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In this thesis we discuss several different methods that can be used to create the

elements of future quantum computers. The main focus will be on cold atomic

gases in optical lattices and trapped ions. Each of these systems has the capability

of having long–ranged dipolar interactions and can be studied by at multiple of

different methods. First we will describe a very simple system of soft–core dipolar

bosons on an optical lattice ring. The key element of this study will be to examine

the long-ranged behavior of the dipoles on a true ring topology and to examine the

behavior of different polarizations. We will use exact diagonalization to analyze

this sytem. Next, we will look at trapped ions on a two dimensional triangular

lattice and study the effects of these frustrated systems. Again we will be studying

the long ranged nature of the dipolar interactions (and also long–ranged hopping).

We will do this by using QMC simulations. Finally we continue to use QMC

methods to examine a two dimensional square lattice system filled with soft-core

bosons. The unique characteristic of this section will be that the Hamiltonian will

not only contain the dipole-dipole term but will also have a density dependent

hopping parameter. This additional hopping term can be of like or opposite sign

with the regular hopping which will influence the behavior of the entire phase

diagram.
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Chapter 1

Introduction

1.1 Quantum computing

The concept of the quantum simulator was first proposed in a paper by Richard

Feynman in 1982 [1]. In it Feynman claims that one can construct a many-body

system which would imitate a different quantum mechanical system. In other

words one needs to create a probabilistic simulator in order to properly repre-

sent probabilistic reality (quantum mechanics). If we are able to implement such

a simulator then we would be able to precisely study this probabilistic nature

of quantum mechanical systems as well as the physical world. This idea of a

quantum simulator could then be used to create a universal quantum computer.

This quantum computer would perform operations on data in the same manner

as a classical computer but instead of manipulating classical bits it would utilize

qubits (or quantum bits) and quantum logic gates instead of classical ones [2]. Us-

ing qubits allows one to employ the special properties of quantum mechanics such

as superposition and entanglement in order the perform different calculations. Of

course the function of such a quantum computer would be limited to very specific

tasks that a classical computer would not be capable of accomplishing in poly-

nomial time. For example a quantum computer would be able to do extremely

1
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fast factorization of very large numbers which could then be used for decryption

purposes by using the Shor algorithm [3].

Many scientists are currently looking at different ways of constructing a universal

quantum computer that will be capable of accurately simulating the quantum

world. However the field is still at a very young stage and there are many obstacles

still in the way of creating such a machine. There are many theories on how to

make such a device but none of them have been shown to be ideal candidates. One

of the most basic, yet important, elements is finding the best way to represent the

qubits. Some of the suggestions that exist are: spin-1/2 particles, hard-core bosons,

internal states of trapped ions, and many others. In this thesis we will focus mainly

on two of these possibilities: cold atoms (in optical lattices) and trapped ions.

More specifically we will focus on the behavior of long-ranged dipolar interactions

in optical lattices and their influences on different quantum mechanical systems.

1.2 Ultra-cold dipolar atoms

Let’s begin with a quick review of cold atomic gases. In 1995, Eric Cornell and Carl

Wieman produced the first ever Bose-Einstein condensate (BEC) from rubidium

87Rb atoms at the University of Colorado in Boulder [4]. This experiment became

the first major step in the development of the study of cold atoms. This field

grew rapidly and along the way there where many great discoveries such as the

creation of a fermionic condensate [5] and the BEC-BCS crossover [6]. Another

major milestone was reached, when in 2002 Marcus Greiner and his associates

showed experimentally, for the first time, the transition from a Mott insulator

to a superfluid in a three dimensional optical lattice [7]. In Fig. 1.1 we can see a

graphical representation of the two phases from the transition on a two dimensional

lattice. Fig. 1.1 (a) shows the superfluid state where the particles are delocalized

across the whole lattice due to a strong kinetic energy. Fig. 1.1 (b) shows the Mott

insulating state that is now dominated by the interaction energy which causes
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complete localization and therefore allows only a single particle to exist in an

individual site.

Figure 1.1: An illustration that helps visualize the behavior of the superfluid
and Mott insulating phases. In (a) we see that in the superfluid phase the
particles are delocalized across the lattice and that multiple particles can occupy
a single site. In (b), which shows the Mott insulating phase, we have a single
particle in a single site. This phase has strong localization and is incompressible.

The diagram is taken from [7].

Such an optical lattice as is shown in Fig. 1.1 can be constructed by using sets

of counter propagating laser beams that form a series of periodic potential wells.

These lattices can be formed into one, two, or three dimensional objects that

can take on many geometries. The potential wells that form can then be used

to trap atoms (that have been properly cooled) within their minimums. The

result is an arrangement of trapped atoms resembling a crystal lattice. One of

the great characteristics of these optical lattice systems is their incredibly high

tunability. Just by manipulating amplitudes and angles of the beams one is able

to easily change the depth and spacing of the lattice [8]. The celebrated Bose-

Hubbard model is used to explain the interactions that can be achieved between

the particles on an optical lattice.

The standard Hubbard model was first proposed by John Hubbard in 1963 in

order to describe transitions between conducting and insulating systems [9]. This
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model is excellent for approximating fermions on an optical lattice. Later that

same year, H. A. Gersch modified the model to describe bosons interacting on

an optical lattice [10]. This is now called the Bose-Hubbard model and it can be

derived from the following Hamiltonian:

H =

∫
drψ†(r)

[
p2

2m
+ Vlatt.(r)

]
ψ†(r)

+

∫ ∫
drdr′ψ†(r)ψ†(r′)Vint(r, r

′)ψ(r)ψ(r′)

− µ

∫
drψ†(r)ψ(r) (1.1)

where ψ(r) are the bosonic field operators, Vlatt. is the potential of the optical

lattice, and Vint is the two particle interaction energy. Now we transform the

Hamiltonian to a polynomial of bosonic ladder operators. This can be done by

writing the field operator ψ(r) as

ψ(r) =
∑
i

biw(r− ri) (1.2)

ψ†(r) =
∑
i

b†iw
∗(r− ri) (1.3)

where bi and b†i are the bosonic ladder operators acting on lattice site i and fulfilling

[
bi, b

†
j

]
= δij,

[
b†i , b

†
j

]
= 0, [bi, bj] = 0 (1.4)

and w(r−ri) are the Wannier functions, which are defined as a complete orthonor-

mal function basis

∫
drw∗(r− ri)w(r− rj) = δij (1.5)∑
i

w∗(r− ri)w(r′ − ri) = δ(r− r′) (1.6)

and are localized at lattice sites.

In a spatially periodic system different energy bands exist, so there are Wannier

functions for every band. In our systems the temperature is approximately zero
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(or low enough to stay in the ground state), so we can consider all bosons to be in

the lowest band. Otherwise we would have to distinguish between different bands.

Inserting the representation of the field operator (1.2) and (1.3) into the Hamilto-

nian (1.1) yields

H = −
∑
i,j

Ji,jb
†
ibj +

∑
i,j,k,l

Vi,j,k,lb
†
ib
†
jbkbl − µ

∑
i

ni (1.7)

where

Ji,j = −
∫
drw∗(r− ri)

(
p2

2m
+ Vlatt.(r)

)
w(r− rj) (1.8)

and

Vi,j,k,l =

∫ ∫
drdr′w∗(r− ri)w

∗(r′ − rj) (Vint(r, r
′))w(r′ − rl)w(r− rk). (1.9)

We restrict ourselves to the lowest Bloch bands however we allow for long-ranged

interaction terms. From the above equation we are able to derive every parameter

that we will take under consideration and that will appear in the extended Bose-

Hubbard model that we are building. This term will give us everything, form the

on-site repulsion to multi-site terms such as: dipole-dipole interactions, density

dependent hopping, and pair hopping. By carefully choosing our indices all of

the previously mentioned parameters can be calculated. They are described by a

combination of dipolar and δ-like contact interactions

Vint(r, r
′) = gδ(3)(r) + γ

(
(e1 · e2)r2 − 3(e1 · r)(e2 · r)

|r− r′|5

)
, (1.10)

where g is the strength of the contact interaction and γ is the strength of the

dipolar term. It is important now to take a look at these parameters individually.

First we set all the indices equal to each other, i = j = k = l, and from this we

get our on-site interaction. This term is the contact term from above, Eq. (1.10).
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Figure 1.2: Here we show 4 different configurations of two dipolar particles.
The top left panel, (a), shows two dipoles interacting with no polarization. The
top right panel, (b), shows the behavior when the dipoles are polarized. The
bottom two panels show two specific cases: (c) shows that dipole will repel each
other when they are placed side-by-side and (d) shows that the dipoles will
attract each other when placed head-to-tail. This diagram is taken from [11].

We can approximate the potential as

U = gδ(3)(r) =
4π~2a

m
δ(r) (1.11)

where a is the s-wave scattering length and m is the mass of the particle. We can

plug this back into Eq. (1.7) and get the single site interaction,

U

2
(b†ib

†
ibibi) =

U

2
(ni(ni − 1)) (1.12)

where the factor of 2 comes from double counting.
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Next if we let i = k and j = l we can get the dipolar term from the above potential

(1.9). Let’s define this term as

Vij =

∫ ∫
drdr′w∗(r− ri)w

∗(r′ − rj)(Vdd)w(r′ − rj)w(r− ri), (1.13)

where Vdd is the interaction created between two dipoles and is just the second

part of Eq. (1.10).

The behavior of the dipolar interaction can be explained by looking at two parti-

cles, 1 and 2, with dipole moments along the unit vectors e1 and e2, and whose

relative position is r. Now the energy due to the dipole-dipole interaction can be

written as

Vdd(r) = γ

(
(e1 · e2)r2 − 3(e1 · r)(e2 · r)

|r− r′|5

)
, (1.14)

where γ = µ0µ2

4π
. This coefficient contains µ0 which is the permeability of free

space and µ which is the permanent magnetic dipole moment (see Fig. 1.2 (a)).

This formula is true only for particles that have a magnetic behavior however for

particles that have an electric behavior the coefficient out front would be d2/4πε0

where d is the electric dipole moment and ε0 is the permittivity of free space. In

this thesis we will keep our focus solely on magnetic interactions. Also we will

be focusing only on systems where all the particles will be polarized in a specific

direction, and so the above equation can be simplified to

Vdd(r) =
µ0µ

2

4π

1− 3cos2θ

|r− r′|3
. (1.15)

Here the angle θ is calculated between the axis of polarization and the vector

connecting the two dipoles. This vector is given by r− r′ where the dipoles are

positioned at r and r′, as is shown in Fig. 1.2 (b). From this equation we can

see that the dipole-dipole interactions are anisotropic. This means that a couple

of dipoles arranged side-by-side will be repulsive, Fig. 1.2 (c), while two dipoles

placed head-to-tail will be attractive, Fig. 1.2 (d). There is also a magic angle

such that when cos2 θ = 1/3 the dipole-dipole interaction is completely canceled.
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The true dipole-dipole interaction consists of both inter-site as well as on-site

terms. For simplicity we will assume that the on-site part of the dipole-dipole

interactions where i = j, is incorporated into the already defined on-site term, U .

For the interactions between separate sites where i 6= j, we assume that the lattice

is deep enough that we can measure the distances and angles from the center of

each of the sites. This way we are able to take them out of the integral. We define

a as the distance between nearest neighbor sites. So if a = |Ri −Ri+1|, than we

can construct dimensionless positions of sites along the ring such that R̃i = Ri/a

and so, the dipole-dipole equation simplifies to

Vij = V
1− 3 cos2 θij

|R̃i − R̃j|3
(1.16)

where V is the value of the dipole-dipole interaction and θij is the angle between

the orientation of the dipoles and the vector connecting them at sites i and j. Now

we plug the above equation and the proper indices into (1.7) to get,

Vij(b
†
ib
†
jbibj) = Vij(ninj). (1.17)

The final two parameters that will appear in the Hamiltonian are derived similarly

to the dipolar term. We have the density dependent hopping which shows up when

any three of the indices of Eq. (1.9) are equal. For example we set j = k = l and

this will give us,

Tij =

∫ ∫
drdr′w∗(r− ri)w

∗(r′ − rj)(Vdd)w(r′ − rj)w(r− rj). (1.18)

which in turn gives,

Tij(b
†
ib
†
jbjbj) = Tij(b

†
injbj) (1.19)

from Eq. (1.7). This parameter causes a nearest neighbor hopping induced by

the on-site interaction. In other words a we have an additional term that causes

a particle to tunnel only if an adjacent site is filled with more than one boson.
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The final parameter arises when the creation operators have the one index and

the annihilation operators have a different one.

Pij =

∫ ∫
drdr′w∗(r− ri)w

∗(r′ − ri)(Vdd)w(r′ − rj)w(r− rj). (1.20)

The term in the Hamiltonian then takes the form,

Pij(b
†
ib
†
ibjbj). (1.21)

Now by combining all of these terms together we are able to write out the final

form of an extended Bose-Hubbard model.

H = −J
∑
〈i,j〉

(b†ibj + h.c.) +
U

2

∑
i

ni(ni − 1)− µ
∑
i

ni +
∑
i,j

Vi,jninj

−
∑
i,j

Ti,j(b
†
i (ni + nj)bj + h.c.) +

∑
i,j

Pi,j(b
†
ib
†
ibjbj + h.c.), (1.22)

where all previously discussed terms now appear. The first three terms form the

standard Bose-Hubbard model: J represents the tunneling term, U is the on-site

interaction, and µ is the chemical potential. The last three, more exotic terms

make this an extended Bose-Hubbard model: V is the density-density interaction,

T gives the density dependent tunneling, and P is the pair hopping. Most of these

parameters will be kept to nearest neighbor interactions only (or not present at

all) but for generality the coefficients are kept within the summations to allow for

the possibility of long-ranged interactions.

The parameters can be modified using a multitude of different techniques. For

example, the on-site repulsion can be manipulated by a process called Feshbach

resonance [12, 13] which utilizes external magnetic fields in order to change the

magnitude (and even sign) of the scattering length a that appears in 1.11. The

hopping term is controlled by the shaking of the lattice. This process, like the

Feshbach resonance for the on-site interactions, has the ability to scale and change

the sign of the tunneling term [14–16]. The chemical potential shows the amount

of energy needed in order to add another particle to the system. This is obviously
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can be controlled if we restrict ourselves to a specific amount of particles.

Finally the dipolar interactions are mostly controlled by the choice of atoms that

will populate the lattice. If we are interested in systems where the dipolar inter-

actions are large we choose an atom with a high dipole moment. For example,

52Cr is a popular choice because it has a magnetic moment of 6µB where µB is

a Bohr magneton. However these interactions can also be scaled by the lattice

depth. Just by increasing or decreasing the depth of the potential wells one can

adjust the strength and range of the dipolar interactions [17]. In this way the final

three parameters (which all come from the same source) can be manipulated.

1.3 Trapped ions

As we know many quantum systems are very difficult (if not impossible) to study

due to the size and complexity of the interactions. We know, for example, that to

fully describe a system of n spin-1/2 particles we need a Hilbert space of 2n. This

number gets very large very quickly and therefore we are left with only the ability

to study very small systems or we are forced to make approximations in order to

calculate any observables. That is why we turn our attention to the concept of

using trapped ions as the elements for quantum computing. This concept was first

realized by Ignacio Cirac and Peter Zoller in 1995 [18]. The publication explains

that ions are good candidates for quantum computing because they exhibit sev-

eral attractive features. First of al,l it is possible to create n-bit quantum gates

between any set of ions not only the nearest neighbors. Second, the decoherence

times of ions is extremely (over 10 minutes) so there is plenty of time to complete

calculations. Finally the readout or measurement can be performed with near

100% efficiency.

An extension of the previous work was done by Porras and Cirac when in 2004

they first proposed that trapped ions can be used as analogue quantum simulators

for magnetic systems [19]. This idea was not based on quantum gates and so

the requirements for its implementation were much less strict then for quantum
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computers. Next we describe we can create a qubit and then how we can use

it to simulate a spin system. First the ions can be held in a linear Paul trap,

in microtraps in one or two dimensions, or in a Penning trap which can then be

manipulated using either microwaves or photons. The basic idea is to use the

internal hyperfine states of an atom like a two-state system. These two states

would essentially create a qubit that would behave just like a spin-1/2 particle.

The actual process utilizes a Raman transition controlled by two laser beams to

”flip” the qubit. The first beam excites the atom from one hyperfine state into a

virtual state while the second beam deexcites the atom into the second hyperfine

state. The process is shown in Fig. 1.3.

Figure 1.3: The process of generating a qubit using the hyperfine states of an
atom. First a frequency f2 is used to create a virtual excitation from the original
hyperfine state |g1〉. Then a second frequency f1 is used the deexcite the atom
into the other hyperfine state |g2〉. The difference between the frequencies is

exactly the energy difference between |g1〉 and |g2〉.

In order to connect this to our work with dipolar interactions we can look at the

typical spin Hamiltonian that the ions are actually simulating [19]

H =
1

2

∑
i,j

Jzi,jS
z
i S

z
j −

1

2

∑
i,j

Jxi,jS
x
i S

x
j −

1

2

∑
i,j

Jyi,jS
y
i S

y
j

−
∑
i

(Hx
i S

x
i +Hy

i S
y
i +Hz

i S
z
i ), (1.23)
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where the interactions, which are mediated by phonons, have a long-ranged prop-

erty to them. The fascinating thing about this long-ranged behavior is that it

decays as one over the distance cubed, 1/r3, or just like a dipole-dipole interac-

tion. In this Hamiltonian the phonons can control the overall sign and magnitude

of Jx,y,zij and the spatial dependence is Jx,y,zij ∝ 1/|ri − rj|3. When Jx = Jy the

behavior of this Hamiltonian closely resembles a hard-core Bose gas with dipole-

dipole interactions acted upon by transverse and longitudinal magnetic fields. The

big difference is that the tunneling term now also has a non-local behavior, and

therefore also decays as 1/r3 [20].

1.4 Methods

There are a multitude of ways to analyze any of the systems that we have discussed.

Each method has its own set of pluses and minuses. It is important to try to chose

the proper method for the proper problem. In this thesis we focus our attention on

to specific methods. The first one that we employ is exact diagonalization. This

technique is elegant in its simplicity and its exactness. The process uses no ap-

proximations and therefore always gives the most precise answers. It’s limitations

lie in its scalability. Because its behavior mirrors the behavior of the interactions,

the Hilbert space grows exponentially with the size of the given system. However

it is still an excellent method for studying small systems and we will utilize it in

the next chapter to study a small one dimensional system of bosons. The other

method that we will focus on will be quantum Monte Carlo (QMC) simulations.

More specifically, we will use the open source QMC code of the ALPS project [21].

This technique will be used in Chapters 2 and 3 for studying larger two dimen-

sional systems. The ability to study larger systems is one of the benefits of using

the QMC code, but this method is not without its own limitations. As we will see,

there will arise problems when we study systems with high frustration or with the

sign problem. Sometimes these difficulties can be surpassed by certain means and

other times they are just too troublesome to be able to find a solution to them.

We will further address these issues as they come up in the later chapters.
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1.5 Thesis outline

We have discussed several possibilities of what can be used as potential elements

for creating quantum computers. Each of the models have the capability of having

long-ranged dipolar interactions. Then we looked at multiple methods that can

be used in studying those systems. Now let us present the structure of this thesis.

Chapter 2 describes a very simple system of soft-core dipolar bosons on an optical

lattice ring. The key element of this chapter will be to study the long-ranged

behavior of the dipoles on a true ring topology and to examine the behavior of

different polarizations. First we will look at dipoles that are polarized perpen-

dicular to the plane of the ring (purely repulsive) and later we will study dipoles

polarized parallel to the plane of the ring (anisotropic interactions). Using exact

diagonalization we calculate the behavior of the system and see where the ground

states crossover from one phase to another. In Chapter 3, we will look at trapped

ions on a two dimensional triangular lattice and study the effects of these frus-

trated systems. Again we will be studying the long ranged nature of the dipolar

interactions. In this chapter the hopping term will also decay like the dipolar

interaction so we have a chance to study the long-ranged effect of both the dipoles

as well as the tunneling. We will do this by using QMC simulations and will run

into difficulties form several sources. The first will arise form the frustration ef-

fects that exist in this geometry and that are only made worse by the long-ranged

nature of the system. The other will be the famous sign problem that will appear

when the tunneling parameter becomes negative. Then Chapter 4, we continue to

use QMC methods to examine a two dimensional system. This time however, will

look at a square lattice filled with soft-core bosons. The unique characteristic of

this chapter will be that the Hamiltonian will not only contain the dipole-dipole

term but will also have a density dependent hopping parameter. This additional

hopping term can be of like or opposite sign with the regular hopping which will

influence the behavior of the entire phase diagram. In Chapter 5 we will discuss

the influence that LR interactions have on systems in general. How they can en-

rich a phase diagram and also make calculations harder. Finally we will look at
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experimental possibilities and what the future hold for LR dipolar interactions.



Chapter 2

Dipolar bosons on an optical

lattice ring

2.1 Introduction

In this chapter we take a look at a small optical lattice ring filled with soft-core

bosons with long-ranged dipolar interactions. Since we will be using exact diago-

nalization routines we will restrict ourselves to a small system of 8 bosons sitting

on 8 sites (i.e. with unit mean density). We then study the behavior of the system

for two separate cases. The first is when all the dipoles are polarized perpendicu-

lar to the plane of the ring and the second case is when the dipoles are polarized

within the plane of the ring. The two situations lead to very interesting and qual-

itatively different behaviors. We analyze each one thoroughly and compare the

results.

To begin let us consider the following one-dimensional Hamiltonian

H =
∑
i

[
−J(b†ibi+1 + h.c.) +

U

2
ni(ni − 1)

]
+
∑
ij

Vijninj. (2.1)

This is a simplified version of the extended Bose-Hubbard model (EBHM) which

was introduced in the first chapter, Eq. (4.1). Here the density dependent and

15
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pair hopping terms are ignored. Also their is no chemical potential since we will

be looking at systems where the number of particles is fixed. As we recall b†i and

bi are the creation and annihilation operators respectively and ni = b†ibi is the

corresponding number operator. The coefficients represent the hopping parameter

J and on-site repulsion U , while the final term, Vij, gives the value of the dipolar

interactions between all sites. It is at this point where the ring topology becomes

important. If we were to consider this to be a one dimensional chain with periodic

boundary conditions then all the interactions would be repulsive (or attractive).

Quite impressive work has already been performed on polarized dipolar gases in

one dimensional lattice systems [22–27]. However this study differs from the others

because we consider an actual ring. This geometry allows the anisotropic nature

of the dipole-dipole interactions to become evident. Also, most previous works

stop at nearest neighbor or next-nearest neighbor interactions but here we look at

interactions between every single possible pair of sites.

2.2 Exact diagonalization

We will study the problem using a technique called exact diagonalization. This

method takes the extended Bose-Hubbard Hamiltonian and represents it as a

matrix. This extremely sparse matrix is then diagonalized using the ARPACK

package available for FORTRAN [28]. This package uses an iterative process called

the Lanczos algorithm in order to find extremal eigenvalues [29]. We will use these

tools to find several of the lowest lying eigenvalues and eigenvectors which will in

turn be used to calculate some useful observables. The results of this method give

precise (i.e. machine precision) answers for the eigenvalues and eigenvectors in

a reasonable amount of time, unfortunately it is still extremely limited for large

systems. The dimensionality of the Hilbert space is given by

D =
(N +M − 1)!

N !(M − 1)!
, (2.2)
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where N is the number of bosons and M is the number of sites. For our 8 site

ring with 8 bosons the Hilbert space is D = 64, 523. To get a good sense of

how quickly this figure grows we look at a few more examples. For fixed filling

N/M = 1, we get D = 6, 435 when M = 8, D = 92, 378 when M = 10, and finally

D = 1, 352, 078 when M = 12. Now we take a more in-depth analysis into the

workings of exact diagonalization.

As was mentioned earlier we only need the first few lowest eigenvalues and eigen-

vectors in order to fully understand the behavior of the system. Therefore we use

the Lanczos methods to significantly reduce the time needed for performing the

calculations. In order to solve the full matrix (i.e. get all eigenvalues and eigenvec-

tors), the computational time required would be on the order of O(D3) while the

space needed to store the entire matrix would take up O(D2) space. By using the

Lanczos method we are able to get the same machine precision convergence much

faster. Without going into any details, this method allows us to find extremal

eigenvalues and their corresponding eigenvectors using an iterative process that

reduces the computation time by a significant amount [29].

The solutions of this algorithm give eigenvalues E(ν) and eigenvectors C(ν) where

each ν corresponds to a specific energy level of the system. The ground state can

be written as a superposition of all the Fock states with different weights given by

elements of C(ν). In the number basis we can write this as

|Ψν〉 =
D∑
α=1

Cν
α|{n1, ..., nM}α〉. (2.3)

Now there are a few tricks that can be utilized in order to make the program more

efficient. First of all we need to identify all of our basis vectors. Since we are

working in the occupation number representation {|n1, n2, ..., nM〉} with a fixed

number of particles
∑M

i=1 ni = N , we need to have an effective way of calculating

every Fock state that makes up the basis. In the occupation number basis we of

course have

n̂i|n1, n2, ..., nM〉 = ni|n1, n2, ..., nM〉 (2.4)
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where ni ≥ 0. We use a combinatorial algorithm that efficiently enumerates all

the possible states.

Another trick that is used in order to reduce computation time is a technique called

tagging. The process of creating tags for all the basis vectors of the Hamiltonian

matrix will greatly reduce the space and time needed for evaluating our lowest

energies. Let’s take the Hamiltonian matrix

Huv = 〈u|H|v〉 (2.5)

where u and v are all the basis vectors. Typically the entire basis vector would be

stored in a matrix, A = D ×M , where the vth row would correspond to the vth

vector. So we could define each vector as,

|v〉 ≡ |Av1 , Av2 , ..., AvM 〉. (2.6)

From this matrix let us pick out an arbitrary basis vector |v〉 which is just one

of the D possible Fock states and change it into a unique number. This unique

number will be referred to as the tag of the vector and will be defined as,

T (v) = T (Av1 , Av2 , ..., AvM ). (2.7)

This is accomplished by letting T (v) =
∑M

i=1

√
piAvi where pi = 100 ∗ i+ 3. This

process guarantee that none of the tags will repeat.

Now in order to be able to find any arbitrary vector in our new list of tags it

would take an average of D/2 tries. To make this more efficient let’s sort them

in an ascending or descending order. Once the tags are all sorted we we can use

Newton’s binary method in order to locate the proper tag that we are looking for.

This now reduces the search time from D/2 to log2D. Just to give an idea of how

much better this method is let’s compare how many tries it would take to find the

right tag for our small system of 8 sites with 8 bosons. We will recall that the

Hilbert space has the dimensions of D = 65, 482 so using the standard method of
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just scanning down the unsorted list will require an average of 32,471 tries while

the binary method takes only about 16 tries.

Still the most effective way that we can reduce the Hilbert space and make the

computations even faster is by considering the symmetries found in the Bose-

Hubbard model.

2.3 Symmetries of the EBHM

The first symmetry that we will look at has to do with the fact that our Hamil-

tonian has a conserved number of particles, in other words,
∑M

j=1 ni = N . Due to

U(1) symmetry we can show that the Hamiltonian is invariant under the transfor-

mation (b†i , bi)→ (b†ie
iθ, bie

−iθ) = eiNθ(b†i , bi)e
−iNθ for ∀ θ ∈ R.

The next symmetry that exists in the Bose-Hubbard model is one that is invariant

under the transformation (b†i , bi)→ (b†i+1, bi+1) and only works if the Hamiltonian is

assumed to have periodic boundary conditions. This is referred to as translational

symmetry. This symmetry will exist for cases where the dipoles are polarized out

of the plane of the ring however it is broken when the polarization is oriented along

the plane of the ring due to the anisotropic nature of the interactions. When this

is true we can no longer assume that each site exhibits the same behavior.

Next we have reflection symmetry. For this we can show that the Hamiltonian

will be invariant under the transformation (b†i , bi)→ (b†M+1−i, bM+1−i). What this

states is that if we split the ring into two halves then each half will behave the

same. This symmetry remains unbroken for either of the polarization directions

(however for systems with the polarization lying within the plane, the ring must

be properly divided along the direction of polarization).

If we were to combine the last two symmetries we could show that the Bose-

Hubbard model has a DM symmetry. This symmetry is the symmetry of an

equilateral polygon with M vertices. Combining the U(1) symmetry with the
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DM symmetry, provides us with a block diagonal representation of our original

Hamiltonian that greatly reduces the Hilbert space and computation time.

In this study we will only take advantage of the reflection symmetry. We start by

splitting the ring into two halves (right and left) and defining operators in a new

basis.

b†p =
b†R + b†L√

2
bp =

bR + bL√
2

(2.8)

b†n =
b†R − b

†
L√

2
bn =

bR − bL√
2

(2.9)

where we have defined parity and non-parity operators in terms of creation and

annihilation operators of particles on either side of the ring lattice. Now we can

plug these new operators into our Hamiltonian (2.1) in order to symmetrize it.

We will do this term by term. The first term is the hopping term:

HJ = −J
∑
〈i,j〉

(b†ibj + b†jbi) (2.10)

HJ = −J
∑
〈i,j〉

(b†Ri
bRj

+ b†Li
bLj

+ b†Rj
bRi

+ b†Lj
bLi

)

−J
∑
〈i,j〉

(b†Ri
bLj

+ b†Lj
bRi

) (2.11)

HJ = −J
∑
i

(npi − nni
) +

∑
〈i,j〉

[
(b†pibpj + h.c.) + (b†ni

bnj
+ h.c.)

]
(2.12)
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Next we have the on-site term:

HU =
U

2

∑
i

ni(ni − 1) (2.13)

HU =
U

2

∑
i

(b†ib
†
ibibi) (2.14)

HU =
U

4

∑
i

(b†Ri
b†Ri
bRi
bRi

+ b†Li
b†Li
bLi
bLi

) (2.15)

HU =
U

4

∑
i

[npi(npi − 1) + nni
(nni
− 1)]

+
U

4

∑
i

[
4npinni

+ (b†pibni
)2 + (b†ni

bpi)
2
]

(2.16)

Finally we have the dipole-dipole term:

HV =
∑
i,j

Vi,jninj (2.17)

HV =
∑
i,j

Vi,j
[
nRi

nRj
+ nLi

nLj
+ nRi

nLj

]
(2.18)

HV =
∑
i

Vi
4

[
(npi(npi − 1) + nni

(nni
− 1)− (b†pibni

)2 − (b†ni
bpi)

2
]

+
∑
ij

[
Vij(npinpj + nni

nnj
+ npinnj

)
]

where i 6= j (2.19)

It is interesting to notice that while the on-site interaction remains solely on the

diagonal, the hopping and dipolar terms now have both a diagonal as well as an

off-diagonal part. This new Hamiltonian is now in a block diagonal form where one

block defines all the parity states and the other block gives the non-parity states.

Each of the blocks can be diagonalized separately, greatly reducing computation

time.
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2.4 Observables

First let’s consider the condensate fraction. This observable comes from the one-

body density matrix (OBDM) which is defined by

ρ
(1)
ij = 〈Ψ0|b†jbi|Ψ0〉, (2.20)

where |Ψ0〉 is the ground state eigenvector of the system. The eigenvectors of

the new matrix are called natural orbits while the eigenvalues are the occupation

numbers of these orbits,Nc. In other words Nc is just the number of condensed

particles in the system. The largest eigenvalue of the OBDM divided by the total

number of particles corresponds to the condensate fraction, fc = Nc/N . So when

any one of these natural orbits is macroscopically occupied this is evidence that

a BEC is present. If we neglect the presence of the dipole term, V , and the

interactions are low, U/J ≈ 0, then all the particles are in the condensate. As

the ratio increases such that U/J > 0 (but still V = 0), the condensate depletes

monotonically. In the thermodynamic limit (M →∞ and N/M = 1), at a critical

value of U/J ≈ 4.65 the condensate is completely depleted and fc = 0 [30]. Of

course here we are working in a finite system and therefore this is not completely

true for our case. For finite systems there exists a lower bound for the condensate

fraction which is 1/M . This limit comes from the normalization of the OBDM

which states that Trρ
(1)
ij = N and so there must exist an eigenvalue such that

λ1 ≥

(∑
k

λk

)
/M = N/M. (2.21)

From this we can clearly see that the condensate fraction, fc can never drop

below 1/M and so we can never really fully state that a condensate does not

exist. Another aspect to focus on is that the presence of a condensate relates to

the existence of off-diagonal long-range order. What this implies is that when a

condensate is present than the matrix elements of the OBDM that are far off the
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diagonal remain non-zero or to put this another way

ρ 6→ 0 for |i− j| → ∞. (2.22)

So far we have solely focused on the macroscopic filling of the first natural orbit.

However if there are multiple natural orbits macroscopically occupied then there

exists what is called a fragmented condensate. This phenomenon corresponds to

the existence of several individual condensates in a single system. In our case

this will occur when two condensates appear on either side of the ring but stay

separated [31].

Now we look at the superfluid fraction from two different points of view. First we

will define it by its macroscopic properties and later we will look at its microscopic

properties. This observable in both cases is connected to the flow of the particles

in the system. Macroscopically we can treat the system as if it were made up of

two different fluids. The first fluid is a normal fluid that reacts to the friction

from the walls of the system. The other is the superfluid which can be thought

of as having zero viscosity and therefore flowing without friction. By rotating the

ring, we can calculate how much of the total fluid gets dragged along with the

movement of the walls and how much is unaffected. The velocity of the moving

fluid, from the reference frame of the moving system, will be able to provide us

with the superfluid density.

We can also take a look at the microscopic behavior of the superfluid fraction. We

add a phase to the condensate wave function which is connected to a velocity field

by

~vs =
~
m
~∇Θ(~x). (2.23)

where the velocity of the fluid is proportional to the gradient of the phase. It is

important to remember that this velocity field is both irrotational (~∇ × ~vs = 0)

and non-dissipative [32]. We assume a linear phase variation, so for a system of

length L and can rewrite Eq. (2.23) with a spatially varying phase, Θ(~x) = Θx/L.
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Plugging it in we get

vs =
~Θ

mL
. (2.24)

The portion of the fluid that flows with this velocity, ~vs, is considered the portion

that is in a superfluid state. The presence of this flow increases the kinetic energy

of the system. It is important that the phase gradient be kept small so that no

excitations appear and cause particles to jump into higher energy levels. But if

Θ� π then no unwanted excitations should present themselves. In this study we

will set Θ = 0.1. Now the difference of the ground state energies of a moving and

stationary system can be written as

EΘ − E0 =
1

2
Msv

2
s , (2.25)

where E0 is the ground state energy of the regular system while EΘ is the ground

state energy of the system with the additional phase twist. The velocity of the

flow is given by vs. Finally the mass, Ms, is the mass of the superfluid part of

the system. This value can be rewritten as Ms = mNfs, where the term fs is

called the superfluid fraction (or superfluid density). Now by rearranging the last

equation we can solve for the superfluid fraction and get

fs =
2mL2

~2N

EΘ − E0

Θ2
for Θ� π (2.26)

Up until now we have been working completely in a continuous system but this

study focuses on a discrete lattice, so in order to progress from one picture to

the other we have to employ a few changes. First of all the length of the system,

L, will now become just the number of sites in the system, M . Next we have to

replace the coefficient ~2/(2m) by the tunneling strength, J . Finally we arrive at

the proper formula that we will use to calculate the superfluid fraction

fs =
M2

JN

EΘ − E0

Θ2
for Θ� π. (2.27)

As mentioned earlier, the two different energies that are present in the above
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formula correspond to the ground state energies of two different Hamiltonians.

E0, of course, comes from the regular Hamiltonian (2.1) that was introduced at

the beginning of this chapter, while the other energy, EΘ is the ground state energy

of a Hamiltonian with twisted boundary conditions. We can write it as

H =
∑
i

[
−J(e−iΘ/Mb†ibi+1 + h.c.) +

U

2
ni(ni − 1)

]
+
∑
ij

Vijninj. (2.28)

where we can see that the hopping term has now picked up an extra phase. These

additional terms are commonly called the Peierls phase factors and they simulate

a slow motion of the system. In this system that will directly correspond to a slow

spinning of the ring. A final important point to make is that the superfluidity

and condensation are not the same thing. The presence of a superfluid does not

immediately guarantee the existence of a condensate.

Lastly we will look at the occupation variance of the system

∆ =
√
〈n2

i 〉 − 〈ni〉2. (2.29)

I t is useful to calculate this observable because it does not show any strong finite

size effects. Even small systems like ours, where M = 8, behave like an infinite

system. This observable will give the fluctuation around the mean occupation

number in a site. This observable provides us with more information than the

mean value can provide. While the mean value very often will remain unchanged

the variance can differ. The mean value is given by

n̄i = 〈Ψ0|ni|Ψ0〉, (2.30)

and for translationally invariant lattices this value equals N/M for all sites and

for all values of U and J . This value will fluctuate when the polarization of the

dipoles is in the plane of the ring because the lattice is no longer translationally

invariant but when the polarization is out of the plane of the ring this observable

gives very little information about the system and therefore we have to focus more

on the variance. When the ground state |Ψ0〉 is a pure state made up of just a
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single Fock state than this value will be zero. On the other hand if the ground

state has a superposition of many Fock states than our variance will be large. This

will allow us to determine the behavior of the system as interactions change and

help determine where the system crosses over from one ground state to another.

2.5 Results

Hamiltonian (2.1) depends on three parameters: J the hopping , U the on-site

repulsion, and V the dipole-dipole interaction. We set J = 1 and therefore we

are able to express U , V and H in units of the tunneling. This Hamiltonian will

describe an 8 site ring with 8 soft-core bosons (i.e. unit mean density). Here the

bosons are completely soft-core by which we mean that there will be no restriction

on the amount of bosons allowed on a single site. Now we can study the behavior

of all the observables and see what interesting ground states arise form the analysis

of the model.

2.5.1 Polarized out of plane

The first case to consider is one where all the dipoles are polarized perpendicular

to the plane of the ring. In this configuration the angle between any two given sites

is always θij = π/2 therefore Eq. (1.16) simplifies to Vij = V 1
|ri−rj |3 . This situation

creates dipoles that are purely repulsive. Our case is unique to previous studies

such as [23, 24] since we have an actual ring topology and not just a linear chain

with periodic boundary conditions. The major difference is that distances on a

ring need to be calculated properly between each set of sites. They are not all set

apart by the lattice constant a as they would be in a one-dimensional chain with

periodic boundary conditions. Also, as mentioned earlier, Vij will be calculated

for every single pair of sites on the ring and not just for nearest neighbors.

In Fig(2.1) we show the results of the superfluid fraction, fs, the condensate frac-

tion fc and the variance ∆ as a ratio of V and U . Each one of the plots corresponds
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to a different value of U . The top two panels, (a) and (b), show the behavior of

the system for relatively low on-site interactions, U = 1 and U = 4 respectively.

While panels (c) and (d) correspond to U = 7 and U = 10 respectively.

A quick analytical explanation can be presented for the behaviors of fs and fc at

small V/U if we assume that our tunneling amplitude is very small, J ≈ 0. If there

is no hopping term and no dipole-dipole interaction than all the particles would

arrange evenly across the lattice and our ground state would be a Mott insulator

giving an energy E0 = 0. The first excited state differs only slightly from the Mott

state. In this state all but two sites are filled with a single boson while one is

empty and another has two bosons in it. A quick calculation of this state gives

E1 = U . So we can immediately see that the energy gap is given by ∆E = U . In
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Figure 2.1: Superfluid fraction fs (solid black lines), condensate fraction fc
(red dashed lines) and variance of occupation on different sites ∆ (green dot-
dashed) as a function of V/U for U = 1, 4, 7, 10 (panels (a) to (d), respectively).
For small V/U we observe an increase of the superfluid (and condensate) fraction
with V both in the SF phase (for U = 1 panel (a) as well as for U = 10 panel
(d)) where the increase of V causes transition from MI to SF phase. Around
V/U = 0.5 a transition to a density wave state [2, 0] occurs, more sudden for
larger U , as manifested by a rapid drop of fs and fc. For larger V/U sharp
transitions between different density waves occur as manifested in fc as well as

in variance of occupation ∆.
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such a situation both the superfluid fraction and the condensate fraction would

be equal to zero, fs = fc = 0 and therefore the system would start off in a Mott

insulating state. The fact that our results show none zero values has to do with the

fact that we are working in a finite system and of course our hopping parameter

is never zero. Now if we turn on a small dipole-dipole interaction but continue to

disregard the tunneling the gap between the lowest states becomes ∆E = U − V .

From this we can see that as the ratio V/U increases slightly above zero than the

energy gap between the first two states decreases and both the superfluid fraction

and the condensate fraction should increase.

Let’s take a look back at Fig. 2.1. In panel (a), we do not see any of the behavior

that is described in the previous paragraph. Neither the superfluid fraction nor the

condensate fraction increase as V/U gets larger, in fact they both decrease. For

an infinite system without dipole-dipole interactions the ground state would be

a superfluid which would give a maximum value for both the superfluid fraction

as well as the condensate fraction. This is behavior can easily be explained by

the fact that we are looking at a values of U and J that are equivalent to each

other, U = J = 1. Therefore the assumption we made earlier does not apply.

As V gets larger, it pushes all the particles apart so both the fs and fc decrease

monotonically until, at high V values, the system settles into a Mott state. But

this panel is unique in its behavior when compared to the others.

Now we increase the interaction to U/J = 4 and we see a change in the behavior.

Such a system would start slightly in the Mott regime for an infinite lattice at

unitary filling and with no dipole-dipole interactions. This plot now is more closely

related to the analytical explanation. Although fs and fc do not start at zero they

do increase moderately for small V/U values before dropping down. For higher

ratios of U/J this behavior is much more prominent as in panels (c) and (d) with

a much sharper peaks for fs and fc. Another thing to notice is that the variance

of the system is no longer a smoothly increasing function but rather has a step

like behavior at higher V/U when the system crosses over to a density wave state.
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Since all of these changes are more obvious in the bottom two panels of Fig. 2.1, let

us focus on them. In both panels (c) and (d) the superfluid fraction as well as the

condensate fraction begin at low values and at first increase as the dipole-dipole

interactions get stronger, just as predicted by the analytical analysis for small V

values. However, the figure clearly shows that these values are not completely

zero. This is connected to the fact that we are working with a small system that

experiences finite size effects. Now at V/U ≈ 0.62 for U/J = 7 and V/U ≈ 0.87

for U/J = 10 there is a sudden change and the observables quickly decrease. After

this sudden drop the system changes to a density wave phase that is characterized

by an alternation of empty sites and ones filled with 2 bosons. For simplicity

we will refer to this as the [2, 0] state. At higher V/U ratios other such density

wave phases appear with different occupation numbers on different sites. Each

new density wave phase is characterized by a sharp hop in the variance, as can

clearly be seen in panels (b)-(d) of Fig. 2.1. We can also observe that these changes

between different density wave phases are quite independent of the parameter U

since they show up in every plot except where the tunneling term is negligible and

only the V/U parameter is relevant.

As was mentioned earlier, this system possesses certain symmetries. When the

polarization is out of the plane of the ring then we know that system is invariant

under a rotation by 2π/M where M = 8 is the number of sites in our lattice.

Because of this the ground state will also possess a symmetry that will cause two

near degenerate energy states to appear. There are two lowest lying states that are

even and odd combinations of the [2, 0] and [0, 2] density wave phase that satisfy

〈ni〉 = 1 at every site. In order to see which density wave configuration we have

we will use the one body density matrix 2.20 and trace out all sites except one.

From the partial trace of the OBDM we get the probability distribution P (n) of the

bosons at a single site. Table 2.1 shows this distribution for several different ratios

of V/U and up to 4 bosons per site. Higher fillings per site have been omitted

since their values are extremely small. The second column, where V/U = 2.5,

corresponds to the density wave phase with [2, 0] modulation. We can clearly see

this because the values corresponding to n = 0 and n = 2 have a probability
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n V/U = 2.5 V/U = 3 V/U = 4.5 V/U = 5
0 0.4950 0.6139 0.6225 0.7491
1 0.0124 0.0181 0.0057 8.6 10−4

2 0.4902 0.1229 0.2456 3.6 10−6

3 0.0024 0.2453 0.0018 8.6 10−4

4 2.3 10−6 0.0049 0.1244 0.2491

Table 2.1: Probability distributions at a given site for an 8 site lattice for
different ratios of dipolar to on-site coupling, V/U for U = 4 revealing different

density wave arrangements.

distribution of approximately 1/2. The rest of the n values are nearly zero but

due to finite tunneling the occupation will never completely vanish. In the next

column over, where V/U = 3, we see that the occupations of the different filling

has changed. At this ratio we now have one site filled by 2 bosons, two sites filled

with 3 bosons, and the rest remain unoccupied. If we look back at Fig. 2.1 we

can see that in panel (b) there is a sharp jump just below V/U = 3 in both the

condensate fraction and the variance. (There is actually also a peak in the SF

but it is quite small.) These jumps corresponds to the system transitioning from

the [2, 0] density wave state to the one just described. The next ground state

configuration has five empty sites, two sites filled with 2 bosons and one site with

4 bosons. This is verified by the fourth column of Table 2.1 and corresponds to

the next jump in the occupation variance in Fig. 2.1 panel (b). There is also a

decrease in fc and again a small peak in fs (which is too small to see without

zooming in). The small peaks in the superfluid fraction can be explained by the

fact that in order for the ground states to change for one density wave state to the

next, the particles have to be able to rearrange. This quick movement from one

ground state to the next causes a slight jump in the superfluid density to allow the

bosons to change sites. In fact we can assume that there are peaks in fs at each

of the transition points but are too small to be noticed. Returning to the main

topic, we see that another density wave state exists above V/U ≈ 4.5. This state

is again characterized by a clear jump in ∆ and a very small jump that decreases

fc. Now looking at the final column in Table 2.1 we observe that this density

wave has two sites filled by 4 bosons while the rest remain empty. If continue to

increase the ratio V/U eventually there will exist a state (not shown) that contains



Chapter 2. Dipolar bosons on an optical lattice ring 31

all of the bosons in one site while 7 sites remain empty. This happens when the

dipole-dipole interactions between sites becomes so strong (when compared to the

on-site interaction) that it is energetically favorable to just place them all in a

single site.

This behavior however is in contrast with the findings of S. Zöllner et. al. in [33].

In this chapter it is shown that a crystal like structure appears at high values of

V . However there are a few differences that could explain this discrepancy. In

our study we are working with optical lattices while in [33] there is a quasi-one-

dimensional ring trap. A second difference is that, as we mentioned earlier, we

have incorporated the on-site dipolar interaction right into our U parameter. This

gives us the freedom to increase V until the parameter U is negligible and no extra

energy is required to add bosons to the site. In [33] the contact term of V is always

calculated and so as the inter-site repulsion increases so does the on-site repulsion

and therefore can never truly be neglected. Finally the dipolar interactions do not

extend out to all sites then it is impossible for all the particles to collect in one

spot.

The types of density waves that are allowable for any system are dependent on

the geometry of that system. This is especially pertinent since we are dealing with

only 8 sites. Obviously as the system size increases these differences disappear.

But since we are focusing on very small systems let’s look at a 9 site ring again

with unit filling. This geometry provides us with a completely different set of

density waves than we had for the 8 site system. In this case we would start with

one site filled with 3 bosons, three sites containing 2 bosons and the rest remaining

empty. This crosses over to a density wave that has a modulation of [3, 0, 0]. As

the V/U ratio increases the system jumps a state where one site has 4 bosons and

another has 5. These results are all shown in Table 2.2 through the probability

distributions on the given sites of this 9 site ring. A final phase, at very high V/U

contains all the bosons in a single site similarly to the 8 site lattice.

A key point of these results is that such phases only appear due to the long-ranged

nature of the dipole-dipole interactions. If we had limited the interaction to just
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n V/U = 2.25 V/U = 7.75 V/U = 10
0 0.5359 0.6661 0.7777
1 0.0368 5.510−4 1.3 10−4

2 0.3186 5.510−4 9.2 10−8

3 0.1085 0.3328 7.4 10−5

4 9.5 10−5 6.710−8 0.1111
5 6.2 10−9 1.610−15 0.1111

Table 2.2: Probability distributions at a given site of a 9 site lattice for dif-
ferent ratios of dipolar to on-site coupling, V/U for U = 4 revealing different

density wave arrangements.

nearest or next-nearest neighbors we would not be able to find this behavior. If, for

example, we truncated the interactions to next nearest neighbors than no matter

how high the dipole-dipole interaction would be it could never create a state where

all particles would gather in a single site. As a final note we should observe that

the crossovers between the different density waves resemble phase transitions of

the first kind (both fc and ∆ feature sharp jumps on the plots).

2.5.2 Polarized in plane

Now we change the axis of polarization, by making the magnetic field lie in the

plane of the ring and we see how the behavior of the system differs. We can no

longer use the simplified version of Eq. 1.16. Now we must take into account not

only the distances between individual sites but also the different angles between

them as well. In this scenario the anisotropic nature of the dipole-dipole inter-

action comes to light and provides a completely different picture than the one

discussed previously. Again we will work with the 8 site ring containing 8 bosons.

This very important because for the this finite system even the orientation in the

plane will change the results of the ground states. Therefore we chose the most

symmetric possibility where the polarization axis is parallel to the two sides of the

octagon as shown in Fig. 2.2. This orientation will now require us to treat separate

sites differently, but we are able to group them together. Due to some symmetry

considerations, the lattice can now be broken down into two types of sites. The

4 sites located at the end of the edges that are parallel to the polarization axis
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(points 2, 3, 6 and 7 in Fig. 2.2) will be refereed to as type-I. The 4 sites located

at the end of the edges that are perpendicular to the polarization axis (points 1,

4, 5 and 8 in Fig. 2.2) will be refereed to as type-II. From Eq. 1.16 we see that

the angle θij can make the dipole-dipole interactions either repulsive or attractive

depending on the relative orientations of sites i and j. We will now show that

the attractive interactions due to sites of type-I will be the dominating factor that

decides the ground state configuration.

1

2

3

45

6

7

8

Type-I

Type-II

Figure 2.2: A ring shaped lattice, the arrow indicates polarization of dipoles.
Due to symmetry sites 2,3,6,7 are equivalent (type-I), similarly 1,4,5,8 (type-II).

Fig. 2.3 gives the behavior of our different observables at sites of different types

for a shallow lattice with U/J = 1 . As we can see in panel (a) of Fig. 2.3 the

superfluid fraction represented by the black line starts out at unity and drops

down to zero where a clear transition can be seen at V/U ≈ 0.5. We also see a

decrease of the condensate fraction (or the first eigenvalue of the OBDM) while

at the same time there is an increase of the second eigenvalue of the OBDM. As

we have stated at the beginning of the chapter this can happen when we have

a fragmented condensate [31]. What this means is that after V/U rises above

0.5 than all the particles in sites of type-II transfer into sites of type-I and so

the system has now broken into two coherent halves each localized at a pair of

neighboring sites of type-I. This is verified by the variance shown in panel (b) of

Fig. 2.3. While the blue curve, which represents of the occupation number for sites

of type- I (nI), steadily increases, the variance of the particle number for sites of
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type-I (∆I) sharply increases around V/U = 0.5. So this again confirms that we

have all of our bosons sitting in type-I sites. This superposition of “macroscopic”

states can easily be compared to a double well system where an effective attractive

interaction dominates, like in Ref. [34, 35].
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Figure 2.3: The graphs show results for a shallow lattice, U/J = 1. In panel
(a) the solid black line shows a SF fraction with a drop around U/J = 0.5. This
drop is accompanied by similarly rapid increase of the number variance ∆I

(green dash-dotted line in panel (b)) as well as changes of condensate fraction,
fc (dashed red line) and the second eigenvalue of OBDM, gc (dotted red line).
On the other hand the mean occupation nI of I-sites (blue dashed line in panel
(b)) increases slowly and smoothly in the whole studied range of V/U . For the

discussion see text.

A very similar study exists, Ref. [36] where instead of an optical lattice a toroidal

trap is used to study the behavior of dipolar particles. In this paper a Gross-

Pitaevski mean-field approach is used in order analyze the system. The study

confirmed our results by showing that at higher values of the dipole-dipole inter-

action the condensate splits and all the bosons gather on each side of the torus. As

the dipolar interactions continue to increase the a symmetry breaking phenomenon

occurs that is typical of attractive nonlinear systems and all the particles group

together on a single side of the toroidal trap. This symmetry breaking is the

mean-field counterpart of the macroscopic superposition occurring at the quan-

tum level. If now look at Table 2.3, we can confirm that the situation is identical

in our system as well. In this Table we show the occupation probability distri-

butions, P (n), for each type of site at both below and above the transition point

of V/U = 0.5. For type-II sites P (n) changes smoothly while type-I sites show

a behavior that at V/U > 0.5 the ground state becomes a superposition of a

vacuum state with a state centered around large n. If we were to continue to
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increase the dipole-dipole interaction, say V/U > 30, we would eventually arrive

at a symmetry broken state that would just be a superposition of two Fock states,

1√
2
|0, 4, 4, 0, 0, 0, 0, 0〉+ 1√

2
|0, 0, 0, 0, 0, 4, 4, 0〉, and whose condensate fraction is sig-

nificantly less than 1/2.

Type-I Type-II
n V/U = 0.4 V/U = 0.6 V/U = 0.4 V/U = 0.6
0 0.2098 0.4839 0.4146 0.6072
1 0.4260 0.0397 0.4391 0.2955
2 0.2771 0.1279 0.1313 0.0867
3 0.0766 0.2132 0.0144 0.0100
4 0.0099 0.1140 0.0006 0.0005

Table 2.3: Probability distributions at sites of type I and II on either side of
the V/U = 0.5 transition for U/J = 1, revealing ground state character change.
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Figure 2.4: Intermediate U/J behavior. SF fraction is shown in for U/J = 4
(black dotted line), U/J = 6 (red dashed line) and U/J = 8 (solid green line).

At greater values of the on-site repulsion the ”double-well-like” behavior is even

more prominent as can be seen in Fig. 2.4. The plot show values for U/J = 4,

U/J = 6 and U/J = 8 and it is very evident that there is a sharp transition at

V/U ≈ 0.4 for all three parameters. This sudden drop in the superfluid fraction
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corresponds to the separation of a single condensate into a fragmented conden-

sate. So just like before a single coherent state breaks into a superposition of

two coherent halves, and we get two separate condensates sitting at either end of

the ring in the type-I sites. The sharpness of the crossover may be linked to an

extremely narrow avoided level crossing involving the ground state of the system.

Fig. 2.5 shows an example of such a situation. The plot gives the first 5 energy

levels for U/J = 6 with changing V/U . As we can see from the large graph in

Fig. 2.5 it seems that 4 of the energy levels come very close together at the point

of the crossover. The inset, which zooms in on the area where the avoided crossing

occurs, definitively shows that although the energy levels come close together they

never actually cross. As the ratio of U/J increases, this behavior becomes more

prominent and the energy levels get increasingly nearer to each other.
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Figure 2.5: The first 5 energy levels for U/J = 6 of an 8 site ring with 8
bosons that are polarized within the plane of the ring. We can see in the large
graph that 4 of the energy levels are come very close together at the point of the
crossover from one ground state to another. The inset zooms in on this avoided
crossing in order to show that the energy levels really are separated and never

really cross paths.

Continuing to focus on U/J = 6 we can watch how it evolves with changing V/U .

From the panel (a) of Fig. 2.6 we can clearly see the break of the condensate

into two parts. We begin with the first eigenvalue of the OBDM (fc) having a

macroscopic value with the second eigenvalue (gc) being close to zero. After the

crossover both of the eigenvalues have macroscopic values. In fact it appears as
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if the two eigenvalues become nearly degenerate,fc ≈ gc, which is an outcome of

the superposition of the two Fock states discussed earlier. A final confirmation of

this action is seen in Fig. 2.6 (b). As the V/U increases, type-II sites gradually

depopulate as type-I sites gradually fill. The transition is mostly smooth except

for a small kink that appears at the crossover point for the occupation of type-

I sites and a ”reversed kink” (not shown) for the depopulation of type-II sites.

This occurs when the bosons redistribute themselves in the lattice because of a

competition between tunneling and interactions. Also in Fig. 2.6 panel (b) we can

see the variance of occupation for type-I sites. The sharp drop in the superfluid

fraction leads to a sharp rise in the variance of occupation.
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Figure 2.6: Panel (a) presents the mean occupation and the variance of type-
I states for U/J = 6 while panel (b) shows the V/U dependence (again for
U/J = 6) of the condensate fraction, fc, i.e. the largest eigenvalue of the
OBDM, and the second largest eigenvalue, denoted by gc. The sudden drop
of SF fraction occurring at V/U = 0.4 in Fig. 2.4 is accompanied by a sharp
increase of the occupation variance in type-I sites ∆I [red dashed line in (a)].
The occupation nI (black line) shows there is a small kink too. At the same

V/U = 0.4 the sharp drop in fc is observed, while gc shows an increase.

If we were to continue to increase the the on-site repulsion an interesting phe-

nomenon occurs. At high values of U/J the ground state of the system remains in

an insulating state across the entire range of V/U . This means that the superfluid

fraction is zero the entire time. However the states change from one insulating

phase to another which is seen in Fig. 2.7. Also the kinks in ∆I decrease and finally

disappear. Looking at Fig. 2.7 we graph nI and ∆I for U/J = 10 and U/J = 20

we can see the step-like behavior of the variance of type-I sites accompanied by

the smooth increase of the occupation of type-I sites. What this is showing is that

in these parameters solely the on-site repulsion and the long-ranged dipole-dipole
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terms compete against each other and the tunneling term is nearly negligible. The

entire regime is essentially described by several Fock states. In the U/J = 20

case , where these effects are more extreme, we can describe each plateau with

a different superposition of Fock states. The first plateau shows the system in a

Mott insulating state easily described by a single Fock state, |1, 1, 1, 1, 1, 1, 1, 1〉.

The next plateau at around V/U = 0.3 replaces the Mott state by a superpo-

sition of 1√
2
|0, 1, 1, 0, 1, 2, 2, 1〉 + 1√

2
|1, 2, 2, 1, 0, 1, 1, 0〉. Next, around V/U = 0.4

the state 1√
2
|0, 0, 0, 0, 1, 3, 3, 1〉 + 1√

2
|1, 3, 3, 1, 0, 0, 0, 0〉 takes over, which is finally

replaced by 1√
2
|0, 0, 0, 0, 0, 4, 4, 0〉+ 1√

2
|0, 4, 4, 0, 0, 0, 0, 0〉 around V/U = 0.65. Just

to be clear the behavior described here is not due to the long-ranged nature of

the dipolar interactions but rather due to their anisotropic nature. The existence

of the attractive interactions cause by the head-to-tail alignment in type-I sites

causes the condensate to have the symmetry breaking behavior seen here. Had we

truncated the dipole-dipole interaction this behavior would continue to exist.

Figure 2.7: Occupation of type-I sites, nI for U/J = 10 (solid black line)
and U/J = 20 (solid red line). The corresponding variance ∆I is plotted for
U/J = 10 (black dashed line) and U/J = 20 (red dashed line). For a discussion

see text.

To summarize we have looked at the affect two different polarizations on a small

lattice ring filled with dipolar bosons. We have shown that this model although

quite simple still displays very rich phenomena. We showed analytically as well
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as numerically that at small V/U the dipolar interactions increase the superfluid

character of the system. For a polarization out of the plane of the ring sharp

crossovers have been noted between a variety of density wave phases as we scanned

over V/U . For polarization in the plane of the ring a splitting of the condensate

was observed and was later followed by a complete symmetry breaking (similar

to the results for a toroidal trap without the lattice [36]). The existence of the

small optical lattice caused sharp transitions due to rearrangement of dipoles on

opposite sides of the ring where an attractive head-to-tail orientation of the dipoles

occurred.



Chapter 3

Hard-core dipolar bosons on a

triangular lattice

3.1 Introduction

In Chapter 1 we mentioned that one of the more promising ways of creating a quan-

tum simulator is by using trapped ions. As we recall, the idea was first introduced

by Porras and Cirac in 2004 [19]. From there we established that the behavior of

the ions could accurately be interpreted by the typical spin Hamiltonian given by

Eq. (1.23). From this work we can derive an effective spin Hamiltonian in order to

simulate different lattice spin models. Here we use a model called the XXZ model

and is described by the Hamiltonian,

H = J
∑
i,j

1

|i− j|3
[cos θ(Szi S

z
j ) + sin θ(Sxi S

x
j + Syi S

y
j )]− µ

∑
i

Szi (3.1)

where µ, which is the chemical potential, acts like an external magnetic field, J

scales the interactions, and Sαi are the spin operators at site i. In this case we

will be working with S = 1/2 particles. As we can see all of the interactions are

governed by a dipolar decay (1/r3) behavior. This is because the lattice vibrations,

which are created by the Coulomb force, are the main mechanism that controls all

the interactions and therefore all the interactions will have the same decay rate.

40
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In the Hamiltonian (3.1) we can see that the ratio of the tunneling to dipolar

repulsion is scale by the coefficient θ [37, 38]. There is however a way to simulate

quantum magnetism where the hopping term is short-ranged while the dipole term

continues to be long-ranged. This method uses the rotational structure of ultra

cold molecules and was first proposed in Ref. [39, 40]. As we can see the XY or

tunneling term is now restricted solely to its nearest neighbors while the ZZ or

interaction term decays like the dipole-dipole interaction.

It is the long-ranged behaviors of the system that will be the most fascinating

and challenging since these are the interactions that are usually neglected. The

dipolar effects introduce new physics into the conventional short-ranged systems

and therefore can host a multitude of other phases besides the well known Mott

insulating, superfluid, and crystal phases. One of the more interesting phases that

can arise for soft-core bosons with long-ranged interactions is the Haldane phase

as identified in [23]. This phase is characterized by antiferromagnetic (AFM)

order between empty sites and sites with double occupancy, with an arbitrary

long string of sites with unit occupancy in between. In usual insulating phases,

the length of the string is fixed by a filling factor rather than having a random

length. Another unusual phase that can occur due to the presence of dipolar

interactions is the celebrated supersolid phase. In an extended Bose-Hubbard

model of soft-core bosons (with nearest neighbor interactions only), for both one

and two dimensions, a stable supersolid phase appears. In the one dimensional case

a smooth continuous transition can be seen [41] while for the two dimensional case

there is a sharp first-order transition [42]. Now if the dipole-dipole interactions are

extended beyond the typical nearest neighbor interactions then a stable supersolid

can be achieved even for the case of hard-core bosons [43, 44]. However in this

situation there arise a large number of metastable states [45, 46] (for a review see

[11]). By tuning the direction of the dipoles, incompressible regions like devil’s

staircase structures have been predicted in Ref. [47]. While being interesting,

long-range interactions make computer simulations of such systems quite difficult.

On the other hand, since ions in optical lattices may be extremely well controlled,

they form an ideal medium for a quantum simulator.
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In an earlier study [48], we considered both the mean-field phase diagram for the

system (3.1) as well as a 1D chain using different quasi-exact techniques, such

as density matrix renormalization group (DMRG), and exact diagonalization for

small systems. Here, we would like to concentrate on frustration effects on a 2D

triangular lattice using a quantum Monte Carlo (QMC) approach.

In this chapter we will be looking at spin-1/2 particles or in the case of trapped

ions, two internal ion states as was proposed by Porras and Cirac in [20]. These

spin-1/2 particles can be mapped onto a system of hard-core bosons by applying

spin-wave theory. We employ the Holstein-Primakoff transformation in order to

map the angular momentum operators into the boson creation and annihilation

operators. The transformation can be written as

S− = (
√

2S − n)b (3.2)

S+ = b†(
√

2S − n) (3.3)

Sz = n− S (3.4)

where S is the total spin and the spin operators continue to obey their commu-

tation relationships, [Sα, Sβ] = ıεαβγSγ. While n = b†b and [b, b†] = 1 are the

usual bosonic operators that obey the bosonic commutation relationships. Now

let’s take a look at one of the square root terms in the above equations and rewrite

it slightly

√
2S − n =

√
2S
(

1− n

2S

)1/2

. (3.5)

Now we can expand it using a Taylor series expansion

√
1− x =

∞∑
n=0

(−1)n(2n)!

(1− 2n)(n!)2(4n)
xn = 1 +

x

2
− x2

8
+ ... (3.6)

Applying this expansion to our equation we get

√
2S − n =

√
2S

(
1− n

4S
− n2

32S2
− ...

)
. (3.7)
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The reason that we are able to approximate our spins in this fashion is because

〈ni〉 � 1. In other words, we are able to neglect interactions between excitations,

ninj ≈ 0. We will only keep the first term of the expansion and this way we are

able to simplify our transformations into

S− = b (3.8)

S+ = b† (3.9)

Sz = n− 1/2. (3.10)

If we now plug these new operators into our Hamiltonian 3.1 and we can rewrite

it in its bosonic form as

H = J
∑
i,j

1

|i− j|3

[
cos θ

(
ninj −

ni
2
− nj

2
+

1

4

)]
+ J

∑
i,j

1

|i− j|3

[
sin θ

2

(
b†ibj + b†jbi

)]
− µ

∑
i

(
ni −

1

2

)
. (3.11)

We must keep in mind that these are hard-core bosons which implies that only a

single one will be allowed per site or b2 = (b†)2 = 0. This limit corresponds to the

case where the on-site repulsion U goes to infinity in the standard Bose-Hubbard

model. In this version of the Hamiltonian a spin up particle is represented by a

filled site while a spin down particle is represented by an empty site. From this

point on, the text will mostly use the language of hard-core bosons.

3.2 1D review and results

In order to form some intuition about possible physical effects due to the LR

interaction and tunneling, we now discuss briefly the ground-state phase diagram

of the Hamiltonian in 1D. For hard-core bosons, which is the topic of this chapter,

the one-dimensional version of the Hamiltonian has been thoroughly investigated

in the past [48] (see also [49, 50] for the special cases θ = 0 and θ = π/2). For
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reference, we reproduce in Fig. 3.1 the phase diagrams for the system with dipolar

interaction and NN tunneling, as well as the system with both the interaction and

the tunneling terms dipolar.
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Figure 3.1: Phase diagram of the 1D system with dipolar interactions and (a)
nearest-neighbor tunneling, (b) dipolar tunneling. The phases are labeled ac-
cording to density matrix renormalization results, while the actual data shown
comes from the infinite time evolving block decimation method (with interac-
tions truncated at next-to-nearest-neighbors), both from Ref. [48]. Along the
black line, there exists a devil’s staircase of crystal states. At finite tunneling,
for (a), these spread into conventional insulating states, while for (b), they form
quasi-supersolids. The dark blue lines sketch the crystal lobes at 2/3-filling.
Their cusp-like structure is typical for 1D systems. In 2D, they are expected
to be rounded off, similar to Mott-lobes of the Bose-Hubbard model [51]. For
nearest-neighbor tunneling, (a), the superfluid (SF) phases can be mapped into
one another, while for nearest-neighbor dipolar tunneling, (b), they are dis-
tinct on the ferromagnetic (FM, θ < 0) and the antiferromagnetic side (AFM,
θ > 0). Note also that in (b) frustration leads to an asymmetry between θ < 0

and θ > 0.

At zero tunneling, the ground states are periodic crystals where — to minimize

the dipolar interaction energy — occupied sites are as far apart as possible for a

given filling factor [49]. For finite 1D systems and very small tunneling such a

situation persists as exemplified in [52]. For infinite chains in 1D, every fractional

filling factor n = p/q is a stable ground state for a portion of µ parameter space.

The extent in µ decreases with q, since at large distances the dipolar repulsion

is weak and thus cannot efficiently stabilize crystals with a large period. This

succession of crystal states is termed the devil’s staircase. This name derives

from its surprising mathematical properties, challenging naive intuitions about
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continuity and measure: since all rational fillings are present, it is a continuous

function; moreover, its derivative vanishes almost everywhere (i.e., it is non-zero

only on a set of measure zero) — and still it is not a constant, but covers a finite

range.

At finite tunneling, the crystals spread into lobes similar to the Mott lobes of the

Bose-Hubbard model. If the tunneling is only over NNs, these Mott lobes are not

sensitive to the sign of the tunneling and they form standard insulating states

with diagonal long-range order (LRO) and off-diagonal short-range order, Fig. 3.1

(a). For long-range dipolar tunneling, the extent of the lobes is asymmetric under

sign change θ → −θ: frustration effects stabilize the crystal states for θ < 0,

while the ferromagnetic (FM) tunneling for θ > 0 destabilizes them, Fig. 3.1

(b). Moreover, the crystal states acquire off-diagonal correlations which follow the

algebraic decay of the dipolar interactions [48]. This coexistence of diagonal and

off-diagonal (quasi-)LRO turns the crystal states into (quasi-)supersolids. The

occurrence of such phases for hard-core bosons in 1D is truly exceptional, since

the systems where it appears consist typically of soft-core bosons [41, 42], or two-

dimensional lattices [43]. Furthermore, this 1D quasi-supersolid defies Luttinger-

liquid theory, which typically describes 1D systems very well, even in the presence

of dipolar interactions [53–55]. Where Luttinger-liquid theory applies, diagonal

and off-diagonal correlations decay algebraically with exponents which are the

inverse of one another. Therefore, if the diagonal correlations show LRO, the

corresponding exponent is effectively 0, and the exponent for the off-diagonal

correlations is infinite, describing an exponential decay. In our case, this exponent

remains finite in the quasi-supersolid phase and the above relationship clearly does

not hold.

At even stronger tunneling strengths, the crystal melts and the system is in a SF

phase. The LR tunneling and interactions influence the correlation functions at

large distances and therefore also modify the character of this phase [48, 50].

These results show that in this system the dipolar interactions considerably mod-

ify the quantum-mechanical phase diagram. In higher dimensions, we can expect
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the influence of long-range interactions to be even stronger, which makes extend-

ing these studies to a two-dimensional lattice highly relevant. For example, one

can expect that — if quasi-supersolids appear already in 1D — the long-range

tunneling has a profound effect on the stability of two-dimensional supersolids,

which appear in triangular lattices at the transition between crystal and super-

fluid phases [41, 56–58]. Also, the frustration effects already observed in the 1D

system should be much more pronounced in the triangular lattice, simply due to

the increased number of interactions.

Further, such an analysis is especially relevant at finite temperature. In fact, a

recent work scanned the phase diagram of Hamiltonian 3.1 along the line µ = 0 in

a square lattice [38]. There, the authors found that above the superfluid on the FM

side (i.e., θ < 0), the continuous U(1) symmetry of the off-diagonal correlations

remains broken even at finite temperatures.

For these reasons, we can expect intriguing effects of the long-range tunneling for

the two dimensional triangular lattice, to which we turn now.

3.3 2D results

Let us now extend the study to a two dimensional triangular lattice filled with

hard-core bosons. For this case we will be using a quantum Monte Carlo (QMC)

method at a finite temperature in order to calculate the needed observables. The

temperature needs to be kept low in order to guarantee that the solutions will

give the ground state properties of the system. The lattice sizes are kept relatively

small to be able to keep the calculation times reasonable. Specifically we will

look at a triangular lattice with N = L× L sites where L will vary from 6 to 12.

It is important to note that as we change the size of the system we will also be

changing the extent to which the long-ranged interactions work. This means that

at larger lattices sizes the dipolar interactions will have a farther reaching effect.

In the chapter we focus mainly on the Wigner crystals that form at 2/3 filling. In
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a Wigner crystal the particles are evenly dispersed across the entire lattice in such

a way that a maximum amount of space is kept between the particles.

The type of model that we are studying has a property that is known as frustra-

tion. It can be defined as the inability to find the true ground state due to the

fact that there does not exist an optimal configuration that minimizes the energy

of the system. In the case of a triangular lattice, where the spins would like to

align in an anti-ferromagnetic order, there arises a problem when we look at all

three points of the triangle. When one site has a spin oriented in the ”up” direc-

tion and a second site has a spin oriented in the ”down” direction then the third

site does not know how to orient itself. In order to minimize the energy on one

bond the spin wants to align itself in the ”down” direction while to minimize the

energy on the other bond it wants to be in the ”up” direction. This means that

there exist two equivalent states where one bond is optimized while the other is

not. A graphical representation of the situation is presented in Fig. 3.2 (a). If we

look at a square lattice we do not have this problem as long as the interactions

are only to the nearest neighbor. It is quite easy to set up an anti-ferromagnetic

order on such 2D lattice where each site the spins are arranged in the opposite

direction. If we extend the range of interactions out to the next nearest neighbor

then again we are faced with the effects of this geometric frustration. While the

bonds along the sides of each square create no conflicts, in aligning the spins into

an anti-ferromagnet, the interactions along the diagonals counteract this behav-

ior. So if the different hopping terms, say J1 and J2, are chosen correctly this

will again result in degenerate states where there exists no optimal ground state

configuration. Again this is shown graphically, this time in Fig. 3.2 (b).

A second stumbling block of this model is related to the sign problem that exists

in the QMC code. If we keep θ < 0 this problem does not arise but once θ becomes

non-negative the code (in certain parameters) breaks down. The reason is that

certain calculations of the probability come out negative because now the tunneling

term is of the opposite sign. Since negative probabilities have no physical meaning

the solutions to the code are nonsensical. There are however methods that can be

used to minimize (if not totally avoid) the sign problem. For example, the sign
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Figure 3.2: Panel (a) shows the effect of frustration caused by the geometry
of a triangular lattice. When two corners have spins that want to arrange in
an anti-ferromagnetic way then the third corner cannot minimize it’s energy on
both bonds at the same time. Panel (b) shows a square lattice where the long-
ranged interactions are now the cause of the frustration effects. If only nearest
neighbor interactions exist then there is no problem however when we take into
account the next nearest neighbors the ratios of the different tunneling terms,
J1 and J2, can again create a situation where the final dipole does not have a

way to minimize its energy.

problem only appears for long-ranged XY interactions, while the ZZ (Ising-like)

interactions are not affected by it. Later we will study some results where θ > 0

and we will see where exactly the simulation breaks down but for the majority of

this chapter we will focus our attention on values of θ that are less than zero.

Let’s now take some time in order to understand exactly what is the sign prob-

lem. Without too many details, we’ll try to explain where this issue comes from.

Basically in the QMC code we try to map the quantum partition function onto a

classical problem.

Z = Tre−βH =
∑
i

pi (3.12)

A problem can arise when the probability amplitudes are not positive definite,

pi < 0. This, in our case, occurs if the tunneling parameters have a negative sign,

which happens when θ > 0. These bond terms cause negative probabilities for the

world line configurations that cause numerical instabilities when summing over

paths. In other words, large amplitudes of one phase can completely negate other
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large contributions but with the reverse phase. There are a few ways to try to

handle the sign problem but there is no real solution to it since it is an NP-hard

problem and a solution to this would solve all NP-hard problems. One attempt is

to look at the absolute values of the probabilities. In this way when we look at

the thermal average it can be written as such,

〈A〉 =

∑
iAipi∑
i pi

=
Ai
∑

i sgn pi|pi|/
∑
i|pi|∑

i sgn pi|pi|/
∑
i|pi|

=
〈A · sign〉|p|
〈sign〉|p|

(3.13)

where obviously the partition function is now defined as

Z =
∑
i

|pi| (3.14)

Now the average sign becomes very small

〈Sign〉|p| =
1

Z|p|

∑
i

sgn pi|pi| =
Z

Z|p|
= e−βV∆f . (3.15)

However the error of the sign grows quite quickly. It is defined by

∆Sign

〈Sign〉|p|
=

√
〈Sign2〉|p| − 〈Sign〉2|p|√

N〈Sign〉|p|
≈

√
〈1〉|p|√

N〈Sign〉|p|
=
eβV∆f

√
N

(3.16)

and so we would need an order of N = exp(2βV∆f) measurements for sufficient

accuracy.

The sign problem is basis dependent and so there are also possibilities of avoiding

it simply by just switching bases. This can cause all the probabilities to be greater

than or equal to zero. This, however, does not always solve the problem of having

the algorithm exhibit exponential scaling.

In this chapter we will look at several variations that our model. We will study the

system when all the interactions, both tunneling and dipolar, are long-ranged (LR-

LR), when only the dipole-dipole interactions are long-ranged while the tunneling

is only nearest neighbor (LR-SR), and finally when both the interactions are short

ranged (SR-SR). The case where both interactions are short-ranged, corresponds

to the nearest neighbor XXZ model and is relevant for magnetic materials with
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planar anisotropy in their couplings. The LR-SR model works well to describe

polar molecules like in the case of [59]. Finally the LR-LR model will be studied

here where the far reaching interactions will extend out to the maximum possible

value (i.e. the distance before there is any overlap). For example a system where

L = 6 can have interactions extend out to 5 nearest neighbors. This means that

each site will feel the interaction of 36 other sites. For the short-ranged interactions

each site only interacts with is 6 nearest neighbors. Each one of these instances

will have it’s own behavior and display different crystal, superfluid, and supersolid

regions. By comparing all the cases we will be able to truly see what effects the

long-ranged interactions will have on the system.

3.3.1 Vanishing tunneling

The first calculation, which creates the motivation for the rest of the chapter, is

to look at the case of vanishing tunneling and temperature for each system (LR-

LR, LR-SR, and SR-SR). Here, similar to the 1D devil’s staircase, at vanishing

temperature a series of insulating crystal states is expected to cover the entire

range of µ/J . Since we are interested in finite temperature results, we set T = 0.1

— which should still be low enough to reflect the characteristics of the ground-

state phase diagram — and look for plateaus in the density. We distinguish short-

and long-ranged ZZ interactions. From Fig. 3.3, left panel, we can see that the

only plateau (besides the completely filled system) that appears is at ρ = 2/3

(corresponding either to 2/3 boson filling or in spin terms, a lattice with 2/3 of

the spins oriented up and 1/3 oriented down) for both short- and long-ranged

interactions. Scaling the system size from L = 6 to L = 12 causes no change for

the short-ranged interactions, and minimal change for the long-ranged ones. The

key difference is in the size and position of the short-ranged and the long-ranged

plateaus. For short-ranged interactions this plateau is larger and centered around

µ/J ' 1.5, while the long-ranged interactions have a smaller plateau centered

around µ/J ' 1.85. The finite width of these plateaus suggests that a 2/3-filling

Wigner crystal persists also for some finite θ. The right panels of Fig. 3.3 show
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how the plateau shrinks with increasing temperature, as well for SR interactions

(top right panel) as for LR interactions (bottom right panel). In the latter case,

in fact, by T = 0.25 the plateau has completely disappeared. We can also notice

that at T = 0.05 there are signs of some of the other plateaus, most noticeably

the 3/4-filling plateau. The rest of the paper will focus on the 2/3-filling crystal

lobes and their properties.
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Figure 3.3: The graph on the left displays θ = 0 and T = 0.1, where the
density shows a single plateau for 2/3-filling. For SR interactions (solid blue
line), different curves for L = 6, 9, 12coincide, and for LR interactions (solid
red: L = 6, dashed red: L = 9 and 12) the size dependence is small. The
panels on the right are at fixed L = 12 and θ = 0 for different temperatures
T = 0.05, 0.15, 0.25 (from dotted to dashed to solid). Both for SR (top right) and
LR interactions (bottom right), the 2/3-filling plateau shrinks as T increases.

3.3.2 Low-temperature phase diagram at finite tunneling

We now introduce a finite tunneling by choosing θ < 0 in our Hamiltonian, and

study the properties around the 2/3-filling crystal. We calculate the density and

the superfluid fraction. The superfluidity is measured using the winding numbers

calculated from the movement of the worms in the QMC code. In order to get

this value the system must have periodic boundary conditions so that the world

lines can properly “wind” around the system. The superfluid fraction is

ρs =
〈W 2〉

4β
, (3.17)
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where W is the winding number fluctuation of the world lines and β is the inverse

temperature.

Figure 3.4 shows the results for the boson density of a L = 6 triangular lattice

at T = 0.1. For all types of interactions we see that as θ increases in absolute

value the ρ = 2
3

plateau shrinks, because larger |θ| increases the ratio of hopping

to dipolar interactions. This introduces more kinetic energy and the crystal melts

into a superfluid. It can be seen for the SR-SR system that the boson density lobe

extends to θ ' −0.36, while for the LR-SR interactions it ends at θ ' −0.3, and

finally for LR-LR interactions the lobe is smaller still, only going out to θ ' −0.2.

The behavior is explained by the fact that the increased amount of interactions

cause a quicker melting of the lobe.

Figure 3.4: The columns show the ρ = 2/3 lobes, evidenced by particle density
(top row) and the superfluid fraction (bottom row) that arise under varying the
ratio, θ, and the chemical potential, µ/J (data for L = 6). The left column
corresponds to the SR-SR system, the middle one shows the LR-SR system and
the right column depicts the lobes for the LR-LR system. Long-ranged dipolar
interactions decrease the lobes in µ/J due to the appearance of devil’s staircase

like features, and long-range tunneling decreases the extent of the lobe in θ.

A second major observation is the shift in the position of the lobes. While the

short-ranged lobe exists approximately for 0.3 < µ/J < 2.7, the long-ranged lobes

lie generally on the interval 1.0 < µ/J < 2.8. For a system like this at T = 0, one

expects the ρ = 2
3

lobe to exist on the range 0 < µ/J < 3 with a mirrored image
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of the ρ = 1
3

lobe at −3 < µ/J < 0. The existence of the two identical lobes is

explained by particle-hole symmetry [56–58]. The lobes are separated with a kind

of mixed solid in between (with coexistence of 1/3- and 2/3-filling regions) The

existence of this region may be caused by several phenomena. It could either be

an effect of the finite temperature as in Ref. [60], or due to the existence of many

metastable states caused by a devil’s staircase like behavior, similar to what was

observed in Ref. [47].

Again referring to the T = 0 phase diagram, we expect that there is a region of

supersolidity that extends in between the lobes and goes all the way to their base

at θ = µ = 0 [56]. In our system this region should exist near the tip of the

lobe but not extend all the way to the base due to the finite temperature and the

resulting mixed solid. Looking at Fig. 3.4, it is obvious indeed that, if a supersolid

region exists, it can only be near the tip of the lobe because the superfluidity is

zero a significant way up the lobe. Judging by the increased separation of the long-

ranged lobes, we can assume that the supersolid region for these systems should

increase in size to fill the region in between. To search for the supersolid phase,

we now compare the superfluidity with the static structure factor. The structure

factor is defined as the Fourier transform of the density-density correlations,

S(Q) =

〈∣∣∣∣∣
N∑
i=1

nie
ıQri

∣∣∣∣∣
2〉

/N2. (3.18)

Here, we focus on the wave vector Q = (4π/3, 0), which corresponds to the
√

3×
√

3 order parameter that is associated with 1/3- and 2/3-filling crystals on the

triangular lattice. For the case of the 2/3-filling lobe that we are interested in, it

will show plateaus over the same range of µ as the density, but additionally gives

insight into the arrangement of the bosons on the lattice. This makes it a useful

quantity in searching for supersolid regions. In fact, a supersolid exists when both

the structure factor and the superfluid fraction have non-zero values. The physical

mechanism behind the supersolid phenomenon is based upon the appearance of

extra holes (particles). The underlying crystal structure has
√

3 ×
√

3 order on
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a triangular sublattice of the physical lattice. The extra holes (particles) are free

to move around on the rest of the lattice as superfluid objects. In this way, the

system retains a crystal structure, while it acquires at the same time the long-range

coherence of a superfluid. Due to the hole (particle) doping, it forms in sections

away from commensurate filling, in this case in between the 1/3- and 2/3-filling

lobes.
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Figure 3.5: Cuts at µ/J = 0 for SR-SR (left top), LR-SR (left bottom) and
LR-LR (right) for a L = 6, 9, and 12 lattice (lines become thicker and darker
with increasing system size). For all cases, the structure factor (solid blue) is
finite at small θ and the superfluid fraction (dashed black) at large θ. At the
system sizes studied, there appears a supersolid region at intermediate θ where
both structure factor and superfluid fraction are finite. In the LR-LR system
there is a reversal of finite size effects. In this case the superfluid fraction for

larger systems becomes higher instead of lower.

Taking “slices” out of the crystal lobes we now check where there is a supersolid

region and where the system transitions directly from crystal to superfluid. Also

we study the nature of these transitions to see if they are of first or second order.

The most logical region to look for supersolids is directly in between the 1/3- and

2/3-filling lobes, at µ/J = 0. Figure 3.5 shows the behavior of the SR-SR, the LR-

SR, and the LR-LR system at this cut for several system sizes. Structure factor

and superfluidity reveal, for all the systems, three different regions. In each case,

the system starts at θ = 0 in a solid phase where the superfluid fraction is zero

but the structure factor is finite. It transitions smoothly into a supersolid region
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where both superfluidity and structure factor are non-zero. Finally, the structure

factor smoothly drops away and leaves just a non-zero superfluid fraction, making

the final phase a superfluid. In each system, the size of the supersolid region is

different. In the SR-SR case, the supersolid region begins to appear at θ ' −0.15

for a L = 6 lattice. As the size grows to L = 12, the region has shifted to

θ ' −0.19 with the superfluid curves becoming sharper. The increased system

size also reduces the value of the structure factor a little. From [57], we know

that at even larger sizes (but T = 0) the supersolid will continue to exist in this

type of system. For the LR-SR system the supersolid region appears at a similar

point and also shifts with system-size increase. The structure factor on the other

hand has a significant decrease for larger system sizes. It is difficult to tell if at

greater sizes the existence of the supersolid will persist. The final graph shows

the LR-LR system. In this system, superfluidity appears even before µ/J reaches

−0.1. In this system, the superfluid fraction is much greater than in the previous

two because of the long-ranged tunneling. This means that at small system sizes

the supersolid region is much more prominent relative to the crystal lobe. The

structure factor diminishes with system size almost exactly as in the LR-SR case

except that the transition is at a different value of θ, and near µ/J = 0 it drops

to slightly lower values. Due to this strong decrease, for any situation with long-

range interactions we cannot clearly state whether the supersolid region survives

at larger system sizes.

Next we take vertical cuts at a value of θ = −0.15, since this is a reasonable place

for a supersolid to exist for the LR-LR system (' 80% of the tip of the lobe).

We compare all the systems at this cut, and study the behavior of the superfluid

fraction and the structure factor, plotted in Fig. 3.6. For SR-SR interactions, no

supersolid region appears. On one side of the lobe there is a sharp phase transition

directly from the crystal to the superfluid phase, while on the other side there is

a slower change from one solid form to another (ρ = 1/3 → 2/3). The finite-

size scaling in the figure shows that as the size increases the transitions of the

structure factor become even sharper, although they stay continuous due to the

finite temperature. The values of the superfluid fraction decrease as the system
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Figure 3.6: Cuts at θ = −0.15 for SR-SR (left top), LR-SR (left bottom), LR-
LR (right) for a L = 6, 9, and 12 lattice (lines become thicker and darker with
increasing system size). Solid blue: Structure Factor. Dashed black: Superfluid
fraction. At this value of θ, for short-range tunneling, the superfluid fraction
disappears rapidly with increasing system size, while for long-range tunneling
it even increases. At µ/J ≈ 1.75, possibly a supersolid may survive in large
lattices. Again in the LR-LR system there is a reversal of finite size effects. The

superfluid fraction for larger systems becomes higher instead of lower.

sizes increases and essentially disappear at L = 12. In the LR-SR system, a hint

of the supersolid phase begins to appear on either side of the lobe. It is a bit more

evident on the side where µ/J is small (as is to be expected from references such

as [56]), but it also arises on the opposite side. This is contrary to a system of only

short-ranged interactions where this supersolid region appears only on one side of

the lobe and not both. At larger sizes, also in the LR-SR system the transitions

become sharper and the superfluidity gets smaller. The final and most interesting

cut is taken out of the LR-LR lobe. In this system, we see a smooth transition

from crystal to supersolid at µ/J ' 2.4 and at µ/J ' 1.4 for L = 6. For larger

systems the transition at µ/J ' 2.4 occurs at the same spot but becomes sharper,

making the supersolid region disappear. At µ/J ' 1.4 the transition shifts to a

higher value of µ/J , making the 2/3-filling plateau smaller. It also becomes less

smooth but the supersolid region remains longer than for the SR-SR case. In the

LR-LR system, the superfluid fraction for larger systems has the opposite effect

than for the previous cases, it becomes higher instead of lower.
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Figure 3.7: SR-SR (left) at θ = −0.28 and LR-SR (right) at θ = −0.23.
Solid blue: Structure Factor. Dashed black: Superfluid fraction. Lines become
thicker and darker as system size goes up. In the SR-SR system, a supersolid
at small µ/J persists at large systems, while at µ/J ≈ 2.4 the transition from
crystal to superfluid becomes a direct first-order transition. For the LR-SR
system, the curves change slowly at both sides of the crystal lobe, leading to

persisting supersolids.

A perhaps fairer comparison is to look at a cut through a region where we are sure

the supersolid exists for all three systems. Therefore, in Fig. 3.7 we look at two

more cuts that are now taken closer to the tips of the SR-SR and LR-SR lobes.

As with the LR-LR system (last panel of Fig. 3.6), these lie at around 80% of the

tip of the lobe. In the SR-SR lobe, the cut is taken at θ = −0.28. Here we see

a similar behavior for the structure factor as we did in the θ = −0.15 cut of the

lobe, but this time the superfluid fraction plays a much more important role. On

the one side, µ/J ' 2.4, both the superfluid fraction as well as the structure factor

have sharp transitions that become even sharper at larger sizes. In fact, at T = 0

these transitions have been shown to be of first order, and the system goes directly

from crystal to superfluid. Due to the finite temperature, they are continuous in

our case. On the other side, where µ/J ' 0.8, there appears a second order phase

transition into a supersolid region that spans all the way to µ/J = 0. Finally, we

take a cut at θ = −0.23 of the LR-SR lobe. The behavior of this system seems to

be quite different. The first thing to notice is that the transitions on either side of

the lobe are of second order. The other, and more important, observation is that

now it appears that this system has supersolid behavior on both sides of the lobe:

in addition to the expected supersolid at smaller µ/J , a region at µ/J above the

crystal lobe appears where both structure factor and superfluid fraction are finite.
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If we recall Fig. 3.6, right panel, the LR-LR system showed that at θ = −0.15 as

L increased the supersolid region disappeared from the upper side of the lobe. In

the case of the LR-SR system for θ = −0.23 the increase in the system size does

not get rid of this supersolid phase.

Figure 3.8: The columns show the ρ = 2/3 lobes for simulation that had the
sign problem (θ > 0), evidenced by particle density (top row) and the superfluid
fraction (bottom row) that arise under varying the ratio, θ, and the chemical
potential, µ/J (data for L = 6). The left column corresponds to the SR-SR
system, the middle one shows the LR-SR system and the right column depicts

the lobes for the LR-LR system.

Now we turn our attention shortly to the parameters where the sign problem exists

or where θ > 0. As we have discussed earlier, the sign problem comes from the

appearance of negative probabilities in the partition function. This causes certain

parameters to give non-physical results and huge errors. Here we will examine

the region where the sign problem exists and determine where the QMC code is

reliable and where it fails. So again examine the 2/3 filling lobes with the all the

same interactions. Fig. 3.8 shows the results in a similar manner as were presented

in Fig. 3.4 however this time the sign of θ is positive. (The figure is shown as a

2D plot instead of a 3D plot due to the fact that there are many unreliable points

that fluctuate drastically and a three dimensional representation of it is almost
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completely unintelligible.) We can see that the lobes are now facing in the opposite

direction similarly to the areas encompassed by the dark blue lines of Fig. 3.1 when

the one dimensional case was studied. If we compare the two situation, θ < 0 and

θ > 0, we see that the general shapes of the lobes are quite similar. It is however

very difficult to tell precisely how the lobes differ. The instability and error caused

by the sign problem becomes more and more noticeable as the parameters reach the

areas where the phase transitions occur. Since this is the section that is supposed

to be the most interesting and give us the most information, these graphs provided

no definitive evidence that could help in determining the behaviors of the lobes.

The best we can say is that the behavior is similar the the lobes where θ is negative

but we cannot make any accurate conclusions about which phases appear in which

areas for the θ > 0 regime.

3.3.3 Finite temperature results

As a final calculation, we take a look at the important role that the temperature

plays in both the melting of the crystal as well as the supersolid region. In this

section, we will use the same cuts as in the previous section (θ = −0.28 for SR-SR,

θ = −0.23 for LR-SR and θ = −0.15 for LR-LR) so that each system will posses all

the possible phases: crystal, superfluid, and supersolid. Each cut is investigated

for 0.05 < T < 0.3 at a system size of L = 6. First, we analyze the structure

factor to study how the ρ = 2/3 crystal melts with an increase in temperature

(second row of Fig. 3.9). For the SR-SR interactions, even at a temperature of 0.3

there still exists a bump in the structure factor which indicates that the crystal

has not completely melted yet, while for both of the long-ranged lobes the crystal

melts by T ' 0.3. Interestingly, the SR-SR crystal and the LR-LR crystal are

approximately the same size at T = 0.05, but by T = 0.3 one has melted while

the other still exists. That means that the system with short-ranged interactions

holds its crystal structure better at higher temperatures than does our system with

all long-ranged interactions. Looking at the LR-SR lobe, we see that its crystal

at this cut starts off smaller, yet it melts at about the same temperature as the
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one for LR-LR interactions. It seems that the dipolar repulsion helps stabilize the

crystal structure over a larger temperature range, while the long-ranged hopping

destroys the crystal more quickly because of the extra kinetic energy.

Maybe more importantly, we now study the melting of the supersolid for these

same cuts. Figure 3.9 shows the structure factor, superfluidity, and supersolidity as

a function of temperature for each of the different systems. Since the supersolid is

defined by having both non-zero structure factor and non-zero superfluid fraction,

by combining the graphs we are able to see where these regions exist and also

how they melt with increased temperature (the bottom row of Fig. 3.9 shows a

product of structure factor and superfluid fraction, which remains finite only where

the two coexist). A common feature of all the graphs are the spikes on either

Figure 3.9: Each row shows a different object : the top row - the stiffness, the
middle row — the structure factor while the bottom row represents a product of
the first two rows. Columns corresponds to different systems: Left column is for
SR-SR at θ = −0.28, middle column yields LR-SR at θ = −0.23, right column
is for LR-LR at θ = −0.15. For all three systems, the three distinct quantum
phases — crystal, supersolid, and superfluid - survive over some temperature

range before they melt.
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side of the plateaus. These are regions where a phase transition occurs but does

not necessarily imply that a supersolid region exists. Most likely, these features

appear due to the finite size of the system and the resulting smooth transitions

of superfluid fraction and structure factor. At larger sizes, the transitions would

be much sharper at these points, the regions where a finite structure factor and

superfluid fraction coexist would shrink, and the spikes would diminish. From the

previous section, we can assume that for the SR-SR system they would disappear

completely at the upper transition from the crystal lobe while for the other two

systems there would still exist a small supersolid region.

Returning to the main focus, the small-µ region, we see that in each case a su-

persolid region appears that extends from the left side of the plateau all the way

to µ/J = 0. In every system, this supersolid region also exists for a finite range

of temperatures. For SR-SR interactions, it gradually decreases but still extends

all the way out past T = 0.3. For the LR-SR interactions, the supersolid region

again slowly melts but now disappears at T ' 0.23, just below the spot where the

crystal melted. The supersolid region for the LR-LR system appears to have the

largest magnitude of the three systems, but then rapidly melts at T ' 0.3.
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Figure 3.10: SR-SR at θ = −0.28, LR-SR at θ = −0.23 and LR-LR at
θ = −0.15 (left to right). All cuts are taken at µ/J = 0. The structure factor
(solid blue) attains similar values for all three systems. The superfluid fraction
(dashed black) is largest in the LR-LR system and melts fastest in the LR-SR

one.

In order to compare these transitions more quantitatively, we take a cut along

µ/J = 0 for each system, shown in Fig. 3.10. All three systems show a relatively

similar and steady value for the structure factor. Hence, the values of the superfluid

fraction are going to determine the existence of the supersolid regions. The first

plot shows the SR-SR system at the θ = −0.28 cut, and we can see that the



Chapter 3. Hard-core dipolar bosons on a triangular lattice 62

superfluid fraction stays non-zero all the way out to T = 0.35. The LR-SR system

has a very similar behavior at the θ = −0.23 cut, but in this case the supersolid

is nearly completely melted by T = 0.35. The final plot is the LR-LR system at

θ = −0.15, which behaves slightly differently. The most important difference is

that the starting value of the superfluid fraction is higher than in the first two

plots. This should therefore make the supersolid region more pronounced. But

even though the superfluid fraction has the highest value for this system, it decays

more quickly and reaches values similar to the SR-SR system at T ≈ 0.35.

3.4 Conclusion

In this chapter, we have presented a quantum Monte Carlo study of dipolar spin

models that describe various systems of ultra-cold atoms, molecules, and ions.

We have presented predictions concerning the phase diagram of the considered

systems at zero and finite temperatures, and described the appearance and some

properties of the superfluid, supersolid, and crystalline phases. While the results

are not surprising and resemble earlier obtained results for similar systems in 1D

and 2D, the main advantage of our study is that it is directly relevant to the

current experiments. We also studied the effects of the sign problem that arose

for certain sets of parameters. The only thing that could be determined was that

deep within the Mott state the solutions were acceptable but near the edges the

code broke down and provided unusable answers.



Chapter 4

Density dependent tunneling in

the extended Bose-Hubbard

model

4.1 Introduction

In the last decade, the physics of ultra-cold atoms in optical lattice potentials has

undergone extensive developments due to the extreme Controllability and versatil-

ity of the realizable many-body systems (for recent reviews see [61, 62]). The tight-

binding description predicted in 1998 [8], termed Bose-Hubbard model (BHM) for

bosonic atoms with contact s-wave interactions, was soon after verified via the

experimental observation of the superfluid (SF) - Mott insulator (MI) transition

[7]. For particles interacting via a long-range (e.g., dipole-dipole) potential, the

original model has to be modified, typically including a density-density interac-

tion between different sites. The simplest approximation, taking into account only

the interaction between nearest neighbors, is termed the extended Bose-Hubbard

model (EBHM). As compared to the BHM, the extended model allows for the

existence of novel quantum phases such as checkerboard solids, supersolid phases

[41–43, 56–58], exotic Haldane insulators [23] and more.

63
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Recently, however, it has been realized that even in the simpler case of contact s-

wave interactions, in certain parameter regimes, carefully performed tight-binding

approximations lead to an additional correlated tunneling term in the resulting

microscopic description. This term, known in the case of fermions as bond-charge

contribution [63], is even more important for bosons [64–67]. It is found that such

tunneling terms along with the effect of higher bands can provide an explanation

[65, 68] of the unexpected shift in the MI-SF transition point for Bose-Fermi [69, 70]

and Bose-Bose mixtures [71] as well as shifts in absorption spectra for bosons in

optical lattices [66].

One may expect that similar bond-charge (or density-dependent tunneling) effects

may also play an important role in the presence of dipolar interactions. This

assumption has been verified in [17] in a recent study, where it has been shown

that the additional terms in the Hamiltonian may destroy some insulating phases

and can create novel pair-superfluid states. That study [17] has been restricted to

a one-dimensional (1D) model due to the numerical methods used. Here, we use

Quantum Monte Carlo (QMC) methods to study soft-core dipolar gases trapped

in two-dimensional square optical lattices, where we assume a tight confinement in

the remaining z direction (which is also the polarization direction of the dipoles).

A similar two-dimensional model without density-dependent tunneling terms was

analyzed before [42], providing us with a benchmark against which we may test the

importance of density-dependent tunneling. In Ref. [42], a supersolid phase was

observed in the EBHM just above half filling. Such a supersolid is characterized by

the coexistence of superfluid and crystal-like density-density diagonal long-range

order [41–43, 56–58]. Experimental evidence of this counter-intuitive quantum

phase is still missing, since the claim of an experimental realization of supersolidity

in 4He [72, 73] could not be reproduced in later experiments [74, 75]. As we shall

see, in the present model, the sign of the additional tunneling (or, more precisely,

the relative sign between the standard tunneling and the density-dependent one)

can stabilize or destabilize the supersolid phase.



Chapter 4. Density dependent tunneling in the extended Bose-Hubbard model 65

4.2 The model

The appropriate tight-binding model to study interacting dipolar bosons occupying

the lowest band in a lattice reads [17]

H = −J
∑
〈i,j〉

(b†ibj + h.c.) +
U

2

∑
i

ni(ni − 1)− µ
∑
i

ni +
∑
i,j

Vi,jninj

−
∑
i,j

Ti,j(b
†
i (ni + nj)bj + h.c.) +

∑
i,j

Pi,j(b
†
ib
†
ibjbj + h.c.), (4.1)

where b†i (bi) is the creation (annihilation) operator of a boson at site i and ni

is the number operator; J is the regular hopping term, U the on-site repulsion

and µ the chemical potential. We assume a system of dipolar bosons in a 2D

square lattice with dipolar moments polarized perpendicularly to the lattice, thus

leading to dipole-dipole repulsion. Then, the present model contains three terms

that come from the dipolar interactions, the nearest-neighbor repulsion V , the

density-dependent hopping T and the correlated pair tunneling P . We restrict

here the range of V to the nearest neighbors to allow for a direct comparison with

the results of Ref. [42] and [17] Within the standard EBHM, both the T and P

terms are neglected. However, the analysis presented in Ref. [17] has shown that,

although V is typically an order of magnitude larger than both T and P , the latter

terms cannot be neglected in the presence of strong dipolar interactions.

The four parameters U , V , T and P have the same physical origin, namely in-

teractions and are therefore correlated. However, in the two-dimensional model,

changing the trapping frequency in the direction perpendicular to the plane af-

fects quite strongly only the on-site U term (for dipolar as well as for the contact

part of the interactions). Thus, we shall consider U as an independent param-

eter. To facilitate a comparison with earlier works (e.g., [42]) that did not take

T tunneling into account we span a similar parameter range for U , V and filling

fractions. The values of T , V and P are strongly correlated as they originate from

nearest-neighbor scattering due to long-range interactions. For a broad range of

optical lattice depths, the parameters T and V are typically related as V ≈ |10T |.
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The absolute value of P is almost another magnitude smaller than T (compare

Fig. 1 of [17]). Thus, for simplicity, we will set V = |10T | in the following and

neglect the P term altogether. This will allow us to study in depth the effects due

to density-dependent tunnelings. The previous study [17] has shown that there

is a broad tunability regarding the relationship of the two tunneling parameters

T and J , allowing a regime where the two hopping terms have opposite signs

and even the exotic situation that T dominates over J . For example, for weak

trapping frequency along the polarization direction, J and T have opposite sign

and for strong trapping frequency J and T have same sign. Thus, for possible

experimental realizations of polar bosons [76, 77], one can reach the two limits

of bond-charge tunneling by tuning the trapping potential along the polarization

direction [17].

Whether both hopping terms are of the same or of opposite sign has a major in-

fluence on the phases that will appear in the system. Generally speaking, when

both hopping terms have the same sign, one can expect an increase of the influ-

ence of the overall hopping. Otherwise, if the signs are opposite, there will be

a competition between the two terms. Therefore, the influence of the additional

density-dependent hopping can be expected to strongly affect the phase diagram.

To form an intuition about our system, let us give a brief summary of the results

from the previous study [17] of a similar 1D system with both a density-dependent

and a pair-hopping term. In that study, exact diagonalization (system sizes be-

tween L = 8 and L = 16) and the Multiscale Entanglement Renormalization

Ansatz (MERA) (system sizes up to L = 128) were used to study the phase dia-

gram at zero temperature. The results, when both T and P are set to zero, show

the existence of three phases. At weak interaction, there is a superfluid phase

(SF), while at stronger dipolar strength, two charge density wave (CDW) phases

appear. The CDW phases are characterized by a periodic, crystal-like structure

where occupied and empty sites alternate in a checkerboard pattern. In the follow-

ing, we denote cases where the populated sites are occupied by a single atom (two

atoms) as CDW I (II). In the one-dimensional case of Ref. [17], the two observed

CDW phases are a CDW I phase at half filling with a modulation of |...010101...〉
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and a CDW II phase at unit filling with a modulation of |...020202...〉. Now, when

the extra terms T and P are incorporated into the Hamiltonian, besides an over-

all deformation of the phase diagram, there appears also a novel pair-superfluid

phase (PSF). This more exotic phase is characterized by a finite two-particle NN

correlation function Φi =
∑
{j}〈b

†
jb
†
jbibi〉 and a smaller non-vanishing one-particle

correlation function φi =
∑
{j}〈b

†
jbi〉. On the other hand, no supersolid phase has

been observed in [17]. In the present study of a 2D lattice, on the contrary, we do

observe a supersolid behavior, but we do not find any indications for the existence

of a PSF phase.

4.2.1 Considered observables

In the analysis of Hamiltonian (4.1), we employ the Stochastic Series Expan-

sion (SSE) code, a QMC algorithm from the ALPS (Algorithms and Libraries for

Physics Simulations) project [21]. We mainly rely on three observables. First, we

study the density, ρ = 〈ni〉, as a function of the chemical potential. Plateaus in

the corresponding graphs indicate insulating phases, such as MI or CDW phases.

The employed variant of QMC works in the grand-canonical ensemble, i.e., at fixed

chemical potential. Discontinuous jumps in the density as a function of chemical

potential signify regions of phase separation (PS) in the canonical phase diagrams.

Namely, when the filling is fixed to a value which is not stable at any chemical

potential, the system acquires the required filling only in the mean, by forming

domain walls between two phases that are thermodynamically stable.

To distinguish not only different insulating phases (MI, CDW I and CDW II),

but also the superfluid (SF) and the supersolid phase (SS), we consider two other

observables. These are the structure factor and the superfluid stiffness, which we

analyze both as a function of density. The structure factor is defined as

S(Q) =

〈∣∣∣∣∣
N∑
i=1

nie
ıQri

∣∣∣∣∣
2〉

/N2 . (4.2)
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Here, N denotes the number of lattice sites and we focus on the wave vector Q =

(π, π), which corresponds to a checkerboard modulation pattern. This observable

has a peak when the particles are arranged in either of the CDW phases. This

will help to distinguish the MI phase from the CDW phase, which cannot be done

from the density graphs alone. For example, when a system is at unit filling, the

structure factor is finite in the CDW II state, whereas it vanishes in the usual MI

state.

The other observable is the superfluid stiffness, which can be calculated from the

winding numbers of the QMC code. It is defined as

ρs =
〈W 2〉

4β
, (4.3)

where as we recall W is the winding-number fluctuation of the world lines and β

is the inverse temperature (in this study β = 20). This value shows what percent

of the system is in a superfluid state. Taking superfluid stiffness and structure

factor together, we can also identify the SS phase. The SS phase occurs when

both superfluid stiffness and structure factor are non-zero. Note that, since PS

regions do not correspond to stable grand-canonical phases as computed in the

SSE QMC code, we cannot assign any values of observables for them. This is

not necessary, however, since PS regions are already unambiguously identified by

jumps in plots of density against chemical potential.

From these three observables (density, structure factor and superfluid stiffness) we

are now able to distinguish the most prominent phases that we are looking for.

These observables cannot, however, identify PSF phases, the signature of which

is, as mentioned previously, a non-vanishing two-particle NN correlation function

Φi. In its current version, the QMC code provided in the ALPS library is not

able to calculate these correlation functions. In order to extract this observable,

the code would have to be written with a two-headed worm, which could then

be analyzed in a similar way as the superfluid stiffness, but with the difference

that the winding numbers would represent the flowing of pairs instead of single

particles [78]. Fortunately, one can identify a dominant PSF order parameter
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using a different technique, namely by studying the density histograms of the

QMC code. If these histograms show only even values of particles instead of a

uniform distribution, this means that the bosons always pair up, indicating PSF

behavior [78].

4.3 Ground-state phase diagrams

In this section, we present our QMC results for the ground-state phase diagram

of Hamiltonian (4.1). We focus on a two-dimensional square lattice with linear

system sizes ranging from L = 8 to L = 16 (where N = L × L). We observe

a fast convergence of the results with L, similarly to [42]. Therefore, the con-

sidered system sizes suffice, especially since we are interested not in the precise

determination of phase boundaries, but in the global qualitative changes in the

phase diagrams, which — as we will see — can be quite drastic.We present phase

diagrams at two different values of the on-site repulsion (U = 20 and U = 5)

for varying density and T (and therefore for varying V , since V = 10|T |). The

two U values are chosen in such a way that we can compare nearly hard-core like

behavior, achieved at U = 20, with soft-core behavior, for U = 5. Up to 4 bosons

are allowed per site for both cases, which seems sufficient for densities below unit

filling (we tested in some instances against maximal occupation of 6 bosons per

site). Further, at U = 20 we can compare our data to known results of the usual

EBHM, which was studied thoroughly in [42]. We compare phase diagrams ob-

tained with and without density-dependent tunnelings. For simplicity and ease

of comparison to [42], we restrict our study to unit filling or less. Furthermore,

for a more detailed evaluation of these phase diagrams, we study a few cuts at

representative parameter values.
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4.3.1 Phase diagrams at vanishing density-dependent tun-

neling

We begin our analysis with phase diagrams of the regular EBHM, illustrated in

Fig. 4.1. This provides an overview of the behavior of the considered systems under

a more common Hamiltonian, which does not have a density-dependent term T .

We consider the case of strong repulsion U = 20, discussed previously in [42], as

well as softer interacting bosons with U = 5.

4.3.1.1 Phase diagram at strong on-site repulsion (U = 20)

For ease of comparison and for later reference, Fig. 4.1a reproduces the phase

diagram of U = 20 that has been thoroughly investigated in [42]. It is well

known that for ρ < 1
2

there exist only two distinct regions, the SF phase and a

PS region. For sufficiently low values of V , the system stays superfluid across

the entire density range until unit filling, where it becomes a MI state. At half
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Figure 4.1: The phase diagram in the ρ−V parameter space without density-
dependent tunneling term, T = 0, for (a) U = 20 and (b) U = 5. The energy
unit is t = 1. Panel a) reproduces the results of [42]. The model contains various
phases. The red solid line indicates the charge density wave (CDW I) at half
filling; other phases present are the superfluid (SF), supersolid (SS) and at unit
filling either Mott insulator (MI) or another charge density wave (CDW II); PS
denotes phase separated regions. When the on-site interaction becomes weaker,
as shown in panel b), the SS phase becomes larger and PS regions disappear at

filling larger than 1/2.
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filling, a CDW I phase appears at a critical value of V , which in the present

case lies around V = 2.5. A system in a checkerboard phase (CDW I) can be

doped by holes or particles. When it is doped with holes, these create domain

walls and cause the system to phase separate, preventing the appearance of a SS

phase. In the case of hardcore bosons, this behavior would be mirrored for ρ > 1
2
,

due to particle-hole symmetry. In the case of soft-core bosons, such particle-hole

symmetry can break down. At sufficiently low V , a region of PS appears and the

system does present a hardcore-like behavior, but as the NN repulsion is increased

this PS region disappears. Since now the particles can occupy either an empty or

occupied site, it is no longer necessary for the domain walls to form and the system

can move into a SS state. Moreover, at a certain value of V , upon increasing ρ the

SS phase is followed by a region of PS, instead of going into a SF phase and then

becoming a MI. At unit filling, this PS region then changes to the CDW II phase,

which is characterized by a checkerboard pattern consisting of an alternation of

doubly-filled sites and empty ones.
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Figure 4.2: Identification of different phases as exemplified for U = 20 and
V = 3.0 based on the density in (a) as well as the structure factor (blue circles)
and the superfluid stiffness (red squares) shown versus density in (b). Plateaus
in ρ as a function of µ indicate incompressible crystal phases. Jumps denote
phase separation (the densities that are jumped over do not correspond to ther-
modynamically stable phases). Moreover, a finite superfluid stiffness charac-
terizes a SF phase and a finite structure factor a CDW order. When both are

finite, the system is SS.

Figure 4.2 shows, for a fixed V = 3, the observables described in Section 4.2.1

that we used to determine the various phases. The boson density as a function of

the chemical potential displays clear plateaus, corresponding to gapped insulating

phases, Fig. 4.2 (a). As mentioned above, jumps in Fig. 4.2 (a) correspond to PS

regions in Fig. 4.1. The structure factor and the superfluid stiffness are shown
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in Fig. 4.2 (b). For low chemical potential (density) the system is in a SF state

with non-zero superfluid stiffness and vanishing structure factor. At ρ ≈ 0.43,

the system phase separates and there are no values for these observables. At half

filling, when the system moves to CDW I phase, the structure factor becomes

finite. There is a small region, roughly around 0.5 < ρ < 0.51, where the system

is in a SS phase — here both the superfluid stiffness and the structure factor are

non-zero. This phase is followed by a second region of PS that extends up to

ρ ≈ 0.61. At higher densities, a SF phase is observed up to unit filling, where a

MI state follows, as revealed by vanishing superfluid density and structure factor.

4.3.1.2 Phase diagram at moderate on-site repulsion (U = 5)

We now consider U = 5, a case of weaker repulsion that has not been studied

earlier. For the moment, we still retain T = 0. The phase diagram Fig. 4.1b

seems a bit simpler than for U = 20. Importantly, the particle-doped side now has

to deal with much ”softer” bosons allowing for multiple occupancy on any given

site (in the numerical calculations we allow for up to 4 bosons per site which is

sufficient for lattice fillings below unity) The hole-doped side is much less affected

since the on-site repulsion has a lesser influence on lower densities. For weak NN

repulsion V , the system stays SF across the entire range of densities from empty

to unit filling and then goes into the MI state. At V ≈ 2.3 up to V ≈ 3.1, the

system goes directly from a SF phase into a SS phase, which ends at a CDW II

phase at unit filling. At larger V , a PS region appears. The biggest difference

between U = 20 and U = 5 cases appears for higher values of V , where the PS

region at the particle-doped side disappears and the SS phase occupies the entire

region between the CDW I at half filling and the CDW II at unit filling.

The different transitions are revealed by slices through the phase diagram at fixed

V (exemplified for a few values in Fig. 4.3). At V = 3.0, the density is strictly

increasing across the entire range of µ, Fig. 4.3 (a). Notice, however, a change

of the slope around µ/U = 4, corresponding to ρ = 0.6. As seen in Fig. 4.3 (d),

the structure factor starts to rise in a similar parameter range, namely around
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Figure 4.3: Top row: density versus chemical potential for U = 5 and different
values of V : V = 3.0, V = 4.5 and V = 6.0 (left to right). The bottom row shows
the corresponding structure factor (blue circles) and the superfluid stiffness (red

squares).

ρ = 0.65. At the same time, the superfluid stiffness only has a peak at ρ = 0.65,

but remains finite for all values of µ considered. Therefore, the increase of the

structure factor is a clear sign of a second-order transition from a SF to a SS.

Also, since the structure factor does not drop back to zero at ρ = 1, the unit

filling phase will be a CDW II and not a MI.

The next slice is taken at V = 4.5, where the state changes from SF to PS to

SS without ever settling into the CDW I phase at half filling. In the density

graph, Fig. 4.3 (b), we can see a small jump that bypasses ρ = 1
2
. This explains

why the CDW I phase does not appear at this value of V . The SF at small ρ is

identified by a non-zero superfluid fraction and vanishing structure factor, Fig. 4.3

(e). This phase is followed by the PS region from ρ ≈ 0.435 to ρ ≈ 0.51. At

higher densities, a SS state appears as characterized by non-zero structure factor

and superfluid stiffness. Finally, the system settles into the CDW II state at unit

filling.

The last slice at V = 6.0 is similar to the previous one at V = 4.5 with one major

difference, the appearance of the CDW I phase at half filling. As before, we can see

a jump (this time slightly larger) in the density, Fig. 4.3c, but now it is followed

by a plateau that signifies the CDW I phase. In Fig. 4.3f, we see again the three
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distinct phases, SF up to ρ ≈ 0.35, then a region of PS up to ρ = 0.5 and from

half filling to unit filling there is the SS phase, once again ending in the CDW II

state.

4.3.2 Phase diagrams at finite density-dependent tunnel-

ing

As we have seen in the previous section, the phase diagram of the EBHM at

vanishing T displays a large variety of phases: MI, CDW, SF and SS. Additionally,

there are various regions of phase separation, some of which (the ones at filling

larger than 1/2) disappear with decreasing on-site repulsion of the bosons. In this

section, we study how this phase diagram of the usual EBHM is changed by the

density-dependent hopping.
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Figure 4.4: The phase diagrams for U = 20 at finite T (with V = 10|T | and
t = 1 the unit of energy). (a) If J and T are of the same sign, the relative
importance of interactions decreases, leading to the disappearance of PS phases
at greater than half filling. Compared to the T = 0 cases presented in Fig. 4.1,
this phase diagram resembles more the case U = 5 than U = 20. (b) If T
and J compete due to opposite signs, the relative importance of interactions is
enhanced, increasing the PS regions. In fact the two separate regions of PS in

Fig. 4.1b increase to the point of overlapping.
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4.3.2.1 Phase diagram at strong on-site repulsion

The first case we study is U = 20 when the two tunneling amplitudes J and T have

the same sign. Comparison of Fig. 4.4 with Fig. 4.2 shows that in the presence of

density-dependent tunneling the PS region at low V values has disappeared and

there is no PS region between the SS and CDW II phases. One can explain this

behavior by the increase in the total hopping due to the additional tunneling term

T . Thus, the on-site repulsion U behaves as if it were effectively rescaled to a

smaller value. Similar arguments explain the shift of the point where the ρ = 1
2

plateau first appears and, therefore, the CDW I phase moves from V ≈ 2.5 (with

T = 0, Fig. 4.2) to V ≈ 3.5 (Fig. 4.4). As a consequence, the phase diagram at

U = 20 with J and T of the same sign looks very similar to the one at U = 5 with

vanishing T .

The behavior in the U = 20 phase diagram becomes more interesting when the

two tunneling terms compete due to opposite signs, T < 0. The phase diagram

is presented in Fig. 4.4 (b). The CDW I phase now starts at a lower value of |T |

than in the previously discussed case. Similarly, the region of PS at the lower

values of |T | (and thus V ) now becomes much larger. This shows that the system

has a hardcore behavior for a larger range of parameters. Additionally, the SS

region diminishes and finally disappears as V gets larger. These findings can be

explained through the competition between J and T , which decreases the effective,

overall tunneling strength. This decrease can alternatively be seen as an effective

relative increase of the interaction parameters U and V . As a result, the hard-core

behavior of the system becomes more pronounced and the PS regions become more

important.

The observed phases may again be analyzed in detail via the cuts at fixed T

(and therefore V ), presented in Fig. 4.5. The first slice we present is for T = −0.3

(V = 3.0). As seen in Fig. 4.5a, the plateau at half filling — a CDW I, as indicated

by the finite structure factor, Fig. 4.5d — is surrounded by discontinuities in the

density, thus implying regions of PS. These are surrounded by SF phases, with a

MI appearing at unit filling.
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Figure 4.5: Density graphs of U = 20 for T = −0.3, T = −0.5 and T =
−0.6 (left to right). Structure factor (blue circles) and superfluid stiffness (red

squares) graphs for U = 20 at T = 0.3, T = 0.5 and T = 0.6 (left to right).

The next slice cuts through the phase diagram at T = −0.52 (V = 5.2) and this

time shows also a region of the SS phase for densities just above half filling, Fig. 4.5

(e). This SS may also be observed in the density plot, Fig. 4.5 (b): Above half

filling, there is a small interval of steady increase before a discontinuity occurs

around ρ = 0.65. After this PS region, there is a small region where the system

becomes superfluid before once again phase separating. At unit filling, the system

finally transitions into a CDW II phase. Below half filling, another jump in the

density indicates yet another PS.

The final cut is taken at T = −0.6 (V = 6.0). Again, at low densities the system

starts in a SF phase and then jumps through a region of PS to reach the CDW I

phase at half filling. For higher densities, the system first enters a SS phase and

around ρ = 0.72 a transition to PS occurs. This time, the system ends in the

CDW II phase when unit filling is reached.

So far we have only looked at the short-ranged interactions, but we would also

like to study the effects of the long-ranged ones so we extend the dipole-dipole

interactions out to 3 nearest neighbors. By increasing the interactions beyond the

just the nearest neighbors, we have introduced some frustration into the lattice.

If we recall from the previous chapter, frustration effects make it difficult for a
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Figure 4.6: Density graph for U = 20 and T = 1.0 with long-ranged interac-
tions.

system to settle in the true ground state and many metastable states introduce

fluctuations can lead to poor results. For U = 20 with the hopping parameters

both having the same sign the entire phase diagram is in the superfluid state which,

at full filling, transitions into a Mott insulating state. If we look at a cut out of any

part of this system we see a steadily increasing density and a steadily increasing

superfluid fraction while the structure factor remains nearly zero. Although the

graphs of superfluid density and structure factor (not shown) have rather high

fluctuations it is possible to guess how the phase diagram will look. The only

interesting behavior that comes out of the long-ranged interactions can be seen at

the higher values of T . Because of the increased repulsion across the lattice we

begin to see a staircase like structure form in the graphs of the density. In Fig. 4.6

we have graphed the density at U = 20 and T = 1.0. The increasing density

seems to change in “jumps” for the range µ ≈ 0 to µ ≈ 7 and again for values

of µ > 12. There is only a small section in between where the density increases

without exhibiting this behavior.

Next we can look at the same long-range interactions when the signs of the hop-

ping parameters are opposite. Again, there is a large area that is completely dom-

inated by superfluidity which then transitions to the Mott insulator phase. This

time however a plateau at half filling does begin to appear just below T = 0.7 and
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Figure 4.7: Density graph for U = 20 and T = −1.0 with long-ranged inter-
actions.

persists as T increases (not shown). Likewise to the simulation where the signs

were the same, the density graph shows a series of jumps instead of a smooth

increase as we can see in Fig. 4.7. The figure shows U = 20 and T = 1.0 this time

of course with opposite signs for the hopping parameters. This complicates the

process of trying to determine any definitive states. The problem comes from the

fact that each plateau is essentially an insulating state at a different filling factor.

This corresponds to extreme fluctuations in the superfluidity because for any insu-

lating section the superfluid density should be zero but in between the plateaus it

should be non-zero. So the step-like density causes the superfluid fraction to have

large fluctuations while the structure factor remains zero until the plateau at half

filling appears. Looking once more at Fig. 4.7, we see a more prominent plateau

appear at ρ = 0.25. It is difficult to say exactly what type of structure is forming

there since, due to the choice of wave vectors, the structure factor does not show a

peak there. A good guess is that the particles form a checkerboard-like structure

where each particle is separated from the other particles by the maximum distance

allowed, just like a Wigner crystal. Unfortunately due to this behavior it is quite

difficult to create an accurate phase diagram so we will not attempt it.
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4.3.2.2 Moderate on-site repulsion (U = 5)

In the previous section, we saw that the additional density-dependent tunneling

term T can increase or decrease the effective importance of the interactions U and

V , depending whether it competes with or supports the single-particle tunneling

J . In this section, we study this effect for weaker on-site interaction U = 5. The

corresponding phase diagrams are presented in Fig. 4.8.
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Figure 4.8: Phase diagrams for U = 5 and finite T . (a) If T and J have the
same sign, the relative strength of tunneling is strongly increased with respect
to the interactions. As a consequence, the CDW I phase has disappeared com-
pletely from this phase diagram. (b) When T and J are of opposite sign, the
role of interactions is enhanced, leading to increased PS regions and again the

CDW I phase is present.

The positive T diagram reveals that the CDW I phase, present for T = 0, dis-

appears completely, Fig.4.8 (a). This means that at no point does there exist a

plateau in the density graphs at ρ = 1
2
. Instead, a discontinuity bypasses half

filling altogether. The rest of the behavior is rather similar to the system without

the density-dependent term. There are still only three phases below unit filling,

i.e., the SF phase at low densities and low T (and therefore at low V ), the PS

region near half filling for larger T and finally the SS phase for still higher T and

larger densities. As can be expected, when the SF phase persists through the

entire range of densities, the system ends in a MI state at unit filling. Instead,

when the system at fixed T passes through the SS state, the final phase at unit

filling is, as before, the CDW II phase.



Chapter 4. Density dependent tunneling in the extended Bose-Hubbard model 80

Consider now the phase diagram of a system with U = 5 when the tunneling

terms have opposite signs, Fig. 4.8 (b). Here, contrary to the case of positive T ,

the CDW I exists at half filling. This indicates that the relative importance of the

effective total tunneling is suppressed for T < 0. Moreover, now a second region

of PS appears above half filling. As a result, for T . −0.8 there is no stable phase

with a density between the CDW I and the CDW II.
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Figure 4.9: Top row: Density graphs for U = 5 and T = −0.3, T = −0.4
and T = −0.8 (left to right). The bottom row shows the structure factor (blue

circles) and the superfluid stiffness (red squares) for the same parameters

These observations about the phase diagram are supported by an analysis of cuts

at a few chosen values of T (and thus V ), see Fig. 4.9. At T = −0.3 (V = 3.0),

one observes a smooth density increase all the way until unit filling, where a

plateau appears, Fig. 4.9 (a). The structure factor starts increasing near half

filling, indicating the transition from the SF to the SS phase, Fig. 4.9 (d); at unit

filling, the system lands in the CDW II phase.

A cut at the slightly higher absolute value T = −0.4 (V = 4.0) reveals a plateau

at half filling (CDW I) and a second one at unit filling (CDW II). Comparing the

density plot, Fig. 4.9 (b), with those of superfluid stiffness and structure factor,

Fig. 4.9 (e), we see that upon increasing the chemical potential the SF phase

appears at low densities, followed by the PS which transitions into the CDW I

at half filling. For higher densities, there is a region of SS, where both structure
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factor and superfluid stiffness are non-zero. Finally, there is the jump caused by

the PS region directly to the CDW II phase at unit filling.

Let us finally consider stronger density-dependent tunneling T and inter-site re-

pulsion V , namely T = −0.8 (V = 8.0). Below half filling, the density gradually

increases up to the value of ρ ≈ 0.27 and then jumps to the CDW I phase, Fig. 4.9

(c). After this phase, the density behaves step-like, jumping directly into the CDW

II phase at ρ = 1. This behavior is seen clearly in the data presented in Fig. 4.9

(f), where the SF phase for low densities is followed by two distinct regions of PS.

These regions are only interrupted by the CDW I phase at half filling and the

CDW II phase at full filling.

As these results show, for the lower on-site interaction U = 5, the density-

dependent term T does not change much the overall behavior of the phase di-

agram if it has the same sign as the single-particle tunneling J . Instead, if the two

tunneling terms have opposite sign, a large part of the SS phase disappears into a

phase separated region, due to the increased relative importance of the interaction

terms.
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Figure 4.10: Density graph for U = 5 and T = −0.6 with long-ranged inter-
actions.

Turning on long-ranged dipole-dipole interactions (again to 3 nearest neighbors)

causes some problems for a system with such low on-site repulsion. The frustration



Chapter 4. Density dependent tunneling in the extended Bose-Hubbard model 82

effects in this system are quite high and make getting any sort of phase diagram

near impossible. Even with the large uncertainty of the observables we can say

that for U = 5 with both hopping terms having the same sign causes the entire

range of parameters to be dominated by superfluidity.

When the signs are opposite the inaccuracies of the graphs, especially the su-

perfluid density and the structure factor, become so prominent that there is no

logical way to try to analyze them (not shown). Trying to create any sort of phase

diagram from the data becomes completely futile. One graph of the density, for

U = 5 and T = 0.6 with opposite tunneling, gave relatively reasonable results and

is presented in Fig. 4.10. The graph shows a steady increase of the density up to

approximately µ = 11 and afterwards shows the staircase-like behavior that we

noticed earlier for the long-ranged U = 20 systems. Here however the steps are

much wider and occur less frequently.

4.4 Conclusions

In summary, we have studied the extended Bose-Hubbard model on a square lattice

with additional terms coming from density-dependent tunneling. Taking these

terms into account is relevant for experiments on ultra-cold dipolar molecules

in optical lattices. The competition between the density-dependent tunneling,

a standard single-particle hopping, finite on-site repulsion and nearest-neighbor

repulsion gives rise to a rich phase diagram of the system.

Specifically, as has been found previously [42], at large on-site repulsion and with-

out density-dependent tunneling, there are Mott-insulator, charge density wave,

superfluid and supersolid phases, as well as phase separated regions. Depending on

the parameter strengths, this phase diagram undergoes considerable deformations.

If either we reduce on-site repulsion or introduce density-dependent tunnelings that

have the same sign as the single-particle hopping, some of the phase separated re-

gions disappear. Remarkably, if we introduce both of these effects simultaneously,
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additionally the charge density wave at half filling disappears. In this case of same-

sign tunnelings, both hopping processes act constructively producing an effective

larger tunneling, or respectively, weaker interactions.

We have also studied the phase diagram when the density-dependent tunneling

and single-particle hopping compete due to the their signs being opposite. Due to

this competition, the relative importance of interaction terms is enhanced. In this

case, the most striking effect is the disappearance of the supersolid into a phase

separated region. This occurs on the particle-doped side of the half filling charge

density wave and at strong V .

Besides a theoretical interest in understanding how density-dependent tunneling

terms change phase diagrams of extended Bose-Hubbard models, our findings will

help to determine where one may expect exotic phases in experiments with ultra-

cold dipolar molecules in optical lattices.



Chapter 5

Conclusion

In this thesis we have looked at many different interesting systems which all shared

the common trait of having long-ranged interactions. Mostly these interactions

were dipolar (like in Ch. 2) but we also examined the effects of long-ranged hopping

(in Ch. 3) and then studied the effects of having addition parameters, like density

dependent hopping, added to the Hamiltonian (in Ch. 4). In each case we focused

our attention on interactions that are typically neglected in simulations. We have

shown repeatedly throughout this thesis that the extension of interactions beyond

just the nearest neighbors or the addition of uncommon terms can have major

influences on the outcomes of the phase diagrams. The Hamiltonians with the

usual short-ranged interactions differed significantly from the Hamiltonians that

had long-ranged interactions or extra, exotic terms. Sometimes the changes would

be nothing more than the shifting of the phase transitions to a parameters yet

other times there could appear entirely new phases in the systems.

In the second chapter we looked at a system of polarized bosons on an optical

lattice ring. This simple system which possessed long-ranged dipolar interactions

(that spanned all pairs of sites), gave a multitude of phases that had not been seen

in the typical systems without dipolar interactions. Even systems with dipolar

interactions usually did not extend out beyond the nearest neighbors and could

not exhibit all the possible phases that can were present in our model. The first

simulation was done with the dipoles being polarized perpendicular to the plane

84
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of the ring. Besides the expected superfluid and Mott insulating phases we also

saw several types of density wave phases. Many of these phase would not have

been able to exist without the dipolar interactions extending to every pair of sites.

In fact at the highest values of dipole-dipole repulsion all the particles retreated

to a single site.

Then with the polarization lying in the plane of the ring, we were able to study

the anisotropic nature of the dipolar interactions and we saw many interesting

phenomena appear. The most fascinating of which showed up at high dipolar

values. As the the dipole-dipole interactions increased, first we saw a splitting

of the condensate into two separate sections localized in the attractive regions of

the ring and later a complete symmetry breaking occurrence happened where all

the bosons collapsed into a single site. (This phenomenon, although it mimics the

previous results, actually comes from the anisotropic nature of the interactions

rather than the long-ranged behavior.) One of the great things about this project

is that the findings can easily be verified by experiments. The setup for such a

small system can easily be created in a lab using techniques like the ones described

in Ref. [79] and Ref. [80].

In the following chapter we examined the results of a frustrated system of hard-

core bosons on a triangular lattice. By using QMC algorithms we could compare

different versions of this XXZ model. We studied short-ranged interactions and

compared them to interactions where the dipolar term spanned 5 nearest neighbors

and finally where both the dipole-dipole interaction as well as the hopping were

long-ranged. Each type of interaction gave a different phase diagram with different

regions of superfluidity, crystalization, and supersolidity. It was also here that we

ran into the sign problem which prevented us from exploring regions of negative

hopping. Later these same regions were studied with a changing temperature in

order to see how these different sections (crystal and supersolid) ”melt“. Models

like this also have the ability to be studied experimentally and actually would be

able to provide better results for the regions that exhibit the sign problem.
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The results for the XXZ model with short-range tunneling apply for ultra-cold

gases of polar bosonic molecules in the limit of hard-core bosons. Note that the

earlier works [43, 44] have concentrated on the appearance of the supersolid phase

and devil’s staircase of crystalline phases in the square lattice [43], and supersolid

and emulsion phases in the triangular lattice [44]. Here we focus on the hard-core-

spin limit, and compare it and stress differences with other models, such as the

ones with long-range tunneling, i.e., long-range XX interactions.

The results for the XXZ models with long-range tunneling apply for systems of

trapped ions in triangular lattices of microtraps. These results are novel, since so

far such models have been only studied using various techniques in 1D, and using

the mean-field approach in 2D. While the first experimental demonstrations of

such models were restricted to a few ions (see for instance [81]), many experimental

groups are working on an extension of such ionic quantum simulators to systems of

many ions in microtraps [82]. In fact, very recently the NIST group has engineered

2D Ising interactions in a trapped-ion quantum simulator with hundreds of spins

[83]. Although in this experiment the quantum regime has not yet been achieved,

it clearly opens the way toward quantum simulators of spin models with long-

range interactions. We expect that in the near future the result of our present

theoretical study will become directly relevant for experiments.

The final simulation was carried out on a two dimensional square lattice again

using the QMC code. This section of the thesis had an addition term added to the

already extended Bose-Hubbard model, the density dependent term, which can be

derived from the dipolar term. The extra parameter either increased or decreased

the overall tunneling depending on whether its sign was the same or opposite of the

regular tunneling. Simulations showed that when the two tunneling parameters

would have the same sign this would increase the supersolid and superfluid regions

and decrease regions of phase separation. If on the other hand the tunneling

terms had opposite signs then the the areas of phase separation would grow while

supersolid and superfluid phases would diminish.
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Turning on long-ranged dipolar effects introduced frustration into the system and

the results were devastating. The devil’s staircase-like behavior of the density

caused fluctuations in the superfluidity to point that no reliable results could be

attained from the simulations. As of this moment there does not seem to be a way

to experimentally achieve these interactions but according to Ref. [17] this should

be achievable in the near future.

A few general problems with some of the experimental setups can arise from dif-

ferent situations. For example the effects of frustration are a geometrical factor

and will therefore show up in the experiments not just in the simulations (unlike

the sign problem). So the instabilities from the meta-stable states will most likely

cause as many problems for experimentalists as they do for theorists. A second

major problem relates to the on-going argument about the existence of the su-

persolid phase. The first claim that a superfluid was observed experimentally was

made in Ref. [73]. However in 2007, it was shown that what was interpreted as

a supersolid could have actually been a side effect of the elasticity of helium [84].

Just recently the same team that claimed the original discovery restructured the

experiment and showed that the supersolid state was completely absent [74]. This

has not stopped others continuing the search for this exotic phase and there are

still possibilities that in the future it will be uncovered.

Speaking of the future, there is a lot of exciting research still left in the area of long-

ranged dipolar bosons. We can look forward to many new fascinating theoretical

and experimental results in the near future. One of the easiest ways to improve

dipolar interactions is to use atoms with higher dipole moments. Currently the

popular choice has been chromium (87Cr) with a dipole moment of 6µB but it is still

small because the length scale of the interactions is much smaller than the spacing

between the particles. Recently, some research groups have been able to prepare

Bose-Einstein condensates using erbium (168Er) which has a dipole moment of 7µB

[85] and dysprosium (164Dy) which has a dipole moment of 10µB [86]. These atoms

can take the place of the of the more commonly used chromium and provide us

with a better understanding of these atomic dipole-dipole interactions. Another

approach uses electric fields in order to inducing large dipole-dipole interactions.



Chapter 5. Conclusion 88

According to Ref. [87] and Ref. [88] an AC electric field might possibly produce a

large dipole by irradiating a gaseous Bose-Einstein condensate with an off-resonant

laser. This process allows the dipolar interactions to be enhanced by many orders

of magnitude [88]. Using this technique, Ref. [89] actually achieved large induced

dipole-dipole interactions in rubidium (87Rb) Bose-Einstein condensate. Polar

molecules seem to also be great candidates for studying dipolar effects. For this

we need a heteronuclear diatomic molecule that has a large permanent dipole

moment when it is in a low rovibrational state. If this can be achieved then we

would be able to get dipole-dipole interactions on the order of a Debye [90, 91].

However scientists have not yet achieved quantum degeneracy and so we are still

some time way from being able to use these molecules for experiments in quantum

gases. We can also look into using Rydberg atoms to create a dipolar quantum

gas. These atoms can have enormous dipole-dipole interactions (1000 times bigger

than heteronuclear molecules). Unfortunately the atoms are highly sensitive to

ionization and have very short lifetimes [92].

Difficulties can arise even in theoretical studies when looking at such systems in

the strongly interacting regime. First of all we can no longer make assumptions

along the lines of single band tight-binding approximations and taking into account

only the lowest energy Wannier states. These approximations break down because

such interactions mix the different bands and the different sites. Also with higher

orbitals we have to take into account long-ranged hopping terms. Excited bands

have been taken under consideration in several papers but serious complications

appear due to the lack of convergence of the results as a function of number of

bands taken into consideration. However in Ref. [93] this has been rectified using

a new technique which can efficiently describe such systems.



Appendix A

Guide to long-ranged interactions

using ALPS

The ALPS project (Algorithms and Libraries for Physics Simulations) is an open

source code created for simulating strongly correlated systems in quantum mechan-

ics. It provides the user with a multitude of tools to use for simulating many-body

systems. Some of the codes included in the project are: exact diagonalization, den-

sity matrix renormalization group (DMRG), classical and quantum Monte Carlo

(QMC), dynamic mean field theory (DMFT), and others. In this appendix we will

only focus on the QMC code. First we will discuss some of the basics needed to

get the code to run however most of that information is available on the website.

Next we will give some of the more advanced methods for creating simulations

with long-ranged interactions.

The first thing that we must do is to decide exactly what kind of system are we

going to simulate. So let’s ask a few key questions. Are we working with spins,

fermions, or bosons? What type of interactions do we want in our Hamiltonian?

What kind of lattice do we want to simulate and in how many dimensions? What

do we want to measure? Once we have made these decisions we can get started.

For the most basic simulations we can just choose a lattice from the lattice library

(chain, square, triangular, cubic, etc.) and a model from the model library (spin,

89
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boson, t-J, etc.) and we do not have to make any modifications to either of the files.

We can then just choose a code and immediately start getting some results. Most

simulations automatically give such values as energy, density, and stiffness but we

may be interested in other observables such as the structure factor or different

correlations. These extra measurements need to be added to the parameter file

manually (but this is all in the tutorials so we will not spend any more time on it

here).

Choosing the correct QMC code is possibly the most important thing to consider

when using ALPS. Certain codes work faster for certain systems and give more

precise results. It is good to keep a few guidelines in mind when choosing which

code to use. For example, if you are simulating unfrustrated quantum spin models

or soft-core boson models, the worms code works better. For frustrated quantum

spin models or soft-core bosons (supposedly even with a sign problem) the SSE

code is best. However either code can be used to for either situation and sometimes

it is a good idea to check one against the other. Once these fundamental steps

are finished we can move on the the more difficult process of creating long-ranged

simulations. First we will learn how to create a lattice that allows long-ranged

interactions by making a custom unit cell. Next we will see how to adjust the

definition of the model in order to create long-ranged interactions. Finally we

will see how to setup the parameter file to get the program to run everything

correctly. Here we will use a two dimensional triangular lattice with long-ranged

interactions and the XXZ model for the examples since it will nicely demonstrate

all the techniques needed to create long-ranged interactions in ALPS and also

because it is the precise simulation that was studied in Chapter 3 of this thesis.

A.1 Building the lattice

To begin it is a good idea, when creating a new lattice, to create a separate file

which contains only the elements needed for your specific lattice. Here we are

going to create a 2D triangular lattice with 5 nearest neighbor interactions and
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periodic boundary conditions. Below we show what the xml file will look like for

this kind of lattice and then we will explain what each section does exactly.

<LATTICES>

<LATTICE name="LR triangular lattice" dimension="2">

<PARAMETER name="a" default="1"/>

<BASIS>

<VECTOR>a\text 0</VECTOR>

<VECTOR>a/2 a*sqrt(3)/2</VECTOR>

</BASIS>

<RECIPROCALBASIS>

<VECTOR>2*pi/a -2*pi/a/sqrt(3)</VECTOR>

<VECTOR>0 4*pi/a/sqrt(3)</VECTOR>

</RECIPROCALBASIS>

</LATTICE>

<UNITCELL name="LRtriangular" dimension="2">

<EDGE type="1"><SOURCE vertex="1" offset="0 0"/>

<TARGET vertex="1" offset="0 1"/></EDGE>

<EDGE type="1"><SOURCE vertex="1" offset="0 0"/>

<TARGET vertex="1" offset="1 0"/></EDGE>

<EDGE type="1"><SOURCE vertex="1" offset="0 0"/>

<TARGET vertex="1" offset="-1 1"/></EDGE>

<EDGE type="2"><SOURCE vertex="1" offset="0 0"/>

<TARGET vertex="1" offset="1 1"/></EDGE>

<EDGE type="2"><SOURCE vertex="1" offset="0 0"/>

<TARGET vertex="1" offset="-1 2"/></EDGE>

<EDGE type="2"><SOURCE vertex="1" offset="0 0"/>

<TARGET vertex="1" offset="-2 1"/></EDGE>
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<EDGE type="3"><SOURCE vertex="1" offset="0 0"/>

<TARGET vertex="1" offset="0 2"/></EDGE>

<EDGE type="3"><SOURCE vertex="1" offset="0 0"/>

<TARGET vertex="1" offset="2 0"/></EDGE>

<EDGE type="3"><SOURCE vertex="1" offset="0 0"/>

<TARGET vertex="1" offset="-2 2"/></EDGE>

<EDGE type="4"><SOURCE vertex="1" offset="0 0"/>

<TARGET vertex="1" offset="2 1"/></EDGE>

<EDGE type="4"><SOURCE vertex="1" offset="0 0"/>

<TARGET vertex="1" offset="1 2"/></EDGE>

<EDGE type="4"><SOURCE vertex="1" offset="0 0"/>

<TARGET vertex="1" offset="-1 3"/></EDGE>

<EDGE type="4"><SOURCE vertex="1" offset="0 0"/>

<TARGET vertex="1" offset="-2 3"/></EDGE>

<EDGE type="4"><SOURCE vertex="1" offset="0 0"/>

<TARGET vertex="1" offset="-3 1"/></EDGE>

<EDGE type="4"><SOURCE vertex="1" offset="0 0"/>

<TARGET vertex="1" offset="-3 2"/></EDGE>

<EDGE type="5"><SOURCE vertex="1" offset="0 0"/>

<TARGET vertex="1" offset="0 3"/></EDGE>

<EDGE type="5"><SOURCE vertex="1" offset="0 0"/>

<TARGET vertex="1" offset="3 0"/></EDGE>

<EDGE type="5"><SOURCE vertex="1" offset="0 0"/>

<TARGET vertex="1" offset="-3 3"/></EDGE>

</UNITCELL>

<LATTICEGRAPH name = "LR triangular lattice">
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<FINITELATTICE>

<LATTICE ref="LR triangular lattice"/>

<PARAMETER name="W" default="L"/>

<EXTENT dimension="1" size="L"/>

<EXTENT dimension="2" size="W"/>

<BOUNDARY type="periodic"/>

</FINITELATTICE>

<UNITCELL ref="LRtriangular"/>

</LATTICEGRAPH>

</LATTICES>

We begin by giving the lattice a name. Here we have called it: LR triangular

lattice. Next we define the basis and the reciprocal basis. These shouldn’t change

from the regular triangular lattice so they can just be copied from the already

existing lattice library and pasted in to your file. At the bottom we have a defini-

tion of our lattice graph. This also needs a specific name but it can be the same

as the name of the lattice so again we call it: LR triangular lattice. This section

can also just be copied from the regular lattice library but it is good to give the

lattices names that are unique to the simulation. The main thing that needs to

be modified is the unit cell definition.

The unit cell specifically lists the each possible interaction on any given site. This

unit cell is then copied onto each point of the lattice hence creating a system

with as many long-ranged interactions as we want. In the above code we can see

that we have 5 separately defined edges. Each edge will correspond to a different

interaction that occurs at a different length. If we wanted to only have nearest

neighbor interactions on the triangular lattice then we would only need to define

the three edges of our triangular unit cell. To begin we have to define the source

of the unit cell. Since all the sites will be exactly the same, every edge type will

have the source be a vertex of type 1 and will have no offsets. Next we have to

create a target for the bond (or edge). For the nearest neighbor we only have



Appendix A. Guide to long-ranged interactions using ALPS 94

Figure A.1: A point on a triangular lattice with 5 nearest neighbor interactions
will have 36 different bond terms.

to create a unit cell that goes to three neighboring sites because as the unit cell

gets copied onto all the other sites we do not want the bonds to repeat. This is

why we only need to define three bond terms in the nearest neighbor unit cell (or

edge of type 1). As we can see, each consecutive bond term gets it’s own edge

number so that it can be differentiated later in the model. The entire unit cell

can be treated as a set of 5 different unit cells all with different bond lengths

that are then superimposed onto each other. When the unit cell is complete it is

then copied onto every single site and we get the full range of interactions. Now

each site experiences 36 individual interactions at different lengths. This is shown

graphically in Fig. A.1 where it is important to keep in mind that the first column

and the last column are actually the same column. This is also true for the first

and last row. This way the circle only overlaps on the final bonds. This will be

taken into account in the parameter file that will be discussed later. So for a 6× 6

lattice we cannot have interactions farther than 5 nearest neighbors because they

will calculate certain bonds more than once and give incorrect results.
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A.2 Building the model

Once the lattice is established and the unit cell is created to extend out to the

correct amount of nearest neighbors, we can then create a model that will utilize

this lattice. Here we will focus on the long-ranged XXZ model used in Chapter 3.

This model as we recall has hard-core bosons that have both long-ranged tunneling

and dipole-dipole repulsion.

The first step is to choose a sitebasis and a basis. Here we are working with bosons

so we can just copy and paste the required information from the model library in

the ALPS program. There are two ways to do this since there exist separate bases

for hard-core and soft-core bosons. In this file the soft-core model is chosen since

it can then be restricted to the hard-core limit in the parameter file and therefore

allows for more options without having to create a new model. For this section

of the code no changes are required whether the interactions are short-ranged or

long-ranged. We can see this in the sample code provided below.

<MODELS>

<SITEBASIS name="boson">

<PARAMETER name="Nmax" default="infinity"/>

<QUANTUMNUMBER name="N" min="0" max="Nmax"/>

<OPERATOR name="bdag" matrixelement="sqrt(N+1)">

<CHANGE quantumnumber="N" change="1"/>

</OPERATOR>

<OPERATOR name="b" matrixelement="sqrt(N)">

<CHANGE quantumnumber="N" change="-1"/>

</OPERATOR>

<OPERATOR name="n" matrixelement="N"/>

</SITEBASIS>

<BASIS name="boson">

<SITEBASIS ref="boson"/>
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<CONSTRAINT quantumnumber="N" value="N_total"/>

</BASIS>

<HAMILTONIAN name="XXZ">

<PARAMETER name="mu" default="0"/>

<PARAMETER name="J1" default="0"/>

<PARAMETER name="J2" default="0"/>

<PARAMETER name="J3" default="0"/>

<PARAMETER name="J4" default="0"/>

<PARAMETER name="J5" default="0"/>

<BASIS ref="boson"/>

<SITETERM site="i">

<PARAMETER name="mu#" default="mu"/>

-mu#*(n(i)-(1/2))

</SITETERM>

<BONDTERM source="i" target="j">

<PARAMETER name="J#" default="0"/>

J#*(cos(theta)*(n(i)*n(j)-n(i)/2-n(j)/2+1/4)

+(sin(theta)/2)*(bdag(i)*b(j)+b(i)*bdag(j)))

</BONDTERM>

</HAMILTONIAN>

</MODELS>

The important changes occur in the Hamiltonian. Here we are modeling Hamilto-

nian 3.1. We see that the two parameters that define the interactions are µ, the

chemical potential J the long-ranged interaction term. As we can see we have a

single parameter for the chemical potential and we have 5 parameters for the J

term. Each one of the parameters will correspond to a different neighbor. So J1
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is the nearest neighbors, J2 the next nearest neighbors and so on. The default

values are set here to zero but these can be changed easily in the parameter file

allowing to us to choose any length of interactions from 1 to 5 nearest neighbors.

The Hamiltonian is broken up into two terms: the site term and the bond term.

The site terms, usually the on-site repulsion U and chemical potential µ, are the

values summed over a single index. The bond terms, usually the tunneling J and

dipolar repulsion V , are the terms with a sum over two indices. The J# term in

the Hamiltonian will allow us to set all the individual J ’s in the parameter file.

Also we see that there is a theta term in the Hamiltonian that we can also be set

in the parameter file.

A.3 Building the parameter file

Finally we can create our parameter file. We begin by choosing our lattice and

model from the files that we have just created. Next we choose the values we want

for all of our parameters from the Hamiltonian. So here we have entered values in

such a way that the potentials change as 1/r3. Each J corresponds to the value of

a particular nearest neighbor. Next we limit the bosons to only allow one per site

in order to attain the hard-core limit. Then we choose our temperature low enough

so that we do not have excitations in the simulations since we are interested in

getting the ground state. Next we enter any additional observables that we want

to calculate. In the sample code below we have decide to calculate some additional

correlations. Finally we set our thermalization and sweeps and we are ready to

scan over the µ parameter and get the results. To run the program just follow the

simple steps in the tutorial online.

LATTICE_LIBRARY="./lattice.xml";

LATTICE="LR triangular lattice";

MODEL_LIBRARY="./model.xml";

MODEL="XXZ";
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L=6

dist1=1;

dist2=sqrt(3);

dist3=2;

dist4=sqrt(7);

dist5=3;

theta = -0.15;

pot = 1.0;

J1 = pot*(1/dist1^3);

J2 = pot*(1/dist2^3);

J3 = pot*(1/dist3^3);

J4 = pot*(1/dist4^3);

J5 = pot*(1/dist5^3)/2;

Nmax=1

T=0.1

MEASURE[Correlations]=true;

THERMALIZATION=600000;

SWEEPS=900000;

{mu = 0.001;}

{mu = 0.1;}

{mu = 0.2;}

{mu = 0.3;}

{mu = 0.4;}

{mu = 0.5;}
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As a final note, it is good to know how to adjust the sweeps and thermalization for

the simulations. These two parameters are very important because they decide

how effectively the simulation will run. The sweeps are the number of Monte

Carlo steps that are performed after thermalization. Thermalization are just the

first Monte Calro steps that are performed and then discarded before any of the

statistics are calculated. A large number of sweeps and thermalization will give

more precise answers but will take a longer time to calculate. However if they are

chosen to be too small then the code might not converge and this can cause large

errors in the results. It is good to play with these parameters until one gets ”a

good feel” for them. The best way to start is to run through the Worms and SSE

tutorials on the ALPS website and adjust these parameters accordingly to one’s

own specific simulation.
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