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List of key symbols

HBH ,HMBH ,HX many-body Hamiltonians: Bose-Hubbard, Multiband Bose-
Hubbard, position space second quantized Hamiltonian for gas
of ultracold atoms

Htun tunnelling part of Bose-Hubbard or Multiband Bose-Hubbard
Hamiltonian

Hloc single site part of Bose-Hubbard or Multiband Bose-Hubbard
Hamiltonian (atomic limit)

Vint interaction potential of pair of atoms
Vlatt optical lattice 3D potential atoms
Vtrap external trapping potential
L linear size of a finite lattice
N total number of particles in the lattice
g contact interaction coupling constant in position representation
E↵

i single particle energy of atom in Wannier function mode localised
in site i and band ↵

J↵
d tunnelling coupling constant in the Multiband Bose-Hubbard

model (within band ↵) for d-site long particle jump)
U↵���
ijkl interaction coupling constant in the Multiband Bose-Hubbard

model
µ chemical potential
ER Energy recoil unit
F Fidelity function (2.1)
� Fidelity susceptibility defined in Eq. (2.1) or the bond dimension

in the MPS representation Eq. (1.20)
U(t

2

, t
1

) evolution operator from time t
1

to t
2

, for time-independent Hamil-
tonian U(t

2

, t
1

) = U(t
2

� t
1

)

BEC Bose-Einstein Condnsate
BG Bose-Glass
BH Bose-Hubbard (model)
DMRG Density Matrix Renormalization Group
MBH Multiband Bose-Hubbard (model)
LDA Local Density Approximation
METTS Minimally Entangled Typical Thermal States (see Chapter 7)
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MI Mott Insulator
MPS, MPS� Matrix Product States, MPS with bond dimension �
OBC Open Boundary Conditions
PBC Periodic Boundary Conditions
QMC Quantum Monte Carlo
QPT Quantum Phase Transition
SF Superfluid
TEBD Time-Evolving Block Decimation
tDMRG real time Density Matrix Renormalization Group algorithm
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Chapter 1

Introduction

This thesis is concerned with developing and using theoretical tools and nu-
merical methods to describe physics of many body quantum systems formed
by ultracold atoms in optical lattice potentials. This chapter gives motiva-
tion for the use of ultracold atoms to study physics of quantum complex
systems, discusses basic setting, major achievements of the field especially
relevant to the content of this thesis. It also introduces most important the-
oretical tools that are strongly used in the subsequent chapters. Tools that
are necessary to obtain the results but in-depth analysis of their construction
is not vital have been presented in Appendices.

1.1 Ultracold atoms

Physics of ultracold atoms [1–4] experiences at least 20 years of spectacular
progress. Doubtlessly the milestone achievement was the realisation of Bose-
Einstein condensation [5, 6] which was possible by steady progress in trap-
ping and cooling techniques. Adding external periodic potential of so-called
optical lattice, enabled implementing models developed in last 50 years in
the field of condensed matter physics. This is particularly spectacular in the
field of strongly-correlated electronic models such as quantum magnetism
models or Hubbard model for electrons in the solid. Using the experimental
realizations of lattice models, an analogue of metal-insulator phase transi-
tion, a Mott-Insulator Superfluid phase transition of Bose-Hubbard model
was observed [7]. Since then ultracold atoms have become a setting for par-
allel experimental and theoretical research for example, but not limited to,
in the field of disordered systems [8–11], gases with internal spin structure
[12–16], thermalisation and non-equilibrium dynamics [17–19], topological
order and fractional quantum Hall eÄects [20, 21], artificial gauge fields [22].
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1.1.1 Ultracold, experimental setup

The term ”temperature of a gas” is described by the average kinetic en-
ergy of the atoms in the equilibrium state. Achieving experimentally low
temperatures posed an experimental challenge as soon as scientists realized
that matter can not be arbitrarily cold. This realization was due to constant
volume air-thermometers in which gas pressure was directly proportional to
the temperature. In the 19th century a field of cryogenic was born, tech-
nological and theoretical progress in field of thermodynamics allowed for
liquefaction of oxygen (Cailletet, 1877 [23]), hydrogen (Dewar, 1898 [24]),
helium (Kamerlingh Onnes, 1908 [25]). Achieving ultracold temperatures
was a key to the discovery of superfluidity in 1937 by cooling helium-4 to
temperature of 2.2 K [26]. Post-war low temperature research saw two im-
portant breakthroughs: experimental realization of laser-cooling [27] and
evaporative cooling. In laser cooling moving atoms are subjected to two
counter propagating lass beams. The atoms absorb photons which forces
them to lower their speed in the laboratory frame of reference, as net mo-
mentum transfer is opposite to the atom’s velocity due to the Doppler eÄect.
For alkali atoms, finite energy level widths limit this technique to cooling
the gas at most 300 mK. The evaporative cooling, used on a initially laser-
cooled sample, works by removing from the atom sample those atoms which
have the highest kinetic energy and allowing for rethermalization of the re-
mainder of sample in lowest temperature. In the end as many as 1% of the
original number of atoms is kept. This approach enabled to achieve atomic
density high enough and temperatures of tens of nanokelvins low enough
and to observe experimentally Bose-Einstein condensation of atoms in 1995
[5, 6, 28].

1.1.2 Interaction of an atom with an EM field

An atom in the oscillating electric field is described by the Hamiltonian [29,
30]:

H =

p2

2m
+ V + eEzz cos!t. (1.1)

Looking for solutions one uses an ansatz:

 (t) = exp(i/~✏t) ✏(t), (1.2)

with  ✏ — 2⇡
! -periodic function. From the time-dependent Schrödingier

equation, one obtains an equation:

(H � i~@t) ✏ = ✏ ✏, (1.3)

which may be considered a time-independent Schrd̈ingier equation in ex-
tended space: S = R3 ⇥ [0, T ]. The value ✏ is called a quasi energy. Mul-
tiplying the state  ✏ by exp(i!t), one may shift the quasi energy of  ✏ by
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~!, and preserve the ansatz form (1.2). To solve the time-dependent prob-
lem in (1.1) one starts with time independent solution for Ez = 0, which
clearly satisfies (1.2) and applies the time-independent perturbation theory
for states defined over the extended domain S. The lowest energy correction
comes from a second order term of the perturbation expansion:

�E = (eEz)2
X

E
m,k

6=E
n

h 
0

|z cos!t| m, ki
En � Em � k!~ . (1.4)

Thus the potential felt by the atom is proportional to E2
z

E
n

�E
m

�~! . To be
significant, at least one denominator of (1.4) has to be near-resonant. How-
ever, to avoid absorption of the photon and subsequent heating, one may
not approach the resonance too closely.

1.2 Many-body Hamiltonian: from a continuous
to a discretized model

A Hamiltonian describing the gas of ultracold atoms in the optical lattice
potential can be expressed within the second-quantization framework as:

HX =

Z
d3~r ˆ †

(~r)

✓
� ~2
2m

r2

+ Vlatt.(~r) + Vtrap(~r)

◆
ˆ (~r)

+

Z
d3~rd3~r0 ˆ †

(~r) ˆ †
(~r0)Vint(~r � ~r0) ˆ (~r) ˆ (~r0)�

Z
d3~rµ †

(~r) ˆ (~r), (1.5)

where Vint is atom pair interaction potential. Low density of the gas al-
lows to neglect multiparticle interaction. We will consider only simple cubic
lattices for which the lattice potential is just Vlatt.(x, y, z) = sx cos2(kxx) +
sy cos2(kyy) + sz cos2(kzz). In the case of external harmonic confinement,
Vtrap =

1

2

m!2

(r)2. The optical lattice may be made eÄectively one (or two)
dimensional by increasing lattice depth sy and sz (or only sz) so that ex-
cited states in that directions become very highly energetic and therefore
not achievable by the energy conservation. In the end one gets a family of
disconnected systems – either an array of one-dimensional tubes, or a stack
of two dimensional pancake-shaped 2D lattices (Figure 1.1) as tunnelling in
the transverse directions occurs in timescales much longer than the experi-
ment duration. Let us stress an important diÄerence: atoms in 1D and 2D
lattices scatter (for a typical scattering length value negligible compared to
the potential well size) according to 3D scattering theory. It is the spatial
arrangement of accessible potential well that is linear or planar.
In the absence of long range interactions, in low-energy, dilute regime the

s-wave scattering is a dominant way of two particle interaction. In that limit
the scattering properties are described by just one parameter — the scat-
tering length a [31]. Description of the scattering may be performed by the
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Figure 1.1: Isopotential surfaces for potential V (x, y, z) = sx cos2(kxx) +
sy cos2(kyy) + sz cos2(kzz) for model 1D optical lattice situation (sz = sy =

5sx) — left panel, and 2D optical lattice (sz = 5sy = sx) — right panel. In-
teger numbers denote integer lattice sites coordinates. Blue surfaces denote
value of potential V for energy close to energy minimum, orange surface
denote energy above classical tunnelling threshold along main directions of
the optical lattice (x for 1D, and x, y for 2D optical lattice).

interaction potential. For mathematically 1D systems the interaction poten-
tial Vint may be taken as VD(x1 � x

2

) = g�(x
1

� x
2

), where g =

4⇡~a
m . This

leads to a correct self-adjoint Hamiltonian. In three dimensional systems
however, use of the pure Dirac delta potential leads to unwanted mathemat-
ical consequences: the resulting Hamiltonian is not a self-adjoint operator.
To amend it one may use the so called Fermi-Huang pseudopotential [32]
VHF (x1 � x

2

) = �(x
1

� x
2

)

@
@|x1�x2| |x1 � x

2

| as Vint. With that choice of Vint

the Hamiltonian (1.5) is self adjoint. Moreover h |VD| i = h |VHF | i when
| i is any smooth function. Although it is possible to choose an orthonormal
basis consisting solely of smooth functions, one may not conclude from this
fact that VHF = VD. Indeed, as operators VD and VHF are not bounded and
therefore not continuous. As a result they are not defined uniquely by their
values on a orthonormal basis. In fact the domain of the Hamiltonian (1.5)
with VHF contains not only smooth functions, but also functions that poses
a simple |xi � xj |�1 as xi ! xj . These singular functions do not belong to
the domain of the kinetic energy operator, but they do belong to the full
Hamiltonian domain (with VHF as Vint ) [33]. These subtleties are related
to short range physics (equivalently: large momenta). They are predicted
to be relevant for large scattering amplitude and large interaction potential
range [34, 35]. Neither of this conditions is satisfied in applications consid-
ered in this thesis. It is worth to point out that full systematic, theoretical
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description of interparticle interactions for realistic systems encountered in
ultracold atoms experiments is still an open problem.
The most common is description of many-body states in terms of discrete

lattice modes defined by the lattice potential’s Wannier functions. Substi-
tuting field operators ˆ (x) in (1.5) with their Wannier function expansion:
ˆ (~r) =

P
i,↵

W↵
i (~r)â

↵
i , where i number lattice sites, and ↵— enumerates Bloch

bands leads to the following, Multiband Bose-Hubbard (MBH) model:

HMBH = �
X

i 6=j,↵

J↵
i�j((a

↵
i )

†a↵j +H.c.)

| {z }
H

tun

+

X

i,↵

E↵
i n

↵
i +

1

2

X

↵,�,�,�

X

ijkl

U↵���
ijkl (a↵i )

†
(a�j )

†a�ka
�
l

| {z }
H

int

, (1.6)

here ai satisfy canonical commutation relations, and are typically interpreted
as annihilation operator for a particle at site i. However, particles situated at
diÄerent sites (in the sense defined by operators a↵i ) do interact, as Wannier
functions do poses tails which span over neighboring sites. In the above,
the summation is performed over the lattice sites denoted by roman letters
i, j, k, l. They are 3-indices (for example i = (ix, iy, iz)) that range over Z3,
as the original physical system was defined over R3.
The parameters E↵

i , J
↵
i�j , U

↵���
ijkl are defined by:

J↵
i�j =

Z
W↵

i (~r)

✓
� ~2
2m

r2

+ Vlatt.(~r)

◆
W↵

j (~r)d
3~r, E↵

i = J↵
i�i (1.7)

U↵���
ijkl =

Z
d3~rd3~r0W↵

i (~r)W
�
j (~r

0
)Vint(~r � ~r0)W �

k (~r)W
�
l (~r

0
), (1.8)

where W↵
i are Wanner functions of the lattice. The natural energy unit for

this model is a recoil energy unit ER =

~2k2
2m , where k =

2⇡
� .We adopt this

unit in this thesis whenever possible. Typically all parameters of the BH
(and alike) models are expressed in the recoil energy units.
The summation over index ↵ includes, infinite number of Bloch bands.

However, often the considered lattice depth is high. This makes the energy
gap between Bloch bands dominate other energy scales appearing in the
model. This is an argument for restriction of a multiband model (1.6) just
to the first Bloch band. Additionally, by estimating values of Ji�j and Uijkl

for the lowest Bloch band, one may assume that values of Ji�j and Uijkl for
i, j, k, l describing the same or neighboring sites. In case of the U parameters
it may be assumed that only all parameters i, j, k, l denote the same site.
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This forms a classical Bose-Hubbard model introduced first by Jaksch and
Zoller [36]:

HBH = �J
X

hi,ji
aia

†
j +H.c.+

U

2

X

i

ni(ni � 1)� µ
X

i

ni. (1.9)

Recently corresponding to Uiiij , for i, j denoting neighboring sites have
started being included. The are w associated with additional aj , a

†
i , ni-type

couplings. These are interpreted as density-dependent tunnellings and are
sometimes included as a correction [37]. For lattice dephts s between s =

4ER and s = 40ER value of Uiiij is between 5%-10% of the tunnelling
coupling constant J. Multiplied by ni + nj � 1 the additional are important
contribution. Other terms such as Uiijj are orders of magnitude smaller [38].
Although energy scales defined by J and U were determined to be in-

significant compared to the interband gap, rates of changes of this parame-
ters ˙J, ˙U for typical optical lattice parameters may become dominant (this
requires microsecond-scale dynamics). This notion will be explored further
in Section 5 where dynamical couplings of diÄerent Bloch bands will be
taken into account. See also [39].
A single-band model has the advantage of relative computational sim-

plicity as compared to the Multiband Bose-Hubbard model (1.6). Using the
latter for realistic systems is unfeasible. Recently a method of constructing
an eÄective model for static problems has been proposed [38, 40, 41]. It con-
sists of creating a single-band like BH model but using interacting n particle
ground states as a onsite Hilbert space. Section 4 will show our contribution
to this approach (eÖcient numerical diagonalization and dynamical simula-
tion).

1.2.1 The disorder

The disorder and more generally imperfections of experimental systems are
inherit part of the Nature. Study of disordered systems in which disorder
may be controlled, prepared repetitively is possible with ultracold atoms.
One of first important example were crystalline structure imperfections

[42] which aÄect both electric resistivity and may even be used in engineering
applications such as material strain hardening. The optical lattice potential
does not admit imperfections of this kind.
The nontrivial, quantum eÄects of the disorder in condense matter sys-

tems were introduced in the seminal contribution of Anderson [43], predict-
ing an exponential localization of all energy eigenstates of a single particle
in a periodic potential when additional random impurities are added to it.
The special kind of disorder in the system, a quenched disorder (in which
the disordered medium does not evolve during the typical timescale of the
experiment) models correctly a multitude of disorder eÄects in matters such
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as transport, localization eÄects [44, 45], spin glass [46], percolation [47],
quantum chaos [48, 49].
In order to characterize the disordered system, one should either aver-

age over diÄerent realizations of disorder which is usually a hard task or
consider systems large enough so that they become self-averaged. This is
largely beyond scope of current numerical algorithms and for self-averaged
systems only approximate methods (such as mean field methods variants )
are available. Moreover disorder eÄects make minimization of energy trou-
blesome as typically many local minima of the energy functional appear.
Reaching the true ground state is then challenging.
In recent years, it has become clear that ultracold atoms oÄer a new

paradigm of disordered systems study, due to the fact that random or quasi
random disorder may be produced in these systems in a controlled and re-
producible way. Standard methods to achieve such controlled disorder are
the use of speckle patterns [50, 51] which can be added to the confining
potential, or simultaneous presence of additional optical lattice of incom-
mensurate frequency [9, 52, 53]. Other methods include using an admixture
of diÄerent atomic species randomly trapped in sites distributed across the
sample and acting as impurities [54, 55], or the use of inhomogeneous mag-
netic fields. Indeed, if an average value of such a field is close to the Feshbach
resonance, then even small fluctuations of the field translate to noticeable
spatial variation of the scattering length [56, 57].
In the Florence experiment [10] an optical lattice potential which would

allow the studies of disorder has been prepared by switching on an additional
optical lattice potential of height s

2

⌧ s
1

with wave length �
2

incommensu-
rate with the main optical lattice length � (see also [58]). All in all inclusion
of these potentials leads to adding to the tight binding Hamiltonian (1.9)
a local chemical potential term of the form

P
i
✏ini with

✏j = s
2

ER,1 sin
2

✓
⇡j�

�
2

+ �

◆
. (1.10)

1.2.2 Bose-Hubbard model solutions

The Bose-Hubbard model Hamiltonian (1.9) is a sum of single site Hamil-
tonians coupled by the tunnelling terms coupling nearest neighbour sites.
The underlying lattice may be arbitrary, however in this thesis we restrict
ourselves to simplest cases: linear chain, planar square lattice, simple cubic
lattice.
The general solution of the Bose-Hubbard model (also its multiband

variants) is not known analytically. Typically each lattice site is occupied
by up to a few bosons. Hilbert space dimension of any realistic lattice
(consisting of ⇠ 100 lattice sites in each direction) prohibits any approach
which relies on expressing eigenfunction in the full basis.
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Special cases J = 0 or U = 0 are, however, exactly solvable. In the first
case the Hamiltonian (1.9) is already diagonal in the Fock basis |n

1

, . . . , nM i.
The not interacting case, U = 0 may be approached by using a Discrete
Fourier Transform to translate the Hamiltonian from real space Fock basis
to momentum Fock basis with momentum modes |ki defined as:

|ki = 1p
L

LX

j=1

exp(ikj)|ji. (1.11)

The Hamiltonian (1.9) is then transformed into:

X

k= 2⇡n

L

Eka
†
kak, Ek = �µ� 2J cos k, ak =

1p
L

LX

j=1

ai. (1.12)

Thus the free boson gas in the optical lattice potential is described by
a Fock state in the momentum space — with all particles condensed in
a momentum 0 state:

| i = (a†k=0

)

N |⌦i. (1.13)

Moreover, higher Bloch bands are not involved, as the only way to couple
diÄerent Bloch band is by an interaction term proportional to U = 0.
Most approaches to the remaining case, when both J and U are nonzero

are either numerical ansatzes (such as a weak-coupling Bogoliubov approach
[59, 60]) a perturbative expansion (a strong coupling expansion: [61]) or
numerical computations. Bethe ansatz is applicable in a limited number of
situations (for example in the U ! 1 case of hardcore bosons [62])
Most successful numerical approaches are either Density Matrix Renor-

malization Group (works in 1D, gives access to a wavevectors and enables
time evolution) or Quantum Monte Carlo methods [63, 64]. Standard algo-
rithms implementation is available for example as an ALPS package [65].

1.3 The MPS approach

The Bose-Hubbard model introduced briefly in the previous paragraph is
an example of a broad class of lattice Hamiltonians that are characterised by
”on-site interactions” and limited range of intersite couplings. If studied in
a 1D lattice, one may use an eÖcient representation, so called Matrix Prod-
uct State representation that often eÖciently represents physically relevant
states in such settings [66, 67]. For example in the case of spin-1 Heisenberg
model the eÖcient representation of the ground state as an MPS has been
available for several years [68].
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Let us consider a Hamiltonian over a 1D lattice which sites are labelled
by numbers i = 1, . . . , L of the following form:

H =

LX

i=1

Hi +

L�1X

i=1

Hi,i+1

. (1.14)

Ir acts on a Hilbert space H = H
1

⌦ H
2

⌦ . . . ⌦ HL, for Hi being a local
Hilbert space for a single site i. In (1.14)Hi denotes a single site Hamiltonian
operator acting nontrivially only on a site i. Similarly, operator Hi,i+1

acts
on two neighbouring sites i and i + 1. DiÄerent complex quantum systems
defined over a lattice (such as Quantum Ising Model [69], Bose-Hubbard
model (1.9)...) may be put or are explicitly of the form of Eq. (1.5).
In the zero temperature limit, systems modelled by the Hamiltonian

(1.14) are described by a pure state | i — the ground state. A general
theorem of so called area laws [67, 70], warrants that a ground state | i is
close to the product state under quite general assuptions (of which energy
gap separating the ground state with the excited states is most important).
Quantitative formulation of this theorem requires introducing a notion of
the entanglement entropy.

Theorem 1 (Schmidt decomposition) For a state | i 2 H = HA⌦HB there
exists a sequence �i such that

P
(�A:B

i )

2

= 1 and

| i =
X

i

�A:B
i | A

i i| B
i i. (1.15)

Here, (�A:B
i )

2 are eigenvalues of the both the reduced density matrix ⇢B =

TrA| ih | and ⇢A = TrB| ih | with eigenvectors | A
i i and | B

i i respectively.
Decomposition (1.15) is called Schmidt decomposition [71].

The above theorem introduces a sequence �A:B
i corresponding to the

Schmidt decomposition, so called entanglement spectrum. It may be
computed for any bipartition of the full lattice system into two disjoint
parts (one typically considers decomposition into ”left” and ”right” parts).
With the spectrum one associates the notion of the entanglement entropy
defined as

S( ) =
X

i

�(�A:B
i )

2

log(�A:B
i )

2. (1.16)

The basic properties of the entanglement entropy are:

• Si( ) = 0 ()  = | Ai| Bi.

The area laws theorem [67] establishes existence of an upper bound on
the entanglement entropy of a ground state of the Hamiltonian of the form
(1.5).
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Theorem 2 (Area law for local gapped 1D system [70]) Let L be a lattice
system of the form of (1.14). If the system possess an unique ground state
with first excited state separated by �E > 0, then the entropy for a biparti-
tion into sets {1, . . . , k} [ {k + 1, . . . , L} satisfies:

S(⇢{1,...,k})  A. (1.17)

For the precise definition of the constant A see [4]. Here it is important that
A is not L-dependent.

One may perform [72, 73] the Schmidt decomposition of the state | i
with respect to any bipartition of the lattice of length L into ”left” and
”right” parts. Given a decomposition of the lattice {1, . . . , L} = {1, . . . , i}[
{i + 1, . . . , L}, one may apply the Schmidt decomposition to ”left” and
”right” Schmidt vectors. Decomposing sets {1, . . . , i} and {i + 1, . . . , L}
as {1, . . . , i� 1}[ {i} and {i+ 1}[ {i+ 2 . . . , L}, gives rise to tensors �[k],s

�↵
defined as:

| [1...i]
↵ i = | [1...i�1]

� i|ei�
i

i�[i],�
i

�↵ �[i�1]

� (1.18)

and
| [i+1...L]

↵ i = �

[i+1],↵
i+1

↵� �[i+1]

� |ei+1

↵
i+1

i| [i+2...L]
� i. (1.19)

Altogether the above considerations provide an argument for describing the
state | i as:

| i=
X

↵1,...,↵
L

i1,...,i
M

�

[1],i1
1↵1

�[1]↵1
�

[2],i2
↵1↵2

. . .�[L],i
L

↵
n�11

|i
1

, . . . , iLi =: M(�,�). (1.20)

Summation of indices ik is performed over a Fock basis spanning the
local Hilbert space. Although such a basis may be infinite dimensional, in
our applications ultracold temperature allows for its truncating to a finitely
many states with low energy. Interaction limits the number of particle per
site.
Ranges of indices ↵i however may be expected to be exponential in sys-

tem size L for a generic many-body state [74]. The area law bounds the
entanglement entropy in case of a ground state. The sequence of �[k]i is dom-
inated by few terms. Thus in the formula (1.20) the sequence �[k]i is expected
to drop rapidly, warranting an additional approximation �[k]i = 0, i  � (all
matrix elements involving higher indices are explicitly put to zero). Due to
the area law theorem � is expected to be eÖciently bounded from above.
Any vector expressed by the ansatz (1.20) is called a Matrix Product State
(MPS) with a bond dimension �. The set of all such states we denote by
MPS�. As already stated

S
�MPS� is full Hilbert space and each MPS�

is a good example of an eÖcient variational manifold [75] (it is a certain
product of Grassmann manifolds).
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Minimization of energy E( ) = h |H| i over MPS�, which is a way to
numerically estimate the ground state of the many body Hamiltonian, may
be performed by numerical algorithms such as Density Matrix Renormaliza-
tion Group (DMRG) [76].
The same result may be obtained by numerical imaginary time evolution,

that is application of the evolution operator exp(�⌧H) to the initial state.
The latter may be carried out for example by means of the time-evolution
algorithms such as tDMRG [77, 78] or Time Evolving-Block Decimation
(TEBD) [73]. The dynamical approach is motivated by a simple observation
that a state | 

0

i, initial guess for the energy minimum may be expanded in
eigenfunctions of the time-independent Hamiltonian:

| 
0

i =
X

i

ci| ii, ci 6= 0 (1.21)

under imaginary time evolution converges to the state with the lowest energy
E

0

:

| 
0

(t)i =
X

i

ci exp(�iEit)| ii ! c
0

exp(�E
0

t)| 
0

i. (1.22)

Note that generically, with probability 1 we have that c
0

6= 0. Nevertheless,
convergence of numerical computation to the true ground state is not certain.
The reason for that are diÄerent truncations and roundoÄ errors. This
is evident in the presence of the disorder potential which complicates the
energy landscape and increases significance of small numbers.
The DMRG and TEBD algorithms enable also real time, unitary evolu-

tion of pure states. In this thesis an intensive use of the TEBD algorithm is
made. It works by decomposing the operator exp(iH�t) as

exp(iH�t) = exp(iHoddt�) exp(iHeven�t) + o(�t2), (1.23)

where Hodd/even =

1

2

LP
i=1

Hi +
P

i2odd/even
Hi,i+1

. Then both Heven and Hodd

consist of commuting two-site unitary operators, which may be easily ap-
plied to the MPS wavevector. Indeed exp(iHodd/even�t) are just products of
unitary two-site gates. 1

The eÄects of higher order terms appearing in the Trotter expansion
(1.23) are controlled by a proper choice of the time step �t. Alternatively,
higher order analogues of (1.23) may be used [79].

1
All the two-site gates may be applied in parallel by separate CPU cores. Applying

the two-site unitary operators, and subsequent Singular Value Decomposition to recover

MPS’s vector representation in terms of � and � tensors (see Section 1.3) constitute most
of the CPU walltime of the whole TEBD implementation. This also means that the overall

numerical complexity of the TEBD algorithm is O(�3
).
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1.4 Physics of the Bose-Hubbard model

The Bose-Hubbard Model predicts a phase transition between an insulator
and a superfluid phase [80, 81]. Together with natural similarity to the
Hubbard model for electron gas this fact sparked the interest of physics of
ultracold atoms in the lattice potential.
By altering the power of lasers forming the lattice or using magnetic

(or optical) Feshbach resonances [82] experimental exploration of phase dia-
grams of Hamiltonians modelling systems of ultracold atoms may be under-
taken. A prime example is the Bose-Hubbard model, in which the mentioned
techniques allow for independent control of U and J parameters. It is also
possible for disordered systems, in which the disorder may be reproduced
and controlled.

1.4.1 Phases: Mott Insulator, Superfluid, Bose-Glass

In the strongly interacting regime, in grand canonical ensemble, the Hamilto-
nian (1.9) is dominated by the term U

2

n(n�1) which fixes integer occupation
of each lattice site. Thus, if the system is homogeneous in the low tunnelling
regime, the Hamiltonian ground state is approximated by a product state of
Fock states (with unique integer occupation). Such a state is a model state
for the quantum phase of Mott Insulator (MI). The insulating properties of
the MI phase are related to a finite energy gap for excitations. Elementary,
particle-hole excitations cost energy of the order of U.
Finite value of J modifies this description by allowing for nonzero (of the

order ⇠ J2) on-site particle number variance: �n = h |n2| i�h |n| i2 6= 0,

Moreover the correlation function cij = haia†ji � haiiha†ji in this case is
nonzero for i 6= j, and decreases exponentially with the distance |i� j|.
For large J the ground state of the BH model entails that the particles are

delocalised over the whole lattice. In this case the correlation function decays
algebraically: cij ⇠ |i� j|�⌫ [81]. This regime may be also characterised by
a nonzero condensate fraction, that is macroscopic occupation of a single-
particle mode (the one delocalised over the whole lattice). The condensate
fraction is defined as a largest eigenvalue of a single particle correlation
matrix Mij = ha†iaji divided by total number of particles. In the Mott
Insulator case the matrixM is almost diagonal, and in the thermodynamical
limit its largest eigenvalue converges to 0. In the U = 0 case the condensate
fraction ⇢c is 1 (all particles occupy the k = 0 momentum eigenstate). The
superfluid phase is a gapless phase, the excitations are low-energy and long
range excitations. The tunnelling allows also for long-range phase coherence.
A characteristic of the delocalised phase for the Bose-Hubbard Hamil-

tonian are superfluid properties of a gas. Superfluidity is related to ability
of fluid to flow with zero viscosity in ultracold temperatures [83]. More
precisely, if the velocity of a fluid with respect to walls of a container is
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small enough, then the fluid is resistant to dissipation by creation of quasi-
particles. At the level of the Bose-Hubbard model, the movement of the
boundaries may be conveniently expressed in the comoving with the bound-
aries frame of reference by rotating in the complex plane the tunnelling
constant 2 J ! Jei✓. The part of the fluid that is able to remain stationary
despite the vessel movement, in the new coordinate frame is the part that
responds to the imposed phase ✓. The energy diÄerence E✓ �E

0

is equal to
to the kinetic energy, of the superfluid part of gas 1

2

mN⇢sv2 (moving due to
the phase gradient). The superfluid velocity is related to a phase gradient
v =

~
mr⇥(x). Thus, the superfluid fraction is defined as (see [52, 83]):

⇢s =
2m

~2
1

N

E✓ � E
0

(r⇥)

2

=

1

N

E✓ � E
0

J✓2
. (1.24)

The latter equation stems from adopting the recoil energy as an energy unit
and a

⇡ as a length unit. Note that in general superfluid fraction (described
in the following paragraph) and condensate fraction are not equal.
The same value of ⇢s may be calculated by the so-called winding number

statistics which is a standard way to compute the condensate fraction in the
QMC approach [84].
Transition between the two phases in T = 0 is described by a quantum

phase transition (QPT), through a diÄerent mechanism than classical phase
transition. The QPT occurs as parameters of the Hamiltonian are modified
and the ground state properties change suddenly by energy level crossings
(perhaps avoided crossings in a finite system) as competing terms in the
Hamiltonian change their relative relevance.
Up to now we have considered homogeneous systems. As described in

Section 1.2.1 introduction of disorder may be performed by adding a local
chemical potential µi (see Eq. 1.10), where µi are either explicitly calculated
quasi random numbers or are considered purely random. Although some
specific eÄects of imperfect randomness of local chemical potentials have
been predicted [58], generically in case of strong interactions U � J a new
gapless insulator phase, a Bose-Glass (BG) phase emerges. Although the
phase is gapless a typical excitation has a far from zero excitation energy,
contrary to the SF phase [85].
The BG phase may be pictured as a Mott Insulator phase with random

integer site occupation. The Bose-Glass phase has long been hypothesized to
2
Indeed, symmetries not involving a time-reversal can be represented by a uni-

tary operator. Galilean transformation to a inertial frame moving with relative ve-

locity ~v is G(v) = exp(

i

~v
ˆY ), where ˆY =

ˆPt � m ˆX is a generator of the symme-

try. Then hx|G(v)| i = e(i/~)mvx� 1
2mv

2
thx|T (�vt)| i, for T being a translation oper-

ator. Thus changing a frame of reference introduces a phase factor ei✓x upon a wave-
function  (x). The energy operator transforms just as in the classical case: H 0

=

H + Pv +

1
2mv2, for small v approximately H 0 ⇡ H. Then the tunnelling constant

J 0
=

R
w⇤

(x)
⇣
� ~2

2m + V
opt

(x)
⌘
w(x+ a)e(i/~)mva

dx = e(i/~)mvaJ.
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separate Mott Insulator and Superfluid phases [80], but without a rigorous
proof. Recent ”theorem of inclusions” [86] seems to fill in this gap.

1.4.2 The mean field analysis

The Bose-Hubbard Hamiltonian may be analyzed through various mean field
methods. As usual in the mean field approaches one considers a single node
of the lattice coupled to the ”mean field” formed by the reservoir of the other
sites. The coupling is performed by expanding the tunnelling operator aia

†
j

as
aia

†
j = ai�

⇤
+ a†j�� |�|2 (1.25)

and in case of lack of translation-invariance:

aia
†
j = ai�

⇤
j + a†j�i � �i�

⇤
j . (1.26)

The mean field is determined by: �i = haii. Then the mean field homoge-
neous Hamiltonian is the functional for the site i :

Ei( ) = h |Hi| i�Jzai�
⇤�Jza†i�+Jz|�|2 = h |Hi| i�Jz|�|2,� = h |a| i.

(1.27)
It is minimized with respect to coeÖcients of expansion of a single-site state
� = �j =

P
i aJ |ii. It turns out that this simple approach enables to de-

scribe the phase diagram in 2 and 3 spatial dimensions reasonably well. The
resulting phase diagram is in Figure 1.2. Other methods that lead to similar
results, entailing similarly shaped MI lobes agree up to a few percent in-
clude: QMC [87], the strong coupling expansion [61, 88] within the bosonic
DMFT approach [89], a quantum rotor model [90].
Although the phase diagram is reasonably described by the mean field

approach, there are crucial diÄerences. In the mean field approach the Mott
Insulator state is a Fock state, i.e.  = |ni. However, ”exact” QMC results
predict that hn2i � hni2 6= 0.

1.4.3 The Gutzwiller variational ansatz

The lattice Hamiltonian may be analyzed also by the so-called Gutzwiller
mean field variational ansatz, that is the energy minimum is sought within
the submanifold of full Hilbert space formed by product states. The mini-
mization is performed over parameters f(i, j) :

 =

LY

i=1

dX

j=1

f(i, j)|eiji, (1.28)

where |eiji is j-th orthonormal basis vector of single site Hilbert space for
site i.
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Figure 1.2: Superfluid order parameter � = hai as a function of chemical
potential µ and tunnelling J. The order parameter is zero in MI phase and
nonzero in the SF phase. Each MI lobe corresponds to integer occupation
of sites (diÄerent in each lobe).

Notice that in the mean field approach, and so in the Gutzwiller ansatz,
both superfluid fraction and condensed fraction are related to the order
parameter � = hâji . Indeed the mean field ansatz is a single-site description
where the energy functional describes a single site coupled to the reservoir.
The long-range correlations may either completely disappear or be seriously
overestimated: whether the correlation function haia†ji = haiiha†ji is zero or
nonzero, does not depend on site i and j relative location. Therefore the
correlation matrix haia†ji is, in homogeneous case, strictly diagonal or has
all nondiagonal terms equal to |�|2. In such a case, the condensate fraction
is approximately proportional to |�|2. Thus, nonzero condensate fraction is
synonymous with a nonzero value of the order parameter �.
In fact the mean field presented in the previous chapter is mathematically

equivalent to the Gutzwiller ansatz presented here. In general diÄerent
nonequivalent mean field approaches may be formulated. One example is
perturbative mean field analysis in Section 6.1.2.

1.4.4 The DMRG study

The phase diagram of the Bose-Hubbard model may be also obtained for
dimension 1 using the MPS ansatz, and energy minimization performed by
the DMRG or imaginary time TEBD (both approaches yield normalized
ground states that satisfy |h DMRG| TEBDi| = 1 for all parameters).
The DMRG approach, as well as the imaginary time evolution by the
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TEBD enables to find a state with minimal energy for a given finite lattice
length L and total number of particles N. The phase diagram of the BH
model is typically considered in the thermodynamical limit with fixed N/L
ratio and L ! 1 in the variables J/U and µ/U. To introduce the notion
of chemical potential given definite L and N, we define E(L,N) to be the
energy. Adding a single particle to the system with integer density ⇢ = N/L
should cost a value of the chemical potential µ

+

= E(L,N + 1) � E(L,N)

and removing one should release energy µ� = E(L,N)�E(L,N � 1). This
means that if the chemical potential µ > µ

+

then it is worth to put an ex-
tra particle in the system to optimize (lower) its energy. Analogously for
µ < µ� removing the particle lowers the energy. Hence for µ� < µ < µ

+

the phase contains exactly N particles. If for some J the phase is incom-
pressible insulator phase, the Mott Insulator, then we expect µ

+

> µ� even
in the thermodynamical limit N/L ! ⇢ as L ! 1. Thus calculating curves
µ
+

(J/U) and µ�(J/U) gives the upper and lower boundary of the Mott
Insulator phase in the phase diagram of the Bose-Hubbard model. Some
numerical finesse is required to obtain the converged phase diagram in the
thermodynamical limit. MI-SF border close to the Mott-Insulator tip con-
verges slowly with L and its precise computation requires a serious numerical
computation [91].
The phase diagram obtained by the DMRG computation is presented in

Figure 1.3.
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Figure 1.3: The 1D phase diagram of a Bose-Hubbard model obtained using
the imaginary time evolution and the TEBD algorithm. Image from [92].
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Chapter 2

Fidelity [93]

If there is a family of Hamiltonians depending on some parameters, then the
notions of phases, phase diagram and phase transitions arise in a natural
way. Let us assume that the family of Hamiltonians is parametrised by �
as H(�) = H

0

+ �H
1

, where H
1

is called a driving Hamiltonian. In the
case of the Bose-Hubbard model (1.9) one consider � = J, and H

0

being the
atomic part of the Hamiltonian, and H

1

the kinetic energy term. Wavefunc-
tions describing states of the system in diÄerent phases are expected to be
substantially diÄerent which would mean that the fidelity function F (and
fidelity susceptibility �) defined as [94]:

F (J, �) = |hJ � �/2|J + �/2i|, F (J, �) ⇡ 1� �2/2�(J, �) +O(�4) (2.1)

should have a pronounced minimum (maximum) in the vicinity of the phase
transition. In above definitions the parameter � is small. In the thermody-
namic limit, the overlap between two ground states computed for diÄerent
values of the driving parameter is zero, no matter how small the � is. This
is known as the Anderson orthogonality catastrophe [95].
The character of the minimum of F depends highly on the nature of

the transition. If the transition is due to the level crossing, then as the
driving parameter � changes the ground state changes abruptly from one
state to the other orthonormal state at the critical value of � = �c. Thus
at �c we have F (�c, � ! 0) = 0 (generically F (�c, � ! 0) = 1 ). Moreover
behaviour of F (�, �) for � < �c and � > �c both for � < 2|� � �c| stems
from properties of diÄerent states and they are absolutely unrelated. Both
sides may be described by diÄerent critical parameters [96]. If however, the
transition is due to the avoided crossing (or other mechanism in which no
energy crossing occurs) the exactly opposite statement to the above is valid
(F (�c, � ! 0) = 1, and F (�c, �) is expected to be analytical function if one
works far form the thermodynamical limit). Such a situation occurs in the
case of the Bose-Hubbard model.
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The correlation length of the system typically diverges at the transition
point with a characteristic critical exponent ⌫ :

⇠(�) ⇠ 1

|�� �c|⌫ . (2.2)

For such systems, by considering appropriate scalings, general results on
scaling of fidelity function may be obtained. At the critical point � ⇠ M2/d⌫ ,
while for a finite separation � ⇠ M/|���c|2�d⌫ , where d is system dimension
[97, 98]. Moreover, in the limit of M ! 1 taken for fixed, nonzero small �,
for � ⇡ �c we have that lnF ⇠ �M |�|d⌫ , while far from the phase transition
lnF ⇠ �M�2/|�� �c|2�d⌫ [99–101].
The Bose-Hubbard model (1.9) admits a quantum phase transition be-

tween Mott Insulator and superfluid phases. This transition is of Berezinskii-
Kosterlitz-Thouless (BKT) type [80]. The correlation length is infinite on
the superfluid side and on the Mott Insulator side the correlation length di-
verges as: ln ⇠ ⇠ 1/

p
�c � � [81, 102]. This means that no critical exponent

⌫ can be defined on neither side of the transition and so the above scaling
expressions do not apply.

2.1 Numerical results

We have studied quantum fidelity by means of numerical computation. The
DMRG algorithm allows for determining ground states as MPS wavevectors
for various J values. We have fixed U = 1 and considered values of J laying
on a uniform grid with a step �J. Then definition (2.1) is then used to
compute the function F with various �’s, all being a multiplicity of base
�J .
From Fig 1.3 it is clear that MI-SF phase transition occurs approximately

for Jc/U ⇡ 0.3. This value is supported by other numerical studies [81, 103–
109] which give estimates for the transition point location ranging from 0.26
to 0.305, however most results falling between 0.295 and 0.305. Nevertheless,
Figures 2.2, 2.3 and 2.4 clearly show that the position of the minimum
computed by the DMRG method for the open boundary conditions (OBC)
falls in the region of J/U = 0.2 � 0.22. We notice that the minimum of
fidelity is significantly shifted towards the lower J values.
Moreover periodic and open chain results are profoundly diÄerent even

qualitatively. As shown in Figure 2.1, the minimum of the fidelity func-
tion of the open chain is much flatter and shifted much deeper inside the
MI region than in the periodic boundary condition (PBC) case. The OBC
and PBC curves diÄer diametrically close to the transition. Therefore, sep-
arate numerical studies of both cases have been undertaken.
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Figure 2.1: Black solid line shows fidelity in a periodic chain, while the
dashed red line shows fidelity in an open chain. In both cases L = 64 and
� = 0.02. Image from [93].
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Figure 2.2: Fidelity in a periodic Bose-Hubbard model for diÄerent system
sizes and � = 0.02. Image from [93].
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Figure 2.3: Upper panel: the value of fidelity at the minimum as a function
of the system size (open boundary conditions). Pluses (upper panel) come
from numerics done for � = 0.02 and L = 32, 64, 128, 256, 512, 1024, 2048.
The line represents Eq. (2.3) with ↵ ' 2.51 obtained from the fit. Lower
panel: X’s show position of the minimum of fidelity as a function of
the system size (open boundary conditions) — numerics done for L =

32, 64, 128, 256, 512, 1024, 2048 and � = 0.02. The red (dashed) line is the
fit (2.4) while the blue (solid) corresponds to (2.5). The inset shows the
zoom for large L to simplify comparing of both fits. Image from [93].
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Hubbard model. Stars show numerics done for � = 0.02, while the line
represents Eq. (2.4) with J⇤

(1)/U ' 0.27, a ' 0.33, and b ' 0.44 (all
coming from the fit). Image from [93].
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2.2 Open boundary conditions

We start our considerations by looking at the value of the fidelity at the
minimum. We denote the position of the minimum as J⇤/U . Our numerics
suggests the following functional form of the fidelity:

F (J⇤/U, �) = exp

��↵L�2
�
, (2.3)

where ↵ is some constant. The detailed analysis of the relevant numerics is
given in the caption of Figure 2.3. Let us notice that Eq. (2.3) works well
also for F (J⇤/U, �) ⌧ 1, i.e., in nonperturbative regime, where the fidelity
is no longer described only by fidelity susceptibility, by lowest order Taylor
expansion.
Having determined positions J⇤/U of fidelity minima for various L,

an extrapolation to the limit L ! 1 should be performed. We were un-
able to find an extrapolation scheme that would reproduce the location of
the critical point found in other theoretical works. We have made two ap-
proaches to the problem.
First, we have tested:

J⇤
(L)

U
=

J⇤
(1)

U
� a

Lb
, (2.4)

which by standard fitting algorithms implemented in Mathematica package
results in fitted parameters values J⇤

(1)/U = 0.2114± 0.0003, a = 0.53±
0.02, and b = 0.73±0.02 (Figure 2.3). The extrapolated minimum of fidelity
in the L ! 1 limit, J⇤

(1)/U ' 0.2114, is distant from the critical point
position (J/U)c ⇡ 0.3. The fit (2.4) was proposed in Ref. [110] which
focused on the 2D transverse Ising model. However, in that model, critical
exponents are well defined, contrary to the BH model. That is why the
above scaling, contrary to the mentioned Ising model, is not well supported
by theory in the BH model case.
We have also tried

J⇤
(L)

U
=

J⇤
(1)

U
� a

lnL

Lb
. (2.5)

The previous fitting function was augmented by a logarithmic (as a function
of lattice size L) correction (Figure 2.3). The fit gives J⇤

(1)/U = 0.2106±
0.0001, a = 0.375±0.007, and b = 0.991±0.006. The �2 statistical parameter
of these fits equals about 2.7⇥ 10

�7 for the fit (2.4) and 3.9⇥ 10

�8 for the
fit (2.5). The value of the extrapolated transition position J⇤

(1)/U is very
similar as in the fit given by Eq.(2.4). Still the numerical quality of this fit
is better (the inset of Figure 2.3).
The fit with Eq.(2.5) suggests that the shift of position of the minimum

of fidelity scales as lnL/L. Note that because we have considered lattice
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chains of lengths diÄering by several orders of magnitude, the factor lnL
was substantially diÄerent for diÄerent points.
We have also studied the position of the maximum of fidelity susceptibil-

ity for the same chain lengths L under open boundary conditions. We have
used dependence of F (J/U, �) on � to extract �(J/U, �) from Eq. (2.1). We
have used the fitting function in Eq. (2.4) to perform the fit and obtained
J⇤

(1)/U = 0.2121± 0.0002. This result is very similar to previous results.

2.3 Periodic boundary conditions

In this section we discuss results on fidelity in the Bose-Hubbard model
defined on a linear lattice chain under periodic boundary conditions. Nu-
merical limitations restrict our studies to chain lengths L smaller by the
factor of 32 than in the previous Section. Still we were able to achieve
an increase of the size of studied systems by a factor of 4 as compared to
previous studies [110] (performed by means of exact diagonalization).
As in Sec. 2.2, we find the value of fidelity at minimum, Eq. (2.3),

well describes the numerical result (see Figure 2.4). On the other hand, the
extrapolation of the position of the minimum, to the thermodynamical limit
L ! 1 using scaling in Eq. (2.4) gives a significantly diÄerent answer. The
details are show in Figure 2.4 and its caption. The extrapolated fidelity
minimum position is J⇤

(1)/U = 0.270± 0.008, which agrees with previous
works [111]. Also the 1/L scaling is no longer satisfied. We have determined
that the convergence is best described by a smaller exponent: b = 0.44±0.05
in formula (2.4).
To increase the probative value of numerical evidence, it should be con-

sidered for larger system sizes. The main problem is that DMRG/TEBD
algorithms with periodic boundary conditions are more complex and diÖ-
cult to implement eÖciently. In fact the final numerical complexity is less
favourable under periodic than open boundary conditions [112]. The reason
for this discrepancy is that under periodic boundary conditions many more
singular values have to be kept to reach the same accuracy as in the open
boundary conditions [112, 113]. We have observed this phenomenon in our
computations. Still the periodic boundary conditions have a clear advantage
over the open systems: there is no notion of boundary eÄects that seems
to alter dramatically the results as seen in the previous section. Only finite
size eÄects remain.
To be precise, for numerical computation we have used bond dimension

of at most � = 240 for both OBC and PBC, which led to similar accuracy
of the computed ground state although the longest chain for the OBC was
L = 2048 and for PBC it contained only L = 64 sites. The accuracy
of determination of the ground state was verified by calculating the total
discarded weights in the DMRG/TEBD procedure.
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2.4 Discussion

Our results show that there is a significant diÄerence between fidelity in
the open and periodic chains. The ground state diÄer also at the level of
site occupation. The PBC case is translationally invariant and hnii = 1 for
all i. For the OBC it may be true far from the boundaries, but occupation
of sites close to the edges of the lattice is aÄected. We believe that this
inhomogeneity makes the diÄerence, but we do not have the explanation of
why it is so large, nor why it seems to flatten the fidelity function dependence
on J near the minimum.
It is worth to realize that such an inhomogeneity did not cause much

trouble in the determination of the location of the critical point through the
studies of the decay of the correlation functions [91, 107]. The ground states
in these studies were obtained through the open-chain DMRG simulations,
so they were the same as in our calculations. As expected, the influence
of inhomogeneities on the site occupation near the center was marginal for
large-enough systems. Thus, one could possible obtain reliable results by
computing the two-point correlation functions haia†ji near the center, for i, j
far from edges of the chain.
The fidelity approach diÄers as it takes into account whole vectors, not

observables calculated at particular sites. The parts of the system near the
center and those near the edges both contribute to the final result with
equal weights. The inner product of ground states contracts whole state
into a single number.
A clear theoretical advantage of using periodic boundary conditions is

hampered by dramatic increase of computational cost. Our results show
that using ”suÖciently large” open system is not a good alternative. A
possible solution of that problem would be to redefine the inner product
so that the sites close to boundaries were not taken in the account or use
so-called smooth boundary conditions [114]. For a short overview see also
an on-line short article [115].
The influence of the edges on fidelity may also be reduced, at least par-

tially, by considering partial trace of the state vector, instead of the whole
chain ⇢k = Tr{1,...,k}[{L�k+1,...,L}| ih |. Then, instead of computing the fi-
delity |hJ � �/2|J + �/2i|, its analogue quantity for density matrix may be
computed: F ⇢

k (J, �) = Tr⇢
k
|J��/2i⇢

k
|J��/2i. We have been able to implement

computation of F ⇢
k (J, �). Preliminary results show that minimum of F

⇢
k (J, �)

is less shifted to the Mott Insulator region with respect to the PBC com-
putation, than F (J, �). However the diÄerence is not very pronounced. For
lattice lengths L = 32, 64, 128, 256 we compute F ⇢

k (J, �), for k = (L� 16)/2
leaving the reduced density matrices describing a system with 16 particles
(in the middle of the sample).
We have again attempted to extrapolate the position of minimum using

Eq. (2.4). We have determined that, the minimum of fidelity extrapolates to
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Figure 2.5: Fidelity of states described by reduced density matrices of
a BH chain of length L to a subsystem consisting of middle 16 lattice sites.
Full vectors were computed under open boundary conditions. The fidelity
minimum is shifted towards large J values (see Figure 2.2). The inset shows
extrapolation of minima position in the L ! 1 limit. The line is a curve
F = 0.2286� 30.32L�2. For Fidelity the shift parameter � = 0.01 was used.
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J⇤
(1)/U = 0.2289, again far from the expected result ⇡ 0.295 or the PBC
result 0.27. Curiously in contrast to the OBC case the fidelity minimum
converges to the limit with power �2 (see the inset in Figure 2.5 for the
fitting results to quantify the quality of evidence supporting that assertion).
This results signify that the improved OBC estimation of the infinite

limit is shifted by approximately 0.019 to the SF region w.r.t to the brute
force OBC calculation with no regards to boundaries. The main obstacle
for further investigation was that complexity of our implementation of F ⇢

k
computation was O(�6

). Therefore the numerics was limited to a relatively
small value of � = 60. This could have had an impact on the extrapolation
of fidelity minimum location.
The extrapolation of fidelity minimum positions in finite chains under

OBC failed to converge to the correct value in the thermodynamical limit.
This feature, to our knowledge, is not common. At the very least, we have
determined that in the case of Quantum Ising Hamiltonian both PBC and
OBC give the same limit, coinciding with phase transition location g = 1

[116, 117]. The key diÄerence is that the correction of fidelity minimum
location due to finite size eÄects is ⇠ L�1 in the OBC case [118] and ⇠ L�2

in the PBC case.
Better understanding of our numerical results, in particular the fitted

scaling of fidelity, should come from the theoretical derivation of the finite
system-size scaling. In particular the asymptotics of the finite system size
correction to the position of the minimum of fidelity (maximum of fidelity
susceptibility) in a BKT transition should be worked out.

32



Chapter 3

Spectral analysis of BH
Hamiltonian [119, 120]

3.1 State extraction by the Fourier Transform [92]

As described before determining a ground state of a complex quantum
systems is both possible and desirable. The ground state is not the only
eigenstate of interest. Dynamical processes modelled by the time-dependent
Schrödinger equation drive the system from the ground state by introduc-
ing excitations. Identifying these excitations is vital in description of the
dynamics. It also relates the notion of adiabaticity or lack thereof [121, 122]
to the intrinsic properties of physical process.
Computing numerically eigenstates diÄerent than the ground state present

in a wavepacket | ˜ i, being a result of a time-dependent process, may be
achieved by developing variants of DMRG algorithms targeting several eigen-
states of the studied Hamiltonian [65]. Still this method suÄers from ac-
curacy problems as in general it is not possible to use the same left and
right Schmidt vectors to represent eÖciently both the ground state and low
excited states. Another method is to use Lanczos sparse matrix diagonal-
ization algorithm, which has been generalized to the MPS formalism [123].
Still, these methods allow for calculation only of a handful of eigenerner-
gies and corresponding eigenvectors of a many-body Hamiltonian. Lanczos
diagonalization may target particular states by means of their energy only.
Another method to compute some excited eigenstates is to identify good

quantum numbers that characterize these eigenstates. Then one performs
several ground state computations with standard DMRG approaches [65,
124], fixing the good quantum number to a diÄerent value each time. Al-
together a diÄerent subspace of the full Hilbert space is chosen each time.
Naturally this is possible only in special cases.
Translationally invariant Hamiltonians, even with additional external

potential which breaks only weakly the translational invariance (such as
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the BH Hamiltonian describing externally trapped gas) or translationally
invariant systems with open boundary conditions, may contain myriads of
degenerate eigenstates. For example, particle-hole excitations in a deep 1D
optical lattice of length L may be performed in O(L2

) nonequivalent ways
with very similar excitation energy. Large spectral density makes diÄeren-
tiating these eigenstates troublesome.
To relate the computed eigenvectors | ii of the Hamiltonian to the stud-

ied physical dynamical process, inner products h i| ˜ i may be computed.
However the diagonalization makes no use of the analyzed wavepacket | ˜ i
(perhaps except for the average energy of | ˜ i which might be used for eigen-
state targeting) at all, only the Hamiltonian is used. To analyze a wavepacket
| ˜ i a state decomposition algorithm is required, not the Hamiltonian diago-
nalization.
In this section we introduce an another approach, that enables us to

extract those eigenstates | ii for which h i| ˜ i 6= 0 where | ˜ i is the analyzed
wavepacket given as an MPS.
The method is based on performing a Fourier Transform directly on

a time-series defined by a unitary evolution under a time-independent Hamil-
tonian of the analyzed wavepacket:

| ˜ (t)i = exp

✓
� i

~Ht

◆
| ˜ i =

X

i

exp

✓
� i

~Eit

◆
ci| ii. (3.1)

The time autocorrelation function C(t) = h ˜ (0)| ˜ (t)i = P
i exp(� i

~Eit)|ci|2,
gives the spectrum in terms of the Fourier transform:

˜CT (E) =

1

T

Z T/2

�T/2
e

iEt

~ C(t)dt =
X

i

|ci|2 sinc

(E � Ei)T

2~ . (3.2)

In the T ! 1 limit the ˜CT spectrum converges to
P

i �(E �Ei)|ci|2. In
numerical applications the total available time-series signal length is finite,
resulting in nonzero width of the FT peaks.
This analysis enables to determine the eigenenergies of eigenvectors form-

ing the wavepacket being analized and the overlaps h i| ˜ i at the same time.
Calculating the Fourier transform of the time series defined by real time

evolution | ˜ (t)i one obtains:

I
˜ (E, T ) =

1

T

Z T

0

dt exp(iEt)| ˜ (t)i =
X

i

exp

✓
i

2~ET

◆
sinc

T (E � Ei)

2~ ci| ii.
(3.3)

To be able to compute the appropriate eigenvectors by the FT method
some idea about its eigenenergy is necessary. The FT performed on a time
series (3.3) is much more numerically involved than FT of the autocorrela-
tion function (3.2). In both cases the most expensive part of the computation

34



is calculating the time series (3.1) itself, so an optimal use of the finite time
interval of either time series (3.2) or (3.1) sequence has to be achieved.
The peaks whose shape is defined by the sinc function decay algebraically

as (|E � Ei|T )�1. To improve the resolution, the naive approach would be
to rely on increasing the total integration time so that the tail contribution
becomes small enough. Another, more advanced technique is to use the
appropriate windowing function:

˜Cw
T (E) =

1

T

Z T

0

dtw(t) exp(iEt)
X

i

exp(�iEit)|ci|2 =
X

i

|ci|2w̃(E � Ei).

(3.4)
Windowed FT exchanges peak width for peak tail asymptotics.
Let us remind that if a function f has a FT F , then if a FT of f (n)

exists, it is equal to (ik)nF . Moreover, if f is L1-integrable function then
F ! 0 as E ! ±1. Widowing functions are supported on [0, T ] thus if
windowing function vanishes on the border with power n then its n�th
derivative is L1-integrable and therefore knF(k) ! 0, |k| ! 1. Therefore
”smoothness” class of a windowing function at boundaries translates directly
to the asymptotics of the F tails.
Using the windowing function: wH(t) = sin(t⇡/T ) and its square w2

H
makes asymptotics decrease faster: (|E � Ei|T )�2 or (|E � Ei|T )�3. We
provide an exemplary analysis of a bogus quantum system in Figure 3.1.

3.1.1 Computing the eigenvectors

The vector time-series | ˜ (t)i is available in the MPS form by applying a stan-
dard TEBD algorithm for evolving the states expressed in the MPS language.
Computation of the integral (3.3) reduces thanks to the trapezoidal ap-

proximating rule:

Z
f(x)dx ⇡ �x(f(0) + f(n))/2 +

n�1X

i=1

f(i)�x (3.5)

to a problem of performing an eÖcient numerical addition of Matrix Product
States. The MPS representation is highly nonlinear with respect to numeri-
cal coeÖcients in tensors � and � in equation (1.20). To be able to calculate
the approximating sum (3.5) to the integral (3.3) it is enough to master
addition of just two MPS vectors. Given a numerical representation of two
Matrix Product States | i and |⌘i, the state | i + |⌘i may be represented
as an MPS:

|si = | i+ |⌘i = M(�

0,�0), (3.6)

where �i,[k]0
(|si) = �

i,[k]
( ) � �

i,[k]
(⌘),�[k]

0
= �[k]( ) � �[k](⌘). This rep-

resentation is ineÖcient, as memory requirements grow linearly with the
total number of additions. This problem is best solved by assuming that
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Figure 3.1: Windowing function use allows for eÖcient determination of the
eigenenergies through Fourier Transform. In this figure, all panels show a
FT analysis (Eq. 3.2) of a time series spawned by a model system (random
wavepacket, random eigenvalues) is shown. Panel (a) shows overall FT for
time T=15000. Height of peaks in the autocorrelation FT shown here is
proportional to |ci|2. Panel (b) shows the FT of the autocorrelation function
for T = 3000, from panel, both Hahn window, and sinc peaks are shown.
Panel (c), shows plot of the modulus of the autocorrelation function in the
logarithmic scale for T = 15000; it is clear that the Hahn window function
allows for significant SNR increase. For the peak with eigenenergy E ⇡
0.675 the SNR without windowing is of the order of 2. Using Hahn window
increases this up to the order of 102. Panel (d) compares peak shapes for
three window functions: constant, Hahn window, Hahn window squared.
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we deal only with the MPS forms that satisfy the condition that fami-
lies of vectors | [1...i]

a i and | [i+1...L]
↵ i satisfy orthonormality conditions :

h [1...i]
� | [1...i]

↵ i = �↵� and h [i+1...L]
� | [i+1...L]

↵ i = �↵� . The MPS satisfying
the above conditions are called to be in the canonical form [76].
The procedure which puts the MPS vector back in the canonical form,

first computes reduced density matrices ⇢[1,...,k] and ⇢[k+1...L] for k = 1 and,
by diagonalizing them, determines left Schmidt eigenvectors | [1,...,k]

� i. By
expressing them in the basis | [1,...,k�1]

↵ i⌦ |iki coeÖcients �[k],i
k

↵� and �[k]� are
determined. Then k is increased and the whole procedure is repeated. After
each diagonalization the truncation is performed: only first � of 2� singular
values �[k]↵ (| i) are kept. This is suÖcient to compress the MPS representing
the sum |si. The procedure should be repeated from k = L down to k = 1.
The second sweep ensures that all right Schmidt eigenvectors are orthonor-
mal. Although first, left to right sweep produces set of orthonormal Schmidt
vectors (left and right) at each step, discarding some Schmidt vectors while
processing the next site ruins this property. Last sweep performed in reverse
direction for convenience may restore this property. It is not necessary for
eigenstates extraction as it does not change the state, only its representa-
tion as an MPS (tensors �,�). The partial sum is not used in evolution, and
abandoning the second part of the reduction saves computation time.
If after the summation (3.6), the state |si is put back in the canonical

form (for example by algorithm in [72]), then it turns out that sequences of
�[k]↵ (|si) often do not decay significantly slower than �[k]↵ (| i) and �[k]↵ (|⌘i) (as
↵ grows). This is not a general property of MPS state addition. This prop-
erty comes from the fact that the states being added here stem from a phys-
ical time series and the sum is meant to converge to an eigenstate (which
heuristically should have a simpler MPS form than the whole wavepacket
containing many eigenstates).

3.2 Excitations

We consider a system formed by an ultracold atom gas in the external har-
monic trap in the optical lattice potential. We assume the gas is well mod-
elled by a single-band Bose-Hubbard model (1.9). We have implemented and
applied the Fourier Transform MPS eigenstates extraction method to work
on a time series obtained from unitary time evolution of the BH Hamiltonian
by the TEBD algorithm.
Limited computer resources and questionable numerical stability of the

TEBD algorithm demand that maximal use of finite time series length T
should be made. Computing the eigenvectors by the Fourier Transform
method may be shortened by using various tricks. First of all the energy
of the sought after state is known, at the very least roughly, from physical
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principles (for example atomic limit, perturbative argument etc). Typically
even short real time evolution enables to narrow down the estimate of the
energy of the state of interest by calculating low resolution spectrum (much
lower than in exemplary spectrum in Figure 3.1). The problem is now to
weed out the contribution of the other states with eigenenergies Ei 6= Ei0

for which tails of the functions w̃(T (E�Ei)) may give a serious contribution
to impurities present in the extracted state.

Already discussed method was to choose the windowing function so that
contributions (of magnitude |ciw̃(T (E �Ei))|) of other eigenstates with en-
ergies Ei were negligible. If the initial guess for the energy of the wanted
eigenstate is accurate up to �E then performing the wave function integra-
tion I| ˜ i(

~
�E , E) gives a new initial wavepacket with enhanced contribution

of | ii. It also helps the numerical eÖciency of the TEBD algorithm —
the fewer eigenvectors the wavepacket contains the more stable dynamics it
seems to initialize.

In the physical applications often one may encounter peaks that cor-
respond to almost degenerate energy levels (for example due to a slightly
broken symmetry). In such a case often the two energy levels are very close
to each other, demanding long integration time T to separate the peaks. If
estimation the small energy diÄerence �E is possible, then performing the
FT integration for time Ts =

2⇡~
�E enables one to exactly nullify the contri-

bution form the other, ”undesired” eigenstate. If the time �E is not known
with high enough precision then the contribution of the other state is not
exactly zeroed, but can be expected to be significantly smaller than those
of the extracted state (say by a factor of � ⌧ 1). Then the n-fold repetition
of such a procedure, each time starting the time evolution from the cur-
rent approximation for the extracted eigenstate, reduces the contribution
from the other state by a factor �n. Mathematically in first step one ob-
tains an approximation I| ˜ i(Ts, E), after second step II| ̃i(Ts

,E)

(Ts, E), then
II

I| ̃i(Ts,E)(Ts

,E)

(Ts, E) and so on.

All in all we are able to weed contribution of states that have eigenenergy
much diÄerent than the sought after eigenstate with just one step. Moreover
we may manually delete contribution of a particular undesired eigenstate
which is close in the energy to the target state.

The ground state in Mott insulating regime U/J � 1, in presence of the
external trap, has a well known ”wedding-cake” spatial structure as shown
in Figure 3.2, panel (a). We have considered two physical processes which
deal with ultracold atom gas in the harmonic trap and lead to excitations:
ramping up the lattice potential and explicit time-periodic modification of
the optical lattice potential - the modulation spectroscopy.
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Figure 3.2: The wedding cake structure of the occupation of lattice sites in
no tunnelling (J = 0) regime, (see Eq. (1.9)). Panel (a) shows the Fock
state, the ground state. Panel (b) shows symmetrised low energy excitation
occupation (jumping of particle from one to other level MI boundary). Panel
(c) shows particle transfer to the same level. Panel (d) shows excitation that
do not appear as a result of a slow quench. See Section 3.2.1 for a detailed
discussion. The assumed potential is symmetric, r

0

= 0 in Eq. (3.7). Image
from [119].
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3.2.1 Excitations while ramping up the lattice potential

In the Florence experiment [10] a boson gas was prepared in the harmonic
trap with the optical lattice potential switched oÄ. The final goal of this
experiment was to prepare a so-called Bose-glass phase, that requires reach-
ing a ground state of the deep optical lattice potential of height s

1

with
an additional optical lattice potential of height s

2

⌧ s
1

with incommen-
surate wave length, introducing the disorder. All in all inclusion of these
potentials reduces to adding to the Hamiltonian a local chemical potential
Hamiltonian term of the form

P
i
✏ini with ✏i given by (1.10) and additional

trapping potential:

✏j = c(j � r
0

)

2

+ s
2

sin

2

✓
⇡j�

�
2

+ �

◆
. (3.7)

Note that the trap center position r
0

does not need to coincide with the
minimum of the optical lattice (r

0

is not necessarily integer). The quotient
�/�

2

has to be ”irrational enough” so that the disorder was a good imitation
of a truly pseudorandom sequence.
Ramping the lattice slowly enough, with gas initially in the ground state,

was predicted to enable to reach a ground state of the final optical lattice
potential [10]. As the alleged final state, the BG has no gap, serious ques-
tions about the adiabaticity may be posed, as it is the energy gap which is
a necessary requirement for the adiabatic theorem to hold [125]. The nu-
merical simulations showed that the higher the disorder potential, the less
overlap on the true ground state one should expect [122].
If there is no external disorder, and the optical lattice is deep, the wed-

ding cake profile (see Figure 3.2) allows for several mechanisms for excita-
tions: high-energetic particle-hole excitation, low-energetic excitation in the
superfluid interfaces, low energetic excitation based on displacing particles
from one Mott Insulator plateau to another. Authors of [122] observed low
energy excitations and enlarged particle number variation in the SF inter-
faces as compared to the ground state.
The process of ramping the optical lattice has been simulated using the

BH Hamiltonian. In the experiment [10] optical lattice potential was in-
creased from 0 to 16ER. In the theoretical analysis this was represented by
an increase from 0 to 14ER. This modification allowed to roughly include J
and U constants renormalization which takes into account virtual excitation
to higher Bloch bands, as described in detail in Section 4. In the simulations
U and J parameters are computed by the BH model formulas (1.8). In the
actual simulations the very initial phase — rise from 0 to 4 ER was assumed
perfectly adiabatic. The initial state evolution for s 2 [0, 4] may not be mod-
eled by the BH Hamiltonian (next-nearest and subsequent tunnelling terms
are not negligible). This stage is assumed instead to be perfectly adiabatic
and the simulation was in the end performed from s = 4ER to s = 14ER
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Figure 3.3: Autocorrelation spectra, Eq. (3.2), obtained dynamically for
s=14 ER after switching on the optical lattice, for disorder strengths s2=
(a) 0 ER, (b) 0.4375 ER, (c) 2.1875 ER. All parameters are taken to approxi-
mate the experimental situation [10]. The energy levels of the system appear
as peaks (origin at the zero-point energy), with height |ci|2 from eigenbasis
expansion. Peak labels are for further reference. Image from [119].

using the exponential ramp with the ground state for s = 4ER as the initial
state. The total ramp time was 100 ms. The autocorrelation function (3.2)
for the final wavepacket was computed already in [122]. We have used that
result as a starting point of our analysis.
From the autocorrelation function presented in Figure 3.3 we have cho-

sen most contributing eigenstates and calculated them as described in Sec-
tion 3.1.1.
First let us discuss the case where the additional lattice of height s

2

gen-
erating the disorder is not used. The excess energy brought by nonadiabatic
preparation is small. As seen in Figure 3.4, excitations take place close to
the SF regions: these are transfers of a single atom from an edge of one Mott
plateau to another edge of perhaps diÄerent Mott plateau. The particle-hole
excitations, which are typical for a insulating homogeneous system (without
the trapping potential) are absent. Indeed their excitation energy would be
of the order of U which several times larger than typical energy of excitation
present in the wavepacket.
We have found that description of the system presented in [126] is not

confirmed by numerics. There the ground state was assumed to be contam-
inated by local particle-hole excitations. Melting of the MI [127] scenario
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Figure 3.4: Properties of states of the trapped BEC in a deep optical lattice
(s=14), without disorder (s

2

=0), r
0

=35.12345 in Eq. (3.7). The black thick
line refers to the ground state, the red thin line to the dynamically prepared
wavepacket, the brown (with crosses) and blue lines to the two excited states
with the largest populations denoted as 1 and 2 in Figure 3.3(a). (a), (b),
(c): Average occupation number hnli and standard deviation of number of
atoms

p
�l =

q
hn2

l i � hnli2 on each site for the wavepacket and the two
eigenstates. (d): Entanglement entropy, Eq. (1.16); almost zero in the Mott
plateaus for eigenstates - implying their approximate separability; large for
the wavepacket. (e): Variance of the number of atoms to the left of site l.
Image from [119].
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seems more accurate.
The wavepacket (see Figure 3.4) is characterized by small local number of

particles variance �nl in Mott phases. However �nl in the regions between
MI plateaus is much larger than in the SF regions of the ground state.
Nevertheless the diÄerence is not very pronounced.
More substantial diÄerence may be observed when comparing the entan-

glement entropy Sl of a bipartition of a whole lattice {1, . . . , L} = {1, . . . , l}[
{l + 1, . . . , L}. For the eigenstates, it essentially vanishes in the MI regions
and shows small peaks in the SF regions. For the wavepacket, on the con-
trary, the entanglement entropy Sl is large in the Mott regions as well.
The wavepacket is a sum of simple eigenstates that diÄer by long range
displacement of particles between the SF regions. This creates substantial
entanglement for the bipartition into ”left” and ”right” parts. The same
may be stated about dislocations of particles between SF interfaces.
The entanglement entropy is large over the MI regions for the wavepacket

because in contrast to simple eigenstates, the wavepacket does hot have
well defined number of particles in ”left” and ”right” part of the system
(assuming that the bipartition is taken w.r.t to the site belonging to the MI

plateau). Indeed, variance of a quantity Nl =
lP

i=0

n̂i, clearly distinguishes

the two cases (see panel (e) in Figure 3.4). In case of the eigenstate we have
�Nl ⇡ �nl ⌧ 1, while for the wavepacket �Nl is of the order of unity.
If statistics of such a quantity could be measured experimentally, it would
prove a way to detect lack of adiabaticity.
In the regime of deep disorder (s

2

= 2.1875ER) the ground state is
a BG phase with no visible ”levels” of the ”wedding cake” structure. The
whole sample is characterised by rapid changes of integer occupation of
diÄerent sites. The autocorrelation function of the resulting wavepacket is
shown in Figure 3.3. We have computed several eigenstates. The exemplary
excitations are shown in Figure 3.5. We have found that most contributing
eigenstates are again BG states diÄering from the ground state by moving
single particles form one site to the other. The diÄerent sites still have a
quasi random integer occupation and seem identical in nature to the ground
state. Excitations eÄects are local. However the particle dislocations again
may be long distance, proving to be a serious obstacle to adiabaticity. The
entanglement entropy computed for eigenstates is small, except in small
random, isolated SF intervals. This is in great contrast to the full wavepacket
which has large entanglement entropy and site occupation variance�nl, with
numerous peaks indicating melted regions.

3.2.2 Excitations by modulation spectroscopy

One of the standard methods of analysis of complex quantum systems is
so-called modulation spectroscopy, that is study of energy absorption by
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Figure 3.5: Properties of states of bosons trapped in a deep optical lattice
(s=14) in the presence of strong disorder s

2

=2.1875. Here r
0

=50.1075 and
�=0.0304 in Eq.(3.7). Brown, blue lines correspond to excitations X and
Y in Figure 3.3(c). Again the plots show the average occupation of lattice

sites and the standard deviation
p
�l =

q
hn2

l i � hnli2. The entanglement
entropy Sl is larger for the dynamically created wavepacket than for station-
ary states, and �l has many more peaks, indicating a significant melting of
the Bose glass. Image from [119].

the system as a function of frequency of external modulation of the system.
This may allow for detection of the gap and determining that the system is
in an insulating phase as in [10].

We have considered a fairly deep optical lattice of depth s = 12ER [128],
closer to the tip of the SF-MI transition. We have chosen the ground state
as an initial state. It has greatly pronounced SF regions separating the Mott
plateaus (see a ground state occupation simulation in Fig 3.6). Therefore
excitations are likely to occur also in large part in the superfluid regions.
The absorption spectrum contains two structures around !/U ⇡ 1 and
!/U ⇡ 2 � 2.3 in parallel to the experiment results [129]. The excitations
with energy U are pure particle-hole Mott Insulator excitations, and were an
expected feature, as they proved existence of the MI. The other structure has
been more of a mystery. It was claimed [128] to correspond to high energy
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0

= 20.62345 (to separate left
and right excited states w.r.t. to the trap center). The filled red squares
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show occupation numbers for two extracted excited states showing a particle-
hole excitation in the SF region. The excess energies (energies measured
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0

= 2.2502
(resp. �E/U

0

= 2.2434) for the “red squares” (resp. “green crosses) in
excellent agreement with the positions of two closely spaced peaks in the
FT of the autocorrelation function shown in the inset. The lower panel
shows the standard deviation of the occupation number on each site, for the
ground state (open circles) and the excited states, the latter shows reduced
fluctuations. Image from [119].
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particle-hole excitation in the superfluid interface connecting the two MI
phases.
To prepare the wavepacket for analysis we introduce a modulation of op-

tical potential height with time, that is s(t) = s
0

+sm sin!t. The wavepacket
obtained for a given frequency, at the end of the modulation, is a starting
wavepacket for our eigenstates extraction procedure. The strong 20% mod-
ulation, which was used in [128], leads to a ”too excited” wavepacket. Al-
though the final wavepacket is converged, the subsequent evolution needed
for for a high-resolution FT is impossible for the TEBD algorithm to handle
(see, however, a discussion in Section 3.3). We expect that most significantly
excited states do not depend on the strength of the modulation. However
for strong modulation we leave the perturbative regime and the absorption
curve is nontrivially modified. That is why we decided to use a more subtle
modulation with a smaller (1.67%) amplitude.
We restrict for brevity on the wavepacket modulated with frequency

!/U
0

⇡ 2.3. As before we compute the autocorrelation function of the real
time unitary evolution, then perform its FT. The inset of Figure 3.6, shows
the relevant section of the spectrum, where two close peaks are present. The
Figure 3.6 shows also the average occupation and its variation for the two
excited states. Indeed, these states are definitely a particle-hole excitation
in the SF region as suggested by [128]. Curiously the variation �l = hn̂l

2i�
hn̂li2 in the relevant region is much lower for the excited eigenstate. This
means that the excitation is of ”Mott insulator”-type and the SF character
is destroyed.
Other states populated as a result of the modulation may also be ex-

tracted. For example particle-hole excitations within the MI phase may be
successfully targeted.

3.3 Limitation of the method

The main limitation of the FT eigenvector extraction is set by the stability
of the time-evolution of the wavepacket by the TEBD algorithm. In dynam-
ical situations there is no analogue of the area laws and the entanglement
entropy typically grows linearly with time. This translates to the emergence
of strong entanglement across the sample and failure of the MPS ansatz.
Therefore only a short time-series data is available for analysis. The ex-
ceptionally stable evolution may be reached if physical arguments motivate
it. For example we have observed, that numerical evolution of wavepackets
that proved later to contain only a handful of eigenstates apparently could
be continued indefinitely. Such wavepackets typically stem from gentle evo-
lution of an initial state close to the eigenstate (such as semiadiabatic quench
of the ground state).
Unitary evolution preserves the norm of the wavevector and the average
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Figure 3.7: Long time evolution of a wavepacket prepared by a modulation
at frequency !/U

0

= 2 and then evolved with the TEBD algorithm. The
excess energy over the ground state is plotted in top frame (a). It is not
conserved but, after the initial drop, it stabilizes. Similar behaviour occurs
for the entanglement entropy (b), with additional oscillations because the
wavepacket is a sum of relatively few localised states. The FT of the au-
tocorrelation function (c) does not display any clear peaks if performed in
the [0,5000] time interval (black thin line), but definitely shows several well
defined excited states over the time interval [15000,20000] (thick red line).
Image from [119].
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ure 3.8. Wavepackets taken after t = 20000 units have been used. Clearly
the higher the bond dimension the more additional eigenstates make it into
the final wavepacket.

of the energy of the wavepacket. Any loss of the norm and variation of the
energy w.r.t to the time is a sign of a numerical instability. This may arise
due to the numerical errors in the time-discretization of the exp(iHt) and
truncation performed during reexpressing the wavevector after the two-site
operator exp(iHeven/odd�t) as an MPS with bond dimension � (for more de-
tails see Section 1.3). Representing excited states may require a higher bond
dimension � than the ground state. The numerical computation suggests,
that if � is suÖcient for expression of the ground state but not for other
eigenstates, the overlap of a wavepacket over the ”more complex” eigenstates
decreases in with time, while magnitude of projection of a wavepacket to sta-
ble eigenvectors remains constant.
To back these claims with computation we have considered a small sys-

tem within a shallow a shallow lattice with  = 0.01 consisting of 15 particles
in L = 10 sites. Here lattice depth is s = 5ER and in perpendicular direc-
tion s? = 12.5ER for which U/J ⇡ 2 and the system is deep in the SF
phase. The initial state is a ground state of such system but calculated for
 = 0.0045. Definitely the initial state is far from the ground state. Fig-
ure 3.8 shows the evolution of the expected value of energy of the state as
a function of evolution time for diÄerent � = 15, 50, 120. Clearly the higher
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the bond dimension the higher the value at which the energy as a function
of time saturates. Note that the perfect stability of TEBD implies that the
energy is constant, there should be not drop altogether. Figure 3.9 shows
the FT of the final wavepackets correlation function. It is clear the higher
� the more eigenstates remain in the wavepacket.
Similar situation occurs in the large systems that have been studied.

The FT of the autocorrelation function (see Figure 3.7) of the wavepacket
considered in the modulation spectroscopy analysis over the time interval [0,
5000] displays a myriad of diÄerent structures. Evolving the wavepacket nu-
merically using the TEBD algorithm, under time-independent Hamiltonian
to obtain a FT of the autocorrelation function for the time interval [15000,
20000] gives only a handful of sharp peaks at some frequencies. During
the course of evolution, a self-purification of the wavepacket occurs with the
non-converged fraction seemingly disappearing. No noticeable artifacts after
the purification shows that the following numerical evolution is unitary.
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Chapter 4

Higher bands - EÄective BH
Hamiltonian [92]

In previous sections the single band Bose-Hubbard hamiltonian has been
used to model the ultralcold gas of bosons. It has been hinted in Sections
1 and 3.2.1 that inclusion of higher band is necessary for good quantitative
agreement of result.
The multiorbital BH Hamiltonian (1.6) describes exactly the physics of

the ultracold atom gas in the optical lattice potential. However, it is pro-
hibitively diÖcult to apply due to the large dimension of the local Hilbert
space. In this thesis we use separable lattice potentials, thus single particle
energy levels are characterised by triples of indices (↵x,↵y,↵z) where ↵i enu-
merate one dimensional eigenfunctions in the relevant direction i = x, y, z.
Restricting all ↵i to take values of 1 . . . B gives us a total of B3 single-particle
basis states. The local Hamiltonian which governs the physics in the single
site is Hloc:

Hloc =
X

i,↵

E↵
i n

↵
i +

1

2

X

↵,�,�,�

U↵���
ijkl (a↵i )

†
(a�i )

†a�i a
�
i

| {z }
H

int

. (4.1)

The local dimension d of the n-particle problem restricted to the lowest
B bands is d =

�B3
+n�1

n

�
. Its dimension is a key parameter on which the

computational speed of the DMRG and TEBD algorithms depends.
If one considers slow dynamics or a static situation, then it is expected

that it suÖces to include in the theoretical description only the low energy
subspace. In the ordinary BH model (1.9), only states truncated to the
lowest band are included and n-particle state (a†

0

)

n|⌦i is fully characterised
by the value n, hence the total dimension of local Hilbert space is nmax+1.
Authors of [38] proposed to base the choice of the relevant Hilbert space

on this simple property. They proposed diagonalizing a single site n�particle
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Figure 4.1: The optical potential with schematic energy levels (an analogous
2D case). The lowest Bloch band and excited band in the direction along the
optical lattice are described by localised Wannier functions. The excitation
in transverse direction consists of delocalised states, but are excluded as
their energy is too high.

B = 1 B = 3 B = 5 B = 7 B = 9

n = 2 1 378 7875 58996 266085
n = 4 1 27405 10668000 586862710 11864996235

Table 4.1: The dimension of the local Hilbert space as a function of number
B of Bloch bands included in each direction and total number of particles.
This signifies the diÖculty of direct diagonalization of the Hamiltonian Hloc

and lack of any possibility of application of the DMRG techniques to the
MBH Hamiltonian Eq. (1.6) in its full form.

Hamiltonian to obtain a n�particle interacting ground state of Hloc. Then
one should construct a single site Hilbert space for the lattice as one spanned
by the interacting ground states with a diÄerent total number of particles
(ranging from 0 to nmax). Although the states are characterised solely by n,
there is no notion of a single particle mode. In the position representation
these states are not separable. It was shown [130] that separable states do
not describe the ground state of Hloc very eÖciently.
Changing the local Hilbert space basis from a full Fock space to the

proposed subspace, necessarily leads to renormalization of parameters of
the Bose-Hubbard Hamiltonian. The ”traditional” interpretation of J an U
parameters of the Bose-Hubbard Hamiltonian (1.9) was ”tunnelling ampli-
tude” and ”pair interaction energy”. In the following we show how to define
relevant parameters and how to interpret them in the new basis.
To define renormalized values of the interaction energy U per particle,
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the eigenenergy ✏n should be expressed as a sum of interaction energy (which
in case of the BH model, is just U

2

n(n�1)) and a single-particle energy. The
most natural way to define the interaction energy would be then to use:

Uint =
Un

2

n(n� 1) = h n
0

|
X

↵���

U↵���â†↵â
†
� â� â�| n

0

i. (4.2)

This definition corresponds to Uint =
R
 ⇤

(x
1

, . . . , xn)Vint (x1, . . . , xn).
Unfortunately, Un cannot be defined in such a way if we request the final

eÄective Hamiltonian to have a form resembling Eq. (1.9) and expect it to
have a physical content well approximating that of the Hamiltonian (1.6).
That is because in Hloc the single particle energy is no longer a function of
n, but it depends on distribution of n particles over diÄerent Bloch bands.
Therefore the only way to have a description solely by the site total occu-
pation is to include a ”single particle energy” contribution in the definition
of new U parameters. All in all we define new Un parameters as:

✏n
0

=

Un

2

n(n� 1) + nE
0

. (4.3)

Although technical, this point is of utmost importance. In the original BH
model, the U parameter is interpreted only as an interaction parameter.
The single particle energy is included in the global chemical potential and is
later disregarded as it gives just a constant term in the canonical ensemble).
In the new approach it is related to the ”total local energy”. For the single
band BH model, we have Un = UBH . Often dependence on n of the sequence
Un is weak and may be considered linear: Un = U

2

� (n� 2)W,W ⌧ U
2

Statements such as ”energy gap in Mott Insulating phase, in atomic
limit is U” in fact do not refer to the ”interaction energy” meaning of U
but rather the ”total energy”, as energy gap is diÄerence of ”total energies”
of states (and chemical potentials cancel out). Thus U no longer quantifies
”interaction” but it still measures the gap and particle hole excitation energy
(For further details, see Section 4.3 and Appendix 9.3).
The second stage is to renormalize the inter-site couplings. If only a sin-

gle band model is considered, the interaction term U0000

iiij induces an in-
teraction term, which acts just as hopping term proportional to density:
U0000

iiij aia
†
j(ni + nj � 1) + H.c. in the eÄective Hamiltonian (called bond-

charge term in [38, 131]). The couplings by ordinary kinetic operator have
also to be modified, as the states spanning local Hilbert space are modified
[38]. The new, renormalized tunnelling parameters also become density-
dependent (even if obviously density dependent Uiiij terms are not included),
as the interacting n+ 1-particle eigenstate of Hint, the |n+ 1iH

int

does not
diÄer from the interacting eigenstate |ni by action of any of operators (a↵i )† :

JMO
n
i

,n
j

=

1p
ni(nj + 1)

X

↵

J↵hj, nj + 1|(a↵)†|j, njihi, ni � 1|a↵|i, nii. (4.4)
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In the above formula |i, ni denote interacting n�particle ground states. If
the usual Fock states are used just as in the BH model, then Jn

i

,n
j

= J
0

.
The full tunnelng amplitude Jn

i

,n
j

contains also the bond-charge term that
is

JBC
n
i

,n
j

=

hni � 1, nj + 1|1
2

U↵���
(a↵j )

†
(a�i )

†a�i a
�
i |ni, njip

ni(nj + 1)(nj + ni � 1)

. (4.5)

The full, density-dependent tunnelling amplitude is then Jn
i

,n
j

= JMO
n
i

,n
j

+

JBC
n
i

,n
j

(ni + nj � 1).
The tunnelling parameters J↵ are much higher for particles occupying

the higher bands. The interacting n-particle states diÄer from the BH basis
just by smearing the distribution of particles over higher bands. Therefore
the tunnelling parameters are expected to increase.
The eÄective multiorbital (EMO) Hamiltonian finally becomes:

HEMO = �
X

hi,ji
aia

†
j

X

n
i

,n
j

Jn
i

,n
j

P i
n
i

P j
n
j

+H.c.+
X

n,i

Un

2

n(n� 1)P i
n, (4.6)

where P i
n = |i, nihi, n|. Here the creation operators ai are defined by the

requirement that ai|n, iiH
int

=

p
n|n� 1, iiH

int

. In particular it is not true
that ai = a0i . Nevertheless operator ni = a†iai correctly counts the total
number of particles within a single site.
The plots Figs 4.2 and 4.3 show the dependence of the new density-

dependent J and U parameters on the optical lattice depth as compared to
the BH parameters.
The accurate determination of constants Un and Jn1,n2 has to be ad-

dressed throughly before any serious application of the new eÄective model.
However this point is essentially a solution of a de facto numerical-mathematical
problem (although physical arguments are required to solve it). As many
numerical problems this problem is subject to continuous improvements of
accuracy and eÖciency. Thus we have been able to obtain a serious im-
provement over the solution proposed in the original work [38]. Detailed
description of this point is given in the Appendix 9.4.

4.1 Gutzwiller ansatz analysis of the Multiband
eÄective Hamiltonian

A homogeneous (without the external trap) lattice Hamiltonian may studied
in the thermodynamical limit by means of the Gutzwiller ansatz (for details
see Section 1.4.3). The multiorbital Hamiltonian Eq. (4.6) may also be
analyzed with this method. As the multorbital model is of essentially of the
same form as the Bose-Hubbard model (1.9), with similar interpretation of
its terms, and its purpose is to describe systems which were quite successfully
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Figure 4.2: Renormalized interaction parameters Un vs. height of the optical
lattice potential, for diÄerent dimensionalities: black, green, and red lines
corresponding to 1D, 2D, 3D, respectively. Interaction and lattice parame-
ters: 2as/� = 0.014,� = 754 nm. The transverse lattice depth is s? = 34.8.
The curves meet at s = s?. Image from [92].

described by the BH model, we expect existence of the same phases that is
MI, SF phases, characterised by integer site occupation and nonzero SF
order parameter hai respectively. Experimental results call for an accurate
locating the phase boundary between MI and SF phases in terms of optical
lattice depth s, a key experimental parameter.
In the MO Hamiltonian, the dependence of interaction parameters on

the dimensionality of the optical lattice is nontrivial. We use the data for
Jn

i

,n
j

and Un for configuration as described in Figure 4.2, that is 2as/� =

0.014,� = 754 nm. The transverse lattice depth is s? = 34.8. The Gutzwiller
mean field approach applied to the eÄective Hamiltonian (4.6) reduces to
finding the global minimum of the following functional:

EEMO[ ] = �2z
X

n1,n2

Jn1,n2h |ai|n1

ihn
1

| ih |a†i |n2

ihn
2

| i+

+

X

n

Un

2

n(n� 1)|h |ni|2 � µ
X

n

n|h |ni|2. (4.7)

In the mean field approximation to the Hamiltonian (1.9) the dimension-
ality of the lattice enters the solution only by the coordinate number z. If
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the considerations are performed as a function of Jz/U then the results are
lattice geometry-independent. In the eÄective model for the EMO Hamil-
tonian a single notion of J nor U is present. Instead of choosing arbitrary
coeÖcients we have decided to plot the phase diagram of the EMO Hamil-
tonian as a function of JBH(s)/UBH(s). That is for several values of s we
determine phase in which the system may be found and associate that in-
formation with a point (JBH(s)/UBH(s), µ/UBH(s)). The resulting phase
diagram may be seen in Figure 4.4. It is evident that mean field phase di-
agram is dimension dependent in a matter diÄerent than the ordinary BH
Hamiltonian. Moreover it is evident that MI lobes are smaller making it
more diÖcult for an insulator phase to exist.

4.2 DMRG analysis of the Multiband eÄective Hamit-
lonian

In a 1D lattice, the mean field approximation applied to description of the
Bose-Hubbard model is inaccurate [61, 81]. Therefore the MPS ansatz was
used. The energy minimization was perfored using the Time Evolving Block
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Figure 4.4: Mean field phase diagrams for 1D, 2D, and 3D lattices. Dif-
ferent curves denote borders between MI and SF phases. Dashed black
lines correspond to the standard BH model for any dimension, blue, green,
and red curves denote 1D, 2D and 3D lattices of the EMO Hamiltonian.
Dashed red lines show the result obtained for 9 bands as in [38]. The limit
zJBH(s)/UBH(s)), s ! 1 is diÄerent for each dimension. The s ! 1 limit
corresponds to the ill-defined situation in which the transverse lattice is shal-
lower than the main lattice (this formal limit is also dimension-dependent).
The perpendicular lattice depth is fixed at s? = 34.8, � = 754 nm,
2as/� = 0.014 as appropriate for 87Rb [38]. Image from [92].

Decimation (TEBD) [69, 73] algorithm and imaginary time evolution. It
yields the same minimum as the DMRG algorithm. We have chosen the
lattice size to be L = 100. It allows to avoid finite size eÄects, except for
regions close to the MI tip. There the extrapolation was performed using
L = 200, 300, 400 results. A better, but more computationally demanding
alternative would be to use translationally invariant TEBD algorithm which
works directly in the thermodynamical limit [91, 132]. The transverse lattice
depth is again s? = 34.8ER. Let ✏N (s) be the ground state energy of a
N -particle system for lattice potential depth s. We approximate values of
chemical potentials µ

+

, µ� delimiting the Mott insulator region from above
and below (see Section 1.4.4). The specific formulas for the MI with average
site occupation n are: µ

+

(s) ⇡ ✏nL+1

(s)�✏nL(s), µ�(s) ⇡ ✏nL(s)�✏nL�1

(s).
Having found the phase diagrams for both BH and the EMO Hamiltonians,
we plot them in Figure 4.5. The diÄerence between the two phase diagrams

57



is similar to the mean field case: the EMO phase diagram shows MI-SF
phase transition moved to shallower lattices. This has a nontrivial eÄects
on dynamics as shown in next section.
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Figure 4.5: The 1D phase diagram obtained using imaginary time evolution
and the TEBD algorithm. Black solid curves presents the standard BH 1D
case, the red dashed lines are obtained for the EMO 1D model (4.6) with
s? = 34.8. Image from [92].

4.3 Modulation spectroscopy analysis of the Multi-
band eÄective Hamiltonian

As described in detail in Section 3.2.2, the modulation spectroscopy may be
used to probe the excitation spectrum of a ultracold quantum gas. It may
be used to detect the energy gap for excitations and determine insulator
or superfluid behavior of the gas modelled by the BH model. We have
studied what is the eÄect of renormalization of parameters J and U on
absorption spectra of the system of ultracold atoms in the optical lattice with
the presence of an external trap. Until now results from the ordinary BH
model were available [128, 133]. Also the experiment [10] (already referred
to in Section 3.2.1) was finalized with absorption spectroscopy to prove
the existence of the gap in the system of lack thereof. The goal was to
verify the insulator character of the supposed BG phase. The experimental
data have shown an inconsistency with a theoretical model given by the BH
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Hamiltonian. Work [10] gave a diÄerent (1.9 kHz) prediction for the position
of the absorption peak which was expected to be located at a frequency
! related to the interaction energy UBH by ~! = UBH . The latter gives
a prediction of 2.3 kHz. This led authors of [122] to model an optical lattice
potential of height s by a theoretical optical lattice potential of height (7/8)s
which shifted the absorption peak to the experimental [10] position and
provided a good agreement of experiment and theory. In case of the dilute
rubidium-87 gas used in [10] it is true that

UBH(7/8s) ⇡ 1.9

2.3
UBH(s). (4.8)

However only hand waving arguments that including higher bands in the
analysis leads to decrease of the interaction energy of atoms (greater spread
of the single particle mode) could be made. In this section we augment the
equation (4.8) with:

UBH(7/8s) ⇡ U
2

(s), (4.9)

which has the true physical meaning. The dependence of Un on n is weak,
and for low per-site densities Un ⇡ const. 6= UBH . Therefore the MO Hamil-
tonian may be approximated by the eÄective BH model with diÄerent pa-
rameters of U and J.
The coeÖcients of the eÄective multiorbital Hamiltonian (4.6) Un have

been calculated in a identical way as described in the previous paragraphs.
The approximate equation (4.9) is indeed satisfied. Detailed analysis shows
that absorption peaks shape depends on the Mott plateau in which the
excitation takes place (contrary to the pure BH model). Excitations within
n = 1, 2, 3 Mott plateaus should be placed (in J ! 0 limit) at U

2

= 2 kHz,
�2U

2

+ 3U
3

= 1.85 kHz, U
2

� 6U
3

+ 6U
4

= 1.74 kHz. This may be inferred
from the diÄerence of energy (still assuming J ! 0 limit) of a Fock state
obtained by moving a particle from site i to the site j (in our case |i�j| = 1)
which is shown in Appendix 9.3. The deep final optical lattice of height
s = 16ER prohibits almost completely any tunnellings. The ”average” peak
position is 1.87 kHz in a good agreement with the experiment.
We now move to study a smaller system, similar to the one studied

in [119, 133]. We fill the trap with N = 36 particles. Again this is an
ultracold gas of atoms in an external harmonic trap, with curvature  =

0.009. The lattice depth is s = 15ER, s? = 30ER. The scattering length
is as = 5.45nm. We computed the renormalized Jn1,n2 , Un parameters. In
particular we obtain UBH = 0.662ER and U

2

⇡ 0.565ER,W ⇡ 0.0125ER.
We use the full EMO hamiltonian for numerical simulation.
Computation of a ground state and numerical simulation was performed

by means of the TEBD algorithm. Occupation of each site was truncated
by allowing up to 6 particles in each site (with mean not exceeding 2).
The average site occupation of ground states of EMO and BH Hamil-

tonians form a wedding-cake particle distribution (like in Figure 3.2) with
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Figure 4.6: Absorption spectrum obtained by applying the lattice modula-
tion with amplitude sm = 1ER on the wavepacket created by exponential
ramp up to s = 16. The black dashed line corresponds to the standard BH
model, the red line is the result of eÄective multiorbital theory. The position
of the absorption peaks in the latter case reproduce well the experimental
results [10]. Image from [92].

innermost MI region occupied by 2 particles per site. Both distributions
are very alike. This enables us to interpret any diÄerence of the excitation
energies as an eÄect of interaction energy renormalization. The contribution
of local, single particle energy cancels out.
We have performed the absorption spectroscopy (Section 3.2.2) simula-

tion with total modulation phase duration t = 100~/ER. The modulation
amplitude of the lattice potential height was sm = 1ER. The results are
shown in Figure 4.7.
The obvious diÄerence between the energy spectra obtained for the BH

and EMO Hamiltonians is that the spectrum for the EMO Hamiltonian is
significantly shifted towards lower energies. The center of its main structure
is located at position U

2

in contrast to UBH for the BH Hamiltonian.
An another feature is that the absorption spectrum under the EMO

Hamiltonian is broader and additional, secondary peaks may present in the
main structure. A peak corresponding to excitations within n = 1 Mott
plateau stands out from the top-right part of the main peak. In atomic,
J = 0 approximation the elementary excitation energy within n = 1 MI is
by roughly 0 < �3W = (�2U

2

+3U
3

)�U
2

higher. See elementary derivation
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Figure 4.7: Absorption spectrum (modulation time t = 100~/ER, modula-
tion amplitude sm = 1). Black dashed lines correspond to the BH model,
red solid curves to the eÄective multiorbital theory. Left panel shows spectra
on a common energy scale, observe the significant shift of the EMO struc-
ture toward smaller energies. Bars above the plot give the mean expected
positions of peaks for the n=2 Mott plateau. Right panel shows the same
data with rescaled energy axes (UBH for the black curve, U2

for the red
one). Image from [92].

of this result in the Appendix 9.3.
The absorption spectra are quite sensitive to the system’s density distri-

bution. Adding or removing a couple of particles, may make EBH and BH
prediction for the ground state substantially diÄer. Indeed, deplacement of
particles between MI edges cost very little energy and are sensitive towards
Hamiltonian parameters alteration (mainly to U change).

4.4 Numerical diagonalization of n particle prob-
lem and U, J parameters determination

Solving the single site, interacting n-particle, multiband problem as needed
for Un and Jn1,n2 particles computation reduces to the evaluation of ground
state of the Hamiltonian (4.1). As described in the Section 4 the full Hamil-
tonian matrix is prohibitively large for full diagonalizations even if relatively
small number of Bloch bands B is included. The basis consists of n-particle
Fock states with particles occupying B3 modes. Let us choose a subset V
of those basis states. Let us consider a submatrix of Hint (see Eq. 4.1))
called Hint(V ) defined by those entries with indices corresponding to the
set V. The smallest eigenvalue of Hint is bounded form above by performing
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the diagonailzation of the matrix Hint(V ) and taking the least eigenvalue
✏n(V ) as an estimate. Naturally ✏n(W

1

) � ✏n(W
2

) for any W
1

< W
2

. Thus
a good quantifier of the quality of the diagonalization subspace is the lowest
eigenvalues itself.
The optimal choice of V is to include only those Fock basis states which

inclusion is expected to influence the bound for the least eigenvalue most
significantly. This prompted authors of the eÄective Hamiltonian method
[38] to restrict themselves to the Fock states | i with smallest h |Hint| i.
In the single band, the ground state is just the Fock state with n parti-

cles occupying the lowest Bloch band (0, 0, 0). If more bands are included,
classical perturbation theory is an argument for taking the quotient Q( ) =
|h |H

int

| 0i|
E( )�E( 0)

as a measure of the importance of the basis state  . Maximizing
the Q quotient allows for choosing of basis states that are both of low energy,
and strongly coupled to the ground state Fock state. By the perturbation
theory these two features ensure that most of relevant states will be chosen.
Using the Metropolis algorithm we have sampled the set of all basis states
to choose a set of states V with largest value of the quotient. The details
are described in the appendix. We have performed diagonalization in the
”least-energy” basis and the ”high-Q” basis. Actually the formula for Q
corresponds to a first order perturbative expansion. It may be generated
to second and higher orders (see Appendix 9.4). In the final solution only
about 1% of the elements of V were taken in the second order. The interac-
tion Hamiltonian Hint matrix coupling the ground state with a Fock state
with a single particle promoted to a second excited state is proportional to
n3/2U2000 and this causes the energy change of � = E2 � E0. The require-
ment for validity of the perturbative approach is � � n3/2U2000. For typical
parameters corresponding to Rb atoms this yields a final estimate of n ⌧ 15

(we have verified that indeed for larger n the least energy method is more
eÖcient). Curiously in high density regime the zero order ground state is
no longer (a†

(0,0,0))
n|⌦i, and the BH Hamiltonian is clearly invalid. This is

because the local energy grows with n as U0000

2

n(n� 1)+E0n (*). For large
enough n it may be beneficiary for example to move some particles from
a mode (0, 0, 0) to a mode (2, 0, 0) and others. This then gives the energy
U0000

2

n
0

(n
0

� 1) +

U2222

2

n
2

(n
2

� 1) + 2U0022n
0

n
2

+E0n
0

+E2n
2

which may
be smaller than energy (*) for n

2

+ n
0

= n. Indeed, for the sin2(kxx) peri-
odic potential, we have U2200, U2222 < U0000, and single particle, linear in
ni energy terms E0n

0

, E2n
2

, E0 < E2 no longer dominate the energy value
and fix n

2

= 0.

Figure 4.8 shows comparison of Un parameters (being, up to a constant,
the ground state energy) for both basis choice methods. Clearly for a given
basis size using ”least-energy” basis may give a false impression of conver-
gence of the results if at least B = 9 bands are used. Analysis of least-energy
basis vector set with 40 thousands elements shows that the reason for that
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Figure 4.8: Comparison of the eÄective on-site interaction strength Un ob-
tained using diagonalization of the on-site Hamiltonian Hloc on two dif-
ferent basis sets with the same size equal to 40000. If basis vectors are
chosen according to their energy (dashed lines), false saturation eÄects ap-
pear. Estimating the influence by a perturbative-like scheme (solid lines)
does not seem to suÄer from saturation eÄects. The 3D case is considered:
s = s? = 34.8ER. Image from [92].

is trivial: hardly any Fock vector with any particle in higher band than 9th,
makes it into the set V, no matter how big B is. It turns out that some
of elements of V, although with low energy, have little impact on diago-
nalization as they are weakly coupled to the zero-order, single band result.
Optimizing for Q parameter enables to include more important basis vectors
resulting in increased performance seen in Figure 4.8. Moreover the least
energy estimate may be expressed as

E(B) = E1 +

c

B
, (4.10)

with no signs of early saturation around B = 9.
The point interaction is only an approximation. For large enough band

number, and therefore momentum, the microscopic description of atom-
atom collision has to be carried out. The trend suggested by Eq. (4.10) and
confirmed by data presented in Figure 4.8 was derived under low energy
assumption and for large B is be expected to be modified due to terms in
the interaction potentials that have not been included [34, 35].
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Chapter 5

Fast dynamics of the optical
lattices [134]

The Multiband Bose-Hubbard model (1.6) is equivalent to the second-quantized
Hamiltonian for a fixed lattice potential height s, if all Bloch bands and ar-
bitrary long large interaction and hopping terms are included. As discussed
in Section 1.2 under reasonable assumptions it may be expected to provide
an almost exact description of physics. Actually, a question of convergence
makes these suppositions hardly obvious (see Chapter 4). It turns out that
when considering dynamics of the Multiband Bose-Hubbard model, the con-
tinuous to discrete model mapping should be put under additional scrutiny if
the optical potential strength s is time-dependent. Strong additional dynam-
ical couplings may appear, including of which in the description is necessary
for accurate description of dynamics.
The derivation of the MBH model presented in the Section 1.2 of this

thesis was based upon the expansion of the field operator in the localised
modes defined by the Wannier functions.
At the level of a single particle physics: derivation of the MBH describ-

ing a single particle uses a mapping U from the Hilbert space of complex
functions defined on the real 3D space to the discrete Fock space spanned by
Wannier functions modes, being in case of the separable potential a product
of 1D Wannier functions w↵

i (x)w
�
j (y)w

�
k(z) calculated for lattice depth s.

Such a mapping takes, naturally, explicitly into account the shape of the
Wannier functions and is therefore s-dependent: U(s). To describe 1D sys-
tems we restrict to i = j = k and � = � = 0 (for 2D the condition � = 0

would be dropped).
If the optical lattice depth s is itself time-dependent, for example s is

varied in experiment to alter the U/J ratio, then by a textbook change of
basis we get the following time-dependent Hamiltonian:

HW = HMBH +W = HMBH + i~ d

dt
(U(t))U†

(t), W = T ds/dt, (5.1)
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which governs the time-evolution by the Time-Dependent Schrödinger Equa-
tion (TDSE) in the time-dependent basis defined by the instantaneous Wan-
nier functions. Naturally in the position representation the Hamiltonian is
HX with no modification. The term T in (5.1) may be expanded as (see
Appendix 9.2 for details):

T = Tx + Ty + Tz,
Tx = �i

X

i,j,↵,�

T↵�
i�j(sx)(a

↵
i )

†a�j ,

T↵�
i�j(sx) =

Z
w↵
i (x, sx)

d

dsx
w�
j (x, sx)dx. (5.2)

Had the considered optical lattice potential not been separable, the above
formulas for T operator would not separate into sum of x, y and z direc-
tion. The integral defining T↵�

i�j would have to contain an integral of a 3D
Wannier function over whole R3 space. As from now on we restrict our-
selves to the 1D lattice, we have Ty = 0 and Tz = 0 which corresponds to
sy, sz =const. Transition integrals T

↵�
i�j(s) obey relations: 8i, j,↵ : T↵↵

i�j ⌘ 0,
T↵�
i�j = (�1)

↵+�T↵�
j�i = �T �↵

j�i, T
↵�
0

= 0 for ↵ � � odd. The additional cou-
pling tunnelling like terms from Eq. (5.2) which were brought about by the
optical potential height dependence on time do couple diÄerent bands as op-
posed to the kinetic energy operator in (1.6). Moreover extra single-particle
on-site couplings mixing Bloch bands appear. Figure 5.1 shows values of
parameters T.
Eq. (5.1) does not depend on a particular way the lattice is distorted.

The same equation describes the situation when the lattice is made oscillat-
ing sideways that is the lattice potential is V (x, t) = V (x� xm sin!t). The
diÄerent modulation method results in altering the formula for the coupling
constants T, which in the latter case are:

T↵�
i�j(s) = �

Z
w↵
i (x, s)

d

dx
w�
j (x, s)dx. (5.3)

Transition integrals in this T↵�
i�j(s) obey relation T

↵�
0

= 0 for ↵� � even.
Experimental noise makes the laser intensity fluctuate randomly, with

high frequencies. This context in which terms similar to (5.2) arise was
studied in [135].
To study the eÄect of the additional couplings two scenarios for change

of optical lattice depth were investigated: fast linear (in s value) quench
and modulation spectroscopy experiment, where parameters U and J of
the optical lattice are modulated due to harmonic oscillation of the optical
lattice depth s.
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Figure 5.1: Relevance of diÄerent transition amplitudes: (a) – nearest
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1

for diÄerent Bloch bands (b) – interaction integrals
for g = 1, = 2⇡; the term U0000

iiii term present in the Bose-Hubbard Hamil-
tonian is compared with interaction terms involving excited bands.Panels
(c) and (d) show additional amplitudes T↵�

i�j [see Eq. (5.2)] coming from
the time-dependence of Wannier functions [i.e. W term (5.1)]. Image from
[134].

5.1 A linear quench

In this section we will consider a linear quench of a small system, containing
N = 5

87Rb atoms in a 1D lattice of containing L = 4 under periodic
boundary conditions (PBC). The initial depth of the lattice is s

0

= 12ER.
The linear quench is realized by changing the optical lattice depth linearly
with time s(t) = s

1

t/⌧ + (1 � t/⌧)s
0

. Here ⌧ is the total duration of the
quench. The ground state obtained by the exact diagonalization of (1.6)
serves as an initial state. The final depth of the lattice is s

1

= 40ER. The
quench is performed for diÄerent values of ⌧. In the following we did not
choose to incorporate the eÄect of the finiteness of L = 4 on coeÖcients T.
That is, we have used the same J, U and T values that one obtains if one
uses Wannier functions computed for the infinite lattice. We did not aim
for high precision description of a purely academic four well potential under
PBC in real space, but rather to obtain some idea what are the eÄects one
may expect in realistic systems. Naturally our analysis still suÄers from
some finite-size eÄects (as a

0

⌘ aL) but we believe that our approach has
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eliminated one of two sources of them and makes our results more applicable
to large systems.
We find that (see Figure 5.2) as soon as ⌧ < O(~/ER) the final energy

becomes significantly larger in the presence of the W term than without
it. That reflects an increased occupation of the second excited band. Thus
a simple treatment of higher bands via the MBH model is insuÖcient to
explain the dynamics; time-variation of Wannier functions has to be taken
into account.
An important special case of the linear quench may be singled out.

It is the instantaneous quench limit ⌧ ! 0 + . A Hamiltonian governing
the evolution is second-quantization many particle Hamiltonian in the real
space (1.5). The zero time evolution is described by the evolution operator

UX(⌧, 0) = P exp

✓
⌧R

0

HX(t)dt
◆
taken to ⌧ ! 0+ limit, ie UX(0+, 0) = Id.

The description in terms of the Multiband Bose-Hubbard Hamiltonian (1.6)
without the T terms (5.2) leads to the same conclusion. Let B(s) denote
the one particle basis of Wannier functions for lattice depth s. The basis
which is used in the MBH model for the initial time is B(s

0

) and after the
time ⌧ ! 0+ it is B(s

1

). The expansions of the state vector in position
representation in the diÄerent bases B(s

0

) and B(s
1

) have to yield a diÄer-
ent expansion coeÖcients what contradicts the MBH model predictions that
UMBH(0+, 0) = Id. The conclusion is that for ⌧ ! 0+ the evolution opera-
tor is well approximated by Pe

R
s1
s0

W(s)ds as H +W = H +

ds
dtT ! ds

dtT for
⌧ ! 0+ . This is just a change of basis operator: U(s

1

)U †
(s

0

). In Figure 5.2
one may observe the described behaviour for small enough ⌧.

5.2 Modulation

Recently it has been suggested [131] that periodic modulations of the lattice
depth, for example in the x-direction,

sx(t) = s0x + sm sin(!xt), (5.4)

can be used to excite the atoms in the optical lattice to a state in the
excited Bloch band. The Bloch bands are separated by a large gap, and
high frequency modulation is required to couple them [131]. This this means
that the lattice depth oscillates quickly, and ds/dt is large. Therefore the
eÄect of the W term may be expected to be large. These terms were not
considered in [131].
To quantify the importance of the W part is, we have recalculated the

numerical simulation [131] using the MBH Hamiltonian (1.6) with and with-
out the additionalW term, Eq. (5.1-5.2). The studied system is a 2D lattice
in a deep lattice regime. The gas is in a Mott Insulator phase. The lattice
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sponding ground state) after a linear quench of a model 1D system from
s
0

= 12ER to s1 = 40ER. For the adiabatic process �E = 0. Red (black,
dashed) lines correspond to the simulation with (without) the W term (5.1)
in the time-dependent Hamiltonian. Panels b) and c) show time variation
of averages of band occupation operators hn̂

1

i, hn̂
2

i. Image from [134].

depths in x, y directions, and transverse harmonic confinement with curva-
ture  are (sx = 32, sy = 20, = 8). The large depth of the potential wells
allows to neglect hopping in the lattice an consider layers of indpendent 2D
sublattices (see Figure 1.1) each consisting of decoupled sites. We assume
that each site is filled with exactly ⌫ = 2 atoms.
The simulation is performed by preparing the system in the ground state

| (0)i with energy E
0

(again we use exact diagonalization). Just as in [131]
we restrict the numerical simulation to first three bands in both directions
x and y. We are aware that the W term eÖciently populates higher bands,
but this restriction has the advantage that we consider the model as in [131].
We have performed the numerical simulation of modulation of the optical

lattice depth sx lasting 10 ms. We have analyzed a whole spectrum, by
performing several runs with diÄerent modulation frequencies !x. In [131]
the author introduced a maximal ground state depletion function: �(!x) =

1�supt2[0,T ]

|h !
x

(t)| (0)i|. Here  !
x

(t) is a solution of the Time Dependent
Schrödinger Equation and !x is the modulation frequency.
The results (presented in Figure 5.3) show that inclusion of the W term

leads to a significant alteration of description of the dynamics. The simula-
tions performed with the W term present, contain several additional exci-
tations. Moreover excitations already existing in the simulation by the pure
MBH Hamiltonian are modified by broadening and shifting the excitation
peaks obtained.
The key point made in [131] is a possibility of eÖcient population of
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Figure 5.3: Excitation via modulation of the lattice depth with and without
W term, Eq. (5.1). The depletion function during the first 10ms, without
(black, solid) and with the W term (red, dashed). The broadening of the
peak around ! = 18.5ER/~ is a power broadening eÄect, see discussion in
the text. Image from [134].

higher Bloch bands optical lattice modulation. We have determined that
including the W term in the analysis does not hamper the feasibility of the
process. On the contrary, we found that the eÖciency of such state prepara-
tion procedure is greater than simulations performed using the MBH Hamil-
tonian without the W terms would suggest. The occupation of atomic states
in higher Bloch bands is performed by Rabi-like oscillations (see Figure 5.5).
The oscillation period is decreased usually several times with similar exci-
tation eÖciency (the Rabi-like oscillations’ amplitude). Therefore, while
confirming the possibility of direct resonant transfer of population to ex-
cited bands by lattice depth modulation, our analysis suggests that taking
the time variation of Wannier functions into account is crucial for controlling
the process and for selective excitation of desired bands.

The eÄects of presence of theW term in the Hamiltonian, on the dynam-
ics (5.1), may be also visualized using the using the Floquet theory [136].
The Floquet theory entails analysis of a stroboscopic evolution operator,
which evolves the system for a time corresponding to a whole oscillation
period. Its eigenstates are states that, although not stationary during the
evolution, are stationary up to a phase factor after evolution by a full os-
cillation period. The widths of avoided crossings present in the spectra are
related to the Rabi oscillation periods.

As a on object for the analysis, we have chosen a broad resonance peak
with energy 18.5 ER present in Figure 5.3. Spectra of the evolution operator
P exp(i

R
2⇡/!
0

H(t)dt) are shown in Figure 5.4. The spectrum without W
contribution shows a single isolated avoided crossing indicating a simple
resonance (corresponding to the isolated peak in Figure 5.3). This contrasts
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Figure 5.4: Floquet spectrum without W contribution (left) and with with
W term, Eq. (5.1) (right panel). Broad avoided crossings for the latter are
due to the strength of terms omitted within BH description as well as the
influence of higher harmonics - see text for discussion. The region of avoided
crossings (large curvatures) is highlighted with solid lines. The black color
intensity increases with the curvature. Image from [134].

with the case of the quasi-exact evolution, where a compound resonance is
present. This structure correlates well with the broadened peaks observed
in the depletion function.

71



0 50 100 150
Time [E

R
]

0

0.25

0.5

0.75

<
 n

2
,y

 >

a)

Figure 5.5: Average value of operator n
2,y = a†

(0,2)a(0,2) as a function of
time during the modulation. Brown curve shows the results in the presence
of the W terms (5.2), black for ordinary MBH model (1.9). The ordinary
MBH model underestimates the target state population speed by a factor
of 2. Image from [134].
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Chapter 6

Spinor Bose-Hubbard model
with disorder [137, 138]

Spinor Bose-Hubbard (BH) models describe strongly correlated lattice sys-
tems where bosons have an internal angular momentum (the hyperfine struc-
ture) whose orientation in space is not externally constrained. Bosonic in-
teractions are sensitive to the spin degree of freedom leading to a rich phase
diagram in zero temperature. Like in the spinless case, interactions may
be parametrised by two-body short range (s-wave) scattering length, and
the interaction is point-like and rotationally invariant. As interactions are
rotationally invariant, scattering depends on total spin only.

6.1 Bose-Hubbard model for spin-1 bosons

Low energy spin-1 bosons loaded in optical lattices, in the complete anal-
ogy to the spinless BH model, may be described by the spinor BH model.
The appropriate second quantization field operator  , instead of one, has
three components:  �1

, 
0

, 
1

. The scattering interaction is again by con-
tact interaction which may be decomposed as V (x� x0) = g

0

P
0

�(x� x0) +
g
2

P
2

�(x � x0) where Pi are projection operators in the two particle space
to a state with total spin 0 or 2. Odd total spins are forbidden by bosonic
exchange symmetry of atoms. The remaining limitations are analogous to
those discussed in Section 1.2. The corresponding Hamiltonian is [139]:

ˆH = �J
X

hi,ji,�

⇣
â†i�âj� + â†j�âi�

⌘
+

U
0

2

X

i

n̂i(n̂i � 1)

+

U
2

2

X

i

⇣
ˆS2

i � 2n̂i

⌘
� µ

X

i

n̂i, (6.1)

where hi, ji denotes summing only over i, j being nearest neighbors in the
lattice and â†i� (âi�) denotes the creation (annihilation) operator of a boson

73



in the lowest Bloch band localised on site i with spin component � = 0,±1.
The first term in (6.1) describes spin preserving hopping with a tun-

nelling amplitude J (in complete analogy to the ordinary BH model). The
second and third term are spin independent and spin dependent pointlike in-
teractions. The interaction coupling constants are U

0,2 = ci
0,2

R
d~rW 4

(~r�~ri)

with ci
0

= 4⇡~2(ai
0

+ 2ai
2

)/3m and ci
2

= 4⇡~2(ai
2

� ai
0

)/(3m), where aiS is
the s-wave scattering length of two particles with total spin S [14, 140] and
W (~r � ~ri) is the Wannier function of the lowest band at site i. We have
allowed some latitude for explicit dependence of aS on site i. Spatial varia-
tion of the scattering length is the way to introduce disorder in interaction
parameter value and it will be described in detail later. The third term
of (6.1) depends on spin configuration of atoms within a single lattice site
i. The spin operator used here is defined as: ˆSi =

P
��0

=0,±1

â†�(Fi)��0 â�0 .
Matrices F are spin matrices for angular momentum S = 1 in the spin
basis. The operators ˆSi satisfy angular momentum commutation relations
[

ˆSl, ˆSj ] = i✏ljk ˆSk, and they commute if taken at diÄerent sites.
Note that the spin-dependent interaction energy described solely by the

third term in (6.1) is minimized if the total spin is zero for U
2

> 0 (antifer-
romagnetic regime). For U

2

< 0 the minimal energy is reached when spin
takes maximal allowed value [14, 140, 141]. In the grand canonical approach
the total number of particles is controlled by the last term of (6.1) where
µ is the chemical potential and n̂i =

P
�=0,±1

n̂i,�, is the total number of
bosons operator on site i. More details about the derivation can be found
in [14, 36, 140, 142, 143].
In the Hamiltonian (6.1) all the parameters are site-independent, pro-

vided aiS is homogeneous. As discussed in Section 1.2.1, the model also
may be made site-dependent by introducing an external potential (which is
described by using site-dependent chemical potential µi). The last term of
(6.1) takes then the form

P
i µin̂i. In this work we depart from the confines

of the details of disorder realization and we will assume that the chemical
potentials µi are random numbers with uniform distribution on the interval
[µ̄ ��µ, µ̄ +�µ]. We will also consider situations where other parameters
are random. Although there are plenty of possible choices, we will only con-
sider situations where U

2

is a random parameter. This may be realized by
introducing space-inhomogeneous magnetic field to alter scattering lengths
a
0

and a
2

.

6.1.1 The phase diagram at J = 0

The starting point of the analysis of spinor Bose-Hubbard model is gaining
full understanding of the model in J = 0, single site limit. In contrast to
ordinary BH model, in that limit interplay of U

2

, µ, U
0

parameters leaves a
potentially rich phase diagram.
In this limit, lattice sites are decoupled. Each site has its own Hamilto-
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nian H
0,i and ˆH

0

=

P
i
ˆH
0,i with

ˆH
0,i = �µn̂i +

U
0

2

n̂i(n̂i � 1) +

U
2

2

⇣
ˆS2

i � 2n̂i

⌘
. (6.2)

The particle number, and total spin operators commute,
h
n̂i, ˆS2

i

i
= 0. The

eigenstates of ˆH
0,i may be chosen so that occupation ni, spin Si and ˆSz

projection mi are simultaneously defined |Si,mi;nii . The orbital part of
such an eigenstate is just a product of real Wannier functions. Therefore
the spin part has also to be symmetric so that the whole wavefunction obeys
bosonic statistics. This means that the sum Si + ni has to be even.
The eigenenergy of the state |Si,mi;nii in the atomic limit J = 0 is

� µni +
1

2

U
0

ni(ni � 1) +

1

2

U
2

[Si(Si + 1)� 2ni] .

We minimize the above to describe the spin structure of the system in
J = 0 limit. For U

2

> 0, the energy is minimized when Si value is minimized.
Bound that ni + Si is even means in that case that Si = ni(mod 2). For
even ni the state is spin singlet insulator |0i, 0i;nii [144]. For odd ni, the
J = 0 ground state has a nonzero spin, and the state is just |1i,mi;nii . The
spin Sz projection mi is arbitrary as no external magnetic field is assumed.
For U

2

< 0 the energy is minimized when Si is maximized. Therefore in
the ferromagnetic regime, the ground state is |Si,mi;nii , Si = ni, with mi

again arbitrary.
To describe the exact phase diagram it suÖces to determine the occupa-

tion in both U
2

< 0, U
2

> 0 cases (the spin Si may be uniquely determined
from U

2

and ni). The phase diagram is parametrized by two independent
variables (U

2

/U
0

, µ/U
0

). It is shown in Figure 6.1. As in the pure BH case
the J = 0 model allows to determine widths of the MI lobes in a typi-
cal J � µ phase diagram. It is interesting to note that in Figure 6.1 for
0 < U

2

/U
0

< 0.5 some boundaries are vertical lines - their position in µ/U
0

variable does not depend on U
2

. Because of this fact, as shown later in
Section 6.2.2, when disorder is imposed on variable U

2

the position of the
boundary is unaltered. It is also responsible for the absence of the BG phase
between lobes with occupation 2k and 2k + 1 for k 2 Z. In the antiferro-
magnetic region, as U

2

> 0 is increased, odd lobes shrink while even lobes
broaden. The phase diagram indicates complete disappearance of odd filled
lobes of U

2

/U
0

> 0.5. In the ferromagnetic case U
2

< 0 the lobes shrink
as |U

2

| increases and disappears for U
2

= �1. For U
2

 �1 the system is
unstable: the local Hamiltonian spectrum is not bounded from below in the
grand canonical ensemble. Increasing total number of particles decreases
the energy without limit. The description would be only possible by fixing
the total number of particles. This aspect is not relevant for this thesis.
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Figure 6.1: Phase diagram of the spinor F = 1 BH model in the limit J = 0.
Each region corresponds to a MI phase with a diÄerent integer occupation
number. Image from [137].

6.1.2 Probabilistic Mean Field approach

In this Section we will solve the variant of a perturbative mean field theory
which yields an analytic formula for the borders of phases for spinor Bose-
Hubbard model (6.1). In the J = 0 limit the Hamiltonian reduces to the
sum of single-site Hamiltonians ˆH

0

=

P
i
ˆH
0,i. Introducing standard mean-

field decoupling of the tunnelling operator (1.26) we obtain a Hamiltonian:
ˆHMF =

P
i
ˆhi with

ˆhi = �Jz
X

i,�

h⇣
 i,�â

†
i,� +  ⇤

i,�âi,�
⌘
� | i,�|2

i
� µn̂i

+

U
0

2

n̂i(n̂i � 1) +

U
2

2

⇣
ˆS2

i � 2n̂i

⌘
. (6.3)

To study of zero-temperature properties of (6.1) with the (6.3) mean
field Hamiltonian we will find the ground state, which is a minimizer of
the energy functional EGS( �) = hGS| ˆh |GSi together with the condition
hGS| â� |GSi =  � which makes the problem nonlinear. This condition
does not necessarily have to be imposed, but at minimum it is nevertheless
satisfied.
As typical J parameter values of interest are small (J ⌧ U

0

) we use
perturbation theory around the zero order, J = 0 solution with perturbation
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Hamiltonian V = �Jz
P

�

h⇣
 �â

†
� +  ⇤

�â�
⌘i

.

The eigenstates of the single site Hamiltonian |Si,mi;nii, satisfy:

H
0,i |Si,mi;nii = E

0

(Si, ni, U0

, U
2

, µ) |Si,mi;nii (6.4)

where:

E
0

(Si, ni, U0

, U
2

, µ) = �µni +
1

2

U
0

ni(ni � 1)

+

1

2

U
2

[Si(Si + 1)� 2ni] . (6.5)

We have here again that Si 2 {0, 1} minimizes the energy E
0

and for U
2

< 0

it is Si = ni which minimizes the energy. As shown in detail in [143] the
ground-state energy up to second order is for odd occupation number given
by:

E(2)

(S = 1, n, J, U
0

, U
2

, µ, �) =

= zJ

2

4
1� zJ

X

j=1,4

↵j(n, U0

, U
2

, µ)

3

5
X

�

| �|2 , (6.6)

and for even occupation

E(2)

(S = 0, n, J, U
0

, U
2

, µ, �) =

= zJ

2

4
1� zJ

3

X

j=1,2

�j(n, U0

, U
2

, µ)

3

5
X

�

| �|2 , (6.7)

where

↵
1

(n, U
0

, U
2

, µ) =

n+ 2

3�n�1,0;n,1(U0

, U
2

, µ)
,

↵
2

(n, U
0

, U
2

, µ) =

4(n� 1)

15�n�1,2;n,1(U0

, U
2

, µ)
,

↵
3

(n, U
0

, U
2

, µ) =

n+ 1

3�n+1,0;n,1(U0

, U
2

, µ)
,

↵
4

(n, U
0

, U
2

, µ) =

4(n+ 4)

15�n+1,2;n,1(U0

, U
2

, µ)
, (6.8)

�
1

(n, U
0

, U
2

, µ) =

n+ 3

�n+1,1;n,0(U0

, U
2

, µ)
,

�
2

(n, U
0

, U
2

, µ) =

n

�n�1,1;n,0(U0

, U
2

, µ)
, (6.9)

and �l,r;n,s(U0

, U
2

, µ) = E
0

(l, r, U
0

, U
2

, µ)� E
0

(s, n, U
0

, U
2

, µ).
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Minimisation of the energy for nonzero SF order parameter is achieved
when the expressions in the square brackets in (6.6) and (6.7) are negative.
The MI phase is a ground state for those values of parameters for which the
minimum is reached for  i = 0, that is for positive contents of parentheses
(6.6) and (6.7).
All in all the boundary between MF and SF phase is defined by contents

of square brackets in Equations (6.6) and (6.7) being zero. This gives the
following formulas for the MI-SF phase boundaries:

Jodd =

1

z
P

j=1,4 ↵j(n, U0

, U
2

, µ)
, (6.10)

Jeven =

3

z
P

j=1,2 �j(n, U0

, U
2

, µ)
. (6.11)

The analysis of the ferromagnetic regime (U
2

< 0) is analogous and
yields the answer (the plots are available in [137]):

Jferro = �(n+ nU
2

� µ) [(�1 + n) (1 + U
2

)� µ]

z (1 + U
2

+ µ)
. (6.12)

The above, ordinary perturbative mean field approach has to be gener-
alized to be applicable to the disordered case. Now  j� = haj,�i is explicitly
site-dependent. The averaging over disorder may be performed at diÄerent
levels. Here we choose to average at the level of formula for the energy
functional. The averaged main equation for energy reads just as before

¯E(s, n, J, U
0

, U
2

, µ, ¯ �) =

¯E
0

(s, n, U
0

, U
2

, µ) (6.13)
+

¯E(2)

(s, n, J, U
0

, U
2

, µ, ¯ �),

where expression for ¯E, ¯E
0

, ¯E(2) is analogous as in (6.5), (6.7), (6.6), but
functions ↵i and �i in (6.8) and (6.9) are integrated over disorder realization
(for example if disorder is over U

2

2 [

¯U
2

� �

¯U
2

, ¯U
2

+ �

¯U
2

] then ↵̄i =

1

2�

R
dU 0

2

↵i(n, U0

, U 0
2

, µ).
Such an approach treats spatial correlation in a trivial way. A more

complete analysis needs a more complex theory, such as the Stochastic Mean
Field Theory [8]. In such an approach the additional self consistent equation
arises ¯ i =

R
d P ( i)haii which takes into account spatial fluctuations. The

analysis may also be performed by means of the finite size lattice with some
disorder realization (such as real-space Gutzwiller approach discussed in
Section 6.1.3), after which limit L ! 1 is taken.
We have used the simplified approach in further disorder studies. In the

following Sections (6.2.1) and (6.2.2) the disorder is studied using both real
space Gutzwiller ansatz and the simplified mean field approach.

78



6.1.3 Variational Gutzwiller approach

The Gutzwiller ansatz, described in detail in the Section 1.4.3 has been
applied to the Hamiltonian (6.1). Here the ansatz takes the form:

| i =
MY

i=1

n
maxX

n=0

gi(n)
nX

S=0

fi(S, n)
SX

m=�S

hi(S,m, n) |Si,mi, nii (6.14)

The spinor Bose-Hubbard Hamiltonian diÄers from the ordinary BH model
by the term proportional to U

2

parameter, which for typical applications
satisfies |U

2

| ⌧ U
0

, but in this thesis we aim for full study of the phase
diagram. In interaction-dominated regime the system is in a MI phase,
but when tunnelling dominates, the system is in a delocalised SF phase.
Although spin-dependent term alters SF-MI phase transition location and
is responsible for spin properties of various phases, it does not give birth to
additional phases other than MI and SF.
The MI phase prevails for small hopping amplitude and it is defined as

gapped, incompressible phase. The compressibilty is defined as  =

@⇢
@µ =

� 1

V

�
@V
@P

�
T
with

⇢ =

1

N

*
X

j

n̂j

+
, (6.15)

and N being the total number of bosons. The SF phase is characterised by
long-range correlations and nonzero compressibility, gaplessness. At least
two quantities may be used to detect it: the superfluid fraction ⇢S and the
condensate fraction ⇢C as described in 1.4.1 and 1.4.3.
The computation was performed for a small lattice, as the Gutzwiller

ansatz in the homogeneous (no disorder) case is not subject to finite size
eÄects, like full Hilbert space computation. In Figure 6.2 we show the con-
densate fraction, ⇢C . As the value of U2

increases, the lobes with even num-
ber of particles in the MI phase expand, in contrast to odd-filled MI lobes
which are shrunk. For U

2

> 0.5U
0

the odd lobes vanish completely. This
corresponds to the J = 0 phase diagram in Figure 6.1).
In Figure 6.2 perturbative mean field results are shown as solid black

lines. The perturbative mean field and Gutzwiller predictions for the bound-
aries of the even lobes disagree for small U

2

/U
0

as reported in [145]. This
deviation appears only if MI-SF transition is first order. To show that we
plot in the right column of Figure 6.2 the condensate fraction as a function of
J along µ = const., horizontal lines in the phase diagram, across the MI-SF
transition. The chosen values of fixed chemical potential correspond to the
vertical position of tips of the Mott Insulator lobes in the Gutzwiller phase
diagram. We have found that the perturbative mean field and Gutzwiller
ansatz discrepancy occurs if and only if the condensate fraction as a func-
tion of tunnelling shows a discontinuity at the phase transition (i.e. the
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phase transition is of the first order). The phase transition is clearly first
order for U

2

/U
0

 0.1, and clearly second order for U
2

/U
0

� 0.3 We have
estimated that character of the phase transition changes at approximately
U
2

/U
0

= uc ' 0.2. The observation of a first order phase transition in the
even lobes - where MI is formed by singlets on each site is not new and has
been also pointed out in the mean field analysis of [143, 145] in 2D, as well
as in Quantum Monte Carlo (QMC) calculations [146] in 1D.
Investigation of the ground states on both sides of the transition, shows

that the reason for the discontinuity is abrupt population on the SF side the
phase transition of atomic states with total spin S = 2. For U

2

/U
0

 0.1 the
energy gap created by spin excitation is overpowered by the kinetic energy,
and nonzero occupation of mode |S = 2,m, ni occurs for even n around the
MI tip. For U

2

/U
0

� 0.3 the superfluid is a mixture of states |S = 0,m, ni
for even n (in both cases of course there is contribution form |S = 1,m, ni
states with n odd).

6.2 Disorder in Spinor Bose-Hubbard Model

The introduction of the disorder in local chemical potential results in the
presence of an additional insulating phase, the Bose Glass phase in the phase
diagram.
The addition of a site-dependent disorder destroys the translation in-

variance of the system. Mean field or Gutzwiller ansatz descriptions have
reduced the Hamiltonian to a single site description. Such a procedure is no
longer possible. Instead, the mean fields ha�,ii as well as Gutzwiller wave
function coeÖcients become explicitly site dependent.
Solution of the disordered potential may be achieved by considering large

systems with an appropriate ansatz (as exact Hilbert space methods are of
course unavailable) or large number of realizations of small systems for which
some sort of averaging should take place. In this section we will apply the
Gutzwiller ansatz (Section 6.1.3) to a single finite 2D lattice (40⇥ 40 sites).
We have verified that this size of the lattice allows for self-averaging of the
results. We will also use generalisation of the perturbative mean field ap-
proach, the Probabilistic Mean Field approach (introduced in Section 6.1.2)
The disorder in the interaction parameters U

0

and U
2

may be experimen-
tally realizable using optical Feshbach resonances [57, 147–149]. The use of
magnetic Feshbach resonances seems impossible, as mere switching on of an
external magnetic field, would lead to additional terms in the Hamiltonian
(the Zeeman hyperfine level splitting). Depending on the strength of the
magnetic field, it could also lead to a breakdown of the trapping.
The use of optical Feshbach resonances has other consequences. It typi-

cally causes losses due to spontaneous emission from the intermediate state
[148, 149]. Coupling to that state is the essence of the optical Feshbach
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Figure 6.2: Left panels depict the condensate fraction ⇢C obtained numer-
ically by the Gutzwiller ansatz for, (a)U

2

/U
0

= 0.02, (b)U
2

/U
0

= 0.1 and
(c)U

2

/U
0

= 0.3, in the homogeneous case without disorder, where MI lobes
correspond to vanishing ⇢C (orange areas). The lobes are compared with
the boundaries obtained with the MFPT (solid lines). In the right panels is
depicted ⇢C as a function of zJ/U0

for values of µ/U
0

corresponding to the
lobes’ tips. In the transition between the MI and SF on the tip one can ob-
serve a first order transition for the even occupation lobes in panels (d) and
(e) (abrupt jump on the condensate fraction) while for lobes corresponding
to odd occupation the transition is always of the second order. Image from
[137].
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Figure 6.3: CoeÖcients |f(S = 0, n = 2)|2 (triangles) and |f(S = 2, n = 2)|2
(squares) of the Gutzwiller state (6.14) as a function of zJ/U

0

. The value µ
corresponds to the n = 2 MI lobe’s tip. The panels refer to diÄerent values
of spin interaction: U

2

/U
0

= 0.01(a), 0.02(b), 0.1(c) and 0.3(d). Image from
[137].

resonance method, so it may not be avoided. If the loses are too serious, the
preparation of the ground state may not be possible due to stringent time
constraints. In to-date experiments the loses limited system’s lifetime up to
tens of miliseconds. This is shorter then the disordered sample preparation
time in [10] and the physics of the spinor Bose-Hubbard model may be even
more subtle due to typically small value of the parameter U

2

.
Another possibility is to apply microwave-Feshbach resonance technique,

which has been suggested [150–152]. This method uses resonant microwave
coupling between diÄerent total spin (hyperfine structure) ground state lev-
els to tune the scattering length. No losses due to spontaneous emission are
expected.
If the laser (or microwave) EM field is subject to spatial fluctuations, but

on average is tuned to the Feshbach resonance, then correlated fluctuations
of U

0

and U
2

appear. This is due to correlated alteration of a
0

and a
2

scattering lengths by the values �a
0

and �a
2

. To achieve fluctuations only in
parameters U

2

and constant U
0

the condition �a
0

(�!) + 2�a
2

(�!) ' 0 has
to hold.

6.2.1 Disorder in µ

First we study the situation where the disorder is imposed in the chemical
potential. It signifies addition to the main Hamiltonian the disorder mod-
ification ˆHdis(✏i) = ✏in̂i. Note that this sort of disorder is called ”diagonal
disorder”. This term is not used here, as it is vague. The disorder imposed

82



 0  0.05  0.1  0.15  0.2  0.25  0.3  0.35 zJ/U0

 0

 1

 2

 3

µ
/U

0

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

(a)

MI   n=1

MI   n=2

MI   n=3

MI   n=4

 0  0.05  0.1  0.15  0.2  0.25  0.3  0.35 zJ/U0

 0

 1

 2

 3

µ
/U

0

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8
(d)

BG

BG

BG

BG

SF

MI   n=1

MI   n=2

MI   n=3

MI   n=4

 0  0.05  0.1  0.15  0.2  0.25  0.3  0.35 zJ/U0

 0

 1

 2

 3

µ
/U

0

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8
(b)

MI   n=1

MI   n=2

MI   n=3

MI   n=4

 0  0.05  0.1  0.15  0.2  0.25  0.3  0.35 zJ/U0

 0

 1

 2

 3

µ
/U

0

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8
(e)

BG

BG

BG

BG

SF

MI   n=1

MI   n=2

MI   n=3

MI   n=4

 0  0.05  0.1  0.15  0.2  0.25  0.3  0.35 zJ/U0

 0

 1

 2

 3

µ
/U

0

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8
(c)

MI   n=2

MI   n=4

 0  0.05  0.1  0.15  0.2  0.25  0.3  0.35 zJ/U0

 0

 1

 2

 3

µ
/U

0

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8
(f)

BG

BG
SF

MI   n=2

MI   n=4

Figure 6.4: Left column panels report the average density fluctuationsp
n2 � n2 obtained from the Gutzwiller MF approach. MI lobes, corre-
sponding to vanishing fluctuations (orange areas), are compared with the
probabilistic mean field prediction (solid lines). Right column panels show
the corresponding condensate fraction in comparison with the Gutzwiller MI
lobes (solid lines). The zero-condensate fraction areas (orange areas) outside
the MI lobes correspond to BG phase. For all panels, random disorder in
the chemical potential with � = 0.3U

0

is considered. The diÄerent panels
correspond U

2

/U
0

= 0.02 (a-d), U
2

/U
0

= 0.1 (b-e) and U
2

/U
0

= 0.3 (c-f).
Observe the disappearance of the odd filling MI lobes for the largest U

2

/U
0

ratio in agreement with the simple estimate given in text. Image from [137].
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on U
0

or U
2

could also be termed diagonal.
The phase diagram again contains MI and SF phases with identical char-

acteristics as in no disorder situation. In addition to them a Bose Glass (BG)
phase shows up in the phase diagram. Due to Gutzwiller ansatz limitations,
the Bose glass phase has again zero local particle number variance, just as
the Mott Insulator. However the key diÄerence is large spatial variation of
the occupation — each site has its own integer occupation.
This explains intuitively the properties of the BG phase: integer occu-

pation corresponds to particles localization, still zero gap is achieved in the
thermodynamical limit. Indeed, arbitrary low energy excitation is made by
dislocating a particle from site i to a (typically distant) site j for which
✏j ⇡ ✏i. We have verified that nonzero global variance of local occupation
hnii (together with �ni ⇡ 0) characterizes the same region as nonzero com-
pressibility together with zero superfluid fraction (⇢S = 0) criterion.
Finite J results also in finite uncorrelated SF domains (that is groups of

neighboring sites with nonzero hai,�i). These domains are due to presence
of neighbouring sites for which local chemical potential has coincidently
value corresponding to the interlobe SF region in the no disorder phase
diagram. This behaviour is a purely random occurrence, vanishing in the
thermodynamic limit. It also gives no contribution to the superfluid fraction
⇢S even for a finite lattice. The situation alters dramatically if the local SF
regions join up to form a single SF region (it is a classical percolation phase
transition). This is a mechanism decribing BG-SF phase transition.
The results are shown in Figure 6.4 for fixed disorder amplitude, for

a couple or values of U
2

. Zero local particle number fluctuations and zero
compressibility, determine the extent of Mott Insulator lobes. These quanti-
ties are plotted in panels (a-c). Black solid lines signify the results obtained
from the Probabilistic Mean Field Approach. Just like in the ordinary BH
Hamiltonian, increasing disorder steadily shrinks the Mott Insulator lobes
and introduces the BG phase separating them. The extent of the BG phase
in the phase diagram is obtained by determining which points in the phase
diagram are characterised by nonzero spatial variance of local occupations
and zero condensate fraction (⇢C).
In Figure 6.4, no phase separates tips of the MI phase and the SF region.

Therefore this gives rise to a direct SF-MI transition even in the presence
of the disorder. Note that the mean field approximation has a tendency to
overestimate long range correlations as haia†ji = haiiha†ji with no regard to
relative position of sites i and j. This promotes the false appearance of the
SF order (or large condensate fraction). This may be one of the reasons why
the BG phase appears only for small J, contrary to theoretical predictions
[80]. Recently, quite convincing argument called ”theorem of inclusions” has
transpired [86]. It seems to have positively settled the long dispute whether
the intermediate BG phase has to separate Mott insulating phase from the
superfluid phase. It appears that this is the case, despite our numerical
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results.
For the even MI lobes the maximal gap for particle-hole excitations is

U
0

+2U
2

when 0 < U
2

< 0.5U
0

while for odd occupation lobes the maximal
gap is U

0

� 2U
2

. Note that here we do not use the most naive definition
of a spectral gap that is diÄerence of energies of the first excited state and
the ground state (in case of scalar BH these notions are equivalent), as
these states diÄer just by Si values and are uncoupled by the kinetic en-
ergy operator and by the on-site Hamiltonian. Indeed, a spin value Si is a
good quantum number. Therefore the gap here denotes the least energetic
separation of states coupled by kinetic energy operator.
Just as in the ordinary BH case the critical disorder value, when imposed

in the chemical potential, for the disappearance of any MI lobe is half the
value of the maximal gap. For the odd/even occupation lobes it is �o =

U
0

/2 ± U
2

. If the disorder amplitude is larger, then the MI lobe does not
show (it is destroyed by appearance of neighbouring sites with large local
energy), and instead the insulator phase is just a BG phase. In Figure 6.4 the
panels diÄer by the values of U

2

which alters the values of critical disorder
�o in each row. This parameter for odd lobes from top to bottom row is:
�o = 0.48U

0

, 0.4U
0

and 0.2U
0

. The disorder � exceeds the critical disorder
value �o only for the last row. It is clear that in that case no odd Mott
insulator lobes are present at all. In the case of the ordinary BH model all
the MI lobes vanished simultaneously.
After the oddly-filled MI lobes have vanished the remaining Bose Glass

insulator phase is nematic (h ˆS2i 6= 0) for U
2

/U
0

< 0.5 and it is formed by
singlets (h ˆS2i = 0) for U

2

/U
0

> 0.5. To show this we plot the averaged h ˆS2i
as a function of µ/U

0

, for zJ/U
0

= 0.02 and four diÄerent values of U
2

. The
plot is presented in Figure 6.5. The constant values of h ˆS2i in that plot
correspond to the MI regions, as may be seen by comparison to Figure 6.4.
If
D
ˆS2

E
62 {0, 2}, the system is in the BG phase. For U

2

/U
0

= 0.3, which in
no disorder case allows for existence of the MI lobes, the BG has nematic
properties hSzi = 0, 0 < h ˆS2i < 2.
For U

2

/U
0

> 0.5 (in our case U
2

/U
0

= 0.51 is shown) we have h ˆS2i = 0

no matter whether µ/U
0

corresponds to the BG phase or the evenly-filled
MI phase. This means that both phases are singlet. This is no surprise for
the MI case, as the same properties was described before.
Just like in the no disorder case the Gutzwiller ansatz results agree with

the Probabilistic Mean Field Analysis unless we consider a small U
2

/U
0

value and even number of particles in the MI lobe. Again the mechanism of
this discrepancy is likely to be the same - the first order phase transition.

6.2.2 Disorder in U
2

The disorder in the U
2

parameters will be characterized by random values
of the U

2

parameter for each lattice site, that is U i
2

= U
2

+ ✏i where ✏i
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Figure 6.5: Total spin average h ˆS2i as a function of µ/U
0

with zJ/U
0

= 0.02
for U

2

/U
0

= 0.02 (solid triangles), U
2

/U
0

= 0.1 (empty squares), U
2

/U
0

=

0.3 (solid circles) and U
2

/U
0

= 0.51 (crosses). Image from [137].

takes a random value in the interval [��,�] with uniform distribution and
� < U

2

.
Figure 6.6 shows the J/U

0

� µ/U
0

phase diagram for the U
2

-disordered
spinor Bose-Hubbard model for parameters U

2

/U
0

= ±0.1 and the disorder
amplitude �/U

0

= 0.06. In the ferromagnetic case, U
2

< 0, (plots (a) and
(c)), the phase diagram is similar to the phase diagram with disorder in µ.
The MI lobes become smaller and BG phase separates them. Nevertheless
there is a key diÄerence. In the case of the disorder in U

2

< 0 the BG
region width is in fact proportional to the occupation of the MI lobe, not
of constant width as in case of disorder in the chemical potential. This
is easy to see from Figure 6.1 (and of course it is visible in Figure 6.6 as
well). The boundaries separating diÄerent MI lobes for U

2

< 0 are lines with
increasing slope as n ! 1. Disorder in U

2

corresponds to averaging sites
which are spread on a vertical segment (of length 2� in Figure 6.1). If the
occupation of the MI lobe is high enough, it is impossible to draw a vertical
interval of that length which fits inside just a single MI region. Then MI
phase vanishes completely. So in the ferromagnetic case U

2

< 0 there exist
finitely many MI lobes, no matter how small � is. Naturally this argument
is not valid for finite J . The ultimate proof is the numerical analysis. In
Figure 6.6(a) one may clearly see that separation of the MI lobes increases
with lobe occupation.
New features emerge also in the antiferromagnetic case, U

2

> 0. It is
shown in plots (b) and (d) in Figure 6.6. One may see that the BG phase is
formed only between lobes corresponding to occupation by 2n � 1 and 2n,
for n 2 N. No eÄect of disorder is visible between 2n and 2n+ 1 MI lobes.
Again this feature may be explained in the J = 0 limit, when lattice

sites are decoupled. The reference figure is again Figure 6.1. For the pure
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Figure 6.6: Density fluctuations (left panels) and ⇢C (right panels) for
U
2

= ±0.1U
0

and disorder in U
2

, �U
2

/U
0

= 0.06. MI lobes compared
with the MF results (solid lines). Vanishing ⇢C outside the MI lobes (solid
lines), corresponds to the BG phase. Panels (a) and (c) correspond to the
ferromagnetic case U

2

= �0.1U
0

(a-c). The case U
2

= 0.1U
0

is reported in
panels (b) and (d). Image from [137].
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U
2

disorder all sites have the same µ and U
2

2 [�� +

¯U
2

,� +

¯U
2

] is con-
tained within a single phase in the J = 0 phase diagram. If for particular
(

¯U
2

/U
0

, µ/U
0

) the segment intersects the phase boundary, then some lattice
sites have diÄerent occupation and the remaining (and the state is a text-
book example of the BG phase). The 2n-particle to 2n+1-particle MI lobe
border is characteristic as it is vertical itself in Figure 6.1. This means that
as the chemical potential µ/U

0

is changed the vertical interval signifying
lattice sites moves horizontally and crosses immediately into another phase.
This means that all the sites go immediately from one phase to other and no
disordered phase is present. As there are no horizontal boundaries, no such
behaviour is possible for disorder in µ. The nontrivial question is whether
this BG behaviour is J = 0 boundary eÄect, of a true phase which survives
nonzero tunnelling. The numerical simulations support the latter. The data
presented in Figure 6.6 clearly show nonzero density fluctuations and zero
⇢C in the relevant interlobe, finite J regions. Additionally for finite J no
evidence of BG was detected close to the 2n-particle to 2n + 1-particle MI
lobe border.
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Chapter 7

Finite temperature, real time
evolution of the BH
Hamiltonian

Absolute zero temperature assumed in previous chapters is an idealization
not achievable experimentally, although the temperature in experiments is
ultra-low. The study of finite-temperature eÄects is a necessity both from
theoretical and practical reasons. If the goal is to prepare a system in the
thermal state, a natural question of thermalization in complex quantum
system arises [17, 19, 153–155]. The consensus is that description of non-
integrable closed quantum systems, such as interacting ultracold quantum
gases in optical lattices with use of thermal density matrix is possible. The
purpose of this section is to study dynamics of the Bose-Hubbard model
in the finite temperature for realistic systems. To-date investigations fo-
cused on dynamics of small systems (in the full Hilbert space), containing
at most between 10 and 30 lattice sites and similar number of particles [153]
or statics of large systems (by means of Quantum Monte Carlo simulations)
composed of up to hundreds of thousands of lattice sites and particles [169].
We have extended the method of Minimally Entangled Typical Thermal
States (METTS) proposed in [156] to allow for the real time evolution and
inhomogeneous systems.
Until now, to study finite temperature properties complex quantum sys-

tems, various mean-field methods have been used [127, 157, 158]. Exactly
solvable hardcore-boson case has also been considered [159]. Computation
of Helmholtz energy function for a 1D complex quantum system was possible
by application of the DMRG [160, 161]. Some results on dynamics of large,
experimental size systems were obtained by assuming that the evolution is
adiabatic (and therefore conserving entropy) [162]. Using the Local Density
Approximation and systematic QMC analysis some conclusions be drawn
even for inhomogeneous systems [163].
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7.1 BH Hamiltonian in canonical ensemble

The experiments with ultracold atoms are performed in vacuum with a gas
trapped in an external potential. In such conditions the gas has little chance
to exchange particles or energy with the environment (the external potential
is static) provided we neglect spontaneous emission phenomenon, which may
be reduced and controlled by a proper sample preparation. Therefore, if the
system could be considered ”thermal” in any sense, it should be described
by the canonical ensemble and its density matrix should be ⇢ = exp(��H).
This assumption goes over a serious problem of thermalization and prether-

malization in a isolated ultracold quantum systems in the lattice. Ther-
malization, mathematically speaking, is not possible in an isolated system,
described by a time-independent Hamiltonian. If the density matrix ⇢ is not
thermal initially, the unitary evolution ⇢! exp(�i/~Ht)⇢ exp(i/~Ht) may
not lead to the thermal matrix ⇢th =

P
exp(��En)|nihn| after a finite time

as this matrix is invariant under forward and backward real time evolution.
Another problem may be the existence of nontrivial integrals of motion in
case of integrable systems [164].
Typically thermalization in a closed complex quantum system is inter-

preted locally. The density matrix of the whole system ⇢(t) is first reduced
to a small subsystem of length L0 where 1 ⌧ L0 ⌧ L, ⇢L

0
= TrL\L0⇢. If

the evolution time t is large enough, and the system is to be tested for
being thermalized, ⇢L

0
is compared to a thermal density matrix that is

⇢
0L ⇡ exp(��HL0

). We neglect coupling of HL0 to the to remaining sites
as 1 ⌧ L0 [165]. Equivalently, the ”thermalized” quantum complex system
should correctly predict averages of local observables (such as n̂i, n̂2

i ) and
almost local ones (such as hnini+1

i), but is expected to fail for long range
correlators hnin

†
ji, for |i � j| - large. Further eÄects have been reviewed in

[166].

7.2 METTS

Quantum Monte Carlo algorithms allow for a very eÖcient computation
of averages of local operators hAi = Tr⇢A even for lattice systems con-
sisting of thousands of particles in thousands of lattice sites, but yield no
mathematical representation of the density matrix itself [65]. The evolution
operator U(t) = exp(�iHt) is a highly nonlocal, nondiagonal (in any basis
that may be used) operator. The time evolution of averages is described
by hA(t)i = TrU(t)AU †

(t)⇢, where ⇢ is a density matrix of a state that is
computable by means of the QMC. Calculating such an average is out of
reach for the QMC.
The METTS method proposed in [156] goes beyond that as it enables

to generate a sample R of wavevectors  i which allow for computation of
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thermal averages as:

hAith ⇡ hAiR =

X

 
i

2R
h i|A| ii. (7.1)

Following [156], let us sketch how the set R is constructed. The trace
formula for thermal average is:

hAith =

X

i

hi| exp
✓
��
2

H

◆
A exp

✓
��
2

H

◆
|ii, (7.2)

where |ii go over set of all Fock states. Equivalently:

hAith =

X

i

P (i)

Z
h�(i)|A|�(i)i, (7.3)

Z =

X

i

P (i), (7.4)

| (i)i =

1p
P (i)

| exp
✓
��
2

H

◆
|ii. (7.5)

Thus it suÖces to perform a Monte Carlo sampling of the last sum, and
generate a subset S of all Fock states to which the above summation may
be restricted. Then R = exp(��/2H)S. Notation �/2H)S is understood as
elementwise application of the operator exp(��/2H) on the set S.
The only requirements for generating such a sample of vectors are: a)

the ability to perform a short time evolution of any vector  in the imag-
inary time:  (i�/2) = exp(��

2

H) (0); b) the ability to perform quantum
measurement on the state  (i�/2) i.e. a projection on some orthonormal
basis (for example Fock states basis). It turns out that MPS states repre-
sentation together with the TEBD algorithm satisfies both requirements as
is shown in the Appendix 9.5. Moreover such a representation enables to
compute hexp(iHt)A exp(�iHt)iR for any local enough operator A. Indeed
hA(t)iR = hAi

exp(�iHt)R. Therefore, by evolving separately the constituents
ofR, the METTS methods allows in theory to compute evolution of operator
averages for large lattice systems.
The basic algorithm for preparing an ensemble of METTS vectors is:
The above algorithm is a MC random walk and as such it produces

best approximation with fixed number of elements of the full ensemble if
the random walk traverses eÖciently the configuration space. For low J/U
ratio, at unit filling, the Fock states are almost eigenstates. Thus in that
regime the imaginary time evolution followed by the projection to a Fock
state does not stray far from the identity operation. The inner loop in
the METTS algorithm often does not change the state  thus reducing the
eÖciency of the random walk. If in addition to the small J, the inverse
temperature � is large enough (i.e. the sample is cold enough) then the
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Algorithm 1: Generate METTS ensemble of M vectors, sampling every
K sweeps with initial I

0

thermalization sweeps, inverse temperature � and
a Hamiltonian H.
 ! ground state if Hamiltonian H
for i = �I

0

,M do
if i > 0 then
for j = 1,K do
project  to a Fock state ⌘ with probability |h⌘| i|2
 ! exp(��

2

Ht) 
end for
enter  into the ensemble
end if
end for

evolution by the imaginary time �/2 leads to the Fock eingenstate dressed
in quantum fluctuations (amount of which is proportional to J2 for small
J/U). This is visualized in Figure 7.1. For small � the recurrence probability
convergence to 1, for larger � the probability saturates to a value which is
characterised by quantum fluctuations of the eigenstate. For ultralarge �
every state evolved in the imaginary time for time �/2 converges to the
ground state. Such hyperlow temperatures are of no interest to us.

In the beginning of the each step of the METTS ensemble generating
algorithm the state is  M

~n = exp(��/2H)|~ni, where vector ~n = (n
1

, . . . , nL)

characterizes actual Fock state occupation. After several evolution and pro-
jection steps in the inner loop of Algorithm 1 the state  M

~n is updated and
entered into the ensemble. For best eÖciency, two subsequent vectors which
have been entered into the ensemble  M

~n , M
~n0 should be characterised by

independent generating vectors ~n,~n0. Thus, in case of the Bose-Hubbard
model, large values of K have to be used. For thermodynamics of the MI
phase for J of the order of 0.05� 0.2 and � in the range of 6� 12, we have
estimated that choosing K between 150 and 500 is suÖcient for generating
vectors’ decorrelation. In the low temperature, MI regime the generating
vectors are characterised by vectors ~n with equal integer filling, except for
a few sites where particle hole excitations are present.

The following sections are organized as follows. Section 7.3 presents
a comparison of METTS and QMC algorithms for static thermal averages
evaluations. Section 7.4 contains a discussion notion of inhomogeneous sys-
tem preparation by both QMC and METTS algorithms. Section 7.6 deals
with the real time evolution of such systems.
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Figure 7.1: Left panel: the probability of projecting the state
exp(��/2H) 

0

, there  
0

is a unit-filled Fock state onto  
0

in the METTS
algorithm. For diÄerent lattice sizes L and diÄerent J. The right panel
shows the analogous probability of projection of a state exp(��/2H) d to
a state  d, where  d is a Fock state  0

with particle excited from a site
L/2�dd/2e to a site L/2�dd/2e+ d. The perpendicular short line denotes
the approximate location of the inflection point, which marks transition to
the hypercold regime when the projected state is close to the ground state.
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7.3 METTS vs QMC

Both approaches: METTS and QMC describe the complex quantum sys-
tem using the same Hilbert space. Still the two are very diÄerent. The
QMC samples the formula for the partition function Z = Tr(exp(��H)) by
generating a large (typically 108 and more) sample of ”worldlines”

Z = Tr(exp(��H)) = TrP exp
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�
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mTi
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i1e
⌧
m

E
i1
), (7.6)

where ˆT is a nondiagonal part of the Hamiltonian (1.9). The last equation
is obtained by inserting partitions of unity 1 =

P | 0

i ih 0

i |. Here Ei’s are
eigenenergies and  0

i ’s are eigenvectors of H0

— the diagonal part of (1.9).
All in all a ”worldline” is a set of intermediate states  0

1

, . . . , 0

m and times
⌧
1

, . . . , ⌧m which are used in the above summation. Using a classical Markov
process to sample worldlines does not enable to sample over all configura-
tions, as topological limitations apply to the MC random walk. The worm
algorithm [167] enables to sample over all worldlines.
In contrast, the METTS samples consist of many-body vectors, elements

of the full Hilbert space. Due to technical reasons and time constraints the
largest size of the METTS ensemble that may be used consists of the order
of 10000 vectors.
The ALPS enables to calculate expectations and correlations of diagonal

operators. We have used it to calculate: hn̂ii, hn̂2

i i, hn̂in̂ji for the trapped
system. The detailed comparison with the same quantities obtained using
METTS approach is presented in Figure 7.2. Clearly agreement of METTS
and QMC predictions has been reached.
Figure 7.3 shows comparison of variances �ni computed by the METTS

and QMC methods in the homogeneous case. Due to high CPU time cost,
only a few METTS points have been calculated. This test has been per-
formed using L = 100 sites with open boundary conditions. When calculat-
ing the single site occupation variance, the average was computed averaging
both over METTS ensemble and the lattice sites. The latter is motivated
by the fact that in the homogeneous systems hnii, hn2

i i should be largely
site-independent (except for a few sites close to the boundary). In out ex-
ample sites 1�5, 95�100 have been neglected in estimating local observable
values.
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7.4 T -inhomogeneous systems

In this section we deal with the notion and description of T -inhomogeneous
systems. Here inhomogeneity does not mean anymore that the system’s
Hamiltonian is translationally invariant but that the system has an inho-
mogeneous initial temperature distribution. The Hamiltonian is assumed to
be translationally invariant. We assume that the whole system has two (in
general several) regions, here called A and B in which the reduced density
matrices ⇢A = TrB⇢ and ⇢B = TrA⇢ are thermal but with diÄerent inverse
temperatures — �

1

and �
2

. Let us investigate possibilities for obtaining
such a system in the standard QMC and METTS computations (in which
the temperature is inherently uniform).
If we assume that parts A and B are uncoupled and consider a following

Hamiltonian of the form:
H = HA +HB, (7.7)

then its density matrix factorizes as ⇢ = exp(��H) = exp(��HA)⌦exp(��HB),
and ⇢A = exp(��HA), ⇢B = exp(��HB). Now if we consider a Hamiltonian:

H = HA +

�
2

�
1

HB, (7.8)

then the system prepared with such a Hamiltonian with uniform temper-
ature �

1

is described by reduced density matrices is thermal with unequal
temperatures, from Hamiltonian’s HA +HB point of view :

⇢A = exp(��
1

HA) and ⇢B = exp(��
2

HB). (7.9)

This approach no longer works if regions A and B are coupled. How-
ever the coupling may be neglected if the system is large (and finite size
intermediate region is not important in the thermodynamic limit). In the
case of Bose-Hubbard model (1.9), if we work in a low tunnelling regime,
at integer filling then the thermal state is approximately a product of single
site density matrices: ⇢ ⇡ QL

i=0

exp(��iHi). The correlation function haia†ji
vanishes exponentially as |i� j| ! 1.
Instead of brute-force merging of two regions (7.8), we chose a more

subtle approach. In the case of the Bose-Hubbard Hamiltonian (1.9), we
may write the Hamiltonian HBH as:

HBH =

X

i

H(i) +
X

i

H(i, i+ 1). (7.10)

Instead of (7.8) we define an auxiliary Hamiltonian:

f(HBH) :=

X

i

f(i)H(i) +
X

i

f(i) + f(i+ 1)

2

H(i, i+ 1)�
X

i

g(i)µni,

(7.11)
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Figure 7.4: Comparison of fluctuations of local number of particles within
QMC and METTS for �

1

= 8,�
2

= 12, J = 0.05. Note that the METTS data
show significant spatial inhomogenity. This eÄect is due to finite ensemble
size of 12000 METTS vectors.

where f |A ⇡ 1, f |B ⇡ �2
�1
, f |C — should be a smooth interpolation between

1 and �2
�1
, where C is a space between regions A and B.

We have used

f(i) = 1 +

✓
�
2

�
1

� 1

◆
g(i), g(i) =

1

2

(tanh(is/L) + 1) , (7.12)

where parameter s controls the ”steepness” of the gluing.
We expect property (7.9) to hold too, but to verify it, we have to resort

to numerical computation. Instead of computing the density matrices of
a subsystem and check whether they are thermal, we choose to check if
several local observables agree with thermal predictions.
Of interest are primarily operators n̂, n̂2, âiâ

†
j as these operators appear

in Hamiltonian (and therefore govern the dynamics). Due to technical rea-
sons thermal average of hâiâ†ji may not be compared with QMC computa-
tion, unlike other operators.
If both inhomogeneous and reference systems are in the thermodynam-

ical limit, the averages have to be equal (otherwise, the method is invalid).
However if the analyzed T -inhomogeneous system is not in the thermody-
namical limit, but has rather small length L, tt is unclear then how long the
reference system should be. In particular we have observed that if half of
a chain lattice is set up at particular inverse temperature �

1

, then the av-
erage of hn2

i i noticeably depends on the inverse temperature of the chain in
the other halve. Only in thermodynamical limit this long range correlation
vanishes.
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Figure 7.5: Comparison of predictions for variance of number of particles
�ni = hn̂2

i i � hn̂ii2 calculated within canonical and grand canonical ensem-
bles, by QMC, under periodic boundary conditions for inverse temperature
� = 12.

Figures 7.5 and 7.6 shows a comparison of expected Var nL/2 for a ho-
mogeneous system with temperature � = 12 or � = 6 for lattices of various
lengths computed within the canonical and grand canonical ensembles un-
der periodic boundary conditions. It is clear that for both temperatures
the thermodynamical limit is reached for approximately L = 200 sites long
lattice, and the grand canonical ensemble seems to very quickly converge to
the thermodynamical limit, as the predictions very weakly depend on lattice
length, and canonical ensemble results coincide only for L > 200.

7.5 Thermometry

In the following section we are interested in determining the local temper-
ature of the METTS ensemble both at the initial time and for an evolved
ensemble.
The initial states for our considerations are always thermal states pre-

pared by the METTS procedure using the auxiliary Hamiltonian (7.11). As
we have used the parameters J = 0.05, U = 1 it is expected that the local
density approximation is applicable due to low tunnelling and the state’s
local temperature may be defined using the function f(i) from Eq. (7.12)
as �

1

f(i).
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1

(see Eq. (7.12)) for �
1

= 8,�
2

= 12 for L = 70 sites for
diÄerent widths of smoothing interface. As may be seen the LDA works
very well.

If a mean of a local quantity hAiith (note that Ai is not defined here
to be an operator) is estimated over all sites of a T -inhomogeneous lattice,
then one may map a local inverse temperature �i to the appropriate average
hAiith. This gives the function ¯A(�i). It also defines a thermometer — in
any situation where we believe the system is ”locally thermal” we may infer
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the local temperature by the inverse map:

Ti =
1

¯A�1

(h ˆAiiR)
. (7.13)

We have used the particle number variance hAii = hn2

i i � hnii2 as the local
quantity defining the thermometer (note again that we do not require the
existence of ”variance operator”). The thermometer is shown in Figure 7.7
for the case of �

1

= 8,�
2

= 12, J = 0.05, s = 60, N = L = 70.
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Figure 7.8: Variation of number of particles �ni per site evolved in the
real time for �

1

= 6 and �
2

= 8. The snapshots have been taken at times
t = 0, 10, 30, 60~/ER. The plots show smoothening of the variation of parti-
cles dependence on site and thermal relaxation in the central region. This
dynamics is basis for estimating the diÄusion constant for the gas described
by the BH model.

7.6 Inhomogeneous out of equilibrium systems evo-
lution

7.6.1 Classical heat equation

The dynamics of thermal conductance in the classical physics is described
by a classical heat equation:

ut = Duxx, u(x, t) = f(x), (7.14)
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where function u(x, t) describes the temperature of medium at each point of
space and at each time. The D is a diÄusion constant. The heat equation
has a remarkable property that for t > 0 the function u(·, t) is C1

(R) as
a function of space coordinate. The solution of the heat equation is obtained
by looking for a Green function of a real line:

u(x, t) =

Z

R

f(y)p
4Dt

exp

✓
�(x� y)2

4Dt

◆
dy. (7.15)

Let u(x, t) be a solution of Eq. (7.14) given by the above equation with
a diÄusion constantD. Let us notice that then (x, t) ! u(x, D

0

D t) is a solution
of the heat equation with the diÄusion constant D0 and the same initial
condition x ! u(x, 0). It means that rescaling time of a solution of the heat
equation is equivalent to changing the values of the diÄusion constant.

7.6.2 Quantum evolution

The real time evolution of the METTS ensemble is performed by time-
evolution of the each of METTS vectors constituting the ensemble. The
initial condition is set by the initial METTS ensemble consisting of two
smoothly connected Mott Insulators as presented in Section 7.6. The METTS
initial condition is characterised by noticeable spatial variation of predicted
local particle number variance (see Fig. 7.8). This is due to much smaller
number of METTS vectors than typical number of QMC trajectories. We
use the function (7.13) to map the particle number variance to the local
temperature. For the initial condition the local temperature is defined by
the function �

1

f(i) (with f being a smoothing function defined in Eq (7.12).
Let us denote this numerical solution by TM

(x, t).
For the METTS ensemble the local temperature is measured with the

thermometer defined in Section 7.5. We compare the local temperature
calculated for the METTS ensemble evolving in time with the solution of the
heat equation u(x, t) initialized with u(x, 0) = f(x)�

1

with diÄusion constant
D = 1. That is we look for the time t such that u(x, t0) resembles TM

(x, t)
the most. The ratio t0/t gives an estimate for the diÄusion constant that
would have to be used in the heat equation to achieve coherent predictions
for the local temperature in both methods. In such case no time rescaling
should be necessary, in accordance to the remarks made at the end of the
Section 7.6.1.
To define the diÄusion constant, we have prepared four samples each

consisting of two Mott Insulator glued together. One of insulators was pre-
pared with the inverse temperature �

1

the other with �
2

for (�
1

,�
2

) 2
{(6, 8), (7, 9), (8, 10), (9, 11)}. The chain length was L = 70, the tunnelling
parameter was J/U = 0.05. We have evolved the system in the real time
for tfin = 60~/ER.We compared the time snapshots with the heat equation
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Figure 7.9: Dynamics of the T -inhomogeneous system for J = 0.05. Panels
a)-d) show dependence of best match of heat equation time t0 (axis Y)
against real time METTS solution (axis X) for T -inhomogenous systems
with (�

1

,�
2

) 2 {(6, 8), (7, 9), (8, 10), (9, 11)} respectively. Panel e) shows all
the curves from panels a)-d) together. Slope of each curve gives the estimate
for the dimensionless thermal conductivity parameter D, Eq. (7.14). For
dimensionful version, see text.

solutions for each time t.We determine time t0 in which heat equation solu-
tion u(x, t) resembles the METTS solution TM S most. For diÄerent times
t we collect the point (t, t0) for each sample and show them in one plot see
Figure 7.9. If the real time evolution of the METTS samples is described
well by the heat equation the, dependence of t0 as a function of t should be
linear. This is a case as one may observe in panels a)-d) of the Figure 7.9.
The slope of the linear dependence of t0 on t gives the D parameter, the di-
mensionless heat conductivity. The units in which one works assumes that
the time unit is ~/Er and the length unit is the distance between nearest
lattice sites (note that for the Wannier function calculation we use a diÄerent
length unit).
The Figure 7.9 contains situations in which the both ends are in rather

normal gas situation and the other end of another sample is in ultracold dis-
tance.The dependence of the dimensionless conductivity parameter D with
the mid inverse temperature � = (�

1

+�
2

)/2 is nonexistent or slowly increas-
ing as presented in panel f) of the Figure 7.9. The dimensionless parameter
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D is related to the full dimensionful thermal conductivity parameter Df by
the relation

Df =

Da2

~/Er
=

D~⇡2

2m
, (7.16)

where m is a mass of the atom of the considered species. For the transverse
lattice of height 40Er the ratio J/U = 0.05 corresponds to approximately
sx ⇡ 9.5Er for which the value of the U parameter is U ⇡ 0.44. The inverse
temperature range 7-10 from Figure 7.9 in dimensionless units corresponds
to the range of 6.8-10.8 nK. In this range the transition from ground state-
dominated thermal system to a truly finite-temperature system occurs. Us-
ing Eq. (7.16) we arrive at Df/D = 3.58 · 10�9m2/s for Hamiltonian which
in recoil units has J/U = 0.05 taking into account the physical potential
keeping the U/J ratio we arrive finally at:

Df = D ⇥ 1.55 · 10�9m2/s, (7.17)

where D is the dimensionless parameter found (Figure 7.9) in the convenient
system of units given by energy recoil unit and kB = 1.
We have also studied what is the dependence of the diÄusion constant

D on the tunnelling amplitude J. To this end we have again prepared a T -
inhomogeneous system with the smoothing function f as in (Eqn. 7.12). We
have chosen �

1

= 8 and �
2

= 12, and prepared the samples for two values of
the tunnelling amplitude J = 0.05, 0.12. We used the thermometer defined
by local particle number variance and determined the local temperature.
Again we have compared diÄusion of the local temperature determined by
the METTS ensemble evolved in real time to the local temperature predicted
by heat equation with diÄusion constant D = 1. The Figure 7.10 shows the
matching pairs (t, t0) for both cases. The METTS evolution time for the
J = 0.12 was rescaled by a factor 0.12/0.05 = 2.4, which led to the overlap of
both sets of points (t, t0). This signifies that diÄusion coeÖcient for J = 0.12
is approximately 2.4 times larger than for J = 0.05. Obviously D = 0 if
J = 0. This means that dependence of D on J is most probably linear in the
Mott insulator phase. This conclusion should be scrutinised by additional
simulations.

7.7 Final evolution remarks

The METTS method for generating ensembles which approximate the ther-
mal density matrix enables to study complex quantum systems in finite
temperature, compute averages of non-local operators. Our proposal to
use it as a basis for real-time dynamics simulation has been relatively suc-
cessful. However, the method is limited seriously by the rapid growth of
entanglement while evolving the states in the MPS form by the TEBD or
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Figure 7.10: Analysis of dependence of the diÄusion constant describing
a thermal equilibration in the Bose-Hubbard model on the tunnelling pa-
rameter J. Both families of points denote sets of matching times (t, t0) (one
for J = 0.05 the other for J = 0.12). The member points signify that the
METTS evolution time t reflects heat equation evolution with total dura-
tion t0. The slope of the line approximating the curves approximates the
diÄusion constant D. Clearly after rescaling the METTS evolution time for
J = 0.12 by the ratio 0.12/0.05 = 2.4 the slope is the same as of unscaled
curve J = 0.05. This signifies that D depends approximately linearly on J
(the third point is D = 0 for J = 0).

t-DMRG algorithm. The evolved states, constituents of the METTS ensem-
ble, contain in general many excitations states and are therefore diÖcult to
propagate using the TEBD algorithm.
Another, perhaps the most spectacular drawback of the method is heavy

use of computational power. The single METTS ensemble consists of ⇠ 10

5

MPS vectors. The rising entanglement necessitated use of bond dimension
up to � = 80 for the TEBD simulations (although the initial METTS ensem-
ble represented with � = 10� 15). All in all evolution of a single ensemble
of length L = 70 cost approximately a week of computation of PL-Grid’s
Zeus supercomputer taking 160 Intel Xeon cores at the same time.
Although it may be reckoned that at high temperatures the quantum

entanglement is limited by thermal eÄects, we found this claim not to be
the case in the METTS systems simulations. The entanglement growth as
the time progresses is profound for states forming the METTS ensembles
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with higher temperatures. The main reason is that the states being evolved
are in fact pure states, which form the thermal density matrix only after
summing them up. The higher the temperature the closer the operator
exp(��/2H) is to the identity operator and the further the METTS state
exp(��/2H)|Focki from the eigenstate. This has a tendency to enhance
diÖculty of stable real time evolution problem.
It has been suggested [168] that as the METTS states are being evolved,

the quality of approximation of the thermal density matrix by the METTS
ensemble deteriorates. We have been unable to notice such eÄects. Moreover
we have determined, while studying our T -inhomogeneous systems, that sites
far from the inhomogeneous region have constant in time value of hn2

i i (see
Figure 7.8). This backs the ”thermality” of the Mott phases that are joined
by the inhomogeneous region, also suggests that the hypothetical steady
deterioration of the METTS ensemble description quality does not happen
in the homogenous phase.
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Chapter 8

Afterword

This thesis provides insight into basic physics of complex ultracold atom
systems, in static situations, quasistatic as well as fast dynamics. Below is
a list of most important contributions provided by this thesis:

• We have verified that choice of boundary conditions may alter sig-
nificantly the analysis of Quantum Phase Transitions by means of
so-called Fidelity function. We have determined that extrapolation
of QPT position from finite length systems is far easier if periodic
boundary conditions are used. We had little success with extrapo-
lating from the open chain data and identified that the reason was
that Fidelity function is dominated by odd behaviour of the ground
states close to the phase boundaries. Tracing out the border area by
means of a reduced density matrix was determined not to be a reliable
alternative.

• An useful tool for analysis of complex quantum system has been de-
veloped. We have performed the Fourier Transform directly on Matrix
Product State representation of a wavepacket being evolved unitarily.
It allowed us to extract the eigenstates most significantly contributing
to the wavepacket. The method allows for identifying and describ-
ing of excitations in a physical process. We have tested this method
on a quasiadiabatic evolution of an ultracold atom gas in a harmonic
trap and identified the source of lack of adiabaticity during ramping
up the lattice potential. Application of that method to the wavepacket
created during the simulation of the modulation spectroscopy allowed
for describing what excitations contribute to particular peaks in the
absorption spectrum.

• EÄects of higher Bloch bands in a static situation were successfully
incorporated into the Bose-Hubbard Hamiltonian. The problem was
approached by a recent method of substituting the ordinary Fock space
with eÄective model whose Hilbert space consists of interacting ground
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states. We have contributed to increasing the accuracy of determina-
tion of the coeÖcients of the eÄective model. We have applied this
approach to the analysis of various relevant problems. A prime ex-
ample is successful locating the absorption peak in spectrum from
modulation spectroscopy simulation and reaching an agreement with
the experiment.

• If the optical lattice potential changes rapidly, the wavefuction may
not have suÖcient time to adapt. In such a case new terms appear
in the Multiband Bose-Hubbard Hamiltonian. Their inclusion allowed
to show that preparing excited states of the optical lattice through
lattice height as predicted in [134] is indeed possible. Moreover, the
eÖciency of such a process is two times higher than one could expect
from ordinary MBH Hamiltonian. We have also shown, that high
frequency excitation spectrum through modulation is much richer than
the ordinary MBH model predicts.

• We have studied the phase diagram of the Spin-1 Bose-Hubbard model.
We have determined the presence of the Bose-Glass phase if the dis-
order is imposed in chemical potential or in the spin-dependent inter-
action parameter. We have studied spin properties of the Bose-Glass
phases.

• Nonzero temperature eÄects have to be studied and understood de-
spite ultracold temperatures in the experiments. We have performed
a real-time evolution of the many-body quantum system in nonzero
temperature and were able to draw conclusions on the diÄusion con-
stant describing the thermal equilibration. We show that it depends
weakly or not at all on the temperature of the gas (in ultracold regime
in Mott insulator regime) and it depends linearly on the quantum
tunneling amplitude.
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Chapter 9

Appendices

9.1 Wannier functions for finite systems

The discrete lattice in which the Bose-Hubbard Hamiltonian is set is ob-
tained by means of a tight-binding approximation applied to the second-
quantized Hamiltonian describing a gas of ultracold atoms in 1D optical
lattice potential under periodic boundary conditions:

H = � ~2
2m

d2

dx2
+ V (x), (9.1)

where V (x) = V
0

sin

2

(kx), k =

2⇡
� . Introducing energy scale by ER =

~2k2
2m

and a unit length of �
2⇡ one obtains a dimensionless form of the equation

(9.1) which is:

H = � d2

dx2
+ s

0

sin

2 x, (9.2)

where s
0

ER = V
0

.
We now reconsider the construction of Wannier functions especially tak-

ing into account all the particularities due to the finiteness of the lattice.
In the new units one solves the single particle, 1D Schrödingier equation
associated with the Hamiltonian (9.2) with the periodic boundary condition
�(x) = �(x+L), where now the lattice length isM = L⇡, where K is a total
number of sites in the lattice. Functions satisfying a Schrödinger equation
with the above hamiltonian are Bloch functions. They are assumed to be
normalised over a natural inner product in H1

= L2

�
S1
�
, where S1 is a cir-

cle of length L. As the Hamiltonian is invariant by a translation by a single
site, the Bloch functions are chosen as eigenfunctions of this rotation. Thus
eigenvalues of R✓ are good quantum numbers — they are modulus 1 com-
plex numbers exp(i✓n), where ✓n =

2⇡n
L , n 2 {�bL

2

c, . . . , bL�1

2

c} are typi-
cally denoted as quasimomenta. For each value of ✓n one may find plenty of
eigenvectors |�↵

✓
n

i — they are grouped into a series of Bloch bands.
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Bloch functions are mutually orthogonal: h�↵✓
n

|��✓
m

i = �nm�↵� . Here ↵,�
denote a number of Bloch band. The goal is to define a family of mutually
orthogonal functions, Wannier functions  ↵

i , satisfying in particular orthog-
onality relations: h ↵

i | �
j i = �ij�↵� . Index i denotes number of site over

which a Wannier function is localised, ↵ denotes a Bloch band to which
a Wannier function belongs (the idea is that Wannier function belonging to
band ↵ should be composed of Bloch functions from band ↵). We addition-
ally request Wannier functions to be real.
If number of sites is odd, that is 2 - N, then except for ✓

0

quasimo-
menta come in pairs: ✓n = �✓�n, moreover if �✓

n

(x) is a Bloch function to
a quasimomentum ✓n, then �✓�n

= �✓
n

. For N odd, also bN�1

2

c = bN
2

c, and
thus:

w↵
0

(x) = N
bN

2 cX

i=�bN

2 c
vi�✓

i

(x) (9.3)

is real provided vi = v�i for ↵ even. For ↵ odd one uses vi = �v�i and
multiplies the above sum by an imaginary unit i.
The Wannier functions for even bands are constructed from Bloch func-

tions as to maximize value of wn(0), while those for odd bands w0
n(0) is

maximized (and wn(0) = 0). This maximization is performed by maximiz-
ing values of w

0

↵(0) and w↵
0

0
(0) respectively. This means that in the sum

(9.3) a contribution given by a summand vi�✓
i

(0) is maximized by choosing
vi = �✓

i

(0)

⇤/|�✓
i

(0)| or vi = �0✓
i

(0)

⇤/�0✓
i

(0)|. The N is a global normalization
factor.
The Bose-Hubbard parameters are defined as follows:

J↵ = �
L⇡Z

0

w↵
(x)

✓
� d2

dx2
+ s

0

sin

2

(x)

◆
w↵

((x+ ⇡) mod L⇡)dx (9.4)

and

U↵���
= �

L⇡Z

0

w↵
(x)w�

(x)w�
(x)w�

(x)dx. (9.5)

In separable optical lattice potentials the 3D Wannier function is a prod-
uct of 1D Wannier functions:

W ~↵
~i
(~r) = w↵

x

i
x

(x, sx)w
↵
y

i
y

(y, sy)w
↵
z

i
z

(z, sz). (9.6)

Figure 9.1 shows the tunnelling parameters and interaction parameter U↵↵↵↵

calculated taking into account finite L eÄects. It is clear that for excited
bands. Finite L eÄects are rather pronounced
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Figure 9.1: Bloch spectra for diÄerent lattice depths denoted above the
graphs. The deeper the lattice potential, the more energy bands are almost
completely flattened out (and energy band spacing becomes constant for
confined bands — the potential well for low levels is well approximated by
the harmonic oscillator).
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Figure 9.2: Exemplary Wannier functions for two lattice depths s
0
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panel) and s
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= 10ER (right panel). In these plots the lattice length is
L = 4, ticks show positions of lattice sites.
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Figure 9.3: Top panel: tunnelling amplitudes J↵ for first five Bloch bands:
↵ = 0, . . . , 4 plotted for diÄerent lattice lengths L as a function of lattice
depth sr. Red curve shows tunnelling amplitudes for lattice length L = 4,
blue for L = 40, while remaining blue curves show J↵ for L = 6, 8, 20.
Additionally, brown curves show the same for L = 2. One can see that
values for L = 20 and L = 40 are almost indistinguishable in the plot,
even for largest shown band number. Bottom panel: Parameters U↵↵↵↵ for
diÄerent lattice lengths L (values and colors identical as in the Figure in the
top panel) and band index ↵ = 0, . . . , 4. The higher the band index ↵ the
lower the values of U↵↵↵↵.
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A special case s
0

= 0

A general calculation of Wannier functions is performed by means of numer-
ical methods, as solving for Bloch functions in a potential V (x) = s

0

sin

2 x
is a nontrivial problem for which there are no closed form solutions except
a special case s

0

= 0, and perhaps an asymptotic expansion for high-energy
situation ↵! 1. In the special case, when there is no lattice s

0

= 0 calcu-
lation of Bloch functions with a quasi momentum k is trivial: they are just
exp(

i
⇡k

0x), k0 = k + 2n. This enables one to calculate Wannier functions for
any band ↵ and any lattice length L 2 N [ {1}.
In the L = 1 case, the general formula for a normalized Wannier func-

tion is:

w↵=n
i=0

(x) =

(
sin((n+1)x)�sin(nx)

x
p
⇡

for n even,
cos(nx)�cos((n+1)x)

x
p
⇡

for n odd.
(9.7)

Integration gives in particular that: U0000

=

2

3⇡ and U↵↵↵↵
=

1

2⇡ ,↵ >

0. Moreover: J↵
= �2(2↵+1)(�1)

↵

⇡2 , as one may easily prove that J↵
=

1R

�1

E↵
(k) exp(ik⇡)dk, and more generally J↵

|i0�j0| =
1R

�1

E(k) exp(i⇡k|i0�j0|↵)dk.
The case of the finite L may be worked out analogously.

9.2 Derivation of additional terms in Hamiltonian
present due to fast dynamics

The solution of the dynamical problem with time-dependent lattice depth
s = s(t), s(0) = s

0

is described by the time-dependent wavefunction  (t).
In the numerical computation it is expressed in the basis generated by sin-
gle particle modes B(t) = {W↵

i (·, s(t))}. At time instant t0 the expansion is
performed in basis B(t0). This basis spans basis function in real space func-
tions. HereW↵

i (·, s(t)) is an appropriate dimensional Wannier function. For
example for 3D separable optical potential it is

W↵
i (~r, s) = w↵

x

i (x, sx)w
↵
y

i (y, sy)w
↵
z

i (z, sz). (9.8)

For the 1D optical lattice (with a very tight transverse binding) we may
assume for example:

W↵
i (~r, s) = w↵

x

i (x, s)H(y)H(z), (9.9)

where H is an appropriate harmonic oscillator ground state.
Without any complication of notation we may assume that the time-

dependence of the lattice is arbitrary: not necessarily through optical lattice
depth alteration. Thus let us assume that s is some parameter describing
alteration of the Wannier functions. For example if the lattice minima move
periodically then W↵

i (s)(x) = W↵
i (x� s), s(t) = sm cos!t.
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Just as shown in Section 1.2 using the basis B(t0) leads to the MBH
Hamiltonian (1.6). When s = s(t) is time dependent so is the isometric
basis transformation U(s(t)) from the position representation to the lattice
(Wannier functions) representation. Of courseHMBH = U(s(t))HXU†

(s(t)).
Define via  (t) = U(s(t)) X(t) (where  X(t) is the wavefunction in the po-
sition representation while  (t) corresponds to the lattice representation). If
the U(t) was in fact time independent, the dynamics of  would be governed
by the (1.6). The proper new Hamiltonian in the time-dependent case, HW

is of the form:

HW = H+ i~
✓

d

dt
U(s(t))

◆
U†

(s(t)) = H+W, (9.10)

and the TDSE for  (t) : i~@t = HW .
The basis for the Hilbert space for a gas of N bosons consists of sym-

metrised (tensor) products of N single particle basis functions W↵
i . We de-

note such a basis for the N particle problem by WN
(s), the basis depends

on the lattice depth by the value of s parameter through the set of single
particle Wannier functions W(s) = {W↵

i (·, s)}i,↵.
Single particle states defined by Wannier functions and in the discrete

lattice are enumerated by two indices ↵ and i, from this point up to the
end of the derivation, we introduce the multiindex ◆ = (↵, i) to simplify the
notation.
Let us define a shortened notation. The lattice Fock state with occupa-

tion n◆ of mode ◆ will be denoted as |~nLi. The corresponding state in the
position representation for the lattice with height s will be abbreviated to:
|~nX , si. We always assume that n

1

+ . . . nL = N (here, with slight abuse
of the notation L denotes the total number of modes indexed by ◆). The
Hilbert space for the lattice system (in which the Bose-Hubbard Hamilto-
nian is usually expressed) has a time-independent basis (the Fock basis) F .
Action of the map U(s) from the continuous space with base WN

(s), to the
Fock space with base F is rather trivial: in the chosen orthonormal bases
it is the identity matrix at each time instant — it maps state |~nX , s(t)i to
a state |~nL, s(t)i. The map is thus always an isometry (note that for 1D
and 2D lattice it is only a partial isometry from a full continuous space; it
the real space function in transverse directions if not defined by harmonic
oscillator ground state, then the mapping is undefined ). Despite the matrix
elements of map U are constant, the map s ! U(s) as a function of s is not
a constant function. Indeed the basis in which matrix of U is constant varies
with s.
Using this notation we can express the map U as:

U(s) =
X

~n

|~mLih~mX , s|.

Now we expand the derivative of the U isometry as needed for Eq. 9.10.
We use the fact that the basis of the Fock space F is time-independent,
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contrary to single particle eigenfunctions in real space Hilbert space:
✓

d

dt
U(s(t))

◆
| iX =

X

~m

|~mL i
✓

d

dt
h~mX , s(t)|

◆
| iX .

Thus the W term is just:

W = i~
X

~n,~m

|~mL ih~nL|
✓

d

dt
h~mX , s(t)|

◆
|~nX , s(t)i =

= �i~
X

~n,~m

|~mL ih~nL|h~mX , s(t)|
✓

d

dt
|~nX , s(t)i

◆
. (9.11)

The relation which binds those ~n and ~m for which the summand may give
a nonzero contribution to the above sum remains to be worked out as well
as exact value of the summand. To do so, we expand the time derivative,
by inserting an exact action of the symmetrization operator:

p
N !n

1

!n
2

! . . . n◆0 !
d

dt
|~nX , s(t)i =

X

⇡2S(N)

d

dt

⇥
W

1

(x⇡(1))W1

(x⇡(2)) . . . W1

(x⇡(n1)
) ·

·W
2

(x⇡(n1+1)

) . . .W
2

(x⇡(n1+n2)
) . . .W◆0(x⇡(N)

)

⇤

=

NX

k=1

X

⇡2S(N)

⇥
W

1

(x⇡(1))W1

(x⇡(2)) . . . W1

(x⇡(n1)
) ·

·W
2

(x⇡(n1+1)

) . . . ˙W◆(x⇡(k)) . . .W◆0(x⇡(N)

)

i
(9.12)

In the above line each of Wannier functions W◆ depends on J through
s(t). The formula is well-stated, because only a finite number of modes
has nonzero occupation: for ◆ > ◆

0

we have n◆! = 1 and no factors W◆.
Next, we use the partition of unity

P
{
|W{ihW{|, applying it to ˙W◆ we

get:
d

dt
W◆(x) =

X

{
T{
◆ W{(x), (9.13)

where T{
◆ =

R
W{(x) ˙W◆(x)dx. Therefore, by combining together (9.11),

(9.12) and (9.13) one obtains that the only (~n, ~m) giving nonzero contribu-
tion in (9.11) are those that correspond to changing the mode of only one
particle from configuration ~n — the mode ◆ to {. Therefore:

8
<

:

mi = ni i 6= ◆,{
m◆ = n◆ � 1

m{ = n{ + 1

(9.14)

115



As T ◆
◆ = 0 due to norm preservation, only ◆ 6= { terms contribute. Change

of occupation is compatible with action of a†{a◆ operator. We will show that
also the numerical factor agrees. A mode to be diÄerentiated (mode ◆) may
be chosen in (9.12) in n◆ ways, and:

n◆p
n
1

!n
2

! . . . n◆0 !
=

p
n◆(n{ + 1)p

n
1

! . . . (n◆ � 1)! . . . (n{ + 1)! . . . n◆0 !
. (9.15)

Thus from (9.11), (9.12) and (9.13):

d

dt
|~nX , s(t)i =

1X

{,◆=1

T{
◆

p
n◆(n{ + 1)|~mX , s(t)i. (9.16)

Above ~m is assumed to satisfy relations (9.14). All in all, we obtain

˙U(t)U†
(t) = �

X

◆,{
T{
◆ |~mLih~nL|

p
n◆(n{ + 1) =

= �
X

◆,{
T{
◆ a

†
{a◆. (9.17)

We now go back to the original labeling by Bloch band number: ◆ =

(↵, i),{ = (�, j). We also specify the method how the lattice is modified
s now denotes again the lattice depth which is time-dependent s(t). Now
T{
◆ = T �↵

j�i = �T↵�
i�j . We obtain the form of W term used in the main

article:

W = �i~
X

◆,{
T↵�
i�j(a

↵
i )

†a�j ,

T↵�
i�j =

Z
˙W �
j (x)W

↵
i (x)d

3x. (9.18)

The term T{
◆ has to be worked out for the basis functions for the lattice

in the appropriate dimension. In the 1D lattice, Wannier functions are
of form (9.9), then: T{

◆ =

R
dydzH(y)2H(z)2

R
dxw�

j (x)ẇ
↵
i (x). Due to nor-

malization: T{
◆ =

R
dxw�

j (x)ẇ
↵
i (x). For 3D lattice, from (9.8), we get: T

{
◆ =

R
dxdydzw�

x

j
x

(x)w
�
y

j
y

(y)w�
z

j
z

(z) d
dt

⇣
w↵

x

i
x

(x)w
↵
y

i
y

(y)w↵
z

i
z

(z)
⌘
.Nonzero values may

be obtained only if ix = jx ^ ↵x = �x ^ iy = jy ^ ↵y = �y or iy = jy ^ ↵y =

�y ^ iz = jz ^↵z = �z or iz = jz ^↵z = �z ^ ix = jx ^↵x = �x. Thus the W
terms perform hopping of a particle in only one direction (reserving a pos-
sibility for the Bloch band change). The amplitude for hopping in direction
t 2 {x, y, z} is: R dtw�

t

j
t

(t)ẇ↵
t

i
t

(t).
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If the lattice is defined by oscillatory movement of the potential minima,
then the W has the form of (9.18), but the formula for the T↵�

i�j term is
modified as:

T↵�
i�j =

Z ✓
d

dx
W �

j (x)

◆
W↵

i (x)d
3x. (9.19)

9.3 Excitations within J = 0 limit, EMO Hamilto-
nian

The Bose-Hubbard Hamiltonian (1.9) in J ! 0 limit has Fock states as
eigenstates. Let us assume that inclusion of external potential reduces to
inclusion of the site-dependent chemical potential µi to the Hamiltonian
(1.9). In the case of external harmonic trapping, the eigenstates are as in
Figure 3.2.
The energy of a Fock state is (here we switch to a more general Hamil-

tonian (4.6) which contains the BH Hamiltonian as a special case Un =

U, Jn1,n2 = J):

E =

LX

i=1

Ei(ni), Ei(n) =
Un

2

n(n� 1)� µin. (9.20)

The excitation energy of moving a particle from site i to site j is thus:

�E(ni;nj) = Ej(nj + 1)� Ej(nj) + Ei(ni � 1)� Ei(ni), (9.21)

and all in all, disregarding local chemical potential influence,

�E(ni;nj) = (nj � ni + 1)U
2

+

3

2

(ni � nj � 1)(ni + nj � 2)W, (9.22)

where equality Un = U
2

� (n�2)W has been assumed. This property is well
satisfied by gas of rubidium atoms, for values of n considered in this thesis
(n < 7).
For the pure BH model we have that W = 0. If the excitation within

the Mott Insulator takes place then ni = nj and the excitation energy is
UBH = U

2

. The excitation energy stemming from each Mott plateau (in
Figs. 3.2 and 9.4 is diÄerent which is expected to create a split of the
modulation spectroscopy spectrum of the excitation peaks.

9.4 Monte Carlo basis construction for multiband
single-site problem

The single site multiband local Hamiltonian Hloc., consists just of a single
particle and interaction term. Tunnelling term and interaction-induced den-
sity dependent tunnelling term are discarded as they couple diÄerent sites.
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Figure 9.4: EÄects of higher Bloch bands on absorption spectroscopy in
the deep Mott (low J) regime, s = 15, s? = 40. Panel (a) shows the well-
known wedding cake structure with n = 1, n = 2, n = 3 Mott plateaus.
Excitations within each plateau (colored respectively light gray, dark gray,
black, for n = 1, 2, 3) have energies depending on the Mott plateau density
and the trapping potential. Inward and Outward hopping lead to a splitting
of the absorption structure, a partial splitting for moderate harmonic trap
[(b),  = 0.001] or a broad well resolved structure for a shallow trap [(c),
 = 0.0001] in contrast to the standard BH case (d). Image from [92].

In the Section 4.4 it was shown that it is desirable to choose a set V con-
sisting of vectors that have largest ”importance weight” Q defined in that
section. Let us first introduce additional definitions.
By vectors reachable in k-th order perturbative expansion, we call those

Fock states | pi for which h 0

|Hk
U | pi 6= 0. In particular, a full basis can be

generated with order
⌃
n
2

⌥
. Let us denote by Bk the set of vectors reachable

in k-th order and unreachable in k�1-th order. The full variational basis of
Fock states is B =

S
k
Bk, with Bk pairwise disjoint, and Bk = ;, for k >

⌃
n
2

⌥
.

For vectors  2 B
1

we define the perturbative importance weights

f
1

( ) = ln

|h 
0

| ˆHloc| i|
E| i � E| 0i

. (9.23)

Vectors  2 Bk, for k > 2 may be reached using diÄerent chains of
intermediate states  i 2 Bi, h i|H| i�1

i 6= 0. Hence the function fk for
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vectors from Bk shall be defined as follows

f
2

( ) = ln sup

| 1i2B1

|h 
0

| ˆHloc| 1

ih 
1

| ˆHloc| i|
(E| i � E| 0i)(E| 1i � E| 0i)

. (9.24)

gk(V) = ln

|h 
0

| ˆHloc| 1

ih 
1

| ˆHloc| 2

i| . . . h k�1

| ˆHloc| i|
(E| i � E| 0i)(E| 

k�1i � E| 0i) . . . (E| 1i � E| 0i)
,

fk( ) = sup

| 1i2B1,...,| 
k�1i2Bk�1

gk(V). (9.25)

The function fk does inherit spirit of perturbative expansion, still it is
not the full, most general perturbative expansion. In our considerations we
have restricted ourselves to using basis vectors from sets B

1

and B
2

only for
which we have encountered no zero in denominator problem.
The Metropolis algorithm is used to generate an ensemble of points xn

which importance is weighted by a function f(xn). Typically xn are ”states”
and f(xn) = exp(��”energy”) and the ensemble is thermal ensemble with
inverse temperature �. To use this algorithm a modification procedure of
the state xn should be available. If the local update yields a new state x0n+1

then this is accepted (xn+1

:= x0n+1

) if f(x0n+1

) < f(xn) otherwise it is
accepted with probability p = f(xn)/f(x0n+1

) ) and rejected (xn+1

:= xn)
with probability 1� p.
In the Monte Carlo set V ⇢ Bk generation the states are sequences x =

( 
1

, 
2

, . . . , k). The weight function is f = gk. The update procedure goes
as follows: first we choose at random a Fock state | li 2 x to be updated.
With equal probability, we update one or two particles of | li. One particle
update is done according to | li ! â

(i
x

,i
y

,i
z

)

â†
(i

x

,i0
y

,i
z

)

| li, iy ⌘ i0y(mod 2),

while two-particle update is: | li ! â
(i

x

,i
y

,i
z

)

â
(j

x

,j
y

,j
z

)

â†
(i

x

,i0
y

,i
z

)

â†
(j

x

,j0
y

,j
z

)

| li
iy+jy ⌘ i0y+j0y(mod 2). These updates preserve the total parity of the state.
All vectors are normalized. Direction y is not special in any way: with equal
probability any of x, y, z is chosen. After the update a proposition V 0 is pre-
pared. We automatically reject updates for which | li 62 Bl. If that is not the
case, the acceptance probability is determined as in Metropolis algorithm:
it is given by min{1, exp[�(gk(V 0

) � gk(V))]}. The inverse temperature � is
tuned to optimize sampling eÖciency — we choose it by requiring the ac-
ceptance rate to be close to 0.3. After a successful update, the last element
of the tuple V 0, state | ki is accepted into the solution set if its perturbative
importance gk(V) is in the K lowest values recorded so far. The accepted
vector | ki is memorised as well as the importance value gk(V 0

). If | ki had
been generated before, the memorised value of gk is updated (only if the new
value of larger than the old one). If, in a subsequent few thousand sweeps
(empirical value), no vector makes it into the solution set, nor gk values
are updated, then the procedure is restarted. The starting point is always
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the low energy configuration. Altogether, we make 2 ⇥ 10

9 MC sweeps to
generate basis of size 40000 (as used for the results presented in the main
part of the paper).
If all Bloch bands were included, then the set of Fock states would be

infinite. On the other hand, only a finite number of them could satisfy the
inequality: gk > ". The values of gk for the remaining states are very close
to 0, and a singularity in density of states @g

k

@~n arises. Logarithm is used to
”smoothen” this singularity for numerical purposes. It does not aÄect the
ordering, as ln is increasing injection.

9.5 Projection of METTS vector

The key requirement for the METTS algorithm used intensively in Sec-
tion 7 is the ability to be able to perform the projective measurement in
the computational basis. That is if {|eii}i is the basis, then one should be
able given a METTS vector | i to pick randomly a basis vector |eii with
probability |hei| i|2. The METTS algorithm discussed in Section 7 has been
implemented using the MPS ansatz (see Section 1.2). The projection may
be performed using explicitly the form of the MPS vector (1.20), that is
tensors � and � in particular. For the Bose-Hubbard Hamiltonian (1.9),
and the computational basis consisting of the Fock vectors: |n

1

, . . . , nLi,
the projection is performed by determining the numbers ni starting from
n
1

and moving to the right up to nL. At step k the so far projected vector
has the form |fki = |n

1

, n
2

, . . . , nk�1

i| ki, where | ki is such that |hfk| i|
is maximal. Knowing the |fki (for k = 1 it is just  ) one may first com-
pute the probabilities: pi = h |(|n

1

, n
2

, . . . , nk�1

, ii ⌦ | i
k+1

i), for maximal
(hn

1

, n
2

, . . . , nk�1

, i|⌦h i
k+1

|)| i. Finally one chooses nk = i with probability
pi and sets |fk+1

i = |n
1

, n
2

, . . . , nk�1

, ii| i
k+1

i. The sought after projection
result is |fL+1

i.
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