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Abstract

In this Thesis we study the connection between hydrodynamics and gravity by means
of the AdS/CFT correspondence. We review general construction of hydrodynamics and
its applications to heavy-ion collisions. We find a novel effect due to quantum anomalies,
which manifest themselves in the macroscopic hydrodynamic regime. Moreover, we find
a description of hydrodynamic system with one conserved current using gauge/gravity
duality. Special attention is put to the boost-invariant regime of hydrodynamics. We
obtain explicit solutions of the dual system and perform a detailed regularity analysis.
Finally, we investigate meson properties in the boost-invariant plasma. In particular,
we study the influence of dynamical temperature and viscosity on meson spectra in the
plasma.

W pracy przestudiowane zostaną związki między hydrodynamiką i grawitacją przy
użyciu metod korespondencji AdS/CFT. Przedstawiona zostanie ogólna konstrukcja hy-
drodynamiki i jej zastosowania do zderzeń ciężkich jonów. Pokażemy istnienie nowego
efektu pochodzącego od kwantowych anomalii, które manifestują się w makroskopowej hy-
drodynamice. Następnie opiszemy system hydrodynamiczny z jednym zachowanym prą-
dem przy użyciu korespondencji między teorią cechowania, a teorią grawitacji. Szczególna
uwaga poświęcona zostanie hydrodynamice niezmienniczej ze względu na pchnięcia Lorentza.
Znajdziemy dokładne rozwiązania dla dualnego opisu, dla których przeprowadzimy szczegółową
analizę regularności. Na koniec zbadamy właściwości mezonów w plazmie niezmienniczej
ze względu na pchnięcia Lorentza. W szczególności, przeanalizujemy wpływ zmieniającej
się temperatury i lepkości na spektrum mezonów w plazmie.
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Chapter 1

Introduction

QCD has proven to be a very successful theory of strong interactions. It is a non-
abelian quantum field theory. It postulates that nuclei, the constituents of atoms, are
not fundamental building blocks but are actually complex structures made of ‘quarks’
and ‘gluons’. Quarks and gluons are fundamental degrees of freedom in the theory, which
can be classified by representations of the gauge group. QCD is designed to have local
SU(3) symmetry. Quarks are assigned to the fundamental representation, whereas gluons
transform in adjoint representation of SU(3). Physical hadrons are colorless, which means
that they are singlets under the gauge group. QCD exhibits two very important features,
asymptotic freedom and confinement of quarks.

An asymptotically free theory is a theory whose coupling strength decreases as the
renormalization scale increases. In other words, interaction between quarks by exchange
of gluons becomes negligible at short distances. This was proven experimentally by deep
inelastic scattering, since particles with very high energies interact weakly and perturba-
tion theory applies. On the other hand, if we are interested in the low energy physics we
have to deal with very strong interactions. In between we have a transition from weakly
interacting to strongly interacting field theory. QCD is a renormalizable field theory, in
which the coupling constant g is a function of the energy scale,

g = g(µ). (1.1)

The renormalization scale at which the system becomes strongly interacting and the cou-
pling becomes of order one is called ΛQCD. In that regime the theory becomes very hard
to solve. Therefore, there is no good explanation of the confinement problem. Confine-
ment is a phenomenon that occurs in the low-energy regime. It implies that color charged
particles cannot be isolated and directly observed. From experimental point of view this
means that at low energy the particles observed in accelerators are not quarks and glu-
ons alone, but hadrons. One of the biggest unsolved theoretical challenges is to find a
spectrum of hadrons given a high-energy formulation of QCD.

There are various ways to tackle QCD analytically. Some of them rely on non-
perturbative methods and some explore various possibilities of staying within high-energy
regime. The most popular non-perturbative approach is based on lattice regularization
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[1–3]. Euclidean space-time is represented by large but finite number of lattice sites and
quantum fields as degrees of freedom on that lattice. This procedure allows to solve path
integrals explicitly by performing a finite number of integrations. Although very powerful,
this method has severe limitations. Real time dynamics produces complex factor in the
action which makes the computation unreliable because the action oscillates. Hence, all
lattice QCD computations are performed in the analytically continued Euclidean space-
time. This makes lattice techniques inadequate for understanding many interesting strong
interaction phenomena like showering and hadronization in high-energy collisions. There-
fore, there is great need for more efficient non-perturbative tools that allow us to explore
low-energy QCD. This is particularly important at the age of big scientific experiments,
such as Relativistic Heavy Ion Collider (RHIC) or Large Hadron Collider (LHC). RHIC
and a part of LHC are facilities dedicated to heavy-ion physics, built to produce and
study the properties of new form of matter, the quark-gluon plasma (QGP). The concept
of QGP, as well as some ideas how to reach it experimentally was proposed by Shuryak
[4]. His arguments emerged as a consequence of idea that in a very large temperature,
far above ΛQCD, the color charge should not be confined but rather screened. Näıvely we
expect excitations to scatter with energies of the order of the temperature, hence, to be
weakly interacting and a simple perturbative approach to QGP properties describes its
properties at least qualitatively. However, the experiments at RHIC actually forced us to
revise our thinking about high-temperature QCD and QGP. It turned out that heavy-ion
collisions can be very well described by hydrodynamics [5] (see [6–9] for a review), which
is a very old effective approach to strongly coupled field theories [10]. The fact that hy-
drodynamic modeling of RHIC collisions works indicates that the mean free path of a
particle inside the RHIC plasma must be much smaller than the size of the plasma. A
short mean free path in turn suggests that the system is strongly-coupled [11, 12]. This
idea is supported by lattice calculations [13, 14], as well as by the fact that perturbative
techniques give wrong predictions [15, 16]. The observation that QGP might be strongly
coupled does not provide us with appropriate non-perturbative field theoretic tools. How-
ever, one can make use of recent developments of string theory to get some quantitative
results.

String theory was discovered in late 1960s to describe hadronic spectra and their
interactions. This discovery was motivated by experiments, which showed that some
hadronic states exhibited linear relation between mass squared and spin. This is a relation
that can be explained if we substitute point particles by strings. However, the advances
in quantum field theory which led to discovery of QCD, as well as the problems with a
proper formulation of string theory, stopped the progress. In 1974 the interest in string
theory was revived, Gerard ’t Hooft made another important development that connected
strong interactions with string theory in a completely new way. He suggested that gauge
theory simplifies significantly when the number of colors Nc is large [17]. The idea was
that one could take this generalized version of QCD and do an expansion in inverse
powers of Nc. At first sight it seems that this large Nc theory and QCD have nothing
in common. However, if we realize that typically the corrections are of order 1/N2

c we
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see that the deviation from experiment should be around 10%. ’t Hooft arguments do
not say whether string theory is useful for understanding large Nc limit of QCD or how
precisely find the relation between them. It took almost 25 years to find it. The solution
came from unexpected direction, since in the mean time people became aware that string
theory can actually describe gravity.

In 1995 Joseph Polchinski realized that string theory actually contains not only strings,
but also various extended objects called D-branes [18]. The studies of D-branes and black
holes in string theory led physicists to postulate the relation between a particular large
Nc gauge theory and string theory [19–21]. It is often called a duality because strongly
coupled gauge theory is mapped to perturbative strings. This makes the conjecture very
hard to prove, since it involves solving non-perturbative field theory. However, assuming
its validity we may get a lot of insight into strongly coupled regime of gauge theory,
as well as into non-perturbative formulation of gravity. The dream of string theorists
is to eventually find a dual description of QCD. However, it is difficult since at high
energies, because of the asymptotic freedom, we need full string theory framework. At
the moment the number of theories we are able to solve is limited and, unfortunately, none
of them describes real physical system. Nevertheless, we can still capture some important
features of real world physics. In some cases we can argue that in certain regimes there
is at least qualitative agreement between theories, in other cases we can search for some
universal properties of gauge theories that are accessible through gauge/gravity duality.
In this Thesis we will show how to make the correspondence useful in the long-wave, low
frequency limit of gauge theory - hydrodynamics.

The general framework of fluid/gravity correspondence was constructed in [22] and was
motivated by works of Janik and collaborators who constructed gravity dual to Bjorken
flow [23–28]. Subsequently a lot of work was done to generalize it to other dimensions [29–
31], to include external forcing on the fluid [32], and to include conserved U(1)R charges
[33, 34]. In that construction anomalous hydrodynamics was observed, which was later
understood in [35]. Moreover, the analysis was extended to non-conformal fluids located
on Dp-world-volumes [36, 37]. There was also much progress within boost-invariant setup
itself. Diffusion constant was calculated in [38], meson spectra were analyzed in [39],
drag force on a fundamental quark was computed in [40]. Leading α′ corrections to the
transport coefficients were found using the boost-invariant flow in [41, 42].

Some of the above contributions were done as a research part of this Thesis, namely
a general framework for fluid/gravity duality with one conserved current was constructed
in [34]. Anomalous part of that construction was later understood in [35]. Moreover,
a consistent formulation of gravity dual of boost-invariant flows was found in [43], and
meson spectra were calculated in [39]. This Thesis is organized as follows.

In Chapter 2 we review the heavy-ion physics and argue that hydrodynamics is a useful
description in some range of time. Next, we construct a general framework of relativistic
fluid dynamics. We start with perfect fluids, for which we present conservation laws. We
generalize them to the case with viscous corrections. Moreover, we introduce two new
transport coefficients, associated with the triangle anomalies at the quantum level of an
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underlying gauge theory. This effect was overlooked in the standard treatments [10, 44].
We are able to constrain these coefficients purely using hydrodynamic reasoning, as func-
tions of temperature, chemical potential, and anomaly coefficient. Finally, we introduce
the so-called boost-invariant hydrodynamics, which is useful in the central rapidity region
of heavy-ion collisions.

In Chapter 3 we review some aspects of the original AdS/CFT correspondence. We
introduceN = 4 SYM and review some of its properties. Next, we give a brief introduction
to string theory. We show what is the massless spectrum of superstring theory and argue
that D-branes are necessary ingredient of the theory. Studying certain limit of stack of
a particular kind of branes we show how the duality emerges from that picture. Then
we sketch how one can relate observables on both sides of the duality. Finally, we take
a path towards more realistic systems with finite temperature and show that duality is
applicable there as well.

In Chapter 4 we construct a general framework for fluid/ gravity correspondence. We
start with fluid with no conserved global currents, which corresponds to a gravity solution
with a black hole in the center of the geometry. Including gauge field hair we generalize the
construction to fluids with one conserved current. Next, we include background magnetic
field, which allow us to calculate anomalous transport coefficients from gravity. These
coefficients follow from Chern-Simons terms in the Einstein-Hilbert action. We find an
agreement with field theory calculation, which gives an independent check of AdS/CFT
correspondence and supports conclusions coming from hydrodynamics. At the end of that
chapter we present an explicit solution to a particular class of fluids with boost-invariance.

In Chapter 5 we show how to introduce holographic matter in a fundamental rep-
resentation. We add probe branes that do not backreact with gravity, which give rise
to quarks in quenched approximation. Finally, studying small fluctuations around these
brane embeddings we calculate meson spectrum in the dynamical, boost-invariant setup.

We conclude in Chapter 6 speculating about future directions of research and possible
new applications of gauge/gravity duality.
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Chapter 2

Relativistic heavy-ion collisions

Theoretical attempts to describe heavy-ion physics have long history. The first model
based on statistical mechanics was proposed by Fermi in 1950. Soon Landau realized that
hydrodynamics might be a good description of matter after the collision. In the Landau
picture the colliding nucleons are significantly slowed down and then particle production
occurs, mostly within the thickness of colliding nuclear matter. Subsequently, the sys-
tem undergoes hydrodynamic expansion. This scheme may be a good approximation if
the colliding beams don’t have too much energy. Otherwise, Landau picture should be
replaced. This was first suggested by Bjorken. He noted that there is an asymmetry in
the particle production after the collision. The slow particles are created first, near the
collision point, while fast particles emerge far from the collision point. This is known as
the inside-outside cascade. The reaction volume is strongly expanded in the longitudal
beam direction, which can be approximated by (1+1)-dimensional evolution. We can use
Bjorken picture to follow the history of the collision process (see Fig. 2.1).

After the collision we can point out a few stages labeled by the expansion proper time
defined as τ = (t2 − z2)1/2. Shortly after the collision at 0 < τ < τ0 we distinguish pre-
equilibrium stage and thermalization. We do not possess a valid theoretical tool to fully
describe microscopic origin of thermalization process since it involves non-abelian gauge
theory. Despite difficulties, people proposed two classes of models, the so-called incoherent
and coherent models, which are expected to give at least qualitative answers. Incoherent
models are calculated within the framework of perturbative QCD. They propose that
in the collision hard parton scatterings occur, which results in a large amount of jet
production. These jets subsequently interact with each other producing equilibrated QGP
[45, 46]. In coherent models the QGP follows from the formation of coherent color fields.
One example is the so-called color glass condensate (CGC) [47] (see [48, 49] for a review).
CGC is an effective field theory, which describes nucleus-nucleus collision as an evolution
of soft classical field, created by moving partons randomly oriented in color space. Both
coherent and incoherent models have their own limitations of applicability. Throughout
this Thesis we will simply assume that thermalization takes place before the characteristic
time τ0 > τ , when the thermal equilibrium is reached. Then we use the relativistic
hydrodynamics to describe the system evolution before it hydronizes. Eventually, at the
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Figure 2.1: Time evolution of the collided nucleons in the Bjorken picture. Lines of constant
proper times are presented as hyperbolas. The hyperbola between red and orange represents τ0

and between yellow and pastel yellow represents the beginning of freeze-out τf .

proper time τf the system undergoes the freeze-out, when the mean free path of plasma
particles becomes larger than the timescale of plasma expansion. It was argued that two
kinds of freeze-out occur, the chemical, after which the number of species is constant
and the kinetic equilibrium is maintained and thermal, after which the is no kinetic
equilibrium. For a discussion on that see [50].

2.1 Hydrodynamics

Hydrodynamics is an effective field theory that describes fluid dynamics at scales
much larger than relevant for underlying microscopic phenomena. Therefore, we can
regard a fluid as a continuous medium. This medium can be divided into infinitely many
infinitesimal volume elements. Each element is still treated as a macroscopic quantity that
contains large number of particles. In order to have a full description of a moving fluid
we will need a distribution of fluid velocity uµ supplemented with two thermodynamic
quantities. Hydrodynamics includes the dissipative effects, thus we cannot formulate it
by constructing an action. Instead one postulates equations describing the field dynamics
directly.

As a simple example let us take a fluid with no conserved currents. For the moment
we assume that there is no dissipative effects in the medium. The only conserved quantity
is the energy-momentum tensor. We expect that the equation describing dynamics of the
fluid is the conservation law,

∂µT
µν = 0. (2.1)

In order to have a closed system of equation we have to reduce the number of independent
components of T µν . We do that assuming that our fluid is in local thermal equilibrium.
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This means that the temperature in the system vary very slowly in space and time.

2.1.1 Perfect Fluid

To construct the form of energy-momentum tensor we follow the procedure of effective
field theories. We expand the tensor in the powers of field derivatives. We expect that
the zeroth order expansion is a perfect fluid - fluid that is specified by two quantities in
the rest frame, energy density and pressure. Because we don’t want to have any preferred
direction in the fluid the off-diagonal part of energy-momentum tensor should vanish.
Moreover, all diagonal components of the spatial part should have the same value,

T µνrest =


ε 0 0 0
0 P 0 0
0 0 P 0
0 0 0 P

 . (2.2)

The energy-momentum tensor consist of two extensive quantities. We expect that mea-
surable values of them should be independent of the reference frame we choose. Thus, we
have to write Eq. (2.2) in a covariant way. Let us pass to a different frame,

T µν = Λµ
ρΛ

ν
σT

ρσ
rest = Λµ

0Λν
0ε+ Λµ

jΛ
ν
jP. (2.3)

We rewrite the right-hand side of the above equation using

Λρ
jΛ

σ
j = Λρ

0Λσ
0 − gρσ = uρuσ − gρσ, (2.4)

which follows from the consistency condition for Lorentz transformation in General Rela-
tivity gµνΛρ

µΛσ
ν = gρσ. As a result we get the covariant form of energy-momentum tensor

for the perfect fluid,
T µν = (ε+ P )uµuν − Pgµν . (2.5)

In many applications the perfect fluid approximation to physical mediums is good enough
to neglect the higher order corrections. However, going beyond the zeroth order leads to
the description of viscosity and chiral separation, which have a consequence of entropy
production in the fluid. But before we see how the entropy production arises let us see
that in the case of perfect fluid entropy is a conserved quantity. To do that we relax the
condition that there is no conserved current in the medium and assume that the particle
number is a conserved quantity. If the system contains a conserved current, we have an
additional hydrodynamic relation,

∂µj
µ = 0. (2.6)

Again, it is the easiest to see the form of jµ in the rest frame, in which at the zeroth order
it is the number of particles times velocity nuµ.

Now, we plug the expression for the energy-momentum tensor of the perfect fluid into
Eq. (2.2),

∂νT
µν = uµ∂ν [(ε+ P )uν ] + (ε+ P )uν∂νu

µ + ∂µP. (2.7)
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In order to simplify the above equation we project it on the direction of four-velocity.
Moreover, we note that the velocity of the fluid in space-time is constant uµuµ = −1.
Differentiating both sides gives the following identity,

uµ∂νu
µ = 0, (2.8)

which simplifies Eq. (2.7),

∂ν [(ε+ P )uν ]− uν∂νP = 0. (2.9)

Next, we use the thermodynamic relation

d

(
ε+ P

n

)
= Td

( s
n

)
+

1

n
dp. (2.10)

It is valid for a particular quantity of fluid, not for a particular volume, which may
contain different number of particles. Plugging Eq. (2.10) to the relation (2.7) and using
the continuity equation we arrive at

∂µ(suµ) = 0. (2.11)

The divergence of entropy current vanishes and, as expected, without dissipation fluid
motion is adiabatic and reversible. However, for many physical systems perfect fluid
approximation is not good enough and we need to include corrections coming from vis-
cosity. To implement them in the above construction we have to add corrections to the
energy-momentum tensor and currents.

2.1.2 Dissipative Fluid

Dissipative processes like viscosity or thermal conduction modify the equations of fluid
dynamics. To see that we have to construct the form of energy-momentum tensor and
the currents to the first order in the field derivatives. We denote the dissipative parts by
τµν , νµ, and σµ,

T µν = (ε+ P )uµuν + Pgµν + τµν , (2.12)

jµ = nuµ + νµ, (2.13)

sµ = suµ + σµ. (2.14)

There is one subtlety we have to be careful about, while considering first order corrections.
Since we have a heat flow that results in a mass flow, the concept of velocity with respect
to the mass flow of the fluid becomes ambiguous. The most frequently used reference
frames are so-called Landau frame [10] and Eckart frame [51]. In Landau frame the fluid
velocity is defined with reference to energy transport, while in Eckart frame with reference
to charge transport. Throughout this Thesis we will use the Landau definition of velocity.
It is obtained by imposing the following conditions

uµτ
µν = 0, uµν

µ = 0. (2.15)



2.2 Hydrodynamics with triangle anomalies 9

The motivation for these conditions is that we have always a freedom to choose velocity
and temperature in such a way that τ 0µ vanish. Moreover, the current associated with
the particle number must equal the particle number density n in the proper frame. We
find τµν and νµ from the requirement of the existence of an entropy current sµ with
non-negative derivative, ∂µsµ ≥ 0. We start with the relation

uν∂µT
µν + µ∂µj

µ = 0, (2.16)

and use the fact that if we were to obtain a thermodynamic potential with only intensive
variables we would get identically zero

ndµ = dp− sdT. (2.17)

Following the procedure introduced in the previous subsection we obtain

∂µ(suµ) = − 1

T
uν∂µτ

µν − µ

T
∂µν

µ. (2.18)

Integrating by parts and using Eq. (2.15) we get the viscous contribution to the entropy
current,

∂µ(suµ − µ

T
νµ) =

1

T
τµν∂µuν − νµ∂µ

µ

T
. (2.19)

We can write down the most general expressions for the energy-momentum and the cur-
rents provided that there is no parity violating terms in our fluid,

τµν = ηP µαP νβ(∂αuβ+∂βuα) +
(
ζ − 2

3
η0

)
P µν∂ · u, (2.20)

νµ = −σTP µν∂ν

(µ
T

)
, (2.21)

σµ = −µ
T
νµ, (2.22)

where P µν = gµν +uµuν , and the entropy production rate is manifestly positive. However,
this is not the end of the story. In principle we can add terms containing Levi-Civita
symbol which contribute with both signs to the entropy current. We will show how to
include them in this framework in the next section.

2.2 Hydrodynamics with triangle anomalies

Relativistic quantum field possesses a very special feature, the existence of anomalous
non-conservation of axial currents due to the presence of triangle anomalies [52, 53] (see
also [54]). For currents associated with global symmetries, the anomalies do not destroy
current conservations, but are reflected in the three-point functions of the currents. When
the theory is put in external background gauge fields coupled to the currents, some of the
currents will no longer be conserved.
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Dissipative hydrodynamics derived in the previous section does not contain parity
violating terms. It is enough to describe many known fluids. However, if we take hy-
drodynamic limit of a theory containing chiral constituents such as QCD, we expect to
have some ramifications of that in our description. Moreover, purely from hydrodynamic
considerations it should be possible to add terms to the entropy current proportional to
vorticity,

ωµ =
1

2
εµνλρuν∂λuρ. (2.23)

This term contains one spatial derivative and it can affect viscosity and diffusion. Note,
however, that vorticity does not have positive divergence and it can contribute to the
entropy current with both signs. This is the reason why standard textbooks completely
ignore it as not allowed by the second law of thermodynamics. In this section we will show
an original result that this term is not only allowed but required if we include anomalies.
Moreover, anomalous contribution will allow us to completely determine hydrodynamic
coefficients associated with parity breaking terms.

Consider a relativistic fluid with U(1) anomaly. To constrain the hydrodynamic equa-
tion, we turn on a slowly-varying background gauge field Aµ coupled to the current jµ.
The strength of Aµ is of the same order as the temperature and the chemical potential,
Aµ ∼ O(p0) and Fµν ∼ O(p). In presence of magnetic field the hydrodynamic equations
get modified,

∂µT
µν = F νλjλ, (2.24)

∂µj
µ = CEµBµ. (2.25)

where electric and magnetic fields are defined in the fluid rest frame,

Eµ = F µνuν , (2.26)

Bµ =
1

2
εµναβuνFαβ. (2.27)

Because there is an external non-dynamical background field the energy-momentum tensor
and current are not conserved. This is reflected by the right-hand sides of Eqs. (2.24)
and (2.25). C denotes the anomaly coefficient dependent on quantum theory we consider.
This coefficient is defined by the divergence of the gauge-invariant current in the presence
of the external magnetic field,

∂µj
µ = −1

8
CεαβµνFαβFµν (2.28)

The most general modification of the U(1) and entropy currents in the presence of
terms (2.23) and (2.27) is

νµ = −σTP µν∂ν

(µ
T

)
+ σEµ + ξωµ + ξBB

µ, (2.29)

sµ = suµ − µ

T
νµ +Dωµ +DBB

µ, (2.30)
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where ξ and ξB are two new transport coefficients associated with anomalous terms and
D and DB are two unknown functions. The entropy production contains terms with Levi-
Civita symbol. This cannot be positive for general values of initial conditions. Therefore,
we conclude that D and DB are not arbitrary but they are highly constrained in such a
way that non-positive divergence terms in the entropy production equation vanish. Using
the following identities which relate ∂µωµ with ωµ and ∂µB

µ with Bµ,

∂µω
µ = − 2

ε+ P
ωµ(∂µP − nEµ), (2.31)

∂µB
µ = −2ω · E +

1

ε+ P
(−B · ∂P + nE ·B), (2.32)

one requires that the terms ωµ∂µ, Bµ∂µ, ωµEµ, and ωµBµ cancel each other in Eq. (2.18).
Hence, the following four relations have to be satisfied

∂µD − 2
∂µP

ε+ P
D − ξ∂µ

µ

T
= 0, (2.33)

∂µDB −
∂µP

ε+ P
DB − ξB∂µ

µ

T
= 0, (2.34)

2nD

ε+ P
− 2DB +

ξ

T
= 0, (2.35)

nDB

ε+ P
+
ξB
T
− C µ

T
= 0. (2.36)

It is convenient to change variables from µ, T to a new pair of variables, µ̄ ≡ µ/T and P .
From dP = sdT + ndµ, integrating by parts we derive(

∂T

∂P

)
µ̄

=
T

ε+ P
,

(
∂T

∂µ̄

)
P

= − nT 2

ε+ P
. (2.37)

Writing ∂iD = (∂D/∂P )∂iP+(∂D/Dµ̄)∂iµ̄, and noting that ∂iP and ∂iµ̄ can be arbitrary,
as they can be considered as initial conditions on a time slice, Eq. (2.33) becomes two
equations,

− ξ +
∂D

∂µ̄
= 0,

∂D

∂P
− 2

ε+ P
D = 0. (2.38)

Using Eq. (2.37), one finds that the most general solution to Eqs. (2.38) is

D = T 2d(µ̄), ξ =
∂

∂µ̄

(
T 2d(µ̄

)
P
, (2.39)

where d(µ̄) is, for now, an arbitrary function of one variable. Equation (2.34) yields

DB = TdB(µ̄), ξB =
∂

∂µ̄
(TdB(µ̄))P , (2.40)
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where dB(µ̄) is another function of µ̄. From Eqs. (2.35) and (2.36) we get

dB(µ̄) =
1

2
d′(µ̄), d′B(µ̄)− Canomµ̄ = 0, (2.41)

which can be integrated. We find

dB(µ̄) =
1

2
Cµ̄2, d(µ̄) =

1

3
Cµ̄3. (2.42)

So the new kinetic coefficients are

ξ = C

(
µ2 − 2

3

nµ3

ε+ P

)
, (2.43)

ξB = C

(
µ− 1

2

nµ2

ε+ P

)
. (2.44)

Let us comment on a physical significance of the above result. First of all, we have shown
that there is no physical reason which disallow parity violating terms in the entropy
current. Moreover, the presence of these terms leads to new hydrodynamic coefficients in
the fluid. These coefficients are related to anomalies and, therefore, are independent of
the coupling of underpinning quantum field theory. This independence allows to compute
these coefficients from kinetic theory using perturbative methods [55]. An interesting
observation is that even if the background field is turned off and there is no anomaly in
the system the coefficient ξ related to vorticity knows what is the value of the anomaly
coefficient.

A novel phenomenon predicted in this section may be relevant in heavy-ion collisions.
The basic constituents of matter in QCD are chiral quarks. Since the microscopic theory
is odd and we have very strong magnetic fields after the collision we expect that the
hydrodynamic description should be anomalous. To get more physical intuition consider
a volume of rotating quark matter, made of massless u and d quarks, at baryon chemical
potential µ. For a moment let us neglect instanton effects, so the U(1)A current jµ5 =
q̄γµγ5q is conserved. Because of the triangle anomaly in the three-point correlators of
jµ5 with two baryon currents, axial current will flow along the axis of rotation. This
can be thought of as chiral separation, left- and right-handed quarks move with slightly
different average momentum, creating an axial current. Measuring this flow through the
transport coefficient ξ will be an interesting experimental challenge for the forthcoming
LHC experiments. One can draw a parallel with the ‘chiral magnetic effect’, invoked to
explain fluctuations of charge asymmetry in noncentral collisions [56, 57]. They should
also affect the hydrodynamic behavior of a dense and hot neutrino gas, or of the early
Universe with a large lepton chemical potential.

It is straightforward to extend the above reasoning to the case of multiple U(1) com-
muting charges [35].
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2.3 Bjorken hydrodynamics

We may represent a nucleus-nucleus collision as two discs passing through each other.
Usually the z-axis is chosen to be the collision axis. If the thermalization time is short
enough the transverse components of fluid velocity are almost zero. This comes from the
fact that nuclei constituents, the so-called partons, collide on a very short transverse scales.
There is an isotropy in the transverse plane, thus, transverse momentum averaged over a
fluid element vanishes. Therefore, it is reasonable to drop off the transverse description
from the fluid dynamics and consider (1+1) dimensional expansion in the (t,z) plane (see
Fig. 2.2).

t

z

τ = const. vz = const.

Figure 2.2: Nucleus-nucleus collision in the (z, t) plane. The thick lines represent the trajectories
of the colliding nuclei. The hyperbola corresponds to a line with a constant proper time τ0

The longitudinal motion of particles is uniform, with the velocity vz = z/t, which
we associate to a local fluid element. Moreover, if we perform Lorentz boost vz remains
unchanged. From that we conclude that there is a preferred set of coordinates,

t = τ cosh y, z = τ sinh y. (2.45)

τ is called proper time and y is called rapidity. We can perform an inverse transformation
which gives

τ =
√
t2 − z2, y =

1

2
ln
t+ z

t− z
. (2.46)

In these coordinates the ansatz for the local fluid velocity reads

uµ = (t/τ, 0, 0, z/τ) = (cosh y, 0, 0, sinh y). (2.47)

This reduces Eq. (2.18) for the entropy production to a first order differential equation

∂s(τ)

∂τ
= −s(τ)

τ
. (2.48)
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We can easily solve the above equation to obtain an expression for the entropy

s(τ) =
sinitial

τ
. (2.49)

Similarly, the Equation constraining the energy density becomes

∂ε(τ)

∂τ
= −ε(τ) + P (τ)

τ
. (2.50)

For the perfect fluid solution we impose the equation of state in the form

ε(τ) = 3P (τ). (2.51)

This leads to the Bjorken solution of Eq. (2.50)

ε(τ) =
εinitial

τ 4/3
. (2.52)

For completeness of the discussion we may include the effect of dissipative corrections.

τ 00 = −
(

4

3
η0 + ζ

)
sinh2 y

τ
, (2.53)

τ 03 = −
(

4

3
η0 + ζ

)
sinh y cosh y

τ
, (2.54)

τ 33 = −
(

4

3
η0 + ζ

)
cosh2 y

τ
, (2.55)

νµ = 0. (2.56)

We see that the shear and bulk viscosities always appear in combination 4
3
η0 +ζ and there

is no correction to the conserved current.
As a caveat we note that the first order relativistic hydrodynamics is not a causal

theory. Therefore, in a series of papers Israel and Stewart constructed second order
relativistic hydrodynamics, which seems to cure this undesirable feature [58, 59]. The
resulting equations are hyperbolic and the signal propagation is causal. However, recent
investigations show that the Israel-Stewart theory does not fully exploit symmetries and
lacks some terms [60]. At the moment these effects are too small to be reliably tested.
However, second order relativistic hydrodynamics can be used to study heavy-ion collisions
[61], thus, an improvement of experimental methods may lead to measurements of second
order transport coefficients.

We have shown that hydrodynamics provides a framework to analyze many features of
heavy-ion collisions. However, we have to remember its limitations, since the initial non-
equilibrium state lies outside the domain of validity. Hydrodynamics cannot tell use which
value of τ we should use as a thermalization time and what is the temperature and baryon
chemical potential for a given initial τ0. Moreover, there is a set of transport coefficients
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which are free parameters in the theory. Therefore, they need to be adjusted to match
experimental data. This is a natural procedure in physics, but it is always tempting to
have some fundamental understanding of physical parameters. We pointed out that there
are several microscopic models like the parton cascade models or the color glass condensate
model which are currently being developed to improve the situation. However, we will
not follow this path here. Instead we will employ the so-called gauge/gravity duality.
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Chapter 3

AdS/CFT correspondence

Heavy-ion physics is a very rich playground to test theoretical models. As noted in the
previous chapter those based on hydrodynamics work surprisingly well in certain regime
after the collision. However, it is always tempting to go beyond effective description and
try to understand physics from first principles. In the case of heavy-ion physics we would
like to use perturbative methods of QCD. This is feasible only for a very limited number
of processes, like deep inelastic scattering, due to the fact that, as recently indicated by
experiments at RHIC, QGP formed after the collision is strongly coupled. This means
that we cannot use methods based on the conventional expansions in coupling constant.
We have to go beyond perturbative approach. However, we face many technical obstacles
to overcome. As a consequence, at the moment, there are only few methods one can
use. One is lattice field theory approach, in which space-time is discretised and one may
answer physical questions using computers. However, because in real physical problems
we have Minkowski space-time, there is complex weighting factor in the partition function.
This makes many results unreliable in the lattice simulations. To say something about
strongly coupled real-time field theory one usually gives up on QCD and studies a simpler
theory, the so-calledN = 4 supersymmetric Yang-Mills theory (SYM) using gauge/gravity
duality. At first it seems that this change is not useful for real physics. However, we may
hope that there are certain universal properties of strongly coupled field theories or, at
least, that one can approximate some phenomena in QCD using SYM theory.

3.1 N = 4 Super Yang-Mills

QCD is a gauge theory with the gauge group SU(3). ’t Hooft noticed that the theory
simplifies if we generalize the gauge group to be SU(Nc), take Nc to be large and expand
in the powers of 1/Nc. In this limit the planar diagrams dominate the contribution to
the Feynman path integral. For further simplification we assume that the field theory we
consider is supersymmetric. This will lead to strong constraints on the theory, however,
this step makes it also less realistic. In other words we don’t know if there is any connection
to QCD or how to compare physical results in both theories. Nevertheless, we may treat
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it as a starting point for construction of some more realistic models. We will review some
basic properties of N = 4 SYM. The lagrangian is uniquely fixed by supersymmetry and
have the following schematic form,

L =
1

g2
YM

TrNc

[
−1

4
F µνFµν +DµΦaDµΦa +

∑
a,b

[Φa, Φb]2 + fermions

]
. (3.1)

We set θ angle to zero. The field content of N = 4 gauge supermultiplet includes the
gauge fields Aµ, four Weyl fermions and six real scalars Φa. Supersymmetry requires that
all fields must transform in the same representation of the gauge group, namely the adjoint
representation, and all must have the same mass. By gauge invariance, a mass for the
gauge fields is zero, hence, the fermion and scalar fields are massless as well. Moreover,
there is only one coupling constant gYM which controls all interactions in the theory.
Usually one combines the two parameters gYM and Nc into a combination λ = g2

YMNc

known as ’t Hooft coupling constant.
The bosonic part of the global symmetry group is SO(4, 2)× SO(6). The first factor

is the conformal group in four dimensions which includes SO(3, 1) group of Lorentz trans-
formations as a subgroup. The second factor is the so-called global R-symmetry group
SO(6) ' SU(4). The bosonic part of symmetry group is supplemented with fermionic su-
persymmery transformations. Lagrangian (3.1) is invariant under the group PSU(2, 2|4).
Let us focus on the bosonic subgroup SO(2, 4). This group in known in the literature
as a conformal group in four dimensions [62]. This means that in addition to Poincaré
invariance, we have scale transformations or dilatations and so-called special conformal
transformations. Apart from being supersymmetric, SYM is a conformal field theory
(CFT). This resembles massless QCD which is also invariant under scale transformations.
However, there is a big difference here, unlike QCD SYM remains scale invariant even at
the quantum level, whereas in massless QCD quantum corrections break scale invariance
explicitly. This is manifested through a non-vanishing beta function. In contrast in N = 4
SYM beta function vanishes

β(g) = µ
∂g(µ)

∂µ
= 0. (3.2)

As a consequence the dimensionless coupling gYM does not run and the SO(4, 2) conformal
invariance of the classical theory is unbroken. This gives a powerful constraint on the
dynamics of the theory. The two-point correlation functions of operators of definite scaling
dimension are completely fixed, and the three-point functions of such operators are fixed
up to some overall constants.
N = 4 SYM has one more feature which makes it very interesting to study. As we

will see later it can be reformulated as a weakly coupled string theory. Presumably this
is also true for other field theories, even more realistic ones like QCD, but SYM is the
first and the best understood example. Such a reformulation should give an insight in a
strongly coupled regime of a field theory. To make these statements more precise let us
review some basic facts about string theory. More general treatments can be found in
[63–67]
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3.2 String theory basics

String theory describes the dynamics of one-dimensional objects moving in a D-
dimensional space-time. These objects come in two species, open strings and closed
strings. The action for a relativistic string is proportional to the area that string sweeps
out in space-time. This area is called world-sheet. It is convenient to parametrize the
world-sheet by introducing parameters σ = σ + 2π and τ . One can map these world-
sheet coordinates to space-time coordinates (σ, τ) 7→ Xµ(σ, τ) and write the action in the
Nambu-Goto form,

SNG = −T
∫
d2σ[(Ẋ ·X ′)2 − Ẋ2X ′2]1/2. (3.3)

where T is a string tension. The dot denotes derivative with respect to τ and the prime
denotes derivative with respect to σ. It is easily seen that Eq. (3.3) is non-linear. This fact
creates substantial difficulties during quantization process. In order to circumvent them
one usually rewrites the Nambu-Goto action in the so-called Polyakov form by introducing
an auxiliary metric field on the world-sheet,

SP = −T
2

∫
d2σ
√
hhαβ∂αX

µ∂βXµ. (3.4)

From the condition that energy-momentum tensor vanishes one obtains a constraint on
the auxiliary field hαβ, which plugged back into Eq. (3.4) shows classical equivalence be-
tween SP and SNG. SP is quadratic, hence, one can carry out a quantization procedure.
However, we only know how to perform quantization of one excited string, which gives
some spectrum later promoted to fields. At the moment we don’t have a proper under-
standing of quantum interacting string field theory, where strings are excitations of an
underlying field.

Quantization of the Polyakov action gives a spectrum which contains a negative mass
state. This state is known as tachyon and its appearance in the spectrum indicates that
there is unstable vacuum in the theory. In order to have a stable theory one usually
requires supersymmetry. Since we have only bosonic degrees of freedom so far we need to
generalize the action (3.4) by adding fermions on the world-sheet,

SP = −T
2

∫
d2σ
√
hhαβ∂αX

µ∂βXµ + ψ̄µρα∂αψµ, (3.5)

where ρα, with α = 0, 1, represent the two-dimensional Dirac matrices, which obey the
Clifford algebra,

{ρα, ρβ} = 2ηαβ. (3.6)

Because ψµ appear in the action quadratically we can change the sign without changing
the physical content. Therefore, the full open superstring theory state spectrum breaks
into two subspaces or sectors, a Ramond (R) sector which contains the states that arise
using +ψµ for quantization, and a Neveu-Schwarz (NS) sector which contains the states
that arise using −ψµ. For closed strings we have a slight complication, since the spectrum
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in this case is composed multiplicatively of left and right open string modes. Hence, we
have four sectors, which are usually labeled as (NS-NS), (NS-R), (R-NS), (R-R).

We demanded that the string theory spectrum is supersymmetric. However, this is not
the case so far and we still have a tachyonic state in the spectrum. To cure that we have to
truncate the spectrum in a way that eliminates the tachyon and leads to a supersymmetric
theory. This procedure is known as GSO projection. For the oriented superstrings, in
which we are interested in, we can perform the GSO projection in two ways, which lead to
the so-called type IIA and type IIB string theory. In both cases the massless fields in the
(NS-NS) sector are the same and include a graviton gµν , an antisymmetric Kalb-Ramond
field denoted as Bµν , and a dilaton φ. However, fields coming from (R-R) sector are
different. In the type IIA theory the massless (R-R) bosons include a Maxwell field Aµ
and a three-index antisymmetric gauge field Aµνρ. In the type IIB theory the massless (R-
R) bosons include a scalar field A, a Kalb-Ramond field Aµν , and a totally antisymmetric
gauge field Aµνρλ. In a complete analogy with Maxwell electrodynamics, where a gauge
field couples to a world-line of a charged particle, the existence of the multi-indexed gauge
fields in the spectrum indicates that there are higher-dimensional objects in the theory.
We call them D-branes.

Apart from massless excitations, string theory spectrum possesses a whole tower of
massive modes. However, we will be interested in the low energy limit of the string
theory or length scales that are much bigger than the fundamental string scale. In this
limit massive modes decouple by acquiring infinite masses. Therefore, we don’t have to
include them in the analysis. Moreover, the action constructed for massless sector exactly
match supergravity action. We will consider the low-energy effective description of string
theory by means of supergravity.

3.3 Type IIB supergravity

Supergravity (SUGRA) is a vast field. We will review only a few basic facts. For
more complete treatments see [68–71]. There is a unique theory of supergravity in eleven
dimensions. One can compactify this eleven-dimensional theory in one direction obtaining
ten-dimensional supergravities. These are known as type IIA or type IIB supergravity
theories, which are the only maximally supersymmetric N = 2 theories in ten dimensions.
For our later purposes we will be interested mostly in type IIB theory. The field content
of that theory is given in Table 3.1. We note that type IIB SUGRA has gravitini of the
same chirality. Later we will take into account mostly the bosonic degrees of freedom
setting gravitini and dilatini to zero.

Since the theory contains an antisymmetric field C4 with self-dual field strength, it is
difficult to construct a satisfactory action from which all equations of motion follow. How-
ever, it is feasible to find an action involving C4 and then augment it with an additional
duality condition F̃5 = ∗F̃5
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Type IIB Supergravity particle content
Symbol #DOF Field

GAB 35B metric - graviton

C + iϕ 2B axion - dilaton

BAB + iC2AB 56B antisymmetric rank 2

C4ABCD 35B antisymmetric rank 4

ψ1,2
Aα 112F two Majorana-Weyl gravitini

λ1,2
α 16F two Majorana-Weyl dilatini

Table 3.1: IIB SUGRA particle content

SIIB =
1

4κ2

∫ √
Ge−2Φ(2R + 8∂µΦ∂

µΦ− |H3|2) (3.7)

− 1

4κ2

∫ [√
G(|F1|2 + |F̃3|2 +

1

2
|F̃5|2) + C4 ∧H3 ∧ F3

]
+ fermions .

κ is ten-dimensional Newton’s constatnt R is Ricci scalar and the field strengths are
defined by

F1 = dC , H3 = dB, (3.8)

F3 = dC2 , F̃3 = F3 − CH3, (3.9)

F5 = dC4 , F̃5 = F5 − 1
2
A2 ∧H3 + 1

2
B ∧ F3 . (3.10)

There is a very important class of solutions to the equations of motion coming from Eq. 3.7.
These solutions are called p-branes. Their geometry is determined by the following general
ansatz,

ds2 = H(y)αdxµdxµ +H(y)β(dy2 + y2dΩ2
8−p), (3.11)

where α and β are constants determined from the equations of motion. x refers to coor-
dinates on the world-volume of a brane, while y to coordinates transversal to the brane.
Additionally they have a non-trivial Cp+1. p-branes are postulated to have natural coun-
terparts in string theory, D-branes.

Among brane solutions of supergravity the D3-brane solution is of utmost importance.
First of all, its world-volume has 4-dimensional Poincaré invariance with regularity at
y = 0. Moreover, it has constant axion and dilaton fields and it is self-dual. More
specifically

ds2 = H(y)−1/2ηµνdx
µdxν +H(y)1/2(dy2 + y2dΩ2

5),

exp(Φ) = const, C = const,

BAB = C2,AB = 0, (3.12)
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C4 = H(y)−1dx0 ∧ · · · ∧ dx3,

H(y) = 1 +
∑
i

L4

|~y − ~yD3|4
, L4 = 4πgsNα

′2.

Later we will argue that this solution is a basic ingredient of the gauge/gravity duality.

3.4 Branes

Strings are not the only objects in string theory. The theory also contains higher-
dimensional objects called D-branes (for more exhaustive reviews see [72, 73]). They are
usually classified according to the energy per unit volume - tension. We have two types
of them, the solitonic Neveu-Schwarz (NS) branes, whose tension is proportional to 1/g2

s

and Dirichlet (D) branes, whose tension behaves like 1/gs. In the limit of weakly coupled
strings (gs → 0) D-branes are much more dominant.

In weakly coupled type IIB string theory D-branes are viewed as hypersurfaces on
which strings can end. One can see that by varying a string action. In addition to the
equations of motion, there is the boundary term

− T
∫
dτ
(
X ′µδX

µ |σ=π −X ′µδXµ |σ=0

)
, (3.13)

which we demand to vanish. For closed strings the embedding functions are periodic
and the boundary term vanishes identically. However, for open strings we have two
possibilities. Either the component of the momentum normal to the boundary of the
world-sheet vanishes

X ′µ = 0 at σ = 0, π, (3.14)

or the position of the string ends is fixed so that δXµ = 0, and

Xµ |σ=0= Xµ
0 = const and Xµ |σ=π= Xµ

π = const. (3.15)

The first choice is called Neumann boundary conditions, the second Dirichlet boundary
conditions. Dirichlet boundary conditions break Poincaré invariance and for this reason
they were not considered for many years. However, in the modern interpretation these
boundary conditions indicate that strings are attached to some objects. The most natural
choice is to associate them with D-branes. Moreover, the low-energy limit of them is
believe to give exactly p-brane solutions which we faced in previous section. Therefore,
from now on we will call them Dp-branes (see Fig. 3.1).

Dp-brane stretched in the (X1, . . . , Xp) hyperplane, located at a point in (Xp+1, . . . , X9),
is then defined by including in the theory open strings with Neumann boundary conditions
for (X0, . . . , Xp) and Dirichlet boundary conditions for (Xp+1, . . . , X9). The Dp-brane
can be a source for various charges. It is coupled to (R-R) (p + 1)-form potentials. In
type IIA there are potentials with even p and in type IIB with odd p. Thus, we conclude
that there are branes with even p in type IIA string theory and with odd p in type IIB.



3.4 Branes 23

(0,1,. . . ,p)

(p+1,. . . ,9)

A(ξa)

Xµ

Figure 3.1: Pictorial representation of brane-string coupling. Left configuration shows an open
string attached to a brane. After quantization we are left with a gauge field living on a world-
volume and scalar fields denoting a position in space-time. Right configuration shows an emission
of a closed string by a brane.

The action for a Dp-brane is known in the leading order in coupling constant. It is
a natural generalization of the Nambu-Goto action for the string. We note that, since a
D-brane is stable BPS saturated object, it has to be supersymmetric. However, we will
be mostly interested in the bosonic degrees of freedom living on the world-volume, so we
will skip fermionic contribution. Schematically we can write an action for a D-brane as
the so-called Dirac-Born-Infeld part, which is simply an extension of two dimensional area
to higher-dimensional volume plus a Wess-Zumino term which follows from the coupling
to the (p+ 1)-form,

SDp = SDBI + SWZ . (3.16)

For our purposes we can assume that the background potentials vanish so we don’t need
the exact form of SWZ . Let us briefly discuss how to constrain the form of SDBI . D-brane
is a dynamical object, whose location and shape is governed through the interaction of
open strings with background fields. To describe that it is convenient to introduce world-
volume coordinates ξa, where a runs from 0 to p. If we embed the brane in some higher
dimensional background metric field, we will have some map Xµ(ξa). We can define an
induced metric on a brane or a pullback,

P [Gab] = Gµν
∂Xµ

∂ξa

∂Xν

∂ξb
. (3.17)

We emphasize that in a probe limit it is not dynamical. In addition to the metric field
we expect to have a gauge field as well. This can be easily understood from the fact that
we have a bunch of open strings ending on a brane. Because they have tension they tend
to minimize the world-sheet area by shrinking to zero length. The low-energy description
of such massless strings is a gauge field living on a brane. So the low-energy action takes
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the form
SDp = TDp

∫
d(p+1)ξ

√
−det(P [Gab] + 2πα′Fab). (3.18)

TDp is the tension of a Dp-brane. It has dimension of energy per unit volume

[TDp] =
mass

lengthp
= (length)−p−1, (3.19)

and in terms of fundamental parameters it can be written as

TDp =
1

gs(2π)p(α′)(p+1)/2
. (3.20)

Dp-branes have a non-zero energy per unit volume. Therfore, they are gravitating ob-
jects because, as we know from General Relativity, everything that has non-zero energy
couples to gravity. In string theory the force of gravity is govern by closed strings. It
means that Dp-branes can emit and absorb closed strings, as shown on Figure 3.1. The
studies of gravitational physics of D-branes motivated the original statement of AdS/CFT
correspondence. We will come back to that in the next section.

(0,1,. . . ,p)

(p+1,. . . ,9)

1 i j Nc

Fij

Figure 3.2: Pictorial representation of a stack of Nc Dp-branes with an attached open string.

α′ → 0 limit of (3.18) reduces to U(1) gauge symmetry in p + 1 dimensions. In
this way we may construct a p + 1-dimensional gauge theory from string theory in 10
dimensions. One can generalize this construction to the non-abelian case by taking a
stack of Nc Dp-branes placed on top of each other so that the distance between them goes
to zero (see Fig. 3.2). In every point of the world-volume theory, there can be an oriented
string starting from a brane and ending on some brane from the stack. From that we
expect that there is a non-abelian gauge boson in every point in the theory in the adjoint
representation of the U(Nc) group. However, we are interested in the relative position of
the branes in the stack. This implies a global U(1) symmetry in a gauge theory which we
can decouple leaving SU(Nc) symmetry.
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3.5 The Maldacena conjecture

Motivated by the D-brane physics we will show that there is a connection between
quantum field theories and classical supergravity. This connection was first realized within
type IIB string theory and we will review this construction in its simples form. Consider
Nc parallel D3-branes on top of each other. The D3-branes are extended along a (3 + 1)
dimensional plane in (9 + 1)-dimensional space-time. String theory on this background
contains two kinds of perturbative excitations, closed strings and open strings. The
argument leading to the correspondence is very simple, D3-branes have two different
low-energy descriptions, one in terms of open strings and one in terms of closed strings.
Following Maldacena [19] we will conjecture that these two different descriptions are
equivalent. To be more precise we write down the action for the system of interacting
D3-branes. Schematically it takes the following form,

Stotal = SSUGRA + SDBI , (3.21)

where SSUGRA represents the dynamics of closed string modes and SDBI describes the
brane system with attached open strings coupled to gravity. Expanding this effective
action around flat background and taking the low-energy limit (this means we keep all
dimensionless parameters fixed while taking α′ → 0), all interaction terms vanish. We get
N = 4 SYM theory, with g2

YM = gs and free supergravity.
N = 4 SYM is not the only low-energy limit (α′ → 0) of D3-brane system. As noted

previously D3-brane is a solution of supergravity (3.12). To see that it is convenient
to shift a coordinate system such that the branes are located at the origin of the new
coordinate system. Then yD3 = 0 and we introduce the distance from the branes r = |~y|.
The metric generated by a stack of D3-branes may be rewritten as

ds2 =

(
1 +

L4

r4

)− 1
2

dxµdxµ +

(
1 +

L4

r4

) 1
2

(dr2 + r2dΩ2
5). (3.22)

For an observer at infinity, far away from the branes, at r � L, the space-time becomes
a ten-dimensional Minkowski space-time. Close to the branes, for r � L, we can neglect
the ‘1’ in the above metric

ds2 =
r2

L2
dxµdxµ +

L2

r2
dr2 + L2dΩ2

5, (3.23)

and identify the emergent geometry as a product of two spaces, five dimensional anti-de
Sitter space AdS5, with a five-dimensional sphere S5, both with radius L. Again, we
have two distinct sets of modes, those propagating in the Minkowski space and those
propagating in the ‘throat’ region where the geometry is AdS5 × S5. These two sets of
modes decouple from each other in the low-energy limit. Far away from the throat only
massless modes survive, while in the throat there is a whole tower of massive modes which
cannot climb up the gravitational potential. Because we have two distinct descriptions of
the same D3-brane system we expect that they are equivalent, meaning that
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four-dimensional N = 4 SYM theory is the same as type IIB string theory propagat-
ing on AdS5 × S5.

An important aspect of the above equivalence is that this is the so-called weak-strong
coupling duality. For N = 4 SYM we can trust the perturbative analysis if

λ = g2
YMNc = gsNc ∼

L4

α′2
� 1, (3.24)

whereas the semiclassical approximation to supergravity is a good description if

1� L4

α′2
∼ gsNc = g2

YMNc. (3.25)

We see that the perturbative field theory is mapped to non-perturbative gravity and vice
versa. This makes the conjecture very hard to prove, but potentially very useful, because
we may learn about quantum gravity by looking at the perturbative SYM and we can
study non-perturbative field theory by means of classical gravity. Thus, it is difficult to
have quantitative comparison between observables on both sides of the correspondence.
In fact we don’t know if the correspondence is valid in general for all values of Nc or
only in a certain limit. In this Thesis we assume the correspondence for large ’t Hooft
coupling. Then the SYM is mapped to supergravity on AdS5 × S5.

3.5.1 Symmetries

Having described heuristic arguments for the correspondence we would like to give
some more detailed comparison of both sides of the correspondence and eventually give
some prescriptions how to calculate physical observables in the dual language. We first
focus on the comparison of symmetries between N = 4 SYM and AdS5 × S5. We wrote
previously that the global symmetry group of the SYM theory is PSU(2, 2|4), which
contains the bosonic part SO(2, 4) × SO(6). We immediately identify the SO(6) factor
with the symmetry group of five dimensional sphere on the dual side. Consequently, the
SO(2, 4) invariance is mapped to AdS5 geometry. There is a perfect agreement, which we
can easily see if we embed the anti-de Sitter space in a six-dimensional flat manifold,

− Y 2
0 − Y 2

5 +
i=4∑
i=1

Y 2
i = L2. (3.26)

The metric element in the embedding coordinates reads

ds2 = dY 2
0 + dY 2

5 −
i=4∑
i=1

dY 2
i . (3.27)

Further insight in the symmetry properties can be acquired by a suitable choice of coordi-
nates. One possible choice is the Poincaré coordinates (z, t, xi), which cover one-half of the
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hyperboloid (3.26), related to the embedding coordinates by the following transformation,

Y0 = −1

2
z

[
1 +

1

z2
(L2 + x2 − t2)

]
, (3.28)

Yi = −Lxi
z
, (i = 1, . . . , 3), (3.29)

Y4 = −Lt
z
, (3.30)

Y5 = −1

2
z

[
1− 1

z2
(L2 − x2 + t2)

]
. (3.31)

In the above transformation z plays a role of radial coordinate r from Eq. (3.23). We note
that there are two common choices of radial coordinate in the literature,

z =
L2

r
and u =

r

L2
. (3.32)

z has dimension of length, whereas u has dimension of energy. The line element in Poincaré
coordinates reads

ds2
AdS =

L2

z2
(−dt2 + d~x2 + dz2) + L2dΩ2

5. (3.33)

Using Eq. (3.33) we can investigate the action of dilatation. On the field theory side, the
beta function vanishes and the dilatation is a symmetry. On the gravity side, a dilatation
should be a coordinate rescaling. We see that if we employ a transformation

(t, ~x, z)→ (ct, c~x, cz), c > 0, (3.34)

then the metric is preserved. Thus, we can associate dilation symmetry of N = 4 SYM
with an isometry od AdS5. Moreover, from the Eq. (3.33) we see that AdS5 is conformal
to the z > 0 half of the five-dimensional Minkowski space. Taking the limit z → 0 we
reach the boundary od anti-de Sitter space. Sometimes people refer to that boundary
as a place where the gauge theory is located, while string theory is in the bulk of AdS,
however, we emphasize that it is more accurate to say that string theory on AdS5×S5 is
equivalent to N = 4 SYM on R3,1

3.5.2 The field/operator correspondence

We will now make the Maldacena conjecture more precise and show how it can be
used to extract information about strongly coupled gauge theories [20, 21]. The N = 4
SYM is a conformal field theory. In a field theory one would like to know the correlation
functions of gauge invariant operators. This is encoded in the generating functional

ZCFT = 〈e
∫
d4xφ0(x)O(x)〉. (3.35)
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The n-point correlation function can be computed by means of functional derivatives with
respect to a source field φ0(x),

〈O(x0)O(x1)...O(xn)〉 =
δ

δφ0(x0)

δ

δφ0(x1)
...

δ

δφ0(xn)
ZCFT

∣∣∣∣
φ0=0

. (3.36)

To make AdS/CFT correspondence useful we have to propose a procedure for calculating
such correlation functions from string theory. To do so it is actually convenient to think
of conformal field theory as living on the boundary of anti-de Sitter space. We consider
five-dimensional AdS space which has a four-dimensional conformal boundary. We intro-
duce some field φ in AdS space a boundary value φ0 and define a generating functional
on the boundary by Eq. (3.35). Moreover, we have some string partition function Zstring
supplemented with the boundary condition that at infinity φ approaches a given function
φ0. AdS/CFT correspondence identifies the string partition function Zstring with the gen-
erating function of correlators of O(x) in N = 4 super Yang-Mills living on the boundary
of AdS5 [21],

Zstring = ZCFT ≡ 〈e
∫
d4xφ0(x)O(x)〉. (3.37)

Throughout this Thesis we will be working in the supergravity approximation, in which

e−Ssugra ≈ Zstring. (3.38)

If classical supergravity is not an adequate approximation, then one has to include string
theory corrections, or include quantum corrections. To illustrate the above ideas let us
focus on the dynamics of the real scalar field ϕ described by the action

Ssugra(ϕ) =
1

2

∫
d4xdz

√
g[gµν∂µϕ∂νϕ+m2ϕ2]. (3.39)

To evaluate the field ϕ in the generating functional we have to solve the equation of
motion

(�−m2)ϕ = 0. (3.40)

Supergravity fields encode actually two field theoretic objects, whose conformal dimension
can be read off from the asymptotic behavior. For the scalar field we have

ϕ(z = 0) ∼ ϕ0z
4−∆ + 〈O〉z∆. (3.41)

The first, non-normalisable mode corresponds to a source and has conformal dimension
4 −∆. The normalisable part yields the corresponding VEV of conformal dimension ∆.
Moreover, we get a relation between mass and conformal dimension,

∆(∆− 4) = m2. (3.42)

The solution of the Eq. (3.40) can be found using bulk-to-boundary Green’s function.
Next, we can express the classical action S as a functional of ϕ0 and calculate the two-
point function using the prescription (3.36) [74, 75]. However, there is a caveat here.
The quantities related by Eq. (3.37) are, in general, divergent. In order to have renor-
malized correlation functions we have to introduce some consistent regularization and
renormalization scheme.
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3.5.3 Holographic renormalization

A general renormalization scheme widely used in the context of AdS/CFT correspon-
dence is the so-called ‘holographic renormalization’ [76–78] (see [79] for a review). We will
recall it briefly. Suppose we have a metric that is a solution to Einstein’s equation with
negative cosmological constant and asymptotically approaches AdS space. Evaluation of
the Einstein-Hilbert action on such solution will lead to infinity because of infinite range
of integration. In holographic renormalization, we regulate the action by introducing a
cut-off at z = ε. We then add counterterms on the z = ε hypersurface to cancel those
divergences coming from integration. A crucial step in the procedure is the choice of the
coordinates that allows us to write the background metric as

ds2 = g5D
MNdx

MdxN =
gµνdx

µdxν + dz2

z2
. (3.43)

Such coordinates in which the metric has the form (3.43) are called Fefferman-Graham
[80] coordinates. By construction, gµν has a smooth limit as z → 0, and can be Taylor
expanded as

gµν(z, x) = g(0)
µν (x) + zg(1)

µν (x) + z2g(2)
µν (x) + z4g(4)

µν (x) + h(4)
µν log(z2) + . . . . (3.44)

Explicit computation shows that in pure gravity all coefficients multiplying odd powers of
z vanish. g(0)

µν (x) is the physical metric of a boundary gauge theory. g(2)
µν (x) follows from

the Einstein’s equations. However, g(4)
µν is arbitrary. In order to generate a solution one

has to give both g
(0)
µν (x) and g

(4)
µν (x). An important feature of this coordinate system is

that g(4)
µν (x) is related to the boundary theory energy-momentum tensor [76]

Tµν =
N2
c

2π2
g(4)
µν (x). (3.45)

Given a boundary theory Tµν and the metric of four-dimensional space-time we can con-
struct its gravity dual perturbatively, since all higher order coefficients in (3.44) follow.

In other coordinate systems we can relate the energy-momentum tensor to the extrinsic
curvature [81] (see also [82]) through

Tµν = −2 lim
r→∞

r4(Kµν −Kδµν), (3.46)

where K is the trace of the extrinsic curvature.
Now, we include some matter content coupled to gravity. Near the boundary, each

field has an asymptotic expansion of the form

F(z, x) = z2m
[
f (0)(x) + z2f (2)(x) + . . .+ z2n(f (2n)(x) + log(z2)f̃ (2n)) + . . .

]
. (3.47)

We interpret the boundary field f (0)(x) as the source for the dual operator. f (2k)(x),
k < n can be obtained iteratively in terms of f (0)(x) by solving field equations. These
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equations leave f (2n)(x) undetermined. The logarithmic term in (3.47) is related to con-
formal anomalies of the dual theory, and it is also fixed in terms of f (0)(x).

The most general asymptotic solution of the field equations allows us to calculate the
on-shell value of the action,

Sreg[f (0); ε] =

∫
z2=ε

d4x
√
g(0)[ε−νa(0) + ε−(ν+1)a(2) + ...− log ε a(2ν) +O(ε0)]. (3.48)

where ν is a positive number that only depends on the scale dimension of the dual operator
and a(2k) are local functions of the sources f (0). Last thing to do is to subtract the
divergent part and take the limit ε → 0. The counterterms depend on the fields located
on the surface z2 = ε, characterized by the induced metric γµν/ε. The renormalized action
reads

Sren[f (0)] = lim
ε→0

(
Sreg[f

(0); ε] + Sct [F(x, ε); ε]
)
. (3.49)

To get the explicit form of Sct [F(x, ε); ε] we have to express f (0) as a function of F(z, x),
calculate a(2k)(f (0)), and determine the divergent part. We show how this method works
in practice in Chapter 5, regularizing the D7-brane action.

3.6 Gauge/gravity duality at finite temperature

So far we have discussed a system of extremal D3-branes which is dual to N = 4 SYM
theory at zero temperature. In order to generalize that to the case with finite temperature
we need to find a gravitational solution with a scale that may correspond to temperature
and some notion of entropy. This solution is known to be AdS-Schwarzchild

ds2 =
r2

L2
(−f(r)dt2 + dxidxi) +

L2

f(r)r2
dr2 + L2dΩ2

5, (3.50)

where f(r) = 1 − R4

r4
. The solution (3.50) describes the near-horizon geometry of near-

extremal D3-branes. It can be depicted as a black hole located in the radial coordinate
with the horizon at R. We interpret this black hole as a thermodynamical system with
energy

E =
A

2G
, (3.51)

and Hawking temperature

TH =
R

πL2
. (3.52)

Having a field theory at finite temperature we are interested in thermodynamic quantities.
Performing the Wick rotation t → −itE, the Euclidean path integral yields a thermal
partition function. Furthermore, the Euclidean black hole solution is interpreted as a
saddle-point in this path integral and the supergravity action evaluated for this solution



3.6 Gauge/gravity duality at finite temperature 31

is interpreted as the leading contribution to the free energy. For the D3-brane system we
get

F = TSsugra = −π
2

8
N2
c T

4. (3.53)

From Eq. (3.53) we can compute other thermodynamic variables, for example, the entropy
density reads

s = −∂F
∂T

=
π2

2
N2
c T

3. (3.54)

This picture becomes feasible for studying a finite temperature field theory at strong cou-
pling. We recall that there are indications that real QGP investigated at RHIC is an
example of such system. Of course our underlying theory is not QCD but N = 4 SYM.
Since these are completely different theories, we don’t expect that we can formulate physi-
cal questions in terms of string theory. However, we expect that there are certain universal
properties in both theories or that in some range of temperatures we can approximate real
QCD plasma by a conformal N = 4 plasma. We note that temperature introduces a scale
and it breaks supersymmetry completely. Moreover, nothing prevents us from making a
conjecture that there is a gravity dual for QCD itself. Studying the behavior of simpler
gauge/gravity correspondences may be the first step on the road leading to QCD dual
theory. At the moment we don’t know precisely how to assess these similarities. There-
fore, we will always keep in mind the differences, N = 4 plasma is exactly conformal and
there is no confinement/deconfinement phase transition.
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Chapter 4

Fluid dynamics from gravity

In Chapter 2 we noted that at high energies an interacting QFT has an effective
description in terms of fluid dynamics. This is also the case in the heavy-ion collisions.
Shortly after the collision the system thermalizes and reaches thermal equilibrium. From
this moment, which we denoted as τ0 the evolution is described according to the laws of
fluid dynamics. In general fluid evolution is characterized by a set of transport coefficients.
In principle we can compute these coefficient from an underlying quantum field theory.
For the real-world physics this is QCD. However, we noted that presumably the regime
we are interested in is strongly coupled and we don’t have theoretical tools to do so. We
can at least study some qualitative features of strongly coupled plasma using AdS/CFT
correspondence. This approach was started in the seminal papers by Policastro, Son, and
Starinets [83–85] (see [86] for a review). They investigated the linearized hydrodynamics
and calculated the shear viscosity over entropy density using linear response theory. This
was a very important result, since in real QGP we have shear-driven elliptic flow, and
the shear viscosity is the most relevant coefficient. Quite surprisingly it turned out that
shear found by Policastro et al. is much smaller than any other known shear coefficient,
what suggests that QGP is indeed strongly coupled. In Section 4.1 we will show how
to consistently find transport coefficients in conformal fluids following [22]. Next, we
generalize this procedure to more realistic fluids with one conserved current. This is
an original result presented in Section 4.2. Finally, in Sections 4.3 and 4.4 we outline
a construction of a gravity solution dual to boost-invariant fluids. A detailed study of
regularity is presented, which is again an original result.

4.1 Gravity dual of fluid dynamics with no conserved cur-
rent

In this section we will show how to establish a map between solutions of Einstein’s
equations and the perfect fluid solution presented in Chapter 2. As shown in Section 3.5
for every gauge invariant operator there is a dual field. We are interested in studying
fluid energy-momentum tensor, hence, we need to find the corresponding gravitational
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field. We note that we have an idealized conformal fluid. This means that the number of
transport coefficients is reduced in comparison with fluids without conformal symmetry. In
particular there is no bulk viscosity, because in a conformal theory the energy-momentum
tensor should be traceless

T µµ = ε− 3P + ζ(∂ · u) = 0. (4.1)

From that we find that ε = 3P and ζ = 0, since the identity (4.1) should be satisfied for
an arbitrary solution.

4.1.1 Perfect fluid from gravity

We begin the discussion with the five dimensional Einstein gravity with negative cos-
mological constant,

S =
1

16πG5

∫ √
−g5 (R− 2Λ) . (4.2)

This is a universal subsector of type IIB supergravity. In principle we could focus on the
dynamics of internal manifold, but we are interested in energy-momentum tensor dynamics
so we can set all Kaluza-Klein modes on S5 to zero. The field equations corresponding to
the above action, with the radius of anti-de Sitter space set to one, are1

EMN = RMN −
1

2
gMNR− 6GMN = 0. (4.3)

The above equation admits AdS5 solution, which corresponds to the vacuum state of dual
field theory. Moreover, there is the so-called ‘boosted black brane’ solution

ds2 = −2uµdx
µdr − r2f(br) uµuνdx

µdxν + r2Pµνdx
µdxν , (4.4)

where
f(r) = 1− 1

r4
, (4.5)

uv =
1√

1− β2
i

, ui =
βi√

1− β2
i

. (4.6)

This solution can be obtained by boosting the AdS-Schwarzschild solution along the
spatial directions xi. The temperature T = 1

πb
and the velocities are constant. For

brevity we have introduced the projector onto spatial dimensions,

Pµν = uµuν + ηµν . (4.7)

We note that the parameters describing the boosted black brane solution (4.4) are pre-
cisely the hydrodynamical degrees of freedom, temperature and velocities. It posseses the
holographic boundary stress tensor, which turns out to be precisely the perfect fluid (2.5).

1We use Latin letters A,B ∈ {r, v, x, y, z} to denote the bulk indices and Greek letters µ, ν ∈ {v, x, y, z}
to denote the boundary indices.
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4.1.2 Derivative expansion

We have to recall the lesson we learned in Chapter 2 about hydrodynamics and ap-
ply it to the boosted black brane. Namely we have to perturb the system away from
equilibrium and perform a derivative expansion of the perturbed solution. We make the
hydrodynamic variables to vary slowly along boundary directions. Thus, we want to pro-
mote the parameters b and βi to functions of the boundary coordinates and construct the
solution order by order in the boundary derivative expansion. We will measure this ex-
pansion by a formal parameter ε which we eventually set to 1. We implement the desired
metric as a power series,

g = g(0)(βi, b) + εg(1)(βi, b) + ε2g(2)(βi, b) +O(ε3), (4.8)

where g(0)(βi, b) is the metric (4.4) and g(k)(βi, b) are yet to be determined by solving
Einstein’s equations (4.3). To do so we have to correct the velocity and temperature
fields in a similar fashion,

βi = β
(0)
i + εβ

(1)
i +O(ε2), b = b(0) + εb(1) +O(ε2), (4.9)

where β(m)
i and b(n) are functions of εxµ. We can plug the ansatz (4.8) into Einstein’s

equations. However, we have to reduce the number of equations by fixing a gauge. It is
convenient to work in the so-called ‘background field’ gauge,

grr = 0, grµ ∝ uµ, Tr
[
(g(0))−1g(n)

]
= 0 ∀n > 0. (4.10)

Before actually doing the computation let us focus for a moment on the general structure
of the perturbation analysis. Suppose that we have solved the perturbation theory to the
(n − 1)th order. This means that we have determined g(m) for m ≤ n ≤ 1, and have
determined the functions β(k)

i and b(k) for k ≤ n ≤ 2. From Einstein’s equations we can
extract the coefficient of εn. It has the following schematic form,

H
[
g(0)(β

(0)
i , b(0))

]
g(n)(xµ) = sn. (4.11)

H is a linear differential operator of the second order in r. It depends only on values of β(0)
i

and b(0) at xµ, and not on the derivatives of these functions at that point. Moreover, H is
the same at every order of perturbation theory. The whole difficulty in the construction
is to solve a homogenous second order differential equation with appropriate boundary
conditions. Having done that we have to integrate it with various sources sn, which are
different at different orders of perturbation theory. It is a local expression of nth order in
boundary derivatives of β(0)

i and b(0), as well as of (n− k)th order in β
(k)
i and b(k) for all

k ≤ n− 1. Finally, to make the calculation more transparent we introduce two subclasses
of Eqs. (4.11). A class that determines the metric form we call dynamical equations,
whereas the rest we call constraint equations.



36 4 Fluid dynamics from gravity

4.1.3 Constraint equations

Equations obtained by contracting EMN with the one-form normal to the boundary
dr will be referred to as constraint equations. Four of them, labeled by indices associated
with boundary directions have very natural physical interpretation as boundary energy-
momentum conservation,

∂µT
µν
(n−1) = 0. (4.12)

T µν(n−1) is the boundary stress tensor dual the solution expanded up to O(ε(n−1)). It is a
local function of temperature and velocities and their derivatives up to (n− 1)th order.

4.1.4 Dynamical equations

Dynamical equations are those used to solve for unknown function g(n). We can
decouple these equations into three sets. This follows from the underlying SO(3) symmetry
in the spatial sections of the boundary. Thus, we decompose the solutions into SO(3) irreps

scalar sector : g(1)
vv , g(1)

vr ,
3∑
i=1

g
(1)
ii ,

vector sector : g
(1)
vi ,

tensor sector : g
(1)
ij .

(4.13)

Next, we determine the solutions by integration, requiring regularity of the solutions at all
r 6= 0. This fixes the solution up to zero modes which can be absorbed in the redefinition
of β(0)

i and b(0).
We are now in a position to investigate the technical details of the expansion. How-

ever, we would like to analyze more realistic fluids with conserved charges. Having in
mind possible applications to plasma physics we note that usually not only the energy is
conserved but also a baryon number.

4.2 Gravity dual of fluid dynamics with one global con-
served current

The dual description of a fluid system with one conserved global charge consist of a
five-dimensional metric field together with some background Maxwell field propagating in
the bulk. The intuition coming from the previous discussion suggests that asymptotically
AdS long-wavelength solutions of appropriate modifications of the the Einstein-Maxwell’s
equations are in one to one correspondence with solutions of the augmented Navier-Stokes
equations described in Chapter 2. The Einstein-Maxwell’s equations possess a well defined
solution parameterized by the temperature, charge density and velocity. Promoting these
parameters to fields, and applying the reasoning introduced in Section 4.1, we will show
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how the derivative expension works in practice. We start with the five-dimensional action,

S =
1

16πG5

∫ √
−g5

[
R + 12− FABFAB +

4κ

3
εLABCDALFABFCD

]
, (4.14)

which is a consistent truncation of IIB SUGRA Lagrangian on AdS5×S5 background
with a cosmological constant Λ = −6 and the Chern-Simons parameter κ = −1/(2

√
3)

[87, 88]. To keep the discussion general we will keep the κ coefficient arbitrary, and
treat Eq. (4.14) as the definition of our theory. We will see that the Chern-Simons term
is crucial to obtain the transport coefficient coming from triangle anomalies (2.43) and
(2.44). The field equations corresponding to the above action are

GAB − 6gAB + 2

[
FACF

C
B +

1

4
gABFCDF

CD

]
= 0,

∇BF
AB + κεABCDEFBCFDE = 0,

(4.15)

where gAB is the five-dimensional metric, GAB is the five dimensional Einstein’s tensor.
These equations admit an AdS-Reissner-Nordström black-brane solution

ds2 = −2uµdx
µdr − r2V (r,m, q) uµuνdx

µdxν + r2Pµνdx
µdxν ,

A =

√
3q

2r2
uµdx

µ,
(4.16)

where

uµdx
µ = −dv, and V (r,m, q) ≡ 1− m

r4
+
q2

r6
≡ 1−M +Q2, (4.17)

with ηµν = diag(−+ ++) being the Minkowski-metric.
We shall assume the black-branes and the corresponding fluids to be non-extremal

- this corresponds to the regime 0 < Q2 < 2 or 0 < M < 3. Although there are
indications that the hydrodynamic limit should be valid for extremal black-holes, the
methods presented here are not sufficient to construct the solution there. Presumably
there is a phase transition, which makes the construction more subtle.

Using the flat black-brane solutions with slowly varying spatial components of velocity,
we intend to incorporate the finite but small magnetic field into the general framework of
derivative expansion constructed above,

gAB = g
(0)
AB + g

(1)
AB + . . . ,

AM = A
(0)
M + A

(1)
M + . . . ,

(4.18)

where g(1)
AB and A

(1)
M contain the first spatial boundary derivative of the velocity

g
(0)
ABdx

AdxB = −2uµ(x)dxµdr − r2V (r,m(x), q(x)) uµ(x)uν(x)dxµdxν + r2Pµν(x)dxµdxν ,

A
(0)
M dxM =

√
3q(x)

2r2
uµ(x)dxµ.

(4.19)
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We supplement the gauge condition (4.10) by

Ar = 0. (4.20)

4.2.1 First order calculation

In this section we construct the first order solutions of the metric and the gauge field
in the derivative expansion. We follow the procedure constructed in [33, 34]. However,
we include the external magnetic field which will give rise to a new transport coefficient
[35].

4.2.2 Scalars Of SO(3)

The scalar components of first order metric and gauge field perturbations (g(1) and
A(1) respectively) are parameterized by the functions h1(r), k1(r) and w1(r) as follows,2

∑
i

g
(1)
ii (r) = 3r2h1(r),

g(1)
vv (r) =

k1(r)

r2
,

g(1)
vr (r) = −3

2
h1(r),

A(1)
v (r) =

√
3w1(r)

2r2
.

(4.21)

Note that g(1)
ii (r) and g(1)

vr (r) are related to each other by the gauge choice Tr[(g(0))−1g(1)] =
0. We begin by finding the constraint equations that constrain various derivatives of veloc-
ities, temperature and charge that appear in the first order scalar sector. The constraint
equations are obtained by contracting the Einstein’s and Maxwell’s equations with the
vector dual to the one form dr. If we denote the Einstein’s and Maxwell’s equations by
EAB = 0 and MA = 0, then there are three constraint relations. Two of them come from
Einstein’s equations. They are given by

grrEvr + grvEvv = 0, (4.22)

grrErr + grvEvr = 0 . (4.23)

and the third constraint relation comes from Maxwell’s equations and is given by

grrMr + grvMv = 0 . (4.24)

2here i runs over the boundary spatial coordinates, v is the boundary time coordinate and r is the
radial coordinate in the bulk
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Equation (4.22) reduces to

∂vm
(0) = −4

3
m0∂iβ

(0)
i . (4.25)

which is same as the conservation of energy on the boundary at the first order in the
derivative expansion, i.e., the above equation is identical to the constraint

∂µT
µν
(0) = 0 , (4.26)

on the allowed boundary data. The second constraint equation (4.23) in the scalar sector
implies a relation between h1(r) and k1(r).

2∂iβ
(0)
i r5 +12r6h1(r)+4q0w1(r)−m0r

3h′1(r)+3r7h′1(r)−r3k′1(r)−2q0rw
′
1(r) = 0. (4.27)

The constraint relation coming from Maxwell’s equation gives

∂v q
(0) = −q0 ∂iβ

(0)
i . (4.28)

This equation can be interpreted as the conservation of boundary current density at the
first order in the derivative expansion,

∂µJ
µ
(0) = 0. (4.29)

We now proceed to find the scalar part of the metric dual to a fluid configuration which
obeys the above constraints. Among the Einstein’s equations four are SO(3) scalars.
Further the r and v-components of the Maxwell’s equations constitute two other equations
in this sector. Two specific linear combinations of the rr and vv components of the
Einstein’s equations constitute the two constraint equations in (4.25). Further, a linear
combination of the r and v-components of the Maxwell’s equations appear as a constraint
equation in (4.28). Now among the six equations in the scalar sector we can use any three
to solve for the unknown functions h1(r), k1(r), and w1(r). Moreover, we must make sure
that the solution satisfies the rest. The simplest two equations among these dynamical
equations are

5h′1(r) + rh′′1(r) = 0, (4.30)

which comes from the rr-component of the Einstein’s equation and

6q0h
′
1(r) + w′1(r)− rw′′1(r) = 0, (4.31)

which comes from the r-components of the Maxwell’s equation. Solving (4.30) we get

h1(r) =
C1
h1

r4
+ C2

h1
, (4.32)

where C1
h1

and C2
h1

are constants to be determined. We can set C2
h1

to zero as it will lead
to a non-normalizable mode of the metric. We then substitute the solution for h1(r) from
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(4.32) into (4.31) and solve the resultant equation for w1(r). The solution that we obtain
is given by

w1(r) = C1
w1
r2 + C2

w1
− q0

C1
h1

r4
. (4.33)

Here again C1
w1

, C2
w2

are constants to be determined. C1
w1

corresponds to a non-normalizable
mode of the gauge field and, therefore, can be set to zero. Finally, plugging in these solu-
tions for h1(r) and w1(r) into one of the constraint equations in (4.25) and then solving
the subsequent equation we obtain

k1(r) =
2

3
r3∂iβ

(0)
i + Ck1 −

2q0

r2
C2
w1

+

(
2q0

2

r6
− m0

r4

)
C1
h1
. (4.34)

The constants Ck1 and C2
w1

may be absorbed into redefinitions of mass (m0) and charge
(q0) respectively and, hence, may be set to zero. Further, we can gauge away the constant
C1
h1

by the following redefinition of the r coordinate,

r → r

(
1 +

C

r4

)
, (4.35)

with C being a suitably chosen constant.
We conclude that all the arbitrary constants in this sector can be set to zero and

therefore our solutions may be summarized as,

h1(r) = 0, w1(r) = 0, k1(r) =
2

3
r3∂iβ

(0)
i . (4.36)

In terms of the first order metric and gauge field this result reduces to∑
i

g
(1)
ii (r) = 0,

g(1)
vv (r) =

2

3
r∂iβ

(0)
i ,

g(1)
vr (r) = 0,

A(1)
v (r) = 0.

(4.37)

Now, we proceed to solving the equations in the vector sector.

4.2.3 Vectors Of SO(3)

The vector components of metric and gauge field g(1) and A(1) are parameterized by
the functions j(1)

i (r) and g
(1)
i (r) as follows,

g
(1)
vi (r) =

(m0

r2
− q0

r4

)
j

(1)
i (r),

A
(1)
i (r) = −

(√
3q0

2r2

)
j

(1)
i (r) + g

(1)
i (r).

(4.38)
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We intend to solve for the functions j(1)
i (r) and g

(1)
i (r).

The dynamical equation obtained from the vi-component of the Einstein’s equations
is given by

(
q2

0 − 3m0r
2
) dj(1)

i (r)

dr
+ 4
√

3q0r
2dgi(1)(r)

dr
+
(
m0r

2 − q2
0

)
r
d2j

(1)
i (r)

dr2
= 0, (4.39)

and the dynamical equation from the ith-component of the Maxwell’s equation reads

r

[
2
(
r6 −m0r

2 + q2
0

) d2g
(1)
i

dr2
r2 +

(
6r7 + 2m0r

3 − 6q2
0r
) dg(1)

i (r)

dr

]

−
√

3q0r
(
r6 −m0r

2 + q2
0

) d2j
(1)
i (r)

dr2
+
√

3q0

(
r6 − 3m0r

2 + 5q2
0

) dj(1)
i (r)

dr
= −48q2

0κrωi.

(4.40)

For any function j
(1)
i (r), using (4.39), g(1)

i (r) may be expressed as

g
(1)
i (r) = (Cg)i +

1

4
√

3q0

4m0j
(1)
i (r)−

(m0r
2 − q2

0)
dj

(1)
i (r)

dr

r

 . (4.41)

Here (Cg)i is an arbitrary constant. It corresponds to non-normalizable mode of the
gauge field and, hence, may be set to zero. Using this expression for g(1)

i (r), we obtain
the following differential equation for j(1)

i (r),

r2
(
q2

0 −m0r
2
) (
r6 −m0r

2 + q2
0

) d3j
(1)
i (r)

dr3

+ r
(
−11q4

0 −
(
5r6 − 14m0r

2
)
q2

0 −m0r
4
(
r4 + 3m0

)) d2j
(1)
i (r)

dr2

+
(
35q4

0 + 5r2
(
r4 − 6m0

)
q2

0 + 3m0r
4
(
3r4 +m0

)) dj(1)
i (r)

dr

= −288√
3
rωiq

3
0κ

(4.42)

The general structure of this equation can be encapsulated in the form

p2(r)
d2ji

′(2)(r)

dr2
+ p1(r)

dji
′(1)(r)

dr
+ p0(r)ji

′(r) = s(r). (4.43)

We reduced the order by introducing j′(r) = dj(r)
dr

. One solution of the homogenous part
of Eq. (4.42) is

j1
′(r) =

4m0r
7 − 6r5 (m0R

2 −R6)

(−R6 +m0R2 −m0r2)2 . (4.44)
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The general solution can be constructed using the variation of constants method

ji
′(r) = (C1

j )ij1i
′(r)− (C2

j )ij2i
′(r)− j1i′(r)

∫ ∞
r

s(r)j2i
′(r)

p2(r)W (r)
dr + j2i

′(r)

∫ ∞
r

s(r)j1i
′(r)

p2(r)W (r)
dr,

(4.45)
where

j2i
′(r) =

∫ ∞
r

e
−

∫ x
R
p1(w)
p2(w)

dw

j′(x)2
dx, (4.46)

and W (r) denotes the wronskian. Constants (C1
j )i and (C2

j )i are set by the requirement
that the solution is finite on the horizon R and on the boundary. The solution to Eq. (4.42)
is given by

j
(1)
i (r) = (C1

j )i +
(C2

j )ir
2

m0

r2
− q20

r4

+
r ∂vβ

(0)
i

m0

r2
− q20

r4

+
2
√

3ωi q
3
0κ

m0

(
m0

r2
− q20

r4

)
r4

+
6r2q0(∂iq

(0) + 3q0∂vβ
(0)
i )

R7
0

(
m0

r2
− q20

r4

) F1(
r

R0

,
m0

R4
0

).

(4.47)

(C2
j )i corresponds to a non-normalizable mode of the metric and is set to zero. (C1

j )i can
be absorbed into a redefinition of the velocities. The function F1( r

R0
, m0

R4
0
) is given by

F1(ρ,M) ≡ 1

3

(
1− M

ρ4
+
Q2

ρ6

)∫ ∞
ρ

dp
1(

1− M
p4

+ Q2

p6

)2

(
1

p8
− 3

4p7

(
1 +

1

M

))
, (4.48)

where Q2 = M − 1.
Substituting this result for j(1)

i (r) into Eq. (4.41) we obtain the following expression
for g(1)

i (r),

g
(1)
i (r) =

1

4
√

3q0R8 (R6
0 +m0 (r2 −R2

0))

[
6q2

0

(
br3 + 2

√
3ωq0κ

)
R8

0

+q0(∂iq
(0) + 3q0∂vβ

(0)
i )
((
R6 −m0R

2 +m0r
2
)
F

(1,0)
1 (ρ,M)r5

+6F1(ρ,M)R3
0

(
m0 −R4

0

)
r4
)]
,

(4.49)

where we use the notation f (i,j)(α, β) to denote the partial derivative ∂i+jf/∂αi∂βj of the
function f .

Plugging j
(1)
i (r) and g

(1)
i (r) back into (4.38) we conclude that the first order metric

and gauge field in the vector sector are given by

g
(1)
vi (r) = r∂vβ

(0)
i +

2
√

3ωiq
3
0κ

m0r4
+

6r2

R7
0

q0(∂iq
(0) + 3q0∂vβ

(0)
i )F1(

r

R0

,
m0

R4
0

),

A
(1)
i (r) =

−
√

3m0q0(∂iq
(0) + 3q0∂vβ

(0)
i )F

(1,0)
1 ( r

R0
, mo
R0

)r7 + 36ωiq
3
0κ

12m0q0r2
.

(4.50)
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4.2.4 Tensors Of SO(3)

The tensor components of the first order metric is parameterized by the function
α

(1)
ij (r) such that

g
(1)
ij = r2α

(1)
ij . (4.51)

The gauge field does not have any tensor components, therefore, in this sector there is only
one unknown function to be determined. There are no constraint equations in this sector
and the only dynamical equation is obtained from the ij-component of the Einstein’s
equations. This equation is given by

r
(
r6 −m0r

2 + q2
0

) d2αij(r)

dr2
−
(
−5r6 +m0r

2 + q2
0

) dαij(r)
dr

= −6σ
(0)
ij r

4, (4.52)

where
σ

(0)
ij =

1

2

(
∂iβ

(0)
j + ∂jβ

(0)
i

)
− 1

3
∂kβ

(0)
k δij. (4.53)

The solution to Eq. (4.52) is again obtained by demanding regularity at the future
event horizon and appropriate normalizability at infinity. We have

α
(1)
ij =

2

R0

σijF2(
r

R0

,
m0

R4
0

), (4.54)

where the function F2(ρ,M) reads

F2(ρ,M) ≡
∫ ∞
ρ

p (p2 + p+ 1)

(p+ 1) (p4 + p2 −M + 1)
dp, (4.55)

with M ≡ m/R4 as before. The tensor part of the first order metric is determined to be

g
(1)
ij =

2r2

R0

σijF2(
r

R0

,
m0

R4
0

). (4.56)

4.2.5 The global metric/gauge field at first order

In this subsection, we gather the results of the previous sections to write down the
entire metric and the gauge field accurate up to the first order in the derivative expansion.
We get the metric as

ds2 = gABdx
AdxB

= −2uµdx
µdr − r2 V (r,m, q) uµuνdx

µdxν + r2Pµνdx
µdxν

− 2uµdx
µ r

[
uλ∇λuν −

∇λu
λ

3
uν

]
dxν +

2r2

R
F2(ρ,M)σµνdx

µdxν

− 2uµdx
µ

[
2
√

3κq3

mr4
ων +

6qr2

R7
P λ
ν DλqF1(ρ,M)

]
dxν + . . . ,

A =

[√
3q

2r2
uµ +

6κq2

mr2
ωµ +

√
3r5

2R8
P λ
µDλqF

(1,0)
1 (ρ,M)

]
dxµ + . . . ,

(4.57)



44 4 Fluid dynamics from gravity

where we have defined
P λ
µDλq ≡ P λ

µ∇λq + 3(uλ∇λuµ)q. (4.58)

We have come to the main goal of the above computation. We want to extract the
energy-momentum tensor and the current of the boundary theory. For that we need to
calculate the extrinsic curvature Kµν to the surface at fixed r and appropriately regularize.
Using the prescription (3.46) we get the following,

Tµν = P (ηµν + 4uµuν)− 2η0τµν + . . . , (4.59)

where the fluid pressure P and the viscosity η0 are given by the expressions

P ≡ R4

16πG5

, (4.60)

η0 ≡
R3

16πG5

=
s

4π
. (4.61)

This is a very important result. As explained earlier the shear flow is dominating in the
plasma. We were able to calculate the shear transport coefficient and it turns out to be
very small. This confirms the indication that QGP is strongly coupled, at least for N = 4
SYM. In a similar manner we can obtain the current sourced by the gauge field,

Jµ = lim
r→∞

r2Aµ
8πG5

= n uµ −D P ν
µDνn+ ξ ωµ + . . . , (4.62)

where the charge density n, the diffusion constant, and the anomalous transport coefficient
ξ are given by

n ≡
√

3q

16πG5

, (4.63)

D ≡ 1 +M

4MR
, (4.64)

ξ ≡ 3κq2

4πG5m
. (4.65)

We can further complicate the above calculation by introducing a constant, external
magnetic field. This allows us to get in touch with results obtained in Section 2.2, where
we constrained two anomalous transport coefficients. The second transport coefficient in
the gravity language takes the following form

ξB ≡
√

3 (3R4 +m0) qκ

8πG5m0R2
(4.66)

Despite hydrodynamic reasoning is very rigid, it is always nice to arrive at physical re-
sults using different logic. Now, we can explicitly check the values (2.43) and (2.44) in
the particular model. This is again a non-trivial result since the hydrodynamic deriva-
tion is model independent up to anomaly coefficient which is easily calculated from the
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perturbative quantum field theory. In order to compare this results with field theory
predictions we have to rewrite them as functions of chemical potential and temperature.
The chemical potential µ of the boundary theory is given by the difference between the
value of the temporal component of the gauge field At at the horizon and its value at
the boundary [33]. The temperature T of the boundary theory can be calculated using
Hawking temperature,

µ = At(R)− At(∞) = −
√

3q

2R2
,

T =
R

2π

[
2−

(
R−
R

)2

−
(
R−
R

)4
]
.

(4.67)

We have defined R to be the larger of the two positive roots (outer horizon) of V (r,m, q)
defined in Eq. (4.17) and R− the smaller of its two positive roots (inner horizon). Manip-
ulating V (r,m, q) and Eq. (4.67) allows us to express the position of the horizon and the
black hole mass in terms of hydrodynamic variables

R =
πT

2

(
1 +

√
1 +

8

3

µ2

π2T 2

)
,

m =
π4T 4

24

(√
1 +

8

3

µ2

π2T 2
+ 1

)3(
3

√
1 +

8

3

µ2

π2T 2
− 1

)
.

(4.68)

Plugging this back to the gravitational expressions for ξ and ξB we recover the results
(2.43) and (2.44).

The construction we presented is flexible enough to be continued to the next order.
This leads to more complicated expressions for the metric and the gauge field plus a bunch
of new transport coefficients. We present the expressions for the current and stress tensor
in the Appendix A. For the technical details we refer the reader to [33, 34]. The above
construction can be extended for a system with multiple, conserved U(1) currents [89].
The dual description confirms the field theory prediction.

4.3 Gravity dual of boost-invariant fluids

The solutions constructed in the previous section are valid for general fluids. However,
they are given as complicated integral expressions. It turns out that it is possible to have
an explicit and still a non-trivial solution for boost-invariant flow described in Section
2.3. W will be working in the coordinates (2.45). The only non-vanishing components of
the energy-momentum tensor are the diagonal ones, which depends only on τ alone. At
this point we have three degrees of freedom, Tττ , Tyy, and Tx⊥x⊥ . They can be further
reduced to just one single function by imposing tracelessness

T µµ = −Tττ +
1

τ 2
Tyy + 2Txx = 0, (4.69)
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and energy-momentum conservation,

∇µT
µν = τ

d

dτ
Tττ + Tττ +

1

τ 2
Tyy = 0. (4.70)

The energy-momentum tensor can be expressed in the following unique form,

Tµν =


ε(τ) 0 0 0

0 −τ 3 d
dτ
ε(τ)−τ 2ε(τ) 0 0

0 0 ε(τ)+ 1
2
τ d
dτ
ε(τ) 0

0 0 0 ε(τ)+ 1
2
τ d
dτ
ε(τ)

 . (4.71)

ε(τ) can be interpreted as the energy density of the plasma. There is a further constraint
on ε(τ) coming from the positive energy condition which states that for a time-like vector
tµ, the energy in any reference frame should be positive,

Tµνt
µtν ≥ 0. (4.72)

This condition gives a set of inequalities,

ε(τ) ≥ 0, ε′(τ) ≤ 0, τε′(τ) ≥ −4ε(τ). (4.73)

From now on we will concentrate on large τ asymptotics of ε(τ). Motivated by the Bjorken
solution (2.52) we will assume the form of energy density to be

ε(τ) ∼ 1

τ s
. (4.74)

Kinematics is not enough to determine the precise value of s. From (4.73) we can only say
that it lies within the range 0 ≤ s ≤ 4. To determine s we will concentrate on N = 4 SYM
although so far the discussion has been general and independent of particular features or
coupling regime of an underlying conformal gauge theory. For N = 4 SYM we have the
AdS/CFT correspondence which will help us to single out s.

4.3.1 Gauge/gravity dual of non-viscous Bjorken flow

We want to write down an ansatz for the geometry that is dual to the boost-invariant
plasma in the N = 4 SYM. Before we do that we have to choose the coordinate sys-
tem. For the general fluid configuration it was useful to use Eddington-Finkelstein (EF)
ingoing coordinates, because they allow to impose regularity on the solutions. However,
Fefferman-Graham (FG) coordinates are particularly useful in the holographic renormal-
ization procedure, which we will perform later for a probe D7-brane. Thus, we will
construct a gravity dual of Bjorken flow in both coordinate systems choosing a more con-
venient one for a particular purpose. Let us start with the FG coordinate system. The
metric should respect all symmetries of plasma configuration, which leads to the following
ansatz,

ds2 =
1

z2

(
−ea(z,τ)dτ 2 + eb(z,τ)τ 2dy2 + ec(z,τ)dx2

⊥
)

+
dz2

z2
. (4.75)
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We want to solve Einstein’s equations for the three unknown functions with the boundary
condition

a(z, τ) = −z4ε(τ) + z6a6(τ) + . . . . (4.76)

This condition comes from Eq. (3.45). In general we would expect a complicated system
of non-linear partial differential equations. However, in this particular case we have a
scaling variable which allows us to solve ordinary differential equation. To see that we
plug the energy density in the form (4.74) to the Taylor series (4.76). The dominant
contribution to an(τ) is

znan(τ) ∝
( z
τ
s
4

,
)n
, (4.77)

which leads to the following scaling variable

v ≡ z

τ
s
4

. (4.78)

With the scaling variable we proceed in a complete analogy with the derivative expansion.
Here the role of an expansion parameter is played by the inverse powers of τ

a(z, τ) = a0(v) +
1

τ δ
a1(v) + . . . ,

b(z, τ) = b0(v) +
1

τ δ
b1(v) + . . . ,

c(z, τ) = c0(v) +
1

τ δ
c1(v) + . . . ,

(4.79)

where δ is some positive but unspecified power. We want to find a(z, τ), b(z, τ), and c(z, τ)
order by order. We insert the metric (4.75) into the Einstein’s equations and take the
limit τ →∞ keeping v fixed. This means that we drop off from equations all terms with
subleading τ contribution. We obtain the following set of coupled nonlinear equations,

v(∂vc)
2 =− v [2(∂va)(∂vc) + (∂va)(∂vb) + 2(∂vb)(∂vc)]

+ 6(∂va) + 6(∂vb) + 12(∂vc),
(4.80)

3v(∂vc)
2 = 6(∂vb) + 12(∂vc)− v(∂vb)

2 − 2v(∂vb)

− 4v(∂vc)− 2v(∂vb)(∂vc),
(4.81)

2vs(∂vc)
2 =− 2vs(∂2

vb)− 2s(∂vb)− 8(∂va) + vs(∂va)(∂vb) + 8(∂vb)

− vs(∂vb)2 − 4vs(∂2
vc)− 4s(∂vc) + 2vs(∂va)(∂vc).

(4.82)

The above equations can be solved exactly. The solution reads

a(v) = A(v)− 2m(v), (4.83)
b(v) = A(v) + (2s− 2)m(v), (4.84)
c(v) = A(v) + (2− s)m(v), (4.85)
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where

A(v) =
1

2

(
log(1 +

√
3s2 − 8s+ 8

24
v4) + log(1−

√
3s2 − 8s+ 8

24
v4)

)
, (4.86)

m(v) =
1

4

√
24

3s2 − 8s+ 8

(
log(1 +

√
3s2 − 8s+ 8

24
v4)− log(1−

√
3s2 − 8s+ 8

24
v4)

)
.

(4.87)

We see that the above geometry is potentially singular. This may be related to a coordi-
nate singularity. However, it may as well be that there is a special point in the parameter
space for which the geometry (4.75) is regular. To see that explicitly we have to calculate
a curvature invariant,

R2 = RµναβRµναβ. (4.88)

For generic values of s this invariant is singular apart form the point

s =
4

3
. (4.89)

The late time expansion of N = 4 SYM is described as a perfect fluid. Moreover, it is in
agreement with AdS/CFT correspondence, which gives exact form of a dual geometry

ds2 =
1

z2

−
(

1− ε0
3

z4

τ4/3

)2

1 + ε0
3

z4

τ4/3

dτ 2 +

(
1 +

ε0

3

z4

τ 4/3

)
(τ 2dy2 + dx2

⊥)

+
dz2

z2
. (4.90)

To get some intuition about geometry (4.90) let us take the standard Schwarzschild metric
with L = 1 (3.50) and perform a coordinate transformation

r =

√
1 + z4/z4

0

z
, (4.91)

which leads to the following expression,

ds2 = − (1− z4/z4
0)2

(1 + z4/z4
0)z2

dt2 + (1 + z4/z4
0)
dx2

i

z2
+
dz2

z2
. (4.92)

We see that the geometry (4.90) is analogous to AdS-Schwarzchild geometry with the
position of the horizon moving into the bulk,

z0 = 4

√
3

ε0

· τ
1
3 . (4.93)

We could interpret this result as a cooling of the dual plasma during an expansion process
with temperature inversely proportional to the expansion time,

T =
2

1
2 ε

1
4
0

3
1
4π

τ−
1
3 . (4.94)
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As a caveat we note that the näıve identifications of event horizons, within AdS/CFT
correspondence, in the time dependent systems are not always true. In [90] it was shown
that in the systems near equilibrium the event and apparent horizons are close to each
other. Hence, we can use them as a measure of entropy in the boundary theory. However,
in the far-from-equilibrium evolution we should use the quasi-local apparent horizon as
opposed to the event horizon to measure the entropy. There are some issues associated
with this prescription, since an apparent horizon is foliation dependent, and in some case
discontinuous, but these issues are not yet fully understood.

4.3.2 Gauge/gravity dual of viscous boost-invariant plasma

The boost-invariant plasma admits shear expansion (2.53). We showed that in the
fluid/gravity duals one can determine the value of shear viscosity from the energy-momentum
tensor. Now we wan to examine that effect in the boost-invariant flows. The natural way
to do that is to study subasymptotic behavior of of the metric coefficients (4.79). In
order to setup a systematic expansion procedure one expands the left hand side of the
appropriately rescaled Einstein’s equations,

EAB ≡ (τ
2
3Eττ , τ

4
3Eτz, τ

2
3Ezz, τ

− 4
3Eyy, τ

2
3Exx), (4.95)

in powers of τ−
2
3 . This was first found in [26] and the result is

a1(v) = 2η0
(9 + v4)v4

9− v8

b1(v) = −2η0
v4

3 + v4
+ 2η0 log

3− v4

3 + v4

c1(v) = −2η0
v4

3 + v4
− η0 log

3− v4

3 + v4
.

(4.96)

Unfortunately, at this order we cannot say much about the parameters η0 and δ since the
curvature is regular and takes the following form

R2 = R0(v) +
1

τ δ
R1(v) + . . . (4.97)

We expect that we have to go one order higher to extract some more information. Indeed,
the subsubleading curvature invariant yields

R2 = R0(v) +
1

τ δ
R1(v) +

1

τ 2δ
R2(v) +

1

τ
4
3

R̃2(v) + . . . (4.98)

The last two terms are always singular. Thus, the only way to have a finite structure is
to tune them to cancel each other. This can be done requiring

δ =
2

3
, (4.99)
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and setting the viscosity coefficient to the universal value s
4π

. This result shows a generic
feature for the boost-invariant duals. We have to check n+ 1-th order of the expansion to
determine the n-th order transport coefficients. However, if we go to third order, apart
from singularities that we can cancel by tuning appropriate transport coefficients, there
are always logarithmic singularities coming from the peculiar choice of coordinate system.
To get a consistent description of boost-invariant flow at third order one has to redo the
above analysis in the Eddington-Finkelstein coordinates.

4.4 Regularity issues in boost-invariant plasma

FG coordinates create unremovable singularities in the curvature invariant R2. How-
ever, in Section 4.1 we argued that in the derivative expansion the structure of equations
in EF coordinates give regular solutions to all orders. Because boost-invariant solutions
are just subclass of general hydrodynamic solutions we expect that the boost-invariant
setup in EF coordinates will be free of singularities [43, 91]. To support this intuition let
us study the relation between these two coordinates systems in the case of perfect fluid.
We saw that there are two equivalent dual descriptions (4.4) and (4.90). We relate these
descriptions by the following coordinate transformation

τ̃ = τ

{
1− 1

τ 2/3

[
31/4π

4
√

2
+

31/4

2
√

2
arctan

(
31/4

√
2
rτ 1/3

)
+

31/4

4
√

2
log

rτ 1/3 −
√

2
31/4

rτ 1/3 +
√

2
31/4

]}
,

r =
1

z

√
1 +

z4

3τ 4/3
,

(4.100)

where we set initial energy density ε0 to one. We see that the transformation is singular
when z = 3

1
4 τ

1
3 . This is precisely the locus where the logarithmic singularities were found.

This is because the ‘boosted black brane’ metric is regular and invertible up to the black
brane singularity, which is not the case with (4.90). Taking into account all possible
symmetries we assume the following ansatz, which is the generalization of (4.4),

ds2 = −r2a(τ̃ , r)dτ̃ 2 + 2dτ̃dr + r2τ̃ 2eb(τ̃ ,r)dy2 + r2ec(τ̃ ,r)dx2
⊥ (4.101)

Analogous to the FG case we introduce the scaling variable rτ̃ 1/3 and construct the metric
coefficients for the large values of τ̃ . This scaling limit should be the same at the boundary
but, because of the non-trivial r dependence in the relation between τ and τ̃ , it should
differ in the bulk. Using the scaling variable we expand the metric coefficients as

a(τ̃ , r) = A(v) exp

(∑
k>0

ak(v)τ̃−2k/3

)
,

eb(τ̃ ,r) = B(v) exp

(∑
k>0

bk(v)τ̃−2k/3

)
,

ec(τ̃ ,r) = C(v) exp

(∑
k>0

ck(v)τ̃−2k/3

)
.

(4.102)
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To recover the black brane solution we choose the zeroth order coefficients to be

A (v) = 1− 4

3v4
, B (v) = C (v) = 1. (4.103)

The equations of motion at a given order k are a system of ordinary second order differ-
ential equations for the 3 functions ak (v), bk (v) and ck (v). Each solution involves two
integration constants. Two of the equations of motion are constraints. At each order
k > 0 one of the constraints fixes one of the integration constants appearing at that
order, and the other one fixes an integration constant left undetermined at order k − 1.
The 4 remaining integration constants can be fixed order by order by imposing metric
regularity. It turns out that the potential singularity is located only at v =

√
2/31/4.

Thus, the functions bk (v) , ck (v) must remain finite as v →
√

2/31/4. In case of ak (v)
the requirement should be that the product with A(v) must be finite. This requirement
can be satisfied by requiring that ak (v) itself be regular. Furthermore, asymptotic AdS
behavior of the metric requires that these functions vanish as v →∞ (in the late proper
time regime). The first order expressions in EF coordinates read

a1 = −2

3

2× 3−1/2 + 21/2 × 3−1/4v + v2

(21/2 × 3−1/4 + v) (2× 3−1/2 + v2)
,

b1 =
π√

233/4
−
√

2

33/4
arctan

(
31/4

√
2
v

)
− 2
√

2

33/4
log v

+

√
2

33/4
log

(√
2

31/4
+ v

)
+

1√
233/4

log

(
2

31/2
+ v2

)
,

c1 = −b1/2.

(4.104)

The present approach to the boost-invariant flow starts from a manifestly regular metric
in the leading order (no logarithmic and power-like singularities at v =

√
2/31/4) and

produces regular solutions up to the third order. Since the metric components, inverse
metric components, and their derivatives are regular, all curvature invariants are non-
singular. Indeed, from (4.101) it follows that the non-vanishing components of the inverse
are Grr = r2ea(τ̃ ,r), Grτ̃ = 1, Gyy = r−2τ̃−2e−b(τ̃ ,r), G⊥⊥ = r−2e−c(τ̃ ,r). There is no terms
e−a(τ̃ ,r), thus, there is no singularities, and we end up with perfectly regular dual of the
boost-invariant flow.

As with all problems within classical gravity coordinate chart has crucial importance.
It strongly depends on what physical problem we want to analyze. The disadvantage of
the FG coordinate system is that the regularity analysis is not straightforward. However,
for some procedures, like holographic renormalization, regularity at the horizon is not
relevant. Moreover, as pointed out in [92] the explicit construction of the solutions for
general fluids simplifies dramatically in FG coordinates and we recover manifest Lorentz
invariance. Therefore, the choice of coordinate system strongly depends on phenomena
we want to study. In the next chapter we will introduce fundamental matter in the
boost-invariant setup and will find the FG coordinate system convenient.
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Chapter 5

Flavors in plasmas

In the quest for constructing a gravity dual to some model that can approximate
plasma physics we managed to reconstruct hydrodynamics purely from gravity. We can
push the correspondence forward to introduce matter in the fundamental representation
of the gauge group. In QCD, gluons transform in adjoint representation, quarks transform
in the fundamental representation of the gauge group, whereas in N = 4 super Yang-Mills
all fields are in the adjoint. Evidently there is lack of proper flavor fields in our model
so far. In order to obtain flavor fields holographically we will generalize the original
AdS/CFT correspondence following the work of Karch and Katz [93] (see also [94–96]).

5.1 Brane degrees of freedom

To get some intuition how one can include fields in the fundamental representation let
us first focus on the adojoint representation. We previously showed that constructing the
gauge/gravity correspondence we start with a system with large number of D3-branes.
We can attach open strings to these branes in such a way that one end lies on one brane
and the second string end lies on the other. We have N2

c degrees of freedom which upon
quantization give us fields transforming in the adjoint representation of SU(Nc). The idea
to obtain a fundamental representation is to modify the open strings degrees of freedom.
This can be achieved by adding some new D-branes to the stack. Depending of what kind
of branes we add we get different field theory interpretations.

We recall from the discussion in Section 3.4 that in type IIB string theory we have
branes labeled by odd numbers. The first choice then is to add sayMc D3-branes separated
by some distance. This procedure will produce massive vector field in the world-volume
that transforms in the fundamental representation. However, this is not the kind of fields
we need, since we want to obtain fermions not vectors. Let us give up on adding more
D3-branes and start to add higher dimensional branes. To do that we have to choose
the directions parallel to the stack of D3s. The choice determines how supersymmetric
the system will be. We want to preserve supersymmetry to ensure stability. It turns out
that introducing new D-branes breaks at least half of the supersymmetries. Analysis of
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intersecting D-branes shows that half of the supersymmetries is preserved if one D-brane
is extended in four or eight directions, in which the other one is not [73]. One way of
choosing directions filled by a D-brane is given in Table 5.1

Coordinates
X0 X1 X2 X3 X4 X5 X6 X7 X8 X9

D3

D5

D7

Table 5.1: Possible intersections of various D-brane systems. Blue color denotes the directions
in which D-branes are extended. Xµ is a coordinate array in R9,1

We can consistently introduce fermionic fields by adding D5- or D7-branes. Note,
however, that the physics is different in both cases. This comes from the dimensionality.
If we attach one end of open string to a D3-brane and the other to D5-brane, then the
resulting fermion moves in a (2+1) dimensional intersection. This can be interpreted as
fermionic field restricted to some defect. This situation is closer to condensed matter
systems than to QCD. Thus, in the rest of this Thesis we will focus on the D7-branes,
which share a (3+1) dimensional space with D3-branes and the resulting fermionic matter
is not restricted to any defect. Moreover, we can produce massive quarks separating D3
and D7-branes in orthogonal directions.

5.2 Gauge/gravity correspondence for the D3/D7-brane
system

The field theory on a world-volume of a D3/D7-brane system can be reproduced by
studying low-energy description of string excitations. As in the case of a single stack
of D3-branes we have open strings with endpoints on the stack. We will denote them
as (3-3). However, we have two new possibilities, (3-7), stretching between D3 and D7-
branes, and (7-7), stretching between D7-branes. We are interested in large Nc limit with
four-dimensional ’t Hooft coupling λ and the number of D7-branes Nf being fixed. The
eight-dimensional ’t Hooft coupling

λ8 = (2π)4λα′
2Nf

Nc

(5.1)

which controls the (7-7) strings interaction vanishes in the low-energy limit α′ → 0. (7-7)
strings decouple and do not interact with (3-3) and (3-7) strings. Quantizing (3-3) strings
we obtainN = 4 SYM as previously, whereas (3-7) strings produceN = 2 supersymmetric
U(Nc) gauge theory. The matter multiplet of that theory is called hypermultiplet. It is
comprised of two complex scalars and a Dirac spinor. We will refer to that spinor as
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a ‘quark’. As a leftover of the above procedure we get scalar fields in the fundamental
representation, which do not have counterparts in QCD.

Having found a field theory with fermionic matter we would like to repeat arguments
invoked in original gauge/gravity duality. The first step is to find supergravity description
of D3/D7 system. We expect that D3-branes will again act as a source for the metric
and a self-dual five-form. The D7-branes will modify the metric and produce a non-
trivial axion-dilaton profile. Unfortunately, the solution for a general D3/D7 system
does not exist. The picture is especially complicated if the number of D7-branes is
large, Nf ≈ Nc. Therefore, Nf is usually taken to be of order 1. This is known as the
probe limit, in which the effect from D7-branes is negligible. More precisely, in the limit
Nc → ∞, D3-branes source the metric and the five-form with gsNc, whereas the effect
from D7-branes is controlled by the coupling gsNf . If Nf is small and gs → 0 we may
ignore the backreaction, as well as the axion-dilaton profile. Thus, we are left again with
supergravity with AdS5×S5 metric field plus a probe D7-brane described by a DBI action
(3.18), extended along AdS5 × S3.

The ingredients of the original Maldacena conjecture are modified. Therefore, the
global symmetries in the system are different. The D3/D7 intersection breaks eight
supercharges of original sixteen in D3-branes stack. Moreover, if we introduce non-zero
mass for fermions, there is no supersymmetry transformation left. In addition to SUSY, we
have global R-symmetry transformations, which are modified as well. It can be easily seen
by looking at the geometry. From Table 5.1 we see that introducing a D7-brane breaks
the rotational SO(6)R invariance in the (X4, X5, X6, X7, X8, X9) directions to SO(4)R ×
SO(2)R. The SO(4)R rotates in (X4, X5, X6, X7), while SO(2)R rotates in (X8, X9) plane.
The SO(2)R may be identified with U(1)R on the field theory side. This symmetry is
explicitly broken by a quark mass and acts as a chiral symmetry. For m = 0 the D3/D7
system is a point in the (X8, X9) plane. Introducing a non-zero mass we separate D7-
brane from the stack of D3s. We have two points singled out in the (X8, X9) plane, labeled
by the position of D3 and D7-branes. Two points on a plane are not SO(2)R invariant.
Hence, we expect the conformal invariance to hold only for massless quarks. However,
there is a caveat here. Moreover, if Nf is of order Nc, the scale is generated dynamically
and the conformal invariance is lost.

5.2.1 D7-brane embeddings

The generalized form of duality provides tools to extract new field theory quantities,
such as mass of the hypermultiplet or the meson spectra. For that we need the explicit
form of the probe branes embedding. Evaluating the DBI action (3.18) with the appro-
priate tension (3.20) we get

SDp = Nf
λNc

25π6

∫
d8ξ
√
−det(P [Gab]D7 + 2πα′Fab). (5.2)

From now on, we restrict ourselves to just one probe brane thus setting Nf = 1.
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Throughout this Thesis we will be using various coordinate systems. We will start with
standard coordinates for anti-de Sitter space (3.23) to get some intuition about D7-brane
embedding. Next, we will rewrite the action in the Fefferman-Graham coordinates to per-
form holographic renormalization. Finally, we will switch to the boost-invariant geometry
in the FG type coordinates to determine the embedding and renormalize holographically.
The conventions are summarized in Table 5.2

D3-brane
D7-brane

Manifolds
Coordinates

R9,1

XM

R3,1 S5

xµ r = 1/z, angular variables on S5

R3,1 S3 S2

xµ ρ, angular variables on S3 w, angle

Table 5.2: D3- and D7-brane embeddings in the AdS5 × S5, with conventions for world-volume
coordinates

Placing the D7-brane parallel to the first eight coordinates its position and shape is
described by X8 and X9. We can see that by rewriting the line element (3.23) in a way
that shows the symmetries of the D7-brane,

ds2
10 =

r2

L2
dxµdxµ +

L2

r2
dρ2 + L2

[
ρ2dΩ2

3 + (dX8)2 + (dX9)2
]

=
r2

L2
dxµdxµ +

L2

r2
dρ2 + L2(ρ2dΩ2

3 + dw2 + w2dΩ2
1), (5.3)

where r2 =
∑

(X i)2 = ρ2 + (X8)2 + (X9)2. The D7-brane is extended along the bound-
ary directions and wraps three-sphere inside the original five-sphere. In the remaining
two directions we have introduced polar coordinates. The motion in the w direction is
equivalent with varying the mass of the multiplet in the boundary theory. Therefore, we
are interested in finding a world-volume scalar which controls the brane dynamics in the
radial direction. In principle this scalar depends on arbitrary world-volume coordinates.
However, we require that it preserves certain symmetries. We want to preserve Lorentz
symmetry, therefore, we forbid the scalar to depend on boundary coordinates. More-
over, we also assume SO(4) symmetry of the three-sphere, in order to make the analysis
feasible. As a result the ansatz for the scalar field depends only on the radial coordinate,

w = Φ(ρ). (5.4)
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With the above ansatz we can calculate the induced metric on the D7-brane according to
(3.17),

ds2
10 =

r2

L2
dxµdxµ +

L2

r2

[
dρ2[1 + Φ′(ρ)] + ρ2dΩ2

3

]
, (5.5)

where prime denotes a derivative with respect to ρ. Calculating the determinant of that
metric we can easily extract the DBI action density for a D7-brane,

SD7

V
= −2π2TD7

∫
dρρ3

√
1 + Φ′(ρ)2. (5.6)

The ground state configuration corresponds to the solution of the Euler-Lagrange equa-
tion,

d

dρ

[
ρ3√

1 + Φ′(ρ)
Φ′(ρ)

]
= 0. (5.7)

We see that there is one analytic solution to that equation, namely Φ(ρ) = const. We
cannot solve Eq. (5.7) directly to obtain the full solution. However, we can extract
asymptotic solution for ρ→∞. Close to the boundary the embedding behaves as

Φ −−−→
ρ→∞

m+
c

ρ2
+ ..., (5.8)

where m and c are related to the bare quark mass mq and chiral condensate 〈O〉

mq =
m

2πα′
, (5.9)

〈O〉 = − Nc

(2πα′)3λ
c. (5.10)

Let us briefly comment on this identification. In the asymptotic geometry, Φ(ρ) is precisely
the separation of the D3s and the probe D7. The mass of the flavor fields is the string
tension times the separation value, which gives precisely Eq. (5.9). To identify parameter
c with the corresponding field theory quantity we recall the relation (3.41). m should act
as a source to an operator with conformal dimension 3. Usually in a field theory m is a
source to quark bilinear. Therefore, the operator O is a supersymmetric version of the
quark bilinear, and it takes the schematic form,

〈O〉 = ψ̄ψ + q†Φq +mqq
†q. (5.11)

We may find a bit puzzling that for the operator with ∆ = 3 the mass of corresponding
scalar mode is negative according to Eq. (3.42). Non-zero mass breaks supersymmetry
and the stability is no longer guaranteed. Fortunately, as shown by Breitenlohner and
Freedman, scalar fields are stable if the mass is above certain negative value known as BF
bound [97, 98]. In our case

m2
BF = −4 ≥ −3 = ∆(∆− 4), (5.12)

therefore, the scalar field is in a region that ensures stability. We note that in this theory
there is no spontaneous chiral symmetry breaking, since the condensate (5.11) vanishes
as mq goes to zero.
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5.2.2 D7-brane embedding in AdS/Schwarzschild geometry

A natural generalization of the previous construction is to place a probe D7-brane in
the AdS/Schwarzschild geometry (3.50) [99]. This allows to study flavor fields in finite-
temperature field theory. Moreover, it helps to get intuition how to embed a D7-brane in
the boost-invariant geometry.

First of all, we note that in the geometries with a black hole in the bulk there are
two possibilities for the topology of the D7-brane embedding. These are the so-called
‘Minkowski embedding’, when the brane doesn’t touch the black hole, and ‘black hole
embedding’, when the brane actually falls into the black hole. Moreover, we impose a
condition which we use to identify physical solutions, the D7-brane embedding should
have an interpretation as a renormalization group flow. This means that for each slice
of the D7-brane geometry at fixed value of ρ2, there is only one copy of the geometry
R4 × S3 (see Fig. 5.1).

Φ(ρ)

ρ

Figure 5.1: Schematic solutions of the D7-brane equations of motion. Blue line corresponds to
Minkowski embedding and red line corresponds to black hole embedding.

For large quark mass, the solutions are very far from the black hole and become
approximately constant embeddings as in the supersymmetric scenario [93]. This suggests
the following perturbative analysis. For small ε we seek regular solutions

Φ(ρ) = m+ εf(ρ) (5.13)

of the DBI action in AdS/Schwarzschild geometry

SD7/AdS/BH = −2π2TD7

∫
dρρ3

(
1− ε(L2π T )8

16 (ρ2 + Φ(ρ)2)4

)√
1 + Φ′(ρ) (5.14)

The AdS black hole geometry asymptotically approaches AdS5 × S5 geometry, thus the
large ρ asymptotic solution coincides with the one found previously (5.8). The parameters
m and c are taken as the boundary conditions for the EOMs. These equations are solved
by means of shooting technique. We plot the condensate as a function of m in Figure 5.2.
Solving perturbatively for the function f(ρ) we obtain the following expression
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Figure 5.2: Chiral condensate as function of the quark mass for the static AdS/Schwarzschild
background.

f(ρ) = −(L2πT )8 (3m4 + 3ρ2m2 + ρ4)

96m5 (m2 + ρ2)3 . (5.15)

We can extract the value of the condensate,

c = − 1

96

(L2πT )8

m5
. (5.16)

We have written (5.16) in a way that emphasizes the known fact that the temperature
can be effectively removed from the equations by a suitable redefinition of the quark mass
and condensate. In the present context, such a rescaling is not desirable. With (4.94) we
conclude

c = −ε
2
0L

16

54m5
τ−

8
3 . (5.17)
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5.2.3 D7-brane embedding in the boost-invariant geometry

Restricted to the scalar Φ, the action reads for our geometry (4.75) with the coefficients
given by Eqs. (4.96)

SD7 =
1

2

NcNf

(2π`2
s)

4λ
Vx

∫
dτ dρ τ ρ3 A

√
1 + Φ′2 −B

Φ̇2

(ρ2 + Φ2)2
, (5.18)

A ≡
(
1− v8

9

)
exp

[
−2η0 ε

− 1
4

0

v8

9− v8
τ−

2
3

]
,

B ≡
1 + v4

3

(1− v4

3
)2

exp

[
2η0 ε

− 1
4

0 v4 9 + v4

9− v8
τ−

2
3

]
,

(5.19)

v ≡ ε
1
4
0L

2

τ
1
3

√
ρ2 + Φ(ρ, τ)2

, (5.20)

where Vx =
∫
dy d2x⊥ is the infinite volume of spatial part of the boundary.

Since the viscous fluid geometry behaves similar to AdS/Schwarzschild with time-
dependent temperature, we do not expect spontaneous symmetry breaking either, though
going to small quark masses leaves the domain of validity of the geometry and it is thus
hard to make a definite statement. We will therefore only consider ‘Minkowski-type’
embeddings that avoid the horizon at the center of the geometry.

For a given quark mass, in general regularity is only possible for a discrete set of values
for the chiral condensate. In the regime under consideration, since no phase transition
occurs, we expect c = c(m) to be a one-valued function.

The equation of motion arising from (5.18) is a non-linear partial differential equation.
We will solve it perturbatively by a late-time expansion,

Φ(ρ, τ) = m+
∞∑
i=1

fi(ρ)τ−
i
3 . (5.21)

We use a fraction of 1/3 in the exponent because all exponents showing up in the back-
ground geometry (4.75) are integer multiples of one third. The ansatz reduces the equa-
tions of motion to the following (infinite) system of ordinary differential equations,

ρ−3∂ρ(ρ
3f ′i(ρ)) = Ii(ρ) (5.22)

Ii =
8mε2

0

9(m2 + ρ2)5
·


1 if i = 8

−4η0ε
−1/4
0 if i = 11

0 else; provided i < 14

The boundary behavior of solutions to (5.22) is

fi(ρ) −−−→
ρ→∞

mi +
ci
ρ2
, (5.23)
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which becomes an exact solution when the inhomogeneous term vanishes, Ii = 0. The
first term, mi, contributes miτ

−i/3 to the bare quark mass. Since we do not accept a
time-dependence of the bare parameters on physical grounds, we require mi = 0. Thus
in conjunction with regularity the value of ci is completely fixed. In particular Ii = 0
implies ci = 0 or fi ≡ 0.

To the considered order the solution is (see also Fig. 5.3),

Φ(ρ, τ) = m+ c
ρ4 + 3ρ2m2 + 3m4

(m2 + ρ2)3
, (5.24)

with

c = −ε
2
0L

16

54m5
τ−

8
3

(
1− 4η0ε

− 1
4

0 τ−
2
3 + . . .

)
. (5.25)
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Figure 5.3: Embeddings with m = 1
2ε
−3/8 at different times. For late times (bold), the super-

symmetric embedding is approximated.

5.3 Holographic renormalization of a D7-brane

Thermodynamic properties of the D3/D7 system require the knowledge of the on-shell
action [100]. We expect that we need to perform holographic renormalization procedure
to get a finite action [101]. We outlined the general principles of this procedure in Section
3.5.3. In this section we will show how it works for a probe D7-brane.
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To be consistent with Section 3.5.3 we perform two changes. We pass to Fefferman-
Graham coordinate system and we use a different parametrization of the world-volume
scalar. We rewrite the AdS5 × S5 metric as

ds2
10 =

L2

z2
(dxµdxµ) +

L2

z2
(dz2) + L2(dΨ + sin2 ΨdΩ2

1 + cos2 ΨdΩ2
3), (5.26)

where we parametrized S5 using

ρ = r cosΨ,

w = r sinΨ.
(5.27)

Ψ is our new world-volume scalar, which depends on holographic coordinate z. We may
interpret Ψ as an angle on S5 in the region where D7-brane is wrapped. Ψ runs from zero,
where D7 wraps the maximum volume S3 to π/2 where S3 collapses. We can translate
the solution Φ to the new coordinates,

Ψ = arcsin

(
zΦ

L2

)
. (5.28)

The asymptotic form for the solution Ψ reads

Ψ(z) = mz +O(z3). (5.29)

In FG coordinates we identify the mass with the coefficient of the term linear in z.
The first step we have to take is to renormalize volume of AdS space,

VAdS =

∫
d5x
√
G5. (5.30)

To keep the discussion general we don’t assume anything about the boundary metric. We
introduce a cut-off by extending the integration only to z = ε. Next, we add counterterms,
which cancel terms divergent after taking ε→ 0. These counterterms must be built from
data on the ε = z slice to preserve covariance. This means that we use the induced
metric γµν on the slice and the Ricci scalar constructed from γ. For the renormalization
of four-dimensional anti-de Sitter spaces this leads to the following counterterms,

L1 = −1

4

√
γ,

L2 = − 1

48

√
γRγ,

L3 = − ln(ε)
√
γ

1

32
(RijR

ij − 1

3
Rγ).

(5.31)

The renormalized volume reads

Vren = lim
ε→0

[
VAdS +

∫
d4x(L1 + L2 + L3)

]
. (5.32)
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We note that if the boundary metric is flat, Ricci scalar on the slice ε vanishes and L1 is
sufficient to subtract volume divergence.

Apart from volume renormalization, we have a scalar D7-brane profile, which leads
to divergences as well. The holographic renormalization proceeds as before leading to
additional two counterterms,

L4 =
1

2

√
γΨ 2

, L5 = −1

2
ln(ε)
√
γ(Ψ�γ +

1

6
Rγ)Ψ,

(5.33)

where �γ is d’Alambert operator on a slice. Finally, in the case of D7-branes one has to
add finite counterterm

Lf = αγΨ 4, (5.34)

which doesn’t cancel divergences but changes the on-shell action by a finite amount. We
will fix α by requiring that the on-shell action vanishes. The renormalized action is

Sren = lim
ε→0

Sreg +
∑

Li. (5.35)

We are now in a position to do the computation. We start we the AdS5 × S5 and
generalize to the black hole and the boost-invariant geometries. The regularized action
for a probe D7-brane in FG coordinates is

Sreg =

∫ ∞
ε

1

z5
cos3 Ψ(z)

√
1 + z2Ψ ′(z). (5.36)

This action is plainly divergent as ε→ 0. We have to add proper counterterms, which in
this case will be L1, L4, and Lf . We have to evaluate these counterterms on a hypersurface

ds2
ε = γµνdx

µdxν =
1

ε2
(−dt2 + dx2

i ) =
1

ε2
(−dτ 2 + τdy2 + dx2

⊥). (5.37)

This leads to the following renormalized action,

Sren = −2π2VxTD7
m4

12
(12α + 5), (5.38)

where V is a four-dimensional volume. We noted that supersymmetry requires that the
action evaluated on the solution vanishes. This amounts of fixing the remaining coefficient
in the finite counterterm,

α = − 5

12
. (5.39)

The same procedure works for black-hole geometry

Sren = −2π2V TD7
L16π8

192m4
T 7, (5.40)
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and for a probe D7-brane in the boost-invariant geometry,

Sren = 2π2VxTD7

∫
dτ τ

[
− ε2

0L
16

108m4τ 8/3
+
ε

7/4
0 η0L

16

27m4τ 10/3

]
. (5.41)

We can compare the two results, since we argued that in the leading order we can interpret
the boost-invariant geometry as a black-hole geometry. In the static case, the free energy
density can be related to the regularized D7 action by means of a Wick rotation. In the
conventions of [100] the time direction is periodically identified with β = 1/T . While it
is clear that for a time-dependent background the substitution 1/T =

∫
dt is somewhat

ill-defined, however, it is still interesting whether we can reproduce the asymptotic result
(5.40). For comparison we perform this ill-defined step, namely replacing

∫
dτ τ 7→ 1/T

and using (4.94). We find that there is an agreement.

5.4 Meson spectra

We pointed out in the introduction that one of the most important problems in strongly
coupled gauge theories is the spectrum of hadrons. In this section we partly resolve this
problem in the context of holography, namely we will calculate meson spectra. In the
D3/D7 framework, meson spectra are determined from regular, normalizable solutions
to the equations obtained from linearizing the full equations of motion of the D7-brane
about the embedding solution that describes the position and shape of the brane [102].
This can be understood heuristically by noting that meson, which is two bounded quarks,
corresponds to an open string attached to the brane with quarks at the end. For the
finite temperature field theory dual to AdS/Schwarzschild geometry the meson spectrum
was found using numerical techniques [99]. However, this analysis excludes corrections
coming from viscosity. We will show how to improve this result.

In the following section we distinguish between four dimensional meson modes, which
carry a ‘4d’ label and eight dimensional fluctuations, which always start with a δ followed
by a (Greek or Latin) capital letter, e.g. δΦ or δAy. Our ansätze are products of spherical
harmonics Y on the internal manifold, wave forms parallel to the boundary and radial
parts, which describe the dependence on the holographic coordinates and are denoted by
δ followed by a small letter.

5.4.1 Boost-invariance for the AdS geometry and scalar mesons

It is insightful to investigate how the boost-invariance changes wave forms of scalar
and vector mesons in the conventional setting, where there is no time-dependence of the
meson mass.

In four dimensional Minkowski space the massive Klein–Gordon equation assumes the
form

�Φ4d =

[
−1

τ
∂ττ∂τ + τ−2∂2

y + ∂2
x

]
Φ4d = M2Φ4d. (5.42)
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This implies that

Φ4d = (c1 J0(ω τ) + c2 Y0(ω τ))e±ik⊥x⊥ , (5.43)
k2
⊥ = k2

2 + k2
3,

with J0 and Y0 being Bessel functions of first kind. Since a linear combination of the
Bessel functions will appear frequently in our expressions we introduce the shorthand
notation

Fp[ω] ≡ c1 Jp(
∫
ω dτ) + c2 Yp(

∫
ω dτ). (5.44)

We will not explicitly denote the time-dependence of F0 arising from the integral over τ .
At this stage, the integral has been chosen for later convenience and gives ω τ for constant
frequencies. The eigenfrequencies ω ≡

√
M2 + k2

⊥ are to be determined in our holographic
setup. We will thus assume k⊥ = 0 from the start to obtain the mass spectrum.

The 4d meson field is given as the boundary value of (linear, normalizable) fluctuations
δΦ, δΨ about the embedding solution Φ(ρ) ≡ m,

X8 = 0 + δΨ(ρ, τ), X9 = Φ(ρ) + δΦ(ρ, τ). (5.45)

For the presentation of our ansatz, we will concentrate on the scalar mode δΦ; the pseu-
doscalar mode δΨ will be treated analogously. With the following holographic ansatz,

δΦ(ρ, τ) = δφ(ρ)F0[ω]Y`(S3), (5.46)

the boundary value corresponding to quantum number ` is defined by

Φ
(`)
4d = lim

ρ→∞
ρ2 δΦ(ρ, τ)

Y`(S3)
. (5.47)

Equation (5.46) is a natural modification of the ansatz given in [102] to separate the D7
equation of motion in anti-de Sitter space,[

− L2

(ρ2 +m2)2

1

τ
∂ττ∂τ +

1

ρ3
∂ρρ

3∂ρ +
1

ρ2
∆S3

]
δΦ(ρ, τ) = 0. (5.48)

The radial equation obtained after separation reads[
1

ρ3
∂ρρ

3∂ρ +
L2ω2

ρ2 +m2
− `(`+ 2)

ρ2

]
δφ(ρ) = 0, (5.49)

which is the well-known result of [102]. For simplicity, we will only consider the lowest
Kaluza–Klein mode on the internal S3, such that ` = 0, Y0 ≡ 1.

The requirements of regularity in the interior (ρ→ 0) and vanishing at the boundary
(ρ → ∞), fix the modes completely. One obtains a discrete set of modes the lightest of
which is given by

F0

[
ω0 =

√
8m

L2

]
· 1

m2 + ρ2
. (5.50)
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5.4.2 Vector mesons

Our approach is capable to include vector mesons. We note that, in addition to a
scalar field on the world-volume, one can include a gauge field. Matching degrees of
freedom one can postulate that small fluctuations of the gauge field lead to the vector
meson spectrum [103]. For a four-dimensional massive vector meson we have

∇aF
ab = M2Ab4d. (5.51)

We assume that the solutions are still plane waves in the x2, x3-plane, i.e.,

Aa4d = ξa(τ) exp ik⊥x⊥. (5.52)

This yields the following component equations

−τ∂τ (
1

τ
∂τA

4d
y ) = (M2 + k2

⊥)A4d
y , (5.53)

−∂2
τA

4d
2 −

1

τ
∂τA

4d
2 + ik2

(
∂τ +

1

τ

)
A4d
τ (5.54)

+k2k3A
4d
3 = (M2 + k2

3)A4d
2 and (2↔ 3),

A4d
τ = −i∂τ (k2A

4d
2 + k3A

4d
3 )

ω2
. (5.55)

Equation (5.53) can be treated separately. Its solution is

A4d
y = τF1[ω]eik⊥x⊥ , A4d

τ,x2,x3 = 0. (5.56)

The others may be solved without loss of generality by turning the coordinate system
such that k3 = 0. Then it follows immediately that A4d

2,3 = ξ2,3F0[ω2,3] exp ik⊥x⊥. With
this modified ansatz and plugging (5.55) into (5.54) we obtain[

−M2 − k2
3 + ω2

2

(
1− k2

2

ω2

)]
A4d

2 + k2k3

(
1− ω2

3

ω2

)
A4d

3 = 0

and (2↔ 3), (5.57)

which can only be satisfied for ω2 = ω3 ≡ ω23. Moreover, since it is a homogeneous
system, ω23(M,k2, k3) can be determined from degeneracy of the coefficient matrix. We
shall not reproduce the final expression, but just note that ω23 = M when k2 = k3 = 0,
which could also have been obtained directly from (5.54). We thus end up with the two
solutions,

A4d
2,3 = ξ2,3F0[ω23] exp ik⊥x⊥. (5.58)
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Therefore, we adapt the holographic ansätze for meson modes found in [102] as follows

Type

I δAα = δa±I (ρ)F0[ω]eik⊥x⊥Y`,±α (S3), α = 5, 6, 7;

IIy δAy = δaIIy(ρ)τF1[ω]eik⊥x⊥Y`(S3);

II2,3 δA2 = δaII2(ρ)F0[ω]eik⊥x⊥Y`(S3), A3 = 0;

and (2↔ 3)

III δAρ = δaIII(ρ)F0[ω]eik⊥x⊥Y`(S3),

δAα = δãIII(ρ)F0[ω]eik⊥x⊥Y`,±α (S3); (5.59)

with the respective other components set to zero. We will only consider modes of type II,
which are the only modes dual to vector mesons and therefore most interesting.

In the ansätze, the dependence in the 0, 1, 2, 3 directions has been modified as com-
pared to what can be found in [102]. The reason these changes are straight-forward is
the following, the calculation of [102] only uses two important properties of the ansätze
regarding derivatives in those directions,

∆4dδAI = M2δAI , I ∈ [0, . . . , 7] (5.60)

gab4d∂aδAb = 0, (5.61)

where g4d = diag(−1, τ 2, 1, 1) in our case, whereas in [102] it was a Minkowski metric. For
our ansätze, the gauge condition (5.61) is either trivially obeyed or follows from (5.55).
Moreover, it can be used to turn (5.60) into (5.51).

5.4.3 Viscous fluid geometry

Before coming to the actual holographic computation, we would like to discuss the
general framework of late-time perturbative expansions that we use.

Since the viscous fluid geometry and our D7 embeddings are time-dependent, we do
not expect, and do not see, a separation into a purely τ dependent and ρ dependent
factor. This makes the problem very difficult to tackle analytically. We are helped by
the property that at late proper times the geometry becomes pure AdS5 with the cor-
responding D7-brane embedding. In this limit the simplest solution looks like (5.50),
where F0[ω] is defined in Eq. (5.44). For smaller proper-times it is natural to treat the
frequency appearing in (5.50) as depending on τ . However, as the equations do not allow
for a separation of variables we have τ dependence also in the remaining part,

F̃
[
ω(τ)

]
f(ρ, τ) (5.62)

where we allow for a general F̃ which should reduce to F0[ω] for constant ω. We have,
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moreover, the expansions

ω(τ) = ω +
1

τ
1
3

ω(1) + . . . (5.63)

f(ρ, τ) = f (0)(ρ) +
1

τ
1
3

f (1)(ρ) + . . . (5.64)

Note that the above form is not unique. Redefining the coefficients of the expansions in
an appropriate way, we may redefine the split (5.62). So in order to uniquely specify such
an ansatz we have to supplement the usual regularity condition at ρ = 0 and Dirichlet
boundary condition at ρ =∞ by another condition which makes the split (5.62) unique.
In this Thesis we will impose a condition on the profile of the mode δφ induced on the
boundary,

Φ4d(τ) ≡ lim
ρ→∞

ρ2δφ(ρ, τ) (5.65)

Namely we will set

Φ4d(τ) =

√∫
ω4d(τ) dτ

ω4d τ
F0[ω4d(τ)], (5.66)

which provides a definition of our frequency ω4d(τ). For constant ω4d(τ) this reduces of
course to the pure AdS5 result (5.50).

Our motivation for the above form (5.66) is that it arises as a WKB approximation
to a Klein–Gordon equation with time dependent mass spectra,

�Φ4d =

[
−1

τ
∂ττ∂τ + τ−2∂2

y + ∂2
x

]
Φ4d = M2

4d(τ)Φ4d (5.67)

We may separate variables by assuming a plane wave in the 2, 3 plane and obtain ω2
4d(τ) =

M2
4d(τ) + k2

⊥. (Though we will assume k⊥ = 0, henceforth.) The remaining equation

−1

τ
∂ττ∂τΦ4d(τ) = ω2

4d(τ)Φ4d(τ), (5.68)

can only be solved approximately, e.g., by the WKB approximation, which gives two
linearly independent solutions,

Φ4d(τ) ≈

√∫
ω4d(τ) dτ

ω4d τ
F0[ω4d(τ)]. (5.69)

The square root prefactor ensures that Abel’s theorem is fulfilled, such that the wronskian
for our ansatz is

W =
const
t

, (5.70)
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as it should be for the exact solution.
We have now all ingredients in place to actually calculate the meson spectrum for the

time-dependent viscous fluid geometry. We expand the D7 action (5.18)1, given by

LDBI = e
A
2

+B
2

+Cρ3τ

[
1 + (∂ρX

9)2 + (∂ρX
8)2 + e−C(∂ρA2)2

+
e−B

τ 2
(∂ρAy)

2 − e−AL4

r4
(I) + (quartic)

]1/2

(I) = (∂τX
8)2 + (∂τX

9)2 + (∂ρX
8)2(∂τX

9)2

+ (∂τX
8)2(∂ρX

9)2

− 2(∂τX
8)(∂ρX

9)(∂ρX
8)(∂τX

9)

+ e−C(II) +
e−B

τ 2
(III) (5.71)

(II) = (∂τA2)2 + (∂ρX
9)2(∂τA2)2 + (∂τX

9)2(∂ρA2)2

− 2(∂τX
9)(∂ρX

9)(∂ρA2)(∂τA2) (5.72)
(III) = +(∂τAy)

2 + (∂ρX
9)2(∂τAy)

2 + (∂τX
9)2(∂ρAy)

2

− 2(∂τX
9)(∂ρX

9)(∂ρAy)(∂τAy) (5.73)

to quadratic order in fluctuations

X9 = Φ+ δΦ, X8 = 0 + δΨ,

A2 = 0 + δA2, Ay = 0 + δAy. (5.74)

The resulting equation of motion is evaluated by performing a perturbative expansion in
τ−1/3,

δΦ = c1 J0

(∫
ω(φ)(τ) dτ

) ∞∑
j=0

δφj(ρ) τ−j/3

+ c2 Y0

(∫
ω(φ)(τ) dτ

) ∞∑
j=0

δφ̃j(ρ) τ−j/3, (5.75)

ω(φ) =
∞∑
i=0

ωi τ
− i

3 , (5.76)

and analogously for the other fluctuations2. We use the known asymptotic expansion of
the Bessel functions and obtain schematically the following equation,

[polynomial in τ−1/3] cos
(∫
ω(φ) dτ

)
+ [polynomial in τ−1/3] sin

(∫
ω(φ) dτ

)
= 0. (5.77)

1We do not write out those quartic terms that can only produce terms quartic in fluctuations.
2The equation of motion of Ay requires a slightly modified ansatz given in the Appendix B.
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At any given order, the requirement that the coefficients of the polynomials vanish, pro-
vides a differential equation for δφi and δφ̃i depending on ωi (and lower order solutions).
We have to go to order 6 before the viscosity η0 enters the equations. To this order, the
equations for δφi and δφ̃i can be separated by choosing suitable linear combinations and
yield δφi ≡ δφ̃i, which is what is required for the WKB ansatz (5.69) to be applicable.
We impose the boundary conditions

δφ −−−→
ρ→∞

0, δφ −−→
ρ→0

finite,

ρ2δφ −−−→
ρ→∞

√∫
ω(φ) dτ

ω(φ)τ
F0[ω(φ)]. (5.78)

The first two of these conditions pick regular normalizable solutions, the last ensures
that meson solutions on the boundary (5.65) satisfy the constraint (5.70). Consequently,
the conditions fix two integration constants and the frequency ωi at each order in the
perturbative expansion. The only remaining free constants are the overall factors c1 and
c2 of our ansatz (5.75).

Each of the coefficient functions has to satisfy a differential equation that is best
expressed with the substitutions

δφi(ρ) = (1− y)−n−1δφi(y),

y = −ρ2/m2, (5.79)
ω2

0 = m2((2n+ 3)2 − 1).

The lowest order equation then reads[
y(1− y)∂2

y + (c− (a + b− 1)y)∂y − ab
]
φ0(y) = 0,

a = −n− 1, b = −n, c = 2.
(5.80)

This is exactly the hypergeometric equation already encountered in [102]. The boundary
conditions fix n to be a non-negative integer, thus yielding a discrete meson spectrum
M = ω0(n) and the solutions in terms of (degenerate) hypergeometric functions 2F1 are

h1 = 2F1(−n− 1,−n, 2;y), (5.81)
h2 = (1− y)3+2n

2F1(n+ 2, n+ 3, 2n+ 4; 1− y). (5.82)

Only h1 is regular, such that δφ0 ≡ h1.
Higher orders in perturbation theory produce inhomogeneous terms in the analogues

of (5.80). Since it is a linear ordinary equation, the solution can still be obtained in closed
form by standard methods. However, the resulting integrals are hard to solve in general.
Since both solutions h1,2 are rational functions of y and lny, it is easy to do so for definite
n. For the lowest five mesons n = 0, . . . , 4 we give the solutions in the Appendix B.

The mass3 of the lowest scalar meson mode is

ω(φ) = 4π√
λ
·
[
mq − 3λ2ε0

80π4τ4/3m3
q
·
(

1− 2η0

τ
2
3 ε

1
4
0

)]
. (5.83)

3defined by equation (5.66)
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To the considered order, pseudoscalar modes δψ have exactly the same equations of
motion and the spectrum is degenerate. Moreover, we note that the spectrum agrees with
the adiabatic approximation even including the viscosity corrections. The reason for this
might be that the bulk metric coefficients that enter the calculation for the scalar mesons
can be expressed completely in terms of the energy density, whereas the components for
the y, 2, 3 directions cannot.

The vector mesons deviate slightly from the scalar modes. For comparison we plot the
mass ratio of scalar and vector modes in Figure 5.4.
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Figure 5.4: The plot shows the relative difference of the masses of (type IIy) vector and scalar

mesons for m = ε
3/8
0 .

The mass of the lowest vector mesons is given by

ω(Ay) = 4π√
λ
·
[
mq − 7λ2ε0

240π4τ4/3m3
q
·
(

1− 6η0

7τ
2
3 ε

1
4
0

)]
, (5.84)

ω(A2,3) = 4π√
λ
·
[
mq − 7λ2ε0

240π4τ4/3m3
q
·
(

1− 18η0

7τ
2
3 ε

1
4
0

)]
. (5.85)

This agrees with the adiabatic approximation excluding the viscosity term. Since the
metric components that enter the holographic computation, gyy and g22, agree only up to
the viscosity terms, this deviation does not come as a surprise.

We plot the five lowest meson modes in Figure 5.5. The leading order term gives the
exact supersymmetric spectrum that is approached for τ →∞.
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Figure 5.5: Late-time spectra for the viscous fluid geometry. The supersymmetric spectrum is
shown as dashed horizontal lines. Scalar mesons are shown as continuous lines, vector modes
are dashed.

5.4.4 Comparison to the adiabatic approximation

In this subsection, we will review some properties of low-temperature meson spectra
for the static AdS black hole. Plugging in the time-dependence of the temperature into
the static meson spectra, yields an estimate for the time-dependent spectrum, which we
will refer to as adiabatic approximation. Using the similarity with the static black hole
metric, we may read off the temperature from the position of the horizon

T (τ) =

(
4ε0

3

) 1
4 1

πτ
1
3

[
1− η0

2ε
1/4
0 τ 2/3

]
(5.86)

We will assume that the temperature dependence given in terms of Poincaré time t can
be obtained from (5.86) by substituting τ for t

TAdS/BH(t) =

(
4ε0

3

) 1
4 1

π t
1
3

[
1− η0

2ε
1/4
0 t2/3

]
. (5.87)

Note that we do not expect the resulting adiabatic meson spectra to accurately give the
viscosity corrections. The reason for this is that even though the horizon position can
be expressed completely in terms of the energy density, such that the Stefan–Boltzmann
law holds, the bulk metric and energy-momentum tensor nevertheless contain additional
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Figure 5.6: The plot shows the (pseudo)scalar meson spectrum. For small temperatures, the su-
persymmetric spectrum (dashed) is approached. The solid lines are asymptotic T → 0 solutions,
which are in good agreement with the numerical solutions (dots) for small temperatures.

viscosity terms that cannot be captured by the AdS/Schwarzschild geometry even when
the geometry near the horizon and near the boundary is matched.

In Figure 5.6 we plot the numerical solution (dots) of the static case. We calculate
the asymptotic solution in a low temperature expansion (solid curves), which agrees with
the numerical calculation. Plugging the time dependence of the temperature (5.87) into
this analytical approximation, we obtain the time-dependent meson spectrum in adiabatic
approximation. The mass of the lowest scalar and vector modes are given by

ωad.φ,ψ =
4π√
λ

[
mq −

9λ2

320

T 4

m3
q

]
=

4π√
λ

[
mq −

3λ2

80π4

ε0

m3
q

t−
4
3

(
1− 2η0

t
2
3 ε

1
4
0

)]
, (5.88)

ωad.Aµ =
4π√
λ

[
mq −

7λ2

320

T 4

m3
q

]
=

4π√
λ

[
mq −

7λ2

240π4

ε0

m3
q

t−
4
3

(
1− 2η0

t
2
3 ε

1
4
0

)]
. (5.89)

The mass of all of these modes decreases for increasing temperature. Moreover, the adia-
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batic scalar modes completely agree with our result (5.83), whereas the vector modes only
agree in the leading contribution, the viscosity terms differ. We consider the agreement
of the scalars accidental in the sense that it is a consequence of a certain property of the
expanding plasma geometry, all metric coefficients entering the scalar equation of motion
can be expressed purely in terms of the temperature, while additional viscosity terms only
show up in those metric coefficients that end up in the equations for the vector modes.

An important assumption in our calculation has been that the Klein–Gordon equation
is obeyed by scalar particles. This assumption can actually be proved employing the
holographic equation of motion resulting from the linearization procedure. There is a
parity symmetry ρ 7→ −ρ in the equation of motion. Since only ‘Minkowski-type’ solutions
are considered, this will lead to even solutions, which have the following expansion,

δΦ(ρ→∞, τ) ∼ Φ4d(τ)
1

ρ2
− L4Φ4d(τ)

8
M2(τ)

1

ρ4
+ . . . , (5.90)

because only normalizable solutions are allowed, such that the constant leading term
vanishes. The subleading coefficient M2(τ) has been multiplied by an additional factor
−L4Φ4d/8 for later convenience. Plugging above expansion into the eight-dimensional
equation of motion, yields at leading order in 1/ρ,

−1

τ
∂τ (τ∂τ )Φ4d = M2(τ)Φ4d. (5.91)

This establishes that at least for a background geometry dual to a hydrodynamic expan-
sion up to and including viscosity, the scalar meson equation is a Klein–Gordon equation
with time-dependent mass.

We will now assess the error of the WKB approximation by plugging our meson solu-
tions into the four dimensional Klein–Gordon equation. The error should be smaller than
τ−2 to be subleading to the viscosity contribution. We first determine the four dimensional
meson solution by

Φ
(`)
4d = lim

ρ→∞
ρ2δφ(ρ, τ)F0[ω(φ)], (5.92)

where on the right hand side we plug in the mass (5.83) of the lowest holographic scalar
meson solution, i.e., we set ω4d ≈ ω(φ).

With (5.92) the error estimate ∆ω can be obtained from the Klein–Gordon equation

1

τ
∂ττ∂τΦ4d(τ) =

(
ω(φ)(τ) +∆ω(τ)

)2
Φ4d(τ), (5.93)

by linearizing in ∆ω. This yields

∆ω(τ) =

√
2L10ε0

5m4

1

τ 10/3
+ . . . , (5.94)

which is sufficiently small, that is subleading to the viscosity terms arising from the
geometry. (Also note that the frequencies ω(φ)(τ) and the meson mass obtained from
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the holographic expansion (5.90) agree up to and including order τ−2.) However, when
encoding hydrodynamic effects in the geometry that are of sufficiently high order, we
would be forced to consider a better approximation for our ansatz, e.g., by using higher
order WKB. Moreover, beyond a certain order the WKB ansatz is expected not to work
anymore because the coefficients δφi and δφ̃ are not expected to coincide to arbitrary
order.

The main goal of this chapter was to study fundamental fields in the holographic
dual of an expanding viscous fluid. We determined the D7 embedding and calculated
the consequences of dynamical temperature for the chiral condensate to three orders.
The leading order gives the supersymmetric solution, the subleading corresponds to the
adiabatic approximation and the subsubleading order includes viscosity corrections going
beyond the adiabatic approximation. Moreover, we calculated the meson spectrum and
found that it agrees in the subleading order, though only the scalar mesons agree in the
subsubleading order with the adiabatic approximation. The agreement crucially depends
on the choice of ansatz defining the frequencies. We demonstrated that for our WKB
ansatz solves the Klein–Gordon up to an error smaller than that inescapably introduced
in the late-time expansion of the geometry. It would be interesting to find dual, expanding
plasma description in more realistic systems and extend these calculations. Moreover, in
the high enough temperature we expect mesons to be unstable and melt in the plasma.
Another interesting extension of our analysis would be to study that transition following
the logic of [104].
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Chapter 6

Conclusions

The AdS/CFT correspondence provides tools to relate weakly coupled string theories
with strongly coupled field theories. In this Thesis we focused on a particular regime of the
correspondence, described by the equations of hydrodynamics. Let us briefly summarize
the original results.

In Chapter 2 we provided field theory explanation for new terms in hydrodynamic
expansion, related to triangle anomalies. These terms were first noted in the context of
AdS/CFT correspondence. However, the lack of field theoretic understanding of such
terms created a discrepancy between hydrodynamics and its dual description [105]. Mo-
tivated by this discrepancy, we generalized the notion of hydrodynamics and showed how
the additional terms arise from underpinning quantum field theories. We used methods
based on the entropy current. Assuming that the second law of thermodynamics is sat-
isfied we derived constraints on the anomalous transport coefficients, which determined
them completely.

In Chapter 4 we were able to derive transport coefficients, up to the second order in
the derivative expansion for the fluid with one conserved current. A very small value
of the shear viscosity over entropy density (4.61) seemed to confirm the assumption that
QGP plasma in N = 4 SYM is strongly coupled. Moreover, gravity construction indicated
that there are parity breaking terms in the relativistic fluids, which originate from Chern-
Simons terms in the supergravity action. These were matched against terms coming
from anomalies in the dual theory, and we found perfect agreement. This solved the
discrepancy noted in [105]. Finally, we focused on a subclass of conformal fluids which
exhibits boost-invariance. We constructed an explicit gravity dual for the boost-invariant
fluids and performed a detailed regularity analysis.

In Chapter 5 we showed how to introduce matter in a fundamental representation
in the boost-invariant geometry. We followed known procedure of [93], which requires
adding a new D-brane to the system. Studying small fluctuations around that brane we
predicted a meson spectrum in the boost-invariant setup. A novel feature in this approach
is the effect of viscosity included in the meson masses.

The AdS/CFT correspondence has been very useful in understanding properties of
strongly coupled relativistic field theories, especially in the hydrodynamic regime. It
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is natural to ask what are possible extensions of its applicability. The most promising
new applications seem to be in condensed matter physics. Systems to which holographic
techniques might be applied, are those at quantum criticality. We may define a critical
system by a Wilson-Fisher fixed point [106]. At the fixed point itself, the theory is scale
invariant and possess the so-called Schrödinger symmetry, which can be mapped to the
appropriate isometry of the dual metric [107]. Recently, there has recently been significant
progress in constructing holographic duals for non-relativistic field theories (see [108, 109]).
We can use them to study non-relativistic scale invariant fluids like the dilute Fermi gas
at unitarity. There is a consistent procedure, which can be used to derive that metric
from relativistic counterpart [110, 111]. Therefore, knowing a relativistic solution to the
supergravity equations, which corresponds to some interesting physical system, we can
transform it to non-relativistic solution. The field theory dual is in this case potentially
more accessible experimentally.

Another interesting recent progress is the construction of holographic models of super-
fluidity [112] and superconductivity [113, 114]. Superfluid phase transitions are associated
with spontaneous symmetry breaking while superconducting phase transitions with the
Higgs mechanism. A detailed analysis of transport phenomena in both cases is still lack-
ing. There is also no rigorous construction of gravity dual solutions, most solutions are
purely numerical, apart from a very simplified situation [115].

From a practical point of view it would be remarkable, either to find a dual description
of QCD, or to be able to engineer some field theory for which a dual theory exists. At the
moment both cases seem to be very far from accomplishment. Hopefully we will overcome
all obstacles to find a real link between string theory and experiment.
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Appendix A

Second order fluid/gravity duality

Second order terms

List of two derivative terms
1 of SO(3) 3 of SO(3) 5 of SO(3)

S1 = ∂2
vm V1i = ∂i∂vm T1ij = ∂i∂jm− 1

3
s3 δij

S2 = ∂v∂iβi V2i = ∂2
vβi T2ij = ∂(ilj)

S3 = ∂2m V3i = ∂vli T3ij = ∂vσij

ST1 = ∂vβi ∂vβi V4i = 9
5
∂jσji − ∂2βi TT1ij = ∂vβi ∂vβj − 1

3
ST1 δij

ST2 = li ∂vβi V5i = ∂2βi TT2ij = l(i ∂vβj) − 1
3

ST2 δij
ST3 = (∂iβi)

2 VT1i = 1
3
(∂vβi)(∂jβ

j) TT3ij = 2 εkl(i ∂vβ
k ∂j)β

l + 2
3

ST2 δij
ST4 =li li VT2i = −εijk lj ∂vβk TT4ij = ∂kβ

k σij

ST5 =σij σij VT3i = σij ∂vβ
j TT5ij = li lj − 1

3
ST4 δij

QS1 = ∂2
vq VT4i = li ∂jβ

j TT6ij = σik σ
k
j − 1

3
ST5 δij

QS2 = ∂i∂iq VT5i = σij l
j TT7ij = 2 εmn(i l

m σnj)

QS3 = li∂iq QV1i = ∂i∂vq QT1ij = ∂i∂jq − 1
3

QS2 δij
QS4 = (∂iq)

2 QV2i = ∂iq∂kβ
k QT2ij = ∂(iqlj) − 1

3
QS3 δij

QS5 = (∂iq)(∂vβi) QV3i = εijk∂jlk QT3ij = ∂(iq∂j)q − 1
3

QS4 δij
QV4i = σij∂jq QT4ij = ∂(iq∂vβj) − 1

3
QS5 δij

QV5i = εijk∂vβj∂kq QT5ij = ε(ikm∂kq σmj)

Table A.1: An exhaustive list of two derivative terms in made up from the mass, charge and
velocity fields.
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In order to present the results economically, we have dropped the superscript on the
velocities βi, the charge q, and the mass m, leaving it implicit that these expressions are
only valid at second order in the derivative expansion. Moreover, we have defined the
following quantities,

li = εijk∂jβk,

σij =
1

2
(∂iβj + ∂jβk)−

1

3
δij∂kβk .

(A.1)

Weyl-covariant rearrangement of second order terms

We can arrange the terms in Table A.1 in the Weyl-covariant combinations, using the
prescription of [116] (see also [117]).
There are six scalar/pseudo-scalar Weyl-covariant combinations given by

W 1
s ≡ σµνσ

µν = ST5,

W 2
s ≡ ωµνω

µν =
1

2
ST4,

W 3
s ≡ R = 14 ST1 +

2

3
ST3− ST4 + 2ST5− S3

m
,

W 4
s ≡ n−1P µνDµDνn =

1

q

[
QS2− 3q

4m
S3 + 18qST1 + 5QS5

]
,

W 5
s ≡ n−2P µνDµn Dνn =

1

q2

[
QS4 + 6qQS5 + 9q2ST1

]
,

W 6
s ≡ lµDµq = QS3 + 3qST2.

(A.2)

and five vector/pseudo-vector Weyl covariant combinations given by

(Wv)
1
µ ≡ P ν

µDλσνλ =
5V4

9
+

5V5
9

+
5VT1

3
− 5VT2

12
− 11VT3

6
,

(Wv)
2
µ ≡ P ν

µDλωνλ =
5V4

3
− V5

3
− VT1− VT2

4
+

VT3
2

,

(Wv)
3
µ ≡ lλσµλ = VT5,

(Wv)
4
µ ≡ n−1σµ

λDλn =
1

q
[QV4 + 3qVT3] ,

(Wv)
5
µ ≡ n−1ωµ

λDλn =
1

2q
[QV3 + 3qVT2] .

(A.3)
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In the tensor sector, there are nine Weyl-covariant combinations

WT (1)
µν = uλDλσµν = TT1 +

1

3
TT4 + T3,

WT (2)
µν = −2

(
ωµλσ

λν + ωνλσ
λµ
)

= TT7,

WT (3)
µν = σµλσλν −

1

3
P µνσαβσαβ = TT6,

WT (4)
µν = 4

(
ωµλωλν +

1

3
P µνωαβωαβ

)
= TT5,

WT (5)
µν = n−1Παβ

µνDαDβn

=
1

q

[
QT1 + 8QT4 + 15qTT1 + qTT4 + 3qT3 + 3qTT6 +

3q

4
TT5

]
,

WT (6)
µν = n−2Παβ

µνDαnDβn =
1

q2

[
QT3 + 6qQT4 + 9q2TT1

]
,

WT (7)
µν = Dµlν +Dνlµ = 4TT2 + 2T2− TT3,

WT (8)
µν = n−1Παβ

µν lαDβn =
1

q
[QT2 + 3 q TT2] ,

WT (9)
µν = n−1εαβλ(µσν)λuαDβn =

1

q

[
QT5− 3

2
q TT2 +

3

2
q TT3

]
.

(A.4)

The charge current at second order in derivative expansion

Using the prescription

J (2)
µ = lim

r→∞

r2A
(2)
µ

8πG5

, (A.5)

we find the following expression for the second order contribution to the current

J
(2)
i =

(
1

8πG5

) 5∑
l=1

Cl(Wv)
l
i, (A.6)

where the coefficients of the Weyl invariant terms (Wv)
l
i are given by

C1 =
3
√

3R
√
M − 1

8M
,

C2 =

√
3R(M − 1)3/2

4M2
,

C3 = −3Rκ(M − 1)

2M2
,

C4 =
1

4

√
3R
√
M − 1 log(2) +O(M − 1),

C5 = −
√

3R
√
M − 1 (M2 − 48(M − 1)κ2 + 3)

16M2
.

(A.7)
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Boundary Stress Tensor at second order

The expression for the second order contribution to the energy-momentum tensor reads

Tµν =

(
1

16πG5

) 9∑
l=1

Nl WT (l)
µν , (A.8)

with Nl being the transport coefficients at second order in derivative expansion. These
transport coefficients are given by

N1 = R2

(
M√

4M − 3
log

(
3−
√

4M − 3

3 +
√

4M − 3

)
+ 2

)
,

N2 = − MR2

2
√

4M − 3
log

(
3−
√

4M − 3√
4M − 3 + 3

)
,

N3 = 2R2,

N4 =
R2

M
(M − 1)

(
12(M − 1)κ2 −M

)
,

N5 = −(M − 1)R2

2M
,

N6 =
1

2
(M − 1)R2

(
log(8)− 1

)
+O

(
(M − 1)2

)
,

N7 =

√
3(M − 1)3/2R2κ

M
,

N8 = 0,

N9 = 0.

(A.9)
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Appendix B

Meson solutions

(Pseudo-)scalar mesons

δΦ0 = F0[ω0]

[
(8m4+9ρ2m2+3ρ4)ε0L8

10m4(m2+ρ2)3τ4/3
− (13m4+12ρ2m2+3ρ4)ε3/40 η0L8

10m4(m2+ρ2)3τ2
+ 1

m2+ρ2

]
,

ω0 = 2
√

2m
L2 +

(
−3L6τ−4/3ε0

5
√

2m3

)
×
(

1− 2η0
τ2/3 4

√
ε0

)
,

δΦ1 = F0[ω1]

[
(−12m6+15ρ2m4+20ρ4m2+5ρ6)ε0L8

14m4(m2+ρ2)4τ4/3
+

(19m6−35ρ2m4−35ρ4m2−5ρ6)ε3/40 η0L8

14m4(m2+ρ2)4τ2
+ ρ2−m2

(m2+ρ2)2

]
,

ω1 = 2
√

6m
L2 +

(
−5
√

3L6τ−4/3ε0
7
√

2m3

)
×
(

1− 2η0
τ2/3 4

√
ε0

)
,

δΦ2 = F0[ω2]

[
(26m8−140ρ2m6−22ρ4m4+55ρ6m2+11ρ8)ε0L8

30m4(m2+ρ2)5τ4/3

− (41m8−269ρ2m6+121ρ6m2+11ρ8)ε3/40 η0L8

30m4(m2+ρ2)5τ2
+ m4−3ρ2m2+ρ4

(m2+ρ2)3

]
,

ω2 = 4
√

3m
L2 +

(
−11L6τ−4/3ε0

5
√

3m3

)
×
(

1− 2η0
τ2/3 4

√
ε0

)
,

δΦ3 = F0[ω3]

[
(−134m10+1506ρ2m8−1650ρ4m6−1045ρ6m4+342ρ8m2+57ρ10)ε0L8

154m4(m2+ρ2)6τ4/3

+
(211m10−2784ρ2m8+3585ρ4m6+1805ρ6m4−912ρ8m2−57ρ10)ε3/40 η0L8

154m4(m2+ρ2)6τ2

+ −m6+6ρ2m4−6ρ4m2+ρ6

(m2+ρ2)4

]
,

ω3 = 4
√

5m
L2 +

(
−57

√
5L6τ−4/3ε0
77m3

)
×
(

1− 2η0
τ2/3 4

√
ε0

)
,
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δΦ4 = F0[ω4]

[
(68m12−1279ρ2m10+3543ρ4m8−630ρ6m6−1566ρ8m4+203ρ10m2+29ρ12)ε0L8

78m4(m2+ρ2)7τ4/3

− (107m12−2326ρ2m10+7057ρ4m8−1840ρ6m6−3161ρ8m4+638ρ10m2+29ρ12)ε3/40 η0L8

78m4(m2+ρ2)7τ2

+ m8−10ρ2m6+20ρ4m4−10ρ6m2+ρ8

(m2+ρ2)5

]
,

ω4 = 2
√

30m
L2 +

−29

√
5
6
L6τ−4/3ε0

13m3

× (1− 2η0
τ2/3 4

√
ε0

)
.

Vector meson (Type II2,3)

(δaII2)0 = F0[ω0]

[
(22m4+21ρ2m2+7ρ4)ε0L8

30m4(m2+ρ2)3τ4/3
− (13m4+12ρ2m2+3ρ4)ε3/40 η0L8

10m4(m2+ρ2)3τ2
+ 1

m2+ρ2

]
,

ω0 = 2
√

2m
L2 +

(
−7L6τ−4/3ε0

15
√

2m3

)
×
(

1− 18η0
7τ2/3 4

√
ε0

)
,

(δaII2)1 = F0[ω1]

[
(−118m6+137ρ2m4+164ρ4m2+41ρ6)ε0L8

126m4(m2+ρ2)4τ4/3

+
(19m6−35ρ2m4−35ρ4m2−5ρ6)ε3/40 η0L8

14m4(m2+ρ2)4τ2
+ ρ2−m2

(m2+ρ2)2

]
,

ω1 = 2
√

6m
L2 +

(
−41L6τ−4/3ε0

21
√

6m3

)
×
(

1− 90η0
41τ2/3 4

√
ε0

)
,

(δaII2)2 = F0[ω2]

[
(178m8−880ρ2m6−106ρ4m4+315ρ6m2+63ρ8)ε0L8

180m4(m2+ρ2)5τ4/3

− (41m8−269ρ2m6+121ρ6m2+11ρ8)ε3/40 η0L8

30m4(m2+ρ2)5τ2
+ m4−3ρ2m2+ρ4

(m2+ρ2)3

]
,

ω2 = 4
√

3m
L2 +

(
−7
√

3L6τ−4/3ε0
10m3

)
×
(

1− 44η0
21τ2/3 4

√
ε0

)
,

(δaII2)3 = F0[ω3]

[
(−4666m10+48234ρ2m8−52030ρ4m6−29975ρ6m4+9978ρ8m2+1663ρ10)ε0L8

4620m4(m2+ρ2)6τ4/3

+
(211m10−2784ρ2m8+3585ρ4m6+1805ρ6m4−912ρ8m2−57ρ10)ε3/40 η0L8

154m4(m2+ρ2)6τ2

+ −m6+6ρ2m4−6ρ4m2+ρ6

(m2+ρ2)4

]
,

ω3 = 4
√

5m
L2 +

(
−1663L6τ−4/3ε0

462
√

5m3

)
×
(

1− 3420η0
1663τ2/3 4

√
ε0

)
,
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(δaII2)4 = F0[ω4]

[
(1194m12−20697ρ2m10+55709ρ4m8−10890ρ6m6−22928ρ8m4+2989ρ10m2+427ρ12)ε0L8

1170m4(m2+ρ2)7τ4/3

− (107m12−2326ρ2m10+7057ρ4m8−1840ρ6m6−3161ρ8m4+638ρ10m2+29ρ12)ε3/40 η0L8

78m4(m2+ρ2)7τ2

+ m8−10ρ2m6+20ρ4m4−10ρ6m2+ρ8

(m2+ρ2)5

]
,

ω4 = 2
√

30m
L2 +

(
−427L6τ−4/3ε0

39
√

30m3

)
×
(

1− 870η0
427τ2/3 4

√
ε0

)
.

Vector meson (Type IIy)

Vector mesons of type IIy obey a different equation of motion (5.53), such that the
WKB approximation yields a different result

A4d
y (τ) ≈

√∫
ω4d(τ) dτ

ω4d τ
τ F1. (B.1)

The corresponding holographic ansatz

δAy = δaIIy τ J1(
∫
ω dτ) + δãIIy τ Y1(

∫
ω dτ) (B.2)

gives rise to the following solutions for the five lowest mesons,

(δaIIy)0 = τF1[ω0]

[
(22m4+21ρ2m2+7ρ4)ε0L8

30m4(m2+ρ2)3τ4/3
− (11m4+4ρ2m2+ρ4)ε3/40 η0L8

10m4(m2+ρ2)3τ2
+ 1

m2+ρ2

]
,

ω0 = 2
√

2m
L2 +

(
−7L6τ−4/3ε0

15
√

2m3

)
×
(

1− 6η0
7τ2/3 4

√
ε0

)
,

(δaIIy)1 = τF1[ω1]

[
(−118m6+137ρ2m4+164ρ4m2+41ρ6)ε0L8

126m4(m2+ρ2)4τ4/3

+
(81m6−105ρ2m4−77ρ4m2−11ρ6)ε3/40 η0L8

42m4(m2+ρ2)4τ2
+ ρ2−m2

(m2+ρ2)2

]
,

ω1 = 2
√

6m
L2 +

(
−41L6τ−4/3ε0

21
√

6m3

)
×
(

1− 66η0
41τ2/3 4

√
ε0

)
,

(δaIIy)2 = τF1[ω2]

[
(178m8−880ρ2m6−106ρ4m4+315ρ6m2+63ρ8)ε0L8

180m4(m2+ρ2)5τ4/3

− (129m8−621ρ2m6+40ρ4m4+209ρ6m2+19ρ8)ε3/40 η0L8

60m4(m2+ρ2)5τ2
+ m4−3ρ2m2+ρ4

(m2+ρ2)3

]
,

ω2 = 4
√

3m
L2 +

(
−7
√

3L6τ−4/3ε0
10m3

)
×
(

1− 38η0
21τ2/3 4

√
ε0

)
,
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(δaIIy)3 = τF1[ω3]

[
(−4666m10+48234ρ2m8−52030ρ4m6−29975ρ6m4+9978ρ8m2+1663ρ10)ε0L8

4620m4(m2+ρ2)6τ4/3

+
(3449m10−34136ρ2m8+40675ρ4m6+15535ρ6m4−8368ρ8m2−523ρ10)ε3/40 η0L8

1540m4(m2+ρ2)6τ2

+ −m6+6ρ2m4−6ρ4m2+ρ6

(m2+ρ2)4

]
,

ω3 = 4
√

5m
L2 +

(
−1663L6τ−4/3ε0

462
√

5m3

)
×
(

1− 3138η0
1663τ2/3 4

√
ε0

)
,

(δaIIy)4 = τF1[ω4]

[
(1194m12−20697ρ2m10+55709ρ4m8−10890ρ6m6−22928ρ8m4+2989ρ10m2+427ρ12)ε0L8

1170m4(m2+ρ2)7τ4/3

− (891m12−14718ρ2m10+40421ρ4m8−11920ρ6m6−14673ρ8m4+3014ρ10m2+137ρ12)ε3/40 η0L8

390m4(m2+ρ2)7τ2

+ m8−10ρ2m6+20ρ4m4−10ρ6m2+ρ8

(m2+ρ2)5

]
,

ω4 = 2
√

30m
L2 +

(
−427L6τ−4/3ε0

39
√

30m3

)
×
(

1− 822η0
427τ2/3 4

√
ε0

)
.
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