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ForewordQuestions related to the pratial use of quantum mehanis have grown ex-tremely popular among physiists in the past two deades. The literature onthe subjet is extensive, but it seems not to make use of the advanes of om-putational algebrai geometry, whih is quite a natural framework when dealingwith algebrai varieties like the set of produt states. The lak of general in-terest an be partly attributed to the little popularity of algebrai geometryamong the physiists working in the �eld, and partly to the fat that fun-tions used as entanglement measures are not polynomials. Another reason maybe the appearane of pairs of omplex onjugate variables like z and z̄ in thepolynomial equations that prevail in quantum information siene, inluding theKnill-La�amme equations, equations for Mutually Unbiased Bases and Symmet-ri Informationally Complete vetors, or for expliitly �nding produt vetorsin the kernel of an entanglement witness. This makes the equations not trulypolynomial, but funtions of both z and z̄ at the same time and thus apparentlymore di�ult to solve. An important aim of the thesis is to present a numberof spei� questions that an nevertheless be solved using results from algebraigeometry, and in partiular the tehnique of Groebner bases. The main result,on the other hand, whih is a haraterization of PPT bound entangled statesof minimal rank, equal four, makes substantial use of Bezout's theorem, whihan be desribed as a basi theorem in intersetion theory. We also present afew problems solved by elementary algebra triks.The struture of the thesis is the following. The �rst part, onsisting of threehapters, disusses the basis of the theory of quantum entanglement, its pra-tial uses, and the phenomenon of bound entanglement. In Chapter 1, the fousis on questions related to loal realisti models of quantum mehanis. I famil-iarize the reader with separable quantum states and separability riteria. Later,we onsider developments that go beyond the so-alled separability paradigm.In other words, we take a trip outside the reign of quantum entanglement. InChapter 2, I brie�y desribe the ideas behind several pratial appliations ofquantum entanglement, suh as quantum ryptography, quantum teleportationand dense oding, as well as quantum metrology. In Chapter 3, I inluded basiinformation about the distillation of quantum entanglement and about boundentangled states.Chapter 4 starts the seond part of the thesis, whih an be regarded as a2



standalone introdution to algebrai geometry for non-pratitioners. I tried tomake this part as rigorous as possible, however, in a number of plaes I had torefer to literature for proofs. The hapter begins from the de�nition of an a�nevariety and its ideal, and we proeed to the de�nition of a monomial orderingand a Groebner basis. I introdue the S-pair riterion and the Buhbergeralgorithm, whih an be used to �nd Groebner bases of an ideal. In the end ofChapter 4, it should beome lear why Groebner basis tehniques an be usefulfor solving systems of polynomial equations. In Chapter 5, the fous is on thebasis of intersetion theory. I try to explain how the dimension of an a�ne orprojetive variety relate to the number of monomials of ertain total degree notin the orresponding ideal. I also introdue the important notion of the degree ofa projetive variety. A theorem that two projetive varieties of omplementarydimension interset appears as well. Finally, I give the Bezout's theorem in asimple form, whih plays an important role later, in Chapter 9.Part III of the thesis, whih starts with Chapter 6, mostly ontains theoriginal results obtained and toy examples solved by the author. I �rst give aharaterization theorem for a lass of onvex ones of maps from n×n to m×mmatries, whih appear as k-positive and k-superpositive maps in the theoryof entanglement. Next, in Chapter 7, we present three algebrai problems inthe theory of quantum information, all of whih an be solved by hand. Theyonern the following subjets:� Produt numerial range for a three-parameter family of operators,� Higher order numerial ranges (HONR) for three-by-three matries,� Separable state of length three and Shmidt rank four.In Chapter 8, we apply the Groebner basis approah to several types of equationsthat are of interest for the quantum information ommunity. The problems wemanage to solve relate to:� Compression subspaes for Quantum Error Corretion (QEC),� Completely Entangled Subspaes (CES),� Maximally entangled states in a linear subspae,� Mutually Unbiased Bases (MUBs),� Symmetri Informationally Complete vetors (SICs).It should be kept in mind that the last two of the above subjets are presentedhere in a fully expository manner, beause better solutions by other authorswere available in the literature before I started my projet. Finally, Chapter 9,whih is the ore element of the thesis, ontains a proof of the above mentionedtheorem relating positive-partial-transpose (PPT) states of minimal rank, equalfour, to so-alled Unextendible Produt Bases (UPBs). I present a proof that thementioned states an always be (stohasti) loally transformed to projetions3



onto a subspae orthogonal to a UPB. On the way to prove the theorem, Bezout'stheorem is applied, and some general observations onerning PPT states andso-alled general Unextendible Produt Bases are made. I onlude on page143 and subsequently give a list of papers I published as a part of my PhDprojet. Most of them have strong relations to the results presented in thisthesis. However, some of the ontents has never been published.There are a few people and organizations who helped me to sueed in myresearh projet. Looking bak in time, I an ertainly say that my wholePhD studies were marked with a fair amount of good luk. Under di�erentirumstanes, it would have been muh more di�ult, if not impossible, toomplete the thesis. Hene, I must �rst mention the support I reeived fromthe Foundation for Polish Siene. Thanks to them, I was able to travel, meetother sientists, and to live a deent life for the most of the duration of mystudies. Part of my ontrat with the foundation was a visit to Stokholm,where I got to know Jan Myrheim and Per Øyvind Sollid. Few months later,our interation turned out to be very fruitful and resulted in a proof of Theorem9.27 of Chapter 9, whih is the bakbone of the thesis. This ould probablyhave never been possible, had I not reeived additional support from StokholmUniversity and the University of Oslo, all thanks to Ingemar Bengtsson andErling Størmer. I wish to thank Ingemar for making a great disussion partnerduring my months in Sweden, and Erling for his grand hospitality during mytwo visits to Norway. It is Oslo where my best ideas were provisionally formed,inluding the results of Chapters 6 and 9. For the �rst visit there, I reeivedadditional funding from the Sholarship and Training Fund, operated by theFoundation for the Development of the Eduation System, whih I am sinerelythankful for. It is also indisputable that the suess of my researh ruiallydepended on the onstant support by my supervisor, Karol �yzkowski. Hisenouragement, wise judgment and great amount of understanding are di�ultto overvalue. Besides the above, I owe speial personal thanks to Per ØyvindSollid for areful proofreading and deteting a �aw in a preliminary version of themanusript on PPT states of rank four, inluded here as the ruial Chapter 9.In the end, I wish to warmly thank my parents and my younger brotherMihaª, who were always there to help me when I needed it, espeially duringthe sad days of my illness. Thank you!
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Chapter 1Fundamental questions1.1 Loal hidden variablesSome strange onsequenes of quantum mehanis have bothered physiists fromthe very beginning of quantum theory. A lassial example of this is the Ein-stein, Podolsky and Rosen paper [1℄, where the authors argue that the quantumdesription of reality must be inomplete if we aept two rather natural prop-erties every physial theory should have. The �rst is the priniple of physialreality, whih says that properties of physial systems suh as spin diretionor energy an be predited with ertainty before arrying out the orrespond-ing measurement. They are elements of physial reality. The seond prinipleonsidered by Einstein, Podolsky and Rosen is that of loality, whih refers tothe requirement that every system has its own properties, independently of anyoperations arried out on other, spatially separated systems. To see where theabove two priniples lash with the piture of reality given by quantum mehan-is, let us onsider a quantum system onsisting of two two-level1 subsystems
A and B, initially prepared in the so-alled Bell state ∣Φ+⟩ = (∣00⟩ + ∣11⟩) /√2.If the holder of the �rst subsystem measures it in the basis {∣0⟩ , ∣1⟩}, he or sheobtains the result 0 or 1, both with probability 1/2. This is not too surpris-ing and may well happen in lassial physis, however assuming that the state
∣Φ+⟩ does not ontain a omplete information about the degrees of freedom ofthe system. What is somewhat more interesting, is the predition of quantummehanis that after 0 or 1 is measured in the subsystem A using the {∣0⟩ , ∣1⟩}basis, a orresponding measurement on the B side yields identially the sameresult as the aforementioned measurement on the A side. More generally, theholders of A and B never get two distint results if they measure in the samebasis. This is possible to reonile with the priniple of loality only if we aeptthat the outomes of all possible measurements on the A and B sides are knownbeforehand, i.e. before any measurements are done. It is possible to omparethis to a marosopi situation where a fatory produes table tennis bats in1we denote the levels by 0 and 1 6



Figure 1.1: A loal realisti model: table tennis set fatory at work.two olors, say red and green, puts every single one into a box and groups theseboxes into pairs with bats of the same olor inside. It then sells these pairswithout dislosing what olour the bats inside a partiular pair of boxes are.The buyer of a table tennis set knows for sure what he or she has are two batsin the same olour, but does not know anything more. As soon as one of theboxes is opened, the olour of the bat inside the seond box is revealed to thebuyer. No matter how realisti the whole situation might seem in real life, it islearly not exluded by lassial physis, and it losely resembles the experimentwith two two-level systems in the state (∣00⟩ + ∣11⟩) /√2, with 0 orrespondingto green and 1 orresponding to red, or the other way round. Our aim in thefollowing will be to shortly explain why a lassial model similar to the tabletennis set fatory annot nevertheless give us a proper desription of the phe-nomena predited by quantum mehanis. In order for the disussion to staygeneral, let us introdue the following de�nition.De�nition 1.1. A loal hidden variable model of an experiment on a bipar-tite system (onsisting of parts A and B) is a probability spae (Ω,Σ, P ) and aset of funtions SxA ∶ Ω→R and Sy
B
∶ Ω→R, where x and y refer to the possiblemeasurement setups on subsystems A and B, respetively and SxA (λ), SyB (λ)orrespond to the measurements' outomes. Here λ represents the �hidden vari-ables� or the true lassial degrees of freedom of the system. Assuming that themeasurement setup is �xed to x for A and to y for B, the orrelation oe�ientbetween the measurement outomes is given by the following formula

ǫ (x, y) = ∫
Ω
SxA (λ)SyB (λ)dP (λ) . (1.1)To make a onnetion to the table tennis set fatory model, let us mentionthat λ in formula (1.1) orresponds to a �mode� of the fatory, whih is eitherthe prodution of a pair of green bats or the prodution a red pair. The �mode�is hidden from the buyer a table tennis set, just as the additional degrees offreedom, represented by λ, are supposed to be hidden from the user of quantum7



mehanis. In the following, however, we show that it is possible, by a simplemathematial argument, to refute the idea of a loal hidden variable model forquantum mehanis.To this aim, let us onsider a system onsisting of two spin-1/2 partiles,initially prepared in the state ∣Φ+⟩ = (∣00⟩ + ∣11⟩) /√2, where ∣0⟩, ∣1⟩ representthe ±1 eigenstates of the operator σz. We measure the spin of the �rst partilein the diretion a⃗ and the spin of the seond partile in the diretion b⃗. Theorresponding observables are a⃗ ⋅ σ⃗A and b⃗ ⋅ σ⃗B , where the subsripts A, B referto operators on the �rst and the seond subsystem, respetively. The orrelationoe�ient between the two measurements, as predited by quantum mehanis,is
ǫ̃ (a⃗, b⃗) = ⟨Φ+∣ (a⃗ ⋅ σ⃗A)(b⃗ ⋅ σ⃗B) ∣Φ+⟩ = a1b1 − a2b2 + a3b3, (1.2)where the numbers ai, bi for i = 1,2,3 denote the oordinates of the vetors a⃗and b⃗, resp. For the spei� hoie of the vetors a⃗ = [sinα,0, cosα] and b⃗ =[sinβ,0, cosβ], we get ǫ̃ (a⃗, b⃗) = ǫ̃ (α,β) = cos (β − α). Let us now suppose thatthis form of orrelation funtion an be reprodued by a loal hidden variablemodel. Thus we need to have a probability spae (Ω,Σ, P ) and a set of funtions

SαA ∶ λ ↦ SαA (λ) and SβB ∶ λ ↦ S
β
B
(λ) giving the measurement outomes of thespin measurements for a �xed hoie of the hidden variables λ. Sine a spinmeasurement an only give ±1 as an answer, we have SαA (λ) ∈ {−1,+1}, SβB (λ) ∈{−1,+1}. Let us now onsider the following ombination of the funtions SαAand SβB,

Sα2

A (λ) [Sβ1

B (λ) + Sβ2

B (λ)] + Sα1

A (λ) [Sβ1

B (λ) − Sβ2

B (λ)] . (1.3)It is easy to see that for �xed λ, one of the expressions in squared braketsequals 0, while the other one is equal to ±2. All in all, the whole expression in(1.3) equals ±2. Therefore we have, assuming that the hidden variable modelwe onsider desribes the quantum mehanial world, the following inequalityfor the previously onsidered orrelation funtions,
∣ǫ̃ (α2, β1) + ǫ̃ (α2, β2) + ǫ̃ (α1, β1) − ǫ̃ (α1, β2)∣ ⩽
⩽ ∫

Ω
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(λ) [Sβ1

B
(λ) + Sβ2

B
(λ)] + Sα1

A
(λ) [Sβ1

B
(λ) − Sβ2

B
(λ)]∣ ⩽ 2. (1.4)The above is the famous CHSH inequality, named for J. F. Clauser, M. A. Horne,A. Shimony and R. A. Holt [2℄. For the hoie α1 = 45○, β1 = 90○, α2 = 135○and β2 = 180○, one an readily hek that the orrelation funtions predited byquantum mehanis do not obey (1.4), sine

∣ǫ̃ (α2, β1) + ǫ̃ (α2, β2) + ǫ̃ (α1, β1) − ǫ̃ (α1, β2)∣ = 2√2. (1.5)Moreover, the above violation of the CHSH inequality is the maximum allowedby quantum mehanis [3℄. The value 2
√
2 in (1.5), alled the Tsirelson bound,is in lear ontradition with the assumption that quantum mehanis an be8



desribed as a loal hidden variable theory. Thus, we are lead to the on-lusion that there exists no loal realisti model for quantum mehanis. Thequestion whether the quantum mehanial orrelations are really observed inexperiments, and how to lose the possible experimental loopholes, is the sub-jet of a separate �eld of researh, with the �rst and most famous experimentsdone by the A. Aspet group [4℄.1.2 Separable states and separability riteriaOur next topi is losely related to hidden variable models, and was �rst studiedby R. Werner in the late 80s [5℄. He introdued a lass of mixed states, whih healled lassially orrelated, but they are now generally referred to as separable.De�nition 1.2. A state represented by a density matrix ρ on a bipartite spaeK⊗H is alled separable if and only if it an be written as a onvex ombinationof projetions onto produt states, i.e. a sum
ρ =

n

∑
i=1

λi ∣φi ⊗ψi⟩ ⟨φi ⊗ ψi∣ (1.6)with n �nite, λi ⩾ 0, ∑ni=1 λi = 1 and φi ∈ K, ψi ∈H.Atually, in [5℄, in�nite sums of the type (1.6) were onsidered, but it followsfrom Carathéodory's theorem (f. e.g. [6, Chapter 13℄) that any suh sum anbe rewritten as a �nite one. A generalization of De�nition 1.2 to a multipartitesetting is immediate.De�nition 1.3. A state represented by a density matrix ρ on a multipartitespae K1 ⊗ . . .⊗Kk is alled separable if and only if it an be written as a sum
ρ =

n

∑
i=1

λi ∣φ1i ⊗ . . .⊗ φki ⟩ ⟨φ1i ⊗ . . .⊗ φki ∣ (1.7)with n �nite, λi ⩾ 0, ∑ni=1 λi = 1 and φli ∈ Kl ∀l=1,2,...,k.It is now also generally aepted that states whih are not of the form givenin De�nitions 1.2 and 1.3 are alled entangled.De�nition 1.4. A state represented by a density matrix ρ on a multipartitespae K1⊗ . . .⊗Kk is alled entangled if and only if it annot be written in theform (1.7).In ase of pure states ρ, it an be shown [7℄ (f. also [8℄) that the property ofbeing entangled implies the lak of a loal realisti model of the loal measure-ments one an perform on ρ. More preisely, for a pure entangled state ρ, therealways exists a Bell-type inequality2 that is not ful�lled by the orrelation fun-tions resulting from ρ. However, if mixed states ρ are taken into onsideration,2like the CHSH inequality we onsidered in Setion 1.19



it was the main subjet of the work [5℄ to show that there exist entangled stateswhih do admit a loal realisti desription. It should also be noted that in thepaper [5℄, the author never used the word �entangled� himself. It may thus berather surprising to hear that what is now generally aepted as a synonymof something quantum-like, something entangled, was born for the purpose toshow that it an sometimes be desribed in a fully lassial way. Fortunately, theapparent paradox was partially resolved by [9℄, where the author showed thatsometimes hidden nonloality in quantum states an be revealed by sequentialmeasurements. A step in a similar diretion was also taken by N. Gisin, whoshowed that loal interation an turn a state that does not violate any Bell-type inequality into one that is nonloal [10℄. Additional justi�ation for theimportane of the notion of inseparability was provided by L. Masanes [11, 12℄,who showed that entangled states are always useful for ertain tasks in quantuminformation proessing. Finally, the question about nonloality of all bipartiteentangled states was settled in the paper [13℄, by Masanes, Liang and Doherty.They managed to prove that bipartite entangled states ρ are preisely thosewhih do violate some inequality of CHSH type, possibly after they are tensormultiplied by some state σ that does not violate any CHSH inequality itself.Being more preise,
ρ is entangled ⇐⇒ ρ⊗ σ violates a CHSH type inequality (1.8)where σ does not violate any inequality of CHSH type, even after it undergoesarbitrary stohasti loal operations with ommuniation [13℄. Note that thetensor multipliation by σ only plays a role of a atalyst in the proess ofdisovering the nonloality of ρ. Hene, it is legitimate to say that all bipartiteentangled states have some kind of non-loally realisti properties, and vie versa.Beause of the result by Masanes, Liang and Doherty, we feel it is well-justi�ed to aept the de�nition of entangled states as it is. Hene we onformto the separability paradigm. However, we shall go bak to the question ofseparability versus loal realism when we disuss distillation of entanglement inSetion 3.1. We should also give additional redit to the Werner's paper [5℄ andmention the famous family of states the author used to prove his result. Theyare now alled Werner states and are of the simple form

W = 1

d3 − d [(d −Ξ)1 + (dΞ − 1)V ] (1.9)where Ξ ∈ [−1,1], d is the dimensionality of the Hilbert spae K suh that Wis de�ned on K ⊗ K, and V ∶= ∑di,1=1 ∣i⟩ ⟨j∣ ⊗ ∣j⟩ ⟨i∣. The hoie of the spei�parametrization in (1.9) is motivated by the equality Ξ = Tr (WV ). A distintivefuture of the Werner states is that they are invariant under the transformation
W ↦ (U ⊗U)W (U∗ ⊗U∗) for an arbitrary unitary U . In [5℄, it was shownthat the state W is separable for Ξ ⩾ 0 and entangled otherwise. Moreover,for Ξ = −1 + (d + 1) /d2 it admits a hidden variable desription. Sine −1 +(d + 1) /d2 ⩽ −1/4 ⩽ 0, the orresponding W is entangled and at the same timeit an be desribed in a loal realisti manner.10



Despite the above paradoxial property of some entangled states, it beamewidely aepted that the distintion between entanglement and separabilityplays a fundamental role in the theory of quantum information. Entanglementdetetion has beome the subjet of a separate researh area, whih we wouldvery sparsely explore in the rest of this setion. Muh more information an befound in review artiles like [14, 15℄.Probably the most famous separability test is the PPT riterion by A.Peres [16℄, where PPT stands for �positive partial transpose�. The riterionwas quikly proved by the Horodeki family to be a neessary and su�ientondition in the ase of 2 × 2 and 2 × 3 systems3 [18℄. The riterion simply saysthat a density matrix ρ on a bipartite spae K⊗K, if separable, must be positiveunder the following transformation
ρ ↦ (id⊗t)ρ, (1.10)where t denotes the transposition map in B (K). Thus, if the partial transpose

ρT2 ∶= (id⊗t)ρ of a density matrix ρ is found not to be positive, we know that
ρ is entangled. Let us state this as a proposition.Proposition 1.5 (PPT riterion). If a state ρ ating on a bipartite spae K⊗Kis separable, the partial transpose of ρ, given by the r.h.s. of (1.10), must be apositive operator.States whih do not satisfy the impliation of Proposition 1.5 are alledNPT entangled, where NPT stands for �negative partial transpose�. It wasa natural question to ask whether there exists entangled states with positivepartial transpose (PPT). For 2 × 2 and 2 × 3 systems, this is impossible by [18℄,but for 3 × 3 systems, a PPT entangled state was found by P. Horodeki [19℄.Di�erent examples were earlier studied, in a slightly di�erent ontext, by E.Størmer [20℄ and M.-D. Choi [21℄. In order to prove his result, the author of [19℄needed a di�erent separability test than the PPT riterion. What he used isnow alled the range riterion for separability.Proposition 1.6 (Range riterion). For a separable state ρ on a bipartite spaeK⊗K, there must exist a set of produt vetors φi⊗ψi that span the range of ρ,
R (ρ). In addition to that, the partially onjugated vetors φi ⊗ψ∗i need to spanthe range of ρT2 , R (ρT2).A whole family of separability riteria an be derived from the followingresult by the Horodeki family [18℄, whih generalises the PPT riterion.Proposition 1.7 (Positive maps riterion). A separable state ρ on a bipartitespae K ⊗K is separable if and only if

(id⊗Λ)ρ ⩾ 0 (1.11)for all linear maps Λ ∶ B (K)→ B (K) that preserve the positivity of opera-tors.3f. [17℄ for a nie explanation in the 2 × 2 ase11



Maps that preserve positivity of operators are alled positive maps, and henethe name of the riterion. One of the main results of this thesis, presented inChapter 6, is a broad generalization of the positive maps riterion for di�erentsublasses of the set of all density matries, inluding states of Shmidt rank
k [22℄.The problem with ondition (1.11) is that it needs to be heked for allpositive maps, whih is impossible as long as we do not know their full struture.However, for a �xed hoie of the map Λ, the positive maps riterion alwaysgives a neessary ondition for separability. An example of this is when Λ (ρ) =1Trρ − ρ, so-alled redution map. For suh hoie of the positive map, weget [23℄Proposition 1.8 (Redution riterion). A separable state on a bipartite spaehas to ful�ll the following ondition

(TrBρ)⊗ 1 − ρ ⩾ 0, (1.12)where TrB denotes the partial trae of ρ with respet to the seond subsystem,(TrAρ)ij = ∑k ρik,jk .Another possible hoie of Λ is Λ ∶ ρ ↦ 1Trρ − ρ − V ρtV ∗, so-alled Breuer-Hall map [24,25℄. Here ρt stands for the transposition of ρ and V is an antisym-metri, unitary matrix, V t = −V . Suh matries V only exist if the dimensionof the spae K is even.Yet another, experimentally feasible approah to the disrimination of theset of separable states is by the use of so-alled entanglement witnesses. Anentanglement witness4 is an operatorW on a multipartite spae K1⊗K2⊗. . .⊗Kkwith the property
⟨φ1 ⊗ φ2 ⊗ . . . ⊗ φk ∣W ∣φ1 ⊗ φ2 ⊗ . . .⊗ φk⟩ ⩾ 0 (1.13)for all φ1, . . . , φk in K1, . . . , K2, resp. In terms of suh operators, we have thefollowing separability riterionProposition 1.9 (Entanglement witness riterion). A density matrix ρ on amultipartite spae K1 ⊗ K2 ⊗ . . . ⊗ Kk is separable if and only if the followinginequality, Tr (Wρ) ⩾ 0 (1.14)holds for all witnesses W on K1 ⊗K2 ⊗ . . .⊗Kk.A big advantage of witnesses over positive maps is that the trae on thel.h.s. of (1.14) an be measured in an experiment as an expetation value ofan observable. Moreover, one an often �nd an optimal deomposition of thewitness into loally measurable quantities [26, 27℄, i.e. a deomposition of theform

W =
r

∑
l=1

γlX
l
1 ⊗X l

2 ⊗ . . .⊗X l
k (1.15)4not to onfuse with the Werner state introdued earlier12



with r minimal. One an also ask whether a witness W is optimal in the sensethat for no other witness W ′ the inequality Tr (Wρ) < 0 implies Tr (W ′ρ) < 0[28℄.Nevertheless, we should note that by the Jamioªkowski-Choi isomorphism[29,30℄ (f. also [31℄), every witness has a orresponding positive map ΛW , andthe orresponding positive map riterion (id⊗ΛW )ρ ⩾ 0 is muh stronger thanthe riterion Tr (Wρ) ⩾ 0. However, the �rst riterion is muh more di�ult tomeasure in an experiment [32℄.To �nish, let us explain a relation of the CHSH inequality, introdued inSetion 1.1, to entanglement witnesses. It was �rst pointed out in [33℄ thatBell-type inequalities an be pereived as vetors in the Farkas lemma [6℄, dis-riminating between the set of orrelations with a loal realisti desription andthe quantum orrelations. The Farkas vetors an in turn be related to observ-ables, whih have the interpretation of witnesses. In the partiular ase of theCHSH inequality, the Terhal's theory boils down to the observation that theexpression ǫ̃ (α2, β1) + ǫ̃ (α2, β2) + ǫ̃ (α1, β1) − ǫ̃ (α1, β2) in equation (1.4) an bewritten in the form Tr (Bρ), where
B ∶= a⃗1 ⋅ σ⃗ ⊗ (b⃗1 + b⃗2) ⋅ σ⃗ − a⃗2 ⋅ σ⃗ ⊗ (b⃗2 − b⃗1) ⋅ σ⃗ (1.16)is the CHSH operator, �rst introdued in [34℄, and a⃗1, a⃗2, b⃗1 and b⃗2 are thespin diretion vetors, orresponding to the previously used detetor angles α1,

α2, β1 and β2, respetively. Using B, one an easily onstrut the operator
W = 21 − B, whih is a witness aording to the CHSH inequality and the fatthat all separable states admit a hidden variable desription. Moreover, theinequality Tr(Wρ) = 2 −Tr (Bρ) < 0 (1.17)observed for some state ρ, does not only indiate that ρ is entangled, but alsothat it is nonloal. Thus W plays a double role of an entanglement and nonlo-ality witness.1.3 Beyond quantum entanglementQuestions beyond the separability paradigm, or even beyond the frames of quan-tum mehanis, have been onsidered in the quantum information literaturesine the early days of the subjet. A well-known example of this is the famouspaper [35℄ by Popesu and Rohrlih, where nonloality is onsidered as a possi-ble axiom for quantum mehanis. More preisely, the authors onsider nonloaltheories that do obey relativisti ausality. It turns out that there an exist,at least in priniple, theories of this type whih are not idential to quantummehanis. To explain this in more detail, let us brie�y repeat the simpli�edversion of the argument in [35℄, as it was presented in a later paper [36℄.We onsider a theory of a pair of spin- 1

2
partiles whih yields, for somereason, idential probabilities for the measurement outomes ↑↑ and ↓↓, as well asidential probabilities for the outomes ↓↑, ↑↓, no matter what the measurement13



bases in the �rst and the seond subsystem are. Suh hoie preludes thepossibility of supraluminal ommuniation using the two partiles. We say thatthere are only non-signalling orrelations (f. e.g. [37℄) between them. Anotheronsequene is that the respetive orrelation funtion ǫmust depend only on therelative angle θ between the �rst and the seond measuring devie. Moreover,it has to ful�ll ǫ (π − θ) = −ǫ (θ). One possible hoie of suh a funtion is [36℄,
ǫ (θ) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1 for θ ∈ [0, π

4
]

2 (1 − 2x
π
) for θ ∈ (π

4
, 3π

4
)

−1 for θ ∈ [ 3π
4
, π] (1.18)By hoosing the suessive angles α1 = 0, β1 = π4 , α2 = π
2
and β2 = 3π

4
in an EPRexperiment of the type disussed in Setion 1.1, we get

∣ǫ (α2 − β1) + ǫ (α2 − β2) + ǫ (α1 − β1) − ǫ (α1 − β2)∣ = 4 (1.19)as an analogue of equation (1.5). However, this time the violation of the lassialbound (1.4) is bigger than possible in quantum mehanis. Thus, a theory witha orrelation funtion of the form (1.18) obeys relativisti ausality, yet it is notonsistent with the quantum-mehanial desription of the world.The above disussion shows that it is not possible to reprodue the laws ofquantum mehanis just by using the priniple of non-signalling. The Popesu-Rohrlih orrelations onstitute a toy model, useful for demonstrating this fat.However, after the seminal paper [35℄, a fair amount of work [37�44℄ has beendevoted to understanding the properties of Popesu-Rohrlih orrelations andhow they would a�et ommuniation omplexity, had they been present inreality. Usually, suh questions are formulated in the language of so-allednonloal boxes. In order to demystify this new notion, let us explain that anonloal box orresponding to the preise Popesu-Rohrlih setup disussedabove, looks as in Figure 1.2. It is an imaginary devie with two inputs a, b andtwo (random) outputs x, y that satisfy ertain relation. The inputs, whih takevalues 0 or 1, orrespond to the measurement setups for the �rst and the seondpartile, respetively. For example, a = 0 means that the spin of the �rst partileis measured in a basis rotated by α1. Similarly, b = 1 indiates a measurementbasis for the seond partile is rotated by β2. The outputs x and y, on the otherhand, orrespond to the measurement results ↑ or ↓. For example, y = 1 indiatesthat spin ↑ was measured for the seond partile. A quik thought revealsthat the above �box�, alled mod2NLB in [45℄, is just a more abstrat way toexpress the properties of an imaginary EPR experiment with orrelations givenby the funtion (1.18). The only mathematial ontent of any suh box, notneessarily related to the orrelation funtion (1.18), is a onditional probabilityfuntion p (xy ab) that ful�lls so-alled non-signalling onditions that guaranteethe impossibility of supraluminal ommuniation, f. [37℄. Generalizations to amultipartite senario are immediate.Notably, mod2NLB was postulated as a unit of nonloality [46℄, somewhatsimilar to the role played by the Bell singlet 1/√2 (∣↑↓⟩ + ∣↓↑⟩) in entanglement14



Figure 1.2: A nonloal box orresponding to the Popesu-Rohrlih thoughtexperimenttheory. However, it was immediately realized [46℄ that not all multipartite boxesan be simulated using a number of opies of mod2NLB. Moreover, in [45℄ theauthors showed that in the bipartite senario, there does not exist a �nite setof nonloal boxes that ould be used to simulate all bipartite nonloal boxes.Interestingly, in the proof presented in [45℄ the Hilbert basis theorem was used,whih also appears in Setion 4.2 of this thesis as Theorem 4.18.As intelletually appealing as they are, general nonloal boxes do not seem tohave a ounterpart in the real world. Still, most of the disussion by the quantuminformation ommunity does stay within the framework of quantum mehanis,but not neessarily onentrates on entanglement. In partiular, it was quiklyreognized that there exist nonloal phenomena in quantum mehanis whihannot be explained by the presene of entanglement. In the well-known paper[47℄, the authors show an example of a family of nine mutually orthogonalbipartite produt states that annot be distinguished using loal measurementsand lassial ommuniation by the two parties. They all this phenomenon�nonloality without entanglement�, hene pointing out to the di�erene betweenthe two notions that tended to be taken as equivalent. However, it should bekept in mind that nonloality in terms of the violation of Bell inequalities is verylosely related, if not equivalent, to the property of being entangled. We brie�yexplained this in Setion 1.1, where we referred to a paper by L. Masanes, Y.-C.Liang and A. C. Doherty [13℄. Therefore, the notion of nonloality in [47℄ andin the researh we desribe in the rest of this setion, signi�antly di�ers fromwhat was traditionally pereived as the equivalent of being nonloal, i.e. theviolation of Bell inequalities and the lak of a loal realisti desription.In more reent days, the study of nonloality largely revolves around itstwo quantitative measures, whih are the quantum disord, introdued by �urekand Ollivier in [48℄, and the quantum de�it, studied by Oppenheim and the15



Horodeki family [49℄. For a reent review artile on the subjet, onsult [50℄.The basi idea behind the quantum disord is that two expressions for so-alledmutual information that are equivalent in the ase of lassial probability dis-tributions, do not neessarily give the same answer when generalized to thequantum senario. Indeed, let us de�ne the entropy of a lassial random vari-able A as
H (A) = −∑

a

p (A = a) log p (A = a) (1.20)and the onditional entropy of A with respet to another lassial variable B as
H (A B) =∑

b

p (B = b)H (A B = b) , (1.21)where H (A B = b) is the entropy of the variable A onditioned on a partiularvalue b of the variable B. We de�ne the mutual information of the variables Aand B as
J (A ∶ B) =H (A) −H (A B) (1.22)A little inspetion shows that in the ase of lassial probability distributions,the above expression is equivalent to

I (A ∶ B) =H (A) +H (B)−H (A,B) , (1.23)where H (A,B) stays for the entropy of the olletive variable (A,B). Thus wehave I (A ∶ B) = J (A ∶ B) for arbitrary lassial variables A and B. However,as pointed out in [48℄, the equality between the two expressions for mutualinformation does not generally hold in a quantum world.To show this, let us onsider a bipartite quantum system desribed by adensity matrix ρAB. The states of the subsystems are given by the partialtraes of ρAB, ρA = TrB ρAB and ρB = TrA ρAB. We immediately see that aquantum analogue of (1.23) is
I (ρAB) =H (ρA) +H (ρB) −H (ρAB) (1.24)where H (ρ) ∶= −Tr (ρ log ρ). However, it is not obvious how to generalize

J (A ∶ B) to the quantum ase. The reason behind this is that the quantumsubsystem B an be measured in various bases, and one of them has to beseleted before a sum similar to the ∑b in formula (1.21) is alulated. Thuswe have a whole family of onditional entropies H (ρAB {Πb}), where {Πb} isan arbitrary omplete set of one-dimensional projetions on the subsystem B,satisfying ∑bΠb = 1. Expliitly, H (ρAB {Πb}) is given by
H (ρAB {Πb}) =∑

b

pbH ((1⊗Πb)ρAB (1⊗Πb)
pb

) (1.25)where pb = Tr ((1⊗Πb) ρAB) is the probability to obtain a result b in a mea-surement orresponding to {Πb}. Simply beause the H (ρAB {Πb}) are not16



all equal, there is no single quantum analogue of J (A ∶ B). Instead, we have afamily of mutual information analogues, given by
J (ρAB {Πb}) =H (ρA) −H (ρAB {Πb}) (1.26)The supremum

CB (ρAB) = sup
{Πb}

J (ρAB {Πb}) (1.27)an be onsidered as a measure of lassial orrelations [48,51℄. Note that therealso exists a related quantity CA (ρAB) where the roles of A and B have beeninterhanged. The quantum disord is now de�ned as the di�erene between
I (ρAB) and CB (ρAB),

DB (ρAB) = I (ρAB) −CB (ρAB) (1.28)Alternatively, the name �disord� may refer to
DA (ρAB) = I (ρAB) −CA (ρAB) (1.29)although the two quantities DA and DB do not generally oinide.Due to the equality I (A ∶ B) = J (A ∶ B) valid in the lassial world, the non-vanishing of the disord for ρAB is a sign of quantumness of the state. Unlikeseparability, the vanishing of the disord only ours for a measure zero subsetof the set of all states [52℄. In partiular, DA and DB vanish simultaneously ifand only if ρAB has an eigenbasis onsisting of produt vetors, i.e.
ρAB =∑

i,j

λi,j ∣φi⟩ ⟨φi∣⊗ ∣ψj⟩ ⟨ψj ∣ (1.30)where λij ⩾ 0, while φi and ψj onstitute bases for the �rst and the seondsubsystem, respetively. Suh states are alled lassially orrelated [53℄. Theyalso play an important role in the alternative framework for orrelation studies,developed by Oppenheim and the Horodeki family [49, 53℄.It is in general not easy to evaluate the quantum disord, but some resultshave been obtained e.g. for 2 × 2 systems [54, 55℄. Several onditions for zeroand non-zero quantum disord are known as well [52, 56, 57℄, and a missingoperational interpretation of the quantity has been provided in [58℄ in terms ofa quantum state merging protool.Quantum de�it, on the other hand, has had a relatively lear physial inter-pretation from the very beginning when it was introdued in [49℄. The quantityis believed to be equal to the amount of work whih an be extrated from amultipartite quantum state ρ globally, minus the amount of work the partiesan draw loally, possibly after transforming the state by an allowed family oftransformations. This desription may seem a little vague, but on the mathe-matial side, the disussion an easily be made more rigorous. For a quantumstate ρ in a d-dimensional spae, we de�ne
I (ρ) = log2 d −H (ρ) (1.31)17



as the information ontained in ρ. For the allowed family of transformations,we take so-alled losed loal operations and lassial ommuniation family,CLOCC for short [53℄. They an be deomposed into two basi types of opera-tionsi) Loal unitary transformationsii) Sending subsystems down a ompletely dephasing hannel (i.e. a hannelthat destroys all non-diagonal elements of the transformed density matrixin some basis)Let us denote this family by CL. In the bipartite senario, the quantum de�itof a quantum state ρAB is de�ned as
∆ (ρAB) = I (ρAB) − sup

Φ∈CL
(I (TrA (Φ (ρAB))) + I (TrB (Φ (ρAB)))) (1.32)or equivalently

∆ (ρAB) = inf
Φ∈CL

(H (TrA (Φ (ρAB))) +H (TrB (Φ (ρAB)))) −H (ρAB) (1.33)Generalizations to multipartite ases are immediate. Similarly to the disord,the de�it vanishes for lassially orrelated states, i.e. states of the form (1.30).Moreover, as explained in [53℄, reversible CLOCC transforms of lassially or-related states play an important role in evaluation of ∆ for a given state ρ.On the physis side, the theoretial possibility to draw a maximal amount
kT ⋅ I (ρ) of work from a heat bath in temperature T using a state ρ is awidely believed onjeture. It has been partly on�rmed by papers like [59℄and [60℄. Hene, it seems plausible that the quantum de�it really has thephysial interpretation we mentioned earlier, but one should remain autions.The mathematial struture of the quantity, however, remains intat in eitherase.Before we lose this hapter, we should de�nitely mention that the prinipleof non-signalling, whih appeared in the disussion by Popesu and Rohrlih,an be replaed by so-alled information ausality priniple, whih is strongerthan no-signalling and preludes orrelations that are not allowed by quantummehanis [61℄. Hene, information ausality may possibly be onsidered asan axiom for quantum theory [61, 62℄, unlike the non-signalling priniple [35℄.However, this topi goes beyond the sope of this thesis.
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Chapter 2Pratial appliations2.1 Quantum ryptographyThe idea of quantum ryptography or quantum key distribution, �rst putforward in the famous 1984 paper [63℄ by Bennett and Brassard, has its originsin an early work by S. Wiesner [64℄. The main observation behind it was thattwo photon polarization bases, say R and D for retilinear and diagonal, an beseleted in suh a way that photons fully polarized with respet to one of themgive totally random results when measured in the other basis, and vie versa.Equally important was the fat that quantum measurements a�et the measuredsystems in general. Bennett and Brassard used these quantum-mehanial fea-tures to onstrut a protool, now alled BB84, whih allows two parties thatdo not initially share any serets, to generate a random string of bits that isknown to both of them, but not to anyone else. Suh bits an subsequently beused as a shared seret key for perfetly seure lassial data transmission. Letus all the two parties A and B, or Alie and Bob. The protool designed byBennett and Brassard onsists in the following steps:1. Alie and Bob agree on two polarization bases, say R and D, whih arerotated by 45○ with respet to eah other. Let us denote the orrespond-ing pure polarization photon states by ∣↔⟩, ∣↕⟩ for the R basis and ∣⤡⟩ =
1/√2 (∣↔⟩ + ∣↕⟩), ∣⤢⟩ = 1/√2 (∣↔⟩ − ∣↕⟩) for the D basis.2. Alie generates random sequenes of bits, {ai}ni=1 and {bj}nj=1, using a las-sial random number generator.3. Bob generates a random sequene of bits {ck}nk=1, also using a lassial gen-erator.4. Alie then begins to send photons to Bob. The polarization state of the i-thphoton is hosen aording to the values of the random bits ai and bi. Thebit ai determines whih polarization basis is used, with ai = 0 standing forthe R and ai = 1 for the D basis. The bit bi determines whether the �rst or19



Random bits (0,0) (0,1) (1,0) (1,1)Photon sent ∣↔⟩ ∣↕⟩ ∣⤡⟩ ∣⤢⟩Table 2.1: Photon polarization states hoies orresponding to Alie's randombits (ai, bi).the seond pure polarization state with respet to the given basis is hosen.Table 2.1 summarizes on Alie's hoie of photon, depending on (ai, bi).5. Bob measures the reeived i-th photon in the R or D basis, depending on thevalue of ci. When ci = 0, Bob uses R. Otherwise, he uses D. The �rst vetorin the seleted basis (∣↔⟩ or ∣⤡⟩) is assigned the measurement result 0, whilethe remaining vetor (∣↕⟩ or ∣⤢⟩) is assigned 1. If Bob happens to hoose thesame basis as Alie did (i.e. ai = ci), his measurement result exatly mathes
bi, assuming the photon transmission was not disrupted nor interfered withby an eavesdropper.6. After measuring all the n photons, Bob publily disloses the bits ci, andAlie does the same with ai. Thus done, they know whih measurementbases they used for individual photons and an single out the ases wheretheir basis hoies were idential. On average, they would have hosen thesame basis in n/2 ases.7. As their seret key, Alie and Bob hoose the bits bi for whih ai = ci. Theyboth know these bits, as a result of using idential measurement bases.The power of the above protool omes from the fat that any interferene by aneavesdropper would very likely have been deteted by Alie and Bob, providedthat they perform an additional orretness hek before they agree on the key.The required additional proedure an be summarized as follows:7.' After performing Step 6., Alie and Bob selet a random subset of the indies
i for whih ai = ci. Assume the seleted indies are {ik}mk=1. Alie publilydisloses the bits {bik}mk=1, and Bob disloses the orresponding measurementresults he obtained. If both math, the transmission is assumed to be perfetand the remaining bits for whih ai = ci are used as a seret key. Otherwise,it is assumed that someone was eavesdropping, and the results of the wholeseret key generation proedure are disarded.An exemplary run of the proedure onsisting of steps 1.-7., with 7.' inluded,is presented in Table 2.2. Note that in real life appliations, it is impossible toavoid transmission errors, even if there is no one eavesdropping. Hene, a generalstrategy has to be developed to deal with transmission/eavesdropping errors, astrategy that would allow to produe a seret key, even if the transmission doesnot work perfetly. Suitable tools, borrowed from lassial oding theory, weredisovered some years after the advent of BB84 [65℄. They are very generallydesribed as information reoniliation and privay ampli�ation. Formore details, f. [65℄. 20



{ai} 1 0 1 1 0 1 0 1 0{bi} 0 1 1 0 1 0 1 1 0{ci} 1 1 1 0 0 0 1 0 1Alie's hoie of basis D R D D R D R D RAlie's photon state ⤡ ↕ ⤢ ⤡ ↕ ⤡ ↕ ⤢ ↔Bob's hoie of basis D D D R R R D R DBob's result 0 ∗ 1 ∗ 1 ∗ ∗ ∗ ∗The same basis? Y N Y N Y N N N NRandomly seleted bits 1Do they math? YSeure key 0 1Table 2.2: An exemplary run of the BB84 protool. The symbol ∗ denotes thefat that either 0 or 1 ould have been obtained. The letters Y and N stand for�Yes� and �No�.We need to point out that in the above proedures, no use of entangle-ment was made. However, in the early nineties, A. Ekert proposed the �rstentanglement-based quantum key distribution protool, known as E91 [66℄. Al-though the general idea behind E91 is the same as for BB84, there are severalkey di�erenes:1) Instead of leaving the photon state preparation to Alie, both parties areassigned the idential task of measuring a subsystem in a two-partite maxi-mally entangled photon state (∣00⟩ + ∣11⟩) /√2. The state is assumed to beexternally given. Alie measures the �rst and Bob the seond subsystem.2) Three instead of two photon polarization bases are used at random by Alieand Bob. In ase of Alie, the polarizer angles φA1 = 0○, φA2 = 45○ and φA3 = 90○are used. For Bob, it is φB1 = 45○, φB2 = 90○ and φB3 = 135○.3) Bob and Alie publily dislose whih bases they used in whih measure-ment round. Then, they reveal the measurement results for whih di�erentmeasurement setups were used. This permits them to alulate the CHSHquantity
E (φA3 , φB3 ) +E (φA3 , φB1 ) +E (φA1 , φB3 ) −E (φA1 , φB1 ) , (2.1)where E (φ,ψ) is the orrelation oe�ient between the measurement resultsfor Alie and Bob when their polarizer angles are φ and ψ, respetively. Asin the example disussed in Setion 1.1, the value of the funtion (2.1) fora truly maximally entangled soure state is 2

√
2. By testing whether theequality between 2

√
2 and (2.1) really ours, Bob and Alie make sure thatno eavesdropping takes plae, nor that the soure is orrupted.4) If there is (an approximate) equality between (2.1) and its theoretial value,the results whih Bob and Alie obtained when they measured in the same21



bases, should be perfetly orrelated. They were not publily dislosed sofar, so they an be used as a seret key.Shortly after Ekert published his paper, Bennett, Brassard and Mermin [67℄suggested another entanglement-based protool, now alled BBM92, whih isbasially a version of BB84 that exploits the properties of entangled quantumstates. Thus, the di�erene from BB84 desribed by item 1) above still exists,but the other ones do not.It is natural to ask how the above two-qubit key distribution methods gen-eralize to higher dimensional quantum systems. The question was addressedby the authors of the paper [68℄, who used so-alled mutually unbiased bases(MUBs) as a higher dimensional analogue of the pair of bases {∣↔⟩ , ∣↕⟩} and{∣⤡⟩ , ∣⤢⟩}. Let us explain that two orthonormal bases {φi}di=1 and {ψj}dj=1 ofCd are alled unbiased if and only if the following equality
∣⟨φi, ψj⟩∣2 = 1

d
(2.2)holds for all i and j. The unbiasedness ondition guarantees the desirable prop-erty that an element of one of the bases gives fully random results when mea-sured in the other basis.There an exist at most d + 1 mutually unbiased bases in Cd [69℄. We shalldisuss some of their further aspets in Setion 8.4. Either a pair of them, ormore an be used to design quantum key distribution protools based on d-dimensional quantum systems [68℄. These protools do not di�er signi�antlyfrom the qubit ones. Let us also remark that in the qubit setting, there arethree MUBs available, so that there exists an alternative to BB84 that uses sixquantum states instead of four. This possibility was �rst studied in a paper byBruss [70℄.2.2 Quantum teleportation and dense odingAs our next example of how the laws of quantum mehanis an be used forpratial purposes, we shall disuss the two interonneted onepts of denseoding [71℄ and quantum state teleportation [72℄.In its most basi form, dense oding permits two parties, say Alie andBob, to exhange two lassial bits of information by just transmitting onequbit. The fundamental trik behind this feature is the use of one-sided Paulitransformations, ating on a maximally entangled state. We have

(1⊗ 1) ∣Φ+⟩ = ∣Φ+⟩ , (σx ⊗ 1) ∣Φ+⟩ = ∣Ψ+⟩ , (2.3)(σy ⊗ 1) ∣Φ+⟩ = −i ∣Ψ−⟩ , (σz ⊗ 1) ∣Φ+⟩ = ∣Φ−⟩ ,so that the four states resulting from one-sided Pauli ation on ∣Φ+⟩ are perfetlydistinguishable. Hene, they an arry two bits of lassial information. In thedense oding sheme proposed in [71℄, Alie and Bob initially share a maximally22



entangled state ∣Φ+⟩ of a two-partite system, and eah of them has aess to onlyone of the subsystems. Alie then performs one of the four Pauli transformationson her subsystem, and sends the subsystem to Bob. After this step, Bob isin possession of one of the two-partite maximally entangled states from thelist (2.3). Beause these states an be perfetly distinguished by a quantummeasurement, Bob an in priniple tell whih of the four Pauli operations Alieused. Consequently, two bits of lassial information have been transmitted,even though only one qubit was exhanged between Alie and Bob.The aim of quantum state teleportation is, on the other hand, to transmitan unknown quantum state ∣ψ⟩ between the two parties. In the basi qubitteleportation model [72℄, the required resoures are a maximally entangled state,i.e. ∣Ψ−⟩ = (∣01⟩ − ∣10⟩) /√2, whih is shared between Alie an Bob, and thestate to be teleported, initially held by Alie. Altogether, they have a tripartitesystem, initially in the state ∣ψ⟩ ∣Ψ−⟩. The �rst two subsystems are ontrolledby Alie, and the third one by Bob. In order to teleport ∣ψ⟩ to Bob, Alieperforms a measurement on the �rst two qubits, using the measurement basis{∣Φ+⟩ , ∣Φ−⟩ , ∣Ψ+⟩ , ∣Ψ−⟩}. She then ommuniates the result to Bob. Providedthis information, Bob an reover ∣ψ⟩ by performing a suitable unitary rotationon his subsystem. To see that this is atually the ase, it su�es to notie thefollowing identity
∣ψ⟩ ∣Ψ−⟩ = 1

2
(− ∣Ψ−⟩ ∣ψ⟩ − ∣Ψ+⟩σz ∣ψ⟩ + ∣Φ−⟩σx ∣ψ⟩ − i ∣Φ+⟩σy ∣ψ⟩) (2.4)After the Alie's measurement on the �rst two qubits, Bob's subsystem is inone of the states − ∣ψ⟩, −σz ∣ψ⟩, σx ∣ψ⟩, −iσy ∣ψ⟩. Moreover, Alie an perfetlydi�erentiate between these four ases, as she knows whih of the states ∣Ψ−⟩,∣Ψ+⟩, ∣Φ−⟩ and ∣Φ+⟩ she got in her measurement. If she is so kind to share thisknowledge with Bob, he an then reover the state ∣ψ⟩ by simply undoing thesuitable rotation σx, σy or σz , if his state is not already a multiple of ∣ψ⟩.Naturally, the above dense oding and teleportation shemes for qubits areexpeted to have generalizations to higher dimensional systems. Suh gen-eralizations do indeed exist and for the so-alled tight type, they have beenompletely haraterized by Werner [73℄. Moreover, he showed that there is aone-to-one orrespondene between tight dense oding and tight teleportationshemes. In order to fully understand his result, we �rst need to explain whata general dense oding and teleportation sheme is.De�nition 2.1. Let X be a set of d2 elements. A tight quantum teleportationsheme onsists of� A density operator ω on Cd ⊗Cd� A olletion of ompletely positive and trae preserving maps Tx, x ∈ X ,ating on operators on Cd� A olletion of observables Fx on Cd⊗Cd, x ∈ X , suh that for all densityoperators ρ on Cd and all operators A on Cd, the following equality holds

∑
x∈X

Tr((ρ⊗ ω) (Fx ⊗ Tx (A))) = Tr(ρA) (2.5)23



De�nition 2.2. Let X be a set of d2 elements. A tight dense oding shemeonsists of the same elements as a tight quantum teleportation sheme, howeverthe ondition (2.5) is replaed byTr (ω (Tx ⊗ 1) (Fy)) = δxy (2.6)for all x, y ∈ XNote that in the above mentioned example of a dense oding sheme forqubits, we had {Fx}x∈X = {∣Φ+⟩ ⟨Φ+∣ , ∣Ψ+⟩ ⟨Ψ+∣ , ∣Ψ−⟩ ⟨Ψ−∣ , ∣Φ−⟩ ⟨Φ−∣}. We usedthe maximally entangled state ω = ∣Φ+⟩ ⟨Φ+∣ and the transformations {Tx}x∈X ={1,Adσx
,Adσy

,Adσz
}, where Adσx

∶ ρ ↦ σ∗xρσx, and similarly for σy and
σz . In the qubit teleportation sheme, on the other hand, we had {Fx}x∈X ={∣Ψ−⟩ ⟨Ψ−∣ , ∣Ψ+⟩ ⟨Ψ+∣ , ∣Φ−⟩ ⟨Φ−∣ , ∣Φ+⟩ ⟨Φ+∣}, ω = ∣Ψ−⟩ ⟨Ψ−∣, as well as {Tx}x∈X ={1,Adσz

,Adσx
,Adσy

}Werner proves the following general result [73℄.Theorem 2.3. All tight teleportation or dense oding shemes in Cd are ob-tained by hoosing ω = ∣Ω⟩ ⟨Ω∣ for a maximally entangled state ∣Ω⟩ ∈Cd⊗Cd, Fx =∣Φx⟩ ⟨Φx∣ for an orthonormal basis of maximally entangled states {∣Φx⟩}x∈X ⊂Cd ⊗Cd and Tx = AdUx
, where Ux is hosen suh that ∣Φx⟩ = (Ux ⊗ 1) ∣Ω⟩.In Partiular, Theorem 2.3 applies that there is a one-to-one orrespondenebetween tight teleportation and dense oding shemes. Every suh sheme needsa basis of maximally entangled states. Let us remark that Werner proposed aonstrution of suh bases, based on Latin squares and omplex Hadamardmatries, whih also appear in the ontext of mutually unbiased bases, to bedisussed in more detail in Setion 8.4.2.3 Quantum metrologyIn the last setion onerning pratial appliations of quantum entanglement,we shall give an example of how entanglement an be used to inrease phasesensitivity in a photon interferometry experiment. Our disussion is based onthe paper [74℄ by Gerry and Benmoussa, but we make a few remarks aboutrelated work by other authors. The very simple experimental setup we wouldlike to disuss is depited in Figure 2.1. It onsists of two photodetetors, a beamsplitter, and a phase shifter. Together, they make up a simple interferometer.An important part of the experiment is also the photoni quantum state whihis fed into the arms of the interferometer, as well as the observable one alulatesusing the measurement results from the photodetetors. The aim is to estimatethe phase φ, indued by the phase shifter on single photons. Suh phase mayresult e.g. from propagation through a thin layer of a medium that has an indexof refration greater than the environment. In the following, we argue that theestimation of φ an be made more preise if one does exploit entanglementbetween N photons impinging on the beam splitter, instead of just repeatingsingle-photon measurements N times. 24



Figure 2.1: A simple experimental setup for photon interferometry. The aim ofthe experiment is to estimate the phase φ using an appropriate input state andmeasurementWe shall use the quantum-mehanial desription of the optial experimentin Figure 2.1, the basis for whih an be found in the textbook [75, Chapter 6.℄.In this formalism, the quantum state of the photons leaving the beam splitter isdesribed as an element of a two-partile Fok spae, with reation/annihilationoperators a/a∗ and b/b∗ orresponding to the upper and the lower output armof the interferometer, respetively. It should lead to no onfusion if we all theupper and the lower arm itself a and b for onveniene (f. Figure 2.1). Theorresponding reation/annihilation operators satisfy the ommutation relations
[a, a∗] = [b, b∗] = 1 [a, b] = [a∗, b] = [a, b∗] = [a∗, b∗] = 0 (2.7)The vauum state ∣0,0⟩ orresponds to no photons in arms a and b, and itsatis�es a ∣0,0⟩ = b ∣0,0⟩ = 0. We assume that ∣0,0⟩ is normalized. Photonnumber states are subsequently de�ned as

∣n,m⟩ = (a∗)n (b∗)m√
n!m!

∣0,0⟩ (2.8)They have the lear interpretation of states with n photons in arm a and mphotons in arm b of the interferometer. An analogous onstrution works forthe upper and lower input arm of the interferometer, whih we all b′ and a′, thesame as the orresponding annihilation operators. Note that the upper arm isdenoted with b′ and not with a′, the same as in Figure 2.1. The orrespondingphoton number states are denoted with ∣n,m⟩′.In aordane with [75℄, if we have an input state ∣Φ⟩ = f (a′∗, b′∗) ∣0,0⟩′ forsome funtion f of the reation operators a′∗ and b′∗, then the output state ofthe interferometer equals
UBSU (φ) f (a∗, b∗) ∣0,0⟩ , (2.9)25



where UBS = exp (iπ (a∗b + ab∗) /4) and U (φ) = exp (iφb∗b). Note that we usethe same funtion f , but we evaluate it for the reation operators a∗ and b∗,not for a′∗, b′∗. By a slight abuse of notation, we an therefore write (2.9) as
UBSU (φ) ∣Φ⟩ and onsider the interferometer as a unitary transformation onthe input state, whih yields an output in the output Fok spae. Let us denote∣Ψ (φ)⟩ ∶= UBSU (φ) ∣Φ⟩ The estimation of φ boils down to the alulation ofthe expetation value of an appropriately hosen observable O on ∣Ψ (φ)⟩, fromwhih we reover φ, i.e. we measure ⟨O⟩ (φ) ∶= ⟨Ψ (φ)∣O ∣Ψ (φ)⟩ and equate it tothe theoretially predited value of ⟨Ψ (φ̃)∣O ∣Ψ (φ̃)⟩ for some φ̃. The number φ̃gives us an estimate of φ. A widely applied formula for error propagation thenprovides us with an estimate of the error of φ̃,

∆φ̃ = ∆O (φ̃)
∣ d⟨O⟩(φ)

dφ
(φ̃)∣ , (2.10)where ∆O =

√⟨O2⟩ − ⟨O⟩2 is the standard deviation of O. As shown in [74℄,the hoie ∣Φ⟩ = 1√
2
(∣N,0⟩ + ∣0,N⟩) (2.11)allows for a signi�ant improvement in the preision of the measurement of φover a senario where single-photon states of the type (2.11) are measured Ntimes. The states (2.11) are alled NOON states [76℄ for obvious reasons. Itis not easy to reate them [77℄, but signi�ant progress has been made in thatarea in reent years, f. e.g. [78℄. In the following, we will brie�y explain howthe result of [74℄ was obtained.We already know whih state ∣Φ⟩ to use, but we have not yet spei�ed theoperator O to measure. A suitable hoie was suggested in [79℄, and it is

O = exp (iπb∗b) (2.12)Note that b∗b is simply the photon number operator for the lower output arm, sothe expetation value of O an be estimated from experiment by measuring thenumber nb of liks in the lower detetor and alulating exp (iπnb) = (−1)nb . Ofourse, the experiment has to be repeated many times to get a reliable estimate,equal to the average of the expressions (−1)nb over individual runs. Note thatwe assume that photodetetors are perfetly e�ient, i.e. no photons are lost.One we know ∣Φ⟩ and O, it is not very di�ult to alulate ⟨Ψ (φ)∣O ∣Ψ (φ)⟩.In order to simplify the alulation, one an introdue
J0 = a

∗a + b∗b
2

, J1 = a
∗b + ab∗

2
, J2 = a

∗b − ab∗
2i

, J3 = a
∗a − b∗b

2
(2.13)The operators Ji with i = 1,2,3 were introdued by Shwinger [80℄ and theysatisfy the angular momentum ommutation relations, [Jk, Jl] = i∑m εklmJm.The operator J0 ommutes with all of them and has the interpretation of thetotal photon number observable (divided by two).26



From the very useful Hadamard lemma (f. e.g. [81℄)
eXY e−X = e[X,⋅]Y = Y + [X,Y ] + 1

2!
[X, [X,Y ]] + . . . (2.14)and the ommutation relations (2.7), one quikly obtains the following equalities

eiπJ2a∗e−iπJ2 = −b∗, eiπJ2b∗eiπJ2 = a∗, (2.15)whih give us
eiπJ2 ∣n,m⟩ = eiπJ2

(a∗)n (b∗)m√
n!m!

∣0,0⟩ =
= e

iπJ2 (a∗)n e−iπJ2eiπJ2 (b∗)m e−iπJ2√
n!m!

eiπJ2 ∣0,0⟩ =
= (−b∗)n (a∗)m√

n!m!
∣0,0⟩ = (−1)n ∣m,n⟩ , (2.16)where we also used the equality eiπJ2 ∣0,0⟩ = ∣0,0⟩. Another relation whihfollows from (2.14) is

e−i
π
2
J1J3e

iπ
2
J1 = J2 (2.17)With (2.16) and (2.17) at hand, we an easily alulate ⟨Ψ (φ)∣O ∣Ψ (φ)⟩. Indeed,sine b∗b = J0 − J3 and J0 ommutes with all Ji, we get

⟨Ψ (φ)∣O ∣Ψ (φ)⟩ =
= 1

2
(⟨N,0∣ + ⟨0,N ∣)U (φ)∗U∗BSeiπ(J0−J3)UBSU (φ) (∣N,0⟩ + ∣0,N⟩) =

= 1

2
(⟨N,0∣ + e−iNφ ⟨0,N ∣) e−iπ2 J1eiπ(J0−J3)eiπ2 J1 (∣N,0⟩ + eiNφ ∣0,N⟩) =
= 1

2
(⟨0,N ∣ + e−iNφ ⟨N,0∣)eiπ(J0−J2) (∣N,0⟩ + eiNφ ∣0,N⟩) =

= 1

2
(⟨0,N ∣ + e−iNφ ⟨N,0∣)e−iπJ2eiπJ0 (∣N,0⟩ + eiNφ ∣0,N⟩) =

= 1

2
((−1)N ⟨0,N ∣ + e−iNφ ⟨N,0∣) eiN2 π (∣N,0⟩ + eiNφ ∣0,N⟩) =

= e
iNφ + (−1)N e−iNφ

2iN
(2.18)Thus ⟨O⟩ (φ) = (−1)N−12 sinφ for N odd and ⟨O⟩ (φ) = (−1)N2 cosφ for N even.These funtions readily allow us to reover φ̃ from ⟨O⟩ (φ̃), up to a multiple of

π/N . Sine O2 = 1, we have ⟨O2⟩ = 1 and formula (2.10) yields the followingestimate for the error of φ̃,
∆φ̃ = 1

N
(2.19)27



The above equality holds for both N even and N odd. The ∝ 1/N dependenein formula (2.19) orresponds to so-alled Heisenberg limit, whih is widely a-epted as the minimum phase estimation error allowed by quantum mehan-is [82�84℄. On the ontrary, by simply repeating a single photon experiment
N times, one gets a preision ∆φ̃ ∝ 1/√N , so-alled shot-noise or standardquantum limit, whih is signi�antly worse than (2.19) for large N . In this way,entanglement between the photons fed into the arms of the interferometer aninrease the phase sensitivity in the experiment by a fator of √N . Comparedto one single photon experiment, the sensitivity is inreased N times. A verypratial use of this feature was proposed in [85℄, where the authors suggestthat NOON states ould be used to imprint details of minimum resolution Ntimes better than usual in photolithography. In partiular, di�ration patternsresulting from the use of NOON states would have the minimum resolution Ntimes greater than those obtained with unentangled photons. This was alledquantum lithography in [85℄. However, the original argument of [85℄ has reentlymet with some ritiism [86℄, and it is argued that in pratie, the e�ieny ofquantum lithography would be rather low.

28



Chapter 3Distillability and boundentanglement3.1 Distillation of quantum entanglementAs we have seen above, a entral role in the most popular quantum tasks, inlud-ing quantum ryptography and teleportation, is played by maximally entangledstates. However, states enountered in pratie never math perfetly those usedin the theory, due to experiment imperfetions. In the early days of quantuminformation siene therefore, it appeared to be ruial to answer the questionwhether a noisy entangled state an somehow be �puri�ed� to yield one thatis loser to being maximally entangled. A partially a�rmative answer to thisquestion was �rst provided in [87℄ for the ase of two qubits and re�ned by theauthors of [88℄. A method suitable for bipartite systems of arbitrary dimension,based on the redution riterion for separability, was later presented in [23℄.Let us brie�y disuss a puri�ation, or distillation protool developed by theauthors of [87℄. The proedure starts with an arbitrary mixed state ρ of twoqubits. The following steps are designed to yield a state whih is loser to ∣Φ+⟩in a sense desribed below. However, it should be stressed that the method onlyworks provided that ⟨Φ+∣ρ ∣Φ+⟩ > 1
2
, i.e. ρ is not too far from Φ+ at the outset.We all the parameter ⟨Φ+∣ρ ∣Φ+⟩ the �delity of ρ with respet to the maximallyentangled state ∣Φ+⟩.1) First, we apply a loal unitary rotation σy to the seond omponent of ρ.This yields ρ′ = (1⊗ σy)ρ (1⊗ σy)∗, a state whih is as lose to ∣Ψ−⟩ =(∣01⟩ − ∣10⟩) /√2 as ρ was to ∣Φ+⟩, in the sense that ⟨Ψ−∣ρ′ ∣Ψ−⟩ = ⟨Φ+∣ρ ∣Φ+⟩.2) Seond, we apply a random bilateral SU (2) rotation to ρ′, whih e�etivelyyields

ρ′′ = ∫ (U ⊗U)ρ′ (U ⊗U)∗ dU, (3.1)where dU refers to the Haar measure. In pratie, the same goal an be29



s1 ●
s2 ●
t1

t2Figure 3.1: A BXOR gate applied to a pair of soure (s1, s2) and a pair of targetqubits (t1, t2).ahieved by randomly hoosing the identity and bilateral σx, σy and σzrotations. The result of (3.1) is obviously U ⊗ U -invariant, whih impliesthat it must be one of the Werner states (1.9). In the 2 × 2 ase onsideredhere, the Werner states take the spei� form
F ∣Ψ−⟩ ⟨Ψ−∣ + 1 − F

3
(∣Ψ+⟩ ⟨Ψ+∣ + ∣Φ+⟩ ⟨Φ+∣ + ∣Φ−⟩ ⟨Φ−∣) , (3.2)where ∣Ψ+⟩ = (∣01⟩ + ∣10⟩) /√2 and Φ− = (∣00⟩ − ∣11⟩) /√2. Therefore ρ′′ is ofthe form given above, with F = ⟨Ψ−∣ρ′′ ∣Ψ−⟩ = ⟨Ψ−∣ρ′ ∣Ψ−⟩. The last equalityfollows from the fat that ∣Ψ−⟩ is an U ⊗U -invariant state.3) In the next step, a unilateral σy rotation takes ρ′′ to ρ(3) = (1⊗ σy)ρ′′ (1⊗ σy)∗.In this way, the mostly ∣Φ−⟩ state is onverted to a mostly ∣Φ+⟩ one.4) Next, we take two opies of ρ(3), prepared in the way desribed above, anduse one of them as a �soure� and the seond one as a �target� for a BXORgate, depited in Figure 3.1. A BXOR gate simply onsists of two CNOTgates, applied to distint pairs of soure and target qubits.5) Next, the target pair of qubits is loally measured in the σz basis, as depitedin Figure 3.2, whih also inludes the BXOR operation desribed above. If

t1t2

● s1s2 ●Figure 3.2: BXOR operation followed by the measurement of the pair of targetqubits.the results are the same for the qubits t1 and t2, the remaining soure pair(s1, s2) is kept. Otherwise, it is disarded.6) If in the previous step the soure pair was kept, it is transformed to analmost ∣Ψ−⟩ state by a unilateral σy rotation. Next, it is made rotationallysymmetri by applying random bilateral SU (2) rotations, as in equation(3.1). Let us all the resulting state ρ(4). The orresponding parameter Fin formula (3.2) is then equal to
F (4) = F 2 + 1

9
(1 −F )2

F 2 + 2
3
F (1 −F ) + 5

9
(1 −F )2 , (3.3)30



whih exeeds F over the range (1/2,1). Thus ρ(4) is loser to Ψ− than ρ′ inthe sense that ⟨Ψ−∣ρ(4) ∣Ψ−⟩ > ⟨Ψ−∣ρ′ ∣Ψ−⟩.7) In the last step, the almost ∣Ψ−⟩ state ρ(4) is onverted bak to an almost∣Φ+⟩ one by a unilateral σy rotation. We all the resulting state ρ(5). Theorresponding parameter ⟨Φ+∣ρ(5) ∣Φ+⟩ is bigger than ⟨Φ+∣ρ ∣Φ+⟩. Thus, theresulting state is loser to ∣Φ+⟩ than ρ was.As a result, by repeating the above proedure, states whih are arbitrarily loseto Φ+ an be obtained. Nevertheless, the number of opies of ρ needed for theinput grows very fast as the expeted �delity goes to 1. Thus, for pratialpurposes, another proedure of distillation was designed by the authors of [87℄,whih more e�iently uses the statistial properties of ρ. However, it needsa small input of ∣Φ+⟩ states, whih may be obtained by the method desribedabove. The mentioned proedure onsists of two rounds of BXOR tests per-formed on suitably hosen subsets of the whole supply of ρ states, using theprepuri�ed ∣Φ+⟩ states as targets. It also uses unilateral and bilateral σy rota-tions, as well as unilateral σz rotations to orret the disrepanies from ∣Φ+⟩deteted by the BXOR operations. More details of the proedure an be foundin [87℄. All in all, from a theorist point of view, it is su�ient to say that allmixed states ρ of two qubits with ⟨Φ+∣ρ ∣Φ+⟩ > 1/2 an be distilled to the maxi-mally entangled state. This result was further extended, by using the tehniqueof loal �lters [10℄, to arbitrary entangled states of two qubits [88℄. In this way,the authors of [88℄ showed that any entangled state of two qubits has some formof nonloality, whih is revealed by the distillation proedure. Note that a sim-ilar result for bipartite states of arbitrary dimension would have resolved theparadox of Werner's paper [5℄, whih we disussed in Setion 1.2. However, itwas quikly realized that the existene of PPT entangled states, �rst revealed tothe physiist' ommunity by the paper [19℄, immediately preludes the desribedstrategy from working [89℄. Let us brie�y explain why this is the ase.In an ideal ase, given a soure haraterized by a bipartite density matrix
ρ, we have at our disposal the tensor produt states ρ⊗n for arbitrary n. Themost general transformation one an perform on ρ⊗n using only loal operationsand lassial ommuniation is of the form [90℄

ρ⊗n ↦ Θ (ρ⊗n) ∶= 1

M
∑
i

(Ai ⊗Bi)ρ⊗n (Ai ⊗Bi)∗ , (3.4)where Ai and Bi map into image spae in the �rst and the seond subsystem,respetively. In the ase of entanglement distillation, both the image spaesare C2, as we want to obtain the state ∣Φ+⟩, living in C2 ⊗ C2. Therefore,
Ai ∶ K⊗n → C2 and Bi ∶ H⊗n → C2, assuming that ρ lives on K ⊗ H. Nowassume that ρ has a positive partial transpose. Thus, ρ⊗n is a PPT state as well.One an also easily notie that the mapping ρ⊗n ↦ ∑i (Ai ⊗Bi)ρ⊗n (Ai ⊗Bi)∗preserves the positivity of the partial transpose of ρ⊗n. Hene the state on theright-hand side of (3.4) is a PPT state living on C2 ⊗C2. Consequently, it isseparable [18℄ and annot be distilled (f. also the disussion in Setion 1.2). Inthis way we have proved the following [89℄.31



Proposition 3.1. No PPT state living on a bipartite spae K⊗H an be distilledto ∣Φ+⟩.As a result, all PPT entangled states, inluding those presented in [19℄,annot be distilled to ∣Φ+⟩, even though they are not separable. Due to theirundistillability, the states are alled bound entangled. For them, the paradoxfrom the Werner's paper [5℄ annot be resolved by using distillation protools.Let us mention, however, that the original Werner states are positive partialtranspose if and only if they are separable. This still does not allow us to on-lude that all entangled Werner states an be distilled to ∣Φ+⟩, as there mightexist NPT bound entangled states, i.e. undistillable states whih are not PPT.This has beome a entral, still unresolved problem in the theory of entangle-ment, so-alled NPT bound entanglement existene problem. Atually, it wasdemonstrated in [91℄ (f. also [92℄) that the question whether there exist NPTbound entangled states only needs to be answered for the Werner family ofstates, sine all the other ones an be brought to the Werner form by transfor-mations that do preserve the positivity of the partial transpose. However, itturns out that the question for Werner states beomes inreasingly di�ult toanswer as the parameter Ξ in the de�nition (1.9) tends to the boundary value
0. Namely, it was proved in [91℄ that for any n ∈N, there exists ε > 0 suh thatthe state W from eq. (1.9) with Ξ ∈ (0, ε) annot be distilled using operationsof the form (3.4) on W⊗n (however, some of these states may be distillableusing n + 1 or more opies of W ). Sine then, onsiderable e�orts have beenmade to prove or disprove the existene of NPT bound entangled states, noneof whih have lead to a onlusive answer [93�98℄. Moreover, two ontraditorystatements onerning the problem an be found in the preprints [99,100℄, noneof whih is orret. One thing beyond any doubt is that the question of distill-ability intimately relates to the struture of 2-positive maps, i.e. positive maps
Λ ∶ B (K) → B (H) with the property that the map
B (C2 ⊗K) ∋ [ A11 A12

A21 A22
]↦ [ Λ (A11) Λ (A12)

Λ (A21) Λ (A22) ] ∈ B (C2 ⊗H) , (3.5)denoted with id2⊗Λ, is also positive. To see the relation of 2-positivity todistillability, let us �rst note the following haraterization of distillable states[89, 91℄.Proposition 3.2. A state with a density matrix ρ on K ⊗H is distillable ifand only if there exists a �nite n and two-dimensional projetions P1, P2 inK⊗n and H⊗n, resp. suh that ρ′ = (P1 ⊗P2)ρ (P1 ⊗P2)∗, supported on a 2×2-dimensional spae, is entangled. The last ondition is equivalent to the statementthat there exists a vetor ∣ψ⟩ ∈ K⊗H of the form ∣ξ1⟩ ∣χ1⟩+ ∣ξ2⟩ ∣χ2⟩ in K⊗n⊗H⊗nsuh that ⟨ψ∣ (ρ⊗n)T2 ∣ψ⟩ < 0, (3.6)where T2 denotes the partial transpose with respet to the seond subsystem,(1⊗ t)⊗n. 32



Proof. As we mentioned above, the most general distillation operation one anperform on ρ⊗n is of the form (3.4). In order for the transformed state Θ (ρ⊗n)transformed to be entangled, and thus distillable (remember that end up withstates on C2 ⊗ C2), at least one of the terms ρi ∶= (Ai ⊗Bi)ρ⊗n (Ai ⊗Bi)∗,supported on a 2×2-dimensional subspae, needs to be entangled. The operators
Ai and Bi are of the form ∣e0⟩ ⟨α1∣+ ∣e1⟩ ⟨α2∣ and ∣e0⟩ ⟨β1∣+ ∣e1⟩ ⟨β2∣, where α1, α2belong toK and β1, β2 belong toH. Let us denote with P1 and P2 the projetionsonto the subspaes span{α1, α2} and span{β1, β2}, respetively. We have

ρi = (Ai ⊗Bi) (P1 ⊗ P2) ρ⊗n (P1 ⊗P2) (Ai ⊗Bi)∗ (3.7)Sine a produt transformation annot onvert a separable state into an en-tangled one, we must have that ρ′i ∶= (P1 ⊗ P2) ρ⊗n (P1 ⊗P2) is entangled. Thisproves the neessity in the �rst part of the proposition. In order to prove the suf-�ieny, it is enough to notie that the projeted state (P1 ⊗ P2) ρ⊗n (P1 ⊗P2),if entangled, an be distilled, beause it is supported on a 2 × 2-dimensionalsubspae.To prove the seond part of the proposition, we observe the following. Be-ause ρ′i is supported on a 2 × 2-dimensional subspae (P1 ⊗ P2)K⊗n ⊗H⊗n, aneessary and su�ient ondition for ρ′i to be entangled is that it does not havea positive partial transpose. The partial transpose equals
(ρ′i)T2 = (P1 ⊗ P̄2)(ρ⊗n)T2 (P1 ⊗ P̄2) , (3.8)where P̄2 denotes an operator represented by the omplex onjugated matrix of

P2. Thus P̄2 is also a two-dimensional projetion.The above operator is not positive if and only if there exists a vetor of theform ∣ψ⟩ = ∣ξ1⟩ ∣χ1⟩ + ∣ξ2⟩ ∣χ2⟩ in (P1 ⊗ P̄2)K⊗n ⊗H⊗n that ful�lls the inequality⟨ψ∣ (ρ′i)T2 ∣ψ⟩ < 0. This simply follows beause all the vetors in (P1 ⊗ P̄2)K⊗n⊗H⊗n are of the form ξ1 ⊗ χ1 + ξ2 ⊗ χ2, i.e. are of Shmidt rank 2. But⟨ψ∣ (ρ′i)T2 ∣ψ⟩ = ⟨ψ∣ (ρ⊗n)T2 ∣ψ⟩ aording to our hoie of ψ, whih �nishes theproof of the seond part of the proposition.Another way of phrasing the above result is that the operator (ρ⊗n)T2 is not
2-blok positive for some n (f. e.g. [101℄). By k-blok positivity of an operator
X on a bipartite Hilbert spae K1 ⊗K2 we mean the property that ⟨φ∣X ∣φ⟩ ⩾ 0for all φ of the form ∑ki=1 ∣ξi⟩ ∣χi⟩ (in partiular, we an hoose K1 = K⊗n andK2 =H⊗n). Thus, by Proposition 3.2, a state ρ on K⊗H is distillable if for some
n the state ρ⊗n is not 2-blok positive. Sine 2-blok positive operators are ina one-to-one Jamioªkowski-Choi orrespondene to 2-positive maps [101, 102℄,there is a diret link between distillability of entanglement and the property ofnot being a 2-positive map. For additional insights, onsult [95℄.It was quikly realized [103℄ that bound entanglement, even though it isuseless for entanglement distillation, an be used to improve �delity of a givendistillable ( = free entangled) state ̺free in a proess very similar to the onedepited in Figure 3.2. To this aim, a opy of the free entangled state ̺free33



UXOR σα
UXOR

̺freeFigure 3.3: Bound entanglement ativation proedure illustrated.together with a opy of a bound entangled state σα are passed as inputs tothe iruit in Figure 3.3, where UXOR (ei ⊗ ej) = ei ⊗ ei+j mod n, an analogue ofthe CNOT gate used in Fig 3.2. Later, the target pair (the upper one in Fig.3.3) is measured in the basis {e1, e2, . . . , en}. If both measurements agree, thesoure pair (initially in the state ̺free) is kept and assumes a new state ρ′freeof higher �delity. Otherwise, it is disarded an the whole proedure fails. Ifthe run was suessful, the desribed steps are repeated for ̺′free and anotheropy of σα as the soure and the target pair, respetively. It an be shown thata sequene of suessful runs of the above sheme leads, with a nonvanishingprobability, to a state of an arbitrary high �delity. This phenomenon is alledbound entanglement ativation [103℄. The preise form of the states ̺free and
σα will be given in Setion 3.2.3.2 Examples of bound entangled statesWe already know from the previous setion that the question about the exis-tene of undistillable states with negative partial transpose is still an unsolvedproblem in the theory of entanglement. Thus no example of an NPT boundentangled state is known. On the other hand, numerous suessful e�orts havebeen made to give expliit examples of bound entangled states that do obey thePPT riterion. Here, we give a list of referenes where the known examples anbe found. For some of them, we provide the reader with the preise form of thestate and brie�y disuss how it was proved to be entangled.Probably the most famous example in the physis literature is the 3 × 3Horodeki state, named after P. Horodeki work [19℄. The name refers to aone-parameter family of states, given in the anonial produt basis of C3 ⊗C3by the matries

̺a = 1

8a + 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a 0 0 0 a 0 0 0 a

0 a 0 0 0 0 0 0 0

0 0 a 0 0 0 0 0 0

0 0 0 a 0 0 0 0 0

a 0 0 0 a 0 0 0 a

0 0 0 0 0 a 0 0 0

0 0 0 0 0 0 1+a
2

0
√
1−a2

2

0 0 0 0 0 0 0 a 0

a 0 0 0 a 0
√
1−a2

2
0 1+a

2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (3.9)
where 0 < a < 1. As we already mentioned in Setion 1.2, the state ̺a an beproved to be entangled by using the range riterion, whih is our Proposition 1.6.34



Indeed, with some amount of algebra [19℄, one an show that the vetors in
R (̺T2

a ), the range of ̺T2

a , belong to one of the following families
A [ 1 s 0 ] ⊗ [ 1 s 0 ] , A, s ∈ C, s ≠ 0 (3.10)
F [ 0 0 1 ] ⊗ [ 1 0 x ] , F ∈C (3.11)
D [ 0 1 0 ] ⊗ [ 0 1 0 ] , D ∈C (3.12)
A [ 1 0 0 ] ⊗ [ 1 0 0 ] , A ∈C (3.13)

C [ 1 0 t ] ⊗ [ 1
t
+ 1
x

0 1 ] , C, t ∈C, t ≠ 0 (3.14)where x ∶= √(1 + a) (1 − a). The partially onjugated vetors (3.10)-(3.14)do not span the range of ̺a, as they annot be linearly ombined to yield
[ 0 0 1 ] ⊗ [ 0 1 0 ], whih is an element of R (̺a). In this way, the au-thor of [19℄ arrived at a ontradition with the range riterion for the state ̺T2

a .Hene ̺T2

a was proved to be entangled, so that ̺a is entangled as well. A similarmethod was later used in the paper [104℄, whih ontains �rst examples of 3× 3PPT entangled states of types (5,5) and (6,6). Here (m,n) means that a PPTstate ρ has rank m, while the rank of ρT2 equals n. The redution riterionwas also employed, in a very straightforward way, to prove inseparability of afamily of PPT hessboard states, introdued in [105℄. They are states of theform 1
N ∑4

i=1 ∣Vi⟩ ⟨Vi∣, where
V1 = [ m 0 s 0 n 0 0 0 0 ] , (3.15)
V2 = [ 0 a 0 b 0 c 0 0 0 ] , (3.16)
V3 = [ n∗ 0 0 0 −m∗ 0 t 0 0 ] , (3.17)
V4 = [ 0 b∗ 0 −a∗ 0 0 0 d 0 ] . (3.18)Aording to the main result of the thesis, Theorem 9.27, the hessboard statesare of the type (4,4) and they are loally equivalent to states arising from theUnextendible Produt Basis onstrution to be disussed below.Shortly after the �rst example of a bound entangled state in the physisliterature, C. H. Bennett and oworkers [106℄ proposed a fully algorithmi wayto onstrut more suh examples. The method relies on the notion of an Unex-tendible Produt Basis, whih is formally de�ned in the following way.De�nition 3.3. An Unextendible Produt Basis, UBP for short, is a set ofmutually orthogonal produt vetors {φi1 ⊗ . . . ⊗ φin}ki=1 in a multipartite Hilbertspae K1⊗. . .⊗Kn suh that the orthogonal omplement (span{φi1 ⊗ . . .⊗ φin}ki=1)�does not ontain a produt vetor.Given a UPB in a bipartite spae, it is straightforward to give an exampleof a PPT entangled state. 35



Proposition 3.4. Let {φi1 ⊗ φi2}ki=1 be an Unextendible Produt Basis in K⊗H.The projetion
πUPB = 1 − k

∑
i=1

∣φi1 ⊗ φi2⟩ ⟨φi1 ⊗ φi2∣ (3.19)de�nes a PPT bound entangled state ρUPB = πUPB/N , where N is a suitablenormalization fator.The proposition follows beause the subspae on whih ρUPB projets, on-tains no produt vetor. Hene, using the range riterion, the state proportionalto (3.19) is entangled. The fat that it also has a positive partial transpose anbe heked by a simple alulation. Indeed,
πT2UPB = 1 − k

∑
i=1

∣φi1 ⊗ (φi2)∗⟩ ⟨φi1 ⊗ (φi2)∗∣ , (3.20)where ∗ denotes omponentwise onjugation, is another projetion, hene posi-tive de�nite. Generalizations to a multipartite setting are immediate.In the main part of the thesis, we prove Theorem 9.27, whih says that allPPT bound entangled states of rank 4 in 3 × 3 systems are loally equivalentto states of the form (3.19). This means that any suh state is proportional to(A⊗B)πUPB (A⊗B)∗ for some UPB and some SL (3,C) transformations Aand B. In this way we obtain a full haraterization of simplest PPT entangledstates, as all PPT states of ranks ⩽ 3 are separable [107℄.As far as the above examples are onsidered, the redution riterion seemsto be the only way to prove that a given PPT state is entangled. But in reality,it is not the only one known in literature. Another distinguished approah tothe problem is by using so-alled indeomposable positive maps. By the positivemaps riterion, the existene of a positive map Λ suh that (id⊗Λ)ρ /⩾ 0 impliesinseparability of a state ρ. It is preisely in this way that the earliest examples ofPPT entangled states [20,21℄ were obtained by mathematiians1. The exemplaryPPT entangled state given in [20℄ is of the form
x =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2µ 0 0 0 2µ 0 0 0 2µ

0 4µ2 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0

2µ 0 0 0 2µ 0 0 0 2µ

0 0 0 0 0 4µ2 0 0 0

0 0 0 0 0 0 4µ2 0 0

0 0 0 0 0 0 0 1 0

2µ 0 0 0 2µ 0 0 0 2µ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (3.21)
1Note however that the name �bound entanglement� was not used until [89℄36



whih an be more onisely written as x = 2µ ∣Φ+⟩ ⟨Φ+∣ + 4µ2σ+ + σ−, where
σ+ = 1

3
(∣01⟩ ⟨01∣ + ∣12⟩ ⟨12∣ + ∣20⟩ ⟨20∣) (3.22)

σ− = 1

3
(∣10⟩ ⟨10∣+ ∣21⟩ ⟨21∣ + ∣02⟩ ⟨02∣) (3.23)and ∣Φ+⟩ stands for the maximally entangled vetor, ∣Φ+⟩ = (∑2

i=0 ∣ii⟩) /√3.A slightly modi�ed family of states σα = 2
7
∣Φ+⟩ ⟨Φ+∣+ α

7
σ+ + 5−α

7
σ− was laterused to demonstrate the phenomenon of bound entanglement ativation [103℄,whih we brie�y desribed in Setion 3.1. The authors of [103℄ also used a relatedfamily ρfree = F ∣Φ+⟩ ⟨Φ+∣ + (1 −F )σ+ as their input free entangled states.Another notable example of a lass of PPT entangled states revealed byindeomposable positive maps was given in [108℄. We should also mention aseries of papers by K.-C. Ha and o-workers [109�111℄, where the authors developa possible general approah to onstruting PPT entangled states from faes ofthe one of all deomposable positive maps. In partiular, they onsider a familyof generalized Choi maps, introdued in [112℄ and use them to onstrut theorresponding bound states. For the de�nition of deomposability and relatednotions, hek e.g. [101℄.
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Part IIA brief introdution toalgebrai geometry
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Chapter 4Varieties, Ideals andGroebner bases4.1 PreliminariesJust as we mentioned in previous parts of the thesis, problems enounteredin the theory of quantum hannels, measurement and entanglement are oftenof purely algebrai nature. More preisely, they pertain to the existene ofsolutions of ertain algebrai equations or, for example, to positivity of a numberof polynomials. In order to answer suh questions in an e�etive way, one anuses tehniques suh as Groebner bases or resultans, whih we brie�y disuss inthe following. By their e�etiveness we mean the fat that a deisive answer to aquestion is obtained in a �nite, though sometimes rather high, number of steps.We also inlude a proof of Bezout's theorem, whih we later use to prove themain result of the thesis, onerning PPT bound entangled states of minimalrank.Before we introdue the ideas of Groebner bases, let us begin with an intro-dution to basi notions of algebrai geometry. A more omprehensive treat-ment of the subjet an be found in a book like [113℄, whih we reommend toeveryone new to the subjet. By K [x1, x2, . . . , xn] we shall denote the set of
n-variate polynomials in the variables x1, . . . , xn and oe�ients in K. The twomain ases onsidered in this thesis are K = C and K =R. With this notation,let us de�ne the basi objet of algebrai geometry.De�nition 4.1. By an a�ne variety we mean a subset of Kn de�ned by aset of equations

f1 (x1, . . . , xn) = 0, . . . , fd (x1, . . . , xn) = 0 (4.1)We shall denote it by V(f1, . . . , fd)We an give a simple, although not an entirely trivial example of an a�ne39
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Figure 4.1: A twisted ubi urve in R3.variety in Rn (or Cn), whih reappears, in somewhat generalized form of arational normal urve, in one of the papers related to the thesis [114℄.Example 4.2 (Twisted ubi). The a�ne variety de�ned by the set of equations
y − x2 = 0, z − x3 = 0 (4.2)is alled the twisted ubi urve.As we will explain, a onept intimately related to a�ne varieties is that ofideals. An ideal an be regarded as a generalization of a linear subspae, wherethe arbitrary salar fators in linear ombinations are replaed by arbitrarypolynomials. More formally, we have the following de�nition.De�nition 4.3 (Ideal). A subset I ⊂K [x1, . . . , xn](i) 0 ∈ I(ii) f, g ∈ I ⇒ f + g ∈ I(iii) f ∈ I ∧ h ∈K [x1, . . . , xn]⇒ hf ∈ Iis alled an ideal in K [x1, . . . , xn].It turns out (f. Theorem 4.18) that all ideals I ⊂K [x1, . . . , xn] are �nitelygenerated, whih means that there always exists a �nite set f1, . . . , fd ∈K [x1, . . . , xn]suh that all elements of I an be written in the form ∑di=1 hifi with hi ∈K [x1, . . . , xn] and no element of K [x1, . . . , xn] ∖ I is of that form. Let usmake it more formal.De�nition 4.4. For a subset A ⊂ K [x1, . . . , xn], we denote by ⟨A⟩ the idealgenerated by A, whih is by de�nition the minimal ideal inluding A. If A ={f1, . . . , fd}, we write ⟨A⟩ = ⟨f1, . . . , fd⟩ and say that the ideal ⟨f1, . . . , fd⟩ is�nitely generated. Equivalently, ⟨f1, . . . , fd⟩ onsists of all elements of the form

∑di=1 hifi, where hi ∈K [x1, . . . , xd] for all i.40



Proof. Only the last statement needs a proof. First of all, let us denote by⟨f1, . . . , fd⟩′ the set of all elements of the form ∑di=1 hifi. Clearly, by the de�-nition of an ideal, we have ⟨f1, . . . , fd⟩′ ⊂ ⟨f1, . . . , fd⟩. Let us also observe that⟨f1, . . . , fd⟩′ is an ideal. Sine ⟨f1, . . . , fd⟩ is by de�nition the smallest ideal on-taining f1, . . . , fd, we must have ⟨f1, . . . , fd⟩′ ⊃ ⟨f1, . . . , fd⟩, whih gives us theequality ⟨f1, . . . , fd⟩′ = ⟨f1, . . . , fd⟩.A �xed ideal I may have various sets of generators. One of the ruial ob-servations of algebrai geometry is that the variety de�ned by a set of equations
f1 (x1, . . . , xn) = 0, . . . , fd (x1, . . . , xd) = 0 depends only on the ideal ⟨f1, . . . , fd⟩and not on the partiular set of generators.Proposition 4.5. Let ⟨f1, . . . , fd⟩ = ⟨g1, . . . , gl⟩. In suh ase V(f1, . . . , fd) =
V(g1, . . . , gl)Proof. From the last part of De�nition 4.4 we know that gi = ∑dj=1 hijfj forsome polynomials hij . Thus (x1, . . . , xn) ∈ V(f1, . . . , fd) implies (x1, . . . , xn) ∈
V(g1, . . . , gl). Consequently, V(f1, . . . , fd) ⊂ V(g1, . . . , gl). The inverse inlu-sion an be obtained in a similar way.Apart from ⟨f1, . . . , fd⟩, there exists another ideal intimately related to
V(f1, . . . , fd), namely the ideal of polynomials that vanish on V(f1, . . . , fd).De�nition 4.6. Let V = V(f1, . . . , fd) be an a�ne variety in Kn. The idealof V is by de�nition

I (V ) = {f ∈K [x1, . . . , xd] ∣f (x1, . . . , xn) = 0 ∀(x1,...,xn)∈V } (4.3)The above de�nition is easily generalized to arbitrary subsets in plae of V .De�nition 4.7. Let S be a subset of Kn. The ideal of S is by de�nition
I (S) = {f ∈K [x1, . . . , xd] ∣f (x1, . . . , xn) = 0 ∀(x1,...,xn)∈S} (4.4)We leave it as an exerise for the reader to prove that I (S) is an ideal.Moreover, the maps V ∶ I ↦ V (I) and V ∶ S ↦ I (S) are inlusion reversing.We also have the followingProposition 4.8. For any a�ne variety V ⊂K [x1, . . . , xn], we have

V (I (V )) = V (4.5)Proof. We know that V = V (⟨f1, . . . , fd⟩) and ⟨f1, . . . , fd⟩ ⊂ I (V ) beause allthe polynomials fi vanish on V . Consequently,V (⟨f1, . . . , fd⟩) ⊃V (I (V )) sine
I ↦V (I) is inlusion-reversing. On the other hand, the inlusion V ⊂V (I (V ))follows diretly from the fat that every f ∈ I (V ) vanishes on V .We an also haraterize V (I (S)) for arbitrary subsets S of Kn.Proposition 4.9. For S ⊂ Kn, the a�ne variety V (I (S)) is the smallestvariety that ontains S. 41



Proof. LetW be an a�ne variety suh that S ⊂W . Sine I is inlusion-reversing,we have I (S) ⊃ I (W ). Moreover, V (I (S)) ⊂V (I (W )) beause I is inlusion-reversing. Finally, V (I (W )) = W , by Proposition 4.8 and the fat that W isan a�ne variety. Thus V (I (S)) ⊂ W for any a�ne variety W that ontains
S. A natural question to ask is whether I (V(f1, . . . , fd)) = ⟨f1, . . . , fd⟩. Theanswer in general is no, however, under algebraially losed �elds like C, thereis a preise riterion, alled Nullstellensatz, whih allows to hek whether theequality ours. It an be found in Theorem 4.35 of Setion 4.3.A number of other questions ome very naturally with the notions of an idealand an a�ne variety. Let us give a list of three of them, whih will be answeredto in the following.1) Does every ideal in K [x1, . . . , xn] have a �nite set of generators? In otherwords, an we always write I = ⟨f1, . . . , fd⟩ for some polynomials f1, . . . , fd?2) How an we hek whether a given polynomial f ∈K [x1, . . . , xn] belongs toan ideal I?3) How an we solve a system of polynomial equations f1 (x1, . . . , xn) = 0, . . . ,

fd (x1, . . . , xn) = 0, i.e. �nd a parametri desription of (a part of) the a�nevariety de�ned by the equations. Under whih onditions solutions do existat all?In order to better understand the above questions, it is useful to give a shortsummary of how they are answered in the univariate ase, K [x]. First of all,let us mention that the leading term of f =∑di=1 αixi ∈K [x] (αi ∈K∖{0}) is byde�nition equal to αdxd, the leading oe�ient is αd and the leading monomialis xd. Let us denote them by LT (f), LC (f) and LM (f), respetively. Let usalso denote the degree of F by deg f . Given two univariate polynomials f , g,there is a unique way of writing f as
f = qg + r (4.6)where q, r ∈ K [x] and either r = 0 or deg r < deg g. The lassial divisionalgorithm in K [x] that produes q and r given f and g onsists in the stepsgiven in Figure 4.2q=0r=fwhile r<>0 and LT(g) divides LT(r) doq=r+LT(r)/LT(g)r=r-(LT(r)/LT(g))gFigure 4.2: Polynomial division algorithm in K [x]We an now answer question one in the ase of univariate polynomials.42



Proposition 4.10. Every ideal in K [x] is generated by a single polynomial f ,whih is the polynomial of lowest degree in I.Proof. Clearly, there must exist a polynomial of lowest degree in I. Let usdenote it by g. We shall prove that I = ⟨g⟩. Clearly, ⟨g⟩ ⊂ I. If there existed apolynomial f ∈ K [x] ∖ ⟨f⟩, we ould divide f by g and produe a polynomial
r as in formula (4.6). Sine f /∈ ⟨g⟩, r ≠ 0. It would satisfy deg r < deg g and
r = f − qg ∈ I, whih is a ontradition, beause we assumed that g is thepolynomial of minimal degree in I.Question two also has an immediate answer in the univariate ase. Sineevery ideal in K [x] is of the form ⟨g⟩ for some g ∈K [x], it is su�ient to dividean arbitrary polynomial f by g to hek whether f belongs to the ideal or not.If r = 0, it belongs to the ideal, and if r ≠ 0, it does not. As it is well known frombasi algebra ourses, solutions to univariate polynomial equations of the form
f (x) = 0 always exist in ase of K = C and other algebraially losed �elds, butmay fail to exist when the base �eld is not algebraially losed. Expliit generalsolutions in C are only known for f of degree up to 4 as a onsequene of theAbel-Ru�ni theorem, f. e.g. [115℄. Note that the question, whether solutionsexist or not, starts to be non-trivial if we pass to multiple polynomial equationsor a multivariate setting, even if the base �eld is algebraially losed (e.g. whenit equals C). In suh ase, the tehniques of Groebner bases and resultants areof muh help. We shall disuss both in subsequent setions of the thesis.4.2 Monomial orders and Groebner basesLet us now pass from one-variable polynomials, disussed at the end of theprevious subsetion, to the multivariate setting. We shall avoid exess notationby using the symbol xα with multi-indies (α1, . . . , αn) in plae of xα1

1 ⋅ . . . ⋅xαn
n .In order to introdue an analogue of the division algorithm in K [x], we need tospeify what is a leading term of a multivariate polynomial. Unlike for univariatepolynomials, the notions of the leading term, leading oe�ient or monomialare not uniquely de�ned. There are many possible hoies and one needs tospeify an ordering of monomial terms in order to do multivariate polynomialdivision in a sensible way. The orderings also have to respet the multipliativeand additive struture of K [x1, . . . , xn], so they ful�ll a number of onstraints.In suh ase we all them monomial orderings.De�nition 4.11 (Monomial ordering). Amonomial ordering inK [x1, . . . , xn]is any relation > on the set of monomials in K [x1, . . . , xn] whih ful�lls(i) the ordering > is linear, whih means that for any monomials xα and xβ,

α ≠ β, either xα < xβ or xα > xβ.(ii) If xα > xβ then xα+γ = xαxγ > xβxγ = xβ+γ for any multi-index γ.(iii) The relation > is w well-ordering, whih means that for any set of mono-mials {xα}α∈A, there exists a smallest element under the ordering >.43



In the following, we introdue three most ommon examples of monomialorderings.Example 4.12 (Lexiographi order). Let xα and xβ be monomials inK [x1, . . . , xn].We have xα >lex xβ if and only if α − β has the left-most nonzero entrypositive.Example 4.13 (Graded lexiographi order). Let xα and xβ be monomials inK [x1, . . . , xn]. We have xα >grlex xβ if and only if
∣α∣ = n

∑
i=1

αi >
n

∑
j=1

βj = ∣β∣ or ∣α∣ = ∣β∣ and xα >lex xβ , (4.7)where ∣α∣ denotes the total degree of xα. In other words xα >grlex xβ if and onlyif xα has a higher total degree than xβ or has the same total degreeand xα >lex xβ.Example 4.14 (Graded Reverse Lexiographi Order). Let xα and xβ be mono-mials in K [x1, . . . , xn]. We have xα >grevlex xβ if and only if
∣α∣ = n

∑
i=1

αi >
n

∑
j=1

βj = ∣β∣ or ∣α∣ = ∣β∣ , (4.8)and in α − β the right-most nonzero entry is negative.We an now introdue an analogue of the univariate division algorithm inFigure 4.2. Let f and g1, . . . , gd ∈K [x1, . . . , xn] be arbitrary and �x a monomialordering in K [x1, . . . , xn]. There exist qi ∈ K [x1, . . . , xn], i = 1,2, . . . , d and
r ∈K [x1, . . . , xn] suh that

f =
d

∑
i=1

qigi + r (4.9)and no monomial of r is divisible by any of the leading monomials LM (gi).Moreover, LM (qigi) ⩽ LM (f) ∀i. Obviously, r and qi in the above formula areanalogues of r and q in equation (4.6), while the ondition on monomial termsof r orresponds to deg r < deg g in the univariate setting. An algorithm whihgives a deomposition of the form (4.9) is shown in Figure 4.2.In short, the algorithm tries to divide the leading term of f by theleading terms of gi, i = 1, . . . , d. If this is not possible, the leading term isadded to the division remainder and the whole proedure repeated from thebeginning. Note that the ordering of the polynomials g1, . . . , gd has an in�ueneon the result of division. In partiular, the remainder r may depend on how thepolynomials g1, . . . , gd are ordered and thus is not uniquely de�ned. The lastfeature an be seen in the following exampleExample 4.15. Let g1 = xy + 1, g2 = y2 − 1, f = xy2 − x and the take the >lexorder in K [x, y]. The multivariate division algorithm gives us
xy2 − x = y ⋅ (xy + 1)+ 0 ⋅ (y2 − 1) + (−x − y) . (4.10)44



for i=1 to d do q_i=0r=0p=fwhile p<>0 do {divisionourred=0for j=2 to d doif LT(g_i) divides LT(p) do {divisionourred=1q_i=g_i+LT(p)/LT(q_i)p=p-LT(p)/LT(q_i)}if not divisionourred=1 do {r=r+LT(p)p=p-LT(p)}} Figure 4.3: A division algorithm in K [x1, . . . , xn]However, with the hoie g2 = xy + 1, g1 = y2 − 1, f = xy2 − x, we get
xy2 − x = x ⋅ (y2 − 1) + 0 ⋅ (xy + 1) + 0 (4.11)instead.We see from (4.10) and (4.11) that the ondition f ∈ ⟨g1, . . . , gd⟩ is notequivalent to r = 0. We shall see that with a proper hoie of the ideal basis, aGroebner basis, both onditions an be made equivalent and the remainder

r eases to be ordering dependent, though it still depends on the partiularmonomial order we hoose in K [x1, . . . , xn].First, we need to introdue the notion of monomial ideals and investigatetheir basi properties. Amonomial ideal is simply the ideal generated by a setof monomials in K [x1, . . . , xn]. More formally, we have the following de�nitionDe�nition 4.16 (Monomial ideal). Let A be a subset of Zn onsisting of om-ponentwise nonnegative elements. A monomial ideal orresponding to A is thesmallest ideal in K [x1, . . . , xd] ontaining {xα}α∈A.We shall denote by ⟨xα⟩a∈A the monomial ideal generated by {xα}α∈A. Itturns out that all monomial ideals admit a �nite set of generators. This is theontents of the following Dikson's lemma.Lemma 4.17 (Dikson's). Let I = ⟨xα⟩α∈A be a monomial ideal. There existsa �nite set α1, . . . , αd ∈ A suh that I = ⟨xα1 , . . . , xαd⟩Proof. Can be found in algebrai geometry textbooks like [113℄.45



With the Dikson's lemma at hand, one an prove a key theorem aboutideals in K [x1, . . . , xn].Theorem 4.18 (Hilbert basis theorem). Every ideal I ⊂ K [x1, . . . , xn] is�nitely generated. Thus, there exist g1, . . . , gd ∈ I suh that I = ⟨g1, . . . , gd⟩. Inpartiular, every g1, . . . , gd with the property ⟨LT (f)⟩f∈I = ⟨LT (g1) , . . . ,LT (gd)⟩form an admissible set of generators of I.Proof. Consider the monomial ideal J = ⟨LT (f)⟩f∈I . Aording to Dikson'slemma, there exist a �nite set of generators of J , whih are neessarily of theform LT (g1) , . . .LT (gd). We shall prove that g1, . . . , gd generate I. If that wasnot the ase, there would exist f ∈ K [x1, . . . , xn] ∖ ⟨g1, . . . gd⟩. Let us divide
f by g1, . . . , gd using the algorithm given in Figure 4.2. It neessarily givesus f = ∑i qigi + r with r ≠ 0 by our assumption that f is not in ⟨g1, . . . gd⟩.However, r = f −∑i qigi is an element of f and thus LT (f) an element of J . Itmust therefore be divisible by one of the generators of J . That is, it must bedivisible by one of the LT (gi), whih is a ontradition beause of the propertiesof the remainder r on division by g1, . . . , gd.We an also prove the following useful resultCorollary 4.19 (Asending hain ondition). Let I1 ⊂ I2 ⊂ I3 ⊂ . . . be a sequeneof ideals in K [x1, . . . , xn]. The sequene stabilizes for some �nite i, i.e. Ii = Ii+nfor all n ⩾ 0.Proof. It is easy to hek that the set I ∶= ⋃+∞j=1 Ij is an ideal in K [x1, . . . , xn].Aording to the above theorem, there exists a �nite basis g1, . . . , gd of I. A-ording to the de�nition of I, we must have gj ∈ Iij for some ij ⩾ 1. Let ushoose i = max{i1, . . . , id}. Sine I = ⟨g1, . . . , gd⟩ and gj ∈ Ii for all i = 1, . . . , d,we learly see that I = ⋃ij=1 Ij . Thus, Ik = Ii for all k ⩾ i.In the spirit of Theorem 4.18, a Groebner basis is de�ned as a �nitesubset g1, . . . , gd of an ideal I with the property that ⟨LT (g1) , . . . ,LT (gd)⟩ =⟨LT (f)⟩f∈I .De�nition 4.20 (Groebner basis). Let I ⊂K [x1, . . . , xn] be an ideal. A Groeb-ner basis of I is a �nite subset g1, . . . , gd ∈ I suh that ⟨LT (g1) , . . . ,LT (gd)⟩ =⟨LT (f)⟩f∈I . In other words, a Groebner basis is a �nite set of polynomials in Iwith the property that their leading terms generate the ideal of leading terms ofpolynomials in I.Let us list a few properties of Groebner bases.1) A Groebner basis of an ideal I generates I. In other words, it is a basis ofthe ideal in the usual sense,2) There exists a Groebner basis an an arbitrary ideal I ⊂K [x1, . . . , xn],3) The remainder of f ∈K [x1, . . . , xn] on division by a Groebner basis g1, . . . , gd ∈

I is uniquely de�ned. 46



Points one and two follow diretly from the proof of Theorem 4.18. We shallgive a more formal version of point three in the following proposition [113℄.Proposition 4.21. Let G = {g1, . . . , gd} be a Groebner basis for an ideal I ⊂K [x1, . . . , xn] and let f ∈K [x1, . . . , xn]. Then there is a unique r ∈K [x1, . . . , xn]with the following two properties(i) No term of r is divisible by any of LT (g1) , . . . ,LT (gd),(ii) There is g ∈ I suh that f = g + r.In partiular, the polynomial r is the remainder on division of f by G, no matterhow the elements of G are listed when using the division algorithm.Proof. An r with the properties (i) and (ii) an be obtained using the divisionalgorithm shown in Figure 4.2. Let us prove the uniqueness of r. Assume, onthe ontrary, that for some f ∈ I, f = g + r = g′ + r′ where r′ ≠ r and both (g, r)and (g′, r′) satisfy (i) and (ii). Thus r − r′ = g′ − g is an element of I withLT (r − r′) ≠ 0. By the de�nition of a Groebner basis and r − r′ ∈ I, the leadingterm must be divisible by some LT (gi), i = 1, . . . , d, whih is a ontradition,beause by (i), the monomials of r and r′ are not divisible by any LT (gi).Note that by now, we already have an answer to the ideal membershipquestion (number two) raised on page 42. Provided a Groebner basis G, wesimply divide f by G using the division algorithm of Figure 4.2 and hekwhether r = 0 or not. Let us state this as a proposition.Proposition 4.22. Let G be a Groebner basis of an ideal I ⊂K [x1, . . . , xn]. Apolynomial f ∈ K [x1, . . . , xn] belongs to I if and only if the remainder of f ondivision by G equals 0.Proof. If the remainder is zero, we learly have f = ∑i qigi ∈ I. On the otherhand, assume that f is an element of I and r ≠ 0. In suh ase, LT (r) ≠ 0 andLT (r) ≠ ⟨LT (g1) , . . . ,LT (gd)⟩We will see shortly that a Groebner basis of an ideal an be found by Buh-berger's algorithm [116℄ in a �nite number of steps. Thus the ideal member-ship problem an also be solved in a �nite number of steps by alulating theremainder of f on division by a Groebner basis. For future onveniene, let usdenote suh remainder by fG.In the light of the above developments, it is important to know whih basesof an ideal are Groebner bases, and how to �nd a Groebner basis of a givenideal, possibly of a nie form and unique in some sense. Fortunately, there existsimple answers to all these questions and we shall explain them in the following.First, we introdue the notion of so-alled S-polynomial [116℄.47



l=d; m=dfor i=1 to l do g_i=f_irepeat {l=mfor i=1 to l dofor j=1 to l do {if (r=Remainder(Spolynomial(g_i,g_j),{g_1,...,g_l}))<>0do {Append({g_1,g_2,...,g_l},r)m=l+1}}} until l=mFigure 4.4: A rudimentary algorithm for alulation of a Groebner basis of anideal ⟨f1, . . . , fd⟩, given here aording to [113℄.De�nition 4.23 (S-polynomial). Given two polynomials f, g ∈ K [x1, . . . , xn]and some monomial order >, take xα = LM (f) and xβ = LM (g). The S-polynomial of f and g is de�ned to be
S (f, g) ∶= xγLT (f)f − xγLT (g)g, (4.12)where γ is a multi-index (γ1, . . . , γn) de�ned suh that γi = max (αi, βi) for

α = (α1, . . . , αn) and β = (β1, . . . , βn)The S-polynomial is de�ned suh that a anellation of leading terms of fand g ours, and some new leading terms an possibly be produed.Let us now state without a proof a key result of Groebner basis theory, alledBuhberger's S-pair riterion [116℄.Theorem 4.24 (S-pair riterion). A basis F = (f1, . . . , fd) of an ideal I ⊂K [x1, . . . , xn] is a Groebner basis of I if and only if
S (fi, fj)F = 0∀i,j∈{1,...,d} (4.13)The above riterion suggests an algorithm how to �nd a Groebner basis ofan ideal I, given a set of generators f1, . . . , fd. If we alulate all the possibleremainders S (fi, fj)(f1,f2,...) and some of them turn out to be nonzero, we addthem to (f1, f2, . . .) and repeat the whole proedure for the extended set ofgenerators. At some point, this extension proedure should terminate, and the

S-pair riterion tells us that we have obtained a Groebner basis of the ideal I.A more preise desription of the algorithm is shown in Figure 4.4. We alsostate its orretness as a separate theorem.48



Theorem 4.25 (Buhberger's algorithm). The algorithm given in Figure 4.4returns a Groebner basis ⟨g1, . . . , gr⟩ of the ideal I = ⟨f1, . . . , fd⟩ in a �nitenumber of stepsProof. The additional elements gi, i > d, produed by the algorithm, belong to
I. This follows indutively beause at eah step the S-polynomials S (gi, gj)and their remainders S (gi, gj)(g1,g2,...) belong to the same ideal as (g1, g2, . . .)do. Moreover, the algorithm terminates if and only if at some point all theremainders S (gi, gj)(g1,g2,...) vanish, whih is equivalent to say, by Theorem4.24, that the set (g1, g2, . . .) is a Groebner basis of the ideal I. Thus, we onlyneed to show that the algorithm terminates. This will be done with help of theasending hain ondition, Corollary 4.19.Let us try to assume that a sequene g1, g2, . . . , gd, gd+1, . . . produed by thealgorithm does not terminate. We have a orresponding sequene of ideals

⟨LT (g1) ,LT (g2) , . . . ,LT (gd)⟩ , (4.14)⟨LT (g1) ,LT (g2) , . . . ,LT (gd) ,LT (gd+1)⟩ , (4.15)
. . .⟨LT (g1) ,LT (g2) , . . . ,LT (gd) ,LT (gd+1) ,LT (gd+2)⟩ , (4.16)
. . .whih must stabilize aording to Corollary 4.19. However, the algorithm inFigure 4.4 works is suh a way that whenever an element gl+1 is added to asequene g1, g2, . . . , gd, gd+1, . . . , gl, its leading term LT (gl+1) is not divisible byany of the leading terms LT (g1) ,LT (g2) , . . . ,LT (gd) ,LT (gd+1) , . . . ,LT (gl).Thus

⟨LT (g1) ,LT (g2) , . . . ,LT (gd) ,LT (gd+1) , . . . ,LT (gl)⟩ ≠
≠ ⟨LT (g1) ,LT (g2) , . . . ,LT (gd) ,LT (gd+1) , . . . ,LT (gl) ,LT (gl+1)⟩ (4.17)for all l ⩾ d. This shows that (4.14)-(4.16) forms a stritly inreasing sequeneof ideals in K [x1, . . . , xn], whih is impossible aording to the asending hainondition. The only possible solution is that the algorithm always terminates, sothat it never produes an in�nite sequene of polynomials g1, g2, . . . , gd, gd+1, . . .The Groebner bases obtained by the algorithm in Figure 4.4 are not optimalin many respets. First of all, di�erent bases an be obtained, depending onthe hoie of the order of the inputs f1, . . . , fd. Moreover, it may happen that apolynomial g in the output sequene G = {g1, . . . , gl} has a leading term LT (g)whih divisible by some of the leading terms of the polynomials in G ∖ {g}.In suh ase G ∖ {g} is another Groebner basis of the ideal ⟨f1, . . . , fd⟩ witha smaller number of elements. A Groebner basis where no suh redution ispossible and all the leading oe�ients are equal to unity, is alled a minimalGroebner basis. 49



De�nition 4.26 (Minimal Groebner basis). A Groebner basis G = {g1, . . . , gl}of an ideal in K [x1, . . . , xn] with LC (gi) = 1∀i is alled minimal if and onlyif for any element g ∈ G, the leading term LT (g) is not divisible by any of theleading terms of the polynomials in G ∖ {g}.Clearly, a minimal Groebner basis of an ideal I an be obtained from anarbitrary Groebner basis G of I by �rst normalizing the leading terms and thenremoving all the elements whih have their leading term divisible by the leadingterm of some other polynomial in G. It an be proved [113℄ that the minimalGroebner bases of an ideal I have idential sets of leading oe�ients, howeverthere usually exist multiple minimal Groebner bases of a given ideal I. Thisambiguity an be entirely removed if we impose one further ondition on theGroebner basis we are looking for.De�nition 4.27 (Redued Groebner basis). A minimal Groebner basis G ofan ideal I is alled redued if and only if for all g ∈ G, no monomial of g isdivisible by any of the leading terms of polynomials in G ∖ {g}.With this de�nition, we haveProposition 4.28. There exists a unique redued Groebner basis of anyideal I ⊂K [x1, . . . , xn]. Moreover, given a minimal Groebner basis G′ of I, theredued Groebner basis G an be found by the following proedurefor all g in G' dog=Remainder(g,G\{g})Proof. Can be found in [113℄.Let us mention that Proposition 4.28 provides one with an algorithmi wayto solve the ideal equality problem. Given two ideals I = ⟨f1, . . . , fd⟩ and
J = ⟨e1, . . . , ec⟩, one has the equality I = J if and only if the orrespondingredued Groebner bases, whih an be omputed in a �nite number of steps, areequal.We see that Groebner bases allow us to answer a number of questions, in-luding the ideal membership and ideal equality problems. Moreover, it turnsout that they an be used to �nd solutions to sets of polynomial equations,whih is very interesting from a pratial perspetive and it will turn out to beruial in some parts of the thesis. A simplest way to see how Groebner basesan be used for this new task is to look into a onrete example. Consider thefollowing set of polynomial equations:

xy2 − z = 0, (4.18)
xz + y2 = 0, (4.19)
xy − 1 = 0. (4.20)A Groebner basis alulation using the lexiographi order with x > y > z forthe ideal ⟨xy2 − z, xz + y2, xy − 1⟩ provides us with {1 + z2, y − z, x + z}. Sine50



these polynomials generate the same ideal as the polynomials in (4.18)-(4.20),we have an equivalent set of equations:
z2 + 1 = 0, y − z = 0, x + z = 0. (4.21)The equations (4.18)-(4.20) do not look muh more ompliated than those in(4.21), but at a �rst glane, it is not lear how to solve them. On the other hand,the �rst equation in (4.21) involves only the variable z and it learly has onlytwo solutions, z = ±i. The solutions hene obtained an later be substitutedfor z in the latter two equations in (4.21). In this way, one an determinethe orresponding values of x and y and �nd all solutions to the initial set ofpolynomial equations. Our aim in the following will be to explain that a similarphenomenon ours in general when the lexiographial ordering of monomialsis used for the alulation of Groebner bases.4.3 Elimination idealsFor a given ideal I = ⟨f1, . . . , fd⟩, we de�ne the k-th elimination ideal Ik as theintersetion I∩K [xk+1, . . . , xn]. In other words, we pik up all polynomials in Ithat involve only the variables xk+1, . . . , xn, or equivalently, they do not involve

x1, . . . , xk. In the simple example disussed above, we learly had z2 + 1 ∈ I2.The following theorem tells us that Groebner bases alulated with respet toa lexiographial order provide us with muh information about eliminationideals.Theorem 4.29. Let I ⊂K [x1, . . . , xn] be an ideal with a Groebner basis G withrespet to the lexiographial order where x1 > x2 > . . . > xn. Then, for every
k = 1,2, . . . , n the set

Gk = G ∩K [x1, . . . , xn] (4.22)is a Groebner basis of the k-th elimination ideal Ik.Proof. By onstrution of Gk and Ik, we have the inlusion Gk ⊂ Ik. It su�esto show that the monomial ideal ⟨LT (f)⟩f∈Ik of leading terms of Ik is generatedby ⟨LT (g)⟩g∈Gk
. For every f ∈ Ik, the leading term LT (f) is a polynomial inthe variables xk+1, . . . , xn only. Sine G is a Groebner basis of I, there mustexist a g in G suh that LT (g) divides LT (f), and the leading term LT (g) mustneessarily be a monomial in xk+1, . . . , xn. Beause we are using lexiographialorder with x1 > x2 > . . . > xn, all the other monomials of g do not involve thevariables x1, . . . , xk. Hene g is a polynomial in xk+1, . . . , xn, g ∈ Gk.The importane of elimination ideals was obvious in the simple example wedisussed above, where I2 = ⟨z2 + 1⟩, and it generally follows from their relationto projetions of a�ne varieties inKn onto �axes� in the high dimensional spae.In terms of solving polynomial equations, we obtain partial solutions in a smaller51



number of variables and try to extend them to a full solution. More formally,we de�ne the k-th projetion map πk by the formula
πk ∶Kn ∋ (x1, . . . , xn) ↦ (xk+1, . . . , xn) ∈Kn−k. (4.23)We have the followingProposition 4.30. Let I = ⟨f1, . . . , fd⟩ be an ideal in K [x1, . . . , xn]. Let

V (I) =V (f1, . . . , fn) be the orresponding a�ne variety. We have
πk (V (I)) ⊂V (Ik) , (4.24)where V (Ik) is the a�ne variety orresponding to the k-th elimination ideal Ik.Proof. We want to show that f (πk (x1, . . . , xk)) = 0 for all (x1, . . . , xk) ∈ V (I)and f ∈ Ik. Sine f ∈ I, we have f (x1, . . . , xn) = 0. But f involves onlythe variables xk+1, . . . , xn, whih gives us f (x1, . . . , xn) = f (xk+1, . . . , xn) =

f (πk (x1, . . . , xn)) = 0.The above proposition, although simple, tells us something important about
V (I). A projetion ofV (I) ontoKn−k is ontained in the a�ne varietyV (Ik),whih is sometimes possible to determine expliitly, as in the ase of I2 = ⟨z2 + 1⟩disussed above. In this way, V (Ik) an be regarded as an easily omputableapproximation of πk (V (f1, . . . , fd)). To make the statement more preise, weneed some extra knowledge. Let us start with the following theorem.Theorem 4.31 (The Weak Nullstellensatz). Let K be an algebraially losed�eld and let I ⊂ K [x1, . . . , xn] be an ideal satisfying V (I) = ∅. Then I =K [x1, . . . , xn].Proof. Can be found in algebrai geometry textbooks like [113℄ or [117℄.Intuitively speaking, the Weak Nullstellensatz asserts that the variety V (I)orresponding to an ideal I ⊂ K [x1, . . . , xn] is an empty set if and only if Iontains all polynomials in K [x1, . . . , xn]. Thus, a set of polynomial equations
f1 = 0, . . . , fd = 0 has no solutions in Kn if and only if the ideal generated by
f1, . . . , fn is the whole K [x1, . . . , xn].Let us point out that the Weak Nullstellensatz allows us to answer the im-portant question about the existene of solutions to systems of polynomial equa-tions. We have the followingProposition 4.32 (Consisteny ondition). Let f1, . . . , fd be a set of polyno-mials in K [x1, . . . , xn] over an algebraially losed �eld K. The system ofequations

f1 (x1, . . . , xn) = 0, f2 (x1, . . . , xn) = 0, . . . , fd (x1, . . . , xn) = 0 (4.25)has no solution in Kn if and only if the redued Groebner basis of ⟨f1, . . . , fd⟩with respet to some monomial order equals {1}. In suh ase we say that thesystem (4.25) is inonsistent. 52



Proof. If a Groebner basis of ⟨f1, . . . , fd⟩ equals {1}, then learly the set of equa-tions (4.25) have no solutions in K. Conversely, if V (f1, . . . , fd) is the emptyset, by the Weak Nullstellensatz we know that ⟨f1, . . . , fd⟩ =K [x1, . . . , xn]. ByProposition 4.28, there is a unique redued Groebner basis of ⟨f1, . . . , fd⟩. Sine{1} is the redued Groebner basis of K [x1, . . . , xn], it must be the reduedGroebner basis of ⟨f1, . . . , fd⟩.Note that the above proposition provides us with an algorithmi way to hekonsisteny of a set of polynomial equations f (x1, . . . , xn) = 0, . . . , f (x1, . . . , xn) =
0 over an algebraially losed �eld K. We simply alulate the redued Groeb-ner basis of the ideal ⟨f1, . . . , fd⟩ and hek whether it equals {1} or not. If so,the system of equations is inonsistent. Otherwise, there exists a solution inKn.By a lever trik, the Weak Nullstellensatz is equivalent to the followingmuh elebrated resultTheorem 4.33 (Hilbert's Nullstellensatz). Let K be an algebraially losed�eld. Consider f1, . . . , fd ∈K [x1, . . . , xd]. If f is a polynomial that vanishes on
V (f1, . . . , fd), then there exists m ⩾ 1 suh that

fm ∈ ⟨f1, . . . , fd⟩ (4.26)In other words, if f ∈ I (V (f1, . . . , fd)), then the inlusion (4.26) holds for some
m ⩾ 1.Proof. Consider the ideal

Ĩ = ⟨f1, . . . , fd,1 − yf⟩ ⊂K [x1, . . . , xn, y] (4.27)where f, f1, . . . , fd are as above. It is not di�ult to hek that V (Ĩ) = ∅. It isso beause f vanishes whenever f1 = f2 = . . . = fd = 0, and hene 1 − yf = 1 ≠ 0in suh ase. By the Weak Nullstellensatz, we have 1 ∈ Ĩ. Therefore
1 =

d

∑
i=1

pifi + q (1 − yf) (4.28)for some polynomials pi, q ∈K [x1, . . . , xn, y]. Now set y → 1/f (x1, . . . , xn). Therelation (4.28) implies that
1 =

d

∑
i=1

pi (x1, . . . , xn,1/f)fi. (4.29)If we multiply both sides of (4.29) by fm, where m is hosen su�iently largeto lear all the denominators, we get
fm =

s

∑
i=1

Aifi (4.30)for some polynomials Ai ∈K [x1, . . . , xn]. Thus fm ∈ ⟨f1, . . . , fd⟩.53



Another way to formulate the Hilbert's Nullstellensatz is by means of rad-ials.De�nition 4.34. Let I ⊂K [x1, . . . , xn] be an ideal. The radial of I, denotedby √I, is the set √
I = {f ∃m⩾1fm ∈ I} (4.31)We leave it as an exerise for the reader to prove that √I is an ideal and√

I =
√√

I. We all an ideal J with the property J = √J a radial ideal.Thus, √I is a radial ideal. We an now formulate a version of Theorem 4.33,often simply alled the Nullstellensatz.Theorem 4.35 (The Nullstellensatz). Let K be an algebraially losed �eld. If
I is an ideal in K [x1, . . . , xn], then

I (V (I)) =√I (4.32)Proof. We ertainly have √I ⊂ I (V (I)) beause f ∈ √I implies that fm ∈ I.Therefore fm = 0 = f on V (I). Conversely, suppose that f ∈ I (V (I)). ByHilbert's Nullstellensatz, there exists an integer m ⩾ 1 suh that fm ∈ I. Thismeans that f ∈√I.With the help of Proposition 4.9 and the above results, we an now speifywhat we meant by saying that V (Ik) is an approximation of the projetion
πk (V (I)).Theorem 4.36. Let I = ⟨f1, . . . , fd⟩ be an ideal in K [x1, . . . , xn] and V (I) theorresponding a�ne variety. Let Ik be the k-th elimination ideal of I. Then
V (Ik) is the smallest a�ne variety ontaining πk (V (I)).Proof. In view of Proposition 4.9, we must show that V (Ik) = V (I (πk (V ))).By Proposition 4.30, we have πk (V ) ⊂ V (Ik). Sine V (I (πk (V ))) is thesmallest variety ontaining πk (V ), it follows that V (I (πk (V ))) ⊂V (Ik).On the other hand, let f be an element of I (πk (V )), thus a polynomialin xk+1, . . . , xn that vanishes on πk (V ). When onsidered as an element ofK [x1, . . . , xn], f ertainly vanishes on all of V = V (f1, . . . , fd). By the Null-stellensatz, fm ∈ ⟨f1, . . . , fd⟩ for some m ⩾ 0. Sine f does not involve variables
x1, . . . , xk, fm does not either. As a onsequene, fm is in the k-th eliminationideal Ik. This implies that f ∈√Ik. The inlusion is true for any f ∈ I (πk (V )),so I (πk (V )) ⊂ √Ik. Consequently V (Ik) = V (√Ik) ⊂ V (I (πk (V ))), wherewe used the fat that V ∶ I ↦V (I) is inlusion-reversing, as well as the equality
V (I) =V (√I).The above theorem tells us that the variety V (Ik) orresponding to the
k-th elimination ideal gives us the best approximation, among all varieties inKn−k, of a projetion of V (I) onto Kn−k. Therefore elimination ideals shouldbe expeted to be helpful in solving systems of polynomial equations.54



Chapter 5A little intersetion theory5.1 Dimension and degree of a varietyIn the present setion, we are going to introdue two basi properties of algebraivarieties, whih are their dimension and degree. Before we do so, we needto introdue a distintion between projetive and a�ne varieties, whih has notyet appeared in our introdution to algebrai geometry. First, however, it isneessary to de�ne the notion of a projetive spae. Note that we hooseto work with the set of omplex numbers, C, and polynomials with omplexoe�ients, C [x1, . . . , xn], but we ould as well have hosen a di�erent �eld ofsalars.De�nition 5.1 (Complex projetive spae). Let n be a positive integer. Theprojetive spae Pn−1 equals the set of equivalene lasses of Cn ∖{0} under theequivalene relation
(x1, . . . , xn) ∼ (x′1, . . . , x′n)⇔ ∃z∈C∖{0} (x1, . . . , xn) = z (x′1, . . . , x′n) (5.1)The elements of Pn−1 are often written simply as [X1, . . . ,Xn], where an el-ement (X1, . . . ,Xn) ∈Cn of an equivalene lass is onveniently identi�ed withthe lass itself, however the square brakets and apital letters indiate thatwe are dealing with the projetive spae. The variables X1, . . . ,Xn are alledhomogeneous oordinates in Pn−1. This is easy to understand if we notiethat, given a set of homogeneous polynomials h1, . . . , hk ∈ C [x1, . . . , xn], wemay naturally identify the orresponding variety V (h1, . . . , hk) with a subset ofPn−1 and write it as {[X1, . . . ,Xn]∀ih (X1, . . . ,Xn) = 0}. We all suh subsetsprojetive varieties for obvious reasons, and we do not speify whether they be-long to Cn or Pn−1 as long as this is not neessary. More general varieties in Cn,not neessarily de�ned by the vanishing of a set of homogeneous polynomials,are alled a�ne varieties, in aordane with De�nition 4.1.De�nition 5.2 (Projetive variety). Let h1, . . . , hk ∈ C [x1, . . . , xn] be a set ofhomogeneous polynomials. The set of elements of Pn−1 orresponding to the55



points (x1, . . . , xn) with the property h1 (x1, . . . , xn) = 0, . . . , hn (x1, . . . , xn) = 0is alled a projetive variety. One an write it as
{[X1, . . . ,Xn] h1 (X1, . . . ,Xn) = 0, . . . , hk (X1, . . . ,Xn) = 0} (5.2)A shorter notation, V (h1, . . . , hk), whih does not expliitly refer to the propertyof being a projetive variety, is also used.One typial example of a projetive variety is the Segre variety.Example 5.3 (Segre variety). Let n, m be positive integers. The Segre varietyin P(m+1)(n+1)−1 is the image of Pn ×Pm under the mapping

S ∶ [X0, . . . ,Xn] × [Y0, . . . , Ym]↦ [X0Y0,X1Y0, . . . ,XnY0,X0Y1, . . . ,XnYm](5.3)Alternatively, it is the projetive variety in P(m+1)(n+1)−1, de�ned by the van-ishing of the homogeneous polynomials
Zi,jZk,l −Zi,lZk,j (5.4)where Z0,0, Z1,0, . . . , Zn,0, Z0,1, . . . , Zn,m is the set of homogeneous oordinatesin P(m+1)(n+1)−1. We denote it by Σn,mNote that in quantum entanglement theory, Σm,n orresponds to the set ofpure separable states in Cn+1 ⊗Cm+1.We an proeed to the de�nition of the dimension of an algebrai, i.e. pro-jetive or a�ne, variety. De�nitions will be slightly di�erent for a�ne andprojetive varieties, and it is somewhat more onvenient to start from the a�nease. Similar to the situation with the Dikson's lemma (Lemma 4.17), it willalso be useful to disuss varieties orresponding to monomial ideals �rst. As weknow from Lemma 4.17, monomial ideals are �nitely generated by some mono-mials, hene for a monomial ideal I in C [x1, . . . , xn], we an always assumethat
I = ⟨xα1

, . . . , xα
l⟩ , (5.5)where we used the multi-index notation introdued in Setion 4.2, with αi =(αi1, . . . , αin) for all i. It follows that V (I) = ⋂li=1V (xαi), where eah V (xαi)has a simple desription as ⋃αi

j
≠0Hj , Hj = {(x1, . . . , xn) ∈ Cn xj = 0}. Thus wehave
V (I) = l

⋂
i=1
⋃
αi

j
≠0

Hj (5.6)By interseting Hj for di�erent j's, we get
Hj1 ∩ . . . ∩Hjp = {(x1, . . . , xn) ∈Cn xj1 = 0, . . . , xjp = 0} =∶Hj1...jp , (5.7)whih is a linear subspae of dimension n−p. If some of the ji's were equal, thedimension of the subspae would have inreased aordingly. From equations56



(5.6) and (5.7), it follows that V (I) for a monomial ideal I is a union of sub-spaes of the form Hj1...jp . We identify the dimension of V (I) as the maximumdimension of a subspae Hj1...jp inluded in V (I). A little thought reveals thatthis number an be alulated expliitly, and it equals n− ∣J ∣, where ∣J ∣ denotesthe minimum number of elements in a subset J ⊂ {1,2, . . . , n} with the property
∀i∃j∈J αij ≠ 0. Thus, for a monomial ideal I, we have

dimV (I) = n − ∣J ∣ , (5.8)and there is a simple way to alulate ∣J ∣ from the generators of I.A very important insight by Hilbert was that there exists an alternative wayto obtain dimV (I), whih relates to the number of monomials of total degreelower or equal s not in I. To explain this in more detail, we need to introduesome extra notation. First of all, we de�ne
C (I) = {α ∈Nn xα ∉ I} , (5.9)i.e. the set of multi-indies orresponding to the monomials not in I. We willalso be using a basis of multi-indies, ei ∶= [0, . . . ,1, . . . ,0], with 1 on the i-thposition and zeros elsewhere, and the notation

[ei1 , . . . , eir ] ∶= {a1ei1 + . . . + areir aj ∈N∀j=1,...,r} (5.10)for so-alled oordinate subspaes. Their translates by α = (α1, . . . , αn) ∈Nn willbe denoted, in a natural way, by α + [ei1 , . . . , eir ]. When using this notation,it is assumed that αij = 0 for all j = 1, . . . , r, so that α is perpendiular to theoordinate subspae. We have the following.Proposition 5.4. Let I ⊂ C [x1, . . . , xn]be a monomial ideal.i) The set {(x1, . . . , xn) ∈ Cn xj = 0∀j∉{i1,...,ir}}, whih an also be denotedas Hl1...ln−r with {l1, . . . , ln−r} = {1,2, . . . , n} ∖ {i1, . . . , ir}, is ontained in
V (I) if and only if [ei1 , . . . , eir ] ⊂ C (I)ii) The dimension V (I) is the dimension of the largest oordinate subspae in
C (I)Proof. We �rst prove i). Let us assume that Hl1...ln−r with {l1, . . . , ln−r} ={1,2, . . . , n} ∖ {i1, . . . , ir} is in V (I). In partiular, the point (x1, . . . , xn) withoordinates

xi =
⎧⎪⎪⎨⎪⎪⎩
1, if i ∈ {i1, . . . , ir}
0, if i ∉ {i1, . . . , ir} (5.11)belongs to V (I). Assume [ei1 , . . . , eir ] ∉ C (I). If so, there must exist amonomial xα ∈ I suh that α belongs to [ei1 , . . . , eir ]. However, all suhmonomials give 1 when evaluated on (x1, . . . , xn) from equation (5.11), whihleads to a ontradition with (x1, . . . , xn) ∈ V (I). Thus we have proved the

⇒ impliation in i). Conversely, if [ei1 , . . . , eir ] ∈ C (I), it means that ev-ery monomial in I is of nonzero degree in some of the variables xl1 , . . . , xln−r ,57



Figure 5.1: A shemati piture of the monomial ideal ⟨x2y5, x4y3⟩ in C [x, y].
{l1, . . . , ln−r} = {1,2, . . . , n} ∖ {i1, . . . , ir}. Therefore, the monomials in I give
0 when evaluated on elements of Hl1...ln−r . In other words, Hl1...ln−r ⊂ V (I),whih proves the ⇐ impliation in part i) of the theorem. Part ii) follows im-mediately from i), sine dimV (I) is de�ned as the maximum dimension of asubspaeHl1...ln−r inluded inV (I). If {l1, . . . , ln−r} = {1,2, . . . , n}∖{i1, . . . , ir},the dimension of Hl1...ln−r equals r, whih is preisely the dimension of the o-ordinate subspae [ei1 , . . . , eir ].An illustrative piture of a monomial ideal I = ⟨x2y5, x4y3⟩ in C [x, y] ispresented in Figure 5.1. Empty dots denote the monomials with multi-indiesin C (I), and blak dots orrespond to monomials in I. Generalizing from thisexample, it is easy to believe in the following proposition, whih we give withouta proof [113℄.Proposition 5.5. For any monomial ideal I ⊂ C [x1, . . . , xn], the set C (I)an be written as a �nite (not neessarily disjoint) union of translates T i =
αi + [eji

1

, . . . , ejiri
] of some oordinate subspaes [eji

1

, . . . , ejiri
].We laim that the number of elements (α1, . . . , αn) ∈ C (I) with the property∣α∣ ∶= ∑ni=1 αi ⩽ s an be expressed, for s su�ently large, as a polynomial

a0s
d + a1sd−1 + . . . + ad of degree dimV (I), with a0 > 0. Equivalently, thenumber of monomials of total degree no larger than s, not in I, is given by suhpolynomial for s su�iently large.Proposition 5.6. Let I ⊂ C [x1, . . . , xn] be a monomial ideal. Denote by

aHFI (s) the number of multi-indies α = (α1, . . . , αn) ∈ Nn in C (I) with theproperty ∣α∣ ⩽ s. For s su�iently large, aHFI (s) an be written as a polynomial
a0s

d + a1sd−1 + . . . + ad, (5.12)58



where a0 > 0 and d equals the dimension of V (I). The funtion aHFI (s)and the polynomial (5.12) are alled the (a�ne) Hilbert funtion and the(a�ne) Hilbert polynomial of I, respetively. The latter will be denoted by
aHPI .Proof. To prove the statement, we �rst notie that the number of multi-indies(α1, . . . , αn) with the property ∣α∣ ⩽ s is equal to (n+s

s
). From this, it is easyto onlude that the number of multi-indies α suh that ∣α∣ ⩽ s and α ∈ αi +[eji

1

, . . . , ejiri
] equals

(ri + s − ∣αi∣
s − ∣αi∣ ) = 1

ri!
(ri + s − ∣αi∣) (ri + s − ∣αi∣ − 1) ⋅ . . . ⋅ (s − ∣αi∣ + 1) (5.13)for s su�iently large. Thus, the above formula gives preisely an expressionfor the number of multi-indies ∣α∣ ⩽ s in the translates T i from Proposition 5.5.Of ourse, it an be applied to other translates as well. Note that (5.13) is apolynomial in s of degree ri, whih is preisely the dimension of the oordinatesubspae [eji

1

, . . . , ejiri
].For onveniene, let us denote the set of multi-indies ∣α∣ ⩽ s in T i by T i⩽s.By the well-known inlusion-exlusion priniple from ombinatoris, we get

aHFI (s) =∑
i

∣T i⩽s∣ +∑
i<j

∣T i⩽s ∩ T j⩽s∣ + ∑
i<j<k

∣T i⩽s ∩ T j⩽s ∩ T k⩽s∣ + . . . (5.14)A key point is now that T i⩽s ∩ T j⩽s as well as T i⩽s ∩ T j⩽s ∩ T k⩽s and higher-orderintersetions are either empty, or equal to T⩽s for some translated oordinatespae T of dimension < ri, simply beause T i⩽s∩T j⩽s and higher-order intersetionsare either empty or equal to some oordinate spae T of the mentioned property.By (5.13), the seond and further terms in the sum on the right-hand side of(5.14) are equal to some polynomials of degrees < max ({ri}) for s su�ientlylarge. Hene, for s su�iently large, they annot anel the leading term of
∑i ∣T i⩽s∣, whih sum is also a polynomial, of degree max ({ri}) and a positiveleading term. The last statement is again a onsequene of formula (5.13). Allin all, for s su�iently large, the sum in (5.14) is given by a polynomial of degree
max ({ri}) with a nonnegative leading oe�ient.The degree of the Hilbert polynomial, whih we obtained in the above proof,is equal to the maximum dimension of a oordinate subspae in C (I). ByProposition 5.4, this is equal to dimV (I). Thus we have obtained an alternativeharaterization of the dimension of a variety orresponding to a monomialideal, whih an be rather onveniently generalized to all a�ne varieties. Beforewe disuss the general a�ne ase however, it is important to notie that thevarieties orresponding to monomial ideals in C [x1, . . . , xn] an be regardedas projetive varieties in Pn−1 as well. If we look at them in this way, thede�nition of their dimension needs to be slightly modi�ed. First of all, weall n − 1 the projetive dimension of Pn−1. It is therefore natural to all59



d − 1 the projetive dimension of a d-dimensional linear subspae of Cn, whenwe regard it as a subset of Pn−1. Consequently, the projetive dimension of
V (I) for a monomial ideal I in C [x1, . . . , xn] is de�ned as d− 1, where d is themaximum dimension of a linear subspae ontained in V (I). Following (5.8),the projetive dimension an be alulated as n − ∣J ∣ − 1. On the other hand,using the Hilbert approah, we an alulate the projetive dimension of I asthe degree of the polynomial

HPI (s) ∶= aHPI (s) − aHPI (s − 1) , (5.15)whih is alled simply the Hilbert polynomial of I. For s su�iently large,it equals the number of monomials not in I and of total degree equal s. Thelast de�nition of projetive dimension of a variety orresponding to a monomialideal is the one whih onveniently generalizes to all projetive varieties.Let us also note that the Hilbert polynomial and a�ne Hilbert polynomialare ustomarily written in the form
HPI (s) = d−1∑

i=0

bi( s

d − 1 − i) and aHPI (s) = d

∑
i=0

ai( s

d − i), (5.16)where bi, ai ∈ Z, b0 > 0, a0 > 0 and d = dimV (I). The possibility to write theHilbert polynomials in the above form is a diret onsequene of the fat that ageneral polynomial p (s) of degree d that takes integer values for integer s anbe written as aHPI (s) in (5.16) [113℄.After the above lengthy disussion of monomial ideals, we an smoothlyde�ne the dimension of arbitrary projetive or a�ne varieties. Given an ideal
I ⊂ C [x1, . . . , xn], we de�ne its a�ne Hilbert funtion as

aHFI (s) = dimC [x1, . . . , xn]⩽s − dim I⩽s, (5.17)where C [x1, . . . , xn]⩽s is the set of polynomials of degree ⩽ s, I⩽s equals I ∩C [x1, . . . , xn]⩽s, and dim refers to the dimensionality of these sets when re-garded as C-linear subspaes of C [x1, . . . , xn]. For monomial ideals I, it iseasy to see that the above de�nition of aHFI oinides with the one we gaveearlier. A key observation is that for general I, the Hilbert funtion of I anbe omputed from a suitably hosen monomial ideal. Similar to the situationwe enountered in the proof of the Hilbert basis theorem (Theorem 4.18), themonomial of leading terms ⟨LT (f)⟩f∈I with respet to some monomial ordering
> turns out to be of great importane. However, in the a�ne ase, we addition-ally need to assume that > is a graded order, i.e. xα > xβ whenever ∣α∣ > ∣β∣.We then have the following result.Proposition 5.7. Let I ⊂ C [x1, . . . , xn] be an ideal and let > be a graded orderon C [x1, . . . , xn]. The monomial ideal ⟨LT (I)⟩f∈I has the same a�ne Hilbertfuntion as I.Proof. Can be found in [113, Chapter 9, �3℄.60



From the above proposition and the earlier disussion about monomial ideals,we onlude that for s su�iently large, aHFI (s) equals aHP⟨LT(f)⟩
f∈I
(s), theHilbert polynomial of ⟨LT (f)⟩f∈I . We all the same funtion the a�ne Hilbertpolynomial of I and denote it by aHPI . The same as in equation (5.16), aHPIan be written as a sum of terms ai( sd−i) with ai ∈ Z, a0 > 0. For losed salar�elds like C, the dimension of the a�ne variety V (I) is now simply de�ned asthe degree of aHPI , f. Theorem 8 in [113, Chapter 9, �3℄.De�nition 5.8 (Dimension of an a�ne variety). Let I ⊂ C [x1, . . . , xn] be anideal in C [x1, . . . , xn]. Let aHPI be the polynomial whih equals aHFI(s) forlarge s. The dimension of V (I) is de�ned to be equal to the degree of aHFI .Suh de�ned dimension an be alulated from the generators of I. A suit-able proedure onsists of two elementary steps:1. Choose a graded monomial order in C [x1, . . . , xn] suh as the graded lex-iographi order of Example 4.13 or graded reverse lexiographi order ofExample 4.14. Compute a Groebner basis {g1, . . . , gt} of I using the seletedordering.2. Compute the maximal dimension of a subspae Hi1,...,ir ontained in thevarietyV (⟨LT (g1) , . . . ,LT (gt)⟩), using the approah outlined above formula(5.8).To de�ne the dimension of a general projetive variety, we an proeed sim-ilar as above. First, we denote by C [x1, . . . , xn]s the set of all homogeneouspolynomials of total degree s, together with the zero polynomial. We also set

Is = I ∩C [x1, . . . , xn]s for an ideal I, generated by homogeneous polynomials.The Hilbert funtion of I is de�ned as
HFI (s) = dimC [x1, . . . , xn]s − dim Is, (5.18)where dim refers to the dimension as a C-linear subspae of C [x1, . . . , xn]. Infull analogy to Proposition 5.7, we have [113, Chapter 9, �3℄Proposition 5.9. Let I ∈ C [x1, . . . , xn] be an ideal generated by homogeneouspolynomials. Consider any monomial order > in C [x1, . . . , xn]. The mono-mial ideal ⟨LT (f)⟩f∈I has the same Hilbert funtion as I.Note that this time, unlike in the a�ne ase, it is possible to use any mono-mial ordering to obtain the desired monomial ideal.For monomial ideals like ⟨LT (f)⟩f∈I , the above de�nition of Hilbert funtionoinides with the one we gave previously. It immediately follows that for large

s, HFI (s) equals HP⟨LT(f)⟩
f∈I
(s), where HP refers to the Hilbert polynomial,whih we have already de�ned for monomial ideals. To no surprise, we all thelatter funtion the Hilbert polynomial of I and denote it with HPI . By theformula on the left-hand side of (5.16), we an write the Hilbert polynomial ofan arbitrary ideal I generated by homogeneous polynomials as

HPI (s) = d

∑
i=0

bi( s

d − i − 1
) (5.19)61



for some d ∈ N, bi ∈ Z and b0 > 0. For algebraially losed salar �elds like C,we de�ne the projetive dimension of V (I) simply as the degree of HPI , i.e.
d − 1 in the above formula.De�nition 5.10 (Projetive dimension). Let I ⊂C [x1, . . . , xn] be a monomialgenerated by homogeneous polynomials. Let HPI (s) be the polynomial whihequals HFI (s) for large s (i.e. the Hilbert polynomial of I). The projetivedimension of the projetive variety V (I) is de�ned to be equal to the degreeof HPI .Again, the dimension of a projetive variety V (I) an be alulated by aproedure ompletely analogous to the one we outlined for a�ne varieties. Theprojetive dimension is well behaved under many operations, f. [113, Chapter9, �4℄ and it plays a key role in the following elegant result (f. Theorem 7.2in [118℄).Theorem 5.11. Let V and U be two projetive varieties in Pn. Let r and s bethe projetive dimensions of V and U , respetively. If r + s ⩾ n, the intersetion
V ∩ U is nonempty and of dimension ⩾ r + s − n.Another important harateristi of a projetive variety, whih an be reado� its Hilbert polynomial, is the degree.De�nition 5.12 (Degree). Let I ⊂ C [x1, . . . , xn] be a monomial generatedby homogeneous polynomials. Let HPI be the Hilbert polynomial of I. Write
HPI (s) as in (5.19),

HPI (s) = d

∑
i=0

bi( s

d − i − 1
), (5.20)where bi ∈ Z, b0 > 0. The degree of the projetive variety V (I) is de�ned to beequal to b0 � the leading term of HPI .As we shall learn from Setion 5.3, the degree of a projetive variety V ⊂ Pnof dimension d equals, under ertain assumptions, the number of intersetionpoints of V with a projetive variety U of omplementary dimension n − d.In the thesis, we are partiularly interested in Segre varieties. The followingremark tells us about their dimension and degree.Remark 5.13 (Dimension and degree of a Segre variety). Let Σn,m denote theSegre variety in Pn ×Pm ≅ P(m+1)(n+1)−1. The projetive dimension of Σn,m is

n +m whereas its degree equals (m+n
n
).A short disussion of the above fats an be found in the lassial textbookby J. Harris [117, Letures 12 and 18℄.5.2 Tangent spaes. SmoothnessThe notion of the tangent spae to a urve or a surfae in R3 is somethingintuitively well understood. As we will see, it an be easily generalized to a�ne62



and projetive varieties. We hoose to work with C as the �eld of salars, butde�nitions an as well be formulated for general �elds K in plae of omplexnumbers.Let us start with an a�ne variety V ⊂ Cn and onsider the ideal I = I (V ),i.e. the set of polynomials f ∈ C [x1, . . . , xn] that vanish on V . We know fromthe Hilbert basis theorem that I is �nitely generated, so we an write it as⟨f1, . . . , fl⟩ for some polynomials fi.De�nition 5.14. Let p be a point in an a�ne variety V ⊂ C [x1, . . . , xn]. TheZariski tangent spae to V at p is de�ned as
TpV ∶= {v ∈Cn (df) (v) = 0∀f∈I(V )} , (5.21)where df denotes the derivative of a polynomial f . Equivalently,
TpV ∶= {v ∈ Cn (dfi) (v) = 0∀i=1,2,...,l} , (5.22)where f1, . . . , fl is a set of generators of I (V ).Note that the alulation of df or dfi an be done in a purely formal manner,sine we are dealing with polynomials.De�nition 5.15. Let V and p be as in De�nition 5.14. We all p + TpV thea�ne tangent spae to V at p. More expliitly, the a�ne tangent spae isde�ned as

aTpV ∶= {q ∈Cn (df) (q − p) = 0∀f∈I(V )} = {q ∈Cn (dfi) (q − p) = 0∀i} (5.23)Using the Zariski tangent spae to V at p, we an de�ne what it means for
p to be smooth.De�nition 5.16. Let V ⊂ Cn be an a�ne variety of (a�ne) dimension dimVand suh that p ∈ V . We all p a smooth point of V if and only if dim (TpV ) =
dimV .Given a set of generators of the ideal I (V ), smoothness of a p ∈ V an readilybe heked by the following Jaobi riterion, f. e.g. [119℄Proposition 5.17 (Jaobi riterion for smoothness). Let V ⊂ Cn be an a�nevariety of (a�ne) dimension dimV , suh that I (V ) = {f1, . . . , fl}. A point
p ∈ V is smooth if and only if the rank of the matrix

[ ∂fi
∂xj
]

i=1,2,...,l

j=1,2,...,n

(5.24)is equal to n − dimV .For projetive varieties, de�nitions of the tangent spae and smoothness arevery similar to the ones presented above. To de�ne the projetive tangent spaeto a projetive variety V ⊂ Pn, onsider �rst a dehomogenized version of the63



polynomials in I (V). Namely, for a homogeneous polynomial h ∈ I (V ) takingpoints [X0,X1, . . . ,Xn] ∈ Pn as input and and giving h (X0,X1, . . . ,Xn) asoutput, let us de�ne h̃ ⊂C [x1, . . . , xn] by the formula
h̃ (x1, . . . , xn) ∶= h (1, x1, . . . , xn) . (5.25)Consider the a�ne variety Ṽ ⊂ Cn onsisting of the ommon zeros of the poly-nomials h̃, h ∈ I (V). Its a�ne tangent spae at a point z = (z1, . . . , zn) equals

TzṼ = {(y1, . . . , yn) n

∑
i=1

∂h̃

∂xi
(z) ⋅ (yi − zi) = 0∀h∈I(V)} . (5.26)To get a projetivized version of TxṼ, we an homogenize the de�ning polyno-mial equations in (5.26), i.e. onsider

{[Y0, Y1, . . . , Yn] n

∑
i=1

∂h̃

∂xi
(z) ⋅ (Yi − ziY0) = 0∀h∈I(V)} . (5.27)as a projetive analogue of TzṼ . A key observation is now that partial derivativesof a homogeneous polynomial h of degree d satisfy the following Euler relations

n

∑
i=0

∂h

∂Xi

(Z0, Z1, . . . , Zn)Zi = d ⋅ F (Z0, Z1, . . . , Zn) . (5.28)In partiular, the above relation an be applied to [Z0, Z1, . . . , Zn] = [1, z1, . . . , zn]to yield
n

∑
i=1

∂h̃

∂xi
(z) zi = − ∂h

∂X0

(z) , (5.29)where we used the fat that h̃ vanishes at (1, z1, . . . , zn). We an use (5.29) andthe identity ∂h̃/∂xi (z) = ∂h/∂Xi (Z), where Z = [1, z1, . . . , zn] to rewrite (5.27)as
{[Y0, Y1, . . . , Yn] n

∑
i=0

∂h

∂Xi

(Z)Yi = 0∀h∈I(V)} . (5.30)The tangent spae to a projetive variety V at a point Z = [Z0, . . . , Zn] isnow simply de�ned by formula (5.30) with the requirement Z = [1, z1, . . . , zn]dropped. Thus we have the following de�nitionDe�nition 5.18. Let V ⊂ Pn be a projetive variety and let Z be an element of
V. Let us write the elements of Pn as [X0,X1, . . . ,Xn]. The projetive tangentspae to V at a point Z ∈ V is de�ned as the following subspae of Pn,TZV ∶= {[Y0, Y1, . . . , Yn] n

∑
i=0

∂h

∂Xi

(Z)Yi = 0∀h∈I(V )} . (5.31)Alternatively, given a set of generators h1, . . . , hl of I (V ), we an restate thede�nition (5.31) asTZV ∶= {[Y0, Y1, . . . , Yn] n

∑
i=0

∂hj

∂Xi

(Z)Yi = 0∀j=1,2,...,l} . (5.32)64



Similar as in the a�ne ase, the smoothness of a point Z ∈ V is de�ned by asuitable ondition for the dimension of TZV .De�nition 5.19. Let V ⊂ Pn be a projetive variety of projetive dimension
dimV. A point Z ∈ V is alled a smooth point of V if and only if the projetivedimension of TZV equals dimV.Clearly, there exists a projetive analogue of the Jaobi riterion for smooth-ness [119℄. We state it as the following proposition.Proposition 5.20 (Projetive Jaobi riterion). Let V ⊂ Pn be a projetivevariety of projetive dimension dimV, suh that I (V ) = {h1, . . . , hl}. A point
Z ∈ V is smooth if and only if the rank of the matrix

[ ∂hi
∂Xj

]
i=1,2,...,l

j=0,1,...,n

(5.33)is equal to n − dimV.Let us disuss the above notions in the example of Segre varieties, whih isruial for the main result of the thesis.Example 5.21 (Segre varieties). The tangent spae to the Segre variety Σn,m ⊂P(n+1)(m+1)−1 at a point S ([X0, . . . ,Xn] , [Y0, . . . , Ym]) ∶= S (X,Y ) is spannedby the points S (X,Y ′) and S (X ′, Y ) with X ′ ∈ Pn and Y ′ ∈ Pm arbitrary.In partiular, it follows that Σn,m is smooth at every point Z ∈ Σn,m, for all
m,n ∈N.Proof. A linear transformation X × Y ↦ AX ×BY , with A and B nonsingularlinear maps, brings X × Y to [0, . . . ,0,1] × [0, . . . ,0,1]. At the same time, ittransforms all the pairs of the form X ′ × Y and X ×Y ′ to X ′′ × [0, . . . ,0,1] and[0, . . . ,0,1] × Y ′′ with X ′′ = AX ′ and Y ′′ = BY ′. These AX ′ and BY ′ still runover all elements of Pn and Pm if X ′ and Y ′ an be taken as arbitrary. Asa result, we see that it is su�ient to prove our assertions about Σn,m for thesingle point Z0 = S ([0, . . . ,0,1] × [0, . . . ,0,1]), and the rest will follow. Reallthat Σn,m is de�ned as the ommon zero of the polynomials

hijkl ∶= ZijZkl −ZilZkj , (5.34)where 0 ⩽ i < k ⩽ n, 0 ⩽ j < l ⩽m and Z00, Z01, . . . , Z0m, Z10, . . . , Znm denote thehomogeneous oordinates in P(n+1)(m+1)−1. The alulation of the derivative of
hijkl at the point S ([0, . . . ,0,1] × [0, . . . ,0,1]) is very simple. We have

∂hijkl

∂Zab
(Z0) = δaiδbjδknδlm, (5.35)where i < n, j < m and δ denotes the Kroneker delta. As it is not di�ult tosee, points in P(n+1)(m+1)−1 with oordinates Z00, Z01, . . . , Z0m, Z10, . . . , Znm donot satisfy

n

∑
a=1

m

∑
b=1

∂hijkl

∂Zab
(Z0)Zab = 0 (5.36)65



Figure 5.2: A shemati piture showing the di�erene between a transverseand not a transverse intersetion.if Zab ≠ 0 for some a < n and b < m. All other points in P(n+1)(m+1)−1,with vanishing Zab whenever a < n and b < m, do satisfy (5.36). As it isnot di�ult to hek, all suh points an be written as linear ombinations of
S ([0, . . . ,0,1] × Y ′′) and S (X ′′ × [0, . . . ,0,1]) for some X ′′ ∈ Pn or Y ′′ ∈ Pm,and all points of the latter form do satisfy (5.36). Hene, they are good andi-dates for a basis of TZ0

Σn,m. However, to remain in ompliane with the abovede�nition of projetive tangent spae, we should prove that points of the form
S ([0, . . . ,0,1] × Y ′′) and S (X ′′ × [0, . . . ,0,1]) satisfy an analogue of (5.36),

n

∑
a=1

m

∑
b=1

∂h

∂Zab
(Z0)Zab = 0 (5.37)for all elements h of I (Σn,m). However, this easily follows beause the points

Z0 + λS ([0, . . . ,0,1] × Y ′′) and Z0 + λS (X ′′ × [0, . . . ,0,1]) are again elementsof Σn,m, for all λ ∈ C. In onlusion, the tangent spae to Σn,m at Z0 isspanned by elements of P(n+1)(m+1)−1 of the form S ([0, . . . ,0,1] × Y ′′) and
S (X ′′ × [0, . . . ,0,1]). From them, we an hoose a basis, onsisting of m+n+ 1elements, so the projetive dimension of TZ0

Σn,m is m + n. Thus, Σn,m issmooth at Z0. By our earlier omments, the same applies to any point Z of
Σn,m. Moreover, the tangent spaes TZΣn,m have the asserted form for all
Z ∈ Σn,m.In Setion 9.4, we are going to use the above haraterization of the tangentspae of Σn,m to make a key step in the proof of the strongest result of thethesis, whih is Theorem 9.27.5.3 Bezout's theoremIn the last part of our basi introdution to intersetion theory, we will disussa powerful theorem that allows, among others, to alulate the number of in-tersetion points between two projetive varieties of omplementary dimension.The theorem works under ertain assumptions. To explain them, we need tointrodue the notion of transverse intersetion of two projetive varieties.66



De�nition 5.22 (Transverse intersetion). Let V and U be two projetive va-rieties in Pn of omplementary dimension, i.e. dimV + dimU = n where dimrefers to the projetive dimension of a variety. We say that V and U intersettransversely if and only if for any Z ∈ V ∩ U , the tangent spaes TZV andTZU span Pn.Figure 5.2 in the previous page shows, in a shemati way, the di�erene be-tween a transverse intersetion of two varieties and a one whih is not transverse.There also exists the notion of generi transverse intersetion [117, Chapter 18℄.It plays a role in the formulation of Bezout's theorem, whih is the result men-tioned at the beginning of this setion. However, we think for the purpose ofthis thesis, it is su�ient to state Bezout's theorem in its very basi form, whihwe do in the following. For more general formulations, onsult the lassial bookby J. Harris [117, Chapter 18℄.Theorem 5.23 (Bezout). Let V and U be two projetive varieties in Pn ofomplementary dimension, i.e. dimV + dimU = n where dim refers to the pro-jetive dimension of a variety. Let the degrees of V and U be c and d. Assumethat V and U interset transversely. In suh ase, V ∩ U onsists of preisely
cd points.We also have the immediateCorollary 5.24. Let V be a projetive variety in Pn of projetive dimension
dimV and let P be a projetive plane of omplementary dimension, i.e. dimV +
dimP = n, where dim refers to the projetive dimension of a variety. Let thedegree of V be d. Assume that V and P interset transversely. In suh ase,
V ∩P onsists of preisely d points.The above orollary of Bezout's theorem proves to be a key ingredient inthe proof of the main result of the thesis, whih we present in Chapter 9. Note,one again, that there exists a very general version of Bezout's theorem, whihrefers to so-alled intersetion multipliities [117℄ and does not require the twoprojetive varieties to be of omplementary dimension. However, this topi isbeyond the fous of the thesis.
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Part IIIResults obtained andexamples solved
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Chapter 6A struture theorem for alass of ones of positive mapsIn Setions 1.2, 3.1 and 3.2 of the introdutory Part I of the thesis, we refered tothe notion of positive maps, i.e. maps that preserve the set of positive-de�nitematries. It may seem that positive maps are perfetly suited for the desriptionof physial proesses, as they map density matries into density matries, orpositive de�nite matries at least. However, a more areful analysis, whih anbe found e.g. in [31℄, shows that the �rst impression is wrong. It turns outthat a physial proess that an be desribed as a map Φ ∶ ρ ↦ Φ (ρ) mustneessarily have Φ not only positive, but also ompletely positive. By ompletepositive positivity of a Φ we mean the property that the map
⎡⎢⎢⎢⎢⎢⎢⎢⎣

A11 A12 . . . A1n

A21 A22 . . . A2n

⋮ ⋮ ⋱ ⋮
An1 An2 . . . Ann

⎤⎥⎥⎥⎥⎥⎥⎥⎦
↦
⎡⎢⎢⎢⎢⎢⎢⎢⎣

Φ (A11) Φ (A12) . . . Φ (A1n)
Φ (A21) Φ (A22) . . . Φ (A2n)
⋮ ⋮ ⋱ ⋮

Φ (An1) Φ (An2) . . . Φ (Ann)

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, (6.1)mapping operators on Cn ⊗ K into operators on the same spae, is positivefor arbitrary n. Here K denotes the spae in whih ρ lives. To see that for

Φ orresponding to a physial proess the map (6.1) must indeed be positivefor all n, one an imagine two very distant quantum systems, whih do notinterat at the present moment. However, they may have interated in thepast. Let one of them be desribed by states on K, and let the other one bean n-dimensional system with states on Cn. The initial state of the ompositesystem an in priniple be an arbitrary state on Cn⊗K. The map ating on theomposite system when the �rst subsystem undergoes the proess Φ and theseond subsystem remains untouh, is given by 1 ⊗Φ. Here 1 denotes identityon n×n matries. This is preisely the map (6.1), and it must be positive sine,as we mentioned, the initial state of the omposite system an be arbitrary.Nevertheless, we have already seen that maps whih are positive, but notompletely positive are not useless in the theory of quantum information. In69



Setion 1.2 we explained the role of entanglement witnesses, whih orrespondto positive but not ompletely positive maps, for entanglement detetion. Onthe other hand, in Setion 3.1 we showed a diret onnetion of distillabilityof quantum states to the property of being 2-positive. In the following, weintrodue a unifying framework for ompletely positive, 2-positive and severalother natural lasses of positive maps. The idea omes from an early workby Størmer [120℄ and onsists in distinguishing the lass of ones with ertainsymmetry property. They are alled mapping ones, and in the ontext dis-ussed here, ones with a mapping one symmetry or ms-ones, due to a minordi�erene from the original de�nition by Størmer.Let us desribe the setup for our disussion. Let K and H be two Hilbertspaes. We denote with ⟨., .⟩ the inner produt in K or H. In the following, weshall assume that K and H are �nite-dimensional and thus equivalent to Cmand Cn for some m,n ∈ N, dimK = m, dimH = n. We also �x orthonormalbases {fj}mj=1 and {ei}ni=1 of K and H, respetively. Thus we have a very spe-i� setting for our disussion, but we shall keep the abstrat notation of Hilbertspaes, hoping to bring the attention of the reader to possible generalizations tothe in�nite-dimensional ase. Let us denote with B (K) and B (H) the spaes ofbounded operators on K and H respetively, and hoose their anonial bases{fkl}mk,l=1, {eij}ni,j=1. That is, fkl (ej) = δljfk and similarly for the eij . Positiveelements of B (K) are operators A ∈ B (K) suh that ⟨v,A (v)⟩ ⩾ 0∀v∈H. Sim-ilarly for elements of B (H). The sets of positive elements of B (K) and B (H)will be denoted by B (K)+ and B (H)+. In the �nite-dimensional ase, thereexists a natural inner produt in B (K), given by the formula
⟨A,B⟩′ ∶= Tr (AB∗) (6.2)for A,B ∈ B (K). An idential de�nition works for A,B ∈ B (H) and we do notdistinguish notationally between the inner produts in B (H) and B (K). Notethat the bases {fkl}mk,l=1 and {eij}ni,j=1 are orthonormal with respet to ⟨., .⟩′.In the following, we will be mostly dealing with linear maps from B (K) to

B (H). Beause of the �nite-dimensionality assumption, they are all elements of
B (B (K) ,B (H)), the spae of bounded operators from B (K) to B (H). Given amap Φ ∈ B (B (K) ,B (H)), we de�ne its onjugate Φ∗ as a map from B (H) into
B (K) satisfying ⟨A,Φ (B)⟩′ = ⟨Φ∗ (A) ,B⟩′ for all A ∈ B (H) and B ∈ B (K). Inour setting, there also exists a natural inner produt in B (B (K) ,B (H)), givenby the formula

⟨Φ,Ψ⟩′′ ∶= m

∑
k,l=1

⟨Φ (fkl) ,Ψ (fkl)⟩′ . (6.3)Note that the spaes B (B (H) ,B (K)), B (B (K)) and B (B (H)) an be endowedwith analogous inner produts and we shall not notationally distinguish betweenthem. The following proposition summarizes a few elementary fats about ⟨., .⟩′′that will be useful for our later disussion.Proposition 6.1. For all Φ,Ψ ∈ B (B (K) ,B (H)) and α ∈ B (B (H)), β ∈
B (B (K)), and ○ denoting the omposition of maps, one has the following equal-ities 70



1. ⟨Φ ○ β,Ψ⟩′′ = ⟨β,Φ∗ ○Ψ⟩′′ = ⟨Ψ∗ ○Φ, β∗⟩′′,2. ⟨α ○Φ,Ψ⟩′′ = ⟨α,Ψ ○Φ∗⟩′′ = ⟨Φ ○Ψ∗, α∗⟩′′,3. ⟨α ○Φ ○ β,Ψ⟩′′ = ⟨Φ, α∗ ○Ψ ○ β∗⟩′′.Proof. The �rst equality in point one follows diretly from ⟨Φ ○ β (fkl) ,Ψ (fkl)⟩′ =⟨β (fkl) ,Φ∗ ○Ψ (fkl)⟩′ and the de�nition of ⟨., .⟩′′, eq. (6.3). To prove the otherequalities, we an use a simple lemma.Lemma 6.2. For any �nite-dimensional Hilbert spaes K, H and maps Φ,Ψ ∈
B (B (K) ,B (H)), we have

⟨Φ,Ψ⟩′′ = ⟨Ψ∗,Φ∗⟩′′ . (6.4)Proof. Starting from the de�nition of ⟨., .⟩′′, we get
⟨Φ,Ψ⟩′′ = m

∑
k,l=1

⟨Φ (fkl) ,Ψ (fkl)⟩′ = n

∑
i,j=1

n

∑
m,n=1

m

∑
k,l=1

Φij,klΨmn,kl ⟨eij , emn⟩′ =
=

n

∑
i,j=1

m

∑
k,l=1

Φij,klΨij,kl =
n

∑
i,j=1

m

∑
k,l=1

m

∑
r,s=1

Φij,rsΨij,kl ⟨frs, fkl⟩′ =
=

n

∑
i,j=1

m

∑
k,l=1

m

∑
r,s=1

⟨Ψij,rsfr,s,Φij,klfkl⟩′ = n

∑
i,j=1

⟨Ψ∗ (eij) ,Φ∗ (eij)⟩′ , (6.5)where the last equality follows beause Φ∗ (eij) = ∑mk,l=1Φij,klfkl as a onse-quene of ⟨fkl,Φ∗ (eij)⟩′ = ⟨Φ (fkl) , eij⟩′ = ∑mr,s=1Φrs,kl ⟨ers, eij⟩′ = Φij,kl. Sim-ilarly, Ψ∗ (eij) = ∑mr,s=1Φij,rsfrs holds. The �nal expression in (6.5) learlyequals ⟨Ψ∗,Φ∗⟩′′.Note that the assertion of Lemma 6.2 holds for any hoie of K and H, andthus also when the two �nite-dimensional Hilbert spaes are di�erent from the
K and H referred to in the statement of the proposition. Using the lemma, weget ⟨β,Φ∗ ○Ψ⟩′′ = ⟨Ψ∗ ○Φ, β∗⟩′′, whih proves the seond equality in point one.Furthermore,
⟨α ○Φ,Ψ⟩′′ = ⟨Ψ∗,Φ∗ ○ α∗⟩′′ = ⟨Φ∗ ○ α∗,Ψ∗⟩′′ =

= ⟨α∗,Φ ○Ψ∗⟩′′ = ⟨Φ ○Ψ∗, α∗⟩′′ = ⟨α,Ψ ○Φ∗⟩′′ , (6.6)where we suessively used Lemma 6.2, the onjugate symmetry of ⟨., .⟩′′, the�rst equation in point one, the onjugate symmetry again, and �nally Lemma6.2 for the seond time. Obviously, the �rst, the �fth and the sixth term inequation (6.6) are the same as in point two of the proposition. Hene the onlyremaining thing to prove is point three. We have
⟨α ○Φ ○ β,Ψ⟩′′ = ⟨α,Ψ ○ β∗ ○Φ∗⟩′′ = ⟨β ○Ψ∗ ○ α,Φ∗⟩′′ = ⟨Φ, α∗ ○Ψ ○ β∗⟩′′ ,(6.7)71



where we used the two properties ⟨α ○Φ,Ψ⟩′′ = ⟨α,Ψ ○Φ∗⟩′′ with Φ → Φ ○ β,⟨β,Φ∗ ○Ψ⟩′′ = ⟨Φ ○ β,Ψ⟩′′ with β → α, Φ → β ○ Ψ∗ and Ψ → Φ∗, and �nallyLemma 6.2.Consider the tensor produt K⊗H. This spae has a natural inner produt,inherited from K and H, and an orthonormal basis {fkl ⊗ eij}n;mi,j=1;k,l=1. Simi-larly to B (K) and B (H), the spae B (K⊗H) of bounded operators on K ⊗His endowed with a natural Hilbert-Shmidt produt, de�ned by formula (6.2)with A,B ∈ B (K⊗H). We shall again denote the inner produt with ⟨., .⟩′ toavoid exess notation. As we explained in previous setions, there exists a one-to-one orrespondene between linear maps Φ of B (K) into B (H) and elementsof B (K⊗H), given by
Φ ↦ CΦ ∶=

m

∑
k,l=1

fkl ⊗Φ (fkl) . (6.8)The symbol CΦ denotes the Choi matrix of Φ [30℄ and the mapping J ∶ Φ↦ CΦ issometimes alled the Jamioªkowski-Choi isomorphism [29℄. In fat, J is not onlyan isomorphism, but also an isometry between B (B (K) ,B (H)) and B (K⊗H)in the sense of Hilbert-Shmidt type inner produts. One has the followingLemma 6.3. The Jamioªkowski-Choi isomorphism is an isometry. One has
⟨Φ,Ψ⟩′′ = ⟨CΦ,CΨ⟩′ (6.9)for all Φ,Ψ ∈ B (B (K) ,B (H)) (with CΦ,CΨ ∈ B (K⊗H)).Proof. By the de�nition of CΦ and CΨ,

⟨CΦ,CΨ⟩′ = ⟨ m

∑
k,l=1

fkl ⊗Φ (fkl) , m

∑
r,s=1

frs ⊗Ψ (frs)⟩′ = . . . (6.10)Sine Tr ((A⊗A′) (B ⊗B′)∗) = Tr (AB∗)Tr (A′B′∗) for arbitrary A,B ∈ B (K)and A′,B′ ∈ B (H), by formula (6.2) we have
. . . =

m

∑
k,l=1

m

∑
r,s=1

⟨fkl, frs⟩′ ⟨Φ (fkl) ,Ψ (frs)⟩′ = m

∑
k,l=1

⟨Φ (fkl) ,Ψ (fkl)⟩′ , (6.11)where we used orthonormality of {fkl}mk,l=1. The last expression equals ⟨Φ,Ψ⟩′′by de�nition (6.3).Let us reall that a linear map Φ from B (K) to B (H) is alled positive if itpreserves positivity of operators, whih means Φ (B (K)+) ⊂ B (H)+. Moreover,
Φ is alled k-positive if Φ ⊗ idMk(C) is positive as a map from B (K) ⊗Mk (C)into B (H) ⊗Mk (C), where Mk (C) denotes the spae of k × k matries withomplex entries and id refers to the identity map. A map Φ is alled ompletelypositive if it is k-positive for all k ∈N. From the Choi's theorem on ompletelypositive maps [30℄ (f. also Lemma 6.7) it follows that every suh map has a72



representation Φ = ∑iAdVi
as a sum of onjugation maps, AdVi

∶ ρ ↦ ViρV
∗

iwith Vi ∈ B (K,H). Conversely, every map Φ of the form ∑iAdVi
is ompletelypositive. If all the Vi's an be hosen of rank ⩽ k for some k ∈ N, Φ is said tobe k-superpositive [101℄. One-superpositive maps are simply alled superpositive[121℄. The sets of positive, k-positive, ompletely positive, k-superpositive andsuperpositive maps from B (K) to B (H) will be denoted with P (B (K) ,B (H)),

Pk (B (K) ,B (H)), CP (B (K) ,B (H)), SPk (B (K) ,B (H)), SP (B (K) ,B (H))or P , Pk, CP, SPk, SP for short. It is lear that all of them are losed onvexones ontained in P (B (K) ,B (H)). They also share a more speial propertythat the produt Υ ○ Φ ○Ω of Φ ∈ C, Υ ∈ CP (B (H)) and Ω ∈ CP (B (K)) is anelement of C again, where C stands for one of the sets P , Pk, CP, SPk and
SP (f. e.g. [101℄). Thus, following rather losely the original de�nition byStørmer [120℄, we makeDe�nition 6.4. A one with a mapping one symmetry, or an ms-onefor short, is de�ned as a losed onvex one C in P (B (K) ,B (H)), di�erent from{0}, suh that

Υ ○Φ ○Ω ∈ C (6.12)for all Φ ∈ C, Υ ∈ CP (B (H)) and Ω ∈ CP (B (K)).In the following, the onvexity assumption ould sometimes be skept, andwe do inlude appropriate omments.Note that the set of positive maps from B (K) into B (H) is ontained inthe real-linear subspae HP (B (K) ,B (H)) ⊂ B (B (K) ,B (H)) (HP for short)onsisting of all Hermitiity-preserving maps, i.e. Φ suh that Φ (X∗) = Φ (X)∗.Moreover, the image of HP (B (K) ,B (H)) by J ∶ Φ ↦ CΦ equals the set of self-adjoint elements of B (K ⊗H) [122℄. Therefore ⟨., .⟩′′ indues a symmetri innerprodut on HP (B (K) ,B (H)) (f. Property 6.3). By de�nition, all mappingones are subsets of P and thus of HP. Sine HP is a �nite-dimensional spaeover R with a symmetri inner produt ⟨., .⟩′′, one an easily apply to it toolsof onvex analysis. In partiular, given any one C ⊂ HP, one de�nes its dual
C○ as the one of elements Ψ ∈ HP suh that ⟨Ψ,Φ⟩′′ ⩾ 0 for all Φ ∈ C,

C
○ ∶= {Ψ ∈ HP (B (K) ,B (H)) ⟨Ψ,Φ⟩′′ ⩾ 0∀Φ∈C} . (6.13)Obviously, C○ is losed and onvex. It has a lear geometrial interpretation asthe onvex one spanned by the normals to the supporting hyperplanes for C.The dual one has a well-known ounterpart in onvex analysis [6℄, C⋆ = −C○,whih is alled the polar of C. We have the followingLemma 6.5. Let C be a losed onvex one. Then C = C○○.Proof. The formula C○○ = C is equivalent to C⋆⋆ = C for a losed onvex one C.The latter equality is a known fat in onvex analysis. A proof an be founde.g. in [6℄ (Theorem 14.1).It an be shown (f. e.g. [101℄) that a duality relation P○k = SPk holds forall k ∈ N. The onverse relation SP○k = Pk is also true, as a onsequene of73



Property 6.5. In partiular, for k = 1 we get SP○ = P and P○ = SP . Taking
k = min{m,n}, one obtains CP○ = CP, whih is in aordane with Choi'stheorem on ompletely positive maps [30℄ and with Property 6.3.In the following, we shall be interested in duality relations between ms-ones. This is in general a well-posed problem, beause the operation C → C○ats within the �ms� lass. We haveProposition 6.6. Let C ⊂ P (B (K) ,B (H)) be an arbitrary ms-one. Then
C○, de�ned as in (6.13), is an ms-one as well.Proof. Let Ψ be an element of C○. First we prove that Υ ○Ψ ○Ω ∈ C○ for all Υ ∈
CP (B (H)) and Ω ∈ CP (B (K)). We have Υ∗ ∈ CP (B (H)) and Ω∗ ∈ CP (B (K))beause the sets of ompletely positive maps are ∗-invariant. Therefore Υ∗ ○Φ○
Ω∗ ∈ C for an arbitrary element Φ of the one C. By the de�nition (6.13) of C○,we have ⟨Ψ,Υ∗ ○Φ ○Ω∗⟩′′ ⩾ 0∀Φ∈C . Using Proposition 6.1, point three, we anrewrite this as ⟨Υ ○Ψ ○Ω,Φ⟩′′ ⩾ 0∀Φ∈C . (6.14)Aording to de�nition (6.13), ondition (6.14) means that Υ ○ Ψ ○ Ω ∈ C○.This holds for arbitrary Υ ∈ CP (B (H)) and Ω ∈ CP (B (K)). The only thingwhih is left to prove is C○ ⊂ P (B (K) ,B (H)). The inlusion holds beauseevery ms-one C ontains all the onjugation maps AdV with rankV = 1.Consequently, C○ ⊂ onvhull{AdV rankV = 1}○ = SP○ = P . To show thatindeed {AdV rankV = 1} ⊂ C for any ms-one C, take an arbitrary nonzero
Φ ∈ C. There must exist normalized vetors υ ∈ K and ω ∈ H suh that⟨∣ω⟩ ⟨ω∣ ,Φ (∣υ⟩ ⟨υ∣)⟩′ ⩾ 0, where ∣υ⟩ ⟨υ∣ and ∣ω⟩ ⟨ω∣ are orthogonal projetions ontothe one-dimensional subspaes spanned by υ and ω. Denote χ ∶= ⟨∣ω⟩ ⟨ω∣ ,Φ (∣υ⟩ ⟨υ∣)⟩′.Consider a pair of maps, U ∶ K ∋ a ↦ ⟨a, υ′⟩υ ∈ K and W ∶ H ∋ b ↦ ⟨b,ω⟩ω′ ∈ H,where υ′ and ω′ are arbitrary normalized vetors in K and H. A map Φ′, de�nedas λ/χ (AdW ○Φ ○AdU) ats in the following way, Φ′ ∶ ρ ↦ λ ⟨∣υ′⟩ ⟨υ′∣ , ρ⟩′ ∣ω′⟩ ⟨ω′∣or Φ′ = AdV with V ∶ K ∋ c ↦ λ ⟨υ′, c⟩ω′. Any rank one operator V an be writ-ten in the latter form for some υ′ and ω′. But Φ′ is an element of C beause ofthe assumption that C is an ms-one. Thus indeed AdV ∈ C for all V ∈ B (K,H)suh that rankV = 1. In the ase of K = H and mapping ones C as in theoriginal de�nition by Størmer, the inlusion AdV ∈ C follows from Lemma 2.4in [120℄. Note that we never used onvexity of C in the proof.Using the lemmas introdued above, we an almost immediately prove asurprising haraterization theorem for ms-ones, whih was strongly suggestedby earlier results on the subjet [101,123,124℄. It holds without any additionalassumptions about the one, and is noteworthy as it links the ondition that twomaps Φ, Ψ lay in a pair of dual ms-ones to the fat that the produt Ψ∗ ○Φis a CP map. Thus it reveals a onnetion between onvex geometry and a fatwhih is more likely to be alled algebrai than geometrial. Before we proeedwith the proof, let us show a simple lemma, whih is a version of [125, Lemma1(i)℄ for K ≠ H. 74



Lemma 6.7. Let V ∶ K ∋ a ↦∑ni=1∑mj=1 Vij ⟨a, fj⟩ ei ∈ H be an arbitrary operatorin B (B (K) ,B (H)) and onsider the map AdV ∶ ρ↦ V ρV ∗. Then
CAdV

= ∣υ⟩ ⟨υ∣ , (6.15)where υ = ∑ni=1∑mj=1 Vijfj ⊗ ei is a vetor in K ⊗H and ∣υ⟩ ⟨υ∣ ∶ w ↦ ⟨w,υ⟩ υ isproportional to an orthogonal projetion onto the subspae spanned by υ.Proof. Obviously, the map V ∗ ats in the following way,
V ∗ ∶H ∋ b↦

n

∑
i=1

m

∑
j=1

Vij ⟨b, ei⟩ fj ∈ K. (6.16)Thus
V fklV

∗ ∶H ∋ b↦
n

∑
i,r=1

m

∑
j,s=1

Vrs ⟨fkl (fj) , fs⟩Vij ⟨b, ei⟩ er ∈ H, (6.17)where the last expression is easily veri�ed to be equal to ∑ni,r=1 VrkVil ⟨b, ei⟩ er.Thus we have V fklV ∗ = ∑ni,r=1 VrkVileri and by the de�nition (6.8) of the Choimatrix,
CAdV

=
m

∑
k,l=1

n

∑
i,r=1

VrkVilfkl ⊗ eri = ∣υ⟩ ⟨υ∣ , (6.18)with υ = ∑ni=1∑mj=1 Vijfj ⊗ ei. A proof of the last equality in (6.18) is left as anelementary exerise for the reader.We are ready to prove the following result, whih is an extension of Theo-rem 1 in [123℄.Theorem 6.8. Let C ⊂ P (B (K) ,B (H)) be an ms-one. The following ondi-tions are equivalent,1. Φ ∈ C,2. Ψ∗ ○Φ ∈ CP (B (K)) for all Ψ ∈ C○,3. Φ ○Ψ∗ ∈ CP (B (H)) for all Ψ ∈ C○.Proof. We �rst show 1⇔ 2. Let us start with 2⇒ 1. Sine Ψ∗ ○Φ ∈ CP ∀Ψ∈C○ ,we an use the fats that CP○ = CP and id ∈ CP to get
⟨Ψ∗ ○Φ, id⟩′′ ⩾ 0∀Ψ∈C○ . (6.19)By using point one of Proposition 6.1 with the identity map id substituted for

β, we get ⟨Φ,Ψ⟩′′ ⩾ 0∀Ψ∈C○ , whih means that Φ ∈ C○○. But C○○ = C beause C isa losed onvex one and Property 6.5 holds. Hene Φ ∈ C. The proof of 1⇒ 2strongly builds on the assumption that C has the mapping one symmetry. ByProposition 6.6, we know that C○ is an ms-one as well. Therefore Ψ○AdV ∈ C○for an arbitraryΨ ∈ C○ and V ∈ B (K). We have ⟨Ψ ○AdV ,Φ⟩′′ ⩾ 0∀V ∈B(K)∀Ψ∈C○ .75



By Proposition 6.1, point one, we get ⟨Ψ ○AdV ,Φ⟩′′ = ⟨AdV ,Ψ∗ ○Φ⟩′′. UsingProperty 6.3 and Lemma 6.7 with H = K, the last term an be rewritten as
⟨AdV ,Ψ∗ ○Φ⟩′′ = ⟨CAdV

,CΨ∗○Φ⟩′ = ⟨∣v⟩ ⟨v∣ ,CΨ∗○Φ⟩′ = ⟨υ,CΨ∗○Φ (υ)⟩ , (6.20)where υ = ∑mi,j=1 Vijfj ⊗ fi for V ∶ K ∋ a ↦ ∑mi,j=1 Vij ⟨a, fj⟩ fi ∈ K. The vetor
υ ∈ K⊗K an be arbitrary, sine we do not assume anything about the operator
V . Consequently, the ondition ⟨Ψ ○AdV ,Φ⟩′′ ⩾ 0∀V ∈B(K)∀Ψ∈C○ is equivalent to

⟨υ,CΨ∗○Φ (υ)⟩ ⩾ 0∀υ∈K⊗K ∀Ψ∈C○ , (6.21)whih means that CΨ∗○Φ ∈ B (K ⊗K)+ for all Ψ ∈ C○. By the Choi theoremon ompletely positive maps [30℄, Ψ∗ ○ Φ ∈ CP (B (K)) for all Ψ ∈ C○. Thuswe have �nished proving that 1⇔ 2. The proof of the equivalene 1⇔ 3 onlyneeds a minor modi�ation of the above argument. Instead of using point one ofProposition 6.1, point two of the same proposition has to be used. Other detailsare pratially the same as above and we shall not give them expliitly.In ase of H = K and a ∗-invariant ms-one C ∈ P (B (K)), Theorem 6.8 anbe further simpli�ed.Theorem 6.9. Let C ⊂ P (B (K)) be a ∗-invariant ms-one. Then the followingonditions are equivalent,1. Φ ∈ C,2. Ψ ○Φ ∈ CP (B (K)) for all Ψ ∈ C○,3. Φ ○Ψ ∈ CP (B (K)) for all Ψ ∈ C○.Proof. Obvious from Theorem 6.8.This result was earlier known for Pk (B (K)) and SPk (B (K)) [101℄, andinexpliitly for all so-alled symmetri (and onvex) mapping ones [124℄. Asit was pointed to the author by Erling Størmer, in the ase of k-positive maps,not neessarily from B (K) into itself, an even stronger haraterization of thetype of Theorems 6.8 and 6.9 is valid. First, we have the simpleTheorem 6.10. The following onditions are equivalent1. Φ ∈ Pk (B (K) ,B (H)),2. AdV ∗ ○Φ ∈ CP (B (K)) for all V ∈ B (K,H) suh that rankV ⩽ k,3. Φ ○AdV ∗ ∈ CP (B (H)) for all V ∈ B (K,H) suh that rankV ⩽ k.Proof. Obvious from Theorem 6.8. The duality relation
Pk (B (K) ,B (H))○ = SPk (B (K) ,B (H)) =

= onvhull{AdV ∣V ∈ B (K,H) , rankV ⩽ k} (6.22)holds (f. [101℄) and we an substitute Ψ in Theorem 6.8 with AdV , rankV ⩽ k.We also use the elementary fat that Ad∗V = AdV ∗ .76



The next result on k-positive maps seems to be less obvious.Theorem 6.11. Denote with Πk (K) and Πk (H) the sets of k-dimensionalprojetions in K and H, resp. The following onditions are equivalent1. Φ ∈ Pk (B (K) ,B (H)),2. AdE ○Φ ∈ CP (B (K) ,B (H)) for all E ∈ Πk (H),3. Φ ○AdF ∈ CP (B (K) ,B (H)) for all F ∈ Πk (K),4. AdE ○Φ ○AdF ∈ CP (B (K) ,B (H)) for all E ∈ Πk (H), F ∈ Πk (K).Proof. We shall prove the equivalene 1⇔ 4. The other ones follow analogously.Sine CP○ = CP and any CP map an be written as ∑iAdVi
with Vi arbitrary,the ondition AdE ○Φ ○AdF ∈ CP (B (K) ,B (H)) is equivalent to

⟨AdE ○ Φ ○AdF ,AdV ⟩′′ ⩾ 0∀E∈Πk(H),F ∈Πk(K)∀V ∈B(K,H). (6.23)By Proposition 6.1, point three, equation (6.23) an be rewritten as
⟨Φ,AdEV F ⟩′′ ⩾ 0∀E∈Πk(H),F ∈Πk(K)∀V ∈B(K,H), (6.24)where we used the fat that AdE ○AdV ○AdF = AdEV F and the self-adjointnessof E and F . Note that U = EV F is an element of B (K,H) of rank ⩽ k.Conversely, every map in U ∈ B (K,H) of rank ⩽ k an be written in the form

EV F for some V ∈ B (K,H), E ∈ Πk (H) and F ∈ Πk (K). It is su�ient totake V = U and E, F as the range and rank projetions for U , resp. Thereforethe ondition (6.24) is equivalent to ⟨Φ,AdU ⟩′′ ⩾ 0 for all U ∈ B (K,H) s.t.rankU ⩽ 0. But this is the same as ⟨Φ,Ψ⟩′′ ⩾ 0 for all Ψ ∈ SPk (B (K) ,B (H)),or Φ ∈ SPk (B (K) ,B (H))○ = Pk (B (K) ,B (H)). Thus 1⇔ 4.Let us note that Theorem 6.8 an be pereived as a very broad generalizationof the so-alled positive maps entanglement riterion by the Horodekifamily [18℄. To see this, we prove the following generalProposition 6.12 (Generalized positive maps riterion). Let C be an ms-onein P (B (K) ,B (H)). An operator ρ ∈ B (K⊗H) belongs to the image J (C) ifand only if the following ondition
(Ψ∗ ⊗ id) ρ ∈ B+ (K ⊗K) (6.25)holds for all Ψ ∈ C○.Proof. The proof relies on Theorem 6.8 and the formula (6.8) for the isomor-phism J . Let us note that

(Ψ∗ ⊗ id)ρ = (Ψ∗ ⊗ id) (J−1 (ρ)⊗ id) m

∑
k,l=1

fkl ⊗ fkl = J (Ψ∗ ○ J−1 (ρ)) (6.26)77



wherem denotes the dimension of the spae K. Thus the ondition (Ψ∗ ⊗ id)ρ ∈
B+ (K ⊗K) is the same as J (Ψ∗ ○ J−1 (ρ)) ∈ B+ (K ⊗K), whih is equivalent, bythe Choi theorem on ompletely positive maps [30℄, to Ψ∗○J−1 (ρ) ∈ CP (B (K)).If the last inlusion holds for all Ψ ∈ C○, we know by Theorem 6.8 that J−1 (ρ)is in C, or ρ ∈ J (C). Conversely, if ρ is in J (C), then J−1 (ρ) belongs to C.By Theorem 6.8, Ψ∗ ⊗ J−1 (ρ) belongs to CP (B (K)) for all Ψ ∈ C○, whih isequivalent to J (Ψ∗ ⊗ J−1 (ρ)) ∈ B+ (K⊗K) aording to the Choi theorem onompletely positive maps. By formula (6.26) the last expression is equivalent to(Ψ∗ ⊗ id)ρ ∈ B+ (K ⊗K) for all Ψ ∈ C○.Remark 6.13. For the hoie C = SP (B (K)), the above theorem redues to thepositive maps riterion by Horodey [18℄. We have the following equivalene

ρ is separable ⇔ (Ψ⊗ 1)ρ ∈ B+ (K)∀Ψ∈P(B(K)) (6.27)Proof. Follows from Proposition 6.12 if we reall that the set of separable oper-ators equals J (SP (B (K))) and the dual of SP (B (K)) is P (B (K)) [101℄.
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Chapter 7Algebrai problems solved byhand
7.1 Produt numerial range for a three-parameterfamily of operatorsProdut numerial range is a onept derived from the well-known numerialrange (f. e.g. [126℄). For an operator A on a Hilbert spae H, the numerialrange of A is by de�nition the set of numbers whih an be obtained as ⟨v,A (v)⟩for some vetor v ∈ H of unit norm. Aordingly, for an operator A on a bipartitespae H1 ⊗H2 the produt numerial range is de�ned as

Λ⊗ (A) = {⟨v ⊗ u,A (v ⊗ u)⟩ v ∈ H1, u ∈ H2, ∣v∣ = ∣u∣ = 1} (7.1)A generalization to a multipartite setting is possible and very straightforward.The de�nition was introdued in [127℄ and demonstrated to have various linksto problems in the quantum information siene [128℄, inluding the evaluationof minimum output entropy [129℄, heking whether two unitary operations areloally distinguishable [130, 131℄ or the identi�ation of loal dark spaes anderror orreting odes [132,133℄. In the present setion we analytially alulatethe produt numerial range for a three-parameter family of 4×4 matries intro-dued in [134℄. In order to obtain expliit formulas, some additional onstraintsneed to put on the parameters of the matries. We take
F =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

F00,00 F00,01 F00,10 F00,11

F01,00 F01,01 F01,10 F01,11

F10,00 F10,01 F10,10 F10,11

F11,00 F11,01 F11,10 F11,11

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1
2

a 0 0

ā 1
2

b 0

0 b̄ 1
2

c

0 0 c̄ 1
2

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥⎦
, (7.2)79



whih represent operators on H1 ⊗H2 = C2 ⊗C2. In order to �nd Λ⊗ (F ), we�rst alulate the quantities (F (2)u )
αγ

∶= Fαβγδūβuδ. The result is
F (2)u (a, b, c) = ⎡⎢⎢⎢⎢⎣

1
2
(∣u1∣2 + ∣u2∣2) a ∣u1∣2 + c ∣u2∣2 + b̄u1ū2

ā ∣u1∣2 + c̄ ∣u2∣2 + bū1u2 1
2
(∣u1∣2 + ∣u2∣2)

⎤
⎥
⎥
⎥
⎥⎦ . (7.3)To alulate the produt numerial range of F , we only need to �nd the maxi-mum and the minimum of ⟨v ⊗ u,F (u⊗ v)⟩ = ⟨v,F (2)u (v)⟩, where u, v ∈C2 and

∣u∣ = ∣v∣ = 1. Obviously, TrF (2)u = ∣u1∣2+∣u2∣2 = ∣u∣2 = 1 for all u that meet the on-straint ∣u∣ = 1. The harateristi polynomial of F (2)u is λ2−TrF (2)u λ+detF (2)u =

λ2 − λ + detF
(2)
u , whih has the roots
λ± =

1 ±
√
1 − 4detF

(2)
u

2
=
1 ± ∣a ∣u1∣2 + c ∣u2∣2 + b̄u1ū2∣

2
. (7.4)The last equality follows from a diret alulation of the determinant of F (2)u ,

detF
(2)
u = 1

4
−∣a ∣u1∣2 + c ∣u2∣2 + b̄u1ū2∣2. We see that the produt numerial rangeof F (2)u is

[1 −M
2

,
1 +M

2
] , (7.5)where M = max∣u∣=1 ∣a ∣u1∣2 + c ∣u2∣2 + b̄u1ū2∣. Hene to determine the produtnumerial range of F (2)u , it is enough to alulate the maximum of the expression∣a ∣u1∣2 + c ∣u2∣2 + b̄u1ū2∣ over the elements (u1, u2) ∈ C2 with unit norm. Firstwe observe that for x ∶= ∣u1∣, y ∶= ∣u2∣ �xed, the funtion ∣a ∣u1∣2 + c ∣u2∣2 + b̄u1ū2∣attains the maximum value ∣ax2 + cy2∣+∣b∣xy. Thus the alulation ofM reduesto �nding the maximum of ∣ax2 + cy2∣+ ∣b∣xy over x, y ∈R nonnegative and suhthat x2+y2 = 1. Equivalently, we may skip the nonnegativity ondition on x and

y, substitute x→ cosφ, y → sinφ and maximize ∣a cos2 φ + c sin2 φ∣+ ∣b∣ sinφ cosφover real φ. Using simple algebra, it is easy to show that ∣a cos2 φ + c sin2 φ∣ +∣b∣ sinφ cosφ is equal to 1
2
(∣(a + c) + (a − c) cosψ∣ + ∣b∣ sinψ) for ψ = 2φ. Themaximum of this expression over ψ ∈ R an be easily found if a and c satisfyone of the following onditions,a) ∣a∣ = ∣c∣ orb) a = rc for real r.In the ase a), we get ∣(a + c) + (a − c) cosψ∣ =√∣a + c∣2 + ∣a − c∣2 cos2ψ, and thuswe are left with the problem of maximizing

f (ψ) ∶= 1

2
(√∣a + c∣2 + ∣a − c∣2 cos2 ψ + ∣b∣ sinψ) (7.6)80



over real ψ. The maximum an be alulated expliitly. The result reads
M =max

ψ∈R f (ψ) = ⎧⎪⎪⎪⎨⎪⎪⎪⎩∣b∣ + ∣a + c∣ , ∣b∣ ∣a + c∣ > ∣a − c∣2√∣b∣2 + ∣a − c∣2√1 + ∣a+c∣2∣a−c∣2 , ∣b∣ ∣a + c∣ ⩽ ∣a − c∣2 . (7.7)Here we only outline how (7.7) was obtained. The �rst derivative of f is
f ′ (ψ) = 1

2

⎛⎜⎝
∣a − c∣2 sinψ cosψ√∣a + c∣2 + ∣a − c∣2 cos2 ψ + ∣b∣ cosψ⎞⎟⎠ , (7.8)and there are either two or four solutions to the equation f ′ (ψ) = 0 in [0,2π),depending on the sign of the expression ∣b∣ ∣a + c∣− ∣a − c∣2. If inequality ∣b∣ ∣a + c∣−∣a − c∣2 > 0 holds, we get a single maximum, equal to ∣b∣+∣a + c∣, at ψ = π/2. Let usde�ne ψ0 = arccos(√∣a−c∣4−∣b∣2∣a+c∣2∣a−c∣√∣a−c∣2+∣b∣2 ). When ∣b∣ ∣a + c∣ − ∣a − c∣2 < 0, the maximumat ψ = π/2 turns into a minimum, but two new maxima of f appear at ψ = ψ0and ψ = π −ψ0. The value of f in both of these maxima is the same and equals√∣b∣2 + ∣a − c∣2√1 + ∣a+c∣2∣a−c∣2 . Thus we have explained formula (7.7) but for thease ∣b∣ ∣a + c∣ = ∣a − c∣2. With little additional e�ort, it an be shown that (7.7)also works in that speial ase. Therefore (7.7) is true whenever ∣a∣ = ∣c∣ and wehave found the produt numerial range (7.5) of F in the ase a).When a = rc for real r, it is even simpler to alulate M than in the situa-tion onsidered above. Sine then we have the equality ∣(a + c) + (a − c) cosψ∣ =∣∣a + c∣ + ∣a − c∣ cosψ∣, we an �rst maximize the expression

1

2
(∣∣a + c∣ + ∣a − c∣ cosψ∣ + ∣b∣ sinψ) (7.9)while keeping s ∶= ∣sinψ∣ and c ∶= ∣cosψ∣ onstant. This yields

1

2
(∣a + c∣ + ∣a − c∣ c + ∣b∣ s) (7.10)and we are left with the task of maximizing this expression over all nonnegative

s, c suh that s2 + c2 = 1 holds. The alulation of the maximum is elementary,so we only give the �nal result,
M = 1

2
(∣a + c∣ +√∣a − c∣2 + ∣b∣2) . (7.11)Hene we have obtained the produt numerial range (7.5) of F in the ase b).In the ase of general a, b, c ∈C, it does not seem easy to alulate the produtnumerial range of F .For the ases where the alulation of the produt numerial range of Fturned out to be possible, the results obtained an be used to �nd a part of theboundary of the set of entanglement witnesses. Namely, one an onsider the81



minimal λ ∈ R suh that W (λ) = (1 − λ)F + λ1 is positive on produt vetors.From (7.5), it is not di�ult to see that the appropriate λ equals M−1
M+1

, whih wean expliitly alulate under ertain assumptions on a, b and c. With a littlemore e�ort, the above argument also shows how to expliitly �nd the spei�produt vetors v⊗u that satisfy ⟨v ⊗ u,W (λ) (v ⊗ u)⟩ = 0. The set of produtvetors v ⊗ u that satisfy ⟨v ⊗ u,W (v ⊗ u)⟩ = 0 for an entanglement witness Woften turns out to be important when onsidering the optimality of W [28℄.7.2 Higher order numerial ranges and ode ar-riers for the qutrit aseWe already know from the introdution to Chapter 6 that physial proessesin quantum systems are best desribed by ompletely positive maps. Everysuh map, if not simply a unitary transformation, an be understood as somekind of noisy evolution indued upon the system by an environment. Morepreisely, two initially orthogonal pure states of the system are often no longerorthogonal after the evolution, whih is an analogue of a spontaneous bit �ipin lassial omputing. A way to deal with the noise in a lassial setting is byrepresenting the logial 0 and 1 by multiple physial bits, for example 000 and
111, resp. Even if one of those is physially �ipped, there is su�ient informationin the remaining ones to reover the initial value 0 or 1. An idential solutionenounters severe di�ulties in the quantum setting, sine by the no-loningtheorem [135℄, there exists no transformation that ould transform an arbitraryquantum state ρ into ρ⊗ ρ, let alone ρ⊗ ρ⊗ ρ.However, nothing prevents us from enoding, in the qubit ase, an arbitrarypure state a ∣0⟩ + b ∣1⟩ of a qubit as a ∣000⟩ + b ∣111⟩. In this way, a similarresistane to single bit �ips as in the lassial ase is ahieved, sine the setof bit-�ipped states ∣000⟩ is orthogonal to the bit-�ipped ∣111⟩. This is thebasi idea behind quantum error orretion [136, 137℄, but more details needto be aounted for before it really works. For a �xed ompletely positivetransformation Φ, desribing the noise a�eting a quantum system, a generalriterion for quantum error orretion was provided in the paper [132℄ by E.Knill and R. La�amme. Note that by the Choi theorem on ompletely positivemaps [30℄, the map Φ an be written in the form Φ ∶ ρ ↦ ∑iA∗i ρAi for someoperators Ai on the spae in whih ρ lives. The Knill-La�amme riterion nowsays that we an enode a d-dimensional quantum states and send them throughthe �quantum hannel� desribed by Φ if and only if the onditions

PkA
∗

iAjPk = λijPk ∀i,j (7.12)hold for some k-dimensional projetion Pk and a set of numbers λij ∈ C.The equations (7.12) are alled Knill-La�amme equations aordingly. All ofthem are of the form PkMPk = λPk, where M is some matrix and λ a on-stant. This problem is a generalization of the eigenvalue problem and, moregenerally, of the question about the so-alled numerial range of an operator,82



Λ1 (M) ∶= {⟨ψ∣M ∣ψ⟩ψ ∈H}, where ψ runs over all vetors of unit norm in therespetive Hilbert spae H. We already mentioned numerial ranges in Setion7.1. Beause of the form of Knill-La�amme onditions, it is natural to introdueso-alled higher order numerial ranges [138℄ (HONR),
Λk (M) ∶= {λ∣∃Pk

PkMPk = λPk} . (7.13)where Pk is a k-dimensional projetion. It is also important to know the de-sription of the set of all projetions whih give rise to some λ in the aboveformula. We denote the set of suh projetions by Πk (M) and all it a odearrier, beause it relates to the set of all possible error orreting subspaes.
Πk (M) ∶= {Pk ∣∃Pk

PkMPk = λPk} . (7.14)In the following, we are going to show how to �nd Λ2 (M) and Π2 (M) foran arbitrary matrix M of order three. By solving the problem for k = 2, weshall give a full desription of higher order numerial ranges and ode arriersfor 3 × 3 matries. This is so beause the other ases, k = 1,3, are trivial.Let us �rst observe that for a general matrix M , not neessarily of orderthree, the equation PkMPk = λPk is equivalent to
⎧⎪⎪⎨⎪⎪⎩
Pk

M+M
∗

2
Pk = ξPk

Pk
M−M∗

2i
Pk = ζPk

, (7.15)where ζ and ξ are real numbers. In this way, the ompression equation PkMPk =
λPk is transformed into a pair of ompression equations for Hermitian matries
M+M∗

2
and M−M∗

2i
. Thus by solving the ompression equations for a generalHermitian matrix H of respetive dimension and �nding Πk (H) and Λk (H),we may hope to be able to �nd Πk (M) and Λk (M) for a general matrix Mjust by interseting Πk (M+M∗

2
) and Πk (M−M∗

2i
) and reading o� the ζ's and ξ'sorresponding the elements in the intersetion. Note that an almost ompletedesription of ode arriers and numerial ranges for Hermitian matries ofarbitrary dimension was obtained in [138℄. In the present setion, however,we shall give an alternative proof in the ase of dimension 3, whih is mainlyjusti�ed by the fat that we solve algebrai equations.Let us �rst onsider a Hermitian 3×3 matrix H with three distint eigenval-ues λ1 < λ2 < λ3 and the orresponding eigenvetors ∣x1⟩ , ∣x2⟩ , ∣x3⟩. By addinga fator proportional to identity to H , we may assume that all the λi's arenonzero. We know from [138℄ that Λ2 (H) = {λ2}. We shall �nd Π2 (H).Note that the ondition P2HP2 = λ2P2 is equivalent to the existene ofvetors ∣v1⟩ , ∣v2⟩ suh that

⟨vi, vj⟩ = δij and ⟨vi,H (vj)⟩ = λ2δij . (7.16)If we denote with vni the n-th oordinate of vi with respet to the basis (∣x1⟩ , ∣x2⟩),83



onditions (7.16) an be rewritten as
3

∑
k=1

∣vki ∣2 = 1, ∑3
k=1 λk ∣vki ∣2 = λ2, (7.17)

3

∑
k=1

v̄k1v
k
2 = 0, ∑3

k=1 λk v̄
k
1v
k
2 = 0, (7.18)with i = 1,2. By appropriately transforming a solution of (7.17) and (7.18)aording to the following presription: vk1 → vk1e
iφk vk2 → vk2e

iφk , we an getanother solution, where v1 has real numbers as oe�ients. Indeed, the trans-formations of the form given above do not a�et equalities (7.17) and (7.18),and the phases eiphik an be hosen as v̄k1 / ∣vk1 ∣ to make all the oordinates vk1real. Therefore in the following, we assume that all the oordinates of v1 arereal.From equations (7.18) it follows that
(λ1 − λ2)v1i v1j + (λ3 − λ2)v2i v2i = 0, (7.19)where we removed the bars over vk1 using the reality assumption explained above.Equation (7.19) implies the existene of a phase eiψ suh that the numbers eiψv12and eiψv22 are real. Moreover, the �rst equation in (7.18) now implies that also

eiψv2j has to be a real number. We an now transform v2 aording to thefollowing presription v2 → e−iψv2 and obtain another solution to equations(7.17) and (7.18), where both v1 and v2 have real oe�ients. Consequently, itis possible �rst to �nd all real solutions to the following set of equations,
3

∑
k=1

(vki )2 = 1, ∑3
k=1 λk (vki )2 = λ2, (7.20)

3

∑
k=1

vk1v
k
2 = 0, ∑3

k=1 λkv
k
1v
k
2 = 0 (7.21)and later reover all the solutions to (7.17) and (7.18) by transforming thevariables aording to the presription vk1 → eiφkvk1 and vk2 → ei(φk−ψ)vk2 witharbitrary angles φk and ψ. This follows beause the transformations of the typejust desribed do not a�et equations (7.17) and (7.18) and on the other hand,they allow us to bring any solution of (7.17) and (7.18) to a real solution of equa-tions (7.20) and (7.21). Thus, let us look for real solutions of equations (7.20)and (7.21). By multiplying the �rst equation in (7.21) by λ2 and subtratingthe result from the seond equation in the same line, one easily gets

v11v
1
2 =

λ3 − λ2
λ2 − λ1 v

3
i v

3
2 . (7.22)Substitution of this equality bak to the �rst equation in (7.21) yields

v11v
1
2 = −

λ3 − λ2
λ3 − λ1 v

2
1v

2
2 and v31v

3
2 = −

λ2 − λ1
λ3 − λ1 v

2
1v

2
2 . (7.23)84



In a similar fashion, equations (7.20) give us
(v1i )2 = λ3 − λ2λ3 − λ1 (1 − (v2i )2) and (v3i )2 = λ2 − λ1λ3 − λ1 (1 − (v2i )2) . (7.24)If we multiply the �rst equation in (7.24) for i = 1 by the same equation but for

i = 2, we obtain
(v11v12)2 = (λ3 − λ2λ3 − λ1 )

2 (1 − (v21)2)(1 − (v22)2) . (7.25)In a similar way
(v31v32)2 = (λ2 − λ1

λ3 − λ1 )
2 (1 − (v21)2)(1 − (v22)2) . (7.26)On the other hand, we may square the equations in (7.23) to obtain

(v11v12)2 = (λ3 − λ2
λ3 − λ1 )

2 (v21v22)2 and (v31v32)2 = (λ2 − λ1
λ3 − λ1 )

2 (v21v22)2 (7.27)Now we an subtrat the �rst equation in (7.27) from (7.25) and the seondequation in (7.27) from (7.26) to get
(λ3 − λ2
λ3 − λ1 )

2 ((1 − (v21)2)(1 − (v22)2) − (v21v22)2) = 0, (7.28)
(λ2 − λ1
λ3 − λ1 )

2 ((1 − (v21)2)(1 − (v22)2) − (v21v22)2) = 0. (7.29)Aording to our assumption λ1 < λ2 < λ3, the fators λ3−λ2

λ3−λ1

and λ2−λ1

λ3−λ1

arenon-zero. Therefore the equations (7.28) and (7.29) are equivalent to
(1 − (v21)2)(1 − (v22)2) − (v21v22)2 = 1 − (v21)2 − (v22)2 = 0. (7.30)The solution of (7.30) is of the form v21 = cosγ, v22 = sinγ for an arbitrary γ.We an substitute this in (7.24) to obtain a general solution to equations (7.20)and (7.21) in the following form,⎡⎢⎢⎢⎢⎢⎣

v11
v21
v31

⎤
⎥
⎥
⎥
⎥
⎥⎦
=
⎡⎢⎢⎢⎢⎢⎣
s1κ sinγ

s2 cosγ

s3η sinγ

⎤
⎥
⎥
⎥
⎥
⎥⎦
and ⎡⎢⎢⎢⎢⎢⎣ s1sκ cosγ−s2s sinγ

s3sη cosγ

⎤
⎥
⎥
⎥
⎥
⎥⎦
, (7.31)where si = ±1 and s = ±1 are arbitrary and we have introdued the notation

κ ∶=
√

λ3−λ2

λ3−λ1

and η ∶=
√

λ2−λ1

λ3−λ1

. Note that we have used equations (7.24) toestablish sign relations between the oordinates of v1 and v2.Now, if we reall the disussion preeding equations (7.20) and (7.21), wean reover a general solution to (7.16) by introduing omplex phases bak into(7.31) ⎡⎢⎢⎢⎢⎢⎣
v11
v21
v31

⎤
⎥
⎥
⎥
⎥
⎥⎦
=
⎡⎢⎢⎢⎢⎢⎣
eiφ1κ sin γ

eiφ2 cosγ

eiφ3η sinγ

⎤
⎥
⎥
⎥
⎥
⎥⎦
and ⎡⎢⎢⎢⎢⎢⎣ ei(φ1−ψ)κ cosγ

−ei(φ2−ψ) sinγ
ei(φ3−ψ)η cosγ

⎤
⎥
⎥
⎥
⎥
⎥⎦
, (7.32)85



where the phases φi and ψ are arbitrary.Sine we are interested in Π2 (H) rather than the vetors vi, it is su�ientfor us to know that v1 and v2 given in (7.32) span the two-dimensional subspaespan{∣x1⟩ , κeiφ ∣x1⟩ + η ∣x3⟩} . (7.33)with φ arbitrary.In this way we obtain the following desription of Π2.Proposition 7.1. Let H be a Hermitian operator on C3 with eigenvalues λ1 <
λ2 < λ3 and the orresponding eigenvetors ∣x1⟩ , ∣x2⟩ , ∣x3⟩. The rank 2 odearrier of H is given as

Π2 (H) = {P2 ∃φ∈RP2 projets onto span{∣x2⟩ , κeiφ ∣x1⟩ + η ∣x3⟩}} . (7.34)Obviously, two orthogonal projetions are equal i� they projet onto thesame subspae. Furthermore, two linear subspaes are idential if and onlyif all the vetors spanning one of the subspaes are linearly dependent of thevetors spanning the seond subspae. Using Proposition 7.1, we an now �ndthe intersetion of rank 2 ode arriers of two distint Hermitian operators onC3. We haveProposition 7.2. Let H, H ′ be Hermitian operators on C3 with eigenvalues
λ1 < λ2 < λ3, λ′1 < λ′2 < λ′3, respetively. Let the orresponding eigenvetors be
∣x1⟩ , ∣x2⟩ , ∣x3⟩ (∣x′1⟩ , ∣x′2⟩ , ∣x′3⟩). Let κ ∶= √λ3−λ2

λ3−λ1

, η ∶= √λ2−λ1

λ3−λ1

, κ′ ∶=√λ′
3
−λ′

2

λ′
3
−λ′

1

,
η′ ∶=

√
λ′
2
−λ′

1

λ′
3
−λ′

1

. The intersetion Π2 (H) ∩ Π2 (H ′) is nonempty if and only ifthere exist φ,φ′ ∈R suh that the family of vetors
{∣x2⟩ , κeiφ ∣x1⟩ + η ∣x3⟩ , ∣x′2⟩} , (7.35)as well as the family of vetors

{∣x2⟩ , κeiφ ∣x1⟩ + η ∣x3⟩ , κeiφ′ ∣x′1⟩ + η′ ∣x′3⟩} (7.36)are linearly dependent. If this is the ase,
Π2 (H) ∩Π2 (H ′) = {∣x2⟩ ⟨x2∣ + ∣χ⟩ ⟨χ∣ ∣χ⟩ = κeiφ ∣x1⟩ + η ∣x3⟩ , φ ∈ Ξ} (7.37)where Ξ is the set of all φ ∈R suh that there exists ψ for whih the families ofvetors {∣x2⟩ , κeiφ ∣x1⟩ + η ∣x3⟩ , ∣x′2⟩} (7.38)and {∣x2⟩ , κeiφ ∣x1⟩ + η ∣x3⟩ , κeiφ′ ∣x′1⟩ + η′ ∣x′3⟩} (7.39)are both linearly dependent. 86



Proof. Obvious from Proposition 7.1Note that the above results have been derived using the assumption λ1 < λ2 <
λ3 (λ′1 < λ′2 < λ′3) about the eigenvalues of H (H ′, resp.). However, in ase thatthese assumptions do not hold, we an still easily give a desription of Π2 (H)(Π2 (H ′)) and �nd Π2 (H) ∩ Π2 (H ′). First of all, if H or H ′ is proportionalto identity, the orresponding ode arrier equals the set of all two-dimensionalprojetions in C3. It is also easy to prove the following proposition.Proposition 7.3. Let H be a Hermitian operator on C3 with eigenvalues λ1 =
λ2 < λ3 or λ1 < λ2 = λ3. Then Π2 (H) onsists of an orthogonal projetion ontothe eigenspae orresponding to λ2.We leave the proof of the proposition as an exerise for the reader (it isenough to hek what onditions (7.17) imply when exatly two of the eigen-values are equal). We should notie that formulas (7.32) still apply, so we aneasily generalize Proposition 7.2 to a situation where the eigenvalues of H (or
H ′) are not all distint.Proposition 7.4. Let H, H ′ be Hermitian operators on C3 with eigenvalues
λ1 ⩽ λ2 ⩽ λ3, λ′1 ⩽ λ′2 ⩽ λ′3, respetively. Assume that neither H nor H ′ isproportional to identity. Let the orresponding eigenvetors be ∣x1⟩ , ∣x2⟩ , ∣x3⟩(∣x′1⟩ , ∣x′2⟩ , ∣x′3⟩). Let κ ∶= √λ3−λ2

λ3−λ1

, η ∶= √λ2−λ1

λ3−λ1

, κ′ ∶=√λ′
3
−λ′

2

λ′
3
−λ′

1

, η′ ∶=√λ′
2
−λ′

1

λ′
3
−λ′

1

.The intersetion Π2 (H)∩Π2 (H ′) is nonempty if and only if there exist φ,φ′ ∈Rsuh that the family of vetors
{∣x2⟩ , κeiφ ∣x1⟩ + η ∣x3⟩ , ∣x′2⟩} , (7.40)as well as the family of vetors

{∣x2⟩ , κeiφ ∣x1⟩ + η ∣x3⟩ , κeiφ′ ∣x′1⟩ + η′ ∣x′3⟩} (7.41)are linearly dependent. If this is the ase,
Π2 (H) ∩ (H ′) = {∣x2⟩ ⟨x2∣ + ∣χ⟩ ⟨χ∣ ∣χ⟩ = κeiφ ∣x1⟩ + η ∣x3⟩ , φ ∈ Ξ} (7.42)where Ξ is the set of all φ ∈R suh that there exists ψ for whih the families ofvetors {∣x2⟩ , κeiφ ∣x1⟩ + η ∣x3⟩ , ∣x′2⟩} (7.43)and {∣x2⟩ , κeiφ ∣x1⟩ + η ∣x3⟩ , κeiφ′ ∣x′1⟩ + η′ ∣x′3⟩} (7.44)are both linearly dependent.The ase of H or H ′ proportional to identity, whih we exluded in the aboveproposition, an be handled in an obvious way. Thus we have fully haraterizedthe intersetion Π2 (H) ∩ Π2 (X ′) for a pair of Hermitian operators on C3.Following the disussion after equations (7.15), we an now use Proposition 7.4to obtain the numerial rangeΛ2 (M) for an arbitrary (not neessarily Hermitianor normal) matrix of dimension three. Let us disuss this in an example.87



Example 7.5. Consider the Jordan matrix
J =
⎡⎢⎢⎢⎢⎢⎣
0 0 0

1 0 0

0 1 0

⎤
⎥
⎥
⎥
⎥
⎥⎦
. (7.45)The seond order numerial range Λ2 (J) equals {0} and the orrespondingode arrier onsists of a single element, Π2 (J) = {∣1⟩ ⟨1∣ + ∣2⟩ ⟨2∣}, where ∣1⟩ =

1√
2
[1,0,1], ∣2⟩ = 1√

2
[1,0,−1].Proof. We have

J + J∗
2
= 1

2

⎡⎢⎢⎢⎢⎢⎣
0 1 0

1 0 1

0 1 0

⎤
⎥
⎥
⎥
⎥
⎥⎦
=∶H and J − J∗

2i
= 1

2

⎡⎢⎢⎢⎢⎢⎣
0 i 0

−i 0 i

0 −i 0

⎤
⎥
⎥
⎥
⎥
⎥⎦
=∶H ′. (7.46)Let us denote the eigenvalues of H with λ1 ⩽ λ2 ⩽ λ3 and the orrespondingeigenvetors with v1, v2, v3. For H ′, similarly de�ne λ′1 ⩽ λ′2 ⩽ λ′3 and theeigenvetors v′1, v′2, v′3. One an easily hek that

λ1 = λ′1 = −
√
2, λ2 = λ′2 = 0, λ3 = λ′3 =

√
2. (7.47)Thus κ = η = κ′ = η′ = 1/√2. The eigenvetors of H and H ′ are

v1 = 1

2
[1,√2,1] , v2 = 1

2
[−1,0,1] , v3 = 1

2
[1,−√2,1] , (7.48)

v′1 =
1

2
[1,√2i,−1] , v′2 = 1

2
[1,0,1] , v′3 =

1

2
[−1,√2i,1] , (7.49)We an now easily hek that the equations

det

⎡⎢⎢⎢⎢⎢⎢⎣
− 1√

2
0 1√

2
1
2
(eiφ + 1) 1√

2
(eiφ − 1) 1

2
(eiφ + 1)

1√
2

0 1√
2

⎤
⎥
⎥
⎥
⎥
⎥
⎥⎦
= 0, (7.50)

det

⎡⎢⎢⎢⎢⎢⎢⎣
− 1√

2
0 1√

2
1
2
(eiφ + 1) 1√

2
(eiφ − 1) 1

2
(eiφ + 1)

1
2
(eiφ′ − 1) i√

2
(eiφ′ + 1) − 1

2
(eiφ′ − 1)

⎤
⎥
⎥
⎥
⎥
⎥
⎥⎦
= 0. (7.51)have a single solution in [0; 2π) × [0; 2π), whih is (φ,φ′) = (0, π). This orre-sponds to the subspae in the assertion of the theorem.Note that with the methods desribed in this setion, it is possible to �ndsolutions to Knill-La�amme equations or prove their non-existene for all qutritquantum hannels Φ. As proud as it sounds, the solutions will however almostnever exist. It should also be kept in mind that solving the problems for allqutrit hannels simply means �nding all qutrit hannels that allow for enodingof a single qubit. This is quite a simple setup.88



7.3 A separable state of length fourand Shmidt rank threeIn Setion 1.2, we introdued the onept of separability and disussed somefundamental subtleties about the distintion between separable and entangledquantum states. Here, we onsider so-alled length of a separable state, whih isthe minimum number of terms in its separable deomposition. More preisely,we have the following.De�nition 7.6 (Length of a separable state). Let ρ be a separable state on abipartite spae K⊗H. Thus, ρ an be written as
ρ =

l

∑
i=1

ρi ⊗ ξi (7.52)for some l and some positive operators ρi, ξi on K, H, resp. The length of ρis the minimum number l in a deomposition of the form (7.52).A generalization to a multipartite setting is straightforward, but we shallnot disuss on this point here. Given a density matrix ρ on a bipartite spae, itis in general very di�ult to tell whether and how it deomposes into a onvexsum of produts of positive operators. Suessful attempts in this diretion anbe made in the situation desribed in [107℄, but in general, no exat way to�nd an optimal deomposition of the form (7.52) is known. In partiular, it isdi�ult to determine the length l of ρ. On the other hand, it is fairly simple to�nd a minimal deomposition of ρ of the form
ρ =

r

∑
i=1

Fi ⊗Gi, (7.53)where Fi, Gi are Hermitian, but not required to be positive. The minimalnumber r in the deomposition (7.53) will be alled the Shmidt rank of ρ.The name originates from the well-known Shmidt deomposition of vetors,for whih (7.53) is an analogue.Intuitively, the length and the Shmidt rank of ρ do not look entirely inde-pendent. Indeed, in [139℄ we showed that separable states of small lengths ⩽ 3neessarily have their Shmidt rank equal to their length. In the present se-tion, we give an example of a state of Shmidt rank 3 and length 4. This showsthat the mentioned result for lengths ⩽ 3 annot be further generalized. Suhonlusion should be expeted from the beginning, but the onrete example israther illustrative.Example 7.7. Consider the following 4 × 4 diagonal matries
δ1 = diag(1,0,1,0) , δ2 = diag(0,1,0,1) , (7.54)
δ3 = diag(1,1,0,0) , δ4 = diag (0,0,1,1) .89



Let ρ be a density matrix on C4 ⊗C4 of the form
ρ ∶= 1

16

4

∑
i=1

δi ⊗ δi. (7.55)This bipartite state is separable, has length l = 4 and Shmidt rank r = 3.Proof. Obviously, ρ is separable. For further onveniene, let us denote thelength of ρ with l and its Shmidt rank with r. We �rst prove that the Shmidtrank of ρ is 3, whih is equivalent to proving that the Shmidt rank of ρ̃ ∶= 16ρis 3. For that purpose, we observe that the operators δi in (7.54) are linearlydependent. For example, we an write δ4 as a linear ombination of δ1, δ2 and
δ3,

δ4 = δ1 + δ2 − δ3. (7.56)We an put (7.56) in (7.55) and use distributivity of the tensor produt to get
ρ̃ = δ1 ⊗ (2δ1 + δ2 − δ3) + δ2 ⊗ (δ1 + 2δ2 − δ3) + δ3 ⊗ (2δ3 − δ1 − δ2) , (7.57)From (7.57), we de�nitely see that ρ̃ has Shmidt rank lower than four. But thematries 2δ1 + δ2 − δ3, δ1 + 2δ2 − δ3 and δ1 + δ2 − 2δ3 are linearly independent1,just as the matries δ1, δ2 and δ3 are. This implies that the number of produtterms in (7.57) annot be redued any further. Consequently, the Shmidt rankof ρ̃ and hene of ρ is 3, r = 3.Of ourse, the length of ρ is not lower than r, so we have l ⩾ 3. On theother hand, (7.55) is an expression for ρ as a sum of four produts of positiveoperators δi. Therefore l annot be higher than 4 and the only possibilities leftare l = 3 and l = 4. In the following we show that l = 3 is exluded. Put it in adi�erent way, ρ annot be written as

ρ1 ⊗ ξ1 + ρ2 ⊗ ξ2 + ρ3 ⊗ ξ3, (7.58)with ρi and ξi positive for i = 1,2,3. It will be more onvenient to show that ρ̃annot be written in the form (7.58) with all ξi, ρi positive. To prove this, letus assume that a deomposition of ρ of the form (7.58) exists. We should stressthat (7.57) is not an example of suh a deomposition beause 2δ3 − δ1 − δ2 isnot positive. The operators ρi and ξi are Hermitian, so we an write them as
ρi = ∑16

j=1 α
j
iHj and ξi = ∑16

j=1 β
j
iHj , where αji , βji ∈R∀i,j , and {Hj}16j=1 is a basisof the R-linear spae of Hermitian operators on C4 suh that

H1 = diag (1,0,0,0) , H2 = diag (0,1,0,0) , (7.59)
H3 = diag (0,0,1,0) , H4 = diag(0,0,0,1) .and Hj 's for j ⩾ 5 have only o�-diagonal elements nonzero. Beause of theform (7.54) of the operators δi, ρ̃ does not have any o�-diagonal elements and1the matrix ⎡⎢⎢⎢

⎢
⎢
⎣

2 1 −1

1 2 −1

1 1 −2

⎤
⎥
⎥
⎥
⎥
⎥
⎦

has a nonzero determinant90



the deomposition of ρ̃ in the basis {Hk ⊗Hl}16k,l=1 of all Hermitian operatorson C4 ⊗ C4 does not inlude any terms with k ⩾ 5 nor with l ⩾ 5. If thereare any terms inluding Hk with k ⩾ 5 in ρi or ξi, they must eventually anelout in the tensor produt (7.58). Therefore we may use ρ̃i ∶= ∑4
j=1 α

j
iHj and

ξ̃i ∶= ∑4
j=1 β

j
iHj instead of ρi and ξi. The relation (7.58) still holds when ρi isreplaed with ρ̃i and ξi with ξ̃i. Positivity of ρ̃i and ξ̃i follows from the fat thatthey are diagonal parts of positive operators. We see that ∑4

i=1 ρ̃i ⊗ ξ̃i equals
ρ̃, and it is also a sum of produts of positive operators. Consequently, if thereexists a deomposition of ρ̃ of the form (7.58) with ρi and ξi positive, anotherdeomposition with diagonal and positive ρi and ξi must also exist. Thereforewe an restrit our disussion to deompositions of the form

ρ̃ =
3

∑
i=1

4

∑
j,k=1

α
j
iHj ⊗ βki Hk =

3

∑
i=1

4

∑
j,k=1

α
j
iβ
k
jHj ⊗Hk, (7.60)with αjj ⩾ 0 and βki ⩾ 0. Based on the de�nition (7.55), it an be easily hekedthat

ρ̃ =
4

∑
j,k=1

AjkHj ⊗Hk, (7.61)with A11 = A22 = A33 = A44 = 2, A14 = A41 = A23 = A32 = 0 and Aij = 1 forthe remaining eight oe�ient pairs (i, j). In order for equation (7.60) to beful�lled, we must have
4

∑
i=1

α
j
iβ
k
i = Ajk ∀j,k∈{1,2,3,4}. (7.62)To see the onsequenes of (7.62), let us introdue vetors αj ∈R3 and βk ∈R3with oordinates {αji}3i=1 and {βki }3i=1, respetively. The onditions (7.62) anbe written as

α1 ⋅ β1 = α2 ⋅ β2 = α3 ⋅ β3 = α4 ⋅ β4 = 2, (7.63)
α1 ⋅ β4 = α4 ⋅ β1 = α2 ⋅ β3 = α3 ⋅ β2 = 0, (7.64)
α1 ⋅ β2 = α1 ⋅ β3 = α4 ⋅ β2 = α4 ⋅ β3 = 1, (7.65)
α2 ⋅ β1 = α2 ⋅ β4 = α3 ⋅ β1 = α3 ⋅ β4 = 1. (7.66)Keeping in mind nonnegativity of αji 's and βki 's, we an draw some furtheronlusions about these numbers. First of all, we should notie that two realvetors with nonnegative oordinates are orthogonal if and only if a nonvanishingoordinate of one of the vetors orresponds to a vanishing oordinate of theother vetor and vie versa. As a onsequene of this and (7.64), eah of thevetors αi and βi must have a vanishing oordinate. On the other hand, beauseof the formula (7.63) neither of the vetors an be zero. In other words, eah ofthem must have a nonvanishing oordinate. We are left with αi's and βj 's whihhave either one or two nonzero oordinates. Let us onsider �rst a situation in91



whih one of the vetors has two nonzero oordinates. Without any loss ofgenerality we assume the vetor to be α1 and we put α1
1 = 0, α1

2 > 0, α1
3 > 0.Beause of (7.64), β4

1 > 0, β4
2 = 0, β4

3 = 0. This in turn implies α2
1 > 0, α3

1 > 0 and
α4
1 > 0 as a onsequene of (7.63), (7.65) and (7.66). Therefore β3

1 = 0, β2
1 = 0and β1

1 = 0. If α2
2 = α2

3 = 0, the equality α2 ⋅ β1 = 1 annot hold. One of theoordinates α2
2, α2

3 must be nonzero. We may assume α2
3 > 0, so that we have

α2
1 > 0, α2

2 = 0, α2
3 > 0. From (7.64) it follows that β3

1 = 0, β3
2 > 0, β3

3 = 0. Using(7.63) we get α3
2 > 0 while (7.65) yields α4

2 > 0. We have obtained α3
1 > 0 and

α3
2 > 0, whih implies α3

3 = 0. But now (7.64) gives us β2
1 = 0, β2

2 = 0, β2
3 > 0 andfrom α4 ⋅ β2 = 1 we get α4

3 > 0.In the suessive steps above we obtained α4
1 > 0, α4

2 > 0 and �nally theinequality α4
3 > 0. This is in ontradition with (7.64), so our initial assumptionabout the existene of a vetor αi (or βi) with two nonzero oordinates, annotbe true for solutions of the equations (7.63)-(7.66). None of the vetors αi, βi anhave two nonvanishing oordinates. The only possibility we have not exludedyet is that of all the vetors αi, βi having preisely one nonzero oordinate eah.Let us assume that this is the ase and onentrate on αi's. Beause of the fatthat αi's are of dimension three, there must exist a pair of indies i ≠ j suhthat αi is proportional to αj . Without loss of generality we may assume thateither α1 = α2 or α1 = α4 holds. The �rst possibility is exluded beause ofthe equalities α1 ⋅ β4 = 0 and α2 ⋅ β4 = 1. The seond is in ontradition with

α1 ⋅β4 = 0 and α1 ⋅α1 = 2. Thus we have exluded the only remaining possibilityfor αi's and we onlude that (7.62) has no solutions of the desired properties
α
j
i , β

k
i ⩾ 0∀i,j,k. Consequently, ρ̃ annot be written in the form (7.58) with ρi'sand ξi's positive. The same holds for ρ. Hene l > 3, whih in turn implies l = 4beause l ⩽ 4. This proves our assertions about ρ.
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Chapter 8Algebrai problems solved byusing Groebner bases8.1 Compression equations � a speial aseIn Setion 7.2, we de�ned the notion of a ode arrier of an operator and outlinedhow it is related to the problem of �nding solutions of generalized eigenvalueproblems. Notably, the paper [138℄ ontains an almost omplete desriptionof ode arriers for Hermitian operators. Therefore, following similar steps tothose desribed in Setion 7.2, one may attempt to �nd a general solution toa ompression equation PkMPk = λPk by �rst splitting M into its Hermitian
MH ∶= (M +M∗) /2 and anti-Hermitian part MA ∶= (M −M∗) /2i and solvingthe respetive ompression equations

⎧⎪⎪⎨⎪⎪⎩
PkMHPk = ξMH

PkMAPk = ζMA

(8.1)separately. Next, the sets of possible projetors Πk (MA) and Πk (MH) maybe interseted to yield Πk (M). For a more detailed desription of the methodand for the de�nition of Πk, f. Setion 7.2. Finally, if we start with a systemof equations of the form PkM
(i)Pk = λiPk for i = 1,2, . . . instead of a singleone, we may �rst determine Πk (M (i)) following the steps desribed above andthen �nd the solutions to the initial set of equations by interseting Π (M (i))for i = 1,2, . . . .The desribed proedure turns out to be rather di�ult to implement inpratie. However, in the present setion we present a very simpli�ed examplewhere the method works. Let k = 2. Let us also take H1 and H2 to be twoHermitian operators on C4. We assume that H1 and H2 ommute, so thatthey have a ommon eigenbasis {v1, v2, v3, v4}. Moreover, let the respetiveeigenvalues for H1 ful�ll λ1 < λ2 < λ3 < λ4, while for H2 we have χ1 < χ2 < χ3 <

χ4. In suh ase, it is relatively easy to �nd all possible solutions of the set of93



equations
P2H1P2 = ξP2 ∧ P2H2P2 = ζP2. (8.2)This an be done using the tehnique of Groebner bases disussed in Part II ofthe thesis.In the setting desribed above, the general haraterization of ode arriersinluded in [138, Setion 4℄ redues to

Π (H1) = {span{ v1√
λ − λ1

+ eiφ ( av3√
λ3 − λ

− b̄v4√
λ4 − λ

) , v2√
λ − λ2

+

+eiφ ( bv3√
λ3 − λ

+ āv4√
λ4 − λ

)} λ ∈ (λ2, λ3) , φ ∈R, ∣a∣2 + ∣b∣2 = 1} . (8.3)Similarly for H2,
Π (H2) = {span{ v1√

χ − χ1

+ eiψ ( cv3√
χ3 − χ − d̄v4√

χ4 − χ) , v2√
χ − χ2

+

+eiψ ( dv3√
χ3 − χ + c̄v4√

χ4 − χ)}χ ∈ (χ2, χ3) , ψ ∈ R, ∣c∣2 + ∣d∣2 = 1} . (8.4)The question whether there exists a P2 that satis�es the set of equations (8.2) isequivalent to the existene of an idential pair of subspaes in the sets Π2 (H1)and Π2 (H2), given by the equations (8.3) and (8.4). Fortunately, the existenean easily be heked. Due to the spei� form of the subspaes in formulas(8.3) and (8.4), the intersetion of Π2 (H1) and Π2 (H2) is nonempty if andonly if the following equations are satis�ed for some admissible values of a, b, c,
d, φ, ψ, λ and χ.

eiφa

√
λ − λ1
λ3 − λ = e

iψc

√
χ − χ1

χ3 − χ, eiφb̄

√
λ − λ1
λ4 − λ = e

iψ d̄

√
χ − χ1

χ4 − χ, (8.5)
eiφb

√
λ − λ2
λ3 − λ = e

iψd

√
χ − χ2

χ3 − χ, eiφā

√
λ − λ2
λ4 − λ = e

iψ c̄

√
χ − χ2

χ4 − χ. (8.6)The formulas above imply a weaker set of equations
∣a∣2 λ − λ1

λ3 − λ = ∣c∣2 χ − χ1

χ3 − χ, ∣b∣2 λ − λ1
λ4 − λ = ∣d∣2 χ − χ1

χ4 − χ, (8.7)
∣b∣2 λ − λ2

λ3 − λ = ∣d∣2 χ − χ2

χ3 − χ, ∣a∣2 λ − λ2
λ4 − λ = ∣c∣2 χ − χ2

χ4 − χ. (8.8)whih an be rewritten in the form
αh3l1 = γh1l3, βh4l1 = δh1l4, βh3l2 = δh2l3, αh4l2 = γh2l4. (8.9)In the above expression, we the following notation was used: α ∶= ∣a∣2, β ∶= ∣b∣2,

γ = ∣c∣2, δ = ∣d∣2, l1 ∶= λ − λ1, l2 ∶= λ − λ2, l3 ∶= λ3 − λ, l4 ∶= λ4 − λ. The newly94



introdued variables α, β, γ, δ and li, hi for i = 1,2,3,4 must be nonnegativeand ful�ll the additional onditions
α + β = 1, γ + δ = 1, (8.10)

l1 − l2 = λ2 − λ1, l2 + l3 = λ3 − λ2, l3 − l4 = λ3 − λ4, (8.11)
h1 − h2 = χ2 − χ1, h2 + h3 = χ3 − χ2, h3 − h4 = χ3 − χ4. (8.12)The approah we take in the following is to solve (8.9) together with (8.10)�(8.12) as if α, β, γ, δ and li, hi for i = 1,2,3,4 were allowed to take arbitraryvalues in C. Next, we look for real, nonnegative solutions. Note that the equal-ities (8.9), as well as (8.10)�(8.12), an be rewritten as polynomial equationsin the variables α, β, γ, δ and li, hi. Therefore, for �xed values of λi and χi,

i = 1,2,3,4, we an try to solve the equations (8.9), (8.10)�(8.12) using theGroebner basis approah desribed in Chapter 4. As an example, let us on-sider λ1 = 1, λ2 = 2, λ3 = 3, λ4 = 4 and χ1 = 1, χ2 = 4, χ3 = 9, χ4 = 16. Then, aGroebner basis alulation in C [l1, . . . , l4, h1, . . . , h4, α, β, γ, δ] for the equations(8.9) and (8.10)�(8.12) gives the following result,
{2560δ − 5184δ2 + 112δ3 + 1704δ4 − 224δ5 − 102δ6 + 9δ7,−1 + γ + δ,

940800β − 11503040δ + 2125136δ2 + 3603128δ3 − 630848δ4 − 223842δ5 + 20691δ6,

−940800+940800α+11503040δ−2125136δ2−3603128δ3+630848δ4+223842δ5+
− 20691δ6,−302400+ 236720δ + 108512δ2 − 45044δ3 − 16046δ4 + 141δ5 + 117δ6+
+ 33600h4,−67200+ 236720δ + 108512δ2 − 45044δ3 − 16046δ4 + 141δ5 + 117δ6+
+ 33600h3,−100800− 236720δ − 108512δ2 + 45044δ3 + 16046δ4 − 141δ5 − 117δ6+
+ 33600h2,−201600− 236720δ − 108512δ2 + 45044δ3 + 16046δ4 − 141δ5 − 117δ6+
+33600h1,−4032000−7312320δ+3861328δ2+2882424δ3−887584δ4−221586δ5+
+22563δ6+2688000l4,−1344000−7312320δ+3861328δ2+2882424δ3−887584δ4+
−221586δ5+22563δ6+2688000l3,−1344000+7312320δ−3861328δ2−2882424δ3+

+ 887584δ4 + 221586δ5 − 22563δ6 + 2688000l2,−4032000+ 7312320δ+
−3861328δ2 − 2882424δ3 + 887584δ4 + 221586δ5 − 22563δ6 + 2688000l1} .(8.13)Aording to what we learned in Chapter 4, we get a set of equations equiva-lent to (8.9) and (8.10)�(8.12) by equating the above polynomials to zero. Asexpeted, the �rst polynomial in (8.13) only involves the variable δ. Moreover,its seven roots an be expliitly found. They are equal to −4, −2, 0, 2, 8/3,

1/3 (19 −√301), 1/3 (19 +√301). The struture of the remaining equations re-sulting from the Groebner basis (8.13) is suh that after we �nd δ, the admissiblevalues of the other variables an be determined by simple substitution. In thisway we get the following solutions (l1, . . . , l4, h1, . . . , h4, α, β, γ, δ)1) (3,2,−1,0,15,12,−7,0,−0.714286,1.71429,−1,2),95



2) (2,1,0,1,8,5,0,7,2.14286,−1.14286,3,−2),3) (1.5,0.5,0.5,1.5,6,3,2,9,1,0,1,0),4) (1,0,1,2,3,0,5,12,3,−2,5,−4),5) (0,−1,2,3,0,−3,8,15,−1,2,−1.66667,2.66667),6) (2.31747,1.31747,−0.317468,0.682532,1.91266,−1.08734,6.08734,
13.0873,0.478479,0.521521,−11.1165,12.1165),7) (0.582532,−0.417468,1.41747,2.41747,10.5873,7.58734,−2.58734,
4.41266,−4.47848,5.47848,0.449784,0.550216).The numerial values for the solutions were alulated using exat algebraiexpressions. As we an see, only solution number 3 has all its oordinatesnonnegative. Thus, if there exists a solution to equations (8.5) and (8.6), therespetive values of a, b, c, d, λ and χ must be suh that ∣a∣2 = α = 1, ∣b∣2 = β = 0,∣c∣2 = γ = 1, ∣d∣2 = δ = 0, as well as λ−λ1 = λ− 1 = l1 = 3/2, χ−χ1 = χ− 1 = h1 = 6.Hene λ = 5/2, χ = 7. The formulas (8.5) and (8.6) take the form

eiφeiµ

¿ÁÁÀ3/2
1/2 = eiψeiν

√
6

2
, eiφe−iµ

¿ÁÁÀ1/2
3/2 = eiψe−iν

√
3

9
, (8.14)where we introdued eiµ ∶= a and eiν ∶= c. There are only two equations left,sine the seond one in (8.5) and the �rst one in (8.6) are trivially ful�lled for

b = d = 0. Clearly, the equalities in (8.14) are equivalent to ei(φ+µ−ψ−ν) = 1and ei(φ−µ−ψ+ν) = 1, or φ + µ − ψ − ν = 0 mod 2π and φ − µ − ψ + ν = 0 mod 2π,respetively. From the last two formulas, we get φ − ψ = 0 mod 2π and µ − ν =
0 mod 2π, whih means that φ = ψ + nπ and µ = ν +mπ for some m,n ∈ Z.Moreover, φ+µ−ψ−ν = 0 mod 2π implies that m = n mod 2. In onlusion, thefull set of solutions are parametrized by the two angles ψ and ν. The solutionsare of the formspan⎧⎪⎪⎨⎪⎪⎩√2

3
v1 + ei(ψ+ν)

√
2v3,
√
2v2 + ei(ψ−ν)

√
2

3
v3

⎫⎪⎪⎬⎪⎪⎭ (8.15)The orresponding ompression value ξ for H1 is 5/2, while for H2, we get ζ = 7.Further investigation of equations (8.5) and (8.6) in Mathematia suggests thatfor any hoie of the eigenvalues of H1 and H2, suh that λ1 < λ2 < λ3 < λ4 and
χ1 < χ2 < χ3 < χ4, there exists a single family of solutions to equations (8.5) and(8.6), either with a = c = 0 or with b = d = 0. By hoosing the eigenvalues fromthe set of rational numbers, we seem always to obtain polynomial equations thatare exatly solvable. 96



8.2 Completely Entangled SubspaesLinear subspaes without a produt vetor are alled Completely EntangledSubspaes or CES for short. In the present setion, we shall disuss the ques-tion how to hek whether a given subspae is a CES or not. In partiular,we shall give an example of a one-parameter family of subspaes of C3 ⊗ C4and haraterize the values of the parameter for whih the subspae and itsorthogonal omplement are ompletely entangled.Let us start with the general question about the existene of a produt ve-tor in a linear subspae. Both the set of produt states and a linear subspaeare projetive varieties and it should be possible to determine their interse-tion using the tehniques desribed above. An approah we suessfully usedwas very straightforward. The general algorithm we applied is shown in Figure8.1. The main idea is to write a set of polynomial equations, orrespondingto [a1, . . . an] ⊗ [b1, . . . , bm] ∈ V for a subspae V and then generate the or-responding Groebner basis. The answer an often be read from the output.Aording to Proposition 4.32, a neessary and su�ient ondition for a set ofpolynomial equations to have a solution (over Cn) is that the orrespondingredued Groebner basis be di�erent from {1}.symbols1={a1,a2,...,an}symbols2={b1,b2,...,bm}symbols12=Union(symbols1,symbols2)produtvetor=KronekerProdut(symbols1,symbols2)subspae={{v11,v12,...,v1nm},{v21,v22,...,v2nm},......,{vd1,vd2,...,vdnm}}positivematrix=Transpose(subspae).subspaeDiagonalize positivematrixChoose eigenvetors=={{w11,w12,...,w1nm},{w21,w22,...,w2nm},...,{w(mn-d)1,w(mn-d)2,...,w(mn-d)nm}}orresponding to eigenvalue 0Calulate polynomialequations=eigenvetors.produtvetorFor i=1 to n doFor j=1 to m doCalulate GroebnerBasis[{polynomialequations,ai-1,bj-1}℄Figure 8.1: An algorithm for testing whether a given linear subspae admitsprodut vetors in the bipartite ase.As a areful reader would notie, more than a single Groebner basis is atu-ally alulated, and eah of them has some additional polynomials. This is so be-ause they are di�erent dehomogenizations of the set of equations wi ⋅(a⊗ b) = 0,
i = 1, . . . , nm−d, whih orresponds to a⊗b ∈ V . We dehomogenize the equationsin order to eliminate trivial solutions, orresponding to a zero �produt� vetor.97



Moreover, after dehomogenization produt vetors that are a multiple of eahother appear as a single solution, whih is a desirable feature. For example, ifwe dehomogenize by adding the polynomials a1 − 1 and b1 − 1, we apture allprodut vetors a ⊗ b with the �rst oordinate in a and b nonvanishing. Themethod an be generalized in an obvious way to the multipartite ase.In the sequel, we give details of the proedure for the partiular ase ofprodut vetors in a family V (z) of six-dimensional subspaes of C3 ⊗C4. Inthis ase, we an avoid onsidering 3 × 4 = 12 di�erent dehomogenizations andwe get away with only four, three of whih are di�erent from those we wouldnormally have used with the algorithm in Figure 8.1. The elements of the family
V (z) we onsider are subspaes spanned by the vetors
{v1 (z) , . . . , v6 (z)} =

= {e1 ⊗ e1 + e2 ⊗ e2, e2 ⊗ e1 + ze3 ⊗ e2, e3 ⊗ e1 + z2e1 ⊗ e3
e1 ⊗ e2 + z3e3 ⊗ e4, e2 ⊗ e3 + z4e1 ⊗ e4, e3 ⊗ e3 + z5e2 ⊗ e4} , (8.16)where z ∈ C ∖ {0}. As it an be easily heked, the orthogonal omplement

V (z)� is spanned by the vetors
{w1 (z) , . . . ,w6 (z)} =

= {e1 ⊗ e1 − e2 ⊗ e2, z̄e2 ⊗ e1 − e3 ⊗ e2, z̄2e3 ⊗ e1 − e1 ⊗ e3
z̄3e1 ⊗ e2 − e3 ⊗ e4, z̄4e2 ⊗ e3 − e1 ⊗ e4, z̄5e3 ⊗ e3 − e2 ⊗ e4} . (8.17)Consider produt vetors of the form p = [a1, a2, a3] ⊗ [b1, b2, b3, b4]. The on-dition p ∈ V (z) is equivalent to p ⋅ wi = 0 ∀i=1,...,6, whih is a set of ho-mogeneous polynomial equations. We would like to �nd their solutions with[a1, a2, a3] ≠ [0,0,0] and [b1, b2, b3, b4] ≠ [0,0,0,0]. A possible way to ahievethis goal is to: i) add the polynomials a1−1 and b1−1 or equivalently, to substi-tute a1 → 1, b1 → 1. This gives us a dehomogenized set of polynomial equations,whih apture all the nontrivial solutions of p ⋅wi = 0 ∀i=1,...,6, apart from thosewith a1 = 0 or b1 = 0. In order to aount for the possible de�it, one needs toonsider other dehomogenizations. One way to do it is to proeed as in Figure8.1 and dehomogenize in 12 di�erent ways. However, in the ase we onsiderit is easier to do the following substitutions: ii) a1 → 0 and b1 → 1, iii) a1 → 1and b1 → 0 and iv) a1 → 0, b1 → 0. Equivalently, one adds ii) a1 and b1 − 1, iii)

a1 − 1 and b1, iv) a1 and b1 to the ideal generated by the equations p ⋅wi = 0 for
i = 1, . . . ,6. The set of polynomials p ⋅wi reads
{b1a1 − b2a2,−b2a3 + b1a2z̄,−a1b3 + b1a3z̄2,−a3b4 + a1b2z̄3,

−a1b4 + a2b3z̄4,−a2b4 + b3a3z̄5,−1 + b1,−1 + a1} . (8.18)After dehomogenization i) and alulation of the orresponding Groebner basis98



in the ring C [a1, . . . , an, b1, . . . , bm, z̄], we get
{−z̄3 + z̄5,−b4 + b4z̄2, b24 − z̄3,−b3 + b3z̄2, b33 − z̄4,−b3b4 + b2z̄3,

− b3 + b2b4, b2b3 − b23b4z̄,−1 + b1,−b3 + a3z̄2,−b3b4 + a3b4,
− b23 + b3a3, b22a3 − z̄,−b23z̄ + a23z̄, a33 − z̄4,−b2a3 + a2z̄,

a2b4 − b23z̄, a2b3 − b4,−1 + b2a2,−1 + a1} . (8.19)We learly see that after a substitution of a partiular value of z, the �rstelement of the basis is a nonzero onstant in C unless the substituted valueis a solution of the equation −z3 + z5 = 0. This implies that 1 is in the idealgenerated by {p ⋅w1, . . . p ⋅w6, a1 − 1, b1 − 1} unless z = 0 or z = ±1. This impliesthat there is no solution to the orresponding equations for almost all hoies of
z. Equivalently, there is no produt vetor a⊗b with the �rst oordinate of a and
b nonvanishing in V (z) unless z = 0 or z = ±1. Obviously, there exist produtvetors in V (z) when z = 0, beause the vetors vi (0) are of a produt form.Thus we have already exluded z = 0 in the de�nition of V (z) given above. For
z = 1, we get the following Groebner basis in the ring C [a1, . . . , an, b1, . . . , bm]

{−1 + b24,−1 + b33, b2 − b3b4,−1 + b1,−b3 + a3, a2 − b23b4,−1 + a1} . (8.20)It is easy to see that the above equations have six solutions, orresponding tothe hoies of b4 = ±1 and b3 = e 2πi
3
n, n = 1,2,3. Thus there are six produtvetors a⊗ b with nonvanishing �rst oordinates of a and b in V (z). Similarlyfor z = −1, we get the following Groebner basis

{1 + b24,−1 + b33, b2 + b3b4,−1 + b1,−b3 + a3, a2 − b23b4,−1 + a1} . (8.21)Again, there are six produt vetors a⊗ b with nonvanishing �rst oordinates of
a and b in V (−1).We still need to onsider the dehomogenizations ii)-iv) for a general V (z).In the ase ii), we get the following Groebner basis

{−1 + b1, a3z̄2, a3b4, b22a3, b1a23z̄,−b2a3 + a2z̄, a2b4, b2a2, a1} . (8.22)A solution for z ≠ 0must neessarily have a3 = 0, whih implies that −b2a3+a2z̄ =
a2z. Therefore also a2 = 0. Thus V (z) admits no produt vetor a ⊗ b withnonvanishing �rst oordinate in b and vanishing �rst oordinate in a. In thease iii), we get the following Groebner basis in C [a1, . . . , an, b1, . . . , bm, z̄]

{b4, b3, b2z̄3, b1, b2a3, b2a2,−1 + a1} . (8.23)One immediately sees that for z ≠ 0, the above polynomials vanish only if
b1 = b2 = b3 = b4 = 0, whih again gives a zero produt vetor. Therefore, thereare no produt vetors a⊗b with vanishing �rst oordinate of b and nonvanishing�rst oordinate of a in V (z) for z ≠ 0. We only need to onsider the last ase,number iv), when the �rst oordinates of both a and b vanish. The orrespondingGroebner basis reads

{b1, a3b4, b23a3z̄9, b2a3, b3a23z̄5, a2b4 − b3a3z̄5, a2b3z̄4, b2a2, a1} . (8.24)99



If a3 ≠ 0, we see from the �rst four polynomials that b1 = b2 = b3 = b4 = 0.Therefore we must have a3 = 0 in order to obtain a nonzero vetor a⊗b. However,a substitution of a3 = 0 to (8.24) yields {b1, a2b4, a2b3z4, b2a2, a1}. We see thatthese polynomials vanish simultaneously only if a2 = 0 or b1 = b2 = b3 = b4 = 0.In either ase, a⊗ b vanishes. Thus, there are no nonzero produt vetors a⊗ bwith vanishing �rst oordinates of a and b in V (z) for z ≠ 0.We an summarize our results by saying that V (z) is a CES for all z /∈{−1,0,1}. We an also easily repeat the above desribed proedure for thesubspae V (z)� and obtain an analogous result. In this ase (V (z)�)� = V (z),so the r�le of the vetors wi (z) is played by the vetors vi (z). Otherwise, thealulation is almost the same. We obtain the following four Groebner Bases.
i) {−z3 + z5,−b4 + b4z2, b24 − z3,−b3 + b3z2, b33 − z4, (8.25)

−b3b4 + b2z3,−b3 + b2b4, b2b3 − b23b4z,−1 + b1,−b3 + a3z2, (8.26)
−b3b4 + a3b4,−b23 + b3a3, b22a3 − z,−b23z + a23z, a33 − z4, (8.27)
−b2a3 + a2z, a2b4 − b23z, a2b3 − b4,−1 + b2a2,−1 + a1} , (8.28)

ii) {−1 + b1, a3z2, a3b4, b22a3, b2a23z,−b2a3 + a2z, a2b4, b2a2, a1} , (8.29)
iii) {b4, b3, b2z3, b1, b2a3, b2a2,−1 + a1} , (8.30)
iv) {b1, a3b4, b23a3z9, b2a3, b3a23z5, a2b4 − b3a3z5, a2b3z4, b2a2, a1} . (8.31)with the notation i)-iv) referring to dehomogenizations of types i)-iv), as de-sribed above. An argument very similar to the one given above shows thatthere are no produt vetors in V (z)�, as long as z /∈ {−1,0,1}. The ase z = 0is exluded by assumption, whereas for z = ±1 it an again be heked that thereare six produt vetors in the subspae in question, whih this time is V (z)�.The results of the present setion an be summarized by saying that, on-erning the 3× 4 CES problem onsidered above, the family of subspaes V (z),

z ∈ C ∖ {0}, spanned by the vetors (8.16), onsists of CES, with the ex-eption of z ∈ {−1,1}. Moreover, the orthogonal omplement V (z)� is alsoompletely entangled for z /∈ {−1,1}.8.3 Maximally entangled states in linear subspaesIn the previous setion, we disussed the existene of produt vetors in linearsubspaes. It is natural to ask somewhat opposite question, under whih on-ditions a linear subspae admits maximally entangled vetors, i.e. vetors ofthe form ∑ni=1 ei⊗ fi, where the summation goes from 1 to the dimension of thesubsystems and {ei}ni=1 and {fi}ni=1 are orthonormal bases for the �rst and theseond subsystem, respetively. By solving two examples, we will show that theproblem an be takled using the tehniques of Groebner bases.Let us start with a subspae orthogonal to an Unextendible Produt Basis inC3 ⊗C3, i.e. to a set of orthogonal produt vetors suh that no other produtvetor in C3 ⊗C3 is orthogonal to all of them. We shall disuss Unextendible100



Produt Bases in more detail in Chapter 9 and here we restrit our attention tothe question whether there exist maximally entangled vetors in the orthogonalomplement of a partiular UPB, given by
{v0 ⊗ v2, v1 ⊗ v0, v2 ⊗ v3, v3 ⊗ v1, v4 ⊗ v4} , (8.32)where

v0 =
⎡⎢⎢⎢⎢⎢⎣
1

0

0

⎤
⎥
⎥
⎥
⎥
⎥⎦
, v1 =

⎡⎢⎢⎢⎢⎢⎣
1√
2

0
1√
2

⎤
⎥
⎥
⎥
⎥
⎥⎦
, v2 =

⎡⎢⎢⎢⎢⎢⎣
0
1√
2
1√
2

⎤
⎥
⎥
⎥
⎥
⎥⎦
, v3 =

⎡⎢⎢⎢⎢⎢⎣
0

1

0

⎤
⎥
⎥
⎥
⎥
⎥⎦
, v4 =

⎡⎢⎢⎢⎢⎢⎢⎣
1√
3
1√
3

− 1√
3

⎤
⎥
⎥
⎥
⎥
⎥
⎥⎦
. (8.33)It will be lear from the following disussion that the methods we use an beapplied in a muh more general setting.One an easily see that a vetor ∑i,j Aijei ⊗ ej ∈ C3 ⊗ C3 is maximallyentangled if and only if the matrix A = [Aij] is unitary. This yields a set ofpolynomial equations ∑3

j=1AijĀkj = δik on the matrix elements Aij and theiromplex onjugates Āij . Another set of equations omes from the orthogonalityonditions to the UPB given in (8.32) and (8.33). The equations are linear andan be solved expliitly, whih we leave as a simple exerise to the reader. Theanswer is
[Aij] =

⎡⎢⎢⎢⎢⎢⎣
a b −b
d e −d
−a −e −2(a + b + d + e)

⎤
⎥
⎥
⎥
⎥
⎥⎦
, (8.34)where a, b, d, e are arbitrary omplex parameters. The onditions ∑3

j=1AijĀkj =
δik for i = k imply

aā + 2bb̄ − 2dd̄ − eē = 0, (8.35)
2dd̄ + eē − aā − eē − 2 (a + b + d + e) (a + b + d + e) = 0. (8.36)For i < k, we have the following equations ∑3

j=1AijĀkj = 0,
ad̄ + b(e + d) = 0, (8.37)

aā + bē − 2b(a + b + d + e) = 0, (8.38)
dā + eē − 2d(a + b + d + e) = 0. (8.39)The ruial observation now is that the omplex onjugates of (8.37)-(8.38)onsist an independent set of equations if a, b, d, e and ā, b̄, d̄, ē are pereived as

8 independent omplex variables. This is the approah we are going to take inthe following. The omplex onjugates of (8.37)-(8.38) read
ād + b̄(e + d) = 0, (8.40)

āa + b̄e − 2b̄(a + b + d + e) = 0, (8.41)
d̄a + ēe − 2d̄(a + b + d + e) = 0. (8.42)101



A Groebner basis alulation in C [a, ā, b, b̄, d, d̄, e, ē] for the nine polynomials in(8.35)-(8.42) yields the following basis
{eē3, e2ē2, e3ē, d̄eē2, d̄e2ē, d̄e3, d̄2eē, d̄2e2, d̄3e, dē3, deē2, de2ē,

dd̄ē2, dd̄eē, dd̄e2, dd̄2ē, dd̄2e, dd̄3, d2ē2, d2eē, d2d̄ē, d2d̄e, d2d̄2, d3ē, d3d̄, b̄eē2, b̄e2ē,

b̄e3,−2dd̄2 + 5b̄d̄e − 4dd̄ē − 2b̄eē + 3d̄eē, b̄d + 2dd̄ − b̄e + 2dē − eē, b̄2eē, b̄2e2, b̄3e,
394dd̄2 − 270b̄2e − 80d̄2e − 172dd̄ē − 531b̄eē + 324d̄eē + 90bē2 − 120dē2 + 320eē2,

be2ē, bd̄ + 2dd̄ + 2d̄e − bē − eē,−2d2d̄ − 4dd̄e + 5bdē − 2beē + 3deē,

− 256dd̄2 + 270b̄2e + 20d̄2e + 180bb̄ē + 88dd̄ē + 459b̄eē − 441d̄eē + 120dē2−
260eē2,46d2d̄ + 60bb̄e − 28dd̄e + 30b̄e2 − 20d2ē − 24beē − 39deē + 20e2ē,

180bb̄2 + 464dd̄2 + 90b̄2e + 20d̄2e + 448dd̄ē − 171b̄eē − 81d̄eē + 120dē2 − 80eē2,

− 394d2d̄ + 172dd̄e − 90b̄e2 + 120d̄e2 + 270b2ē + 80d2ē + 531beē− 324deē− 320e2ē,

540b2b̄ + 1786d2d̄ + 1172dd̄e + 90b̄e2 + 240d̄e2 − 20d2ē − 1044beē+ 81deē + 80e2ē,

96dd̄2 − 90b̄2e − 20d̄2e − 48dd̄ē + 20āeē − 149b̄eē + 161d̄eē − 40dē2 + 100eē2,

718d2d̄ + 716dd̄e + 120āe2 + 330b̄e2 + 360d̄e2 − 260d2ē − 612beē− 387deē+ 410e2ē,

108dd̄2 − 90b̄2e + 40ād̄e + 20d̄2e − 64dd̄ē − 157b̄eē + 163d̄eē − 40dē2 + 80eē2,

ād − 2dd̄ + 2b̄e − 2dē + eē,−16dd̄2 + 4āb̄e + 26b̄2e + 4d̄2e + 16dd̄ē+
45b̄eē − 37d̄eē + 8dē2 − 20eē2,2āb + 4bb̄ − 6dd̄ − 4d̄e + 3bē + eē,

− 247dd̄2 + 20ā2e + 190b̄2e + 20d̄2e + 86dd̄ē + 333b̄eē − 357d̄eē + 80dē2 − 215eē2,

− 22bb̄+ 36dd̄+ 4āe− 6b̄e+ 12d̄e+ 4aē− 6bē+ 12dē+ 5eē, ad̄− 2dd̄− 2d̄e+ 2bē+ eē,
2ab̄ + 4bb̄ − 6dd̄ + 3b̄e − 4dē + eē, aā + 2bb̄ − 2dd̄ − eē} . (8.43)Although the above formulas look very ompliated, some of the polynomialsin the ideal generated by (8.35)-(8.42) are of a very simple form. In partiular,we obtain the orresponding equations eē = 0 and d3d̄ = 0 whih learly imply

e = 0 and d = 0 if we reall the interpretation of ē and d̄ as omplex onjugatesof e and d, resp. A substitution of {e → 0, ē→ 0, d→ 0, d̄ → 0} in (8.43) yields
{180bb̄2,540b2b̄,2āb + 4bb̄,−22bb̄,2ab̄ + 4bb̄, aā + 2bb̄} , (8.44)where we removed all the zero polynomials. Again, beause of the appearaneof the polynomial 180bb̄2, a solution must have b = 0 and b̄ = 0. When this issubstituted to (8.44), we obtain a single nonzero polynomial aā, whih in turnapplies a = 0. In summary, the only solution to the initial set of equationssatisfying the onstraint that a, b, d, e and ā, b̄, d̄, ē are omplex onjugate is thezero matrix. Sine it is learly not unitary, we onlude that there exist nounitary matries of the form (8.34). This is equivalent to say that there are nomaximally entangled states in the orthogonal omplement of the UPB givenby the formulas (8.32) and (8.33).The example disussed above, although rather elegant mathematially, mayseem unsatisfatory from the point of view of quantum information siene.102



A natural question to ask is whether there exist Unextendible Produt Basesin the 3 × 3 ase whih admit a maximally entangled vetor in their orthogonalomplement. It turns out that the method presented above is powerful enough togive a a�rmative answer to the question.Consider the following one-parameterfamily of Unextendible Produt Bases in C3 ⊗C3.
[ φ1 φ2 φ3 φ4 φ5
ψ1 ψ2 ψ3 ψ4 ψ5

] =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 z 1 0

0 1 0 1 1

0 0 1 −z̄ 1

0 1 1 1 0

1 0 0 1 1

1 1 0 −1 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥⎦
, (8.45)where z ∈C ∖ {0} is arbitrary and we used the notation φ

ψ
for a produt vetor

φ⊗ ψ, whih is pratial here. Note that the vetors are not normalized.Our aim in the following is to deide whether the orthogonal omplement tothe UPB in (8.45) ontains a maximally entangled state for some z ∈ C∖ {0} ornot. Orthogonality onditions to the subspae spanned by φ1 ⊗ ψ1, . . . , φ5 ⊗ ψ5are a set of linear equations and an be solved expliitly. The result is
[Aij] =

⎡⎢⎢⎢⎢⎢⎣
a b −b
d e −d
−az −ez − b

z̄
− d
z̄
− a+b+d+e+azz̄+ezz̄

z̄

⎤
⎥
⎥
⎥
⎥
⎥⎦
, (8.46)where Aij denote the oordinates of a vetor ∑i,j Aijei ⊗ ej ∈C3 ⊗C3.Taking the onjugate transpose of (8.46) and multiplying by the matrix(8.46) itself, we get the onditions for [Aij] to be unitary, or ∑i,j Aijei ⊗ ej tobe maximally entangled, in the form

dd̄ + a(ā + āzz̄) = 1,
d̄e + ā(b + ezz̄) = 0,

−dd̄ + a(ā + āzz̄) + ā(b + 2d + e + ezz̄) = 0,
dē + a(b̄ + ēzz̄) = 0,
bb̄ + eē(1 + zz̄) = 1

−b(b̄ − 2ē) + ē(a + d + e + azz̄ + ezz̄) = 0,
−dd̄ + a(ā + b̄ + 2d̄ + ē + āzz̄ + ēzz̄) = 0,
−bb̄ + e(ā + 2b̄ + d̄ + ē + āzz̄ + ēzz̄) = 0,

bb̄ + dd̄ + (a + 2b + 2d + e + azz̄ + ezz̄)(ā + 2b̄ + 2d̄ + ē + āzz̄ + ēzz̄)
zz̄

= 1.The last expression is not a polynomial in a, ā, b, b̄, d, d̄, e, ē, z, z̄, but an be easilytransformed to
bb̄zz̄ + dd̄zz̄ + (a + 2b + 2d + e + azz̄ + ezz̄)(ā + 2b̄ + 2d̄ + ē + āzz̄ + ēzz̄) = zz̄,if we remember that by assumption z ≠ 0. Thus we get a set of nine polynomialequations in the variables a, ā, b, b̄, d, d̄, e, ē, z, z̄, equivalent to the ondition that103



∑i,j Aijei ⊗ ej be maximally entangled. Next, we alulate the orrespondingGroebner basis in C [a, ā, b, b̄, d, d̄, e, ē, z, z̄], where we take a, ā, b, b̄, d, d̄, e, ē, z, z̄as a set of independent variables. In other words, we forget that numbers like
a and ā are onjugate, and try to impose this ondition only after a alulationof the Groebner basis. The basis reads
{−12x − 5x2 + 2x3,−27 + 27eē − 12x + 18eēx + 4x2,

− 14580− 5832eē+ 729e2ē2 + 13122e3ē3 + 6561e4ē4 − 11688x+ 3872x2,

7776d̄+ 8424ē− 405eē2 − 4374e2ē3 − 3645e3ē4 + 3792ēx − 496ēx2,

7776d+ 8424e− 405e2ē − 4374e3ē2 − 3645e4ē3 + 3792ex− 496ex2,

3888b̄− 3078ē− 567eē2 + 2187e2ē3 + 1458e3ē4 + 978ēx + 436ēx2,

3888b− 3078e− 567e2ē + 2187e3ē2 + 1458e4ē3 + 978ex+ 436ex2,

1296ā+ 4536ē− 1053eē2 − 1458e2ē3 − 729e3ē4 + 1968ēx − 848ēx2,

1296a + 4536e− 1053e2ē − 1458e3ē2 − 729e4ē3 + 1968ex− 848ex2} , (8.47)where we introdued the notation x ∶= zz̄. From the �rst polynomial we see thata solution an exist only if x ∈ {− 3
2
,0,4}. But x = − 3

2
is impossible aording toour de�nition of x, and x = 0 is exluded by the assumption z ≠ 0. Thereforemaximally entangled vetors in the orthogonal omplement to the UPB in (8.45)an exist only if x = ∣z∣2 = 4, thus if ∣z∣ = 2. If we substitute x = 4 in (8.47) andalulate the Groebner basis of the resulting polynomials inC [a, ā, b, b̄, d, d̄, e, ē],we get {−1 + 9eē, d̄ + 2ē, d + 2e, b̄ + 2ē, b + 2e, ā − ē, a − e}. (8.48)Clearly, all the polynomials an be made zero by hoosing e = e

iφ

3
, d = −2e,

b = −2e and a = e. Therefore there exist a single, up to an overall phase fator,maximally entangled state in the orthogonal omplement of the UPB in (8.45).It has the following oordinate matrix
[Aij] = 1

3

⎡⎢⎢⎢⎢⎢⎣
1 −2 2

−2 1 2

−2 −2 −1

⎤
⎥
⎥
⎥
⎥
⎥⎦
. (8.49)In summary, we have shown that the UBP given in equation (8.45) does notadmit a maximally entangled vetor in its omplement, with the only exep-tion of ∣z∣ = 2. When ∣z∣ = 2, there is a maximally entangled vetor in theorthogonal omplement of the UPB (8.45), whih has a oordinate matrix ofthe form (8.49).8.4 Mutually Unbiased BasesAs we already explained in Setion 2.1, a generalization of quantum ryptogra-phy protools suh as BB84 to multidimensional quantum systems [68℄ relies on104



the notion of mutually unbiased bases, MUBs for short. Two orthonormal bases{ψi}di=1, {φj}dj=1 of Cd are said to be (mutually) unbiased if and only if
∣⟨ψi, φj⟩∣2 = 1

d
(8.50)holds for all i, j ∈ {1,2, . . . , d}. The importane of the above relation for quantumstate determination has been �rst pointed out by Ivanovi¢ [140℄, who also provedthe existene of d+1 mutually unbiased bases in Cd when d is a prime number.Later, Wootters and Fields [69℄ showed that there are at most d + 1 mutuallyunbiased bases in Cd and gave examples of full sets of MUBs when d is aprime power. Moreover, they demonstrated that quantum state determinationusing a full set of MUBs is optimal in the sense of giving minimum statistialerrors. A broader view of the known onstrutions of MUBs was then providedin [141℄, where the authors related MUBs to lasses of pairwise orthogonal andommuting unitary matries. The main e�orts in the �eld onentrated onproving or disproving the existene of maximal sets of MUBs in non-primepower dimensions [142�147℄, whih still remains an open problem. However, onthe basis of the extensive searhes presented in [147℄, the existene of four, letalone seven, MUBs in C6 is almost ertainly exluded.In the present setion, we brie�y desribe how the authors of [147℄ used thetehnique of Groebner bases to provide a large number of examples where aset of two MUBs in C6 annot be extended to a set of four. We �rst needto introdue the notion of omplex Hadamard matries (f. e.g. [148℄). Suhmatries are by de�nition unitaries H with the property that ∣Hij ∣ = 1/√d for allmatrix elements Hij of H . It is easy to notie that for any Hadamard matrix H ,the anonial basis {e1, . . . , ed} and the olumns of H , {H1, . . . ,Hd}, onstitutea pair of MUBs. Any other basis mutually unbiased with respet to these two,must also onsist of olumns of some omplex Hadamard matrix. Now, thestrategy applied in [147℄ was the following:1) Selet a known Hadamard matrix H in Cd, the vast majority of whih anbe found in the online atalogue [149℄,2) Parametrize a general, up to a phase, vetor in Cd mutually unbiased withrespet to {e1, . . . , ed}, as

v = 1√
d
[ 1 x1 + iy1 x2 + iy2 ⋯ xd−1 + iyd−1 ]T , (8.51)with T denoting matrix transposition, xi, yi ∈R and x2i + y2i = 1,3) Multiply v from the left by H∗ and equate the squared moduluses of theoordinates of the resulting vetor to 1/d. This gives a set of polynomialequations in xi and yi, equivalent to the unbiasedness ondition

∣⟨Hk, v⟩∣2 = 1

d
(8.52)for k = 1,2, . . . , d, 105



4) Solve the resulting equations, together with x2i + y2i = 1, i = 1,2, . . . , d− 1, for
xi, yi ∈ R. In this way, the set of all vetors in Cd unbiased with respet to{e1, . . . , ed} and {H1, . . . ,Hd} is obtained,5) Chek whether it is possible to arrange the resulting vetors in d-tuplesthat onsist MUBs, and how many suh MUBs an be obtained altogether,inluding {e1, . . . , ed} and {H1, . . . ,Hd}.The authors of [147℄ worked mainly with the ase d = 6, but the above stepsan be followed also when the MUB problem in dimension di�erent from 6 isonsidered. For purely expository purposes, in order not to resort to numerialsolutions neessary in C6, we shall now explain how the above method yields aomplete set of MUBs in C3, whih is well-known to exist [140℄. This is in on-trast with the main �ndings of [147℄ in dimension 6, where the authors onludethat for no single one of the nearly 6000 Hadamard matries H they studied,there exists more than three mutually unbiased bases inluding {e1, . . . , e6} and{H1, . . . ,H6}.Up to some simple invarianes (for more details, f. e.g. [148℄), there onlyexists one Hadamard matrix when d = 3, whih is the Fourier matrix

F3 = 1√
3

⎡⎢⎢⎢⎢⎢⎣
1 1 1

1 ω ω2

1 ω2 ω

⎤
⎥
⎥
⎥
⎥
⎥⎦
, (8.53)where ω = e2πi/3. The orresponding unbiasedness onditions ∣⟨F j3 , v⟩∣2 = 1/3read

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

−2 + 2x1 + x21 + 2x2 + 2x1x2 + x22 + y21 + 2y1y2 + y22 = 0,
−2 − x1 + x21 − x2 − x1x2 + x22 +

√
3y1 −

√
3x2y1 + y21+

−√3y2 +√3x1y2 − y1y2 + y22 = 0,
−2 − x1 + x21 − x2 − x1x2 + x22 −

√
3y1 +

√
3x2y1 + y21+

+√3y2 −√3x1y2 − y1y2 + y22 = 0.
(8.54)If we take into aount the relations x21 + y21 = 1 and x22 + y22 = 1, the aboveequations take the form

⎧⎪⎪⎪⎨⎪⎪⎪⎩
x1 + x2 + x1x2 + y1y2 = 0,

x1 + x2 + x1x2 + y1y2 −
√
3 (y1 − x2y1 − y2 + x1y2) = 0,

x1 + x2 + x1x2 + y1y2 +
√
3 (y1 − x2y1 − y2 + x1y2) = 0. (8.55)whih are learly equivalent to the following system of equations

{ x1 + x2 + x1x2 + y1y2 = 0,
y1 − x2y1 − y2 + x1y2 = 0. (8.56)Taking the above equalities together with x21 +y21 = 1 and x22 +y22 = 1, we get the106



following set of polynomial equations⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
x21 + y21 = 0,
x22 + y22 = 0,

x1 + x2 + x1x2 + y1y2 = 0,
y1 − x2y1 − y2 + x1y2 = 0.

(8.57)As we know from Chapter 4, a possible approah to solving equations like (8.57)is by the alulation of the orresponding Groebner basis, preferably with re-spet to the lexiographi order. The result is
{−3y2 + 4y32 ,−1 + x2 + 2y22 ,−3 + 4y21 − 4y1y2 + 4y22,1 + 2x1 + 4y1y2 − 4y22} .(8.58)By equating the above polynomials to zero, we get a system of equations equiv-alent to (8.57), whih an be readily solved by bakward substitution. Theorresponding solutions (x1, y1, x2, y2) are the elements of the following set
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√
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√
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√
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)} . (8.59)Hene, we get six vetors in total that are unbiased with respet to {e1, e2, e3}and {F 1

3 , F
2
3 , F

3
3 }. Expliitly, we have the following vetors

v1 = 1√
3

⎡⎢⎢⎢⎢⎢⎣
1

ω2

1

⎤
⎥
⎥
⎥
⎥
⎥⎦
, v2 = 1√

3

⎡⎢⎢⎢⎢⎢⎣
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ω

1
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⎥
⎥
⎥
⎥
⎥⎦
, v3 = 1√

3

⎡⎢⎢⎢⎢⎢⎣
1

1

ω2

⎤
⎥
⎥
⎥
⎥
⎥⎦
, (8.60)

v4 = 1√
3
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⎥
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, v5 = 1√
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ω
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⎥
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, v6 = 1√
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⎡⎢⎢⎢⎢⎢⎣
1

ω

ω

⎤
⎥
⎥
⎥
⎥
⎥⎦
. (8.61)By examining the inner produts ⟨vi, vj⟩ for i, j ∈ {1, . . . ,6}, we get to theonlusion that {v1, v3, v6} and {v2, v4, v5} are two orthonormal bases, mutuallyunbiased with respet to eah other. Consequently, all the four bases {e1, e2, e3},{F 1

3 , F
2
3 , F

3
3 }, {v1, v3, v6} and {v2, v4, v5} together onstitute a full set of MUBsin C3.The authors of [147℄ followed the same path of reasoning as in the exampledesribed above, however they worked with d = 6 and needed to resort to nu-merial methods in order to obtain the solutions of the respetive polynomialequations. In their ase, it turned out not to be possible to �nd four mutu-ally unbiased bases, starting from {e1, . . . , e6} and {H1, . . . ,H6} for any 6 × 6Hadamard matrix H they examined.8.5 Symmetri Informationally Complete vetorsWhen disussing the appliations of polynomial equations in quantum infor-mation siene, it seems impossible to neglet the prominent role they play in107



the researh on so-alled Symmetri Informationally Complete Positive Oper-ator Valued Measures, or SIC-POVMs for short. A SIC-POVM in Cd is byde�nition a set of normalized vetors {ψi}d2i=1 with the property
∣⟨ψi, ψj⟩∣2 = 1

d + 1
(8.62)for all i, j ∈ {1, . . . , d}, i ≠ j. The �rst generally reognized work on SIC POVMs,although it uses a di�erent name for the same objet, is by Zauner [150℄, whofamously states a (stronger) version of the following onjetureConjeture 1 (Zauner). For every dimension d ⩾ 2 there exists a SIC-POVMwhose elements are the orbit of a vetor ψ0 under the Heisenberg group, whihonsists of elements ωaXbZc, where a, b, c ∈ {0,1, . . . , d − 1}, ω = e2πi/d and

X =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 ⋯ 0 1

1 0 ⋯ 0 0

0 1 ⋯ 0 0

⋮ ⋮ ⋱ ⋮ ⋮
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⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥⎦
, Z =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 ⋯ 0 0

0 ω ⋯ 0 0

⋮ ⋮ ⋱ ⋮ ⋮

0 0 ⋯ ωd−1 0

0 0 ⋯ 0 ωd

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥⎦

(8.63)
The term SIC-POVM was oined by the authors of [151℄, and SIC-POVMsbeame popular as a onsequene of the usefulness for quantum state tomog-raphy [152℄ and the rih mathematial struture they have [153�155℄. In thefollowing, we outline how they relate to polynomial equations and we solve avery simpli�ed example where it is possible to �nd expliit algebrai expressionsfor vetors onstituting a SIC-POVM. Note, however, that the example we solveis only a subase of the general solution for d = 3, provided in [151℄.An approah to searhing SIC-POVM vetors suessfully applied in paperslike [142℄ and [156℄ starts from writing (8.62) as a set of polynomial equations forthe real and imaginary parts of the oe�ients of the vetors ψi. Suh equationsmay ontain a reasonably small number of variables only if the vetors ψi are notassumed to be independent. The standard way to follow onsists in assumingthat the requested SIC-POVM satis�es the Zauner onjeture, therefore all the

ψi, i = 1,2, . . . , d, are determined by a single vetor ψ0, alled the �duial. Inthis way, the number of real variables in the polynomial equations is reduedto 2d − 1, where the fator −1 omes from the fat that we an take the �rstoe�ient of ψ0 to be real without a�eting the whole SIC-POVM onstrutionas desribed by Conjeture 1. Further simpli�ations also follow from the fullstatement of the Zauner onjeture, whih involves elements of the Cli�ordgroup, f. e.g. [153℄.In the following, we show how to �nd an exemplary SIC-POVM in dimension
3 by solving a set of polynomial equations, based on the ideas skethed above.Sine a general form of SIC-POVMs in C3 is known [151℄, our disussion shouldbe pereived as a purely expository one, aimed at giving a rough piture of whathappens in real siene appliations. 108



In our very simpli�ed example, we are looking for 9 normalized vetors{ψ1, . . . , ψ9} ⊂ C3 that would satisfy ∣⟨ψi, ψj⟩∣2 = 1/4 for all i ≠ j. As ex-plained above, the related polynomial equations beome muh easier to takle ifa form of Conjeture 1 is assumed to hold. Hene, instead of looking for generalsets of nine vetors ψi ∈ C3, we assume that {ψ1, . . . , ψ9} is equal to the set{XnZmψ0 m,n ∈ {0,1,2}}, where ψ0 = [ a x + iy z + it ]T is a normalized�duial vetor in C3, a,x, y, z, t ∈R, and
X =

⎡⎢⎢⎢⎢⎢⎣
0 0 1

1 0 0

0 1 0

⎤
⎥
⎥
⎥
⎥
⎥⎦
, Z =

⎡⎢⎢⎢⎢⎢⎣
1 0 0

0 − 1−
√
3i

2
0

0 0 − 1+
√
3i

2

⎤
⎥
⎥
⎥
⎥
⎥⎦
. (8.64)Under the above assumption, the equations ∣⟨ψi, ψj⟩∣2 = 1/4 beome equivalentto ∣⟨ψ0,X

nZmψ0⟩∣2 = 1/4 for all suh that n ≠ 0 or m ≠ 0. The latter implyanother set of equalities, ∣⟨ψ0,X
nZmψ0⟩∣2 = ∣⟨ψ0,X

n′Zm
′

ψ0⟩∣2, where n ≠ 0 or
m ≠ 0 and n′ ≠ 0 or m′ ≠ 0. In our ase, the last set of equations take the expliitform

(tx+a(−t+y)−yz)2− 3

4
(t2−x2
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2)2− 1

4
(−2a2+t2+x2

+y
2
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2)2+(ty+xz+a(x+z))2=0,
3(t2−x2
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−(−t(x+√3y)+(−√3x+y)z+a(t+2y+√3z))2)=0,
2
√
3a(−t2y+yz(−2x+z)+t(x2

−y2−2xz)+a(tx+yz))=0,
(tx+√3ty+a(2t−√3x+y)+√3xz−yz)2+
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+y2+z2)2=0,
3(t2−x2

−y2+z2)2+(−2a2+t2+x2
+y2+z2)2−(t(√3x+y)+(x−√3y)z+a(√3t−2x+z))2

−(−tx+√3ty+
√
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−2
√
3a(−t2y+yz(−2x+z)+t(x2

−y2−2xz)+a(tx+yz))=0.In order to �nd exemplary SIC-POVMs in C3, we add the normalization on-dition a2 + x2 + y2 + z2 + t2 = 1 for ψ0 to the above equations, and then we trythe substitution a →√2/3. Note that the value √2/3 has not been seleted atrandom, and the spei� hoie of a makes the subsequent alulations ratherstraightforward. However, any other number of modulus < 1 an be tried aswell, and would typially lead to a few �duial vetors or to the onlusion thatno suitable �duials exist. For a not an algebrai number, numerial methodswould be required to �nd the solutions or to show they are non-existent.One we substituted √2/3 for a, we are left with a set of seven polyno-mial equations for x, y, z, t, some of whih are redundant. Calulation of theorresponding Groebner basis with respet to the lexiographi order gives the109
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{t2 − 24t4 + 192t6 − 512t8,3√2t2 − 32√2t4 + 64√2t6 − 8√3t2z + 64√3t4z,
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√
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√
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√
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√
2y2z − 1728

√
2t2y2z} . (8.65)By equating the above polynomials to 0, we get a system of equations that anreadily be solved by bakward substitution, provided that one an �nd solutionsto the equation t2−24t4+192t6−512t8 = 0. Fortunately, this problem an easilybe solved expliitly, as t2 − 24t4 + 192t6 − 512t8 = −t2(8t2 − 1)3. Thus, we have

t = 0, t = −1/2√2 and t = 1/2√2 as the possible values for the t oordinate. Sub-stitution of any of these values to (8.65) gives us a set of polynomials in x, y, z ofmaximum degree 2, whose ommon zeros are easy to �nd. Altogether, there arenine solutions (x, y, z, t) to the equations ∣⟨ψ0,X
nZmψ0⟩∣2 = ∣⟨ψ0,X

n
′

Zm
′

ψ0⟩∣2and ∣ψ0∣2 = 1, orresponding to nine �duials. We give a list in Table 8.1. Notethat a vetor ψ0 is a �duial if and only if ψ∗0 also has this property. This is ageneral fat, whih an be on�rmed with Table 8.1. Thus we have ompletedthe task of �nding a set of three-dimensional SIC-POVM vetors with help ofthe Groebner basis method. 110



Chapter 9A struture theorem for PPTbound entangled states oflowest rankThe aim of the present setion is to present the main result of the thesis, onern-ing positive-partial-transpose non-separable states of rank 4 in 3×3 systems. Asindiated in [157℄, they all seem to be possible to loally transform to projetionsonto the orthogonal omplement to a subspae spanned by an orthogonal Unex-tendible Produt Basis [106℄. Thus, there is strong numerial evidene that theyare all loally equivalent to bound entangled states of the form disussed in [106℄.In the following, we analytially prove that this is atually the ase. Note thataording to the results of [107℄, four is the minimal rank for an entangled PPTstate. Therefore it is orret to say that our theorem onerns non-separablePPT states of lowest rank. Very shortly after our paper [114℄ was available as apreprint on arXiv, Chen and �okovi¢ [158℄ presented an alternative proof of thetheorem. The researh reported here was onduted independently of [158℄, andthe author had no prior knowledge about the manusript by the other authors.An important related work by Chen and �okovi¢ is also [159℄.Before we start with the proof, it will be useful to introdue the onept ofgeneral Unextendible Produt Bases, disussed in more detail elsewhere [114℄.9.1 General Unextendible Produt BasesThe most ommon de�nition of an Unextendible Produt Basis (UPB), in a-ordane with [106℄, has already been phrased in Setion 3.2. Here, we startwith a de�nition of a general UPB.De�nition 9.1. Take n,m ∈N. By a general Unextendible Produt Basis,or a gUPB for short, we mean a set {φi ⊗ψi}ki=1 of produt vetors in Cn⊗Cm,111



0 < k < mn, suh that there is no produt vetor in span{φi ⊗ ψi}ki=1�, theorthogonal omplement to the linear span of {φi ⊗ψi}ki=1.In other words, a gUPB is a set of produt vetors {φi ⊗ψi}ki=1 suh thatthere is no produt vetor orthogonal to all of them. Note that we do not requirethe vetors to be linearly independent, and this hoie is somewhat arbitrary.Yet another way of phrasing the above de�nition is that the orthogonal om-plement to a gUPB is a Completely Entangled Subspae [160,161℄, or CES forshort, f. Setion 8.2.Remark 9.2. The de�nition of a gUPB an be trivially extended to a multi-partite setting.We know that gUPBs do exist. Any UPB onsisting of orthogonal vetors isan example (onrete UPBs an be found e.g. in [162℄). We also know that forsome spaes, no UPB onsisting of orthogonal vetors an exist. For example, ithas been notied as early as in [106℄ that 2×n systems do not admit an orthogonalUPB, and a more general disussion of existene questions for orthogonal UPBshas been inluded in [163℄. In the following, we show that gUPBs are muhmore ommon than the usual UPBs, and give a haraterization of gUPBs ofminimal number of elements.First, let us answer a question about the minimum number of elements in agUPB in Cn ⊗Cm.Proposition 9.3. A set of vetors {φi ⊗ ψi}ki=1 ⊂ Cn ⊗Cm onsisting of k <
m + n − 1 elements is not a generalized UPB.Proof. There exists a vetor f ∈ Cn orthogonal to all the vetors φi with i =

1, . . . , n − 1. Moreover, there exists a g ∈ Cm orthogonal to the vetors ψj with
j = n, . . . , k (beause k − n < m). The produt vetor f ⊗ g is orthogonal to all
φi ⊗ ψi for i = 1, . . . , k.Proposition 9.4. A set of vetors {φi ⊗ψi}m+n−1i=1 ⊂ Cn ⊗ Cm is a gUPB ifand only if any n-tuple of vetors in {φi}m+n−1i=1 onsists of linearly independentvetors, the same as any m-tuple of vetors in {ψj}m+n−1j=1 .Proof. In order to prove neessity, assume that an n-tuple of vetors {φil}nl=1is linearly dependent. Therefore there exists a vetor f ∈ Cn orthogonal to allof them. Vetors of the form f ⊗ g ∈ Cn ⊗Cm with an arbitrary g ∈ Cm areorthogonal to all the vetors {φil ⊗ ψil}nl=1 ⊂ Cn ⊗ Cm. Obviously, g an behosen in suh a way that f ⊗ g is orthogonal to the remaining m − 1 elementsof Cm (beause m−1 <m = dimCm). For a su�ieny proof, assume that f ⊗gis orthogonal to φi ⊗ψi for i = 1, . . . ,m +n − 1. The vetor f an be orthogonalto at most n − 1 of φi's, whereas g annot be orthogonal to more than m − 1

ψi's (remember the linear independene of n-tuples and m-tuples, respetively).This gives a maximum of (n − 1)+(m − 1) vetors in {φi ⊗ψi}m+n−1i=1 orthogonalto f ⊗ g. Therefore f ⊗ g annot be orthogonal to all the φi ⊗ ψi's, the set{φi ⊗ψi}m+n−1i=1 is a gUPB. 112



It is natural to ask for a generalization of Proposition 9.4 for sets of produtvetors onsisting of more than m + n − 1 elements. We have the followingProposition 9.5. A set of vetors {φi ⊗ψi}Ni=1 ⊂ Cn ⊗Cm with N ⩾m + n − 1is a gUBP if and only if for any N ,M⊂N suh that N ∩M = ∅ and N ∪M ={1,2, . . . ,N}, at least one of the sets of vetors {φi}i∈N and {ψj}j∈M spans theentire orresponding vetor spae (Cn or Cm, resp.).Proof. Let us �rst prove neessity. Assume that the vetors {φi ⊗ ψi}Ni=1 onsti-tute a gUPB and hoose some N ,M⊂N as in the statement of the proposition.If neither of the sets {φi}i∈N and {ψj}j∈M spans the respetive vetor spae,there exist f ∈ Cn and g ∈ Cm suh that ⟨f,φi⟩ = 0 and ⟨g,ψj⟩ = 0 for all
i ∈ N and j ∈ M. Beause of the ondition N ∪M = {1,2, . . . ,N}, we learlyhave ⟨f ⊗ g,φi ⊗ψi⟩ = 0 for i = 1,2, . . . ,N . This ontradits the fat that thevetors φi ⊗ ψi onstitute a gUPB. In order to show su�ieny, assume that
f ⊗ g ∈ Cn ⊗Cm is suh that ⟨f ⊗ g,φi ⊗ ψi⟩ = 0 for all i = 1,2, . . . ,N . De�nethe set of indies Nf ∶= {i ⟨f,φi⟩ = 0} and Mg ∶= {j ⟨g,ψj⟩ = 0}. Clearly, wemust have Nf ∪Mg = {1,2, . . . ,N}. Thus it is possible to hoose N ⊂ Nf and
M⊂Mg suh that N ∪M = {1,2, . . . ,N} and N ∩M = ∅. By the very de�ni-tion of Nf andMg, we have ⟨f,φi⟩ = 0 for all i ∈ N and ⟨g,ψj⟩ for j ∈ M. Butaording to the assumptions of the theorem, this is only possible if f or g isequal to zero. Thus {φi ⊗ ψi}Ni=1 is a gUPB.Certain haraterizations of gUPBs were earlier obtained in [164℄, but theabove results, rather surprisingly, seem to appear for the �rst time in our work[114℄. They an also easily be generalized to a multipartite setting.Proposition 9.6. A set of vetors {φ1i ⊗ φ2i ⊗ . . .⊗ φli}Ni=1 ⊂Cn1⊗Cn2⊗. . .⊗Cnlwith N ⩾ ∑li=1 ni+ l−1 is a gUBP if and only if for any N1, . . . ,Nl ⊂N suh that
Ni ∩Nj = ∅ for all i ≠ j and ⋃li=1Ni = {1,2, . . . ,N}, at least one of the sets ofvetors {φij}j∈Ni

, i = 1,2, . . . , l, spans the entire orresponding vetor spae Cni .Proof. Follows the same lines as the proof of Proposition 9.5 and will be omittedhere.9.2 The onept of loal equivaleneBefore we present the proof of the main result of the thesis (Theorem 9.27), wealso need to introdue the onept of loal equivalene. Numerous questions ofphysial or mathematial origin need the proper identi�ation of a symmetrygroup relevant to the problem in order to simplify the solution, or even to �ndit at all. The same is the ase for the result we are going to obtain below. ForPPT states, a natural group of symmetries should be of a produt form, ρ ↦(A⊗B)∗ ρ (A⊗B), beause all suh transformations preserve the property ofbeing PPT. In physial terms, they preserve the splitting of a omposite systeminto subsystems, whih is a highly desirable property. The remaining question113



is, what group should A and B belong to. When the amount of entanglementbetween the two subsystems is in question, a natural hoie is A and B in theUnitary or Speial Unitary group. Suh transformations annot hange anymeasure of entanglement. However, if the aim is to lassify PPT states withrespet to the property of being extreme, being an edge state [165℄, or thenumber and dimensionalities spanned by the produt vetors in their kernelsor ranges, A and B should most naturally belong to the General Linear orSpeial Linear group. There is no essential di�erene between the two latterhoies. Sine we are not interested in positive saling fators in front of thestates, we hoose to work with the Speial Linear group. This was also theapproah so suessfully used by the authors of [17,157,166℄. We should remarkthat, while a PPT state is transformed aording to ρ↦ (A⊗B)∗ ρ (A⊗B), theprodut vetors in its kernel and its range undergo the following transformation,
φ ⊗ ψ ↦ (A−1 ⊗B−1)φ ⊗ ψ. Conversely, a transformation φ ⊗ ψ ↦ (A⊗B)φ ⊗
ψ fores a hange of ρ into (A−1 ⊗B−1)∗ ρ (A−1 ⊗B−1). It is these kind oftransformations we will have in mind when we talk about �loal equivalene�,�loal SL equivalene� or �SL (3,C) ⊗ SL (3,C) equivalene� in the followingsetions.Any similar terms, even not listed here, will also refer to preisely the samesituation. Nevertheless, when produt vetors in the kernel of a PPT state ρ arein question, it is more onvenient to look at them as rays, points in the proje-tive spae. In suh ase, it is also more aurate to refer to the projetivisationof the group SL (3,C)⊗SL (3,C), namely to PSL (3,C)×PSL (3,C), with PSLreferring to the Projetive Speial Linear group. In simple words, we may mul-tiply vetors {φ1 ⊗ ψ1, φ2 ⊗ψ2, . . .} ⊂ Kerρ by arbitrary individual fators, andthey will remain elements of the kernel of ρ. We may also transform them bya SL (3,C)⊗ SL (3,C) transformation. All in all, we have a group of transfor-mations that is most properly desribed as PSL (3,C) × PSL (3,C). Note thatthe use of this term is motivated mainly by the possibility to avoid exessiveomments about onstant fators in front of the produt vetors in Kerρ. Weare legitimate to use the previously introdued name �loal equivalene� also forthe PSL (3,C)×PSL (3,C) transformations we just desribed beause onstantmultipliative fators in front of vetors in Kerρ are ompletely irrelevant to ρitself.The ultimate reason for using equivalenes of the form desribed above willbe the simpliity of our main result, a haraterization theorem that we are goingto obtain in Setion 9.8. The equivalene lasses under SL (3,C)⊗ SL (3,C) ofnon-separable PPT states of rank 4 in 3×3 systems turn out to be parametrizedby just four real, positive numbers. Moreover, eah lass has a representativewhih is a projetion onto a Completely Entangled Subspae omplementary toa 3×3 orthogonal UBP. This is quite a striking result, for whih strong numerialevidene was provided by Leinaas et al. in [157℄ and later supported by ertainanalytial results of [166℄. 114



9.3 Outline of the proofThe proof of our main result is not exessively ompliated, but it needs aonsiderable amount of work. It also onsists of a number of steps whih donot seem easy to merge. In order to simplify the reading, we start with a list ofbuilding bloks. We will elaborate on eah of them in the following setions.1. The kernel of a rank four PPT state ρ must interset the Segre variety Σ2,2in a transverse way. In partiular, aording to the Bezout's Theorem, theintersetion must onsist of exatly six points.2. The produt vetors in the kernel of a rank 4 PPT state in the 3 × 3 asespan the kernel. As a result, they must be a generalized UPB. Thereannot exist a produt vetor orthogonal to all of them.3. A generalized UPB in the 3× 3 ase is loally equivalent to an orthogonalone if and only if ertain invariants s1, . . . , s4, introdued by Leinaas et al.in [157℄, are all positive, possibly after the vetors are permuted.4. A generalized UPB in a 3×3 system is ontained in a kernel of some rankfour PPT state if and only if the orresponding values of s1, . . . , s4 arepositive, possibly after the vetors are permuted. Moreover, in suh asethe PPT state in question is uniquely determined.The �nal onlusion from the fats mentioned in items 1. − 4. is that the onlynon-separable PPT states of rank 4 in 3 × 3 systems are loal transforms ofprojetions onto orthogonal omplements of orthogonal pentagram-type Unex-tendible Produt Bases [106,162℄.9.4 Produt vetors in the kernel of a PPT stateThe present setion elaborates on item 1. in the list given above and on relatedtopis. Let us start with an elementary fat.Lemma 9.7. A produt vetor φ ⊗ ψ is in the kernel of a PPT state ρ if andonly if the partially onjugated states φ∗ ⊗ ψ and φ ⊗ ψ∗ are in the kernels of
ρT1 and ρT2 , respetively.Proof. It follows from the equality between the expressions ⟨φ⊗ ψ,ρ (φ⊗ ψ)⟩,⟨φ⊗ψ∗, ρT2 (φ⊗ ψ∗)⟩ and ⟨φ∗ ⊗ ψ,ρT1 (φ∗ ⊗ψ)⟩, by the positivity of ρ, ρT1 and
ρT2 .In the above lemma, we did not assume anything about the dimensionalityof the system. Neither we do it in the following.Lemma 9.8. Assume that a produt vetor φ ⊗ ψ is in the kernel of a PPTstate ρ. In suh ase

⟨φ′ ⊗ ψ,ρ (φ⊗ ψ′)⟩ = ⟨φ⊗ ψ′, ρ (φ′ ⊗ψ)⟩ = 0 ∀φ′,ψ′ . (9.1)115



Proof. Sine ρ (φ⊗ψ) = 0, we know from Lemma 9.7 that ρT1 (φ∗ ⊗ψ) = 0,whih obviously implies ⟨φ′∗ ⊗ψ′, ρT1 (φ∗ ⊗ψ)⟩ = ⟨φ⊗ ψ′, ρ (φ′ ⊗ψ)⟩ = 0. Thisis the �rst equality in (9.1). The seond one an be obtained in a similar way.Let us denote by r (ρ), R (ρ) and kerρ the rank, the range and the kernel of
ρ. Our next lemma applies spei�ally to the 3 × n ase and onerns so-allededge states. For more information about this topi, onsult [165℄. In short, edgePPT states are PPT states ρ that do not admit a produt vetor φ ⊗ ξ ∈ kerρsuh that φ∗ ⊗ ξ ∈ kerρT1 .Lemma 9.9. Assume that both φ ⊗ ψ and φ′ ⊗ ψ, with φ, φ′ in C3 and ψ inCn, φ ≠ φ′, belong to the kernel of a PPT state ρ, ating on C3 ⊗ C3. Thestate ρ is either supported on a 3 × (n − 1) or smaller subspae, or it an bewritten as ρ = ρ′ + λ ∣φ′′ ⊗ ξ⟩ ⟨φ′′ ⊗ ξ∣ for some λ > 0, ξ ∈ Cn, φ′′ ∈ C3 linearlyindependent of φ and φ′, and a PPT state ρ′, supported on a 3×(n − 1) or smallersubspae. Moreover, the rank r (ρ′) = r (ρ)− 1 and r ((ρ′)T1) = r (ρT1) − 1. In asituation when the redution is possible, the state ρ is not an edge PPT state.In partiular, ρ is not an extreme and non-separable PPT state.Proof. Let us assume that the produt states φ′ ⊗ ψ and φ2 ⊗ ψ belong to thekernel of ρ. Let A be an SL (3,C) transformation that brings e1, e2 ⊂ C3 to φ1and φ2. A little inspetion shows that Lemmas 1 and 2 of [107℄ an be appliedto ρ̃ ∶= (A⊗ 1)∗ ρ (A⊗ 1). Consequently, we see that either ρ is supported ona 3 × (n − 1) or smaller spae, or the assertion of Lemma 2 of [107℄ tells usthat ρ̃ = ρ1 +λ ∣e3 ⊗ ξ⟩ ⟨e3 ⊗ ξ∣ for some ξ ∈ Cn, and moreover, ρ1 is a PPT statesupported on a 3×(n − 1) or smaller subspae, with r (ρ1) = r (ρ)−1 and r (ρT1

1 ) =
r (ρT1)− 1. We have ρ = (A−1 ⊗ 1)∗ ρ̃ (A−1 ⊗ 1) = ρ′ + λ ∣φ′′′ ⊗ ξ⟩ ⟨φ′′′ ⊗ ξ∣, where
φ′′′ = A−1e3 and ρ′ = (A−1 ⊗ 1)∗ ρ1 (A−1 ⊗ 1). The states ρ′ and (ρ′)T1 still havetheir ranks redued by one with respet to the ranks of ρ and ρT1 , respetively.The subspaes on whih they are supported are of the same type as for ρ1,hene 3 × (n − 1) or smaller. The statement that ρ is not an edge state simplyfollows beause ∣φ′′′ ⊗ ξ⟩ ⟨φ′′′ ⊗ ξ∣ is in R (ρ) while its partial onjugation is in
R (ρT1).The following result redues a more general ase to the situation onsideredabove. However, this time we assume n = 3.Lemma 9.10. Let φ⊗ ψ ∈C3 ⊗C3 be an element of a PPT state ρ, ating onC3⊗C3. There annot exist a nonzero vetor φ⊗ψ′+φ′⊗ψ, with φ′ ≠ φ or ψ′ ≠ ψ,in the kernel of ρ, unless one of the following is true: i) ρ = ρ′ + λ ∣ζ ⊗ ξ⟩ ⟨ζ ⊗ ξ∣for λ > 0, ξ, ζ ∈C3 and ρ′ a PPT state supported on a 2× 3 or smaller subspaewith r (ρ′) = r (ρ) − 1 and r ((ρ′)T1) = r ((ρ)T1) − 1 or ii) ρ is supported on a
2 × 3 or smaller subspae itself.Proof. Assume that there is a state of the form φ⊗ψ′ +φ′⊗ψ in the kernel of ρ.This is equivalent to saying that ⟨φ⊗ψ′ + φ′ ⊗ ψ,ρ (φ⊗ ψ′ + φ′ ⊗ψ)⟩ = 0. The116



inner produt fatorizes as
⟨φ⊗ψ′, ρ (φ⊗ ψ′)⟩+⟨φ⊗ψ′, ρ (φ′ ⊗ ψ)⟩+⟨φ′ ⊗ ψ,ρ (φ⊗ ψ′)⟩+⟨φ′ ⊗ ψ,ρ (φ′ ⊗ ψ)⟩The two fators in the middle vanish aording to Lemma 9.8, while the tworemaining fators are nonnegative as a onsequene of positivity of ρ. Therefore,the only possibility for the above expression to vanish is when ⟨φ⊗ψ′, ρ (φ⊗ ψ′)⟩ =
0 and ⟨φ′ ⊗ ψ,ρ (φ′ ⊗ ψ)⟩ = 0. This in turn means that ρ (φ′ ⊗ ψ) = 0 and
ρ (φ⊗ψ′) = 0. Aording to our assumptions, at least one of these equalities isnontrivial (i.e. φ′ ≠ 0 or ψ′ ≠ 0). Lemma 9.9 an be applied, and Lemma 9.10follows diretly.The importane of Lemma 9.10 is evident if we realize that the tangent spaeto the Segre variety, or to the set of produt states at a point φ ⊗ ψ, onsistspreisely of the vetors of the form onsidered above. We haveLemma 9.11. Elements of the tangent spae to the Segre variety, or to the setof produt vetors at a point φ⊗ψ, are of the form

φ⊗ ψ′ + φ′ ⊗ ψ, (9.2)with ψ′ and φ′ arbitrary.Proof. A heuristi proof may onsist in writing (φ + δφ) ⊗ (ψ + δψ) ≈ φ ⊗ ψ +
δφ ⊗ ψ + φ ⊗ δψ, where the approximate equality holds to the �rst order. Amore rigorous proof an be found in Example 5.21 of Setion 5.2, as well as inExample 14.16 of the textbook by Harris [117℄.Next, we speify the rank of ρ to be 4 and keep the assumption that ρats on C3 ⊗C3. Thus the kernel of ρ is of dimension 5, whih is the smallestnumber d suh that a d-dimensional linear subspae must interset the set ofprodut vetors in C3 ⊗ C3, f. e.g. [160℄. Following Lemmas 9.10 and 9.11,we an show that the nonempty intersetion is generi in the sense of Bezout'stheorem [117, Theorem 18.3℄ and thus it onsists of exatly six points.Lemma 9.12. Let ρ be a non-separable PPT state of rank 4 ating on C3⊗C3.The intersetion between the respetive Segre variety and the �ve-dimensionalkernel of ρ is transverse at every point. There are exatly six produt vetors inthe kernel of ρ.Proof. Let us take φ ⊗ ψ ∈ Kerρ. As we mentioned above, suh a vetor exists[160, 167℄ by a dimensionality argument for projetive varieties. We easily seefrom Lemma 9.11 that the dimension of the tangent spae Tφ⊗ψ (Σ2,2) to theSegre variety at φ⊗ψ is 5, and thus the projetive dimension is 4. Being moreexpliit, any vetor of the form φ ⊗ ψ′ + φ′ ⊗ ψ an be written in the form
λφ⊗ψ +∑2

i=1 ξiφ⊗ψi +∑2
j=1 ζjφj ⊗ψ, where {φ,φ1, φ2} and {ψ,ψ1, ψ2} are twosets of three linearly independent vetors in C3 and xi, ζj are arbitrary omplexoe�ients. From Lemmas 9.10 and 9.11 we know that the only vetor in theintersetion of Kerρ and Tφ⊗ψ (Σ2,2) is φ ⊗ ψ itself. It must be so, beause117



otherwise we ould redue the rank of ρ by subtrating a projetion onto aprodut state. After the redution, we would be left with a PPT state of rank
3. However, all suh PPT states are separable aording to [107℄, and ρ wouldhave to be separable as well. The other option is that ρ ould be supportedon C2 ⊗C3 or even a less dimensional spae itself. But then it is well-knownthat ρ is separable as as onsequene of being PPT [18℄. In either ase, we geta ontradition with the assumption that ρ is non-separable. Therefore, φ ⊗ ψmust be, up to a salar fator, the only element of the intersetion between Kerρand Tφ⊗ψ (Σ2,2). Consequently, the dimension of Kerρ + Tφ⊗ψ (Σ2,2) equals
5+5−1 = 9, while its projetive dimension is 9−1 = 8. This equals the projetivedimension of Tφ⊗ψ (P8), or simpler, the dimension of the omplex projetivespae P8. In other words, Kerρ and Tφ⊗ψ (Σ2,2) span Tφ⊗ψ (P8), whih isequivalent to saying that the intersetion between Kerρ and the Segre variety istransverse at φ ⊗ ψ. Sine we did not make any additional assumptions about
φ⊗ψ apart from that it belongs to the intersetion, we see that the intersetionis transverse at every point. Therefore Bezout's theorem applies. The fat thatthere are exatly six points in the intersetion follows beause the degree of theSegre variety Σ2,2 is six [117, Example 18.15℄.In summary, in the present setion we have shown that a non-separable rank
4 PPT state in a 3 × 3 system must have exatly six vetors in its kernel. Thisis in full agreement with an assertion of [168℄. It should be notied that, as apart of the proof of the above lemma, we have shown that non-separable PPTstates of rank 4 in 3 × 3 systems are edge states. Thus, Lemmas 9.9 and 9.10an be diretly applied. We will frequently use them in the following setion.9.5 Produt vetors in the kernel must be a gUPBWe already know that the number of produt vetors in the kernel of a rank 4non-separable PPT state of a 3 × 3 system is six. In the following, we disussmore spei� properties of the set of six produt vetors. Let us denote themwith φi⊗ψi, i = 1,2, . . . ,6. It turns out that, up to loal equivalene, �ve of theman always be brought to a speial form, whih has only four real parameters, thenumbers s1, . . . , s4 introdued in [157℄. It then follows that the vetors φi ⊗ψi,if they belong to the kernel of a rank 4 PPT state, must span a �ve-dimensionalsubspae. Thus they span the kernel.In order to prove our assertion, �rst observe that φi ≠ φj for i ≠ j (f. Lemmas9.11 & 9.12), and thus they must span at least a two-dimensional subspae ofC3. Similarly for the ψ's. Let us try to assume �rst that one of the sets {φi}6i=1and {ψj}6j=1 spans a two-dimensional subspae. We may, for example, try toassume this about {φi}6i=1. Up to PSL (3,C) transformations, we have

[ φ1 φ2 φ3 φ4 φ5 φ6 ] =
⎡⎢⎢⎢⎢⎢⎣
1 0 1 1 1 1

0 1 1 p q r

0 0 0 0 0 0

⎤
⎥
⎥
⎥
⎥
⎥⎦
, (9.3)118



where p, q, r are all di�erent and di�erent from 0 and 1. When writing (9.3),we used the fat that there is no pair of idential vetors in {φi}6i=1. Up to loaltransformations, we have ψ1 = e1 and ψ2 = e2. As for the other vetors ψ, we usethe following notation, ψi = [ ψ1i ψ2i ψ3i ], i = 3,4,5,6. We also introdueoordinates ωij for general vetors ω = ∑i,j ωijei ⊗ ej in C3 ⊗C3. Our aim isto show that there exists a linear ombination of the vetors φi ⊗ψi of the form
φ⊗ψ′ +φ′⊗ψ from Lemma 9.11. This will lead us to a ontradition and showthat φi's annot be as in (9.3), and must span C3. An analogous onlusion for
ψ's will be immediate.Let us �rst observe that ψ3i ≠ 0 for all i ∈ {3,4,5,6}. Otherwise, we wouldhave three produt vetors supported on span{e1, e2}⊗span{e1, e2}. Up to loalequivalene, they would be of the form e1 ⊗ e1, e2 ⊗ e2 and (e1 + e2)⊗ (e1 + e2).In suh ase, e1 ⊗ e2 + e2 ⊗ e1 = (e1 + e2) ⊗ (e1 + e2) − e1 ⊗ e1 − e2 ⊗ e2 wouldbe in the kernel of ρ, whih ontradits Lemma 9.10. Therefore we must have
ψ3i ≠ 0 for all i. Let us hoose α and β so that αψ33 + βpψ34 = 0. The vetor
αφ3 ⊗ ψ3 + βφ4 ⊗ φ4 has a vanishing oordinate ω23 = αψ33 + βpψ34 and a non-vanishing oordinate ω13 = αψ33 + βψ34 (remember that p ≠ 1). By subtrating
e2⊗e2 times αψ23+βpψ24, we an anel the ω22 oordinate, and similarly anel
ω11 by subtrating αψ13+βψ14 times e1⊗e1. In the end, we see that a vetor ofthe form ω21e2⊗e1+ω

12e1⊗e2+ω
13e1⊗e3 with ω13 ≠ 0 is in the kernel of ρ. Butthis ontradits Lemma 9.10. In summary, the vetors φi annot be brought tothe form (9.3), or in other words, they span C3. Obviously, the same is truefor the set {ψi}6i=1. A more areful analysis of the above argument leads toeven stronger onlusions. Firstly, an assumption that there exist three vetors

φi ⊗ ψi supported on a 2 × 2 dimensional subspae lead us to a ontradition.Therefore we have the followingLemma 9.13. Let {φi ⊗ψi}6i=1 be the six produt vetors in the kernel of a non-separable PPT state of rank 4 in the 3 × 3 ase. For any triple {φij ⊗ ψij}3j=1 ⊂{φi ⊗ψi}6i=1, at least one of the sets of vetors {φij}3j=1 or {ψij}3j=1 spans C3.Moreover, we only needed four produt vetors with φ's as in (9.3) to arriveat a ontradition with Lemma 9.10. As a onsequene, we haveLemma 9.14. For any quadruple {φij ⊗ψij}4j=1 ⊂ {φi ⊗ ψi}6i=1, both the sets ofvetors {φij}4j=1 and {ψij}4j=1 span C3.As an immediate onsequene of Lemma 9.13, there exists a set of threelinearly independent vetors in {φi}6i=1. With no loss of generality, we mayassume that {φ1, φ2, φ6} is a linearly independent set. After a PSL (3,C) trans-formation, φ1 = e1, φ2 = e2 and φ6 = e3. There are in priniple two possibilitiesonerning the remaining vetors φ3, φ4 and φ5. Either one of them is of theform [ x y z ] with xyz ≠ 0, or all of them have exatly one oordinateequal to zero. Two vanishing oordinates in a single vetor annot our be-ause there is no pair of idential vetors among φ1, . . . , φ6. Moreover, aording119



to Lemma 9.14, the zeros must our in di�erent plaes in φ3, φ4 and φ5. Upto PSL (3,C) transformations and permuting the vetors, we may assume that
φ3 = [ x 0 1 ], φ4 = [ 0 1 z ], φ5 = [ 1 y 0 ] with x, y, z all di�erentfrom 0. But then, write the oordinate matrix for {φ1, φ2, φ3, φ4},

[ φ1 φ2 φ3 φ4 ] =
⎡⎢⎢⎢⎢⎢⎣
1 0 x 0

0 1 0 1

0 0 1 z

⎤
⎥
⎥
⎥
⎥
⎥⎦
. (9.4)It is easy to hek that all the 3 × 3 minors in (9.4) are non-vanishing. In otherwords, any triple of vetors in {φ1, φ2, φ3, φ4} spans C3. The orrespondingvetors ψ1, ψ2, ψ3 and ψ4 may or may not have all triples linearly independent.It is not di�ult to show that if all the triples span C3, we an simultaneously,by using a PSL (3,C) × PSL (3,C) transformation, bring {φ1, φ2, φ3, φ4} and{ψ1, ψ2, ψ3, ψ4} to the form

[ φ1 φ2 φ3 φ4 ] = [ ψ1 ψ2 ψ3 ψ4 ] =
⎡⎢⎢⎢⎢⎢⎣
1 0 0 1

0 1 0 1

0 0 1 1

⎤
⎥
⎥
⎥
⎥
⎥⎦
. (9.5)By adding a �fth produt vetor, say φ5⊗ψ5, we get, up to loal transformationand relabelling the vetors φi ⊗ ψi,

[ φ1 φ2 φ3 φ4 φ5
ψ1 ψ2 ψ3 ψ4 ψ5

] =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 1 1

0 1 0 1 p

0 0 1 1 q

1 0 0 1 1

0 1 0 1 r

0 0 1 1 s

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥⎦
, (9.6)where p, q, r, s are some omplex numbers. We should remark that the possibilityto have 1 in the �rst oordinate of φ5 and ψ5 follows beause there must exist

i ∈ {1,2,3} suh that φi5ψi5 ≠ 0, where φi5 and ψi5 denote the i-th oordinateof φ and ψ, respetively. Otherwise, φ5 or ψ5 would have to be proportional to
ei for some i ∈ {1,2,3}.If not all triples in {ψ1, ψ2, ψ3, ψ4} are linearly independent, it is still possible,aording to Lemma 9.14, to �nd a linearly independent triple among them.Without loss of generality, we may assume that the triple is {ψ1, ψ2, ψ3}. By anidential argument as for the φ's, we know that there is a vetor ψi, i ∈ {5,6}suh that {ψ1, ψ2, ψ3, ψi} have all triples linearly independent. Without loss ofgenerality, we may assume that φi = φ5. This time, a loal transformation andpossible relabelling brings the produt vetors φi ⊗ ψi with i = 1,2, . . . ,5 to theform

[ φ1 φ2 φ3 φ4 φ5
ψ1 ψ2 ψ3 ψ4 ψ5

] =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 1 1

0 1 0 1 p

0 0 1 1 q

1 0 0 1 1

0 1 0 r 1

0 0 1 s 1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥⎦
. (9.7)120



To make a �nal touh to this setion, we need to show that produt vetorsof the form (9.6) or (9.7) are linearly independent if no two of them oinide,and thus they span the �ve-dimensional kernel of ρ. We will also show that theyonstitute a minimal gUPB, and that the parameters p, q, r, s have to be realwhen the vetors are in the kernel of a PPT state.Let us use [ ω11 ω12 ω13 ω21 ω22 ω23 ω31 ω32 ω33 ] to denotevetors ω =∑i,j ωijei ⊗ ej in C3 ⊗C3. In the ase (9.6), we have
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

φ1 ⊗ ψ1

φ2 ⊗ ψ2

φ3 ⊗ ψ3

φ4 ⊗ ψ4

φ5 ⊗ ψ5

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 1

1 1 1 1 1 1 1 1 1

1 r s p pr ps q qr qs

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥⎦
. (9.8)In the ase (9.7), the oordinates of the produt vetors are the following,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

φ1 ⊗ ψ1

φ2 ⊗ ψ2

φ3 ⊗ ψ3

φ4 ⊗ ψ4

φ5 ⊗ ψ5

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 1

1 r s 1 r s 1 r s

1 1 1 p p p q q q

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥⎦
. (9.9)It is an elementary exerise to hek that the matries on the right-hand side of(9.8) and (9.9) are of rank 5 for all hoies of p, q, r, s, with the only exeptionof p = q = r = s = 1. But the last possibility is exluded beause it implies

φ4 ⊗ψ4 = φ5 ⊗ψ5.Next, we an show that the vetors φi ⊗ ψi with i = 1,2, . . . ,5, hosen asabove, onstitute a general Unextendible Produt Basis. In order to prove it,let us �rst show that the rank of ρT1 has to be 4.Proposition 9.15. Let ρ be a non-separable PPT state of rank 4 ating onC3 ⊗C3. The rank of the partially transposed state ρT1 is also 4.Proof. If ρ is non-separable, we know by the above argument that the produtvetors {φi ⊗ψi}6i=1 in the kernel of ρ span a �ve-dimensional subspae, whihis the kernel itself. Moreover, �ve of them are, up to loal transformations, ofthe form (9.6) or (9.7). But this implies that the orresponding produt vetorsin the kernel of ρT1 , whih are φ∗i ⊗ ψi aording to Lemma 9.7, an also bebrought to the form (9.6) or (9.7). To be more expliit, if a loal transformation
A ⊗B brings the vetors φi ⊗ ψi with i = 1,2, . . . ,5 to the form (9.6) or (9.7),
A∗⊗B does the same to the partial onjugations φ∗i ⊗ψi. The only di�erene isthat p and q hange into p∗ and q∗ in (9.6) or (9.7). But this does not hangethe onlusion about the dimensionality of the subspae spanned by vetors ofthe form (9.6) or (9.7). As a onsequene, the produt vetors in the kernel of
ρT1 span at least a �ve-dimensional subspae. Thus the kernel of ρT1 is at least�ve-dimensional. If it had higher dimension, the rank of ρT1 would be lower orequal 3, whih is, aording to [107℄, impossible for non-separable ρ. Therefore,the dimension of the kernel equals 5, and the rank of ρT1 is 4.121



There exist separable states ρ of rank 4 in 3×3 systems that have the rank of
ρT1 di�erent from 4. However, our next proposition shows that if ρ is supportedon C3 ⊗C3 and it annot be written as ρ′ + λ ∣ζ ⊗ ξ⟩ ⟨ζ ⊗ ξ∣ with λ > 0 and ρ′supported on a 2 × 2 subspae, the rank of ρT1 is also 4 (f. Figure 4 in [168℄,whih we reprodue here as Table 9.1).

(m,n) m
2 + n2 −N2 dimF (rA, rB) #pv [Im ρ℄ #pv [Ker ρ℄(9,9) 81 81 (3,3) ∞/9 0(9,8) 64 64 (3,3) ∞/9 0(9,7) 49 49 (3,3) ∞/9 0(8,8) 47 47 (3,3) ∞/8 0(9,6) 36 36 (3,3) ∞/9 0(8,7) 32 32 (3,3) ∞/8 0(8,6) 19 19 (3,3) ∞/8 0(7,7) 17 17 (3,3) ∞/7 0(8,5) 8 8 (3,3) ∞/8 0(7,6) 4 4 (3,3) ∞/7 0(7,5) -7 1 (3,3) ∞/7 0(6,6) -9 1 (3,3) ∞/6 0(6,5) -20 1 (3,3) ∞/6 0(5,5) -31 1 (3,3) 6/5 0(4,4) -49 1 (3,3) 0 6/5(3,3) -63 3 (3,3) 3/3 ∞/6(2,2) -73 2 (2,2) 2/2 ∞/7(1,1) -79 1 (1,1) 1/1 ∞/8Table 9.1: Numerial results for 3 × 3 PPT states ρ. The numbers m and ndenote the ranks of ρT1 and ρT2 , resp. The number N = 9 is the dimension ofthe spae on whih the states at. The number dimF is the dimension of thefae of the one of PPT states on whih the given state lives. The symbols rAand rB denote the ranks of the partially traed states TrB ρ and TrA ρ. The�fth and the sixth olumn list the number of produt vetors in the image andthe kernel of ρ.Proposition 9.16. Let ρ be a separable state of rank 4 supported on C3 ⊗C3,whih annot be written as ρ′ + λ ∣ζ ⊗ ξ⟩ ⟨ζ ⊗ ξ∣ with λ > 0 and ρ′ supported on a

2 × 2 subspae of C3 ⊗C3. The rank of ρT1 is also 4.Proof. First, we should remark that r (ρT1) = r (ρT2). This fat will be impor-tant for some parts of the proof, although never expliitly referred to. The mainidea that we are going to use is that the argument preeding formulas (9.6) and(9.7) works for separable states as well, provided that they annot be reduedaording to Lemma 9.10. In other words, the argument works when the kernelof a PPT state in question does interset the Segre variety in a transverse way,irrespetively of the state being entangled or not. Thus, if a redution aord-ing to Lemma 9.10 is not possible for a separable state ρ, we have vetors ofthe form (9.6) or (9.7) in Kerρ, and they span a �ve-dimensional spae. Thisis also the dimensionality of the subspae spanned by their partial onjugates,122



whih are in KerρT1 . Therefore, the rank of ρT1 is not bigger than 4. If itwas less than four, the intersetion between KerρT1 and the Segre variety Σ2,2would be more than zero-dimensional, aording to the Projetive DimensionTheorem [118, Theorem 7.2℄. But this ontradits the fat that there are only a�nite number of produt vetors in KerρT1 (equal to φ∗⊗ψ for all φ⊗ψ ∈ Kerρ).In summary, the rank of ρT1 has to be 4 when Kerρ intersets the Segre varietytransversely. If not, we know from Lemmas and 9.10 and 9.11 that there aretwo options:i) it is possible to write ρ as ρ′ + λ ∣ζ ⊗ ξ⟩ ⟨ζ ⊗ ξ∣, where λ and ρ′ is a rank
3 PPT state supported on a 2 × 3 or smaller subspae of C3 ⊗ C3, with
r (ρ′) = 3 and r ((ρ′)T1) = d − 1,ii) ρ is supported on a 2 × 3 or smaller subspae itself.Option ii) is exluded beause of the assumption of ρ supported on C3 ⊗C3.Our aim in the following will be to show that r (ρ′) = r ((ρ′)T1) unless ρ′ issupported on a 2×2 subspae, whih is preisely the seond possibility we allowin the proposition. First, observe that if ρ′ is supported on a 2× 3 subspae, wean use an analogue of Lemma 9.10. Either we have ρ′ = ρ′′ +λ′ ∣ζ′ ⊗ ξ′⟩ ⟨ζ′ ⊗ ξ′∣where λ′ > 0 and ρ′′ is supported on a 2 × 2, 1 × 3 or 1 × 2 subspae, r (ρ′′) = 2and r ((ρ′′)T1) = r ((ρ′)T1) − 1, or Kerρ′ intersets the respetive Segre variety

Σ1,2 transversely. In the latter ase, by Bezout's Theorem the 3-dimensionalkernel of ρ′ has preisely three produt vetors in it. Atually, we an repeatthe argument preeding Lemmas 9.13 and 9.14 to onlude that the produtvetors in Kerρ′ have to be loally equivalent to
[ φ1 φ2 φ3
ψ1 ψ2 ψ3

] =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 1

0 1 1

1 0 0

0 1 0

0 0 1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥⎦
. (9.10)Obviously, these vetors span the kernel. We see that there are, within the

2×3 subspae, only three produt vetors in R (ρ′) = (Kerρ′)�. They are loallyequivalent to
[ ζ1 ζ2 ζ3
ξ1 ξ2 ξ3

] =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 1

1 0 −1

1 0 0

0 1 0

0 0 1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥⎦
. (9.11)Sine ρ′ is separable and of rank 3, it must be loally equivalent to a onvexsum of projetions onto the vetors ζi ⊗ ξi in (9.11), whih implies that ρ̃T1is an analogous sum of projetions onto ζ∗i ⊗ ξi. But ζ∗i ⊗ ξi = ζi ⊗ ξi if theprodut vetors are as in (9.11). Therefore r (ρ′) = r ((ρ′)T1), whih implies

r (ρ) = r (ρT1), as expeted. This proves our assertion for ρ′ supported on a123



2 × 3 subspae with Kerρ′ that intersets the orresponding Segre variety Σ1,2transversely. For the other nontrivial ases, we an have ρ′′ separable and ofrank 2, supported on a 2 × 2 subspae. There is also the trivial ase of ρ′′supported on a 1× 2 or 1× 3 subspae, in whih the equality r (ρ′′) = r ((ρ′′)T1)learly holds, and it implies equality of ranks of ρ and ρT1 .In the ase of ρ′′ supported on a 2×2 subspae, we an repeat the argumentwith transverse intersetions. Either ρ′′ an be redued one again, in whih aseit turns out to be equal to λ′′′ ∣ζ′′′ ⊗ ξ′′′⟩ ⟨ζ′′′ ⊗ ξ′′′∣ + λ′′ ∣ζ′′ ⊗ ξ′′⟩ ⟨ζ′′ ⊗ ξ′′∣ with
λ′′ > 0, λ′′′ > 0 and ζ′′′⊗ξ′′′ not proportional to ζ′′⊗ξ′′, or Kerρ′′ must intersetthe respetive Segre variety Σ1,1 in a transverse way. The �rst possibility learlygives us r (ρ′′) = 2 = r ((ρ′′)T1). The latter implies, by Bezout's Theorem, thatthere are exatly two produt vetors in Kerρ′′. Similarly as for (9.10), we anprove that the two produt vetors must be loally equivalent to e1 ⊗ e1 and
e2 ⊗ e2. Clearly, they span the kernel of ρ′′ and there are only two produtvetors, loally equivalent to e1 ⊗ e2 and e2 ⊗ e1, in R (ρ′′). But ρ′′ is separableand of rank 2. Therefore it must be loally equivalent to a onvex sum ofprojetions onto these two vetors. Aordingly, (ρ′′)T1 is loally equivalent toa sum of two projetions onto produt vetors, whih are e∗1 ⊗ e2 and e∗2 ⊗ e1,atually equal to e1 ⊗ e2 and e2 ⊗ e1. This implies r (ρ′′) = r ((ρ′′)T1) and theequality between the ranks of ρ and ρT1 follows.Remark 9.17. The two propositions above explain why PPT states of ranks(4, n), n ≠ 4 should not be expeted to appear in the upper part of Table IIin [168℄, whih we reprodued above as Table 9.1. They do exist, but they arealways separable and of a rather speial form.It is useful to formulate the followingCorollary 9.18. All rank 4 non-separable PPT states ρ in 3 × 3 systems areedge states.Proof. If some non-separable ρ of rank 4 had a produt vetor φ ⊗ ψ in itsrange, and the partial onjugated vetor φ∗ ⊗ ψ was in the range of ρT1 , weould diminish the rank of ρ or ρT1 by subtrating λ ∣φ⊗ ψ⟩ ⟨φ⊗ ψ∣, where

λ =min{⟨φ⊗ψ,ρ−1 (φ⊗ψ)⟩−1 , ⟨φ⊗ψ, (ρT1)−1 (φ⊗ψ)⟩−1} , (9.12)f. [165℄. In suh ase, ρ ould be written as ρ = ρ′ + λ ∣φ⊗ ψ⟩ ⟨φ⊗ψ∣ with ρ′PPT and of rank 3 or with ρT1 of rank 3. But this implies, by [107℄, that ρ′would have to be separable. This further implies separability of ρ, whih is aontradition.At this point, we an easily prove that the vetors φi ⊗ψi in the kernel of anon-separable ρ of rank 4, hosen as in (9.6) or (9.7), onstitute a generalizedUnextendible Produt Basis. If there was a produt vetor φ ⊗ ψ orthogonalto all of them, it would be an element of the range of ρ. From the proof of124



Proposition 9.15 we know that the partially onjugated vetors φ∗i ⊗ψi span thekernel of ρT1 . Sine ⟨φ⊗ ψ,φi ⊗ψi⟩ = 0 = ⟨φ∗ ⊗ψ,φ∗i ⊗ ψi⟩ for all i, we see that
φ∗ ⊗ ψ is in the range of ρT1 , (KerρT1)�. Therefore we have a produt vetor
φ ⊗ ψ in the range of ρ suh that its partial onjugation is in the range ρT1 .In other words, ρ is not an edge state. But this ontradits Corollary 9.18 andtherefore annot happen. In this way, we have proved the following.Proposition 9.19. Let ρ be a rank 4 non-separable PPT state in a 3×3 system.The six vetors in the kernel of ρ onstitute a generalized UPB. There is a subsetof �ve of them that onstitutes a minimal gUPB in the sense of Proposition 9.4.Proof. Most of the proof has already been provided above. We only need toomment on the fat that �ve of the produt vetors onstitute a minimal gUPB.It must be so beause the �ve vetors we brought to the form (9.6) or (9.7) spanthe kernel of ρ, and the orthogonal omplement to the kernel has no produtvetor in it. Thus, the �ve vetors are a gUPB of Kerρ, whih is minimalaording to Proposition 9.4, beause m + n − 1 = 5 for m = n = 3.By Proposition 9.4 we know that a minimal gUPB {φi ⊗ψi}6i=1 has theproperty that all triples in {φi}6i=1 and in {ψi}6i=1 are linearly independent. Insuh ase, the forms (9.6) and (9.7) are loally equivalent, and we may hooseto work with only one of them. In the sequel, we prefer to assume the form (9.6)of the produt vetors, whih is in agreement with the onvention used in [166℄.Our next step is to prove that the parameters p, q, r and s in (9.6) must be realif the orresponding produt vetors belong to the kernel of a rank 4 PPT statein the 3 × 3 ase. This is not of muh use here, but will prove to be importantin Setion 9.7.We know from Lemma 9.12 that there are exatly six produt vetors in thekernel of ρ, while we have only �ve of them in (9.6), and we know that theyspan the kernel. Consequently, the sixth vetor is a linear ombination of theother �ve ones,

φ6 ⊗ ψ6 =
5

∑
i=1

λiφi ⊗ ψi (9.13)Note that expliit formulas for the sixth vetor an be found in [166, Setion 5.2℄.Interestingly, sine φ6⊗ψ6 ∈ Kerρ, we know from Lemma 9.8 that φ∗6⊗ψ6 ∈ Kerρis in the kernel of ρT1 . However, the vetors φ∗i ⊗ ψi with i = 1,2, . . . ,5 are alsothere and moreover, sine they are, up to loal equivalene, of the form (9.6)with p and q omplex onjugated, we already know that they span KerρT1 . Thusthe sixth partially onjugated vetor must be a linear ombination of the former�ve,
φ∗6 ⊗ψ6 =

5

∑
i=1

ξiφ
∗

i ⊗ψi, (9.14)where the oe�ients ξi are in priniple not related to the λi's in (9.13). How-ever, we an already see at this point that it may be very di�ult to simulta-neously satisfy equations (9.13) and (9.14), if we do not assume that φi = φ∗i125



for all i. In the latter ase, one an obviously hoose ξi = λi. Our aim in thefollowing will be to show that ξi = λi is the only possible hoie. By projeting(9.13) onto the �rst, the seond and the third oordinate in the �rst subsystem,we get
λ1ψ1 + λ4ψ4 + λ5ψ5 = φ16 ψ6, (9.15)
λ2ψ2 + λ4ψ4 + pλ5ψ5 = φ26 ψ6, (9.16)
λ3ψ3 + λ4ψ4 + qλ5ψ5 = φ36 ψ6, (9.17)where {φi6}3i=1 are oordinates of φ6. Similarly, from (9.14) we get
ξ1ψ1 + ξ4ψ4 + ξ5ψ5 = φ∗16 ψ6, (9.18)

ξ2ψ2 + ξ4ψ4 + p
∗ξ5ψ5 = φ∗26 ψ6, (9.19)

ξ3ψ3 + ξ4ψ4 + q
∗ξ5ψ5 = φ∗36 ψ6. (9.20)Let us note that the triples {ψ1, ψ4, ψ5}, {ψ2, ψ4, ψ5}, {ψ3, ψ4, ψ5} all onsist oflinearly independent vetors, aording to Proposition 9.19. This implies thateah of the formulas (9.15)�(9.20) gives exatly one solution for the oe�ients

λi or ξi whih it ontains. For one of the onsequenes, all the oe�ients ψi6must be non-vanishing. Two of them annot vanish, beause ψ6 proportional toany of ψi with i = 1,2,3 would ontradit φ6 ⊗ ψ6 ≠ φi ⊗ ψi or Lemma 9.9. Tosee this, let us assume that one of them vanishes, e.g. φ36 = 0. In suh ase,equation (9.17) implies λ3 = λ4 = λ5 = 0, where we used the fat that q ≠ 0.Hene (9.15) and (9.16) redue to φ16ψ6 = λ1ψ1 and φ26ψ6 = λ2ψ2. But neitherof these equalities an hold, sine φ16 ≠ 0 and φ26 ≠ 0, while ψ6 proportionalto ψ1 or ψ2 ontradits Lemma 9.9. Thus our assumption φ36 = 0 must havebeen false. By repeating the same argument for φ16 and φ26, we arrive at
φ16φ26φ36 ≠ 0. Let us also notie that neessarily λ4 ≠ 0 and ξ4 ≠ 0. We annothave, for example ξ1ψ1 + ξ5ψ5 = φ∗16ψ6 and ξ2ψ2 + p

∗ξ5ψ5 = φ∗26ψ6 sine the onlyvetor in the intersetion of span{ψ1, ψ5} and span{ψ2, ψ5} is ψ5, and we knowthat ψ6 ≠ ψ5 by Lemma 9.9. In a similar way, one obtains λ5 ≠ 0 and ξ5 ≠ 0.With suh amount of knowledge, we an prove the expeted result.Proposition 9.20. Let φi ⊗ψi for i = 1,2, . . . ,5 be produt vetors of the form(9.6) in the kernel of a non-separable PPT state of rank four, ating on C3⊗C3.The parameters p, q, r and s must neessarily be real.Proof. By dividing (9.15) by φ16 and (9.18) by φ∗16, whih is possible aordingto φ16 ≠ 0, we get
λ1

φ16
ψ1 +

λ4

φ16
ψ4 +

λ5

φ16
ψ5 = ψ6 = ξ1

φ∗16
ψ1 +

ξ4

φ∗16
ψ4 +

ξ5

φ∗16
ψ5. (9.21)Sine {ψ1, ψ4, ψ5} is a linearly independent triple, the above equality implies

λ1/φ16 = ξ1/φ∗16, λ4/φ16 = ξ4/φ∗16 and λ5/φ16 = ξ5/φ∗16. In a similar way, from(9.16) and (9.19) we an get λ2/φ26 = ξ2/φ∗26, λ4/φ26 = ξ4/φ∗26 and pλ5/φ26 =126



p∗ξ5/φ∗26, whereas (9.17) and (9.20) give us λ2/φ36 = ξ2/φ∗36, λ4/φ36 = ξ4/φ∗36and qλ5/φ36 = q∗ξ5/φ∗36. From the equalities involving λ4 and ξ4, we get
φ16

φ∗16
= φ26
φ∗26
= φ36
φ∗36

. (9.22)Together with λ5/φ16 = ξ5/φ∗16, the above equations give us λ5/φ26 = ξ5/φ∗26 and
λ5/φ36 = ξ5/φ∗36. But

( λ5
φ26
= ξ5

φ∗26
∧
pλ5

φ26
= p

∗ξ5

φ∗26
) ⇒ p = p∗. (9.23)In a similar way, from λ5/φ36 = ξ5/φ∗36 and qλ5/φ36 = q∗ξ5/φ∗36 we an get

q = q∗.9.6 An equivalene between generalized andorthonormal Unextendible Produt BasesIn the following, we disuss item 4. of the list given in Setion 9.3. Let us startwith a set of �ve vetors in C3,
[ φ1 φ2 φ3 φ4 φ5 ] =

⎡⎢⎢⎢⎢⎢⎣
φ11 φ12 φ13 φ14 φ15
φ21 φ22 φ23 φ24 φ25
φ31 φ32 φ33 φ34 φ35

⎤
⎥
⎥
⎥
⎥
⎥⎦
, (9.24)and assume that any three of them are linearly independent, as in Proposition9.19. For the moment, we do not require the vetors in (9.24) to be equal to

φ1, . . . , φ5 in (9.6), but our ultimate goal is to apply the results we are goingto obtain to (9.6). PSL (3,C) transformations of the above set orrespond tothe multipliation of the 3 × 5 matrix in (9.24) from the left by an element ofSL (3,C) and to the multipliation of the olumns of (9.24) by arbitrary non-zero salar fators. It is lear that we an transform (9.24) by a PSL (3,C)transformation to the following form,
⎡⎢⎢⎢⎢⎢⎣
1 0 φ′13 φ′14 φ′15
0 1 φ′23 φ′24 φ′25
0 0 φ′33 φ′34 φ′35

⎤
⎥
⎥
⎥
⎥
⎥⎦
. (9.25)By another PSL (3,C) transformation, we get

⎡⎢⎢⎢⎢⎢⎢⎣
1 0 0

0 1 −
φ′
23

φ′
33

0 0 1

⎤
⎥
⎥
⎥
⎥
⎥
⎥⎦
⎡⎢⎢⎢⎢⎢⎣
1 0 φ′13 φ′14 φ′15
0 1 φ′23 φ′24 φ′25
0 0 φ′33 φ′34 φ′35

⎤
⎥
⎥
⎥
⎥
⎥⎦
=
⎡⎢⎢⎢⎢⎢⎣
1 0 φ′13 φ′′14 φ′′15
0 1 0 φ′′24 φ′′25
0 0 φ′33 φ′′34 φ′′35

⎤
⎥
⎥
⎥
⎥
⎥⎦
.(9.26)We should remark that the matrix we multiply with from the left is well-de�ned,sine φ′33 ≠ 0 aording to the assumption about linear independene of triples.127



Let us transform one again, in the following way,
⎡⎢⎢⎢⎢⎢⎢⎣
1 0 −

φ′′
15

φ′′
35

0 1 0

0 0 1

⎤
⎥
⎥
⎥
⎥
⎥
⎥⎦
⎡⎢⎢⎢⎢⎢⎣
1 0 φ′13 φ′′14 φ′′15
0 1 0 φ′′24 φ′′25
0 0 φ′33 φ′′34 φ′′35

⎤
⎥
⎥
⎥
⎥
⎥⎦
=
⎡⎢⎢⎢⎢⎢⎣
1 0 φ′13 φ′′′14 0

0 1 0 φ′′′24 φ′′25
0 0 φ′33 φ′′′34 φ′′35

⎤
⎥
⎥
⎥
⎥
⎥⎦
.(9.27)This is again possible beause φ′′35 ≠ 0 aording to our assumptions.In a similar way as before, we see that φ′′24 ≠ 0 and φ′′35 ≠ 0. If we multiplythe fourth olumn by 1/φ′′′24 and the �fth by 1/φ′′35, the above transforms to

⎡⎢⎢⎢⎢⎢⎣
1 0 x y 0

0 1 0 1 z

0 0 t u 1

⎤
⎥
⎥
⎥
⎥
⎥⎦
, (9.28)where we introdued the notation x ∶= φ′13, t ∶= φ′33, y ∶= φ′′′14/φ′′24, u ∶= φ′′′34/φ′′24,

z ∶= φ′′25/φ′′35. It is quite straightforward to see that all the oe�ients x, y, z, t, uhave to be di�erent from zero aording to the independent triples assumption.Now, introdue the following invariants [157℄,
s1 = −

∣ φ1 φ2 φ4 ∣ ⋅ ∣ φ1 φ3 φ5 ∣∣ φ1 φ2 φ5 ∣ ⋅ ∣ φ1 φ3 φ4 ∣ , (9.29)
s2 = −

∣ φ1 φ2 φ3 ∣ ⋅ ∣ φ2 φ4 φ5 ∣∣ φ1 φ2 φ4 ∣ ⋅ ∣ φ2 φ3 φ5 ∣ . (9.30)The numbers s1, s2 are indeed invariant. They do not hange under the family ofPSL (3,C) transformations we were using in the onseutive steps (9.24)�(9.28).Thus we an substitute⎡⎢⎢⎢⎢⎢⎣
φ11 φ12 φ13 φ14 φ15
φ21 φ22 φ23 φ24 φ25
φ31 φ32 φ33 φ34 φ35

⎤
⎥
⎥
⎥
⎥
⎥⎦
→
⎡⎢⎢⎢⎢⎢⎣
1 0 x y 0

0 1 0 1 z

0 0 t u 1

⎤
⎥
⎥
⎥
⎥
⎥⎦
. (9.31)in the above formulas for s1 and s2. In this way, we an quikly alulate thevalues of the invariants,

s1 = −uz and s2 = − ty
ux
. (9.32)Now, impose the onditions s1 > 0 and s2 > 0. From the �rst one, we learly get

u = −rz∗, where r is a positive real number. Thus, we have the vetors
⎡⎢⎢⎢⎢⎢⎣
1 0 x y 0

0 1 0 1 z

0 0 t −rz∗ 1

⎤
⎥
⎥
⎥
⎥
⎥⎦
. (9.33)Next, let us multiply from the left by a diagonal matrix diag(1,√√r′,1/√√r′),as well as multiply the seond olumn by 1/√√r′, the fourth by 1/√√r′ and128



the �fth by √√r′, where r′ ∶= rz∗/z and √ζ stands for the square root of ζ ∈Cwith the argument in [0, π). Under suh PSL (3,C) transformation the vetors(9.33) hange into ⎡⎢⎢⎢⎢⎢⎣
1 0 x′ y′ 0

0 1 0 1 z′

0 0 t′ −z′ 1

⎤
⎥
⎥
⎥
⎥
⎥⎦
, (9.34)where z′ is real and positive, and all the other parameters x′, y′, t′ are non-zero.Moreover, the onditon s2 > 0 transforms to

s2 = − ty
ux
= t
′y′

z′x′
> 0 ⇔ t′y′

x′
> 0, (9.35)simply by formula (9.32) and the invariane of s2. The last equivalene holds bystrit positivity of z′. In our next step, we we are going to multiply (9.34) fromthe left by a diagonal matrix diag(ζ1, ζ2, ζ3), with ζ1, ζ2, ζ3 ∈ C and ζ1ζ2ζ3 = 1,and also multiply the onseutive olumns, beginning with the �rst, by 1/ζ1,

1/ζ2, ζ4, ζ5 and ζ6, where ζ4ζ5ζ6 ≠ 0. Our aim is to hoose the numbers ζ1, . . . , ζ6in suh a way that (9.34) transforms to a set of vetors with orthogonalityrelations given by a pentagon graph (that is, any two onseutive ones areorthogonal, and these are the only orthogonality relations). We would like tohave ⎡⎢⎢⎢⎢⎢⎣
1 0 a b 0

0 1 0 1 a

0 0 b −a 1

⎤
⎥
⎥
⎥
⎥
⎥⎦
, (9.36)where a = z′ and b is a positive real number in plae of (9.34). Let us write thenumbers ζj as rjeiαj , where rj is a positive real number and αj ∈ R. In order toobtain (9.36) with a and b real and positive, ertain phase mathing onditionshave to be ful�lled. Let us onsider them �rst. If αy′ , αt′ , αx′ are suh that

y′ = ry′eiαy′ , t′ = rt′eiαt′ and x′ = rx′eiαx′ with rx′ , rt′ and rx′ real and positive,omplex phases math orretly if and only if the following set of equations hold
α2 + α5 = 0 mod 2π, (9.37)
α3 + α6 = 0 mod 2π, (9.38)
α2 + α6 = 0 mod 2π, (9.39)
α3 + α5 = 0 mod 2π, (9.40)

α5 + α1 + αy′ = 0 mod 2π, (9.41)
α3 + α4 + αt′ = 0 mod 2π, (9.42)
α4 + α1 + αx′ = 0 mod 2π. (9.43)The requirement that ζ1ζ2ζ3 = 1 adds a ondition α1 + α2 + α3 = 0 mod 2π toequations (9.37)�(9.38). However, a substitution of the form

(α1, α2, α3) → (α1 + β,α2 + β,α3 + β) (α4, α5, α6)→ (α4 − β,α5 − β,α6 − β)with an appropriately hosen β an always bring α1+α2+α3 to zero and it has noe�et on (9.37)�(9.43). Therefore, as long as existene of solutions is in question,129



we may neglet the additional ondition. It is easy to see that the relations(9.37)�(9.40) are ful�lled if and only if α2 = α3 = −α5 = −α6 = −α mod 2π forsome α ∈R. Thus the set of equations (9.37)�(9.43) are redued to
⎡⎢⎢⎢⎢⎢⎣

1 1 0

−1 0 1

0 1 1

⎤
⎥
⎥
⎥
⎥
⎥⎦
⎡⎢⎢⎢⎢⎢⎣
α

α1

α4

⎤
⎥
⎥
⎥
⎥
⎥⎦
=
⎡⎢⎢⎢⎢⎢⎣
−αy′
−αt′
−αx′

⎤
⎥
⎥
⎥
⎥
⎥⎦
mod 2π. (9.44)Interestingly, the 3×3matrix in equation (9.44) has rank 2. A solution (α,α1, α4)exists if and only if

αy′ + αt′ − αx′ = 0 mod 2π. (9.45)But this is exatly the positivity ondition (9.35) for the invariant s2. Thus,if s2 > 0 in addition to s1 > 0, we an anel the omplex phases, as in (9.36).The only remaining thing to do is to math the modules, whih gives us thefollowing set of equations,
r2r5 = 1, r3r6 = 1, r2r6 = r3r5, r4r1rx′ = a, r5r1ry′ = r3r4rt′ . (9.46)There is also an equation r1r2r3 = 1, following from the requirement that

ζ1ζ2ζ3 = 1. As we see, there are �ve equations in (9.46), and the variables
r1, . . . , r6 are six in number. Therefore, one an expet a solution to exist. Itan easily be heked that the following, with r ∈ R, is a one-parameter familyof solutions,
r1 =
√

art′

rx′ry′
r, r2 = r, r3 = r, r4 =

√
art′

rx′ry′

1

r
, r5 = 1

r
, r6 = 1

r
. (9.47)By hoosing r = 1/ 6

√
art′/rx′ry′ we an satisfy the additional ondition r1r2r3 =

1. Thus we have proved that the positivity of the invariants s1, s2 guaranteesthat the family of �ve vetors (9.24) an be transformed by a PSL (3,C) trans-formation, without permuting them, to the form (9.36). Obviously, a onversestatement is also true, sine the values of s1 and s2 alulated from (9.36) are
a2 and b2/a2, respetively. In this way we arrive at the followingProposition 9.21. A set of �ve vetors {αi}5i=1 ⊂ C3 with the property thatany triple of them is linearly independent, an be transformed by a PSL (3,C)transformation, without permuting them, to the form (9.36) with a and b real andpositive, if and only if the invariants s1 and s2, de�ned in (9.29), are positive.Let us note that any set of �ve vetors {v1, . . . , v5} ⊂ C3 with orthogonalityrelations ⟨vi, v(i+1) mod 5⟩ = 0 an be transformed by PSL (3,C) transformationsto the form (9.36). A simple argument shows that they an be transformed to

[ v1 v2 v3 v4 v5 ] =
⎡⎢⎢⎢⎢⎢⎣
1 0 x y∗ 0

0 1 0 1 x

0 0 y −x∗ 1

⎤
⎥
⎥
⎥
⎥
⎥⎦
, (9.48)130



with x and y omplex. But sine s1 = ∣x∣2 > 0 and s2 = ∣y/x∣2 > 0 in theabove ase, the argument following equation (9.34) tells us that a PSL (3,C)transformation brings (9.48) to the form (9.36). As a onsequene, Proposition9.21 is a neessary and su�ient riterion for a set of �ve vetors φ1, . . . , φ5 tobe SL (3,C) equivalent, without permuting them, to a set of vetors v1, . . . , v5with orthogonality relations ⟨vi, vi mod 5+1⟩ = 0.From [162℄ we know that orthogonal UPBs in the 3 × 3 ase always have�ve elements, and they are, up to permutations, preisely the sets of prod-ut vetors {vi ⊗wi}5i=1 with orthogonality relations ⟨vi, vi mod 5+1⟩ = 0 and⟨wj ,w(j+1) mod 5+1⟩ = 0. Consider the question, whether an arbitrary set of�ve vetors {φi ⊗ ψi}5i=1 ⊂ C3 ⊗ C3 with linearly independent triples an bebrought by PSL (3,C) ×PSL (3,C) transformations to suh {vi ⊗wi}5i=1, with-out permuting the vetors. In other words, what are the neessary and su�ientonditions for φi ⊗ ψi's to be onvertible into vi ⊗ wi's with the orthogonalityonditions given above. By using Proposition 9.21, we an already deal with thequestion about φi's being onvertible into vi's. Namely, an PSL (3,C) transfor-mation on the �rst subsystem an bring the vetors {φi}5i=1, without permutingthem, to {vi}5i=1 with ⟨vi, vi mod 5+1⟩ = 0 if and only if the orresponding val-ues of the invariants s1 and s2 are positive. We are only missing a similarriterion for ψi's and wi's. However, it is not di�ult to hek that a permu-tation σ = ( 1 2 3 4 5

1 3 5 2 4
) brings any {wi}5i=1 with ⟨wj ,w(j+1) mod 5+1⟩ = 0to {w′i}5i=1 = {wσ(i)}5i=1 with ⟨w′i,w′i mod 5+1⟩ = 0. Therefore, it is su�ient toalulate the invariants (9.29) and (9.30) orresponding to the permuted ve-tors ψ′i ∶= ψσ(i) and hek their positivity in order to tell whether the vetors

ψi are onvertible into some {wi}5i=1 with the desired orthogonality relations.Following the de�nitions (9.29) and (9.30), let us introdue additional invariants
s3 = −

∣ ψ1 ψ3 ψ2 ∣ ⋅ ∣ ψ1 ψ5 ψ4 ∣∣ ψ1 ψ3 ψ4 ∣ ⋅ ∣ ψ1 ψ5 ψ2 ∣ =
= − ∣ ψσ(1) ψσ(2) ψσ(4) ∣ ⋅ ∣ ψσ(1) ψσ(3) ψσ(5) ∣∣ ψσ(1) ψσ(2) ψσ(5) ∣ ⋅ ∣ ψσ(1) ψσ(3) ψσ(4) ∣ (9.49)and

s4 = −
∣ ψ1 ψ3 ψ5 ∣ ⋅ ∣ ψ3 ψ2 ψ4 ∣∣ ψ1 ψ3 ψ2 ∣ ⋅ ∣ ψ3 ψ5 ψ4 ∣ =

= − ∣ ψσ(1) ψσ(2) ψσ(3) ∣ ⋅ ∣ ψσ(2) ψσ(4) ψσ(5) ∣∣ ψσ(1) ψσ(2) ψσ(4) ∣ ⋅ ∣ ψσ(2) ψσ(3) ψσ(5) ∣ , (9.50)in aordane with [157℄. From the disussion above it follows that arbitrary�ve vetors ψ1, . . . , ψ5 in C3 an be transformed, without permuting them, to{wi}5i=1 with orthogonality relations ⟨wj ,w(j+1) mod 5+1⟩ = 0 if and only if the131



above invariants s3 and s4 are positive. Together with the previously obtainedonvertibility result between φ1, . . . , φ5 and v1, . . . , v5, the last result gives usthe following.Proposition 9.22. A set of produt vetors {φi ⊗ψi}5i=1 ⊂ C3 ⊗ C3 an betransformed by a PSL (3,C)×PSL (3,C) transformation to an orthogonal UPB{vi ⊗wi}5i=1 with orthogonality relations ⟨vi, vi mod 5+1⟩ = 0 and ⟨wj ,w(j+1) mod 5+1⟩ =
0, without permuting the φi ⊗ ψi's, if and only if the invariants s1, s2, s3 and
s4, de�ned in (9.29), (9.30), (9.49) and (9.50), are positive.Proof. Most of the proof has already been inluded above. Let {vi ⊗wi}5i=1denote an orthogonal UPB with the orthogonality relations ⟨vi, vi mod 5+1⟩ = 0and ⟨wj ,w(j+1) mod 5+1⟩ = 0 for all i, j ∈ {1,2,3,4,5}. The possibility to onvert

[ φ1 φ2 φ3 φ4 φ5
ψ1 ψ2 ψ3 ψ4 ψ5

]→ [ v1 v2 v3 v4 v5
w1 w2 w3 w4 w5

] (9.51)by PSL (3,C)×PSL (3,C) transformations, or by loal equivalene in our usualterms, is the same as the possibility to separately onvert {φi}5i=1 into {vi}5i=1 and{ψj}5j=1 into {wj}5j=1 by some PSL (3,C) transformations. However, we knowthat the �rst onversion is possible if and only if s1 and s2 are positive, while theseond needs positivity of s3 and s4. Altogether, positivity of all the invariants
si, i = 1,2,3,4 is a neessary and su�ient riterion for the transformation (9.51)to be possible.In the ontext of produt vetors in the kernel of a PPT state, as well aselements of an orthogonal UPB, permutations are obviously possible. Thereforewe would like to have a version of Proposition 9.22 with no restrition on theordering of the vetors {φi ⊗ ψi}5i=1.Proposition 9.23. A set of produt vetors {φi ⊗ψi}5i=1 ⊂ C3 ⊗ C3 an betransformed by a PSL (3,C)×PSL (3,C) transformation to an orthogonal UPB,if and only if for some permutation κ the invariants s1, s2, s3 and s4, alulatedwith the permuted vetors φκ(i) and ψκ(i) substituted for φi and ψi, respetively,are all positive.Proof. Immediate given the fat [162℄ that an orthogonal UPB in a 3×3 systeman always be brought by a permutation to a {vi ⊗wi}5i=1 with the orthogonalityrelations as in Proposition 9.22.Let us also note that, in aordane with [166℄, not every single permutationof the �ve produt vetors needs to be onsidered if we want to hek whetherthey an be transformed into an orthogonal UPB or not.Remark 9.24. Only 12 permutations, given in Table 9.2, have to be hekedin order to obtain a deisive answer to the question raised in Proposition 9.23.132



σ1 ∶ ( 1 2 3 4 5

1 2 3 4 5
) σ2 ∶ ( 1 2 3 4 5

1 3 2 4 5
)

σ3 ∶ ( 1 2 3 4 5

2 1 3 4 5
) σ4 ∶ ( 1 2 3 4 5

2 3 1 4 5
)

σ5 ∶ ( 1 2 3 4 5

3 1 2 4 5
) σ6 ∶ ( 1 2 3 4 5

3 2 1 4 5
)

σ7 ∶ ( 1 2 3 4 5

1 2 4 3 5
) σ8 ∶ ( 1 2 3 4 5

1 4 2 3 5
)

σ9 ∶ ( 1 2 3 4 5

2 1 4 3 5
) σ10 ∶ ( 1 2 3 4 5

2 4 1 3 5
)

σ11 ∶ ( 1 2 3 4 5

1 3 4 2 5
) σ12 ∶ ( 1 2 3 4 5

1 4 3 2 5
)Table 9.2: A list of representatives of the 12 equivalene lasses of the symmetrigroup S5 under left multipliation by the regular pentagram group.Proof. An explanation is inluded in [157℄ and [166℄, but we repeat it quiklyhere for ompleteness. Let us denote by S5 the symmetri group of {1,2, . . . ,5}.The permutations given in Table 9.2 are representatives of equivalene lassesin S5 of the regular pentagon subgroup G, generated by the yle (1 2 3 4 5) andthe inversion ( 1 2 3 4 5

5 4 3 2 1
). The regular pentagon symmetry subgrouphas the expeted property that it does not hange signs of s1, s2, s3 and s4,just as it does not hange orthogonality relations between the vetors {vi}5i=1and {wj}5j=1. Therefore, we may divide S5 by G when we hek positivity of theinvariants in Proposition 9.23. The number of invariane lasses is 12 beause

#S5 = 5! = 120 and #G = 10.
9.7 Determination of a PPT state by produtvetors in its kernelIn the last part of the proof of our main result, onerning PPT states of rankfour in two qutrit systems, we reall a number of surprising fats that wereearlier reported in [166, Setion 5℄ without a omplete explanation. Here we �llin that little gap, and we ollet a su�ient amount of information to quiklyexplain the �ndings of Leinaas et al., onerning the relation of extreme PPTstates to Unextendible Produt Bases [157℄.Note that, given a set of produt vetors in Kerρ, the onditions in Lemma9.8 are a set of linear equations for ρ. An idea, earlier presented in [166℄, isto try to solve these equations assuming a spei� form of the produt vetors,133



namely (9.6). Let us repeat formula (9.6) here for the onveniene of the reader.
[ φ1 φ2 φ3 φ4 φ5
ψ1 ψ2 ψ3 ψ4 ψ5

] =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 1 1

0 1 0 1 p

0 0 1 1 q

1 0 0 1 1

0 1 0 1 r

0 0 1 1 s

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥⎦
, (9.52)We atually know from Proposition 9.19 that there always exists a loal SL (3,C)⊗SL (3,C) transformation A⊗B that brings �ve vetors in the kernel of a non-separable PPT state of rank 4, possibly multiplied by some salar fators, intothe form (9.52) with all triples linearly independent. Moreover, Proposition9.20 tells us that the parameters p, q, r and s are neessarily real numbers. Bysolving the linear onditions on a PPT state following from Lemma 9.8 with

φi ⊗ ψi, i = 1,2, . . . ,5 as in (9.52) substituted for φ ⊗ ψ, we will atually besolving a set of onstraints on (A−1 ⊗B−1)∗ ρ (A−1 ⊗B−1). However, aordingto the disussion in Setion 9.2, suh loal transformations are irrelevant to allthe questions onsidered in this paper. Therefore we may simply assume that aPPT state ρ in question has the produt vetors (9.52) in its kernel and hekthe onsequenes. As previously reported by the authors of [166℄, the onditions⟨φi ⊗ψj , ρ (φk ⊗ ψi)⟩ = 0 for i, j, k ∈ {1,2,3} together with ρ (φ4 ⊗ ψ4) = 0 and⟨φ1 ⊗ ψ4, ρ (φ4 ⊗ψ2)⟩ = 0 imply the following form of ρ,
ρ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 0 0

0 a1 b1 0 0 0 0 b2 0

0 b1 a2 0 0 b3 0 0 0

0 0 0 a3 0 b4 b5 0 0

0 0 0 0 0 0 0 0 0

0 0 b3 b4 0 a4 0 0 0

0 0 0 b5 0 0 a5 b6 0

0 b2 0 0 0 0 b6 a6 0

0 0 0 0 0 0 0 0 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥⎦

, (9.53)
with ai and bj real for all i, j ∈ {1,2, . . . ,6} and suh that

a1 + b1 + b2 = 0, b1 + a2 + b3 = 0, a3 + b4 + a4 = 0, (9.54)
b3 + b4 + a4 = 0, b5 + a5 + b6 = 0, b2 + b6 + a6 = 0, (9.55)

a1 + b1 + b2 = 0. (9.56)Derivation of the equations (9.53) and (9.54)�(9.56) is left as a simple exerisefor the reader. It may be useful to onsult Setion 5.4 of [166℄ in order to solveit. We still have not used the ondition ρ (φ5 ⊗ψ5) = 0, whih gives us additional134



six linear equations on a1, . . . , a6 and b1, . . . , b6,
−r (b1 + b2) + qrb2 + sb1 = 0, rb1 − s (b1 + b3) + psb3 = 0, (9.57)
−p (b4 + b5) + qb5 + psb4 = 0, pb4 + sb3 − ps (b3 + b4) = 0, (9.58)
pb5 − q (b5 + b6) + qrb6 = 0, qb6 + rb2 − qr (b2 + b6) = 0. (9.59)Under the assumption of {φi ⊗ ψi}5i=1 of the form (9.52) being a gUPB, thereexists, up to saling by arbitrary real fators, exatly one solution to the equa-tions (9.54)�(9.59). We know from Proposition 9.19 that the assumption is truefor vetors φi ⊗ ψi in the kernel of a non-separable rank 4 PPT state in 3 × 3systems. It is most important for us that there exist, up to saling by arbitrarypositive fators, exatly two solutions

±

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 0 0

0 qr−s

r(q−1) 1 0 0 0 0 r−s
r(1−q) 0

0 1 r−ps

s(1−p) 0 0 r−s
s(p−1) 0 0 0

0 0 0
(r−s)(ps−q)
p(p−q)(s−1) 0 r−s

p(1−s)
r−s
q−p

0 0

0 0 0 0 0 0 0 0 0

0 0 r−s
s(p−1)

r−s
p(1−s) 0

(p−s)(r−s)
p(p−1)s(s−1) 0 0 0

0 0 0 r−s
q−p

0 0
(qr−p)(r−s)
q(1−q)(r−1)

r−s
q(q−1) 0

0 r−s
r(1−q) 0 0 0 0 r−s

q(q−1)
(q−r)(r−s)
q(1−q)r(r−1) 0

0 0 0 0 0 0 0 0 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥⎦

.(9.60)The above matrix is well-de�ned sine all the numbers p, q, r, s, p − 1, q − 1,
r − 1, s − 1, p − q and r − s are nonzero as a onsequene of all triples of vetorsin (9.52) being linearly independent.Note that, for both hoies of sign, (9.60) is a symmetri matrix. Moreover,it is symmetri with respet to the partial transpose. Therefore ρ is PPT i� it ispositive de�nite. A neessary ondition for (9.60) to be positive de�nite is thatall the nonzero elements on its diagonal, as well as all nontrivial 2× 2 minors ofthe form ∣ ρii ρij

ρji ρjj
∣ are positive. Altogether, we have six nonzero elements onthe diagonal

± { qr − s
r (q − 1) ,− r − ps

s (p − 1) , (r − s) (ps − q)p (p − q) (s − 1) ,
(p − s) (r − s)

p (p − 1) s (s − 1) ,− (qr − p) (r − s)q (p − q) (r − 1) , (r − q) (r − s)q (q − 1) r (r − 1)} , (9.61)135



and six nontrivial minors
{− (r − s) (qr − ps)

r (p − 1) s (q − 1) ,− (q − s) (r − s)q (q − 1) r (r − 1) ,
(p − r) (r − s)

p (p − 1)s (s − 1) , (q − s) (r − s)2
p (p − 1) (p − q) s (s − 1) ,

(r − s)2 (qr − ps)
p (p − q) q (r − 1) (s − 1) ,− (p − r) (r − s)2(p − q) q (q − 1)r (r − 1)} . (9.62)The ± sign in (9.61) orresponds to the hoie we make in (9.60). We seethat all the expressions in (9.62) and (9.61) are quotients and produts of thefollowing nineteen numbers
p, q, r, s, p − 1, q − 1, r − 1, s − 1, p − q, r − s, (9.63)

p − r, q − s, p − s, r − q, ps − q, qr − p, r − ps, qr − s, qr − ps. (9.64)Conerning the list (9.63), we already know that all its elements have to benonzero. This follows from the ondition of {φi ⊗ ψi}5i=1 being a gUPB. It turnsout that the same holds for the elements of (9.64). The number qr − ps mustbe nonzero, beause otherwise the vetor
φ5 ⊗ ψ5 − qrφ4 ⊗ψ4 − q (s − r)φ3 ⊗ψ3 − r (p − q)φ2 ⊗ ψ2 (9.65)would be of the form φ1 ⊗ ψ′ + φ′ ⊗ ψ1, thus ontraditing Lemma 9.10 andCorollary 9.18. In a similar way, one an show that p − r ≠ 0 and q − s ≠ 0. Letus now assume that ps− q = 0. In suh ase, we have the following submatrix in(9.60)

±
⎡⎢⎢⎢⎢⎣
(r−s)(ps−q)
p(p−q)(s−1)

r−s
p(1−s)

r−s
p(1−s)

(p−s)(r−s)
p(p−1)s(s−1)

⎤
⎥
⎥
⎥
⎥⎦ = ±

⎡⎢⎢⎢⎢⎣
0 r−s

p(1−s)
r−s

p(1−s)
(p−s)(r−s)
p(p−1)s(s−1)

⎤
⎥
⎥
⎥
⎥⎦ . (9.66)In order for (9.66) to be positive de�nite for some hoie of the sign ±, we need tohave r−s = 0, whih we know is impossible. Thus we have proved that ps−q ≠ 0for ρ positive de�nite. Finally, the fat that qr − p, r − ps and qr − s must alsobe nonvanishing for ρ positive de�nite follows by a suitable modi�ation of theabove argument. Di�erent submatries need to be hosen, but otherwise theproof is idential.Our task in the following will be to relate positivity of all the numbers in(9.61) and (9.62) to the fat that all the invariants s1, . . . , s4, given in Setion 9.6,are positive, possibly after we suitably permute the vetors φi ⊗ ψi. Note thatwe already know that only the 12 permutations listed in Table 9.2 need to beonsidered. An explanation is inluded in the proof related to Remark 9.24. Notto muh surprise, the formulas for the invariants s1, . . . , s4 for permuted vetorsof the form (9.52) are always expressed as produts and quotients inluding onlythe numbers listed in (9.63). Expliit formulas an be found in Table 9.3. To136



σ1 ∶ −p
q
, q − 1, r−s

s
, r
1−r

σ2 ∶ − q
p
, p − 1, s−r

r
, s
1−s

σ3 ∶ − 1
q
, q−p
p
, 1−s
s
, 1
r−1

σ4 ∶ −q, 1−p
p
, s − 1, s

r−s

σ5 ∶ − 1
p
, p−q
q
, 1−r
r
, 1
s−1

σ6 ∶ −p, 1−q
q
, r − 1, r

s−r

σ7 ∶ p−q

q
, 1
q−1

,− r
s
, s−r
r−1

σ8 ∶ q

p−q
, 1−p
q−1

, r
s−r

,−s
σ9 ∶ − q−1

q
, p

q−p
,− 1

s
, 1−s
r−1

σ10 ∶ q

1−q
, p−1
q−p

, 1
s−1

,− s
r

σ11 ∶ q−p

p
, 1
p−1

,− s
r
, r−s
s−1

σ12 ∶ p

q−p
, 1−q
p−1

, s
r−s

,−rTable 9.3: Formulas for the invariants s1, . . . , s4, alulated for vetors of theform (9.52) permuted by the 12 inequivalent permutations in Table 9.2.explain the notation we used in the table, it is su�ient to say, for example, thatby using σ6 from Table 9.2 to permute the produt vetors (9.52), we obtain
s1 = −p, s2 = (1 − q)/q, s3 = r − 1 and s4 = r/(s − r) as the expressions for theinvariants.It turns out that the values of s1, . . . , s4 orresponding to one of the permu-tations σi have to be all positive to assure that ρ, given in (9.60), is a positivematrix for some hoie of the sign ±. Our omputer-aided proof of this fatonsisted in simply heking all admissible sign hoies for the numbers listedin (9.63) and (9.64). We already know that neither of those numbers an bezero, and thus it seems that we have 219 ases to hek. However, some furtheronstraints apply, whih redue this number onsiderably. First of all, the re-quirement that ±(p − s) (r − s)/(p (p − 1)s (s − 1)) of the list (9.61) and a verysimilar element (p − r) (r − s)/(p (p − 1) s (s − 1)) of (9.62) have the same signimplies that p−r = ± (p − s), with the ± sign depending on the hoie we made in(9.60). Along the same lines, by omparing the last element of (9.61) with theseond element of (9.62), one an prove that r−q = ∓ (q − s). More importantly,the signs of the numbers listed in (9.63) and (9.64) are not all independent.Various relations have to hold between them. For example, p − 1 > 0 learlyimplies p > 0, and we annot have a plus sign for p − 1 and a minus sign for p.More sophistiated relations like

(r < 0 ∧ q − 1 < 0 ∧ r − ps > 0)⇒ qr − ps > 0. (9.67)have to hold as well. Alternatively, the above formula an be written as
¬ (r < 0 ∧ q − 1 < 0 ∧ r − ps > 0 ∧ qr − ps < 0) . (9.68)We provide a more or less exhaustive list, onsisting of 76 elements, in Tables9.4 and 9.5 on pages 139 and 140. For example, the relation 9.68 orrespondsto the following row in Table 9.4,p q r s pp qq rr ss pq rs pr ps rq qs qrp qrs psq rps qrps� � + �whih should explain the notation we used1. While some further relations ouldstill possibly exist, the use of those listed in the appendix allowed us to on�rm1To better explain the symbols in the header of Tables 9.4, 9.5 and 9.6, let us add that pp,137



the neessity result mentioned above. When all the onstraints are imposed,a omparably small number of 761 or 352 out of the 219 sign hoies remainpossible when �+� or �−� is �xed in (9.60), respetively. It then turns out that,by hoosing an admissible sign on�guration, all the numbers in the lists (9.61)and (9.62) an be made positive only if one of the quadruples listed in Table 9.3onsists solely of positive numbers. This is in full agreement with, and providesa rigorous, although not very insightful proof of the results reported in Setion5 of [166℄. Atually, it turns out that there are preisely 12 admissible signon�gurations that orrespond to a positive ρ for some hoie of the sign ±in (9.60) and eah of the quadruples in Table 9.3 is positive preisely for oneof them. A omplete list of the seleted sign hoies and the orrespondingpermutations is given in Table 9.6. Interestingly, 10 of them orrespond tohoosing the plus sign in (9.60), while only 2 to the minus sign. This is ratheran uneven partitioning of the total of 12 on�gurations, whih is somewhatpuzzling.To summarize, the omputer-aided proof we arried out allows us to statethe following.Proposition 9.25. A neessary and su�ient riterion for a generalized Unex-tendible Produt Basis {φi ⊗ψi}5i=1 ⊂C3⊗C3 to belong to the kernel of a rank 4PPT state ρ is that there exists a permutation of the vetors φi⊗ψi that it yieldsall the values of the invariants s1, s2, s3 and s4, de�ned as in equations (9.29),(9.30), (9.49) and (9.50), positive. When heking positivity of si, it is possibleto onsider only the 12 permutations, listed in Table 9.2, and the orrespondingexpressions for the invariants, given in Table 9.3.Proof. First of all, let us note that a separable state ρ annot have a gUPB inits kernel, sine it must have a produt state in its range. Thus in the followingwe may always assume that ρ is entangled. Let us prove su�ieny �rst. If theinvariants are positive for the permuted vetors φ′i⊗ψ′i ∶= φσ(i)⊗ψσ(i), we knowfrom Proposition 9.23 that there exists a SL (3,C) ⊗ SL (3,C) transformation
A⊗B suh that the transformed vetors (A⊗B)φ′i ⊗ψ′i = (A⊗B)φσ(i)⊗ψσ(i)are elements of an orthogonal UPB {vi ⊗wi}5i=1. With no loss of generality, wemay assume that the vetors vi ⊗wi are normalized to unity. In suh ase theprojetion

ρ′ ∶= 1 − 5

∑
i=1

∣vi ⊗wi⟩ ⟨vi ⊗wi∣ (9.69)has all the vetors vi ⊗ wi in its kernel and it is a PPT entangled state [106℄.The loally transformed PPT state ρ = (A⊗B)∗ ρ′ (A⊗B) has all the vetors
φi ⊗ ψi in its kernel.In order to prove neessity, note that from the disussion above we know thatpositivity of s1, . . . , s4, possibly after a permutation, is a neessary ondition for
qq, rr and ss denote p− 1, q − 1, r − 1 and s− 1, respetively, while pq, rs, pr, rq, qs, qrp, qrs,
psq, rps and qrps stand for p − q, r − s, p − r, r − q, qr − p, qr − s, ps − q, r − ps and qr − ps,respetively. 138



p q r s pp qq rr ss pq rs pr ps rq qs qrp qrs psq rps qrps+ + + �+ + + �+ � � ++ � � ++ + � �+ + + �+ � + ++ � � ++ + � �+ + � �+ � + ++ � + ++ + + ++ + � ++ � � �+ � + �+ � + �+ + � ++ + � �+ � + ++ � + �+ + � ++ + + �+ � � +� + � +� � + �� � + �� + � +� � � �� � + �� + + +� + � +� � � �� � � �� + + +� + + +� + � �� + + �� � + +� � � +Table 9.4: Non-admissible sign hoies. Part I.a PPT entangled state ρ′ with vetors φi ⊗ ψi in its kernel to exist, providedthat the vetors are as in equation (9.52). But any gUPB {φi ⊗ ψi}5i=1 an bebrought to the form (9.52) by a loal transform, say C ⊗D. If we assume thata PPT state ρ has {φi ⊗ ψi}5i=1 in its kernel, then the loally transformed ρ′′ ∶=(C−1 ⊗D−1)∗ ρ (C−1 ⊗D−1) has (C ⊗D)φi⊗ψi in its kernel. But (C ⊗D)φi⊗
ψi are of the form (9.52). From the above disussion, ρ′′ is PPT if and onlyif the invariants s1, . . . , s4 are positive, possibly after we permute the vetors(C ⊗D)φi ⊗ ψi. But C ⊗D does not hange the value of the invariants, andthus φi ⊗ψi, permuted in the same way as the (C ⊗D)φi ⊗ψi, must also haveall of them positive.Let us also state the following result, whih should be expeted from thedisussion above. 139



p q r s pp qq rr ss pq rs pr ps rq qs qrp qrs psq rps qrps� + + �� � � +� � � �� + + +� + + �� � � +� � + �� + � +� +� +� +� +� + ++ � �+ � �� + +� + ++ � �� + ++ � �� + +� + ++ � �+ � �� + +� + ++ � �+ � �+ � ++ � +� + �� + �� + +� + ++ � �+ � �Table 9.5: Non-admissible sign hoies. Part II.Proposition 9.26. Let {φi ⊗ψi}5i=1 ⊂ C3 ⊗C3 be a gUPB that yields, after asuitable permutation of the produt vetors, positive values of all the invariants
s1, . . . , s4. The PPT state ρ with {φi ⊗ψi}5i=1 in its kernel is uniquely deter-mined, up to saling by a onstant positive fator.Proof. We already know that the assertion of the proposition holds for gUPBsof the form (9.52). We also know that any gUPB {φi ⊗ ψi}5i=1 an be lo-ally transformed so that it looks like in (9.52). Let us denote the trans-formation whih does it by C ⊗ D. There annot exist two PPT states ρ1and ρ2 with {φi ⊗ ψi}5i=1 in their kernels, beause in suh ase the PPT states(C−1 ⊗D−1)∗ ρ1 (C−1 ⊗D−1) and (C−1 ⊗D−1)∗ ρ2 (C−1 ⊗D−1) would both havethe same gUPB of the form (9.52) in their kernel, whih we know is not possi-ble. 140



p q r s pp qq rr ss pq rs pr ps rq qs qrp qrs psq rps qrps
σ1 � + + + � + � � � + � � � + + + � + +
σ2 + � + + + � � � + � + + + � � � + � �
σ3 � � + + � � + � + + � � + � � � + + �
σ4 + � + + � � + + + + � � + � � � + + �
σ5 � � + + � � � + � � � � + � + � � + +
σ6 � + + + � � + + � � � � + � + � � + +
σ7 + + + � + + � � + + + + � + � + � + +
σ8 + + � � + � � � + + + + � + � + � + +
σ9 + + + � � � + � � + � + + + + + � + +
σ10 + + � + � � � + + � + � � � � � + � �
σ11 + + � + + + � � � � + + + + � � � � �
σ12 + + � � � + � � � � + + � + � � � � �Table 9.6: Sign hoies that yield a positive ρ and obey all the onstraints ofTables 9.4 and 9.5 on pages 139 and 140.9.8 The main resultUsing the knowledge from the previous setions, we an now easily prove ourmain result.Theorem 9.27. Positive-partial-transpose states of rank 4 in 3× 3 systems areeither separable or they are of the form

ρ = (A⊗B)∗ (1 − 5

∑
i=1

∣vi ⊗wi⟩ ⟨vi ⊗wi∣) (A⊗B) (9.70)with A,B ∈ SL (3,C) and {vi ⊗wi}5i=1 an orthonormal Unextendible ProdutBasis. In the latter ase, they are entangled, and extreme in the set of PPTstates. The rank of the partial transpose of the state is 4 in ase of nonseparablestates.Proof. In ase of separable states, there is nothing to prove. Let ρ be a non-separable PPT state of rank 4 in a 3×3 system. We know from Proposition 9.19that there is a generalized UPB, say {φi ⊗ ψi}5i=1, in the kernel of ρ. From Propo-sition 9.25 we know that the orresponding values of the invariants s1, . . . , s4must be all positive after we suitably permute the vetors φi⊗ψi. Next, Propo-sition 9.22 tells us that there exists a SL (3,C)⊗SL (3,C) transformation A⊗Bthat brings {φi ⊗ ψi}5i=1 to an orthogonal UPB {vi ⊗wi}5i=1. With no loss of gen-erality, we may assume that the vetors vi⊗wi are normalized. From Proposition9.26 we know that there exists, up to saling, exatly one PPT state whih has{vi ⊗wi}5i=1 in its kernel. It must be 1−∑5
i=1 ∣vi ⊗wi⟩ ⟨vi ⊗wi∣. The state givenby the formula (9.70) learly is PPT, and it has all the vetors φi ⊗ ψi in itskernel. By using Proposition 9.26 again, we see that it must be equal to the

ρ we started with. The fat that the rank of the partial transpose is 4 fornon-separable states, is simply the assertion of Proposition 9.15.In this way, we have obtained a full haraterization of bound entangledstates of minimal rank. Let us also mention a speial property they have, whih141



an be loosely desribed as saying that it is not enough for an entanglementwitness to be indeomposable in order to detet them.Remark 9.28. Aording to [169, Lemma 3℄, all PPT states of rank 4 in 3× 3systems an be written as a sum of four projetions onto vetors of Shmidt rank
2. By Theorem 9.27, or Proposition 9.15, their partial transposes are also ofrank 4 and thus an be deomposed in an analogous way. Using the notationof [101℄, we an write that all suh PPT states are elements of the one S2,2. Thedual one S○2,2 = D2,2 onsists of Jamioªkowski-Choi transforms of onvex sumsof 2-positive and 2-o-positive maps. Consequently, any entanglement witnessthat detets a PPT state of rank 4 in a 3×3 system is atomi [170℄. This appliesin partiular to the witness disussed in Example 1 of [171℄ and the Choi map,in relation to the PPT state disussed in Setion 4 of [109℄.
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ConlusionComputational advanes in the �eld of algebrai geometry have not beomewell-known among the quantum information ommunity, despite a number ofproblems that are, at the very bottom, systems of polynomial equations. In thepresent thesis, I tried to outline a few possible appliations of Groebner basismethods in quantum information and quantum entanglement siene, inluding:� Compression equations for Quantum Error Corretion (QEC), Setion 8.1� Completely Entangled Subspaes (CES), Setion 8.2� Maximally entangled states, Setion 8.3� Mutually Unbiased Bases (MUBs) and Symmetri Informationally Com-plete vetors (SICs), Setions 8.4 and 8.5The main result, whih is a haraterization of rank four entangled states oftwo qutrits with positive-partial-transpose (PPT), was presented in Chapter 9.Its proof uses a tool from algebrai geometry, but this time it is the theoremof Bezout, a basi result in intersetion theory. In the thesis, I also inluded afew problems that I solved during my PhD studies using simple algebra triks.They an be found in Chapter 7. Moreover, I felt it was appropriate to present aharaterization result for ertain ones of positive maps, inluded in Chapter 6.The entral idea of the thesis was that the problems solved should be al-gebrai in nature. Obviously, I also required them to be of interest for thequantum information ommunity. I did not presume the readers to be expertsneither in mathematis, nor in foundational or pratial questions relating toquantum mehanis. Hene, I inluded introdution to both the mathematialapparatus I used and to ertain aspets of quantum theory. I hope the thesismay ontribute to a better understanding of some tools of algebrai geometryamong the quantum information ommunity and hene lead to their new appli-ations in areas suh as the lassi�ation of PPT states or Completely EntangledSubspaes, solving QEC equations or the investigation of MUBs and SICs, andhopefully a few more. One of big questions that remains open is how to under-stand all the numerial �ndings on PPT states inluded in the work by Leinaas,Myrheim and Sollid [168℄. I believe algebrai geometry, whih turned out tobe so useful in the three-by-three, rank four ase, ould still be used to explainproperties observed for higher rank and/or higher dimensional ases. However,143



there does not seem to exist a diret generalization of the results of Chapter 9to these ases.
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