3ty+a(2t−√3x+y)+√3xz−yz)2+

(t(−√3x+y)+a(x+√3y−2z)+(x+√3y)z)2−3(t2−x2
−y2+z2)2−(−2a2+t2+x2

+y2+z2)2=0,
3(t2−x2

−y2+z2)2+(−2a2+t2+x2
+y2+z2)2−(t(√3x+y)+(x−√3y)z+a(√3t−2x+z))2

−(−tx+√3ty+
√
3xz+yz+a(t+2y−√3z))2=0,

−2
√
3a(−t2y+yz(−2x+z)+t(x2

−y2−2xz)+a(tx+yz))=0.In order to �nd exemplary SIC-POVMs in C3, we add the normalization 
on-dition a2 + x2 + y2 + z2 + t2 = 1 for ψ0 to the above equations, and then we trythe substitution a →√2/3. Note that the value √2/3 has not been sele
ted atrandom, and the spe
i�
 
hoi
e of a makes the subsequent 
al
ulations ratherstraightforward. However, any other number of modulus < 1 
an be tried aswell, and would typi
ally lead to a few �du
ial ve
tors or to the 
on
lusion thatno suitable �du
ials exist. For a not an algebrai
 number, numeri
al methodswould be required to �nd the solutions or to show they are non-existent.On
e we substituted √2/3 for a, we are left with a set of seven polyno-mial equations for x, y, z, t, some of whi
h are redundant. Cal
ulation of the
orresponding Groebner basis with respe
t to the lexi
ographi
 order gives the109
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6Table 8.1: Solutions of the Heisenberg group-invariant SIC-POVM equations in
ase of C3.following result,

{t2 − 24t4 + 192t6 − 512t8,3√2t2 − 32√2t4 + 64√2t6 − 8√3t2z + 64√3t4z,
− 2
√
3 + 93

√
3t2 − 1008

√
3t4 + 2880

√
3t6 − 12

√
2z + 144

√
2t2z − 12

√
3z2,

6
√
3t − 167

√
3t3 + 1296

√
3t5 − 3264

√
3t7 + 6

√
3y − 105

√
3t2y + 1008

√
3t4y+

− 2880
√
3t6y − 16

√
3y3 + 12

√
2tz − 48

√
2t3z + 12

√
2yz − 144

√
2t2yz,

8
√
3 − 105

√
3t2 + 1008

√
3t4 − 2880

√
3t6 + 12

√
2x + 900

√
3t3y − 15552

√
3t5y+

+48384
√
3t7y−1260

√
3t2y2+12096

√
3t4y2−34560

√
3t6y2+12

√
2z−144

√
2t2z+

−216
√
2tyz + 3456

√
2t3yz + 144

√
2y2z − 1728

√
2t2y2z} . (8.65)By equating the above polynomials to 0, we get a system of equations that 
anreadily be solved by ba
kward substitution, provided that one 
an �nd solutionsto the equation t2−24t4+192t6−512t8 = 0. Fortunately, this problem 
an easilybe solved expli
itly, as t2 − 24t4 + 192t6 − 512t8 = −t2(8t2 − 1)3. Thus, we have

t = 0, t = −1/2√2 and t = 1/2√2 as the possible values for the t 
oordinate. Sub-stitution of any of these values to (8.65) gives us a set of polynomials in x, y, z ofmaximum degree 2, whose 
ommon zeros are easy to �nd. Altogether, there arenine solutions (x, y, z, t) to the equations ∣⟨ψ0,X
nZmψ0⟩∣2 = ∣⟨ψ0,X

n
′

Zm
′

ψ0⟩∣2and ∣ψ0∣2 = 1, 
orresponding to nine �du
ials. We give a list in Table 8.1. Notethat a ve
tor ψ0 is a �du
ial if and only if ψ∗0 also has this property. This is ageneral fa
t, whi
h 
an be 
on�rmed with Table 8.1. Thus we have 
ompletedthe task of �nding a set of three-dimensional SIC-POVM ve
tors with help ofthe Groebner basis method. 110



Chapter 9A stru
ture theorem for PPTbound entangled states oflowest rankThe aim of the present se
tion is to present the main result of the thesis, 
on
ern-ing positive-partial-transpose non-separable states of rank 4 in 3×3 systems. Asindi
ated in [157℄, they all seem to be possible to lo
ally transform to proje
tionsonto the orthogonal 
omplement to a subspa
e spanned by an orthogonal Unex-tendible Produ
t Basis [106℄. Thus, there is strong numeri
al eviden
e that theyare all lo
ally equivalent to bound entangled states of the form dis
ussed in [106℄.In the following, we analyti
ally prove that this is a
tually the 
ase. Note thata

ording to the results of [107℄, four is the minimal rank for an entangled PPTstate. Therefore it is 
orre
t to say that our theorem 
on
erns non-separablePPT states of lowest rank. Very shortly after our paper [114℄ was available as apreprint on arXiv, Chen and �okovi¢ [158℄ presented an alternative proof of thetheorem. The resear
h reported here was 
ondu
ted independently of [158℄, andthe author had no prior knowledge about the manus
ript by the other authors.An important related work by Chen and �okovi¢ is also [159℄.Before we start with the proof, it will be useful to introdu
e the 
on
ept ofgeneral Unextendible Produ
t Bases, dis
ussed in more detail elsewhere [114℄.9.1 General Unextendible Produ
t BasesThe most 
ommon de�nition of an Unextendible Produ
t Basis (UPB), in a
-
ordan
e with [106℄, has already been phrased in Se
tion 3.2. Here, we startwith a de�nition of a general UPB.De�nition 9.1. Take n,m ∈N. By a general Unextendible Produ
t Basis,or a gUPB for short, we mean a set {φi ⊗ψi}ki=1 of produ
t ve
tors in Cn⊗Cm,111



0 < k < mn, su
h that there is no produ
t ve
tor in span{φi ⊗ ψi}ki=1�, theorthogonal 
omplement to the linear span of {φi ⊗ψi}ki=1.In other words, a gUPB is a set of produ
t ve
tors {φi ⊗ψi}ki=1 su
h thatthere is no produ
t ve
tor orthogonal to all of them. Note that we do not requirethe ve
tors to be linearly independent, and this 
hoi
e is somewhat arbitrary.Yet another way of phrasing the above de�nition is that the orthogonal 
om-plement to a gUPB is a Completely Entangled Subspa
e [160,161℄, or CES forshort, 
f. Se
tion 8.2.Remark 9.2. The de�nition of a gUPB 
an be trivially extended to a multi-partite setting.We know that gUPBs do exist. Any UPB 
onsisting of orthogonal ve
tors isan example (
on
rete UPBs 
an be found e.g. in [162℄). We also know that forsome spa
es, no UPB 
onsisting of orthogonal ve
tors 
an exist. For example, ithas been noti
ed as early as in [106℄ that 2×n systems do not admit an orthogonalUPB, and a more general dis
ussion of existen
e questions for orthogonal UPBshas been in
luded in [163℄. In the following, we show that gUPBs are mu
hmore 
ommon than the usual UPBs, and give a 
hara
terization of gUPBs ofminimal number of elements.First, let us answer a question about the minimum number of elements in agUPB in Cn ⊗Cm.Proposition 9.3. A set of ve
tors {φi ⊗ ψi}ki=1 ⊂ Cn ⊗Cm 
onsisting of k <
m + n − 1 elements is not a generalized UPB.Proof. There exists a ve
tor f ∈ Cn orthogonal to all the ve
tors φi with i =

1, . . . , n − 1. Moreover, there exists a g ∈ Cm orthogonal to the ve
tors ψj with
j = n, . . . , k (be
ause k − n < m). The produ
t ve
tor f ⊗ g is orthogonal to all
φi ⊗ ψi for i = 1, . . . , k.Proposition 9.4. A set of ve
tors {φi ⊗ψi}m+n−1i=1 ⊂ Cn ⊗ Cm is a gUPB ifand only if any n-tuple of ve
tors in {φi}m+n−1i=1 
onsists of linearly independentve
tors, the same as any m-tuple of ve
tors in {ψj}m+n−1j=1 .Proof. In order to prove ne
essity, assume that an n-tuple of ve
tors {φil}nl=1is linearly dependent. Therefore there exists a ve
tor f ∈ Cn orthogonal to allof them. Ve
tors of the form f ⊗ g ∈ Cn ⊗Cm with an arbitrary g ∈ Cm areorthogonal to all the ve
tors {φil ⊗ ψil}nl=1 ⊂ Cn ⊗ Cm. Obviously, g 
an be
hosen in su
h a way that f ⊗ g is orthogonal to the remaining m − 1 elementsof Cm (be
ause m−1 <m = dimCm). For a su�
ien
y proof, assume that f ⊗gis orthogonal to φi ⊗ψi for i = 1, . . . ,m +n − 1. The ve
tor f 
an be orthogonalto at most n − 1 of φi's, whereas g 
annot be orthogonal to more than m − 1

ψi's (remember the linear independen
e of n-tuples and m-tuples, respe
tively).This gives a maximum of (n − 1)+(m − 1) ve
tors in {φi ⊗ψi}m+n−1i=1 orthogonalto f ⊗ g. Therefore f ⊗ g 
annot be orthogonal to all the φi ⊗ ψi's, the set{φi ⊗ψi}m+n−1i=1 is a gUPB. 112



It is natural to ask for a generalization of Proposition 9.4 for sets of produ
tve
tors 
onsisting of more than m + n − 1 elements. We have the followingProposition 9.5. A set of ve
tors {φi ⊗ψi}Ni=1 ⊂ Cn ⊗Cm with N ⩾m + n − 1is a gUBP if and only if for any N ,M⊂N su
h that N ∩M = ∅ and N ∪M ={1,2, . . . ,N}, at least one of the sets of ve
tors {φi}i∈N and {ψj}j∈M spans theentire 
orresponding ve
tor spa
e (Cn or Cm, resp.).Proof. Let us �rst prove ne
essity. Assume that the ve
tors {φi ⊗ ψi}Ni=1 
onsti-tute a gUPB and 
hoose some N ,M⊂N as in the statement of the proposition.If neither of the sets {φi}i∈N and {ψj}j∈M spans the respe
tive ve
tor spa
e,there exist f ∈ Cn and g ∈ Cm su
h that ⟨f,φi⟩ = 0 and ⟨g,ψj⟩ = 0 for all
i ∈ N and j ∈ M. Be
ause of the 
ondition N ∪M = {1,2, . . . ,N}, we 
learlyhave ⟨f ⊗ g,φi ⊗ψi⟩ = 0 for i = 1,2, . . . ,N . This 
ontradi
ts the fa
t that theve
tors φi ⊗ ψi 
onstitute a gUPB. In order to show su�
ien
y, assume that
f ⊗ g ∈ Cn ⊗Cm is su
h that ⟨f ⊗ g,φi ⊗ ψi⟩ = 0 for all i = 1,2, . . . ,N . De�nethe set of indi
es Nf ∶= {i ⟨f,φi⟩ = 0} and Mg ∶= {j ⟨g,ψj⟩ = 0}. Clearly, wemust have Nf ∪Mg = {1,2, . . . ,N}. Thus it is possible to 
hoose N ⊂ Nf and
M⊂Mg su
h that N ∪M = {1,2, . . . ,N} and N ∩M = ∅. By the very de�ni-tion of Nf andMg, we have ⟨f,φi⟩ = 0 for all i ∈ N and ⟨g,ψj⟩ for j ∈ M. Buta

ording to the assumptions of the theorem, this is only possible if f or g isequal to zero. Thus {φi ⊗ ψi}Ni=1 is a gUPB.Certain 
hara
terizations of gUPBs were earlier obtained in [164℄, but theabove results, rather surprisingly, seem to appear for the �rst time in our work[114℄. They 
an also easily be generalized to a multipartite setting.Proposition 9.6. A set of ve
tors {φ1i ⊗ φ2i ⊗ . . .⊗ φli}Ni=1 ⊂Cn1⊗Cn2⊗. . .⊗Cnlwith N ⩾ ∑li=1 ni+ l−1 is a gUBP if and only if for any N1, . . . ,Nl ⊂N su
h that
Ni ∩Nj = ∅ for all i ≠ j and ⋃li=1Ni = {1,2, . . . ,N}, at least one of the sets ofve
tors {φij}j∈Ni

, i = 1,2, . . . , l, spans the entire 
orresponding ve
tor spa
e Cni .Proof. Follows the same lines as the proof of Proposition 9.5 and will be omittedhere.9.2 The 
on
ept of lo
al equivalen
eBefore we present the proof of the main result of the thesis (Theorem 9.27), wealso need to introdu
e the 
on
ept of lo
al equivalen
e. Numerous questions ofphysi
al or mathemati
al origin need the proper identi�
ation of a symmetrygroup relevant to the problem in order to simplify the solution, or even to �ndit at all. The same is the 
ase for the result we are going to obtain below. ForPPT states, a natural group of symmetries should be of a produ
t form, ρ ↦(A⊗B)∗ ρ (A⊗B), be
ause all su
h transformations preserve the property ofbeing PPT. In physi
al terms, they preserve the splitting of a 
omposite systeminto subsystems, whi
h is a highly desirable property. The remaining question113



is, what group should A and B belong to. When the amount of entanglementbetween the two subsystems is in question, a natural 
hoi
e is A and B in theUnitary or Spe
ial Unitary group. Su
h transformations 
annot 
hange anymeasure of entanglement. However, if the aim is to 
lassify PPT states withrespe
t to the property of being extreme, being an edge state [165℄, or thenumber and dimensionalities spanned by the produ
t ve
tors in their kernelsor ranges, A and B should most naturally belong to the General Linear orSpe
ial Linear group. There is no essential di�eren
e between the two latter
hoi
es. Sin
e we are not interested in positive s
aling fa
tors in front of thestates, we 
hoose to work with the Spe
ial Linear group. This was also theapproa
h so su

essfully used by the authors of [17,157,166℄. We should remarkthat, while a PPT state is transformed a

ording to ρ↦ (A⊗B)∗ ρ (A⊗B), theprodu
t ve
tors in its kernel and its range undergo the following transformation,
φ ⊗ ψ ↦ (A−1 ⊗B−1)φ ⊗ ψ. Conversely, a transformation φ ⊗ ψ ↦ (A⊗B)φ ⊗
ψ for
es a 
hange of ρ into (A−1 ⊗B−1)∗ ρ (A−1 ⊗B−1). It is these kind oftransformations we will have in mind when we talk about �lo
al equivalen
e�,�lo
al SL equivalen
e� or �SL (3,C) ⊗ SL (3,C) equivalen
e� in the followingse
tions.Any similar terms, even not listed here, will also refer to pre
isely the samesituation. Nevertheless, when produ
t ve
tors in the kernel of a PPT state ρ arein question, it is more 
onvenient to look at them as rays, points in the proje
-tive spa
e. In su
h 
ase, it is also more a

urate to refer to the proje
tivisationof the group SL (3,C)⊗SL (3,C), namely to PSL (3,C)×PSL (3,C), with PSLreferring to the Proje
tive Spe
ial Linear group. In simple words, we may mul-tiply ve
tors {φ1 ⊗ ψ1, φ2 ⊗ψ2, . . .} ⊂ Kerρ by arbitrary individual fa
tors, andthey will remain elements of the kernel of ρ. We may also transform them bya SL (3,C)⊗ SL (3,C) transformation. All in all, we have a group of transfor-mations that is most properly des
ribed as PSL (3,C) × PSL (3,C). Note thatthe use of this term is motivated mainly by the possibility to avoid ex
essive
omments about 
onstant fa
tors in front of the produ
t ve
tors in Kerρ. Weare legitimate to use the previously introdu
ed name �lo
al equivalen
e� also forthe PSL (3,C)×PSL (3,C) transformations we just des
ribed be
ause 
onstantmultipli
ative fa
tors in front of ve
tors in Kerρ are 
ompletely irrelevant to ρitself.The ultimate reason for using equivalen
es of the form des
ribed above willbe the simpli
ity of our main result, a 
hara
terization theorem that we are goingto obtain in Se
tion 9.8. The equivalen
e 
lasses under SL (3,C)⊗ SL (3,C) ofnon-separable PPT states of rank 4 in 3×3 systems turn out to be parametrizedby just four real, positive numbers. Moreover, ea
h 
lass has a representativewhi
h is a proje
tion onto a Completely Entangled Subspa
e 
omplementary toa 3×3 orthogonal UBP. This is quite a striking result, for whi
h strong numeri
aleviden
e was provided by Leinaas et al. in [157℄ and later supported by 
ertainanalyti
al results of [166℄. 114



9.3 Outline of the proofThe proof of our main result is not ex
essively 
ompli
ated, but it needs a
onsiderable amount of work. It also 
onsists of a number of steps whi
h donot seem easy to merge. In order to simplify the reading, we start with a list ofbuilding blo
ks. We will elaborate on ea
h of them in the following se
tions.1. The kernel of a rank four PPT state ρ must interse
t the Segre variety Σ2,2in a transverse way. In parti
ular, a

ording to the Bezout's Theorem, theinterse
tion must 
onsist of exa
tly six points.2. The produ
t ve
tors in the kernel of a rank 4 PPT state in the 3 × 3 
asespan the kernel. As a result, they must be a generalized UPB. There
annot exist a produ
t ve
tor orthogonal to all of them.3. A generalized UPB in the 3× 3 
ase is lo
ally equivalent to an orthogonalone if and only if 
ertain invariants s1, . . . , s4, introdu
ed by Leinaas et al.in [157℄, are all positive, possibly after the ve
tors are permuted.4. A generalized UPB in a 3×3 system is 
ontained in a kernel of some rankfour PPT state if and only if the 
orresponding values of s1, . . . , s4 arepositive, possibly after the ve
tors are permuted. Moreover, in su
h 
asethe PPT state in question is uniquely determined.The �nal 
on
lusion from the fa
ts mentioned in items 1. − 4. is that the onlynon-separable PPT states of rank 4 in 3 × 3 systems are lo
al transforms ofproje
tions onto orthogonal 
omplements of orthogonal pentagram-type Unex-tendible Produ
t Bases [106,162℄.9.4 Produ
t ve
tors in the kernel of a PPT stateThe present se
tion elaborates on item 1. in the list given above and on relatedtopi
s. Let us start with an elementary fa
t.Lemma 9.7. A produ
t ve
tor φ ⊗ ψ is in the kernel of a PPT state ρ if andonly if the partially 
onjugated states φ∗ ⊗ ψ and φ ⊗ ψ∗ are in the kernels of
ρT1 and ρT2 , respe
tively.Proof. It follows from the equality between the expressions ⟨φ⊗ ψ,ρ (φ⊗ ψ)⟩,⟨φ⊗ψ∗, ρT2 (φ⊗ ψ∗)⟩ and ⟨φ∗ ⊗ ψ,ρT1 (φ∗ ⊗ψ)⟩, by the positivity of ρ, ρT1 and
ρT2 .In the above lemma, we did not assume anything about the dimensionalityof the system. Neither we do it in the following.Lemma 9.8. Assume that a produ
t ve
tor φ ⊗ ψ is in the kernel of a PPTstate ρ. In su
h 
ase

⟨φ′ ⊗ ψ,ρ (φ⊗ ψ′)⟩ = ⟨φ⊗ ψ′, ρ (φ′ ⊗ψ)⟩ = 0 ∀φ′,ψ′ . (9.1)115



Proof. Sin
e ρ (φ⊗ψ) = 0, we know from Lemma 9.7 that ρT1 (φ∗ ⊗ψ) = 0,whi
h obviously implies ⟨φ′∗ ⊗ψ′, ρT1 (φ∗ ⊗ψ)⟩ = ⟨φ⊗ ψ′, ρ (φ′ ⊗ψ)⟩ = 0. Thisis the �rst equality in (9.1). The se
ond one 
an be obtained in a similar way.Let us denote by r (ρ), R (ρ) and kerρ the rank, the range and the kernel of
ρ. Our next lemma applies spe
i�
ally to the 3 × n 
ase and 
on
erns so-
allededge states. For more information about this topi
, 
onsult [165℄. In short, edgePPT states are PPT states ρ that do not admit a produ
t ve
tor φ ⊗ ξ ∈ kerρsu
h that φ∗ ⊗ ξ ∈ kerρT1 .Lemma 9.9. Assume that both φ ⊗ ψ and φ′ ⊗ ψ, with φ, φ′ in C3 and ψ inCn, φ ≠ φ′, belong to the kernel of a PPT state ρ, a
ting on C3 ⊗ C3. Thestate ρ is either supported on a 3 × (n − 1) or smaller subspa
e, or it 
an bewritten as ρ = ρ′ + λ ∣φ′′ ⊗ ξ⟩ ⟨φ′′ ⊗ ξ∣ for some λ > 0, ξ ∈ Cn, φ′′ ∈ C3 linearlyindependent of φ and φ′, and a PPT state ρ′, supported on a 3×(n − 1) or smallersubspa
e. Moreover, the rank r (ρ′) = r (ρ)− 1 and r ((ρ′)T1) = r (ρT1) − 1. In asituation when the redu
tion is possible, the state ρ is not an edge PPT state.In parti
ular, ρ is not an extreme and non-separable PPT state.Proof. Let us assume that the produ
t states φ′ ⊗ ψ and φ2 ⊗ ψ belong to thekernel of ρ. Let A be an SL (3,C) transformation that brings e1, e2 ⊂ C3 to φ1and φ2. A little inspe
tion shows that Lemmas 1 and 2 of [107℄ 
an be appliedto ρ̃ ∶= (A⊗ 1)∗ ρ (A⊗ 1). Consequently, we see that either ρ is supported ona 3 × (n − 1) or smaller spa
e, or the assertion of Lemma 2 of [107℄ tells usthat ρ̃ = ρ1 +λ ∣e3 ⊗ ξ⟩ ⟨e3 ⊗ ξ∣ for some ξ ∈ Cn, and moreover, ρ1 is a PPT statesupported on a 3×(n − 1) or smaller subspa
e, with r (ρ1) = r (ρ)−1 and r (ρT1

1 ) =
r (ρT1)− 1. We have ρ = (A−1 ⊗ 1)∗ ρ̃ (A−1 ⊗ 1) = ρ′ + λ ∣φ′′′ ⊗ ξ⟩ ⟨φ′′′ ⊗ ξ∣, where
φ′′′ = A−1e3 and ρ′ = (A−1 ⊗ 1)∗ ρ1 (A−1 ⊗ 1). The states ρ′ and (ρ′)T1 still havetheir ranks redu
ed by one with respe
t to the ranks of ρ and ρT1 , respe
tively.The subspa
es on whi
h they are supported are of the same type as for ρ1,hen
e 3 × (n − 1) or smaller. The statement that ρ is not an edge state simplyfollows be
ause ∣φ′′′ ⊗ ξ⟩ ⟨φ′′′ ⊗ ξ∣ is in R (ρ) while its partial 
onjugation is in
R (ρT1).The following result redu
es a more general 
ase to the situation 
onsideredabove. However, this time we assume n = 3.Lemma 9.10. Let φ⊗ ψ ∈C3 ⊗C3 be an element of a PPT state ρ, a
ting onC3⊗C3. There 
annot exist a nonzero ve
tor φ⊗ψ′+φ′⊗ψ, with φ′ ≠ φ or ψ′ ≠ ψ,in the kernel of ρ, unless one of the following is true: i) ρ = ρ′ + λ ∣ζ ⊗ ξ⟩ ⟨ζ ⊗ ξ∣for λ > 0, ξ, ζ ∈C3 and ρ′ a PPT state supported on a 2× 3 or smaller subspa
ewith r (ρ′) = r (ρ) − 1 and r ((ρ′)T1) = r ((ρ)T1) − 1 or ii) ρ is supported on a
2 × 3 or smaller subspa
e itself.Proof. Assume that there is a state of the form φ⊗ψ′ +φ′⊗ψ in the kernel of ρ.This is equivalent to saying that ⟨φ⊗ψ′ + φ′ ⊗ ψ,ρ (φ⊗ ψ′ + φ′ ⊗ψ)⟩ = 0. The116



inner produ
t fa
torizes as
⟨φ⊗ψ′, ρ (φ⊗ ψ′)⟩+⟨φ⊗ψ′, ρ (φ′ ⊗ ψ)⟩+⟨φ′ ⊗ ψ,ρ (φ⊗ ψ′)⟩+⟨φ′ ⊗ ψ,ρ (φ′ ⊗ ψ)⟩The two fa
tors in the middle vanish a

ording to Lemma 9.8, while the tworemaining fa
tors are nonnegative as a 
onsequen
e of positivity of ρ. Therefore,the only possibility for the above expression to vanish is when ⟨φ⊗ψ′, ρ (φ⊗ ψ′)⟩ =
0 and ⟨φ′ ⊗ ψ,ρ (φ′ ⊗ ψ)⟩ = 0. This in turn means that ρ (φ′ ⊗ ψ) = 0 and
ρ (φ⊗ψ′) = 0. A

ording to our assumptions, at least one of these equalities isnontrivial (i.e. φ′ ≠ 0 or ψ′ ≠ 0). Lemma 9.9 
an be applied, and Lemma 9.10follows dire
tly.The importan
e of Lemma 9.10 is evident if we realize that the tangent spa
eto the Segre variety, or to the set of produ
t states at a point φ ⊗ ψ, 
onsistspre
isely of the ve
tors of the form 
onsidered above. We haveLemma 9.11. Elements of the tangent spa
e to the Segre variety, or to the setof produ
t ve
tors at a point φ⊗ψ, are of the form

φ⊗ ψ′ + φ′ ⊗ ψ, (9.2)with ψ′ and φ′ arbitrary.Proof. A heuristi
 proof may 
onsist in writing (φ + δφ) ⊗ (ψ + δψ) ≈ φ ⊗ ψ +
δφ ⊗ ψ + φ ⊗ δψ, where the approximate equality holds to the �rst order. Amore rigorous proof 
an be found in Example 5.21 of Se
tion 5.2, as well as inExample 14.16 of the textbook by Harris [117℄.Next, we spe
ify the rank of ρ to be 4 and keep the assumption that ρa
ts on C3 ⊗C3. Thus the kernel of ρ is of dimension 5, whi
h is the smallestnumber d su
h that a d-dimensional linear subspa
e must interse
t the set ofprodu
t ve
tors in C3 ⊗ C3, 
f. e.g. [160℄. Following Lemmas 9.10 and 9.11,we 
an show that the nonempty interse
tion is generi
 in the sense of Bezout'stheorem [117, Theorem 18.3℄ and thus it 
onsists of exa
tly six points.Lemma 9.12. Let ρ be a non-separable PPT state of rank 4 a
ting on C3⊗C3.The interse
tion between the respe
tive Segre variety and the �ve-dimensionalkernel of ρ is transverse at every point. There are exa
tly six produ
t ve
tors inthe kernel of ρ.Proof. Let us take φ ⊗ ψ ∈ Kerρ. As we mentioned above, su
h a ve
tor exists[160, 167℄ by a dimensionality argument for proje
tive varieties. We easily seefrom Lemma 9.11 that the dimension of the tangent spa
e Tφ⊗ψ (Σ2,2) to theSegre variety at φ⊗ψ is 5, and thus the proje
tive dimension is 4. Being moreexpli
it, any ve
tor of the form φ ⊗ ψ′ + φ′ ⊗ ψ 
an be written in the form
λφ⊗ψ +∑2

i=1 ξiφ⊗ψi +∑2
j=1 ζjφj ⊗ψ, where {φ,φ1, φ2} and {ψ,ψ1, ψ2} are twosets of three linearly independent ve
tors in C3 and xi, ζj are arbitrary 
omplex
oe�
ients. From Lemmas 9.10 and 9.11 we know that the only ve
tor in theinterse
tion of Kerρ and Tφ⊗ψ (Σ2,2) is φ ⊗ ψ itself. It must be so, be
ause117



otherwise we 
ould redu
e the rank of ρ by subtra
ting a proje
tion onto aprodu
t state. After the redu
tion, we would be left with a PPT state of rank
3. However, all su
h PPT states are separable a

ording to [107℄, and ρ wouldhave to be separable as well. The other option is that ρ 
ould be supportedon C2 ⊗C3 or even a less dimensional spa
e itself. But then it is well-knownthat ρ is separable as as 
onsequen
e of being PPT [18℄. In either 
ase, we geta 
ontradi
tion with the assumption that ρ is non-separable. Therefore, φ ⊗ ψmust be, up to a s
alar fa
tor, the only element of the interse
tion between Kerρand Tφ⊗ψ (Σ2,2). Consequently, the dimension of Kerρ + Tφ⊗ψ (Σ2,2) equals
5+5−1 = 9, while its proje
tive dimension is 9−1 = 8. This equals the proje
tivedimension of Tφ⊗ψ (P8), or simpler, the dimension of the 
omplex proje
tivespa
e P8. In other words, Kerρ and Tφ⊗ψ (Σ2,2) span Tφ⊗ψ (P8), whi
h isequivalent to saying that the interse
tion between Kerρ and the Segre variety istransverse at φ ⊗ ψ. Sin
e we did not make any additional assumptions about
φ⊗ψ apart from that it belongs to the interse
tion, we see that the interse
tionis transverse at every point. Therefore Bezout's theorem applies. The fa
t thatthere are exa
tly six points in the interse
tion follows be
ause the degree of theSegre variety Σ2,2 is six [117, Example 18.15℄.In summary, in the present se
tion we have shown that a non-separable rank
4 PPT state in a 3 × 3 system must have exa
tly six ve
tors in its kernel. Thisis in full agreement with an assertion of [168℄. It should be noti
ed that, as apart of the proof of the above lemma, we have shown that non-separable PPTstates of rank 4 in 3 × 3 systems are edge states. Thus, Lemmas 9.9 and 9.10
an be dire
tly applied. We will frequently use them in the following se
tion.9.5 Produ
t ve
tors in the kernel must be a gUPBWe already know that the number of produ
t ve
tors in the kernel of a rank 4non-separable PPT state of a 3 × 3 system is six. In the following, we dis
ussmore spe
i�
 properties of the set of six produ
t ve
tors. Let us denote themwith φi⊗ψi, i = 1,2, . . . ,6. It turns out that, up to lo
al equivalen
e, �ve of them
an always be brought to a spe
ial form, whi
h has only four real parameters, thenumbers s1, . . . , s4 introdu
ed in [157℄. It then follows that the ve
tors φi ⊗ψi,if they belong to the kernel of a rank 4 PPT state, must span a �ve-dimensionalsubspa
e. Thus they span the kernel.In order to prove our assertion, �rst observe that φi ≠ φj for i ≠ j (
f. Lemmas9.11 & 9.12), and thus they must span at least a two-dimensional subspa
e ofC3. Similarly for the ψ's. Let us try to assume �rst that one of the sets {φi}6i=1and {ψj}6j=1 spans a two-dimensional subspa
e. We may, for example, try toassume this about {φi}6i=1. Up to PSL (3,C) transformations, we have

[ φ1 φ2 φ3 φ4 φ5 φ6 ] =
⎡⎢⎢⎢⎢⎢⎣
1 0 1 1 1 1

0 1 1 p q r

0 0 0 0 0 0

⎤
⎥
⎥
⎥
⎥
⎥⎦
, (9.3)118



where p, q, r are all di�erent and di�erent from 0 and 1. When writing (9.3),we used the fa
t that there is no pair of identi
al ve
tors in {φi}6i=1. Up to lo
altransformations, we have ψ1 = e1 and ψ2 = e2. As for the other ve
tors ψ, we usethe following notation, ψi = [ ψ1i ψ2i ψ3i ], i = 3,4,5,6. We also introdu
e
oordinates ωij for general ve
tors ω = ∑i,j ωijei ⊗ ej in C3 ⊗C3. Our aim isto show that there exists a linear 
ombination of the ve
tors φi ⊗ψi of the form
φ⊗ψ′ +φ′⊗ψ from Lemma 9.11. This will lead us to a 
ontradi
tion and showthat φi's 
annot be as in (9.3), and must span C3. An analogous 
on
lusion for
ψ's will be immediate.Let us �rst observe that ψ3i ≠ 0 for all i ∈ {3,4,5,6}. Otherwise, we wouldhave three produ
t ve
tors supported on span{e1, e2}⊗span{e1, e2}. Up to lo
alequivalen
e, they would be of the form e1 ⊗ e1, e2 ⊗ e2 and (e1 + e2)⊗ (e1 + e2).In su
h 
ase, e1 ⊗ e2 + e2 ⊗ e1 = (e1 + e2) ⊗ (e1 + e2) − e1 ⊗ e1 − e2 ⊗ e2 wouldbe in the kernel of ρ, whi
h 
ontradi
ts Lemma 9.10. Therefore we must have
ψ3i ≠ 0 for all i. Let us 
hoose α and β so that αψ33 + βpψ34 = 0. The ve
tor
αφ3 ⊗ ψ3 + βφ4 ⊗ φ4 has a vanishing 
oordinate ω23 = αψ33 + βpψ34 and a non-vanishing 
oordinate ω13 = αψ33 + βψ34 (remember that p ≠ 1). By subtra
ting
e2⊗e2 times αψ23+βpψ24, we 
an 
an
el the ω22 
oordinate, and similarly 
an
el
ω11 by subtra
ting αψ13+βψ14 times e1⊗e1. In the end, we see that a ve
tor ofthe form ω21e2⊗e1+ω

12e1⊗e2+ω
13e1⊗e3 with ω13 ≠ 0 is in the kernel of ρ. Butthis 
ontradi
ts Lemma 9.10. In summary, the ve
tors φi 
annot be brought tothe form (9.3), or in other words, they span C3. Obviously, the same is truefor the set {ψi}6i=1. A more 
areful analysis of the above argument leads toeven stronger 
on
lusions. Firstly, an assumption that there exist three ve
tors

φi ⊗ ψi supported on a 2 × 2 dimensional subspa
e lead us to a 
ontradi
tion.Therefore we have the followingLemma 9.13. Let {φi ⊗ψi}6i=1 be the six produ
t ve
tors in the kernel of a non-separable PPT state of rank 4 in the 3 × 3 
ase. For any triple {φij ⊗ ψij}3j=1 ⊂{φi ⊗ψi}6i=1, at least one of the sets of ve
tors {φij}3j=1 or {ψij}3j=1 spans C3.Moreover, we only needed four produ
t ve
tors with φ's as in (9.3) to arriveat a 
ontradi
tion with Lemma 9.10. As a 
onsequen
e, we haveLemma 9.14. For any quadruple {φij ⊗ψij}4j=1 ⊂ {φi ⊗ ψi}6i=1, both the sets ofve
tors {φij}4j=1 and {ψij}4j=1 span C3.As an immediate 
onsequen
e of Lemma 9.13, there exists a set of threelinearly independent ve
tors in {φi}6i=1. With no loss of generality, we mayassume that {φ1, φ2, φ6} is a linearly independent set. After a PSL (3,C) trans-formation, φ1 = e1, φ2 = e2 and φ6 = e3. There are in prin
iple two possibilities
on
erning the remaining ve
tors φ3, φ4 and φ5. Either one of them is of theform [ x y z ] with xyz ≠ 0, or all of them have exa
tly one 
oordinateequal to zero. Two vanishing 
oordinates in a single ve
tor 
annot o

ur be-
ause there is no pair of identi
al ve
tors among φ1, . . . , φ6. Moreover, a

ording119



to Lemma 9.14, the zeros must o

ur in di�erent pla
es in φ3, φ4 and φ5. Upto PSL (3,C) transformations and permuting the ve
tors, we may assume that
φ3 = [ x 0 1 ], φ4 = [ 0 1 z ], φ5 = [ 1 y 0 ] with x, y, z all di�erentfrom 0. But then, write the 
oordinate matrix for {φ1, φ2, φ3, φ4},

[ φ1 φ2 φ3 φ4 ] =
⎡⎢⎢⎢⎢⎢⎣
1 0 x 0

0 1 0 1

0 0 1 z

⎤
⎥
⎥
⎥
⎥
⎥⎦
. (9.4)It is easy to 
he
k that all the 3 × 3 minors in (9.4) are non-vanishing. In otherwords, any triple of ve
tors in {φ1, φ2, φ3, φ4} spans C3. The 
orrespondingve
tors ψ1, ψ2, ψ3 and ψ4 may or may not have all triples linearly independent.It is not di�
ult to show that if all the triples span C3, we 
an simultaneously,by using a PSL (3,C) × PSL (3,C) transformation, bring {φ1, φ2, φ3, φ4} and{ψ1, ψ2, ψ3, ψ4} to the form

[ φ1 φ2 φ3 φ4 ] = [ ψ1 ψ2 ψ3 ψ4 ] =
⎡⎢⎢⎢⎢⎢⎣
1 0 0 1

0 1 0 1

0 0 1 1

⎤
⎥
⎥
⎥
⎥
⎥⎦
. (9.5)By adding a �fth produ
t ve
tor, say φ5⊗ψ5, we get, up to lo
al transformationand relabelling the ve
tors φi ⊗ ψi,

[ φ1 φ2 φ3 φ4 φ5
ψ1 ψ2 ψ3 ψ4 ψ5

] =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 1 1

0 1 0 1 p

0 0 1 1 q

1 0 0 1 1

0 1 0 1 r

0 0 1 1 s

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥⎦
, (9.6)where p, q, r, s are some 
omplex numbers. We should remark that the possibilityto have 1 in the �rst 
oordinate of φ5 and ψ5 follows be
ause there must exist

i ∈ {1,2,3} su
h that φi5ψi5 ≠ 0, where φi5 and ψi5 denote the i-th 
oordinateof φ and ψ, respe
tively. Otherwise, φ5 or ψ5 would have to be proportional to
ei for some i ∈ {1,2,3}.If not all triples in {ψ1, ψ2, ψ3, ψ4} are linearly independent, it is still possible,a

ording to Lemma 9.14, to �nd a linearly independent triple among them.Without loss of generality, we may assume that the triple is {ψ1, ψ2, ψ3}. By anidenti
al argument as for the φ's, we know that there is a ve
tor ψi, i ∈ {5,6}su
h that {ψ1, ψ2, ψ3, ψi} have all triples linearly independent. Without loss ofgenerality, we may assume that φi = φ5. This time, a lo
al transformation andpossible relabelling brings the produ
t ve
tors φi ⊗ ψi with i = 1,2, . . . ,5 to theform

[ φ1 φ2 φ3 φ4 φ5
ψ1 ψ2 ψ3 ψ4 ψ5

] =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 1 1

0 1 0 1 p

0 0 1 1 q

1 0 0 1 1

0 1 0 r 1

0 0 1 s 1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥⎦
. (9.7)120



To make a �nal tou
h to this se
tion, we need to show that produ
t ve
torsof the form (9.6) or (9.7) are linearly independent if no two of them 
oin
ide,and thus they span the �ve-dimensional kernel of ρ. We will also show that they
onstitute a minimal gUPB, and that the parameters p, q, r, s have to be realwhen the ve
tors are in the kernel of a PPT state.Let us use [ ω11 ω12 ω13 ω21 ω22 ω23 ω31 ω32 ω33 ] to denoteve
tors ω =∑i,j ωijei ⊗ ej in C3 ⊗C3. In the 
ase (9.6), we have
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

φ1 ⊗ ψ1

φ2 ⊗ ψ2

φ3 ⊗ ψ3

φ4 ⊗ ψ4

φ5 ⊗ ψ5

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 1

1 1 1 1 1 1 1 1 1

1 r s p pr ps q qr qs

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥⎦
. (9.8)In the 
ase (9.7), the 
oordinates of the produ
t ve
tors are the following,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

φ1 ⊗ ψ1

φ2 ⊗ ψ2

φ3 ⊗ ψ3

φ4 ⊗ ψ4

φ5 ⊗ ψ5

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 1

1 r s 1 r s 1 r s

1 1 1 p p p q q q

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥⎦
. (9.9)It is an elementary exer
ise to 
he
k that the matri
es on the right-hand side of(9.8) and (9.9) are of rank 5 for all 
hoi
es of p, q, r, s, with the only ex
eptionof p = q = r = s = 1. But the last possibility is ex
luded be
ause it implies

φ4 ⊗ψ4 = φ5 ⊗ψ5.Next, we 
an show that the ve
tors φi ⊗ ψi with i = 1,2, . . . ,5, 
hosen asabove, 
onstitute a general Unextendible Produ
t Basis. In order to prove it,let us �rst show that the rank of ρT1 has to be 4.Proposition 9.15. Let ρ be a non-separable PPT state of rank 4 a
ting onC3 ⊗C3. The rank of the partially transposed state ρT1 is also 4.Proof. If ρ is non-separable, we know by the above argument that the produ
tve
tors {φi ⊗ψi}6i=1 in the kernel of ρ span a �ve-dimensional subspa
e, whi
his the kernel itself. Moreover, �ve of them are, up to lo
al transformations, ofthe form (9.6) or (9.7). But this implies that the 
orresponding produ
t ve
torsin the kernel of ρT1 , whi
h are φ∗i ⊗ ψi a

ording to Lemma 9.7, 
an also bebrought to the form (9.6) or (9.7). To be more expli
it, if a lo
al transformation
A ⊗B brings the ve
tors φi ⊗ ψi with i = 1,2, . . . ,5 to the form (9.6) or (9.7),
A∗⊗B does the same to the partial 
onjugations φ∗i ⊗ψi. The only di�eren
e isthat p and q 
hange into p∗ and q∗ in (9.6) or (9.7). But this does not 
hangethe 
on
lusion about the dimensionality of the subspa
e spanned by ve
tors ofthe form (9.6) or (9.7). As a 
onsequen
e, the produ
t ve
tors in the kernel of
ρT1 span at least a �ve-dimensional subspa
e. Thus the kernel of ρT1 is at least�ve-dimensional. If it had higher dimension, the rank of ρT1 would be lower orequal 3, whi
h is, a

ording to [107℄, impossible for non-separable ρ. Therefore,the dimension of the kernel equals 5, and the rank of ρT1 is 4.121



There exist separable states ρ of rank 4 in 3×3 systems that have the rank of
ρT1 di�erent from 4. However, our next proposition shows that if ρ is supportedon C3 ⊗C3 and it 
annot be written as ρ′ + λ ∣ζ ⊗ ξ⟩ ⟨ζ ⊗ ξ∣ with λ > 0 and ρ′supported on a 2 × 2 subspa
e, the rank of ρT1 is also 4 (
f. Figure 4 in [168℄,whi
h we reprodu
e here as Table 9.1).

(m,n) m
2 + n2 −N2 dimF (rA, rB) #pv [Im ρ℄ #pv [Ker ρ℄(9,9) 81 81 (3,3) ∞/9 0(9,8) 64 64 (3,3) ∞/9 0(9,7) 49 49 (3,3) ∞/9 0(8,8) 47 47 (3,3) ∞/8 0(9,6) 36 36 (3,3) ∞/9 0(8,7) 32 32 (3,3) ∞/8 0(8,6) 19 19 (3,3) ∞/8 0(7,7) 17 17 (3,3) ∞/7 0(8,5) 8 8 (3,3) ∞/8 0(7,6) 4 4 (3,3) ∞/7 0(7,5) -7 1 (3,3) ∞/7 0(6,6) -9 1 (3,3) ∞/6 0(6,5) -20 1 (3,3) ∞/6 0(5,5) -31 1 (3,3) 6/5 0(4,4) -49 1 (3,3) 0 6/5(3,3) -63 3 (3,3) 3/3 ∞/6(2,2) -73 2 (2,2) 2/2 ∞/7(1,1) -79 1 (1,1) 1/1 ∞/8Table 9.1: Numeri
al results for 3 × 3 PPT states ρ. The numbers m and ndenote the ranks of ρT1 and ρT2 , resp. The number N = 9 is the dimension ofthe spa
e on whi
h the states a
t. The number dimF is the dimension of thefa
e of the 
one of PPT states on whi
h the given state lives. The symbols rAand rB denote the ranks of the partially tra
ed states TrB ρ and TrA ρ. The�fth and the sixth 
olumn list the number of produ
t ve
tors in the image andthe kernel of ρ.Proposition 9.16. Let ρ be a separable state of rank 4 supported on C3 ⊗C3,whi
h 
annot be written as ρ′ + λ ∣ζ ⊗ ξ⟩ ⟨ζ ⊗ ξ∣ with λ > 0 and ρ′ supported on a

2 × 2 subspa
e of C3 ⊗C3. The rank of ρT1 is also 4.Proof. First, we should remark that r (ρT1) = r (ρT2). This fa
t will be impor-tant for some parts of the proof, although never expli
itly referred to. The mainidea that we are going to use is that the argument pre
eding formulas (9.6) and(9.7) works for separable states as well, provided that they 
annot be redu
eda

ording to Lemma 9.10. In other words, the argument works when the kernelof a PPT state in question does interse
t the Segre variety in a transverse way,irrespe
tively of the state being entangled or not. Thus, if a redu
tion a

ord-ing to Lemma 9.10 is not possible for a separable state ρ, we have ve
tors ofthe form (9.6) or (9.7) in Kerρ, and they span a �ve-dimensional spa
e. Thisis also the dimensionality of the subspa
e spanned by their partial 
onjugates,122



whi
h are in KerρT1 . Therefore, the rank of ρT1 is not bigger than 4. If itwas less than four, the interse
tion between KerρT1 and the Segre variety Σ2,2would be more than zero-dimensional, a

ording to the Proje
tive DimensionTheorem [118, Theorem 7.2℄. But this 
ontradi
ts the fa
t that there are only a�nite number of produ
t ve
tors in KerρT1 (equal to φ∗⊗ψ for all φ⊗ψ ∈ Kerρ).In summary, the rank of ρT1 has to be 4 when Kerρ interse
ts the Segre varietytransversely. If not, we know from Lemmas and 9.10 and 9.11 that there aretwo options:i) it is possible to write ρ as ρ′ + λ ∣ζ ⊗ ξ⟩ ⟨ζ ⊗ ξ∣, where λ and ρ′ is a rank
3 PPT state supported on a 2 × 3 or smaller subspa
e of C3 ⊗ C3, with
r (ρ′) = 3 and r ((ρ′)T1) = d − 1,ii) ρ is supported on a 2 × 3 or smaller subspa
e itself.Option ii) is ex
luded be
ause of the assumption of ρ supported on C3 ⊗C3.Our aim in the following will be to show that r (ρ′) = r ((ρ′)T1) unless ρ′ issupported on a 2×2 subspa
e, whi
h is pre
isely the se
ond possibility we allowin the proposition. First, observe that if ρ′ is supported on a 2× 3 subspa
e, we
an use an analogue of Lemma 9.10. Either we have ρ′ = ρ′′ +λ′ ∣ζ′ ⊗ ξ′⟩ ⟨ζ′ ⊗ ξ′∣where λ′ > 0 and ρ′′ is supported on a 2 × 2, 1 × 3 or 1 × 2 subspa
e, r (ρ′′) = 2and r ((ρ′′)T1) = r ((ρ′)T1) − 1, or Kerρ′ interse
ts the respe
tive Segre variety

Σ1,2 transversely. In the latter 
ase, by Bezout's Theorem the 3-dimensionalkernel of ρ′ has pre
isely three produ
t ve
tors in it. A
tually, we 
an repeatthe argument pre
eding Lemmas 9.13 and 9.14 to 
on
lude that the produ
tve
tors in Kerρ′ have to be lo
ally equivalent to
[ φ1 φ2 φ3
ψ1 ψ2 ψ3

] =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 1

0 1 1

1 0 0

0 1 0

0 0 1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥⎦
. (9.10)Obviously, these ve
tors span the kernel. We see that there are, within the

2×3 subspa
e, only three produ
t ve
tors in R (ρ′) = (Kerρ′)�. They are lo
allyequivalent to
[ ζ1 ζ2 ζ3
ξ1 ξ2 ξ3

] =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 1

1 0 −1

1 0 0

0 1 0

0 0 1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥⎦
. (9.11)Sin
e ρ′ is separable and of rank 3, it must be lo
ally equivalent to a 
onvexsum of proje
tions onto the ve
tors ζi ⊗ ξi in (9.11), whi
h implies that ρ̃T1is an analogous sum of proje
tions onto ζ∗i ⊗ ξi. But ζ∗i ⊗ ξi = ζi ⊗ ξi if theprodu
t ve
tors are as in (9.11). Therefore r (ρ′) = r ((ρ′)T1), whi
h implies

r (ρ) = r (ρT1), as expe
ted. This proves our assertion for ρ′ supported on a123



2 × 3 subspa
e with Kerρ′ that interse
ts the 
orresponding Segre variety Σ1,2transversely. For the other nontrivial 
ases, we 
an have ρ′′ separable and ofrank 2, supported on a 2 × 2 subspa
e. There is also the trivial 
ase of ρ′′supported on a 1× 2 or 1× 3 subspa
e, in whi
h the equality r (ρ′′) = r ((ρ′′)T1)
learly holds, and it implies equality of ranks of ρ and ρT1 .In the 
ase of ρ′′ supported on a 2×2 subspa
e, we 
an repeat the argumentwith transverse interse
tions. Either ρ′′ 
an be redu
ed on
e again, in whi
h 
aseit turns out to be equal to λ′′′ ∣ζ′′′ ⊗ ξ′′′⟩ ⟨ζ′′′ ⊗ ξ′′′∣ + λ′′ ∣ζ′′ ⊗ ξ′′⟩ ⟨ζ′′ ⊗ ξ′′∣ with
λ′′ > 0, λ′′′ > 0 and ζ′′′⊗ξ′′′ not proportional to ζ′′⊗ξ′′, or Kerρ′′ must interse
tthe respe
tive Segre variety Σ1,1 in a transverse way. The �rst possibility 
learlygives us r (ρ′′) = 2 = r ((ρ′′)T1). The latter implies, by Bezout's Theorem, thatthere are exa
tly two produ
t ve
tors in Kerρ′′. Similarly as for (9.10), we 
anprove that the two produ
t ve
tors must be lo
ally equivalent to e1 ⊗ e1 and
e2 ⊗ e2. Clearly, they span the kernel of ρ′′ and there are only two produ
tve
tors, lo
ally equivalent to e1 ⊗ e2 and e2 ⊗ e1, in R (ρ′′). But ρ′′ is separableand of rank 2. Therefore it must be lo
ally equivalent to a 
onvex sum ofproje
tions onto these two ve
tors. A

ordingly, (ρ′′)T1 is lo
ally equivalent toa sum of two proje
tions onto produ
t ve
tors, whi
h are e∗1 ⊗ e2 and e∗2 ⊗ e1,a
tually equal to e1 ⊗ e2 and e2 ⊗ e1. This implies r (ρ′′) = r ((ρ′′)T1) and theequality between the ranks of ρ and ρT1 follows.Remark 9.17. The two propositions above explain why PPT states of ranks(4, n), n ≠ 4 should not be expe
ted to appear in the upper part of Table IIin [168℄, whi
h we reprodu
ed above as Table 9.1. They do exist, but they arealways separable and of a rather spe
ial form.It is useful to formulate the followingCorollary 9.18. All rank 4 non-separable PPT states ρ in 3 × 3 systems areedge states.Proof. If some non-separable ρ of rank 4 had a produ
t ve
tor φ ⊗ ψ in itsrange, and the partial 
onjugated ve
tor φ∗ ⊗ ψ was in the range of ρT1 , we
ould diminish the rank of ρ or ρT1 by subtra
ting λ ∣φ⊗ ψ⟩ ⟨φ⊗ ψ∣, where

λ =min{⟨φ⊗ψ,ρ−1 (φ⊗ψ)⟩−1 , ⟨φ⊗ψ, (ρT1)−1 (φ⊗ψ)⟩−1} , (9.12)
f. [165℄. In su
h 
ase, ρ 
ould be written as ρ = ρ′ + λ ∣φ⊗ ψ⟩ ⟨φ⊗ψ∣ with ρ′PPT and of rank 3 or with ρT1 of rank 3. But this implies, by [107℄, that ρ′would have to be separable. This further implies separability of ρ, whi
h is a
ontradi
tion.At this point, we 
an easily prove that the ve
tors φi ⊗ψi in the kernel of anon-separable ρ of rank 4, 
hosen as in (9.6) or (9.7), 
onstitute a generalizedUnextendible Produ
t Basis. If there was a produ
t ve
tor φ ⊗ ψ orthogonalto all of them, it would be an element of the range of ρ. From the proof of124



Proposition 9.15 we know that the partially 
onjugated ve
tors φ∗i ⊗ψi span thekernel of ρT1 . Sin
e ⟨φ⊗ ψ,φi ⊗ψi⟩ = 0 = ⟨φ∗ ⊗ψ,φ∗i ⊗ ψi⟩ for all i, we see that
φ∗ ⊗ ψ is in the range of ρT1 , (KerρT1)�. Therefore we have a produ
t ve
tor
φ ⊗ ψ in the range of ρ su
h that its partial 
onjugation is in the range ρT1 .In other words, ρ is not an edge state. But this 
ontradi
ts Corollary 9.18 andtherefore 
annot happen. In this way, we have proved the following.Proposition 9.19. Let ρ be a rank 4 non-separable PPT state in a 3×3 system.The six ve
tors in the kernel of ρ 
onstitute a generalized UPB. There is a subsetof �ve of them that 
onstitutes a minimal gUPB in the sense of Proposition 9.4.Proof. Most of the proof has already been provided above. We only need to
omment on the fa
t that �ve of the produ
t ve
tors 
onstitute a minimal gUPB.It must be so be
ause the �ve ve
tors we brought to the form (9.6) or (9.7) spanthe kernel of ρ, and the orthogonal 
omplement to the kernel has no produ
tve
tor in it. Thus, the �ve ve
tors are a gUPB of Kerρ, whi
h is minimala

ording to Proposition 9.4, be
ause m + n − 1 = 5 for m = n = 3.By Proposition 9.4 we know that a minimal gUPB {φi ⊗ψi}6i=1 has theproperty that all triples in {φi}6i=1 and in {ψi}6i=1 are linearly independent. Insu
h 
ase, the forms (9.6) and (9.7) are lo
ally equivalent, and we may 
hooseto work with only one of them. In the sequel, we prefer to assume the form (9.6)of the produ
t ve
tors, whi
h is in agreement with the 
onvention used in [166℄.Our next step is to prove that the parameters p, q, r and s in (9.6) must be realif the 
orresponding produ
t ve
tors belong to the kernel of a rank 4 PPT statein the 3 × 3 
ase. This is not of mu
h use here, but will prove to be importantin Se
tion 9.7.We know from Lemma 9.12 that there are exa
tly six produ
t ve
tors in thekernel of ρ, while we have only �ve of them in (9.6), and we know that theyspan the kernel. Consequently, the sixth ve
tor is a linear 
ombination of theother �ve ones,

φ6 ⊗ ψ6 =
5

∑
i=1

λiφi ⊗ ψi (9.13)Note that expli
it formulas for the sixth ve
tor 
an be found in [166, Se
tion 5.2℄.Interestingly, sin
e φ6⊗ψ6 ∈ Kerρ, we know from Lemma 9.8 that φ∗6⊗ψ6 ∈ Kerρis in the kernel of ρT1 . However, the ve
tors φ∗i ⊗ ψi with i = 1,2, . . . ,5 are alsothere and moreover, sin
e they are, up to lo
al equivalen
e, of the form (9.6)with p and q 
omplex 
onjugated, we already know that they span KerρT1 . Thusthe sixth partially 
onjugated ve
tor must be a linear 
ombination of the former�ve,
φ∗6 ⊗ψ6 =

5

∑
i=1

ξiφ
∗

i ⊗ψi, (9.14)where the 
oe�
ients ξi are in prin
iple not related to the λi's in (9.13). How-ever, we 
an already see at this point that it may be very di�
ult to simulta-neously satisfy equations (9.13) and (9.14), if we do not assume that φi = φ∗i125



for all i. In the latter 
ase, one 
an obviously 
hoose ξi = λi. Our aim in thefollowing will be to show that ξi = λi is the only possible 
hoi
e. By proje
ting(9.13) onto the �rst, the se
ond and the third 
oordinate in the �rst subsystem,we get
λ1ψ1 + λ4ψ4 + λ5ψ5 = φ16 ψ6, (9.15)
λ2ψ2 + λ4ψ4 + pλ5ψ5 = φ26 ψ6, (9.16)
λ3ψ3 + λ4ψ4 + qλ5ψ5 = φ36 ψ6, (9.17)where {φi6}3i=1 are 
oordinates of φ6. Similarly, from (9.14) we get
ξ1ψ1 + ξ4ψ4 + ξ5ψ5 = φ∗16 ψ6, (9.18)

ξ2ψ2 + ξ4ψ4 + p
∗ξ5ψ5 = φ∗26 ψ6, (9.19)

ξ3ψ3 + ξ4ψ4 + q
∗ξ5ψ5 = φ∗36 ψ6. (9.20)Let us note that the triples {ψ1, ψ4, ψ5}, {ψ2, ψ4, ψ5}, {ψ3, ψ4, ψ5} all 
onsist oflinearly independent ve
tors, a

ording to Proposition 9.19. This implies thatea
h of the formulas (9.15)�(9.20) gives exa
tly one solution for the 
oe�
ients

λi or ξi whi
h it 
ontains. For one of the 
onsequen
es, all the 
oe�
ients ψi6must be non-vanishing. Two of them 
annot vanish, be
ause ψ6 proportional toany of ψi with i = 1,2,3 would 
ontradi
t φ6 ⊗ ψ6 ≠ φi ⊗ ψi or Lemma 9.9. Tosee this, let us assume that one of them vanishes, e.g. φ36 = 0. In su
h 
ase,equation (9.17) implies λ3 = λ4 = λ5 = 0, where we used the fa
t that q ≠ 0.Hen
e (9.15) and (9.16) redu
e to φ16ψ6 = λ1ψ1 and φ26ψ6 = λ2ψ2. But neitherof these equalities 
an hold, sin
e φ16 ≠ 0 and φ26 ≠ 0, while ψ6 proportionalto ψ1 or ψ2 
ontradi
ts Lemma 9.9. Thus our assumption φ36 = 0 must havebeen false. By repeating the same argument for φ16 and φ26, we arrive at
φ16φ26φ36 ≠ 0. Let us also noti
e that ne
essarily λ4 ≠ 0 and ξ4 ≠ 0. We 
annothave, for example ξ1ψ1 + ξ5ψ5 = φ∗16ψ6 and ξ2ψ2 + p

∗ξ5ψ5 = φ∗26ψ6 sin
e the onlyve
tor in the interse
tion of span{ψ1, ψ5} and span{ψ2, ψ5} is ψ5, and we knowthat ψ6 ≠ ψ5 by Lemma 9.9. In a similar way, one obtains λ5 ≠ 0 and ξ5 ≠ 0.With su
h amount of knowledge, we 
an prove the expe
ted result.Proposition 9.20. Let φi ⊗ψi for i = 1,2, . . . ,5 be produ
t ve
tors of the form(9.6) in the kernel of a non-separable PPT state of rank four, a
ting on C3⊗C3.The parameters p, q, r and s must ne
essarily be real.Proof. By dividing (9.15) by φ16 and (9.18) by φ∗16, whi
h is possible a

ordingto φ16 ≠ 0, we get
λ1

φ16
ψ1 +

λ4

φ16
ψ4 +

λ5

φ16
ψ5 = ψ6 = ξ1

φ∗16
ψ1 +

ξ4

φ∗16
ψ4 +

ξ5

φ∗16
ψ5. (9.21)Sin
e {ψ1, ψ4, ψ5} is a linearly independent triple, the above equality implies

λ1/φ16 = ξ1/φ∗16, λ4/φ16 = ξ4/φ∗16 and λ5/φ16 = ξ5/φ∗16. In a similar way, from(9.16) and (9.19) we 
an get λ2/φ26 = ξ2/φ∗26, λ4/φ26 = ξ4/φ∗26 and pλ5/φ26 =126



p∗ξ5/φ∗26, whereas (9.17) and (9.20) give us λ2/φ36 = ξ2/φ∗36, λ4/φ36 = ξ4/φ∗36and qλ5/φ36 = q∗ξ5/φ∗36. From the equalities involving λ4 and ξ4, we get
φ16

φ∗16
= φ26
φ∗26
= φ36
φ∗36

. (9.22)Together with λ5/φ16 = ξ5/φ∗16, the above equations give us λ5/φ26 = ξ5/φ∗26 and
λ5/φ36 = ξ5/φ∗36. But

( λ5
φ26
= ξ5

φ∗26
∧
pλ5

φ26
= p

∗ξ5

φ∗26
) ⇒ p = p∗. (9.23)In a similar way, from λ5/φ36 = ξ5/φ∗36 and qλ5/φ36 = q∗ξ5/φ∗36 we 
an get

q = q∗.9.6 An equivalen
e between generalized andorthonormal Unextendible Produ
t BasesIn the following, we dis
uss item 4. of the list given in Se
tion 9.3. Let us startwith a set of �ve ve
tors in C3,
[ φ1 φ2 φ3 φ4 φ5 ] =

⎡⎢⎢⎢⎢⎢⎣
φ11 φ12 φ13 φ14 φ15
φ21 φ22 φ23 φ24 φ25
φ31 φ32 φ33 φ34 φ35

⎤
⎥
⎥
⎥
⎥
⎥⎦
, (9.24)and assume that any three of them are linearly independent, as in Proposition9.19. For the moment, we do not require the ve
tors in (9.24) to be equal to

φ1, . . . , φ5 in (9.6), but our ultimate goal is to apply the results we are goingto obtain to (9.6). PSL (3,C) transformations of the above set 
orrespond tothe multipli
ation of the 3 × 5 matrix in (9.24) from the left by an element ofSL (3,C) and to the multipli
ation of the 
olumns of (9.24) by arbitrary non-zero s
alar fa
tors. It is 
lear that we 
an transform (9.24) by a PSL (3,C)transformation to the following form,
⎡⎢⎢⎢⎢⎢⎣
1 0 φ′13 φ′14 φ′15
0 1 φ′23 φ′24 φ′25
0 0 φ′33 φ′34 φ′35

⎤
⎥
⎥
⎥
⎥
⎥⎦
. (9.25)By another PSL (3,C) transformation, we get

⎡⎢⎢⎢⎢⎢⎢⎣
1 0 0

0 1 −
φ′
23

φ′
33

0 0 1

⎤
⎥
⎥
⎥
⎥
⎥
⎥⎦
⎡⎢⎢⎢⎢⎢⎣
1 0 φ′13 φ′14 φ′15
0 1 φ′23 φ′24 φ′25
0 0 φ′33 φ′34 φ′35

⎤
⎥
⎥
⎥
⎥
⎥⎦
=
⎡⎢⎢⎢⎢⎢⎣
1 0 φ′13 φ′′14 φ′′15
0 1 0 φ′′24 φ′′25
0 0 φ′33 φ′′34 φ′′35

⎤
⎥
⎥
⎥
⎥
⎥⎦
.(9.26)We should remark that the matrix we multiply with from the left is well-de�ned,sin
e φ′33 ≠ 0 a

ording to the assumption about linear independen
e of triples.127



Let us transform on
e again, in the following way,
⎡⎢⎢⎢⎢⎢⎢⎣
1 0 −

φ′′
15

φ′′
35

0 1 0

0 0 1

⎤
⎥
⎥
⎥
⎥
⎥
⎥⎦
⎡⎢⎢⎢⎢⎢⎣
1 0 φ′13 φ′′14 φ′′15
0 1 0 φ′′24 φ′′25
0 0 φ′33 φ′′34 φ′′35

⎤
⎥
⎥
⎥
⎥
⎥⎦
=
⎡⎢⎢⎢⎢⎢⎣
1 0 φ′13 φ′′′14 0

0 1 0 φ′′′24 φ′′25
0 0 φ′33 φ′′′34 φ′′35

⎤
⎥
⎥
⎥
⎥
⎥⎦
.(9.27)This is again possible be
ause φ′′35 ≠ 0 a

ording to our assumptions.In a similar way as before, we see that φ′′24 ≠ 0 and φ′′35 ≠ 0. If we multiplythe fourth 
olumn by 1/φ′′′24 and the �fth by 1/φ′′35, the above transforms to

⎡⎢⎢⎢⎢⎢⎣
1 0 x y 0

0 1 0 1 z

0 0 t u 1

⎤
⎥
⎥
⎥
⎥
⎥⎦
, (9.28)where we introdu
ed the notation x ∶= φ′13, t ∶= φ′33, y ∶= φ′′′14/φ′′24, u ∶= φ′′′34/φ′′24,

z ∶= φ′′25/φ′′35. It is quite straightforward to see that all the 
oe�
ients x, y, z, t, uhave to be di�erent from zero a

ording to the independent triples assumption.Now, introdu
e the following invariants [157℄,
s1 = −

∣ φ1 φ2 φ4 ∣ ⋅ ∣ φ1 φ3 φ5 ∣∣ φ1 φ2 φ5 ∣ ⋅ ∣ φ1 φ3 φ4 ∣ , (9.29)
s2 = −

∣ φ1 φ2 φ3 ∣ ⋅ ∣ φ2 φ4 φ5 ∣∣ φ1 φ2 φ4 ∣ ⋅ ∣ φ2 φ3 φ5 ∣ . (9.30)The numbers s1, s2 are indeed invariant. They do not 
hange under the family ofPSL (3,C) transformations we were using in the 
onse
utive steps (9.24)�(9.28).Thus we 
an substitute⎡⎢⎢⎢⎢⎢⎣
φ11 φ12 φ13 φ14 φ15
φ21 φ22 φ23 φ24 φ25
φ31 φ32 φ33 φ34 φ35

⎤
⎥
⎥
⎥
⎥
⎥⎦
→
⎡⎢⎢⎢⎢⎢⎣
1 0 x y 0

0 1 0 1 z

0 0 t u 1

⎤
⎥
⎥
⎥
⎥
⎥⎦
. (9.31)in the above formulas for s1 and s2. In this way, we 
an qui
kly 
al
ulate thevalues of the invariants,

s1 = −uz and s2 = − ty
ux
. (9.32)Now, impose the 
onditions s1 > 0 and s2 > 0. From the �rst one, we 
learly get

u = −rz∗, where r is a positive real number. Thus, we have the ve
tors
⎡⎢⎢⎢⎢⎢⎣
1 0 x y 0

0 1 0 1 z

0 0 t −rz∗ 1

⎤
⎥
⎥
⎥
⎥
⎥⎦
. (9.33)Next, let us multiply from the left by a diagonal matrix diag(1,√√r′,1/√√r′),as well as multiply the se
ond 
olumn by 1/√√r′, the fourth by 1/√√r′ and128



the �fth by √√r′, where r′ ∶= rz∗/z and √ζ stands for the square root of ζ ∈Cwith the argument in [0, π). Under su
h PSL (3,C) transformation the ve
tors(9.33) 
hange into ⎡⎢⎢⎢⎢⎢⎣
1 0 x′ y′ 0

0 1 0 1 z′

0 0 t′ −z′ 1

⎤
⎥
⎥
⎥
⎥
⎥⎦
, (9.34)where z′ is real and positive, and all the other parameters x′, y′, t′ are non-zero.Moreover, the 
onditon s2 > 0 transforms to

s2 = − ty
ux
= t
′y′

z′x′
> 0 ⇔ t′y′

x′
> 0, (9.35)simply by formula (9.32) and the invarian
e of s2. The last equivalen
e holds bystri
t positivity of z′. In our next step, we we are going to multiply (9.34) fromthe left by a diagonal matrix diag(ζ1, ζ2, ζ3), with ζ1, ζ2, ζ3 ∈ C and ζ1ζ2ζ3 = 1,and also multiply the 
onse
utive 
olumns, beginning with the �rst, by 1/ζ1,

1/ζ2, ζ4, ζ5 and ζ6, where ζ4ζ5ζ6 ≠ 0. Our aim is to 
hoose the numbers ζ1, . . . , ζ6in su
h a way that (9.34) transforms to a set of ve
tors with orthogonalityrelations given by a pentagon graph (that is, any two 
onse
utive ones areorthogonal, and these are the only orthogonality relations). We would like tohave ⎡⎢⎢⎢⎢⎢⎣
1 0 a b 0

0 1 0 1 a

0 0 b −a 1

⎤
⎥
⎥
⎥
⎥
⎥⎦
, (9.36)where a = z′ and b is a positive real number in pla
e of (9.34). Let us write thenumbers ζj as rjeiαj , where rj is a positive real number and αj ∈ R. In order toobtain (9.36) with a and b real and positive, 
ertain phase mat
hing 
onditionshave to be ful�lled. Let us 
onsider them �rst. If αy′ , αt′ , αx′ are su
h that

y′ = ry′eiαy′ , t′ = rt′eiαt′ and x′ = rx′eiαx′ with rx′ , rt′ and rx′ real and positive,
omplex phases mat
h 
orre
tly if and only if the following set of equations hold
α2 + α5 = 0 mod 2π, (9.37)
α3 + α6 = 0 mod 2π, (9.38)
α2 + α6 = 0 mod 2π, (9.39)
α3 + α5 = 0 mod 2π, (9.40)

α5 + α1 + αy′ = 0 mod 2π, (9.41)
α3 + α4 + αt′ = 0 mod 2π, (9.42)
α4 + α1 + αx′ = 0 mod 2π. (9.43)The requirement that ζ1ζ2ζ3 = 1 adds a 
ondition α1 + α2 + α3 = 0 mod 2π toequations (9.37)�(9.38). However, a substitution of the form

(α1, α2, α3) → (α1 + β,α2 + β,α3 + β) (α4, α5, α6)→ (α4 − β,α5 − β,α6 − β)with an appropriately 
hosen β 
an always bring α1+α2+α3 to zero and it has noe�e
t on (9.37)�(9.43). Therefore, as long as existen
e of solutions is in question,129



we may negle
t the additional 
ondition. It is easy to see that the relations(9.37)�(9.40) are ful�lled if and only if α2 = α3 = −α5 = −α6 = −α mod 2π forsome α ∈R. Thus the set of equations (9.37)�(9.43) are redu
ed to
⎡⎢⎢⎢⎢⎢⎣

1 1 0

−1 0 1

0 1 1

⎤
⎥
⎥
⎥
⎥
⎥⎦
⎡⎢⎢⎢⎢⎢⎣
α

α1

α4

⎤
⎥
⎥
⎥
⎥
⎥⎦
=
⎡⎢⎢⎢⎢⎢⎣
−αy′
−αt′
−αx′

⎤
⎥
⎥
⎥
⎥
⎥⎦
mod 2π. (9.44)Interestingly, the 3×3matrix in equation (9.44) has rank 2. A solution (α,α1, α4)exists if and only if

αy′ + αt′ − αx′ = 0 mod 2π. (9.45)But this is exa
tly the positivity 
ondition (9.35) for the invariant s2. Thus,if s2 > 0 in addition to s1 > 0, we 
an 
an
el the 
omplex phases, as in (9.36).The only remaining thing to do is to mat
h the modules, whi
h gives us thefollowing set of equations,
r2r5 = 1, r3r6 = 1, r2r6 = r3r5, r4r1rx′ = a, r5r1ry′ = r3r4rt′ . (9.46)There is also an equation r1r2r3 = 1, following from the requirement that

ζ1ζ2ζ3 = 1. As we see, there are �ve equations in (9.46), and the variables
r1, . . . , r6 are six in number. Therefore, one 
an expe
t a solution to exist. It
an easily be 
he
ked that the following, with r ∈ R, is a one-parameter familyof solutions,
r1 =
√

art′

rx′ry′
r, r2 = r, r3 = r, r4 =

√
art′

rx′ry′

1

r
, r5 = 1

r
, r6 = 1

r
. (9.47)By 
hoosing r = 1/ 6

√
art′/rx′ry′ we 
an satisfy the additional 
ondition r1r2r3 =

1. Thus we have proved that the positivity of the invariants s1, s2 guaranteesthat the family of �ve ve
tors (9.24) 
an be transformed by a PSL (3,C) trans-formation, without permuting them, to the form (9.36). Obviously, a 
onversestatement is also true, sin
e the values of s1 and s2 
al
ulated from (9.36) are
a2 and b2/a2, respe
tively. In this way we arrive at the followingProposition 9.21. A set of �ve ve
tors {αi}5i=1 ⊂ C3 with the property thatany triple of them is linearly independent, 
an be transformed by a PSL (3,C)transformation, without permuting them, to the form (9.36) with a and b real andpositive, if and only if the invariants s1 and s2, de�ned in (9.29), are positive.Let us note that any set of �ve ve
tors {v1, . . . , v5} ⊂ C3 with orthogonalityrelations ⟨vi, v(i+1) mod 5⟩ = 0 
an be transformed by PSL (3,C) transformationsto the form (9.36). A simple argument shows that they 
an be transformed to

[ v1 v2 v3 v4 v5 ] =
⎡⎢⎢⎢⎢⎢⎣
1 0 x y∗ 0

0 1 0 1 x

0 0 y −x∗ 1

⎤
⎥
⎥
⎥
⎥
⎥⎦
, (9.48)130



with x and y 
omplex. But sin
e s1 = ∣x∣2 > 0 and s2 = ∣y/x∣2 > 0 in theabove 
ase, the argument following equation (9.34) tells us that a PSL (3,C)transformation brings (9.48) to the form (9.36). As a 
onsequen
e, Proposition9.21 is a ne
essary and su�
ient 
riterion for a set of �ve ve
tors φ1, . . . , φ5 tobe SL (3,C) equivalent, without permuting them, to a set of ve
tors v1, . . . , v5with orthogonality relations ⟨vi, vi mod 5+1⟩ = 0.From [162℄ we know that orthogonal UPBs in the 3 × 3 
ase always have�ve elements, and they are, up to permutations, pre
isely the sets of prod-u
t ve
tors {vi ⊗wi}5i=1 with orthogonality relations ⟨vi, vi mod 5+1⟩ = 0 and⟨wj ,w(j+1) mod 5+1⟩ = 0. Consider the question, whether an arbitrary set of�ve ve
tors {φi ⊗ ψi}5i=1 ⊂ C3 ⊗ C3 with linearly independent triples 
an bebrought by PSL (3,C) ×PSL (3,C) transformations to su
h {vi ⊗wi}5i=1, with-out permuting the ve
tors. In other words, what are the ne
essary and su�
ient
onditions for φi ⊗ ψi's to be 
onvertible into vi ⊗ wi's with the orthogonality
onditions given above. By using Proposition 9.21, we 
an already deal with thequestion about φi's being 
onvertible into vi's. Namely, an PSL (3,C) transfor-mation on the �rst subsystem 
an bring the ve
tors {φi}5i=1, without permutingthem, to {vi}5i=1 with ⟨vi, vi mod 5+1⟩ = 0 if and only if the 
orresponding val-ues of the invariants s1 and s2 are positive. We are only missing a similar
riterion for ψi's and wi's. However, it is not di�
ult to 
he
k that a permu-tation σ = ( 1 2 3 4 5

1 3 5 2 4
) brings any {wi}5i=1 with ⟨wj ,w(j+1) mod 5+1⟩ = 0to {w′i}5i=1 = {wσ(i)}5i=1 with ⟨w′i,w′i mod 5+1⟩ = 0. Therefore, it is su�
ient to
al
ulate the invariants (9.29) and (9.30) 
orresponding to the permuted ve
-tors ψ′i ∶= ψσ(i) and 
he
k their positivity in order to tell whether the ve
tors

ψi are 
onvertible into some {wi}5i=1 with the desired orthogonality relations.Following the de�nitions (9.29) and (9.30), let us introdu
e additional invariants
s3 = −

∣ ψ1 ψ3 ψ2 ∣ ⋅ ∣ ψ1 ψ5 ψ4 ∣∣ ψ1 ψ3 ψ4 ∣ ⋅ ∣ ψ1 ψ5 ψ2 ∣ =
= − ∣ ψσ(1) ψσ(2) ψσ(4) ∣ ⋅ ∣ ψσ(1) ψσ(3) ψσ(5) ∣∣ ψσ(1) ψσ(2) ψσ(5) ∣ ⋅ ∣ ψσ(1) ψσ(3) ψσ(4) ∣ (9.49)and

s4 = −
∣ ψ1 ψ3 ψ5 ∣ ⋅ ∣ ψ3 ψ2 ψ4 ∣∣ ψ1 ψ3 ψ2 ∣ ⋅ ∣ ψ3 ψ5 ψ4 ∣ =

= − ∣ ψσ(1) ψσ(2) ψσ(3) ∣ ⋅ ∣ ψσ(2) ψσ(4) ψσ(5) ∣∣ ψσ(1) ψσ(2) ψσ(4) ∣ ⋅ ∣ ψσ(2) ψσ(3) ψσ(5) ∣ , (9.50)in a

ordan
e with [157℄. From the dis
ussion above it follows that arbitrary�ve ve
tors ψ1, . . . , ψ5 in C3 
an be transformed, without permuting them, to{wi}5i=1 with orthogonality relations ⟨wj ,w(j+1) mod 5+1⟩ = 0 if and only if the131



above invariants s3 and s4 are positive. Together with the previously obtained
onvertibility result between φ1, . . . , φ5 and v1, . . . , v5, the last result gives usthe following.Proposition 9.22. A set of produ
t ve
tors {φi ⊗ψi}5i=1 ⊂ C3 ⊗ C3 
an betransformed by a PSL (3,C)×PSL (3,C) transformation to an orthogonal UPB{vi ⊗wi}5i=1 with orthogonality relations ⟨vi, vi mod 5+1⟩ = 0 and ⟨wj ,w(j+1) mod 5+1⟩ =
0, without permuting the φi ⊗ ψi's, if and only if the invariants s1, s2, s3 and
s4, de�ned in (9.29), (9.30), (9.49) and (9.50), are positive.Proof. Most of the proof has already been in
luded above. Let {vi ⊗wi}5i=1denote an orthogonal UPB with the orthogonality relations ⟨vi, vi mod 5+1⟩ = 0and ⟨wj ,w(j+1) mod 5+1⟩ = 0 for all i, j ∈ {1,2,3,4,5}. The possibility to 
onvert

[ φ1 φ2 φ3 φ4 φ5
ψ1 ψ2 ψ3 ψ4 ψ5

]→ [ v1 v2 v3 v4 v5
w1 w2 w3 w4 w5

] (9.51)by PSL (3,C)×PSL (3,C) transformations, or by lo
al equivalen
e in our usualterms, is the same as the possibility to separately 
onvert {φi}5i=1 into {vi}5i=1 and{ψj}5j=1 into {wj}5j=1 by some PSL (3,C) transformations. However, we knowthat the �rst 
onversion is possible if and only if s1 and s2 are positive, while these
ond needs positivity of s3 and s4. Altogether, positivity of all the invariants
si, i = 1,2,3,4 is a ne
essary and su�
ient 
riterion for the transformation (9.51)to be possible.In the 
ontext of produ
t ve
tors in the kernel of a PPT state, as well aselements of an orthogonal UPB, permutations are obviously possible. Thereforewe would like to have a version of Proposition 9.22 with no restri
tion on theordering of the ve
tors {φi ⊗ ψi}5i=1.Proposition 9.23. A set of produ
t ve
tors {φi ⊗ψi}5i=1 ⊂ C3 ⊗ C3 
an betransformed by a PSL (3,C)×PSL (3,C) transformation to an orthogonal UPB,if and only if for some permutation κ the invariants s1, s2, s3 and s4, 
al
ulatedwith the permuted ve
tors φκ(i) and ψκ(i) substituted for φi and ψi, respe
tively,are all positive.Proof. Immediate given the fa
t [162℄ that an orthogonal UPB in a 3×3 system
an always be brought by a permutation to a {vi ⊗wi}5i=1 with the orthogonalityrelations as in Proposition 9.22.Let us also note that, in a

ordan
e with [166℄, not every single permutationof the �ve produ
t ve
tors needs to be 
onsidered if we want to 
he
k whetherthey 
an be transformed into an orthogonal UPB or not.Remark 9.24. Only 12 permutations, given in Table 9.2, have to be 
he
kedin order to obtain a de
isive answer to the question raised in Proposition 9.23.132



σ1 ∶ ( 1 2 3 4 5

1 2 3 4 5
) σ2 ∶ ( 1 2 3 4 5

1 3 2 4 5
)

σ3 ∶ ( 1 2 3 4 5

2 1 3 4 5
) σ4 ∶ ( 1 2 3 4 5

2 3 1 4 5
)

σ5 ∶ ( 1 2 3 4 5

3 1 2 4 5
) σ6 ∶ ( 1 2 3 4 5

3 2 1 4 5
)

σ7 ∶ ( 1 2 3 4 5

1 2 4 3 5
) σ8 ∶ ( 1 2 3 4 5

1 4 2 3 5
)

σ9 ∶ ( 1 2 3 4 5

2 1 4 3 5
) σ10 ∶ ( 1 2 3 4 5

2 4 1 3 5
)

σ11 ∶ ( 1 2 3 4 5

1 3 4 2 5
) σ12 ∶ ( 1 2 3 4 5

1 4 3 2 5
)Table 9.2: A list of representatives of the 12 equivalen
e 
lasses of the symmetri
group S5 under left multipli
ation by the regular pentagram group.Proof. An explanation is in
luded in [157℄ and [166℄, but we repeat it qui
klyhere for 
ompleteness. Let us denote by S5 the symmetri
 group of {1,2, . . . ,5}.The permutations given in Table 9.2 are representatives of equivalen
e 
lassesin S5 of the regular pentagon subgroup G, generated by the 
y
le (1 2 3 4 5) andthe inversion ( 1 2 3 4 5

5 4 3 2 1
). The regular pentagon symmetry subgrouphas the expe
ted property that it does not 
hange signs of s1, s2, s3 and s4,just as it does not 
hange orthogonality relations between the ve
tors {vi}5i=1and {wj}5j=1. Therefore, we may divide S5 by G when we 
he
k positivity of theinvariants in Proposition 9.23. The number of invarian
e 
lasses is 12 be
ause

#S5 = 5! = 120 and #G = 10.
9.7 Determination of a PPT state by produ
tve
tors in its kernelIn the last part of the proof of our main result, 
on
erning PPT states of rankfour in two qutrit systems, we re
all a number of surprising fa
ts that wereearlier reported in [166, Se
tion 5℄ without a 
omplete explanation. Here we �llin that little gap, and we 
olle
t a su�
ient amount of information to qui
klyexplain the �ndings of Leinaas et al., 
on
erning the relation of extreme PPTstates to Unextendible Produ
t Bases [157℄.Note that, given a set of produ
t ve
tors in Kerρ, the 
onditions in Lemma9.8 are a set of linear equations for ρ. An idea, earlier presented in [166℄, isto try to solve these equations assuming a spe
i�
 form of the produ
t ve
tors,133



namely (9.6). Let us repeat formula (9.6) here for the 
onvenien
e of the reader.
[ φ1 φ2 φ3 φ4 φ5
ψ1 ψ2 ψ3 ψ4 ψ5

] =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 1 1

0 1 0 1 p

0 0 1 1 q

1 0 0 1 1

0 1 0 1 r

0 0 1 1 s

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥⎦
, (9.52)We a
tually know from Proposition 9.19 that there always exists a lo
al SL (3,C)⊗SL (3,C) transformation A⊗B that brings �ve ve
tors in the kernel of a non-separable PPT state of rank 4, possibly multiplied by some s
alar fa
tors, intothe form (9.52) with all triples linearly independent. Moreover, Proposition9.20 tells us that the parameters p, q, r and s are ne
essarily real numbers. Bysolving the linear 
onditions on a PPT state following from Lemma 9.8 with

φi ⊗ ψi, i = 1,2, . . . ,5 as in (9.52) substituted for φ ⊗ ψ, we will a
tually besolving a set of 
onstraints on (A−1 ⊗B−1)∗ ρ (A−1 ⊗B−1). However, a

ordingto the dis
ussion in Se
tion 9.2, su
h lo
al transformations are irrelevant to allthe questions 
onsidered in this paper. Therefore we may simply assume that aPPT state ρ in question has the produ
t ve
tors (9.52) in its kernel and 
he
kthe 
onsequen
es. As previously reported by the authors of [166℄, the 
onditions⟨φi ⊗ψj , ρ (φk ⊗ ψi)⟩ = 0 for i, j, k ∈ {1,2,3} together with ρ (φ4 ⊗ ψ4) = 0 and⟨φ1 ⊗ ψ4, ρ (φ4 ⊗ψ2)⟩ = 0 imply the following form of ρ,
ρ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 0 0

0 a1 b1 0 0 0 0 b2 0

0 b1 a2 0 0 b3 0 0 0

0 0 0 a3 0 b4 b5 0 0

0 0 0 0 0 0 0 0 0

0 0 b3 b4 0 a4 0 0 0

0 0 0 b5 0 0 a5 b6 0

0 b2 0 0 0 0 b6 a6 0

0 0 0 0 0 0 0 0 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥⎦

, (9.53)
with ai and bj real for all i, j ∈ {1,2, . . . ,6} and su
h that

a1 + b1 + b2 = 0, b1 + a2 + b3 = 0, a3 + b4 + a4 = 0, (9.54)
b3 + b4 + a4 = 0, b5 + a5 + b6 = 0, b2 + b6 + a6 = 0, (9.55)

a1 + b1 + b2 = 0. (9.56)Derivation of the equations (9.53) and (9.54)�(9.56) is left as a simple exer
isefor the reader. It may be useful to 
onsult Se
tion 5.4 of [166℄ in order to solveit. We still have not used the 
ondition ρ (φ5 ⊗ψ5) = 0, whi
h gives us additional134



six linear equations on a1, . . . , a6 and b1, . . . , b6,
−r (b1 + b2) + qrb2 + sb1 = 0, rb1 − s (b1 + b3) + psb3 = 0, (9.57)
−p (b4 + b5) + qb5 + psb4 = 0, pb4 + sb3 − ps (b3 + b4) = 0, (9.58)
pb5 − q (b5 + b6) + qrb6 = 0, qb6 + rb2 − qr (b2 + b6) = 0. (9.59)Under the assumption of {φi ⊗ ψi}5i=1 of the form (9.52) being a gUPB, thereexists, up to s
aling by arbitrary real fa
tors, exa
tly one solution to the equa-tions (9.54)�(9.59). We know from Proposition 9.19 that the assumption is truefor ve
tors φi ⊗ ψi in the kernel of a non-separable rank 4 PPT state in 3 × 3systems. It is most important for us that there exist, up to s
aling by arbitrarypositive fa
tors, exa
tly two solutions

±

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 0 0

0 qr−s

r(q−1) 1 0 0 0 0 r−s
r(1−q) 0

0 1 r−ps

s(1−p) 0 0 r−s
s(p−1) 0 0 0

0 0 0
(r−s)(ps−q)
p(p−q)(s−1) 0 r−s

p(1−s)
r−s
q−p

0 0

0 0 0 0 0 0 0 0 0

0 0 r−s
s(p−1)

r−s
p(1−s) 0

(p−s)(r−s)
p(p−1)s(s−1) 0 0 0

0 0 0 r−s
q−p

0 0
(qr−p)(r−s)
q(1−q)(r−1)

r−s
q(q−1) 0

0 r−s
r(1−q) 0 0 0 0 r−s

q(q−1)
(q−r)(r−s)
q(1−q)r(r−1) 0

0 0 0 0 0 0 0 0 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥⎦

.(9.60)The above matrix is well-de�ned sin
e all the numbers p, q, r, s, p − 1, q − 1,
r − 1, s − 1, p − q and r − s are nonzero as a 
onsequen
e of all triples of ve
torsin (9.52) being linearly independent.Note that, for both 
hoi
es of sign, (9.60) is a symmetri
 matrix. Moreover,it is symmetri
 with respe
t to the partial transpose. Therefore ρ is PPT i� it ispositive de�nite. A ne
essary 
ondition for (9.60) to be positive de�nite is thatall the nonzero elements on its diagonal, as well as all nontrivial 2× 2 minors ofthe form ∣ ρii ρij

ρji ρjj
∣ are positive. Altogether, we have six nonzero elements onthe diagonal

± { qr − s
r (q − 1) ,− r − ps

s (p − 1) , (r − s) (ps − q)p (p − q) (s − 1) ,
(p − s) (r − s)

p (p − 1) s (s − 1) ,− (qr − p) (r − s)q (p − q) (r − 1) , (r − q) (r − s)q (q − 1) r (r − 1)} , (9.61)135



and six nontrivial minors
{− (r − s) (qr − ps)

r (p − 1) s (q − 1) ,− (q − s) (r − s)q (q − 1) r (r − 1) ,
(p − r) (r − s)

p (p − 1)s (s − 1) , (q − s) (r − s)2
p (p − 1) (p − q) s (s − 1) ,

(r − s)2 (qr − ps)
p (p − q) q (r − 1) (s − 1) ,− (p − r) (r − s)2(p − q) q (q − 1)r (r − 1)} . (9.62)The ± sign in (9.61) 
orresponds to the 
hoi
e we make in (9.60). We seethat all the expressions in (9.62) and (9.61) are quotients and produ
ts of thefollowing nineteen numbers
p, q, r, s, p − 1, q − 1, r − 1, s − 1, p − q, r − s, (9.63)

p − r, q − s, p − s, r − q, ps − q, qr − p, r − ps, qr − s, qr − ps. (9.64)Con
erning the list (9.63), we already know that all its elements have to benonzero. This follows from the 
ondition of {φi ⊗ ψi}5i=1 being a gUPB. It turnsout that the same holds for the elements of (9.64). The number qr − ps mustbe nonzero, be
ause otherwise the ve
tor
φ5 ⊗ ψ5 − qrφ4 ⊗ψ4 − q (s − r)φ3 ⊗ψ3 − r (p − q)φ2 ⊗ ψ2 (9.65)would be of the form φ1 ⊗ ψ′ + φ′ ⊗ ψ1, thus 
ontradi
ting Lemma 9.10 andCorollary 9.18. In a similar way, one 
an show that p − r ≠ 0 and q − s ≠ 0. Letus now assume that ps− q = 0. In su
h 
ase, we have the following submatrix in(9.60)

±
⎡⎢⎢⎢⎢⎣
(r−s)(ps−q)
p(p−q)(s−1)

r−s
p(1−s)

r−s
p(1−s)

(p−s)(r−s)
p(p−1)s(s−1)

⎤
⎥
⎥
⎥
⎥⎦ = ±

⎡⎢⎢⎢⎢⎣
0 r−s

p(1−s)
r−s

p(1−s)
(p−s)(r−s)
p(p−1)s(s−1)

⎤
⎥
⎥
⎥
⎥⎦ . (9.66)In order for (9.66) to be positive de�nite for some 
hoi
e of the sign ±, we need tohave r−s = 0, whi
h we know is impossible. Thus we have proved that ps−q ≠ 0for ρ positive de�nite. Finally, the fa
t that qr − p, r − ps and qr − s must alsobe nonvanishing for ρ positive de�nite follows by a suitable modi�
ation of theabove argument. Di�erent submatri
es need to be 
hosen, but otherwise theproof is identi
al.Our task in the following will be to relate positivity of all the numbers in(9.61) and (9.62) to the fa
t that all the invariants s1, . . . , s4, given in Se
tion 9.6,are positive, possibly after we suitably permute the ve
tors φi ⊗ ψi. Note thatwe already know that only the 12 permutations listed in Table 9.2 need to be
onsidered. An explanation is in
luded in the proof related to Remark 9.24. Notto mu
h surprise, the formulas for the invariants s1, . . . , s4 for permuted ve
torsof the form (9.52) are always expressed as produ
ts and quotients in
luding onlythe numbers listed in (9.63). Expli
it formulas 
an be found in Table 9.3. To136



σ1 ∶ −p
q
, q − 1, r−s

s
, r
1−r

σ2 ∶ − q
p
, p − 1, s−r

r
, s
1−s

σ3 ∶ − 1
q
, q−p
p
, 1−s
s
, 1
r−1

σ4 ∶ −q, 1−p
p
, s − 1, s

r−s

σ5 ∶ − 1
p
, p−q
q
, 1−r
r
, 1
s−1

σ6 ∶ −p, 1−q
q
, r − 1, r

s−r

σ7 ∶ p−q

q
, 1
q−1

,− r
s
, s−r
r−1

σ8 ∶ q

p−q
, 1−p
q−1

, r
s−r

,−s
σ9 ∶ − q−1

q
, p

q−p
,− 1

s
, 1−s
r−1

σ10 ∶ q

1−q
, p−1
q−p

, 1
s−1

,− s
r

σ11 ∶ q−p

p
, 1
p−1

,− s
r
, r−s
s−1

σ12 ∶ p

q−p
, 1−q
p−1

, s
r−s

,−rTable 9.3: Formulas for the invariants s1, . . . , s4, 
al
ulated for ve
tors of theform (9.52) permuted by the 12 inequivalent permutations in Table 9.2.explain the notation we used in the table, it is su�
ient to say, for example, thatby using σ6 from Table 9.2 to permute the produ
t ve
tors (9.52), we obtain
s1 = −p, s2 = (1 − q)/q, s3 = r − 1 and s4 = r/(s − r) as the expressions for theinvariants.It turns out that the values of s1, . . . , s4 
orresponding to one of the permu-tations σi have to be all positive to assure that ρ, given in (9.60), is a positivematrix for some 
hoi
e of the sign ±. Our 
omputer-aided proof of this fa
t
onsisted in simply 
he
king all admissible sign 
hoi
es for the numbers listedin (9.63) and (9.64). We already know that neither of those numbers 
an bezero, and thus it seems that we have 219 
ases to 
he
k. However, some further
onstraints apply, whi
h redu
e this number 
onsiderably. First of all, the re-quirement that ±(p − s) (r − s)/(p (p − 1)s (s − 1)) of the list (9.61) and a verysimilar element (p − r) (r − s)/(p (p − 1) s (s − 1)) of (9.62) have the same signimplies that p−r = ± (p − s), with the ± sign depending on the 
hoi
e we made in(9.60). Along the same lines, by 
omparing the last element of (9.61) with these
ond element of (9.62), one 
an prove that r−q = ∓ (q − s). More importantly,the signs of the numbers listed in (9.63) and (9.64) are not all independent.Various relations have to hold between them. For example, p − 1 > 0 
learlyimplies p > 0, and we 
annot have a plus sign for p − 1 and a minus sign for p.More sophisti
ated relations like

(r < 0 ∧ q − 1 < 0 ∧ r − ps > 0)⇒ qr − ps > 0. (9.67)have to hold as well. Alternatively, the above formula 
an be written as
¬ (r < 0 ∧ q − 1 < 0 ∧ r − ps > 0 ∧ qr − ps < 0) . (9.68)We provide a more or less exhaustive list, 
onsisting of 76 elements, in Tables9.4 and 9.5 on pages 139 and 140. For example, the relation 9.68 
orrespondsto the following row in Table 9.4,p q r s pp qq rr ss pq rs pr ps rq qs qrp qrs psq rps qrps� � + �whi
h should explain the notation we used1. While some further relations 
ouldstill possibly exist, the use of those listed in the appendix allowed us to 
on�rm1To better explain the symbols in the header of Tables 9.4, 9.5 and 9.6, let us add that pp,137



the ne
essity result mentioned above. When all the 
onstraints are imposed,a 
omparably small number of 761 or 352 out of the 219 sign 
hoi
es remainpossible when �+� or �−� is �xed in (9.60), respe
tively. It then turns out that,by 
hoosing an admissible sign 
on�guration, all the numbers in the lists (9.61)and (9.62) 
an be made positive only if one of the quadruples listed in Table 9.3
onsists solely of positive numbers. This is in full agreement with, and providesa rigorous, although not very insightful proof of the results reported in Se
tion5 of [166℄. A
tually, it turns out that there are pre
isely 12 admissible sign
on�gurations that 
orrespond to a positive ρ for some 
hoi
e of the sign ±in (9.60) and ea
h of the quadruples in Table 9.3 is positive pre
isely for oneof them. A 
omplete list of the sele
ted sign 
hoi
es and the 
orrespondingpermutations is given in Table 9.6. Interestingly, 10 of them 
orrespond to
hoosing the plus sign in (9.60), while only 2 to the minus sign. This is ratheran uneven partitioning of the total of 12 
on�gurations, whi
h is somewhatpuzzling.To summarize, the 
omputer-aided proof we 
arried out allows us to statethe following.Proposition 9.25. A ne
essary and su�
ient 
riterion for a generalized Unex-tendible Produ
t Basis {φi ⊗ψi}5i=1 ⊂C3⊗C3 to belong to the kernel of a rank 4PPT state ρ is that there exists a permutation of the ve
tors φi⊗ψi that it yieldsall the values of the invariants s1, s2, s3 and s4, de�ned as in equations (9.29),(9.30), (9.49) and (9.50), positive. When 
he
king positivity of si, it is possibleto 
onsider only the 12 permutations, listed in Table 9.2, and the 
orrespondingexpressions for the invariants, given in Table 9.3.Proof. First of all, let us note that a separable state ρ 
annot have a gUPB inits kernel, sin
e it must have a produ
t state in its range. Thus in the followingwe may always assume that ρ is entangled. Let us prove su�
ien
y �rst. If theinvariants are positive for the permuted ve
tors φ′i⊗ψ′i ∶= φσ(i)⊗ψσ(i), we knowfrom Proposition 9.23 that there exists a SL (3,C) ⊗ SL (3,C) transformation
A⊗B su
h that the transformed ve
tors (A⊗B)φ′i ⊗ψ′i = (A⊗B)φσ(i)⊗ψσ(i)are elements of an orthogonal UPB {vi ⊗wi}5i=1. With no loss of generality, wemay assume that the ve
tors vi ⊗wi are normalized to unity. In su
h 
ase theproje
tion

ρ′ ∶= 1 − 5

∑
i=1

∣vi ⊗wi⟩ ⟨vi ⊗wi∣ (9.69)has all the ve
tors vi ⊗ wi in its kernel and it is a PPT entangled state [106℄.The lo
ally transformed PPT state ρ = (A⊗B)∗ ρ′ (A⊗B) has all the ve
tors
φi ⊗ ψi in its kernel.In order to prove ne
essity, note that from the dis
ussion above we know thatpositivity of s1, . . . , s4, possibly after a permutation, is a ne
essary 
ondition for
qq, rr and ss denote p− 1, q − 1, r − 1 and s− 1, respe
tively, while pq, rs, pr, rq, qs, qrp, qrs,
psq, rps and qrps stand for p − q, r − s, p − r, r − q, qr − p, qr − s, ps − q, r − ps and qr − ps,respe
tively. 138



p q r s pp qq rr ss pq rs pr ps rq qs qrp qrs psq rps qrps+ + + �+ + + �+ � � ++ � � ++ + � �+ + + �+ � + ++ � � ++ + � �+ + � �+ � + ++ � + ++ + + ++ + � ++ � � �+ � + �+ � + �+ + � ++ + � �+ � + ++ � + �+ + � ++ + + �+ � � +� + � +� � + �� � + �� + � +� � � �� � + �� + + +� + � +� � � �� � � �� + + +� + + +� + � �� + + �� � + +� � � +Table 9.4: Non-admissible sign 
hoi
es. Part I.a PPT entangled state ρ′ with ve
tors φi ⊗ ψi in its kernel to exist, providedthat the ve
tors are as in equation (9.52). But any gUPB {φi ⊗ ψi}5i=1 
an bebrought to the form (9.52) by a lo
al transform, say C ⊗D. If we assume thata PPT state ρ has {φi ⊗ ψi}5i=1 in its kernel, then the lo
ally transformed ρ′′ ∶=(C−1 ⊗D−1)∗ ρ (C−1 ⊗D−1) has (C ⊗D)φi⊗ψi in its kernel. But (C ⊗D)φi⊗
ψi are of the form (9.52). From the above dis
ussion, ρ′′ is PPT if and onlyif the invariants s1, . . . , s4 are positive, possibly after we permute the ve
tors(C ⊗D)φi ⊗ ψi. But C ⊗D does not 
hange the value of the invariants, andthus φi ⊗ψi, permuted in the same way as the (C ⊗D)φi ⊗ψi, must also haveall of them positive.Let us also state the following result, whi
h should be expe
ted from thedis
ussion above. 139



p q r s pp qq rr ss pq rs pr ps rq qs qrp qrs psq rps qrps� + + �� � � +� � � �� + + +� + + �� � � +� � + �� + � +� +� +� +� +� + ++ � �+ � �� + +� + ++ � �� + ++ � �� + +� + ++ � �+ � �� + +� + ++ � �+ � �+ � ++ � +� + �� + �� + +� + ++ � �+ � �Table 9.5: Non-admissible sign 
hoi
es. Part II.Proposition 9.26. Let {φi ⊗ψi}5i=1 ⊂ C3 ⊗C3 be a gUPB that yields, after asuitable permutation of the produ
t ve
tors, positive values of all the invariants
s1, . . . , s4. The PPT state ρ with {φi ⊗ψi}5i=1 in its kernel is uniquely deter-mined, up to s
aling by a 
onstant positive fa
tor.Proof. We already know that the assertion of the proposition holds for gUPBsof the form (9.52). We also know that any gUPB {φi ⊗ ψi}5i=1 
an be lo-
ally transformed so that it looks like in (9.52). Let us denote the trans-formation whi
h does it by C ⊗ D. There 
annot exist two PPT states ρ1and ρ2 with {φi ⊗ ψi}5i=1 in their kernels, be
ause in su
h 
ase the PPT states(C−1 ⊗D−1)∗ ρ1 (C−1 ⊗D−1) and (C−1 ⊗D−1)∗ ρ2 (C−1 ⊗D−1) would both havethe same gUPB of the form (9.52) in their kernel, whi
h we know is not possi-ble. 140



p q r s pp qq rr ss pq rs pr ps rq qs qrp qrs psq rps qrps
σ1 � + + + � + � � � + � � � + + + � + +
σ2 + � + + + � � � + � + + + � � � + � �
σ3 � � + + � � + � + + � � + � � � + + �
σ4 + � + + � � + + + + � � + � � � + + �
σ5 � � + + � � � + � � � � + � + � � + +
σ6 � + + + � � + + � � � � + � + � � + +
σ7 + + + � + + � � + + + + � + � + � + +
σ8 + + � � + � � � + + + + � + � + � + +
σ9 + + + � � � + � � + � + + + + + � + +
σ10 + + � + � � � + + � + � � � � � + � �
σ11 + + � + + + � � � � + + + + � � � � �
σ12 + + � � � + � � � � + + � + � � � � �Table 9.6: Sign 
hoi
es that yield a positive ρ and obey all the 
onstraints ofTables 9.4 and 9.5 on pages 139 and 140.9.8 The main resultUsing the knowledge from the previous se
tions, we 
an now easily prove ourmain result.Theorem 9.27. Positive-partial-transpose states of rank 4 in 3× 3 systems areeither separable or they are of the form

ρ = (A⊗B)∗ (1 − 5

∑
i=1

∣vi ⊗wi⟩ ⟨vi ⊗wi∣) (A⊗B) (9.70)with A,B ∈ SL (3,C) and {vi ⊗wi}5i=1 an orthonormal Unextendible Produ
tBasis. In the latter 
ase, they are entangled, and extreme in the set of PPTstates. The rank of the partial transpose of the state is 4 in 
ase of nonseparablestates.Proof. In 
ase of separable states, there is nothing to prove. Let ρ be a non-separable PPT state of rank 4 in a 3×3 system. We know from Proposition 9.19that there is a generalized UPB, say {φi ⊗ ψi}5i=1, in the kernel of ρ. From Propo-sition 9.25 we know that the 
orresponding values of the invariants s1, . . . , s4must be all positive after we suitably permute the ve
tors φi⊗ψi. Next, Propo-sition 9.22 tells us that there exists a SL (3,C)⊗SL (3,C) transformation A⊗Bthat brings {φi ⊗ ψi}5i=1 to an orthogonal UPB {vi ⊗wi}5i=1. With no loss of gen-erality, we may assume that the ve
tors vi⊗wi are normalized. From Proposition9.26 we know that there exists, up to s
aling, exa
tly one PPT state whi
h has{vi ⊗wi}5i=1 in its kernel. It must be 1−∑5
i=1 ∣vi ⊗wi⟩ ⟨vi ⊗wi∣. The state givenby the formula (9.70) 
learly is PPT, and it has all the ve
tors φi ⊗ ψi in itskernel. By using Proposition 9.26 again, we see that it must be equal to the

ρ we started with. The fa
t that the rank of the partial transpose is 4 fornon-separable states, is simply the assertion of Proposition 9.15.In this way, we have obtained a full 
hara
terization of bound entangledstates of minimal rank. Let us also mention a spe
ial property they have, whi
h141




an be loosely des
ribed as saying that it is not enough for an entanglementwitness to be inde
omposable in order to dete
t them.Remark 9.28. A

ording to [169, Lemma 3℄, all PPT states of rank 4 in 3× 3systems 
an be written as a sum of four proje
tions onto ve
tors of S
hmidt rank
2. By Theorem 9.27, or Proposition 9.15, their partial transposes are also ofrank 4 and thus 
an be de
omposed in an analogous way. Using the notationof [101℄, we 
an write that all su
h PPT states are elements of the 
one S2,2. Thedual 
one S○2,2 = D2,2 
onsists of Jamioªkowski-Choi transforms of 
onvex sumsof 2-positive and 2-
o-positive maps. Consequently, any entanglement witnessthat dete
ts a PPT state of rank 4 in a 3×3 system is atomi
 [170℄. This appliesin parti
ular to the witness dis
ussed in Example 1 of [171℄ and the Choi map,in relation to the PPT state dis
ussed in Se
tion 4 of [109℄.
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Con
lusionComputational advan
es in the �eld of algebrai
 geometry have not be
omewell-known among the quantum information 
ommunity, despite a number ofproblems that are, at the very bottom, systems of polynomial equations. In thepresent thesis, I tried to outline a few possible appli
ations of Groebner basismethods in quantum information and quantum entanglement s
ien
e, in
luding:� Compression equations for Quantum Error Corre
tion (QEC), Se
tion 8.1� Completely Entangled Subspa
es (CES), Se
tion 8.2� Maximally entangled states, Se
tion 8.3� Mutually Unbiased Bases (MUBs) and Symmetri
 Informationally Com-plete ve
tors (SICs), Se
tions 8.4 and 8.5The main result, whi
h is a 
hara
terization of rank four entangled states oftwo qutrits with positive-partial-transpose (PPT), was presented in Chapter 9.Its proof uses a tool from algebrai
 geometry, but this time it is the theoremof Bezout, a basi
 result in interse
tion theory. In the thesis, I also in
luded afew problems that I solved during my PhD studies using simple algebra tri
ks.They 
an be found in Chapter 7. Moreover, I felt it was appropriate to present a
hara
terization result for 
ertain 
ones of positive maps, in
luded in Chapter 6.The 
entral idea of the thesis was that the problems solved should be al-gebrai
 in nature. Obviously, I also required them to be of interest for thequantum information 
ommunity. I did not presume the readers to be expertsneither in mathemati
s, nor in foundational or pra
ti
al questions relating toquantum me
hani
s. Hen
e, I in
luded introdu
tion to both the mathemati
alapparatus I used and to 
ertain aspe
ts of quantum theory. I hope the thesismay 
ontribute to a better understanding of some tools of algebrai
 geometryamong the quantum information 
ommunity and hen
e lead to their new appli-
ations in areas su
h as the 
lassi�
ation of PPT states or Completely EntangledSubspa
es, solving QEC equations or the investigation of MUBs and SICs, andhopefully a few more. One of big questions that remains open is how to under-stand all the numeri
al �ndings on PPT states in
luded in the work by Leinaas,Myrheim and Sollid [168℄. I believe algebrai
 geometry, whi
h turned out tobe so useful in the three-by-three, rank four 
ase, 
ould still be used to explainproperties observed for higher rank and/or higher dimensional 
ases. However,143



there does not seem to exist a dire
t generalization of the results of Chapter 9to these 
ases.
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