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PrefaeQuantum hromodynamis (QCD) is � as we believe � the orret theory of the stronginterations, with quarks and gluons being its fundamental degrees of freedom. Althoughthere are many puzzles remaining unsolved, it is very suessful in desribing variousaspets of the modern high energy data. Theoretial preditions are based on two majorissues. The most important one is the asymptoti freedom, whih asserts that the valueof the strong oupling onstant is relatively low at high energy sales. It enables usto use perturbation theory in alulations onerning sattering amplitudes. However,there are no free quarks and gluons in the nature � they are all bounded in olourlesshadrons, thus the perturbative alulations are not the whole story, as the hadrons arelearly of non-perturbative nature. Therefore, the seond basi issue are fatorizationtheorems, whih allow for a separation of a proess to a non-perturbative bound statephysis and alulable in QCD hard sattering amplitudes. Tehnially the former isdesribed in terms of various distribution funtions and distribution amplitudes, whihso far are most reliably taken from experiments.Phenomenologially the most important non-perturbative input omprises parton dis-tribution funtions (PDFs). Historially, they appeared in a desription of inlusivelepton-hadron deep inelasti sattering (DIS) as an element of the parton model. Nowa-days they are used also in the other high energy experiments like proton-proton ollisionsat LHC for instane. In order to obtain PDFs one has to �t the theoretially alulatedross setion with suitable analytial parametrizations of PDFs to the real data. Mostoften the eletron-proton HERA data are used in this proedure. There are severalgroups making an e�ort in extrating PDFs, e.g. CTEQ group [5℄ or MRST group [41℄to mention only the most known.One may ask the question: what is the di�erene between various sets of PDFs? Thereare at least a few odds. The �rst are di�erent funtional parametrizations and di�erentstatistial methods used in �tting the data. However the main di�erene is onneted toa sheme in whih the atual ross setion is alulated. This issue is inseparably relatedto heavy quarks and the problem of sales in QCD. Namely, there is a di�ulty with�nite-order perturbative alulations if there are a few external parameters (sales) thatare very di�erent. Those sales an be �xed e.g. by an external energy or by the massesof the quarks. Atually it is the ase in reality, as we have six quark �avours with three ofthem being marginally heavier than the others. Moreover there is also substantial masssplittings between the heavy quarks. In some situations, this di�ulty an be solved bymeans of the renormalization group methods, however there does not exist a uniformperturbative expansion suitable for all the sales. Therefore one has to hoose a spei�sheme. Intuitively it orresponds to a situation, where our measurement resolution istoo small to distinguish some tiny details and to large to see the whole thing. We anhowever always hange the instrument to get di�erent insights. The same is true for the9



10 CONTENTSshemes in perturbative QCD.For many years, a ompletely massless sheme have been the most standard in treatingDIS sattering. Atually, the sheme was massless in the sense of negleting the massparameters in alulations, but hanging the number of �avours in the same time. Weshall see the details later, however even intuitively we see that suh an approah is verylimited in auray. It an be satisfatory only in ertain, relatively narrow ranges ofkinemati spae. Therefore also the other shemes were used, treating the heavy quarksin a more ordered way. In partiular, the shemes for harm, and bottom quarks wereused. Those alulations are very aurate in a suitable kinemati range, but � again �those ranges are limited. Further development must have led to a omposite sheme, thatis to hange the number of �avours on one hand (like in the massless sheme mentionedin the beginning of the paragraph) and to keep the masses �nite on the other. Themost ommon name for the approah of this type is a �general-mass sheme� or �variable�avour number sheme�. We shall see suh a solution in details below in this work. So farthe general-mass shemes were used in inlusive proesses, both in extrating the PDFsand prediting experimental outome.There is however another very important lass of high energy proesses, namely theprodution of jets. Sine one measures also the spatial distribution of the outgoingpartiles it an give muh more information about underlying parton dynamis. Looselyspeaking, a jet � a ollimated bunh of hadrons � is a remnant of a parton ejeted from theenter of ollision. Thus by analysing the momentum and energy of the jet, we get almostdiret aess to the parton level subproess. It allows for more preise measurements ofsome quantities, for instane strong oupling onstant (e.g. the analysis performed byZEUS ollaboration using dijet prodution in DIS [1℄ and by H1 ollaboration usinginlusive-jet, dijets and trijet analysis [32℄). The jets prodution proesses are also usedto obtain the parton distribution funtions (together with the inlusive data). Theoretialalulations needed to this proedure are again sheme dependent. In ase of jets, thereis however muh less theoretial development onerning heavy quarks. There are severalMonte-Carlo (MC) programs using massless quarks, e.g. NLOJET++ [42℄, DISENT [9℄,both for hadron-hadron and lepton-hadron ollisions (the last for neutral urrent without
Z0-exhange). For heavy quarks, there are some alulations for inlusive-jet and twojets prodution at NLO [26℄ in a sheme with �xed number of �avours. It should beremarked, that we mean here strit QCD alulations, not a model-based ones. For jets,the former are muh more involved and require speial treatments of singularities thatappear at NLO (and higher) orders.In this work, we propose a solution intended to �ll the gap in existing heavy �avourtreatments. It is a general-mass sheme for jets prodution proesses, based on somesolutions available on the market. We onentrate herein on DIS proesses with neutralurrent interations. Further extensions are possible, as we shortly disuss in Chapter 5.The developments we are presenting are essentially theoretial. However, in order tosupport the validity of our alulations we give some sample numerial results using adediated MC program. It is a part of a larger projet that is urrently under develop-ment.The material is organised as follows. First, in Chapter 1 we reall the basi formalismwe shall use throughout, inluding fatorization theorems and jets treatment. Chapter 2is devoted to existing approahes to heavy quarks in inlusive DIS proesses and itsproblems. Notably, it introdues the general-mass solution, whih we later apply to jets.Those two hapters possess mainly introdutory harater. Next, in Chapter 3, we re-analyze so alled dipole subtration method for jets, assuming the most general situation



CONTENTS 11of massive partons, inluding possible initial state heavy quarks. Finally we gather all thepiees and onstrut the general-mass sheme for jets in Chapter 4. We introdue tonsof symbols throughout this work. Some of them may look messy, however this aountsfor the preise theoretial formulation of the material. In order to failitate the readingwe put some of them in a Nomenlature. The tehnial details that are not essential inthe main text are listed in the appendies.AknowledgementsIn the �rst plae, I would like to thank Prof. Wojieh Sªomi«ski for his patiene,substantial help and many hours of joint disussions. The words of gratitude belong alsoto Prof. Mihaª Praszaªowiz, the head of Partile Theory Department I had a greatpleasure to be a member as PHD student.I thank my wife Iwona for onstant support and faith in me, espeially when every-thing was going wrong. The same is true about her family: Brunon and Basia, Marekand Ela together with their hildren.I own speial thanks to Mirek Troiuk, my high shool teaher and Ola �ubnika,who reated the sienti� atmosphere that brought me to this point.Finally, I am grateful to my parents Maria and Jerzy, my brothers Damian andMateusz, and my little sister Kasia, for everything.
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Chapter 1Hadrons, partons and jets inQCD1.1 Fatorization theoremsAlthough QCD has inredible amount of suesses, the theory is still not solved. Forinstane, there is a olour on�nement hypothesis, stating that all observable partilesare olour singlets. This onjeture has very strong experimental evidene; so far freequark or gluon has not been found. However, suh a property has not been derivedyet from QCD, although there are several theoretial lues, both perturbative and non-perturbative. Moreover, there does not exist a omplete desription of omposed objetslike hadrons in terms of the fundamental QCD degrees of freedom (i.e. quarks andgluons). For example, it is known that many features of a proton an be explained byassuming that it is build of three quarks u, u, d. Their masses (i.e. the parameters inQCD lagrangian; mass is poorly de�ned quantity for an unobservable partile) are abouta few MeV. On the other hand, the proton mass is well de�ned and an be measured � itturns out to be around 1GeV, learly not about three times the masses of onstituents.This is an evidene of very important non-perturbative phenomenon, namely spontaneoushiral symmetry breaking. It generates so alled onstituent quark mass, whih shouldbe about one third of the proton mass. Suh a value annot be desribed by perturbationtheory, the tool whih at present is best understood and under ontrol. There are muhmore problems in desribing hadrons within perturbative QCD.All these features draw hadrons as a very ompliated, non-perturbative objets.Nevertheless, there are possibilities to get ertain insight into the struture of hadronsusing perturbation theory. As it was already mentioned, QCD has a property of beingasymptotially free, i.e. at very short distanes the QCD oupling is very weak, givingsome hanes to use perturbation theory. This is a key observation leading to modernhigh-energy experiments; ollisions of partiles with higher energies an probe smallerspae-time volumes. However, sine we probe only a small part of a olourless hadron,we an hope to have perturbative desription only partially � the rest must be somehowparametrized, or obtained by other methods. This is in fat a very loose desription offamous fatorization theorems, whih we now shall reall in some details. In our intro-dution we shall try to give mostly neessary results, but we reall also some ompletelyelementary fats onerning fatorization. 13



14 CHAPTER 1. HADRONS, PARTONS AND JETS IN QCDWe are mainly onentrated on lepton-hadron deep inelasti proesses throughout.Moreover, in this setion we limit ourselves to inlusive proesses only. There are es-sentially two possible approahes to fatorization, whih perolate at some stages. Bothhave its own ons and pros.First one, relies on the operator produt expansion (OPE) [54℄ and is historially the�rst approah to fatorization [7℄, of ourse exept Feynman's parton formalism onsid-ered before QCD had been born. Although OPE allows for very systemati treatmentof all terms that an appear, its appliability is rather limited to the inlusive proessesonly.Seond approah is based on general power ounting theorems [40, 39℄ and methodsdeveloped in [21℄. Let us reall the basi ideas, as they shall be important later, whenwe disuss more ompliated topis. For a review see e.g. [17, 15℄.Consider a generi unpolarized boson-hadron ut amplitude, as shown in Fig. 1.1A.We denote proton momentum as P and boson as q, with q2 = −Q2. Moreover, we assumethat the boson virtuality Q2 is muh larger than all the quark masses (inluding possibleheavy quarks) and that the Bjorken variable xB = Q2/P · q is �xed. The situation where
Q2 is of the same order as the mass of a given heavy quark will be disussed in thenext hapter. It turns out that all the leading ontributions to the ut amplitude an beharaterized by the ut amplitudes that have the form showed in Fig. 1.1B. The upperblob has all the internal momenta o�-shell by order Q2 and thus is alled a hard part.Note, that although some of the internal lines are ut and hene on-shell, they e�etivelyan be treated as o�-shell lines by virtue of the optial theorem. The lower part inFig. 1.1B, the soft part, inorporates hadroni states and two partoni lines joining itwith the hard part. Those lines are either quark or gluon lines with virtuality muh lowerthan Q2 and momenta ollinear to the hadroni momentum. It should be mentioned thatthe internal blob of the soft part, an still have UV singularities, see below.The ontributions that have struture desribed above are alled twist-2, as theyorrespond in OPE language to a series of matrix elements of loal operators with twist1equal to 2. Contributions whih have more than two lines joining hard and soft parts havehigher twist. Reall that suh higher twist ontributions are suppressed bym2/Q2, where
m2 is the mass of the heaviest quark taken into aount. There are several ompliations(see e.g. [15℄), however the general piture is as just desribed.Note, that the two lines joining both parts annot orrespond to a heavy quark withmass of the order of Q2, due to the assertion that they have low virtuality omparing to
Q2. This fat shall be important later on.Now, we ome to more preise de�nitions of the soft part and its onnetion to therest of the proess. As is ommonly known, the soft part an be parametrized in termsof parton distribution funtions (PDF) (we shall interhangeably all it parton density)inside a hadron. In order to proeed we introdue light-one oordinates; any four-vetor
v an be deomposed as

vµ = v+ñµ + v−nµ + vµT , (1.1)where
v+ = v · n, v− = v · ñ (1.2)with two light-like vetors n,ñ de�ned as

n =
1√
2
(1, 0, 0,−1) , , ñ =

1√
2
(1, 0, 0, 1) . (1.3)1In OPE formalism twist is the di�erene between spin and anonial dimension of the operator.



1.1. FACTORIZATION THEOREMS 15A) B)PSfrag replaements q
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kFigure 1.1: A) Cut Feynman amplitude for unpolarized boson-hadron proess. B) Lead-ing regions of the ut amplitude for large virtuality of the boson. The lines onnetingupper and lower parts have low virtuality and an be light quarks or a gluon.Let us now assume that the momentum k joining the hard and soft parts is parametrizedusing the light-one variables and that suitable frame is hosen, suh that P+ is large
∼
√
Q2. Then, sine k have small virtuality omparing to Q2 its k− and kT omponentsan be negleted in the hard part. Then, the onnetion of the two parts an be realised asan integral over the k+ omponent. The rest of the momentum integration (i.e transverseand �minus� omponents) are embodied in the de�nition of PDF, where they annot benegleted. Its external lines (onneting it with the hard part) e�etively lie on thelight-one.All these remarks lead to the following de�nitions of the parton distributions. Forthe quark density we have

f (B)
q (x) =

1

4π

ˆ

dy−e−ixP+y− 〈
P
∣∣ψq

(
y−n

)
γ+
[
y−n, 0

]
ψq (0)

∣∣P
〉 (1.4)and for gluon

f (B)
g (x) =

1

2πxP+

ˆ

dy−e−ixP+y−

〈
P
∣∣∣F+µ

A

(
y−n

) [
y−n, 0

]
AB

F+
B µ (0)

∣∣∣P
〉
. (1.5)Let us now explain the above notation. First, there are quark �eld operators ψq and thegluon �eld strength operator Fµν

C = ∂µAν
C − ∂νAµ

C + g fCDE A
µ
DA

ν
E . All these �elds areunrenormalized, thus the PDFs de�ned in suh a way are the bare ones as indiated bythe supersript2. Parameter x orresponds to a fration of �plus� omponent of hadronmomentum that is transferred to the hard part, that is we assume k+ = xP+ and is�xed. Next, y is a spae-time point we integrate over, with however �xed y+ = 0;the integration over y− in disentangled while the one over yT is performed (or hidden).Finally, there is a gauge link in order to make the de�nitions gauge invariant. It readsin the present ase

[
y−n, 0

]
= P exp

{
ig

ˆ y−

0

dz A+
C (z) tC

}
, (1.6)where the path joining both points is hosen to be a straight line. In partiular, whenwe use light-one gauge de�ned as A · n = 0 the gauge link is a unity operator (it is2Sine we follow here mainly [15℄ and other papers of this author, we use the term �bare� in the senseof �unrenormalized�. It has nothing to do with the IR unsafe PDFs, whih atually are not needed inthe formalism.



16 CHAPTER 1. HADRONS, PARTONS AND JETS IN QCDuseful in some general onsiderations). The last remark onerning (1.4), (1.5) is thatonly onneted diagrams should be taken into aount.As already mentioned, the parton distribution funtions de�ned above ontain UV di-vergenes. Required renormalization onerns not only the elementary �elds, but also thebiloal quark or gluon operators itself. As is well known, the renormalization introduesadditional dependene on apriori unspei�ed mass sale µr.It an be proved that the relation between the bare densities and the renormalizedones has the form [16, 15℄
f (R)
a

(
x, µ2

r

)
=
∑

b

ˆ

dz

z
Kab

( z
x
, αs

(
µ2
r

)
; ε
)
f
(B)
b (z) , (1.7)where the renormalization kernel Kab is a perturbatively alulable quantity. Note thatwe have introdued dimensional UV regulator ε de�ned as

D = 4− 2ε, (1.8)where D is the spaetime dimension. The summation in (1.7) goes over all possiblekinds of the lines joining the soft and hard parts (exat sets shall be de�ned in the nexthapter). The kernel Kab an be alulated by onsidering the same objets as fa butwith the hadroni states replaed by the partoni ones. Thus we de�ne the quantity Fab,whih we refer to as a density of parton b inside a parton a. The de�nition is exatly thesame as for fb with the hadroni state replaed by the on-shell state a. The quantities
Fab an be alulated perturbatively in QCD with the help of speial Feynman rules[16, 17℄ � we shall use them for massive quarks in Chapter 4.2. Atually, we have toagain distinguish between the bare F (B)

ab and the renormalized one F (R)
ab , however therelation between the two remains the same as (1.7). This allows to obtain Kab onespei� renormalization sheme is hosen (see also below).Sine the bare densities f (B)

a are de�ned by means of the bare �elds only, they areompletely independent on the renormalization sale. Therefore it is relatively straight-forward to derive an evolution equation for the densities. It reads
d

d logµr

f (R)
a

(
x, µ2

r

)
=
∑

b

ˆ

dz

z
Pab

( z
x
, αs

)
f
(R)
b

(
z, µ2

r

)
, (1.9)where the evolution kernel Pab is related to the renormalization kernel by the formula

Pab

( z
x
, αs

)
= 2αs

∂ Kab, 1

(
z
x
, αs

)

∂αs

, (1.10)with Kab, n de�ned by the Laurent expansion
Kab (z, αs; ε) = δ (z − 1) δab +

∞∑

n=1

(
1

ε

)n

Kab, n (z, αs) . (1.11)For example, in the MS sheme with Nf �avours we obtain
Pab (z, αs) = δ (z − 1) δab +

αs

2π
P

(1)
ab (z) +O

(
α2
s

)
, (1.12)where P (1)

ab are famous lowest order splitting funtions. They read
P (1)
qq (z) = CF

(
1 + z2

1− z

)

+

, (1.13)
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P (1)
gg (z) = 2CA

[(
1

1− z

)

+

+
1− z
z
− 1 + z (1− z)

]

+ δ (1− z)
(
11

6
CA −

2

3
Nf TR

)
, (1.14)

P (1)
gq (z) = TR [1− 2z (1− z)] , (1.15)
P (1)
qg (z) = CF

1 + (1− z)2
z

. (1.16)The �plus� distribution is de�ned in a standard way as
h+ (z) = h (z)− δ (1− z)

ˆ 1

0

dy h (y) . (1.17)Note, that the support is [0, 1] � we pay attention to this detail, sine we shall oftenuse distributions with di�erent supports (see also Appendix B.3). Sine the splittingfuntions P (1)
ab are often used in this thesis we drop the supersript in what follows

P
(1)
ab (z) ≡ Pab (z) . (1.18)We turn also attention to our onvention of ordering the subsripts. The notation aborresponds to a splitting proess a → b, where parton b takes the fration z of theoriginal momentum. The physial interpretation of the funtions Pab is then suh, thatit gives a probability density for suh a splitting.Let us now ome bak to the fatorization. One the renormalization of the PDFsand of the hard part is done, we an �nally write the fatorization formula. In whatfollows we drop the renormalization indiation in the hadroni PDFs

f (R)
a

(
z, µ2

r

)
≡ fa

(
z, µ2

r

)
. (1.19)The fatorization theorem takes the following form

dσ
(
P, q;xB , Q

2
)
=
∑

a

ˆ 1

xB

dz

z
fa
(
z, µ2

f , µ
2
r

)
dσ̂a

(
zP, q;Q2, µ2

f , µ
2
r

)
+O

(
m2

Q2

)
. (1.20)Here dσ orresponds to a di�erential DIS inlusive ross setion, while dσ̂a is a partoniross setion whih is infra-red (IR) �nite. Besides UV singularities, there are alsodivergenes whih originate in zero mass of the gluons and there are two sorts of them: thesoft singularities and the ollinear ones. They remain even after renormalization, howeverthe soft and mixed soft-ollinear divergenes are anelled between di�erent ontributions(we shall take up this issue in the next setion). What remains are the ollinear ones.The fatorization proedure asserts, that they an be inluded in PDFs as it is essentiallya nonperturbative objet and we shall never alulate it using perturbation theory. Suha proedure is at the expense of introduing additional fatorization sale µf . Apriori itis arbitrary sale and one often sets it equal to the renormalization sale. Moreover, thereis ertain freedom in hoosing atually subtrated terms. Suh a presription de�nes thefatorization sheme. One it is spei�ed, we an unambiguously derive dσ̂a as follows.We use the fatorization formula (1.20) at the partoni level (ompare to derivation of
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dσ(R)

a

(
p, q;x,Q2, µ2

r

)
=
∑

b

ˆ 1

x

dz

z

[
S
(
µ2
r, µ

2
f

)
F (R)

ab

(
z, µ2

r

)
+ Sab

(
z, µ2

r, µ
2
f

)]

dσ̂b
(
zp, q;Q2, µ2

f , µ
2
r

)
+O

(
m2

Q2

)
, (1.21)where the funtions F (R)

ab are the renormalized densities of parton inside a parton dis-ussed before (we indiated also that unsubtrated ross setion is renormalized). Thequantities S and Sab de�ne our fatorization sheme, see below. The above equation anbe solved order by order, alulating dσ(R)
a and F (R)

ab to a desired order.As an illustration, let us onsider ompletely massless ase. Choosing MS sheme tode�ne PDFs we get at the lowest nontrivial order
FmMS

ab

(
x, µ2

r

)
= δ (1− x) δab +

αs

(
µ2
r

)

2π

(
−1

ε

)
Pab (x) . (1.22)The supersript mMS expliitly indiates that we use MS renormalization sheme andompletely massless alulation. Sine MS an be also used in a massive ase, we feel aneessity to distinguish both situations as we shall enounter them in one plae later on.We see that there is a ollinear pole 1/ε in the result, whih anels the similar pole in

dσa. Next, if we hoose the fatorization sheme to be MS, we have
Sab

(
z, µ2

r, µ
2
f

)
= 0, (1.23)

S
(
µ2
r, µ

2
f

)
=

1

Γ (1− ε)

(
4πµ2

r

µ2
f

)ε

. (1.24)Let us onlude this setion by giving some summarizing remarks. First is thathadroni PDFs are essentially nonperturbative, and have to be obtained from experiment,lattie alulations or low energy e�etive models. Most reliable are those obtained byglobal �ts to data (e.g. [38℄). Moreover, PDFs are sheme dependent, and as suh areunphysial. Therefore one have to be areful when mixing PDFs obtained by one methodwith alulations in some other sheme, as the reminder (O (. . .) terms) in fatorizationtheorem an beome large.1.2 Jets in QCDIn the previous setion we have onsidered the fatorization theorem essentially for inlu-sive DIS sattering. One of the elements of the atual proof of the fatorization propertyis the anellation of the soft singularities. In this setion, we take a loser look at thisproblem. In partiular, we desribe a method allowing for this anellation in ase whenthe proess is not fully inlusive but onsist in jets. This shall be a very general presen-tation of the topi and it will evolve throughout the whole dissertation. We follow [9℄ inthis introdution.Before we start, let us introdue some notation. The n-partile invariant phase spae(PS) shall be denoted as
dΦn (p, q; p1, . . . , pn) ≡ dΦn (p, q; {pi}ni=1) , (1.25)
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Figure 1.2: Illustrative presentation of the amplitudes for n-jet prodution. A) LOamplitude, B) real emission orretions, C) virtual orretions.where p and q are inoming momenta. On the right hand side we have used mathemati-ians' notation for sets, as it will often allow to make formulae shorter. The phase spaean be expressed as
dΦn (p, q; {pi}ni=1) = (2π)

D
δ(D)

(
p+ q −

n∑

i=1

pi

)
n∏

i=1

dΓi (1.26)in terms of the invariant measures for a partile i
dΓi ≡ dΓ (pi) =

dDpi δ+
(
p2i −m2

i

)

(2π)
D−1

. (1.27)All the de�nitions are written in D spae-time dimensions.A tree-level amplitude with inoming momenta p, q and n outgoing states shall bedenoted as Mn (p, q; {pi}ni=1). At this stage all possible olour or spin indies are sup-pressed. If relevant, we will adorn the amplitude by various symbols and/or indies, forexample we will put a hat if we onsider external fermions to underline that we workwith a matrix. Very often we will refer to a part of the amplitude, for example when twoexternal legs are replaed by one. Then the reminder is referred to as redued amplitude.Let us now swith to the atual matter of this setion. We start with the veryshemati desription of NLO alulation for n-jets. Suppose for simpliity that thereare no initial state hadrons, e.g. eletron-positron annihilation. A detailed formulae forDIS shall be given in Setion 4.3.To NLO auray, the total ross setion an be written as
σn = σLO

n + σNLO
n . (1.28)The leading order ontribution reads (Fig. 1.2A )

σLO
n =

ˆ

dΦn |Mn|2 Fn, (1.29)where Mn and dΦn are explained above (we suppress all momenta dependene), while
Fn is ertain (generalized) funtion that gives us an observable we are interested in (i.eit may inlude step-funtions for kinemati uts, delta funtions for di�erential rosssetion, jet algorithms et.). We shall refer to Fn as a jet funtion. We desribe itsproperties in detail later.The next-to-leading order term has in turn the following form

σNLO
n = σR

n + σV
n , (1.30)



20 CHAPTER 1. HADRONS, PARTONS AND JETS IN QCDwhere σR represents the real orretions, i.e the ones onneted to the emissions ofadditional on-shell partiles in the �nal state (Fig. 1.2B ). Next, σV orresponds to looporretions toMn (Fig. 1.2C ). The last an be written as
σV
n =

ˆ

dΦnM(loop) 2
n Fn. (1.31)The notation is symboli here,M(loop) 2

n is atually an interferene between the tree levelamplitude and the one ontaining loop orretions. For the real orretions we write
σR
n =

ˆ

dΦn+1 |Mn+1|2 Fn+1. (1.32)As already stated in the previous setion, higher order alulations in QCD lead todivergenes. First, there are UV singularities, whih are removed by renormalization andwe do not onsider them here any more. Seond, there are mentioned IR singularitiesoming from vanishing propagators due to almost zero energy of massless partiles orollinear emissions. We shall de�ne them preisely in Setion 3.2. Both kinds of sin-gularities appear in σR and σV and are regularized e.g. dimensionally. However thephysial ross setion, whih does not distinguish between the soft or ollinear emissions,has to be �nite. Therefore IR singularities have to anel between both terms in rosssetions (exept possible pure ollinear singularities onneted with initial state emis-sions whih are removed by fatorization). It is preisely stated by means of the KLNtheorem (Kinoshita-Lee-Nauenberg) and its extensions, see e.g. [48, 49℄ and referenestherein to the original papers. In what follows we assume that the jet ross setion underonsideration is infra-red safe, that is it ful�ls all the assumptions of the KLN theorem.This however requires to impose some restritions on the jet funtions. Namely, ifone of the �nal state gluons in (n+ 1)-partile phase spae is soft (its four-momentumvanishes) we must have Fn+1 = Fn. Similarly, if two of the �nal state partons beomeollinear, their Fn+1 funtion must also oinide with Fn. On the other hand, if we entera singular region in n-partile phase spae Fn must vanish. Those rules an be extendedto initial state partons and massive partons as well.Now, sine we know that IR singularities anel, there remains the problem of teh-nial nature, whih however is of great importane. Namely, both orretions σR and
σV are integrated over di�erent phase spaes with di�erent jet funtions. Analytial al-ulations are here extremely di�ult and impratial, thus one often uses Monte Carlomethods. The problem is now to anel the singularity that appears during numerialintegration in σR with analytial singularities in σV , e.g. 1/ε poles.Historially the �rst method was so alled phase spae sliing method. It an beillustrated by simple mathematial example (e.g. [36℄). Suppose we have the following�nite expression

I = lim
κ→0

{
ˆ 1

0

dx
h (x)

x1−κ
− 1

κ
h (0)

}
, (1.33)where the dependene on x in h is very ompliated but suh that the integral exists.The �rst term in urly braket orresponds to a real ontribution regularized dimension-ally, while the seond term is the orresponding soft pole in �virtual orretion�. Bothsingularities anel as atually the real value of the integral is

I =

ˆ 1

0

dx
h (x) − h (0)

x
. (1.34)



1.2. JETS IN QCD 21Suppose however, that we want to anel them numerially. To this end, we divide theintegration domain ´ 1
0
. . . =

´ δ

0
. . . +

´ 1

δ
. . ., with δ ≪ 1. Sine h (x) is regular enough,we an approximate h (x) ≈ h (0) for x ∈ [0, δ]. Then, after simple steps we get

I ≈ h (0) log δ +
ˆ 1

δ

dx
h (x)

x
. (1.35)Note, that the singularities anelled and the integral an be now performed numeriallywith removed regularization, i.e. we set κ = 0. There is however a disadvantage as theresult is approximate.Another method, advoated in this work, is the subtration method [36℄. One on-struts an auxiliary ross setion

σsub =

ˆ

dΦn+1

∣∣Msub
n+1

∣∣2 Fn (1.36)whih mimis all the singularities of σR, i.e σsub = σR in the singular regions of PS (note,there is Fn for n partons). Beside those points of phase spae it an be anything thathave the properties of a ross setion. On the other hand, it must be hosen in suh away, that the analytial integration over one-partile subspae is possible. That is, if wewrite PS shematially as
dΦn+1 = dΦn ⊗ dφ, (1.37)we must be able to perform ´ dφ ∣∣Msub

n+1

∣∣2 analytially. It leads then in dimensionalregularization to poles of the form 1/ε whih anel those in virtual orretions due tothe KLN theorem. The proedure of alulating NLO ontribution using this methodan be summarized as follows
σNLO =

(
σR − σsub

)
+
(
σV + σsub

)

=

ˆ

dΦn+1

(
|Mn+1|2 Fn+1 −

∣∣Msub
n+1

∣∣2 Fn

)

+

ˆ

dΦn

{
M(loop) 2

n +

ˆ

dφ
∣∣Msub

n+1

∣∣2
}
Fn. (1.38)In the seond line, due to IR properties of the jet funtions, we an perform the integrationin four dimensions and it is �nite. In the third line a anellation of the poles takes plaeand after that we an set D = 4.This method has an obvious advantage, namely it is exat. Seond, all the integralsover one-partile subspae have to be made only one and they are universal. This anbe also generalized to higher orders, we however need muh more subtration terms.A partiular hoie for σsub is realized in [9, 25℄ for massless partons, and in [10℄ formassive quarks in the �nal state (with some restritions disussed in 3.1). This spei�hoie is alled dipole subtration term. Atually, a solid part of this work is devotedto generalizing this approah to ompletely massive ase, suh that one an pratiallyapply massive fatorization proedure desribed in the Chapter 2.The dipole method has, however, also some drawbaks. First, it is relatively ompli-ated, as we shall see. Moreover, it is unlikely to be generalized easily to higher orders.The reason is that it operates on the amplitudes squared and the number of subtrationterms inreases rapidly. There is some hope onneted with so alled antenna methodwhih onstruts subtration terms at the amplitude level, see e.g. [33℄. Seond problem,



22 CHAPTER 1. HADRONS, PARTONS AND JETS IN QCDwhih atually onerns the subtration proedure in general, is that of numerial nature.Namely, depending on implementation, there may be some problems when performingthe integration in the seond line of (1.38). Thus e�etively, one may be fored to use asupport in a form of a sliing-like method.1.3 Quark masses in QCDIn the previous setions we did not pay speial attention to the quark masses. Here wereall some basi fats onneted with their inlusion in perturbative alulations. Thefollowing material is essential to the whole work. In some parts we rely on [13℄.Today we know six �avours of quarks with the following masses3 [43℄:
mu = 1.7-3.1MeV, md = 4.1-5.7MeV, ms ≈ 100MeV, (1.39)
mc ≈ 1.29GeV, mb ≈ 4.19GeV, mt ≈ 172.9GeV. (1.40)Reall now, that the basi requirement to be in a perturbative regime, is that the typialenergy sale, say Q, satis�es Q ≫ ΛQCD. Sine ΛQCD ≈ 200MeV we an safely negletthe masses of u, d, s quarks in perturbative alulations. If the sale is high enough, wean also make suh an approximation with the other quarks.On the other hand, apriori we do not known if there exist heavier quarks. Similarsituation used to be before the disovery of the top quark. Thus, the question was aboutthe relevane of �eld theoreti alulation, where some of the quarks are possibly missed.The solution to this problem is formulated by means of so alled deoupling theorem [4℄.It states that for a Feynman amplitude with a typial momentum sale Q we an dropall the diagrams with quark mass m ≫ Q, doing error O (Q/m). Let us now assume,that the remaining number of quark �avours is Nf , thus all the renormalized parameters(masses, ouplings et.) in suh an e�etive theory are alulated using this number.In general, the renormalized parameters in the e�etive theory with Nf + 1 �avours aredi�erent.The problem however arises, when the masses are not extremely di�erent, as atuallyhappens for harm and bottom quarks. For instane, when the sale is lose tomc, we anmake a mistake of the order mc/mb ≈ 30% (for an example see e.g. [13℄). Fortunately,there is a better method than suh an unontrolled deoupling. It redues to the lastin the limit of very large masses. It is a speial renormalization sheme existing in theliterature as CWZ (Collins-Wilzek-Zee) renormalization sheme [19, 45, 14℄. In orderto de�ne its basis let us introdue an ative number of quarks Na. It is a number ofquarks lighter than the �xed external energy sale (note, that we do not have to set thosemasses to zero). The CWZ sheme onsist in the subshemes haraterized by Na. Ineah subsheme the renormalization is done aording to the following points:a) the graphs with internal lines being ative are renormalized using MSb) the graphs with at least one internal heavy quark line (inative) are renormalizedby zero-momentum subtration) masses of heavy quarks are usually de�ned as the pole masses3As the free quark states are unobservable, these are just parameters obtained in MS sheme at saleabout 2GeV.



1.3. QUARK MASSES IN QCD 23This sheme possesses several important properties (see e.g. [13℄). For us two of them arethe most important. First is that it satis�es manifest deoupling. That is, if the externalsale is muh smaller than the masses of inative quarks, the renormalized parameters ofa subsheme with Na ative �avours are the same as in e�etive theory with Nf = Na.Hene we an just drop all the diagrams with inative quarks. The seond importantproperty is that the evolution of the renormalized parameters in eah subsheme is exatlythe same as in MS with Nf = Na, in partiular the evolution kernels are massless.This last property is of great importane in this thesis. As we have seen in Setion1.1, the operational de�nition of parton distribution funtions inludes a renormalizationsheme. Sine we are going to treat fatorization with the heavy quarks it is onvenientto de�ne PDFs in CWZ sheme. Then, due to the seond property, suh PDFs undergothe standard DGLAP evolution equation in eah subsheme. We shall disuss it in detailsin Setion 2.4, while in Setion 4.2 we alulate some of them in this sheme.There is one more omment in order. The purpose of introduing suh a sheme, is tobe able to evolve a given parameter through all appliable sales without loosing auray.It is realized by swithing the shemes at given swithing points. Therefore, we have tostate a mathing onditions at those points4 in order to have a starting parameters inevolution. Suh onditions were obtained even up to three loops for the oupling (usinge�etive theory formalism [12℄) and up to two loops for PDFs [8℄.In the end, let us introdue some more notation we shall use throughout. First, weoften need to distinguish between heavy and light �avours. Thus we de�neNf = Nq+NQ,where q is a generi light quark, while Q orresponds to heavy quarks. Sometimes werefer to light partons number, whih is simply Nl = Nq + 1, as gluon is always light. Ifwe want to refer to all the quark �avours, but inluding gluon, we use the symbol N ′
f .For all the de�ned symbols, we introdue the sets, ontaining orresponding �avours andtheir anti-�avours. The sets shall be denoted by blakboard font, for instane Nf , Nl et.

4In general, one should distinguish between the swithing point and a mathing point. The �rst is thepoint in whih the transition between the shemes takes plae. The seond is a point used to realulateparameters from one sheme to another. In this thesis we set them equal.
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Chapter 2Inlusive DIS with heavy quarks
2.1 IntrodutionAs we have seen in Setion 1.3, there are ertainly some ompliations when there areheavy quarks with masses that are neither marginally large nor negligibly small. Theproblems are even more evident in the proesses whih require fatorization. In Setion1.1 we realled the fatorization theorem assuming that the masses an be negleted. Inase, when they annot, suh a treatment is obviously very inaurate. In this hapter,we shall analyse this issue in more details in the ontext of inlusive DIS sattering.First, in the next setion we reall the simplest possible way of inluding heavy quarks,atually treating them as massless partons. This sheme, often alled zero-mass variable�avour number sheme (ZM-VFNS) is most often used in phenomenologial analysis ofDIS proesses. However, as we shall see, it is inaurate in non-asymptoti regions ofenergy sale. That setion is also devoted to introduing some notation whih we usein this and the next hapters. Further, in Setion 2.3 we brie�y desribe more auratetreatment, however aiming at ompletely di�erent kinemati regime than the latter. Thisseond solution is often referred to as �xed-�avour number sheme (FFNS), and takesall the e�ets of heavy quarks into aount. The problem is however, that as the energysale inreases, suh a predition beomes less aurate, unless we go to higher orders ofperturbation theory. Needless to say, suh a massive high-order alulations are muhmore involved and time-onsuming than the massless ones, not to mention generalizationsto exlusive proesses.Therefore, it is desirable to have a sheme whih is appliable at intermediate energysales and ontains both above shemes as a limiting ases. Suh solutions were indeeddeveloped [2, 50, 8℄, however with expliit treatment of inlusive proesses only. Whatis worth emphasizing, the approah ited as [2℄ was proved to all orders of perturbationtheory [15℄. We shall brie�y desribe this approah, referred to as ACOT (Aivazis-Collins-Olness-Tung) sheme, in Setion 2.4. It is based on CWZ renormalization sheme forparton densities and an be easily generalized to another IR safe ross setions.For a short review of the mentioned treatments of heavy quark prodution in inlusiveDIS see e.g. [51, 52℄.We remark, that although this hapter is onsidered to be introdutory, we disussalso a new improvement of existing methods at the end of Setion 2.4.25



26 CHAPTER 2. INCLUSIVE DIS WITH HEAVY QUARKS2.2 Zero-mass variable �avour number shemeLet us start by de�ning our objet of interest in this hapter. We shall be onentratedhere mainly on the struture funtions parametrizing the ross setion for inlusive DISproesses, notably F2

(
xB , Q

2
), and its dependene on the photon virtuality Q2. Re-member, that the struture funtions are obtained by means of a suitable projetion ofhadroni tensorWµν , de�ned as usual in terms of matrix element of eletroweak urrentssandwihed between hadron states

Wµν
(
q, P ;xB , Q

2
)
=

1

4π

∑

spin

∑

Px

ˆ

dΦ1 (q, P ;PX)
〈
P
∣∣j†µ (0)

∣∣PX

〉
〈PX |jν (0)|P 〉 ,(2.1)where the seond sum goes over all �nal states PX . The projetion is made using suitablebase tensors made of the vetors P , q and the metri tensor. Negleting the hadron masswe get for F2

F2

(
xB, Q

2
)
=

2 xB
D − 2

(
−Wµ

µ + (D − 1)
2 xB
P · qWµνP

µP ν

)
. (2.2)If we replae the hadroni state by a parton, suh a tensor is alled the partonitensor. We shall denote it as wµν . Both tensors are related by means of fatorizationtheorem � we shall give some examples below. We do not give further details relatedto other struture funtions and related issues as they are all standard (for the preisede�nitions inorporating quark and target masses see [3℄). Suh limited onsiderationsare ompletely enough to eluidate the basi problems with heavy quark masses, as weshall see.Before we proeed, let us reall, that we denote a generi heavy quark by symbol Q.The light quarks are denoted as q, there should be no onfusion sine this is only usedin this meaning as a subsript.Let us start further onsiderations by noting, that the simplest possible approah toheavy quarks is when Q2 → ∞ with xB �xed, suh that all the existing heavy quarkmasses an be negleted. Then, the preise preditions are given by the fatorizationtheorem (1.20), whih is exat. All the quarks (inluding heavy quarks) are treatedas massless partons having orresponding PDFs. Suh situation is obviously not veryplausible. In pratie the energy sales do not tend to in�nity, moreover many interestingphenomena exist at lower sales. Seondly, we have several heavy quarks with large masssplittings, as disussed in Setion 1.3. On the other hand, when Q2 is muh smaller thanthe mass of a given heavy quark, it may be dropped from alulations due to deouplingtheorem mentioned also in Setion 1.3.These two marginally di�erent situations (Q2 ≫ m2

Q and m2
Q ≫ Q2) motivate thefollowing simplest sheme of treating �heavy� quarks:a) ompletely deouple given heavy quark Q when m2

Q > Q2, i.e. treat it as in�nitelyheavyb) treat Q as a massless parton with assoiated PDF, when Q2 > m2
QWe have assumed here that the fatorization and renormalization sales are equal to Q.If there are several heavy quarks, we have the omposite sheme, with subshemes har-aterized by an ative number of �avours Na. Thus we have a set of parton distributionfuntions f (Na)

a and ouplings α(Na)
s . We note, that this sheme is a speial kind of CWZ



2.2. ZERO-MASS VARIABLE FLAVOUR NUMBER SCHEME 27sheme mentioned earlier, in whih PDFs are de�ned. All the masses are however setto zero. Sine CWZ satis�es manifest deoupling, we just drop the inative quarks, andeah subsheme is e�etively a MS sheme with Na �avours and orresponding DGLAPmassless evolution of PDFs. As already mentioned, the shemes with di�erent Na areatually di�erent renormalization shemes, they di�er by �nite terms and a relationbetween shemes with Na and Na + 1 �avours an be stated.Here the swithing point is usually hosen to be µth = mQ, where Q is (Na + 1)-th�avour. It is onvenient, sine then the heavy quark density f
(Na+1)
Q is zero at thethreshold1. It follows from two fats. First is just a preise form of the relation betweenPDFs in two subshemes [18℄. Seond is that below µth it is suppressed by power of

ΛQCD/mQ due to deoupling theorem. Thus we have the ontinuity ondition
f
(Na)
Q

(
z, µ2

th

)
= f

(Na+1)
Q

(
z, µ2

th

)
= 0 (2.3)Then, above the threshold it is evolved using DGLAP equations with Na + 1 �avoursstarting from zero value.As already mentioned in the introdution, suh a sheme is alled zero-mass variable�avour number sheme (ZM-VFNS). Corresponding fatorization theorem takes the form
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q, pa;

Q2
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)
, (2.4)where we expliitly denoted the dependene on the fatorization sale (equal here to therenormalization sale). We also introdued the onvolution symbol, whih simpli�es thenotation; it is de�ned here as

f ⊗ w =

ˆ 1
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dξ

ξ
f (ξ)w

(
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ξ

)
. (2.5)In (2.4) pa = ξP , nevertheless we leave pa as this notation is more general. As wevary the sale, the ative number of partons hanges. Suh a formula is atually validup to orretions of order O (m2

Na
/Q2

), where mNa
would be the mass of the heaviestative quark, if we did not set it to zero. Therefore, in reality suh an approah isunreliable for Q2 around the masses of heavy quarks. Moreover, as we reah the regionof validity of (2.4) for one heavy quark, say harm, we simultaneously an enter theregion of inappliability for the beauty quark. Thus, only at really asymptoti regimesthis sheme is orret, as we remarked earlier.To illustrate this approah, onsider now a alulation of F2 struture funtion inthis sheme up to order αs. Let us assume we work in the sheme with Na = 4, that isbesides gluon, u, d and s quarks, whih are always massless, we have also harm c

Na =
{
g, u, u, d, d, s, s, c, c

}
. (2.6)Then, to this order
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. (2.7)1It is however true only at leading and next to leading order, see [8℄.
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Figure 2.1: A) Feynman diagrams ontributing to struture funtions in ZM-VFNS upto order α1

s; B) The same for FFNS. There is only boson-gluon fusion at order α1
s. Thikline orresponds to a heavy quark.We are atually interested in harm ontribution to F2, whih an be piked up from theabove equation. Setting µ2

f = Q2 (and the same for renormalization sale) we have
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g , (2.8)where the result for oe�ients Ci in massless MS sheme is well known (e.g. [28℄, fororresponding diagrams see Fig. 2.1A ) and reads
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+

1

4
(9 + 5z)
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C(1)
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]
. (2.11)The splitting funtion Pgq and �plus� distribution were de�ned in Setion 1.1.The behaviour of this solution will be expliitly demonstrated in Setion 2.4, wherewe present some plots omparing this NLO alulation to other shemes.Although � as we have just seen � suh a sheme is very simpli�ed, it is still mostommonly used in PDFs global �ts to data (e.g. CTEQ �ts [38℄ and earlier). Its greatadvantage is simpliity and pratiality. It should be also mentioned that it was verysuessful in desribing large amount of modern high energy data.2.3 Fixed �avour number shemeLet us now present another approah, whih is appliable when Q2 is about the heavyquark mass m2

Q. Atually, it is a generalization of the previous sheme, where Q isinative, but has �nite mass. Thus we have Na massless partons undergoing masslessevolution and one heavy �avour, whih an be only produed dynamially. For example,at LO in DIS it is the boson-gluon fusion (BGF) proess depited in Fig. 2.1B.The fatorization theorem in this ase takes the form
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2.3. FIXED FLAVOUR NUMBER SCHEME 29Here, the hard sale is given by the heavy quark mass and on the ontrary to (2.4) Nadoes not hange. Therefore suh a sheme is alled �xed �avour number sheme (FFNS)and was pioneered in [28, 27, 37, 29℄. We note, that here the onvolution symbol isde�ned as in (2.5) but the integration limits depend on quark masses (we shall see theexample below).In order to disuss some of its properties, let us again onsider the expliit result,namely the ontribution to F2 oming from the harm quark. As already mentioned, thesituation where harm onnets the hard and soft parts is suppressed by Λ2
QCD/m

2
c , thusthe perturbative alulation for F c

2 starts at α1
s with BGF proess (Fig. 2.1)
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)
, (2.13)with oe�ient given by (e.g. [47℄)
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}
, (2.14)where we abbreviated ρ = m2

c/Q
2 and v =

√
1− 4ρz/ (1− z) is the veloity of theharm quark in the photon-gluon CM frame. Now the lower limit on the onvolution is

zmin = xB (1 + 4ρ).Let us disuss now this result. First, let us note that it ontains the powers of m2
c/Q

2,whih are laking in ZM-VFNS treatment (higher twists). Therefore indeed it is reliablealulation when Q2 is of the order of m2
c . Now, the question is what is the behaviour ofthis solution when the sale is muh larger. In this ase, we �nd that

C(1)
g (z, ρ) = e2c

αs

2π
Pgq (z) log ρ+O (ρ) . (2.15)Thus we see, that we have a potentially large logarithm of the heavy quark mass andthe hard sale ratio. Suh logarithms appear in every next order of perturbation theory,typially

C(m)
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k=0

c
(m)
a, k logk ρ, (2.16)what makes suh an expansion unreliable. The solution is to resum all the powers of

αs in front of the given power of logarithm, i.e. to suitably rearrange the above series.Then, we atually arrive at the zero-mass sheme with harm being a massless parton.However, one has to bear in mind that it happens at a prie of loosing ontrol of theterms O (m2
c/Q

2
) (atually, if we do not trak higher twist terms, whih is not easy andso far has not been solved). In the next setion we shall present some plots omparingthis sheme to ZM-VFNS.There is one more omment in order. One an ask when this �xed �avour approahfails, sine logarithm is a very slowly inreasing funtion. In [29℄ it was argued, thatthe ross setions alulated in this approah at NLO are stable even for relatively largesales, however one has to use a speial sets of PDFs, namely so alled dynamial PDFs(see e.g. [53℄). Suh an approah however does not solve the basis of the problem,therefore we shall not follow this path in this thesis.



30 CHAPTER 2. INCLUSIVE DIS WITH HEAVY QUARKS2.4 ACOT shemeAs we already antiipated in the introdution, there exist solutions whih ontain ZM-VFNS and FFNS as a speial ases. In the following setion we desribe one of them,the so alled ACOT sheme [2, 15℄. We believe it is the best solution that an be easilygeneralized to less inlusive proesses, in partiular jets. This is in ontrast to otherapproahes like [50, 8℄. As we have already remarked, it has been proved for inlusiveDIS to all orders in [15℄.Basi assumption of the sheme is that the PDFs are de�ned using CWZ renormal-ization sheme and that the masses relevant to atual energy sale are kept �nite. Thisresults in the higher twist errors of the order of Λ2
QCD/Q

2 over the whole kinematiallyallowed region of Q2. We shall see how it works in pratie below.Consider again the hadroni tensor Wµν and suppose for simpliity that there is onlyone heavy quark Q. The fatorization is realised atually by two di�erent theorems [15℄.The �rst one is essentially the same as (2.12), i.e. it is appliable when Q2 . m2
Q. Theseond one, is when Q2 & m2

Q, that is both theorems have an overlap region. Let usanalyse the seond ase. The theorem under onsideration has the following form
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. (2.17)Super�ially it is almost the same as (2.12), however there are di�erenes. First is thatin this sheme (i.e. above some swithing point µth ∼ mQ) the set of ative quarks Nadoes inlude the quark Q. Seond di�erene is subtle. It is onneted with IR �nitepartoni tensor. To see this let us alulate it to the �rst order in αs. Reall, that it isdone with fatorization (2.17), but on the partoni level (let us set all the sales equal to

Q)
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. (2.18)We denoted that the parton densities inside a parton are renormalized using CWZ. Tothe �rst order it beomes (below we drop all the arguments, vetor indies and CWZsupersript for transpareny)

w(0)
a + w(1)

a =
∑

b∈Na

(
F (0)

ab + F (1)
ab

)
⊗
(
ŵ
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(1)
b

)
+O

(
α2
s

)
. (2.19)Thus, the zeroth order partoni tensor is IR safe
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a . (2.20)Solving further the reurrene we get for a light quark
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2.4. ACOT SCHEME 31We have used the fat that zeroth order densities are trivial
F (0)

ab = 1 δab. (2.24)Equations (2.21)-(2.23) an be now solved for IR safe quantities ourring in (2.17).Projeting the hadroni tensor suitably to get F2 struture funtion we now have
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 . (2.25)The parton densities are renormalized inMS sheme here sine we are above the swithingpoint and Q is treated as ative parton. Thus for massless partons we have preisely theresult (1.22) while for the heavy quarks we get
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. (2.27)Those results were partially alulated in [45℄, but we had to re-derive them as explainedin Setion 4.2. The �rst one is however well known (e.g. [2℄), while the seond wasobtained e.g. in [35℄ by di�erent method (by omparing asymptoti expressions).In order to better understand this result, let us pik up only heavy quark ontributionto F2, where Q is e.g. a harm quark. That is we onsider
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. (2.28)First note, that the oe�ients of order α1

s without a hat are atually �nite. For instane
C

(1)
g is preisely the one given in (2.14). However they are not IR safe as disussed in theprevious setion. However, when Q2 ≫ m2

Q they beome IR safe by onstrution, thanksto the subtration terms terms F (1)
QQ ⊗ C

(0)
Q and F (1)

gQ ⊗ C
(0)
Q . Therefore in this limitsuh FQ

2 beomes equal to the one obtained in ZM-VFNS sheme. This is illustrated inFig. 2.2.Now let us onsider what happens when Q2 & m2
Q, i.e. just above the mathing point,whih for onveniene is hosen to be preisely at µth = mQ (see Setion 2.2). Then, theACOT sheme should reprodue the FFNS sheme with Q being inative. Indeed it isthe ase here. First, let us note that the evolution equations for all PDFs are standardDGLAP equations (1.9) with massless splitting funtions. This is a simple onsequeneof hoosing CWZ sheme to de�ne PDFs. Sine it may be not obvious that in a massivealulation we may have massless evolution, we prove this fat in Setion 4.2.2. Next,due the above hoie of the swithing point, the density fQ is zero there. Therefore,
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Figure 2.2: A) Charm ontribution at order α1
s to F2 struture funtion in di�erentshemes (dashed: ZM-VFNS, solid: ACOT, dot-dashed: ACOT-χ, dotted: FFNS). Cal-ulation is done for xB = 0.05 and CTEQ LO PDF set. Fatorization and renormalizationsales are all set to Q2. B) The same around the mathing point µ2

th = m2
c = 1.69GeV2(we do not show the dashed line here as it does not make sense in this region). TheACOT sheme urve is obtained without quark-sattering NLO ontribution, as it wasoriginally introdued.solving evolution equation for fQ (µ2

) just above the mathing point, i.e. for µ2 & m2
Q(whih is straightforward) we get at LO
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. (2.29)Analysing (2.28) in the same regime we �nd that most of the terms anel and whatremains is just fg ⊗ C(1)

g , i.e. FFNS. Moreover, we an go with this formula below themathing point. There it beomes exatly FFNS. This is due to CWZ renormalizationsheme. It turns out, that F (1)
gQ vanishes below the mathing point (see Setion 4.2.2), thesame is true for fQ. Hene, what remains is again just the boson-gluon fusion proess.This is illustrated in Fig. 2.2, with dropped NLO quark-sattering ontribution as orig-inally done by the authors of [2℄. This have been later �xed in [35℄ and on�rmed thatthis ontribution is usually negligible. We also on�rm this fat by expliit alulationusing our MC program in Setion 4.5.There are several subtle points, whih we have skipped above. First, there is ertainfreedom onerning the fatorization theorem with heavy quarks ([2℄, see also [15℄ formore details). This fat was used in Ref. [34℄ where the version of fatorization theoremwith massless initial state partons was onsidered. The sheme just mentioned for inlu-sive proesses is alled SACOT sheme (Simpli�ed ACOT). It is usefull in the ontextof higher order alulations, as it may onsiderably simplify the situation. The freedommentioned above an be used also di�erently, namely we set the initial state masses tozero only in the terms C(0)

Q above, i.e. we leave the mass in fQ ⊗C(1)
Q . This approah iseluidated in Setion 4.3.2, where we disuss this for jet prodution.Next, there is a problem that C(0)

Q does not have orret threshold behaviour forheavy quark prodution. It is obvious, sine it is a di�erent mehanism. There are someapproahes in the literature, whih try to inorporate some arti�ial saling variables in



2.4. ACOT SCHEME 33order to �x it. For instane, so alled χ-presription assumes replaement
x←→ χ = x

(
1 +

m2
Q

Q2

) (2.30)in funtions involving C(0)
Q , i.e. where Q enters the redued matrix element. Then, thephysial threshold for Q prodution is inorporated. We show an example alulation inFig. 2.2, as ACOT-χ.Although suh presriptions are allowed by the freedom we have disussed, we �ndthem impratial as far as jet prodution is onerned. Moreover, there is a more naturalapproah. Notie, that when all the ourrenes of C(0)

Q in (2.28) are the same, theanellation taking plae around the mathing point is the most e�etive. We meanhere not only the form of C(0)
Q , but also the way it is onvoluted. Then, it is easy tosee that they an be the same only when the mass of the initial state is set to zero in

C
(0)
Q (what is allowed due to the freedom we have disussed). Otherwise, even if C(0)

Qare everywhere the same the onvolutions are di�erent, sine the integrals have di�erentlimits. For example the onvolutions fg ⊗ F (1)
gQ and fQ ⊗ CQ are not the same (in theoperational sense) when mQ 6= 0. On the other hand, when mQ = 0 both lower boundsin the onvolutions are just xB whilst the upper ones equal to 1. We turn attention,that the only dependene on mass that remains in subtration terms is hidden underlogarithms in F (1)

gQ and F (1)
QQ.In summary, we interpret LO term fQ⊗C(0)

Q as an `asymptoti' expression appearingafter resummation of logarithms, thus it should be subtrated around the mathing pointleaving only BGF mehanism. Sine it is the asymptoti expression the initial state massis set to zero. Aordingly, we set mQ = 0 in C(0)
Q appearing in subtration terms. Thisallows for omplete anellation around the mathing point as shown in Fig. 2.2. Westress that we do not set all initial state masses to zero. We shall ome bak to this issuein Setion 4.3.2.
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Chapter 3Massive dipole subtrationmethod3.1 IntrodutionThe dipole subtration method is a spei� realization of the subtration method de-sribed in Setion 1.2. The subtration term is onstruted as a sum of so-alled dipoles,motivated by very general behaviour of matrix elements. It was �rst developed in anextensive paper by S. Catani and M. Seymour [9℄ in 1996. Their method is appliablefor lepton-lepton, lepton-hadron and hadron-hadron proesses, also with the possibleidenti�ed partons in a �nal state. However, it was developed for massless partons only.The method of [9℄ was later extended in [23℄ to a general ase of massive quarks (also inthe initial state), however for the proesses, where the photons radiate o� the fermions.Moreover, they used a �nite photon mass in order to regularize IR singularities. There-fore, their results are not su�ient for QCD proesses, where not only gluons are emittedfrom initial quarks, but also the gluons an split into qq and gg �nal state pairs. Thiswas the reason for a joint work of the authors of Refs. [9, 23℄ and independently [44℄.In [10℄ they developed the dipole method for massive partons, however, they resign totake into aount the masses of possible initial state heavy quarks, as they allow onlythe standard (massless) fatorization theorem. We note, that they treat as massless notonly the initial state splitting proesses like q → qg, but also they use massless quarks in
g → qq splitting. However, as we have seen in the preeding setions, taking into aountthe masses of possible initial state heavy quarks, espeially taking into aount massive
g → qq splitting, is essential if we want to get onsistent and reliable preditions for largerange of external sale.In the present hapter we develop the fully massive dipole subtration method, whihallows for NLO alulations of neutral urrent DIS proesses. We take into aount allthe masses of the quarks, inluding possible initial states. Our method is a generalizationof the one mentioned above [10℄, therefore we try to keep similar notation. Most of thematerial presented in this hapter is new. It should however be mentioned, that in orderto alulate a full jet ross setion the material should be supplemented by the results of[10℄ whih do not involve initial states and are not treated here.The hapter is arranged as follows. Before we explain in details (Setion 3.3) howthe dipole subtration method is onstruted, we must learn how the matrix elements35
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PSfrag replaements pig

pi

pgFigure 3.1: Emission of a soft gluon from A) quark, B) anti-quark and C) gluon. Thelines without arrows orrespond to any type of partile, while dots denote the rest of�nal states. Shaded blob orresponds to a redued amplitude M̂n.behave in the soft and ollinear limits, espeially when the quarks are massive. We shallsee that in the ontext of this work, it is desirable to onsider so alled quasi-ollinearlimit instead of the usual ollinear one. This is done in Setion 3.2. Next, we desribea speial kinematis, that has to be introdued (Setion 3.4) in order to fatorize the
(n+ 1)-partile phase spae into n-partile and a subspae that after integration leadsto singularities. Using these variables, we de�ne the dipole splitting funtions in Setion3.5. They are the ore of the subtration terms and mimi the true singular behaviourof the matrix elements. Next, in Setion 3.6, we desribe in details the phase spaefatorization proedure. Finally, we integrate all the dipoles over the fatorized subspaein Setion 3.7.We note, that the fully massive dipole subtration method presented below, is still notsu�ient to make reasonable alulations. As we shall see, there are potential ollinearsingularities that have to be fatorized into PDFs. This step shall be done in the nextChapter 4.3.2 Singular behaviour of tree-level matrix elementsLet us start with the investigation of singularities, that appear in the tree-level matrixelements. They emerge from two di�erent kinemati regions (whih an however overlap).First one is so alled soft region, onneted with an emission of a gluon with zero energy.Seond region, atually more ompliated, is the ollinear region (more preisely � quasi-ollinear, see below). Essentially, we follow [10℄, however we give more details and presentsome results, whih do not appear in the literature expliitly.3.2.1 Soft limitThe ontent of this setion is essentially well known, although most often the masses ofquarks are negleted. In some parts we follow [9, 10, 22℄.Let us onsider a generi (n+ 1)-partile amplitude M̂n+1. The hat reminds that itgenerally is an objet with spinor and olour indies, whih are suppressed. Alternativelywe may think, that olour or spin indies an be pulled out by treating M̂ as a vetorin olour and heliity spae and projeting it onto suitable basis vetors. Let us assumefor a moment that all the partons are �nal states.Let us now suppose that i-th partile is a gluon that is emitted from an o�-shell quark
q with mass m (we assume also that all the other partons are on-shell). This situation is



3.2. SINGULAR BEHAVIOUR OF TREE-LEVEL MATRIX ELEMENTS 37depited in Fig. 3.1. The ontribution to full amplitude from this kind of emission anbe written as
M̂(q)

n+1 (p1, . . . , pn+1) = ε∗µ (ν) (−ig) t̂A u (pq) γµ i
6piq +m

p2iq −m2

˜̂Mn

(
{pk}k∈A′

)
, (3.1)where t̂A are standard matries of olour group generators, εµ (ν) is a photon polarizationvetor with heliity ν and u (pq) is an adjoint spinor for a quark with momentum pq. Herewe have de�ned

pµiq = pµi + pµq (3.2)and the set A is de�ned as
A

′ = {1, . . . , n+ 1} \ {i, q} ∪ {iq} , (3.3)that is we have removed the partons i, q from the original matrix element and replaeby single iq. Note, however that at this stage the leg piq in the amplitude on the RHS of(3.1) is o�-shell. This fat is marked by a tilde adorning the amplitude. Also, in (3.1),we have suppressed a spin index in the external spinor.The soft limit is reahed when for any �xed four-vetor rµ we have [9℄
pµi = λrµ, λ→ 0. (3.4)Then, using simple spinor algebra and Dira equation we get from (3.1)1

M̂(q)
n+1 (p1, . . . , pn+1) −→

λ→0

1

λ
g ε∗µ (ν) t̂

A
pµq
r · pq

M̂n

(
{pk}k∈A

)
, (3.5)where now

A = {1, . . . , n+ 1} \ {i} , (3.6)Note that now the momentum of a quark piq left after removing the gluon is on-shell,sine
pµiq −→

λ→0
pµq . (3.7)In omplete analogy, we obtain the ontribution from the emission from an anti-quark q

M̂(q)
n+1 (p1, . . . , pn+1) −→

λ→0

1

λ
g ε∗µ (ν)M̂n

(
{pk}k∈A

) (
−t̂A

) pµq
r · pq

. (3.8)Finally, we have to onsider the situation when the soft gluon is emitted from anothero�-shell gluon, as in Fig. 3.1C. The result an be simply obtained if one uses the fatthat the gluon propagator beomes transverse for λ→ 0, resulting in
M̂(g)

n+1 (p1, . . . , pn+1) −→
λ→0

1

λ
g ε∗µ (ν) (−ifABC)

pµg
r · pg

M̂C
n

(
{pk}k∈A

)
. (3.9)We see, that all the ontributions M̂(q)

(n+1), M̂(q)
(n+1), M̂(g)

(n+1) have the same struture,exept the olour fators. This re�ets the fat that the soft gluon has a very longwavelength and thus is insensitive to the spin struture of the emitting partile.In order to write the full amplitude with the soft gluon emission in a uniform fashion,let us introdue the olour operator T̂A
j for a parton j, whih generates pertinent olour1The replaement of the gluon-quark (or photon-quark) vertex γµ by 2pµq is the eikonal approximation.



38 CHAPTER 3. MASSIVE DIPOLE SUBTRACTION METHODstruture. Its ation is most transparently de�ned introduing the orthonormal basis inthe olour spae; for n partiles in the �nal state and m partiles in the initial state wede�ne
(

m⊗

a=1

|ca〉
)
⊗




n⊗

j=1

|dj〉


 ≡ |c1, . . . , cm; d1, . . . , dn〉 ≡ |{ca} ; {dj}〉 , (3.10)suh that

〈
M̂n ({pa} ; {pj})

∣∣∣ {ca} ; {dj}
〉
=

1∏
a

√
nca

M̂c1,...,cm,d1,...,dn
n ({pa} ; {pj}) , (3.11)where ca is a olour harge of an initial state parton a whereas dj is the same for �nalstate parton j. On the LHS we treat the amplitude as a vetor in the olour spae,normalized in suh a way that olour averaged amplitude squared an be written as

∣∣∣M̂n ({pa} ; {pj})
∣∣∣
2

=
〈
M̂n ({pa} ; {pj})

∣∣∣M̂n ({pa} ; {pj})
〉
. (3.12)In the above formulae the range of the index numbering the elements of sets {.} is droppedfor transpareny; we shall often do this, if it does not lead to a onfusion. One we havehosen the olour basis, we an de�ne the olour operators as follows

T̂A
j |{ca} ; d1, . . . , dj , . . . , dn〉 =





tAdjb
|{ca} ; d1, . . . , b, . . . , dn〉 , j = q

−tAbdj
|{ca} ; d1, . . . , b, . . . , dn〉 , j = q

−ifAdjB |{ca} ; d1, . . . , B, . . . , dn〉 , j = g

(3.13)if the operator ats on a �nal state, and
T̂A
a |c1, . . . , ca, . . . , cm; {dj}〉 =





−tAbca |c1, . . . , b, . . . , cm; {dj}〉 , a = q

tAcab |c1, . . . , b, . . . , cm; {dj}〉 , a = q

ifAcaB |c1, . . . , B, . . . , cm; {dj}〉 , a = g

(3.14)for operation on initial state. The ation of the �nal state olour operators is evidentfrom our derivation above, eqs. (3.5)-(3.9), while the ation of the initial state operatorsan be easily obtained using rossing symmetry. Let us note, that
T̂ 2
k ≡

∑

A

T̂AT̂A =

{
CF , k = q, q

CA, k = g.
(3.15)Due to olour onservation we have also the following property


∑

a

T̂A
a +

∑

j

T̂A
j



∣∣∣M̂n ({pa} ; {pj})

〉
= 0. (3.16)Using the above notation, we an write the omplete amplitude with the soft gluonemission (now we take into aount the possible initial states) as

M̂A
n+1 ({pa} ; {pj}) −→

λ→0

1

λ
g ε∗µ (ν) Ĵ

µA (r)M̂n

(
{pa} ; {pk}k∈A

)
, (3.17)
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PSfrag replaements emitter

spetator utFigure 3.2: De�nition of the emitter and spetator. The last one is a parton that reoilsemitted partile on the other side of the ut. Both emitter and spetator an be �nal orinitial states.where so alled insertion (or eikonal) urrent Jµ is de�ned as
ĴµA (r) =

∑

a

T̂A
a

pµa
r · pa

+
∑

j 6=i

T̂A
j

pµj
r · pj

=
∑

I 6=i

T̂A
I

pµI
r · pI

, (3.18)where in the last step we introdued the index I that runs over both initial and �nalstates.Let us now square the amplitude and sum/average over olours and spins. First, theeikonal urrent squared and summed over A an be written as
∑

A

ĴµA (r) ĴA
µ (r) =

∑

I 6=i

1

r · pI
∑

K 6=I

T̂I · T̂K
(

2pI · pK
r · (pI + pK)

− m2
I

r · pI

)
. (3.19)This form was obtained by partial frationing the expressions of the type

1/ (r · pI) (r · pK) and using olour onservation (3.16). The amplitude squared thustakes the following form (in D dimensions)
∣∣Mn+1 ({pa} ; {pj})

∣∣2 −→
λ→0
− 1

λ2
8πµ2ε

r αs

∑

I 6=i

1

r · pI
∑

K 6=I

(
pI · pK

r · (pI + pK)
− m2

I

2 r · pI

)

〈
M̂n ({pa} ; {pj})

∣∣∣ T̂I · T̂K
∣∣∣M̂n ({pa} ; {pj})

〉
. (3.20)Above formula is the key for onstruting dipole subtration terms, although as weshall see in Setion 3.3 there are several points to overome.For further onveniene, let us introdue the following notation for the olour-orrelated amplitudes

〈
M̂n ({pa} ; {pj})

∣∣∣ T̂I · T̂K
∣∣∣M̂n ({pa} ; {pj})

〉
≡ |Mn ({pa} ; {pj})|2I,K . (3.21)It will allow for more ompat formulae later on.In the end of this setion, let us introdue a nomenlature following [9℄ that we shalluse throughout. A partile whih emits a gluon (or in general any other parton) we allan emitter. Further, as far as one onsiders the amplitude squared, an emitted partileis reoiled on the other side of the ut by a parton that we all a spetator (Fig. 3.2).There is a symmetry between all emitter-spetator ases, as is evident e.g. from (3.20).In general, we an distinguish the following ases

• �nal state emitter - �nal state spetator (FE-FS)
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piFigure 3.3: Initial state splitting proesses with massive quark Q: A) Q→ Qg splitting,B) g → QQ, C) Q→ gQ.
• �nal state emitter - initial state spetator (FE-IS)
• initial state emitter - �nal state spetator (IE-FS)
• initial state emitter - initial state spetator (IE-IS).In the present work we shall onsider the �rst three lasses, sine we are so far onen-trated on lepton-hadron proesses only.3.2.2 Quasi-ollinear limitLet us now onsider another region where a tree-level amplitude an be divergent. Thepropagators, as those in Fig. 3.1, an beome in�nite when the momenta of the masslesspartons are ollinear. If the quarks are massive there is no true ollinear singularity,however the singularity arises again when the mass an be negleted omparing to ex-ternal energy sales. Therefore in view of the present work it is onvenient to onsiderso alled quasi-ollinear limit [11, 10℄ and quasi-ollinear singularity. In the followingsubsetions we reall this idea in details. We pay partiular attention to the ase of anemission from the initial state with heavy quark masses taken into aount. This is theelementary ase, whih � as far as we are onerned � has not been given expliitly inthe literature.3.2.2.1 Initial state emitter aseLet us start with the ase where an initial state parton a with momentum pa emitsanother parton i with momentum pi. Three possible in QCD ases, that involve quarksare shown in Fig. 3.3. Suh an emission, where there are massive partons is not onsideredin [10, 11℄ while in [23℄ only photon radiation o� fermions is worked out. Therefore, weshall give brief, but detailed disussion.Let us �rst introdue the shortut notation (Fig. 3.3)

pµai = pµa − pµi . (3.22)The momentum pai is o�-shell, while for pi and pa we assume the on-shell onditions
p2i = m2

i , p2a = m2
a. (3.23)



3.2. SINGULAR BEHAVIOUR OF TREE-LEVEL MATRIX ELEMENTS 41In order to de�ne the quasi ollinear limit, let us introdue the Sudakov parametrizationof momenta. We deompose pi into a omponent parallel to pa and a transverse one. Tothis end we hoose auxiliary light-like four-vetor n,
n2 = 0. (3.24)Then the Sudakov deomposition reads

pµi = (1− x) pµa + kµT −
k2T + (1− x)2m2

a −m2
i

1− x
nµ

2n · pa
. (3.25)The transverse omponent is perpendiular to pa and n,

kT · pa = kT · n = 0. (3.26)Aordingly, due to (3.22), we have
pµai = xpµa − kµT +

k2T + (1− x)2m2
a −m2

i

1− x
nµ

2n · pa
. (3.27)The variable x has an obvious physial interpretation. It is the fration of the originalmomentum pa that enters the redued matrix element (the shaded blobs in Fig. 3.3).Now, onsider the denominator of one of the propagators from Fig. 3.3. It reads

p2ai −m2
ai =

k2T + x (1− x)m2
a − xm2

i − (1− x)m2
ai

1− x , (3.28)where mai is the on-shell mass of the parton orresponding to momentum pai. Usualollinear limit is de�ned by |kT | → 0. Then however, the inverse propagator (3.28) is ingeneral nonzero. In order to make it zero, we use a uniform resaling
|kT | → λ |kT | , mq → λmq, λ→ 0, (3.29)for q = a, i, ai, suh that the propagator (3.28) indeed beomes zero. The limits (3.29)de�ne advoated quasi-ollinear behaviour.Let us now swith to the more spei� ases. Let us start with the splitting proessshowed in Fig. 3.3A, namely

Q (pa)→ Q (pai) g (pi) . (3.30)In this ase we have
ma = mai = mQ ≡ m, mi = 0. (3.31)The amplitude an be written as

M̂n+1 (pa; pi, . . .) =
˜̂M

†

n (pai; . . .) i
6pai +m

p2ai −m2

(
−igγµt̂A

)
us (pa) ε

∗
µ (ν) . (3.32)The notation used above is similar to the one used in Setion 3.2.1. We adorned by tildethe redued matrix element on the RHS in order to underline that it has amputated legorresponding to the o�-shell momentum pai. Spinor supersript s refers to a spin state.Squaring the amplitude and summing/averaging over olour and spin we get

∣∣∣M̂n+1 (pa; pi, . . .)
∣∣∣
2

= 2παsµ
2ε
r

CF

Nc

dµν (pi;n)
˜̂M

†

n (pai; . . .)
Γ̂µν

(p2ai −m2)
2
˜̂Mn (pai; . . .) ,(3.33)



42 CHAPTER 3. MASSIVE DIPOLE SUBTRACTION METHODwhere
Γ̂µν = (6pai +m) γµ (6pa +m) γν (6pai +m) , (3.34)and the polarization tensor for the gluon with momentum pi reads

dµν (pi;n) = −gµν +
pµi n

ν + pνi n
µ

pi · n
. (3.35)Next, we apply the Sudakov deomposition and the limit (3.29). It leads to

dµν Γ̂
µν = −λ2

[
(D − 2) (1− x)

(
p2ai −m2

)
+

4xk2T

(1− x)2

]
6pa +O

(
λ3
)
. (3.36)Thus, in the quasi-ollinear limit we �nally obtain

∣∣∣M̂n+1 (pa; pi, . . .)
∣∣∣
2

→ − 1

λ2
8παsµ

2ε
r

1

x

1

p2ai −m2

M̂
†

n

(
pai; . . .

)
P̂QQ (x) M̂n

(
pai; . . .

)
, (3.37)where the splitting matrix reads (the unit matrix in heliity spae is suppressed)

P̂QQ (x) = CF

(
1 + x2

1− x − ε (1− x) +
2xm2

p2ai −m2

)
. (3.38)The momentum pai refers to limiting, on-shell version of pai, i.e. pai = xpa and p2ai = 0in the limit (3.29).There are several omments onerning (3.37). First, there is a fator 1/x, whihomes from the onversion

M̂ †
n (pai; . . .) 6paM̂n (pai; . . .)→

1

x

∣∣∣M̂n

(
pai; . . .

)∣∣∣
2

. (3.39)Seond, we adorned the amplitudes in (3.37) by a bar, sine we inluded fators fromolour and spin averages. Finally, sine splitting matries at in heliity spae, in generalthere are spin orrelations. In this ase however the splitting matrix is diagonal.Let us now move to the next splitting ase (Fig. 3.4B)
g (pa)→ Q (pai)Q (pi) (3.40)where we have

ma = 0, mai = mi = mQ ≡ m. (3.41)Analogous alulation to the one above leads again to (3.37) with however di�erentsplitting matrix
P̂gQ (x) = TR

[
1− 2

1− ε

(
x (1− x) + xm2

p2ai −m2

)]
. (3.42)It is again diagonal in heliity (identity matrix was dropped). We reall, that the on-vention for naming the splitting funtions was given in Setion 1.1.Finally, let us turn to the proess from Fig. 3.3C

Q (pa)→ g (pai)Q (pi) (3.43)
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g → QQ, C) Q→ gQ.with the masses

ma = mi = mQ ≡ m, mai = 0. (3.44)As one an expet, the behaviour of the matrix element is the same as before withdi�erent splitting matrix. Now it reads
(
P̂Qg (x)

)µν
= CF (1− ε)

(
−xgµν − 4

kµTk
ν
T

x p2ai

)
. (3.45)We see, that this time it is not diagonal in heliity, thus we annot simply fatorize thematrix element squared as before. Note, that during the derivation, we used the followingrelation between the olour fators

TR
Nc

=
CF

NA

. (3.46)This was used to transform the olour average from the one over quark olours to theone over gluon olour states. The fator (1− ε) follows from the spin onversion.There is one more possible splitting proess, whih involves only gluons
g (pa)→ g (pai) g (pi) . (3.47)Sine it does not involve massive partons we an use the result from [9℄. The splittingproess is symmetri with respet to exhange of partons, thus we an overtake their�nal state formula and onvert to our initial state kinematis. We get

(
P̂gg (x)

)µν
= 2CA

[
−gµν

(
x

1− x +
1− x
x

)
− (D − 2)x

kµTk
ν
T

p2ai

]
. (3.48)The splitting matries introdued above redue to the well known splitting funtionsafter averaging over heliities, taking massless limit, and setting D = 4.3.2.2.2 Final state emitterLet us now analyze the ase, where initially o�-shell �nal state parton is split into partons

i and j with the momenta pi and pj respetively, as showed in Fig. 3.4.The Sudakov parametrization of �nal state momenta takes the following form
pµi = zpµij + kµT −

k2T + z2m2
ij −m2

i

z

nµ

2 pij · n
, (3.49)

pµj = (1− z) pµij − kµT −
k2T + (1− z)2m2

ij −m2
j

1− z
nµ

2 pij · n
. (3.50)



44 CHAPTER 3. MASSIVE DIPOLE SUBTRACTION METHODThese equations are atually de�ning formulae for the four-vetor pij , i.e. in the quasi-ollinear limit (3.29) (with resaling masses suitably to this setion of ourse) pi and pjare parallel to pij . For further purposes we introdue
pµij = pµi + pµj . (3.51)Note the di�erene between pij and pij .The ase of �nal state quasi-ollinear emission is overed in [10℄. Sine derivation isompletely analogous to that of the previous subsetion, we limit ourselves to listing theformulae as we shall need them later.The matrix element squared behaves as

∣∣∣M̂n+1 (pa; pi, pj . . .)
∣∣∣
2

→ − 1

λ2
8παsµ

2ε
r

1

p2ij −m2
ij

M̂
†

n

(
pa; pij , . . .

)
P̂ij,i (z) M̂n

(
pa; pij , . . .

)
. (3.52)Note, that this time there is no analog of 1/x fator omparing to (3.37). The splittingmatries are as follows

P̂QQ (z) = CF

(
1 + z2

1− z − ε (1− z) +
2m2

p2ij −m2

)
, (3.53)

P̂Qg (z) = CF

(
1 + (1− z)2

z
− εz + 2m2

p2ij −m2

)
, (3.54)

(
P̂gQ (z)

)µν
= TR

(
−gµν − 4

kµTk
ν
T

p2ij

)
, (3.55)

(
P̂gg (z)

)µν
= 2CA

[
−gµν

(
z

1− z +
1− z
z

)
− (D − 2)

kµT k
ν
T

p2ij

]
. (3.56)The mass m ≡ mQ above refers to pertinent heavy quark Q involved in splitting proess.The splitting matries (3.53)-(3.56) are in general di�erent than those from the previ-ous subsetion, as one ould expet. Here for instane there is a symmetry z → (1− z) for

P̂QQ and P̂Qg splittings as an be seen from Fig. 3.4A, C. It is not the ase for initial statesplitting. The universal objets, suitable for initial and �nal state, are four-dimensional,massless and averaged versions of the matries presented in this setion.3.3 Constrution of dipolesAs we have seen in Setions 3.2.1, 3.2.2, a tree level amplitude squared an be written inthe both singular regions in the following shemati form
∣∣∣M̂n+1

∣∣∣
2

→ 8παsµ
2ε
r

1

S V̂ ⊗
∣∣∣M̂n

∣∣∣
2

, (3.57)where S represents adequate salar propagator, V̂ enodes the information aboutsoft/ollinear splitting proess leading to singularities, and the onvolution sign realizesspin and olour orrelations.



3.3. CONSTRUCTION OF DIPOLES 45The above struture an be used to onstrut subtration term in the dipole method.Reall that suh a term is just a fake ross setion, that beomes equal to the real one inthe singular regions (f. Setion 1.2). First problem to overome, is that away from thesoft limit there is no momentum onservation in redued matrix element M̂n (reall, weremoved the soft gluon, whih was legitimate only in the strit soft limit), onsequently(3.57) annot be alulated as an usual ross setion. Seond, one ould onstrut thesubtration term by just adding the limiting formulae for soft and ollinear behaviour,in order to mimi both regions. The problem is however, that there is an overlap region,with a ollinear and a soft partile at the same time. It is evident for example from(3.56), when z → 0 we have double soft-ollinear singularity. Thus adding both kinds oflimiting formulae leads to double ounting of soft singularities.The solution given in [9℄ is the following. The subtration term whih mimis the
(n+ 1)-partile matrix element squared, is given by (for simpler notation we assume onlyone initial state parton a)
D
(
pa; {pi}n+1

i=1

)
=

n+1∑

i=1

n+1∑

j=1
j 6=i

{
DIE-FS

i,j,a

(
p̃ai; {pl}l∈XIE-FS

)
+DFE-IS

i,j,a

(
p̃a; {pl}l∈XFE-IS)

+

n+1∑

k=1
k 6=i,j

DFE-FS
i,j,k

(
pa; {pl}l∈XFE-FS

)} (3.58)where
DIE-FS

i,j,a

(
p̃ai; {pl}l∈XIE-FS

)
= − 1

Sa,i
1

x

〈
M̂n

(
p̃ai; {pl}l∈XIE-FS

) ∣∣ T̂j · T̂ai
T̂ 2
ai

V̂ IE-FS
a→ai i, j

∣∣M̂n

(
p̃ai; {pl}l∈XIE-FS

) 〉
, (3.59)

DFE-IS
i,j,a

(
p̃a; {pl}l∈XFE-IS) = − 1

Si,j
1

x

〈
M̂n

(
p̃a; {pl}l∈XFE-IS) ∣∣ T̂a · T̂ijT̂ 2

ij

V̂ FE-IS
ij→i j, a

∣∣M̂n

(
p̃a; {pl}l∈XFE-IS) 〉, (3.60)

DFE-FS
i,j,k

(
pa; {pl}l∈XFE-FS

)
= − 1

Si,j
〈
M̂n

(
pa; {pl}l∈XFE-FS

) ∣∣ T̂k · T̂ij
T̂ 2
ij

V̂ FE-FS
ij→i j, k

∣∣M̂n

(
pa; {pl}l∈XFE-FS

) 〉
. (3.61)Let us now arefully explain the notation. First, Si,j , Sa,i are pertinent inverse salarpropagators

Si,j = (pi + pj)
2 −m2

ij , (3.62)
Sa,i = (pa − pi)2 −m2

ai. (3.63)



46 CHAPTER 3. MASSIVE DIPOLE SUBTRACTION METHODNext, some of the momenta are adorned by a tilde. They are new momenta onstrutedin suh a way that momentum onservation holds in M̂n. In what follows, we shall referto them as dipole momenta. In soft or quasi-ollinear limit they behave as
p̃ij → pij , p̃ai → pai, . . . (3.64)They are onstruted in Setion 3.4. The sets of indies are de�ned as

XIE-FS = {1, . . . , n+ 1} \ {i, j} ∪
{
j̃
}
, (3.65)

XFE-IS = {1, . . . , n+ 1} \ {i, j} ∪
{
ĩj
}
, (3.66)

XFE-FS = {1, . . . , n+ 1} \ {i, j, k} ∪
{
ĩj, k̃

}
, (3.67)where the tilde over the parton symbol means that orresponding momentum should bemarked by tilde, e.g.

pµ
j̃
≡ p̃µj , pµ

ĩj
≡ p̃µij . (3.68)Finally, the objets V̂ are dipole splitting funtions. They are matries ating in theheliity spae, their form being lose to the usual splitting matries. They beome thelatter in the quasi-ollinear limit on one hand and ful�l soft limit without double ountingof soft singularities, on the other. We shall onstrut them in Setion 3.5.In the end of this setion, let us hek that provided the dipole splitting matrix tendsto the true splitting matrix obtained in Setion 3.2, i.e. if

V̂A→BC,D → P̂AB, (3.69)we indeed reover orret quasi-ollinear behaviour. Clearly, sine the dependene onthe spetator parton is lost in V̂ , as shows the above formula, we an make use of theolour onservation (3.16) (redued matrix elements do not depend on the spetator inthis limit). Thus, the olour orrelations vanish and the olour fators anel yieldingthe required result.3.4 Dipole kinematisIn the following setion we onstrut an expliit realization of the dipole momenta thatare on-shell and ful�l momentum onservation away from the soft limit. It should bepointed out that there is no unique solution - their preise form depends on the kinemativariables one is going to use. The latter have to be de�ned in suh a way, that one aneasily ontrol soft and ollinear limits.We onentrate here on the FE-IS and IE-FS ases, sine the situation when all thepartiles (emitter and spetator) are in the �nal state is fully overed in [23, 10℄.3.4.1 Final State Emitter - Initial State SpetatorThe situation we want to desribe is the following. A �nal state partile pi is emittedfrom another �nal state parton, whih after emission has the momentum pj . Afterwardsit is absorbed by an initial state pa (a spetator). Let us introdue the following notationwe shall use throughout (Fig. 3.5A )
Pµ = pµi + pµj , (3.70)
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Qµ = Pµ − pµa . (3.71)That is, P is the total dipole momentum and Q is the relative (with respet to the dipole)momentum transfer. It must not be onfused with q � the total momentum transfer tothe hard proess. We assume that Q is spae like Q2 < 0 and that the partiles areon-shell

p2a = m2
a, p2i,j = m2

i,j . (3.72)As already mentioned in Setion 3.3, in dipole method we have to introdue thenew momenta p̃ij , p̃a (Fig. 3.5B ), in suh a way that in the soft limit (de�ned here by
pi → 0) we have p̃ij → pj and p̃a → pa. In the quasi-ollinear limit p̃ij approahes the�xed ollinear diretion of pi and pj (see Setion 3.2.2.2). Of ourse in QCD reality,the soft limit onerns only the gluons, however on general ground it is enough to have
mij = mj at this stage. We shall analyse the soft and quasi-ollinear behaviour of thetilded momenta later, in Setions 3.4.1.3, 3.4.1.4.One of the possible forms of the dipole momenta is

p̃µij = w̃Pµ − ũpµa , (3.73)
p̃µa = p̃ij −Qµ = (w̃ − 1)Pµ − (ũ− 1) pµa . (3.74)In the next subsetion we shall �x arbitrary at this stage parameters ũ and w̃ in suh a waythat p̃ij ful�l boundary onditions mentioned above. Notie, that we should have ũ→ 0,

w̃ → 1 in the soft limit. Note also that we have the expliit momentum onservation.In order to ontrol the quasi-ollinear behaviour, let us also introdue the �angular�variable (de�nition and notation is due to [9℄)
z̃ =

pi · pa
Pa

(3.75)where
Pa ≡ P · pa. (3.76)Note, that neither ũ nor z̃ are the Sudakov variables used in Setion 3.2.2.2, althoughthey are obviously related. We shall state the relation between both kinds in Setion3.4.1.4.In what follows we shall refer to ũ, w̃ and z̃ variables as dipole variables.



48 CHAPTER 3. MASSIVE DIPOLE SUBTRACTION METHOD3.4.1.1 Standard dipole kinematisA already mentioned, we require that the dipole momenta are on-shell. This gives ustwo onditions
p̃2ij = m2

ij , (3.77)
p̃2a = m2

a, (3.78)whih readily an be solved yielding solutions for ũ and w̃ in terms of the invariants madeup of vetors pa, pi, pj . We however shall use more natural quantities in our approah,namely P2, Q2 and Pa. In terms of these invariants the solution reads
ũ =

(
Pa − P2

)
R

2vQ2Pa

+
Q2 +m2

ij −m2
a

2Q2
(3.79)

w̃ = −
(
Pa −m2

a

)
R

2vQ2Pa

+
Q2 +m2

ij −m2
a

2Q2
, (3.80)where

Q2 = (P − pa)2 = P2 − 2Pa +m2
a, (3.81)

R =

√(
Q2 −m2

ij −m2
a

)2
− 4m2

am
2
ij , (3.82)and

v =

√
1− m2

aP2

P2
a

. (3.83)We shall later interpret v as a veloity of pa in the CM(Q, pa) system.Note, that if ma = 0 we have v = 1 and
ũ =

P2 −m2
ij

2Pa

, (3.84)
w̃ = 1, (3.85)whih agrees with [10℄.Summarizing, if we are given pa, pi and pj (thus we know P2, Pa), we an obtain ũand w̃ and thus reonstrut p̃ij and p̃a, whih are needed in dipole subtration term. Weshall refer to this approah as a standard dipole kinematis.One an onsider also the equations (3.77), (3.78) as some kind of equations of state,and ũ, w̃, P2, Pa as �thermodynamial� parameters. We an onsider for instane Pa =

Pa

(
P2, ũ

) and w̃ = w̃
(
P2, ũ

), et. Sine some of the relations of this type are veryuseful, we list a few of them in Appendix A.1 together with some relations between thederivatives.3.4.1.2 Kinematis with additional invariant (gamma-kinematis)It turns out that it is onvenient to introdue an additional invariant, let us denote it
γ̃. This will allow us to derive simpler formulae when we integrate the dipole splittingfuntions.



3.4. DIPOLE KINEMATICS 49There are several possibilities to hoose γ̃, for example it an be Q2 or even p̃ij · p̃a,however we shall use the following
γ̃ = p̃ij · pa. (3.86)Aording to (3.73) we have

γ̃ = w̃Pa − ũm2
a. (3.87)This equation, together with the two on-shell onditions (3.77), (3.78) gives the solutionfor w̃, P2 and Pa in terms of ũ and γ̃ ,̃

w =
χ+ δ

2γ̃ +m2
ij

, (3.88)
Pa =

(χ− δ)
(
γ̃ + ũm2

a

)

ũ (2γ̃ + ũm2
a) +m2

ij

, (3.89)
P2 =

(χ− δ)2
ũ (2γ̃ + ũm2

a) +m2
ij

, (3.90)where
χ = γ̃ + ũ

(
γ̃ +m2

a

)
+m2

ij , (3.91)
δ =

√
ũm2

a

(
2γ̃ + ũm2

a −m2
ij (ũ− 2)

)
+ γ̃2 (1− ũ)2. (3.92)Let us now make a very general analysis of the bounds on ũ and γ̃ variables. Suppose,we have the following bounds on the �standard� invariants

P2
− ≤ P2 ≤ P2

+, (3.93)
Pa−

(
P2
)
≤ Pa ≤ Pa+

(
P2
)
. (3.94)We shall give expliit expressions for those bounds later in Setion 3.6, however immedi-ately we an write

P2
− = (mi +mj)

2
. (3.95)The rest of the limits depend on the spei� �external� kinematial ase, thus we donot give them here. Using (3.90), (3.89) we an onvert (3.93), (3.94) to the followinginequalities

ũ− (γ̃) ≤ ũ ≤ ũ+ (γ̃) , (3.96)
γ̃− ≤ γ̃ ≤ γ̃+. (3.97)This proedure is however more ompliated than it looks. This is beause in the mostgeneral ase, in di�erent regions of [γ̃−, γ̃+] the bounds on ũ are obtained from di�erentonditions (3.93)-(3.94). This shall be disussed in details in Setion 3.6.4. However, inthe most interesting ases the lower bound on ũ is always obtained by solving (3.90) forthe lower limit on P2. When ũ = ũ− we shall enounter singularities, therefore let usgive here the result

ũ− (γ̃) =
m2

ijρ
2
− +

(
γ̃ +m2

ij

) (
4γ̃P2

− − υ−
)
+ ρ−ϑ−γ̃ṽij

m2
aυ− − 4γ̃P2

− (γ̃ + 2m2
a)

, (3.98)



50 CHAPTER 3. MASSIVE DIPOLE SUBTRACTION METHODwhere
ṽij =

√

1−
m2

am
2
ij

γ̃2
, (3.99)

ρ− = 2γ̃ +m2
ij + P2

−, (3.100)
υ− = ρ2− − 4m2

aP2
−, (3.101)

ϑ− =

√
(ρ− − 2P−)

2 − 4m2
aP2

−. (3.102)We turn attention to the variable ṽij - we shall often enounter quantities of this type(with di�erent masse) later on. The upper bounds on ũ and γ̃ will be disussed later.The result of this setion will be useful for the integration of dipole splitting funtionsin Setion 3.7. In the following we shall refer to the above solution as the gamma-kinematis.3.4.1.3 Soft and ollinear limits of the dipole variablesIn this setion we shall investigate the behaviour of the dipole variables in singularregions. This is ruial for onstruting the dipole splitting funtions.Reall that the soft limit is de�ned as
pµi = λlµ, λ→ 0, (3.103)where l is any �xed four-vetor and pi must be a �nal state gluon. This implies, that

mij = mj and of ourse mi = 0. Then it an be shown using e.g. (3.79) that in the softlimit
ũ→ 0, P2 → m2

ij . (3.104)Moreover
z̃ → 0, (3.105)as immediately follows from its de�nition.Next let us onsider the quasi-ollinear limit. The Sudakov parametrization of the�nal state momenta has the general form

pµi = zp̃µij + kµT + α1
nµ

2p̃ij · n
, (3.106)

pµj = (1− z) p̃µij − kµT + α2
nµ

2p̃ij · n
, (3.107)where αi are funtions of k2T and relevant masses - the details are not important here (seeSetion 3.2.2.2). This deomposition is slightly di�erent than those in Setion 3.2.2.2, ashere we use p̃ij instead of pij . They are equivalent in the quasi-ollinear limit de�ned bythe resaling (3.29). In this limit αi = O

(
λ2
) and we have

pµi = z p̃µij + λkµT +O
(
λ2
)
, (3.108)

pµj = (1− z) p̃µij − λkµT +O
(
λ2
)
. (3.109)Hene

P2 = O
(
λ2
)
→ 0, (3.110)
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Pa = O

(
λ0
)
, (3.111)and from (3.79) we get

ũ = O
(
λ2
)
→ 0. (3.112)Similarly, sine w̃ → 1, by ontrating (3.108) with pa we get

z̃ = z +O (λ) . (3.113)Thus in the quasi-ollinear limit z̃ beomes the Sudakov z.3.4.1.4 Relation between dipole and the Sudakov variablesIn order to better understand the meaning of the dipole variables ũ and z̃, let us relatethem to the Sudakov variables of Setion 3.2.2.2. We shall see, that they are similar,but not equal; they redue to the Sudakov variables in the massless limit as one ouldexpet.Let us start with the variable ũ. In general, the Sudakov parametrization of themomentum p̃a has the form
p̃µa = xpµa + k

µ

T + β
nµ

2pa · n
, (3.114)where β is a fator depending on the pertinent mass on�guration and is irrelevant inthis disussion. Note, that kT , n and β are adorned by the bar sign in order to underlinethat they are in general di�erent from those in (3.106). The parameter x is di�erent thanthe one introdued in (3.27) (see also Setion 3.4.2.4), although it has similar physialinterpretation: it is a fration of the original momentum pa that enters the reduedmatrix element, de�ned with initial p̃a momentum. Comparing this with (3.74), we seethat

x = 1− ũ+ (w̃ − 1)
P · n
pa · n

. (3.115)As a speial ase we get
x=̇1− ũ, for ma = 0, (3.116)as an be easily seen from (3.85). Thus, in the massless initial state ase, ũ is justthe fration of initial state momentum pa. In order to get more transparent result it isonvenient to use the CM(pa,Q) frame (see Setion 3.6.1.1 for expliit formulae) with

nµ = (1, 0, 0, 1). We obtain
x = 1− ũ+ (w̃ − 1)

P2

Pa (1− v)
, (3.117)where v is given in (3.83).For further purposes let us investigate ũ → 0 behaviour with �xed γ̃. Then, asshown in Eqs. (3.88)-(3.92) w̃, P2, Pa depend on ũ. Using the gamma-kinematis andexpanding in ũ we get very transparent result

1− x = ũṽij +O
(
ũ2
)
, (3.118)with ṽij de�ned in (3.99). Thus, as far as we onsider the soft behaviour in gamma-kinematis, the Sudakov 1− x is basially the same as ũ, however with di�erent slope inthe general massive ase. In the quasi-ollinear limit both variables are equal.



52 CHAPTER 3. MASSIVE DIPOLE SUBTRACTION METHODLet us now turn to the z̃ variable and its relation to z. Again, using (3.106), thede�nition of z̃ and the CM(pa,Q) frame, we get
z =

2z̃P2 − (1− v)
(
m2

i −m2
j + P2

)

2v [w̃P2 − ũPa (1− v)]
. (3.119)In the ase of massless initial state, both variables are equal

z=̇z̃, for ma = 0, (3.120)as we ould already guess from (3.113). Let us investigate the relation (3.119) lose tothe ũ→ 0 limit with γ̃ �xed. Using the gamma-kinematis and expanding in ũ we get
z = z̃

1

ṽij
−
m2

a

(
m2

i −m2
j +m2

ij

)

2ṽij

(
1 + ṽij

)
γ̃2

+O (ũ) . (3.121)Notie, that due to the onstant term (of the order O (z̃0)), the soft limit is indeedpossible only within spei� on�guration of masses, as already stated in Setion 3.4.1.For instane, the radiation of gluon from a �nal state massive quark orresponds to theon�guration where mi = 0, mij = mj . Then there is no onstant term and pi anbeome zero.3.4.1.5 Dipole variable as a free parameterIn Setion 3.6 we shall onsider ũ as a free parameter in order to properly fatorize thephase spae (more preisely it will be a onvolution variable). Let us refer to it as u(without tilde) in this ontext. In order to make it possible, we have to drop the on-shellondition for p̃ij ; we denote this o�-shell vetor as p̃ij (u). During this proedure we haveto keep some other invariants �xed.Let us start with P2 and Pa kept onstant. Then we have
p̃µij
(
u,P2,Pa

)
= w

(
u,P2,Pa

)
Pµ − upµa , (3.122)

p̃µa
(
u,P2,Pa

)
=
(
w
(
u,P2,Pa

)
− 1
)
Pµ − (u− 1) pµa , (3.123)where

w
(
u,P2,Pa

)
=
P2 − Pa (1− u− r)

P2
(3.124)with

r =
√
1 + u (u− 2) v2. (3.125)We have obtained w (u,P2,Pa

) solving the only one on-shell ondition p̃2a (u,P2,Pa

)
=

m2
a, whih we assume to hold always.On the other hand, we an keep variables Pa and γ̃ �xed. Then we get

w (u, γ̃,Pa) =
γ̃ + um2

a

Pa

, (3.126)
P2 (u, γ̃,Pa) =

( Pa

γ̃ + um2
a − Pa

)2 [
2 (1− u) (Pa − γ̃) + u2m2

a

]
. (3.127)



3.4. DIPOLE KINEMATICS 53We an use either method (also other are possible), depending whih of the kinematiinvariants we want to make the �external� ones. We shall return to this point with theexpliit example later in Setion 3.6.4. Let us now introdue the generi notation forthese �external� invariants
X , Y ∈

{
P2,Pa, γ̃

}
. (3.128)Sine now u is a free parameter, we have to speify its bounds umin, umax. We haveto hoose the support in suh a way that it inludes the point u = ũ, that is for

umin ≤ u ≤ umax (3.129)we must have
ũ ∈ [umin, umax] . (3.130)It is natural to set

umin = ũ−, umax = ũ+, (3.131)where ũ± are the bounds on ũ disussed in Setion 3.4.1.2.3.4.2 Initial State Emitter - Final State SpetatorNow, in ompletely analogous way we treat the ase, where the emission proess oursfrom the initial state parton. Due to the similarity of the proedure we give muh lessomments and onentrate rather on the di�erenes to the previous ase.Consider the situation depited in Fig. 3.6. We introdue new dipole momenta p̃aiand p̃j , where now the �rst one is a new initial state momentum that replaes pa and
pi. The momentum p̃j replaes the spetator momentum pj . The form of the new dipolemomenta is ompletely the same as for the FE-IS ase

p̃µj = w̃Pµ − ũpµa , (3.132)
p̃µai = p̃j −Qµ = (w̃ − 1)Pµ − (ũ− 1) pµa , (3.133)but the form of ũ, w̃ is in general di�erent due to di�erent on-shell onditions (see below).Note, that again we have the expliit momentum onservation. In the next subsetionwe shall �x arbitrary at this stage parameters ũ and w̃ in suh a way that p̃ai and p̃jful�l

p̃2j = m2
j , (3.134)

p̃2ai = m2
ai. (3.135)We shall also need z̃ variable, whih is de�ned as in (3.75) without hange. It is alsouseful to reollet the relative momentum already introdued in Setion 3.2.2.1

pµai = pµa − pµi . (3.136)Note the di�erene with p̃ai.
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p̃aiFigure 3.6: A) the momenta assignment in IE-FS ase, dashed line represents a relativemomentum transfer; B) redued diagram for IE-FS ase, the new tilded momenta areon-shell and ful�l momentum onservation.3.4.2.1 Standard kinematisReall, that standard kinematis refers to a situation, where we express dipole variables
ũ, w̃ through �standard� invariants P2, Pa.Solving the two on-shell onditions (3.134), (3.135) we obtain

ũ =

(
Pa − P2

)
R

2vQ2Pa

+
Q2 +m2

j −m2
ai

2Q2
(3.137)

w̃ = −
(
Pa −m2

a

)
R

2vQ2Pa

+
Q2 +m2

j −m2
ai

2Q2
, (3.138)where now

R =

√(
Q2 −m2

j −m2
ai

)2
− 4m2

aim
2
j , (3.139)while Q2 and v remain the same, i.e. they are given by (3.81), (3.83) respetively.Note, that the above equations are almost idential to the orresponding equationsfrom Setion 3.4.1.1. Tehnially, one has to simply replae some ourrenes (but notall!) of ma by mai and mij by mj .3.4.2.2 Gamma-kinematisReall, that in gamma-kinematis we express dipole variable w̃ and invariants P2, Pa by

ũ and the additional invariant γ̃. It is a preparation for making ũ a free parameter.In the present ase of the emission from initial state, we de�ne this additional invariantas
γ̃ = p̃j · pa. (3.140)Thus, aording to (3.132) we have

γ̃ = w̃Pa − ũm2
a. (3.141)This equation is super�ially idential with the one for FE-IS ase.The expressions for w̃ and the �standard� invariants in terms of γ̃ and ũ read

w̃ =
χ+ δ

2γ̃ +m2
a −m2

ai +m2
j

, (3.142)
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Pa =

(χ− δ)
(
γ̃ + ũm2

a

)

ũ (2γ̃ + ũm2
a) +m2

j

, (3.143)
P2 =

(χ− δ)2
ũ (2γ̃ + ũm2

a) +m2
j

, (3.144)where
χ = γ̃ + ũ

(
γ̃ +m2

a

)
+m2

j , (3.145)
δ =

√
ũm2

ai (2γ̃ + ũm2
a) +m2

j

(
m2

ai −m2
a (1− ũ)2

)
+ γ̃2 (1− ũ)2. (3.146)Again they are very similar to the ones for FE-IS ase.The analysis of the bounds follows the same steps as in Setion (3.4.1.2). Here weonly ollet the analogous formulae.In further disussion only the lower bound on ũ is relevant. It reads

ũ− (γ̃) =
m2

jρ
2
− +

(
γ̃ +m2

j

) (
4γ̃P2

− − υ−
)
+ ρ−ϑ−γ̃ṽj

m2
aυ− − 4γ̃P2

− (γ̃ + 2m2
a)

, (3.147)where this time
ṽj =

√

1−
m2

am
2
j

γ̃2
, (3.148)

ρ− = 2γ̃ +m2
a −m2

ai +m2
j + P2

−, (3.149)
υ− = ρ2− − 4m2

aP2
−, (3.150)

ϑ− =
√
(ρ− − 2P−)

2 − 4m2
aiP2

−. (3.151)The lower bound on P2 is the same as in the FE-IS ase, P2
− = (mi +mj)

2.3.4.2.3 Dipole variable as a free parameterIn full analogy to the FE-IS ase, later we shall treat the dipole variable ũ as a freeparameter u. Let us reall, that in order for this to work, we have to release one on-shellondition. More preisely the spetator p̃j must be o�-shell. It drops into its physialmass when u = ũ.All the relevant equations are analogous to the ones we have obtained for FE-IS ase.Let us only list relevant solutions for single on-shell ondition. For w (u,P2,Pa

) it is thesame as (3.124) with however
r =

√

(u− 1)
2
+
m2

aiP2

P2
a

. (3.152)Further, w (u, γ̃,Pa) remains the same as (3.126) while
P2 (u, γ̃,Pa) =

( P2
a

γ̃ + um2
a − Pa

)2 [
2 (1− u) (Pa − γ̃) +

(
u2 − 1

)
m2

a +m2
ai

]
. (3.153)



56 CHAPTER 3. MASSIVE DIPOLE SUBTRACTION METHOD3.4.2.4 Soft and ollinear limitsLet us now hek the soft and quasi-ollinear behaviour of the dipole variables in thease where the emitter omes from the initial state.Reall, that the soft limit is reahed when the momentum of the emitted gluon goesto zero. The preise de�nition was given e.g. in (3.103). This is of ourse possible onlyif ma = mai and mi = 0. Then, again ũ and z̃ tend to zero
ũ→ 0, z̃ → 0 (3.154)while this time
P2 → m2

j . (3.155)Thus, the soft behaviour in the IE-FS ase is essentially the same as in FE-IS ase.Next let us onsider the quasi-ollinear limit. We have to use the Sudakovparametrization, but this time for the initial state momenta. Let us reall from Se-tion 3.2.2.1 that
pµai = xpµa − kµT + α1

nµ

2pa · n
, (3.156)

pµi = (1− x) pµa + kµT + α2
nµ

2pa · n
, (3.157)where αi is a funtion of k2T and the relevant masses. Note, that the Sudakov x aboveis apriori ompletely di�erent from x de�ned in Setion 3.4.1.4 for the FE-IS ase. Theanalogue of the last is however x de�ned as

p̃µai = xpµa − kT + α
nµ

2pa · n
(3.158)and is interpreted as the fration of inident momentum pa entering the redued matrixelement. We shall ome bak to the above deomposition below, in Setion 3.4.2.5.The quasi-ollinear limit is again de�ned as the resaling (3.29) with respet to kTde�ned in the deompositions (3.156), (3.157). We get in this limit

pµai = xpµa − λkµT +O
(
λ2
) (3.159)

pµi = (1− x) pµa + λkµT +O
(
λ2
)
. (3.160)Contrating the seond equation with pa we get

z̃ = O
(
λ2
)
→ 0, (3.161)sine

Pa = O
(
λ0
)
. (3.162)On the other hand, ontrating (3.160) with pj we obtain

P2 = 2 (1− x) (1− z̃)Pa +O (λ) → 2 (1− x)Pa. (3.163)There are two remarks in order. First is that now z̃ tends to zero in quasi-ollinearlimit. Seond, we note that quasi-ollinear limit does not imply any partiular limitingvalue of ũ. This is onneted to the fat, that ũ plays a role of the Sudakov variable.This onnetion shall be lari�ed in the next subsetion.



3.5. DIPOLE SPLITTING FUNCTIONS 573.4.2.5 Relation between dipole and the Sudakov variablesThe analysis of the previous subsetion leads to the onlusion, that in the IE-FS ase, itis z̃ variable that ontrols the quasi-ollinear limit. Thus we expet ũ plays a role of thelongitudinal Sudakov variable. To �nd the expliit relation we use (3.137), resale themasses aording to the de�nition of the quasi-ollinear limit and use (3.162), (3.163).This leads to the expeted result
ũ = 1− x+O (λ) . (3.164)Moreover, ontrating (3.158) with P , using (3.133), again (3.163) and resaling all themasses we get
x = x+O (λ) . (3.165)Thus, in the quasi-ollinear limit the two Sudakov longitudinal frations are the same,as desired.For ompleteness, let us also disuss the relation between the above variables in thesoft limit, ontrolled by ũ → 0 and z̃ → 0. For x we obtain analogous result to FE-ISase, namely we have in gamma-kinematis

1− x = ũṽj +O
(
ũ2
)
, (3.166)with ṽj de�ned in (3.148). Next, for x variable, we obtain

1− x =
m2

j

γ̃ṽj (1− ṽj)

(
m2

aṽ
2
j

γ̃ (1− ṽj)
ũ− z̃

)
+O (ũz̃) . (3.167)Thus we see that x, x→ 1 in the soft limit.We note, that in order to obtain the above formulae the assumption mai = ma hasto be made. Moreover one has to drop the terms proportional to the mass of the gluon

mi.3.5 Dipole splitting funtionsNow we are ready to give the preise form of the dipole splitting matries introdued inSetion 3.3. Our funtions are similar to those in [10℄, however they need modi�ationsrequired by the massive initial state partons. In what follows, we treat FE-IS and IE-FSases separately. The ase FE-FS is ompletely overed in [10℄. Moreover, the ase ofinitial state g → gg splitting is also the same, thus it is not onsidered here.3.5.1 Final state emitter - Initial state spetator3.5.1.1 Q→ Qg and Q→ Qg splittingsThe assignment of the momenta is shown in Fig 3.7. Here we assume
mi = 0, mj = mij = mQ ≡ m (3.168)while we do not assume anything about ma, sine it an be either a quark (massive ormassless) or a gluon.
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(
V̂ FE-IS
Q→Qg, a

)ss′
= δss

′

8πµ2ε
r αsCF

[
2

ũṽ2 + z̃
+ (1− ε) z̃ − 2− m2

pi · pj

]
, (3.169)where ṽ was de�ned in (3.99) and here takes the form

ṽ ≡ ṽQ =

√
1− m2

am
2

γ̃2
. (3.170)Reall that µr is the mass sale that keeps the oupling onstant dimensionless.The origin of the dipole splitting funtion (3.169) an be understood as follows. First,reall the soft behaviour (3.20) when pi → 0. Here we are atually interested in one termfrom the sum in (3.20), namely in the expression

pa · pj
pi (pa + pj)

− m2

2pi · pj
. (3.171)We see, that the seond term does math the last one in (3.169). Consider thus the �rstone

pa · pj
pi (pa + pj)

=
(1− z̃)Pa

z̃Pa +
1
2 (P2 −m2)

. (3.172)Using the gamma-kinematis we have
P2 −m2 =

2 ũ ṽ2 γ̃2
(
m2 (ũ− 2)− ũm2

a − 2γ̃
)

(γ̃ +m2) (m2 + ũ (2γ̃ + ũm2
a))− w̃ (2γ̃ +m2) (m2 + ũ (γ̃ +m2

a) + γ̃)
.(3.173)The leading behaviour in ũ turn out to be

P2 −m2 = 2γ̃ũṽ2 +O
(
ũ2
)
. (3.174)Thus we see that ũ→ 0 limit indeed ontrols the soft behaviour. Moreover

Pa = γ̃ +O (ũ) . (3.175)Therefore (3.172) beomes
1

z̃ + ũṽ2
+O (1) (3.176)in onsisteny with (3.169). On the other hand, when we reah quasi-ollinear limit, wehave also ũ→ 0 due to (3.112) and z̃ → z aording to (3.121). Thus the squared braketin (3.169) equals exatly the splitting matrix for Q→ Qg proess (3.53).
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mij = 0, mi = mj = mQ ≡ m, (3.177)In the present ase the splitting matrix is orrelated with the redued matrix elementin the heliity spae (see Setion 3.2.2.2). Therefore this ase is less trivial than theprevious one. Below, we desribe the proedure whih leads to a suitable dipole splittingfuntion, whih an be later integrated over the one-partile subspae.First, reall the real splitting matrix (3.55)
(
P̂gQ

)µν
= TR

(
−gµν − 4

kµTk
ν
T

P2

)
, (3.178)where kµT is the Sudakov four-vetor transverse to p̃ij . The strategy in hoosing V̂ FE-IS

g→QQis to replae (3.178) by an expression leading to (3.178) in the quasi-ollinear limit (herethere is no soft singularity) and is suitable for analytial integration. Those requirementsare satis�ed by the following form
(
V̂ FE-IS
g→QQ, a

)µν
= 8πµ2ε

r αsTR

(
−gµν − 4

Cµν
P2

)
, (3.179)where we shall refer to the tensor Cµν as a orrelation tensor. By assumption, it istransverse to the ollinear diretioñ

pµijCµν = p̃νijCµν = 0. (3.180)In what follows, we shall �nd a suitable form of this tensor.To this end, it is instrutive to investigate the orresponding tensor used in [10℄. Letus denote it by Cµν∗ . It has the form
Cµν∗ =

[
z̃pµi − (1− z̃) pµj

] [
z̃pνi − (1− z̃) pνj

]
. (3.181)



60 CHAPTER 3. MASSIVE DIPOLE SUBTRACTION METHODIt an be easily shown using on-shell ondition for p̃ij (see e.g. (A.1)) that
p̃µij (z̃pi µ − (1− z̃) pj µ) =

1

2
(1− 2z̃)

m2
aũ

2

w̃
. (3.182)Therefore, if we assume that initial state is massless, Cµν∗ is the orret tensor. Howeverit is no longer the ase when ma 6= 0. Nevertheless it gives us a hint what modi�ationshould be used. It an be easily heked, that the following tensor possesses the requiredproperty

Cµν =

[
z̃pµi − (1− z̃) pµj −

ũm2
a

2w̃Pa

(
pµi − pµj

)] [
z̃pνi − (1− z̃) pνj −

ũm2
a

2w̃Pa

(
pνi − pνj

)]
.(3.183)It obviously redues to Cµν∗ in the ase of massless initial state. Note, the tensor (3.183)is onstruted as a dyadi formed from the vetor

Vµ = z̃pµi − (1− z̃) pµj −
ũm2

a

2w̃Pa

(
pµi − pµj

) (3.184)whih is orthogonal to p̃ij
p̃ij · V = 0. (3.185)Now, what remains, is to hek, that (3.179) with (3.183) indeed reprodue the orretquasi-ollinear behaviour. Using the Sudakov deomposition for pi, pj and the results ofSetion 3.4.1.4 we �nd that

Cµν =
[
p̃µij (2z − 1) + kµT

] [
p̃νij (2z − 1) + kνT

]
+O

(
|kT |3

)
. (3.186)Sine terms with p̃ij do not give ontribution, Cµν is of the order O (|kT |2). Of the sameorder is the denominator in (3.179), thus we indeed obtain the splitting matrix (3.178).3.5.1.3 g → gg splittingAlthough this subproess involves the massless partons only (Fig. 3.9)

mi = mj = mij = 0, (3.187)it is not legitimate to take the massless dipole splitting funtion as in [10℄ or [9℄. Thereason originates in non-zero mass of the spetatorma 6= 0. This ase is paradoxially themost ompliated one and in fat aommodates both of the ases desribed in Setions3.5.1.1, 3.5.1.2.Let us �rst reall the true splitting matrix (3.56)
(
P̂gg

)µν
= 2CA

[
−gµν

(
z

1− z +
1− z
z

)
+ 2 (1− ε) k

µ
T k

ν
T

P2

]
, (3.188)where z is the Sudakov parameter. Reall, that this gives the behaviour of matrixelement squared in the quasi-ollinear limit. However, there are also the soft singularitieswhen z = 0, 1, what orresponds to vanishing four-momentum of the gluon i or j. Theonstrution of dipole splitting funtion for these singularities is analogous to the one
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Figure 3.10: The initial state splitting Q→ Qg with the spetator pj in the �nal state.The spetator an be either massive quark or massless quark or gluon.desribed in Setion 3.5.1.1. Namely, in terms of our dipole variables we replae thedenominators in 3.188 as follows
z

1− z →
z̃

1− z̃ + ũ
=

1

1− z̃ + ũ
− 1 +O (ũ) , (3.189)

1− z
z
→ 1− z̃

z̃ + ũ
=

1

z̃ + ũ
− 1 +O (ũ) . (3.190)Notie, there is no ṽ2ij fator multiplying ũ, sine now simply ṽij = 1.Consider now the transverse part in (3.188). It is treated in exatly the same wayas in Setion 3.5.1.2 by means of the orrelation tensor. Therefore, the dipole splittingfuntion takes the following form

(
V̂ FE-IS
g→gg, a

)µν
= 16πµ2ε

r αsCA

[
−gµν

(
1

1− z̃ + ũ
+

1

z̃ + ũ
− 2

)
+ 2 (1− ε) C

µν

P2

]
,(3.191)where Cµν is given in (3.183).3.5.2 Initial State Emitter - Final State Spetator3.5.2.1 Q→ Qg and Q→ Qg splittingsLet us start by looking at the on�guration of masses in the onsidered ase (Fig. 3.10)

ma = mai = mQ ≡ m, mi = 0. (3.192)The dipole splitting matrix an be onstruted in similar manner as in FE-IS asein Setion 3.5.1.1. Let us �rst analyse the soft behaviour, whih our dipole splitting
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pa · pj

pi (pa + pj)
− m2

2pi · pa
. (3.193)The �rst term is exatly the same as in FE-IS ase (3.171), while in the seond termthere is a di�erent salar propagator. In pertinent kinematis, it an be shown in loseanalogy to Setion 3.5.1.1, that the �rst term beomes

pa · pj
pi (pa + pj)

=
1

z̃ + ũṽ2j
+O (1) . (3.194)Next, we have to look at the quasi-ollinear behaviour, in partiular at the splittingmatrix (3.38)

(
P̂QQ

)ss′
= δss

′

CF

(
1 + x2

1− x − ε (1− x) +
2xm2

p2ai −m2

)
. (3.195)Realling that x = 1−ũ+O

(
λ2
) and z̃ = O (λ2), where λ→ 0 ontrols the quasi-ollinearlimit, we see that the following dipole splitting matrix has the required behaviour

(
V̂ IE-FS
Q→Qg, j

)ss′
= δss

′

8πµ2ε
r αsCF

[
2

ũṽ2j + z̃
+ (1− ε) ũ− 2− (1− ũ)m2

pi · pa

]
. (3.196)3.5.2.2 g → QQ splittingThe orresponding mass on�guration reads

ma = 0, mai = mi = mQ ≡ m. (3.197)For onveniene, let us reall the splitting matrix obtained in Setion 3.2.2.1 in (3.42)
(
P̂gQ

)
ss′

= δss′ TR

[
1− 2

1− ε

(
x (1− x) + xm2

p2ai −m2

)]
. (3.198)Sine in this ase there are no soft singularities, we an easily �nd the dipole splittingmatrix. Here it is just

(
V̂ IE-FS
g→QQ, j

)
ss′

= 8πµ2ε
r αs δss′TR

[
1− 2

1− ε

(
ũ (1− ũ) + (1− ũ)m2

p2ai −m2

)]
. (3.199)It oinides with (3.198) (up to the fators) in the quasi-ollinear limit (due to (3.164)).
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ma = mi = mQ ≡ m, mai = 0. (3.200)Again we fae the orrelations of the dipole splitting matrix and redued matrixelement. Using the experiene gained in the FE-IS ase, we an dedue the followingform
(
V̂ IE-FS
Q→gQ, j

)µν
= 8πµ2ε

r αsCF (1− ε)
[
−gµν (1− ũ)− 4

1− ũ
Cµν
p2ai

]
, (3.201)where the orrelation tensor is again the dyadi

Cµν = VµVν , (3.202)formed from the following vetors (they are di�erent than in the FE-IS ase)
Vµ = (1− z̃) pµi − z̃pµj −

(w̃ − 1)
[
m2 −m2

j + P2 (1− 2z̃)
]

2p̃ai · P
Pµ. (3.203)For later onveniene let us note that

p̃ai · P = P2 (w̃ − 1)− Pa (ũ− 1) . (3.204)The vetors V are onstruted in suh a way that
p̃ai · V = 0 (3.205)as an be easily heked using on-shell onditions. When ma = 0 it redues to

Vµ
∗ = (1− z̃) pµi − z̃pµj , (3.206)whih is the same as used in [10℄.Let us now prove, that (3.201) indeed possesses orret quasi-ollinear behaviour (softlimit does not exist here), i.e. that it redues to

Pµν
QQ = CF (1− ε)

(
−xgµν − 4

x

kµT k
ν
T

p2ai

)
. (3.207)



64 CHAPTER 3. MASSIVE DIPOLE SUBTRACTION METHODFirst, reall from Setion 3.4.2.4, that then z̃ = O (λ2) and ũ→ 1−x. Moreover it turnsout that
w̃ − 1 = λ2

m2
(
P2 − 2Pa

)

4P2
a

+O
(
λ4
)
. (3.208)Thus, the term proportional to Pµ in (3.203) vanishes. The same is true for the term

z̃pj sine pj is the �xed spetator momentum. Now, using the Sudakov deomposition(3.157) we see that
Vµ = (1− x) pµa + λkµT +O

(
λ2
)
. (3.209)However

(1− x) pµa = p̃µai +O
(
λ2
)
. (3.210)The momentum p̃ai orresponds to a massless gluon, thus only the term proportional to

kT survives due to the Ward identity (the dipole splitting matrix is ontrated with theredued matrix element). Finally, the propagator also behaves as O (λ2)
p2ai = (pa − pi)2 = λ2 2

(
m2 − z̃Pa

)
. (3.211)Putting all the piees together we indeed reover (3.207). Another hek an be madeafter the integration of dipole splitting matrix, as we shall see in Setion 3.7.3.3.3.6 Phase spae fatorizationAs explained in Setion 1.2, the dipole subtration method requires separation of the

(n+ 1)-partile PS into n-partile PS and a subspae, whih after integration leads toIR singularities. In the following setion we present omplete treatment of the two ases:FE-IS and IE-FS in the most general situation of non-zero quark masses, inluding initialstate. Our treatment is lose to the one in [23, 10℄. The third possible on�guration with�nal state emitter and �nal state spetator, is developed in [10℄ and need not be modi�ed,as it does not involve the initial state at all.Before we start, let us make some general omments. First, sine in the new fatorizedphase spae the initial state is modi�ed as desribed in Setion 3.4 (with the help of aontinuous parameter), atually we obtain a whole family of phase spaes. Therefore itis natural to expet that the form of fatorization will be a onvolution rather than asimple produt. Seond, when the initial state is massive, one parameter is not enoughto �x the new (Lorentz transformed) frame. This leads to some ompliations whih weshall also disuss below.3.6.1 PreliminariesIn order to derive the phase spae fatorization formula, let us start with the (n+ 1)-partile PS and write it as follows
dΦn+1 (q, pa; p1, . . . , pn+1) = dΦ2 (Q, pa; pi, pj)

∏

k∈M

dΓk, (3.212)where
Qµ = qµ −

∑

k∈M

pµk (3.213)



3.6. PHASE SPACE FACTORIZATION 65and the set of indies is de�ned as
M = {1, . . . , n+ 1} \ {i, j} . (3.214)Our notation for phase spae ingredients was introdued in Setion 1.2.So far, in (3.212) we have only disentangled two-partile PS for two hosen �nal statepartons i and j. Further development is addressed to the next subsetions.3.6.1.1 Two-partile phase spaeFirst, let us alulate two-partile phase spae disentangled above. The result is wellknown and represents usual two-body phase spae slightly adjusted to our notation.Using enter of mass frame of momenta Q and pa (denote it as CM(Q, pa)) andnotation introdued in Setion 3.4 we have

dΦ2 (Q, pa; pi, pj)

=
dDpi δ+

(
p2i −m2

i

)

(2π)
D−1

dDpj δ+
(
p2j −m2

j

)

(2π)
D−1

(2π)D δD (Q+ pa − pi − pj)

=̇δ
(
P2 − 2

√
P2Ei +m2

i −m2
j

) |~pi|
Ei

(|~pi| sin θ)D−4 d~pi
2d (cos θ) dΩD−2

4 (2π)D−2
. (3.215)When deriving this result we used (A.48) from the Appendix A.3. Utilizing delta funtionwe get

dΦ2 (Q, pa; pi, pj) =
dΩD−2

4 (2π)D−2
p (p̂ sin θ)

D−4
d (cos θ) , (3.216)where

p =
p̂

P2
=

1

2

√
1− 2

(
m2

i +m2
j

)
+
(
m2

i −m2
j

)2 (3.217)with
m2

q =
m2

q

P2
, q = i, j (3.218)The variable p̂ is the modulus of the outgoing partiles three-momentum in CM(Q, pa)and dΩD−2 is the solid angle element on hyperplane perpendiular to z axis (Fig. 3.13).In general we an parametrize it using

dΩN =

N−1∏

k=1

sinN−1−k θk dθk. (3.219)We require at this stage
P2 ≥ P2

− = (mi +mj)
2
. (3.220)For ompleteness and future use we give also the energies and the momenta of thepartiles in CM(Q, pa)

Ea =
Pa√
P2

, (3.221)
|~pa| =

√
P2
a −m2

aP2

√
P2

, (3.222)
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EQ =

√
P2 − Ea =

P2 − Pa√
P2

, (3.223)
Ei =

m2
i −m2

j + P2

2
√
P2

, (3.224)
Ej =

√
P2 − Ei =

m2
j −m2

i + P2

2
√
P2

. (3.225)3.6.1.2 Two-partile phase spae in dipole variablesSine the dipole splitting funtions are expressed among others in speial variables ũ and
z̃, we start by trading cos θ for z̃ in (3.216). This is easily done using the de�nition of z̃(3.75) in CM(Q, pa). We get
dΦ2 (Q, pa; pi, pj) ≡ dΦ2

(
P2,Pa

)

=
dΩD−2

4 (2π)
D−2

v3−D
(
P2
)D

2
−2

[(z̃+ − z̃) (z̃ − z̃−)]
D
2
−2 dz̃, (3.226)where

z̃− ≤ z̃ ≤ z̃+ (3.227)with
z̃± =

1

2

(
1 +m2

i −m2
j ± 2vp

)
. (3.228)and v = |~pa| /Ea de�ned in (3.83).Now, using the results of Setion 3.4.1.2, we an express the invariants {P2,Pa

} interms of the dipole variable ũ and one of the other invariants γ̃, Pa or P2. That is onean use the relations of the type
Y = Y (ũ,X ) , (3.229)where X ,Y ∈ {P2,Pa, γ̃

} and X 6= Y of ourse. Let thus write generially
dΦ2 ≡ dΦ2 (X , ũ) . (3.230)At this stage it is not neessary to deide what X and Y are, neither to insert theirpreise forms, whih in fat depend on the kinematial on�guration (FE-IS or IE-FSase). Those distint ases are treated in the next subsetions.



3.6. PHASE SPACE FACTORIZATION 673.6.2 Final state emitter - initial state spetatorNow we are ready to derive the fatorized form of two-partile phase spae. We startwith FE-IS ase, but IE-FS goes in the same fashion.There are several possible approahes to phase spae fatorization. One of the simplestpossibilities is to �go bakward� from (3.226) using some elementary identities. This isthe path we hoose in this dissertation.Let us onsider the phase spae (3.230) and insert the following delta funtion
dΦ2 (X , ũ) =

ˆ

du δ (u− ũ) dΦ2 (X , u) . (3.231)Next, let us onvert δ (u− ũ) into the on-shell delta funtion for p̃µij de�ned in (3.73).Aording to Setion 3.4.1.5, we mean by this, that ũ is replaed by u and w̃ ≡ w isobtained as a funtion of u and two �external� invariants X , Y ∈ {P2,Pa, γ̃
}, see Setion3.4.1.5. Thus, we use the following identity

δ (u− ũ)
J (u,X ) = δ+

(
p̃2ij (u,X ,Y)−m2

ij

)
, (3.232)where

J (u,X ) =
∣∣∣∣∣
∂p̃2ij (u,X ,Y)

∂u

∣∣∣∣∣ ≡
∣∣∣∣∣
∂p̃2ij

∂u

∣∣∣∣∣
X ,Y

. (3.233)Note, that we alulate the above derivative with the invariants X , Y �xed (as expliitlydenoted using �thermodynamial� notation) and next used Y = Y (ũ,X ) = Y (u,X ) dueto the delta funtion.Finally, we insert D-dimensional delta funtion for momentum onservation with theappropriate integration
dΦ2 (X , ũ) =

ˆ

du

ˆ

dD p̃ij δ+

(
p̃2ij −m2

ij

)
dΦ2 (X , u)

J (u,X ) δD
(
Q+ p̃a (u,X ,Y)− p̃ij

)
. (3.234)Reall, that

p̃µa (u,X ,Y) = w (u,X ,Y)Pµ
a − u pµa , (3.235)where w (u,X ,Y) was obtained using single on-shell ondition p̃2a = m2

a.Equation (3.234) is just an identity, however it has already the required fatorizedform. To see this more learly, let us introdue the following measure
dφFE-ISij→i j, a (u,X ) =

1

4 (2π)
D−1

v3−D
(
P2
)D

2
−2 J [(z̃+ − z̃) (z̃ − z̃−)]

D
2
−2 dΩD−2dz̃,(3.236)where we impliitly understand, that all the quantities above should be expressed through

u and X . Using this notation we an ast (3.234) into
dΦ2 (Q, pa; pi, pj) =

ˆ

du (2π)
D
δD (Q+ p̃a (u,X ,Y)− p̃ij) dΓ

(
p̃ij

)
dφFE-ISij→i j (u,X )

=

ˆ

du dΦ1

(
Q, p̃a (u,X ,Y) ; p̃ij

)
dφFE-ISij→i j (u,X ) . (3.237)



68 CHAPTER 3. MASSIVE DIPOLE SUBTRACTION METHODFinally, using (3.212) we an write the fatorization formula for (n+ 1)-partile phasespae
dΦn+1

(
q, pa; {pm}n+1

i=1

)
=

ˆ

du dΦn

(
Q, p̃a (u,X ) ; {pm}m∈XFE-IS) dφFE-ISij→i j (u,X ) ,(3.238)where the set XFE-IS is de�ned as

XFE-IS = {1, . . . , n+ 1} \ {i, j} ∪
{
ĩj
}
. (3.239)Reall that the tilde above ij means that orresponding momentum should be adornedby a tilde, i.e. pĩj ≡ p̃ij .In what follows, we shall refer to the phase spae dΦn

(
q, p̃a (u,X ,Y) ; {pm}m∈XFE-IS),as a skewed phase spae.3.6.3 Initial state emitter - �nal state spetatorThe treatment of the IE-FS ase is ompletely analogous to FE-IS. This time we havean initial state (an emitter) given by the vetor p̃ai (3.133) and a spetator given by p̃j(3.132). Therefore the phase spae fatorization formula takes the form

dΦn+1

(
q, pa; {pm}n+1

i=1

)
=

ˆ

du dΦn

(
Q, p̃ai (u,X ,Y) ; {pm}m∈XIE-FS

)

dφIE-FSa→ai i, j (u,X ) , (3.240)where
XIE-FS = {1, . . . , n+ 1} \ {i, j} ∪

{
j̃
}
. (3.241)The measure is de�ned again as in (3.236) with the jaobian

J (u,X ) =
∣∣∣∣∣
∂p̃2j (u,X ,Y)

∂u

∣∣∣∣∣ ≡
∣∣∣∣∣
∂p̃2j
∂u

∣∣∣∣∣
X ,Y

. (3.242)All the relevant kinematis is worked out in Setion 3.4.2.3.6.4 Fatorization of three-partile phase spaeIn this subsetion we present expliit formulae for the fatorization of three-partile phasespae as an illustration of our approah. We shall use them later in onstruting a MonteCarlo program for numerial alulations.We demonstrate the onstrution for FE-IS ase (for IE-FS it is analogous). Thephase spae fatorization formula reads
dΦ3 (q, pa; pi, pj, k) =

ˆ

du dΦ2

(
q, p̃a (u,X ,Y) ; k, p̃ij

)
dφFE-ISij→i j, a (u,X )

=

ˆ

du (2π)D δD
(
q + p̃a (u,X ,Y)− p̃ij − k

)
dΓ
(
p̃ij

)
dΓ (k) dφFE-ISij→i j, a (u,X ) .(3.243)



3.6. PHASE SPACE FACTORIZATION 69PSfrag replaements
Z

pa
q

k
θtransversehyperplaneFigure 3.14: Center of mass system of momenta q and pa used to alulate fatorizedthree-partile phase spae.We assume, that the initial state momenta q and pa are �xed. Note however, thatnevertheless the CM energy of the p̃ij and k system is not �xed for �xed u. To see thisexpliitly, let us hoose for example X = P2, Y = Pa, we have then for the CM energy

s̃ =
(
q + p̃a

(
u,P2,Pa

))2
= s (w − u)+(w − 1)

(
P2 −m2

k − 2Pa

)
+u
(
q2 +m2

a

)
, (3.244)where w = w

(
u,Pa,P2

). Above
s = (q + pa)

2 (3.245)and we used the following relations
q · P =

s−m2
k + P2 − 2Pa

2
, (3.246)

q · pa =
s− q2 −m2

a

2
, (3.247)whih originate in momentum onservation in the form

qµ + pµa = kµ + Pµ. (3.248)Further we have the on-shell ondition p̃2ij = m2
ij in dΦ2

(
q, p̃a

(
u,P2,Pa

)
; k, p̃ij

), whihallows to express for instane Pa = Pa

(
u,P2

). Thus, in order to have �xed the energyof the p̃ij and k system, we need u and P2 to be �xed in (3.244). In general they ouldbe u and any other of the invariants {P2,Pa, γ̃
}.We shall now be onentrated on the skewed phase spae. Let us derive expliitexpressions for the hoie X = P2, Y = Pa. Due to the omment made above it isreasonable to hoose CM(q, pa) as a referene frame (Fig. 3.14). In order to express

dΦ2 (q, p̃a; k, p̃ij) as a funtion of the invariants P2 and Pa, we represent the kinematiparameters ∣∣∣~k∣∣∣ and cos θ aordingly (we an use some of the results from subsetion3.6.1.1)
∣∣∣~k
∣∣∣ =

√
s [s− 2 (m2

k + P2)] + (m2
k − P2)

2

2
√
s

≡ k̂, (3.249)
cos θ =

(
m2

a − q2
) (
m2

k − P2
)
− s

(
s+ P2 −m2

k +m2
a − 4Pa − q2

)

4s p̂ak̂
, (3.250)



70 CHAPTER 3. MASSIVE DIPOLE SUBTRACTION METHODwhere
p̂a =

√
s [s− 2 (m2

a + q2)] + (m2
a − q2)2

2
√
s

. (3.251)Calulating the jaobian
∣∣∣∣∣
D
(∣∣~p2i

∣∣ , cos θ
)

D (P2,Pa)

∣∣∣∣∣ =
s+m2

k − P2

2s p̂ak̂
(3.252)we get

dΦ2

(
q, p̃a

(
u,P2,Pa

)
; k, p̃ij

)
=

dΩD−2

4 (2π)
D−2

δ
(
p̃2ij
(
u,P2,Pa

)
−m2

ij

) p̂3−D
a√
s

[(
P+
a − Pa

) (
Pa − P−

a

)]D
2
−2
dP2 dPa,(3.253)where the bounds on Pa integration read

P±
a =

(
s+m2

a − q2
) (
s−m2

k + P2
)

4s
± p̂ak̂. (3.254)Moreover

(mi +mj)
2 ≤ P2 ≤

(√
s−mk

)2
. (3.255)Finally, we an perform one of the remaining integrations due to the on-shell delta fun-tion

dΦ2

(
q, p̃a

(
u,P2,Pa

)
; k, p̃ij

)
=

dΩD−2

4 (2π)
D−2

∣∣∣∣∣
∂p̃2ij

∂Pa

∣∣∣∣∣

−1

u,P2

p̂3−D
a√
s

[(
P+
a

(
P2
)
− Pa

(
u,P2

)) (
Pa

(
u,P2

)
− P−

a

(
P2
))]D

2
−2
dP2 (3.256)where we suppressed all the funtional dependene on �xed variables, suh as s or q2.Reall, that the formula (3.256) is atually used in the onvolution (3.243) and orre-sponds to X = P2, Y = Pa

(
u,P2

). It means that all the invariants in dφFE-ISij→i j have to beexpressed aordingly in terms of u and P2. The advantage of the above hoie X = P2,
Y = Pa is that one an relatively easily obtain the bounds on u and P2. In pratiehowever, it is more onvenient to keep u and γ̃ �xed when integrating over dφFE-ISij→i j , i.e.to hoose X = γ̃. Thus, let us now derive needed formulae. It is atually straightforward,one needs only to insert appropriate jaobian. We obtain
dΦ2

(
q, p̃a (u, γ̃,Pa) ; k, p̃ij

)
=

dΩD−2

4 (2π)D−2

∣∣∣∣∣
∂p̃2ij

∂Pa

∣∣∣∣∣

−1

u,γ̃

(
∂P2

∂γ̃

)

Pa

p̂3−D
a√
s

[(
P+
a (u, γ̃)− Pa (u, γ̃)

) (
Pa (u, γ̃)− P−

a (u, γ̃)
)]D

2
−2
dγ̃. (3.257)Using relations (A.7)-(A.9) from the Appendix A.1 and omparing the above formulawith (3.256), we an prove that (3.257) is indeed orret.The nontrivial issue in this hoie of X and Y is however to �nd analytially the orretsupport for the variables u and γ̃ (see also Setion 3.4.1.5). For an expliit example, see



3.7. INTEGRATION OF THE DIPOLES 71the next subsetion. The problems exist beause the funtion γ̃ (P2,Pa

) (see 3.87) anhave a minimum in Pa inside the region [Pa−,Pa+] de�ned by (3.254). If one doesnot need analytial expressions for the bounds and skewed phase spae integration isperformed via Monte Carlo, those problems are not essential. Unfortunately, in someases we do need the analytial expressions for the bounds, namely when we �nd �plus�distributions in our alulations. Thus, it seems that there is a problem: on one hand wewant to have �simple� formulae of integrated dipoles (ahieved when X = γ̃), on the otherwe want to have analytial expressions for the support of ũ variable. Both requirementsseem to be in a ontradition. However, there is a very simple solution. We an justmix both approahes, i.e. we an generate PS using hoie X = P2 while integratedipoles using X = γ̃ with however some are when treating the �plus� distributions. Tosummarize, it is a tehnial problem whih an be solved in one or the other way and wedo not disuss it further.For the IE-FS ase, one an obtain analogous formulae. Basially, one should replae
p̃a by p̃ai and p̃ij by p̃j in the above equations, aording to Subsetion 3.6.3.3.6.4.1 Expliit examplesSine the presented phase spae fatorization proedure is rather non-trivial, it requiresareful veri�ation. In this paragraph we shall hek our results against the usual ex-pression for the three-partile phase spae, whih we derive in A.3.First, notie that pure, fully integrated phase spae ´ dΦ3 (q, pa; pi, pj , k) dependsonly on the masses mi, mj , mk and the CM energy s. We have heked numeriallyusing (3.256) and (3.257) diretly inside (3.243), that the result depends neither on manor mij . Moreover, it preisely equals three-body phase spae obtained by standardmethod desribed in the Appendix A.3. The sample results are presented in Fig. 3.15 for
X = P2, Y = Pa and in Fig. 3.16 for X = γ̃, Y = Pa. The solid angle was integrated outanalytially. We show also the supports in these ases. Note in partiular the omplexityof the support in u and γ̃ variables, as we have disussed in the previous subsetion.3.7 Integration of the dipolesAs explained in Setion 3.1, the anellation of soft poles in virtual orretions requiresintegration of the dipoles over the measure dφ. In the following, we shall ompute all theneessary integrals and disentangle the soft poles.Let us �rst make some general remarks. To be spei�, let us onentrate on FE-ISase. Reall, that the unintegrated dipole splitting funtions are - as a matter of fat -matries in the heliity spae. Let us also reall that they are sandwihed between theredued matrix elements (see Setion 3.3); the omplete general dipole has the form

DFE-IS = − 1

S M̂
† (
q, p̃a; {pm}m∈XFE-IS) ĈV̂ M̂ (

q, p̃a; {pm}m∈XFE-IS) , (3.258)where S is a salar propagator relevant to the splitting ase, V̂ is a pertinent dipolesplitting matrix. Reall that X is the set enumerating the orresponding �nal statemomenta entering the redued matrix element. The matrix Ĉ is the adequate olourorrelation matrix. Suppose we want to integrate the dipole over the subspae dφ. Wehavê
dφDFE-IS = −M̂

† (
q, p̃a; {pm}m∈XFE-IS) ĈÎFE-IS M̂ (

q, p̃a; {pm}m∈XFE-IS) , (3.259)
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Figure 3.15: Sample results for the three-partile phase spae in terms of u and P2variables and FE-IS ase. All the plots are made for s = 60GeV2, m2
k = 2GeV2,

m2
i = 3GeV2, m2

j = 4GeV2 and frational dimension D = 4.3. In olumn A) we showsurfae plot (top) and the support (bottom) for m2
a = 5GeV2, m2

ij = 1GeV2; olumnB) - the same for m2
a = 15GeV2, m2

ij = 0. Notie, that in general umax > 1 ontrary tothe massless ase. The solid angle was integrated out.A) B)
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ÎFE-IS =

ˆ

dφ
1

S V̂ . (3.260)The integral is in general orrelated (in heliity spae) with the matrix element. However,it turns out that it is super�ial. As we shall see, after integration the orrelations vanishand we are left with
ˆ

dφDFE-IS = −IFE-IS Ĉ ∣∣∣M̂ (
q, p̃a; {pm}m∈XFE-IS)∣∣∣2 , (3.261)with

IFE-IS =

ˆ

dφ
1

S
〈
V̂
〉
, (3.262)where 〈.〉 denotes heliity average in D dimensions. The redued matrix element in(3.261) is averaged over initial state polarizations of parton p̃a whih is the same as for

pa. It is not the ase for IE-FS, see below.For initial state emitter, the overall situation is very similar. The only di�erene atthis stage is due to the fat, that the number of polarizations of the new initial state p̃aiis di�erent. That is we have
ˆ

dφDIE-FS = −IIE-FS Ĉ ⊗ ∣∣∣M̂ (
q, p̃ai; {pm}m∈XIE-FS

)∣∣∣
2

, (3.263)where now the redued matrix element is averaged over polarizations of ai. Therefore,we have to inlude a spin-transition fator into the dipole splitting funtions or into theintegral. In our ase, we have inluded it in the splitting funtion. Note, this is di�erentthan in [10℄, where dipole splitting funtions are de�ned without these fators. Morepreisely, the dipole integral is then
IIE-FS∗ =

nai

na

ˆ

dφ
1

S
〈
V̂
〉
, (3.264)where nai, na are number of spin states of partons ai and a respetively. In our ase it is

IIE-FS =

ˆ

dφ
1

S
〈
V̂
〉
. (3.265)We note, that although those spin transition fators equal to 1 or 1−ε, they are essentialas the integrals are in general singular.3.7.1 The notationLet us introdue some helpful notation we shall use throughout this setion. We de�nesaled, dimensionless masses for a quark q as follows

η2q =
m2

q

2γ̃
. (3.266)In this fashion, it is also useful to de�ne other saled quantities. For any quantity Xwith the dimension of the mass squared we de�ne

η2X =
X

2γ̃
. (3.267)



74 CHAPTER 3. MASSIVE DIPOLE SUBTRACTION METHODFor example, we shall use
η2P2 =

P2

2γ̃
, (3.268)

η2Pa
=
Pa

2γ̃
(3.269)and so on. It is also useful to de�ne ũ-saled variables of this kind

η̃2X =
η2X
ũ

=
X

2ũγ̃
. (3.270)The motivation in introduing suh a notation is that we want to disentangle ũ depen-dene as muh as possible, sine it an lead to the singularities. This point shall belari�ed later in this setion.It is onvenient to introdue a redued dipole integral Ĩ, de�ned as follows

I =
αs

2π

1

Γ (1− ε)

(
4πµ2

r

2γ̃

)ε

Ĩ , (3.271)where the integrated dipole I is de�ned in (3.262). That is we pull out the standardfators relevant to MS alulations.3.7.2 Final state emitter - Initial state spetator3.7.2.1 Q→ Qg and Q→ Qg splittingsIn that ase the dipole splitting matrix (3.169) is diagonal in heliity. Therefore thereare no orrelations between the dipole and the redued matrix element. Averaged dipolesplitting funtion reads simply
〈
V FE-IS
Q→Qg, a

〉
= 8πµ2ε

r αsCF

[
2

ũṽ2 + z̃
+ (1− ε) z̃ − 2− m2

pi · pj

]
. (3.272)Let us de�ne the integral of the dipole funtion

IFE-ISQ→Qg, a =

ˆ

dφFE-ISQ→Qg, a

1

2pi · pj

〈
V̂ FE-IS
Q→Qg, a

〉
. (3.273)Note we inluded the propagator. Let us express the dipole splitting funtion, propagatorand the subspae dφ via the saled variables introdued in Setion 3.7.1. The propagatorreads

2pi · pj = P2 −m2 = 2γ̃
(
η2P2 − η2

)
= 2uγ̃ η̃2P2−m2 , (3.274)where we introdued resaled inverse propagator

η̃2P2−m2 =
η2P2−m2

u
=
P2 −m2

2γ̃u
. (3.275)Note, that we use u instead of ũ, due to phase spae fatorization proedure. We turnspeial attention that η̃P2−m2 is resaled also by u omparing to similar quantities. Thisfat is marked by the notation with the tilde (see also 3.7.1). The reason to make suhresaling is to disentangle possible u = 0 singularity; in this limit the propagator inFig. 3.7 vanishes. We shall analyse the support in u in more detail below.



3.7. INTEGRATION OF THE DIPOLES 75Let us now rewrite the sub-spae dφ (3.236) using saled variables. We have (afterintegration over azimuthal angles whih is trivial)
dφFE-ISQ→Qg, a =

2 (2γ̃)
1−ε

(4π)
2−ε

Γ (1− ε)
η2J
(
η2P2

)−ε
v2ε−1 [(z̃+ − z̃) (z̃ − z̃−)]−ε

dz̃, (3.276)where the veloity reads
v =

ṽ

1 + 2uη2a
, (3.277)with (ompare (3.99))

ṽ =
√
1− 4η2η2a. (3.278)The saled jaobian (3.233)

η2J =
J
2γ̃

(3.279)is given in Appendix (A.2.1.1). In the onsidered ase the bounds on z̃ are
z̃± =

u η̃2P2−m2

(
1 + 2uη2a ± ṽ

)

2η2P2 (1 + 2uη2a)
. (3.280)Now we are ready to integrate the dipole splitting funtion over dz̃. As antiipatedalready in Setion 3.7.1, it is onvenient to de�ne the redued integral ĨFE-ISQ→Qg, a as

IFE-ISQ→Qg, a =
αs

2π

1

Γ (1− ε)

(
4πµ2

r

2γ̃

)ε

ĨFE-ISQ→Qg, a, (3.281)i.e. we pull out the standard fators appearing in the MS NLO alulations. Using theintegrals alulated in Appendix B.1 (integrals I1, I2, I3) we obtain
ĨFE-ISQ→Qg, a =

2CF η
2
J

(
η2P2

)ε

u1+2ε
(
η̃2P2−m2

)1+2ε

{
1

v
F (A (u) ;−ε)

−B (1− ε)
[
η2

η2P2

+
η̃2P2−m2

η2P2

u

(
1 +

η̃2P2−m2

4η2P2

uv (ε− 1)

)]}
, (3.282)where

A (u) =
2ṽη̃2P2−m2

2η2P2 ṽ2 (1 + 2uη2a) + η̃2P2−m2 (1 + 2uη2a − ṽ)
. (3.283)The funtion F an be expressed as a hypergeometri funtion and is preisely de�ned in(B.21); we also refer to Appendix B.1 for some of its useful properties. We turn attentionto our speial notation of Euler's beta funtion with two equal arguments

B (1− ε, 1− ε) ≡ B (1− ε) . (3.284)Remember that w, η2P2 , η2P2−m2 , η2Pa
should all be onsidered as the funtions of u. Wedo not write it expliitly for more transpareny (the expliit expressions are olleted inAppendix A.2.1.1).



76 CHAPTER 3. MASSIVE DIPOLE SUBTRACTION METHODLet us now analyse the support of the integral in u (reall, that it will be onvolutedwith the redued matrix element). Aording to (3.98) we have for the lower bound inour mass on�guration
u− = 0 (3.285)and in general the upper bound u+ is di�erent than one (we do not give it expliitlyhere). We see that the integral (3.282) is singular at the point u = u− in D = 4. This isthe soft singularity. In order to regularize this singularity we de�ne

κ = −ε, κ > 0. (3.286)and disentangle the divergene using the �plus� distribution f[0,u+] de�ned as (see alsoAppendix B.3)
f (u) = f[0,u+] (u) + δ (u)

ˆ u+

0

f (u) du. (3.287)Notie, that our distribution has the support [0, u+], rather than ommonly used [0, 1].Let us now write (3.282) as̃
IFE-ISQ→Qg, a =

1

u1−2κ
K (u;κ) , (3.288)where K (u;κ) is now free from the singularity. Using (3.287) we have

ĨFE-ISQ→Qg, a =

(
1

u

)

[0,u+]

K (u; 0) + δ (u)K (0;κ)

(
1

2κ
+ log u+

)
+O (κ) . (3.289)The logarithm of u+ re�ets our de�nition of the �plus� distribution with a non-standardsupport. The two distint limits of the quantity K read

K (u; 0) =
2CF η

2
J

η̃2P2−m2

{
1

v
log (1 +A (u))−

[
η2

η2P2

+
uη̃2P2−m2

η2P2

(
1−

uv η̃2P2−m2

4η2P2

)]}
, (3.290)

K (0;κ) = −2CF ṽ
4κη−2κ

(
B (1 + κ)− 1

ṽ
F (A;κ)

)
, (3.291)where

A ≡ A (0) =
2ṽ

1 + 2η2 − ṽ . (3.292)Let us write the full result as
ĨFE-ISQ→Qg = J (u) + δ (u) (Jpole + Jfinite) . (3.293)The subsequent piees read
Jpole = −CF

1

κ

(
1− 1

ṽ
log (1 +A)

)
, (3.294)

Jfinite = CF

[
2 +

1

ṽ
F1 (A)−

(
1− 1

ṽ
log (1 +A)

)
log

u2+ṽ
4

η2

]
, (3.295)
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J (u) =

(
1

u

)

[0,u+]

K (u; 0) , (3.296)where F1 is the oe�ient in expansion
F (A;κ) = log (1 +A) + κF1 (A) +O (κ) , (3.297)alulated in Appendix B.2.Let us now hek, if in the limit of massless initial state parton we reover the resultof [10℄. When ma → 0, we have in partiular

v = ṽ = 1, w = 1, (3.298)
η2P2 = u+ η2, η̃2P2−m2 = 1, η2J = 1, (3.299)

A (u) =
1

u+ η2
. (3.300)Now, the terms in deomposition (3.293) read (we have adorned them by a star tounderline that they are evaluated for the massless spetator)

J∗
pole = −CF

1

κ

(
1− log

1 + η2

η2

)
, (3.301)

J∗
finite = CF

[
2 + F1

(
1

η2

)
+

(
1− log

1 + η2

η2

)
log η2

]
, (3.302)

J∗ (u) = 2CF

(
1

u

)

+

{
log

1 + u+ η2

u+ η2
− 1 +

u2

4 (u+ η2)
2

}
. (3.303)Now, we use some e�ort to reshu�e the terms between the above equations using (B.74)in order to get the same �plus� distributions as in [10℄. We get

ĨFE-ISQ→Qg

∣∣∣
m2

a=0
= 2CF

(
1

u

)

+

log
(
1 + u+ η2

)

+ CF

[
1

u

(
u2

2 (u+ η2)
− 2 log

(
u+ η2

)
− 2

)]

+

+ CF δ (u)

[
1

κ

(
log
(
1 + η2

)
− 1
)
+

(
1

2
− 1

κ

)
log η2 − 1

2
log2 η2 +

3

2
− 2

3
π2

+
1

2
log
(
1 + η2

) (
1 + log

(
1 + η2

))
− 2 log η2 log

(
1 + η2

)
− 4Li2

(
−η2

)
+

η2

2 (1 + η2)

]
.(3.304)We note that the u-dependent part is idential to the one in [10℄. The same is true forthe endpoint ontributions, whih are �nite in massless limit. We obtain full agreementone we expand the η2κ term2 whih multiplies some poles and �nite fators in [10℄. Suha fator was introdued there, in order to keep possibility to obtain massless results atany time. After expanding η2κ it is no longer possible, sine the limits κ→ 0 and η2 → 0do not ommute.2adapted to our notation.



78 CHAPTER 3. MASSIVE DIPOLE SUBTRACTION METHODIn the end, let us give two remarks. First, note an interesting trik. As far as weonsider soft and soft/ollinear poles in a massive alulation, i.e. the end-point termsontaining log η2, the orresponding poles in massless alulation an be always reoveredby means of the following orrespondene rules
log η2 =

1

κ

(
η2κ − 1

)
+O (κ) → − 1

κ
, (3.305)

1

κ
log η2 +

1

2
log2 η2 =

1

κ2
(
η2κ − 1

)
+O (κ) → − 1

κ2
. (3.306)Thus, using this method we an hek soft singularities in a massive alulation againstorresponding massless results, whih are either well known or are simple to obtain. Thisof ourse does not work for the �nite terms.Seond observation is that we annot set the mass of heavy quark Q literarly to zeroin our integrated dipole funtion (3.293). This is beause we have not kept trak of η2κfators and they are expanded, see more extensive disussion below in Setion 3.7.3.1. Wegive separate formula in Appendix B.4, as the alulation requires some tools introduedbelow in Subsetion 3.7.2.3.3.7.2.2 g → QQ splittingLet us �rst reall, that in this ase we have the following on�guration of masses

mi = mj = mQ ≡ m, mij = 0. (3.307)For onveniene, we reall also that the dipole splitting matrix derived in Setion 3.5.1.2reads
(
V̂ FE-IS
g→QQ, a

)µν
= 8πµ2ε

r αsTR

(
−gµν − 4

Cµν
P2

)
, (3.308)where

Cµν =

[
z̃pµi − (1− z̃) pµj −

ũm2
a

2w̃Pa

(
pµi − pµj

)] [
z̃pνi − (1− z̃) pνj −

ũm2
a

2w̃Pa

(
pνi − pνj

)]
.(3.309)Let us de�ne the integral of the dipole splitting matrix as

Kµν =

ˆ

dφFE-IS
g→QQ, a

1

P2

(
V̂ FE-IS
g→QQ, a

)µν
, (3.310)where the detailed expression for the measure dφ is derived in Setion 3.6. Due to theLorentz invariane, the integral an be deomposed as

Kµν = −gµνA1 +
p̃µij p̃

ν
a + p̃νij p̃

µ
a

p̃ij · p̃a
A2 + p̃µij p̃

ν
ij A3 + p̃µa p̃

ν
a A4. (3.311)Sine the momentum p̃ij is the one of the massless gluon, the A2, A3 terms do notontribute to the full subtration term. This is due to the gauge invariane and thefollowing Ward identity

p̃µijMµ = 0. (3.312)



3.7. INTEGRATION OF THE DIPOLES 79Here the redued amplitudeMµ orresponds to the shaded blob in Fig. 3.8. Let us nowturn to the A4 oe�ient. Contrating (3.311) with p̃µij p̃νij we get
A4 =

ˆ

dφ
1

P2
(
p̃ij · p̃a

)2 p̃
µ
ij p̃

ν
ij

(
V̂ FE-IS
g→QQ

)
µν

= 0, (3.313)due to the transversality property of Cµν (3.180) and the on-shell ondition
p̃2ij = 0. (3.314)Thus, only A1 ontributes to the full subtration term. It an be disentangled by takingthe average over heliities of the gluon p̃ij by means of the polarization tensor

dµν
(
p̃ij ; pa

)
= −gµν +

p̃µijp
ν
a + p̃νijp

µ
a

p̃ij · pa
−m2

a

p̃µij p̃
ν
ij

(
p̃ij · pa

)2 . (3.315)Here pa is used as an auxiliary vetor. In pratie - again due to the transversality of
Cµν - the gauge terms in dµν an be omitted.Summarizing, only the average of the dipole splitting funtion ontributes. Thisaverage reads 〈

V FE-IS
g→QQ, a

〉
=

1

D − 2
dµν

(
p̃ij ; pa

)(
V FE-IS
g→QQ, a

)µν
. (3.316)The only non-trivial (although straightforward) point is to evaluate the average of Cµν .It turns out to be simple

dµν

(
p̃ij ; pa

)
Cµν = P2 (z̃+ − z̃) (z̃ − z̃−) (3.317)Hene 〈

V FE-IS
g→QQ, a

〉
= 8πµ2ε

r αsTR

[
1− 2

1− ε (z̃+ − z̃) (z̃ − z̃−)
]
, (3.318)where the bounds z̃± on z̃ variable are given in Setion 3.6.1.2. Let us list their form forthe present mass on�guration:

z̃± =
1

2
(1± vp) , (3.319)where p was de�ned in (3.217) and reads here

p =

√
1− 4m2

P2
. (3.320)Now, we shall perform the integral over the measure dφ. Note, that in the presentase

ṽij = 1. (3.321)Further
v =

γ̃

γ̃ + um2
a

(3.322)



80 CHAPTER 3. MASSIVE DIPOLE SUBTRACTION METHODand thus the measure reads
dφFE-IS

g→QQ, a
=

2 (2γ̃)
1−ε

(4π)
2−ε

Γ (1− ε)
(
uη̃2P2

)−ε
η2J
(
1 + 2uη2a

)1−2ε
[(z̃+ − z̃) (z̃ − z̃−)]−ε

dz̃.(3.323)Let us reall, that η2J is the saled jaobian J , that has di�erent form depending onthe hoie of the �external� kinemati variables. The form we use is given in AppendixA.2.1.2. We de�ne the pertinent integral as
IFE-IS
g→QQ, a

=

ˆ

dφFE-IS
g→QQ, a

1

P2

〈
V̂ FE-IS
g→QQ, a

〉 (3.324)and introdue - similarly as before - the integral without the standard fators, ĨFE-IS
g→QQ, a

,see (3.271) for de�nition. In terms of the integrals de�ned and alulated in the AppendixB.1 we have (again onverting ε→ −κ)
ĨFE-IS
g→QQ

=
TR

u1−κη̃2P2

η2J
(
1 + 2uη2a

)1+2κ
[
I2 −

2

1 + κ
I7
]

=
TRB (1 + κ)

u1−κη̃2P2

η2J p
1+2κ

[
1 +

p2

(3 + 2κ) (1 + 2uη2a)
2

]
. (3.325)We see that there is a potential singularity due to the denominator 1

u
. However, it isnot the ase as long as we deal with massive quarks. To see this, hek the lower boundon u. It reads

u− =
8η2

1 + 16η2 (η2 − η2a) + (1 + 4η2)

√
(1− 4η2)

2 − 16η2η2a

(3.326)and equals zero only for m = 0 (not even for ma = 0). The lak of the �formal�singularity, however, does not make neessarily life easier. This is beause for largemomenta u− → 0 and thus it is desirable to ontrol the potential singular behaviour.Possible solution to this problem, is the following (see [10℄). Regularize this potentialsingularity by introduing the �plus� distribution with the support extending from non-zero value, namely (see also Appendix B.3)
f (u) = f[u−,u+] (u) + δ (u− u−)

ˆ u+

u−

f (u) du. (3.327)It has the property that
f[u−,u+] −→

m→0
f[0,u+], (3.328)In the ontext of (3.325), the above proedure is realised by the following replaement

1

u
=

(
1

u

)

[u−,u+]

+ δ (u− u−)
1

κ

(
uκ+ − uκ−

)
. (3.329)At this stage we are still free to literally set m = 0 � then we get the soft pole (sine

u− = 0). However in pratie, if we want to deal with massive quarks, we have to expandthe numerator in κ and we get
1

u
=

(
1

u

)

[u−,u+]

+ δ (u− u−) log
u+
u−

. (3.330)
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ĨFE-IS
g→QQ, a

=

(
1

u

)

[u−,u+]

K (u) + δ (u− u−)K (u−) log
u+
u−

, (3.331)where
K (u) = TR

η2J
η̃2P2

p

[
1 +

p2

3 (1 + 2uη2a)
2

]
. (3.332)Note, we have set κ = 0, as it was legitimate.One an wonder about the usefulness of suh a deomposition. Normally in suhsituation, we have δ (u) and a soft part an be added to virtual orretion under thesame integrand, sine for u = 0 the dipole momentum p̃a beomes the usual pa (i.e. theskewed PS beomes a usual one). Here however, the skewed phase spae is generatedfrom p̃a (u−) 6= pa. Therefore the onsidered end-point ontribution annot be added tovirtual part under the same PS. One an extend the support of the distribution (3.327)in order to inlude u = 0 point. But this is not neessary. Consider a situation, where allthe integrations are made by MC. The above endpoint integral is binned into di�erentbins than the one for virtual orretions, sine their PS do not oinide. However, when

η2 → 0 the bins start to overlap and the anellation an our.3.7.2.3 g → gg splittingFinally, let us onsider pure gluoni splitting, with a possible massive spetator. Foronveniene, let us reall the dipole splitting funtion introdued in Setion 3.5.1.3
(
V̂ FE-IS
g→gg, a

)µν
= 16πµ2ε

r αsCA

[
−gµν

(
1

1− z̃ + ũ
+

1

z̃ + ũ
− 2

)
+ 2 (1− ε) C

µν

P2

]
,(3.333)where Cµν is given for instane in (3.309). The masses are mi = mj = mij = 0 and

ma 6= 0 in general.In omplete analogy to Setion 3.7.2.2 we an prove that the ontribution to theintegral of the dipole splitting matrix omes from its average
IFE-ISg→gg, a =

ˆ

dφFE-ISg→gg, a

1

P2

〈
V̂ FE-IS
g→gg, a

〉
, (3.334)where this time

dφFE-ISg→gg, a =
2 (2γ̃)

1−ε

(4π)
2−ε

Γ (1− ε)
(
uη̃2P2

)−ε
η2J
(
1 + 2uη2a

)1−2ε
[(z̃+ − z̃) (z̃ − z̃−)]−ε

dz̃.(3.335)The average itself is easily alulated in the same manner as in Setion 3.7.2.2 and reads
〈
V FE-IS
g→gg, a

〉
= 16πµ2ε

r αsCA

[
1

1− z̃ + ũ
+

1

z̃ + ũ
− 2 + (z̃+ − z̃) (z̃ − z̃−)

]
. (3.336)Here

z̃± =
1± v
2

, (3.337)while the rest of the quantities, like η2J , η̃2P2 et., are given in Appendix A.2.1.2.



82 CHAPTER 3. MASSIVE DIPOLE SUBTRACTION METHODIn omplete analogy to previous ases we de�ne the saled integral ĨFE-ISg→gg, a, see (3.271)for de�nition. Using integrals from Appendix B.1 we get
ĨFE-ISg→gg, a = 2CA

η2J

η̃
2(1−κ)
P2

1

u1−κ

(
1 + 2uη2a

)

[
F (A1 (u) ;κ)−F (A2 (u) , κ) +B (1 + κ) v

(
1 + κ

2 (3 + 2κ)
v2 − 2

)]
, (3.338)where

v =
1

1 + 2uη2a
, (3.339)

A1 (u) =
1

u

1

1 + (1 + 2u) η2a
, (3.340)

A2 (u) =
−1

1 + u (1 + (1 + 2u) η2a)
. (3.341)The di�erene of F funtions in (3.338) an be further simpli�ed, due to the relation

F (A1;κ) = −F (A2, κ) . (3.342)following the Pfa� transformation3 (see Appendix B.1) and the relation
A1

1 +A1
= −A2. (3.343)Now, we have to disentangle the soft singularity that appears due to the fat, that inthe present ase u− = 0. This time however - apart from the singular fator 1/u - thereis also a singularity hidden in funtion F , due to the behaviour of A1 as a funtion of u;we shall see this more preisely in a moment. Therefore we expet a double soft/ollinearpole.Sine the expansion in κ of the funtion F (A1;κ) is not analyti at u = 0, we haveto put it inside the �plus� distribution, i.e. we make the following replaement

1

u1−κ
F (A1 (u) ;κ) =

(F (A1 (u) ; 0)

u

)

[0,u+]

+ δ (u)

ˆ u+

0

dy
1

y1−κ
F (A1 (y) ;κ) +O (κ) . (3.344)The integration above is rather non-trivial when ma 6= 0, beause A1 is a nontrivialfuntion of u.In order to simplify the proedure, let us de�ne the speial variable, whih plays ananalogous role as u,

r =
1

A1
= u

(
1 + (1 + 2u) η2a

)
. (3.345)Thus u an be replaed by

u = rB (r) , (3.346)3This an be also dedued already from (3.336) by simply noting the symmetry of the �rst twointegrals.



3.7. INTEGRATION OF THE DIPOLES 83where
B (r) = 2

1 + η2a +
√

1 + η2a [η
2
a + 2 (1 + 4r)]

. (3.347)Notie that
B (r) = 1 for ma = 0 (3.348)and
B (0) = 1

1 + η2a
. (3.349)Let us now de�ne the �plus� distribution using this new variable

1

r1−κ
F
(
1

r
;κ

)
=

[
F
(
1
r
; 0
)

r

]

+

+ δ (r)

ˆ 1

0

dy
1

y1−κ
F
(
1

y
;κ

)
+O (κ) . (3.350)Note, we de�ned the usual �plus� distribution, i.e. the support is [0, 1]. This aounts forsimpler evaluation of the integral � it is alulated up to order O (κ) in Appendix B.1 asIntegral M. In the end we get

1

r1−κ
F
(
1

r
;κ

)
=

1

r
log (1 + r) +

[
1

r
log

1

r

]

+

+ δ (r)

(
1

2κ2
− π2

4

)
+ O (κ) , (3.351)where we used the relation[

1

r
log (1 + r)

]

+

=
1

r
log (1 + r)− δ (r) π

2

12
(3.352)following Appendix B.3.To be onsistent, we also use the new variable r for the rest of the terms in (3.338).We an easily transform the end-point delta funtion δ (r) into δ (u). More attention hasto be paid to pratial integration of the �plus� distributions in the new variable r. Auseful formula is given in Appendix B.3.Let us now ollet the singular and non-singular piees and deompose the integralsimilarly as before

ĨFE-ISg→gg, a = J (u) + δ (u) [Jfinite + Jpole] , (3.353)For the subsequent parts we obtain
Jpole = 2CA

[
1

κ2
− 11

6κ
− 1

κ
log
(
1 + η2a

)]
, (3.354)

Jfinite = 2CA

{
67

18
− π

2
+

[
1

2
log
(
1 + η2a

)
+

11

6

]
log
(
1 + η2a

)}
, (3.355)

J (u) = 2CA

η2J
B (r) η̃2P2

(
1 + 2rB (r) η2a

)

[
2

r
log (1 + r) +

(
2

r
log

1

r

)

+

+
v

6

(
v2 − 12

)(1

r

)

+

]
, (3.356)where the funtional dependene r (u) was skipped.It an be easily heked, that for ma = 0 we arrive at the known result from [9℄. Weturn attention, that we have an additional pole with a logarithm ontaining the spetatormass omparing to [9℄. This is however perfetly right, as for every FE-IS ase, there isa orresponding IE-FS ase. The last an have similar singularities to those in (3.354)sine we allow for massive quark there.



84 CHAPTER 3. MASSIVE DIPOLE SUBTRACTION METHOD3.7.3 Initial State Emitter - Final State Spetator3.7.3.1 Q→ Qg and Q→ Qg splittingsNow we swith to the IE-FS ase. Let us start with Q → Qg splitting. Note, here wedistinguish this ase from Q → gQ. In the former a gluon has momentum pi and isradiated out, while in the last it enters a redued matrix element. In FE-IS both aseswere treated simultaneously.Let us start with the preise de�nition of the dipole integral. We de�ne
IIE-FSQ→Qg, j =

ˆ

dφIE-FSQ→Qg, j

−1
p2ai −m2

〈
V̂ IE-FS
Q→Qg, j

〉
, (3.357)where the dipole splitting matrix was de�ned in (3.196). The whole proedure is quiteanalogous to FE-IS ase. The fat that we an use the averaged dipole splitting matrixis due to its diagonality. The propagator in (3.357) reads

p2ai −m2 = −2z̃Pa. (3.358)The measure dφ reads here expliitly
dφIE-FSQ→Qg, j =

2 (2γ̃)
1−ε

(4π)2−ε Γ (1− ε)
η2J
(
η2P2

)−ε

ṽ1−2ε
j

(
1 + 2uη2

)1−2ε
[(z̃+ − z̃) (z̃ − z̃−)]−ε dz̃,(3.359)where

z̃± =
uη̃2

P2−m2
j

(
1 + 2uη2 ± ṽj

)

2η2P2 (1 + 2uη2)
. (3.360)We delegate the expliit forms of η2J , η2P2 et. to the Appendix A.2.2.1.Performing the integration over dz̃ (using Appendix B.1) we obtain for the reduedintegral ĨIE-FSQ→Qg, j de�ned as usual in (3.271)

ĨIE-FSQ→Qg, j = −
CF η

2
J

(
η̃2
P2−m2

j

)2κ (
1 + 2uη2

)

u1−2κ
(
η2P2

)κ
ṽ3j η

2
Pa

{
F (A1 (u) ;κ)

+
1

2

[
u (2− u (1 + κ)) ṽ2j − 2

]
F (A2 (u) ;κ)

+
η2η2P2 ṽ2j (1− u)

(
1 + 2uη2

)

η̃2
P2−m2

j

η2Pa
(1− ṽj + 2uη2)

G (A2 (u) ;κ)

}
, (3.361)where

A1 (u) =
2uṽj η̃

2
P2−m2

j

η2P2

[
2u
(
η2 + ṽ2j (1 + 2uη2)

)
+ 1− ṽj

]
− η2j (1 + 2uη2 − ṽj)

, (3.362)
A2 (u) =

2ṽj
1 + 2uη2 − ṽj

. (3.363)Reall, that the funtions F , G are de�ned in Appendix B.1.Sine we onsider the emission of a gluon, we expet the soft singularity. Indeed thereis 1/u term in (3.361), while the minimal value of u variable is u− = 0. Therefore, we



3.7. INTEGRATION OF THE DIPOLES 85disentangle the singularity by means of the plus distribution (3.287). To this end de�nethe regular (in the limit u→ 0 and η2 6= 0) quantity K (u;κ) as
ĨIE-FSQ→Qg, j =

1

u1−2κ
K (u;κ) . (3.364)We obtaiñ

IIE-FSQ→Qg, j =

(
1

u

)

[0,u+]

K (u; 0) + δ (u)

(
1

2κ
+ log u+

)
K (0;κ) , (3.365)where

K (u; 0) = −CF η
2
J

(
1 + 2uη2

)

2ṽ3j η
4
Pa
η̃2
P2−m2

j{
η2Pa

η̃2P2−m2
j

[
2 log (1 +A1 (u))− log (1 +A2 (u))

(
2 + u (u− 2) ṽ2j

)]

+
4ṽ3j η

2η2P2 (1− u)
(
1 + 2uη2

)

(1 + 2uη2 + ṽj) (1 + 2uη2 − ṽj)

}
, (3.366)

K (0;κ) = −2CF

(
η2j
)−κ

ṽ4κ−1
j

[
F (A1 (0) ;κ)−F (A2 (0) ;κ)

+
1

2
(1 + ṽj)G (A2 (0) ;κ)

]
. (3.367)When deriving (3.367) we used

η2P2

∣∣
u=0

= η2j , η2Pa

∣∣
u=0

=
1

2
, (3.368)

η2P2−m2
j

∣∣∣
u=0

= ṽ2j , η2J
∣∣
u=0

= ṽ2j . (3.369)Moreover
A1 (0) =

2ṽj
1 + 2η2j − ṽj

≡ A1, (3.370)
A2 (0) =

2ṽj
1− ṽj

≡ A2. (3.371)Let us note interesting identity, whih holds if η2j = η2a

1 +A1

1 +A2
=

1

1 +A1
. (3.372)We deompose the result into three parts

ĨIE-FSQ→Qg, j = J (u) + δ (u) (Jfinite + Jpole) . (3.373)For the subsequent piees we get
Jpole = −CF

1

κ

(
1 +

1

ṽj
log

1 +A1

1 +A2

)
, (3.374)
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Jfinite = −CF

(
1 +

1

ṽj
log

1 +A1

1 +A2

)
log

ṽ4ju
2
+

η2j

− CF

1

ṽj
(F1 (A1)−F1 (A2)− log (1 +A2)) , (3.375)

J (u) =

(
1

u

)

[0,u+]

K (u; 0) . (3.376)There are two omments in order here. First, there is no standard ollinear pole of theform 1
κ
PQQ in our result. However, analysing Eq. (3.366) in the quasi-ollinear limit, we�nd that there is a term of the form log η2 PQQ whih plays analogous role. Therefore,our dipole funtion in the present form are not infrared safe. Later, in Chapter 4 weshall �x this using methods desribed in Setion 2.4.Next, our result (3.373)-(3.376) is not well suited for massless spetator ase, i.e.for mj = 0. This is seen e.g. by looking at K (u; 0) whih should be �nite for u = 0.However, if mj = 0 we have

log (1 +A2 (u)) = − log
(
uη2
)
+O

(
η2
)
. (3.377)In order to assure the smooth limit, we ould have kept trak of fators η2κj and do notexpand them, whih however is not easy in the fully massive ase. Another solution, issimply to have distint formulae, with mj set to zero literally from the very beginning.This is reasonable, sine if we dealt with ompletely massless spetator (like gluon orquarks u, d, s) we should have put the fators η2κj to zero manually. On the other hand,when we deal with heavy quark spetator, we nevertheless have to expand those fatorsmanually.Therefore, in the following we derive the orresponding formulae with a spetatorassumed to be massless in the beginning.Let us thus start with (3.361) with η2j = 0. Now it beomes

ĨIE-FSQ→Qg, j

∣∣∣
η2
j=0

= −CF η
2
J

(
η̃2P2

)κ (
1 + 2uη2

)

u1−κη2Pa

{
F (A∗

1 (u) ;κ)

+
1

2
[u (2− u (1 + κ))− 2]F (A∗

2 (u) ;κ)

+
(1− u)

(
1 + 2uη2

)

2η2Pa

G (A∗
2 (u) ;κ)

}
, (3.378)where

A∗
1 (u) = A1 (u)|η2

j=0 =
1

u

1

1 + (1 + 2u) η2
, (3.379)

A∗
2 (u) = A2 (u)|η2

j=0 =
1

uη2
. (3.380)We see, that the funtions A∗

1 (u), A∗
2 (u) do not behave well in the u→ 0 limit and wehave to inlude F , G funtions in the �plus� distribution.First split (3.378) into three distint parts

ĨIE-FSQ→Qg

∣∣∣
η2
j=0

= K1 +K2 +K3, (3.381)whereK1 , K2, K3 are the �rst, the seond and the third term in (3.378) orrespondingly.



3.7. INTEGRATION OF THE DIPOLES 87Let us start with K1. We follow similar steps of Setion 3.7.2.3 for FE-IS ase. Wede�ne the variable
r =

1

A∗
1 (u)

= u
(
1 + (1 + 2u) η2

)
. (3.382)Note it is the same as in Setion (3.345) if we replae η2a ←→ η2. Thus we an immediatelyuse the other results from that setion, in partiular, we have

1

u1−κ
F (A∗

1 (u) ;κ) =
Bκ−1 (r)

r1−κ
F
(
1

r
;κ

)
, (3.383)where B (r) is given in (3.347) with replaement η2a ←→ η2 and

1

r1−κ
F
(
1

r
;κ

)
=

1

r
log (1 + r) +

[
1

r
log

1

r

]

+

+ δ (r)

(
1

2κ2
− π2

4

)
+ O (κ) . (3.384)Thus we get

K1 = −CF η
2
J

(
1 + 2rB (r) η2

)

η2Pa
B (r)

[
1

r
log (1 + r) +

[
1

r
log

1

r

]

+

]

− δ (r)CF

(
1 + η2

) [ 1

κ2
− 1

κ
log
(
1 + η2

)
− 1

2

(
π2 − log2

(
1 + η2

))]
. (3.385)Next onsider K2. Here the resaling of the soft variable u is trivial, namely we de�ne

s =
1

A∗
2 (u)

= uη2. (3.386)We an thus obtain muh of the results by replaing B (r) above by 1/η2. We obtain
K2 = −CF η

2
J (1 + 2s) η2

η2Pa

1

2

[
s

η2

(
2− s

η2

)
− 2

] [
1

s
log (1 + s) +

[
1

s
log

1

s

]

+

]

+ δ (s)CF η
2

[
1

κ2
− 1

κ
log η2 − 1

2

(
π2 − log2 η2

)]
. (3.387)Finally, we alulate K3. We inlude G in the �plus� distribution. Introduing thevariable s as above, we make the replaement

1

s1−κ
G
(
1

s
;κ

)
=

[
1

s1−κ
G
(
1

s
;κ

)]

+

+ δ (r)J2 (κ) , (3.388)where the integral J2 (κ) is alulated up to the order O (κ) in Appendix B.1 as IntegralN. Expliitly we get
1

s1−κ
G
(
1

s
;κ

)
=

(
1

s

1

1 + s

)

+

+ δ (s)

(
1

2κ
− log 2

)
+O (κ)

=

(
1

s

)

+

1

1 + s
+ δ (s)

1

2κ
+O (κ) , (3.389)



88 CHAPTER 3. MASSIVE DIPOLE SUBTRACTION METHODwhere we have used the relation (B.74). Gathering all the piees we obtain
K3 = −CF η

2
J (1 + 2s)

2

2η4Pa

η2 − s

1 + s

(
1

s

)

+

− CF δ (s) η
2

(
1

κ
− log η2

)
. (3.390)Let us now ollet the full integral. We deompose it as in (3.373). We however adornthe quantities by a star to underline that they are evaluated for the massless spetator.We get

J∗
pole = −CF

1

κ

(
1 + log η2 − log

(
1 + η2

))
, (3.391)

J∗
finite = −

1

2
CF

[
log2

(
1 + η2

)
− log η2

(
log η2 + 2

)]
, (3.392)

J∗ (u) = −CF η
2
J

η2Pa

{
1 + 2rB (r) η2
B (r)

[
1

r
log (1 + r) +

[
1

r
log

1

r

]

+

]

+
1

2
(1 + 2s) η2

[
s

η2

(
2− s

η2

)
− 2

] [
1

s
log (1 + s) +

[
1

s
log

1

s

]

+

]

−
(
s− η2

)
(1 + 2s)

2

2η2Pa
(1 + s)

(
1

s

)

+

}
. (3.393)We skip funtional dependene on u for s and r in the above equation.Later, in Setion 4.4 we will need the above formulae in the limit η → 0. Then, the�plus� distributions in r variable beome straightforwardly the distributions in u due to(3.382). This is not the ase for �plus� distributions in s variable. The relation is thefollowing: for the distribution originating in F funtion

η2
[
1

s
log

1 + s

s

]

+

= η2
1

s
log (1 + s) + η2

[
1

s
log

1

s

]

+

− δ (u) π
2

12

=

[
1

u
log

1 + uη2

uη2

]

[0,u+]

− δ (u)
[
Li2
(
−u+η2

)
+

1

2
log2

(
u+η

2
)
+
π2

12

]
+O (κ) , (3.394)and for the distribution originating in G funtion

η2
[
1

s

1

1 + s

]

+

= η2
(
1

s

)

+

1

1 + s
+ δ (u) log 2

=

[
1

u

1

1 + uη2

]

[0,u+]

− δ (u) log 1 + u+η
2

2u+η2
+O (κ) . (3.395)It is interesting to note, that in the limit η2 → 0 the above relations e�etively leads tothe opposite sign in front of log η2 (log η2 + 2

) in Eq. (3.392).3.7.3.2 g → QQ splittingThe integral of the dipole splitting funtion (3.199) is de�ned as
IIE-FS
g→QQ, j

=

ˆ

dφIE-FS
g→QQ, j

−1
p2ai −m2

〈
V̂ IE-FS
g→QQ, j

〉
. (3.396)



3.7. INTEGRATION OF THE DIPOLES 89The averaged dipole splitting funtion reads (averaging is trivial, sine the dipole matrixis diagonal, see (3.199))
〈
V̂ IE-FS
g→QQ, j

〉
= 8πµ2ε

r αs TR

[
1− 2 (1− ũ)

1− ε

(
ũ+

m2

p2ai −m2

)]
. (3.397)Here, the one partile subspae reads

dφIE-FSQ→gQ, j =
2 (2γ̃)1−ε

(4π)2−ε Γ (1− ε)
(
η2P2

)−ε
η2J [(z̃+ − z̃) (z̃ − z̃−)]−ε dz̃. (3.398)The saled jaobian η2J and other saled quantities are expliitly listed in AppendixA.2.2.2. Note that

v = 1 (3.399)in (3.398) (sine the mass of the initial state ma = 0), and onsequently the bounds on
z̃ are

z̃± =
η2 − η2j
2η2P2

+
1

2
(1± 2p) . (3.400)The propagator in (3.396) is the same as in (3.358). Evaluating the integrals over dz̃we obtain for the redued integral

ĨIE-FS
g→QQ, j

=
TR

1 + κ

η2J
(
η2P2

)κ
(2p)

2κ

2
(
η2Pa

)2
{
η2Pa

(1− 2u (1− u) + κ)F (A (u) ;κ)

+
2η2η2P2 (1− u)

η2 − η2j + η2P2 (1− 2p)
G (A (u) ;κ)

}
, (3.401)where

A (u) =
4η2P2p

η2 − η2j + η2P2 (1− 2p)
. (3.402)Sine the integral (3.401) is �nite (for �nite mass m), we an safely set κ = 0. Thenwe get

ĨIE-FS
g→QQ, j

=
−TR η2J
2
(
η2Pa

)2
{
− η2Pa

(1− 2u (1− u)) log (1 +A (u))

− 8η2
(
η2P2

)2
p (1− u)[

η2 − η2j + η2P2 (1− 2p)
] [
η2 − η2j + η2P2 (1 + 2p)

]
}
. (3.403)In Setion 4.4, we will hek that the leading behaviour is of the form log η2 Pgq , whenthe mass m beomes negligible omparing to other sales. Atually it is already apparentin the above formula. Suh an analysis will be starting point towards fatorization of themass singularity.As an another preparatory step, let us note, that our unintegrated dipole splittingfuntion (3.199) is exatly the same as the one in [10℄, when we set m = 0. Someaution however must be paid, sine our dipole splitting funtion already inludes spinonversion fator (we de�ned quasi-ollinear limit with redued matrix element alreadyaveraged over spins). Sine in Chapter 4 we shall need our result for m = 0 set in thebeginning, aording to what we stated above, we will not have to alulate it as it anbe just taken from [10℄.



90 CHAPTER 3. MASSIVE DIPOLE SUBTRACTION METHOD3.7.3.3 Q→ gQ and Q→ gQ splittingsIn omplete analogy to the splittings g → QQ and g → gg in the FE-IS ase, it an beshown, that the ontribution of the integrated dipole splitting matrix de�ned in Setion3.5.2.3 redues to the average over the heliities in D dimensions
IIE-FSQ→gQ, j =

ˆ

dφIE-FSQ→gQ, j

−1
p2ai

〈
V̂ IE-FS
Q→gQ, j

〉
. (3.404)Similarly as before we introdue ĨIE-FSQ→gQ, j , see (3.271) for de�nition.Let us reall the dipole splitting matrix for onveniene (note, that we inserted thespin onversion fator in front)

(
V̂ IE-FS
Q→gQ, j

)µν
= 8πµ2ε

r αsCF (1− ε)
[
−gµν (1− ũ)− 4

1− ũ
Cµν
p2ai

]
, (3.405)with Cµν = VµVν and

Vµ = (1− z̃) pµi − z̃pµj −
(w̃ − 1)

[
m2 −m2

j + P2 (1− 2z̃)
]

2p̃ai · P
Pµ. (3.406)The average over heliities is performed using the following polarization tensor

dµν
(
p̃ai; pa

)
= −gµν +

p̃µaip
ν
a + p̃νaip

µ
a

p̃ai · pa
−m2

a

p̃µaip̃
ν
ai(

p̃ai · pa
)2 , (3.407)orresponding to the gluon with momentum p̃ai. As an auxiliary vetor we hoose pa,however in pratie only the metri tensor gives ontribution. The average reads

〈Cµν〉 = 1

D − 2

[
(1− ũ)Pa

p̃ai · P

]2
P2 (z̃+ − z̃) (z̃ − z̃−) , (3.408)where the denominator reads

p̃ai · P = P2 (w̃ − 1)− Pa (ũ− 1) . (3.409)Using this, we get for the averaged dipole splitting matrix
〈
V̂ IE-FS
Q→gQ, j

〉
= 8πµ2ε

r αsCF (1− ε)
[
1− ũ− 2

1− ε
1− ũ
p2ai

( Pa

p̃ai · P

)2

P2 (z̃+ − z̃) (z̃ − z̃−)
]
.(3.410)Again, it is instrutive to hek whether in quasi-ollinear limit (3.410) gives averagedsplitting matrix

〈
P̂Qg (x;κ)

〉
= CF (1− ε)

[
x+

2

1− ε

(
1− x
x

+
xm2

p2ai

)]
, (3.411)where x is the Sudakov variable de�ned e.g. in (3.156). To this end, note that in thequasi-ollinear limit (3.29) we have

〈Cµν〉 = 1

D − 2
λ2

[
z̃P2 −m2

(
1 +

( P2

2Pa

)2
)]

, (3.412)



3.7. INTEGRATION OF THE DIPOLES 91where we have taken into aount the fat that z̃ = O (λ2), more preisely
z̃ = λ2

m2
(
1 + (1− x)2

)
− k2T

2 (1− x)Pa

. (3.413)Realling also that
p2ai = λ2 2

(
m2 − z̃Pa

)
= λ2

k2T − x2m2

1− x (3.414)and P2 = 2 (1− x)Pa +O
(
λ2
) we indeed reover (3.411).Now, let us perform the integration over the subspae dφ. For pertinent mass on�g-uration it reads

dφIE-FSQ→gQ, j =
2 (2γ̃)1−ε

(4π)
2−ε

Γ (1− ε)
(
η2P2

)−ε
η2J v

2ε−1 [(z̃+ − z̃) (z̃ − z̃−)]−ε dz̃. (3.415)The saled quantities like η2J et. are expliitly given in the Appendix A.2.2.3.Using the results from Appendix B.1 for the integrals over dz̃, we obtain
ĨIE-FSQ→gQ, j = (1 + κ)CF

(1− u) (2p)2κ
(
η2P2

)κ
η2J

2vη2Pa
F (A (u) ;κ) +

2vη2P2η2Pa
p

(1 + κ)
(
η2p̃ai·P

)2 H (A (u) ;κ)


 , (3.416)where the funtion H (A;κ) reads (see Integral L. in Appendix B.1)

H (A;κ) = A2B (κ+ 2)F (2, κ+ 2, 2 (κ+ 2) ;−A) . (3.417)Moreover
η2p̃ai·P = η2Pa

(1− u) + ηP2 (w − 1) , (3.418)
A (u) =

4vpη2P2η2Pa

η2Pa

(
η2 − η2j + η2P2 (1− 2vp)

)
− 2η2η2P2

, (3.419)where p is de�ned in (3.217) and is not simpli�ed at all for the onsidered ase, thus wedo not replae it by its expliit form.Inspetion of (3.416) leads to the onlusion, that there are no singularities that shouldbe regularized. The only possible singular behaviour omes from ollinear logarithms.Therefore we are allowed to set κ = 0. Then (3.416) redues to
ĨIE-FSQ→gQ, j = −CF

(1− u) η2J
2vη2Pa


2vη2P2η2Pa

p
(
η2p̃ai·P

)2 − log (1 +A (u))


1 +

η2Pa

(
η2 − η2j + η2P2

)
− 2η2η2P2

(
η2p̃ai·P

)2





 . (3.420)Let us note, that the integrated dipole funtion has smooth behaviour for vanishingspetator mass mj → 0. In Chapter 4 we shall investigate the behaviour of (3.420) in the



92 CHAPTER 3. MASSIVE DIPOLE SUBTRACTION METHODlimit m→ 0. We shall �nd, that its leading behaviour is of the required form log η2 PQg ,whih is not obvious at this stage.In the end of this setion, let us give appropriate expression, for a ase when initialstate mass is set to zero from the very beginning. We shall need it in Chapter 4. Note,that our unintegrated dipole splitting funtion is now di�erent than the orresponding onein [10℄, thus we have to make a separate alulation. This alulation is straightforwardand muh simpler than in the massive ase, thus we skip all the details. We obtain
ĨIE-FSQ→gQ, j

∣∣∣
η2=0

= (1 + κ) (u+ ηj)
κ

[(
1

κ
+ 2 log

u

u+ η2j

)
Pqg (1− u)− CF

4u

1− u

]

=

(
1

κ
+ log

u2

u+ η2j
+ 1

)
Pqg (1− u)− CF

4u

1− u. (3.421)3.7.4 Complete expressions for integrated dipolesLet us now ome bak to the full expressions for dipoles, i.e. (3.59)-(3.61). We shallnow introdue some useful notation, that will be helpful in Chapter 4. In order to betterunderstand the motivation for this setion, the reader might look at Setion 4.3.1 inadvane.Let us reall, that when alulating the jet ross setion via dipole subtration method,say n-jet ross setion with one initial state, we add and subtrat the dipole ontributions,whih live in the (n+ 1)-partile phase spae. Let us write this ontributions as follows
Dn (pa) =

∑

Π(n+1|a)

1

sΠ(n+1|a)

ˆ

dΦn+1

(
pa; {pj}n+1

j=1

)
DFn

(
pa; {pi}n+1

i=1

)
. (3.422)Here the �rst summation is over all the on�gurations Π(n+ 1|a) of n+1 partons in the�nal state, with parton a in the initial state. sΠ(n+1|a) is a symmetry fator for identialpartiles in the �nal state for on�guration Π(n+ 1|a). To be preise, in order to de�nea real subtration term as in Setion 1.2 it should be onvoluted with parton densitiesand equipped in some normalization fators. Moreover in (3.422) we used

DFn

(
pa; {pi}n+1

i=1

)
=

n+1∑

i=1

n+1∑

j=1
j 6=i

{
DIE-FS

i,j,a

(
p̃ai; {pl}l∈XIE-FS

)
Fn

(
p̃ai; {pl}l∈XIE-FS

)

+DFE-IS
i,j,a

(
p̃a; {pl}l∈XFE-IS) Fn

(
p̃a; {pl}l∈XFE-IS)

+
n+1∑

k=1
k 6=i,j

DFE-FS
i,j,k

(
pa; {pl}l∈XFE-FS

)
Fn

(
pa; {pl}l∈XFE-FS

)}
. (3.423)There are three distint n-partile jet funtions Fn, sine for eah type of dipole we haveto generate a di�erent set of momenta (the sets X are de�ned in (3.65)-(3.67)). Theintegration in (3.422) is over the full phase spae � all the uts (step funtions) and Diradeltas (for di�erential ross setion) are hidden in Fn. In what follows, we shall use themore ompat notation, namely we assume, that Fn and any amplitudes that appearhave the same arguments as the phase spae dΦ. Hene we shall not write the argumentsexpliitly.



3.7. INTEGRATION OF THE DIPOLES 93On the other hand, we an fatorize the phase spae in (3.422) and integrate thedipoles in order to obtain analytial poles, whih in turn should anel with virtualorretions. Then we get4
Dn (pa) = −

∑

Π(n+1|a)

1

sΠ(n+1|a)

n+1∑

i=1

n+1∑

j=1
j 6=i

{
ˆ

du IIE-FSa→ai i, j (u) dS(n) ai,j

(
p̃a (u) ; {pl}l∈XIE-FS

)

+

ˆ

du IFE-ISij→i j, a (u) dS(n) a,ij

(
p̃a (u) ; {pl}l∈XFE-IS)+ n+1∑

k=1
k 6=i,j

IFE-FSij→i j, k dS(n) k,ij

(
pa; {pl}l∈XFE-FS

)}
,(3.424)where �pseudo� ross setions dS are de�ned as

dS(n) I,J (p; {pl}) =
ˆ

dΦn (p; {pl}) Fn

∣∣Mn

∣∣2
I,J

, (3.425)Reall, that the matrix elements squared with subsripts are orrelated in olour spae;they were de�ned in (3.21). We note, that there are also FE-FS ontributions in (3.424),whih were not given in the present work (they have to be taken from [10℄). The phasespae fatorization in that ase is a produt of a measure dφ and the skewed phase spae,i.e. there is no onvolution over u.It is possible to onvert the sum in (3.424) over pairs (i, j) into a simpler sum (notealso, that parton i appears only in the integrated dipole splitting funtions as a proessindex). This proedure is desribed in details in [9℄ (setions 7.2 and 8.1), thus we onlyapply this method to our formula. To this end it is onvenient to split (3.424) into threedistint terms
Dn (pa) = DIE-FS

n (pa) +DFE-IS
n (pa) +DFE-FS

n (pa) , (3.426)whih orrespond to the three ontributions in (3.424). Then we obtain for IE-FS
D

IE-FS
n (pa) = −

∑

b∈N′

f

∑

Π(n|b)

1

sΠ(n|b)

n∑

j=1

ˆ

du IIE-FSa,b,j (u) dS(n) b,j (p̃b (u) ; {pl}nl=1) ,(3.427)where we have hanged the name of parton ai to b in order to ompletely remove appear-ane of parton i whih in fat is not needed any more. We reall, that N ′
f is the totalnumber of �avours (inluding gluon). Moreover we hanged the notation

IIE-FSa,b, j ≡ IIE-FSa→b i, j (3.428)for the same purpose. Now, turn to FE-IS ase:
DFE-IS

n (pa) = −
∑

Π(n|a)

1

sΠ(n|a)

n∑

j=1

ˆ

du IFE-ISj, a (u) dS(n) j,a (p̃a (u) ; {pl}nl=1) , (3.429)4For IE-FS and FE-IS ontributions there is also a fator 1/x, whih we used to have outside thedipole splitting funtions. Here we hide it for transpareny.



94 CHAPTER 3. MASSIVE DIPOLE SUBTRACTION METHODwhere this time we onverted ij to j and introdued
IFE-ISj, a =





IFE-ISq→qg, a j = q, q

1
2I

FE-IS
g→gg, a +

∑
l∈Nf

IFE-ISg→qlql, a
j = g.

(3.430)Finally, for FE-FS we have
D

FE-FS
n (pa) = −

∑

Π(n|a)

1

sΠ(n|a)

n∑

j=1

n∑

k=1
k 6=j

IFE-FSj, a dS(n) k,j (pa; {pl}nl=1) , (3.431)with
IFE-FSj, k =





IFE-FSq→qg, k j = q, q

1
2I

FE-FS
g→gg, k +

∑
l∈Nf

IFE-FSg→qlql, k
j = g.

(3.432)The symbol Nf (without prime) is a number of all quark �avours (without a gluon) eitherlight or heavy.Now, we ould insert the results for integrated dipole splitting funtions to get expliitform for the kernels I, as in [9, 10℄. Instead, we shall only write the general form, as wewill need it later in Chapter 4.First let us note, that we an write
DIE-FS

n (pa) +DFE-IS
n (pa) =

−
∑

b∈N′

f

∑

Π(n|b)

1

sΠ(n|b)

n∑

j=1

ˆ

du Ja,b,j (u) dS(n) b,j (p̃b (u) ; {pl}nl=1) , (3.433)where
Ja,b,j (u) = −

[
IIE-FSa,b,j (u) + δabI

FE-IS
j, a (u)

]
. (3.434)Next, as we have seen earlier in this hapter, we have to disentangle end-point ontribu-tions, thus the above an be written as

Ja,b,j (u) = J
coll
a,b,j (u) + J

remn
a,b,j (u) +

(
J
pole
a,b,j + J

finite
a,b,j

)
δ (u) , (3.435)where Jcoll is a part that leads to ollinear singularities, Jremn, Jfinite are the �nite partsthat will remain after anellation of all singularities and Jpole is a part that ontainssoft poles only. For FE-FS ase the struture is similar to the oe�ient in front of δ (u)in (3.435). Therefore, we an write the integrated dipole (3.424) in the following form

Dn (pa) =

{
∑

b∈N′

f

∑

Π(n|b)

1

sΠ(n|b)

n∑

j=1

ˆ

du
(
Jcolla,b,j (u) + Jremn

a,b,j (u)
)
dS(n) b,j (p̃b (u) ; {pl}nl=1)

+ dSdip-soft
(n) a (pa; {pl}nl=1)

}
, (3.436)



3.7. INTEGRATION OF THE DIPOLES 95where we put the following ontribution into a new symbol
dSdip-soft

(n) a (pa; {pl}nl=1) =

n∑

j=1

[
∑

b∈N′

f

∑

Π(n|b)

1

sΠ(n|b)

(
J
pole
a,b,j + J

finite
a,b,j

)
dS(n) b,j (pb; {pl}nl=1)

+
∑

Π(n|a)

1

sΠ(n,a)

n∑

k=1
k 6=j

IFE-FSj, a dS(n) k,j (pa; {pl}nl=1)

]
. (3.437)Let us omment this general struture of integrated dipole funtion. The term

dSdip-soft ontains all the soft singularities, that should anel with the virtual ontribu-tion. All the ollinear (for massless partons) and quasi-ollinear singularities are hiddenin Jcoll. We shall need this formula in the next hapter, when we onstrut infra-red safeross setion.
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Chapter 4General Mass Sheme for Jets4.1 IntrodutionIn the previous hapter we onstruted dipole subtration method taking into aountpossible massive initial state splittings. We have seen, that dipoles onneted with thiskind of splitting an be free from �standard� ollinear singularities appearing as the poles.Instead, we enounter terms ontaining logarithms of a quark mass, whih spoils aurayof the preditions when the mass an be negligible. In this hapter we onstrut a sheme,whih fatorizes out those quasi-ollinear singularities. It follows from the ACOT shemeoutlined for inlusive proesses in Setion 2.4.Our further work is divided into several parts. First, in Setion 4.2, we derive one-loop parton densities in CWZ renormalization sheme. They were atually derived in[45℄, however in di�erent sheme, so alled dimensional redution. In onsequene, someof the results are di�erent from those used in standard alulations in D dimensions.There are also some other problems onneted with alulations in [45℄, therefore we hadto rederive them again. Perhaps those results exist somewhere else in the literature, asthey are only one-loop alulations with massive quark, nevertheless it is very instrutiveto obtain them onsistently as they are ruial ingredients of our sheme. Basing onthose parton densities, we onstrut in Setion 4.3 the subtration terms whih removepotential ollinear singularities from the dipoles. Finally, we demonstrate that in thekinemati limit when the masses an be negleted, we reover orret massless dipoleformulae. This is one of the tests of our formalism and is done in Setion 4.4.We turn attention, that there are at least two kinds of subtration terms in the presentwork, whih should not be onfused. First, there is a dipole subtration term, whihremoves all the singularities from the tree matrix elements. Seond, there is a ollinear(or quasi-ollinear) subtration term, whih removes potential ollinear singularities fromthe dipole subtration term.4.2 Parton densities in CWZ renormalization shemeThe densities of parton inside a parton were de�ned in Setion 1.1. Let us reall, that theyare needed in order to alulate IR �nite partoni ross setion. Sine in our approah wehave masses in the initial state splittings, we have to have partoni PDFs where massesare not negleted. Moreover, as explained in Setion 1.3, it is onvenient to hoose speial97



98 CHAPTER 4. GENERAL MASS SCHEME FOR JETSrenormalization sheme, designed for massive alulation (CWZ).First we sketh derivation of bare densities at one-loop auray. Next, using CWZounter terms we obtain the renormalized ones. As already mentioned, all the pieeswere atually derived in [45℄. However, there are several problems with those alula-tions. First, they are arried in a sheme, alled dimensional redution, where one usesanalyti ontinuation to D dimensions for the integrals, while the tensors are purelyfour dimensional objets. Clearly, it must lead to di�erent result for the unobservableobjets like parton densities. More about dimensional redution an be found e.g. in[30℄. Therefore, we have to trae and realulate diagrams whih leads to ontration ofmetri tensors. However, there is another problem onneted with alulations in [45℄.Namely we enounter some misprints or errors, thus also the other diagrams have to beheked.4.2.1 Unrenormalized parton densitiesTo one loop auray we an write
Fab (x) = δabδ (1− x) + F (1)

ab (x) (4.1)As already remarked in Setion 1.1 those objets an be alulated order by order inperturbation theory by means of Feynman rules. Besides the set of standard QCD rules,we have a few additional objets. We shall not desribe them here in details, they anbe found for instane in [16, 45, 17℄. Instead we shall desribe the ingredients of suhalulations using the spei� example below.PSfrag replaements
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qFigure 4.1: Cut Feynman diagram for the bare parton density FQg.Let us thus start with the simplest parton density FQg. The one loop ontributionhas only one orresponding Feynman diagram showed in Fig. 4.1. Let us brie�y desribeits main elements. The double, so alled eikonal line, arises from an expansion of thepath exponential in (1.5). In Feynman gauge the gluons an be attahed to this linealso in the middle (see other PDFs). In what follows it is assumed that we use Feynmangauge as the light-one gauge is less pratial in atual alulations. The most top linesorrespond to the operators and arry �xed �plus� omponent k+ = xp+ of the initialstate momentum p. The last is assumed to be on-shell. Sine the eikonal line arriesonly �plus� omponent, one we ut it we must inlude an �on-shell� delta funtion. The
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Figure 4.2: Cut Feynman's diagrams for the parton density FgQ. Atually only A) andB) give ontribution (see the main text).whole expression orresponding to this diagram turns out to be
F (1)

Qg = g2µ2ε
r CF

ˆ

dDq

(2π)D−1

1

2
Tr [γµ (6q +m) γν (6p+m)] δ

(
p+ − q+ − k+

)

δ
(
q2 −m2

)
(
(p− q)2 + iǫ

)2
k · n

(
k · n gαµ − (p− q)αnµ

)
(k · n gαν − (p− q)αnν) , (4.2)where we have already summed over spins and olours and where mQ ≡ m. The deltafuntions set

δ
(
p+ − q+ − k+

)
= δ

(
p+ − q+ − xp+

)
⇒ q+ = (1− x) p+, (4.3)

δ
(
q2 −m2

)
= δ

(
2q+q− − q2T −m2

)
=

1

2p+x
δ

(
q− − q2T +m2

2p+x

)
. (4.4)The integration measure with our hoie of light-one vetors reads

dDq = dD−2qTdq
+dq−. (4.5)Performing the trae and integrating out the delta funtions, we get

F (1)
Qg =

αsµ
2ε
r 4CF

(2π)
2(1−ε)

ˆ

d2(1−ε)qT

{
2m2x (1− x)
(q2T + x2m2)

2 −
2− x (2− x (1− ε))
x (q2T + x2m2)

}
. (4.6)Using Integral D. from Appendix B.1 we �nally obtain

F (1)
Qg =

αs

2π
S (ε)

(
µ2
r

m2

)ε

CF x
−2ε−1

{
2 (1− x)− [2− x (2− x (1− ε))] 1

ε

}
, (4.7)where we put some standard fators into one quantity

S (ε) = (4π)
ε
Γ (1 + ε) . (4.8)Next, let us alulate the density FgQ. At the one loop auray there are threedistint Feynman diagrams (Fig. 4.2). Thus we write

F (1)
gQ = F (A)

gQ + 2F (B)
gQ + F (C)

gQ , (4.9)
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Figure 4.3: Cut Feynman's diagrams for the parton density FQQ.where the three terms orrespond to the three diagrams (the fator of two in front of theseond diagram is the symmetry fator). The alulation is very similar to the previousone, thus we skip the details. The result reads
F (A)

gQ =
αs

2π
S (ε)

(
µ2
r

m2

)ε

TR

[
1

ε
+

2x (1− x)
1− ε

]
, (4.10)

F (B)
gQ = −αs

2π
S (ε)

(
µ2
r

m2

)ε

TR
x (1− x)
(1− ε) ε , (4.11)

F (C)
gQ = 0.The last diagram is simply zero, beause of the kinemati argument. The ut eikonal linegive δ (−q+ − k+) what results in q+ = −xp+, thus q+ must lie in the past light-one.On the other hand the anti-quark with momentum q is on-shell (see Fig. 4.2B ) and thuswe have δ+ (q2 −m2

). Therefore the ommon support shrinks to zero volume.Let us now give the result for FQQ showed in Fig. 4.3. As before, we deompose
F (1)

QQ = 2
[
F (A)

QQ + F (B)
QQ

]
+ F (C)

QQ + F (D)
QQ . (4.12)The alulation of diagrams B and C go in a similar manner as before. They read

F (B)
QQ =

αs

2π
S (ε)

(
µ2
r

m2

)ε

CF

1

ε
x (1− x)−1−2ε

, (4.13)
F (C)

QQ = −αs

2π
S (ε)

(
µ2
r

m2

)ε

CF (1− x)−1−2ε

[
2x− (1− x)2

(
1

ε
− 1

)]
. (4.14)In the ase of the diagram A we have full integration over the loop momenta q, i.e. theintegrals over dq+ and dq− are not utilized by the delta funtions. The integral over

dq− an however be easily arried out by the residue tehnique, while the integral over
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dq+ is left out, beause it is atually divergent for ε > 0. It is the soft singularity, thatshould anel between aompanying graph with real emissions (B and C). The detailsof this alulation are given orretly in [45℄. Following the authors, it is onvenient tointrodue the dimensionless variable in order to parametrize this integral

ξ = 1− q+

p+
. (4.15)The result reads

F (A)
QQ = −αs

2π
S (ε)

(
µ2
r

m2

)ε

CF δ (1− x)
1

ε

ˆ 1

0

dξ ξ (1− ξ)−1−2ε
. (4.16)Finally, we alulate the diagram D. The following expression appears as a part of thediagram

1

2

∑

s

us (p) γ+
−i
6p−mΣ (6p,m)us (p) , (4.17)where Σ (6p,m) is a quark self energy de�ned by

= −iΣ (6p,m) . (4.18)Sine the full quark propagator an be written as (we neglet olour indies)
S (6p,m) =

i

6p−m− Σ (6p,m)
=

iZOS
2

6p−mOS
(4.19)we have to one-loop auray

Σ (6p,mOS) ≈
(
ZOS
2 − 1

)
(6p−mOS) . (4.20)Above ZOS

2 is the quark �eld renormalization onstant in the on-shell sheme, while mOSis the pole mass. Inserting this to (4.17) we get simply
F (D)

QQ =
(
ZOS
2 − 1

)
δ (1− x) =

(
∂Σ (6p,mOS)

∂ 6p

)

p2=m2
OS

δ (1− x) . (4.21)The result for the quark self-energy or renormalization onstant is well known (e.g. [20℄).Thus we get
F (D)

QQ = −αs

2π
S (ε)

(
µ2
r

m2

)ε

CF δ (1− x)
[
1

2ε
− 2

ˆ 1

0

dξ ξ (1− ξ)−1−2ε

]
. (4.22)We replaed the renormalized mass for the bare one, as this is allowed to this order andsimpli�es the notation. Let us now rearrange the diagrams in a more logial manner

F (A+B)
QQ =

αs

2π
S (ε)

(
µ2
r

m2

)ε

CF

1

ε

[
x (1− x)−1−2ε

]
+
, (4.23)

F (C+D)
QQ = −αs

2π
S (ε)

(
µ2
r

m2

)ε

CF

{
2
[
x (1− x)−1−2ε

]
+
+
[
(1− x)1−2ε

]
+

(
1− 1

ε

)}
,(4.24)



102 CHAPTER 4. GENERAL MASS SCHEME FOR JETSwhere we have used the standard �plus� distribution.Let us now �nally turn into the density Fgg. There are several diagrams, all ofthem do not involve masses exept one (we do not depit them). It is the one withthe gluon self energy graph with heavy quark loop. We must note, that it seems thatalulation onerning those diagrams in [45℄ is inorret. They onlude that only selfenergy orretions give ontribution; it is not true as we know that one loop result has tohave Pgg (x), while the self energy orretions are proportional only to δ (1− x). Thusour strategy is the following. We do not alulate the massless loops as they lead to thestandard, veri�ed result for gluon-gluon splitting (1.14). We have to add to this resultthe heavy quark ontribution to gluon self energy, whih however is also well known. Weshall do this in the next setion at the level of renormalized PDFs already.4.2.2 Renormalization of parton densitiesLet us reall from Setion 1.3, that in CWZ sheme we �rst deide whether given quarkis ative, or inative. Next, for the diagrams with inative quarks ourring in the loopswe perform zero-momentum subtrations, while for the others the MS renormalization.Therefore, some of the quantities alulated in the previous setion have to be renormal-ized twie, in two di�erent shemes.Let us start, with MS sheme, i.e. we preserve the masses of the quarks but useminimal subtration (reall, that it is in ontrast to mMS presription de�ned in Setion1.1, whih refers to the sheme most often identi�ed with MS, where the masses are setto zero). Renormalization is done simply by expanding our results in ε into Laurentseries, with the exeption of the fator S (ε), and subtrating the pole parts. Let us listthe results
FMS

gQ (x) =
αs

2π
S (ε) TR log

(
µ2
r

m2

)
(1− 2x (1− x)) , (4.25)

FMS
Qg (x) =

αs

2π
S (ε) CF

1 + (1− x)2
x

[
log

(
µ2
r

m2

)
− 2 logx− 1

]
, (4.26)

FMS
QQ (x) =

αs

2π
S (ε) CF

{
1 + x2

1− x

[
log

(
µ2
r

m2

)
− 2 log (1− x) − 1

]}

+

. (4.27)The massless mMS result for Fgg was given in (1.22) with (1.14). We have to add to thisthe MS renormalized gluon self-energy graph with heavy quark loop multiplied by treelevel Fgg i.e. δ (1− x). The full result reads
FMS

gg (x) =
αs

2π
S (ε)

{
2CA

[(
1

1− x

)

+

+
1− x
x
− 1 + x (1− x)

]

+ δ (1− x)
(
11

6
CA −

2

3
Nf TR −

2

3
TR log

µ2
r

m2

)}
. (4.28)Now, we assume that the quarks appearing inside the loops are inative. We do notonsider here partoni densities where initial state is a heavy quark, beause they aresuppressed by O (Λ2

QCD/m
2
) as disussed in Setion 2.4 (they are onvoluted with fQwhih is zero to leading twist). In order to renormalize the remaining diagrams by zero-momentum subtration, we have to evaluate them �rst o� shell and then set p2 = 0. For
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FgQ it is however trivial, sine this diagram is already alulated with the gluon beingon-shell. Thus we have

F mom
gQ (x) = 0, (4.29)where the supersript denotes expliitly usage of zero-momentum subtration for relevantdiagrams. For Fgg the situation is also simple due to the same reason. We are left with

Fmom
gg (x) =

αs

2π
S (ε)

{
2CA

[(
1

1− x

)

+

+
1− x
x
− 1 + x (1− x)

]

+ δ (1− x)
(
11

6
CA −

2

3
Nf TR

)}
. (4.30)Note, that the usage of the supersript �mom� is onventional; it means that we performzero-momentum subtrations only to the diagrams with heavy quark loop, but the othersare renormalized by MS.Summarizing, we denote above renormalized parton densities in ommon by FCWZ

ab ,where �mom� sheme should be used if a heavy quark is treated as inative and MS whenit is ative (leaving the mass �nite).Let us now hek, that indeed the evolution equations for PDFs have massless kernels.This is atually ompletely straightforward. We have to look at the ounterterms we haveused to renormalize the above partoni densities (we onsider only ase when Q is ative,otherwise it is power-suppressed). They are massless in MS sheme. On the other hand,the evolution kernels are de�ned in (1.10). Therefore, already at this stage we see thatthese kernels are also massless. In order to derive their preise form, we have to go bakand read o� the oe�ients in front of the poles. They turn out to be exatly the splittingfuntions Pab.4.3 Quasi-ollinear subtration terms for massivedipolesNow, as we have the neessary ingredients, we an perform the mass fatorization. How-ever before we onstrut quasi-ollinear subtration terms for the dipoles, let us �rstde�ne in details the IR safe ross setion for DIS, assuming ompletely massless ase. Itwill enable us to set up all the neessary notation, within the well known framework.4.3.1 Massless treatment of fatorizationSimilar to Chapter 1.1, we onsider a virtual neutral boson with momentum q interatingwith a hadron having momentum P . We assume that the ross setion was projeted onsuitable tensor struture, therefore we omit the vetor indies.Reall, that to NLO auray we have for n-jet ross setion
σn = σLO

n + σNLO
n . (4.31)As we have the dipole formalism, let us now write the subsequent terms in more details



104 CHAPTER 4. GENERAL MASS SCHEME FOR JETSomparing to Setion 1.2. First, the leading order ross setion is
σLO
n

(
P, q;

{
k
(J)
i

}n

i=1

)
= N (P, q)

∑

a∈N′

f

∑

Π(n|a)

1

sΠ(n|a)

ˆ

dz fa (z)

ˆ

dΦn

(
pa (z) ; {pj}nj=1

)
Fn

∣∣Mn

∣∣2 , (4.32)where k(J)i are the momenta of the reonstruted jets. At LO the jet momenta orrespondexatly to the momenta of the �nal state partons pj. The fator N (P, q) hides all thefators needed to obtain normalized ross setion. The momentum pa depends on thelongitudinal momentum fration z, as denoted expliitly above. For the rest of thenotation we refer to Setion 3.7.4. In partiular we reall our shortut onvention: thefuntion Fn, the amplitudes and dipoles have the same arguments as the phase spaethey belong.The NLO ontribution is a sum of virtual σV and real σR orretions. The realontribution is
σR
n

(
P, q;

{
k
(J)
i

}n

i=1

)
= N (P, q)

∑

a∈N′

f

∑

Π(n+1|a)

1

sΠ(n+1|a)

ˆ

dz fa (z)

ˆ

dΦn+1

(
pa (z) ; {pj}n+1

j=1

){
Fn+1

∣∣Mn+1

∣∣2 −DFn

}
. (4.33)The sum over dipoles DFn

was de�ned in (3.423).The virtual ontribution reads
σV
n

(
P, q;

{
k
(J)
i

}n

i=1

)
= N (P, q)

∑

a∈N′

f

ˆ

dz fa (z)

{ ∑

Π(n|a)

1

sΠ(n|a)

ˆ

dΦn (pa (z) ; {pk}nk=1)M
loop 2

n

+Dn (pa (z))− CmMS
n (pa (z))

} (4.34)In order to explain appearane of the term CmMS
n , let us reall, that massless integrateddipoles ontain ollinear poles of the form Pab/κ, whih do not anel with M loop 2

n , asthe soft poles do. By means of the fatorization theorem, those ollinear poles have to beremoved. To this order of auray and in massless MS sheme (denoted here by mMS)it is done by means of the following ollinear subtration term (see e.g. [9℄)
CmMS
n (pa) = −

∑

b∈N′

f

∑

Π(n|b)

1

sΠ(n|b)

ˆ

dx



(
µ2
r

µ2
f

)−κ

F mMS
ab (x)




ˆ

dΦn (xpb (z) ; {pk}nk=1) Fn

∣∣Mn

∣∣2 (4.35)where
F mMS

ab (x) =
αs

2π
S (κ)

1

κ
Pab (x) (4.36)



4.3. QUASI-COLLINEAR SUBTRACTION TERMS FOR MASSIVE DIPOLES 105is the massless, renormalized parton density (see (1.22) in Setion 1.1). We an further usethe general form of Dn obtained in Setion 3.7.4, namely equation (3.436). In onsideredase this equation an be written as
Dn (pa) =

∑

b∈N′

f

∑

Π(n|b)

1

sΠ(n|b)

n∑

j=1

ˆ

dx
[
J
mMS
a,b,j (1− x) + J

remn
a,b,j (1− x)

]
dS(n) b,j (xpb; {pl}nl=1)

+ dS dip-soft
(n) a (pa; {pl}nl=1) (4.37)where here we have used Jcoll in the form

J coll
a,b,j (u) ≡ JmMS

a,b,j (u) = −αs

2π
S (κ)

(
µ2
r

2pb · pj

)−κ
1

κ
Pab (u) , (4.38)sine in that form it appears in massless dipole formalism [9℄. Note, we put the ommonfator Γ (1− κ) (4π)−κ we enountered in dipole integration into S (κ) and replaed γ̃by the salar produt pb · pj1. Moreover, we replaed u by 1 − x and p̃a (u) by xpa, aswe work in the massless limit. In order to write the ollinear subtration term CmMS

n insimilar form to (4.37) we an use the following trik
C

mMS
n (pa) = −

αs

2π
S (κ)

∑

b∈N′

f

∑

Π(n|b)

1

sΠ(n|b)

ˆ

dx

ˆ

dΦn (xpb; {pk}nk=1) Fn

{〈
Mn

∣∣


(
µ2
r

µ2
f

)−κ

+

n∑

j=1

T̂j · T̂b
T̂ 2
b

(
µ2
r

2pb · pj

)−κ

 1

κ
Pab (x)

∣∣Mn

〉

−
n∑

j=1

〈
Mn

∣∣ T̂j · T̂b
T̂ 2
b

(
µ2
r

2pb · pj

)−κ
1

κ
Pab (x)

∣∣Mn

〉}
, (4.39)that is we added and subtrated the term that is responsible for olour orrelations in

dS(n) b,j . Due to the olour onservation the square braket above redues to
(
µ2
r

µ2
f

)−κ

+

n∑

j=1

T̂j · T̂b
T̂ 2
b

(
µ2
r

2pb · pj

)−κ

= −κ
n∑

j=1

T̂j · T̂b
T̂ 2
b

log

(
µ2
f

2pb · pj

)
+O

(
κ2
) (4.40)and in onsequene, we obtain

CmMS
n (pa) =

αs

2π
S (κ)

∑

b∈N′

f

∑

Π(n|b)

1

sΠ(n|b)

n∑

j=1

ˆ

dx dS(n) b,j (xpb; {pl}nl=1)

[
log

(
µ2
f

2pb · pj

)
−
(

µ2
r

2pb · pj

)−κ
1

κ

]
Pab (x) . (4.41)1Reall that γ̃ was originally de�ned as pa · p̃j for IE-FS ase, however it was the de�nition relevantto (n+ 1)-partile matrix element; later, in Setion 3.7.4, we hanged tilded spetator to �normal� �nalstate parton.



106 CHAPTER 4. GENERAL MASS SCHEME FOR JETSWe see, that now the pole has exatly the same oe�ient as in Dn (pa). Thus we getfor the virtual ontribution
σV
n

(
P, q;

{
k
(J)
i

}n

i=1

)
= N (P, q)

∑

a∈N′

f

ˆ

dz fa (z)

{
ˆ

dSloop
n (pa (z) ; {pl}nl=1) +

ˆ

dSdip-soft
(n) a (pa (z) ; {pl}nl=1)

+
∑

b∈N′

f

∑

Π(n|b)

1

sΠ(n|b)

n∑

j=1

ˆ

dx
[
Jremn
a,b,j (1− x, z) + Jfacta,b,j (x, z)

]

ˆ

dS(n) b,j (xpb (z) ; {pl}nl=1)

}
, (4.42)where

J
fact
a,b,j (x, z) = −

αs

2π
S (κ) log

(
µ2
f

2pb (z) · pj

)
Pab (x) (4.43)is a remnant of anellation of the ollinear poles. Above in Eq. (4.42) we introdued

dSloop
n (pa; {pl}nl=1) =

∑

Π(n|a)

1

sΠ(n|a)

ˆ

dΦn (pa; {pk}nk=1)M
loop 2

n . (4.44)Note, that the sums over �nal state on�gurations and orresponding symmetry fatorsare ontained in the de�nitions of dSloop and dSdip-soft.In the next subsetion, we shall generalize above formulae to the massive ase. Wewill see, that this is atually straightforward, one we have massive dipole kinematisand partoni PDFs with masses taken into aount. There are however some subtletiessimilar to those disussed in Setion 2.4.4.3.2 Fully massive aseNow, basing on (4.35) we are going to onstrut analogous subtration term with themassless funtions F mMS
ab replaed by the massive ones F CWZ

ab . There is however aompliation. Namely, the question is, whether to treat the tree level amplitude Fn

∣∣Mn

∣∣2in (4.35) as massive or not, and onsequently what are the bounds on x onvolution. Thisis not restrited by fatorization itself as disussed in Setion 2.4.In the massive ase, we annot simply pass the simple fration of pa into ∣∣Mn

∣∣2as in (4.35), beause partons a and b an have di�erent types (a gluon or quark) andonsequently di�erent masses. Of ourse it is the �plus� omponent of pa momentum,that should be atually passed to the redued matrix element. However, equivalentlythis an be solved using the kinematis we developed for dipoles, i.e we an write
C̃CWZ
n (pa) = −

∑

b∈N′

f

∑

Π(n|b)

1

sΠ(n|b)

ˆ

duF CWZ
ab (1− u)

ˆ

dΦn (p̃b (u) ; {pk}nk=1) Fn

∣∣Mn

∣∣2 . (4.45)



4.3. QUASI-COLLINEAR SUBTRACTION TERMS FOR MASSIVE DIPOLES 107Now the redued matrix element is alulated with an on-shell momentum p̃b �xed bythe fration 1 − u and some additional invariants, as we learnt in Setion 3.6.4. In thelimit of vanishing mass mQ it beomes
C̃

CWZ
n (pa) = −

∑

b∈N′

f

∑

Π(n|b)

1

sΠ(n|b)

ˆ

dxF CWZ
ab (x)

ˆ

dΦn (xpb; {pk}nk=1) Fn

∣∣Mn

∣∣2 +O
(
η2
)

= C
CWZ
n (pa) +O

(
η2
)
. (4.46)Note, the di�erene between C̃CWZ

n (pa) and CCWZ
n (pa). The �rst one is alulated withthe full mass dependene in kinematis and the matrix element, while in the latter theonly dependene on mass mQ is in F CWZ

ab . Nonetheless, both an be used as a ollinearsubtration term, beause the only singular dependene on mass is in F CWZ
ab .This ambiguity an be resolved analogously to the inlusive ase disussed in Setion2.4. Namely, we expet, that around the swithing point for a given heavy quark, the lastan be mostly generated dynamially from lighter �avours. Thus, onsistent formalismshould lead to subtration from σLO

n those ontributions whih originate in heavy quark-initiated proesses. It is most e�etively done, when we treat the initial state quarks asmassless, both in σLO
n and in Cn. Only then this anellation an be omplete withoutintroduing arti�ial saling variables, as we have seen in Setion 2.4. We underline, thatit does not mean that we set the masses of heavy quarks to zero everywhere in σLO

n or
Cn, thus still the diagrams like BGF are the dominant prodution hannels. Moreover,we an have initial state massive quarks in other subproesses, see below.In order to larify the above statements, let us disuss a spei� example in moredetails. Consider the proess

γH → 2 JQ, (4.47)where H is a hadron and we denoted by JQ a jet with possible heavy �avour Q. Note,that atually the jets an be �avourless when there is QQ pair, nevertheless they �feel�heavy quarks. In order to simplify the notation, let us assume that there is only oneheavy quark and one light quark. Aording to fatorization theorem, the ross setionan be alulated as
σγH→2JQ

=
∑

a∈N′

f

fa ⊗ σ̂aγ→2 JQ
, (4.48)where the hat denotes IR safe ross setion as usual. PDFs are de�ned in the ompositeCWZ sheme, thus for a given value of external sale, we have to speify the ativenumber of �avours Na. Hene, we have fa ≡ f

(Na)
a , where Na inreases as one rossesswithing point. However, below the swithing point for a given heavy quark Q, fQ = 0up to the power orretions. Therefore, the summation an go over all the �avours andgluon N′

f .The relation de�ning IR safe ross setion is
σaγ→2 JQ

=
∑

b∈N′

f

FCWZ
ab ⊗ σ̂bγ→2 JQ

. (4.49)More spei�ally, we have for a gluon initiated proess at NLO (we drop �CWZ� indiation



108 CHAPTER 4. GENERAL MASS SCHEME FOR JETSin what follows and denote the order in αs in supersript)
σ
(1)
gγ→2 JQ

+ σ
(2)
gγ→2 JQ

=
∑

b∈N′

f

(
F (0)

gb + F (1)
gb

)
⊗
(
σ̂
(1)
bγ→2 JQ

+ σ̂
(2)
bγ→2 JQ

)

= σ̂
(1)
gγ→2 JQ

+ σ̂
(2)
gγ→2 JQ

+
∑

b∈N′

f

F (1)
gb ⊗ σ̂

(1)
bγ→2 JQ

= σ̂
(1)
gγ→2 JQ

+ σ̂
(2)
gγ→2 JQ

+ F (1)
gg ⊗ σ̂(1)

gγ→2 JQ
+ F (1)

gQ ⊗ σ̂
(1)
Qγ→2 JQ

(4.50)Here and belowQ ≡
{
Q,Q

} for more transpareny. Solving this for the �hatted� quantitywe get for a gluon initiated proess
σ̂
(2)
gγ→2 JQ

= σ
(2)
gγ→2 JQ

−F (1)
gg ⊗ σ(1)

gγ→2 JQ
−F (1)

gQ ⊗ σ
(1)
Qγ→2 JQ

. (4.51)For a light quark initiated proess we have
σ
(1)
qγ→2 JQ

+ σ
(2)
qγ→2 JQ

= σ̂
(1)
qγ→2 JQ

+ σ̂
(2)
qγ→2 JQ

+ F (1)
qg ⊗ σ̂(1)

gγ→2 JQ
+ F (1)

qq ⊗ σ̂(1)
qγ→2 JQ

(4.52)and thus
σ̂
(2)
qγ→2 JQ

= σ
(2)
qγ→2 JQ

−F (1)
qg ⊗ σ̂(1)

gγ→2 JQ
−F (1)

qq ⊗ σ̂(1)
qγ→2 JQ

. (4.53)Similar relation holds for a heavy quark in the initial state
σ̂
(2)
Qγ→2 JQ

= σ
(2)
Qγ→2 JQ

−F (1)
Qg ⊗ σ̂

(1)
gγ→2 JQ

−F (1)
QQ ⊗ σ̂

(1)
Qγ→2 JQ

. (4.54)For the subproesses ontributing to di�erent mehanisms of two jets prodution seeFig. 4.4.Summarizing, the ross setion on a hadroni target an be written in terms of barepartoni ross setions as follows
σγH→2 JQ

= fg ⊗
(
σ
(1)
gγ→2 JQ

+ σ
(2)
gγ→2 JQ

)

+ fq ⊗
(
σ
(1)
qγ→2 JQ

+ σ
(2)
qγ→2 JQ

)
+ fQ ⊗

(
σ
(1)
Qγ→2 JQ

+ σ
(2)
Qγ→2 JQ

)

−
[
fg ⊗F (1)

gg + fq ⊗F (1)
qg + fQ ⊗F (1)

Qg

]
σ
(1)
gγ→2 JQ

−
[
fg ⊗F (1)

gQ + fQ ⊗F (1)
QQ

]
σ
(1)
Qγ→2 JQ

. (4.55)The third and fourth lines ontain ollinear subtration terms. Note, that the �rst twoterms in the third line are pure poles and should be aneled by hand with similar polesappearing after integration of massless ontributions to dipoles. Then we are left onlywith �nite terms. When the external sale is very large, we have the IR safe ross setionby onstrution,
σγH→2 JQ

−→
mQ→0

fg ⊗
(
σ̂
(1)
gγ→2 JQ

+ σ̂
(2)
gγ→2 JQ

)

+ fQ ⊗
(
σ̂
(1)
Qγ→2 JQ

+ σ̂
(2)
Qγ→2JQ

)
+ fq ⊗ σ̂(2)

qγ→2 JQ
. (4.56)
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σLO
2 C2 σNLO

2

Na = 3

PSfrag replaementsPSfrag replaements S

S

PSfrag replaements

L

L

L

L

Na = 4PSfrag replaementsPSfrag replaements S

SPSfrag replaements
L

Na = 5PSfrag replaementsPSfrag replaements S

SPSfrag replaements
L

PSfrag replaements
= {u, d, s, ū, d̄, s̄}
= {c, c̄}
= {b, b̄}

= {b, b̄} with mb = 0

= {c, c̄} with mc = 0

Figure 4.4: The diagram types ourring in a alulation of two-jets ross setion withthe heavy quark e�ets. The total number of �avours is Nf = 6. Shaded blob denotestree level amplitude, the blob with L stands for loop orretions, while with S for aollinear subtration term. Empty legs denote heavy quarks with masses set to zero, asorresponding diagrams are treated as asymptoti expressions.



110 CHAPTER 4. GENERAL MASS SCHEME FOR JETSNote the di�erene, now there are IR safe (�hatted�) NLO partoni ross setions. Onthe other hand, slightly above the mathing point for a quark Q

fQ ⊗ σ(1)
Qγ→2 JQ

− fQ ⊗F (1)
Qg ⊗ σ

(1)
gγ→2 JQ

− fQ ⊗F (1)
QQ ⊗ σ

(1)
Qγ→2 JQ

≈ 0. (4.57)As explained above, those are the terms where it is reasonable to set the masses of initialstate heavy quarks to zero in σ(1)
Qγ→2 JQ

.There are two omments in order. First, we stress that setting initial state massesto zero in the above terms is not a limitation of the present method. We are free tokeep a omplete mass dependene. Seond, both presriptions de�ne atually two di�er-ent shemes, whih should be used to obtain PDFs, as they are also sheme dependent.After this is done, one should atually ompare alulations in both shemes. Neverthe-less, a sheme just desribed seems to be more ompatible with existing PDFs, whihevolve aording to massless DGLAP equations (also the bounds in the onvolutions aremassless).The above example is also illustrated in a omis form in Fig. 4.4, where we takeinto aount two heavy quarks c and b. We show what proesses ontribute if the salerosses the swithing points for Na = 3, 4, 5.4.4 Massless limit and onsisteny hekLet us now hek, that introdued in the previous setion subtration terms indeedfatorize the quasi-ollinear singularities. This is done by applying the quasi-ollinearsubtration terms and taking massless initial state limit in our IE-FS dipoles. As a resultwe should obtain exatly the massless version of the dipoles (more preisely with masslessinitial state, a spetator an be massive), with subtrated ollinear poles aording to
MS sheme. That is, we require

lim
m→0

[
DIE-FS

n (pa)− C̃CWZ
n (pa)

]
= DIE-FS

n (pa)
∣∣
m=0
− CmMS

n (pa) . (4.58)We note, that this equation is required to hold after the soft singularities were anelled.Atually, it is enough to hek (4.58) for integrated dipole splitting funtion only. To seethis, let us reall, that
DIE-FS

n (pa) = −
∑

b∈N′

f

∑

Π(n|b)

1

sΠ(n|b)

n∑

j=1

ˆ

du IIE-FSa,b,j (u) dS(n) b,j (p̃b (u) ; {pl}nl=1) . (4.59)On the other hand, we an rewrite the ollinear subtration term in any sheme as
Cn (pa) = −

∑

b∈N′

f

∑

Π(n|b)

1

sΠ(n|b)

n∑

j=1

ˆ

duFab (1− u) dS(n) b,j (p̃b (u)) , (4.60)where we used the olour onservation in order to write Cn in similar form to Dn. Thisis possible, sine the kernel Fab does not depend on j. Now, we an ast (4.58) into
lim
m→0

[
IIE-FSa,b,j (u)−FCWZ

ab (1− u)
]
= IIE-FSa,b,j (u)

∣∣
m=0
−F mMS

ab (1− u) . (4.61)Let us thus start with exploring the massless limit of our integrated dipole fun-tion orresponding to the initial state g → QQ splitting, i.e. we are interested in for-mula (3.403). First, we have to �nd the leading behaviour of the ollinear logarithm
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log (1 +A (u)), with

A (u) =
4η2P2p

η2 − η2j + η2P2 (1− 2p)
(4.62)when the mass of the initial state goes to zero. To this end, we �rst obtain the followingexpansions

η2P2 =

(
η2j + u

) (
2η2 + u− 1

)

u− 1
+O

(
η4
)
, (4.63)

p =
2η2η2j + u (u− 1)

(
u− η2

)

2u (u− 1)
(
u+ η2j

) +O
(
η2
)
, (4.64)with the help of

w = 1 +
η2

1− u +O
(
η4
)
. (4.65)Consequently, we get

log (1 +A (u)) = log
u2

u+ η2j
− log η2 +O

(
η2
)
. (4.66)Taking the massless limit with the rest of the expression (3.403) we �nd the followinganswer

IIE-FSg,Q,j (u) =
αs

2π

[
Pgq (u)

(
log

u2

u+ η2j
− log η2

)
+ 2TR u (1− u)

]
+O

(
η2
)
. (4.67)Let us subtrat now the ollinear ontribution

lim
m→0

[
IIE-FSg,Q,j (u)−FMS

gQ (1− u)
]

=
αs

2π

[
Pgq (u)

(
log

u2

u+ η2j
− log

µ2
f

2pj · pg

)
+ 2TR u (1− u)

] (4.68)First, observe that now it is �nite in m→ 0 limit. Here we use MS subsheme of CWZ,sine we are in the region where the quark is treated as ative parton. Now we have tohek whether it equals to the RHS of (4.61). We have �rst (note the massless quark inthe subsript)
IIE-FSg,q,j (u) =

αs

2π
S (κ)

(
µ2
r

2pj · pg

)−κ
[(

1

κ
+ log

u2

u+ ηj

)
Pgq (u) + 2TR u (1− u)

]
.Note, this is the same result as in [10℄. As already explained in Setion 3.7.3.2, this isbeause when m = 0 we have the same dipole splitting funtion. Next, we alulate

IIE-FSg,q,j (u)−F mMS
gq (1− u) = αs

2π
S (κ)

(
µ2
r

2pj · pg

)−κ

[
 1

κ
− 1

κ

(
2pj · pg
µ2
f

)−κ

+ log
u2

u+ ηj


Pgq (u) + 2TR u (1− u)

]

=
αs

2π

[(
log

u2

u+ ηj
− log

µ2
f

2pj · pg

)
Pgq (u) + 2TR u (1− u)

]
. (4.69)



112 CHAPTER 4. GENERAL MASS SCHEME FOR JETSThus we see, that (4.68) and (4.69) are indeed idential.Let us swith now to Q→ gQ ase. This time the logarithm behaves as
log (1 +A (u)) = log

u2

(1− u)2
(
u+ η2j

) − log η2 +O
(
η2
)
. (4.70)Analysing the rest of the expression (3.420) in the massless limit, we get

IIE-FSQ,g,j (u) =
αs

2π

[(
log

u2

(1− u)2
(
u+ η2j

) − log η2

)
Pqg (1− u)− CF

4u

1− u

]
+O

(
η2
)
.(4.71)Performing the subtration we get

lim
m→0

[
IIE-FSQ,g,j (u)−FMS

Qg (1− u)
]

=
αs

2π

[(
log

u2(
u+ η2j

) − log
µ2
f

2pj · pq
+ 1

)
Pqg (1− u)− CF

4u

1− u

] (4.72)On the other hand, the massless result (3.421) reads
IIE-FSq,g,j (u) =

αs

2π
S (κ)

(
µ2
r

2pj · pq

)−κ

[(
1

κ
+ log

u2

u+ η2j
+ 1

)
Pqg (1− u)− CF

4u

1− u

] (4.73)and as an be easily heked, again IIE-FSq,g,j (u)−FmMS
qg (1− u) equals preisely to (4.72).Finally, let us turn to Q → Qg splitting ase. This ase is slightly harder. Let us�rst note that in this ase the pertinent logarithms behave as

log (1 +A1 (u)) = log
1 + η2j
η2j

+O
(
η2
)
,

log (1 +A2 (u)) = log
1

u+ η2j
− log η2 +O

(
η2
)
.Therefore, the whole expression (3.364) redues to

IIE-FSQ,Q,j (u) =
αs

2π

(
µ2
r

2pj · pq

)−κ

CF

{(
1

u

)

+

[
−
(
1 + (1− u)2

) (
log η2 + log

(
u+ η2j

))

− 2 log
1 + u+ η2j
u+ η2j

− 2 (1− u)
]

− δ (u)
[
1

κ

(
1 + log η2 + log

(
1 + η2j

))
+

1

2
log η2

(
2 + log η2

)

− 1

2
log2

(
1 + η2j

)
− 2Li2

(
1

1 + η2j

)
+
π2

3

]}
+O

(
η2
) (4.74)



4.5. PRACTICAL APPLICATION AND MASSJET PROJECT 113Making the subtration and rearranging the terms we get
lim
m→0

[
IIE-FSQ,Q,j (u)−FMS

QQ (1− u)
]
=
αs

2π
S (κ)

(
µ2
r

2pj · pq

)−κ

CF

{
− 1

CF

Pqq (1− u) log
(

µ2
f

2pj · pq

)
+ (2− u) log

(
u+ η2j

)

− 2

(
1

u

)

+

log
(
1 + u+ η2j

)
+ 4

(
log u

u

)

+

+ 2 (u− 2) log u+ u

− δ (u)
[
1

κ

(
1 + log η2 + log

(
1 + η2j

))
− 3

2
log η2 + 2

+
1

2
log η2

(
2 + log η2

)
− 1

2
log2

(
1 + η2j

)
− 2Li2

(
1

1 + η2j

)
+
π2

3

]}
. (4.75)Now we an ompare this with the alulation of [10℄, as in this ase our dipole splittingfuntion is preisely the same in the massless initial state limit. Massless MS subtrationproedure is analogous as before, thus we skip this step. We �nd, that indeed our resultful�ls (4.61). However, as already mentioned, we have to drop the endpoint ontribu-tion �rst (the one proportional to delta funtion as it anels with virtual orretions).Nevertheless some omparison an be made also with this part. First, we �nd that allthe terms involving spetator do agree with [10℄. Moreover, we an hek, that thesoft/ollinear poles are also orret. This an be done by the help of the orrespond-ing formulae (3.305), (3.306). The relation (4.58) is also true for our formula with themassless spetator assumed at the beginning.The remaining initial state splitting proess is g → gg with dipole funtion given in[10℄. However, sine there are only ollinear poles it is trivial. The only observation isthat now our ollinear subtration term has the end-point ontribution with a logarithmof mass (4.28). This ontribution anels the singularity of the massive loop orretionto gluon initial state leg.4.5 Pratial appliation and MassJet projetLet us now sketh a relatively simple example of NLO alulation using general-massdipole formalism. It is very instrutive and the results an be ompared with existingalulations.Consider heavy quark struture funtion disussed in Chapter 2. All relevant dia-grams are shown in Fig. 2.1. We assume that there is a massive heavy quark Q in theinitial state. That is, we onsider also the quark sattering (QS) proess γQ → Q andits virtual and real orretions. Both have soft singularities and �live� on di�erent phasespaes: the former on dΦ2 while the latter on dΦ1. The real orretion is γQ → Qg,where the gluon an be emitted either from initial or �nal state. There is also boson-gluon fusion proess γg → QQ whih does not have any singularities. However bothBGF and QS have quasi-ollinear emissions whih have to be treated appropriately.Sine it is inlusive proess, the jet funtion is just a unity. We need three dipoles,two for the initial state emission and one for the �nal state. We an write somewhatsymbolially

FLO
2Q = fQ ⊗

ˆ

dΦ1 |MγQ→Q|2 , (4.76)
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FNLO
2Q = fQ ⊗

ˆ

dΦ2

[
|MγQ→Qg|2 −

(
V IE-FS
Q→Qg + V FE-IS

Q→Qg

)
⊗ |MγQ→Q|2

]

+ fg ⊗
ˆ

dΦ2

[∣∣∣Mγg→QQ

∣∣∣
2

− V IE-FS
g→QQ

⊗ |MγQ→Q|2
]

+ fQ ⊗
ˆ

dΦ1

[
Mloop 2

γQ→Q +
(
IIE-FSQ→Qg + IFE-ISQ→Qg − IcollQQ

)
⊗ |MγQ→Q|2

]

+ fg ⊗
ˆ

dΦ1

(
IIE-FS
g→QQ

− IcollgQ

)
⊗ |MγQ→Q|2 . (4.77)The real matrix elements are easy to obtain, while the virtual orretions are givenin [35℄ for a general massive ase. We �nd that the pole part ofMloop 2
γQ→Q anels exatlywith the pole part of (IIE-FSQ→Qg + IFE-ISQ→Qg

). The singularities in the real orretions arealso subtrated in a proper way as shown in Fig. 4.5.Those analytial observations are on�rmed by our C++ MC implementation of thegeneral-mass sheme (Fig. 4.6) (see also below). We observe that in onsidered ase:a) phase spae is fatorized orretly, as we have heked it expliitly omparing suit-able histogramsb) dipole splitting funtions are hosen orretly, as the MC integration in the �rstline of (4.77) is �nite and stable (we do not need an additional IR uto� here)) integrated dipoles are orret; for BGF it an be heked expliitly sine thereare no soft poles, while for QS it an be heked by omparison with analytialalulationsIn Fig. 4.6 we ompare the present alulation with the one of Setion 2.2. In the latter theNLO QS ontributions were dropped as they are usually negligible (they are e�etively
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Chapter 5Summary and outlookIn the present work we have given a detailed desription of the general method foralulating jets ross setions with heavy quark e�ets taken into aount. In the �rstplae, we have revised the dipole subtration method and extended it to the ase, wherethe initial state splitting proesses may involve massive quarks. Suh a situation havebeen treated only for QED-like proesses before and is by no means suited to jets in QCD.In partiular, this approah does not take into aount gluon splitting into heavy quarks,what is of great importane due to largeness of gluon density. Inlusion of massive initialstate partons is a minor hange only super�ially. In reality, we have to rede�ne most ofthe existing dipole splitting funtions and the orresponding kinematis. Hene we hadto perform all the integrals again.Moreover, we supply the dipole formalism in the speial subtration terms. They areintended to fatorize out the mass quasi-singularities and retain the massless DGLAPevolution for PDFs. This is done by the method based on �rm theoretial bakgroundand ould be in priniple generalized to any desired order of perturbation theory. Wehave heked that our ross setions are free from ollinear initial state singularities inthe massless limit.Presented results are atually enough to prepare a Monte-Carlo algorithm for alu-lating multi-jets ross setion at NLO in DIS proesses. They an be applied to bothneutral and harged urrent reations, sine the information of the latter are buriedinside a redued matrix elements. Suh generalizations are onstrained mainly by theomplexity of loop alulations in a fully massive ase.The method an be also extended to fragmentation proesses and hadron-hadronreations. This is atually not an extremely di�ult task. In ase of hadron-hadronsattering one needs to onsider one additional ase, namely initial state emitter withinitial state spetator and orresponding kinematis. There is however another di�ulty,namely so alled DFT disease [24℄. There is a on�rmed violation of KLN theorem attwo loops when there are two massive partons in the initial state. Suh non-anellationof IR singularities may invalidate fatorization theorem at NNLO. Those and relatedsubjets are left for the future studies.We did not disuss the jet algorithms. There are several IR safe routines, inludingsolutions for heavy quarks [46, 6℄. We however realise, that this topi needs furtherveri�ation as massive initial state quarks were not used in jet alulations before. Wehowever do not expet any ompliations as any ollinear safe observable an be extendedto a quasi-ollinear one [10℄. 117



118 CHAPTER 5. SUMMARY AND OUTLOOKIn order to support our theoretial alulations, we have onstruted a dediatedC++ modular MC program based on the FOAM algorithm. Although the projet isunder development, we have performed sample inlusive alulations on�rming e�ayof our method. So far, we have implemented most (but not all) of the onstituents neededfor dijets alulations at NLO auray in our general-mass sheme with any number ofheavy quarks. Still, some virtual orretions within a suitable renormalization shemehave to be taken into aount.
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Appendix AKinematisA.1 Thermodynamis of the invariantsWe have the following �equations of state�
ũ2m2

a + w̃
(
w̃P2 − 2Paũ

)
=

{
m2

ij FE-IS
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j IE-FS (A.1)
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ai IE-FS (A.2)If we introdue the additional invariant γ̃ we have also
γ̃ = w̃Pa − ũm2

a. (A.3)We an obtain some useful relations between the partial derivatives. For example
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∂ũ

)

γ̃

=

(
∂w̃

∂ũ
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∂ũ

∂Pa

)

P2

(
∂Pa

∂ũ
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124 APPENDIX A. KINEMATICSFor IE-FS ase the formulae are analogous. All the identities are derived using well-knownjaobian tehniques. Note we use the thermodynamial notation for partial derivatives,i.e. subsripts denote �xed parameters.If we have all three equations of state (A.1)-(A.3) satis�ed, we an express P2 asfollows
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aũ
2 + (ũ− 1)m2
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2A.2 Expliit expressions for resaled variablesWe give here the expliit forms of the resaled funtions η2X = X/2γ̃, jaobians andother variables used in the integrated dipoles. They are useful when analysing di�erentlimits of the integrals. In pratise they are most onvenient alulated diretly from theinvariants. Below we use η2 ≡ η2Q.A.2.1 Final State Emitter - Initial State SpetatorA.2.1.1 Q→ Qg and Q→ Qg splittings
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− η2a(u− 2)u η2P2 . (A.26)A.2.1.2 g → QQ and g → gg splittings
w =

1

2

(
2uη2a +

√
u (4η2a + 4uη4a + u− 2) + 1 + u+ 1

)
, (A.27)

η2Pa
=

(
2uη2a + 1

) (
2uη2a + u− w + 1

)

2u (uη2a + 1)
, (A.28)

η̃2P2 = − uη2a + 1

u (η2a(u − 2w) + 1) + (−u− 1)w
, (A.29)

v =
1

2η2au+ 1
(A.30)and the jaobian η2J has the same form as in the previous subsetion.A.2.2 Initial State Emitter - Final State SpetatorA.2.2.1 Q→ Qg and Q→ Qg splittings

w =
2
(
η2j + η2u

)
+
√
u
(
4η2 − 4η2(u− 2)η2j + (4η4 + 1)u− 2

)
+ 1 + u+ 1

2
(
η2j + 1

) , (A.31)
η2P2 =

(
η2j + 1

) (
η2j + η2u2 + u

)

(2w − 1)η2j + u (η2(−u) + 2η2w + w − 1) + w
, (A.32)

η2Pa
=

(
2η2u+ 1

) (
2
(
η2j + η2u

)
− w

(
η2j + 1

)
+ u+ 1

)

2
(
η2j + η2u2 + u

) , (A.33)
η̃2P2−m2

j
= ṽ2j

(
2η2j + u

(
η2 − η2j

)
+ 1
)
[
(
2η2j + 1

) (
(w − 1)η2j − η2u2 + w

)

+ u
(
−2η2j +

(
2η2 + 1

)
w
(
η2j + 1

)
− 1
)
]−1

, (A.34)
η2J =

∣∣∣∣∣
2
(
η4Pa
− η2η2P2

) (
σ + (1− u)

(
η2P2 − η2Pa

))

η2P2σ

∣∣∣∣∣ , (A.35)where
σ =

√
(u− 1)2η4Pa

− η2(u− 2)u η2P2 . (A.36)
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w =

2η2j +
√
4η2η2j + u (4η2 + u− 2) + 1 + u+ 1

2
(
η2j + 1

)
− 2η2

(A.37)
η2P2 =

(
−η2 + η2j + 1

) (
η2j + u

)

(2w − 1)η2j + u(w − 1) + w
(A.38)

η2Pa
=

2η2j + w
(
η2 − η2j − 1

)
+ u+ 1

2
(
η2j + u

) (A.39)
η2J =

∣∣∣∣∣∣

2η4Pa

[√
(u− 1)2η4Pa

+ η2η2P2 + (1− u)
(
η2P2 − η2Pa

)]

η2P2

√
(u− 1)2η4Pa

+ η2η2P2

∣∣∣∣∣∣
(A.40)A.2.2.3 Q→ gQ and Q→ gQ splittings

η2P2 = 2
(
η2 + η2j + 1

)
2
(
η2j + η2u2 + u

)
{
u2
(
−
((
2η2 + 1

)
ṽj − 2η2

(
η2 − η2j + 1

)
− 1
))

+ 2u
(
η2
(
ṽj + 4η2j + 1

)
+ η2j (1− ṽj)

)
+ 2η2j

(
ṽj − η2 + η2j + 1

)
+ ṽj + 1

} (A.41)
η2Pa

=

(
2η2u+ 1

) (
u
(
ṽj + 2η2 + 1

)
− ṽj + 2η2j + 1

)

4
(
η2j + η2u2 + u

) (A.42)
w =

u
(
−ṽj + 2η2 + 1

)
+ ṽj + 2η2j + 1

2
(
η2 + η2j + 1

) (A.43)
η2J =

2vη2Pa

(
(1− v)η2Pa

− η2P2

)

η2P2

(A.44)A.3 Three-partile phase spae in D dimensionsLet us onsider
ˆ

dΦ3 (K; k1, k2, k3) =

ˆ

(2π)D δD (K − k1 − k2 − k3)

dDk1 δ+
(
k21 −m2

1

)

(2π)D−1

dDk2 δ+
(
k22 −m2

2

)

(2π)D−1

dDk3 δ+
(
k23 −m2

3

)

(2π)D−1
. (A.45)We introdue the notation

K2 =M2, (A.46)



128 APPENDIX A. KINEMATICSPSfrag replaements
Z

k3

k1

k2
αtransversehyperplaneFigure A.1: Center of mass system of the momenta k1, k2 and k3. We orient the framein suh a way that k1 points towards +Z axis. In D dimensions ΩD−2 is a solid angleon the transverse hyperplane and the orientation of the Z axis is given by Ω

(+Z)
D−1 .

m2
ab = (ka + kb)

2
. (A.47)Reall that

dΓ (k) =
dDk

(2π)D−1
δ+
(
k2 −m2

)
=

dD−1k

(2π)D−1 2Ek

=

∣∣∣~k
∣∣∣
D−2

d
∣∣∣~k
∣∣∣ dΩD−1

(2π)D−1 2Ek

=
1

4 (2π)
D−1

∣∣∣~k
∣∣∣

Ek

(∣∣∣~k
∣∣∣ sin θ

)D−4

d~k2d (cos θ) dΩD−2 (A.48)where ΩD−1 is a solid angle on the D−1 dimensional sphere, while ΩD−2 is a solid angleon transverse hyperplane to Z axis.Let us now hoose CM(K) system and orient it in suh a way that k1 points towards
+Z axis (Fig. A.3). Integrating (A.45) and using (A.48) we get
ˆ

dΦ3 (K; k1, k2, k3) =

ˆ

(2π) δ
(
(K − k1 − k2)2 −m2

3

) ( 1

4 (2π)
D−1

)2

∣∣∣~k1
∣∣∣
D−3

E1

∣∣∣~k2
∣∣∣

E2

(∣∣∣~k2
∣∣∣ sinα

)D−4

d~k21d
~k22d (cosα) dΩD−2dΩ

(+Z)
D−1 , (A.49)where dΩ(+Z)

D−1 is an solid angle representing orientation of +Z axis in D− 1 dimensionalspae. The delta funtion gives
0 =M2 +m2

1 +m2
2 −m2

3 − 2M (E1 + E2) + 2E1E2 − 2
∣∣∣~k1
∣∣∣
∣∣∣~k2
∣∣∣ cosα (A.50)and thus

ˆ

dΦ3 (K; k1, k2, k3) =
24−D

8 (2π)2D−1

[
4~k21

~k22 −
(
M2 +m2

1 +m2
2 −m2

3 − 2M (E1 + E2) + 2E1E2

)2]D
2
−2

dE1dE2dΩD−2dΩ
(+Z)
D−1 ,(A.51)
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ab

ˆ

dΦ3 (K; k1, k2, k3) =
24−D

32 (2π)
2D−1

1

MD−2
â

D
2
−2 dm23dm13dΩD−2dΩ

(+Z)
D−1 , (A.52)where

â =M2
(
m2

3

(
m2

1 +m2
2 +m2

13 +m2
23

)
+
(
m2

1 −m2
13

) (
m2

2 −m2
23

)
−m2

3

(
m2

3 +M2
))

−m4
1m

2
2 +m2

1

(
m2

13

(
m2

23 −m2
3 +m2

2

)
+m2

2

(
m2

23 +m2
3 −m2

2

))

+m2
23

(
m2

3

(
m2

13 −m2
2

)
−m2

13

(
m2

13 +m2
23 −m2

2

))
. (A.53)In the derivation we used

E1 =
M2 +m2

1 −m2
23

2M
, (A.54)

E2 =
M2 +m2

2 −m2
13

2M
, (A.55)

E3 =
M2 +m2

3 −m2
12

2M
, (A.56)whih was obtained using relations of the type (K − k1)2 = (k2 + k3)

2
= m2

23 et. in
CM(K).What remains is to �nd the support. Let us start with m2

23. Clearly
(m2 +m3)

2 ≤ m2
23 ≤ (M −m1)

2
. (A.57)The upper bound omes from the fat that m2

23 = M2 + m2
1 − 2ME1 is maximal for

E1 = m1. Let us now swith to CM(k2, k3) for a moment (we shall mark by starquantities in this frame). We have
E∗

1 =
M2 −m2

23 −m2
1

2m23
. (A.58)

E∗
2 =

m2
23 −m2

3 +m2
2

2m23
(A.59)

E∗
3 =

m2
23 −m2

2 +m2
3

2m23
(A.60)However

m2
13 = m2

1 +m2
3 + 2E∗

1E
∗
3 − 2

∣∣∣~k∗1
∣∣∣
∣∣∣~k∗3
∣∣∣ cosβ∗, (A.61)where β∗ is an angle between ~k1 and ~k3 in CM(k2, k3). Therefore the bounds on m2

13read
m2

1 +m2
3 + 2E∗

1E
∗
3 − 2

∣∣∣~k∗1
∣∣∣
∣∣∣~k∗3
∣∣∣ ≤ m2

13 ≤ m2
1 +m2

3 + 2E∗
1E

∗
3 + 2

∣∣∣~k∗1
∣∣∣
∣∣∣~k∗3
∣∣∣ . (A.62)
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Appendix BMathematial supplementB.1 The integralsIn this hapter we list and solve some of the appearing integrals. We start with thestandard speial funtions and next we swith to the integrals spei� to this work. Thespae-time dimension is de�ned as D = 4− 2ǫ = 4 + 2κ, ε, κ > 0.Integral A. (Euler's Gamma) For Re (z) > 0 it is de�ned as
Γ (z) =

ˆ ∞

0

dt tz−1e−tdt. (B.1)It has the following property
Γ (1 + z) = zΓ (z) . (B.2)We also use the following inomplete Gamma funtion

Γλ (z) =

ˆ ∞

λ

dt tz−1e−tdt. (B.3)We shall need also the following expression
Γλ (z) = λze−λ

ˆ ∞

0

dw (1 + w)z−1 e−λw. (B.4)Integral B. (Euler's Beta) The integral de�nition of Beta funtion reads
B (x, y) =

ˆ 1

0

dt (1− t)y−1 tx−1 (B.5)for Re (x) > 0 and Re (y) > 0. It is related to Gamma funtion by means of the formula
B (x, y) =

Γ (x) Γ (y)

Γ (x+ y)
. (B.6)If both arguments are equal, we use the following notation

B (x, x) ≡ B (x) . (B.7)131



132 APPENDIX B. MATHEMATICAL SUPPLEMENTIntegral C. (Dilogarithm) This funtion is de�ned via the integral
Li2 (z) = −

ˆ z

0

dt
log (1− t)

t
. (B.8)Its speial value is

Li2 (1) =
1

6
π2. (B.9)Let us note the following useful properties (for suitable x)

Li2 (x) + Li2 (1− x) =
π2

6
− log x log (1− x) , (B.10)

Li2 (x) + Li2

(
1

x

)
= −π

2

6
− 1

2
log2 (−x) . (B.11)Integral D. (Transverse integrals)When alulating the parton densities we enounter the integrals of the following form

ˆ

dD−2qT

(q2T +A)
N

= π
D
2
−1A

D
2
−1−N

Γ
(
N + 1− D

2

)

Γ (N)
. (B.12)Integral E. (Hypergeometri funtion) We de�ne the hypergeometri funtion bymeans of the following series (for z lying in the unit irle)

F (a, b, c; z) = 1 +
ab

c
z +

1

2

a (a+ 1) b (b+ 1)

c (c+ 1)
z2 + . . . . (B.13)More suitable integral de�nition involves Beta funtion

B (b, c− b)F (a, b, c; z) =

ˆ 1

0

dt (1− t)c−b−1 tb−1 (1− zt)−a (B.14)for suh a, b, c that the integral exists.Let us note some of the useful properties:a) Gauss's theorem
F (a, b, c; 1) =

Γ (c) Γ (c− a− b)
Γ (c− a) Γ (c− b) (B.15)b) Pfa� transformation

F (a, b, c; z) =
1

(1− z)a F
(
a, c− b, c;− z

1− z

) (B.16)) ontiguous relation
F (a+ 1, b, c; z) =

(
1− b

a

)
F (a, b, c; z) +

b

a
F (a, b+ 1, c; z) (B.17)



B.1. THE INTEGRALS 133Integral F. Let us de�ne the following integral
I1 (y; ε) =

ˆ z+

z−

dz
(z+ − z)−ε

(z − z−)−ε

y + z
, (B.18)where 0 ≤ z− < z+ ≤ 1 and y is suh that the integral exists. The result is

I1 (y; ε) = A (y) (z+ − z−)−2ε
B (1− ε, 1− ε)F (1, 1− ε, 2 (1− ε) ;−A (y)) , (B.19)where
A (y) =

z+ − z−
y + z−

. (B.20)Let us introdue the following notation (reall κ = −ε)
F (A;κ) = AB (1 + κ)F (1, 1 + κ, 2 (1 + κ) ;−A) . (B.21)Its integral form reads

F (A;κ) = A

ˆ 1

0

dt
[t (1− t)]κ
1 +At

. (B.22)Note we have the following re�etion relations
F (A;κ) = −F

(
−A;κ

)
, (B.23)where

A =
A

1 +A
. (B.24)Proof. The integral (B.18) an be easily transformed into the form of (B.14) viathe substitution

t =
z − z−
z+ − z−

. (B.25)We get
I1 (y; ε) = A (y) (z+ − z−)−2ε

ˆ 1

0

dt (1− t)−ε
t−ε (1 +A (y) t)

−1
, (B.26)and (B.19) easily follows from Integral E..Integral G.

I2 (ε) =
ˆ z+

z−

dz (z+ − z)−ε
(z − z−)−ε

= (z+ − z−)1−2ε
B (1− ε) . (B.27)Integral H.

I3 (ε) =
ˆ z+

z−

dz z (z+ − z)−ε
(z − z−)−ε

=
1

2
(z+ + z−) I2 (ε) . (B.28)



134 APPENDIX B. MATHEMATICAL SUPPLEMENTIntegral I. Consider now
I4 (y; ε) =

ˆ z+

z−

dz
(z+ − z)−ε

(z − z−)−ε

z (y + z)

=
z−1
− A1 (y)

A1 (y)−A2
(z+ − z−)−2ε {F (A1 (y) ;−ε)−F (A2;−ε)} , (B.29)where

A1 (y) = A (y) , A2 =
z+ − z−
z−

(B.30)with A (y) de�ned in (B.20).Proof. We use the substitution (B.25) and deompose the integrand into theproper frations. Finally use Integral F.Integral J.
I5 (ε) =

ˆ z+

z−

dz
(z+ − z)−ε

(z − z−)−ε

z
= (z+ − z−)−2εF (A2;−ε) . (B.31)Integral K.

I6 (y; ε) =
ˆ z+

z−

dz
(z+ − z)−ε

(z − z−)−ε

z2
= (z+ − z−)−2ε

z−1
− G (A2;−ε) , (B.32)where we have de�ned the funtion

G (A;κ) = AB (1 + κ)F (2, 1 + κ, 2 (1 + κ) ;−A) . (B.33)Let us note the following re�etion formula
G (A;κ) = −

(
1−A

)
G
(
−A;κ

)
, (B.34)where the �bar� operation is de�ned in (B.24). We note however, that one has to verifyif this operation is permitted for κ being lose to zero as it is not always the ase inpratie.Integral L.

I7 (y; ε) =
ˆ z+

z−

dz
(z+ − z)1−ε

(z − z−)1−ε

(y + z)
2

= (z+ − z−)1−2ε H (A (y) ;−ε) , (B.35)where A (y) is as in (B.20) and we have introdued
H (A;κ) = A2B (2 + κ)F (2, 2 + κ, 2 (2 + κ) ;−A) . (B.36)



B.1. THE INTEGRALS 135Integral M. The following integral is needed to order O (κ)

J1 (κ) =
ˆ 1

0

dy
1

y1−κ
F
(
1

y
;κ

)
=

1

2κ2
− π2

6
+O (κ) . (B.37)Proof. Using (B.22) we have

J1 (κ) =
ˆ 1

0

dy

ˆ 1

0

dt
yκ−1 [t (1− t)]κ

y + t
. (B.38)We an separate both the integrals using the following trik

1

y + t
=

ˆ ∞

0

dλ e−λ(y+t). (B.39)We get
J1 (κ) =

ˆ ∞

0

dλ

ˆ 1

0

dt [t (1− t)]κ e−λt

ˆ 1

0

dy yκ−1e−λy. (B.40)The last integral reads
ˆ 1

0

dy yκ−1e−λy = λ−κ (Γ (κ)− Γλ (κ)) . (B.41)Now we have
J1 (κ) = J1a (κ)− J1b (κ) , (B.42)where

J1a (κ) = Γ (κ) Γ (1− κ)B (2κ, 1 + κ) , (B.43)
J1b (κ) =

ˆ 1

0

dt [t (1− t)]κ
ˆ ∞

0

dλλ−κe−λtΓλ (κ) . (B.44)The �rst integral was evaluated using
ˆ ∞

0

dλλ−κe−λt = Γ (1− κ) tκ−1 (B.45)and the de�nition of Beta funtion (B.5). Let us �nd the expansion in κ of J1b. First,note that using the alternative de�nition (B.4) of Γλ (κ) it an be written as follows
J1b (κ) =

ˆ 1

0

dt [t (1− t)]κ
ˆ ∞

0

dw
(1 + w)κ−1

1 + w + t
, (B.46)where we performed the trivial integration over dλ. The remaining expression is �nitefor κ = 0, thus

J1b (κ) =
π2

12
+O (κ) . (B.47)On the other hand, aording to Appendix B.2 we have

J1a (κ) =
1

2κ2
− π2

12
+O (κ) . (B.48)Thus we get (B.37).



136 APPENDIX B. MATHEMATICAL SUPPLEMENTIntegral N. The following integral is needed to order O (κ)

J2 (κ) =
ˆ 1

0

dy
1

y1−κ
G
(
1

y
;κ

)
=

1

2κ
− log 2 +O (κ) . (B.49)Proof. Let us �rst express the funtion G using (B.17) as follows

G
(
1

y
;κ

)
= −κF

(
1

y
;κ

)
+ κB (κ+ 2, κ)

1

y
F

(
1, κ+ 2, 2 (1 + κ) ;−1

y

)
. (B.50)However

B (κ+ 2, κ)
1

y
F

(
1, κ+ 2, 2 (1 + κ) ;−1

y

)
=

ˆ 1

0

dt
tκ+1 (1− t)κ−1

y + t
. (B.51)Therefore, we have to evaluate the following integral

J ⋆
2 (κ) =

ˆ 1

0

dy

ˆ 1

0

dt
yκ−1tκ+1 (1− t)κ−1

(y + t)
. (B.52)Repeating several the same steps as in Integral M. we get

J ⋆
2 (κ) = J ⋆

2a (κ)− J ⋆
2b (κ) , (B.53)where

J ⋆
2a (κ) = Γ (κ) Γ (1− κ)B (κ, 1 + 2κ) , (B.54)

J ⋆
2b (κ) =

ˆ 1

0

dt tκ+1 (1− t)κ−1
ˆ ∞

0

dw
(1 + w)κ−1

1 + w + t
. (B.55)In order to �nd the Laurent expansion in κ of J ⋆

2b (κ), let us use the following trik
J ⋆
2b (κ) =

ˆ 1

0

dt tκ+1 (1− t)κ
ˆ ∞

0

dw
(1 + w)

κ−1

1 + w + t

+

ˆ 1

0

dt tκ+1 (1− t)κ−1
ˆ ∞

0

dw
(1 + w)

κ−1

2 + w
. (B.56)The �rst integral is �nite, thus is of order O (1) and an be dropped; reall that J ⋆

2 ismultiplied by κ, see (B.50). Therefore, up to required order we get (using de�nition ofBeta funtion and performing elementary integral)
J ⋆
2b (κ) =

log 2

κ
+O (1) . (B.57)Using the result for Integral M. and gathering all the piees we �nally obtain (B.49).B.2 Expansions in εIn this Appendix we list some of the neessary expansions. The spaetime dimension isde�ned as D = 4− 2ε = 4 + 2κ, ε, κ > 0.



B.2. EXPANSIONS IN ε 137Expansion A. (Euler's Gamma) The expansion has the following form
Γ (ε) =

1

ε
− γ +

1

12

(
6γ2 + π2

)
ε+O

(
ε2
)
, (B.58)where γ is Euler's onstant

γ ≈ 0.577216. (B.59)It is useful to list also
Γ (1 + ε) = 1− γε+O

(
ε2
)
. (B.60)Expansion B. (Euler's Beta) The following expansions are useful

B (1− ε) = 1 + 2ε+

(
4− π2

6

)
ε2 +O

(
ε3
)
, (B.61)

B (a ε, 1− ε) = 1

a

1

ε
+
π2

6
ε+O

(
ε2
)
. (B.62)Expansion C.

F (A;κ) = log (1 +A) + κF1 (A) +O
(
κ2
)
, (B.63)where

F1 (A) = log (1 +A) log

(
1 +A

A

)
− 1

6
π2 + Li2

(
1

1 +A

)
+ Li2 (−A) . (B.64)Proof. We start with the integral de�nition of F (A;κ) (B.22) and expand integrandto desired order. The less trivial integrals to be alulated are

ˆ 1

0

dt
log (1− t)
1 +At

=
1

A
Ja −

logA log (1 +A)

A
, (B.65)

Ja =

ˆ 1

1
1+A

dz
log [(1 +A) (1− z)]

z
= log2 (1 +A)− 1

6
π2 + Li2

(
1

1 +A

)
, (B.66)where we used (B.8), (B.9).

ˆ 1

0

dt
log t

1 +At
=

1

A
Jb −

logA log (1 +A)

A
, (B.67)

Jb = lim
η→0

ˆ 1+A

1+η

du
log (u− 1)

u
= logA log (1 +A) + Li2 (−A) . (B.68)Expansion D.

G (A;κ) = 1

1 +A
− κ 2 +A

1 +A
log (1 +A) +O (κ) . (B.69)
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F (1, κ, 2κ+ 1;−A) = 1− κ log (1 +A) +O (κ) . (B.70)Proof. We use the de�nition (B.13)

F (1, κ, 2κ+ 1; z) = 1+z
κ

2κ+ 1
+

1

2!
z2

2!κ (κ+ 1)

(2κ+ 1) (2κ+ 2)
+

1

3!
z3

3!κ (κ+ 1) (κ+ 2)

(2κ+ 1) (2κ+ 2) (2κ+ 3)
+. . .

= 1 + κ

[
z +

1

2!
z2

2!

2!
+

1

3!
z3

3!2!

3!
+ . . .+

1

n!
zn (n− 1)! + . . .O (κ)

]

= 1 + κ

∞∑

n=1

zn

n
= 1− κ log (1− z) +O

(
κ2
)
. (B.71)B.3 The �plus� distributionWe de�ne the generalized �plus� distribution f[a,b] as follows

f[a,b] (u) = f (u)− δ (u− a)
ˆ b

a

dy f (y) . (B.72)The ation on su�iently smooth test funtion ϕ (u) with the support [umin, umax] is thus
ˆ umax

umin

du f[a,b] (u)ϕ (u) =

ˆ umax

umin

du f (u) [ϕ (u)− ϕ (a)]

+ ϕ (a)

[
ˆ a

umin

dy f (y) +

ˆ umax

b

dy f (y)

]
, (B.73)if a ∈ [umin, umax].Note the following useful property

f[a,b] (u)h (u) = [f (u)h (u)][a,b] + δ (u− a)
ˆ b

a

dy f (y) [h (y)− h (a)] , (B.74)whih is the simple onsequene of the de�nition.Now, suppose that u is a funtion of some other variable, i.e. there is the followingtransformation
u = u (z) , (B.75)

umin = u (zmin) , (B.76)
umax = u (zmax) . (B.77)De�ne also
za = u−1 (a) , (B.78)
zb = u−1 (b) . (B.79)Then, the ation of the distribution in u (B.72) on a test funtion of z an be alulatedas follows

ˆ zmax

zmin

dz f[a,b] (u (z))ϕ (z) =

ˆ zmax

zmin

dz f (u (z))

[
ϕ (z)− ϕ (za)

u′ (z)

u′ (za)

]

+ ϕ (za)

[
ˆ a

umin

dy f (y) +

ˆ umax

b

dy f (y)

]
. (B.80)



B.4. DIPOLE INTEGRAL FORMASSLESS FE-ISQ→ QG SPLITTINGWITHMASSIVE SPECTATOR139B.4 Dipole integral for massless FE-IS Q → Qg split-ting with massive spetatorThe starting point is the formula for integrated dipole (3.282) with η2 = 0. It reads
ĨFE-ISq→qg, a =

2CF η
2
J

u1−κ
(
η̃2P2

)1−κ

{
1

v
F (A (u) ;κ)−B (1 + κ)

(
1− 1

4
v (1 + κ)

)}
, (B.81)where we replaed heavy quark indiator Q for q in the subsript of the integral. Inonsidered limit

A (u) =
1

u

1

1 + (1 + 2u) η2a
, (B.82)

v =
1

1 + 2uη2a
(B.83)and η̃2P2 , η̃2J are easily reovered from Appendix A.2.1.1. Follwoing Setion 3.7.2.3 weintrodue

u = rB (r) , (B.84)with B (r) given in Eq. (3.347). Rearranging the terms we get
ĨFE-ISq→qg, a =

2CF

vB (r)
η2J
η̃2P2

[
1

r
log (1 + r) +

(
1

r
log

1

r

)

+

]
− CF

η2J
η̃2P2

(
2− v

2

)( 1

u

)

[0,u+]

+ δ (u)CF

[
1

κ2
− 1

κ
log
(
1 + η2a

)
− 1

2

(
π2 − log2

(
1 + η2a

))
− 3

2κ
− 3

2
log u+ +

7

2

]
.(B.85)It an be now onfronted with [10℄ for massless spetator, η2a = 0, �nding agreement.
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Nomenlature
ai the parton that results in splitting proess a→ ai i, page 53
CM(p, q) enter of mass frame for momenta p and q, page 65
Cn the (quasi-)ollinear subtration term for n-parton on�guration, see equa-tion (4.34), page 104
DFn

the sum over all the dipoles with orresponding jet funtions, see equa-tion (3.423), page 92
p̃µk , ũ, w̃, z̃ dipole momentum and variables, page 47
η2X the resaled mass or any other quantity X ; if X is a parton indiator,

X = i, j, a, . . ., then η2X = m2
X/2γ̃; if X is any other kinemati quantity

X = P2,Pa, . . . then ηX = X/2γ̃, see equation (3.267), page 74
η̃2X η̃2X = η2X/u, see equation (3.270), page 74
fa (z, µr) the renormalized distribution funtion for a parton a inside a hadron,page 17
F (R)

ab the parton inside a parton density renormalized in a sheme R, page 18
Fn the jet funtion, page 19
γ̃ speial invariant p̃ij · pa for FE-IS or p̃j · pa for IE-FS, page 48
mMS `masslessMS' � indiation for a massless alulation inMS renormalizationsheme, see equation (1.22), page 18
Na ative number of �avours used to de�ne CWZ subsheme, page 22
N ′

f the number of all quark �avours plus gluon, page 23
Nf the total number of quark �avours (light and heavy), page 22
Nl the number of light partons (i.e. light quarks and a gluon), page 23
Nq the number of light quarks, page 23
NQ the number of heavy quarks, page 23
Nx the set of partons orresponding to the index x = f, q,Q, l et.
P total dipole momentum pi + pj , page 47141
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Pa the invariant (pi + pj) · pa, page 47
Pab ordinary splitting funtions, page 17
pai pa − pi, page 53
Π(n|a) on�guration of n partons in �nal state, when the initial state is a, page 92
ij the parton that splits to i and j, page 47
Q dipole momentum transfer P − pa, page 47
dS(n) I,J the pseudo ross setion, see equation (3.425), page 93
v veloity of pa in CM(Q, pa) frame, page 48
ṽq

√
1−m2

am
2
q/γ̃

2 , page 50
XT the set of indies for enumerating the �nal state momenta in fatorizedphase spae, where T is either FE-IS, IE-FS or FE-FS, see equation (3.67),page 46
X , Y the external invariants, see equation (3.128), page 53
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