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Abstract

The developments over recent years in the research of liquid crystals with non-standard

symmetry fuel intensified endeavors, as scientists turn their attention to exotic liquid

crystal compounds, such as bent-core mesogens, ferrocene mesogens and, recently, flexible

dimers, which, according to many reports, produce phases unlike anything studied before.

Among the most notable properties of these phases is ambidextrous chirality – where in

the nematic phase the sample forms domains of opposite handedness. Furthermore, the

biaxial nematic phase continues to garner interest. This phase had been long missing,

but has been supposedly discovered in a bent-core liquid crystal in 2004 – a finding

which was subsequently criticized, but spurred a heated dispute over the experimental

feasibility of stabilizing the biaxial nematic phase, which has also lead to discussion

whether the phase could be field-stabilized (and if this was actually the case in the

famous experiments). Further results hint also at long-range tetrahedratic ordering and

the curious phenomenon of spontaneous chiral symmetry breaking and forming of chiral

twisted macroscopic states. The twist-bend nematic phase, which has been recently

discovered for flexible dimers, appears to exhibit helical-conical twists of pitch at the

nano-scale, apparently spanning only several molecules, which is particularly surprising,

since in most of the chiral phases, such as the cholesteric phase, the pitch is hundreds to

thousands of molecules long. Since a satisfying theoretical account of these effects in the

form of a microscopic model has not been yet given, the present thesis aims to recreate

these phenomena in the framework of a generalized lattice dispersion model, studied by

Monte Carlo simulations and by application of mean-field theory.

After a general introduction to liquid crystals and their symmetries in Chapter 1, in

Chapter 2 the model is defined through the formalism of symmetrized irreducible spher-

ical tensors, which we use as symmetry-adapted building blocks. In the dispersion inter-

action potential, which can be represented as coupling of molecular multipolar moments

of two molecules, we consider the molecular quadrupolar moment Q(Ω̂), which consists

of a cylindrically-symmetric uniaxial part and a biaxial part of rectangular-cuboidal

symmetry, and the molecular octupolar moment T
(3)
2 , which is a spherical tensor of the

symmetry of a regular tetrahedron. Two intermolecular coupling terms are constructed

out of the respective multipolar moments involving coupling of moments of the same

order exclusively. Additionally, a term quadratic in a generalized external vector field

is introduced, where the molecular diamagnetic or dielectric polarizability tensor is as-

sumed proportional to the molecular quadrupolar moment. Finally, two terms which

account for coupling of the quadrupolar and octupolar moments to the intermolecular

vectors are proposed. The full Hamiltonian considers intermolecular interaction between
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nearest neighbors on a simple cubic lattice with periodic boundary conditions. This gen-

eral model is subsequently studied in three limit cases, the model of a biaxial nematic

in an external field in Chapter 3, the model with quadrupolar and tetrahedratic octupo-

lar coupling terms in Chapter 4 and its extension to intermolecular vector coupling in

Chapter 5.

The first considered case, which is the model of a biaxial nematic in an external field,

can be regarded as an extension of a well-known model, which was studied extensively

by Luckhurst and Romano, who built up from the pioneering work of Freiser in 1970

and Straley in 1974. This model is known to produce the Maier-Saupe transition from

the isotropic to the uniaxial nematic phase, as well as a low-temperature second-order

transition to the biaxial nematic phase. In the parametrization which we use, a scalar

parameter λ mixes two symmetrized irreducible tensors, which correspond to uniaxial

and biaxial symmetries to compose the molecular quadrupolar moment Q(Ω̂) – a second-

rank symmetric and traceless tensor. Q(Ω̂) can be regarded as the anisotropic part of

the molecular (dielectric or diamagnetic) polarizability tensor and varying λ represents

modulating the shape of the molecule. The spectrum of λ covers shapes from uniaxial

prolate (rodlike) to uniaxial oblate (discotic) molecules, with biaxial shapes of either

tendency in between. A symmetry transformation of the Luckhurst-Romano model exists

between the prolate and oblate sides of the range of possible values of λ, with a pivot

point at a special value, called the self-dual point (at which the model is symmetric with

itself), which also corresponds to completely (maximally) biaxial molecules (ones which

cannot be unequivocally classified as either prolate or oblate). By an addition of a term

quadratic in field and linear in Q(Ω̂) to this model, we study the field-induced effects on

the bulk sample of mesogens which exhibit interactions of uniaxial and biaxial symmetry.

Firstly, the effects of arbitrary non-zero field are predicted through considering the min-

imum of the field interaction potential in all phases, for both cases of anisotropy of

the molecular polarizability (positive or negative) and with respect to varying λ. This

analysis reveals a duality transformation of the model which involves switching the sign

of molecular anisotropy and the shape tendency (shifting λ about the self-dual point)

simultaneously, thus linking the effects encountered for prolate molecules with positive

molecular anisotropy to those encountered for oblate molecules with negative molecu-

lar anisotropy and, conversely, those encountered for prolate molecules with negative

anisotropy to effects present for oblate molecules with positive molecular anisotropy. In

the last two cases the field induces biaxiality in the nematic phase. The field effects at

the self-dual point need to be treated separately because of the high symmetry involved.

Subsequently, the phase diagrams of the model are studied in the space of the temperature

and a field parameter, which is the product of the squared field magnitude and the
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molecular anisotropy. (This allows us to consider the cases of positive and negative

anisotropy and varying field magnitude on the same phase diagram by using only one

parameter.) The isotropic to uniaxial nematic phase transitions terminates at a critical

point for prolate molecules of positive molecular anisotropy and for oblate molecules

of negative molecular anisotropy, as the field is increased. For the remaining cases the

transition is made continuous at a tricritical point for a sufficiently large magnitude

of the field. Using a mean-field high-temperature expansion the critical and tricritical

points are studied. Values of critical field and critical temperature are found for both

cases in the entire molecular shape spectrum, parametrized by λ. The main result states

that when the self-dual point is approached from either side (the molecular biaxiality

is increased), the critical field for both the critical and tricritical points is lowered and

is zero at the self-dual point. The critical temperature for the both cases is found to

increase with λ. Mean-field calculations and Monte Carlo simulations are carried out for

selected values of λ and at the self-dual point to study the exemplary phase diagrams

for the model in detail. As expected on the grounds of the duality transformation, the

shapes of the phase diagrams for prolate and oblate molecules are mutually inverted

with respect to the field parameter. In both cases the temperature of the isotropic

to uniaxial nematic phase transition is increased with field. The biaxial phase and

the transition temperature is not altered by the increased field in the cases of prolate

molecules of positive molecular anisotropy and for oblate molecules of negative molecular

anisotropy, while for the remaining cases the biaxial phase is also induced in the uniaxial

nematic phase and the zero-field transition to the biaxial nematic phase is removed.

For maximally biaxial molecules (for λ at the self-dual point) the external field works to

reduce the temperature of the transition to the biaxial phase (for either case of molecular

anisotropy), which is the only case of field-lowering of the transition temperature for this

model.

The lattice dispersion model with quadrupolar and tetrahedratic octupolar coupling

terms was originally postulated by Longa, Pająk and Wydro [1] and our aim here is to

extend the research by providing detailed analysis in the terms of temperature scans

of order parameters, fluctuation of energy and order parameter susceptibilities for some

of the cases which have not been yet considered. In Chapter 4 we study the model for

representative values of λ (including the self-dual point) and for two cases of the coupling

constant which scales the tetrahedratic interaction term, τ . The first case corresponds to

a phase diagram dominated by nematic phases, already obtained in [1], but for which no

temperature dependence of the order parameters and susceptibilities has been previously

given. The second case leads to a phase diagram with a multicritical point at which six

phases: isotropic, nematic uniaxial oblate, tetrahedratic, nematic tetrahedratic prolate,

nematic tetrahedratic oblate and chiral nematic tetrahedratic meet. The results for the
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nematic-dominated phase diagram corroborate the previous result from [1]. The biaxial

nematic phase exists only in the vicinity of the self-dual point, while away from it there

exist sequences of isotropic, nematic uniaxial, nematic tetrahedratic and chiral nematic

tetrahedratic phases, with decreasing temperature. The phase transitions associated with

spontaneous breaking of tetrahedratic symmetry are manifestly first-order and the phase

transitions to the biaxial nematic and chiral phases are second order. For the second

case, for which the multicritical point is found, there exists a direct first-order phase

transition from the isotropic phase to the chiral nematic tetrahedratic phase at the self-

dual point. For the remaining cases the expected purely tetrahedratic phase is not found,

as it exists in a too narrow temperature range. Instead, a sequence of phases is found of

isotropic, nematic tetrahedratic and chiral nematic tetrahedratic phases, with lowering

temperature. As before, the isotropic to nematic tetrahedratic phase transition is first

order, while the nematic tetrahedratic to chiral nematic tetrahedratic phase transition is

second-order. The chiral nematic tetrahedratic phase is not only chiral, but also spatially

homogeneous and biaxial. This might come across as counter-intuitive, as chirality is

known to lead to inhomogeneous ground states. However, this model does not explore

all of the couplings which can be constructed with the tensors present in the theory.

In particular, an antisymmetric tensor can be constructed out of the tetrahedratic oc-

tupolar molecular tensor and the uniaxial and biaxial parts of the molecular quadrupo-

lar tensor. This leads to the interaction terms involving coupling of the quadrupolar

and octupolar tensors to intermolecular lattice vectors, considered in Chapter 5. The

quadrupolar version of this interaction is inserted into the model with quadrupolar and

tetrahedratic octupolar coupling. The resulting model is given a preliminary investiga-

tion, consisting mainly of simulation results in the form of configuration snapshots and

commentary. Firstly, a basic discussion of the ground state of the interaction poten-

tial leads to a conclusion that the minimum is achieved when two neighboring particles

are rotated with respect to each other. This is demonstrated by simulation on a one-

dimensional chain. We follow with a discussion on how the ground state in two and more

dimensions leads to frustration, which results in the formation of complex structures.

Simulations on a two-dimensional lattice show that there exists a phase transition from

the disordered to the chiral phase (this is the only phase transition in two dimensions,

as other degrees of freedom are continuous), in which there appears to be some kind of

reordering and two distinct types of structures are present in the lower and higher tem-

perature regimes. One is identified as a bent-wavefront-cholesteric structure, in which

cholesteric-like layers bend at right angles, but form no defects. The second is a simpler

layered structure, akin to a two-dimensional cholesteric. In three dimensions we have also

identified two distinct structures in the chiral phase, out of which the low-temperature

one is an unidentified complex supramolecular structure, while in the high-temperature



ix

structure the molecules form helical twists in a layer-like structure with a pitch spanning

only several molecules. In this case the bulk cross-sections bear an uncanny resemblance

to the freeze-fracture patterns only recently obtained in experiments on the twist-bend

nematic phase.

In the final chapter we comment on the entirety of the obtained results and on the many

cases which have not been investigated in this thesis.
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Chapter 1

Introduction

1.1 Liquid crystals, typical phases and symmetries

Liquid crystals are intermediate states of matter between liquids and crystalline solids,

possessing some of the properties of both. Anisotropic molecules, called mesogens,

through mutual interaction produce macroscopic states which exhibit ordinary rheology

like that of liquids, and macroscopic anisotropic properties observed in crystals, such as

anisotropy of the dielectric polarizability, birefringence and Bragg peaks in X-ray and

neutron scattering [2]. The liquid properties are due to the retained translational free-

dom, while anisotropy is an effect of long-range orientational ordering of the mesogens,

which on average align along macroscopic axes of anisotropy. Liquid crystalline states,

called mesophases, occur in systems divided into two groups. In thermotropic liquid crys-

tals phase transitions between mesophases occur with changing temperature (or altering

the pressure). Several phases of different symmetry can be observed in sequence with

decreasing temperature for the same compound, before it crystallizes to a solid. On the

other hand, there are lyotropic liquid crystals, where the transitions occur with changing

concentration of a component. They are, in general, mixtures of different compounds

distributed in a solvent and the macroscopic ordering can be produced by alignment of

individual molecules, but also of larger structures, such as anisotropic micellae [3, 4]. In

the presented work we deal with thermotropic mesophases exclusively.

The initial discovery of a mesophase is attributed to botanist Friedrich Reinitzer, who

in 1888 noticed that the synthesized by himself cholesteryl benzoate exhibits two ther-

motropic phase transitions in the liquid phase [5]. Subsequently, he performed several

experiments involving polarized light, which revealed the anisotropic nature of the newly

found state of matter. Puzzled by these discoveries, he contacted Otto Lehmann, who

1
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initially asserted that the intermediate cloudy phase is in fact crystalline, but later con-

cluded that it is in fact an anisotropic liquid and continued Reinitzer’s research [6, 7].

Because the new phase bore the properties of both liquids and crystalline solids, the term

“liquid crystal” was coined and is used to this day, generally in reference to compounds

which produce mesophases. Liquid crystal research was not prominent for nearly half a

century, but experienced an outburst after World War II, when in the oncoming decades

followed many discoveries of new phases and successful theoretical descriptions [2–4, 8–

10] along with numerous practical and commercial applications, such as ubiquitous liquid

crystal displays [11, 12] and electro-optical devices [13].

1.1.1 Typical thermotropic mesophases and symmetries

Thermotropic liquid crystal systems above the highest melting point (called the clearing

point) are ordinary liquids, characterized by the isotropic symmetry of the O(3) group of

proper and improper rotations in 3D space. Lowering the temperature leads to a phase

transition to a mesophase, in which directions of anisotropy are established by sponta-

neous breakdown of rotational symmetry. The simplest example of mesophase, although

not the first to be discovered, is the nematic phase. Calamitic (rod-like or cigar-shaped)

mesogens with large longitudinal anisotropy (e.g. MBBA or PAA [2, c. 1.2]) possess

(on average) an effective axis of cylindrical symmetry, while the intrinsic degrees of free-

dom and anisotropy of secondary axes average out due to thermal fluctuations and the

molecules align with their principal molecular axes in parallel. Among classical nemato-

gens there are no known cases of compounds which produce stable polar nematic phases

[14], hence the average alignment axis, called the director, has no preferred orientation.

The (uniaxial) nematic phase has global symmetry of the D∞h point subgroup of O(3),

which consists of continuous rotation about a fixed axis and one reflection plane perpen-

dicular to the axis of symmetry. In this case, the global symmetry axis is the director. A

phase of identical symmetry is also formed by discotic nematogens (e.g. hexasubstituted

triphenylene [15]), which in average resemble flat disks. In this case the molecular axis of

symmetry is perpendicular to the face of the disk, so that the macroscopic alignment of

faces produces a uniaxial nematic phase. The two varieties are distinguished as uniaxial

nematic prolate NU+, for the alignment of long molecular axes, and uniaxial nematic

oblate NU−, for the alignment of faces.

Traditionally mentioned are also layered mesophases called smectics, in which there also

occurs partial breaking of the translational symmetry and the distribution of centers of

mass exhibits one-dimensional periodicity. Out of the vast variety of smectic phases, we

name a few. The simplest smectic, known as smectic A (SmA), shows nematic order
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a b c d

Figure 1.1: Representations of common liquid crystalline phases: uniaxial nematic pro-
late (a), uniaxial nematic oblate (b), smectic A (c) and smectic C (d). The vector n̂ is
the director.
( c©Barrett Research Group, Creative Commons Attribution-Share Alike 3.0 Unported un-
der fair use.)

within periodic layers with the director normal to the layer. In smectic C (SmC) the

director is tilted with respect to the layer normal by an angle.

1.1.2 Molecular chirality

The phenomenon of molecular chirality in mesogens leads to many new phases. Chiral

molecules are not symmetric with respect to a rotoreflection, just like one’s right hand

cannot be rotated to match the left and vice-versa. Such molecules are optically active,

i.e. there is an asymmetry in the interaction of the molecule with the two helicities of

light and the interaction can alter the light’s polarization [16]. Homogeneous macro-

scopic chirality occurs when a compound, for various reasons, does not possess an isomer

of opposite chirality or when the specific synthetization process favors one of them. The

other case is that molecules of opposite handedness are equally abundant in a mixture.

In this case, domains of opposite chirality can be formed. In terms of microscopic align-

ment, molecular chirality leads to rotated ground states of two molecules with the same

chirality, with a preferred helicity for two left-handed and two right-handed molecules.

In homochiral samples or domains, this induces mesoscopic twisted states. Particularly,

in chiral nematogens, in a homochiral domain there can exist a macroscopic wave vector

along which the perpendicular director rotates, forming a helix with a helicity reflecting

the handedness of the molecules. Cross sections perpendicular to the wave vector exhibit

nematic ordering, while being rotated with respect to each other. This case describes the

cholesteric phase, which was first found in cholesteryls (making it the first liquid crystal

phase discovered).

In some compounds the ground state is frustrated such that the energy minima with

respect to different directions cannot be achieved simultaneously and the frustration is

relaxed by forming superstructures known as blue phases [17, 18]. Many chiral mesogens

also form chiral layered phases, the simplest of which is the chiral smectic (SmC∗) phase,
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a b

Figure 1.2: Representations of common chiral liquid crystalline phases: cholesteric (a),
where the director n̂ is constrained to parallel, subsequently twisted planes, and chiral
smectic (b), where the director n̂ is constrained to the surface of a cone and rotated
between successive layers. ( c©Barrett Research Group, Creative Commons Attribution-
Share Alike 3.0 Unported under fair use.)

in which the tilted director is subsequently rotated between neighboring layers (effectively

being constrained to the surface of a cone.)

1.2 Non-standard phases

While the uniaxial nematic has one axis of symmetry breaking (one Goldstone mode), in

a biaxial nematic the D∞h symmetry is further spontaneously broken and a secondary

axis is formed. Because two distinct axes naturally distinguish a third one, normal to

the plane of the first two, the resulting phase is expected to have anisotropic properties

in three distinct directions. The symmetry of the biaxial nematic phase NB is of the

point group D2h, the symmetry of a rectangular cuboid (Fig. 1.4a), which consists of

reflections along three perpendicular mirror planes and three twofold symmetry axes

perpendicular to the mirror planes.

By analogy, since uniaxial molecules produce the uniaxial nematic phase, the biaxial

phase should be formed by biaxial (brick-like or ellipsoloidal) molecules which align their

primary and secondary axes in a long-range fashion. This was notably observed for

anisotropic micellae in a lyotropic system by Yu and Saupe [19] and more recently in

polymeric systems by Severing et al. [20], but the discovery of a thermotropic mesogen

which produces the biaxial nematic phase has proved far more difficult. Intriguingly, most

nematogens are intrinsically biaxial [21], but produce mostly stable uniaxial phases. The

existence of the biaxial nematic phase has been subject to intensive studies [22–31].

Fairly new accounts report observation of the biaxial nematic phase in systems of bent-

core mesogens [27, 29], as predicted by Teixeira et al. [32], and tetrapode molecules

[28]. The discoveries have been notably questioned [33] and alternative explanations of

the results have been proposed [34], thus in the present there is no mutual consensus as
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Figure 1.3: An example of a bent-core molecule.

to the existence of the biaxial nematic phase, however the attention has been shifted to

non-standard mesogens, such as bent-core molecules and flexible dimers. The proposition

that the biaxial nematic phase might be field-stabilized [34] motivates our work presented

in chapter 3.

Bent-core mesogens are V-shaped molecules with a wide opening angle (typically 120 ∼
140◦) (e.g. see Fig. 1.3), which received interest after their synthetization by Matsunaga

and Matsuzaki in the 1990’s [35]. In these systems several smectic phases have been

discovered [36] and also complex supramolecular structures [37], some discoveries point

to existence of chiral smectic layers [38–40], which is peculiar for achiral molecules. In

general, bent or bendable mesogens in appear to exhibit chiral symmetry breaking and

ambidextrous chirality (spontaneous formation of multiple domains of either handedness)

through conformation changes or forming of superstructures [41], such as mesoscopic

helical and heliconical shapes, as first predicted by Dozov [42] and evidenced by Monte

Carlo simulations [40, 43]. Other examples include spontaneous breaking of chiral and

tetrahedratic symmetry in some ferrocene mesogens, which are allowed to bend due to

the cyclopentadiene rings’ freedom to rotate with respect to each other [44]. Recently, in

flexible dimers (chainstick-like mesogens with a flexible separator, which can attain bent

shapes and also are achiral) there have been reports of an entirely new phase, dubbed

the twist-bend nematic phase [45–49], in which the molecules form heliconical structures

of either handedness. As evidenced by freeze-fracture experiments by the group from

University of Colorado in Boulder [50], these structures have pitch on the nanometer

scale, spanning only several molecules, unlike in other chiral liquid crystals, such as the

cholesteric, where the pitch of the helix is hundreds to thousands of molecules long.

In some sense these discoveries violate the usual intuition that chirality is necessarily

intrinsic. We explore the phenomenon of spontaneous breaking of chirality in chapters 4

and 5.

Symmetry considerations involving bent-core systems lead to a conclusion that a tetra-

hedratic order parameter should be included in their description [51, 52], which hints

that phases of tetrahedratic symmetry may also be encountered. There are indications

that this is indeed the case [53], furthermore it appears possible to induce tetrahedratic

order by an external field in bent-core systems [54, 55]. The tetrahedratic phase T is

optically isotropic (easily mistaken for the isotropic phase) and has the global symmetry



Chapter 1. Introduction 6

a b

Figure 1.4: a) A rectangular cuboid – object possessing the symmetry of the point group
D2h.
b) A regular tetrahedron – object possessing the symmetry of the point group Td.

of the point group Td, which is the symmetry group of the achiral regular tetrahedron

(Fig. 1.4b). An achiral regular tetrahedron has four threefold axes, which pass through

its vertices and the center, and three twofold axes, which lie on the midpoints of opposing

edges. There are six mirror planes formed by two threefold axes and six mirror reflections

combined with a rotation by 90◦. Together with the identity Td is of the order 24. The

inclusion of tetrahedratic symmetry is discussed in chapter 4.

1.3 Introduction to order parameters in liquid crystals

The long history of active liquid crystal research has driven the development of a vast

multitude of theoretical and computational approaches to the subject, much of which

were applied from theories of phase transitions existing in statistical physics. While the

interactions between mesogens are quite complex and calculating their approximations

has grown into separate fields of research, much of this intrinsic complexity can be sacri-

ficed when one isolates the crucial properties of the considered molecules. For instance,

in uniaxial nematics it is sufficient to consider a unit vector ĉi, parametrized accordingly,

to describe the orientation of the i-th molecule. (We remember that the translational de-

grees of freedom are free and at this point we do not need their explicit parametrization.)

The normalized ensemble average
〈ĉi〉
|〈ĉ〉| = n̂, (1.1)

is called the director and represents the average direction of long-range ordering of the

molecules in the sample. An appropriate order parameter which takes into account how

well, on average, the molecules are aligned with the director is defined as (see e.g. [2]):

S =
1

2
〈3cos2θi − 1〉, (1.2)



Chapter 1. Introduction 7

which is the ensemble average of the second Legendre polynomial P2(cosθi). One should

notice that since the molecule (on average) looks the same when reflected along ĉi, the

vector −ĉi is an equally good representation of the orientation of molecule i, thus a choice

of 〈ĉi · ~n〉 = 〈cosθi〉 is not a proper order parameter, as it averages to zero, due to lack

of long range polar order.

A thermotropic nematic above the clearing temperature forms an optically isotropic

liquid, i.e. a phase of uniform spherical symmetry of the rotation group O(3). In such

phase there is no preferred direction and therefore n̂ is not a well-defined vector. The

symmetry enables us to choose any frame of reference, and the average (1.2) yields

zero. When the clearing point is approached with lowering temperature, the vector n̂

is established by spontaneous symmetry breaking. If one knows ~ci, i = 1, 2, · · · , N , the

instantaneous director and S can be computed. S becomes non-zero (in fact abruptly for

uniaxial nematics) and continues to rise as the temperature is lowered. In real systems

we eventually reach another phase transition, e.g. to a smectic phase or crystalline solid,

depending on compound. In an abstract sense, S would reach one if the molecules aligned

precisely along the director. In experiment, S can be measured directly by e.g. NMR,

birefringence or Raman scattering [2].

Calculating order parameters like (1.2) involves computing non-trivial integrals. For a

general microscopic property A:

〈A〉 = Z−1 Tr
{Ω̂i,ri}

[
A({Ω̂i, ηi})e−βH({Ω̂i,ri})

]
, (1.3)

Z = Tr
{Ω̂i,ri}

[
e−βH({Ω̂i,ri})

]
, (1.4)

where β = (kBT )−1 and H({Ωi, ri}) is the Hamiltonian of the system, which depends

on the considered model (e.g. the Maier-Saupe Hamiltonian (1.8), discussed later). In

the above, we have assumed that the kinetic part can be integrated separately. Thus,

the trace is performed over the remaining rotational Ω̂i and translational ri degrees

of freedom. In the case of rotational degrees of freedom, the trace is understood as

SO(3)-invariant integration, therefore calculating (1.3) amounts to evaluating two 3N -

dimensional integrals. Mean-field theory (section 1.7) and Markov chain Monte Carlo

(section 1.8) provide methods for approximating (1.3), allowing one to escape the infea-

sibility of calculating such a large-dimensional integral.
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1.4 Dispersion forces

The dispersion interaction, known in chemical literature as the London dispersion forces,

first described by Fritz London (1900-1954) [56], is a type of Van der Waals interaction

encountered in the second order of the quantum perturbation theory of interaction be-

tween two molecules at a large distance ~R12 [57]. The long-range character allows one to

treat the interaction as a perturbation to the Hamiltonian of the free particle. The per-

turbative contribution to the energy of the pair ground state from dispersion interactions

reads [58]:

udisp. = −1

2

∑
r 6=0,s 6=0

〈ψ(1)
0 ψ

(2)
0 |H ′|ψ

(1)
r ψ

(2)
s 〉2

W
(1)
r −W (1)

0 +W
(2)
s −W (2)

0

, (1.5)

where ψ(k)
0 is the ground state of k-th molecule, while ψ(k)

q are its excited states. W (k)
0

and W (k)
q are energies of the corresponding state. The perturbation H ′ is simply the net

electrostatic potential of interaction between all the charges residing at both molecules:

H ′ =
1

2

∑
ij

e
(1)
i e

(2)
j

rij
. (1.6)

Subsequently, H ′ can be expanded in a multipole series and following premises depending

on the considered molecules, some terms are discarded, others treated as dominating.

Note that in the above expression both molecules are in excited states. Intuitively, the

interactions are due to the fact that thermal fluctuations of the charge distribution on one

molecule result in a momentary excited multipolar state (dipole, quadrupole, octupole,

etc.) which in turn induces an excited multipolar moment on the other molecule. Hence,

the contribution is due to coupling between induced multipoles.

In nematogens, which are mostly large, organic molecules, the dispersion term dominates

over other electrodynamic effects because it is proportional to the volume of the molecule.

Other important contributions include electrostatic interactions due to static multipoles,

such an electric dipole in bent-core molecules (see e.g. [36]). The dispersion interaction

is easier to account for in calculations than purely electrostatic forces because of its

effectively short range. In many cases the interaction can be constrained to the nearest

neighbors without much sacrifice. However, it should be noted that the main cause for

nematic ordering is excluded-volume (steric) effects, although the leading terms, in most

cases, turn out to be similar to the leading dispersion terms. For example, dispersion and

steric terms alike, in the case of the uniaxial, nematic yield interaction proportional to

the second Legendre polynomial in the cosine of the intermolecular angle, as considered

for dispersion interaction by Maier and Saupe [59–61] and as found by Onsager for the

steric case [62]. Excluded volume effects produce phase transitions where the analogue of
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temperature is the inverse concentration 1
ρ . To account for the temperature dependence

of the order parameters, thermotropic nematogens are studied mainly by dispersion-like

models. For notable examples, dispersion interactions have been considered for uniaxial

nematics by Maier and Saupe [59–61] (see also subsection 1.5.1), for biaxial nematics by

Luckhurst et al. [63, 64], and for chiral symmetry breaking in bent-core molecules by

Longa, Pająk and Wydro [1]. We will return to the last two models in chapters 3 and 4.

1.5 Historical results

1.5.1 Maier-Saupe model of thermotropic nematics (lattice case)

An important result in the context of the presented work is the one of Maier and Saupe

presented in a series of papers in 1958-1960 [59–61]. It is a specific application of the

mean-field method, which we present in section 1.7, to a microscopic model of a uniaxial

nematic, which allows for describing the thermotropic nematic phase transition. Maier

and Saupe’s basic assumption was that the pair interaction potential between molecules

i and j is due to point dispersion forces. The pair interaction potential is expanded

in a multipole series in the the representation of spherical harmonics. By request, only

uniaxially symmetric terms, i.e. with m = 0, enter the expansion, which makes it

sufficient to consider an expansion in Legendre polynomials. Therefore one obtains:

V (rij , θij) = −α2

r6
ij

[P2(cosθij) + . . . ] , (1.7)

where rij is the relative distance between molecules i and j and θij is the relative angle

between axes ~ci and ~cj (as in Fig. 1.5). P1 and other odd terms are dropped since the

interaction should be symmetric with respect to ~ci(j) → −~ci(j), as polar ordering is being

neglected. In the general case the mean-field calculation involves an approximation of the

two-point spatial correlation function by a step function, which is zero for rij ∈ [0, r0)

Figure 1.5: Two molecules with their orientations described by vectors ~ci and ~cj . The
intermolecular angle can be expressed as cos θij = ~ci · ~cj .
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and constant otherwise, to model the hard-core repulsion between molecules at close

distances smaller than r0. However, if the molecules occupy sites of a simple cubic

lattice and interact only with their nearest neighbors, one can put rij = a in (1.7), a

being the lattice constant, thus lifting the need to integrate over positional coordinates.

Neglecting higher-order terms, while taking α2/a
6 ≡ α0, one arrives at:

V (cosθij) = −α0P2(cosθij),

H =
1

2

∑
〈ij〉V (cosθij),

(1.8)

which represents the Maier-Saupe l = 2 minimal coupling model on the lattice. If we

define the dimensionless temperature as t = β−1 = kBT/α0 (see e.g. (3.1)), the pair

potential reads:

V (cosθij) = −P2(cosθij) = −1

2
(3cos2θij − 1). (1.9)

Now assume that the system can be described by the single-particle distribution function

f(θ) for the orientation of molecules with respect to the director. This allows one to write

a single-particle average of the pair interaction potential, called the effective potential:

Vef (cosθi) =

∫
dθjf(θj)V (cosθij). (1.10)

Furthermore, f is expanded similarly as V in terms of Legendre polynomials:

f(cosθk) = f(~ck · ~n) =
∞∑
l=0

〈Pl〉Pl(~ck · ~n), (1.11)

where k numbers an arbitrary particle. Substituting (1.9) and (1.11) into (1.10):

Vef (cosθi) = Vef (~ci · ~n) = −
∫
dθj

∞∑
l=0

〈Pl〉P2(~ci · ~cj)Pl(~ck · ~n) (1.12)

and observing the orthogonality laws of Legendre polynomials, we arrive at:

Vef (cosθi) = −〈Pl〉P2(~ci · ~n) = −〈Pl〉P2(cosθi). (1.13)

In mean-field theory, (1.13) is used to construct the so-called equilibrium mean-field

single-particle distribution, which can be used to calculate averages:

Peq(cosθ) = Z−1exp(−βVeff (cosθ)), (1.14)

Z =

∫
dθexp(−βVeff (cosθ)), (1.15)

〈P2〉 =

∫
dθP2(cosθ)Peq(cosθ). (1.16)
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Because 〈P2〉 appears in (1.14) and (1.15), this set of equations is self consistent. We

recognize that 〈P2〉 is precisely the parameter S as defined in (1.2). For the sake of brevity

we only indicate that these equations can be solved by numerical methods. The phase

transition is of first order at Tc ≈ 0.22 with a sudden jump of S from 0 to S(Tc) ≈ 0.44.

1.5.2 Lebwohl-Lasher lattice model

The model of central importance as background to the presented work is the Lebwohl-

Lasher lattice model of the uniaxial nematic. In 1972 Lebwohl and Lasher performed

pioneering Monte Carlo simulations of a nematic in a lattice setup [65]. The setup

consisted of molecules placed in the nodes of a 3-dimensional simple cubic lattice, with

interactions restricted to the nearest neighbors and periodic boundary conditions, while

the pair potential was adapted from (1.9):

Vij = −εP2(cosθij),

H =
1

2

∑
〈i,j〉

Vij .
(1.17)

The summation runs over nearest neighbors on the lattice, i.e. for each i summation over

j runs over six neighboring particles. The authors considered 10 × 10 × 10 lattices far

from the transition and 20×20×20 in the transition vicinity and considered sample sizes

between 2000 and 8000 to discover a discontinuity of the mean energy, indicating a first-

order phase transition at ε/kBT = 0.850±0.005 with a jump of the order parameter S of

∆S = 0.33 ± 0.04. The results have been subsequently refined by Fabbrio and Zannoni

for 30× 30× 30 lattices, who observed the phase transition at ε/kBT = 0.8903± 0.0005

[66]. Due to its simplicity and practical significance, Lebwohl and Lasher’s approach is

often treated as a template in performing simulations of bulk liquid crystals.

1.6 Alignment tensor

In the general case, where apart from uniaxial ordering along director n̂, the phase

exhibits biaxial ordering (and two secondary biaxial directors {l̂, m̂} are established), it

is concisely described by one tensorial parameter, called the alignment tensor:

Q = S(~n⊗ ~n− 1

3
I) + T (~l ⊗~l − ~m⊗ ~m). (1.18)
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Here S is the familiar uniaxial parameter, as defined in (1.2), while T is the biaxial order

parameter. According to a definition by Straley [67]:

T = 〈sin2(θ)cos(2φ)〉, (1.19)

where {φ, θ} are two of the three Euler angles, defined by consecutive rotations:

Rz(φ)Ry(θ)Rz(ψ). One recognizes that the function being averaged on the right-hand

side of (1.19) is (up to a normalization constant) the real part of the spherical har-

monic Y l
m(θ, φ) for l = 2,m = 2, Y 2

2 (θ, φ). As we later discuss, in general the l = 2

representation of SO(3) proves very useful in the context of biaxiality.

The tensor (1.18) is traceless, symmetric and diagonal in the director basis {~l, ~m,~n},
where it reads:

Q =


−S

3 + T 0 0

0 −S
3 − T 0

0 0 2
3S

 . (1.20)

From the above form a few properties of Q can be inferred. For instance, if S 6= 0

and T = 0, i.e. in the uniaxial nematic phase, Q is degenerate in the {~l, ~m} plane,

while the non-degenerate eigenvalue corresponds to the uniaxial director ~n. Conversely,

in the biaxial phase T 6= 0 and all the eigenvalues are different. Because the tensor is

traceless by definition, in the isotropic phase it equals to zero. Furthermore, the sign of

the largest-modulus eigenvalue of Q informs us whether the uniaxiality is of the prolate

(rodlike) (+) or oblate (discotic) (−) variety.

It is often more practical to deal with Q directly than with S and T , as in phenomeno-

logical Oseen-Frank [68, 69] or Landau-de Gennes [2] theories. For instance, in the latter

case, Q enters the expansion of the Landau free energy in the form of absolute rotational

invariants Tr(Q2) and Tr(Q3). As it turns out, these are the only invariants without

involving derivatives of Q, as from matrix algebra it follows that all invariants of higher

order can be expressed by Tr(Q2) and Tr(Q3) [70]. These invariants hold a relation:

Tr(Q3)2 ≤ 1
6Tr(Q

2)3 [70], which can be expressed with one condition w2 ≤ 1 [71, 72],

where:

w =
√

6
Tr(Q3)

(Tr(Q2))3/2
. (1.21)

For the uniaxial case w = ±1 and the sign distinguishes the prolate (+) and oblate (−)
varieties. For the biaxial phase w2 < 1, while the case w = 0 corresponds to the case of

“maximum biaxiality”, when the eigenvalues of Q are {ω, 0,−ω} (in any order).
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1.7 Mean-field theory for lattice models

As argued in section 1.3, an exact evaluation of the statistical average (1.3) is impractical

in macroscopic systems. We present the mean-field method of producing an approxi-

mation for the equilibrium particle distribution, where the total number of degrees of

freedom in the ensemble average is reduced by a factor of N . First, let us recall from

statistical mechanics that the equilibrium state of the system in the canonical ensemble

is given by minimum of the inequilibrium Helmholtz free energy functional [73, 74]:

Fneq [P ] = U [P ]− TS [P ] , (1.22)

where P = P (x1, x2, x3, · · · , xN ) is the N -particle probability of finding the system in

the state such that particle 1 is in the state x1, particle 2 is in the state x2, etc. We

assume that the translational degrees of freedom are fixed and the N molecules reside on

lattice sites, therefore the state xi of the i-th particle is parametrized by its orientation

Ω̂i (xi ≡ Ω̂i). A trace over all possible states, Tr
{Ω̂i}

, is therefore understood as an SO(3)-

invariant integral over Ω̂i (e.g. for the parametrization of Ω̂i by Euler angles {αi, βi, γi},
such that the rotation matrix carrying from the laboratory reference frame to Ω̂i is

R(Ω̂i) = Rẑ(γ)Rŷ(β)Rẑ(α), where Ri(η) is a proper rotation about an angle η around

axis i, the trace reads Tr
{Ω̂i}
≡ 1

8π2

∫ 2π
0 dα

∫ π
0 sinβdβ

∫ 2π
0 dγ). At this point we assume that

no continuous conformational degrees of freedom are present. If discrete conformational

degrees of freedom are to be included, the trace needs to be supplemented by a sum

over discrete conformational states. (An example is the chirality degree of freedom,

introduced in section 4.2.) The equilibrium free energy is given by:

Feq = Fneq [Peq] , (1.23)

where Peq satisfies the conditional minimum equation:

δ

δP ′

{
Fneq [P ]− λ

(
Tr
{Ω̂i}

P (Ω̂1 · · · Ω̂N )− 1

)}
= 0. (1.24)

We account for the constraint that P should be normalized through the Lagrange mul-

tiplier λ. (1.22) can be written explicitly using Shannon entropy:

Fneq [P ] = Tr
{Ω̂i}

[
H(Ω̂1 · · · Ω̂N )P (Ω̂1 · · · Ω̂N )

]
+ kBT Tr

{Ω̂i}

[
P (Ω̂1 · · · Ω̂N )logP (Ω̂1 · · · Ω̂N )

]
.

(1.25)

Integration over momenta is not taken into account, as for the models we are going

to consider the kinetic part of the Hamiltonian gives an additive constant to the free

energy. Generally, we assume that the Hamiltonian is a sum of pair interactions and
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single-particle potential energy (e.g. interaction with external field):

H(Ω̂1 · · · Ω̂N ) =
1

2

N∑
〈i,j〉

V (Ω̂i, Ω̂j)−
N∑
i

V (Ω̂i). (1.26)

Summation over 〈i, j〉 means that nearest-neighbor interaction is assumed, i.e. that each

molecule i interacts only with its z neighbors. z is the coordination number, which

depends on the lattice structure (e.g. z = 6 for a simple cubic lattice with periodic

boundary conditions).

The main assumption of the mean-field approximation is that P (Ω̂1, Ω̂2, · · · , Ω̂N ) factor-

izes into identical single-particle distribution functions P (Ω̂):

P (Ω̂1, Ω̂2, · · · , Ω̂N ) = P (Ω̂1) · P (Ω̂2) · · · · · P (Ω̂N ). (1.27)

With this assumption, (1.25) reduces to:

Fneq [P ] =
1

2

N∑
〈i,j〉

Tr
{Ω̂i,Ω̂j}

[
P (Ω̂i)V (Ω̂i, Ω̂j)P (Ω̂j)

]

−
N∑
i

Tr
{Ω̂i}

[
P (Ω̂i)V (Ω̂i)

]
+ kBT

N∑
i

Tr
{Ω̂i}

[
P (Ω̂i)logP (Ω̂i)

]
.

(1.28)

Now solving the minimum condition (1.24) is a matter of applying the rules of functional

calculus and algebra. The Lagrange multiplier λ is calculated from the normalization

condition. The resulting equilibrium particle distribution function reads:

Peq(Ω̂) = Z−1
eq e−β(Veff (Ω̂)+V (Ω̂)), (1.29)

Zeq = Tr
{Ω̂}

[
e−β(Veff (Ω̂)+V (Ω̂))

]
, (1.30)

where the “effective potential” is defined as:

Veff (Ω̂j) =
z∑
i 6=j

Tr
{Ω̂i}

[
Peq(Ω̂i)V (Ω̂i, Ω̂j)

]
. (1.31)

Furthermore,

Feq = −1

2
N Tr
{Ω̂}

[
Peq(Ω̂)Veff (Ω̂)

]
−NkBT logZeq. (1.32)

The interpretation of (1.31) is that instead of involving the interactions of particle j with

every of the other N − 1 particles explicitly, we treat j as if it were immersed in a field

(Veff ) of interactions averaged over all the other particles, hence the term “mean-field”
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theory. The equations (1.29-1.31) are self-consistent, i.e. one generally cannot write a

solution in closed form and they should be treated by e.g. iteration to convergence.

The mean-field approach has the advantage of being relatively simple and computation-

ally inexpensive. However, the transition temperatures are overestimated with respect

to experiment and simulations, due to the assumption (1.27), i.e. that many-particle

correlations are neglected. Because of this, entropy is underestimated, which enables

the potential energy to dominate to higher temperatures than in reality. Another prop-

erty of mean-field theory is that it produces Landau critical exponents regardless of the

Hamiltonian in question (and therefore its applicability in studying critical behavior is

limited).

1.8 Monte Carlo simulations

1.8.1 Metropolis algorithm

To calculate the average (1.3), we also use the Markov chain Monte Carlo method, which

in the modern version was described by Stanisław Ulam and Nicholas Metropolis in the

1940’s [75]. The name, owing to Ulam, is purportedly derived from the Monte Carlo

casinos, in a reference of the method to gambling. The basics of the method stem from

the Central Limit Theorem and sampling the equilibrium probability distribution by

generating a Markov chain.

The Central Limit Theorem, applied to the canonical ensemble, states that the n-

dimensional integral:

〈A〉 =

∫
dx1 · · · dxnA(x1, · · · , xn)

e−βH(x1,...,xn)

Z
(1.33)

can be replaced by an average over N samples {xi}:

〈A〉 N→∞→ 1

N

∑
{xi}:p({xi})

A(x1, · · · , xn), (1.34)

where the samples {xi} are drawn from:

p({xi}) = Z−1e−βH(x1,...,xn). (1.35)

An algorithm which allows sampling of p({xi}) is given by Metropolis [76]. The pre-

scription amounts to designing an ergodic Markov process that asymptotically reaches
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p({xi}) as the stationary distribution. This is done by observing that such a process

needs to conform to detailed balance:

p({xi})σ({xi} → {xj}) = σ({xj})p({xj} → {xi}), (1.36)

where σ({xi} → {xj}) is the probability of transition of the system from state i to j.

Detailed balance secures that the transition is reversible, i.e. that the considered system

is in equilibrium. The equilibrium probability distribution is given by (1.35), so rewriting

(1.36):
p({xi} → {xj})
p({xj} → {xi})

=
e−βH({xi})

e−βH({xj})
= e−β∆Eij , (1.37)

where ∆Eij is the difference of energy between the two equilibrium states. The pre-

scription due to Metropolis is that we can achieve the relative probability (1.37) in a

simulation of the system by following an algorithm:

1. Starting with the system in the state i, make a small random change in i, thus

creating the “trial” state j and calculate the energy difference ∆Eij .

2. If ∆Eij ≤ 0, accept j as the new state of the system unconditionally.

3. If ∆Eij > 0, accept j as the new state of the system with the probability e−β∆Eij .

4. Repeat 1-3 for a suitable sample size.

This algorithm produces a random walk in the state space of the system. For a good

convergence to the real distribution p({xi}), the space of equilibrium states needs to be

explored quite extensively. The question is how large the change to i in pt. 1, i.e. the

random-walk step should be. Very large changes will almost never be accepted, while

very small ones will have the system stuck in one area of the state space for a very long

time. Generally, a rule of thumb is assumed that the step should be of such magnitude,

that the fraction of accepted moves is around 0.4 ÷ 0.5. In most cases the changes will

be small enough so that states i and j will be substantially correlated, thus making the

random walk non-Markovian. To obtain a good Markov chain, one needs to discard a

number of intermediate states until no correlation is measured. The final result is a

Monte Carlo sample of the statistical ensemble, i.e. a set of replicas of the system in

equilibrium. On the other hand, ergodicity permits us to regard the replicas as snapshots

of a single system undergoing an equilibrium process.

There remains the problem of the choice of the initial state i, since an arbitrary state

will likely be out of equilibrium. While the Metropolis algorithm is designed to produce

an approximation for the equilibrium distribution function, it can be used to find an
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equilibrium process through random walk in state space, which drifts towards an energy

minimum, in a non-equilibrium process called thermalization. Once thermalization is

complete, sampling of equilibrium states can begin. A question open to the scientist is

to make sure that the system is not stuck in a metastable state.

1.8.2 Rotational degrees of freedom

In the presented work the simulations are performed in the spirit of Lebwohl and Lasher

(see section 1.5.2), i.e. the Monte Carlo degrees of freedom are limited to the orientation

of molecules (in later chapters we also consider chirality). There are several parametriza-

tions of rotations in 3D space, e.g. Euler angles, which describe the subsequent rotations

of the frame of reference around axes ẑ,x̂ and ẑ. The computational disadvantage of this

and many other methods is the need of evaluating trigonometric functions. In Monte

Carlo simulations such evaluations are performed for each particle in each attempted

move, which can turn out to be substantially expensive. For this reason we parametrize

rotations using quaternions, which reduces the problem to evaluating second-order poly-

nomials [77].

The parametrization follows from the fact that the group SU(2) of unitary 2×2 matrices

of determinant 1:

U =

(
u1 u2

−u∗2 u∗1

)
, (1.38)

U † = U−1, (1.39)

detU = |u2
1|+ |u2

2| = 1, (1.40)

is a double universal cover of SO(3), the group of 3×3 orthogonal matrices of determinant

1. On the other hand, SU(2) is isomorphic with the group of quaternions with norm 1:

U =

(
q0 + iq3 iq1 − q2

iq1 + q2 q0 − iq3

)
, (1.41)

q = q0 + q1i+ q2j + q3k, (1.42)

|q|2 = detU = q2
0 + q2

1 + q2
2 + q2

3 = 1, (1.43)

where q is a quaternion. Thus, the space of rotations in 3D space is replaced by a set of

points on the unit 4D sphere. The mapping is given by expressing the rotation matrix
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in terms of q (see e.g. [77]):

R =


q2

0 + q2
1 − q2

2 − q2
3 2(q1q2 − q0q3) 2(q1q3 + q0q2)

2(q2q1 + q0q3) q2
0 − q2

1 + q2
2 − q2

3 2(q2q3 − q0q1)

2(q3q1 − q0q2) 2(q3q2 + q0q1) q2
0 − q2

1 − q2
2 + q2

3

 . (1.44)

Note that R does not change if q → −q, which reflects the fact of double covering. The

matrix (1.44) gives us the reference frame rotated according to q. As stated before, when

comparing the rotation matrix for Euler angles and (1.44), it is readily seen that the

quaternion version is computationally cheaper to evaluate.

To make use of quaternions in Monte Carlo, we need a means of generating random

rotations expressed in quaternions. The parametrization (1.41-1.44) simplifies this task

by reducing it to drawing points from an uniform distribution on a 4-sphere, because

the invariant measure for SU(2)-invariant integration is uniform for quaternions, i.e.

Tr
{Ω̂i}

≡
∫
δ(q2

0 + · · · + q2
3 − 1)dq0 . . . dq3 for the canonical ensemble average (1.3). The

algorithm used in the presented work is due to Marsaglia [78]. First, we draw two

independent points from the unit circle:

p1 = (y1, y2), p2 = (y3, y4), yi ∈ [−1, 1], (1.45)

r2
1 = y2

1 + y2
2 ≤ 1, (1.46)

r2
2 = y2

3 + y2
4 ≤ 1. (1.47)

If so, the point:

(y1, y2, y3

√
(1− r2

1)/r2
2, y4

√
(1− r2

1)/r2
2) (1.48)

is uniformly distributed on the unit 4-sphere. Thus, we simply need to draw a quaternion

with accordance to (1.48) to produce a random rotation in 3D space.

However, if one makes a trial move on a molecule by simply replacing the quaternion

describing its rotation by a new, random one, the relative change will be most likely quite

large and many moves will be rejected. Therefore, we perform the trial move by slightly

altering the present orientation of the molecule. Considering that q is the quaternion for

the molecule in question, we draw a random quaternion ∆q according to (1.48). Then,

the new quaternion q′ is:

q′ =
q + r∆q

|q + r∆q| , (1.49)

where 0 < r ≤ 1. The parameter r can be adjusted to ensure proper acceptance ratio

of trial Monte Carlo moves. To calculate the difference in energy, one can rewrite the

Hamiltonian using quaternions and do away with (1.44) completely during the calcula-

tion. We, however, found that (1.44) bears an infinitesimal cost worth the advantage of



Chapter 1. Introduction 19

Figure 1.6: A simplified, 2D illustration of how a Monte Carlo trial orientation
(parametrized by quaternion q′) is constructed as a small deviation from the previous
orientation (parametrized by quaternion q), with the prescription (1.49).

retaining the original expression in terms of e.g. Cartesian tensors built on the molecular

basis {êx, êy, êz} given by R.

1.8.3 Parallel sampling and pseudorandom number generation

Once we have an equilibrium state at our disposal, we can take advantage of parallel

computing to either increase the sample size or reduce the time needed for the simulation

to complete. This is performed formally by branching the random walk in state space into

k random walks, which can explore the state space independently. If the random walks

are non-correlated, the generated sets of equilibrium states can be treated as one sample

of the statistical ensemble. Computationally, this is performed by first thermalizing

the system into equilibrium and then taking k replicas, which are considered as initial

states of k independent Monte Carlo simulations in separate threads. The results are

aggregated at the end.

The principal problem of this method is ensuring that the resulting Markov chains are

non-correlated, which amounts to securing that each of the threads has its own, unique

sequence of pseudorandom numbers. This issue is studied extensively and has been

addressed recently for the Mersenne Twister algorithm on graphic processors by Pod-

lozhnyuk [79] and earlier for linear congruential generators by Durst [80]. A method

involving cellular automata has been proposed by Hortensius et al. in 1989 [81]. In

the presented work we use a relatively new pseudorandom number generator family in-

vented by Marsaglia in 1994 [82, 83] popularly referred to as “multiply-with-carry”. The

sequence of the generator is defined as:

xn+1 = (axn + cn) mod b (1.50)
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where a is a multiplier and b is a modulus, which is typically 232 for 32-bit and 264 for

64-bit processor architectures. cn is the carry, defined as:

cn = baxn−1 + cn−1

b
c (1.51)

The multiplier a needs to be chosen such that ab − 1 is a safe prime, i.e. both ab − 1

and (ab − 1)/2 − 1 are prime. The period of (1.50) is of the order of b, thus greatly

improved by utilizing the 64-bit architecture. The advantage of (1.50) is that one can

produce infinitely many generators for a given b. Thus, at the expense of a small period,

when compared to e.g. that of Mersenne Twister, equal to 219937 − 1, we can generate

non-correlated sequences of pseudorandom numbers by specifying different multipliers

and seeds to separate threads, instead of sharing one generator, which comes with im-

plementation issues. In our software, we use the multipliers and seeds for modulus 232

generated by Gratton [84].

1.9 Purpose and plan of thesis

The aim of the present thesis is to study some of the remarkable effects observed in

systems such as bent-core and ferrocene mesogens, as well as flexible dimers, including

field-stabilized biaxiality, homogeneous chirality and twisted states of homogeneous and

ambidextrous chirality, through a lattice dispersion model with the help of the meth-

ods cited in this chapter – primarily by Monte Carlo simulation and, to a lesser extent,

mean-field theory. The dispersion model being studied is an extension on models pre-

viously considered in literature, of which all are generalizations of the Lebwohl-Lasher

lattice model, discussed in section 1.5.2. The definition of this general model, along

with descriptions of the respective terms and their purposes is given in Chapter 2, after

a brief introduction to the formalism of irreducible tensors and symmetrization. Since

this model is quite broad in scope and embraces six independent parameters, our aim is

constrained to investigating several limit cases of the general model.

In Chapter 3 the case of a dispersion model of biaxial nematics in an external field

is considered. The interaction potential (3.14) is based upon the model by Luckhurst

and Romano [64], augmented by a term which is quadratic in field (see (3.12)). The

field considered is a generalized vector field, thus the effects apply (almost) equally to

the magnetic and electric cases. The field-interaction potential promotes alignment of

either the molecular axis of largest anisotropy or the largest molecular face, depending

on the sign of the anisotropy of the generalized (dielectric or diamagnetic) molecular

polarizability. Furthermore, the Luckhurst-Romano model, expressed in (3.1), introduces

a parameter for controlling the biaxiality of molecules, λ, which ranges from 0 to
√

3/2.
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The values correspond to prolate (rodlike) and oblate (discotic) shapes for λ < 1√
6

and λ > 1√
6
respectively, while λ = 1√

6
is a highly-symmetric value, for which the model

exhibits a direct phase transition from the isotropic phase to a biaxial phase of maximum

biaxiality. Therefore, we study the model with external field considering different values

of λ (λ = 0.3, λ = 0.5 and λ = 1√
6
) and the sign of the anisotropy of the molecular

polarizability (positive and negative), while observing the effects of varying magnitude

of the external field.

The liquid crystalline phases originally known to exist for the Luckhurst-Romano model,

presented in the phase diagram in Fig. 3.3, are the isotropic (I), uniaxial nematic prolate

and oblate (NU+ and NU−) and biaxial nematic (NB). After an introduction of order

parameters and the details of the theoretical methods used (section 3.4), as a test of out

methods we present results for this model in section 3.5. In section 3.6 we proceed to

presentation of results for the model with external field, starting with an analysis of the

critical and tricritical points of the isotropic-uniaxial nematic transition in section 3.6.1.

We then move on to the Monte Carlo results, compared with mean-field predictions, for

λ = 0.3, for which value the mean-field phase diagram in the (t,∆εh2)-plane (t being

the dimensionless temperature and h being the magnitude of the field) is compared with

the energy fluctuation landscape obtained from simulation, in section 3.6.2. For λ = 0.5

the mean-field phase diagram is obtained, presented in section 3.6.3. For the highly-

symmetric value of λ = 1√
6
the mean-field phase diagram is obtained and supplemented

by temperature scans of the order parameters, fluctuation of energy and susceptibilities

of order parameters in section 3.6.4.

In Chapter 4 the case of the biaxial nematic model with added tetrahedratic coupling

(without the presence of a field) is investigated. The interaction potential, first postulated

in [1], consists of the quadrupolar coupling term, as in the Luckhurst-Romano model,

and an octupolar coupling term, scaled by the coupling constant κ. The relationship

between the D2h symmetry of the molecular quadrupolar moment and the Td symmetry

of the molecular octupolar moment produces two possible chiral molecular configurations,

distinguished by the parity of the molecular basis, which is considered as a binary degree

of freedom. We study this model for τ = 1 and a highly-symmetric value τ = 28
15 with

Monte Carlo simulations. For both cases there exist phases of tetrahedratic and chiral

symmetry, while for the latter case a direct transition from the isotropic to the chiral

phase exists. The results are presented in sections 4.4 and 4.5 respectively.

The results contained in Chapter 5 are meant to be approached as preliminary. In

this chapter we consider the model studied in Chapter 4 with an added term, which

accounts for coupling of the molecular octupolar moment to the intermolecular lattice

vectors. As argued in section 5.2, this kind of coupling produces twists between molecules
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on neighboring sites, as is promptly demonstrated in simulation on a one-dimensional

chain. Subsequently, a two-dimensional case is considered in section 5.3, for which the

chiral-symmetry-breaking phase transition is studied and two types of structures in the

chiral phase are identified. The three-dimensional case is discussed in section 5.4 and as

of the moment of completion of this thesis the results presented are still largely open to

interpretation. Two types of structures are found and presented in Fig. 5.6. Words of

conclusion and comment on further studies are found in the closing Chapter 6.



Chapter 2

Generalized dispersion model for

bent-core (and related) systems

Before we define the model studied here itself, we first provide an introduction to the tool

which is central to the understanding and formulation of the former – the formalism of

symmetrized irreducible spherical tensors. An explicit definition of the model in question

is given subsequently in section 2.2.

2.1 Irreducible tensors and symmetrization

From the argument in section 1.4 it follows that dispersion interactions amount to cou-

pling of multipolar moments, which can be expressed in terms of Cartesian tensors. For

dispersion models which possess global rotational symmetry this representation is how-

ever often unoptimal. A more practical approach is to express the tensors involved in the

dispersion interaction in terms of spherical tensors, which obey much simpler transfor-

mation laws when undergoing rotations, i.e. they are always confined to the same fixed-l

subspace of angular momentum [85].

Irreducible spherical tensors of rank n (the number of Cartesian indices), for angular

momentum quantum number l (l = 0, 1, · · · , n− 1, n) and projection of angular momen-

tum quantum number m (m = −l,−l+ 1, · · · , l−1, l) are denoted as ê(l),n
m . They can be

expressed within an ordinary Cartesian basis {êx, êy, êz}, which can be later on identified

with the molecular basis or the director tripod, depending on our needs. Starting from

tensors of rank 1:

ê
(1)
0 = êz, ê

(1)
±1 = ∓ 1√

2
(êx ± iêy), (2.1)

23
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one can recursively construct tensors of arbitrary rank with the help of Clebsch-Gordan

coefficients:

ê(l,δ),n
m =

∑
m1,m2

(
l − 1 1 l

m1 m2 m

)
ê(l−1),n−1
m1

⊗ ê(1),1
m2

. (2.2)

Here δ is the “seniority index”, used to distinguish between linearly independent same-l

tensors within the same Cartesian rank n, which appear for n ≥ 3. From now on we

decide to drop the seniority index, except where necessary. Under a rotation R, the
irreducible spherical tensor transforms through the Wigner rotation matrix:

Rê(l),n
m =

∑
m′

ê
(l),n
m′ D

(l)
m′m, (2.3)

D(l)
m′m =

(
ê(l),n
m

)∗
·
(
Rê(l),n

m′

)
, (2.4)

where the scalar product “·” is understood as a full contraction over all Cartesian indices.

As one notices from the above expression, a rotation always leaves the tensor in the

same l-subspace of angular momentum, thus mixing only tensors with different m. From

the many remaining useful properties of irreducible spherical tensors, for the sake of

brevity we only name orthonormality between tensors in the same-l subspace. For a

comprehensive guide on the properties and construction of spherical tensors and Wigner

matrices, cf. e.g. [86].

In the context of liquid crystal research the main advantage from irreducible tensors flows

from symmetry-adaptation. Considering different subgroups of SO(3) (or, in general,

O(3)), one can construct irreducible tensors which bear the symmetry of the individual

subgroups. The obtained set of tensors gives us complete control over the symmetry in

designing the interaction potential and also serves as a neat, symmetry-adapted basis for

the alignment tensor. The process of symmetrization is straightforward. If the group in

question is G, the G-symmetrized tensor is obtained using the prescription:

T(l),n
m = clm

1

|G|
∑
g∈G
O(g)ê(l),n

m . (2.5)

Here |G| stands for the number of transformations in G and O(g) is the linear operator

associated with transformation g. The coefficients clm are chosen to secure orthonormality

of tensors with the same m. In the case of continuous groups, the sum needs to be

replaced with SO(3)-invariant integration and |G| is the unit integration volume of the

group.
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Having at hand the tensors (2.5), we easily produce the complementary symmetrized

Wigner matrices, which we denote ∆
(l)
mm′ , following the notation of Mulder [87]:

∆
(l)
mm′ = T(l),n

m (Ω̂1) ·T(l),n
m′ (Ω̂2), (2.6)

where Ω̂1 = {êx, êy, êz} is often identified with the director basis, and Ω̂2 is some other

frame of reference, commonly identified with the molecular basis.

Symmetrized tensors form a complete basis for the l-subspace for a given symmetry

group G (a set involving all G-symmetrized tensors for angular momentum l), therefore

we have an expansion of the (G-symmetrized) identity operator:

I
(l,δ)
G =

∑
m,δ

T(l,δ)
m (Ω̂)⊗T(l,δ)

m (Ω̂). (2.7)

2.1.1 Symmetrized irreducible tensors for selected symmetry groups

For the use in this chapter and for the remainder of this thesis we consider the leading

symmetrized tensors for l = 2 the D2h-symmetrized second rank tensors and for l = 3

the Td-symmetrized third rank tensor.

The non-vanishing l = 2 symmetrized tensors for the biaxial symmetry group D2h, with

symmetry axes coinciding with {êx, êy, êz}, are:

T
(2),2
0 =

√
3

2
(êz ⊗ êz −

1

3
I), (2.8)

T
(2),2
2 =

1√
2

(êx ⊗ êx − êy ⊗ êy) (2.9)

and the trivial isometric tensor ê(0),2
0 = 1/

√
3I, where I = êx⊗ êx+ êy⊗ êy+ êz⊗ êz is the

Cartesian identity operator. One recognizes that, when Ω̂ = {l̂, m̂, n̂}, (2.8) and (2.9)

appear, up to a normalization constant, as components of the alignment tensor (1.18).

Furthermore, the l = 2 D2h-symmetrized Wigner matrix elements ∆
(2)
m,m′ are, up to a

normalization constant, the functions identified by Straley [67], in particular S ∝ 〈∆(2)
0,0〉

and T ∝ 〈∆(2)
0,2〉.

For the tetrahedratic group Td there are no non-vanishing symmetrized tensors of l < 3,

apart from trivial isotropic tensors. Distinction by seniority of rank 3 tensors is only

needed for tensors of angular momentum l = 2, therefore it can be dropped altogether.

For n = 3, l = 3 there are 7 independent tensors ê(3),3
m , m = −3 . . . 3, and depending on

the choice of the symmetry axes, a symmetrized tensor will be a linear combination of

l = 3 tensors with different m. With the choice (that we consider later) that the twofold
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axes of symmetry coincide with {êx, êy, êz}, the only non-vanishing Td-symmetrized ir-

reducible tensor is [1]:

T
(3),3
2 =

1√
6

∑
(êi,êj ,êk)∈π(êx,êy ,êz)

êi ⊗ êj ⊗ êk, (2.10)

where the sum runs over all permutations of {êx, êy, êz}.

2.2 Definition of the model

The most general model studied here is a lattice dispersion model, defined by the Hamil-

tonian:

H =
1

2

N∑
〈i,j〉

[
VQ(Ω̂i, Ω̂j) + VT (Ω̂i, Ω̂j) + Vc(Ω̂i, Ω̂j) + V T

c (Ω̂i, Ω̂j)
]

+
N∑
i

∆V (Ω̂i). (2.11)

The sum runs over nearest neighbors, i.e. for each particle i the sum runs over z = 6

neighboring particles j, while the N particles occupy sites of a simple cubic lattice with

periodic boundary conditions (although two other options are considered in Chapter 5).

The arguments Ω̂i and Ω̂j denote orientations of the particles at lattice sites i and j, which

can be expressed equivalently by specifying three orthonormal vectors – the molecular

frame of reference (also: “molecular tripod”, “molecular basis”): Ω̂i = {âi, b̂i, ĉi} and

Ω̂j = {âj , b̂j , ĉj}. Note that the molecular frame of reference can be either righthanded

or lefthanded, which will become important when we take a closer look at VT . The

interaction terms are explained as follows:

• The quadrupolar term:

VQ(Ω̂i, Ω̂j) = −εQ(Ω̂i) ·Q(Ω̂j) (2.12)

couples molecular quadrupolar moments at sites i and j. The scalar product ’·’
is understood as a full contraction over Cartesian indices. The quadrupolar mo-

ment Q(Ω̂i) is a second-rank traceless tensor, which has uniaxial and biaxial parts,

defined in terms of irreducible spherical tensors symmetrized with respect to the

uniaxial (D∞h) and biaxial (D2h) symmetry groups (2.8-2.9), expressed in the

molecular basis:

Q(Ω̂n) = T
(2)
0 (Ω̂n) +

√
2λT

(2)
2 (Ω̂n), n = i, j. (2.13)
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The quadrupolar term VQ is responsible for uniaxial and biaxial nematic ordering.

Its history, motivations and previous results are discussed in Chapter 3.

• The octupolar term:

VT (Ω̂i, Ω̂j) = −τεT(3)
2 (Ω̂i) ·T(3)

2 (Ω̂j) (2.14)

couples molecular octupolar moments at sites i and j. T
(3)
2 (Ω̂i) is a third-rank

irreducible spherical tensor, symmetrized with respect to the tetrahedratic group

Td, of the form given in (2.10), expressed in the molecular basis. Together with

VQ, this term is shown to be responsible for emergence of phases of tetrahedratic

symmetry and spontaneous breaking of chiral symmetry, recently observed experi-

mentally. Chirality enters the model through parity (handedness) of the molecular

basis:

pi = âi · (b̂i × ĉi) = ±1, (2.15)

because a parity switch is a symmetry of Q(Ω̂i), but not of T
(3)
2 (Ω̂). In this

way, conformations of different chirality are accounted for as microscopic states

parametrized by the parity degree of freedom. Further explanation is given in

Chapter 4.

• The intermolecular vector coupling terms:

Vc(Ω̂i, Ω̂j) = κε [ b̂αi · (b̂βi × b̂γi)Qαν(Ω̂i)Qβν(Ω̂j)

− b̂αj · (b̂βj × b̂γj)Qαν(Ω̂j)Qβν(Ω̂i)
]

(r̂ij)γ ,
(2.16)

V T
c (Ω̂i, Ω̂j) = κT ε [ b̂αi · (b̂βi × b̂γi)T (3)

2 ανµ(Ω̂i)T
(3)
2 βνµ(Ω̂j)

− b̂αj · (b̂βj × b̂γj)T (3)
2 ανµ(Ω̂j)T

(3)
2 βνµ(Ω̂i)

]
(r̂ij)γ ,

(2.17)

where α, β, γ, ν = {x, y, z}, Qρδ(Ω̂) =
(
Q(Ω̂)

)
ρδ
, T

(3)
2 αρδ(Ω̂) =

(
T

(3)
2 (Ω̂)

)
αρδ

, b̂xi =

âi, b̂yi = b̂i, b̂zi = ĉi and Einstein summation convention is implied, couple the

molecular quadrupolar (Vc) and octupolar (V T
c ) moments to unit vectors r̂ij con-

necting sites i and j. These terms should be considered because the antisymmetric

tensor b̂αn · (b̂βn × b̂γn), n = i, j can be constructed out of the other tensors:

b̂αn · (b̂βn × b̂γn) = 2
√

2
∑

(x,y,z)∈π{α,β,γ}

T
(2)
0,xµT

(2)
2,yνT

(3)
2,µνz, (2.18)

where the summation runs over cyclic permutations of {α, β, γ}. Terms V (T )
c will

always be generated in the presence of chirality and will lead to an inhomogeneous
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ground state of the model. (It should be noted that we imply the resulting in-

homogenities to be of large characteristic lengths when compared to the lattice

spacing.) Further explanation is given in Chapter 5.

• The field-coupling term:

∆V (Ω̂i) = −ε∆εhαhβQ(Ω̂i)αβ (2.19)

couples the molecular quadrupolar moment Q(Ω̂i) to an external, general vector

field ~h. α, β = {x, y, z} and Einstein’s summation convention is implied in the

above definition. ε∆ε is the anisotropy of the molecular (dielectric or diamagnetic)

field polarizability, where ∆ε = ±1, thus the anisotropy is taken equal to the

coupling constant in the quadrupolar term VQ above or as a renormalizing factor

to the squared field magnitude h2. The origin of this term is further explained in

Chapter 3.

The model (2.11), is designed to reproduce the most remarkable recent findings made in

bent-core systems, ferrocene mesogens and flexible dimers, i.e. biaxial phases [27, 29, 30,

32, 88], spontaneous breaking of chiral symmetry, formation of modulated chiral struc-

tures [38–40, 43] including the twist-bend nematic phase [45–50], and tetrahedratic order

[51, 52, 54, 55]. In this most general form there are seven independent parameters: the

energy scaling parameter ε, the biaxiality parameter λ, the tetrahedratic coupling con-

stant τ , the intermolecular vector coupling constants κ and κT , the sign of the anisotropy

of the molecular field polarizability ∆ε and the magnitude of the external field h = |~h|.
ε can be eliminated from the list of free parameters by studying the model with respect

to the dimensionless temperature t = kBT/ε (which is equivalent to putting ε = 1). Fur-

thermore, only one of κ and κT needs to be considered, as they generate identical ground

states, therefore we choose to disregard κτ . Nevertheless, studying the full spectrum of

the remaining five parameters is a large task in itself, but, more importantly, we might

have trouble interpreting the results without first studying limit cases. Therefore, this

thesis presents a study on several special cases of the general model (2.11). Namely:

• In Chapter 3 the case of ε > 0, λ > 0, h > 0, τ = κ = 0, i.e. the l = 2 model of

biaxial nematics with external field coupling is studied in detail with Monte Carlo

simulations and mean-field methods. This limit case, as we will show, produces

effects such as field-induced biaxiality in the uniaxial nematic phase, as well as

critical and tricritical points of the isotropic-uniaxial nematic transition as the field

is increased. For a highly symmetric value of λ = 1√
6
an external field produces

an unusual effect of reducing the transition temperature and decreasing the level

of biaxiality in a highly-symmetric biaxial phase.
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• In Chapter 4 the case of ε > 0, λ > 0, τ > 0, h = κ = 0, i.e. the model proposed in

[1] is studied for selected values of λ and τ with Monte Carlo simulations. This case

extends on the studies in [1] by giving full characteristics of homogeneously chiral

and tetrahedratic structures. In addition, a highly-symmetric value of τ = 28
15 is

studied, for which at λ = 1√
6
there exists a direct transition from the isotropic to

the chiral phase.

• In Chapter 5 selected Monte Carlo simulation results for the case of ε > 0, λ >

0, τ > 0, κ > 0, h = 0 are presented. This variant extends on the previous one

by accounting for intermolecular vector coupling, which leads to spatially inhomo-

geneous phases. We present only preliminary result for this case for 2D and 3D

systems. In both cases two distinct structures are identified in the chiral phase,

described in more detail in sections 5.3 and 5.4.





Chapter 3

Dispersion model of biaxial

nematics in an external field

3.1 Introduction

The possibility of stabilizing a thermotropic biaxial nematic phase in bent-core mesogens

[27, 29] has invigorated the interest in this elusive phase, particularly in the possibility

of magnetic or electric field-induced biaxiality [34]. In fact, there are several accounts of

field-induced biaxiality in bent-core systems [89–92], apart from numerous results where

magnetic or electric field effects produce biaxiality in other systems [93–95]. Although

several theoretical descriptions exist [70, 96–98], along with various simulational studies

[99–102], a thorough analysis of field-induced effects by a microscopic model appears to

be missing. We will now consider a lattice dispersion model of a biaxial nematic liquid

crystal interacting with an external vector field, which will be studied with mean-field

and Monte Carlo methods. This chapter completes the preliminary results first published

in [103].

3.2 Dispersion models of biaxial nematics

The idea of a biaxial nematic phase first occurred to Freiser in 1970 [21]. He asserted

that for correct description of biaxial systems the l = 2 subspace needs to be considered

in the multipole expansion of pair dispersion interaction energy and predicted that a

sequence of a first-order transition to the uniaxial nematic and second-order transition

to the biaxial nematic should occur with lowering temperature.

31
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In 1974 Straley [67] considered a generalization of the Maier-Saupe pair potential (1.9)

constructed on D2h-symmetry-adapted functions for l = 2. Assuming a system of brick-

like objects of length L, breadth B and width W , using mean-field methods he produced

the phase diagram for objects of varying breadth. It appears so that there exists a special

value of B =
√
LW , corresponding to maximum biaxiality, where the transition from the

isotropic phase is directly into the biaxial phase. Furthermore, Straley noticed that the

models for rodlike (B <
√
LW ) and platelike objects (B >

√
LW ) can be mapped onto

each other through a duality transformation. At B =
√
LW the transformation carries

the model into itself, therefore B =
√
LW has been named the “self-dual” point.

Similarly to Freiser, Luckhurst and Zannoni considered a l = 2 expansion of the point

dispersion potential in Wigner rotation matrices D(2)
mm′ and developed a molecular field

model [63]. Monte Carlo simulation for a l = 2 model has been first performed by

Luckhurst and Romano [64]. Their version introduced the parameter λ, which controls

the biaxiality of molecules, closely related to Straley’s B. Namely, 0 ≥ λ ≤
√

3
2 , while

the boundary cases correspond to Maier-Saupe-like uniaxial models for long rods (λ = 0)

and platelets (λ =
√

3
2). The case of maximum biaxiality is represented by λ = 1√

6
. The

phase diagram for varying λ has been obtained using mean-field theory and supported

by Monte Carlo simulations by Biscarini et al. in 1995 [104]. Thorough Monte Carlo

investigation of the self-dual point has been performed by Chiccoli [105].

The l = 2 model family has been studied and reformulated extensively. Mulder explored

the expansion in terms of symmetry-adapted functions ∆
(2)
mm′ with bifurcation theory

[87]. A version of the model has been studied by Sonnet et al. [106] and Bisi et al. [107]

for which an universal mean-field phase diagram has been obtained. Density functional

and bifurcation theory has been analyzed by Longa et al. [108]. In parallel, comprehen-

sive Landau-de Gennes theory has been developed by Palffy-Muhoray and Dunmur [96],

Allender [109], Gramsbergen et al. [70] and more recently by Allender and Longa [72].

Longa and Pająk further analyzed the link between phenomenological theory and the

l = 2 Luckhurst-Romano model [71].

3.2.1 Dispersion model of interacting quadrupoles

The base for our model is the Luckhurst-Romano model expressed in the parametrization

of irreducible spherical tensors. In this model it is assumed that the dispersion interaction

is due to coupling of induced quadrupolar moments. In the general model (2.11), this

model corresponds to the case where all parameters aside from λ and ε are zero. The
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pair potential and Hamiltonian read:

VQ(Ω̂i, Ω̂j) =− εQ(Ω̂i) ·Q(Ω̂j),

H =
1

2

N∑
〈i,j〉

VQ(Ω̂i, Ω̂j),
(3.1)

where ε > 0 and Ω̂i = {âi, b̂i, ĉi} and Ω̂j = {âj , b̂j , ĉj} specify orientations of the molec-

ular frames of reference with respect to the laboratory frame of reference {x̂, ŷ, ẑ} for

molecules i and j respectively (see Fig. 3.1a). The sum runs over nearest neighbors, i.e.

for every i we take z = 6 neighboring particles on a simple cubic lattice with periodic

boundary conditions. The scalar product “·” is understood as a full contraction over all

Cartesian indices. The quadrupolar molecular moment Q(Ω̂i) is a second-rank tensor,

defined as:

Q(Ω̂i) = T
(2)
0 (Ω̂i) + λ

√
2T

(2)
2 (Ω̂i). (3.2)

λ ∈ [0,
√

3
2 ] is a parameter which controls molecular biaxiality by combining T

(2)
0 (Ω̂i)

and T
(2)
2 (Ω̂i) – the second-rank D∞h and D2h-symmetrized irreducible spherical tensors

for l = 2, previously defined in (2.8-2.9), which here are constructed in the molecular

basis Ω̂i:

T
(2)
0 (Ω̂i) =

√
3

2
(ĉi ⊗ ĉi −

1

3
I),

T
(2)
2 (Ω̂i) =

1√
2

(âi ⊗ âi − b̂i ⊗ b̂i).
(3.3)

As the interaction (3.1) is regarded as the leading part of the intermolecular dispersion

interaction, Q(Ω̂) can be interpreted as being proportional to the anisotropic part of the

molecular (dielectric or diamagnetic) polarizability tensor α. In this case, the parameters

ε and λ are related to the diagonal elements of the diagonalized tensor α {αx, αy, αz}:
ε = ε0(2αz − αx − αy)2, λ =

√
3
2

αx−αy

2αz−αx−αy
.

If one expresses (3.1) using the symmetry-adapted Wigner functions (2.6) for l = 2, by

substituting Ω̂1 = Ω̂i and Ω̂2 = Ω̂j , the pair potential reads:

VQ(Ω̂i, Ω̂j) = −ε
[
∆

(2)
00 (Ω̂ij) +

√
2λ[∆

(2)
20 (Ω̂ij) + ∆

(2)
02 (Ω̂ij)] + 2λ2∆

(2)
22 (Ω̂ij)

]
, (3.4)

which is the parametrization of the model as presented in [64] and [104]. Clearly, the

minimum of (3.1) is achieved when all of the respective molecular axes of Q(Ω̂i) and

Q(Ω̂j) coincide, i.e. when:

âi ‖ âj , b̂i ‖ b̂j , ĉi ‖ ĉj . (3.5)

Thus, the ground state of (3.1) is the biaxial nematic phase NB (Fig. 3.1b).



Chapter 4. Dispersion model of biaxial nematics in an external field 34

a b

Figure 3.1: Visualization of molecular quadrupolar moments Q(Ω̂i) and Q(Ω̂j) (3.2) at
neighboring lattice sites i and j, located at ~ri and ~rj , for:
a) exemplary orientations of the molecular tripods Ω̂i = {âi, b̂i, ĉi} and Ω̂j = {âj , b̂j , ĉj}
with respect to the laboratory frame of reference {x̂, ŷ, ẑ};
b) a ground state of the potential (3.1), in which âi ‖ âj , b̂i ‖ b̂j , ĉi ‖ ĉj .
The molecular axes are scaled by the magnitudes of the corresponding eigenvalues of the
molecular quadrupolar tensors (a red arrow denotes a negative eigenvalue). The pictured
quadrupolar tensors are for λ = 0.3.

3.2.1.1 Properties of Q(Ω̂)

Consider a molecular tensor Q(Ω̂) constructed in the molecular basis Ω̂ = {â, b̂, ĉ} for

an arbitrary particle. Since this tensor is traceless, we cannot directly equate its eigen-

values with spatial dimensions of a tangible object. To establish an intuitive framework,

from now on we adopt a convention that the sign of the largest-modulus non-degenerate

eigenvalue of Q(Ω̂) specifies the molecular long axis (+) or the largest face (−). The

axis corresponding to this eigenvalue is considered the primary molecular axis, while the

second largest-modulus eigenvalue (if non-degenerate) identifies the secondary molecular

axis. In the diagonal form, Q(Ω̂) reads:

Q(Ω̂) = RT{â,b̂,ĉ}


− 1√

6
+ λ 0 0

0 − 1√
6
− λ 0

0 0
√

2
3

R{â,b̂,ĉ}, (3.6)

where R{â,b̂,ĉ} is a rotation matrix, carrying the laboratory frame to the molecular frame

of reference. From the above form we can now see that in the limit cases of the pa-

rameter λ ∈ [0,
√

3
2 ] a uniaxial tensor is recovered. Namely, for λ = 0 the eigenvalues
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a b

c

Figure 3.2: Visualizations of the molecular tensor Q(Ω̂) and its eigenvalues in the di-
agonal basis for a) λ < 1√

6
, b) λ > 1√

6
and c) λ = 1√

6
. The vectors are scaled by

magnitudes of corresponding eigenvalues. A red arrow means that the corresponding
eigenvalue is negative. Surface described by r = exp (Q · û⊗ û) where û is a unit vector
in polar coordinates.

are {− 1√
6
,− 1√

6
,
√

2
3}, so that Q(Ω̂) is degenerate in the {â, b̂}-plane and cylindrically

symmetric along ĉ. The largest-modulus non-degenerate eigenvalue corresponds to ĉ and

is positive. Therefore, this case corresponds to the prolate molecule with primary axis ĉ.

(See Fig. 3.2a.)

Conversely, if λ =
√

3
2 , the eigenvalues are {

√
2
3 ,−2

√
2
3 ,
√

2
3}, axes {â, ĉ} are degenerate

and the largest-modulus non-degenerate eigenvalue is negative and corresponds to b̂.

Thus, the corresponding molecular shape is a flat disk with primary axis b̂. (See Fig.

3.2b.)

In the self-dual point λ = 1√
6
, the eigenvalues are {0,−

√
2
3 ,
√

2
3} and, while non-

degenerate, the axes b̂ and ĉ are equivalent. The corresponding object has both a pro-

found long axis, identified by ĉ, and a large face, identified by b̂. This case corresponds

to biaxial bricks of dimensions (L,
√
LW,W ), as identified by Straley. (See Fig. 3.2c.)
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3.2.1.2 Duality transformation

The duality transformation for model (3.1) is performed by simultaneously rescaling both

λ and the dimensionless temperature t ≡ kBT/ε, while cyclically permuting the axes such

that {â, b̂, ĉ} → {ĉ, â, b̂} [108]:

λ→

√
3
2 − λ

1 +
√

6λ

t→ 4t

(1 +
√

6λ)2
.

(3.7)

Such transformation leaves the Boltzmann factor e−H/t invariant. (3.7) is identity when

λ = 1√
6
.

3.2.1.3 Phases and phase transitions

The isotropic-uniaxial nematic phase transition is of first order, occurring through spon-

taneous breaking of the global rotational symmetry of the Hamiltonian (3.1), as in the

Maier-Saupe and Lebwohl-Lasher models. In the uniaxial nematic phase the long-range

ordering is of the molecular axis corresponding to the largest-modulus eigenvalue of

Q(Ω̂). Therefore, a nematic prolate NU+ phase is observed for λ < 1√
6
and a nematic

oblate NU− is observed for λ > 1√
6
, with the primary uniaxial director n̂ due to the

long-range ordering of the ĉ and b̂ axes respectively. For these cases, as the temperature

is lowered in the nematic phase, a second-order phase transition to the biaxial nematic

NB phase occurs, through spontaneous breaking of uniaxial symmetry. At λ = 1√
6
nei-

ther of ĉ and b̂ is privileged and ordering of both is simultaneous, hence there is a direct

transition from the isotropic (I) to the biaxial nematic phase (NB), known to be second

order [104, 105]. The phase diagram for the model (3.1) is presented in Fig. 3.3.
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Figure 3.3: Phase diagram for model (3.1) in the plane (λ, T∗ = kBT/ε), obtained
by Biscarini et al. [104]. Points denote Monte Carlo simulation results, while lines
correspond to mean-field predictions. At the self-dual point λ = 1√

6
≈ 0.408248 there

exists a direct isotropic-biaxial nematic second order transition. Here the symbols I,
N+, N− and B stand for the isotropic, nematic uniaxial prolate, nematic uniaxial oblate
and nematic biaxial phases, throughout the present text denoted as I, NU+, NU− and
NB respectively. Reprinted FIG. 2 with permission from F. Biscarini, C. Chiccoli, P.
Pasini, F. Semeria, and C. Zannoni. Physical Review Letters, 75 (9):1803–1806, 1995.
Copyright 1995 by the American Physical Society.)

http://link.aps.org/abstract/PRL/v75/i9/p1803
http://link.aps.org/abstract/PRL/v75/i9/p1803
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3.3 Dispersion model with external field

In nematic liquid crystals application of an external electric or magnetic field affects the

orientation of the sample [2, cc. 3.2-3.3]. Most nematogenic molecules are diamagnetic,

as they in general contain one or more benzene rings (e.g. MBBA, see Fig. 3.4), which

respond to the application of an external magnetic field by an induced repellent eddy

current, if the field is at an angle to the benzene ring plane. Therefore, in the case of

magnetic fields, the effect works generally to adjust the director ~n to align in parallel to

the external magnetic field ~H.

N

O

Figure 3.4: N-(4-Methoxybenzylidene)-4-butylaniline (MBBA) ( c©Wikimedia Commons,
Creative Commons CC0 1.0 Universal Public Domain Dedication)

The magnetization induced in a nematic sample by an external magnetic field ~H reads:

~M = χ⊥ ~H + (χ‖ − χ⊥)( ~H · ~n)~n. (3.8)

χ‖ and χ⊥ are the anisotropic components of the bulk diamagnetic polarizability tensor,

corresponding to the long molecular axis and the axis perpendicular to benzene ring

plane. The difference ∆χ = χ‖ − χ⊥ is the diamagnetic anisotropy of the sample. The

corresponding contribution to energy is given by:

∆EM = −
∫ H

0

~M · d ~H = −1

2
χ⊥H

2 − 1

2
∆χ(~n · ~H)2. (3.9)

The first term is independent of ~n, so it can be discarded. The second term promotes

~n ‖ ~H if ∆χ > 0 and ~n ⊥ ~H if ∆χ < 0. For uniaxial nematics the alignment tensor is

Q = S(~n⊗ ~n− 1
3I), so the second term can be rewritten:

− 1

2
∆χ(~n · ~H)2 = −1

2
∆χ

[
HiHjQij +

1

3
H2

]
, (3.10)

where i, j = {x, y, z}. Again, the term proportional to H2 can be dropped, and we have:

∆E′M = −1

2
∆χHiHjQij . (3.11)

A similar term to (3.11) appears when the electric field is considered instead.
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3.3.1 Model

A similar discussion to (3.8-3.11) can be conducted at the microscopic level. The contri-

bution to the potential energy of particle i then reads [70]:

∆V (Ω̂i) = −ε∆εhαhβQ(Ω̂i)αβ. (3.12)

We distinguish the general vector field ~h because of the universal character of (3.12),

which can also express interaction with an electric field (to an extent where piezoelectric

effects can be neglected [110]). The analogue of bulk diamagnetic anisotropy is the

anisotropy of the molecular (dielectric or diamagnetic) field polarizability, ε∆ε. In our

discussion we distinguish only the sign of the anisotropy of the field polarizability and

let ∆ε = ±1, either assuming that the anisotropy is equal to the quadrupolar coupling

constant ε, or that it renormalizes h2. Note that we use the full biaxial molecular tensor

Q(Ω̂), as defined in (3.2), and assume a proportionality for the molecular polarizability

tensor for particle i:

χiαβ ∝ ε∆εQ(Ω̂i)αβ, (3.13)

which is a model assumption. Together with (3.1), the dispersion model for biaxial

nematics in the presence of an external vector field is given by the Hamiltonian:

H = −ε

1

2

N∑
〈ij〉

Q(Ω̂i) ·Q(Ω̂j) + ∆ε

N∑
i

hαhβQ(Ω̂i)αβ

 . (3.14)

We take the first sum over the nearest neighbors, i.e. for every i we take only z = 6

neighboring particles on a simple cubic lattice with periodic boundary conditions. This

model corresponds to the general model (2.11) for the case when the parameters λ, ε

and h are non-zero. In our discussion we will assume that the model (3.14) is studied

with respect to a dimensionless temperature t ≡ kBT/ε (which is equivalent to putting

ε = 1).

3.3.2 Field-induced effects

While the model (3.1) has global rotational symmetry, in the model with non-zero exter-

nal field (3.14) the rotational symmetry is broken by definition. Therefore, the Hamil-

tonian (3.14) has global symmetry with respect to rotation around the vector ~h, which

determines the preferred alignment of one of the molecular axes and, consequently, one

of the directors. Considering a sample particle for which the orientation is given by

Ω̂ = {â, b̂, ĉ}, there are two main microscopic effects, consistent with the minima of

(3.12), when h 6= 0, namely:
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• for ∆ε = +1 the molecular ĉ axis (which corresponds to the largest, with respect

to the modulus, positive eigenvalue of Q(Ω̂), regardless of λ) aligns parallel to ~h

(Figs. 3.5a and c);

• for ∆ε = −1 the molecular b̂ axis (which corresponds to the largest, with respect

to the modulus, negative eigenvalue of Q(Ω̂), regardless of λ) aligns parallel to ~h

(Figs. 3.5b and d).

What precisely happens to the orientation of the director basis depends on λ and the

considered zero-field phase, to which a non-zero field is introduced. We identify two

classes of macroscopic effects, distinguished by how the field affects the director of the

zero-field uniaxial nematic phase. Namely, considering the above discussion of the ori-

entation of molecular axes, the field can make the primary uniaxial director n̂ either

parallel or perpendicular to ~h. In the first case, the field reinforces uniaxiality, while

in the second case biaxiality is induced, because the field forces rotation of the uniaxial

director n̂ to align perpendicularly to ~h and orients the secondary molecular axis (and

therefore the secondary director m̂) in parallel to ~h.

The uniaxiality-promoting effect occurs for λ < 1√
6
∧ ∆ε = +1 or λ > 1√

6
∧ ∆ε = −1

(Figs. 3.5a and b).

The biaxiality-promoting effect occurs for λ < 1√
6
∧ ∆ε = −1 or λ > 1√

6
∧ ∆ε = +1

(Figs. 3.5c and d).

3.3.2.1 Uniaxiality-promoting effects

Cases of λ < 1√
6
∧ ∆ε = +1 (Fig. 3.5a) and λ > 1√

6
∧ ∆ε = −1. (Fig. 3.5b).

A non-zero field aligns the director n̂ parallel to the field in all phases for this particular

case. Firstly, in the isotropic phase the field induces uniaxial ordering. The increase in

uniaxiality (e.g. in the uniaxial order parameter S, as defined in (1.2)) is proportional

to h2 and the resulting phase is called paranematic. Depending on λ this uniaxial phase

can be either prolate (NP+) for λ < 1√
6
, or oblate (NP−) for λ > 1√

6
.

When considering the zero-field uniaxial nematic phase, the uniaxial ordering is increased

by the application of the field. The NP − NU phase transition is of first order. It is

known that the transition temperature rises with increased field and it is predicted by

phenomenological theories that the transition should terminate at a critical point [70, 96].

In the biaxial nematic phase the field does not reduce symmetry, although Landau-de

Gennes theory predicts that the NU −NB transition temperature may either increase or

decrease [103].
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a b

c d

Figure 3.5: Visualizations of the minima of (3.12) for cases:
a) λ < 1√

6
∧∆ε = +1,

b) λ > 1√
6
∧∆ε = −1,

c) λ < 1√
6
∧∆ε = −1,

d) λ > 1√
6
∧∆ε = +1.

The arrows represent eigenvectors of Q(Ω̂) and are scaled by the magnitudes of respective
eigenvalues. A red arrow means that the corresponding eigenvalue is negative. The
dashed arc illustrates the degeneracy of the minimum in the plane perpendicular to ~h.
Surface described by r = exp (Q · û⊗ û), where û is a unit vector in polar coordinates.

3.3.2.2 Biaxiality-promoting effects

Cases of λ < 1√
6
∧ ∆ε = −1 (Fig. 3.5c) and λ > 1√

6
∧ ∆ε = +1. (Fig. 3.5d).

In the isotropic phase the field orients the director n̂ parallel to the field, as in the

previous case. Depending on λ, the paranematic prolate phase (NP+) occurs for λ > 1√
6

and the paranematic oblate phase (NP−) is found for λ < 1√
6
.

In the uniaxial nematic phase the field forces the director n̂ to align in perpendicular to ~h

and biaxiality is induced, with the secondary director m̂ parallel to ~h. Upon the NP−NB

transition, the director n̂ is reoriented from being parallel to ~h to being perpendicular to

ĥ. This transition is initially first-order, but is predicted by phenomenological theories to

experience a tricritical point for high enough fields and then to continue as second-order

[70, 96], when the field is sufficiently large so that field-ordering becomes dominant.



Chapter 4. Dispersion model of biaxial nematics in an external field 42

The biaxial nematic phase, which exists for no field, blends seamlessly with the biaxial

nematic phase which is induced in place of the uniaxial nematic. The NU−NB transition,

being second order, simply vanishes as the field is introduced, leaving a smooth increase

in biaxial ordering as temperature is lowered.

3.3.2.3 Field effects for λ = 1√
6

The self-dual point is a special case because of the high symmetry involved. For h = 0 the

molecular axes ĉ and b̂ are equivalent and there is no director along which the uniaxial

ordering is predominant, as it can only be field-induced. For h 6= 0 ĉ is preferred to align

in parallel to ~h for ∆ε = +1, while b̂ is preferred to align in parallel to ~h for ∆ε = −1. In

the isotropic phase, this induces a paranematic prolate (NP+) phase and a paranematic

oblate (NP−) phase in the respective cases. In the self-dual case the biaxial nematic

phase for h = 0 is a phase with maximum biaxiality (that is, the alignment tensor has

no uniaxial part), in which the induced uniaxial ordering for h 6= 0 can actually reduce

the level of biaxial ordering, thus lowering the NP −NB transition temperature.

3.3.3 Duality transformation

The discussed field-induced effects hint upon a symmetry of the model (3.14) with respect

to the permutation of molecular axes and a change of λ from the prolate to the oblate

case, coupled with a switch in the sign of ∆ε. Such self-dual transformation for (3.14) is

performed by extending on the transformation (3.7) for model (3.1) by simultaneously

rescaling also the magnitude of the field. Namely, the argument of the Boltzmann factor

e−H/t is invariant when the axes are cyclically permuted such that {â, b̂, ĉ} → {ĉ, â, b̂}
and dimensionless temperature t = kBT/ε, λ and ∆εh2 are rescaled:

λ→

√
3
2 − λ

1 +
√

6λ

t→ 4t

(1 +
√

6λ)2

∆εh2 → −2∆εh2

1 +
√

6λ

. (3.15)
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3.4 Tools and methods

3.4.1 Order parameters

3.4.1.1 Alignment tensor

The description of order in biaxial nematics is primarily achieved by investigating the

properties of the alignment tensor, which, similarly to the molecular quadrupolar mo-

ment, is composed of uniaxial and biaxial contributions:

Q ≡ T
(2)
0 (Ω̂′) +

√
2λT

(2)
2 (Ω̂′), (3.16)

where the overline denotes the ensemble average and Ω̂′ is, as of yet, an unspecified cyclic

permutation of the molecular basis {â, b̂, ĉ}, for which there are three possibilities. The

tensors T
(2)
m (Ω̂′),m = 0, 2 are constructed by assuming {êx, êy, êz} ≡ Ω̂′ in the definitions

(2.8-2.9). The proper choice of Ω̂′, for which a consistent Q is obtained, is made such that

the average uniaxial tensor T
(2)
0 (Ω̂′) and the average biaxial tensor T

(2)
2 (Ω̂′) unequivocally

determine the primary uniaxial director n̂ and the two secondary (biaxial) directors m̂

and l̂ respectively, consistently with the qualitative predictions made in the previous

sections, depending on the field ~h and parameters λ and ∆ε:

• For λ 6= 1√
6
the appropriate uniaxial tensor is the one constructed upon the primary

molecular axis (while the biaxial tensor is built out of the remaining two), thus

Ω̂′ = {â, b̂, ĉ} for λ < 1√
6
and Ω̂′ = {ĉ, â, b̂} for λ > 1√

6
.

• For λ = 1√
6
and h = 0 in the biaxial phase the only viable choice is Ω̂′ = {b̂, ĉ, â},

for which the biaxial tensor is constructed using the (equivalent) axes ĉ and b̂. In

the other two options one of them is being distinguished completely artificially.

The average uniaxial tensor T
(2)
0 (Ω̂′ = {b̂, ĉ, â}) is purely uniaxial and is non-zero

only because the ordering of ĉ and b̂ necessarily causes ordering of â.

• For λ = 1√
6
and h 6= 0 the field prefers rotation of one of the molecular axes parallel

to ~h, i.e. ĉ for ∆ε = +1 and b̂ for ∆ε = −1. In this case the average of T
(2)
0 (Ω̂′)

with the choice of Ω̂′ = {b̂, ĉ, â}, as for h = 0, is not consistent with the uniaxial

director and also does not account for the increase in uniaxial ordering along ~h.

Therefore, Ω̂′ = {â, b̂, ĉ} for ∆εh2 > 0 and Ω̂′ = {ĉ, â, b̂} for ∆εh2 < 0.
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In conclusion, the alignment tensor which is consistent with the qualitative predictions

is defined as:

Q ≡



T
(2)
0 ({â, b̂, ĉ}) +

√
2λT

(2)
2 ({â, b̂, ĉ}) for λ <

1√
6

and λ =
1√
6
∧∆εh2 > 0

T
(2)
0 ({ĉ, â, b̂}) +

√
2λT

(2)
2 ({ĉ, â, b̂}) for λ >

1√
6

and λ =
1√
6
∧∆εh2 < 0

T
(2)
0 ({b̂, ĉ, â}) +

√
2λT

(2)
2 ({b̂, ĉ, â}) for λ =

1√
6
∧ h = 0

.

(3.17)

By following the definition (3.17), we can calculate the director frame of reference

{l̂, m̂, n̂} as the eigenbasis of Q, identifying the directors by the moduli of its respec-

tive eigenvalues:

{l̂, m̂, n̂} : {|ωl̂| ≤ |ωm̂| ≤ |ωn̂|}. (3.18)

Because in (3.17) the averaged tensors are traceless, also Tr(Q) = ωn̂ + ωm̂ + ωl̂ = 0.

The properties of the phase in which Q is measured can be inferred from the eigenvalues:

• In the isotropic (I) phase ωn̂ = ωm̂ = ωl̂ = 0 (no directors can be identified).

• In the uniaxial nematic or paranematic prolate phase (NU+ or NP+), ωn̂ > 0, ωm̂ =

ωl̂ = −ωn̂/2 (n̂ is well-defined, while Q is degenerate in the {l̂, m̂} plane).

• In the uniaxial nematic or paranematic oblate phase (NU− or NP−), ωn̂ < 0, ωm̂ =

ωl̂ = −ωn̂/2 (n̂ is well-defined, while Q is degenerate in the {l̂, m̂} plane).

• In the biaxial nematic phase for (NB) for λ 6= 1√
6
, ωn̂ 6= ωm̂, ωl̂ = −(ωn̂ + ωm̂)

(all three directors are well-defined). For the isolated case of λ = 1√
6
∧ h = 0,

ωn̂ = −ωm̂, ωl̂ = 0 (directors n̂ and m̂ are interchangeable).

• In addition, we can use the invariant parameter w, as defined in (1.21), which takes

different values in the various phases: w = +1 in prolate phases (NU+ or NP+),

w = −1 in oblate phases (NU− or NP−) and |w| < 1 in the biaxial nematic phase

(NB). In particular w = 0 in the maximally biaxial phase. In the isotropic phase

w is undefined.
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3.4.1.2 Definition of order parameters

The natural order parameters are the coefficients for decomposing Q in the basis of

symmetrized irreducible tensors in the director basis:

T
(2)
0 ({l̂, m̂, n̂}) =

√
3

2
(n̂⊗ n̂− 1

3
I)

T
(2)
2 ({l̂, m̂, n̂}) =

1√
2

(l̂ ⊗ l̂ − m̂⊗ m̂).

(3.19)

The decomposition is constructed using the D2h-symmetrized identity operator (2.7) for

l = 2 (for which case the seniority index is irrelevant), constructed in the director basis:

Q =
∑
m=0,2

Q ·T(2)
m ({l̂, m̂, n̂})⊗T(2)

m ({l̂, m̂, n̂}), (3.20)

where the coefficients:
q0 = Q ·T(2)

0 ({l̂, m̂, n̂})
q2 = Q ·T(2)

2 ({l̂, m̂, n̂})
(3.21)

are the uniaxial (q0) and biaxial (q2) order parameters, normalized such that |q0| ∈ [0, 1]

and |q2| ∈ [0,
√

2λ]. With these parameters we can express the eigenvalues of Q, i.e.:

{ωn̂ =

√
2

3
q0, ωm̂ = − q0√

6
− q2√

2
, ωl̂ = − q0√

6
+

q2√
2
}. (3.22)

From the eigenvalues of Q (3.22) and the discussion from the previous section we infer

the following properties of the order parameters:

• In the isotropic (I) phase q0 = q2 = 0.

• In the uniaxial nematic or paranematic prolate phase (NU+ orNP+), q0 > 0, q2 = 0.

• In the uniaxial nematic or paranematic oblate phase (NU− or NP−), q0 < 0, q2 = 0.

• In the biaxial nematic phase (NB) either q0 > 0, q2 < 0 or q0 < 0, q2 > 0, which is

enforced by Tr(Q) = 0.

3.4.1.3 Invariant parameter w

In the cases where the increases in ordering are very small, as in the field-induced NP

phases, the invariant parameter w (1.21), as introduced in section 1.6, provides unequiv-

ocal identification of the phase, assuming a value of ±1 for arbitrarily small uniaxial
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ordering. Expressed through order parameters (3.21), the parameter reads:

w =
q3

0 − 3q0q
2
2

(q2
0 + q2

2)3/2
. (3.23)

3.4.2 Mean-field method

By applying the formalism recollected in section (1.7) to the potential of the model (3.14),

we write the mean-field equations, which enable us to calculate the order parameters q0

and q2. The effective potential is obtained as follows:

Veff (Ω̂) = −ε
z=6∑
i

Tr
Ω̂i

[
Peq(Ω̂i)Q(Ω̂i) ·Q(Ω̂)

]
= −εzQ ·Q(Ω̂), (3.24)

where z is the coordination number (number of nearest neighbors) and Ω̂ = {â, b̂, ĉ} is
the orientation of the molecular basis for a sample particle, expressed with respect to the

laboratory frame of reference. By applying the decomposition of the alignment tensor

(3.20) to (3.24), we obtain:

Veff (Ω̂) = −εz[q0T
(2)
0 ({l̂, m̂, n̂}) + q2T

(2)
2 ({l̂, m̂, n̂})] ·Q(Ω̂). (3.25)

The above definition can be explicitly expressed in terms of symmetrized Wigner func-

tions, discussed in section 2.1:

∆
(2)
mm′(Ω̂) = T(2)

m ({l̂, m̂, n̂}) ·T(2)
m′ (Ω̂), (3.26)

where we use the definition (2.6), substituting the director basis for Ω̂1 ≡ {l̂, m̂, n̂} and
the molecular basis for a sample particle for Ω̂2 ≡ {â, b̂, ĉ}. Using (3.26) in (3.25), while

observing the form for the tensor Q(Ω̂) (3.2), we obtain:

Veff (Ω̂) = −εz
[
q0

(
∆

(2)
00 (Ω̂) +

√
2λ∆

(2)
02 (Ω̂)

)
+ q2

(
∆

(2)
20 (Ω̂) +

√
2λ∆

(2)
22 (Ω̂)

)]
. (3.27)

The complete mean-field Hamiltonian and equilibrium free energy per particle read:

HMF (Ω̂) = Vef (Ω̂)− ε∆εhαhβQ(Ω̂)αβ, (3.28)

f = F/N =
z

2
(q2

0 + q2
2)− t logZ. (3.29)
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The mean-field partition function and equilibrium particle distribution function are given

by:

Z =

∫
dΩ̂e−βHMF (Ω̂), (3.30)

Peq(Ω̂) = Z−1e−βHMF (Ω̂), (3.31)

where β = (kBT )−1. The order parameters can be calculated as mean-field averages of

combinations of symmetrized Wigner functions, as given below:

q0 =

∫
dΩ̂Peq(Ω̂)

(
∆

(2)
00 (Ω̂) +

√
2λ∆

(2)
02 (Ω̂)

)
,

q2 =

∫
dΩ̂Peq(Ω̂)

(
∆

(2)
20 (Ω̂) +

√
2λ∆

(2)
22 (Ω̂)

)
.

(3.32)

q0 and q2 are obtained using two methods, described in the paragraphs that follow.

3.4.2.1 Self-consistent approach

In the first procedure the equations (3.30-3.32) are solved iteratively. We parametrize Ω̂

with Euler angles and the integration is carried out using a Monte Carlo method with

importance sampling, through the Vegas algorithm from the Cuba Library, version 2.1

[111]. The initial values of parameters q0 and q2 for a given temperature t are supplied

randomly with a uniform distribution on [−1, 1], and subsequently we observe which

seed yields convergence to the lowest free energy per particle f (3.29). The equations are

iterated until the variance of the last 10 iterations drops below 10−10. It typically takes

20 ∼ 30 iterations for convergence when t is far from the transition temperature, while

as much as 100 ∼ 200 iterations are needed in the phase transition vicinity. Because the

integration is approximate, the behavior of order parameters is correctly recovered only

away from transition temperature, while in the vicinity of the phase transition the order

parameters are smoothed out, which makes this method impractical for distinguishing

between transitions of different order. However, the self-consistent method is very useful

in studying the NU −NB transition, for which the order is known. This transition occurs

at relatively low temperatures, where the high-temperature expansion method, discussed

below, proves difficult to apply. With the self-consistent method we successfully perform

calculations for (dimensionless) temperatures as low as 0.1. It should be noted, however,

that anything that is obtained in such low temperatures is only a property of the model,

since real nematic phases are stable for higher temperatures, for which |t−tINU
|

tINU
. 0.2,

where tINU
is the temperature of the isotropic to nematic uniaxial phase transition.



Chapter 4. Dispersion model of biaxial nematics in an external field 48

3.4.2.2 High-temperature expansion

We expand the mean-field partition function (3.30) around βε = t−1 = 0 (t being the

dimensionless temperature) in the expression for the mean-field free energy per particle

(3.29):

fn =
z

2
(q2

0 + q2
2)− t log

∫
dΩ̂

[
n∑
i=0

t−i
1

i!

(
−HMF (Ω̂)

)i]
. (3.33)

The procedure is to choose a suitable expansion order n and integrate term-by-term,

leaving q0 and q2 as free parameters. The terms are integrable polynomials in trigono-

metric functions of Euler angles. q0 and q2 are found for a given t by minimization of

the resulting approximate free energy per particle fn:

∂

∂q0
fn = 0

∂

∂q2
fn = 0

∂2

∂q2
0

fn > 0

∂2

∂q2
2

fn > 0.

(3.34)

We use n = 6 through n = 14 as needed. Because of the factor t−i, the series in (3.33)

converges very slowly in low temperatures, where higher terms become important and

even for orders as high as n = 14 the approximation breaks down at t ≈ 0.8, which (save

for the vicinity of λ = 1√
6
) is usually much higher than the NU −NB transition. On the

other hand, in t > 1, as few as n = 6 terms provide a very good approximation, therefore

the expansion (3.33) proves very useful in studying the I −NU transition. Because the

leading terms are exact and not approximated, as in the self-consistent method from the

previous section, the expansion method correctly recovers order parameter discontinuities

at the first-order phase transition.

3.4.3 Monte Carlo simulations

We assume a simple cubic lattice of N = 16× 16× 16 particles with periodic boundary

conditions. Each molecule interacts only with the z = 6 nearest neighbors. For each

separate temperature the simulation runs independently, starting from a completely bi-

axial initial configuration of the lattice, such that the molecules are aligned with their

molecular axes parallel to the laboratory frame of reference {x̂, ŷ, ẑ}, which is parallel to
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the lattice edges. That is, in the initial state, for each lattice site i:

âi ‖ x̂, b̂i ‖ ŷ, ĉi ‖ ẑ. (3.35)

Furthermore, we put the field parallel to the ẑ axis:

~h ‖ ẑ. (3.36)

Subsequently, the Monte Carlo step radius r, defined in (1.49), is self-consistently ad-

justed so that the average number of accepted trial moves is between 40% and 50%. As

the system evolves, the acceptance may increase or lower. In particular, in the isotropic

phase it can rise to as much as 60% when the radius is not adjusted. We decide to keep

the radius constant during the simulation, as adjustment during simulation could lead

to violation of detailed balance [112].

One Monte Carlo lattice sweep (which, generally, is called a Monte Carlo cycle in lit-

erature) proceeds by performing trial moves on N randomly chosen molecules. For a

molecule i the change in energy upon a trial rotation Ω̂′i is calculated as:

∆Ei =
1

2

z=6∑
j(i)

(
V (Ω̂i, Ω̂j)− V (Ω̂′i, Ω̂j)

)
+
(

∆V (Ω̂i)−∆V (Ω̂′i)
)
, (3.37)

where the two particle potential and external field interaction are as defined in (3.1) and

(3.12). The trial move is accepted according to the Metropolis algorithm discussed in

section 1.8.1.

As many as 100k cycles are needed for the thermalization process. For calculating av-

erages, or production, we perform from 100k to 240k cycles. As previously discussed in

section 1.8, one needs to discard correlated states when calculating averages. We find

that taking every tenth equilibrium configuration is a safe choice, so in the end we con-

sider as many as 10k to 24k configurations when calculating thermodynamic quantities.

The thermodynamic average of a general microscopic property Ai, defined for each lattice

site i = 1, . . . , N , is calculated as:

A =
1

M

M∑
k=1

(
1

N

N∑
i=1

Ai

)
k

=
1

M

M∑
k=1

Ãk, (3.38)

where M is the size of the Monte Carlo statistical sample, in which k numbers the

elements and Ãk is the k-th instantaneous lattice average. Furthermore, we define the
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Monte Carlo fluctuation of Ai as:

χA = 〈Ã2〉M − 〈Ã〉2M =
1

M

M∑
k

Ã2
k −

(
1

M

M∑
k

Ãk

)2

, (3.39)

where it is presented that the average 〈·〉M is calculated as 〈Ã〉M = 1
M

∑M
k Ãk.

From Monte Carlo simulations we obtain the alignment tensor Q, as defined in (3.17),

from which the director basis {l̂, m̂, n̂} is calculated by diagonalization and labeling of

the respective eigenvectors according to (3.18). Order parameters q0 and q2 are then

calculated from the definition (3.21).

3.4.3.1 Specific heat and susceptibilities

To aid indication of phase transitions, we calculate the specific heat, which has an im-

portant property that it is singular at a phase transition. In the canonical ensemble the

specific heat at constant volume is proportional to the fluctuation of energy:

CV =

(
∂〈E〉
∂T

)
V

=
kB
T 2

(〈E2〉 − 〈E〉2). (3.40)

We express CV through fluctuation of the per-particle energy:

εi =
1

2

z=6∑
j(i)

V (Ω̂i, Ω̂j) + ∆V (Ω̂i). (3.41)

The fluctuation of per-particle energy is calculated as in definition (3.39):

c = N
(
〈ε̃2〉M − 〈ε̃〉2M

)
, (3.42)

where ε̃ is the lattice average of εi. CV can be calculated from c:

CV = N
kB
T 2
c. (3.43)

For better clarity of presentation, we will use c rather than CV , because the factor 1/T 2

makes the peaks for the low-temperature transitions less visible.

It is also useful to consider susceptibilities of order parameters, which too are singular at

a phase transition. Statistical physics relates the susceptibilities to fluctuations of order

parameters. Since we do not compute the instantaneous director basis for each equilib-

rium state, instead of calculating fluctuations of q0 and q2, we calculate the fluctuations

of scalar order parameters, given by instantaneous lattice averages of molecular uniaxial
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and biaxial tensors
˜

T
(2)
0 and

˜
T

(2)
2 :

χ0 = 〈 ˜
T

(2)
0 ·

˜
T

(2)
0 〉 − 〈

√
˜

T
(2)
0 ·

˜
T

(2)
0 〉2, (3.44)

χ2 = 〈 ˜
T

(2)
2 ·

˜
T

(2)
2 〉 − 〈

√
˜

T
(2)
2 ·

˜
T

(2)
2 〉2. (3.45)

Quantities (3.44-3.45) are proportional to the susceptibilities of order parameters
√

˜
T

(2)
m · ˜

T
(2)
m ,

but we will refer to them simply as “susceptibilities of uniaxial and biaxial order param-

eters”, as we do not make use of their quantitative interpretation.
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3.5 Results for the Luckhurst-Romano model

As a test of our methods, we present the results recovered for the original Luckhurst-

Romano model (3.1), i.e. when h = 0 in (3.14) for three representative values of the

parameter λ. The results are in agreement with previous research [104, 105].

The case of λ = 0.3 corresponds to prolate biaxial molecules. Results are presented in

Figs. 3.6a-c. The transition temperatures are given in Table 3.1. The phase transition

sequence with lowering temperature is as follows:

• In the high-temperature regime the isotropic phase (I) is present. In this phase

the order parameters q0 and q2 are zero and the invariant parameter w is undefined

(because of Tr(Q2) = 0).

• At t = tINU+
a weakly first-order phase transition occurs from the isotropic (I) to

the uniaxial nematic prolate (NU+) phase. The energy fluctuation c and uniaxial

order parameter susceptibility χ0 experience sharp peaks at the transition temper-

ature, while the uniaxial order parameter q0 begins to rise and w approaches 1.

The biaxial order parameter q2 is zero. tINU+
≈ 1.08 in Monte Carlo, tINU+

≈ 1.48

in mean-field.

• At t = tNU+NB
a second-order phase transition occurs from the uniaxial nematic

prolate (NU+) to the biaxial nematic (NB) phase. The energy fluctuation c and

the biaxial order parameter susceptibility χ2 experience peaks at the transition

temperature, while the biaxial order parameter q2 begins to rise (modulus-wise),

whereas w begins to decrease from 1. tNU+NB
≈ 0.43 in Monte Carlo, tNU+NB

≈
0.59 in mean-field.

The case of λ = 0.5 corresponds to oblate biaxial molecules. Results are presented in

Fig. 3.7a-c. The phase transition sequence with lowering temperature is as follows:

• As in the previous case, in the high-temperature regime the isotropic phase (I) is

present. In this phase the order parameters q0 and q2 are zero and the invariant

parameter w is undefined (because of Tr(Q2) = 0).

• At t = tINU− a weakly first-order phase transition occurs from the isotropic (I) to

the uniaxial nematic oblate (NU−) phase. The energy fluctuation c and uniaxial

order parameter susceptibility χ0 experience sharp peaks at the transition temper-

ature, while the uniaxial order parameter q0 begins to rise (modulus-wise) and w

approaches −1. The biaxial order parameter q2 is zero. tINU− ≈ 1.35 in Monte

Carlo, tINU− ≈ 1.85 in mean-field.
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Figure 3.6: Results for λ = 0.3 and h = 0. Monte Carlo transition temperatures are
marked with vertical dashed lines, while the phases are labeled above the plot.
a) Monte Carlo (points) and mean-field (lines) uniaxial and biaxial order parameters q0

and q2 (3.21). Note how the change in mean-field q0 is abrupt, indicating the first-order
character of the I −NU+ transition.
b) Monte Carlo (points) and mean-field (lines) invariant parameter w (1.21) and Monte
Carlo energy fluctuation c (3.42) (in green). When calculating w from Monte Carlo sim-
ulations results for which Tr(Q2) < 10−3 are discarded, which happens in the isotropic
phase.
c) Monte Carlo fluctuations of uniaxial (χ0) and biaxial (χ2) order parameters.
In Monte Carlo results, at temperatures directly above tINU+

≈ 1.08, minute increase in
uniaxiality and biaxiality is visible (see w, q0 and q2), which is identified as a finite-size
effect, often observed for such system sizes [104, 105].
The mean-field lines are composed of the high-temperature expansion result for n = 8
(see section 3.4.2.2) for t ≥ 1 and of the self-consistent result (see section 3.4.2.1) for
t < 1.
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• At t = tNU−NB
a second-order phase transition occurs from the uniaxial nematic

oblate (NU−) to the biaxial nematic (NB) phase. The energy fluctuation c and

the biaxial order parameter susceptibility χ2 experience peaks at the transition

temperature, while the biaxial order parameter q2 begins to rise, whereas w begins

to increase from −1. tNU−NB
≈ 0.62 in Monte Carlo, tNU−NB

≈ 0.86 in mean-field.

In the self-dual case λ = 1√
6
there exists one phase transition, from the isotropic (I) to

the biaxial nematic (NB) phase, which is of second order. Monte Carlo and mean-field

results are presented in Fig. 3.8. The qualitative difference of the I−NB transition from

the first-order I −NU and second-order NU −NB phase transitions comes from the fact

that for λ = 1√
6
two directions of symmetry breaking (two perpendicular directors) are

established simultaneously. In Monte Carlo results this leads to an apparent ambiguity

of the transition temperature. In fact, the fluctuation-measuring quantities c, χ0 and χ2

are peaked at a temperature which is ∼ 18% lower than the temperature at which q0 and

q2 begin to rise (compare e.g. Figs. 3.8a and b). We infer from the results of Chiccoli

et al. [105] that for λ = 1√
6
this mismatch is a finite-size effect and that increasing the

system size corrects this discrepancy. In our results for λ = 1√
6
we choose to interpret the

temperature at which q0 and q2 are seen to increase as tINB
(marked as vertical dashed

lines in Fig. 3.8). From Monte Carlo tINB
≈ 1.22, while from mean-field tINB

≈ 1.6.



Chapter 4. Dispersion model of biaxial nematics in an external field 55

a b

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2

q 0
,q

2

t

NB NU− I

q0 (MC)
q2 (MC)
q0 (mf)
q2 (mf)

-1

-0.5

0

0.5

1

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2
0

1

2

3

4

5

w c

t

NB NU− I

w (mf)
w (MC)
c

c

0

1e-05

2e-05

3e-05

4e-05

5e-05

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2
0e+00

2e-04

4e-04

6e-04

8e-04

1e-03

1e-03

1e-03

χ
0

χ
2

t

NB NU− I

χ0

χ2

Figure 3.7: Results for λ = 0.5 and h = 0. Monte Carlo transition temperatures are
marked with vertical dashed lines, while the phases are labeled above the plot.
a) Monte Carlo (points) and mean-field (lines) uniaxial and biaxial order parameters q0

and q2 (3.21). Note how the change in mean-field q0 is abrupt, indicating the first-order
character of the I −NU+ transition.
b) Monte Carlo (points) and mean-field (lines) invariant parameter w (1.21) and Monte
Carlo energy fluctuation c (3.42) (in green). When calculating w from Monte Carlo sim-
ulations results for which Tr(Q2) < 10−3 are discarded, which happens in the isotropic
phase.
c) Monte Carlo fluctuations of uniaxial (χ0) and biaxial (χ2) order parameters.
In Monte Carlo results, at temperatures directly above tINU− ≈ 1.35, minute increase in
uniaxiality and biaxiality is visible (see w, q0 and q2), which is identified as a finite-size
effect, often observed for such system sizes [104, 105].
The mean-field lines are composed of the high-temperature expansion result for n = 8
(see section 3.4.2.2) for t ≥ 1 and of the self-consistent result (see section 3.4.2.1) for
t < 1.
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Figure 3.8: Results for λ = 1√
6
and h = 0. Monte Carlo transition temperatures are

marked with vertical dashed lines, while the phases are labeled above the plot.
a) Monte Carlo (points) and mean-field (lines) uniaxial and biaxial order parameters q0

and q2 (3.21). Out of the two equivalent branches of solutions for q0 and q2, the prolate
branch (q0 ≥ 0) has been chosen for presentation.
b) Monte Carlo (points) and mean-field (lines) invariant parameter w (1.21) and Monte
Carlo energy fluctuation c (3.42) (in green). When calculating w from Monte Carlo sim-
ulations results for which Tr(Q2) < 10−3 are discarded, which happens in the isotropic
phase.
c) Monte Carlo fluctuations of uniaxial (χ0) and biaxial (χ2) order parameters.
In Monte Carlo results the transition temperature result inferred from the behavior of q0

and q2 differs from what is visible in the fluctuations of energy c and order parameters
χ0 and χ2. Peaks in these quantities are much broader than for other phase transitions
encountered for the Luckhurst-Romano model (3.1). It can also be told from the behav-
ior of order parameter fluctuations χ0 and χ2 (c) that in a broad temperature region
below the transition temperature, down to t ≈ 0.7, strong fluctuations are encountered,
which affects the precision of determining q0, q2 and w.
The mean-field lines are composed of the high-temperature expansion result for n = 8
(see section 3.4.2.2) for t ≥ 1 and of the self-consistent result (see section 3.4.2.1) for
t < 1.
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λ tINU
(mf) tINU

(MC) tNUNB
(mf) tNUNB

(MC) tINB
(mf) tINB

(MC)

0.3 1.48 1.08 0.59 0.43 X X

0.5 1.85 1.35 0.86 0.62 X X

1√
6

X X X X 1.6 1.22

Table 3.1: Values of the transition temperatures obtained for the Luckhurst-Romano
model (3.1).
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3.6 Studying the model with external field

We now turn to the general case, described by the model (3.14), which we investigate

using the methods described earlier.

3.6.1 Critical and tricritical points

The high-temperature expansion mean-field method is useful in finding critical and tri-

critical points, because it correctly recovers the transition order. A critical or tricritical

point can be found by finding a set of conditions for the per-particle free energy (3.33),

which are met at such a point exclusively. These conditions can be solved for t = tc and

∆εh2 = ∆εh2
c to find the location of the critical or tricritical point in the (t,∆εh2) plane,

keeping λ as a constant parameter. We find that these conditions attain a particularly

compact and simple form if a different decomposition of Q (rather than (3.20)), through

the parameters q0 and q2 in the director basis) is adopted. Throughout this section we

decompose the alignment tensor Q in a basis fixed on the direction of the field and the

laboratory frame of reference {x̂, ŷ, ẑ}:

Q = r0T
(2)
0 ({x̂, ŷ, ẑ}) + r2T

(2)
2 ({x̂, ŷ, ẑ}), (3.46)

where ẑ ≡ ĥ, because we put ~h ‖ ẑ. The tensors T
(2)
m ({x̂, ŷ, ẑ}),m = 0, 2 are of the

form (2.8-2.9), where we substitute {êx ≡ x̂, êy ≡ ŷ, êz ≡ ẑ}. The scalar parameters

r0 and r2 retain the interpretation of the uniaxial and biaxial order parameters, related

through linear combinations to q0 and q2, and thus the minimization conditions for the

per-particle free energy are similar: 

∂

∂r0
fn = 0

∂

∂r2
fn = 0

∂2

∂r2
0

fn > 0

∂2

∂r2
2

fn > 0.

(3.47)

fn is the expanded mean-field per-particle free energy (3.33) with Q expressed using the

decomposition (3.46):

fn =
z

2
(r2

0 + r2
2)− t log

∫
dΩ̂

[
n∑
i=0

t−i
1

i!

(
−HMF (Ω̂)

)i]
, (3.48)
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where:

HMF (Ω̂) = −ε(r0T
(2)
0 ({x̂, ŷ, ẑ}) + r2T

(2)
2 ({x̂, ŷ, ẑ}) ·Q(Ω̂)− ε∆εhαhβQ(Ω̂)αβ. (3.49)

3.6.1.1 Mean-field calculation of the critical point

We proceed to describe the critical temperature and critical field for the critical point of

the NP −NU transition upon continuous change of the parameter λ. This is achieved by

first observing that at the critical point the parameter r0 has an inflection point. The

inflection point at t = tc and h = hc is described by equalities:

∂t

∂r0
= 0

∂2t

∂r2
0

= 0

∂3t

∂r3
0

= 0.

(3.50)

Furthermore, we assume r2 = 0 since at non-zero field the transition is from paranematic

to nematic (NP −NU ), and there is no biaxial ordering. Subsequently:

∂t

∂r0
=
∂t

∂f

∂f

∂r0
= 0

∂2t

∂r2
0

=
∂

∂r0

(
∂t

∂f

∂f

∂r0

)
= 0

∂3t

∂r3
0

=
∂2

∂r2
0

(
∂t

∂f

∂f

∂r0

)
= 0,

(3.51)

where f is the free energy per particle. In conclusion, the conditions for the critical point

can be written as: 
∂f

∂r0
= 0,

∂2f

∂r2
0

= 0,
∂3f

∂r3
0

= 0

r2 = 0.

(3.52)

An additional requirement is that r0 minimizes the free energy per particle f . We proceed

by numerically solving (3.52) for t and ∆εh2, with f ≈ fn as in the expansion (3.48), in

the order n = 12 for different values of the parameter λ ∈
[
0,
√

3
2

]
to obtain the critical

values tc and hc. Because the series in (3.48) involves λ in powers up to n, the series

converges faster for low λ. Therefore, a more reliable result for λ > 1√
6
is obtained by

first solving (3.52) for λ ∈ [0, 1√
6
] and mapping the outcome to ( 1√

6
,
√

3
2 ] by using the

duality transformation (3.15). The result is presented in Figs. 3.9a-c. A view of the

behavior of q0 upon passing the critical point is presented for λ = 0.3 in Fig. 3.10.
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As can be seen in figures 3.9a and 3.9b, the critical field experiences an inflection point

in the vicinity of λ = 1√
6
, where hc = 0. The presence of the critical point at zero

field indicates that the I −NB transition is second-order, which is known to be the case

[104, 105].
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Figure 3.9: Behavior of the critical point of the model (3.14). Result for n = 12 in the
mean-field expansion of the per-particle free energy (3.48).
a) ∆εh2

c versus the biaxiality parameter λ. Note that the critical field decreases when
molecular biaxiality is increased (i.e. λ = 1√

6
is approached from either side). Inset :

Zoom on the vicinity of the self-dual point λ = 1√
6
(area indicated by a dashed rectangle

on the main plot).
b) Critical temperature versus ∆εh2

c . Points mark the critical point for special values of
λ, as labeled. Inset : Zoom on the vicinity of the self-dual point λ = 1√

6
(area indicated

by a dashed rectangle on the main plot).
c) Critical temperature versus the biaxiality parameter λ.
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Figure 3.10: The uniaxial order parameter r0 as defined in (3.46) passing through the
critical point at ∆εh2

c ≈ 0.007976, tc ≈ 1.4566 for λ = 0.3. Note how for larger values of
h the uniaxial order increases in the NP phase above the transition temperature, which
is also increased. Above hc, the change in r0 becomes smooth, as the phase transition
vanishes. Plots obtained by using the mean-field expansion (3.48) to the order n = 6. tc
and hc obtained for n = 12.

3.6.1.2 Mean-field calculation of the tricritical point

For the NP −NB transition the biaxial order parameter r2 is zero in the NP phase, but

is non-zero in the NB phase. Initially discontinuous in the first-order transition, at the

tricritical point both r0 and r2 experience an inflection point at temperature tc and field

magnitude hc. The corresponding conditions for the mean-field free energy per particle

at t = tc and h = hc are: 

∂f

∂r0
= 0

∂f

∂r2
= 0

∂2f

∂r2
0

= 0

∂2f

∂r2
2

= 0.

(3.53)

As previously, r0 and r2 need to obey the minimum f condition. We use the expansion

of the mean-field free energy per particle (3.48) to the order n = 10 and solve (3.53)

numerically for t and ∆εh2 for different values of λ ∈ [0,
√

3
2 ]. As before, we first solve

for λ ∈ [0, 1√
6
] and map the result to ( 1√

6
,
√

3
2 ] using the duality transformation (3.15).
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The result is presented in Figs. 3.11a-c. Exemplary behavior of order parameters as the

tricritical point is passed is presented in figures 3.12a-b.

As we can see in Fig. 3.11a, the tricritical point for λ = 1√
6
is present at zero field, at

tc ≈ 1.6 and coincides with the critical point, thus forming the multicritical point. This

further reflects the fact that the I −NB transition is second-order in the self-dual case.
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Figure 3.11: Behavior of the tricritical point of the model (3.14). Result for n = 10 in
the mean-field expansion of the per-particle free energy (3.48).
a) ∆εh2

c versus the biaxiality parameter λ. Note that the critical field decreases when
molecular biaxiality is increased (i.e. λ = 1√

6
is approached from either side).

b) Critical temperature versus ∆εh2
c . Points mark the tricritical point for special values

of λ, as labeled.
c) Critical temperature versus the biaxiality parameter λ.
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Figure 3.12: Behavior of r0 and r2, as defined in (3.46), when passing through the
tricritical point at ∆εh2

c ≈ −0.0397, tc ≈ 1.4678 for λ = 0.3. Plots and values of tc and
hc obtained by using the mean-field expansion (3.48) to the order n = 10.
a) Uniaxial order parameter r0. Note how for larger values of h the uniaxial order
increases in the NP phase above the transition temperature, which is also increased.
b) Biaxial order parameter r2. Note how the biaxial order is not affected by increasing
h in the NP phase above the transition temperature, which rises with increasing field
magnitude.

3.6.1.3 Conclusions and comments on simulations and experiment

We have arrived at a conclusion that the critical point is not possible to locate in our

Monte Carlo setup, because determining the transition order by observing order pa-

rameter discontinuities proves infeasible, as the first-order transitions are very weak.

Observing the peak in the specific heat (fluctuation of energy) as the field is amplified

also gives very little indication as to the position of the critical field, because a) the

discontinuity in c due to latent heat at the first-order phase transition is not detectable

at the considered temperature resolution, and b) there are no instances of c suddenly

becoming very large at some critical field for the considered system size, which would

reflect the fact that c is singular at the critical point. Moreover, the peak in c decreases

in a smooth manner over a broad range of field magnitudes (see Fig. 3.14 for ∆εh2 > 0).

In conclusion, without resorting to e.g. finite-size scaling techniques, for the considered

system size, Monte Carlo sample size and temperature resolution we are unable to discern

the order of the transition, and therefore also to locate the critical point itself.

In our mean-field result the critical point is found for a field magnitude that is small when

compared to the temperature. However, in reality this critical field is very large and dif-

ficult to achieve experimentally [113–116], which leads us to expect that the Monte Carlo

result should likely reflect the reality of the experiment, i.e. that the critical field should
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be orders of magnitude higher than mean-field theory predicts. Concerning the tricriti-

cal point, as it is predicted to exist for a higher critical field than the critical point, the

critical field should be even higher in simulation, although, as is shown later, the struc-

tures of the phase diagrams agree for mean-field and simulation results. Interestingly,

though it is widely established that both the critical and tricritical points are present for

extremely high fields for known mesogens, the behavior of both points predicted by the

calculation just presented (Figures 3.9 and 3.11) is such that the critical field decreases as

the self dual point at λ = 1√
6
is approached from either side, i.e. as molecular biaxiality

is increased. Because it appears that the critical field can be made arbitrarily small for

molecules which are biaxial enough, this prediction can have experimental implications.

3.6.2 Results for λ = 0.3

For λ = 0.3 we have studied the phase diagram in the (t,∆εh2) plane using both the

mean-field method and Monte Carlo simulations for a range of field magnitudes h ∈
[0, 0.9] for ∆ε = ±1. Such field magnitudes can be considered large in relation to e.g. the

mean-field result the critical point, which occurs for h2
c ≈ 0.008 for λ = 0.3. According

to the discussion conducted in section 3.3.2, for ∆ε = +1 we should observe uniaxiality-

promoting effects and a critical point for the NP+ −NU+ transition, while for ∆ε = −1

biaxiality-promoting effects should be encountered, along with a tricritical point for the

NP− −NB transition.

The mean-field phase diagram, displaying first order and second order transition lines,

as well as critical and tricritical points, is presented in Fig. 3.13. The mean-field result

confirms the above anticipations and Landau-de Gennes theory predictions completely for

the isotropic-uniaxial nematic transition. In addition, we have found that the transition

temperature for the NU+ −NB transition is lowered with increased field magnitude for

∆ε = +1, although the change is minute: a ∼ 1% decrease in tNU+NB
is noted over an

increase from h2 = 0 to h2 = 0.6.

For the Monte Carlo result it is most illustrative to compare the mean-field phase diagram

to the energy fluctuation landscape (c, as defined in (3.42)), pictured in Fig. 3.14. The

result confirms the mean-field prediction as to the qualitative effects for both cases of

∆ε = ±1. As expected, the transition temperatures are lower than in the mean-field

result. However, as discussed earlier in 3.6.1.3, the critical and tricritical points cannot

be precisely located based neither on the behavior of the energy fluctuation (or specific

heat), nor the behavior of order parameters. Instead, we observe the following effects (as

labeled in Fig. 3.14):
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• A – The temperature of the NP+ − NU+ transition for ∆ε = +1 rises as the

field is increased and the transition becomes smoother. However, the peak in c

does not vanish completely, but is gradually broadened and lowered. The uniaxial

order parameter experiences a smooth increase with lowering temperature over

the transition for higher field magnitudes (see Figs. 3.15a,c,e). No qualitative

change in any of the computed quantities is noted for the mean-field prediction for

h2
c ≈ 0.008. In conclusion, we are unable to determine whether the critical point

lies in the range of the considered field magnitudes, or exists for a larger value

outside of the studied range.

• B – The temperature of the NP− − NB transition for ∆ε = −1 rises as the

field is increased. The peak in c is initially decreased, but stabilizes at c ≈ 4.

The NP− − NB transition remains first order and the discontinuity of the uni-

axial order parameter q0 is in fact increased when the field is amplified (see Figs.

3.15a,c,e). This behavior is expected to continue until the field is large enough that

field-ordering of secondary molecular axes dominates over the ordering of primary

molecular axes upon the NP− − NB transition, which will result in a tricritical

point. However, for the considered field magnitudes we have not observed this to

happen. Furthermore, no qualitative change in any of the computed quantities is

noted for the mean-field prediction for h2
c ≈ 0.04, which leads us to the conclusion

that in Monte Carlo simulations the tricritical point is present for a much higher

field than the mean-field result would suggest.

• C – There is no measurable change in the NU+ − NB transition temperature

and the peak in c undergoes no systematic changes. We conclude that for the

considered field magnitudes this transition is unaffected by increased field in Monte

Carlo simulations.

• D – For non-zero field, the NU+ − NB transition begins to fade away, although

this does not occur instantly in the simulation result. The peak in c is gradually

smoothed out and moves to higher temperatures with increased field. Eventually,

for ∆εh2 ≈ −0.25, it is no longer observed. The biaxial order parameter q2 ex-

periences a smooth increase with lowering temperature in place of the zero-field

transition (see Figs. 3.15a,c,e).
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Figure 3.13: Mean-field phase diagram of the model (3.14) for λ = 0.3. Solid lines
represent first-order phase transitions, while second-order transitions are indicated by
dashed lines. Critical and tricritical points are indicated by black filled circles in the inset.
The critical point is located at (tc,∆εh

2)cp ≈ (1.4566, 0.007976) and the tricritical point
is located at (tc,∆εh

2)tcp ≈ (1.4678,−0.0397) (result obtained by the method explained
in section 3.6.1). The high-temperature transition line (NP+ − NU+ and NP− − NB)
was obtained with the expansion method, described in section 3.4.2.2, with n = 10 in
the expression of the approximate per-particle free energy fn (3.33). The NU+ − NB

transition line was obtained with the self-consistent method, described in section 3.4.2.1.
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Figure 3.14: Energy fluctuation landscape for λ = 0.3 displayed as a function of ∆εh2

and t. c is defined as in (3.42) and is proportional to specific heat. c for h = 0 is
traced with a bold black line for reference. The ridges correspond to transition lines
between phases, which are labeled in regular black typeface. Circled labels are explained
in section 3.6.2.
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Figure 3.15: Results for λ = 0.3 and ∆ε = +1. (Caption on adjacent page).
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Figure 3.15: (Left) Monte Carlo results (points) for λ = 0.3 and ∆ε = +1, compared
with mean-field results (solid lines), for h = 0.3 (a-b), h = 0.6 (c-d) and h = 0.9 (e-f).
Monte Carlo transition temperatures are marked with vertical dashed lines, while the
phases are labeled over the plot. The transition temperatures are estimated based on
the peaks in the energy fluctuation c.

Left column (a,c,e): uniaxial and biaxial order parameters q0 and q2, as defined in
(3.21).
Right column (b,d,f): invariant order parameter w, as defined in (1.21), and energy
fluctuation c, as defined in (3.42).

Note how with increased field the NP+−NU+ transition shifts to higher temperatures, q0

increases in the NP+ phase, the transition becomes smoother and the peak in c decreases
and broadens. The NU+ −NB transition appears unaffected by the amplified field.

The mean-field lines are composed of the high-temperature expansion result for n = 8
(see section 3.4.2.2) for t ≥ 1.4 and of the self-consistent result (see section 3.4.2.1) for
t < 1.4. The dividing temperature has been chosen this high because the mean-field
free energy per particle expansion (3.33) contains ∆εh2 to the order of n, which impairs
convergence for h 6= 0 in lower temperatures.
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Figure 3.16: Results for λ = 0.3 and ∆ε = −1. (Caption on adjacent page).
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Figure 3.16: (Left) Monte Carlo results (points) for λ = 0.3 and ∆ε = −1, compared
with mean-field results (solid lines), for h = 0.3 (a-b), h = 0.6 (c-d) and h = 0.9 (e-f).
Monte Carlo transition temperatures are marked with vertical dashed lines, while the
phases are labeled over the plot. The transition temperatures are estimated based on
the peaks in the energy fluctuation c.

Left column (a,c,e): uniaxial and biaxial order parameters q0 and q2, as defined in
(3.21).
Right column (b,d,f): invariant order parameter w, as defined in (1.21), and energy
fluctuation c, as defined in (3.42).

Note how with increased field the NP− − NU− transition shifts to higher temperatures
and the peak in c initially decreases, but is retained. The reorientation of the director n̂
from parallel to ~h to perpendicular to ĥ is reflected in the change of sign in q0 and w upon
the transition. The NU− − NB transition appears to exist for small values of the field
as a transition between two biaxial phases, N ′B − NB, where N ′B is only distinguished
by the fact that its biaxial ordering is field-induced and very small. This transition is
shifted towards higher temperatures, but is vanished completely as of h = 0.5 both in c
and in the behavior of q2.

The mean-field lines are composed of the high-temperature expansion result for n = 8
(see section 3.4.2.2) for t ≥ 1.4 and of the self-consistent result (see section 3.4.2.1) for
t < 1.4. The dividing temperature has been chosen this high because the mean-field
free energy per particle expansion (3.33) contains ∆εh2 to the order of n, which impairs
convergence for h 6= 0 in lower temperatures.
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3.6.3 Results for λ = 0.5

Because of the self-duality relation (3.15), the effects encountered for λ > 1√
6
are equiv-

alent to those present for λ < 1√
6
for the opposite cases of the sign of the anisotropy

of the field polarizability (∆ε → −∆ε) in terms of the structure of the phase diagram

and symmetries of the encountered phases. However, since the duality transformation

also entails a change of the preferred molecular axis (such that the primary axis is ĉ for

λ < 1√
6
and b̂ for λ > 1√

6
), prolate phases (NU+ and NP+) for λ < 1√

6
match oblate

phases (NU− and NP−) for λ > 1√
6
, and vice-versa. This dual symmetry is apparent

when comparing the mean-field phase diagrams for λ = 0.3 (Fig. 3.13) and λ = 0.5 (Fig.

3.17).

According to discussion from section 3.3.2 and Landau-de Gennes theory predictions, for

∆ε = +1 biaxiality-promoting effects should be observed, along with a tricritical point of

the NP+−NB transition, while for ∆ε = −1 one should encounter uniaxiality-promoting

effects and a critical point of theNP−−NB transition. This is confirmed in the mean-field

results, as presented in the mean-field phase diagram in Fig. 3.17. Additionally, as in

the λ = 0.3 case, we have found that the temperature of the NU−−NB phase transition

weakly decreases with increased field magnitude, i.e. we observe a ∼ 1% decrease in

tNU−NB
over an increase from h2 = 0 to h2 = 0.4.
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Figure 3.17: Mean-field phase diagram of the model (3.14) for λ = 0.5. Solid blue
lines represent first-order phase transitions, while second-order transitions are indicated
by dashed blue lines. Critical and tricritical points are indicated by black filled circles
in the inset. The critical point is located at (tc,∆εh

2)cp ≈ (1.83,−0.004244) and the
tricritical point is located at (tc,∆εh

2)tcp ≈ (1.8465, 0.03164) (result obtained by the
method explained in section 3.6.1). The high-temperature transition line (NP+ − NU+

and NP− −NB) was obtained with the expansion method, described in section 3.4.2.2,
with n = 10 in the expression of the approximate per-particle free energy fn (3.33). The
NU+ − NB transition line was obtained with the self-consistent method, described in
section 3.4.2.1.
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3.6.4 Results for λ = 1√
6

For the self-dual case the biaxial nematic phase is of maximum biaxiality, i.e. the

alignment tensor Q possesses no purely uniaxial contribution, as its eigenvalues obey

the relation ωn̂ = −ωm̂ ∧ ωl̂ = 0 and it is proportional to the purely biaxial tensor

T
(2)
2 ({m̂, n̂, l̂) = 1√

2
(m̂⊗ m̂− n̂⊗ n̂). Any finite finite field introduces a uniaxial contri-

bution to Q and, depending on ∆ε, makes one of the axes ĉ and b̂ preferred. Because Q

is traceless, a field-induced uniaxial contribution results in a decrease in the biaxial part

of Q. Therefore, the biaxial nematic phase of maximum biaxiality occurs only for h = 0.

For λ = 1√
6
the molecular axes ĉ and b̂ are interchangeable, provided that simultaneously

we change ∆ε → −∆ε (which follows from the duality transformation (3.15)). Such

transformation leaves the Boltzmann factor e−H/t for the Hamiltonian (3.14) invariant.

Therefore, the phase diagram for λ = 1√
6
in the (t,∆εh2) plane is symmetric with respect

to a reflection about the t-axis. The isotropic phase is superseded by a paranematic phase

for finite field magnitudes, NP+ for ∆ε = +1 and NP− for ∆ε = −1. As we can see

in the mean-field phase diagram (Fig. 3.18), the I − NB transition temperature drops

rapidly upon applying even a small external field. The zero-field phase transition is

second-order and the mean-field result suggests that also the finite-field phase transition

is second-order as well. However, as of now, phenomenological theory of the NP − NB

transition for the self-dual case is not available.

We present simulation results for small field values of ∆εh2 = ±0.018 in Figs. 3.19-3.19.

As we can see, for non-zero field the transition to the biaxial phase is retarded towards

lower temperatures (observe q2 in the aforementioned figures and compare with zero-field

results in Fig. 3.8), while at t ≈ 1.2 there remains an increase in uniaxial ordering (see

q0 in aforementioned figures), which qualitatively is no different from a phase transition

in Monte Carlo simulations. Therefore, for the simulation result we distinguish a narrow

region where the NU phase is present between NP and NB phases. Comparing the order

parameter susceptibilities in Figs. 3.19c and 3.20c, we see that the NP −NU transition

is accompanied by an increase in χ2 and the NU −NB transition is accompanied by an

increase in χ0.

As in the result for h = 0, there are discrepancies between transition temperatures

inferred from increases in q0 and q2 and peaks in c, χ0 and χ2, attributed to a finite-size

effect. As in section 3.5, we choose to determine the transition temperatures from the

behavior of q0 and q2 for the self-dual case.
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Figure 3.18: Mean-field phase diagram of the model (3.14) for λ = 1√
6
. The second-

order transition line is indicated by a blue dashed line. The multicritical point is marked
by a solid filled black circle at (tc,∆εh

2)mcp ≈ (1.6, 0) (result obtained by the method
explained in section 3.6.1). The NP−NB transition line was obtained with the expansion
method, described in section 3.4.2.2, with n = 10 in the expression of the approximate
per-particle free energy fn (3.33).
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Figure 3.19: Results for λ = 1√
6
and ∆εh2 = −0.018. Monte Carlo transition tempera-

tures are marked with vertical dashed lines, while the phases are labeled above the plot.
a) Monte Carlo (points) and mean-field (lines) uniaxial and biaxial order parameters q0

and q2 (3.21). Out of the two equivalent branches of solutions for q0 and q2, the prolate
branch (q0 ≥ 0) has been chosen for presentation.
b) Monte Carlo (points) and mean-field (lines) invariant parameter w (1.21) and Monte
Carlo energy fluctuation c (3.42) (in green). When calculating w from Monte Carlo sim-
ulations results for which Tr(Q2) < 10−3 are discarded, which happens in the isotropic
phase and in the NP+ phase when the field-induced ordering is very small.
c) Monte Carlo fluctuations of uniaxial (χ0) and biaxial (χ2) order parameters.

Compare the presented results with Fig. 3.8 to note that the transition to the NB phase
shifts considerably towards lower temperatures (tNP−NB

≈ 0.98) when even a small field
is applied. In Monte Carlo results we also distinguish an intermediate nematic uniaxial
(NU−) phase, characterized by substantially larger uniaxial ordering than in the field-
induced paranematic phase (NP−), where it is below measurement precision (for the
considered field magnitude).

The mean-field lines are composed of the high-temperature expansion result for n = 8
(see section 3.4.2.2) for t ≥ 1 and of the self-consistent result (see section 3.4.2.1) for
t < 1.
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Figure 3.20: Results for λ = 1√
6
and ∆εh2 = 0.018. Monte Carlo transition temperatures

are marked with vertical dashed lines, while the phases are labeled above the plot.
a) Monte Carlo (points) and mean-field (lines) uniaxial and biaxial order parameters q0

and q2 (3.21). Out of the two equivalent branches of solutions for q0 and q2, the prolate
branch (q0 ≥ 0) has been chosen for presentation.
b) Monte Carlo (points) and mean-field (lines) invariant parameter w (1.21) and Monte
Carlo energy fluctuation c (3.42) (in green). When calculating w from Monte Carlo sim-
ulations results for which Tr(Q2) < 10−3 are discarded, which happens in the isotropic
phase and in the NP+ phase when the field-induced ordering is very small.
c) Monte Carlo fluctuations of uniaxial (χ0) and biaxial (χ2) order parameters.

Compare the presented results with Fig. 3.8 to note that the transition to the NB phase
shifts considerably towards lower temperatures (tNP+NB

≈ 0.98) when even a small field
is applied. In Monte Carlo results we also distinguish an intermediate nematic uniaxial
(NU+) phase, characterized by substantially larger uniaxial ordering than in the field-
induced paranematic phase (NP+), where it is below measurement precision (for the
considered field magnitude).

The mean-field lines are composed of the high-temperature expansion result for n = 8
(see section 3.4.2.2) for t ≥ 1 and of the self-consistent result (see section 3.4.2.1) for
t < 1.
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3.7 Summary

We have explored the effects of a general vector field in the l = 2 dispersion model of

biaxial liquid crystals (3.14). Three distinct classes of phase diagrams in the (t,∆εh2)-

plane have been identified for the prolate, oblate and self-dual case. Examples have been

studied in detail with mean-field methods for the prolate case of λ = 0.3 (Fig. 3.13),

for the oblate case of λ = 0.5 (Fig. 3.17) and for the self-dual case (Fig. 3.18). The

behavior of the critical and tricritical points has been studied for the entire spectrum of

the biaxiality parameter λ ∈ [0,
√

3
2 ], presented in Fig. 3.9 and Fig. 3.11.

3.7.1 Phase diagrams and order parameters

3.7.1.1 λ = 0.3

For the prolate case of λ = 0.3, mean-field calculations show an increase in the I −NU+

phase transition temperature with increased field, while the isotropic phase I is replaced

by the field-induced paranematic prolate phase NP+ for positive sign of the anisotropy

of the field polarizability ∆ε = +1 and by the paranematic oblate phase NP− for ∆ε =

−1. The NP+ − NU+ phase transition, occurring for ∆ε = +1 is first-order, until it is

terminated at a critical point for critical field hc ≈ 0.008. For ∆ε = −1, field-induced

biaxiality emerges in the zero-field nematic uniaxial prolate phase NU+. The NP−−NB

transition is initially first-order, but changes to second-order as the critical field hc ≈ 0.04

is passed. The NU+ −NB transition, occurring for ∆ε = +1 is largely unaffected by the

increased field, however we do note a ∼ 1% decrease in the transition temperature, when

the field is increased from h2 = 0 to h2 = 0.4. For ∆ε = −1 said transition disappears,

as both phases are now biaxial.

By Monte Carlo simulation we have obtained the energy fluctuation landscape as a

function of t and ∆εh2 for the case of λ = 0.3 for h ∈ [0, 0.9] and ∆ε = ±1, presented in

Fig. 3.14. The result shows qualitative agreement with mean-field predictions, presented

in Fig. 3.13, as to the structure of the phase diagram and the phases encountered.

However, the methods employed did not allow for precisely determining the position of

the critical point, which appears to lie for a field magnitude much higher than mean-field

theory predicts. The tricritical point is believed to exist for a critical field well outside

the considered range of field magnitudes.

Order parameters from both Monte Carlo simulations and mean-field calculations have

been compared in Figs. 3.15-3.16. The discussed effects are identified by the behavior of

order parameters q0 and q2 (3.21) and the invariant order parameter w (1.21). Namely,
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in paranematic phases the uniaxial order parameter q0 is non-zero and increases as the

field is amplified, while its sign identifies whether the phase is of the prolate or oblate

variety (q0 > 0 for NP+ and q0 < 0 for NP−). For ∆ε = +1 the gradual smoothing

of the NP+ − NU+ phase transition is evidenced by the smoothing of q0 and the peak

in the energy fluctuation c, defined in (3.42). For ∆ε = −1, q0 undergoes a change

of sign from q0 < 0 to q0 > 0 upon the NP− − NB transition, which reflects the fact

that in the NP− phase the field orients the director n̂ parallel to the field, while upon

the phase transition n̂ is aligned in perpendicular to the field. As the field is amplified,

the biaxial ordering in the field-induced NB phase rises, identified by rising (modulus-

wise) q2. The zero-field NU+ −NB phase transition vanishes instantly in the mean-field

result for h 6= 0, however in Monte Carlo results there briefly exists a transition between

two biaxial phases: N ′B − NB, where N ′B is only distinguished by the fact that it is

field-induced and has very small biaxial ordering. As the field is increased, this phase

transition moves towards higher temperatures and is vanished as of h = 0.5.

3.7.1.2 λ = 0.5

For the oblate case the dual symmetry of the model (3.14), defined by (3.15), is manifested

when one compares the mean-field phase diagram for λ = 0.5 (Fig. 3.17) with the phase

diagram for the prolate case for λ = 0.3 (Fig. 3.13). Namely, the phase diagrams are ones

mirror images (qualitatively), with the NP+ and NU+ phases exchanged with NP− and

NU− phases respectively. To avoid redundancy, the discussion of the effects is omitted.

3.7.1.3 λ = 1√
6

The self-dual case, λ = 1√
6
, for h = 0 contains a biaxial phase which is of maximum

biaxiality, i.e. the alignment tensor Q does not contain a purely uniaxial contribution.

Field-induced uniaxiality for h 6= 0 causes a decrease in biaxiality and lowers the I −NB

transition temperature rapidly, even for small fields. The high temperature phase has

field-induced uniaxial ordering and is therefore a paranematic phase, NP+ and NP− for

∆ε = +1 and ∆ε = −1 respectively. We have obtained a mean-field phase diagram for

λ = 1√
6
, presented in Fig. 3.18. Because of dual symmetry, defined in (3.15), the phase

diagram is symmetric with respect to a reflection about the t-axis. There is only one

transition line in the diagram, the NP − NB phase transition line, with a multicritical

point at (tc, hc) ≈ (1.6, 0), where six phases: I,NU+, NU−, NP+, NP−, NB meet (when

considering both (t,∆εh2) and (λ, t) phase diagrams).

The effects of an external field on the behavior of order parameters in the case of λ = 1√
6

are presented in Fig. 3.19-3.20, where both mean-field and Monte Carlo simulation results
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are presented. In both cases of ∆ε = ±0.018 the Monte Carlo transition to the NB phase

is retarded to tNPNB
≈ 0.98 with respect to the zero-field transition at tINB

≈ 1.22, as

presented in Fig. 3.8. In Monte Carlo results we are compelled to treat the increase in q0

at t ≈ 1.2 as a separate phase transition, therefore there is a region where in simulations

an intermediate uniaxial nematic phase exists, NU+ for ∆ε = +1 and NU− for ∆ε = −1,

between NP and NB phases.

3.7.1.4 Mean-field study of critical and tricritical points

The mean-field high-temperature expansion method has been used for a detailed study

of the behavior of critical and tricritical points, depending on the parameter λ ∈ [0,
√

3
2 ].

To this end conditions for the critical (3.52) and tricritical (3.53) points have been found

and solved numerically for the critical and tricritical field and temperature, with the

result presented in Fig. 3.9 and Fig. 3.11. We have taken advantage of the duality

transformation (3.15) to improve the convergence of the mean-field expansion of the per-

particle free energy (3.48) by transforming the result for λ ∈ [0, 1√
6
] to λ ∈ ( 1√

6
,
√

3
2 ].

The result confirms that the critical and tricritical points are located for ∆εh2 > 0 for

λ < 1√
6
and ∆εh2 < 0 for λ > 1√

6
respectively and travel towards ∆εh2 = 0 as λ = 1√

6

is approached from either side, that is, the critical field is seen to decrease as molecular

biaxiality is increased. At λ = 1√
6
both points coincide, thus forming the multicritical

point, at which, in the “super” phase-diagram in the parameter space of (t, λ,∆εh2), six

phases meet: I,NU+, NU−, NP+, NP− and NB. As λ is increased over 1√
6
, the critical

and tricritical points emerge at opposite sides of the ∆εh2 = 0 line, for ∆εh2 < 0 and

∆εh2 > 0 respectively, which reflects the dual symmetry of the model (3.14).



Chapter 4

Tetrahedratic order and chiral

symmetry breaking in a dispersion

model of liquid crystals

4.1 Introduction

Developments of the last two decades show that bent-shaped mesogens (bent-core com-

pounds, certain ferrocene mesogens and flexible dimers) exhibit many fascinating struc-

tures [36, 37, 41, 44, 117]. Of particular interest is the possible existence of biaxial

order [27, 29, 30, 32, 88], spontaneous chirality and formation of chiral supramolecu-

lar structures and helices [38–40, 43], the twist-bend nematic phase [45–50], as well as

tetrahedratic order [51, 52, 54, 55]. In the present chapter we explore a minimal-coupling

dispersion model [1, 118] which exhibits biaxiality, tetrahedratic order and chiral symme-

try breaking and can be used to describe behavior in certain systems of supramolecular

bent mesogen complexes. The results presented in this chapter have been published in

[119].

The minimal-coupling model is devised upon the arguments of Lubensky and Radzi-

hovsky [51], who give thorough group-theoretical classification of tensorial order param-

eters and phase sequences which can emerge in bent-core systems. Their finding shows

that to account for chiral ordering, at the microscopic level interactions should involve

couplings of biaxial quadrupolar (second-rank) and tetrahedratic octupolar (third-rank)

tensors, as well as a vector to account for the static (steric or electric) dipole. The

inclusion of tetrahedratic tensors is also shown to lead to e.g. ambidextrous chirality

[55, 120], i.e. twisted domains of opposite handedness. A study involving a purely tetra-

hedratic interaction was notably performed by Fel [121], predicting a second-order phase

81
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transition from isotropic to a nematic tetrahedratic phase. A Monte Carlo study was

performed by Romano [122], in which case a weakly first-order transition was found.

4.2 Dispersion model with tetrahedratic coupling (infinite

pitch limit)

The model proposed in [1] is designed considering biaxial and tetrahedratic multipolar

couplings in the pair dispersion potential:

V (Ω̂i, Ω̂j) = −ε
[
Q(Ω̂i) ·Q(Ω̂j) + τT

(3)
2 (Ω̂i) ·T(3)

2 (Ω̂j)
]
. (4.1)

The full Hamiltonian is obtained by performing a sum of terms (4.1) over nearest neigh-

bors on a simple cubic lattice of N particles with periodic boundary conditions:

H =
1

2

N∑
〈i,j〉

V (Ω̂i, Ω̂j). (4.2)

This model corresponds to the general model (2.11) for the case when all parameters

aside from λ, ε and τ are zero. In our discussion we will assume that the model is

studied with respect to the dimensionless temperature t = kBT/ε.

As in the previous cases, the dot products in (4.1) are understood as full contractions

over Cartesian indices. The quadrupolar tensor Q(Ω̂i) is defined in (3.2). We recognize

that when τ = 0, the model reduces to the l = 2 model of biaxial nematics (3.1), as

studied previously [64, 104, 105] and in Chapter 3, while the term proportional to ετ is

related to the model due to Fel [121]. While the two terms by themselves are rotationally

invariant, a potential like (4.1) needs to establish a relation between the orientation of the

axes of T
(2)
m and T

(3)
2 . In (4.1), the quadrupolar part remains identical to (3.1), while in

the tetrahedratic term the tensor T
(3)
2 (Ω̂i) is the l = 3 irreducible spherical tensor (2.10),

symmetrized with respect to the full tetrahedratic group Td with the assumption that the

tetrahedratic twofold symmetry axes coincide with the D2h twofold symmetry axes of the

quadrupolar tensor. The potential (4.1) does not contain cross-coupling terms between

quadrupolar and octupolar tensors, but it can be shown that this precise arrangement

of axes realizes the minimum of the lowest-order cross-coupling terms, which turns out

to be zero.

The choice of symmetry axes has a physical interpretation. The relative alignment of

the quadrupolar and tetrahedratic tensors corresponds to a ground state configuration

of two bent molecules, in which they align in an embrace-locked fashion, as presented
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sian indices, and T̂m
!L"!!i" · T̂m!

!L"!! j"=!mm!
!L" are linear combi-

nations of Wigner rotation matrices #18$.
Interaction !1" can be interpreted within point dispersion

forces approximation. The quadrupolar tensor T̂0
!2"+%2"T̂2

!2"

is then proportional to the anisotropic part of the dielectric
polarizability tensor of a molecule, while T̂2

!3" is the
Td-symmetric component of the third-order polarizability
tensor. The model parameters &# ," ,$' are related to the mo-
lecular absorption frequencies.

Special cases of the model have already been studied. For
$="=0 the potential in Eq. !1" reduces to the well-known
Maier-Saupe or Lebwohl-Lasher #19$ potential, which de-
scribes a phase diagram with isotropic and uniaxial nematic
phases connected by a first-order phase transition. Second is
the one where "!0 and $=0. Potential !1" then reduces to
the model proposed by Luckhurst et al. #20$, which was
extensively studied by Biscarini et al. #21$. The model de-
scribes a phase diagram with uniaxial nematic and biaxial
nematic phases connected by the second-order phase transi-
tion. The phases include: a prolate uniaxial !NU+" phase, an
oblate uniaxial !NU−" phase, a biaxial !NB" phase, and an
isotropic !I" phase. A self-dual point for which "=1 /%6
#18,21$ separates a phase in which the molecules are of dis-
torted prolate form !"%1 /%6" from a phase in which the
molecules are of distorted oblate form !"&1 /%6". Bates and
Luckhurst proposed a simple relation between #, " and the
opening angle for bent-core molecules based on segmental
second-rank interactions #22$.

When only the term proportional to #$ is retained in Eq.
!1", the resulting model corresponds to a purely tetrahedratic
coupling. It was introduced by Fel #23$ and studied via
mean-field !MF" and Monte Carlo !MC" simulations by Ro-
mano #24$. For this model, MF theory predicts a second-
order phase transition from I to T phase and MC simulations
indicate a weak first-order transition from I to T.

Combining quadrupolar and octupolar interactions in Eq.
!1" yields possibilities of which the most notable one is the
spontaneous breaking of chiral symmetry. Such a symmetry
breaking is already manifested in the ground-state properties
of the interaction of Eq. !1". Indeed, to be consistent with Eq.
!1", the average molecular configurations of two bent-core
molecules in a chiral phase must belong to one of two con-
figurations of opposite chirality !0%'%( /2", as shown in
Fig. 1. Due to the global O!3" invariance of H, the two
configurations of different chirality are the source of two
homochiral domains, which are present with equal probabil-
ity in the system’s configuration space. When $=0 !'=0" or
"=0 !'=( /2" the molecular configurations are nonchiral
and can be brought into coincidence by a rotation. In particu-
lar, these configurations produce NU, NB, T, and NT phases.
In order for both chiral configurations to be equivalent, the
degrees of freedom of the kth molecule should involve a
rotation !k and parity pk= âk · !b̂k) ĉk"= *1, thereby reflect-
ing an O!3" symmetry. Consequently, the free energy for the
system composed of N such molecules is given by +F
=−ln Z, where Z=(k=1

N ! 1
2)pk=*1*d!k"exp#−+H$, and +

=1 / !kBT" is the inverse temperature.
We will apply two methods to determine phase diagrams

from F. The methods are the MF approximation and the
Metropolis MC simulations with a crucial step being the
identification of the order parameters. The identification is
achieved by expanding the one-particle distribution function
P!p ,!" in a series of symmetry adapted real ! functions,

P!p,!" = )
L,m,m!,s

2L + 1
8(2 ps!mm!

!L" ps!mm!
!L" !!" , !3"

with X= 1
2)p=*1*X!p ,!"P!p ,!"d!, ps= !1, p", and

1
2 )

p*1
+ d!ps!mn

!L"!!"ps!!m!n!
!L!" !!"

=
8(2

!2L + 1"
'LL!'mm!'nn!'ss!. !4"

For the interaction of Eq. !1", the allowed symmetry re-
duction is shown in Fig. 2 along with the primary order

FIG. 1. !Color online" Ground-state configurations of opposite
chirality !0%'%( /2" for a pair of bent-core molecules in NT

!

phase; the configurations for 0%'%( /2 cannot be brought into
coincidence by a proper rotation. !âm , b̂m , ĉm" are mirror images of
!â , b̂ , ĉ".

Isotropic: I ! O"3# $

Tetrahedratic:
T ! Td $Uniaxial:

NU ! D! h $
Biaxial:
NB ! D2 h $ Nematic

Tetrahedratic:
NT ! D2 d $

Chiral: NT
" ! D2 $

#00
"2#

#00
"2#

#22
"3#

#22
"3##22

"2#

#22
"2##22

"3#

FIG. 2. !Color online" A flowchart of phase transitions between
liquid-crystal phases for molecules interacting through pair poten-
tial, Eq. !1". Primary order parameters, which become nonzero at
the transitions, their symmetry groups and abbreviated notation for
the structures are indicated. In addition, sketched are one-particle
spherical distribution functions P,const+aY20+b!Y22+Y2−2"
+ci!Y32−Y3−2" illustrating symmetries considered.
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Figure 4.1: Two ground state configurations for bent molecules, forming non-polar chiral
pair complexes of opposite chirality. The molecular bases {â, b̂, ĉ} and {âm, b̂m, ĉm}
correspond to the ordinary and reflected bases of opposite handedness. (Reprinted with
permission from [1], c©2009 by the American Physical Society.)

in Fig. 4.1. As we see, the complexes are non-polar, because the dipoles (parallel to

the bisector of the opening angle) cancel out, which justifies the omission of a vector in

(4.1), and exhibit conformational chirality as the relative twist angle δ ∈ [0, π) is varied.

For any δ 6= 0 and δ 6= π
2 , the conformation has D2 non-polar chiral symmetry and is

available in two states, each obtained by a reflection about the origin of the other (left

and right portions of Fig. 4.1). The special cases of δ = 0 and δ = π
2 correspond to

non-chiral biaxial D2h and full tetrahedratic Td symmetry, respectively. It is speculated

that forming of such complexes as in Fig. 4.1 is responsible for homogeneous chirality

and tetrahedratic order [1].

Although the discussion just cited is valid for the type of construction pictured in Fig.

4.1, the two states of opposite chirality, parametrized by a binary microscopic variable

pi (2.15), may be more general. For instance, flexible dimers and bent-core molecules

are terminated with flexible alkyl chains at both ends and have an unlimited number of

conformations, most of which are chiral and on average can be divided into two classes

of conformations of opposite chirality, parametrized by pi. To both of these classes there

may correspond many conformational states of the molecules, but we assume that apart

from their chirality they do not modify the quadrupolar interaction in an essential way.

Therefore the considered model (4.1) is not limited to a picture like in Fig. 4.1.

In (4.1), chirality manifests itself when reflections of the molecular basis Ω̂ = {â, b̂, ĉ}
that do not preserve handedness are considered. Under such reflection the quadrupolar

tensor Q(Ω̂) is left invariant, while the octupolar tensor T
(3)
2 (Ω̂) changes sign. Although

a reflection followed by a 90◦ rotation about one of the twofold axes leaves T
(3)
2 (Ω̂)

invariant, it is not a symmetry of Q(Ω̂). Thus, the two chiral states (Fig. 4.2) are

distinguished by the parity of the molecular basis p = â · (b̂ × ĉ) = ±1, which can be

separated as an independent, discrete degree of freedom. Therefore, from now on we

rename {â, b̂, ĉ} ≡ Ω̂′ and imply that the generalized coordinates for molecule i are Ω̂i ≡
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a b

Figure 4.2: Two molecular states of (4.1) of opposite chirality, a) p = 1 and b) p =

−1. The quadrupolar tensor Q(Ω̂) is visualized in blue; the octupolar tensor T
(3)
2 Ω̂ is

visualized in orange. Surfaces obtained as r = exp(Q(Ω̂) · û⊗ û) and r = exp(T
(3)
2 (Ω̂) ·

û⊗ û⊗ û), where û is a unit vector expressed in polar coordinates.

{pi, (âi, b̂i, ĉi)}. Being an independent degree of freedom, parity needs to be included in

the trace in the definition of the canonical ensemble average (1.3), therefore it is assumed

that Tr
{Ω̂i,pi}

≡∑pi=±1

∫
dΩ̂′i. Taking this degree of freedom into account means that we

allow the molecules to have two different conformations of opposite chirality.

A parity flip amounts to inverting one or more of the molecular axes or, equivalently,

changing the sign of T
(3)
2 (Ω̂) (while Q(Ω̂) remains invariant). Therefore, we can write

the tetrahedratic term of (4.1):

VT (Ω̂i, Ω̂j) = −ετT(3)
2 (Ω̂i) ·T(3)

2 (Ω̂j) = −ετT(3)
2 ({pi, (âi, b̂i, ĉi)}) ·T(3)

2 ({pj , (âj , b̂j , ĉj)}) =

= −ετpipjT(3)
2 ({âi, b̂i, ĉi}) ·T(3)

2 ({âj , b̂j , ĉj}).
(4.3)

Here pi, pj = ±1 are parities at the lattice sites i and j. We observe that the tetrahedratic

term is equal to the scalar product of tetrahedratic tensors in the canonical (right-

handed) molecular bases, multiplied by the parities pipj . The minimum of (4.1) with

respect to the separated degrees of freedom is such that not only all molecular axes of

molecules i and j are in parallel, but also that pi = pj . Thus, the ground state favors

homogeneous chirality. However, as we discuss in Chapter 5, the considered symmetries

allow for constructing an antisymmetric tensor out of T
(3)
2 (Ω̂), T

(2)
0 (Ω̂) and T

(2)
2 (Ω̂), and

therefore the ground state is unstable with respect to spontaneous formation of helical

twists. Thus, the discussion of this chapter is to be treated as the infinite pitch limit of

the proper minimal coupling model.

4.2.1 Order parameters

The model (4.1) leads to a multitude of phases of non-standard symmetries. As in the

case of the l = 2 model of biaxial nematics (3.1), which is responsible for uniaxial and
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biaxial nematic ordering, the appropriate order parameters for monitoring D∞h and D2h

symmetries are the uniaxial and biaxial order parameters q0 and q2, as defined in (3.21),

while the definition of the alignment tensor Q (3.17) holds.

Monitoring of tetrahedratic order is performed through the ensemble average of the Td-

symmetry-adapted function:

∆
(3)
22 = T

(3)
2 ({l̂, m̂, n̂}) ·T(3)

2 (Ω̂), (4.4)

where we have substituted Ω̂1 ≡ {l̂, m̂, n̂} and Ω̂2 ≡ Ω̂ in the definition (2.6) and applied

the ensemble average to both sides, assuming that T
(3)
2 ({l̂, m̂, n̂}) is constant. Further-

more, calculating ∆
(3)
22 can be done without determining the director basis at all (thus

limiting the error due to diagonalization), by observing that:

T
(3)
2 (Ω̂) ·T(3)

2 (Ω̂) =

=
∑

m=0,±1,±2,±3

T
(3)
2 (Ω̂) ·T(3)

m ({l̂, m̂, n̂})⊗T(3)
m ({l̂, m̂, n̂}) ·T(3)

2 (Ω̂) =

(
∆

(3)
22

)2

,
(4.5)

where we have inserted the Td-symmetrized identity operator for the l = 3 subspace of

angular momentum (2.7) and observed the orthogonality relations for irreducible tensors.

Thus, we use the identity:

∆
(3)
22 =

√
T

(3)
2 (Ω̂) ·T(3)

2 (Ω̂) (4.6)

to calculate ∆
(3)
22 .

Phase chirality is measured by the ensemble average of the molecular parity:

p = âi · (b̂i × ĉi). (4.7)

It is shown that the leading mean-field contribution to p reads [1]:

p ≈
√

2

210t4
τλ(−3 + 2λ2)∆

(3)
22 q

3
2, (4.8)

which indicates that macroscopic chirality is induced by non-zero tetrahedratic order

coupled with biaxiality. (p = 0 in uniaxial states.)

4.2.2 Phases of model (4.1)

Apart from the phases known to exist for the quadrupolar model (3.1), which are the

uniaxial nematic NU and biaxial nematic NB phases, there are additional phases in (4.1),
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in which tetrahedratic order is non-zero:

• The tetrahedratic phase T , characterized by global symmetry of the full tetrahe-

dratic group Td (Fig. 4.3a). This phase is identified by non-zero ∆
(3)
22 and vanishing

uniaxial and biaxial order parameters. The molecular arrangement which produces

this phase is achieved when all of the molecular tetrahedratic threefold symmetry

axes align in parallel. The relative arrangements of molecular bases which satisfy

this condition are realized randomly and on average none of the twofold axes of

the quadrupolar tensors are distinguished.

• The nematic tetrahedratic phase NT , characterized by global dihedral symmetry

described by the point group D2d (Fig. 4.3b). An example of an object which bears

the D2d symmetry is a tetrahedron stretched or compressed along one of its twofold

axes. NT differs from T in the respect that also the uniaxial order parameters

q0 and ∆
(2)
02 are non-zero. This phase is also referred to as “uniaxially deformed

tetrahedratic phase”. Much like NU , NT comes in two varieties, depending on the

type of the deformation: prolate NT+ (stretched) and oblate NT− (compressed).

The molecular arrangement which produces this phase is achieved when all of the

molecular tetrahedratic threefold symmetry axes align in parallel, with an addition

that the uniaxial symmetry axes of the quadrupolar part are also parallel. The

relative arrangements of molecular bases which satisfy this condition are realized

randomly and none of the secondary twofold axes of the quadrupolar tensors are

distinguished.

• The chiral nematic tetrahedratic phase N∗T , characterized by global dihedral sym-

metry of the D2 point group (Fig. 4.3c). An example of an object which bears

this symmetry is a tetrahedron which is twisted along one of its twofold axes. In

this phase, apart from non-zero tetrahedratic and uniaxial order parameters, also

the biaxial order parameters q2 and ∆
(2)
20 are non-zero and, consequently, also is

the macroscopic parity p. This is the lowest-symmetry phase that is available in

the model (4.1). The molecular arrangement which produces this phase is achieved

when all of the corresponding molecular basis vectors are in parallel, i.e. âi ‖ âj ,
b̂i ‖ b̂j , ĉi ‖ ĉj , while pi = pj .
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a b c

Figure 4.3: Simplified representations of the single-particle distribution functions for the
nonstandard phases exhibited by (4.1): a) T , b) NT , c) N∗T .

All the phase transitions, except for those where the uniaxial parameter assumes a non-

zero value, i.e. I − NT (isotropic to nematic tetrahedratic), T − NT (tetrahedratic to

nematic tetrahedratic) and I − NU (isotropic to nematic uniaxial), are second-order.

The phase diagram in the (λ, t) plane depends greatly upon the parameter τ , which has

several special values, with respect to which four classes are distinguished [1, 118, 119].

It has been found via bifurcation analysis that there exists a highly-symmetric value

of τ = 28
15 , for which at the biaxial self-dual point λ = 1√

6
and temperature t = 8/5 a

multicritical Landau point is predicted, where six phases, I, NU−, T , NT+, NT− and N∗T ,

meet. There are two phase diagram classes for τ < 28
15 and two for τ > 28

15 . For τ . 1.54,

the high-temperature regime is dominated by nematic phases (NU , NT and NB) and

there is no purely tetrahedratic phase T . For 1.54 . τ < 28
15 the T phase is found and

a first-order T − NT+ transition is present. For 28
15 > τ & 6.16 there is no stable NB

phase, while the remaining nematic uniaxial phase is NU−; the I −NU− transition line

meets with the NU− − NT−, I − T and T − NT− transition lines at a bicritical point.

The last class of diagrams for τ & 6.16 exhibits a direct I − T second-order transition

and no purely nematic phases. In all phase diagram classes the temperature of the N∗T
phase is highest at the biaxial self-dual point λ = 1√

6
.

4.2.3 Scope of presented research

The results presented in subsequent sections pertain to the nematic-dominated phase

diagram class for τ . 1.54, i.e. τ = 1 in our case, and the phase diagram containing the

multicritical point for τ = 28
15 , presented in Fig. 4.4b. For these two values Monte Carlo

temperature scans are performed for two generic values of the biaxiality parameter λ:

0.3 and 0.5, and the biaxial self-dual value λ = 1√
6
. In the case of τ = 1, the results

supplement the phase diagram (Fig. 4.4a), obtained in [1], with temperature scans.

Throughout the following sections we assume ε = 1.
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a

parameters that acquire nonzero averages when crossing
various phase transitions. In order to be consistent with L
=3 primary tetrahedratic order parameter, we list all remain-
ing !secondary" molecular order parameters of rank L!3.
These are: !a" "02

!2" for NU; !b" "20
!2" and p"22

!3" for NB; !c" p"20
!2"

and p"22
!2", along with NU secondary order parameters, for NT;

and finally !d" for NT
! all aforementioned order parameters

are nonzero, in addition to p̄, p"00
!2", and p"02

!2". Here

"mm!
!L" = # 1

$2
%2+#0m+#0m! &

s,s!=$1

'#ss! + !− 1"L#−ss!(Dsms!m!
L ,

!5"

where D are the Wigner rotation matrices.
We are now in position to evaluate the MF approximation

to F and obtain the equilibrium properties of our system. We
have identified six stable phases of model !1" that cover the
whole symmetry reduction flowchart of Fig. 2. The phases
are !a" the isotropic phase; !b" the uniaxial prolate or oblate
nematic phase; !c" the biaxial phase; !d" the tetrahedratic
phase; !e" the prolate or oblate tetrahedratic nematic phase;
and !f" the chiral tetrahedratic nematic phase. Exemplary

phase diagrams for %=1 and for %=9 are shown in Figs. 3
and 4, respectively. Figure 3 shows a phase diagram in which
the high-temperature region is dominated by the nematic
phases. Figure 4 shows a phase diagram in which occurs a
direct I-T phase transition. Phase diagrams for intermediate
values of % can partly be deduced by extrapolation. One of
them is of particular interest. Namely, for %= 28

15 six phases: I,
T, NT+, NT

!, NT−, and NU− meet at a single multicritical Lan-
dau point. All phase transitions found are of second order
except when more than one order parameter acquires a non-
zero value at a bifurcation. Such first-order phase transitions
occur at I−NT, T−NT, or I−NU. A fuller account of the prop-
erties of this model is deferred to our future publication.

To check the validity of the MF predictions the phase
diagrams were also determined from MC simulations. The
simulations were performed on a 16&16&16 lattice with
periodic boundary conditions. Each MC move included a
rotation of a molecule’s orientation and a parity inversion.
The size of MC rotational moves was selected to produce an
acceptance ratio between 30% and 40% in the ordered
phases. Typically, 50 000 to 200 000 lattice sweeps were
used to thermalize the system and 60 000 to 200 000 sweeps
for measurements. In the MC simulations, phase transitions
were detected by observing the temperature dependence of
the order parameters. In turn, these quantities were deter-
mined from the asymptotic behaviors of the correlation func-
tions Gmm!

!L" !)i− j)"= T̂m
!L"!!i" · T̂m!

!L"!! j" and Gpp!)i− j)"= pipj

for large )i− j). Here the overline indicates an ensemble av-
erage. In the simulations, the temperature resolution #t satis-
fied #t=0.01. At the above resolution !and system’s size" our
simulations were unable to distinguish between weakly first-
order and second-order phase transitions. The MC transition
curves lie below those obtained from MF. The MF results
worsen from a discrepancy of 8% to about 20% as ' in-
creases from '=0 !I−NU" to '=0.3 !NT−NT

!". The I−NU
part of our MC diagram agrees with MC results of Biscarini
et al. '21(.

The liquid-crystal phases appear due to the combination
of octupolar interactions with quadrupolar contributions. In
addition to a tetrahedratic nematic phase, existing in prolate
!NT+" and oblate !NT−" versions, the NT

! phase appears stable.
It does not appear for '=0 or '=$3

2 , which correspond to a
uniaxial limit. From the leading MF contribution to the par-
ity order parameter, p̄, an induced homogeneous chirality is
seen to emerge when both biaxial and tetrahedratic orders
condense. The estimation gives

p̄ *
$2

210t4%'!− 3 + 2'2""22
!3"!"20

!2" + $2'"22
!2""3, !6"

which vanishes when biaxial or tetrahedratic order param-
eters are zero. A maximal transition temperature to a chiral
phase is achieved for the self-dual point of '=1 /$6.

To conclude, bent-core liquid crystals can stabilize the
elusive thermotropic biaxial nematic phase '15,16(, and re-
veal a path to a series of spatially homogeneous but aniso-
tropic liquids '7(. Of these liquids the most interesting one is
the NT

! phase, which should emerge from a nonchiral liquid
as a result of spontaneous chiral symmetry breaking. The
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FIG. 3. !Color online" Phase diagram for %=1. Lines represent
MF results; points are from MC simulations for the three-
dimensional cubic lattice !16&16&16"; t= !()"−1.
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FIG. 4. !Color online" MF phase diagram for %=9 !see captions
to Fig. 3". Simulations here are difficult since parity degrees of
freedom condense to a glassy state. The NT

! phase cannot be reached
by standard Metropolis simulations.
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III. MEAN-FIELD RESULTS

In mean-field theory we average the interaction energy to
obtain an effective single-particle potential due to all the other
particles. Mathematically this is equivalent to introducing the
one-particle ansatz for PN in Eq. (10):

PN (p1,!
′
1,p2,!

′
2, . . . ,pN,!′

N ) =
N∏

i=1

P1(pi,!
′
i) ≡

N∏

i=1

P (i),

(11)
which approximates Eq. (10) by the corresponding nonequi-
librium MF free energy

βF MF
neq = 1

2Ndβ Tr
(1,2)

[P (1) V (1,2)P (2)] + N Tr
(1)

[P (1) ln P (1)].

(12)

Please note that in MF theory of orientationally and trans-
lationally homogeneous liquid structures, where we average
the interaction energy to obtain an effective single-particle
potential due to all remaining particles, the presence of lattice
is reduced to a renormalization of the effective potential by
the number of nearest neighbors (d = 6) for the simple cubic
lattice considered here.

As usual, the equilibrium one-particle distribution function,
Peq, is obtained variationally by minimizing F MF

non with respect
to P (i), subject to the normalization condition Tr

(i)
[P (i)] = 1.

The necessary condition for Peq, δF MF
non /δP |P=Peq = λ, where

λ is the Lagrange multiplier, becomes reduced to a Fredholm-
type nonlinear integral equation,

Peq(1) = Z−1
MFe

−βdVeff (1), (13)

where

Veff(1) = Tr
(2)

[V (1,2)Peq(2)], (14)

ZMF = Tr
(1)

[e−βdVeff (1)], (15)

and where the equilibrium MF free energy becomes

βF MF
eq = − 1

2Nβd Tr
(1)

[Peq(1)Veff(1)] − N ln ZMF. (16)

With the assumed choice of mutual orientation of twofold
axes of the molecule’s Q and T tensors six stable structures
(Fig. 2 in LPW) are identified among stationary solutions
of Eq. (13): (a) the O(3)-symmetric, isotropic phase (I ); (b)
the D∞h-symmetric uniaxial prolate (NU+) and oblate (NU−)
nematic phases; (c) the D2h-symmetric biaxial nematic (NB)
phase; (d) the Td -symmetric tetrahedratic (T ) phase; (e) the
D2d -symmetric, distorted tetrahedratic nematic prolate (NT +)
and oblate (NT −) phases; and (f) the D2-symmetric, chiral
nematic tetrahedratic (N∗

T ) phase.
An important step in solving Eq. (13) is the identification of

the order parameters. This is achieved by expanding the one-
particle distribution function P (!) ≡ P (p,!′) in the series of
symmetry-adapted, real, linear combinations of the Wigner’s
rotation matrices DL

m′n′ [35] and real combinations of DL
mn’s

multiplied by the parity degree of freedom, p. We denote the
symmetry-adapted functions, orthogonal over O(3), as ps$

L
mn,

NT
NT

NU

NT

I

T

0 0.4 0.8 1.20

3

6

Λ

t

FIG. 2. (Color online) Phase diagram for τ = 28
15 . Lines represent

mean-field results; points are from MC simulations for the three-
dimensional cubic lattice (16 × 16 × 16). Note that all possible
phases of the model meet at the Landau point (λ = 1/

√
6, t = 8/5),

which is surprisingly well reproduced in simulations. Continuous
(dashed) lines represent first-order (second-order) phase transitions.

where ps ∈ {1,p} and where

1
2

∑

p±1

∫
d!′ ps$

(L)
mn(!) ps ′$

(L′)
m′n′(!)

= 8π2

(2L + 1)
δLL′δmm′δnn′δss ′ . (17)

Please observe that, according to Eq. (7), $’s depend on !. If
the corresponding order parameters are ps$L

mn, where

X = 1
2

∑

p=±1

∫
X(p,!′)P (p,!′)d!′ ≡ Tr[X P ], (18)

then the expansion for P (p,!′) can be cast in the following
general form:

P (p,!′) =
∑

L,m,m′,s

2L + 1
8π2

ps $
(L)
mm′ ps$

(L)
mm′ (!). (19)

Assuming that the first label (m) in ps$
L
mn refers to the

symmetry of the phase and the second (n) to the molecular
symmetry, the following symmetry-adapted functions ps$

L
mn

(or, equivalently, the order parameters ps$L
mn) are nonvanish-

ing for each of the previously identified structures.
(a) For the I phase the only nonvanishing function is

$
(0)
00 = 1.
(b) For the NU phases,

$
(L)
mm′ =

(
1√
2

)2+δ0m+δ0m′ [
DL

mm′ + (−1)LDL
m−m′

+ (−1)LDL
−mm′ + DL

−m−m′
]
, (20)

where m = 0, 0 ! m′ ! L, ps = 1, and where L and m′ are
even. Terms with m′ = 0 and m′ )= 0 correspond to molecular
uniaxial and molecular biaxial contributions, respectively. The
nonvanishing terms coming from the molecular tetrahedral part

011704-4

Figure 4.4: Phase diagrams for model (4.1) for τ = 1 (a) and τ = 28
15 (b). In a) note the

presence of the biaxial phase in the vicinity of λ = 1√
6
. Observe that in b) the T phase

exists in a very narrow temperature and that there exists a direct I −N∗T transition for
λ = 1√

6
.

(a obtained by Longa et al. [1]. b – points for λ = 0.3, 0.5, 1√
6
obtained by Monte Carlo

simulation as presented in section 4.5, remaining points and mean-field lines obtained
in collaboration [119]. (a) reprinted with permission from [1], c©2009 by the American
Physical Society. (b) c©2012 by the American Physical Society)

4.3 Monte Carlo simulations

In the presented results a simple cubic lattice of N = 16 × 16 × 16 sites with nearest-

neighbor interactions and periodic boundary conditions is considered. The temperature

scan progresses by heating, i.e. the initial lattice is prepared in a completely-ordered N∗T
state in the lowest temperature and the final state is passed down as an initial state for the

subsequent simulation for a larger temperature. At the beginning of the thermalization

process the radius of the random walk in rotation space r (as defined in (1.49) is computed

to match an acceptance rate in the 40% ∼ 50% range. The thermalization consists

of 500000 lattice sweeps. Production (equilibrium state sampling) consists of 500000

lattice sweeps, while every tenth configuration is considered for calculating averages to

minimize correlations between subsequent states. After the final state is passed onto

the next simulation for a higher temperature, another round of 500000 thermalization

cycles follows, etc. The ensemble averages and susceptibilities are calculated in the same

manner as it was introduced in Chapter 3, specified in the definitions (3.38) and (3.39).

A lattice sweep consists of performing trial moves on N randomly chosen molecules, while

a Monte Carlo trial move consists of separately applying the Metropolis algorithm (see

section 1.8.1) to the orientational and parity degrees of freedom. Namely, considering a

trial orientational move {âi, b̂i, ĉi} → {â′i, b̂′i, ĉ′i} for a particle i, the energy difference for
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the potential (4.1) reads:

∆Ei =
1

2

z=6∑
i(j)

(
V ({pi, (âi, b̂i, ĉi)}, {pj , (âj , b̂j , ĉj)})− V ({pi, (â′i, b̂′i, ĉ′i)}, {pj , (âj , b̂j , ĉj)})

)
.

(4.9)

The energy difference upon a parity flip pi → −pi reads:

∆Ei =
1

2

z=6∑
i(j)

(
V ({pi, (âi, b̂i, ĉi)}, {pj , (âj , b̂j , ĉj)})− V ({−pi, (âi, b̂i, ĉi)}, {pj , (âj , b̂j , ĉj)})

)
.

(4.10)

Note that there is no adjustable parameter which allows for an adjustment of the accep-

tance rate for parity moves. We could, in principle, limit the number of accepted moves

by reducing the number of attempts, which is not necessary. However, we have no means

of encouraging more parity moves to be accepted, which results in parity being frozen

for long periods of time in low temperatures, as the relative energy difference associated

with a single flip is becoming large. Because the starting configuration is homogeneously

chiral, this problem does not affect the lowest temperatures, as the initial state is already

close to equilibrium. In intermediate temperatures, however, the time scales for the dy-

namics of parity are much larger than for rotational degrees of freedom, which causes the

Monte Carlo sample for quantities linked to parity to experience non-negligible temporal

correlations.

4.3.1 Susceptibilities

We investigate the previously defined uniaxial and biaxial order parameter susceptibil-

ities (or measures of order parameter fluctuations) (3.44) and (3.45), but also consider

susceptibilities of tetrahedratic order and parity. They are defined analogously, in terms

of instantaneous lattice averages, as in the definition (3.39):

χp = 〈p̃2〉M − 〈p̃〉2M , (4.11)

χ
T

(3)
2

= 〈 ˜
T

(3)
2 ·

˜
T

(3)
2 〉M − 〈

√
˜

T
(3)
2 ·

˜
T

(3)
2 〉2M . (4.12)

4.3.2 Correlation functions

Because of the suspicion that in lower temperatures there might exist domains of opposite

homogeneous chirality, the average parity (4.7) can also be obtained by considering a
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correlation function:

Gpp(|i− j|) = pipj
|i−j|→∞−→ pi · pj = p2. (4.13)

Because of the periodic boundary conditions, the limit for the argument of (4.13) is half

of the edge of the lattice L. By calculating p as:

p =
√
Gpp(L/2), (4.14)

we evade the error due to spatial correlations when calculating the lattice average parity.

4.3.3 Determining transition temperatures

The most pronounced phase transitions of (4.1) are the ones associated with tetrahedratic

ordering, i.e. the I − T (isotropic to tetrahedratic, not observed in simulations), I −NT

(isotropic to nematic tetrahedratic, see Figs. 4.8 and 4.10), I − N∗T (isotropic to chiral

nematic tetrahedratic, see Fig. 4.9), NU−NT (nematic uniaxial to nematic tetrahedratic,

see Figs. 4.5 and 4.7) and NB − N∗T (nematic biaxial to chiral nematic tetrahedratic,

see Fig. 4.6) transitions, which produce a very strong peak in the energy fluctuation

c (defined in (3.42)). Recall that the fluctuation of energy calculated for the biaxial

model (3.1) was of the order 5 ∼ 7 at the I −NU phase transition for a similar system

(see e.g. Fig. 3.6b). The same method of calculating c yields peaks of the order of

30 for the aforementioned transitions in (4.1) (see e.g. Fig. 4.6d). This often means

that the peak at the I − NU and I − NB transitions is overshadowed by the peak at

a tetrahedratic symmetry breaking transition, if they are close. Therefore, for these

transitions we determine the temperature by peaks in χ0 and χ2 respectively, adjusting

to agree with the behavior of order parameters.

The transitions involving spontaneous breaking of tetrahedratic symmetry produce pro-

nounced peaks in c and χ
T

(3)
2

, which provide excellent indication of the transition tem-

perature.

The most challenging are the transitions where spontaneous breaking of chiral symmetry

occurs separately from breaking of tetrahedratic symmetry, i.e. NT − N∗T (T phase is

not observed in our results), observed for τ = 1, λ = 0.3 (Fig. 4.5), τ = 1, λ = 0.5 (Fig.

4.7), τ = 28
15 , λ = 0.3 (Fig. 4.8) and τ = 28

15 , λ = 0.5 (Fig. 4.10). Firstly, we fail to

detect any peak in c due to the transition. Secondly, the collection of equilibrium states

from which the averages and susceptibilities are calculated is significantly correlated with

respect to parity due to large time-scales, resulting in lowered precision of determining

p and χp. If a peak in χp is present and its position is unambiguous, we use it to
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determine the transition temperature. There are, however, cases where χp does not

exhibit an unequivocal peak and in these cases we resort to approximating the transition

temperature as the point, where p starts to increase in the N∗T phase. Furthermore, q2

is linked to p through (4.8), which affects the behavior of the order parameters and χ2

in NT and N∗T phases as well.

4.4 Results for τ = 1

This result is complementary to the phase diagram in Fig. 4.4a. The original result

is supplemented in this section by temperature scans presenting thermal behavior of

order parameters q0, q2, p and ∆
(3)
22 , energy fluctuation c and susceptibilities χ0, χ2, χp

and χ
T

(3)
2

. The results are presented in figures 4.5-4.7, where Monte Carlo transition

temperatures are indicated. Below will follow a general description of the results, while

detailed comments on the behavior of the measured quantities are given in the captions

of figures: Fig. 4.5 for λ = 0.3, Fig. 4.6 for λ = 1√
6
and Fig. 4.7 for λ = 0.5.

The only instance of NB phase exists for λ = 1√
6
(Fig. 4.6), where we have a direct

second-order I−NB transition, evidenced by and increase in q0 and q2, while p and ∆
(3)
22

parameters are zero. A peak in χ2 is also noted and used to determine the transition

temperature tI−NB
≈ 1.2. A second-order phase transition to the N∗T phase is subse-

quently encountered as the temperature is lowered, evidenced by an increase in ∆
(3)
22 and

peaks in χ
T

(3)
2

and χp.

For the generic prolate (λ = 0.3, Fig. 4.5) and generic oblate (λ = 0.5 4.7) cases, as

the temperature is lowered, first a uniaxial nematic phase occurs, followed by a second-

order transition to the nematic tetrahedratic NT phase. Because of the slow dynamics of

parity and the fact that biaxial ordering in the presence of tetrahedratic order is linked

to parity, p and q2 experience fluctuations due to long temporal correlations in the NT

phase, evidenced by the behavior of χp and χ2. The correlations continue to the N∗T
phase, which is visible in χp, particularly in the case of λ = 0.3, however χp indicates

that these effects are less pronounced in low temperatures. The transition to the N∗T
phase is second-order and is evidenced by an increase in p, q2 and a peak in χp, which

was used to determine the transition temperature.
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Figure 4.5: Monte Carlo results for τ = 1 and λ = 0.3. Obtained transition temper-
atures: tI−NU+

≈ 1.18, tNU+−NT+
≈ 1.18, tNT+−N∗T ≈ 0.76 (marked as dashed vertical

lines). Note that the NU+ phase exists in a very narrow temperature range, hence the
peak in c (d) is not discernible from the NU+ −NT+ peak. Peaks of χ0 (c) at I −NU+

and NU+ − NT+ are merged together. We use the rightmost edge of the peak in χ0 to
determine the transition temperature. Also note the fluctuating behavior of χ2 and χp
in the NT+ phase and at the onset of N∗T (c, d), explained in section 4.3.3.
a) Uniaxial and biaxial order parameters q0 and q2, as defined in (3.21).

b) Tetrahedral order parameter ∆
(3)
22 calculated as (4.6), phase chirality calculated as

average parity p from (4.14) and susceptibility of tetrahedratic order parameter χ
T

(3)
2

calculated as (4.12).
c) Susceptibilities of uniaxial and biaxial order parameters χ0 and χ2, calculated as
(3.44) and (3.45).
d) Fluctuation of energy c calculated as (3.42) and susceptibility of parity order param-
eter χp calculated as (4.11).
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Figure 4.6: Monte Carlo results for τ = 1 and λ = 1√
6
. Obtained transition tempera-

tures: tI−NB
≈ 1.2, tNB−N∗T ≈ 1.12. Note that the NB phase exists in a very narrow

temperature range, therefore the peak in c for the I − NB transition is not discernible
from the one at NB −N∗T transition.
a) Uniaxial and biaxial order parameters q0 and q2, as defined in (3.21).

b) Tetrahedral order parameter ∆
(3)
22 calculated as (4.6), phase chirality calculated as

average parity p from (4.14) and susceptibility of tetrahedratic order parameter χ
T

(3)
2

calculated as (4.12).
c) Susceptibilities of uniaxial and biaxial order parameters χ0 and χ2, calculated as
(3.44) and (3.45).
d) Fluctuation of energy c calculated as (3.42) and susceptibility of parity order param-
eter χp calculated as (4.11).
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Figure 4.7: Monte Carlo results for τ = 1 and λ = 0.5. Obtained transition tempera-
tures: tI−NU− ≈ 1.4, tNU−−NT− ≈ 1.24, tNT−−N∗T ≈ 0.94. Note the fluctuating behavior
of χ2 and χp in the NT+ phase and at the onset of N∗T (c, d), explained in section 4.3.3.
a) Uniaxial and biaxial order parameters q0 and q2, as defined in (3.21).

b) Tetrahedral order parameter ∆
(3)
22 calculated as (4.6), phase chirality calculated as

average parity p from (4.14) and susceptibility of tetrahedratic order parameter χ
T

(3)
2

calculated as (4.12).
c) Susceptibilities of uniaxial and biaxial order parameters χ0 and χ2, calculated as
(3.44) and (3.45).
d) Fluctuation of energy c calculated as (3.42) and susceptibility of parity order param-
eter χp calculated as (4.11).
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4.5 Results for τ = 28
15

This result corresponds to the phase diagram in Fig. 4.4b. Temperature scans, including

behavior of order parameters q0, q2, p and ∆
(3)
22 , energy fluctuation c and susceptibilities

χ0, χ2, χp and χT
(3)
2

are presented in figures 4.8-4.10, where transition temperatures are

indicated. The obtained transition temperatures have been indicated in Fig. 4.4b as

points for λ = 0.3, λ = 1√
6
and λ = 0.5. Below will follow a general description of the

results, while detailed comments on the behavior of the measured quantities are given

in the captions of figures: Fig. 4.8 for λ = 0.3, Fig. 4.9 for λ = 1√
6
and Fig. 4.10 for

λ = 0.5.

For λ = 1√
6
the multicritical Landau point exists (Fig. 4.9), where there is a direct,

sharply first-order transition from isotropic I to the chiral phase N∗T at tI−N∗T ≈ 1.57.

All measured order parameters experience a discontinuous increase at this point.

For the generic prolate (λ = 0.3, Fig. 4.8) and generic oblate (λ = 0.5 4.10) cases, as the

temperature is lowered, a sharply first-order phase transition to the nematic tetrahedratic

NT phase occurs, evidenced by a discontinuous increase in ∆
(3)
22 and q0, coupled with

peaks in c, χ
T

(3)
2

and χ0. Because of the slow dynamics of parity in lower temperatures

and because of the fact that biaxial ordering in the presence of tetrahedratic order is

linked to parity, p and q2 experience fluctuations due to long temporal correlations in

the NT phase, evidenced by the behavior of χp and χ2. The correlations continue to

the N∗T phase, but wane in lower temperatures, which is visible in χp. The transition

from NT to N∗T is second-order and is evidenced by an increase in p and q2. In the case

of λ = 0.5 it was possible to unequivocally identify a peak in χp, however this was not

possible for λ = 0.3 and an approximation is made by observing the temperature at

which p begins to rise. Note that the T and NU− phases, predicted by mean-field theory

(see Fig. 4.4b) to precede the NT phase for λ < 1√
6
and λ > 1√

6
respectively, exist in a

very narrow temperature range and are not observed in simulation.
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Figure 4.8: Monte Carlo results for τ = 28
15 and λ = 0.3. Obtained transition tempera-

tures: tI−NT+
≈ 1.56, tNT+−N∗T ≈ 1.1. Note that the T phase, predicted by mean-field

(Fig. 4.4b) remains undetected due to very narrow temperature range. Also note the
fluctuating behavior of χ2 and χp in the NT+ phase and at the onset of N∗T (c, d),
explained in section 4.3.3. In this case tNT+−N∗T was determined from the behavior of p
(b).
a) Uniaxial and biaxial order parameters q0 and q2, as defined in (3.21).

b) Tetrahedral order parameter ∆
(3)
22 calculated as (4.6), phase chirality calculated as

average parity p from (4.14) and susceptibility of tetrahedratic order parameter χ
T

(3)
2

calculated as (4.12).
c) Susceptibilities of uniaxial and biaxial order parameters χ0 and χ2, calculated as
(3.44) and (3.45).
d) Fluctuation of energy c calculated as (3.42) and susceptibility of parity order param-
eter χp calculated as (4.11).
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Figure 4.9: Monte Carlo results for τ = 28
15 and λ = 1√

6
. The multicritical point is found

for tI−N∗T ≈ 1.57.
a) Uniaxial and biaxial order parameters q0 and q2, as defined in (3.21).

b) Tetrahedral order parameter ∆
(3)
22 calculated as (4.6), phase chirality calculated as

average parity p from (4.14) and susceptibility of tetrahedratic order parameter χ
T

(3)
2

calculated as (4.12).
c) Susceptibilities of uniaxial and biaxial order parameters χ0 and χ2, calculated as
(3.44) and (3.45).
d) Fluctuation of energy c calculated as (3.42) and susceptibility of parity order param-
eter χp calculated as (4.11).
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Figure 4.10: Monte Carlo results for τ = 28
15 and λ = 0.5. Obtained transition temper-

atures: tI−NT− ≈ 1.7, tNT−−N∗T ≈ 1.21. Note that the T phase, predicted by mean-field
(Fig. 4.4b) remains undetected due to very narrow temperature range. Also note the
fluctuating behavior of χ2 and χp in the NT− phase and at the onset of N∗T (c, d),
explained in section 4.3.3.
a) Uniaxial and biaxial order parameters q0 and q2, as defined in (3.21).

b) Tetrahedral order parameter ∆
(3)
22 calculated as (4.6), phase chirality calculated as

average parity p from (4.14) and susceptibility of tetrahedratic order parameter χ
T

(3)
2

calculated as (4.12).
c) Susceptibilities of uniaxial and biaxial order parameters χ0 and χ2, calculated as
(3.44) and (3.45).
d) Fluctuation of energy c calculated as (3.42) and susceptibility of parity order param-
eter χp calculated as (4.11).
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4.6 Discussion and summary

Two classes of phase diagrams for the model (4.1) have been studied by Monte Carlo

simulation, providing the dependence on temperature and model parameters λ and τ of

order parameters, fluctuation of energy and susceptibilities (measures of fluctuation) of

order parameters for typical prolate and oblate values (λ = 0.3 and λ = 0.5), as well

as the highly-symmetric Landau point (self-dual point of the quadrupolar biaxial model

(3.1)), λ = 1√
6
. The two studied values of τ pertain to the nematic-dominated phase

diagram topology for τ . 1.54 (τ = 1) and the highly-symmetric value τ = 28
15 , for which

the multicritical Landau point is observed.

Apart from the phases existing in l = 2 model of biaxial nematics (3.1), two phases with

tetrahedratic ordering have been identified: nematic tetrahedratic NT and chiral nematic

N∗T . The T phase was not accessible by simulation in the considered cases. For τ = 1

it is not present on the phase diagram, while for τ = 28
15 its temperature range is too

narrow to allow identification of the phase.

In the NT phase spontaneous breaking of tetrahedratic symmetry was observed by mea-

suring the tetrahedratic order parameter ∆
(3)
22 . The phase transition to NT also is seen to

produce pronounced peaks in the fluctuation of energy c and susceptibility of the tetrahe-

dratic order parameter χ
T

(3)
2

. The N∗T phase was identified by observing the spontaneous

breaking of chirality, measured in terms of average parity p. The chiral phase is observed

in all cases, however the transition temperature is highest for a highly biaxial molecular

quadrupolar moment (λ ≈ 1√
6
) and high tetrahedratic coupling (through τ).

The results need not apply exclusively to the speculated complexes of embrace-locked

bent molecules, as in Fig. 4.1, and can be linked to cases where the leading terms

in the dispersion interaction expansion are the quadrupolar and octupolar couplings.

To provide a general correspondence, in the future also tetrahedratic coupling terms

where the octupolar tensor’s twofold axes are rotated with respect to the twofold axes

of the quadrupole need to be considered. However, the observed homogeneous chirality

without the observation of twisted domains or macroscopic states seems unlikely in real

compounds. (4.1) does not account for twisted structures because of the lack of spatially-

dependent coupling (e.g. coupling of the quadrupolar or octupolar moments to lattice

vectors). This type of coupling is accounted for when, in addition to ε > 0, τ > 0 and

λ > 0 in the general model (2.11) κ > 0, the case studied in Chapter 5.

The results also indicate that the investigation of spontaneous chirality breaking in liquid

crystals calls for new simulation methods. In our experience, brute-force increasing of the

cycle count in a standard Metropolis algorithm provides less-than-satisfying output when

compared to the increasing time and computer resource consumption when a discrete
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degree of freedom, such as parity, is taken into account. Therefore in the future methods

such as parallel tempering should be considered [123].



Chapter 5

Spatially modulated structures

To conclude this thesis with a promising, open problem, we explore a proposed extension

to the model (4.1) which, as we preview in this short chapter, produces spatially inhomo-

geneous structures and ambidextrous chirality. Such an effect should be accounted for,

considering the findings involving bent-core molecules [38–40, 43, 55] and flexible dimers

[45–50].

5.1 Intermolecular vector coupling

The inclusion of uniaxial (D∞h), biaxial (D2h) and tetrahedral (Td) symmetries in the

model (4.1) permits one to construct an antisymmetric tensor using the symmetrized

irreducible tensors:

b̂αn · (b̂βn × b̂γn) = 2
√

2
∑

(x,y,z)∈π{α,β,γ}

T
(2)
0,xµT

(2)
2,yνT

(3)
2,µνz, (5.1)

where b̂xn = ân, b̂yn = b̂n, b̂zn = ĉn are the molecular basis vectors for site n and the

summation runs over cyclic permutations of {α, β, γ}, with Einstein summation conven-

tion assumed for the remaining indices. The lowest non-trivial term including this tensor

involves coupling with the intermolecular (or inter-site) versor r̂ij =
~rij
rij

(~rij = ~rj − ~ri),
r̂ij = −r̂ji and one of the molecular moments present in the interaction (4.1). Consider-

ing the quadrupolar moment, one obtains [119]:

Vc(Ω̂i, Ω̂j) = κε [ b̂αi · (b̂βi × b̂γi)Qαν(Ω̂i)Qβν(Ω̂j)

− b̂αj · (b̂βj × b̂γj)Qαν(Ω̂j)Qβν(Ω̂i)
]

(r̂ij)γ ,
(5.2)

101
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where α, β, γ, ν = {x, y, z}, Qρδ(Ω̂) =
(
Q(Ω̂)

)
ρδ

and Einstein summation convention is

assumed. A similar term exists for the octupolar tensor:

V T
c (Ω̂i, Ω̂j) = κT ε [ b̂αi · (b̂βi × b̂γi)T (3)

2 ανµ(Ω̂i)T
(3)
2 βνµ(Ω̂j)

− b̂αj · (b̂βj × b̂γj)T (3)
2 ανµ(Ω̂j)T

(3)
2 βνµ(Ω̂i)

]
(r̂ij)γ ,

(5.3)

where T (3)
2 αρδ(Ω̂) =

(
T

(3)
2 (Ω̂)

)
ρδ
. Terms (5.2) and (5.3) are invariant with respect to

simultaneous inversion of both parities and an exchange of sites, i.e.:

V (T )
c (pi, Ω̂

′
i, pjΩ̂

′
j) = V (T )

c (−pj , Ω̂′j ,−pi, Ω̂′i). (5.4)

5.2 Consequences of intermolecular vector coupling

We study a model defined by the pair interaction potential constructed by supplementing

the potential (4.1) with the quadrupolar variety of the lattice-coupling potential (5.2):

Vt(Ω̂i, Ω̂j) = VT (Ω̂i, Ω̂j) + Vc(Ω̂i, Ω̂j). (5.5)

We assume κ ≥ 0. The Hamiltonian is constructed on a lattice with nearest-neighbors

coupling:

H =
1

2

N∑
〈i,j〉

Vt(Ω̂i, Ω̂j). (5.6)

This model corresponds to the general model (2.11) for the case when the parameters

λ, ε, τ and κ are non-zero. We do not specify which type of lattice is assumed, as three

types are used: an open chain, a two-dimensional square lattice and a three-dimensional

simple cubic lattice.

We will now consider the minimum of (5.5) for two isolated neighboring particles to

show that it favors a twisted state for non-zero κ. The simplest parametrization of (5.5)

is in relative Euler angles, i.e. Vt(Ω̂i, Ω̂j) ≡ Vt(pi, pj , Ω̂
′
ij), where Ω̂′ij = {αij , βij , γij}

defines the (proper) rotation, which carries Ω̂′j into Ω̂′i. Since i and j are fixed, for

simplicity we assume Ω̂′ij ≡ Ω̂ = {α, β, γ}. For the sake of the argument we place the

particle i at the origin and the intermolecular vector, which points at the particle j, is

parametrized in polar coordinates (θ, φ): r̂ij = {sin(θ) cos(φ), sin(θ) sin(φ), cos(θ)}. In

this parametrization, (5.5) reads:

Vt(pi, pj , Ω̂
′) = −ε[fQQ(Ω̂′) + τpipjfTT (Ω̂′) + κ(pi + pj)fr(Ω̂

′, θ, φ)], (5.7)
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where:

fQQ(Ω̂′) = ∆
(2)
00 (Ω̂′) +

√
2λ[∆

(2)
20 (Ω̂′) + ∆

(2)
02 (Ω̂′)] + 2λ2∆

(2)
22 (Ω̂′), (5.8)

fTT (Ω̂′) = ∆
(3)
22 (Ω̂′), (5.9)

fr(Ω̂
′, θ, φ) =

1

2
{λ sin(2α cos(θ)[λ cos(2γ)(3 + cos(2β)) +

√
6 sin2(β)]+

+ λ sin(2γ)[sin(β) sin(θ)(2λ cos(α+ φ) +
√

6 cos(α+ φ))+

+ 4λ cos(2α) cos(β) cos(θ)] +
1

2
sin(2β) sin(θ)[sin(α− φ)×

× (
√

6λ cos(2γ)− 3)− λ sin(α+ φ)(
√

6− 2λ cos(2γ))]},

(5.10)

∆
(3)
22 (Ω̂′), ∆

(2)
00 (Ω̂′) and ∆

(2)
22 (Ω̂′) are the symmetry-adapted Wigner functions (2.6), dis-

cussed in section 2.1.

For κ = 0 (and ε > 0, τ > 0), the minimum of (5.7) is:

min
{Ω̂′}

Vt(pi, pj , Ω̂
′) = −ε(1 + 2λ2 + pipjτ), (5.11)

which is satisfied when pi = pj and the tetrahedral and quadrupolar twofold axes are

aligned in parallel. For κ 6= 0, a competing minimum becomes global, which is achieved

when the minor molecular axes âi and âj align in parallel along the vector r̂ij , while the

perpendicular molecular axes {b̂j , ĉj} are rotated along âj by an angle β0ij , relative to

{b̂i, ĉi}. The rotation is clockwise if pi = pj = 1 and counter-clockwise if pi = pj = −1.

The relative angle is given by:

tan(2β0ij) =
κΛ(pi + pj)

Λ + 4τ
, (5.12)

where:

Λ = 3 + 2λ(
√

6 + λ). (5.13)

(5.12) can give a general idea on the macroscopic implications of the ground state, when

expanded in small κ. Upon ensemble-averaging the leading term, we obtain:

β0ij ≈
κΛ

Λ + 4τ
p. (5.14)

It is now evident that the N∗T phase, i.e. when p 6= 0, is unstable with respect to

spontaneous formation of twisted states and that the predictions of chapter 4 are valid

only in the κ = 0 limit. In the above approximation the twisted states have pitch of the

order of π
β0ij

. In other phases, where p = 0, from (5.12) we can conclude that local twisted

domains of opposite handedness will form in equal abundance, leading to ambidextrous

chirality.
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Figure 5.1: Visualization of the octupolar and quadrupolar tensors on neighboring sites
in the twisted ground pair state configuration of (5.7) for λ = 0.4 and τ = κ = 1. (Image
per [119], c©2012 by the American Physical Society.)

5.2.1 One-dimensional chain

The prediction (5.14) is very well supported by Monte Carlo simulations on a one-

dimensional open chain of molecules. We consider 32 sites aligned along the direction x̂

with free boundary conditions in all directions. The degrees of freedom are in no way

limited with respect to the three-dimensional case, thus the molecules are free to rotate,

as in previously considered cases.

We perform Monte Carlo simulations with the pair interaction potential (5.5) for τ =

1, λ = 0.3 and κ = 1. Considering homogeneous parity, p = 1, the estimation (5.14)

gives β0ij ≈ 31◦ for mean relative clockwise twist about the molecular â axes and a mean

pitch π
β0ij
≈ 5.8. As can be viewed in Fig. 5.2a, an equilibrium state after a 60000-cycle

simulation for temperature t = 0.2, starting from an ordered state with homogeneous

parity p = 1, confirms these predictions. The pitch is roughly equal to 6, while the mean

relative twist angle, averaged over the chain in the pictured configuration, is equal to

β0ij ≈ 30.8◦. On the other hand, simulation for a higher temperature shows domains of

opposite chirality with small but discernible twists, which confirms our predictions. (See

Fig. 5.2b.) However, it should be stressed that although overall parity p decreases as

temperature is raised, there is no phase transition observed in the one-dimensional case,

as it is known that for discrete symmetry groups no phase transitions exist for a chain

with nearest-neighbors interaction in finite temperature.
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a

b

Figure 5.2: Result of a 60000-cycle Monte Carlo simulation of (5.5) on an open-ended
one-dimensional chain of length 32 for t = 0.2 (a) and t = 0.5 (b) with τ = 1, λ = 0.3 and
κ = 1. The pictured rectangular cuboids represent the molecular quadrupolar moments
Q(Ω̂), while the color stands for parity: p = +1 (red) and p = −1 (green).
a) Global twisted state in the homochiral phase. The pitch of the global twist is esti-
mated as ∼ 6, while the mean relative angle is β0ij ≈ 30.8◦ (averaged over the pictured
configuration), which is in excellent agreement with the prediction (5.14).
b) Ambidextrous chiral domains in a disordered phase.

5.3 Two-dimensional lattice

Let us constrain the model (5.5) to a two-dimensional square lattice in the (x̂, ŷ) plane

and let the boundary conditions in x̂ and ŷ directions be periodic, while keeping the

boundary conditions free along ẑ. The molecular degrees of freedom remain as in the

three-dimensional case, thus we are left with a free-standing single-layered film. For

such a system the intermolecular vectors are constrained to four directions, i.e. r̂ij =

{1, 0}, {0, 1}, {−1, 0}, {0,−1}.

Consider now that two molecules, 1 and 2, of identical parity p1 = p2 = +1, occupy

neighboring sites at positions (x1, y1) = (0, 0) and (x2, y2) = (1, 0) (Fig. 5.3a). As

discussed in the previous section, the ground state of such configuration is achieved

when both molecules 1 and 2 align with â1 ‖ â2 ‖ r̂12 = {1, 0} and molecule 2 is tilted

clockwise with respect to 2 around â2 (or vice-versa). Now consider a third molecule, 3,

p3 = p1 = p2 = +1, located at (x3, y3) = (0, 1). If 1 and 3 were treated in isolation (Fig.

5.3b), the ground state would be achieved analogously, by aligning â3 ‖ â1 ‖ r̂13 and

tilting 3 clockwise with respect to 1 along â3 (or vice-versa). Now notice that the two

pairwise ground states for 1 and 2 and for 1 and 3 cannot be achieved simultaneously

(Fig. 5.3c). Adding more molecules multiplies the number of conflicting conditions.

Thus, the system is frustrated. The question of how the system relaxes this frustration

is difficult to answer on analytical grounds and in the present we resort to simulation in

search for an answer.

5.3.1 Simulations and results

We perform Monte Carlo simulations of the model (5.5) on a square 32× 32 lattice with

periodic boundary conditions in the lattice plane and free boundary conditions in the

perpendicular direction. We take λ = 0.3 and τ = κ = 1. Starting from an initial,
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a b c

Figure 5.3: Illustration of how frustration emerges in the model (5.5) when three instead
of two molecules with identical parity (p = +1) are considered. Molecules are represented
by rectangular cuboids, which roughly correspond to the molecular quadrupolar tensors
Q(Ω̂).
a) Ground state of two isolated molecules placed on neighboring lattice sites along x̂.
b) Ground state of two isolated molecules placed on neighboring lattice sites along ŷ.
c) The two pairwise ground states a and b conflict each other.

completely ordered and righthanded (p = +1) configuration, we run a simulation of

60000 cycles for the lowest temperature (t0 = 0.2) and pass the final state as the initial

state to the next temperature and iterate until t = 1.05 is reached with an increment of

δt = 0.05. To compare the scale of the number of Monte Carlo cycles taken into account,

consider that it amounts to average ∼ 60 lattice sweeps per particle on the 32×32 lattice,

which is of similar order as ∼ 50 − 100 lattice sweeps per particle on the 16 × 16 × 16

lattices for 200000− 500000 cycles considered in the previous chapter.

In two dimensions we do not expect any phase transition associated with the continuous

(rotational) degrees of freedom. However, as discussed in chapter 4, the molecular parity,

being a discrete, two-state degree of freedom, is an Ising-like variable. Therefore it is

reasonable to expect a phase transition with spontaneous parity (chirality) breaking.

Certainly, chiral ordering will consequently induce some level of biaxial and tetrahedral

ordering, but this ordering is not due to spontaneous breaking of SO(3) symmetry. We

monitor this phase transition by the fluctuation of energy c (3.42) and the susceptibility

of the parity order parameter χp (4.11). Average parity is computed by direct ensemble

averaging of the molecular parity p. All other quantities are computed as they have been

in previous chapters.

The results indicate that, indeed, a phase transition between the disordered and chiral

states exists in two dimensions, at temperature tc ≈ 0.9 ∼ 0.95, characterized by a sharp

drop in phase chirality p and peaks in c and χp as tc is approached from below (Fig. 5.4).

This is an expected result, however what is more curious is the apparent existence of a

phase transition within the chiral phase. It is visible as a minor peak in c (Fig. 5.4b)

and a pronounced peak in the susceptibility of the uniaxial order parameter χ0 (3.44),

as well as an increase in the uniaxial parameter q0 (3.21) as the temperature is raised
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Figure 5.4: Several Monte Carlo quantities obtained from a simulation of model (5.5) on
a 32× 32 lattice for λ = 0.3 and τ = κ = 1.
a) Phase chirality measured by average parity p, the primary uniaxial order parameter
q0 (3.21) and susceptibility of the uniaxial order parameter χ0 (3.44).
b) Fluctuation of energy c (3.42) and susceptibility of the chirality order parameter χp
(4.11).

(Fig. 5.4a), which indicates that some kind of reordering is taking place, approximately

at the temperature tr ≈ 0.55.

Investigation of the final lattice states reveals that for t < tr bent-wavefront-cholesteric

structures exist, where the cholesteric-like wavefronts bend at right angles and do not

form any defects, i.e. do not split or terminate (Fig. 5.5d). This structure apparently

relaxes the frustration of the ground state, discussed in the previous section. We have

found these states to be remarkably stable, as they form rapidly from the initial ordered

state and throughout the simulation no qualitative changes are observed. For tc > t > tr

two-dimensional cholesteric structures are found, where the molecules are aligned with

their molecular â axes in parallel to the diagonal of the lattice and rotate along â (Fig.

5.5b). The pitch of such structure appears to agree with the prediction (5.14) in the x̂

and ŷ directions, while along the diagonal it can be estimated as 1√
2

π
〈β0ij〉 , which for the

given parameters predicts a pitch of 4. Investigation of e.g. Fig. 5.5b shows that this

is indeed the case. Above tc, the disordered state is found with many small domains of

opposite chirality (Fig. 5.5a). The ordered structures bear uncanny resemblance to the

freeze-fracture imaging results obtained recently for the twist-bend nematic phase [50].
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a b

c d

Figure 5.5: Final lattice states for the simulation of model (5.5) on a 32 × 32 lattice
for λ = 0.3 and τ = κ = 1, showing different structures for different temperatures. The
rectangular cuboids represent the molecular quadrupolar moments Q(Ω̂), while the color
represents parity: p = +1 (red) and p = −1 (green).
a) t = 0.95: Ambidextrous chiral domains in the disordered state existing for t > tc.
b) t = 0.8: A two-dimensional cholesteric state with a wave vector parallel to the diagonal
of the lattice. The molecules are aligned with their molecular â axes in parallel, along
which they rotate.
c) t = 0.55: Reordering transition in the chiral phase. At t = tr ≈ 0.55 cholesteric states
found for tc > t > tr coexist with the bent-wavefront-cholesteric structures encountered
for t < tr.
d) t = 0.25: Stable bent-wavefront-cholesteric structures existing for t < tr.

5.4 Three-dimensional lattice

The results for the two-dimensional version of model (5.5) raise the question whether

similar bent-wavefront structures, or perhaps even more complicated ones, will be ob-

served in three dimensions. Clearly, the frustration of the ground state argued for the

two-dimensional case should be more manifest in three dimensions. Our results in this

respect are merely a teaser of what is possible in these systems, therefore we keep this

section short and skip to presentation of the results.
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The simulations were carried out for a three-dimensional 16×16×16 simple cubic lattice

with periodic boundary conditions in all directions. We proceed in a similar manner as

in the two-dimensional case, i.e. by first providing an initial, completely ordered state

with p = +1 and passing the final state of each simulation for a given temperature as

the initial state of the subsequent simulation for a higher temperature. The considered

parameters are λ = 0.3 and κ = τ = 1, while the considered cycle count is 80000.

These preliminary results indicate that also in the case of a three-dimensional lattice,

complex, frustrated supramolecular states may exist. They have been found in the lower

temperature regime, e.g. t = 0.2 and t = 0.4 (Fig. 5.6a and b), however for higher

temperatures a periodic phase is also encountered, e.g. for t = 1.0 and t = 1.2 (Fig. 5.6c

and d). As we see in Fig. 5.6c in particular, the molecules twist in a helix approximately

along the diagonal and the pitch can be assessed by the modulating color to span only

a few molecules. This kind of ordering is typical of the twist-bend nematic phase [42],

while the surfaces of the simulation box in Fig. 5.6c and d can be, as in the 2D case,

compared to the freeze-fracture imaging results obtained this year by the group at the

University of Colorado in Boulder [50]. According to this account, the striped textures of

the frozen samples do not indicate layering, but reflect the orientation of bent molecules

forming helices. This is also visible in Fig. 5.6c and d.
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a b

c d

Figure 5.6: Final lattice states for the simulation of model (5.5) on a simple cubic
16× 16× 16 lattice with periodic boundary conditions for λ = 0.3 and κ = τ = 1. The
rectangular cuboids represent the molecular quadrupolar moments Q(Ω̂), while the color
represents parity: p = +1 (red) and p = −1 (green) with hue modulated by orientation
of the molecular ĉ axes.
a,b) t = 0.2 and t = 0.4: Stable complex supramolecular structures.
c,d) t = 1.0 and t = 1.2: Stable layered phases.

5.5 Discussion

The preliminary results presented in this chapter indicate that the complex effects due

to spontaneous breaking of chirality, encountered e.g. in bent-core and flexible dimer

systems can be accounted for in a microscopic dispersion model with a coupling to the

intermolecular vectors, in the form such as (5.2). So far, such a model, in which twisted

states and supramolecular structures form due to spontaneous breaking of chirality, has

been missing. Subsequent detailed analysis needs to be undertaken to study the phase

transitions and remaining unidentified structures, which can exist in other phases, in

particular in the three-dimensional case. Finally, because geometrical frustration and

chirality are known to lead to the emergence of blue phases, it is important to establish

whether a link between the model (5.5) to those structures exists.
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Summary and conclusions

In the present thesis we have analyzed some of the cases described by the general model

(2.11) and have shown that it does reproduce many of the remarkable effects observed in

bent-shaped liquid crystal molecules (bent-core, flexible dimer and ferrocene mesogens),

such as field-stabilized biaxiality, homogeneous chirality, tetrahedratic order and twisted

states of homogeneous and ambidextrous chirality. The results have been summarized

in detail at the conclusions of the respective chapters, 3, 4, and 5. Herein we present a

general comment on the results when viewed as a whole.

In general, the model studied in the present thesis, (2.11), produces many of the above

phenomena, such as field-stabilized biaxiality (as seen Chapter 3, in section 3.6.2, in

particular Fig. 3.16), homogeneous chirality and tetrahedratic phases (Chapter 4, in

sections 4.4 and 4.5), twisted helical states (in particular the three-dimensional result in

section 5.4 in Chapter 5) and ambidextrous chirality (corroborated by 1D and 2D results

in sections 5.2.1 and 5.3 in Chapter 5), as well as effects present in classic nematogens,

such as the critical and tricritical points of the isotropic-uniaxial nematic transition

(studied in detail in section 3.6.1 in Chapter 3). The stable biaxial nematic phase, which

is present for no external field (see section 3.5) and also for τ > 0 (in particular see Fig.

4.6), has proved elusive in experiment and is widely believed to be unstable and is subject

to constant experimental research at the time of completion of this thesis. Some cases

of the model (2.11) however produce novel results, such as the field-induced decrease in

the isotropic-biaxial nematic transition temperature for the model (3.14) at λ = 1√
6
(see

the mean-field phase diagram in Fig. 3.18 and order parameter comparison in Figs. 3.19

and 3.20) and the apparent emergence of complex, frustrated supramolecular structures

produced by the model (5.5), presented in Fig. 5.6 in Chapter 5, which bear resemblance

to the purported twist-bend nematic phase and blue phases.

111
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Out of the vast number of possible cases we have investigated merely a few. Before

moving on to other ones than those considered in the present thesis, further investigation

into the structures produced by the model (5.5), which we begin to explore in Chapter

5, is desirable. Other cases of great interest have been omitted here, which includes

prominently the case of ε > 0, λ > 0, τ > 0 and h > 0 in (2.11) (other parameters

being equal to zero), in which the external field is expected to induce chirality in the

nematic tetrahedratic (NT ) phase. Furthermore, if one additionally considers κ > 0, if

field-induced chirality is indeed found, a possibility of field-triggered modulated structures

opens, which clearly deserves attention for practical purposes.
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