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Preface

Since the discovery of U Gem in the middle of 19th century the outbursts of dwarf novae attracted

attention of astronomers. The origin of these eruptions of amplitudes up to ∼ 5 mag showing up

with various recurrence times (from 1 day to even 33 years) remained a puzzle until the beginning

of the eighties when the theory explaining them begun to crystallize and was eventually formulated

by Meyer and Meyer-Hofmeister (1981); Smak (1982, 1984); Cannizzo et al. (1982); Faulkner et al.

(1983); Mineshige and Osaki (1983).

The model proposed (the Disc Instability Model, DIM) describes outbursts in close binary systems

as the result of thermal-viscous instability in accretion disc surrounding the more massive among the

two stars of the close binary. In the case of dwarf novae this more massive star is a white dwarf.

During the time between the outbursts the disc gradually accumulates the matter which is transferred

to it from the second, low-mass component of the binary. The instability sets in when at some point

in the disc the density and temperature become so high that the dominant chemical element of the

disc matter becomes partially ionized and the opacities dependence on temperature changes rapidly.

This leads to the formation of the steep gradients of temperature and surface density which start to

propagate through the disc, rising its luminosity. One observes this as the beginning of an outburst.

Since the star which transfers the matter is a late-type main-sequence star the discs in dwarf novae

consist mainly of hydrogen and the instability develops at the temperature of hydrogen ionization.

However, the mechanism leading to the instability should be universal with respect to the chemical

composition of the disc what we con�rm in this work.

There is a group of close binaries which is a perfect testbed for the model of outbursts - the

AM CVn stars. This class of stars is very peculiar: they have helium-dominated spectra in which

no hydrogen lines are detected and their extremely short orbital periods span the range from ∼ 5.4

to 65.1 minutes. The light curves of outbursting AM CVn stars are very complex. Not only they

combine the characteristic features of di�erent kinds of dwarf novae (SU UMa, ER UMa, Z Cam and

WZ Sge-type systems) but also show a variety of properties never observed in their hydrogen-rich

cousins.

Up to now there are only a few papers considering the AM CVn stars from the theoretical point

of view (Tsugawa and Osaki (1997a); Lasota et al. (2008); Cannizzo (1984); Smak (1983)) and in

our opinion this subject desires more detailed treatment. Most of the literature is devoted to the

investigations of the in�uence of helium on the local thermal equilibrium in the disc and its consequence
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for stability limits of the disc and, as far as we know, there has been only one attempt of modeling

the AM CVn light curves (Tsugawa and Osaki (1997b)).

We also investigate the in�uence of helium on the local thermal equilibrium of the disc which

connected with opacities and ionization temperatures and we test how the conditions in the helium-

dominated disc impact the viscous-thermal instability. We compare the results with those for the

hydrogen-dominated discs. But additionally we complement these information with the detailed anal-

ysis how the atomic structure of helium manifests itself in the structure and properties of the fronts

propagating in a helium disc. The big part of our work considers the modeling of the AM CVn light

curves within the framework of the Disc Instability Model supplemented by additional components

which are: the additional sources of the disc heating (hot spot and the primary white dwarf), the

primary white dwarf's magnetic �eld and the enhanced mass transfer rate. We use our results to

explain at least some of the features seen in the outburst pattern of helium-rich compact binaries.

The physical mechanisms driving angular momentum transport in accretion discs rise more ques-

tions than there are reliable answers. Despite the big uncertainties regarding its description in the

terms of the basic physics, the modeling of accretion disc behavior is still possible owing to the

Shakura-Sunyaev prescription (Shakura and Sunyaev, 1973). It assumes that the �viscosity� in the

disc is turbulent in origin and that it can be parametrized with α which takes the values between

0 and 1. The simulations of dwarf nova outbursts have shown that α should have di�erent value

in outburst (αh) and in quiescence (αc) (Smak, 1984) in order to reproduce outbursts of amplitudes

corresponding to observations. Moreover, from the comparison between models and observations it

can be deduced that the value of αh should be 0.1− 0.2 (Smak, 1999).

Nowadays the best candidate to explain the origin of the turbulence in accretion discs is the

model of the Magneto-Rotational Instability (MRI). But one of the most serious problems of this

mechanisms is that the numerical simulations of MRI predict the values of the stress-to-pressure ratio

(the α �viscosity� parameter) in hot accretion discs (above the temperature of the dominant chemical

element ionization) an order of magnitude lower than those deduced from observations of outbursting

discs (αh ∼ 0.01).

This discrepancy between values of αh obtained from MRI simulations and deduced from observa-

tions and models of dwarf nova outbursts is a serious problem for theory which intends to explain the

angular momentum transport in the disc. There are also not many attempts to evaluate α empirically

and to our knowledge the main work considering this subject has been done by Smak (1999).

We therefore repeat the reasoning of Smak (1999) but with new set of data consisting not only from

dwarf novae but also supplemented with one AM CVn star what give a hint about the dependence

of the results on the chemical composition of the disc. We also use di�erent code for numerical

simulations. Additionally we derive semi-analytically the decay time of an outburst (which depends

on αh) and check which α value would give the time corresponding to decay time measured in dwarf

nova and AM CVn star outbursts.

We consider also the Kukarkin-Parenago relation which is the empirical relation between outburst

amplitudes and recurrence times in dwarf novae. Motivated by the fact that such a relation should
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result also from the model which describes the outbursts in those systems we �nd that it is possible

to derive a similar relation from the DIM. We show that it applies also to helium discs what is an

additional argument in favor of universality of DIM with respect of chemical properties of the disc. As

αh is an explicit parameter in the derived relation it supplements us with another tool for veri�cation

of αh both in hydrogen-rich and helium-dominated discs.

This thesis is organized as follows: in Chapter 1 we introduce brie�y the history of discovery of

close binary systems and their classi�cation. We also describe the paths of their evolution which lead

to the formation of dwarf novae and AM CVn stars. Chapter 2 is devoted to description of the Disc

Instability Model. We introduce and explain the equations describing the vertical structure of the disc

and its time evolution and the consequences of their solutions - the so called S-curves and the behavior

of the disc during one outburst cycle. In the last section of this chapter we analyze the impact of

helium on the properties of the DIM. The numerical methods and the description of the scheme of

operation of the Fortran code used for simulations of the thermal-viscous instability in hydrogen- and

helium-rich discs are presented in Chapter 3. Chapter 4 presents our results considering modeling of

the AM CVn star light curves and it is based on our paper which is in press (Kotko et al., 2012).

The results regarding the value of α in hot accretion discs are described in Chapter 5. This chapter

is based on our second paper which has been recommended for publication, however has not been yet

formally accepted. The conclusions are given in Chapter 6 and additional expressions for the critical

values in accretion discs of various chemical compositions are listed in Appendix.
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Chapter 1

Introduction

1.1 History of Cataclysmic Variables observations

According to the latest investigations (Jetsu et al., 2012) the history of variable binary stars may

have started yet in ancient times when the Egyptians have recorded the period of Algol brightness

changes into the Cairo Calendar. In 17th century John Goodrick, a young British amateur astronomer

(re)discovered the variability of Algol and suggested that it is caused by the body passing in front of

the companion star making it the �rst ever observed eclipsing binary system.

There are mentions of nearly 100 suddenly occurring �novae stelle� (novae and supernovae) visible

with naked-eye in the dynastic chronicles of Far East empires between 200 B.C. and 1600 A.D. .

Meanwhile astronomers in Western Europe had to await for the observations of supernovae by Tycho

Brahe in 1572 and Johannes Kepler in 1604, and the outburst of P Cygni (which is nowadays known

to be a Luminous Blue Variable star) by Willem Blaue in 1600 to realize that stars are not immutable

and still but that their nature can be violent and eruptive. The �rst star (in Europe) con�rmed

strictly as nova was Nova Vulpecula (CK Vul) discovered by Père Dom Anthelme, a Carthusian monk

in Dijon, in 1670. This was a beginning of the discoveries of stars which at present are generally

classi�ed as Cataclysmic Variable Stars (hereafter CVs).

In December 1855 John Russell Hind observed a star which suddenly brightened by about 4

magnitudes. This blue variable star, named U Geminorum, faded away after about 9 days and three

months later brightened again. This clearly showed that U Gem is not an ordinary nova but a member

of a new class of CVs - the Dwarf Novae (hereafter DN).

1.2 Classi�cation of close binaries

The basic criterion which divides the binaries in general into classes is connected with their geometry.

The geometry of binaries was �rst studied by Edouard Roche. He considered the motion of a test

particle in the gravitational �eld of two stars orbiting each other on a circular orbit. The circular
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14 CHAPTER 1. INTRODUCTION

orbit approximation is relevant in many cases because the tidal forces tend to circularize the initially

eccentric orbits on a time scale which is short comparing to the time scale over which the mass transfer

between stars sets in.

The binary orbital separation a is de�ned through the III Kepler law by the binary orbital period

Porb and masses M1, M2 of the components:

4π2a3 = G(M1 +M2)P 2
orb (1.1)

where G is the gravitational constant.

In what follows we always de�ne M1 as the mass of the primary (considering the binary in the

�nal stage of its evolution) and M2 as the mass of its companion.

The gravitational potential ΦR(~r) generated by above described con�guration of two stars is known

as the Roche potential. Assuming that the binary system rotates with respect to the observer with

the angular velocity ~ω and that ~r1, ~r2 are the position vectors of the centers of the stars with respect

to their center of mass, the potential takes the form:

ΦR(~r) = − GM1

|~r − ~r1|
− GM2

|~r − ~r2|
− 1

2
(~ω × ~r)2. (1.2)

There is one special case among all the surfaces of constant ΦR(~r). This special critical equipoti-

ential surface has a �gure-of-eight shape. Its two parts are called the Roche lobes and each of them

surrounds one binary component. The point at which the Roche lobes join is the Lagrangian point L1.

The motion of a gas inside the Roche lobe is dominated by the gravitational �eld of the star to which

this lobe is connected but as the gas approaches the L1 (which is the saddle point) it may eventually

pass through it and �ow into the Roche lobe of the second star (Frank et al., 2002). Therefore, the

form ΦR(~r) and existence of the critical equipotential surface enables transfer of mass between stars

in binaries.

The radius of the Roche lobe of the less massive star is given by the formula found by Eggleton

(1983):
R2

a
=

0.49 q2/3

0.6 q2/3 + ln(1 + q1/3)
(1.3)

where R2is a star radius and q ≡ M2/M1 is the ratio of the considered star mass to the mass of the

second component.

According to the degree at which the stars �ll their Roche lobes the binaries fall into three cate-

gories:

(a) detached binaries - both stars have sizes smaller than their Roche lobes and the mass transfer

between them may occur inly via stellar wind. All binaries are formed as detached binaries.

(b) semi-detached binaries - only one of the stars �lls its Roche lobe and the mass starts to pass

through the L1 point onto the second star.

(c) contact binaries - both stars �ll their Roche lobes. In opposite to the common envelope which is
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the unstable phase of the close binary evolution (see below) the contact binaries form a stable

con�guration lasting billions of years. The examples of the systems belonging to this category

are the contact eclipsing binaries called W UMa.

The term close binary refers to the semi-detached binaries in which a low-mass companion star

transfers the mass onto the compact object - white dwarf (in short WD), neutron star (in short

NS) or stellar-mass black hole (in short BH). For this reason the compact object is also called accretor

or primary while the star from which the mass is transferred is called donor or secondary.

Close binary stars with white dwarfs accreting matter from donors �lling their Roche lobe are called

the Cataclysmic Variables (CVs) while those with neutron stars or black holes are X-ray binaries.

With respect to the character of the light curves one can distinguish di�erent types of CVs:

1. Novae

They show very large eruptions (up to 12 mag) which are caused by the thermonuclear explosions

of hydrogen1 on the surface of white dwarf when the temperature of accreted material crosses

reaches the ignition temperature and unstable hydrogen burning set in. The classical novae

erupt only once during their observational history while recurrent novae repeat the outburst at

least one more time.

2. Dwarf Novae

Their outbursts are of lower amplitude than those in novae and occur much more often. But

the crucial di�erence is that the DN outbursts are the result of the thermal-viscous instability

in accretion disc (see Chap. 2). DN can be further divided into three subgroups depending on

the characteristic features observed in their light curves :

(a) U Gem-type

They show only normal outbursts which show up in a quasi-periodic way. The normal

outbursts have amplitudes from 2 to 5 mag and their recurrence times may be as short as

few days. Usually they appear every several tens of days.

With respect to their duration times normal outbursts may be divided into narrow and

wide. The distinction between them follows from the observational comparisons not from

the strict de�nition but one can adopt that the narrow are these which last ∼ 1 − 5 days

while wide ones are longer, up to ∼ 20 days.

Most of the observed U Gem-type stars have orbital periods above the period gap, i.e.

Porb > 3 hr (see Sect.1.3).

(b) SU UMa-type

All SU UMa stars have orbital periods below ∼ 2 hr (below the period gap). Their light

curves consist of normal outbursts and superoutbursts. Superoutbursts are the eruptions

which are usually brighter by ∼ 0.5− 1 mag than normal outbursts and last 5 − 10 times

1There are also known cases of helium novae, e.g. V445 Pup.
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longer (Warner, 1995). The characteristic feature of superoutbursts, which does not ap-

pear during normal outbursts, are the low-amplitude short-period light variations called

superhumps.

Among SU UMa-type dwarf novae there can be singled out two groups of stars which di�er

by the supercycle duration (the supercycle is the time which passes from the onset of one

superoutburst to the onset of the next superoutburst):

(i) ER UMa

They are the SU UMa stars which supercycles are very short (e.g. ∼ 43 days for ER

UMa itself, ∼ 32 days for DI UMa or even ∼ 19 days in the case of RZ LMi). Between

superoutbursts several normal outbursts usually appear.

(ii) WZ Sge-type

Their orbital periods Porb are near the orbital period minimum for DN (∼ 80 min) and their

superoutbursts (and outbursts in general) are very rare: the recurrence times may reach

even ∼ 30 yr (like in the case of WZ Sge itself). The interesting feature of WZ Sge- type

star light curves is the appearance of the so called cycling state during the superoutburst

decline: after the �rst phase of brightness decay from superoutburst maximum the system,

instead of fading to the minimum luminosity, brightens again to the level ∼ 2 mag below

the maximum and starts to outburst on the short time scale (∼ 1 day) with amplitude up

to ∼ 1 mag. This phase may be as long as superoutburst itself and when it ends the system

falls back to the minimum light.

(c) Z Cam-type

Z Cam stars are DN with very high mass transfer rates which are close to their critical

values (see Sect. 2). In their light curves there are periods of elevated brightness which is

lower by ∼ 1 mag from the normal outburst maximum. Those periods may last for months

or even years and are called standstills. After the standstill Z Cam-type systems returns to

its low luminosity state.

3. AM CVn stars

AM CVn stars are the binaries with ultra-short orbital periods (∼ 5.4−65 min) and with spectra

which do not show any hydrogen lines. They are also called the helium dwarf novae because the

mechanism of their outbursts is believed to be the same as in the case of DN. Their light curves

are very complex and combine features of all dwarf nova classes. The detailed description of

AM CVn stars is given in Chap. 4.

With regard to the strength of accretor magnetic �eld, CVs can be divided into:

1. Non-magnetic CVs

These are all systems speci�ed above.
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(A)

(B)

(C)

Figure 1.1: The light curves examples of di�erent types

of dwarf novae: (A) Z Cam - the long period of high bright-

ness is the standstill (data from AVVSO) (B) V344 Lyr in

an example of SU UMa-type DN (from Cannizzo et al.

(2010)), (C) WZ Sge - the long superoutburst is followed

by the dip and the cycling state after which the system

fades (from Ishioka et al. (2002)).

2. Polars (the magnetic CVs)

In these systems the magnetic �eld of primary is strong enough to prevent the formation of

accretion disc and accretion stream falls onto the white dwarf following the lines of its magnetic

�eld (e.g. AM Her).

3. Intermediate polars

The strength of their magnetic �elds allows the formation of the narrow accretion disc farther

away from the primary but as the distance to the WD decreases the accretion disc is truncated

(e.q. DQ Her).

1.3 Evolution

The distribution of the orbital periods in CVs is determined by their evolution. The DN have Porb

between 75 min and 8 hr (Ritter, 2008) with the famous period gap between 2 and 3 hr. At the short

end of the orbital period range (Porb ∼ 8− 65 min) are the AM CVn stars.

White dwarfs in binaries form from the stars of initial masses Mi . 10 M� which have not started

the carbon burning in their cores yet. The progenitors of WDs obey the core mass-radius relation,
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which means that the more massive WD is to be formed the more space its progenitor star needs.

This has a consequence for binaries in which the orbital separation a sets the limits for the mass of

WD which can be formed.

The investigations of the Algol system by Gerard Kuiper in 1941 revealed the problem which

became known as the �Algol paradox�. The paradox lied in the fact that the more massive star was

found to be still a main-sequence star of early type, i.e. it appeared to be younger than its less

massive companion classi�ed as Roche-lobe �lling subgiant. From the laws of the stellar evolution it

was known that the more massive is the star the faster it evolves, i.e. the star with higher mass should

be older. The �rst to suggest the solution to this problem was Crawford (1955) who claimed that

the subgiant had been originally more massive but then it lost his mass for the bene�t of its younger

companion.

It appeared that the mass transfer from one component to another in a binary system is a critical

factor for the binary evolution.

1.3.1 General evolution of CVs

The possible scenarios of binary stars origin which are nowadays taken into account consider (i)

the capture mechanism when two initially isolated stars become bound through the two- or three-

body encounter and (ii) the di�erent processes of a rotating gas cloud fragmentation (Tohline, 2002),

however, the formation of such systems is still far from being understood.

Once a binary consisting of two main sequence stars has formed the subsequent evolution depends

on the masses of its components and their mutual distance.

The �rst mass transfer event may take place depending on the evolution phase of the stars and

their orbital separation. There are three cases (Paczy«ski, 1971) :

(A) One of the stars expands on the nuclear time scale determined by hydrogen burning process. It

reaches its Roche lobe if the initial size of the binary is equivalent to the orbital period Pi,orb of

∼ 0.65− 1.5 d.

(B) The star has �nished hydrogen burning and its core rapidly contracts just before the onset of

helium burning. The binary will become semi-detached binary if Pi,orb ≈ 1.5− 87 d.

(C) The similar situation to case (B) will appear just before the onset of the core carbon burning by

one of the stars, for binaries with initial orbital periods > 87 d.

Once the mass transfer sets in it proceeds in two stages. During the �rst stage the mass transfer rate

is very violent and takes place on Kelvin-Helmholtz time-scale tK−H which gives the maximum rate

at which mass can be transferred

Ṁtr,max ≡
M2

tK−H
= 3.2× 10−8 M�/yr

R2L2

M2
(1.4)

where M2, R2, L2 are the mass, radius and luminosity of the donor respectively. This stage is the

same for the onset of mass transfer in all three phases (A-C) of the star's evolution. What happens
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next depends on the phase of the star's evolution at which the mass transfer started and on the masses

of the binary components:

(1) In general the more massive star evolves faster. Therefore considering case (A) (above) the donor

is initially more massive star burning hydrogen which expands and �lls its Roche lobe �rst.

When the rapid mass exchange takes place the mass ratio is inverted. The occurring semi-

detached binary evolves slowly, the donor (which is now less massive) �lls the Roche lobe as a

subgiant which is still burning hydrogen in its core.

(2) If the initial mass of the donor is Mi,2 & 3.0 M� the rapid mass transfer stage ends up with

the helium ignition in its core. The fusion of helium releases the energy which drives the core

expansion. At the same time the rate of hydrogen burning in the layers surrounding the core

decreases and the star's envelope contracts. The size of the star becomes smaller than the size of

its Roche lobe what inhibits the mass transfer. The donor settles near the helium main sequence

track.

(3) If Mi,2 < 3.0 M� then the electron degeneracy pressure will balance the donor core contraction

at some point of the rapid mass transfer phase. The mass exchange rate slows down while the

donor slowly burns hydrogen in the shell at the bottom of its envelope. When the hydrogen

reserve depletes the star radius decreases while it loses its envelope and the white dwarf forms.

This description is valid in the case of conservative mass transfer rate, i.e. when all mass transferred

from the secondary is accreted by the primary. The stable mass transfer from a donor is possible if the

mass ratio q ≡M2/M1 . 1.2 and if the donor is not a star with a convective envelope (Podsiadlowski,

2008).

The CV progenitor has to be a binary which is wide enough to accommodate the WD progenitor,

i.e. the red giant (or supergiant) star of R ∼ 10− 100R�. As the red giant is a star with convective

envelope and q > 1.2 the criteria for stable mass transfer are not satis�ed. In fact the formation of

a system with short orbital period of order of hours from such a wide binary needs high mass and

angular momentum losses from the system. The phase during which it happens is called the common

envelope (CE) phase (Paczynski, 1976).

At the very beginning of the mass transfer from the red giant onto the less massive star both the

orbital separation a and Roche lobes shrink. It follows from the formula (Frank et al., 2002):

ȧ

a
=

2 J̇

J
+

2 (−Ṁ2)

M2

(
1− M2

M1

)
(1.5)

where Ṁ2 < 0 and the total angular momentum of a binary J :

J = M1M2

√
aG

(M1 +M2)
. (1.6)

At the same time the massive donor (a giant or supergiant) tends to expand with response to



20 CHAPTER 1. INTRODUCTION

the mass loss. This leads to the unstable mass transfer phase during which the huge amount of

gas passing through L1 can not be incorporated by the accretor and instead it starts to piles up

and expand. Eventually the matter excess over�lls the accretor Roche lobe and forms the common

envelope around the accretor and the core of the donor. At this point the degenerate core of the giant

star and the low-mass star do not �ll their Roche lobes. It is supposed that the evolution of the core

and the star inside the envelope is driven by the dynamical friction drag and leads to the gradual

shrinkage of the components orbit (Postnov and Yungelson, 2006). Finally the CE is ejected leaving

behind the detached MS-WD binary - the pre-CV system. The subsequent evolution is determined

by a rate at which the angular momentum is being lost from the system and by the evolution of a

low-mass component.

When enough angular momentum is lost from the system and/or low mass star has evolves to the

stage at which it �lls its Roche lobe, the binary components enter into the contact again forming a

cataclysmic variable star.

There are two mechanisms which can be responsible for angular momentum loss (hereafter AML)

from the binary: gravitational radiation (GR) and magnetic stellar wind (MSW) (i.e. Magnetic

Braking (MB)).

In general the AML by GR acts in every binary and sets the minimum rate at which the binary

angular momentum J is drained. The rate at which J is removed from the system by GR, under the

assumption that binary orbit is circular, is given by Landau and Lifshitz (1975)(
J̇

J

)
GR

= −32

5

G3

c5
M1M2(M1 +M2)

a4
(1.7)

However, CVs with orbital periods above ∼ 3 hr have much higher AML rates than predicted from

GR theory and the additional mechanism for AML is needed. The widely accepted candidate is the

magnetic stellar wind.

The magnetic braking is believed to be e�ective mechanism of AML for the stars with masses

M = 0.3− 1.5 M� (dwarfs of G-M type) (Postnov and Yungelson, 2006) which all posses weak stellar

winds. Above and below this limits the dynamo mechanism which drives the magnetic activity is

suppressed: when M > 1.5 M� the convective zone in the star disappears and for M < 0.3 M� the

star becomes fully convective.

When the stellar wind is highly ionized it is forced by the magnetic �eld of the star to co-rotate

with it up to the Alfvén radius. The torque which the corotating wind exerts spins the star down. At

the same time the tidal forces tend to keep the synchronization between the binary orbit and the spin

of the Roche-lobe �lling donor. Thus the result of the magnetic wind is the extraction of the angular

momentum from the system as a whole.

The change of J due to magnetic braking describes the formula (Postnov and Yungelson, 2006)(
J̇

J

)
MSW

∼ −R
4
2

M1

G(M1 +M2)

a5
. (1.8)
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The characteristic time scale for angular momentum removal due to GR is τGR ≡
(
J̇/J

)−1

GR

∝ a4,

and the same time scale in the case of MB is τMSW ∝ a (because the radius R2 of the donor �lling

its Roche lobe should be proportional to a). The comparison between τGR and τMSW shows that

angular momentum loss by gravitational radiation will be dominant for binaries with short Porb while

for binaries of larger sizes the magnetic braking will dominate. However, one should keep in mind

that the prescription for MB is still the matter of debate.

The gap in the period distribution of the observed CVs which appears between Porb = 2 hr and

Porb = 3 hr is supposed to be connected with the MB mechanism and the evolution of a donor.

According to this the donor in a binary at 3 hr becomes fully convective. The stellar wind in such a

star is strongly reduced and the e�ciency of MB sharply decreases and so does the mass loss rate.

As the secondary shrinks it disconnects from its Roche lobe, the system becomes the detached binary

and evolves to shorter Porb through the angular momentum loss driven by the gravitational radiation.

Near Porb ∼ 2 hr the extend of the Roche lobe approaches the size of the donor and the mass transfer

is restored.

There is a minimum value of orbital period for CVs Porb,min ∼ 80 min connected with the evolution

of the donor and loss of angular momentum from the binary through the gravitational radiation.

1.3.2 The possible evolution channels of AM CVn stars

One of the possible outcome of the CVs evolutionary tracks are AM CVn stars. They may form if in

the course of the CV evolution the second CE event appears. After this second CE phase the binary

keeps loosing its angular momentum, the low-mass secondary (most probably helium white dwarf)

�lls its Roche-lobe and the AM CVn star is born.

From the spectroscopic observations of AM CVn stars it is clear that the donor has to be helium-

rich. The possibility that the donor is a zero-age helium star of mass 0.4− 0.5 M� can be discarded

because otherwise the observed AM CVn star spectra would be dominated by its contribution while

this is not observed. The second candidate for a donor in the considered binaries is a low-mass

(. 0.3 M�) helium white dwarf (He-WD) (Nelemans et al., 2010). He-WD can not be more massive

as the system has to ful�ll the criterion q ≡M2/M1 < 0.2 to avoid the unstable mass transfer leading

to the coalescence of the binary components.

He-WD is created when the star of initial mass Mi . 2.2 M� has lost the hydrogen-rich envelope

before it reaches the stage of He-�ash. The formation of He-WD is possible only due to the mass

transfer rate between the components in close binaries because the mass loss through the stellar wind

by a single star on the �rst giant branch is not strong enough to lead to the complete loss of the star's

envelope.

There have been proposed three formation channels for AM CVn stars depending on the character

of the donor progenitor (Nelemans et al., 2010).
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1.3.2.1 The WD channel.

In this evolution channel the AM CVn star forms from the initially detached double white dwarf binary

of relatively short orbital period. The orbital separation between the low-mass He-WD secondary and

more massive CO-WD primary decreases as the angular momentum is taken away from the system

by gravitational radiation.

Within the lifetime of the Galactic disc the He-WD and the CO-WD are brought into the contact

and the Roche lobe over�ow from the lower mass He-WD starts. This moment is the origin of AM CVn

star under the condition that the mass transfer from the donor is stable. This condition depends on the

mass ratio q and the mass-radius relation of the donor which implicitly incorporates the information

about donor temperature and chemical composition (Paczy«ski, 1969)

q ≡ M2

M1
<

5

6
+
ζ(M2)

2
(1.9)

where ζ(M2) ≡ d ln R2/d ln M2 is the mass-radius index.

If one adopts the mass-radius relation for degenerated stars in the form R ∼ M−1/3 than the

criterion for the stability of the mass transfer becomes: q ≤ 2/3.

From theoretical considerations of the evolution through the WD channel it seems that none of

the AM CVn stars has an accretion disc formed at the beginning of its existence. It can happen only

after ∼ 107 years when the mass of the donor becomes lower than ∼ 0.05 M� and the binary orbit

extends enough that the primary Roche lobe can incorporate the disc (Nelemans et al., 2001).

1.3.2.2 The helium star channel.

Another possibility is that the donor transferring mass onto the WD primary evolves from the low-mass

(∼ 0.4−0.6 M�) burning core helium star. The progenitor of such helium star is the 2.3−5.0 M� mass

star which undergoes the mass transfer. Such a star and WD are at �rst in detached binary. If the

initial Pi,orb is short enough the components will approach each other due to gravitational radiation

before the time when helium in the donor star core will be exhausted. The mass transfer which will

appear as a consequence of this process will be stable if q < 1.2 (Nelemans et al., 2001). The helium

burning stops when the donor mass falls below 0.2 M� and the helium star becomes semi-degenerate.

So far positive exponent in the M −R relation for donor changes the sign and Porb starts to increase

with the further mass loss from the donor. The orbital period has a minimum value around ∼ 10 min

which is determined by the changes in the structure of the transferring mass star. In several Gyr the

donor mass falls down to 0.01 M� and Porb of the binary approaches ∼ 1 hr.

In this channel the accretion disc forms always because the orbit is su�ciently wide at the onset

of the mass transfer.
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1.3.2.3 The evolved main-sequence star channel.

It is possible that after the �rst CE event the binary is too large to undergo the second CE event in

reasonable time. In this case the progenitor of AM CVn star may be the CV with an evolved main-

sequence star donor (M ∼ 1.0 M�) which �lls its Roche-lobe just at the end of the hydrogen-burning

phase of its evolution (Podsiadlowski et al., 2003). During mass transfer the donor eventually unveils

its helium-dominated core and the subsequent evolution is similar to the evolution in the helium-star

channel.

The evolution through the WD channel and through the He-star channel follows roughly by the

same path after the He-star becomes degenerated. The MS-star channel may be still distinguished

from the other two until the binary reaches the orbital period minimum because the donor envelope

should contain observable amounts of hydrogen. After Porb minimum, however, all three channels of

AM CVn stars evolution are hard to separate.
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Chapter 2

Disc instability model

In this chapter we present the basic version of the Disc Instability Model. We start with the brief

description of accretion disc formation where we introduce the quantities de�ning the disc and the

basic problem of angular momentum transport. Next we outline the disc structure and evolution

equations and their consequences for local and global behavior of the disc . The last part of this

chapter accounts for the detailed characteristics of helium in�uence on the properties of accretion

discs.

2.1 The formation of accretion discs

In the semi-detached binaries in which the Roche-lobe over�ow takes place the gas �owing through

the L1 point has non-zero speci�c angular momentum with respect to the accretor which we denote

as j2. The continuous stream entering the primary potential follows an elliptical orbit around the

accretor and after the �rst circuit it starts to intersect itself. Due to the strong dissipation of the

energy at the point of intersection (e.g. via collisions and shocks) the gas settles on a Keplerian orbit,

i.e. the orbit of minimum energy for a given angular momentum and forms a ring of matter around

the primary. The radius of such an orbit for angular momentum j2 is called the circularization radius

Rcirc (Frank et al., 2002)

Rcirc = a(1 + q)(0.500− 0.227 log q)4 (2.1)

where a is the binary separation and q ≡M2/M1.

The dissipation processes inside the ring (collectively called �viscosity�) force the gas to lose its

energy. The cooling mechanisms in the gas are assumed to be e�cient enough that the dissipated

energy in the ring is radiated away on the time scale much shorter then the time scale on which the

gas angular momentum jK decreases (here we denote by jK the angular momentum corresponding to

the given Keplerian orbit). In result the gas gets rid of as much energy as possible at an orbit of a

given jK.

25
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The angular velocity ΩK and the angular momentum jK of a Keplerian orbit are

ΩK =

√
GM1

R3
(2.2)

jK =
√
GM1R (2.3)

where R is the distance from the accretor of mass M1, and G is the gravitational constant.

As the process of energy dissipation continues the gas energy drops and at some point the gravita-

tional prevails pulling the gas in. The gas has to lose its angular momentum to follow deeper into the

accretor potential and settles on the Keplerian orbit of smaller radius until the energy drain forces it

to move closer to the central object. Because of the viscous processes the matter transferred from the

secondary spirals inwards the primary Roche lobe through the set of Keplerian orbits. In the absence

of the mechanisms which may truncate the disc (magnetic �eld of the primary or strong irradiation

by the primary) the inner disc radius is taken on the surface of the white dwarf Rin = R1.

Because of the conservation laws the angular momentum which is lost by the gas has to be passed

to some portion of matter which in consequence will be pushed to the orbits of larger radii. This

causes the outer parts of the disc to extend over Rcirc up to the point at which the tidal force between

the disc and the secondary removes all the angular momentum from the disc outer edge and feeds it

back to the orbital motion of the binary (Lin and Papaloizou, 1979).

The mechanism by which the gas loses its angular momentum, or in other words: by which its

angular momentum is transported outwards, remains the outstanding question of astrophysics.

To gain some information about the viscosity one has to consider the hydrodynamical description

of the accretion �ow.

Between the adjacent annuli of the di�erentially rotating �uid the viscous stresses are generated.

These stresses act in the direction orthogonal to the motion of the gas and in general they are called

the shear viscosity. The shearing torques exist as long as dΩ/dr 6= 0.

The viscosity originating from the interactions between the �uid molecules is far too low to ac-

count for the rate at which the angular momentum is transported in accretion discs. The Reynolds

number Re (which is the ratio of inertia forces to viscous forces in the �uid) calculated in the case of

molecular viscosity in accretion discs is very large (Remol > 1014, Frank et al. (2002)) and it can not

be signi�cantly lowered for any reasonable set of parameters describing the disc.

The laboratory experiments show that there exists the critical value of Re above which in the

stationary stable laminar �ow the turbulence sets in. Considering the order of magnitude of Re

estimated for accretion discs it is believed that the nature of viscosity in the disc is turbulent, however,

its origin remains a matter of debate. Presently the most serious candidate for the source of the

turbulence is the Magneto-Rotational Instability (MRI) arising due to the presence of a weak magnetic

�eld in the disc (see Balbus and Hawley (1998)).

The Disc Instability Model (in short DIM) uses the α-prescription for viscosity introduced by

Shakura and Sunyaev (1973) (SS73) and below we remind its origin.

To describe the accretion �ow in the disc one can use the equations describing motion of the �uid
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in the presence of the turbulence. In this case the tangential stresses in the disc are given by

τRφ = ηR
dΩK

dR
= νρR

dΩK

dR
= −3

2
νρΩK (2.4)

where R is the radius, η and ν are the dynamical and kinematic viscosity coe�cients respectively and

ρ is the �uid density.

According to Shakura and Sunyaev the tangential stresses in the disc are connected both to the

turbulence of the velocity vt and the magnetic �eld B present in the matter transferred from the

secondary (Shakura and Sunyaev, 1973)

−τRφ ∼ ρ c2s
(

vt
cs

)
+ ρ c2s

(
B2

4πµ2
mag ρ c

2
s

)
= αρ c2s (2.5)

where cs is the speed of sound and µmag is the permeability.

The crucial assumption of SS73 is that the e�ciency of the angular momentum transport for

both mechanisms can be parametrized by only one parameter α. For the turbulent mechanism α < 1

because otherwise the supersonic turbulence would lead to rapid heating of the plasma and to decrease

of α below unity anyway. Also in the case of magnetic transport the energy of magnetic �eld is likely

to be smaller than the thermal energy of matter and so α < 1 is a good approximation.

Since cs =
√
P/ρ the equation (2.5) can be written in terms of total pressure P

τRφ = −αP (2.6)

The total pressure P is the sum of the gas and radiation pressures

P =
ρ kBTc

µmH
+

4σ

3c
T 4

c (2.7)

where kB is the Boltzmann constant, µ is the mean molecular molecular weight and mH is the atomic

mass of hydrogen.

From Eq.(2.4) and (2.6) one can calculate the kinematic viscosity coe�cient ν in the case of

α-parametrization:

αP =
3

2
νρΩK ⇒ ν =

2

3
α
c2s
ΩK

(2.8)

The familiar form of ν widely used in literature is

ν =
2

3
α csH (2.9)

where H is the pressure height scale of the disc: H = cs/ΩK.

If instead of pressure height scale one uses the height of the disc h, de�ned for example as the

distance from the disc mid-plane to the point at which the disc becomes optically thin, than α1 used

in equation ν = 2/3α1csh will not have the same meaning as α de�ned by SS73. In this work only α
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determined by pressure height scale is used.

The parametrization of the viscosity in the disc with α enables to investigate the disc structure,

evolution and emission properties without really knowing the exact description of the physical pro-

cesses standing behind the angular momentum transport in the disc.

The α-prescription gives the formula for viscosity which has to be known if one wants to solve the

equations describing accretion discs.

2.2 The disc vertical structure equations

The very important assumption is that the cooling processes are e�cient enough relative to the

rate of energy dissipation in the disc that the radial pressure gradients are negligibly small and the

viscously dissipated energy is radiated away locally. This is the necessary condition for the thin disc

approximation to hold.

The thin disc approximation states that the height scale of the disc is much smaller than its

radius (H/R� 1) and that the angular velocity of the gas is highly supersonic. This approximation

extremely simpli�es the numerical investigations of accretion discs because it allows to decouple the

vertical structure equations from the time evolution equations and consider them separately.

In the case of thin disc the vertical gravitational acceleration due to self-gravity of the disc may

approximated by the gravitational acceleration produced by the in�nite plane gdisc = −2πΣG while

the vertical component of gravitational acceleration due to primary is gz ≈ −GM1H/R
3. Therefore,

the criterion for non self-gravitating disc is

Σ� M1H

R3
(2.10)

or expressing Eq.(2.10) it in the disc mass

Mdisc

M1
� H

R
(2.11)

For typical parameters of the discs in cataclysmic variables this always holds: Mdisc/M1 ∼ 10−11−
10−8 and H/R ∼ 10−3−10−4. As long as self-gravity of the disc can be neglected the only component

of the gravitational force comes from the primary.

Since the gas �ow in the thin accretion disc is essentially only plane-parallel the only force to

balance the gravitational in�uence of the primary in the vertical direction is the pressure force and

the disc is assumed to be in hydrostatic equilibrium in each radius R which for Keplerian disc can be

written as

dP

dz
≈ −ρΩ2

Kz (2.12)

where z is the distance from the disc mid-plane.



2.2. THE DISC VERTICAL STRUCTURE EQUATIONS 29

The Eq. (2.12) results from the consideration of the z-component of Eq. (2.27) (see below Sect.

2.3).

The surface density ς at any distance z from the central disc plane z = 0 is de�ned as the density

of the gas ρ integrated between −z and +z

dς

dz
= 2ρ. (2.13)

At the disc mid-plane ς = 0, while at the disc photosphere ς = Σ.

To investigate the vertical energy transport one has to determine the temperature gradient

d lnT

d lnP
= ∇ (2.14)

which can be either radiative ∇rad or convective ∇conv depending on the energy transport mechanism

which dominates in the disc. The decisive role plays here the Schwarzschild criterion which states

that the medium is stable against convection if the radiative gradient is sub-adiabatic: ∇ad > ∇rad.

In the disc region where this condition holds the energy is transported radiatively from the mid-plane

to the disc surface.

The radiative energy transport can be treated as the di�usion process as long as the mean free

path of photons is much smaller than the characteristic length (here it is the disc height scale) over

which the energy is transported. This is true for optically thick discs we consider (Sect.2.4) so we can

write the energy �ux

Fz = −D∇U (2.15)

with the di�usion coe�cient de�ned as

D =
1

3
c

1

κRρ
(2.16)

where c is the speed of light and the mean free path has been substituted by the mean Rosseland

opacity κR and density ρ.

Substituting to Eq.(2.15) the density of radiation energy U = aT 4 (a is the radiation-density

constant) and neglecting the radial and azimuthal components one obtains

Fz = −16σ T 3

3κR ρ

∂T

∂z
(2.17)

where σ ≡ ac/4 is the Stefan-Boltzmann constant.

The form of radiative temperature gradient results from Eqs.(2.7), (2.12), (2.14) and (2.17):

∇rad =
PκR Fz

4Pradc gz
. (2.18)

The convection sets in whenever the radiative gradient becomes superadiabatic: ∇rad > ∇ad.

There are two e�ects which lead to the violation of the Schwarzschild criterion. The �rst one is the

increase of ∇rad with the increase of the opacity: (i) H− ion opacity in the case of a cool disc and

(ii) bound-free opacity when the increase of temperature and density leads to the onset of disc matter
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ionization.

The second one is the decrease of ∇ad in the region where the partial ionization of the matter

takes place. The speci�c heat CV in this region becomes large (∇ad = 1−CV /CP ) because the energy
supplied to this region rises the degree of ionization of the gas and does not a�ect signi�cantly its

temperature until the major part of the gas becomes ionized.

If we consider the element of the �uid which has the temperature excess δT over its surrounding

and moves upwards with the velocity v and maintains the pressure balance with its surroundings then

the local convective �ux may be written as

Fconv = ρvcPδT (2.19)

where cP is the speci�c heat under the constant pressure and δT .

This element will move until it expands so much that it will �nally dissolve and mix with the

surroundings. The distance it travels to this point is called the mixing length `ml. If one sets certain

height z and considers the elements which pass through the surface parallel to the disc mid-plane

at height z they will have di�erent temperatures δT and velocities v as di�erent elements start to

move at di�erent points, not necessarily at z = 0. Lets assume that random element has traveled

the distance `ml/2 when it passes the surface z. One can de�ne the temperature di�erence δT/T and

the density di�erence δρ/ρ between element and the surroundings Assuming that half of the work

done by the buyoncy force acting on the �uid element goes into its kinetic energy and half goes into

the surroundings then the average velocity of the element which passes the surface at height z is

(Kippenhahn and Weigert, 1990)

v2
e = gz

`2ml

8H

(
∂ρ

∂T

)
P

(∇−∇e) (2.20)

where ∇e ≡
(
d lnT
d lnP

)
e
is de�ned for an element of a �uid.

Putting Eq.(2.20) and the expression for δT/T

δT

T
=

1

T

∂(δT )

∂z

`ml

2
=

1

H
(∇−∇e)

`ml

2
(2.21)

into Eq.(2.19) one obtains the formula for average convective �ux (Kippenhahn and Weigert, 1990)

F conv = ρ cPT

√
gz

(
∂ρ

∂T

)
P

`2ml

4
√

2

(
∇−∇e

H

)3/2

(2.22)

which is used to �nd the convective temperature gradient ∇conv calculated in the mixing length

approximation following Paczy«ski (1969).

To complete the equations of the local structure of the disc one has to determine the vertical

energy �ux Fz and �nd the relation between Tc and Teff . In general case the vertical energy �ux Fz

generated locally by the viscous dissipation should be complemented by the �ux Ft resulting from the
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heating/cooling followed by the expansion/contraction of the disc

dFz

dz
=

3

2
αΩKP +

dFt

dz
. (2.23)

The exact form of the term dFt/dz is unknown but it can be assumed to be proportional to pressure

P and crudely approximate by dFt/dz ≈ 3/2αt ΩKP (Smak, 1984):

dFz

dz
=

3

2
(α+ αt)ΩKP =

3

2
αeff ΩKP (2.24)

where αeff may be considered as parameter which describes certain �e�ective� viscosity.

With Eq.(2.24) one can obtain Teff at any R in the disc assuming that the disc is in thermal

equilibrium de�ned by αeff . This �e�ective� equilibrium di�ers from the thermal equilibrium resulting

only from the viscous dissipation term. The di�erence α − αeff determines how far from the viscous

thermal equilibrium is the disc annulus described by the given solution (Σ and Teff) of Eq.(2.24).

The boundary conditions which close the set of vertical structure equations assume that (i) at the

disc mid-plane (z = 0) the vertical energy �ux vanishes (Fz = 0) and the temperature is equal to

the disc central temperature (T = Tc), (ii) the energy �ux at the photosphere de�nes the e�ective

temperature of the disc: Fz(τ = 2/3) = σT 4
eff where the photosphere is assumed to start at the point

where the optical depth τ becomes equal to 2/3.

2.3 Time evolution equations

Once the vertical structure of the disc is determined one can solve the disc evolution equations.

The time evolution of an accretion disc is described by the equations of viscous �uid dynamics:

the continuity equation and the Navier-Stokes equations. In this context the most suitable is to write

those equations using the cylindrical coordinate system with the origin placed on the primary white

dwarf. Since the disc is to a good approximation axisymmetric the mass conservation equation takes

the form
∂Σ

∂t
+

1

R

∂

∂R
(RΣ vR) = 0 (2.25)

where vR is the radial velocity of the inwardly di�using matter.

The Eq. (2.25) is vertically averaged according to the thin disc approximation and so the density

ρ is replaced here by the surface densityΣ. In the case of the semi-detached binaries one has to take

into account in Eq. (2.25) the additional mass �ux �owing through each element of the disc (Smak,

1984; Lasota, 2001):

∂Σ

∂t
+

1

R

∂

∂R
(RΣ vR) =

1

2πR

∂Ṁext

∂R
(2.26)

where Ṁext is the rate at which the mass is fed into the outer edge of the disc from the secondary.

The velocity vR is de�ned by the �uid equations of motion which are the Navier-Stokes equations

if the viscosity is taken into account. Their general form (in the presence of gravitational potential)
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integrated over z-direction is

Σ

(
∂−→v
∂t

+ (−→v∇)−→v
)

= −∇P +∇WRφ − Σ∇Φ (2.27)

where P is the total pressure, Φ is the gravitational potential and W is the vertically integrated stress

tensor

WRφ = νΣR
dΩ

dR
(2.28)

Considering only the azimuthal component of Eq.(2.27) and using Eq.(2.25) one arrives to the

angular momentum conservation equation

∂(ΣR vφ)

∂t
+

1

R

∂

∂R
(R vRΣ vφR) =

1

R

∂

∂R
(νΣR3 dΩ

dR
) (2.29)

where R vφ = R2Ω = jK is the Keplerian angular momentum if Ω ≡ ΩK.

The right hand side of Eq.(2.29) is the the torque G(R) exerted by the ring at R + δR on the

neighboring inner radius R. One can derive G(R) from the consideration of chaotic motions of gas

elements in two adjacent disc annuli resulting in the angular momentum transport (Frank et al., 2002)

G(R) = 2πνΣR3 dΩK

dR
= −3πνΣR2ΩK (2.30)

From Eq. (2.29) and (2.30)

∂(ΣjK)

∂t
+

1

R

∂

∂R
(RvRΣjK) =

1

2πR

∂2G

∂R2
(2.31)

In the case of binary where the mass transfer from the secondary takes place Eq.(2.31) has to be

supplemented by the term which describes the amount of angular momentum carried by the matter

�owing through the L1 point and the term which account for the extraction of angular momentum from

the disc due to the tidal interaction between disc and secondary. The complete angular momentum

conservation equation is (Smak, 1984; Lasota, 2001)

∂(ΣjK)

∂t
= − 1

R

∂

∂R
(R vRΣjK) +

1

2πR

∂2G

∂R2
+

j2
2πR

∂Ṁext

∂R
− 1

2πR
Ttid (2.32)

where j2 is the angular momentum of the matter transferred from the secondary and Ttid is the tidal

force acting between the disc and the secondary.

The prescription for the tidal torque was �rst derived by Papaloizou and Pringle (1977). The form

adopted by Smak (1984) for the time evolution equations is

Ttid = CωRνΣ

(
R

a

)5

(2.33)

where ω is the angular velocity of the binary orbital motion and C is the numerical coe�cient de�ning
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the time averaged disc radius.

For small q (appropriate for the close binaries) the tidal torque from the secondary dominates

over the viscously driven disc expansion at some tidal radius Rtid and truncates the disc before it

expands over the primary Roche lobe. Rtid de�nes the outer disc radius Rd and it is assumed that

the maximum radius to which the disc can expand is Rd,max = 0.9Rtid (what seems to be con�rmed

by observations (Harrop-Allin and Warner, 1996)).

The full description of the time evolution of the disc needs another conservation equations: the

energy conservation equation. The total energy produced in the disc (kinetic and internal) has to be

equal to the total energy lost from the disc:

∂

∂t
(Ekin + Ein) +∇[−→v (Ekin + Ein)] + Ltot = 0 (2.34)

where the kinetic energy Ekin = ρv2/2, the total internal energy of the gas Ein = 3P/2ρ and Ltot

is the total energy produced and lost by the disc locally by the viscous heating Q+, cooling Q−,

expansion/contraction QpdV , radial energy transport viscous or radiative J and advective energy

transport Qadv.

To �nd Ltot lets consider the slab of the disc of height dz at distance z above the disc mid-plane.

The net �ux of energy passing through surface z is l(z), the net energy �ux leaving the slab is l + dl

where the surplus energy dl is provided by the processes speci�ed above which we designate as εtot. In

the case when the slab can change its internal energy and exchange the work pdV with the neighboring

slabs one can write:
dQ

dt
= εtot −

∂l

∂z
. (2.35)

The heat added to the slab dQ is given by the �rst law of thermodynamics dQ = du+ pdV . Using

thermodynamical relations and substitute the internal energy du and pdV and rewrite Eq.(2.35)

∂l

∂z
= εtot − CP

∂T

∂t
− P

ρ2

∂ρ

∂t
, (2.36)

where CP is the speci�c heat at the constant pressure.

Integrating Eq.(2.36) over z one arrives to the formula for Ltot which can be incorporated in Eq.

(2.34). After several transformations and with the use of mass and angular momentum conservation

equations Eq.(2.25) and (2.31) the equation for the time evolution of the energy in the disc is

CPΣ
∂Tc

∂t
= 2(Q+ −Q− +

1

2
Qi + J)− Σ

<Tc

µR

∂(R vR)

∂R
− ΣCPvR

∂Tc

∂R
(2.37)

and < is the gas constant.

The term Q+ is the rate at which the energy is produced by viscous dissipation per unit surface

Q+ =
9

8
νΣΩ2

K (2.38)

To achieve the thermal equilibrium in the disc the heating rate has to be balanced by the rate at
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which the energy is transported away due to the cooling mechanisms. The cooling rate is de�ned as

Q− = σT 4
eff where Teff is the e�ective temperature.

The term J represents the radial energy �ux transported either by radiation or by viscous mech-

anisms. However, following the conclusions of Smak (1984) and Ludwig and Meyer (1998) we neglect

the radial energy �ux carried by radiative di�usion but retain the radial energy �ux carried by viscous

processes as it becomes important during the propagation of the heating front (see Sect.2.5). In this

case the assumption that viscosity is given by α-prescription allows to estimate J as (Ludwig and

Meyer, 1998; Hameury et al., 1998):

J =
1

R

∂

∂R

(
3

2
Rν CPΣ

∂Tc

∂R

)
. (2.39)

The additional heating sources like the �hot spot� or the dissipation due to the tidal torque Ttid

are given by the term Qi and are described in separate section (see Sect. 4.5.2).

To solve the di�erential equations (2.26)-(2.37) one has to impose the appropriate boundary con-

ditions.

The description of the way the stream of matter from secondary interacts with the outer edge of

the disc is far from being completed. It is complicated by the fact that the large fraction of the stream

may in fact over�ow the disc edge what seem to be con�rmed by the newest analysis of the eclipses in Z

Cha and OY Car light curves (Smak, 2012). However, for our purposes it is reasonable to assume that

the matter is supplied to the disc in the narrow region such that Ṁext(R) can be de�ned by Diracδ-

function and Σ by the Heaviside Y -function: Ṁext(R) = Ṁtrδ[Ro(t) − R] and Σ = ΣoY [Ro(t) − R],

where Ro and Σo are evaluated at the disc outer edge. Applying this to Eq.(2.26) and (2.32) at Ro
leads to two boundary conditions:

Ṁtr = 2πRΣo(Ṙo − vR,o) (2.40)

Ṁtr

[
1−

(
Rcirc

Ro

)1/2
]

= 3πνΣo (2.41)

It is important to stress that those boundary conditions take into account the variations of the

outer disc radius under the operation of the tidal force from secondary.

It is justi�ed by the observations showing that the disc expands during the dwarf nova outbursts

and contracts while returning to the quiescence (Harrop-Allin and Warner, 1996). The situation

in which Ro is �xed should be considered as unphysical. In addition the consequence of applying

Ro = const. as a boundary condition in numerical calculations of DN outbursts is that one can obtain

only the outbursts which start at the inner edge of the disc. This also is in contradiction with the

observations which show that outbursts start in the outer parts of the disc as well.

As the inner boundary condition it is assumed that the stress vanishes at Rin (Σ → 0). In the

standard case when the mechanisms which lead to the truncation of the inner disc radius (e.g. the

in�uence of the accretor magnetic �eld or evaporation, see Sect.4.5.2.1) are neglected the disc extends
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down to the surface of the white dwarf (Rin = R1 where R1 is the WD radius).

During the outburst phase the thermal equation is dominated by Q+ and Q− while terms with

higher order derivatives in R can be neglected except for the regions of the disc where steep gradients

in Σ and T form. Therefore, one can safely assume ∂Tc/∂R = 0 both at the inner and outer edge.

2.3.1 Time scales

It is important to identify the time scales which characterize the accretion �ow in the disc.

The dynamical time scale, i.e. the time scale at which the gas particle at given R encircles the

primary, is de�ned as:

tdyn ≡
1

ΩK
(2.42)

It may range from fraction of seconds at the inner disc radius around massive white dwarf (e.g

M1 = 1.2 M�) up to tens of minutes at large radii (e.g. ∼ 5.0× 1010 cm) of discs around less massive

primaries (e.g. M1 = 0.6 M�). The dynamical time scale is the shortest time scale which characterizes

the accretion disc.

If the disc was subjected to perturbation in the vertical direction it returns to the hydrostatic

equilibrium on the time scale tz

tz =
H

cs
(2.43)

but since H = cs/ΩK the deviations from hydrostatic equilibrium are smoothed out on the dynamical

time scale tdyn ∼ tz.
The thermal time scale measures how fast the disc recovers its thermal equilibrium after the

dissipation rate has changed. The time it takes is de�ned as the ratio of the heat content per unit

area (enthalpy) Et to the dissipation rate per unit area Q+. For perfect gas:

Et =

ˆ
γP

γ − 1
dz ∼ PH ∼ Σc2s (2.44)

Since Q+ = 9
8νΣΩ2

K the thermal time

tth ∼
c2s
νΩ2

K

∼ 1

αΩK
(2.45)

The thermal time scale is about order of magnitude longer than dynamical time scale in hot

accretion discs (where α ∼ 0.1 − 0.2) and up to 100 times longer in the cold discs (for whichα ∼
0.01− 0.05).

The longest is the time scale which de�nes how much time needs the gas to drift radially over the

distance R under the viscous torques. This is the time scale on which the gas redistributes its angular

momentum in the disc

tvisc ∼
R

vR
∼ R2

ν
. (2.46)
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The viscous time scale is of order of days or even weeks for typical disc parameters.

The expression (2.46) does not hold in the region where the strong Σ gradient is present. In such

regions the viscous time scale is de�ned by the lenghtscale L characterizing the spatial extend of the

rapid Σ changes and the viscous time scale is de�ned as

tvisc,1 ∼
L2

ν
. (2.47)

Eq.(2.47) implies that the strong density gradients (L � R) propagate faster in the disc than the

matter in the disc parts of the smooth density distribution.

The di�erent time scales result in two di�erent types of instabilities: thermal and viscous. If the

thermal balance is perturbed the instability will grow on the thermal time scale, but since tth � tvisc

then the temperature variations at given R will take place at Σ that may be treated as �xed. The

disc maintains also the hydrostatic equilibrium while the thermal instability develops since tth > tz.

The second type of instability is the viscous instability which arises slowly on time scale tvisc under

the perturbations of Σ. Because tvisc � tth, tz there is enough time for the disc to adjust its vertical

structure to the changes ofΣ, and the thermal and hydrostatic equilibria hold.

The last important time scale to mention here is the accumulation time. It de�nes how fast the

mass piles-up in a given disc annulus during the quiescence until it reaches Σ−crit. Assuming that

the matter accumulated in a torus which width is determined by the process of viscous spreading

(Eq.(2.46)) ∆R ∼
√
νtaccum the expression for the accumulation time takes the form (Lasota, 2001)

taccum ≈
4π2R2ν Σ−crit

Ṁtr
2 (2.48)

where Ṁtr is the mass transfer rate from the secondary and Σ−crit is the minimum critical value of Σ

(see Sect.2.4 below).

2.3.2 Steady disc case

When the changes in the radial disc structure take place on a time scale much longer than the

viscous time scale the disc can be considered as steady. This is the case which allows to investigate

accretion disc properties in the simplest way because the disc equations (2.26,2.32,2.37) can be solved

analytically. This was �rst done by Shakura and Sunyaev who assumed that ν is given by equation

(2.9). Their solutions, known as α-discs or Shakura-Sunyaev discs, consider three di�erent regions

of the accretions disc around black hole which are characterized by di�erent pressures and opacities

(Shakura and Sunyaev, 1973). The solutions which are applicable for hot discs around white dwarfs

are those for region where the gas pressure dominates the radiation pressure (Pg > Prad) and where

the opacity has the Kramer's form. We derive here the expression for luminosity of the hot disc which

is used in Sect.5.2.

When ∂/∂t = 0 in the mass conservation equation (2.26) one obtains the prescription for the
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constant mass accretion rate Ṁacc (with vR < 0)

Ṁacc = 2πRΣ(−vR) (2.49)

Because Ṁaccr is the same at each radius of the hot disc it has to be everywhere equal to the mass

transfer rate from the secondary which determines Ṁaccr at the outer disc radius: Ṁaccr(Rd) = Ṁtr.

The angular momentum conservation equation (2.31) takes the form

−νΣ
dΩK

dR
= Σ(−vR)ΩK +

C

2πR3
(2.50)

where constant C is calculated at the inner edge where dΩK/dR = 0

C = −Ṁacc

√
GMR1 (2.51)

Substituting C to Eq.(2.50)

νΣ =
Ṁacc

3π

(
1−

√
R1

R

)
(2.52)

Eq.(2.52) can be substituted in the expression for dissipation (2.38):

Q+ =
3GM1Ṁacc

8πR3

(
1−

√
R1

R

)
(2.53)

The viscous heating written in the form above is independent of viscosity and is determined by

quantities which can be found observationally. The luminosity coming from both sides of the disc is

L(R1, Rd) = 2

ˆ Rd

R1

2πQ+RdR. (2.54)

After integrating Eq.(2.54) with the use of Eq.(2.53) one arrives to the expression for the luminosity

of the whole hot disc:

Lmax =
GM1Ṁacc

2R1

[
1− R1

Rd

(
3− 2

√
R1

Rd

)]
. (2.55)

2.4 S-curves

The solutions of the equations (2.12)-(2.24) give the e�ective temperatures and surface densities for

which the given disc annulus is in the thermal equilibrium. Once the solution of the energy transfer

equation (2.24) is found it gives the relation between Tc and Teff for the optically thick disc. For

radiative transfer

T 4
c =

3

8
τtotT

4
eff (2.56)

where the total optical depth is τtot =
´∞

0
κRρ dz.
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Figure 2.1: (A): The solutions of disc structure equations plotted on the Σ − Teff plane form the S-curve. The

S-curve presented on the plot is calculated at R = 6.0× 109 cm with α = 0.04 and M1 = 1.0 M� (solar composition

disc). The upper and lower bands (at which Σ and Teff have the critical values) divide the S-curve into three

parts: upper and lower corresponds respectively to the hot stable and the cold stable solutions and the middle part

is formed by the unstable solutions. (B): The comparison of the S-curves calculated with (red line) and without

(black line) convection included in the energy transfer equation. Both S-curves are calculated in R = 1.0× 1010 cm

with α = 0.04 and M1 = 1.0 M� for solar composition disc.

The solutions of the vertical structure equations plotted on the Σ − Teff (or Σ − Tcequivalently)

plane form the curves of the characteristic S-shape seen in Fig.2.1.

The stable solutions form the positive-slope branches of the S-curve: the lower (upper) branch

corresponds to the disc which is in the cold (hot) stable state in given R. The equilibrium solutions

which build the middle part of the S-curve (with the negative slope) are thermally and viscously

unstable. The existence of these solutions is the source of the thermal-viscous instability in the

accretion discs which is the core of the Disc Instability Model.

The upper and lower bend of the S-curve are the two transition points between stable and unstable

branches. The cool stable solutions terminate at the point where surface density and temperature

reach the critical values Σ−crit, T
−
crit above which the stable cold state is no longer maintained. The

second transition point is where the upper branch of the S-curve turns into the unstable, middle

part. It is where the surface density and the temperature decreasing along the hot branch reach their

minimum values, Σ+
crit and T

+
crit for which the hot stable solutions are possible (see Fig.2.1A).

The position of the critical values of Σ and T on the S-curve depends on the cooling mechanisms

which are taken into account in the calculations. Fig.2.1B illustrates what happens in the case when

the convection is neglected. The lack of convection means that the disc cooling is less e�cient and the

instability starts in the disc which is cooler and less dense than the disc in which convection operates

(the critical values Σ−crit and T−eff,crit are lower). Clearly the disc also reaches the hot stable state

earlier (i.e. Σ+
crit and T

+
eff,crit are lower) when only radiative cooling is considered.

The disc never follows the unstable part of the S-curve because in this regime of temperatures and

surface densities even a small perturbation of Σ drives the disc from thermal equilibrium and leads to
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the rapid grow of instability.

The Eq.(2.26) can be written in the form of the di�usion equation assuming Ṁext = const. and

using Eq.(2.29)
∂Σ

∂t
=

3

R

∂

∂R

[√
R

∂

∂R
(νΣ
√
R)
]
. (2.57)

The viscous instability is the consequence of the form of equation (2.57) describing the surface

density �uctuations in the disc. If one introduces a perturbation ∆Σ to Σ and de�nes the quantity

µ ≡ νΣ then Σ → Σ + ∆Σ and µ → µ + ∆µ (in general ν is a function of R and Σ: ν = ν(R,Σ)).

Since the perturbation of µ can be written as ∆µ = (∂µ/∂Σ)∆Σ or ∆µ = ν(Σ + ∆Σ) one can write

the di�usion equation for the growth of the perturbation in the gas �ow (see Pringle (1981); Frank

et al. (2002))
∂(∆µ)

∂t
=
∂µ

∂Σ

3

R

∂

∂R

[√
R

∂

∂R
(∆µ
√
R)
]

(2.58)

where the di�usion coe�cient D ∝ ∂µ/∂Σ.

For ν given by SS73 prescription (ν ∼ αcsH) the parameter µ has the dimension of the mass

accretion rate: µ = νΣ ∝ Ṁacc. Since Ṁacc in general case (Ṁacc 6= const) is given by (Lasota, 2001)

Ṁacc = 3πνΣ

(
2
∂ ln(νΣ)

∂ lnR
+ 1

)
(2.59)

one can write D ∝ ∂Ṁacc/∂Σ.

The perturbation will smooth out in the viscous time if D > 0. In the opposite case (D < 0) the

small local increase of Σ will lead to the e�ect of a �snowball� - the higher will be Σ at some point of

the disc the more matter will accumulate there. De�ning D with Ṁacc makes it even more evident:

the condition ∂Ṁacc/∂Σ < 0 means that the mass accretion at given R decreases when Σ in this

radius increases. In other words the dense parts of the viscously unstable disc build up their density

while their less dense surroundings become more and more rare�ed as the mass out�ow there is more

intense.

In the case of optically thick discs the dominant cooling mechanism near (Σ−crit, T
−
c,crit) point is

convection. The thermal instability starts when the local density attains Σ−crit and the overdense

region becomes so hot (T = T−c,crit) that the e�ciency of convection falls rapidly. It is induced by

the increasing degree of matter ionization (which rises the adiabatic gradient) and by the decreasing

bound-free opacity. Above T−c,crit even small changes in Σ lead to the sharp temperature increase -

the thermal instability grows rapidly on the thermal time scale as there is no e�cient cooling process

to balance the viscous heating. The disc annulus follows the path (marked in Fig.2.2 with red points)

passing through the region where Q+ > Q−, located on the right from the S-curve. It regains the

thermal equilibrium when its the temperature reaches the value lying on the upper S-curve branch

and the rate of the cooling balances the rate of the heating again.

When the underdense region becomes less dense than Σ+
crit the temperature there falls below T+

c,crit

and the recombination of the dominant chemical element in the disc starts. The recombination results

in the rapid change of the opacities and enhances the radiative cooling e�ciency. In this case the disc
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Figure 2.2: The local behavior of the disc at R = 2.15× 109 cm during the outburst cycle (red points) calculated for

αc = 0.05, αh = 0.2, M1 = 1.0 M�, Ṁtr = 0.1× 1016 g/s, solar composition disc. The black line represents the e�ective

S-curve for αc = 0.05, αh = 0.2, R = 2.15× 109 cm and M1 = 1.0 M�.

annulus follows the solutions which lie in Tc and Σ regime where Q+ < Q− (red points on the left of

the S-curve in Fig.2.2). This region of the disc is again thermally unstable and cools until the thermal

equilibrium corresponding to the solutions on the lower part of the S-curve is found.

The behavior of Σ in the regimes where Q+ < Q− and Q+ > Q− in Fig.2.2 is the manifestation of

the global disc evolution - it mirrors the passage of the cooling and heating front respectively through

the given radius. The rise of Σ with decreasing Tc in the regime where Q+ < Q− is the e�ect of the

out�ow of mass which appears at the cooling front while the initial rise of Σ followed by its decrease

with increasing Tc in the regime where Q+ > Q− re�ects the temporary increase of the surface density

caused by the passage of the mass accumulated in the heating front.

The described response of the disc to the perturbations in certain temperatures and densities

regime is believed to be the origin of the outbursts of dwarf novae.

At this point it is important to point out the connection between the e�ciency of convection and

α assumed in the disc. The high values of α (α ≥ 0.3 according to Cannizzo and Wheeler (1984))

result in lower Σ in the disc. In e�ect the convective �ux decreases while radiative �ux becomes more

important. Therefore higher α lowers the signi�cance of convection as a mean of energy transport.

In this situation Σ−crit is no longer connected with e�ciency of convection but is de�ned as the point

where the change of κR becomes less steep with decreasing temperature and Tc becomes less sensitive

to change in Teff (see Eq.(2.56)). At that point the S-curve slope changes from negative to positive and

Σ starts to decrease with decreasing Teff along the cold part of the S-curve. For α < 0.3 the surface

density is high enough for convection to dominate at Σ−crit and to determine the Tc − Teff dependence

(Eq.(2.56) is no longer valid). The strong convection decreases the temperature gradient and induces

that Σ−crit,conv > Σ−crit,rad as can be seen on the right panel of Fig.2.1.

The S-curve presented with black line on Fig.2.2 is the e�ective S-curve which results from joining
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Figure 2.3: The example of an e�ective S-curve (solid line) used in DN outbursts calculations. The lower branch of this

S-curve overlaps with the lower branch of the S-curve calculated for α = 0.05 and upper branch overlaps with the upper

branch of the S-curve with α = 0.2. The S-cruves are calculated for solar composition disc at radius R = 1.0× 109 cm

and for M1 = 1.0 M�.

two S-curves calculated for di�erent α. The cold branch of the e�ective S-curve presented on Fig. 2.3

corresponds to αc = 0.05, the hot branch to αh = 0.2 and the middle part is the transition region

from αc to αh (see Eq. (2.60) and the description below).

The necessity of changing α appeared during the �rst attempts of reproducing DN outbursts in the

DIM framework. It was realized by Smak (1984) that in order to obtain outbursts with amplitudes

similar to those observed one has to use two di�erent values of α for cold and hot state of the disc,

i.e. αc and αh respectively. The relation between outburst amplitude and the di�erence between Σ+
crit

and Σ−crit is explained in Sect. 2.6.

The general formulae for Σ±crit, T
±
c,crit and T

±
c,eff in terms of R, α and M1 for a disc with a given

chemical composition are found by numerical �tting. In addition one can calculate critical mass accre-

tion rates Ṁ±crit corresponding to Σ±crit. Those formulae for discs of 4 di�erent chemical compositions:

solar, purely helium, Y = 0.98 Z = 0.02 and Y = 0.96 Z = 0.04 has been kindly delivered us by

Guillaume Dubus and are given in Appendix (A).

The change of α from the cold to the hot branch in the e�ective S-curve is given by the expression

which assures that the transition will be numerically smooth

log(α) = log(αc) + [log(αh)− log(αc)]×

[
1 +

(
2.5× 104 K

T0

)8
]−1

(2.60)

where T0 is the temperatures which de�nes when α should start to change.

The transition of α should start at the point where the gas starts to recombine, the opacities
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change and the disc is no longer in a hot state. The problem with the choice of T0 arises in the case

of helium-dominated discs due to the two helium ionization levels.

It appears that if one sets T0 = 0.5(T+
c,crit + T−c,crit) then the transition from αh to αc starts in the

regime of temperatures and surface densities below the temperature of the second helium ionization.

Therefore the value of αeff in this temperature regime is higher than the value αeff would have if it

started to change at T+
c,crit and it mimics the continuation of the hot branch (see Fig.2.4B). It can

be understood in terms of the thermal balance written as Qeffαeff = σT 4
eff (see Eq.(2.24)). In the

temperature regime below T+
c,crit the helium atoms are only singly ionized and they start to recombine

for the second time - Σ decreases quickly again. This local drop of Σ is stronger than the non-local

e�ect of the mass out�ow generated by the passage of the cooling front through the given radius

which in turn tends to increase Σ. So instead of rising Σ with decreasing temperature (as it is seen in

the plots illustrating the limit cycles during transition from the hot to the cold S-curve branch, e.g.

Fig.2.2, Fig.2.4A) one sees further drop of Σ (Fig.2.4B). In the considered case αeff is high enough to

compensate the decrease of Σ and the disc ��nds� the solutions which correspond to the �arti�cial�

thermal equilibrium which in fact should not be found in the regime where the disc matter is partially

ionized. When the temperature falls below the level of the �rst helium ionization the Σ drop is strongly

restrained and the non-local e�ect of the mass out�ow from the cooling takes over.

The consequence of the above described situation is that the critical values of Σ and Tc are

lowered what a�ects the stability conditions in the disc and the appearance of the calculated light

curves. The di�erence in the local behavior of the ring as well as its global consequence manifesting

in the light curves between various de�nitions of T0 is illustrated in Fig.2.4. Fig.2.4B,C show the

S-curves for αc = 0.05 and αh = 0.1 and the limit cycle which undergoes the helium-rich disc (Y =

0.98 Z = 0.02) at R = 2.15 × 109 cm during the outburst cycle. Fig.2.4B shows the limit cycle with

T0 = 0.5(T+
c,crit + T−c,crit) and Fig.2.4C with T0 = T+

c,crit. Note the arti�cial prolongation of the hot

branch on the panel (B). The in�uence of T0 on the outbursts is presented on Fig.2.4D. The outbursts

in the model with T0 = 0.5(T+
c,crit + T−c,crit) (black line) have higher amplitude and longer recurrence

times than outbursts produced by the model with T0 = T+
c,crit. This is because in the �rst case the

middle branch is more extended: the more matter has to be accreted from the disc to bring it to the

cold state and consequently more mass has to be accumulated before the new outburst is triggered

(see Sect.2.5).

The plot on the panel (A) in Fig.2.4 is the cycle for the same parameters as the cycles on panels

(B) and (C) but for the solar composition disc with T0 = 0.5(T+
c,crit + T−c,crit). As can be seen the

problem with prescription for T0 does not exist in the case of hydrogen-rich discs because hydrogen

has only one ionization state and there is no phase between di�erent ionization levels analogical to

that in helium case.

To avoid the e�ect of the arti�cially prolongated hot branch we adopt T0 = T+
c,crit.
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Figure 2.4: The outburst cycle at R = 2.15×109 cm for αh = 0.1, αc = 0.05,M1 = 1.0 M�. The green lines are the

S-curves for αc = 0.05, red lines are the S-curves for αh = 0.1 and the black lines are appropriate e�ective S-curves.

(A) solar composition disc with T0 = 0.5(T+
c,crit +T−

c,crit); (B) Y = 0.98 Z = 0.02 with T0 = 0.5(T+
c,crit +T−

c,crit); (C)

Y = 0.98 Z = 0.02 with T0 = T+
c,crit; (D) The local behavior of the disc presented on plots (B) and (C) corresponds

to the light curves shown on this plot. The black line represents the change of α de�ned with T0 = 0.5(T+
c,crit+T−

c,crit)

and red line represents the prescription with T0 = T+
c,crit.
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2.5 The outburst cycle

The local stability described in the previous section translates into the disc global behavior and results

in the outburst cycles of dwarf novae and AM CVn stars.

The dwarf nova cycle starts when the instability in the disc triggers an outburst. The luminosity

of the system rises until the outburst reaches its maximum. At this point according to the DIM the

whole disc is hot and stable till the moment when the outburst decay starts. When the luminosity

reaches its minimum the disc becomes everywhere cold and stable and the system enters the quiescent

state. The cycle ends with the beginning of the next outburst.

2.5.1 The start of an outburst

In the cold disc the surface density pro�le is almost parallel to the line representing the critical surface

density Σ−crit ∼ R (see A). The mass accretion rate in the quiescence is not constant so the matter

accumulates in the disc increasing its temperature - each disc annulus goes up the lower branch

of its local S-curve. The surface density and temperature cross their critical values Σ−crit(R0) and

T−c,crit(R0) at the radius R0 at which the accumulation time is shorter than viscous time (Sect.2.3.1).

The ionization of the gas becomes so signi�cant there that the cooling mechanisms (convection or

radiation, see Sect.2.4) are no longer e�cient enough to keep the thermal equilibrium in R0. At this

point the considered disc annulus leaves the lower branch of its S-curve undergoing rapid heating

which pushes it towards the S-curve upper branch (hot state) (see Fig.2.2 or 2.4) - the narrow fully-

ionized region of high viscosity appears in R0. At the same time the neighboring annuli (R0−4R and

R0 +4R) are still in the cold state what induces the steep temperature gradient and the formation

of a heating front. The spike which arises in Σ pro�le is a consequence of the di�erent viscosity in the

hot and the cold parts of the disc: the low viscosity outside the hot annulus is unable to transfer the

angular momentum outwards at the rate which would prevent further accumulation of mass in R0.

The formation of the heating front marks the beginning of an outburst.

The radius at which the front starts to propagate depends on the mass transfer rate from the

secondary, the e�ciency of viscosity in the cold state de�ned by parameter αc and the size of the disc.

The front is of outside-in type if it develops in the outer parts of the disc (black line in Fig.2.6) and

propagates inwards, in the opposite case the front is of the inside-out type (black line in Fig.2.5).

The higher Ṁtr the closer to the outer disc edge the front starts. In large discs one needs much

higher Ṁtr to trigger the outside-in front than in the small discs because Σ−crit rises with R. Therefore

in large Rd a lot of mass has to be accumulated to cross Σ−crit in a period of time shorter than the

viscous time. Also low αc may lead to the creation of the outside-in front inasmuch as it inhibits the

rate at which the mass di�uses through the disc.

2.5.2 Heating front propagation - rise to an outburst

The steep Σ and Tc gradients in the heating front induce the rapid di�usion of matter and heat to

the adjacent annuli forcing their transition to the hot state. The inner (i.e. closer to the inner disc
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radius) and outer edge of the expanding high-temperature region are the transition zones between

high and low viscosity regions. The mass accumulation at the inner transition zone is the consequence

of the elevated accretion rate in the hot region while the density spike at the outer transition zone is

created by the mass which carries the excess of angular momentum from the inner disc. Therefore

the expansion of the fully-ionized region leads to the formation of two spikes in Σ pro�le traveling in

the opposite directions (Fig.2.5 and 2.6).

One of those spikes dies out at the early stage of the front propagation. It is the one which has

the shorter distance to cover from the site of its origin to the nearest disc edge (for example if the

front starts close to the inner disc radius then the one which travels inwards will vanish �rst, see for

example blue lines in Fig.2.5 and 2.6). In the following the outside-in/inside-out front or in general

the heating front refers to the front which �survives� and propagates through the disc heating it up

and rising its luminosity.

It is easier for the front to propagate to smaller radii because it travels down the decreasing density

gradient, in the direction of accretion �ow, and the high viscosity in the front eases the outward drain

of angular momentum. The shape of the outburst which is the result of the outside-in front (resulting

in the outside-in outburst) is asymmetrical because the fast front propagation leads to the fast rise of

luminosity to its maximum after which slower decay takes place (see Sect.2.5.3).

For the inside-out front it is more di�cult to pass through the whole disc up to the outer radius.

The di�usion of the matter carrying angular momentum excess is being slowed down by the low rate

at which the angular momentum is transported in the cold outer disc parts. The rise of the inside-out

outburst is slower and its shape is symmetrical.

The elevated mass accretion rate reduces the surface density just behind the heating front and

enhances the mass in�ow to the inner disc regions. It may happen that the post-front surface density

Σ(Rp−f) will drop below Σ−crit(Rp−f) and the cold, low-viscosity zone will form behind the inside-out

front (i.e. the cooling front, see Sect.2.5.3). This cold zone will start to move inwards and the inside-

out front will be suppressed before completing its journey through the disc in the result of the outward

angular momentum transfer reduction. The heating front will be �re�ected� (see also Sect.2.7.3.1).

2.5.3 The outburst decay

Once the heating front reaches the disc edge (inner or outer depending on the front type) each disc

radius is on the upper branch of its S-curve, the disc is fully ionized and its luminosity reaches the

maximum. The mass accretion rate everywhere in the disc is increased and it outweighs the mass

transfer rate from the secondary. The high temperatures induced by increasing Ṁaccr at Rin cause that

the boundary layer between the disc and the primary white dwarf is the source of the UV radiation

(also of the soft X-rays which �ux depends on the intensity of Ṁaccr). The rest of the disc is the main

source of the optical �ux emitted by the system.

The mass stored in the outer parts of the disc during the quiescence keeps di�using inwards with

high viscous velocity. Because the highest Σ−crit is near the outer disc edge the amount of matter

accumulated there during the quiescence and during the outburst rise has to be higher than elsewhere
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Figure 2.5: The evolution of the surface density pro�le during the propagation of the inside-out heating front. The

black dashed lines represent Σ+
crit(R) and Σ−

crit(R) calculated from the formulae for critical values in solar composition

disc given in Appendix A for αc = 0.05, αh = 0.1 , Ṁtr = 1.0 × 1015 g/s , M1 = 1.0 M� and 〈Rd〉 ≈ 1.15 × 1010 cm.

The subsequent moments of the front propagation are marked with solid lines: (1) black - at the onset of instability

fronts are created which propagate in the opposite directions, the one going outwards will heat up the disc and rise its

luminosity while the one going inward will vanish at the inner edge and will give no contribution to the luminosity of

the disc; (2) blue - the inside-out heating front propagates up the density gradient, the second front arrives to the inner

edge; (3) red - the front which arrived to the inner radius disappears; (4) green - the inside-out heating front approaches

to the outer disc edge, the density in the inner disc region rises due to the high rate of di�usion of the hot matter in

the disc.
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Figure 2.6: The evolution of the surface density pro�le during the propagation of the outside-in heating front. The

black dashed lines represent Σ+
crit(R) and Σ−

crit(R) (see Appendix A) calculated for αc = 0.05, αh = 0.1, Ṁtr =

1.0× 1016 g/s, M1 = 0.6 M� and 〈Rd〉 ≈ 2.0× 1010 cm . The subsequent moments of the front propagation are marked

with solid lines: (1) black - the high-temperature region forms near the outer disc edge and fronts start to propagate in

the opposite directions, this time the disc will be heated by the front which propagates inward ; (2) red - the inside-out

heating front slowly approaches the outer disc radius while the second front propagates through the disc towards the

inner edge; (3) blue and green - as the outside-in heating front approaches the inner disc edge, the density in the middle

disc region rises, because this time the outer disc parts were heated �rst.
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in the disc in order Σ could cross Σ+
crit. This means that Σ manages to rise only slightly above Σ+

crit

near the outer disc edge during the heating front passage and it falls below this critical value almost

immediately after the heating front disappears. At the radius where it happens the cooling is strongly

enhanced by the change in the opacities when Tc < T+
c,crit and the steep Σ and Tc gradients lead to the

formation of the cooling front (black line in Fig.2.7A). Thus, right after the maximum the outburst

starts to decay as the outer radii of the disc leave the upper branch of their S-curves unless other

additional heating mechanisms are present (Sect.4.5).

Because the cooling front develops at the outer disc edge almost at the same time as the heating

front disappears, the mass excess from the outer parts of the heated disc has no time to arrive to the

inner disc radius before the cooling front sets in. The surface density pro�le at the outburst maximum

is not yet proportional to R−3/4 as expected for a hot stable disc. Therefore, despite the start of the

cooling front propagation the mass accretion rate at Rin still increases until the mass excess from the

outer disc region has traveled through the whole disc and has been accreted.

The maximum of the mass accretion rate at Rin is delayed with respect to the maximum brightness

in the optical band. Therefore the DIM predicts the delay of the maximum in the UV �ux with respect

to the optical �ux for both types of outbursts (outside-in and inside-out) and may be the explanation

for the observed UV-delay.

When Ṁaccr(Rin) reaches its maximum it exceeds the critical mass transfer rate at Rd (black and

red line in Fig.2.7B) and the mass accretion rate throughout the disc is not constant. It becomes

constant in the hot parts of the disc ahead the cooling front after the initial phase of its propagation.

The di�usion of the hot matter into the cold region behind the front from the adjacent annulus

enables the propagation of the cooling front and causes the strong out�ow - the matter is �shoved�

from the hot region near the front to the already cold, outer parts of the disc behind it.

The outburst ends when the cooling front fades away at the inner radius and the disc settles again

in the cold and stable state. The outburst cycle enters into the quiescence phase during which the

matter starts to accumulate in the disc again.

2.6 The outbursts - general considerations

The outbursts are the observational e�ect of the propagation of the fronts in the disc and their

properties depend on the parameters characterizing the binary. The size of the disc de�ned by the

mass of the primary and the mean disc radius, the mass transfer rate from the secondary and the

viscosity parameters α are the basic quantities which shape the light curves. To predict their possible

values from observations and to consciously use them in simulations to obtain the desired results one

has to know how each of them separately in�uences the outburst.

2.6.1 α- parameters

The viscosity de�nes the time scales in the disc. From Eq.(2.46) and (2.9) it follows that tvisc ∝ α−1.
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Figure 2.7: (A): The evolution of Σ pro�le during the propagation of the cooling front. The model parameters are

the same as in Fig. 2.6. The subsequent moments of the front propagation are marked with solid lines: (1) black -

the moment right after the cooling front onset, Σ pro�le is almost �at and it is not proportional to R−3/4 yet; (2)

red - the next moment of the front propagation, Σin the inner disc parts rises, (3) green and blue - at this stage

of the front propagation the hot parts of the disc (ahead the front) ful�ll Shakura-Sunyaev solutions: Ṁaccr across

these regions is constant and Σ ∝ R−3/4; (4) light blue - the cooling front approaches the inner disc radius leaving

behind cold, stable disc. (B) The pro�les of Ṁaccr in subsequent moments of the cooling front propagation. The

same colors on both plots correspond to the same moments of the front propagation. The horizontal dashed line

corresponds to Ṁ+
crit(Rd,max). It should be noticed that the mass accretion rate at the inner radius is still rising

and crosses Ṁ+
crit(Rd,max) at the beginning of the front propagation (line black and red) and only later starts to

fall down to the very low level when the front is near inner edge (light blue line).
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Figure 2.8: The result of changing αc (A) and αh (B) on the light curves of solar composition disc. All light

curves are calculated for M1 = 1.0 M�, Ṁtr = 1.0× 1016 g/s and 〈Rd〉 = 1.2× 1010 cm. Black lines on both �gures

are for: αc = 0.05, αh = 0.2. Red lines: (A)αc = 0.02, αh = 0.2; (B) αc = 0.05, αh = 0.1.

When αc is low it takes longer for matter to di�use through the disc. The lower e�ciency of

viscous heating means also that in order to reach the temperature at which an outburst can be

triggered the disc has to be denser (Σ−crit ∝ αc
−0.8, see Appendix A). A disc with low αc spends more

time in quiescence and has sparser outbursts than the disc with higher αc. The di�erence is shown

in the panel (A) of Fig.2.8 where the red line corresponds to the model calculated for αc = 0.02 and

black line for αc = 0.05. Other parameters are the same for both models: αh = 0.2, M1 = 1.0 M�,

Ṁtr = 1.0× 1016 g/s and 〈Rd〉 = 1.2× 1010 cm, the disc has the solar composition.

High αh shortens tvisc in the hot disc. In other words it controls the rate at which the mass is

accreted during the outburst decay. Higher e�ciency of the mass accretion with higher αh means

that the disc will be less massive at the beginning of the quiescence. It can be seen in Fig.2.8B where

the disc with αh = 0.2 plotted with black line needs time after the outburst to accumulate the mass

and start a new cycle. On the contrary, in the light curve calculated for αh = 0.1 (red line) the

quiescent state is absent for two reasons. First is that for lower αh the cooling front starts at higher

Σ (Σ+
crit ∝ αh

−0.8, see Appendix A) which is therefore closer to Σ−crit. Second is that in this case the

viscosity in the hot gas is so ine�ective that the cooling front is not able to arrive to the inner radius

because it is �re�ected� somewhere on its way (see �re�ares�, Sect.2.7.3.1).

In general the ratio of Σ−crit and Σ+
crit controls the amplitude and the recurrence time of an outburst.

It determines how much mass is accreted and accumulated during the outburst cycle what decides

about the disc luminosity in the high and the low state. Σ−crit and Σ+
crit in the same R di�er only

by constant and by α so it is useful to de�ne the ratio β ≡ αh/αc. The higher is β the larger is the

outburst amplitude and the longer is its recurrence time. The dependence of the light curves on β

can be clearly seen in Fig.2.8: in the diagram (A) the red line corresponds to β = 10 and the black

line to β = 4, in the diagram (B) the red line corresponds to β = 2 and the black line to β = 4. β

in�uences also the appearance of the re�ares (Sect.2.7.3.1).
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Figure 2.9: The result of changing Ṁtr on the light curves of solar composition disc. Both light curves are calculated

for M1 = 0.6 M�, αc = 0.05, αh = 0.2 and 〈Rd〉 = 1.2 × 1010 cm. Black line: Ṁtr = 1.0 × 1016 g/s; red line

Ṁtr = 0.1× 1016 g/s.

2.6.2 The mass transfer rate

The rate at which the matter is supplied to the disc has an in�uence on the disc luminosity. When all

other parameters are �xed the increased Ṁtr makes the disc hotter and denser - the luminosity both in

the cold and in the hot state is augmented. The outburst is also longer because more mass is being fed

into the disc during the outburst maximum what delays the onset of the cooling front. The di�erence

in outburst amplitudes between Ṁtr = 1.0× 1016 g/s (black line in Fig.2.9) and Ṁtr = 0.1× 1016 g/s

(red line in in Fig.2.9) is the e�ect of the location at which the heating front is triggered. Eventually

for the very high Ṁtr the outburst changes its character from the inside-out to the outside-in outburst.

The higher Ṁtr the farther away from the inner edge of the disc the heating front starts to propagate.

In the model with Ṁtr = 0.1× 1016 g/s the surface density in the disc is lower than in the disc in the

model with Ṁtr = 1.0 × 1016 g/s. In consequence the disc luminosity in quiescence is lower and the

front forms closer to Rin than in the former case. Thus the amplitude is higher for lower Ṁtr.

Higher luminosity at the outburst maximum in the light curve plotted in black in Fig.2.9 follows

from Eq.(2.55) which states that the luminosity of the hot disc is proportional to Ṁtr. However, the

relation between Lmax and Ṁtr is more complex than that. Eq.(2.55) depends also on Rd or, more

precisely, on Rd,max which in turn depends on Ṁtr through the outer boundary condition - Eq.(2.41).

Higher rate at which the matter is incorporated into the disc and higher surface density at Rd imply

that more angular momentum has to be transported outwards - the disc during the outburst expands

to larger Rd,max what gives small contribution to increase of Lmax.

2.6.3 The size of the disc: M1 and 〈Rd〉

Unless the processes which may truncate the inner parts of the disc are taken into account (the

accretor magnetic �eld or the inner disc evaporation) the primary mass de�nes the inner disc radius
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Figure 2.10: The results of changing M1 (A) and 〈Rd〉 (B) in the light curves of Y = 0.98 Z = 0.02 disc. All

light curves were calculated for αc = 0.05, αh = 0.1 and Ṁtr = 1.0× 1016 g/s. (A): M1 = 0.6 M� (black line) and

M1 = 1.0 M� (red line), 〈Rd〉 = 1.2×1010 cm in both; (B): 〈Rd〉 = 1.2×1010 cm (black line) and 〈Rd〉 = 3.0×1010 cm

(red line), M1 = 0.6 M� in both.

and, together with 〈Rd〉, de�nes the disc extent. The inner disc radius is smaller in the system with

massive primary (due to the mass-radius relation for the degenerate stars (Nauenberg, 1972)) what

enables the onset of the inside-out outburst at lower densities because Σ−crit ∝ R. It leads to the more
frequent outbursts with lower amplitude because during short quiescence less mass is accumulated in

the disc and less mass has to be accreted during the outburst decay. Lmax is mainly de�ned by Ṁtr

but the weak dependence on M1 makes it a little higher for more massive accretor. This results are

presented in Fig.2.10A.

The di�usion of matter through the larger disc takes longer what suggests that the large disc should

spend more time in quiescence. But the things are more complicated as the large disc is also more

massive: (i) �rst, the propagation of the cooling front in denser disc is more prone to re�ections and

it may not arrive to the inner edge, (ii) second, the higher density left in the disc after cooling front

passage eases the triggering of the new heating front at larger radii, just as in the case of increased

Ṁtr. This is the reason of higher luminosity in quiescence and slightly more frequent outbursts for

the model with 〈Rd〉 = 3.0× 1010 cm shown in Fig.2.10B (red line).

2.7 Impact of helium on the disc properties

The existence of two electrons in helium atom induces 2 ionization states and leads to a wide range

of di�erent atomic transitions. We analyze the consequences of the atomic structure of helium for

the solutions of the vertical structure equations and the heating and cooling fronts properties in the

helium-dominated discs.
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Figure 2.11: The S-curves for 4 di�erent chemical compositions of the disc calculated in R = 1.0×109 cm, for α = 0.1

and M1 = 1.0 M�: black: Y = 1.0, red: Y = 0.98 Z = 0.02, blue: Y = 0.96 Z = 0.04, green: solar composition.

2.7.1 S-curves

The opacities in the temperature range found in the optically thick accretion discs are dominated by

the bound-bound, bound-free and free-free processes. For the last two the mean Rosseland opacity

takes the Kramers form:

κ = κR ∝ ρT−3.5 (2.61)

Since the opacity in purely helium discs is much smaller than the opacity in the helium disc with

admixture of metals or the opacity of the solar composition disc (Table 2.2) the radiative gradient

of temperature becomes too small to dominate over the adiabatic temperature gradient and the

convection is suppressed. It has the same e�ect on Σ−crit as has α > 0.3 (see Sect.2.4)

The reason for the rise of κR when even small amount of metals is added to the pure helium lies

in the helium ionization temperatures and is explained below.

To calculate the ionization temperatures corresponding to the given ionization energies one has to

use the Saha equation which describes the degree of ionization of plasma as a function of its density

ρ, temperature T and ionization energy Ei of atoms.

For two successive stages of ionization Saha equation takes the form

Ni+1Ne
Ni

=
2

Λ3

Ui+1(T )

Ui(T )
exp(

−(Ei+1 − Ei)
kBT

), (2.62)

where Ni is the number density of atoms in ith ionization state, Ne is the number density of electrons,

Ei is the ionization potential between states i+ 1 and i, and Λ is the thermal de Broglie wavelength
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z TzII TzIII TzIV TzV

O 14 416 37 191 58 182 81 981
C 11 926 25 825 50 710 68 303
N 15 339 31 240 50 075 81 760

Table 2.1: The �rst four ionization temperatures of three chemical elements: oxygen, carbon and nitrogen, calculated

from Eq. (??) with γ ≈ 11. The temperatures are in K.

of electrons of temperature T

Λ =
h

(2πmekBT )1/2
(2.63)

where h is the Planck constant.

The partition function Ui can be found from Boltzmann law:

Ui =
∑
i

gie
−βEi (2.64)

where gi is the degeneration of ith level and β ≡ 1
kBT

.

The degree of ionization can be measured by the number of electrons in the cube of the volume

Λ3. After some algebraic transition the temperature T at which the ionization changes from level i to

level i+ 1 can be found from

kBT ∼
(Ei+1 − Ei)

γ
(2.65)

where γ ≡ −ln(NeΛ
3).

The evaluated γ for di�erent helium content in the disc is γ ≈ 10 and γ ≈ 11 for Y = 1.0 and

Y = 0.96, Z = 0.04 respectively. To �nd Ne we used the EOS tables from OPAL calculated following

Paczy«ski (1969) and temperatures and densities from our numerical calculations of the disc vertical

structures.

The �rst and second ionization energy of helium is EHeII = 24.6 eV and EHeIII = 54.4 eV. Using

Eq.(2.65) we found the ionization temperatures of helium for (i) purely helium plasma (Y = 1.0):

THeII ≈ 28 560 K, THeIII ≈ 63 150 K, (ii) for plasma consisting of 96% of helium and 4% of metals

(Y = 0.96 Z = 0.04): THeII ≈ 25 920 K, THeIII ≈ 57 410 K.

The calculated temperatures of di�erent ionization levels for O, N and C (for γ ≈ 11) are listed in

Table 2.1. It shows that metals are highly ionized at the temperature of the second helium ionization

and their contribution to the plasma free electrons population is signi�cant. Therefore, even though

their abundances are assumed to be low (Z = 0.02 or Z = 0.04) their impact on the opacities in the

disc is noticeable. As the main opacity sources in the disc are f-f and b-f transitions, the additional

electrons change the e�ciency of the cooling and heating mechanisms what has the in�uence on T+
c,crit

and T−c,crit.

Since the ionization temperature of hydrogen, THII ∼ 18 000 K, is signi�cantly lower then those of

helium the metals contribution to the opacities in the case of hydrogen-dominated discs is negligible.

The di�erence in ionization temperatures in�uences the stability criteria of the disc of di�erent
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Y = 1.0 Y = 0.98 Y = 0.96 solar

Σ+
crit [g/cm2] 42.1 30.8 27.8 3.5

Σ−crit [g/cm2] 108.0 50.2 39.0 5.2

Teffcrm [K] 10 700 11 700 11 200 6 960

Teffcrp [K] 15 600 14 250 14 200 8 210

κ(Σ, T−c ) [cm2/g] 4.2× 10−1 4.5× 102 5.4× 102 1.3× 103

τtot(Σ, T
−
c ) 45.3 2.24× 104 2.11× 104 7.03× 103

Table 2.2: S-curve's critical points for 4 disc chemical compositions. Their values are calculated for R = 1.0× 109 cm,

α = 0.1 and M1 = 1.0 M�

chemical compositions and it can be clearly understood when one looks at the S-curves.

In Fig.2.11 four S-curves are shown, each of them for di�erent chemical composition of the disc:

hydrogen-dominated (X = 0.7, Y = 0.28, Z = 0.02), pure helium, Y = 0.98, Z = 0.02 and Y =

0.96, Z = 0.04. All of them are calculated in radius R = 1.0× 109cm, for M1 = 1.0 M� and α = 0.1.

The numerical �ts for critical values of T , Σ and Ṁaccr were calculated by Guillaume Dubus

(private communication) and are given in Appendix A. Their values for R = 1.0 × 109 cm, and

α = 0.1 are listed in Table 2.2.

The temperatures and surface densities in helium discs are much higher than in hydrogen-rich

discs, moreover the ratio βc ≡ Σ+
crit/Σ

−
crit in helium discs is twice that in solar composition discs.

The ratio of the critical surface densities determines how much mass in the disc will be accumulated

and accreted during the outburst cycle and thus decides how luminous will be the disc in the maximum

and minimum light - it decides about the outburst amplitude. It has the same e�ect on the local

properties of helium disc as has the change of α from αh to αc - increasing βc it stretches the middle

part of the S-curve. It is then possible to get outbursts of amplitude up to 2.5 mag without changing

α in helium discs. But still, as will be shown in Sect.2.7.3, to get the outburst amplitudes observed

in AM CV stars (i.e. up to 4− 5 mag) one needs to retain two di�erent α values: αh and αc.

In Fig.2.12 is shown how κR changes with density and temperature. In the diagram (A) is presented

the κR − T relation in purely helium gas for di�erent parameter ROPAL ≡ ρ/T6, where T6 = T/106 K

(data has been taken from the OPAL website). The densities ρ in the accretion discs considered are

of the order ∼ 10−5 − 10−6 g/cm3 what corresponds to the region between blue and green lines. The

shape of those lines in the temperature range 104 − 105 K corresponds to the two peaks present in

Fig.2.13A. The diagram (B) of Fig.2.12 shows the di�erence in κR − T relations for various values of

ROPAL between purely helium disc (solid lines) and Y = 0.98 Z = 0.02 disc (dashed lines). It clearly

demonstrates how the addition of only 2% of metals to helium increases the opacity.

In Fig.2.13 is shown how κR changes with Tc during the outburst cycle in R = 2.15 × 109 cm

for three di�erent chemical composition of the disc: Y = 1.0 (A), Y = 0.98 Z = 0.02 (B) and

X = 0.7 Y = 0.28 Z = 0.02 (C). In all three models: αh = 0.1, αc = 0.05, M1 = 1.0 M�. The lower

line on each plot corresponds to the transition of the annulus from the upper branch to the lower

branch of the S-curve while the upper line corresponds to the transition in the opposite direction -
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Figure 2.12: (A) The relation between the mean Rosseland opacity κR and temperature T for di�erent values of

parameter ROPAL ≡ ρ/T6. For high densities the structure of the plotted lines smooth out and the opacity has a

peak near the temperature of the second ionization of He. (B) The same relations as in (A) but for Y = 1.0 (solid

lines) and Y = 0.98 Z = 0.02 (dashed lines). The structure of the lines is less detailed because of less points taken

for the plots. The data has been taken from the OPAL project website.
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Figure 2.13: The diagrams show the relation between

κR and T c in radius R = 2.15 × 109 cm for the models

with αh = 0.1, αc = 0.05, M1 = 1.0 M� in the discs of 3

chemical compositions: (A) Y = 1.0, (B) Y = 0.98 Z =

0.02, (C) X = 0.7 Y = 0.28 Z = 0.02.

from the cold to the hot branch. The conclusions from Fig.2.13 are:

� the higher is Z the higher is κR connected with T−c,crit (left peak on the upper line of κR − Tc

relation) - the ionization of metals has the deciding in�uence on the opacity in (Σ−crit, T
−
c,crit)

point

� higher Z does not in�uence κR connected with T+
c,crit (right lower peak on the lower line of

κR − Tc relation) - the opacities in (Σ+
crit, T

+
c,crit) point are determined by the second ionization

of helium

� in general the rise of Z rises the opacities in the low-temperature regime (below the temperature

of 2nd He ionization)

� in the hydrogen-dominated disc the opacities are controlled by hydrogen ionization, the in�uence

of He or metals on κR is unnoticeable (only one peak in κR appears, near by the temperature

of hydrogen ionization)

We have investigated also how various α-parameters which we choose in the model in�uence κR(Tc)

relation (which is di�erent from the previous one in a sense that the previous considered the in�uence
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of intristic, atomic properties of plasma). The impact of di�erent sets of αh and αc on κR in radius

R = 2.15 × 109 cm in the models calculated for the helium dominated discs with Z = 0.02 for

Ṁtr = 0.1 × 1016 g/s, M1 = 1.0 M� is shown in Fig.2.14. These plots show several properties which

can be noticed:

� the increase of αc (while αh is �xed) lowers the opacities during the transition of the disc ring

from cold to hot state (compare upper plots in diagrams (A) and (C) in Fig.2.14) and has

no e�ect on the opacities during the transition from the hot to the cold state (lower plots in

diagrams (A) and (C) in Fig.2.14). Similar e�ect has the increase of Z in helium dominated disc

(see Fig.2.13A and B) although Z additionally in�uences opacities near T−c,crit regime.

� the change of αh from 0.1 to 0.4 impacts the shape of κR−Tc relation (Fig.2.14A and B): higher

αh decreases κR around T+
c,crit, i.e. the opacities connected with the second ionization of helium.

This happens because by setting αh = 0.4 one lowers Σ+
crit (Σ

+
crit ∝ αh

−0.8) while T+
c,crit remains

unchaned as it does not depend on αh. Therefore with the same T+
c,crit but lower Σ+

crit one leaves

the regime where the opacities related to the 2nd helium ionization dominate. The elevated left

upper peak for αh = 0.4 (Fig.2.14A) is the consequence of the higher amount of mass which has

to be accumulated in the given ring during quiescence to cross Σ−crit (when αh is higher more

mass is accreted from the disc during the outburst decay).

The cautious conclusions which can be drawn are:

1. Since Σ−crit is determined by the metallicity of the helium-dominated disc and it is inversely

proportional to αc the alteration of αc in the model may mimic changing Z in the disc.

2. Since Σ+
crit is connected with amount of helium in the disc (for helium-dominated disc, in H-rich

disc it would be hydrogen) and it is inversely proportional to αh the change of αh may imitate

the change in the amount of the dominant chemical element in the disc.

2.7.2 The fronts

The transition fronts are the means by which the instability which is triggered locally spreads through

the disc and a�ects its global evolution. The times (or equivalently the velocities) of the front prop-

agation through the disc de�ne the time scales observed in outbursts: the time it takes the heating

front to travel through the disc determines the time of the rise of an outburst and the time of the

cooling front propagation �xes the outburst decay time. The investigations of the fronts properties

give the insight to what happens in the disc during the outburst and the signi�cance of di�erent terms

in thermal equation.

2.7.2.1 Front structure

The atomic structure of the dominant chemical elements a�ects the structure of the cooling and

heating fronts (the front origin and propagation is described in Sect. 2.5 ).
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Figure 2.14: The diagrams show the relation between

κR and T c in the radius R = 2.15×109 cm for the models

with Ṁtr = 0.1×1016 g/s, M1 = 1.0 M� for the disc with

Y = 0.98 Z = 0.02 for 3 sets of α: (A) αh = 0.4, αc =

0.05, (B) αh = 0.1, αc = 0.05, (C) αh = 0.4, αc = 0.1.
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Figure 2.15: The structure of a cooling fronts in solar composition disc and in purely helium disc. Top panels

(A), (B): solar disc, Bottom panels (C), (D): pure helium disc. Left column (A), (C): front seen in Σ pro�le, Right

column (B), (D): Tc pro�le. Models calculated for αh = 0.1, αc = 0.05, Ṁtr = 0.1 × 1016 g/s, M1 = 1.0 M� and

〈Rd〉 ≈ 1.1× 1010 cm.

The analysis of a cooling and heating front structure in the solar composition disc were pursued

by Menou et al. (1999). It was found that general properties of the fronts do not depend on viscosity

and front location in the disc.

The temperature gradients of both heating and cooling front in solar composition discs are smooth

(upper panels of Fig.2.15 and 2.7.2.2). In comparison the fronts in helium discs exhibit additional

features, which can be seen as �humps� in the pro�les of Tc(R) and Σ(R) plotted in Fig.2.15 C&D

and Fig.2.16C&D.

The breaks in the slope of the temperature gradient appear at roughly the same temperatures

both for the heating and cooling fronts. Using the Saha equation one can convert these temperatures

to energies and attempt to identify them with the energies corresponding to the di�erent atomic

transitions in helium.

The �rst characteristic hump appears at T ∼ 26 000 K. At this temperature one electron is
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Figure 2.16: The structure of heating fronts in solar composition disc and purely helium disc. Top panels (A),

(B): solar disc, Bottom panels (C), (D): pure helium disc. Left column (A), (C): front seen in Σ pro�le, Right

column (B), (D): Tc pro�le. Models calculated for αh = 0.1, αc = 0.1, Ṁtr = 0.1 × 1016 g/s, M1 = 1.0 M� and

〈Rd〉 ≈ 0.8× 1010 cm.
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in the state 1s and the second electron starting from orbital 3s gradually passes to higher states

(3p, 3d, 4p, ..) as the temperature rises and �nally at T ∼ 28 560 K it becomes ionized. With further

rise of temperature the �rst electron which was in the ground state is excited to states: n = 2 (at T ∼
47 000 K), n = 3 (at T ∼ 56 000 K), n = 4 (at T ∼ 59 000 K). At temperature of ∼ 63 150 K helium

becomes double-ionized. The hump in the temperature pro�le appearing for T ∼ 80 000 − 92 000 K

(∼ 69− 80 eV) can be assigned to double-photoionization and di�erent negative-ion resonances.

These transitions of helium electrons between di�erent energy levels cause the changes in the

opacities and the breaks seen in Σ pro�le.

In the case of solar composition discs we do not see any features from atomic transitions of helium

and metals, because the fronts there start to propagate at lower temperatures and much lower densities

(i.e. hydrogen ionization temperature ∼ 15 000 K and Σ ∼ 30 g cm−2) at which these transition do

not take place or are negligible because of small contribution of metals to overall disc composition

(like single ionization of carbon at T ∼ 12 000 K ).

2.7.2.2 Front width and velocity

The width of the heating/cooling front de�nes the temperature and surface density gradients and

(mass and angular momentum) �uxes in the front. It is also closely connected to the thermal time

scales in the disc.

The width of a front is the distance it travels during several thermal time scales. We approximate

it following Menou et al. (1999) as 90% of width of the region in which the transition of α between

its cold and hot value takes place (the α �jump� is given by Eq.(2.60)). This region is marked in all

three panels of Fig.2.17 between points 1 and 2.

We adopt the de�nition of the front location in the disc from Menou et al. (1999) as the radius RF

at which the central temperature reaches the value lying in the instability regime, i.e. where the disc

matter becomes partially ionized. For the solar composition disc RF is de�ned where Tc = 1.8×104 K

(Menou et al., 1999) and for helium discs we de�ne RF where Tc = 4.0× 104 K (Fig.2.17).

The front velocity is calculated from the formulae given by Menou et al. (1999). We also calculate

it by di�erentiating the front location in time in the numerical simulations of the light curves.

According to Menou et al. (1999) the cooling front velocity is

vfront,cool = αh cs

(
H

R

)0.7

(2.66)

where αh is the viscosity parameter in a hot state,cs is a speed of sound and H is a disc height scale

in a given radius R (the similar formula was derived by Vishniac and Wheeler (1996))

Substituting cs =
√
kTc/4mH (in the case of helium) and H = cs/ΩK into equation (2.66) we get

that

vfront,cool = αh

(
k

4mH

)0.85(
R

GM1

)0.35

T 0.85
c . (2.67)

The calculated values of vfront,cool for three di�erent chemical compositions of the disc and three
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Figure 2.17: (A) The pro�le of α in the disc during the

propagation of the heating front. The width of the front is

de�ned as 90% of region between points 1 and 2 width (the

region of α transition). (B) The zoom of the Σ pro�le (R =

0.4 − 0.55 × 1010 cm) with points 1 and 2 corresponding to

the point on the top, left plot, point RF is determined by the

radius where front is localed. (C) The zoom of Tc pro�le in the

same range of radii as for Σ and with points corresponding to

point on the Σ pro�le. The model parameters are: αc = 0.02,

αh = 0.1, Ṁtr = 2.0 × 1016 g/s, M1 = 1.0 M�, 〈Rd〉 =

1.2× 1010 cm.
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di�erent pairs of αh and αc are listed in Table 2.4. It can be seen that the velocity of the cooling fronts

in the hydrogen-rich discs are about twice that of fronts in helium-dominated discs. This di�erence is

shown in Fig.2.18D where blue line is the velocity of the cooling front in solar composition disc while

lines red and green lying below it are for helium-dominated discs. This di�erenece in velocities results

from the molecular mass of helium which is 4 times that of hydrogen and from the values of the central

temperatures which in helium-rich discs are about 2 times higher than Tc in solar composition discs.

The cooling front in solar composition disc in the model shown with the blue line in Fig.2.18D is

re�ected before it arrives to the inner disc edge. Moreover it forms not exactly at the outer edge but

at smaller radius. This is the reason for its slightly di�erent behavior from that of two other fronts

shown on the diagram - it has not time to establish its velocity to the asymptotic value and the rapid

acceleration near the outer edge is the e�ect of the transition from cooling to heating front.

Fig.2.18C illustrates the impact of αh and αc on the cooling front velocity in the helium disc with

Z = 0.02. There is almost no di�erence in vfront for αc = 0.05 and αc = 0.02 (green and red line

respectively) but the change from αh = 0.1 to αh = 0.2 rises vfront almost two times in the middle

region of the disc.

The general characteristic of the cooling front is that it strongly deccelerates at the initial stage

of its propagation down to the �asymptotic regime� where its velocity is roughly constant until it

approaches the inner disc edge where it accelerates again due to the boundary condition (the rapid

increase in vfront in solar composition disc at larger radii than in the case of green and red line, means

that the cooling front has been re�ected before arriving to the inner disc radius). In Menou et al.

(1999) the gas velocity at the front is approximated as vF ∼ 1/7αFcF , where αF and cF are the

values at the front. We �nd that vF ∼ 1/7αhcs is comparable to the velocity of the cooling front

(vfront) in the asymptotic regime: the rate at which the gas out�ows from the hot to the cold region

at the transition zone determines the speed at which the cooling front can penetrate into the hot gas.

However, in general vF 6= vfront.

When the inside-out heating front starts to propagate it rapidly slows down just as the cooling front

does but then it does not travel with the approximately constant vfront but keeps slowly deccelerating

until it arrives to Rd where it rapidly vanishes. Fig.2.18A and B the strong decceleration of vfront

appears at di�erent radii what marks the location at which the heating front starts.

The initial decceleration of both types of the fronts is induced by the fact that in both cases the

front propagates into the direction of increasing Σ.

The dependence on α is similar for the velocity of the heating fronts what is shown in Fig.2.18A

(colors of lines correspond to the parameters as in the case of the cooling front). The increase of

heating front velocity is proportional to the increase of αh value. In the case of a heating front the

impact of αc is more noticable (compare green and red lines) because the onset and the propagation of

the heating front depends on the Σ+
crit and the surface density in the disc at the end of the quiescence

- for αc = 0.05 front starts at larger R (green line). The blue line in Fig.2.18B shows that the heating

front starts very close to the outer edge in the solar composition disc (for the same paramets critical

values of Σ for solar case are much lower from those in the helium discs).
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Y = 0.98 Z = 0.02 αh αc RF vF vfront cs

Heating front 0.2 0.05 0.536 - 2.06 ∼ 9.1

0.1 0.05 0.289 - 1.15

0.1 0.02 0.208 - 1.57

Cooling front 0.2 0.05 0.384 ∼ 0.26 0.30 ∼ 9.1

0.1 0.05 0.329 ∼ 0.13 0.19

0.1 0.02 0.498 ∼ 0.13 0.15

Table 2.3: The di�erent velocities connected with the heating and cooling fronts in the disc with Y = 0.98 Z = 0.02.

RF is the front location in RF = 1.0× 1010 cm, vF is the velocity at the cooling front calculated according to formula

given by Menou et al. (1999) (vF ∼ 1/7αhcs) in km/s, vfront is the front velocity at RF (in the asymptotic regime) in

km/s obtained from the numerical calculations and cs is the speed of sound in the temperature Tc ∼ 4.0× 104 K.

From Table 2.3 it can be seen that the velocity of the heating front is roughly proportional to

αhcs ∝ αhT
0.5
c in analogy to the velocity of an ignition front (Menou et al., 1999; Meyer, 1984). The

higher temperatures in the purely helium disc are the reason why the heating front in the purely

helium disc is faster from the front in the disc with Z = 0.02 (green and red line in Fig.2.18B).

solar 100% He 98 % He

αh 0.2 0.1 0.1 0.2 0.1 0.1 0.2 0.1 0.1

αc 0.05 0.05 0.02 0.05 0.05 0.02 0.05 0.05 0.02

Wcool/RF ∼ 0.09 ∼ 0.06 ∼ 0.05 ∼ 0.09 ∼ 0.06 ∼ 0.06 ∼ 0.12 ∼ 0.08 ∼ 0.08

Wheat/RF ∼ 0.03 ∼ 0.03 ∼ 0.02 ∼ 0.024 ∼ 0.025 ∼ 0.01 ∼ 0.03 ∼ 0.03 ∼ 0.02

Table 2.4: The widths W of the cooling and heating fronts for three sets of α parameters in the discs of three di�erent

chemical compositions: solar, purely helium and helium with 2% of metals. The front width are normalized to the

radius in which the front is located and are in units days/cm.

The width W of the fronts is devided by the radius in which they are located, RF. The cooling

fronts are broader and slower than the heating fronts which is connected with the slower di�usion of

the matter in the cold region inside and behind the cooling front. We �nd that in helium-dominated

disc W ∝ H for any value of αh and αc, similar to what has been found by Menou et al. (1999) in

hydrogen-dominated discs. The slope of the linear �t of the form W = AH, where A is the constant,

di�ers between the discs of di�erent composition and di�erent values of α. The relation between

W/RF and H/RF for the cooling front propagating in solar, purely helium and helium with Z = 0.02

for αh = 0.2, αc = 0.05 is shown in Fig.2.19.

The cooling front widths are similar for all disc compositions and all set of α. The same is true

for the heating fronts.

All models presented in Fig. 2.18 have been calculated for M1 = 1.0 M�, 〈Rd〉 ≈ 1.2 × 1010 cm

and Ṁtr = 2.0× 1016 g/s.
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Figure 2.18: (A): The heating front velocity in the helium disc with Z = 0.02 for 3 sets of α's: αh = 0.2, αc = 0.05

(blue), αh = 0.1, αc = 0.05 (green), αh = 0.1, αc = 0.02 (red); (B): The heating front velocity for αh = 0.2, αc =

0.05 for 3 di�erent disc chemical compositions: Y = 0.98 Z = 0.02 (red), Y = 1.0 (green), solar (blue). (C): The

cooling front velocity in the helium disc with Z = 0.02 for 3 sets of α's: αh = 0.2, αc = 0.05 (blue), αh = 0.1, αc =

0.05 (green), αh = 0.1, αc = 0.02 (red); (D): The cooling front velocity for αh = 0.1, αc = 0.05 for 3 di�erent disc

chemical compositions: Y = 0.98 Z = 0.02 (red), Y = 1.0 (green), solar (blue). All models have been calculated for

M1 = 1.0 M�, 〈Rd〉 ≈ 1.2× 1010 cm and Ṁtr = 2.0× 1016 g/s.
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Figure 2.19: The relation of the normalized width of the cooling front to the normalized height of the disc at the

radius in which the front is located. The points are W/RF and H/RF read out from simulations for the cooling front

caught at di�erent locations RF during its propagation through the disc. The lines are the linear �t to the points of

the corresponding color: hydrogen-dominated disc (blue), purely helium disc (green) and Y = 0.98 Z = 0.02 (red). In

all cases αh = 0.2, αc = 0.05, M1 = 1.0 M�, Ṁtr = 2.0× 1016 g/s, 〈Rd〉 ≈ 1.2× 1010 cm.

2.7.3 The outbursts

The DIM is supposed to describe both dwarf novae outbursts and AM CVn star outbursts (see Chap.4).

The best way to see how the chemical composition of the disc can in�uence the observational light

curves is to investigate what are the di�erences between the normal outbursts in helium- and hydrogen-

dominated discs.

In the case of solar composition discs to obtain outbursts of an observed amplitude one has to

assume αc 6= αh (Smak, 1984). Yet the �rst look at Fig.(2.20), which shows the synthetic light curves

calculated for discs of the same parameters but di�erent chemical compositions, suggests that this

condition may no longer be necessary in the case of helium-dominated discs.

The light curves in Fig. 2.20 are calculated for solar composition, pure helium and helium-

dominated (Y = 0.98 Z = 0.02, Y = 0.96 Z = 0.04) discs. In all cases α is assumed to be con-

stant through the outburst cycle: αc = αh = 0.1 and the parameters are: Ṁtr = 1.0 × 1015 g/s,

〈Rd〉 ≈ 1.2× 1010 cm and M1 = 1.0 M�.

The light curve for a solar composition disc shows (Fig.2.20C) the low-amplitude (∼ 0.5 mag)

fast (with period of ∼ 1.2 d) light variations hardly resembling the dwarf novae outbursts. Things

are di�erent for purely helium disc (Fig.2.20A) where outbursts have amplitudes up to 2.0 mag and

repeat about every 9 d. The addition of metals (Z = 0.02, Z = 0.04) to helium decreases An to

around 1 mag (Fig.2.20B) and rises their frequency to ∼ 2 d but also changes their shape.

Those di�erences in the light curves mirror the di�erent critical surface density ratios βc =

Σ+
crit/Σ

−
crit for di�erent disc chemical compositions. The critical values calculated for αh = αc = 0.1,

M1 = 1.0 M� in radius R = 5.0× 109 cm, together with corresponding βc and opacities κR are listed
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Figure 2.20: The light curves calculated with αh =

αc = 0.1, Ṁtr = 0.1×1016 g/s, 〈Rd〉 ≈ 1.2×1010 cm,

M1 = 1.0 M� for: (A) Y = 1.0, (B) Y = 0.98 Z =

0.02, and (C) solar composition disc.
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in Table 2.2. For given parameters βc ∼ 3 in a helium disc while for solar composition disc: βc ∼ 1.4.

Therefore, to have An of the same order in both cases βc has to be increased in the solar case and the

only way to obtain this is to change α between the hot and cold states of the disc. In general βc in

helium discs decreases with the increasing metallicity (see Sect.2.7.1) what decreases the amplitude

of the outbursts.

Despite that the outburst amplitudes in pure helium discs with constant α resemble the dwarf nova

outbursts, α still has to have two di�erent values for hot and cold helium-dominated disc because:

� the observed An in AM CVn stars are much higher than 2 mag (up to 5 mag) and without

changing α such amplitudes can not be attained even for purely helium discs

� the observations show that discs in AM CVn stars are de�nitely not pure helium (Sect.4.3),

therefore the maximum outburst amplitude for constant α would be even lower than 2 mag.

Besides the amplitude βc in�uences also the recurrence times of the outbursts. A βc higher in pure

helium than in hydrogen-dominated disc prolongates quiescence and so the outbursts are less frequent.

From our results it also follows that we can not say anything new about α from the di�erences

in AM CVns and DN light curves, because the chemical composition of the discs has an important

impact on their characteristics.

However, the conclustion of Sect.2.7.1 should have their re�ection in the modeled light curves:

1. The increase of Z in the He-dominated disc has the same e�ect as decrease of the ratio αh/αc-

it decreases the outburst amplitudes and recurrence times. This e�ect is presented in Fig.2.21:

blue line is the model of the purely helium disc, green line is He-rich disc with Z = 0.02 and

red line is for model with Y = 0.96 Z = 0.04. All three models are calculated for αc = 0.05,

αh = 0.1, Ṁtr = 0.1× 1016 g/s , M1 = 1.0 M� and 〈Rd〉 ≈ 1.2× 1010 cm.

2. In order to obtain similar shapes of the light curves for H-rich and He-rich discs (with the same

model parameters) one should take higher values of αh and αc for He-rich disc what is shown

in Fig.2.22.The diagrams A and C show similar shape of the light curves for solar composition

disc with αh = 0.1, αc = 0.05 and He-rich disc with Z = 0.04 with αc = 0.4, αh = 0.9, the

amplitudes di�er by about ∼ 0.5 mag. However, the time scales are completely di�erent so the

idea that α could be estimated from the shape of the light curves of two systems having similar

parameters and known chemical composition of the disc would not work.

2.7.3.1 Re�ares

Since the cooling front and inside-out front propagate against the surface density gradient they both

can be stopped before arriving to the either of two disc edges. This is especially probable when the

disc has accumulated a lot of mass during the quiescence and during the rise to an outburst (this is

the situation when Ṁtr is high and αc low, it can be also the case in the large discs) and/or when the

hot state viscosity is not e�cient enough to shu�e this mass excess to the inner region where it can

be accreted (when αh is relatively low).
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Figure 2.21: The light curves calculated for 3 di�erent

amounts of metals in He-dominated disc: Z = 0.0 (blue

line), Z = 0.02 (green line) and Z = 0.04 (red line). The

models parametes are: αc = 0.05, αh = 0.1, Ṁtr = 0.1 ×
1016 g/s, M1 = 1.0 M� and 〈Rd〉 ≈ 1.2× 1010 cm.
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Figure 2.22: The light curves for the models with

Ṁtr = 0.1× 1016 g/s, M1 = 1.0 M� and 〈Rd〉 ≈ 1.2×
1010 cm: (A) solar composition disc with αh = 0.1,

αc = 0.05, (B) disc with Y = 0.96 Z = 0.04 with

αh = 0.1, αc = 0.05, (C) disc with Y = 0.96 Z = 0.04

with αh = 0.9, αc = 0.4.
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Figure 2.23: The examples of re�ares present in the light curves calculated for: (A) αh = 0.1, αc = 0.05,

Ṁtr = 1.0× 1016 g/s, M1 = 1.3 M�, 〈Rd〉 ≈ 3.0× 1010 cm, disc with Y = 0.98 Z = 0.02; (B) αh = 0.1, αc = 0.05,

Ṁtr = 0.1× 1016 g/s, M1 = 1.3 M�, 〈Rd〉 ≈ 0.7× 1010 cm, solar composition disc.

The mass out�ow present during the cooling front propagation leads to the increased Σ in the cold

region behind the front. In Menou et al. (1999) the authors show that the Σ(R) pro�le is self-similar

when the cooling front propagates in the almost constant velocity in the asymptotic regime. Hence,

as the cooling front moves to the lower radii at some point the post-front Σ may become high enough

to cross Σ−crit . In this situation the new heating front arises and starts to move outwards. The matter

heated by this newly formed front �ows at the high rate into the zone of the cooling front, rising its

temperature and surface density. This in�ow of the hot gas eventually �kills� the cooling front and

only a heating front is left. It looks like the cooling front had been re�ected before it arrived to the

inner edge.

A similar mechanism explains the re�ections of the inside-out heating fronts. If the post-front Σ

remains close to Σ+
crit the elevated accretion rate in the hot region behind the propagating inside-out

front may cause that at certain radius Σ < Σ+
crit and the cooling front will start to form. The reduced

transport of the angular momentum through the emerging cold zone �nally stops the propagation of

the heating front and the newly formed cooling front will di�use inwards.

The examples of manifestation of the cooling and heating front re�ections in the light curves are

presented in Fig.2.23 for helium-dominated disc (A) and solar composition disc (B) (the re�ares are

also present in the light curves in Fig.2.20B, and Fig.2.20A and C). The re�ares show up as the

low-amplitude light variations of short duration and recurrence times superimposed on the �main�

outburst-decay which gradually fade. This gradual decrease of the re�ares magnitude comes from the

consecutive re�ections of heating and cooling fronts at smaller and smaller radii in the disc in course

the disc losses its mass.

As it was mentioned the Σ(R) pro�le in the case of cooling front is self-similar in the asymptotic

regime of vfront. In this case the post-front surface density Σ(Rp−f) is comparable to KΣ+
crit(Rp−f),

where K is the self-similarity constant which depends on the primary mass and both parameters α
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(Menou et al. (1999)). The re�ares will occur whenever the condition KΣ+
crit(Rp−f) > Σ−crit(Rp−f) is

ful�lled. It is less likely that the re�ection of a cooling front will appear when M1 is smaller because

according to Menou et al. (1999) K decreases with M1.

Because of the decrease of βc with higher Z, the higher the metal content in the He-dominated disc

the more prone this disc is to re�ares. Also re�ares are more probable to appear in a solar composition

disc than in a He-rich disc when they both have similar system parameters.

These considerations about the re�ares may give a hint on what causes the observed �sawtooth�

shape of the light curve of some dwarf novae, for example V794 Aql (see e.g. Honeycutt and Robertson

(1998)) - the reason may be that the disc is overabundant in metals comparing to the solar composition

disc.



Chapter 3

Numerical tools

The code used for the numerical studies of dwarf nova behavior is based on the method of Eggleton

Eggleton (1971) which was originally used for calculations of stellar evolution. This method is a

version of the Henyey method to which the adaptive grid is applied.

3.1 The Henyey method

There are two types of numerical methods for approximating the time derivatives: the implicit and

the explicit scheme. Lets consider the time interval [tn, tn+1] and assume that the variables xn at

time tn are known while the variables in the next time step tn+1, xn+1, are to be calculated. If the

time derivatives depend only on variables xn the method is explicit. If in turn the time derivatives

depend both on variables xn and xn+1 the method is implicit - the time derivatives are evaluated

simultaneously to the variables xn+1 on which they depend. The advantage of the implicit scheme is

that it converges for larger time steps for the given spacing of the mesh points. In the explicit method

the Courant�Friedrichs�Lewy condition has to be ful�lled to ensure the convergence of the numerical

solution. According to this condition the time step ∆t has to be smaller than ∆x/cs, where ∆x is the

smallest space interval between two neighboring mesh points and cs is the speed of sound. In our case,

in which we have to deal with steep spatial gradients of Σ and Tc the explicit method would require

very small ∆t to be numerical stable and would be very time-consuming.

The Henyey method is an implicit iterative procedure. In this method the initial solution in the

sequential time moment tn+1 is �guessed�. Then in each iteration the corrections to all variables at

all points of the mesh are calculated. The new solution is improved during each consecutive iteration

until it reaches the desired degree of accuracy. But before solving the equations one has to de�ne the

distribution of the mesh points on which the solutions will be calculated.

The spacing of the mesh points has to be such that any physical quantity within each interval

should change rapidly - no important information about changes of the physical conditions in the

system should be lost . To achieve that lets de�ne f (i) as the i-th function which varies slowly from

73
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point to point, xi as the i-th variable and k as the label of the mesh points (k = 1, 2, ..N). The mesh

intervals should minimize the expression:

N∑
k=2

I∑
i=1

(f
(i)
k − f

(i)
k−1)2 (3.1)

where I is the number of equations to solve.

Following Eggleton (1971) we replace the variable R by the parameter q which runs from 0 to 1

through the disc (q = 0 at R = Rin and q = 1 at R = Rd) with equal increments between the mesh

points. If in the Eq.(3.1) the sum is approximated by the integral the problem reduces to �nding the

extremum of the functional

δ

ˆ R

0

I∑
i=1

(
df (i)

dR

)2
dR

dq
dq = 0. (3.2)

If only f (i) are known functions of R the solution consists of the pair of di�erential equations

dq

dR
= Φ ·W (x1, x2, .., ), (3.3)

dΦ

dR
= 0 (3.4)

where

W (x1, x2, .., ) =

[
I∑
i=1

(
df (i)

dR

)2
]1/2

(3.5)

The boundary conditions are given by q = 0 and q = 1. The function W (x1, x2, ...) becomes small

when the space derivatives of f (i) become large. Φ is the normalization constant and its role is to

adjust the grid to the range covered by R ( Eq.(3.4)).

The above prescription gives the mesh which adjusts its intervals to the function f (i) which changes

the most rapidly in a given region of the disc. If for example in the certain region of the disc the most

rapidly changes temperature Tc then the mesh will be distributed so that the changes of Tc within

each mesh interval were not too large.

As soon as the mesh is de�ned the di�erential equations can be solved with the procedure proposed

by Henyey and which general form is presented below.

At the beginning the set of �rst-order di�erential equations, of the general form

dxi

dR
= f i(x1, ..., xI) (i = 1, .., I), (3.6)

has to be discretized on the given mesh what means that they have to be replaced by di�erence form

for �nite radius interval [Rk, Rk+1]. xik and xik+1 are the variables at the both ends of the interval. If

one de�nes the functions
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Aik :=
xik − xik+1

Rk −Rk+1
− f (i)(x1

k+1/2, ..., x
I
k+1/2), (3.7)

where functions f (i) are taken for some arguments xik+1/2 of value between xik and xik+1, then the

di�erential equations (3.6) take the from

Aij = 0 for [Rk, Rk+1]. (3.8)

The �rst approximation of the solution of Eq.(3.8) has to be "guessed" for example by extrapolation

of the foregoing solution (i.e. calculated at tn−1) and we denoted it by (xik)1. Substitution of (xik)1

into Eq.(3.8) gives Aji (1) 6= 0 where �1� stands for (xik)1. Next one has to search for the corrections

δxik to (xik)1 (the corrections for all variables on all mesh points) to obtain the second approximation

(xik)2 = (xik)1 + δxik for which Aik vanishes Aik(2) = 0 (i.e. Aik(1) + δAik = 0). If Aik(2) 6= 0 again the

next approximation has to be found with the new correction: (xik)3 = (xik)2 + (δxik)1 and substituted

to Eq.(3.8) to check if Aik(3) = 0. If not the procedure repeats. Usually Aik does not equals exactly

zero and one has to set the accuracy ε within which Aik should be approach zero with the reasonable

number of iterations. Thus the iterations will be repeated until Aik < ε.

The corrections δxik are found using Newton-Raphson method. It is the fast converging method

to �nd the roots of the real-valued function , however, it may diverge if the "guessed" solution is too

far from the real one.

In this method the function Aik(1) is �rst approximated by its tangential A
′i
k (1)

A
′i
k (1) =

Aik(1)− 0

(xik)1 − (xik)2
, (3.9)

and then one calculates the point in which this tangential intersects with x axes

(xik)2 = (xik)1 −
Aik(1)

A
′i
k (1)

. (3.10)

(xik)2 is the next approximation of the solution and it lies closer to the function root. One proceeds

with iterations until the desired accuracy is achieved. After n+ 1 iterations the form of the solution

is

(xik)n+1 = (xik)n −
Aik(n)

A
′i
k (n)

. (3.11)

Once the roots of Aik are found one can calculate the functions f i at the given time tn. Those

function become the initial guess for the solutions of Eq.(3.7) in the next time step tn + ∆t and the

whole procedure repeats from the beginning.
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Figure 3.1: The numerical procedure of calculating the light curves described in following subsections.

3.2 The code

The code we use has been written by Jean-Marie Hameury, Guillaume Dubus and Kristen Menou in

Fortran77 with some elements of Fortran95 introduced. The use of adaptive grid allows very high

resolution of the transition fronts which propagate in the disc what makes this code unique among all

others used for dwarf nova outbursts calculations.

The calculation of the light curves proceeds in two stages: (i) �rst one has to solve the vertical

structure equations to obtain all possible values of Q+ and Teff for given Σ and Tc in the given R;

(ii) the second stage considers the calculations of the solutions for the disc time evolution equations.

These solutions are found in the cube of solutions (R,αeff , Teff) produced in the �rst stage.

3.3 Stage I - the vertical structure code

3.3.1 Chemical composition

To start with the calculations of the disc vertical structure �rst one has choose the chemical compo-

sition of the disc and calculate corresponding tables of opacities and thermodynamical quantities.

The mean Rosseland opacities for temperatures log T = 4.0 − 8.7 K are taken from OPAL ta-

bles (Iglesias and Rogers, 1996) and for lower temperatures (log T < 4.0 K) from Alexander tables

(Alexander and Ferguson, 1994).

The thermodynamical quantities such as total pressure, adiabatic gradient and (d log T/d log ρ)P ,
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are calculated in two temperatures regimes: for higher temperature the equation of state is interpolated

from OPAL tables and for lower temperatures the Saha equations are solved following Paczy«ski

(1969).

The chemical composition is de�ned by the hydrogen mass fraction X, helium mass fraction Y

and metals mass fraction Z. We use the tables where the metals relative distribution is set to be solar

(Grevesse and Noels, 1993).

To calculate the thermodynamical quantities characterizing the given chemical composition of the

disc one has only to set desired X and Z in the code which produces the data table consisting if total

pressure, adiabatic gradient and (d log T/d log ρ)P . This table is then used as the input data �le in

calculations of the vertical disc structure and the disc time evolution. The quantities in the table

are calculated for 70 values of temperature T from log T = 3.75 K to log T = 8.7 K and 19 values of

parameter R ≡ ρ/T 3
6 (where T6 = T ∗ 10−6 K) which lies in the range logR = −8.0− 1.0 g cm−3K−3.

3.3.2 Vertical structure cube

Once the chemical composition of the disc is determined the vertical structure equations can be solved.

At the beginning one has to �x the mass of the primary M1, the number of mesh points N , the

accuracy of the solution ε and the maximum number of iterations imax within which this accuracy

should be achieved, the ranges of R, Σ and Tcand the number of equidistant values taken in each

range for which the solutions will be found.

If one considers the irradiation of the disc by the primary white dwarf then one has to recalculate

the vertical disc structure every time one changes the mass of the primary M1 because it a�ects the

irradiation temperature de�ned by Eq.(4.9) what modi�es the solutions. When no irradiation is taken

into account M1 enters into calculations of the vertical structure only via Keplerian velocity.

For investigations of DN and AM CVn stars we typically set 50 values of R from the range

logR = 8.5 − 11 cm, 50 values of Σ running from Σ1 = 0.001 g/cm2 to Σ50 = 1000 g/cm2and 100

values of Tc from 103 K to 106 K . This parameter space is su�cient for the range of values found in

evolution calculations. We also adopt N = 101, ε = 0.01 and imax = 500.

The routine starts with the choice of the lowest value from the R-range and �xing it as the radius

R1. Then for R1 the lowest value from Tc range is taken. For �xed R1 and Tc,1 the vertical structure

equations are solved for each value from the Σ-range. When solutions for all values of Σ are found

the next value Tc,2 is taken (with the same R1) and the calculation are made for each Σ again. When

solutions for all values of Tc and Σ in R1 are found the radius changes to R2 and the whole procedure

repeats. Thus the result is the 50× 50× 100 cube of (Teff , αeff) points.

In the case of the vertical code the grid is de�ned as Hameury et al. (1998)

W =
4

H2
+

(
1

Σ

dς

dz

)2

+

(
d lnP

dz

)2

(1 + 2∇2) (3.12)

where H = (<Tc/Ω
2
K)1/2 is the scale height of the disc.
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If the temperature gradient ∇ is radiative one calculates from expression (see Sect.2.2 Eq.(2.17))

∇ = ∇rad =
κRPtotFz

4Pradcgz
(3.13)

where c is a speed of light, gz is the vertical component of gravity.

To �nd ∇conv one has to follow the derivation given in Kippenhahn and Weigert (1990) and then

calculated it in the mixing length approximation following Paczy«ski (1969).

The set of equations which has to be solved in order to �nd ∇conv (see Sect.2.2) is

Fconv = cPρTcvml
`ml

H
(∇conv −∇′), (3.14)

v2
ml = −gz`

2
ml

8H

(
∂ ln ρ

∂ lnT

)
P

(∇conv −∇′), (3.15)

∇conv −∇′

∇′ −∇ad
= γ0vml, (3.16)

where

γ0 =
cPρ

8σT 3
c

1 + 1
3 (κRρ`ml)

2

κRρ`ml
. (3.17)

The expression κRρ`ml stands for the optical depth of convective eddies: τml = κRρ`ml.

The Eq.(3.14)-(3.16) can be reduced to one cubic equation if one introduces the parameters

C =
gz`

2
ml

8H

(
∂ ln ρ

∂ lnT

)
P

, V =
1

γ0

√
C(∇rad −∇ad)

, A =
9

8

τ2
ml

3 + τ2
ml

, (3.18)

and the variable

y = vmlV γ0. (3.19)

The �nal equation to solve to is

2Ay3 +Ay2 + V 2y − V = 0. (3.20)

It turns out that there is only one real root of the Eq.(3.20) which can be found with the iterative

method and which gives the sought ∇conv

∇ = ∇conv = ∇ad + (∇rad −∇ad)y(y +A). (3.21)

The mixing length `ml is proportional to the pressure scale height H where the proportionality

constant is marked with αml in the literature, but it should not be confused with αh, αc or αeff .

For the calculations of the stellar models the value of αml is usually assumed to range from 1.0 to

2.2 depending on the star e�ective temperature and surface gravity. For the Sun it is found to be

α�ml = 1.76± 0.08 (Trampedach and Stein, 2011). Here we take αml = 1.5 following Hameury et al.
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(1998).

To determine the vertical disc structure one has to solve 7 di�erential equations (2.12), (2.13),

(2.14), (2.23), (3.3), (3.4), (3.24) which can be written in the general form

dFi(x
j)

dq
= Gi(x

j) (i = 1, .., 7) (3.22)

The variables xj for which the equations are to be solved are: Tc,ρ, z, Fz,ς ,αeff , and Φ.

The general form of the discretized equations (3.22) is

Fi(x
j
k)− Fi(xjk−1)− δq [βiG(xjk) + (1− βi)G(xjk−1)] = 0, (3.23)

where δq = 1/(N − 1) is the mesh spacing, xjk is the value of the quantity x
j at the grid point k, and

βi ∈ [0, 1] are weights. We assume βi = 0.5 what leads to the second-order scheme for solving the

equations.

The solutions of the set of equations of the form of Eq.(3.23) give all possible values of Teff and

αeff for radius R in thermal equilibrium for given ranges of Tc and Σ, where αeff is the parameter

described in Sect.2.2. It is the condition for αeff :

dαeff

dz
= 0 (3.24)

which stands for the 7th equation de�ning the disc vertical structure.

To sum up - the output of the vertical structure code is a cube 100× 50× 50 of all possible values

of Teff and αeff in each R for assumed ranges of Tc and Σ.

Before this table is incorporated into the evolution code it is �rst converted into the binary format

and the solutions are rede�ned from (αeff , Teff) into (σT 4
eff/αeff , Teff).

3.4 Stage II - time evolution code

The initial parameters in this part of the code are: the number of grid points N , the primary mass

M1, parameters αh and αc, the mass transfer rate from the secondary Ṁtr, the inner disc radius

Rin, the circularization radius Rcirc, and the parameter c from Eq.(2.33) which, together with Rcirc,

determines the mean disc radius 〈Rd〉.
As it was mentioned above the solutions of the vertical structure are calculated for thermal equi-

librium with some e�ective viscosity parametrized by αeff

3

2
αeffΩ2

KP = σT 4
eff . (3.25)

αeff is the measure of the disc departure from the thermal equilibrium de�ned by αTE (given by

Eq.(2.60)) in course of its time evolution (in the hot disc αTE = αh and in the cold disc αTE = αc).

αeff includes the contribution of the non-equilibrium terms (we denote them as �NE�) of thermal
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equation (see. Sect.2.3 and Hameury et al. (1998))

αeff = αTE +
NE

3/2 Ω2
KP

(3.26)

We de�ne Q+
eff as

Q+
eff =

σT 4
eff

αeff
. (3.27)

which is the solution of the vertical structure code.

In the evolution code the viscous heating term in each radius is evaluated as Q+ = Q+
effαTE (the

cooling term is as always Q− = σT 4
eff). If αTE < αeff then Q+ < Q− and the disc in the given R cools

down, if αTE > αeff the opposite happens: the heating dominates over cooling, and when αTE = αeff

the given disc radius is in a thermal equilibrium.

The grid for time evolution equations is de�ned as

W = 1 + c1

[
∂ ln(νΣ

√
R)

∂ lnR

]2

+ c2

[
∂ lnTc

∂ lnR

]2

(3.28)

where constants c1 and c2 determine the relative importance of the two variables (νΣ
√
R) and Tc.

(νΣ
√
R) is the variable which describes the distribution of radial velocity of matter in the disc (see

Eq.(2.57)). Setting c1 and c2 one decides how much mesh should be devoted to the region of the disc

where the radial gradient of (νΣ
√
R) is steeper than the radial gradient of Tc and how much of the

mesh should be devoted to the disc region where the opposite situation has place. Typically in the

calculations we use the value of c1 from the range [0.001− 0.1] and the value of c2 lying between 0.01

and 0.2.

In the time evolution code there are 6 di�erential equations to solve (2.26), (2.32), (2.37), (2.39),

(3.3), (3.4) where variables are R, Φ, Tc, Σ, ∂(νΣ
√
R)/∂R and ∂Tc/∂R.

The �rst thing to do before running the code is to set the initial parameters and �nd the solutions

for these new parameters. The calculations should start with the solutions for a stable disc (hot or

cold) with arbitrary Σ distribution and for very large time step (∆t = 1012 s). Such initial guess

usually allows the code to converge to the solutions for the stable disc with the new parameters.

However, one has to be careful not to change the initial parameters too drastically and not to change

all of them at once - it may cause that the guessed solution will be too far from the real solutions and

the code will diverge.

If the new parameters are su�ciently close to the previous ones and the code converges then the

results are used as the initial state for the calculations of the disc evolution for the same parameters

but with smaller time step (typically ∆t = 104 s).

Usually it is su�cient to set the resolution of the grid to 400 points. As it is shown in Hameury

et al. (1998), this is a border number of points in the grid: for N ≥ 400 the grid does not a�ect

the outbursts appearance. However, if the fronts become particularly narrow this number has to be

enlarged and usually 800 points is su�cient for our purposes. At the same time the constants c1 and
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c2 (Eq.(3.28)) have to be increased in order that more points of the mesh were intended for resolving

the propagating front. In some cases the solutions are easier to �nd when the time step is smaller, for

example ∆t = 102 s.

We have encountered two main problems while running the code. First is the lack of convergence

that appears when one sets the initial parameters such that the code tries to �nd the solutions which

are out of the input data cube from the vertical part. The second is a not su�cient number of grid

points to resolve the fronts, especially the heating ones. This is either because the grid is too sparse,

or because there are too few points from grid devoted to the front (c1 or c2 in Eq. (3.28)). The latter

is particularly important when the front arrives at the inner disc edge and it is the most frequent

reason why the evolution code crashes during calculations.
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Chapter 4

AM CVn stars

4.1 Introduction

The �rst to suggest that the star called HZ 29 may be a peculiar helium binary star with short orbital

period of ∼ 18 min was Smak (1967). Nowadays this star is known as AM CVn and it gave the name

for the whole group of the very close binaries which do not show any hydrogen lines in their spectra.

Because these binaries are rather faint (∼ 14− 20 mag) their observed number has been growing

very slowly until recently. The biggest contribution to the observational knowledge about AM CVn

have two surveys: the Sloan Digital Sky Survey (SDSS) which has been operating since year 2000

and till now has discovered 14 AM CVn systems; and the Palomar Transient Factory (PTF) which

�rst light was achieved 13 Dec 2008 and since then it has delivered the light curves of unprecedent

quality of 8 new AM CVn systems. The important thing about PTF is that it is able to detect the

objects down to ∼ 23 mag. Therefore, the future of the AM CVn stars observations seems to be very

promising.

At this moment there are 36 systems classi�ed as AM CVn stars. The outbursts are detected in

the light curves of 20 systems, only 6 are permanently bright and 9 are permanently faint. The state

of the remaining 1 (SDSSJ1525) is not clear yet (P.Groot, 3rd workshop on AM CVn stars). Their

orbital periods are extremely short ranging from 5.4 min for HM Cnc to 65.1 min for V396 Hya. The

periods of 10 systems have not been determined yet.

The primary is a He/CO white dwarf (Bildsten et al., 2006) while the secondary is the most

probably also a He white dwarf.

4.2 Observational light curves characteristics

AM CVn stars are observed in three distinct luminosity states. The state when they are persistently

bright and the outbursting state resemble the states observed in DN. The third state during which

their brightness is persistently in the low level has no a
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nalog among CVs.

All high state AM CVn stars have orbital periods below 20 min . HM Cnc and V407 Vul which

orbital periods are even below 10 min are probably the direct impact systems (Roelofs et al., 2010).

Based on the available database of AM CVn light curves one can conclude that all these systems

show outbursts of amplitudes in the range from 3.5 to 6 mag with recurrence times from ∼ 14.7 to

∼ 450 d but this latter parameter has been determined only for 5 systems (with orbital periods between

24.5 and 28.3 min) for which more than one outburst cycle has been observed. The determination

of the outburst recurrence times is hampered by the selection e�ect - some short outbursts may be

missed in observations. One should also stress that signi�cant variation of the large outbursts (i.e. the

superoutbursts, see below) recurrence time has been observed in CR Boo: from 46.3 to 14.7 d (Kato

et al., 2001) and in KL Dra: from ∼ 65 to ∼ 44 d (Ramsay et al., 2012). The change of the supercycles

(the periods of time between two consecutive superoutbursts, see below) duration is also observed in

ER UMa-type dwarf novae: V1159 Ori (Kato, 2001) and DI UMa (Rutkowski et al., 2009).

One can classify these outbursts as superoutbursts because they resemble the superoutbursts

observed in SU UM-type dwarf novae (Warner, 1995). The most important similarity is the presence of

the superhumps - the low-amplitude ([1] . 0.3 mag) light variations with period a few percents longer

(positive superhumps) or shorter (negative superhumps) than the orbital period of the binary. The

superoutbursts in AM CVn stars can be as short as 9 d but they typically last ∼ 20 d. In some cases

they can be prolongated by a series of frequent (∼ 1 − 2 d period) outbursts of amplitude∼ 1 mag:

the so called cycling state which may last as long as the �smooth� superoutburst itself Patterson et al.

(2000); Kato et al. (2004b). This state is very similar to what is observed in the WZ Sge-type dwarf

novae (e.g. Patterson et al. (2002)) or in some of the SU UMa-type DN like EG Cnc Kato et al.

(2004a). There is another characteristic feature often present in the light curves of the AM CVn stars

- a well pronounced dip which appears suddenly in the middle of the �smooth� superoutburst and

which has also its double in the WZ Sge-type binaries. It is not satisfactorily explained if there is a

relation between dip and cycling state and, if it is, what is its nature.

It seems that the shortness of orbital period has a decisive impact on the presence of the super-

outburst: all SU UMa stars have orbital periods below the period gap (Porb < 2 hr) and they all show

the superoutbursts intermittent by the normal outbursts, the binaries of WZ Sge-type with Porb close

to the minimum orbital period of DN show superoutbursts only and the AM CVns seems to follow

this trend1.

The dip is observed in the light curves of KL Dra (Porb = 25 min), SDSS J0926 (Porb = 28.32 min),

CP Eri (Porb = 28.35 min) or PTF1J0719 (Porb = 26.8 min). The same feature is found in DN of

WZ Sge-type: WZ Sge (Porb = 82 min), AL Com (Porb = 81.6 min) or V485 Cen (Porb = 59 min). It

brings into the mind that the dip is connected with the size of the disc.

The narrow eruptions corresponding to those observed in U Gem-type dwarf novae are called

normal outbursts. They are very common in the light curves of hydrogen-rich binaries but are relatively

1However, so far there seems to be one exception to the rule - U Gem itself. In its light curve one large outburst
has been observed (Mason et al., 1988) in which the superhumps were later identi�ed what classi�es this outburst as
superoutburst (Smak and Waagen, 2004).
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rare in the helium-dominated outbursting systems. In DN the normal outbursts have the bimodal

distribution considering their width: the classi�cation of the narrow ones is quite straightforward

but from the observational point of view the distinction between the wide normal outbursts and the

superoutbursts may be ambiguous. Therefore, the normal outbursts are de�ned as the outbursts

during which no superhumps are present (however, in some cases during normal outbursts following

superoutbursts the superhumps are still detectable).

Another characteristics of the normal outbursts in DN is that they follow the empirical Kukarkin-

Parenago relation (hereafter K-P relation) connecting the outburst amplitude with its recurrence time.

Since this relation should be universal for all outbursts triggered by the same mechanism in the disc

it should describe also normal outbursts in AM CVn stars (see Chap.4).

The light curves of AM CVn stars are complex and they avoid simple classi�cation into distinct

groups. Thus, we characterize the outbursting AM CVn stars with the speci�c examples of the systems

which light curves are the best covered.

4.2.1 CR Boo and V803 Cen

V803 Cen (discovered in 1975, Elvius (1975)) and CR Boo (discovered in 1986, Wood et al. (1987)) were

the �rst outbursting AM CVn stars for which an extended observational campaigns were conducted.

The long-term light curve of V803 Cen consists of two main di�erent states of outburst activity:

1. The state in which the system shows the bright outbursts of amplitudes ∼ 3.7− 4.3 mag (up to

∼ 12.7 mag) and durations ∼ 3− 12 d, and the faint phases during which the system brightness

stays near V = 17.0 for at least 10 − 30 d. The low state is interrupted by short (∼ 1 d), faint

outbursts (∼ 1 mag) which seem to appear every 5 d (Patterson et al., 2000). Because there are

detectable superhumps associated with the bright outbursts the latter can be classi�ed as the

superoutbursts. Thus the considered state consists of the supercycles which period has been

estimated to ∼ 77 d (Kato et al., 2000b).

2. The state during which the binary brightness is at intermediate level and varies rapidly between

V = 14.5− 13.0 mag. Patterson et al. (2000) call this �the cycling state� (we will refer to this

as the state observed in April 1997).

In June 2000 and in June 2003 the superoutbursts had place after which V803 Cen behaved in a

non-standard manner.

After the superoutburst in 2000 the system did not fade to the low state but it stopped at

V = 13.3− 14.0 mag for a long time. The disappearance of the 77-day supercycles suggests that

this state may refer to the standstill states observed in Z Cam-type DN. However, the luminosity

changes by 0.5 − 1.0 mag and with period ∼ 20 h present during this state in V803 Cen are not

observed in DN standstills.

The superoutburst in 2003 appeared to be yet di�erent from all the previous ones. This time

the star after spending 3 days in the brightness maximum suddenly faded by ∼ 2.5 mag. This �dip�
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System Porb (min) M1 (M�) M2 (M�) V range (mag) log Ṁtr
(∗)

[g/s] Ref.

HM Cnc 5.4 0.55 0.27 21.1 ? [1]

V407 Vul 9.5 ? ? 19.9 ? [1]

ES Cet 10.3 0.60− 0.69 0.062− 0.26 16.8− 16.5 17.27+0.07
−0.19 [2], [3]

SDSSJ1908+34 15.8 ? ? 16.1 17.35− 17.73 [4]

AM CVn 17.1 0.71± 0.07 0.13± 0.01 14.0 17.65+0.12
−0.1 [5]

HP Lib 18.4 0.80− 0.49 0.048− 0.088 13.6− 13.7 16.98+0.17
−0.27 [5], [6]

CR Boo 24.5 1.10− 0.67 0.044− 0.087 17.5− 13.0 16.7+0.18
−0.32 [5]

KL Dra 25 ? ? 17.0− 13.8 ? [7], [8]

V803 Cen 26.6 1.17− 0.78 0.059− 0.109 16.8− 12.2 16.75+0.13
−0.19 [5], [9]

PTF1J0719+48 26.8 ? ? 19.4− 15.9 ? [10]

SDSSJ0926+36 28.3 0.85± 0.04 0.035± 0.003 19.6− 16.6 15.79+0.08
−0.1 [11], [12]

CP Eri 28.4 ? ? 20.2− 16.2 ? [13]

V406 Hya 33.8 ? ? 19.7− 14.5 ? [14]

SDSSJ0129+38 37.3 ? ? 20.0− 14.5 ? [8], [15]

SDSSJ1240-01 37.4 0.31− 0.79 0.012− 0.031 19.7− 13.5 14.29+0.32
−0.32 [15], [16], [17]

SDSSJ0804+16 44.5 ? ? 19.0− 17.8? ? [18]

SDSSJ1411+48 46.0 ? ? 19.7− 19.4 ? [19]

GP Com 46.6 0.5− 0.68 0.009− 0.012 16.3− 15.9 ≤ 14.35+0.5†
−0.5 [5]

SDSSJ0902+38 48.3 ? ? 20.2 ? [20]

SDSSJ1208+35 52.6 ? ? 19.4− 18.8 ? [21]

SDSSJ1642+19 54.1 ? ? 20.3 ? [20]

SDSSJ1552+32 56.3 ? ? 20.6− 20.2 ? [22]

V396 Hya 65.1 0.77 0.017 17.6 13.33 [17],[23],[24]

Table 4.1: The list of all AM CVn stars for which the orbital periods were determined up to date with the masses of the system

components and their apparent brightness. The systems in red are in the persistently high state, in black are outbursting, in

blue are persistently faint and in green are supposed to be the direct impact systems, (*) Ṁtr is evaluated for the systems with

estimated distances,†- upper limit. Ref: [1] Roelofs et al. (2010), [2] Copperwheat et al. (2011a), [3] Espaillat et al. (2005),

[4] Fontaine et al. (2011), [5] Roelofs et al. (2007a), [6] Roelofs et al. (2007b), [7] Ramsay et al. (2010), [8] Ramsay et al.

(2012), [9] Kato et al. (2000b), [10] Levitan et al. (2011), [11] Deloye et al. (2007), [12] Copperwheat et al. (2011b), [13]

Armstrong et al. (2012), [14] Roelofs et al. (2006), [15] Shears et al. (2011), [16] Roelofs et al. (2005), [17] Ramsay et al.

(2006), [18] Roelofs et al. (2009a), [19] Anderson et al. (2005), [20] Rau et al. (2010), [21] Anderson et al. (2008), [22]

Roelofs et al. (2007c), [23] Thorstensen et al. (2008), [24] Ruiz et al. (2001).
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(A)

(B)

Figure 4.1: (A) The V803 Cen light curve during the standstill state in April 1997 taken from Patterson et al.

(2000). (B) The superoutburst of the same system in June 2003 from Kato et al. (2004b).

ended one day later when the system brightened again and entered the state in which the rapid

(with period ∼ 0.8− 1 d), low-amplitude (∼ 1 mag) light variations started. This pattern composed

of superoutburst maximum followed by the transient dip in brightness and the long-lasting state of

oscillating light is also present in observations of other superoutbursts in V803 Cen and strongly

resembles the superoutburst of WZ Sge in 2001. This state di�ers from the state observed in V803

Cen in April 1997 (in the latter there is no superoutburst-dip-cycling pattern and the superoutburst

period is not detectable).

We follow the interpretation of Kato et al. (2004b) and de�ne the cycling state as the state of the

superoutburst 2003-type (or WZ Sge-type) while the state from April 1997 and after the superoutburst

in 2000 we consider as the standstill-like with light variations which are not present in the standstills

in dwarf novae.

Elements of the CR Boo light curve are similar to those of V803 Cen. The superoutbursts have

maxima around 14.7− 14.2 mag and last usually 16− 26 d, and the short-lived rebrightenings appear

during the periods of the low state (at V ∼ 16.0− 17.0 mag) with frequency of ∼ 4 d. Usually the

superoutbursts appear every 46.3 d, however in 2001 Kato et al. (2001) noticed the signi�cant short-

ening of the supercycle to 14.7 d. As well as V803 Cen also CR Boo shows the transient dip during

its superoutbursts, the periods which may be interpreted as standstills and cycling states. Peculiar

for CR Boo is that sometimes the outburst preceding the superoutburst is very bright, even brighter

than the superoutburst itself (Kato et al., 2000a).

In both stars the superhumps are detected during the superoutbursts and they are absent in the

rebrightenings considered to be normal outbursts. The superhumps appear just at the peak phase

of the superoutburst, they are detectable during the rapid decline phase from the superoutburst and

possibly they are still present during the cycling state (Kato et al., 2000b).

The fact that the cycling state is observed only right after the occurrence of the superoutburst
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Figure 4.2: The light curve of KL Dra. Courtesy G.Ramsay.

suggests that those phenomena may be coupled.

4.2.2 KL Dra

The light curve of KL Dra consists mainly of superoutbursts of amplitude ∼ 3.5 mag and duration

∼ 14 d which appear almost regularly every ∼ 60− 65 d. At the beginning it seemed that no normal

outbursts are present but now it is certain that at least two short eruptions took place. So far

no cycling states or standstill has been observed but the ∼ 2 mag dip during the better sampled

superoutbursts is well pronounced. Very recently it appeared that the supercycle period has changed

to 44 d (Ramsay et al., 2010, 2012).

4.2.3 PTF1J0719+4858

The latest published member of AM CVn group is PTF1J0719+4858 (in short PTF1J0719) and its

light curve presents the new quality of AM CVn observations.

PTF1J0719 is the most similar to SU UMa among all observed AM CVn stars: both normal and

superoutbursts are detected. Between two superoutbursts one observes about three normal outbursts

of an amplitude ∼ 2.5 d lasting about 1 d and repeating every 10.5 d. The ∼ 20 day superoutburst

is interrupted by a dip and there is no cycling state or standstill after it. After the system leaves the

dip it reenters the slow fading phase and only after ∼ 5 d quickly returns to quiescence. The most

recent part of the light curve indicates that also in this case the supercycle duration change: initially
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Figure 4.3: The light curve of PTF1J0719. Courtesy D. Levitan.

found to be ∼ 65 d the latest one is prolongated to ∼ 78 d.

4.2.4 Other outbursting AM CVns with characteristic light curves

1. SDSS J0926: During 4.5 year period of observations the system showed 6 outbursts of amplitudes

2 − 2.5 mag with the average recurrence times 100 − 200 d. This source is interesting as the

only known eclipsing AM CVn star to date. Its inclination is determined to be 82.6 ± 0.3 deg

(Copperwheat et al., 2011b). There is a characteristic feature in the observed eclipse pro�le: the

small additional dimming at the egress. The width of the eclipse suggests that it is the accretion

disc eclipse and the eclipse asymmetric pro�le is interpreted as the e�ect of the warped disc

geometry (Copperwheat et al., 2011b).

2. V406 Hya: It was discovered as a supernova in year 2003, however the spectroscopic analysis

indicated that it is rather a hydrogen-de�cient dwarf novae. In May 2003 it was observed in its

maximum brightness which was recognized as superoutburst plateau due to the presence of the

superhumps. After several days it faded by about 3 mag and stopped about 2 mag above the

quiescence level. The system stayed in this phase for about 20 d showing occasional eruptions

of amplitude ∼ 2 mag and about 1 day duration. Then the star declined to its low state. There

is also a hint of the dip during the plateau phase of the superoutburst (similar to that in e.g.

KL Dra) (Nogami et al., 2004). This superoutburst pattern again resembles the WZ Sge-type.

3. SDSS J0129: Discovered during its superoutburst on December 2009 this is another AM CVn



90 CHAPTER 4. AM CVN STARS

(A)

(B)

Figure 4.4: (A) The light curve of SDSS J2047 zoomed on the period when the superoutburst appeared. The plot

is taken from Anderson et al. (2008). (B) The superoutburst of V406 Hya in May 2003 taken from Nogami et al.

(2004).

star which has similar outburst activity to that of V803 Cen during its superoutburst in 2003.

In this case six short rebrightenings in the time interval of 3− 5 d were detected right after the

superoutburst maximum phase. After 41 days the SDSS J0129 was still at the level ∼ 1.7 mag

above the level of the minimum light (Shears et al., 2011).

4. SDSS J2047: The light curve of this system is yet poorly covered but the observed superoutburst

is either followed by several rebrightenings or there appears a deep dip (Anderson et al., 2008).

4.3 The chemical composition

Since the disc is a mass spectrometer for the donor chemical composition it re�ects the evolution history

of the secondary and the binary as a whole. The determination of the disc chemical composition may

help to verify their evolutionary tracks.

The observations clearly show that discs in AM CVn stars are not made of pure helium. One has

to look closer at the observed AM CVn spectra to get a hint of what their disc metallicity might be.

The persistently faint systems or outbursting systems in quiescence show a spectrum consisting of

a blue continuum and emission lines among which the strongest are HeI and HeII lines.

Unique for AM CVns is the triple-peak pro�le of the certain emission lines (e.g. HeI) in which

the relative intensities of the central spike and the outer components di�er from line to line. The

ratio of the central component to the outer components rises for the lines which correspond to higher
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excitation states (for HeII line the central part totally dominates the remaining two). It means that

the emission arises in two independent sources: the outer components originate in the disc while the

central spike comes from the region of very high temperatures, most probably from the accreting white

dwarf or the boundary layer.

The two persistently faint systems � GP Com and V396 Hya � are very special. Unlike the other

(outbursting or persistently bright) AM CVn stars, they show an unusual NV to CIV ratio indicating

the signi�cant overabundance of NV, in addition to a strong HeI and a weaker HeII line. They do

not show the Si lines which are usually seen in other binaries of this type what may suggest the metal

poor secondaries (Ruiz et al., 2001). All other binaries in a low state do not have such strong NV line

and in addition show weak SiII and FeII lines.

In the spectra of three low state systems (SDSS J1552, SDSS J1208 and SDSS J1642) there is one

more characteristic feature: a strong absorption in Mg which does not appear simultaneously with the

absorption in Ca which would be expected if one wants to explain the Mg absorption by the metal-rich

(DBZ type) accreting WD (T.Kupfer talk during 3rd AM CVn workshop in Warwick).

In the permanent high-state systems AM CVn or HP Lib the spectrum is dominated by the

absorption lines, but sometimes emission in HeII is also detected. In the optical part of the spectrum

the asymmetrical, broad absorption line of HeI dominates. The UV spectra show broad absorption

lines of HeII, NV, NIV, SiIV, CIV (Wade et al., 2007). The spectra of the erupting systems, CR Boo

and V803 Cen have similar characteristics during outbursts.

For GP Com (Strohmayer, 2004) it is estimated Y = 0.99 and Z = 0.01. Because GP Com and

V396 Hya are the two metal-poor systems, we can consider Z = 0.01 as lower limit for an AM CVn disc

metallicity. However, the exact metallicities of particular systems have not been well determined. They

depend on the evolutionary channel: if it was the WD channel then the chemical composition would

be roughly similar for the whole group and the potential di�erences would be induced by the mass of

the progenitor and its stage in the CNO cycle; in turn if it was the He-star channel the abundances

would be extremely di�erent from Z = 0.0 to even Z = 1.0 depending on the moment when the mass

transfer would have started (Nelemans et al. (2010), and Nelemans 2012 private communication).

Throughout, our �ducial model of outbursting AM CVn stars assumes Y = 0.98, Z = 0.02, but

when discussing the general properties of the systems and the model we also consider other possibilities.

4.4 The stability limits

The preliminary veri�cation of the DIM as the model of the outbursts in AM CVn stars is the to

test the stability criteria predicted by the DIM versus the observed properties of these systems. The

model should reproduce the observed relation between the luminosity state of the system and its orbital

period: all high state AM CVns stars have Porb < 20 min, those outbursting have Porb between 20 min

and 40 min and those with Porb > 40 min are persistently in the low state.

The �rst to consider the stability of helium accretion discs in AM CVn systems was Cannizzo

(1984).
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In the standard version of the DIM the mass transfer rate Ṁtr from the secondary is assumed to

be constant and its value determines the stability of the disc. For pure helium discs the critical values

of the accretion rate are:

Ṁ+
crit = 1.01× 1017α−0.05

0.1 R2.68
10 M−0.89

1 g/s, (4.1)

Ṁ−crit = 3.17× 1016α−0.02
0.1 R2.66

10 M−0.89
1 g/s (4.2)

where α0.1 = α/0.1, R10 is the radius in units of 1010 cm and M1 is the primary mass in solar masses.

We use the formulae for critical values of Σ, Tc, Teff and Ṁcrit for pure helium disc in their

most recent version delivered us by Guillaume Dubus, who obtained them from the improved �tting

procedures to the larger sample of points. Therefore, they slightly di�er from those published in

Lasota et al. (2008). The critical values for helium discs with Z 6= 0 have not been published before.

For Y = 0.96 Z = 0.04 critical Ṁaccr are:

Ṁ+
crit = 4.76× 1016α−0.06

0.1 R2.65
10 M−0.88

1 g/s, (4.3)

Ṁ−crit = 1.74× 1016α−0.02
0.1 R2.61

10 M−0.87
1 g/s (4.4)

All formulae for critical values in discs of four di�erent chemical compositions are given in Appendix

A. The dependence on α in Eqs.(4.1) - (4.4) is clearly negligible.

To be in a hot (cold) stable equilibrium the accretion rate in a disc must be higher (lower) every-

where than the corresponding critical Ṁtr. Therefore, a stationary (Ṁ(R) = const.) disc is hot and

stable when Ṁtr > Ṁ+
crit(Rd,max) and it is cold and stable when Ṁtr < Ṁ−crit(Rin).

The comparison between the formulae (4.2) and (A) explains why there are no observed low state

systems among hydrogen-rich CVs but they are among AM CVn stars: since Ṁ−crit for helium is ∼ 12

times higher than for solar composition discs the existence of cold stable hydrogen-de�cient discs does

not require so low mass-transfer rates as in the case of hydrogen-rich CVs, where it has to be lower

than 8.0× 1012 g/s.

The outer disc radius, Rd, is calculated as a fraction of the primary Roche lobe radius given by

Eggleton (1983)

RRL1

a
=

0.49 q−2/3

0.6 q−2/3 + ln(1 + q−1/3)
=

0.49

0.6 + q2/3 ln(1 + q−1/3)
(4.5)

where a is the binary separation. It is assumed that in the outburst Rd ∼ 0.9RRL1. Eq.(4.5) is valid

for 0 < M2/M1 < 0.8 so it is a good approximation both for DN and AM CVns.

In the limit of very small values of q the expression q2/3 ln(1+q−1/3) in the denominator of Eq.(4.5)

is very small (it tends to 0 for q → 0). Since in AM CVn stars 0.0125 ≤ q ≤ 0.18 the dependence of

the maximal disc radius on mass ratio is rather weak and can be safely neglected. The inner radius

is taken to be equal to the radius of the central white dwarf, Rin = R1, which is determined by the

white dwarf mass M1 through the M −R relation (Nauenberg, 1972).
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The plot of the estimated Ṁtr versus Porb for observed AM CVns compared with the model

predictions is shown in Fig.4.5.

The color solid lines are the calculated critical mass transfer rates for two chemical compositions

of the disc: Y = 1.0 and Y = 0.96 Z = 0.04, and two primary masses: 1.0 M� and 0.6 M�. They

show the general trend of Ṁ critical values: increase of the metals abundance in the disc lowers the

values of Ṁ+
crit and Ṁ

−
crit (compare for example line red (calculated for Y = 1.0 and M1 = 1.0 M�)

with green (for Y = 0.96 Z = 0.04 and M1 = 1.0 M�)) while the lower primary mass leads to higher

Ṁ+
crit and Ṁ

−
crit (compare for example line red (calculated for Y = 1.0 and M1 = 1.0 M�) with blue

(for Y = 1.0 and M1 = 0.6 M�)).

The permanently high-state systems ES Cet, SDSS J1908 and AM CVn lie well above the critical

mass transfer limit regardless how low-mass CO white dwarf the primary would be. To be in accor-

dance with observation the disc of HP Lib, which is another bright and steady system, should not be

purely helium (and it is not, see Sect.4.3) and its M1 should be close to its upper value estimated

from observations: 0.8 M� (Table 4.1).

The mass-transfer rates of CR Boo and V803 Cen are very close to the upper critical line, which

might explain why these two outbursting systems have been alternately and confusedly classi�ed as

analogues of ER UMa, Z Cam, and (not consistent with their mass-transfer rate) of WZ Sge stars.

Unless their disc are not very rich in metals they position on the Porb − Ṁtr diagram agrees with the

observations. SDSS J0926 and SDSS J1240 are outbursting and lie in the region between the stability

limits.

V396 Hya and GP Com have shown no changes in their brightness till now, they are considered

to be the low-state systems. V396 Hya lies below Ṁ−crit line for M1 = 0.6M� and above Ṁ−crit line

for M1 = 1.0M�. From Eq.(4.4) one can conclude that for V396 Hya the primary mass should lie in

the range 0.6− 1.0 M�. The value of Ṁtr for GP Com marked on the plot is actually its upper limit

and the uncertainties consider the estimation of this upper limit so the position of GP Com does not

contradict the model predictions as it possible that it lies below Ṁ−crit lines for reasonable set of the

parameters.

4.5 AM CVn stars outbursts modeling

4.5.1 The quiescence problem

The still unsolved problem of dwarf novae light curves simulations is the discrepancy between the

modeled and observed quiescence luminosity. In synthetic light curves the quiescence luminosity

gradually rises (even by about 2.5 mag, e.g. Fig.2.9) while observations show that it should be

approximately constant to within 0.1 mag (Smak, 2000). The same trouble concerns AM CVn stars.

The quiescence luminosity increase in the synthetic light curves can be explained by the dependence

between disc surface density, e�ective temperature and luminosity: in quiescence the mass accumulates

in the disc, the disc e�ective temperature rises with Σ what translates into the grow of the disc

luminosity.
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Figure 4.5: The log Ṁtr−Porb plane. Dots - persistent AM CVn systems with known distances; asterisks - outbursting

AM CVn systems with known distances; solid lines are the upper and lower critical limits of Ṁtr- red: M1 = 1.0 M�, Y =

1.0; blue: M1 = 0.6 M�, Y = 1.0; green: M1 = 1.0 M�, Y = 0.96, Z = 0.04; pink: M1 = 0.6 M�, Y = 0.96, Z = 0.04.

Dotted lines: evolution models for AM CVns through the WD channel (kindly provided by Chris Deloye)
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Figure 4.6: The light curves with additional components to the visual �ux of the system in quiescence: (A) with

the light from the secondary of Teff = 5000 K and R2 = 2.6 × 109 cm (red line), black line: without secondary

contribution; (B) with hot spot contribution (black line) and without (red line). All light curves are calculated for

αc = 0.02, αh = 0.2, M1 = 1.0 M�, Ṁtr = 2.0× 1016 g/s and 〈Rd〉 = 1.2× 1010 cm.

One can model the light curves with additional sources of light in quiescence: the light form the

secondary and from the hot spot, to see if they cover the increase of disc luminosity. We assumed

that the additional visual �ux comes from the secondary of e�ective temperature 5000 K and radius

2.6× 109 cm and/or from the hot spot. The contribution of the hot spot has been included according

to Smak (2010) where the mean visual luminosity of the spot is

〈Lspot〉 = πs2a2F (T eff,spot). (4.6)

We adopted the dimensionless radius of the spot s = 0.5, the orbital separation between primary and

secondary a = 1.8 × 1010 cm and the �ux to be that of the black body F (T eff,spot) = σT 4
eff,spot with

T eff,spot = 6800 K. We use here the black body �ux instead of the �ux obtained from the model

atmospheres (used in Smak (2010)) because we need just to see the in�uence of the hot spot light on

quiescence and not to evaluate it quantitatively.

The results are plotted in Fig.4.6A and B. The impact of the secondary on the quiescence luminosity

is negligible while the hot spot may increased its level by ∼ 0.5− 1.0 mag. Despite that the undesired

luminosity increase is slightly reduced it is still noticeable and the problem remains.

4.5.2 Additional sources of disc heating

As described in Sect.4.2 all observed AM CVn stars show superoutbursts and the normal outbursts

are rather occasional - the characteristics that is opposite to what is observed in DN. Before going

further with the modi�cations of the standard DIM it is important to test the in�uence on helium

discs of the sources of disc heating which are known to play a role in H-dominated CVs.
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4.5.2.1 The magnetic �eld of a primary

So far no intermediate polars have been observed among helium dwarf novae. However, there is a

candidate for the �rst system in this category - SDSS J080449.49+161624.8. The single-peaked, broad

emission lines with series of ionized helium in its spectrum match strikingly to what is observed in

optical spectra of magnetic CVs (Roelofs et al., 2009b). If it is a magnetic AM CVn star then the

accretor magnetic �eld would be signi�cant enough to a�ect the inner part of the disc.

In the quiescence the magnetic pressure which rapidly rises at small radii (Pmag ∼ R−6) exceeds

the gas and ram pressures of infalling matter up to radius RM . It means that the matter �ow is

disrupted and the inner disc radius is pushed away from the white dwarf up to RM (Frank et al.,

2002):

Rin = RM = 9.8× 108Ṁ
−2/7
15 M

−1/7
1 µ

4/7
30 cm (4.7)

where µ30 is the magnetic moment in units of 1030 G cm3, M1 is the mass of the primary in solar

masses and Ṁ15 is mass accretion rate in units of 1015 g/s.

During the outburst the situation changes - the mass accretion rate sharply rises the ram pressure

of matter which dominates over the magnetic pressure and the inner edge of the disc approaches to

the surface of the white dwarf.

The magnetic �eld strength of a white dwarf lies in a range 104 − 107 G, so the magnetic moment

range is µ30 ≈ 1− 103 (El-Khoury and Li, 1999). It is possible that WD in non magnetic DN or AM

CVn stars have a weak magnetic �eld up to 104 G (i.e.µ30 = 1.0).

To test if and how the magnetic �eld of this order may in�uence the light curves we de�ne the

inner disc radius in the model by the formula (4.7) and present the results in Fig.4.7.

For lower Ṁtr the presence of the primary white dwarf magnetic �eld prolongates the quiescence

time because the disc has to accumulate more mass for the surface density to cross Σ−crit(Rin) and

start the outburst. From the same reason it reduces the number of small outbursts.

For high Ṁtr close to the upper critical value the magnetic truncation of the inner disc has the

negligible impact on the synthetic light curves (panel (C) in Fig.4.7). The reason is that very high

Ṁtr trigger the outside-in instead of inside-out outbursts. Therefore, the di�erent conditions imposed

by magnetic pressure on the inner edge do not in�uence the propagation of the heating front. At the

outburst maximum the inner radius extends to the accretor surface so the conditions are the same

with and without the primary magnetic �eld and the outburst properties are not a�ected. There is a

little di�erence in quiescence level because with WD magnetic �elds included the cooling front ends at

larger radii. The luminosity, however, is only slightly higher in this case because the dominant source

of light in the low state are the outer parts of the disc.

4.5.2.2 Irradiation of the disc by the WD

The e�ective temperatures of white dwarfs in nonmagnetic DN are estimated at ∼ 15 000 K to

∼ 55 000 K (Sion and Godon, 2007). Since the hydrogen ionization takes place at T−eff,crit ∼ 5 500 K
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Figure 4.7: (A) The comparison of the light curves

produced with and without the magnetic �eld of the

accretor. Red line: µ30 = 0.0. Gcm3, black line:

µ30 = 5.0 Gcm3. In both models: αh = 0.2,

αc = 0.05, Ṁtr = 2.0 × 1016 g/s, M1 = 1.0 M�,

〈Rd〉 = 1.2 × 1010 cm. (B) The behavior of the in-

ner disc radius in with (black line) and without (red

line) magnetic �eld of the accretor, corresponding to

the models presented on the left panel. (C) the mod-

els calculated for the same parameters as above except

Ṁtr which here is taken as Ṁtr = 1.7×1017 g/s - close

to the upper limit for Ṁtr; red line: µ30 = 0.0. Gcm3,

black line: µ30 = 5.0 Gcm3.
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(T−c,crit ∼ 8 200 K) the radiative �ux emerging from the hot central white dwarf, which modi�es the

surface temperature of the disc in the white dwarf vicinity, has an important in�uence on the disc

stability in DN (Hameury et al., 1999).

The central white dwarfs in AM CVn-type binaries are supposed to have the e�ective temperatures

similar to those in DN, i.e. between ∼ 12 000 K and ∼ 40 000 K (Sion et al., 2011), but the critical

temperatures in helium discs are much higher than in hydrogen-dominated discs: T−eff,crit ∼ 10 000 K

(T−c,crit ∼ 26 800 K). In the case of AM CVn stars the di�erence between temperatures of the irradiating

�ux and the disc is not so prominent and in fact the e�ect of the disc irradiation by the accretor is

negligible as it is shown below.

The white dwarf should be treated as an extended source. A fraction (1 − β) of the radiative

�ux illuminating each side of the disc which is absorbed in the disc optically thick parts is given by

(Friedjung, 1985; Smak, 1989a; Hameury et al., 1999)

T 4
ill = (1− β)T 4

WD

1

π
[arcsin ρ− ρ(1− ρ2)1/2]

where ρ = RWD/R , RWD and TWD are radius and temperature of the white dwarf, and β is the disc

albedo.

To incorporate this formula into numerical calculations of the vertical disc structure one has to

modify the outer boundary condition:

σT 4
s = Fvisc + σT 4

ill (4.8)

where Ts is the disc temperature at the photosphere. Then the Eq.(2.56) connecting the mid-plane

temperature with the e�ective temperature becomes:

T 4
c =

3

8
σT 4

eff + T 4
ill (4.9)

Also the prescription for change of α between hot and cold state during disc time evolution has to

be changed with respect to Eq.(2.60):

log(α) = log(αc) + [log(αh)− log(αc)]×

[
1 +

(
2.5× 104 K

(T 2
c + 5T 2

ill)
1/2

)8
]−1

(4.10)

The term 5T 2
ill is added for technical reasons, similar to those presented in Sect.2.4 justifying

T0 = T+
c,crit in the prescription for α change when no irradiation is taken into account. Here T0 should

account for the increase of temperature in the disc due to the irradiation in order to star changing α

when the recombination in the disc matter starts.

As an input parameter it is used the whole term 4
√

1− βTWD = 25 000 K to account for the disc

albedo.

In DN the irradiation from WD rises the temperature of the inner disc region above the hydrogen

ionization temperature. It also signi�cantly lowers the value of maximum surface density Σ−crit(R)
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Figure 4.8: The light curves calculated with (black line) and without (red line) irradiation of the disc by a central

white dwarf of temperature ∼ 25 000 K. The parameters if the models are: αc = 0.05, αh = 0.1, Ṁtr = 1.0× 1016 g/s,

M1 = 0.6 M�, 〈Rd〉 = 1.2× 1010 cm.

up to the radius at which the irradiation �ux no longer dominates over the local accretion �ux.

As a consequence lower mass transfer rate is su�cient to trigger the inside-out outbursts than in

unirradiated case. In addition the amplitude of the outbursts is reduced as the irradiation lifts the

disc brightness in the quiescence (Hameury et al., 1999).

While temperatures of accreting white dwarf are expected to be in the range 15 000 − 35 000 K

(Sion et al., 2011) the helium disc midplane critical temperatures are expected to be T−c,crit ∼ 18 000−
25 000 K (depending on the disc parameters). This is the reason why in AM CVn this e�ect is marginal

as can be seen from Fig.4.8 and we neglect it in the modeling of AM CVn stars light curves.

4.5.2.3 The outer disc heating by the hot spot

As the mass is transferred from the secondary its stream hits the outer ring of the accretion disc

forming the so called hot spot and heating the outer parts of a disc.

To account for this phenomenon we consider the idealized situation when none of the impact energy

is radiated away and all of it is changed into the heat in the disc outer region. In fact a major part of

this energy may be radiated during the collision of the stream with the outer disc rim (Smak, 2002).

In the impact region the disc annulus of width ∆Rhs is heated at a rate Qi with e�ciency ηi

(Buat-Ménard et al., 2001a):

Qi(R) = ηi
GM1Ṁtr

2Rd

1

2πRd∆Rhs
exp

(
−Rd −R

∆Rhs

)
(4.11)

where M1 is the mass of the white dwarf, Ṁtr is the mass transfer rate from the secondary and Rd is

the outer radius of the disc.

When the disc is in a low state as much as half of a system visible light can be emitted from region
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Figure 4.9: The light curves calculated for αh = 0.2, αc = 0.05, Ṁtr = 2.0 × 1016 g/s, M1 = 1.0 M�, 〈Rd〉 =

1.2×1010 cm. The red line corresponds to the model without the disc heating by the hot spot, the black line corresponds

to the model in which disc heating by the hot spot is included.

of the stream impact (Smak, 2010) while in the outburst its contribution is negligible since most of

the luminosity comes from the inner parts of hot accretion disc due to the high dissipation rate in the

boundary layer.

The magnitude of the light coming from the hot spot during the quiescence depends on the incli-

nation of the disc: smaller inclination means higher luminosity from the impact region.

The important result is that the additional heating of the outer edge reduces both critical values of

Σ±crit. This extends the lower limit of Ṁtr for which the disc should be unstable and eases triggering of

the outside-in outburst for moderate mass transfer rates. In Fig.4.9 it is showed that hot spot lowers

the outburst amplitude and reduces the undesired grow of the luminosity during the quiescence.

According to Smak (2002) evaluations the contributions from the tidal heating and the stream

impact heating are comparable. In what follows we use the stream heating only as representing the

e�ects of both processes on the outer disc and outcoming light curves.

On the other hand Smak (2002) expressed doubts concerning the relevance of hot-spot heating

noticing that most of the impact energy is radiated-away at the hot spot location.

4.5.3 Superoutbursts

Although they modify shapes of the synthetic light curves none of the additional disc heating sources

discussed above leads to the superoutbursts corresponding to the observations. But again one can

take advantage from the experiences from dwarf nova modeling for which the superoutbursts are

reproduced when the enhanced mass transfer from secondary is applied in calculations (e.g. Hameury

et al. (1997, 2000); Lasota (2001)).

In the space of years the discussion have been carried between the supporters of two models which

were supposed to explain the origin of the superoutbursts i.e. the Tidal-Thermal Instability Model

(hereafter TTI) and the Enhanced Mass Transfer Model (hereafter EMT).



4.5. AM CVN STARS OUTBURSTS MODELING 101

In the following we claim that EMT is responsible for the superoutburst in AM CVn stars al-

though the mechanism leading to the enhancement of the mass from the secondary is far from being

understood. We brie�y present the arguments of both sides and explain our choice.

4.5.3.1 The EMT Model vs the TTI Model

The idea of the mass transfer rate enhancement came directly from the observations.

The observations of VW Hyi, a non-eclipsing SU UMa-type dwarf nova, lead to the conclusion that

the superoutbursts are always the consequence of the short outbursts. The observed enhancements

in the hot spot brightness appear during the outbursts maxima or decline phases, never during the

rise. Since the brightness of the hot spot comes from the reprocessed kinetic energy of the gas stream

heating the disc then its enhancement has to be the re�ection of enhanced force with which the stream

hits the disc due to the enhanced mass transfer rate from the secondary (Vogt, 1983).

These observations lead to the formulations of the basics of the Enhanced Mass Transfer Model

(Vogt, 1983; Osaki, 1985; Smak, 1991): the strong radiation emitted from the disc during the normal

outburst heats up the gas in the region of the secondary photosphere exposed to this irradiation and

the hot gas starts to �ow through L1 point at the enhanced rate. According to this model the radius of

the disc expands during the superoutburst and then gradually decreases along the supercycle what is

observed (Zola, 1989; Smak, 1991). The EMT model also predicts that the duration of the quiescence

between the normal outbursts rises during the �rst phase of the supercycle but then it decreases in the

several cycles just before the next superoutburst (Smak, 1991). These predictions have been con�rmed

even very recently in the extraordinarily detailed light curves of V1504 Cyg and V344 Lyr taken with

Kepler telescope(Cannizzo et al., 2012) .

The alternative to the EMT model is the Tidal-Thermal Instability Model proposed by Osaki

(1989). In contrast to the EMT model in the TTI model the mass transfer rate from a secondary is

assumed to be constant. The superoutbursts are the consequence of the enhanced torque acting on

the disc when it extends up to the 3 : 1 resonance radius. There the enhanced tidal torque causes the

more intensive dissipation in the outer part of the disc and prevents the formation of the cooling front

(Osaki, 1989).

The TTI model predicts that after a superoutburst the disc radius considerably shrinks due to

the high amount of mass which has been accreted from the disc during the superoutburst. Next the

disc undergoes the series of small outbursts during which the disc mass builds up and during which

the disc radius gradually rises again until the next superoutburst sets in. Contrary to the EMT

model the TTI model does not predict the shortening of the normal cycles just before the onset of

the superoutburst. The predicted by the TTI model behavior of the disc radius and of the normal

cycles is in contradiction with what observations suggest (see above). This model was found relatively

successful in reproducing the superhump periods and their relations with orbital period and mass ratio

in the system, but not in reproducing their amplitudes which, in observed light curves, are ∼ 0.3 mag,

while the TTI simulations give the amplitudes an order of magnitude lower (Smak, 2009c).

The polemics between the supporters of both models has persisted for years. Osaki and Meyer
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(2003) gave the counterarguments for the objections aimed at TTI model: (i) the observed brightenings

in the humps of eclipsing binaries like WZ Sge, Z Cha or VWHyi were interpreted as the superhumps in

the early stage of their growth instead of brightening of the hot spot; (ii) to refute the argument that in

observations the superhumps appear in delay to the superoutburst maximum (what is inconsistent with

the origin of superoutbursts in this model), the 2 : 1 resonance radius was added to the model. The

disc expands to 2 : 1 radius during the peak of the superoutburst and the superhumps are supposed to

appear only after the disc contracts again to 3 : 1 resonance radius after the superoutbursts maximum.

However, the arguments from the series of articles Smak (2008a,b, 2009a,c,e,b,d, 2010, 2011) seem

to tip the scales in favor of the EMT model. They can be summarized as follows:

1. the analysis of the eclipses (not contaminated by the superhumps) in the light curves of Z Cha

and OY Car show the enhancement of the hot spot brightness during the superoutburst (Smak,

2007, 2008a) suggesting the enhanced Ṁtr from the secondary,

2. as it was mentioned: the TTI model does not reproduce the observed amplitudes of the super-

humps (Smak, 2009c),

3. the eccentricity of the disc during the superoutbursts of Z Cha, WZ Sge, OY Car and IY UMa

has been questioned as based on not conclusive observational evidence(Smak, 2009a),

4. the alternative interpretation of the superhumps origin is given (that they are the results of

variable irradiation of the secondary) which does not require the disc expanded to 3 : 1 radius

(Smak, 2009b, 2011).

The most serious drawback of the EMT model is the e�ciency of the heating mechanism of the

secondary surface. The main problems pointed out by several authors, i.e. Osaki and Meyer (2003);

Viallet and Hameury (2007), are: (i) the shadow casted by the disc on the broad region around L1

point, (ii) the Coriolis force which may limit the di�usion of the heated matter from irradiated parts

of the secondary photosphere to the cold shadowed parts and (iii) the high opacities of the secondary

photosphere to the far UV and X radiation. The simulations done by Viallet and Hameury (2007,

2008) show that the gas from the parts of the secondary exposed to irradiation is able to �ow into the

vicinity of L1 point but in the course of this �ow it cools down to the temperature at which it is no

longer able to account for Ṁtr enhancement.

However, one has to pay attention to the assumptions which were made here. As was pointed

out by Smak (2009b) the authors assume that the �owing gas cools in a isothermal layer what may

overestimate the cooling rate in their simulations. Smak (2009d) proposed an additional phenomenon

which should be taken into account and which changes the geometry of the secondary shielding - the

tilt of an accretion disc.

The important point is that the EMT model works very well in reproducing all main features of

the SU UMa-type dwarf novae light curves (see Schreiber et al. (2004a); Hameury and Lasota (2005);

Buat-Ménard and Hameury (2002); Hameury et al. (2000, 1997); Ramsay et al. (2010)) and it seems

that it is necessary in the context of the AM CVn stars light curves simulations what is shown below.
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Figure 4.10: The example of γ-parameter in�uence on the modeled light curves. The models are calculated for

pure helium disc for (A) γ = 0.4, and (B) γ = 0.8, in both cases other parameters are: αh = 0.1, αc = 0.05,

Ṁtr = 1.0× 1017 g/s, M1 = 1.0 M�, 〈Rd〉 ≈ 1.2× 1010 cm, µ30 = 2.0.

4.5.3.2 Helium SU UMa stars - KL Dra and PTF1J0719

The general properties of the relatively simple light curves of KL Dra and PTF1J0719 can be repro-

duced by using the simple prescription for accretion-irradiation mass-transfer rate increase originally

proposed by Hameury et al. (1997):

Ṁtr = max(Ṁtr,0, γ Ṁaccr) (4.12)

where γ is the parameter of proportionality between Ṁtr and Ṁaccr in the range from 0 to 1, Ṁtr,0

corresponds to the �secular� (non-enhanced) mass-transfer rate and Ṁaccr is the accretion rate onto

the primary.

The in�uence of the γ-parameter on the outbursts as its value approaches unity can be seen in

Fig.4.10 - it prolongates the outburst while the outburst amplitude is unchanged. The small light

variations during the outburst maximum in Fig.4.10A are the outcome of the moderately enhanced

mass transfer rate which causes that the outer parts of the disc are marginally stable - the cooling

front starts to develop there but it is stopped just few moments later by the heating front immediately

developing behind it.

Dealing with better-sampled multi-wavelength light curves such as that of VY Hyi, Schreiber et al.

(2004b) used a more �re�ned� prescription using 〈Ṁaccr〉 suitably averaged over time which takes

into account that the fraction of the accretion luminosity may heat up the primary white dwarf. We

decided to use the simpler version given by Eq.(4.12) because the AM CVn light curve are not of

similar quality and because the prescription with 〈Ṁaccr〉 does not in�uence the dwarf novae light

curves noticeably (Schreiber et al., 2004b).

As for hydrogen-dominated dwarf novae the light curve properties depend on the mass-transfer

rate, the mass of the primary, and the viscosity parameters, as well as on the assumed white dwarf's
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Figure 4.11: (A) The model of KL Dra in the case where no normal outbursts are present. The disc is assumed

to be Y = 0.98 Z = 0.02 and the parameters are αh = 0.2, αc = 0.035, Ṁtr = 2.0 × 1016 g/s, M1 = 0.6 M�,

〈Rd〉 ≈ 1.1 × 1010 cm, γ = 0.8, µ30 = 1.0 and hot spot heating is included. (B) The model with the same

parameters as (A) but with µ30 = 0.0 and without the hot spot heating.

magnetic moment and the value of the parameter γ (Hameury et al., 2000). In AM CVns one has

additionally to �x the chemical composition, i.e. the metallicity which we will assume to be Y =

0.98 Z = 0.02 unless stated otherwise.

Until recently KL Dra was thought to show only the superoutbursts. In the calculations we used

the parameters suggested in Ramsay et al. (2010) for this binary: Ṁtr = 2.0×1016 g/s, M1 = 0.6 M�.

The light curve consisting only of the superoutbursts of amplitudes As ∼ 3.5 mag lasting ts ∼ 15 d

and appearing every Trecc,s ∼ 57 d was possible to obtain only by turning on the magnetic �eld of the

primary of magnetic moment µ30 = 1.0 (corresponding to B ∼ 1.5× 103 G) in the model, setting the

viscosity parameters αc = 0.035, αh = 0.2, enhancing Ṁtr with γ = 0.8 and including the heating of

the outer disc edge by the hot spot. The resulting supercycles presented in Fig.4.11A reproduce quite

well the observed ones in which As,obs ∼ 3.5 mag, ts,obs ∼ 14 d and Trecc,s,obs ∼ 63 d shown in Fig.4.2.

Essential for obtaining the light curve in Fig.4.11A is the magnetic �eld of the primary and the

heating by the hot spot which both stabilize the disc. The magnetic �eld truncates the disc inner parts,

increasing Σ−crit(Rin) and enforcing the disc to accumulate more mass before triggering the inside-out

outburst. On the opposite disc edge the hot spot heating, in turn, lowers Σ+
crit(Rd) so that more mass

has to be accreted before the cooling front can form. Both e�ects contribute to the suppression of the

normal outbursts and favor the appearance of the superoutburst instead.

In reality, as mentioned above, KL Dra could have normal outbursts that have been missed during

observational campaigns and recently the detection of two short and faint eruptions has been con�rmed

(Ramsay 2012, private communication).

With no hot spot heating and the primary magnetic �eld included and with the same model param-

eters, the light curve consists of narrow and wide outbursts which last ∼ 5 d and ∼ 9 d respectively.

The recurrence times of the outbursts of both types are approximately the same: ∼ 68 d, the time
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Figure 4.12: The model of PTF1J0719 light curve: αh = 0.1, αc = 0.02, Ṁtr = 6.0 × 1016 g/s, M1 = 1.0 M�,

〈Rd〉 ≈ 1.1× 1010 cm, γ = 0.6. The disc is Y = 0.98 Z = 0.02.

elapsing from the onset of the wide outburst to the onset of the narrow is ∼ 37 d and from the onset

of narrow to the onset of the wide one is ∼ 30 d (Fig.4.11B). The quiescence luminosity after the

wide outbursts is about 0.2 mag lower because more mass has been accreted than during the narrow

outburst. The light curve presented in Fig.4.11B is far for resembling that of KL Dra.

The short outbursts observed in KL Dra light curve are strong argument in favor that KL Dra

is the helium SU UMa star, just as PTF1J0719. Since the periods of quiescence in KL Dra light

curve are not well covered and the overall appearance of the light curve is highly uncertain, we do not

focus on tuning the parameters of the models (without the hot spot heating and µ30 = 0.0) to obtain

the light curve potentially corresponding to KL Dra. Instead, to consider the light curves of the SU

UMa-type helium dwarf novae, we rather focus on modeling of the PTF1J0719 light curve.

Except for its orbital period (26.8 min) not much is known about the parameters of PTF1J0719

which is the �rst observed helium system to show clearly the outburst activity typical for SU UMa-

type dwarf novae. The best result in reproducing its light curve has been obtained with the model

parameters: Ṁtr = 6.0 × 1016 g/s, M1 = 1.0 M�, αh = 0.1, αc = 0.02, γ = 0.6 for disc of chemical

composition Y = 0.98 Z = 0.02. We also drop in this case the stabilizing mechanisms which were

present the model of KL Dra (i.e. we set µ30 = 0.0 and not include hot spot heating) and let the

normal outbursts develop. The result is presented in Fig.4.12.

Between superoutbursts one notices a slight gradual increase of the minimum and maximum lumi-

nosity of the four consecutive normal outbursts. This happens because during each normal outburst

Ṁtr is enhanced due to the γ-prescription - the disc gains more mass than it looses due to accretion.

In consequence, during the sequence of the normal outbursts, the mass is gradually accumulated in the

disc and Σ rises everywhere in the disc. This e�ect is one of the typical features of the EMT model (it

is also present for slightly di�erent reasons in the TTI version (Schreiber et al., 2004b; Tsugawa and

Osaki, 1997a)). While the general luminosity rise in quiescence is not observed in real systems and is

one of the weaknesses of the DIM (Smak, 2000) the increase of the normal outburst peak luminosity
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might have been observed in some systems (e.g. V1504 Cyg, V344 Lyr, see Cannizzo et al. (2012).

The superoutburst precursor is typical of both the EMT and TTI models (Schreiber et al., 2004b).

Owing to mass accumulation, the disc arrives to a state where after the rise of a normal outburst

the cooling front is no longer able to propagate - the disc becomes stuck in the hot state and a

superoutburst begins. This last normal outburst leading to a superoutburst appears as its precursor

in the light curve.

However, there is the problem with such normal outburst appearing between superoutbursts.

When one compares the model light curve to that of PTF1J0719 one notes that in our model the

amplitude of normal outbursts is larger by 0.5 mag and their duration is four times longer. The

normal outburst duration is extended by the Ṁtr enhancement and the high amplitude is the result

of the assumed α-ratio - a lower ratio would result in a lower amplitude. However, lowering this

ratio would also lower the superoutburst amplitude and shorten the recurrence times. Tuning the

parameters to obtain a better agreement does not make much sense in view of the arbitrariness of the

mass transfer prescription and of the uncertainties of the DIM itself.

4.5.3.3 The light curves inspired by CR Boo and V803 Cen

The mass-transfer rates attributed to both CR Boo and V803 Cen (see Table 4.1) are very close to the

critical ones and a phenomenon analogous to Z Cam standstills could be expected for this systems.

The main di�erence is that Z Cam stars have no superoutbursts. We will test the Z Cam model

(Buat-Ménard et al., 2001b) by combining its mass-transfer modulations with the EMT. Dips might

or might not be related to the cycling states. They are very similar to those observed during the

decay from superoutbursts in WZ Sge-type stars. If common to both systems, the dip origins are not

connected to the value of the mass-transfer rate but would instead result from the very compact size

of their orbit. We tested a simple hypothesis based on this assumption.

Adapting the Z Cam models from Buat-Ménard et al. (2001b) to AM CVn stars, we assumed

the mass-transfer to be modulated as ∆Ṁtr/Ṁtr = 40% around an average rate close to the critical

(〈Ṁtr〉 = 1.1 × 1017 g/s) with the modulations occurring at t = 10 + k · 70 d. In other words we

force Ṁtr to increase by 40% (Ṁtrmod = 〈Ṁtr〉 + 40%〈Ṁtr〉 = 1.54 × 1017 g/s) and keefuture workp

this level for 10 d. Next Ṁtr,mod falls to the value by 40% lower than the average value 〈Ṁtr〉 (i.e.
to Ṁtr,mod = 0.66 × 1017 g/s) and maintains it for 70 d after which it is forced to rise again. To

take into account the presence of irradiation-induced superoutbursts, we combined this modulation

with the mass-transfer modulations given by Eq.(4.12) with the actual value of the mass-transfer rate

instead of Ṁtr,0 (we put Ṁtr,0 = Ṁtr,mod into Eq.(4.12)). Choosing as typical parameters αc = 0.04,

αh = 0.2, M1 = 1.0 M�, 〈Rd〉 = 1.0 × 1010 cm and γ = 0.7 we obtained the light curve shown in

Fig.4.13A, Fig.4.13B shows the modulation of Ṁtr.

This light curve shows superoutbursts and standstills, as expected, but features resulting from the

superposition of both types of modulations are also present in the form of �dips�. The hypercycle (the

cycle between two consecutive superoutbursts followed by a standstill) starts with a major Ṁtr en-

hancement due to γ (about day 70 in Fig.4.13A). During the decay from the superoutburst maximum,
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Figure 4.13: Light curve of a superoutbursting helium �Z Cam� star. The
 parameters are:αc = 0.04, αh = 0.2,

M1 = 1.0 M�, 〈Ṁtr〉 = 1.1× 1017 g/s, ∆Ṁtr = 0.4 〈Ṁtr〉, thigh = 10 d, tlow = 70 d, γ = 0.7, 〈Rd〉 = 1.0× 1010 cm.

The dotted lines correspond to the hot stability limit. (A): the model light curve, (B): Ṁtr modulations.

the fall of Ṁtr is quenched by a rising modulation through 〈Ṁtr〉 + ∆Ṁtr. The mass-transfer rate

then rises again (around day 80) and the decay from maximum is reversed by a resulting outside-in

heating front that catches up with the propagating cooling front before the latter reaches the inner

disc edge - hence a dip-like feature. During the following superoutburst a slight di�erence in phase

of the two mass-transfer modulations allows the cooling front to propagate almost to the disc's inner

end. A similar mechanism produces the dip in narrow outburst preceding the superoutburst.

This suggest that dips and cycling-state features might result from mass transfer modulations

triggering cooling/heating front �catching� and not from re�ections. On the other hand, the inden-

tation at the end of the standstill is the result of cooling front re�ection (as described e.g. in Dubus

et al. (1999)). In any case, the presumed Z Cam-e�ect mechanism applied to outbursting AM CVns

produced the required type of light curve combining superoutbursts with standstills (and normal

outbursts).

Since in AM CVn light curves other peculiar features are present in addition to standstills, we

tried other simple forms of mass transfer rate modulations.

Then we tried to modify Eq.(4.12) with the sine function

Ṁtr = max(Ṁtr,0(1 +A sin(C + πt/τ), (γṀaccr))) (4.13)

where A, C (dimensionless) and τ (time) are adjustable constants; t is the time coordinate.

With M1 = 1.0 M�, Ṁtr = 1.1 × 1017 g/s and 〈Rd〉 = 1.0 × 1010 cm, αc = 0.04, αh = 0.2,

choosing A = 0.5, C = 2.0, τ = 1 d and γ = 0.8, one obtains the light curve shown in Fig.4.14A, the

Ṁtr modulations are shown in Fig.4.14B. One remarks superoutbursts with amplitude As ∼ 3 mag,

duration Ts ∼ 15 d and recurrence time of Trecc,s ∼ 27 d. These are �standard� EMT, γ-enhancement

triggered outbursts.
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Figure 4.14: Light curve corresponding to sinusoidal+γ modulations of the mass-transfer rate. The parameters

are αh = 0.2, αc = 0.04, Ṁtr,0 = 1.1 × 1017 g/s, M1 = 1.0 M�, 〈Rd〉 = 1.0 × 1010 cm, γ = 0.8, A = 0.5, C = 2.0,

τ = 1 d. The dotted lines correspond to the hot stability limit. (A): the model light-curve. (B): Ṁtr modulations.

In addition, short outbursts with a repetition time of ∼ 1.8 d and an amplitude ∼ 1.2 − 2.4 mag

appear during the decay from superoutburst and persist until the following one. One is of course

tempted to identify them with the cycling states of CR Boo or V803 Cen. The origin of these short

outbursts is quite simple to understand. At the end of the decay of Ṁtr from the superoutburst

value, the sinusoidal enhancement of Ṁtr dominates over the γ-induced Ṁtr �uctuations. This short

enhancement of Ṁtr results in a low-amplitude, short outburst (starting at day ∼ 73 in Fig.4.14A)

because the cooling front that switches o� the superoutburst is quenched by a freshly triggered outside-

in heating front. This happens because the post-cooling front Σ is still close to the critical value due

to Ṁtr enhancement through the sinusoidal modulation. However, since the disc's mass is decreasing,

after one day a new cooling front forms immediately and this time it succeeds in propagating till the

inner disc's rim but, because of mass accumulating, a new outburst starts immediately. All heating

fronts are triggered by mass-transfer enhancement and therefore are of the outside-in type. Their

maximum brightness is slightly increasing because of mass accumulation. Their amplitude depends

on the combined strengths of the sinusoidal plus γ enhancement. If the enhancement brings Ṁtr above

Ṁ+
crit, the resulting short outburst will have a small amplitude as the outside-in heating front forms

easily and promptly catches up with the cooling front that quenches it. But when the disc's mass is

still quite low and the γ + sine enhancement is not powerful enough to bring Ṁtr above Ṁ+
crit, the

cooling front will propagate unhindered till the low-luminosity level (see e.g. day 81).

We tried also the simpler version of Eq.(4.14) to test the sinusoidal Ṁtr modulations alone. We

take Ṁtr as

Ṁtr = Ṁtr,0(1 +A sin(C + πt/τ)) (4.14)

The other examples of light curves which can be obtained using either of the two prescriptions for

Ṁtr, Eq.(4.13) or Eq.(4.14) by playing with the parameters are presented in Fig.4.16 and Fig.4.15.
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There are several observations to be made:

1. The sine-modulation favors the appearance of many short rebrightenings of various amplitudes.

The reason is the gradual increase of Ṁtr which takes place not only during the outburst maxi-

mum but also during the outburst decay and quiescence and which destabilizes the outer parts

of the disc as was described above. In the case when the amplitude A of the sine function is

high (i.e. A > 1) (e.g. Fig.4.16B) more mass is added to the disc and the resulting outbursts

tend to be longer and less frequent.

2. The truncation of the inner disc by the primary white dwarf magnetic �eld stabilizes the disc

because in this case Σ in the disc is in general higher - the rapid eruptions disappear - Fig.

4.15B, Fig. 4.16C. The e�ect of the hot spot heating is not so noticeable (the hot spot is added

in all models but one in Fig. 4.14B).

3. While the sine-enhancement of Ṁtr leads to periodic recurrence of the light curve pattern, the

interplay between γ and sine modulations in Eq.(4.13) leads to high irregularity and the variety

of features which can be obtained in the light curves (compare light curves in Fig.4.14 and in

Fig.4.15).

4. The dip arises when the γ-induced superoutburst decay is stopped by the sinusoidal increase of

Ṁtr - Fig.4.15A and B.

5. The problem is the quiescence - due to the considerable Ṁtr enhancements it is short or com-

pletely disappears.

One concludes, therefore that suitable modulations of the mass transfer rate can produce various

observed features of outbursting AM CV light curves even with the simplest assumptions about their

shapes. However, the mechanisms that are able to produce mass-transfer modulations are still to be

�rmly identi�ed. There is no doubt that mass-transfer rates in close binaries are highly variable, in

some cases with huge amplitudes. Although irradiation of the secondary is the usual suspect, in many

cases the observed variability (e.g. of AM Her or VY Scl stars, see Warner (2003)) is not caused

by variable irradiation. A periodic modulation of mass transfer rate could be also achieved through

the presence of a warped/tilted disc (Smak, 2011). The sinusoidal variation of Eq.(4.13) or (4.14)

could be considered an attempt to represent the e�ect of the variable irradiation if the modulation

time τ = 1 d could �nd a convincing interpretation in this context. The observation of negative

superhumps in outbursting AM CVn stars would be the additional argument for the tilted discs and

EMT model acting in those systems (Smak, 2009d).
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Figure 4.15: The examples of di�erent light curves with

sine+γ-modulated Ṁtr, obtained for various parameters,

with and without the sources of additional disc heating.

The disc is Y = 0.98 Z = 0.02. (A) αh = 0.2, αc = 0.04,

Ṁtr = 1.0×1017 g/s,M1 = 1.0 M�, 〈Rd〉 ≈ 0.8×1010 cm,

γ = 0.8, A = 0.5, C = 80 τ = 70 d, +hot spot; (B)

αh = 0.2, αc = 0.03, Ṁtr = 8.5× 1016 g/s, M1 = 1.0 M�,

〈Rd〉 ≈ 1.2×1010 cm, γ = 0.8 A = 2, τ = 40 d, µ30 = 2.5,

+hot spot; (C) αh = 0.2, αc = 0.04, Ṁtr = 7.0×1016 g/s,

M1 = 1.0 M�, 〈Rd〉 ≈ 0.7 × 1010 cm, γ = 0.8, A = 0.5,

C = 50,τ = 60 d,+hot spot;
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Figure 4.16: The examples of di�erent light curves

with sinusoidally modulated Ṁtr, obtained for various

parameters, with and without the sources of additional

disc heating. The disc is Y = 0.98 Z = 0.02. (A)

αh = 0.1, αc = 0.04, Ṁtr = 6.5× 1016 g/s, M1 = 1.0 M�,

〈Rd〉 ≈ 1.0× 1010 cm, A = 0.3, τ = 60 d, +hot spot; (B)

αh = 0.2, αc = 0.05, Ṁtr = 6.0× 1016 g/s, M1 = 1.0 M�,

〈Rd〉 ≈ 1.0 × 1010 cm, A = 4, τ = 40 d; (C) αh = 0.2,

αc = 0.06, Ṁtr = 6.0 × 1016 g/s, M1 = 1.0 M�, 〈Rd〉 ≈
0.9× 1010 cm, A = 4, τ = 40 d, µ30 = 5.0,+hot spot.
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Chapter 5

α in accretion discs

The mechanism of the angular momentum transport has been a matter of debate since the very

beginning of the theory of accretion discs. The Shakura-Sunyaev α-parametrization does not explains

it but it gives the tool to investigate the disc properties without the need of answering this question.

The theory which will describe the viscosity in the disc has to be consistent with the observations,

in particular it has to predict the values of α which are appropriate for outbursts of dwarf novae.

Unfortunately , the values of α found from the MRI, which is so far the best candiate for the

mechanisms explaining the viscosity in the disc, are an order of magnitude lower (αMRI ∼ 0.01) than

those deduced from observations for hot discs (α ∼ 0.1−0.2) (Hirose et al., 2009). Another problem is

that MRI does not predict how much the di�erent the values of α for quiescence and outburst should

be. The simulations clearly show that the amplitude of dwarf novae outbursts may be reproduced

only when αc in the cold disc is ∼ 4− 5 times smaller than αh the hot disc. In some AM CVn stars

αh/αc ≈ 2 is su�cient.

The �rst to evaluate α from observations was Smak (1999) (hereafter S99). We verify the observation-

deduced values of α using new set of data and methods which in part are di�erent from those used in

Smak (1999).

First we estimate αh from the comparison between observational light curves and models. This

method was used by Smak (1999) with the result that αh is ≈ 0.2. We also derive the decay time semi-

analytically and check what α we need in the calculations to arrive to the decay times comparable with

those measured from observations. Next from the DIM we determine an amplitude vs recurrence-time

relation and compare it to the empirical Kukarkin-Parenago relation (hereafter K-P relation) between

the same, but observed, quantities.

5.1 The decay time

The values of α which can be deduced from observations of dwarf-nova decay from outburst maximum

are almost model-independent. Basically one only assumes that the decay time is determined by the

113
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viscous timescale tvisc in the hot disc.

Since tvisc ∼ R2/ν, assuming that the kinematic viscosity coe�cient ν ∼ αcsH, where cs is the

sound speed and H the disc semi-thickness, determining the decay time allows estimating α. To

do that one has to estimate the disc radius e.g. from the binary's orbital period (Eq.(5.1) and

(5.2)). Using this method S99 obtained an observational relation between the outburst decay rate

τdec (or alternatively the outburst width W ) and the orbital period Porb: τdec(Porb) and W (Porb).

Comparing these relations with the relations of the same type found from the �ts to data from the

numerical models he concluded that the best agreement between observation and models is obtained

for αh = 0.2. Below, we determine the viscosity parameter using a di�erent DN sample and di�erent

numerical models.

5.1.1 The decay rate vs. the disc radius relation

To assure that the result is independent from the choice of the observational data we took into account

21 systems among which only 9 are in common with S99. The systems included in our sample of dwarf

novae are listed in Table 5.1: U Gem- type binaries (rows 1 − 8) and the decay rates for the normal

outbursts in SU UMa-type binaries (rows 14− 20) are taken from Ak et al. (2002); in rows 9− 13 are

7 U Gem-type dwarf novae not included in Ak et al. (2002) for which we have measured the decay

rates (τdec) from their light curves obtained from AFOEV database. We have measured τdec as the

time it takes the system brightness to decline by ∼ 1 mag starting from the level 1 mag below the

maximum. The last row stands for the only AM CVn-type star for which the existence of the normal

outbursts have been con�rmed (Levitan et al., 2011). S99 uses dwarf novae with measured decay rates

and orbital periods (Porb) given in van Paradijs (1983) and Warner (2003) including all types of DNs:

U Gem, SU UMa and Z Cam.

First, we mark all 21 systems on the τdec − Porb plane and �nd the coe�cient Cτ of the linear �t

to the data of the form τdec = CτPorb to confront it with the coe�cient Cτ,S99 obtained by S99. The

�t to our data gives Cτ = 0.37 ± 0.03 with dispersion rms = 0.698 which compares nicely with the

result of S99: Cτ,S99 = 0.38± 0.02 with rms = 0.54.

Considering the more general case when the τdec − Porb relation takes the power-law form τdec =

C1
τPorb

β we get C1
τ = 0.69± 0.17 and β = 0.66± 0.14 with dispersion rms = 0.64. The S99 result is

C1
τ,S99 = 0.61 ± 0.07 and βS99 = 0.71 ± 0.09 with dispersion rms = 0.48. Our results are similar to

those of S99 within the uncertainty of the �t coe�cients.

To compare the model decay times with those observed during dwarf-nova outbursts we have to

convert orbital periods of observed systems into the disc radii because models are calculated not for

a given Porb but for a given disc radius.

The outer disc radius in dwarf novae expands up to Rd,max ∼ 0.9RR1 (see e.g. Smak (2001))

during the outbursts. RR1 is the radius of a primary Roche lobe given by Eggleton (1983):

RR1 = a

(
0.49

0.6 + q2/3 ln
(
1 + q−1/3

)) (5.1)
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System Porb M1 M2 Rd,max W τdec
o τdec

t
0.2

1 BV Cen 14.67 1.24 1.1 9.76 20.9 5.7 5.47

2 AT Ara 9.02 0.53 0.42 5.354 4.1 2.3 1.98

3 RU Peg 8.99 1.21 0.94 7.05 7.2 3.2 2.75

4 Mu Cen 8.21 1.2 0.99 6.586 7.9 3.1 4.15

5 SS Cyg 6.6 0.81 0.55 5.069 6.4 2.5 1.89

6 TW Vir 4.38 0.91 0.4 4.168 3.7 0.8 1.82

7 SS Aur 4.33 1.08 0.39 4.462 4.3 1.6 1.48

8 UGem 4.25 1.2 0.42 4.58 3.2 1.3 1.32

9 EY Cyg 11.02 1.1 0.49 8.201 14.3 4.29 2.83

10 DX And 10.57 1.2 0.8 7.923 12.5 3.47 2.90

11 EX Dra 5.04 0.75 0.56 4.097 ? 2.63 2.01

12 BD Pav 4.30 1.15 0.73 4.307 ? 2.96 1.54

13 IP Peg 3.797 1.16 0.55 4.077 ? 2.16 1.75

14 CU Vel 1.884 1.23 0.15 2.988 4.5 1.1 1.05

15 WX Hyi 1.796 0.9 0.16 2.519 4.0 0.9 1.55

16 Z Cha 1.788 0.84 0.13 2.503 3.7 1.0 1.24

17 VW Hyi 1.783 0.67 0.11 2.292 4.0 0.7 0.90

18 OY Car 1.515 0.64 0.086 2.07 4.7 0.8 0.74

19 Ek TrA 1.509 0.46 0.09 1.775 3.0 0.7 0.50

20 SW UMa 1.364 0.71 0.1 1.987 7.6 0.6 0.49

21 PTF1J0719 0.446 0.5 0.05 0.871 1.0 0.25 0.79

Table 5.1: The orbital period Porb is in hr, the primary and secondary masses, M1 and M2 , are in M� units,

the observed outburst width W is in days, τdec
o, τdec

t
0.2 are the observational decay rate and theoretical decay rate

calculated for αh = 0.2 respectively in days per magnitude and maximum disc radius Rd,max is in 1.0×1010 cm. Rows:

1− 8: U Gem stars from Ak et al. (2002), 9− 13: U Gem stars with τdec calculated by authors from light curves from

AFOEV database, 14− 20: SU UMa stars fromAk et al. (2002), 21: AM CVn star from Levitan et al. (2011); Porb, M1

and M2 are taken from Ritter and Kolb (2003); Rd,max is calculated according to Eqs. (5.1) & (5.2).
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where

a = 2.3× 109M
1/3
1 (1 + q)1/3P

2/3
min cm (5.2)

is the orbital separation, q = M2/M1 and Pmin is the orbital period in minutes.

A primary and a secondary masses (M1 andM2) are taken from the most recent version (November

2011) of Ritter and Kolb (2003). For PTF1J0719 M1 and M2 remain unknown so their values have

been guessed according to what is expected for AM CVn stars.

Once the system's orbital periods are converted into the maximum radii of their discs the linear

�t to all data from Table 5.1 of the form τdec = A1Rd,max gives A1 = 0.48 ± 0.02 with dispersion

rms = 0.56.

It is interesting to check if the τdec−Rd,max relation is independent of the class of systems exhibiting

normal outbursts and chemical composition of the disc. Since the basic DIM (with no mass transfer

rate enhancement or the additional sources of a disc heating) is able to reproduce normal outbursts

only (see Sect.4 and e.g. Lasota (2001)) we �nd it reasonable to start with U Gem-type systems,

where only normal outbursts are present and then we enrich the sample with SU UMa stars and the

PTF1J0719.

The τdec − Rd,max relation for U Gem-type binaries is to a good approximation linear. For the

linear �t one obtains A1 = 0.49 ± 0.03 with dispersion rms = 0.68. The coe�cients for the general

relation τdec = B1Rd,max
γ are B1 = 0.27 ± 0.12 and γ = 1.32 ± 0.22 with rms = 0.66. In this

case, similar to what was noticed by S99, the rms dispersions do not di�er signi�cantly for the linear

and non-linear �t, moreover the errors of B1 and γ are rather large. Therefore we limit our further

considerations to the simpler, linear case.

According to the model, the outbursts appearing between superoutbursts of SU UMa stars have

the same origin as those in U Gem-type binaries. As expected, their measured τdec marked on the

τdec−Rd,max plane extrapolate the τdec−Rd,max relation for U Gem to the regime of orbital periods

shorter than 2 hr. The coe�cient A1 of the linear �t for the sample including the normal outbursts

of U Gem-type and SU UMa-type DN is A1 = 0.48± 0.03 with dispersion rms = 0.57.

As discussed in Kotko et al. (2012) and Sect.4.2 PTF1J0719 is the only system in the AM CVn

class of binaries where short outbursts can be �rmly classi�ed as �normal� and the system considered

as a helium counterpart of an SU UMa-type DN. With PTF1J0719 taken into account the coe�cient

of the linear �t remains almost unchanged (A1 = 0.48 ± 0.02). We conclude that the τdec − Rd,max

relation is universal for normal outbursts of all classes of cataclysmic variables.

To estimate the αh parameter one needs to �nd the relevant τdec−Rd,max relation for model light

curves calculated with di�erent αh and compare the results with observations. We have chosen 4

values of αh: 0.05, 0.1, 0.2, 0.3 and for each of them the set of models with di�erent mass transfer

rates Ṁtr (from 1015 to 1017 g/s), primary masses M1 (from 0.6 to 1.2 M�) and maximum disc radii

Rd,max (0.3 − 3.0 × 1010 cm) have been calculated. The decay rates of the synthetic outbursts have

been measured in the same manner as in the observational case.

Although our code (Sect.3.2) di�ers from the code used by S99 (for example the input parameters

are di�erent and in our code the adaptive grid enables high resolution of the fronts) the di�erences
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Figure 5.1: The decay rate-maximum disc radius relation. Filled symbols: U Gem-type systems (red circles), normal

outbursts of SU UMa-type systems (orange triangles) and PTF1J0719 (black square). Open symbols: models with

αh = 0.05 (green diamonds), αh = 0.1 (pink circles), αh = 0.2 (blue squares), αh = 0.3 (black triangles). The solid line

- linear �t to the observational data (�lled symbols) in the form τdec = A1Rd,max with A1 = 0.48.

should not a�ect modeling of the decay phase of the outburst.

When measuring τdec of the outbursts for a wide range of model parameters one has to pay

attention to the several problems:

(a) For large discs (Rd,max > 5.0 × 1010 cm) and high primary masses (M1 > 1.0 M�) the re�ares

appear during the decline from maximum (Sect.2.23). In this case the model outburst cannot

be considered as normal.

(b) In large discs and for high values of αh inside-out heating fronts may not be able to propagate

up to the outer disc edge because such values of the viscosity parameter decrease the value of

Σ+
crit (see the formulae in Appendix A) and, with increasing R, increases the possibility that a

cooling front will form right behind the heating front. In this case the cooling front will start at

R� Rd,max and the decay rate will not be connected with the real extent of the disc.

(c) Models with the same parameters except for αh have di�erent stability limits.

Those properties of the DIM have their re�ection in the distribution of the model points in Fig.5.1.

For large Rd,max models with higher αh tend to deviate more from the empirical τdec−Rd,max relation.
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Linear �ts to the τdec = AαRd,max relation obtained for the models with di�erent αh give:

A0.05 = 1.624± 0.235 for αh = 0.05

A0.1 = 0.525± 0.128 for αh = 0.1

A0.2 = 0.338± 0.036 for αh = 0.2

A0.3 = 0.151± 0.031 for αh = 0.3

The coe�cients Aα show a clear tendency to decrease when a higher αh is set in the model. The

comparison with A1 obtained from the �ts to empirical data shows that αh ∈ [0.1, 0.2], with no

unambiguous preference for one of these values, thus con�rming conclusions obtained by S99.

SU UMa-type stars and their superoutbursts provide another piece of interesting information. The

decay from superoutburst may be divided in least into two phases: (i) a plateau and (ii) a fast decay

phase. According to the EMT model (Sect.4.5.3.1), during the plateau phase the slow decline of

the system luminosity is caused by accretion-driven depletion of the excess matter provided by the

enhanced mass transfer from the secondary. This phase ends when a cooling front forms and so the

following fast decline is caused by the same mechanism which produces normal outbursts. Based

on this, we measured τdec during the fast decay phase of SU UMa superoutbursts and found that

they are approximately the same as τdec measured for their normal outbursts. The same is true

of the superoutbursts and normal outbursts in the models calculated with the prescription for the

enhancement given in Ṁtr (Hameury et al., 1997), Sect.4.5.

The decay rate in the fast decline phase was measured as the time interval between the time the

system luminosity was 1 mag below the start of the decline phase to the time when the system was

2 mag below it.

This conclusion is very promising in the context of evaluation of αh in AM CVn stars. As was

already mentioned, the normal outbursts in AM CVn stars are rarely detected and the outburst cycle

is dominated by superoutbursts. However, with well observed fast decay phases of the superout-

bursts in AM CVn stars it will be possible to estimate αh in helium-dominated discs more precisely.

Unfortunately the currently available data are not of su�cient quality to permit such investigations.

5.1.2 The outburst width-orbital period relation

In van Paradijs (1983) it is showed that there exists a positive correlation between the outburst width

W and the orbital period but it is concluded, however, that narrow and wide outbursts should be

considered separately.

To determine consistently the outburst width in various systems the magnitude level at which it is

measured has to be de�ned. Following van Paradijs (1983) S99 de�nes W as the time interval during

which the system luminosity is above the level set at 2 mag below the outburst maximum.

Using data from van Paradijs (1983), S99 �nds the coe�cients for:

� the linear dependence in the form W = CW,S99Porb: CW,S99 = 1.39± 0.06



5.1. THE DECAY TIME 119

� the non-linear dependence in the form W = CW,S99Porb
βS99 : CW,S99 = 2.01 ± 0.29 and βS99 =

0.78± 0.11.

Since, as S99, we �nd the linear �t to be of superior quality, in what follows we will not use the

non-linear �tting formula. We shall also use only narrow outbursts as �generic� normal outbursts.

The linear �t to our data (which now contains 18 systems for which the measurement of the

outburst width was possible) gives CW = 0.99 ± 0.12 thus the agreement with S99 is not as good as

for the decay times. The analogous procedure applied to di�erent subsets of our data gives:

� for U Gem stars from Ak et al. (2002) only: CW = 0.79± 0.07

� for U Gem stars from Ak et al. (2002) complemented with our measurements: CW = 0.90±0.10.

One concludes that CW depends on the choice of the DN sample.

The measurements of the outbursts width are clearly more vulnerable to uncertainties connected

with the precise determination of the outburst maximum and with usually sparser data coverage of the

outburst rise in comparison to the outburst decay. Moreover, except for systems observed intensively

for a long time (such as the already mentioned SS Cyg or U Gem) the straightforward assessment

of which outbursts are narrow and which are wide may be problematic. Nevertheless it is worth

comparing observations with models as has been done in Sect.5.1.1 for τdec.

The width W of synthetic outbursts has been de�ned in the same manner as in observational case.

Applying the linear dependenceW = CαRd,max to the same set of models as in Sect.5.1.1 one obtains:

C0.05 = 3.222± 1.132 for αh = 0.05

C0.1 = 1.794± 0.285 for αh = 0.1

C0.2 = 1.502± 0.112 for αh = 0.2

C0.3 = 0.872± 0.165 for αh = 0.3.

The comparison of the above listed Cα's with C1 = 1.496 ± 0.135 determined from the observed

relation W = C1Rd,max favors again αh ∈ [0.1, 0.2] with even stronger indication of αh = 0.2.

The model and observational data with �tted linear dependence between W and Rd,max are pre-

sented on Fig.5.2.

Even if W is not well enough determined to provide a �rm value of αh from the W = C1Rd,max

relation, the results obtained totally preclude αh � 0.1.

5.1.3 The decay time from the DIM

The decrease of the luminosity after the outburst maximum is the e�ect of two mechanisms: (1)

the depletion of the matter from the disc due to the accretion onto the central object and (2) the

propagation of the cooling front through the disc (Sect.2.5).

The decay time tdec is the time it takes the system luminosity to drop from the maximum to the

quiescence level and it may be written approximately as
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Figure 5.2: The W − Rd,max relation. Filled symbols: U Gem-type systems (red circles), normal outbursts of SU

UMa- type systems (orange triangles). Open symbols: models with αh = 0.05 (green diamonds), αh = 0.1 (pink circles),

αh = 0.2 (blue squares), αh = 0.3 (black triangles). The dotted line - linear �t to the observational data (�lled symbols)

with a coe�cient C1 = 1.496.
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tdec ≈
Rd,max

vdec
(5.3)

where (as before) Rd,max is the maximum disc radius and vdec is the decline velocity.

There are two contributions to vdec: (a) the velocity at which the hot matter ahead the front

di�uses inwards (vvisc) and the velocity at which the matter out�ows from the hot region into the cold

region what takes place at the cooling front (vF). Therefore, vF rises the depletion rate of the matter

from the hot region of the disc and so rises the rate at which the luminosity of the disc decreases. vvisc

and vF are independent velocities, in a sense that vF includes the e�ect of radial drift of matter at the

front, while vvisc de�nes the rate at which matter di�uses inwards in the whole hot region. Therefore,

|vdec| ≈ |vvisc + vF|.

Since vvisc ≈ ν/R, from Eq.(2.8) one has

vvisc ≈
2

3
αhc

2
s

1

ΩKR
(5.4)

where c2S = P/ρ and P is the total pressure.

It is important to stress that H is the disc's (semi)scale-height and not the disc's actual (e.g.

photospheric) height which can be larger by a factor of few. Unfortunately S99 uses the height z0

corresponding to the optical depth ∼ 1 hence the use of his formula would result in αS99 that does not

correspond to the α-parameter de�ned by the Shakura-Sunyaev prescription. Fortunately, however,

S99 does not calculate αh directly from his analytical formula, only compares the theoretical and

empirical dependence between the outburst decay rate (or the outburst width) and the orbital period,

thus his conclusions about the value of the viscosity parameter in hot accretion discs remain valid.

From numerical simulations Menou et al. (1999) �nd that vF ∼ 1/7αhcs. We con�rmed this result

for cooling front velocity in solar composition discs and found that it applies also to helium-dominated

disc (Sect.2.7.2.2).

We take vvisc and vF as the �average� velocities. In other words we assume that vF is approximated

by its value in the asymptotic regime and that viscous velocity is the same at each radius and is

approximated by its value calculated at Rd,max.

The �nal formula for �average� tdec is thus

tdec ≈
7Rd,max

αhcs(1 + 14/3(csΩKRd,max))
(5.5)

The speed of sound can be expressed in terms of the central temperature in the disc: cs =√
kTc/mH, where k is the Boltzmann constant and mH is hydrogen molecular mass (in the case

of helium disc it should be replaced by helium molecular mass). The numerical �t to the temperature

at the cooling front found from models of solar-composition discs gives

Tc ≈ 4.7× 104 K (5.6)
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with no dependence on disc parameters.

For AM CVn stars, e.g. PTF1J0719, the chemical composition (Y = 0.98 Z = 0.02) gives

Tc ≈ 1.1× 105 K (5.7)

From Eq.(5.5) it is clear that tdec depends on Rd,max,M1 and αh. The primary massM1 determines

the white dwarf radius R1 through M −R relation (Nauenberg, 1972). M1 and Rd,max de�ne the disc

extend since the model assumes that the inner disc radius Rin = R1.

To compare the observational outbursts decay rates τdec
o with the analytical decay rates τdec

t, the

derived tdec has to be divided by the amplitude of the outburst An. For each system with measured

Porb and estimatedM1 andM2 (necessary for calculating Rd,max) there is only one free parameter left:

αh. Thus the conformity between the observed decay rate τdec
o and τdec

t calculated from Eq.(5.5)

can be attained by adjusting αh. We assumed αh = 0.2. The calculation results are summarized in

Table 5.1 and presented in Fig.5.3.

Fig.5.3 shows the dependence of decay rate τdec on Rd,max for observational systems listed in Table

5.1 (red crosses) and the calculated decay rates using Eq.(5.5) for αh = 0.2 (blue stars) and αh = 0.1

(green crosses).

It can be seen that decay rates calculated from Eq.(5.5) follow quite close the observational

τdec
o(Rd,max) and that in most cases the calculated time for αh = 0.2 is close to the observed one

(Table 5.1). In few cases the discrepancy is large. It is not clear if it is due to the imprecision in

measuring the decline time, the peculiar nature of the outbursts, or to the non-universal value of αh.

After all, since MRI does not give the correct value of this parameter we do not really know what is

the physical mechanism driving accretion in hot dwarf nova discs. Hence there is no reason to assume

that it is �generic�.

One should keep in mind, however, that the signi�cant impact on αh has the determination accu-

racy of the observed outbursts amplitudes. An underestimate of An may be the cause of signi�cantly

higher αh for TW Vir, WX Hyi and PTF1J0719.

5.2 The Kukarkin-Parenago relation

The �rst to notice the relation between an outburst amplitude An and its recurrence time Tn were

Kukarkin and Parenago (1934). However, as their sample was based on the outbursts both in recurrent

novae and dwarf novae, its relevance has been questioned (Bath and Shaviv, 1978) and it has not been

used since then in its original form.

First to conclude that the An(Tn) correlation exists for the normal outbursts of dwarf novae was

van Paradijs (1985), even though a look at Fig.5.5 induces rather skeptical attitude to this idea (see

e.g. Payne-Gaposchkin (1977)).

Nowadays, for historical reasons the relation between amplitude and recurrence time of the normal

outbursts in dwarf novae is still called the Kukarkin-Parenago relation (hereafter K-P relation) and

its most recent form is presented in Warner (2003)
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An = (0.7± 0.43) + (1.9± 0.22) log Tn (5.8)

where Tn is in days and An in magnitudes.

Since it has been argued that the K-P relation might represent some global and average properties

of DN outbursts van Paradijs (1985) it is worth trying to establish if it follows from the DIM.

While the other relations, connecting di�erent quantities characterizing the binary system and their

light curves (e.g. theMV,max(Porb) or the τdec(Porb) relations, see Warner (2003)) follow directly from

the DIM model, the derivation of the K-P relation is not so straightforward.

Of course as the outburst amplitude is related to the mass of the disc and the mass of the disc with

the accumulation time, a relation of the K-P style could be in principle expected. For example, van

Paradijs (1985) speculated that the average amount of mass ∆Mquies transferred during an average

recurrence time Tn: ∆Mquies = TnṀquies is constant over the dwarf nova population but also warned

about possible selection e�ects and model dependence. Here, we try to examine what An(Tn) relation

can be deduced from the DIM in its simplest (and when possible simpli�ed) form.

The mass accumulation starts during the terminal phase of the decay of the previous outburst

(point 1 in Fig.5.4A) but since very little mass is accumulate during this very short short phase one

can safely assume that the mass accumulation in the disc takes place during quiescence and the rise

of an outburst. As can be seen from the Fig.5.4C there is no mass accretion at the disc inner edge

during the quiescence, it starts to rise slightly during the rise of the outburst but the rapid depletion

of the mass from the disc takes place during the outburst decay (between point 2 and 3 in Fig.5.4B).

For simplicity we will assume that accumulation rate Ṁaccum of the mass in the disc during

quiescence is approximately equal to the mass transfer rate from the secondary Ṁtr (this assumes no

truncation of the inner edge of the disc; no �leaky" disc), and that the mean accretion rate during the

outburst is about half the maximum accretion rate during outburst 〈Ṁoutb〉 ≈ 1
2Ṁaccr,max.

The former is the upper limit for the mass accumulation rate, as the disc can not accumulate

mass faster than it receives it, and the latter can be assumed from the shape of the function Ṁaccr(t)

in the model which is rapidly rising and approximately exponentially decreasing during the outburst

(Fig.5.4C).

It is important to recall here that one can not approximateṀaccr,max by Ṁ+
crit(Rd,max) as it is

usually assumed for the hot discs, it can be seen from Fig.5.4C where green horizontal line represents

Ṁ+
crit(Rd,max) which in this case is 3 times smaller than Ṁaccr,max. The simulations clearly show that

the mass accretion reaches its maximum after the cooling front starts to propagate (see Sect.2.5.3).

In the following we assume that Ṁaccr,max ≈ εṀ+
crit(Rd,max), where ε ∼ 3.

The amount of mass accreted during the outburst decay is equal to the mass accumulated in the

disc during the quiescence and the rise of the outburst: ∆Maccr = ∆Maccum. Therefore,

〈Ṁoutb〉tdec = Ṁtr(tquiesc + trise) (5.9)

where tquiesc is the duration of the quiescence, trise is the time it takes the outburst to reach its
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Figure 5.4: The changes of the disc mass Mdisc (A),

magnitude (B) and mass accretion rate Ṁaccr at Rin (C)

during one outburst cycle. The horizontal red line at the

Ṁaccr(t) plot is the constant mass transfer rate Ṁtr and

the horizontal green line is Ṁ+
crit(Rd,max) for this model.

The parameters of the model are αh = 0.2, αc = 0.05,

M1 = 1.0 M�, Ṁtr = 6.0 × 1016 g/s and 〈Rd〉 = 1.2 ×
1010 cm. The point number 1 on all three plots refers to

the point when the mass accumulation in the disc starts,

point 2 is where the mass depletion from the disc starts

and point 3 is the end of this cycle when the mass starts

to accumulate in the disc again.
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luminosity maximum and tdec is the duration of the outburst decay to the quiescence level.

The decay time tdec is calculated as it is described in Sect.5.1.

The outburst recurrence time Tn is counted from the onset of the outburst to the onset of the

following one: Tn = trise + tdec + tquiesc while the accumulation time is taccum = tquiesc + trise (trise is

non negligible and it is important to include it to be able to account for the �cycling state" outbursts

where no quiescence stage is present). Substituting Tn and taccum to Eq. (5.9) gives

Tn =

(
〈Ṁoutb〉
Ṁtr

+ 1

)
tdec =

(
Ṁaccr,max

2Ṁtr

+ 1

)
tdec (5.10)

Since Ṁaccr,max ≈ εṀ+
crit (Rd) and the instability condition requires Ṁtr < Ṁ+

crit (Rd) then the ratio

in the brackets is Ṁ+
crit (Rd) /(2Ṁtr)� 1 and one can take

Tn ≈
εṀ+

crit (Rd)

2Ṁtr

tdec (5.11)

The visual luminosity in the maximum of an outburst is determined by the radiation produced in

the whole hot disc:

Lmax = 2

ˆ Rd,max

Rin

Q+(R) 2πRdR (5.12)

From Eq.(2.55) in Sect.2.3.2 and assuming that for the discs in DN or AM CVn stars R1/Rd,max �
1 is a reasonable approximation, the luminosity at the outburst maximum can be taken as

Lmax ≈
GM1εṀ

+
crit (Rd)

2R1
(5.13)

where R1 is a white dwarf radius and M1 is its mass.

In the quiescence it is mainly the outer region of the disc which contributes to the luminosity at

minimum light (we do not consider here the contributions from the hot spot and the secondary).

Since the disc in the quiescence is in thermal equilibrium but it is not in the viscous equilibrium

(Ṁaccr 6= const) the equation (2.53) can not be applied to calculate Lmin .

From the equations describing non stationary disc (Sect.2.3) the radial velocity vR is given by

vR = − 3

Σ
√

R

∂

∂R
[νΣ
√

R]. (5.14)

From Eq.(5.14) and the de�nition of the mass accretion rate Ṁaccr ≡ 2πRΣ vR (vR < 0) one

obtains

Ṁaccr = 3πνΣ

(
2
∂ ln(νΣ)

∂ lnR
+ 1

)
(5.15)

The Eq.(5.15) is the linear inhomogeneous di�erential equation with respect to νΣ and taking into

account the boundary condition at the disc inner edge νΣ(R1) = 0 its solution may be written in the
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form

νΣ = u(R, t)

(
1−

√
R1

R

)
. (5.16)

Substituting νΣ given by Eq.(5.16) to Eq.(5.15) and rearranging the terms gives

Ṁaccr = 3πνΣ

[
2
∂ lnu(R, t)

∂ lnR
+

(
1−

√
R1

R

)−1
]

= 3πνΣg̃. (5.17)

Now substituting νΣ de�ned by Eq.(5.17) to the Eq.(2.38) the viscous heating is given by

Q+(R) ≈ 3GM1Ṁaccr

8πR3g̃
(5.18)

and the estimated minimum disc luminosity is

Lmin ≈
GM1Ṁtr

2Rdg̃
(5.19)

where g̃ ∼ 2 (Idan et al., 1999).

The amplitude An is the di�erence between the magnitudes at maximum MV,max and minimum

MV,min

An = MV,min −MV,max +BC+
− = 2.5 log

Lmax

Lmin
+BC+

− (5.20)

where BC+
− is the di�erence between the bolometric corrections at maximum and minimum. From

Eq.(5.11), (5.13) and (5.19) we thus get

An ≈ C1 + 2.5 log Tn (5.21)

where

C1 = 2.5 log 2g̃ − 2.5 log tdec +BCmax −BCmin (5.22)

The last step is to calculate the bolometric corrections BCmax and BCmin.

From de�nition BCmax = Mbol,max −MV,max = Mbol,max + 2.5 log(LV,max/L�).

Following Smak (1989b) we calculate the visual luminosity in maximum LV,max with spectral

energy distribution of a black body disc integrated over the band frequencies appropriate for Johnson

V-�lter where the e�ective wavelength is λeff ≈ 545 nm and the bandwidth is ∼ 85 nm. This translates

into the frequency range from ν1 = 5.966× 1014 Hz to ν2 = 5.102× 1014 Hz

LV,max =
45

π4

GM1Ṁaccr,max

2R1

ν2ˆ

ν1

dν

4xdˆ

1

1

ν∗

xdx

exp

(
ν
ν∗
x3/4(1− x−1/2)−1/4

)
− 1

(5.23)
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Model C1 αh Rd,max M1

1 −2.5 0.01 2 1

2 −0.95 0.2 0.6 0.6

3 −0.2 0.2 2 1

4∗ 0.1 0.2 0.7 1

5 1.2 0.2 5 1.2

6∗ 1.3 0.2 0.8 1.2

Table 5.2: The table shows 6 sets of parameters for which the theoretical K-P relation has been calculated. The

parameters listed in the table are: αh - the viscosity parameter in the hot disc, Rd,max - maximum disc radius in

1010 cm, M1 - primary mass in M� and C1 - the constant from Eq. (5.22) calculated for a given set of parameters.

Models 2 and 5 correspond to the lower and upper limits of the theoretical K-P relation for solar discs with αh = 0.2;

models marked with �∗� are calculated for helium discs (Y = 0.98 Z = 0.02): model 4∗ is supposed to give the K-P

relation for PTF1J0719, model 6∗ is supposed to give the K-P relation for CR Boo and V803 Cen in their cycling

states. The comparison between model 1 and 3 shows how the relation changes when αh is decreased from αh = 0.2 to

αh = 0.01 in solar disc. The models are plotted with lines in Fig. 5.5.

where

xd =
Rd

R1
ν∗ =

k

h

(
3

8πσ

GM1Ṁaccr,max

R3
1

)1/4

. (5.24)

As can be seen LV,max (and so BCmax) depends on M1, R1, Rd and Ṁaccr,max.

The precise calculations of LV,max should be performed using the �uxes from the models of stellar

atmospheres (e.g. from The Kurucz Stellar Atmospheres Atlas), however, the black body approxima-

tion gives almost the same results within an error of 0.1 mag (Smak, 1989b) so it seems to be su�cient

in this context.

BCmin can be estimated from spectral energy distribution, calculated for the model of a quiescent

disc, which e�ective temperature is ∼ 5500 K. We used spectra calculated by Irit Idan (2011 private

communication; see Idan et al. (2010)) to determine the luminosity of the cold disc in the V-band.

Assuming that the main contribution to the bolometric luminosity in quiescence comes from the outer

parts of the disc (∼ 40% of the total disc surface, say) we eventually estimate that BCmin ≈ −0.4.

Eq.(5.21) does not correspond exactly to the K-P relation (see Eqs.5.8, 5.25). The slope of the

theoretical relation is always 2.5 (by construction) as compared with ∼ 2 obtained from �ts to obser-

vations. Considering the typical spread of parameters, in hydrogen dominated discs C1 is contained

between ∼ −1.0 and ∼ 1.2 and is between ∼ −0.2 and 1.3 in helium discs (see Table 5.2), to be

compared with C1 between 0.3 and 2.0 for the K-P relation. Considering the very large scatter of ob-

servational data this can be considered a rather satisfactory result. This is true only of the theoretical

relation obtained assuming αh = 0.2. The same relation with αh = 0.01 gives a totally unacceptable

representation of the An(Tn) relation thus con�rming the conclusion of the previous Sections that

αh ≈ 0.2.

The various An(Tn) relations are plotted in Fig.5.5. We also marked on this diagram the values

of An(Tn) for a subset of dwarf novae and outbursting AM CVn stars. The sample of the systems
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Figure 5.5: Various An(Tn) relations. The line colors correspond to the row numbers in Table 5.2: yellow - (1), red

- (2), light blue - (3), green - (4), pink - (5), blue - (6). The red and pink lines correspond respectively to the �lower

and upper limits� (see text) deduced from the theoretical relation for solar-abundance discs with αh = 0.2 (C1 = =0.95

and 1.2). Helium disc theoretical relations are represented by the lines green and blue (C1 = 0.1 and 1.3). Lines yellow

and light blue illustrate the αh dependence of the An(Tn) relation: for the same binary parameters they correspond

to αh = 0.01 and αh = 0.2 respectively. The upper and lower uncertainty of observational K-P relation �tted to

the systems are marked with black, dashed lines. The sample of binaries marked on the plot consists of U Gem-type

systems listed in Table 5.1 (full circles and asterisk), AM CVn systems: PTF1J0719, CR Boo and V803 Cen (both in

cycling state outbursts) (open circles) and SU UMa stars (normal outbursts only, full squares) from Ak et al. (2002)

and updated Cataclysmic Binaries Catalog (Ritter and Kolb, 2003).
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presented in Fig. 5.5 consists of U Gem-type binaries taken from Ak et al. (2002) and listed in Table

5.1, SU UMa-type binaries taken from Ak et al. (2002) (also listed in Table 5.1) and from updated

Cataclysmic Binaries Catalog (Ritter and Kolb, 2003) (non listed in Table 5.1) and three AM CVn-

type stars for which An and Tn were measured from their light curves. For CR Boo and V803 Cen

(open circles in the left, bottom corner of Fig. 5.5) the measured An and Tn relate to the outbursts

in the cycling state (Patterson et al., 2000).

In this sample 15 systems out of 43 are the same as used in Warner (2003). The linear �t to our

sample gives

An = (1.3± 0.6) + (1.6± 0.3) log Tn (5.25)

Upper and lower uncertainties of this relation are marked as dashed lines in Fig.5.5. Some of the

U Gem-type binaries in Fig.5.5 are marked with asterisks and their names as examples to show how

observed systems correspond to the theoretical lines. For the same purpose the name of one of AM

CVn stars is shown on the plot.

The amplitudes of the systems common to Ak et al. (2002) and Warner (2003) have been corrected

and correspond to amplitudes of the disc luminosities alone. In maximum the main source of the

optical luminosity is the disc, in quiescence the contribution of the hot spot may have a meaning only

in the case of high inclinations, while the contribution from the primary WD may be signi�cant (the

boundary layer contributes mainly to wavelengths shorter than V).

The di�erence between Warner's corrected amplitudes and those taken from Ritter Catalog for

the same systems di�er by 0.8 mag on average. Taking into account all the simpli�cations and ap-

proximations in our derivation, as well as the uncertainties of the observational measurements of the

outbursts amplitudes and uncertainties in determination of the WD temperature in a given system

and its contribution to the total light, we believe that the fact that the amplitudes of other systems

have not been corrected does not in�uence signi�cantly our conclusions about the order of magnitude

of α.

The independence of the theoretical K-P relation from Ṁtr is the consequence of the assumption

Ṁaccr,max ≈ εṀ+
crit(Rd,max) since Ṁ+

crit(Rd,max) does not depend on Ṁtr. Systems with larger (more

extended) discs and more massive M1 have higher An for a given Tn than systems with small discs

or less massive primaries (compare lines red-pink, blue-green in Fig.5.5). Despite the simpli�cations

and approximations assumed in the derivation, the theoretical K- P relation follows the observational

data reasonably well. One concludes that normal dwarf nova outbursts are indeed the results of �lling

and emptying of an accretion disc, as assumed in the model. The parameter that has the deciding

in�uence on the recurrence time and amplitude of normal outbursts is the disc's extent.



Chapter 6

Summary and outlook

In this thesis we showed that the Disc Instability Model is universal as the explanation

of dwarf-nova-type outbursts. On the other hand its properties di�er between the discs

dominated by di�erent chemical elements. This gives a unique opportunity to investigate

the accretion disc response to changes of chemical compositions by the of numerical simu-

lations of dwarf nova and AM CVn star light curves. The results brings new information

about the conditions in which the thermal-viscous instability develops in the disc, about

the connection of angular momentum transport in the disc with its microphysics and about

what can be read out from the observed light curves of systems erupting in dwarf-nova

manner.

The consequences of the change of the main disc matter component from hydrogen to

helium were presented in Chapter 2. The high temperatures of helium ionization change the

ranges of Tc and Σ at which the thermal-viscous instability operates in the disc. These high

temperatures also imply that contrary to hydrogen-dominated disc even a small addition

of metals (& 2%) a�ects the critical values of Tc and Σ and has noticeable in�uence on

the disc behavior. Although the chemical composition of the disc manifest itself in the

observed light curves, as has been proved with simulations in Sect.2.7.3, there are still too

many uncertainties concerning the other disc parameters which shape the outbursts (e.g.

the α-parameter) to state that one could infer the disc composition from observations of

dwarf novae or AM CVn star light curves.

The atomic structure of helium gives rise to two possible ionization states. We analyzed

how this modi�es the opacities dependence on temperature (and so the critical values of

Σ and Tc) in helium discs taking into account also various metal fractions. Our results

show also that changing α in the simulations of helium discs may have similar e�ect on

the synthetic light curves as changing Z (Sect.2.7.1).

At this point one may ask the question about the relevance of di�erent values of α for

a hot and cold disc since it may be suspected that this would be no longer necessary in

131
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the disc with hydrogen-less chemical composition. However, according to our results to

obtain the outburst amplitudes corresponding to observed ones α still has to be changed

in simulations of AM CVn stars.

The presence of two electrons in the helium atom gives rise to a wide range of atomic

transitions which are absent in hydrogen. We found that this has the consequences for

the structure and velocities of the heating and cooling fronts propagating in the disc

(Sect.2.7.2): the fronts in helium discs are slower than those in solar-composition discs

and their pro�les show �humps� at the temperatures which may be identi�ed with di�erent

atomic transitions in helium. There are no similar features in the pro�les of fronts in

hydrogen-rich discs.

In Chapter 4 it was shown that the DIM predictions for helium discs stability limits are

in agreement with the observations of the AM CVn stars luminosity states with respect

to their orbital periods. Thus it is reasonable to consider it as the model describing

dwarf-nova-like outbursts in these systems. The analysis of the in�uence of helium disc

parameters on the modeled light curves (including di�erent Z) clearly shows that the basic

version of the DIM has to be supplemented with additional components to reproduce the

complex AM CVn star light curves. Among those which have been tested (the additional

disc heating sources, a primary white dwarf magnetic �eld, the enhanced mass transfer

rate from the secondary) the crucial one are the enhancements of mass transfer rate from

the donor which is irradiated in a variable manner. As there is no agreement about the

nature of such irradiation mechanism three ad hoc prescriptions have been used. This

approach allowed to reproduce superoutbursts, standstills, the cycling states and dips in

the modeled light curves which resemble the features seen in AM CVn star light curves.

We found that the most successful is the prescription for mass transfer enhancement which

in a very rough way may correspond to the precessing warped/tilted disc which temporary

unveils the secondary to irradiation.

In the last part of this thesis the value of α in hot accretion discs has been investigated.

The methods concern the comparison between the widths W and the decay time rates τdec

measured in the observed outbursts with those measured in the model light curves. Those

methods are a repetition of what has been done by Smak (1999) but with the use of

the di�erent set of data. This set comprises of two types of dwarf novae (U Gem and SU

UMa) and contains one AM CVn star (PTF1J0719+4858), the only one with well-observed

normal outbursts. From the obtained relations W − Porb , τdec − Porb and W − Rdisc ,

τdec−Rdisc it can be inferred that αh = 0.1− 0.2 with preference for 0.2. These values are

independent of the dwarf nova type. Though there is only one helium system included, it

follows these relations close enough to conclude that they presumably do not depend on

the disc chemical composition.

To verify the above-mentioned results we have derived the decay time of an outburst

in a semi-analytical way. It has been taken into account that the decay time of the disc
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luminosity is de�ned not by the propagation velocity of the cooling front in the disc but by

the viscous di�usion of the hot disc matter and by the rate at which the matter out�ows

from the hot to the cold part of the disc. The derived expression depends on the quantities

which can be estimated observationally and on αh. The decay times calculated with this

formula for the systems with known parameters and compared with the measured decay

times of the outbursts in these systems indicates in most cases that αh = 0.2 (Sect.5.1).

In the last part of this thesis the Kukarkin-Parenago relation (K-P relation) was con-

sidered. It has been known for a long time as the empirical relation between the amplitude

and the recurrence time of the normal outbursts in dwarf novae. Here it is shown that

corresponding relation can be derived from the DIM (Sect.5.2). This gives two pieces of

information: (i) it con�rms that the DIM is the model of normal outbursts in dwarf novae

and (ii) if an outburst follows this relation it should be of normal type. This leads to far-

ther conclusions that since the small outbursts in the cycling states of two AM CVn stars:

CR Boo and V803 Cen follow the K-P relation they are the result of the same mechanism

as normal outbursts.

To test the dependence of the empirical K-P relation on the disc chemical composition

we �t the relation to our set of U Gem-type dwarf novae and check if the normal outbursts

of PTFJ0719_4858 �t it. The fact that they follow it very closely and the previous

conclusion about cycling states in AM CVn stars suggests that K-P relation is presumably

independent of disc chemical composition and that DIM is the universal model explaining

normal outbursts.

The derived K-P relation can be used as another method to deduce αh on the same

principle as the formula for the decay time of an outburst - by comparing the amplitudes

calculated for known parameters of the systems and assumed αh with the measured am-

plitudes of the outbursts in these systems. Again the results suggest that αh ∼ 0.1− 0.2.

All the methods used in Chapter 5 as well as the simulations of the dwarf novae and AM

CVn light curves rule out the values of αh much lower than 0.1. It has its consequences for

the results of simulations performed in the framework of Magneto-Rotational-Instability

model which give αh ∼ 0.01− 0.02 which is an order of magnitude too small.

The results obtained in this thesis suggest the possible directions for further investigations:

1. The veri�cation of the possible relation between α and the disc chemical composition - performing

the simulations of disc behavior for wider range of chemical compositions, also with the dominant

contribution of metals. The chemical composition in AM CVn stars is determined by their

evolutionary path. The He-star channel allows the disc to be even completely comprised of metals

(Z = 1.0). Verifying the behavior of the disc for so extreme abundances may set constrains on

possible evolution of those binaries.

2. Joining the simulations of AM CVn star light curves with the simulations of their spectra - there

are very few attempts of simulations of helium disc spectra and none of them are considering
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optically thick discs with convection. The simulations of the evolution of spectra during the

outburst cycle in helium discs, similar to those performed for hydrogen-rich discs (Idan et al.,

2010) would be very valuable.

3. More detailed analysis of the problem of the precessing tilted disc geometry and its application to

variable irradiation of the secondary - this complicated problem may give clues not only about

the possible mechanism of complicated outburst patter in AM CVn stars but also about the

nature of superhumps. The subject of enhanced mass transfer rate deserves even more attention

as it is passed over by dwarf novae community despite arguments which seem to give evidence

in its favor.

4. Veri�cation of the obtained results with new, more detailed AM CVn stars database - the ongoing

(e.g. Palomar Transient Factory) and planned (e.g. Gaia) surveys, in which AM CVn stars

are important targets, are very promising. Higher sensitivity of the instruments and growing

attention paid to these systems has already resulted in doubling the number of binaries classi�ed

as AM CVn stars. The better covered and more numerous light curves of helium systems will

allow to verify our conclusions considering α in helium disc and explanation of their light curves.

5. The modeling of the discs in X-ray binaries - it is tempting to take advantage from the experience

gained during the work on this thesis, extrapolate it to simulations of light curves of systems

with more compact primaries and trying to reproduce complicated features of X-ray binaries

light curves taking into account the conclusions from AM CVn light cuvres simulations.

6. The discrepancy between α deduced from MRI and dwarf nova simulations seems to be unde-

niable, taking into account that new methods still suggest that value of α in the hot discs of

dwarf novae is ∼ 0.2 . It is then reasonable to analyze closer the MRI assumptions as there may

lie the problem and its solution.
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Appendix A

A.1 Y=1.0 Z=0.0

Σ−crit = 5.28× 102α−0.81
0.1 R1.07

10 M−0.36
1 (A.1)

Σ+
crit = 1.62× 102α−0.84

0.1 R1.19
10 M−0.40

1 (A.2)

T+
c,crit = 7.70× 104α−0.20

0.1 R0.08
10 M−0.03

1 (A.3)

T−c,crit = 1.78× 104α−0.13
0.1 R−0.03

10 M0.01
1 (A.4)

T+
eff,crit = 1.30× 104α−0.01

0.1 R−0.08
10 M0.03

1 (A.5)

T−eff,crit = 9.70× 103α−0.01
0.1 R−0.09

10 M0.03
1 (A.6)

Ṁ+
crit = 1.01× 1017α−0.05

0.1 R2.68
10 M−0.89

1

Ṁ−crit = 3.17× 1016α−0.02
0.1 R2.66

10 M−0.89
1

A.2 Y=0.98 Z=0.02

Σ+
crit = 3.80× 102α−0.78

0.1 R1.06
10 M−0.35

1 (A.7)

Σ−crit = 6.12× 102α−0.82
0.1 R1.10

10 M−0.37
1 (A.8)

T+
c,crit = 7.14× 104α−0.21

0.1 R0.08
10 M−0.03

1 (A.9)

T−c,crit = 2.36× 104α−0.14
0.1 R−0.00

10 M0.00
1 (A.10)

T+
eff,crit = 1.15× 104α−0.01

0.1 R−0.08
10 M0.03

1 (A.11)

T−eff,crit = 8.69× 103α−0.00
0.1 R−0.09

10 M0.03
1 (A.12)

Ṁ+
crit = 6.22× 1016α−0.05

0.1 R2.67
10 M−0.89

1 (A.13)

Ṁ−crit = 2.04× 1016α−0.02
0.1 R2.62

10 M−0.87
1 (A.14)
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A.3 Y=0.96 Z=0.04

Σ+
crit = 3.22× 102α−0.78

0.1 R1.04
10 M−0.35

1 (A.15)

Σ−crit = 4.59× 102α−0.81
0.1 R1.08

10 M−0.36
1 (A.16)

T+
c,crit = 6.68× 104α−0.22

0.1 R0.07
10 M−0.02

1 (A.17)

T−c,crit = 2.51× 104α−0.14
0.1 R0.00

10 M−0.00
1 (A.18)

T+
eff,crit = 1.07× 104α−0.01

0.1 R−0.09
10 M0.03

1 (A.19)

T−eff,crit = 8.35× 103α−0.00
0.1 R−0.10

10 M0.03
1 (A.20)

Ṁ+
crit = 4.76× 1016α−0.06

0.1 R2.65
10 M−0.88

1 (A.21)

Ṁ−crit = 1.74× 1016α−0.02
0.1 R2.61

10 M−0.87
1 (A.22)


