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Prefa
eQuantum 
hromodynami
s (QCD) is � as we believe � the 
orre
t theory of the strongintera
tions, with quarks and gluons being its fundamental degrees of freedom. Althoughthere are many puzzles remaining unsolved, it is very su

essful in des
ribing variousaspe
ts of the modern high energy data. Theoreti
al predi
tions are based on two majorissues. The most important one is the asymptoti
 freedom, whi
h asserts that the valueof the strong 
oupling 
onstant is relatively low at high energy s
ales. It enables usto use perturbation theory in 
al
ulations 
on
erning s
attering amplitudes. However,there are no free quarks and gluons in the nature � they are all bounded in 
olourlesshadrons, thus the perturbative 
al
ulations are not the whole story, as the hadrons are
learly of non-perturbative nature. Therefore, the se
ond basi
 issue are fa
torizationtheorems, whi
h allow for a separation of a pro
ess to a non-perturbative bound statephysi
s and 
al
ulable in QCD hard s
attering amplitudes. Te
hni
ally the former isdes
ribed in terms of various distribution fun
tions and distribution amplitudes, whi
hso far are most reliably taken from experiments.Phenomenologi
ally the most important non-perturbative input 
omprises parton dis-tribution fun
tions (PDFs). Histori
ally, they appeared in a des
ription of in
lusivelepton-hadron deep inelasti
 s
attering (DIS) as an element of the parton model. Nowa-days they are used also in the other high energy experiments like proton-proton 
ollisionsat LHC for instan
e. In order to obtain PDFs one has to �t the theoreti
ally 
al
ulated
ross se
tion with suitable analyti
al parametrizations of PDFs to the real data. Mostoften the ele
tron-proton HERA data are used in this pro
edure. There are severalgroups making an e�ort in extra
ting PDFs, e.g. CTEQ group [5℄ or MRST group [41℄to mention only the most known.One may ask the question: what is the di�eren
e between various sets of PDFs? Thereare at least a few odds. The �rst are di�erent fun
tional parametrizations and di�erentstatisti
al methods used in �tting the data. However the main di�eren
e is 
onne
ted toa s
heme in whi
h the a
tual 
ross se
tion is 
al
ulated. This issue is inseparably relatedto heavy quarks and the problem of s
ales in QCD. Namely, there is a di�
ulty with�nite-order perturbative 
al
ulations if there are a few external parameters (s
ales) thatare very di�erent. Those s
ales 
an be �xed e.g. by an external energy or by the massesof the quarks. A
tually it is the 
ase in reality, as we have six quark �avours with three ofthem being marginally heavier than the others. Moreover there is also substantial masssplittings between the heavy quarks. In some situations, this di�
ulty 
an be solved bymeans of the renormalization group methods, however there does not exist a uniformperturbative expansion suitable for all the s
ales. Therefore one has to 
hoose a spe
i�
s
heme. Intuitively it 
orresponds to a situation, where our measurement resolution istoo small to distinguish some tiny details and to large to see the whole thing. We 
anhowever always 
hange the instrument to get di�erent insights. The same is true for the9
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hemes in perturbative QCD.For many years, a 
ompletely massless s
heme have been the most standard in treatingDIS s
attering. A
tually, the s
heme was massless in the sense of negle
ting the massparameters in 
al
ulations, but 
hanging the number of �avours in the same time. Weshall see the details later, however even intuitively we see that su
h an approa
h is verylimited in a

ura
y. It 
an be satisfa
tory only in 
ertain, relatively narrow ranges ofkinemati
 spa
e. Therefore also the other s
hemes were used, treating the heavy quarksin a more ordered way. In parti
ular, the s
hemes for 
harm, and bottom quarks wereused. Those 
al
ulations are very a

urate in a suitable kinemati
 range, but � again �those ranges are limited. Further development must have led to a 
omposite s
heme, thatis to 
hange the number of �avours on one hand (like in the massless s
heme mentionedin the beginning of the paragraph) and to keep the masses �nite on the other. Themost 
ommon name for the approa
h of this type is a �general-mass s
heme� or �variable�avour number s
heme�. We shall see su
h a solution in details below in this work. So farthe general-mass s
hemes were used in in
lusive pro
esses, both in extra
ting the PDFsand predi
ting experimental out
ome.There is however another very important 
lass of high energy pro
esses, namely theprodu
tion of jets. Sin
e one measures also the spatial distribution of the outgoingparti
les it 
an give mu
h more information about underlying parton dynami
s. Looselyspeaking, a jet � a 
ollimated bun
h of hadrons � is a remnant of a parton eje
ted from the
enter of 
ollision. Thus by analysing the momentum and energy of the jet, we get almostdire
t a

ess to the parton level subpro
ess. It allows for more pre
ise measurements ofsome quantities, for instan
e strong 
oupling 
onstant (e.g. the analysis performed byZEUS 
ollaboration using dijet produ
tion in DIS [1℄ and by H1 
ollaboration usingin
lusive-jet, dijets and trijet analysis [32℄). The jets produ
tion pro
esses are also usedto obtain the parton distribution fun
tions (together with the in
lusive data). Theoreti
al
al
ulations needed to this pro
edure are again s
heme dependent. In 
ase of jets, thereis however mu
h less theoreti
al development 
on
erning heavy quarks. There are severalMonte-Carlo (MC) programs using massless quarks, e.g. NLOJET++ [42℄, DISENT [9℄,both for hadron-hadron and lepton-hadron 
ollisions (the last for neutral 
urrent without
Z0-ex
hange). For heavy quarks, there are some 
al
ulations for in
lusive-jet and twojets produ
tion at NLO [26℄ in a s
heme with �xed number of �avours. It should beremarked, that we mean here stri
t QCD 
al
ulations, not a model-based ones. For jets,the former are mu
h more involved and require spe
ial treatments of singularities thatappear at NLO (and higher) orders.In this work, we propose a solution intended to �ll the gap in existing heavy �avourtreatments. It is a general-mass s
heme for jets produ
tion pro
esses, based on somesolutions available on the market. We 
on
entrate herein on DIS pro
esses with neutral
urrent intera
tions. Further extensions are possible, as we shortly dis
uss in Chapter 5.The developments we are presenting are essentially theoreti
al. However, in order tosupport the validity of our 
al
ulations we give some sample numeri
al results using adedi
ated MC program. It is a part of a larger proje
t that is 
urrently under develop-ment.The material is organised as follows. First, in Chapter 1 we re
all the basi
 formalismwe shall use throughout, in
luding fa
torization theorems and jets treatment. Chapter 2is devoted to existing approa
hes to heavy quarks in in
lusive DIS pro
esses and itsproblems. Notably, it introdu
es the general-mass solution, whi
h we later apply to jets.Those two 
hapters possess mainly introdu
tory 
hara
ter. Next, in Chapter 3, we re-analyze so 
alled dipole subtra
tion method for jets, assuming the most general situation



CONTENTS 11of massive partons, in
luding possible initial state heavy quarks. Finally we gather all thepie
es and 
onstru
t the general-mass s
heme for jets in Chapter 4. We introdu
e tonsof symbols throughout this work. Some of them may look messy, however this a

ountsfor the pre
ise theoreti
al formulation of the material. In order to fa
ilitate the readingwe put some of them in a Nomen
lature. The te
hni
al details that are not essential inthe main text are listed in the appendi
es.A
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h Sªomi«ski for his patien
e,substantial help and many hours of joint dis
ussions. The words of gratitude belong alsoto Prof. Mi
haª Praszaªowi
z, the head of Parti
le Theory Department I had a greatpleasure to be a member as PHD student.I thank my wife Iwona for 
onstant support and faith in me, espe
ially when every-thing was going wrong. The same is true about her family: Brunon and Basia, Marekand Ela together with their 
hildren.I own spe
ial thanks to Mirek Tro
iuk, my high s
hool tea
her and Ola �ubni
ka,who 
reated the s
ienti�
 atmosphere that brought me to this point.Finally, I am grateful to my parents Maria and Jerzy, my brothers Damian andMateusz, and my little sister Kasia, for everything.



12 CONTENTS



Chapter 1Hadrons, partons and jets inQCD1.1 Fa
torization theoremsAlthough QCD has in
redible amount of su

esses, the theory is still not solved. Forinstan
e, there is a 
olour 
on�nement hypothesis, stating that all observable parti
lesare 
olour singlets. This 
onje
ture has very strong experimental eviden
e; so far freequark or gluon has not been found. However, su
h a property has not been derivedyet from QCD, although there are several theoreti
al 
lues, both perturbative and non-perturbative. Moreover, there does not exist a 
omplete des
ription of 
omposed obje
tslike hadrons in terms of the fundamental QCD degrees of freedom (i.e. quarks andgluons). For example, it is known that many features of a proton 
an be explained byassuming that it is build of three quarks u, u, d. Their masses (i.e. the parameters inQCD lagrangian; mass is poorly de�ned quantity for an unobservable parti
le) are abouta few MeV. On the other hand, the proton mass is well de�ned and 
an be measured � itturns out to be around 1GeV, 
learly not about three times the masses of 
onstituents.This is an eviden
e of very important non-perturbative phenomenon, namely spontaneous
hiral symmetry breaking. It generates so 
alled 
onstituent quark mass, whi
h shouldbe about one third of the proton mass. Su
h a value 
annot be des
ribed by perturbationtheory, the tool whi
h at present is best understood and under 
ontrol. There are mu
hmore problems in des
ribing hadrons within perturbative QCD.All these features draw hadrons as a very 
ompli
ated, non-perturbative obje
ts.Nevertheless, there are possibilities to get 
ertain insight into the stru
ture of hadronsusing perturbation theory. As it was already mentioned, QCD has a property of beingasymptoti
ally free, i.e. at very short distan
es the QCD 
oupling is very weak, givingsome 
han
es to use perturbation theory. This is a key observation leading to modernhigh-energy experiments; 
ollisions of parti
les with higher energies 
an probe smallerspa
e-time volumes. However, sin
e we probe only a small part of a 
olourless hadron,we 
an hope to have perturbative des
ription only partially � the rest must be somehowparametrized, or obtained by other methods. This is in fa
t a very loose des
ription offamous fa
torization theorems, whi
h we now shall re
all in some details. In our intro-du
tion we shall try to give mostly ne
essary results, but we re
all also some 
ompletelyelementary fa
ts 
on
erning fa
torization. 13



14 CHAPTER 1. HADRONS, PARTONS AND JETS IN QCDWe are mainly 
on
entrated on lepton-hadron deep inelasti
 pro
esses throughout.Moreover, in this se
tion we limit ourselves to in
lusive pro
esses only. There are es-sentially two possible approa
hes to fa
torization, whi
h per
olate at some stages. Bothhave its own 
ons and pros.First one, relies on the operator produ
t expansion (OPE) [54℄ and is histori
ally the�rst approa
h to fa
torization [7℄, of 
ourse ex
ept Feynman's parton formalism 
onsid-ered before QCD had been born. Although OPE allows for very systemati
 treatmentof all terms that 
an appear, its appli
ability is rather limited to the in
lusive pro
essesonly.Se
ond approa
h is based on general power 
ounting theorems [40, 39℄ and methodsdeveloped in [21℄. Let us re
all the basi
 ideas, as they shall be important later, whenwe dis
uss more 
ompli
ated topi
s. For a review see e.g. [17, 15℄.Consider a generi
 unpolarized boson-hadron 
ut amplitude, as shown in Fig. 1.1A.We denote proton momentum as P and boson as q, with q2 = −Q2. Moreover, we assumethat the boson virtuality Q2 is mu
h larger than all the quark masses (in
luding possibleheavy quarks) and that the Bjorken variable xB = Q2/P · q is �xed. The situation where
Q2 is of the same order as the mass of a given heavy quark will be dis
ussed in thenext 
hapter. It turns out that all the leading 
ontributions to the 
ut amplitude 
an be
hara
terized by the 
ut amplitudes that have the form showed in Fig. 1.1B. The upperblob has all the internal momenta o�-shell by order Q2 and thus is 
alled a hard part.Note, that although some of the internal lines are 
ut and hen
e on-shell, they e�e
tively
an be treated as o�-shell lines by virtue of the opti
al theorem. The lower part inFig. 1.1B, the soft part, in
orporates hadroni
 states and two partoni
 lines joining itwith the hard part. Those lines are either quark or gluon lines with virtuality mu
h lowerthan Q2 and momenta 
ollinear to the hadroni
 momentum. It should be mentioned thatthe internal blob of the soft part, 
an still have UV singularities, see below.The 
ontributions that have stru
ture des
ribed above are 
alled twist-2, as they
orrespond in OPE language to a series of matrix elements of lo
al operators with twist1equal to 2. Contributions whi
h have more than two lines joining hard and soft parts havehigher twist. Re
all that su
h higher twist 
ontributions are suppressed bym2/Q2, where
m2 is the mass of the heaviest quark taken into a

ount. There are several 
ompli
ations(see e.g. [15℄), however the general pi
ture is as just des
ribed.Note, that the two lines joining both parts 
annot 
orrespond to a heavy quark withmass of the order of Q2, due to the assertion that they have low virtuality 
omparing to
Q2. This fa
t shall be important later on.Now, we 
ome to more pre
ise de�nitions of the soft part and its 
onne
tion to therest of the pro
ess. As is 
ommonly known, the soft part 
an be parametrized in termsof parton distribution fun
tions (PDF) (we shall inter
hangeably 
all it parton density)inside a hadron. In order to pro
eed we introdu
e light-
one 
oordinates; any four-ve
tor
v 
an be de
omposed as

vµ = v+ñµ + v−nµ + vµT , (1.1)where
v+ = v · n, v− = v · ñ (1.2)with two light-like ve
tors n,ñ de�ned as

n =
1√
2
(1, 0, 0,−1) , , ñ =

1√
2
(1, 0, 0, 1) . (1.3)1In OPE formalism twist is the di�eren
e between spin and 
anoni
al dimension of the operator.



1.1. FACTORIZATION THEOREMS 15A) B)PSfrag repla
ements q

P

PSfrag repla
ements q

P

kFigure 1.1: A) Cut Feynman amplitude for unpolarized boson-hadron pro
ess. B) Lead-ing regions of the 
ut amplitude for large virtuality of the boson. The lines 
onne
tingupper and lower parts have low virtuality and 
an be light quarks or a gluon.Let us now assume that the momentum k joining the hard and soft parts is parametrizedusing the light-
one variables and that suitable frame is 
hosen, su
h that P+ is large
∼
√
Q2. Then, sin
e k have small virtuality 
omparing to Q2 its k− and kT 
omponents
an be negle
ted in the hard part. Then, the 
onne
tion of the two parts 
an be realised asan integral over the k+ 
omponent. The rest of the momentum integration (i.e transverseand �minus� 
omponents) are embodied in the de�nition of PDF, where they 
annot benegle
ted. Its external lines (
onne
ting it with the hard part) e�e
tively lie on thelight-
one.All these remarks lead to the following de�nitions of the parton distributions. Forthe quark density we have

f (B)
q (x) =

1

4π

ˆ

dy−e−ixP+y− 〈
P
∣∣ψq

(
y−n

)
γ+
[
y−n, 0

]
ψq (0)

∣∣P
〉 (1.4)and for gluon

f (B)
g (x) =

1

2πxP+

ˆ

dy−e−ixP+y−

〈
P
∣∣∣F+µ

A

(
y−n

) [
y−n, 0

]
AB

F+
B µ (0)

∣∣∣P
〉
. (1.5)Let us now explain the above notation. First, there are quark �eld operators ψq and thegluon �eld strength operator Fµν

C = ∂µAν
C − ∂νAµ

C + g fCDE A
µ
DA

ν
E . All these �elds areunrenormalized, thus the PDFs de�ned in su
h a way are the bare ones as indi
ated bythe supers
ript2. Parameter x 
orresponds to a fra
tion of �plus� 
omponent of hadronmomentum that is transferred to the hard part, that is we assume k+ = xP+ and is�xed. Next, y is a spa
e-time point we integrate over, with however �xed y+ = 0;the integration over y− in disentangled while the one over yT is performed (or hidden).Finally, there is a gauge link in order to make the de�nitions gauge invariant. It readsin the present 
ase

[
y−n, 0

]
= P exp

{
ig

ˆ y−

0

dz A+
C (z) tC

}
, (1.6)where the path joining both points is 
hosen to be a straight line. In parti
ular, whenwe use light-
one gauge de�ned as A · n = 0 the gauge link is a unity operator (it is2Sin
e we follow here mainly [15℄ and other papers of this author, we use the term �bare� in the senseof �unrenormalized�. It has nothing to do with the IR unsafe PDFs, whi
h a
tually are not needed inthe formalism.



16 CHAPTER 1. HADRONS, PARTONS AND JETS IN QCDuseful in some general 
onsiderations). The last remark 
on
erning (1.4), (1.5) is thatonly 
onne
ted diagrams should be taken into a

ount.As already mentioned, the parton distribution fun
tions de�ned above 
ontain UV di-vergen
es. Required renormalization 
on
erns not only the elementary �elds, but also thebilo
al quark or gluon operators itself. As is well known, the renormalization introdu
esadditional dependen
e on apriori unspe
i�ed mass s
ale µr.It 
an be proved that the relation between the bare densities and the renormalizedones has the form [16, 15℄
f (R)
a

(
x, µ2

r

)
=
∑

b

ˆ

dz

z
Kab

( z
x
, αs

(
µ2
r

)
; ε
)
f
(B)
b (z) , (1.7)where the renormalization kernel Kab is a perturbatively 
al
ulable quantity. Note thatwe have introdu
ed dimensional UV regulator ε de�ned as

D = 4− 2ε, (1.8)where D is the spa
etime dimension. The summation in (1.7) goes over all possiblekinds of the lines joining the soft and hard parts (exa
t sets shall be de�ned in the next
hapter). The kernel Kab 
an be 
al
ulated by 
onsidering the same obje
ts as fa butwith the hadroni
 states repla
ed by the partoni
 ones. Thus we de�ne the quantity Fab,whi
h we refer to as a density of parton b inside a parton a. The de�nition is exa
tly thesame as for fb with the hadroni
 state repla
ed by the on-shell state a. The quantities
Fab 
an be 
al
ulated perturbatively in QCD with the help of spe
ial Feynman rules[16, 17℄ � we shall use them for massive quarks in Chapter 4.2. A
tually, we have toagain distinguish between the bare F (B)

ab and the renormalized one F (R)
ab , however therelation between the two remains the same as (1.7). This allows to obtain Kab on
espe
i�
 renormalization s
heme is 
hosen (see also below).Sin
e the bare densities f (B)

a are de�ned by means of the bare �elds only, they are
ompletely independent on the renormalization s
ale. Therefore it is relatively straight-forward to derive an evolution equation for the densities. It reads
d

d logµr

f (R)
a

(
x, µ2

r

)
=
∑

b

ˆ

dz

z
Pab

( z
x
, αs

)
f
(R)
b

(
z, µ2

r

)
, (1.9)where the evolution kernel Pab is related to the renormalization kernel by the formula

Pab

( z
x
, αs

)
= 2αs

∂ Kab, 1

(
z
x
, αs

)

∂αs

, (1.10)with Kab, n de�ned by the Laurent expansion
Kab (z, αs; ε) = δ (z − 1) δab +

∞∑

n=1

(
1

ε

)n

Kab, n (z, αs) . (1.11)For example, in the MS s
heme with Nf �avours we obtain
Pab (z, αs) = δ (z − 1) δab +

αs

2π
P

(1)
ab (z) +O

(
α2
s

)
, (1.12)where P (1)

ab are famous lowest order splitting fun
tions. They read
P (1)
qq (z) = CF

(
1 + z2

1− z

)

+

, (1.13)
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P (1)
gg (z) = 2CA

[(
1

1− z

)

+

+
1− z
z
− 1 + z (1− z)

]

+ δ (1− z)
(
11

6
CA −

2

3
Nf TR

)
, (1.14)

P (1)
gq (z) = TR [1− 2z (1− z)] , (1.15)
P (1)
qg (z) = CF

1 + (1− z)2
z

. (1.16)The �plus� distribution is de�ned in a standard way as
h+ (z) = h (z)− δ (1− z)

ˆ 1

0

dy h (y) . (1.17)Note, that the support is [0, 1] � we pay attention to this detail, sin
e we shall oftenuse distributions with di�erent supports (see also Appendix B.3). Sin
e the splittingfun
tions P (1)
ab are often used in this thesis we drop the supers
ript in what follows

P
(1)
ab (z) ≡ Pab (z) . (1.18)We turn also attention to our 
onvention of ordering the subs
ripts. The notation ab
orresponds to a splitting pro
ess a → b, where parton b takes the fra
tion z of theoriginal momentum. The physi
al interpretation of the fun
tions Pab is then su
h, thatit gives a probability density for su
h a splitting.Let us now 
ome ba
k to the fa
torization. On
e the renormalization of the PDFsand of the hard part is done, we 
an �nally write the fa
torization formula. In whatfollows we drop the renormalization indi
ation in the hadroni
 PDFs

f (R)
a

(
z, µ2

r

)
≡ fa

(
z, µ2

r

)
. (1.19)The fa
torization theorem takes the following form

dσ
(
P, q;xB , Q

2
)
=
∑

a

ˆ 1

xB

dz

z
fa
(
z, µ2

f , µ
2
r

)
dσ̂a

(
zP, q;Q2, µ2

f , µ
2
r

)
+O

(
m2

Q2

)
. (1.20)Here dσ 
orresponds to a di�erential DIS in
lusive 
ross se
tion, while dσ̂a is a partoni

ross se
tion whi
h is infra-red (IR) �nite. Besides UV singularities, there are alsodivergen
es whi
h originate in zero mass of the gluons and there are two sorts of them: thesoft singularities and the 
ollinear ones. They remain even after renormalization, howeverthe soft and mixed soft-
ollinear divergen
es are 
an
elled between di�erent 
ontributions(we shall take up this issue in the next se
tion). What remains are the 
ollinear ones.The fa
torization pro
edure asserts, that they 
an be in
luded in PDFs as it is essentiallya nonperturbative obje
t and we shall never 
al
ulate it using perturbation theory. Su
ha pro
edure is at the expense of introdu
ing additional fa
torization s
ale µf . Apriori itis arbitrary s
ale and one often sets it equal to the renormalization s
ale. Moreover, thereis 
ertain freedom in 
hoosing a
tually subtra
ted terms. Su
h a pres
ription de�nes thefa
torization s
heme. On
e it is spe
i�ed, we 
an unambiguously derive dσ̂a as follows.We use the fa
torization formula (1.20) at the partoni
 level (
ompare to derivation of
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dσ(R)

a

(
p, q;x,Q2, µ2

r

)
=
∑

b

ˆ 1

x

dz

z

[
S
(
µ2
r, µ

2
f

)
F (R)

ab

(
z, µ2

r

)
+ Sab

(
z, µ2

r, µ
2
f

)]

dσ̂b
(
zp, q;Q2, µ2

f , µ
2
r

)
+O

(
m2

Q2

)
, (1.21)where the fun
tions F (R)

ab are the renormalized densities of parton inside a parton dis-
ussed before (we indi
ated also that unsubtra
ted 
ross se
tion is renormalized). Thequantities S and Sab de�ne our fa
torization s
heme, see below. The above equation 
anbe solved order by order, 
al
ulating dσ(R)
a and F (R)

ab to a desired order.As an illustration, let us 
onsider 
ompletely massless 
ase. Choosing MS s
heme tode�ne PDFs we get at the lowest nontrivial order
FmMS

ab

(
x, µ2

r

)
= δ (1− x) δab +

αs

(
µ2
r

)

2π

(
−1

ε

)
Pab (x) . (1.22)The supers
ript mMS expli
itly indi
ates that we use MS renormalization s
heme and
ompletely massless 
al
ulation. Sin
e MS 
an be also used in a massive 
ase, we feel ane
essity to distinguish both situations as we shall en
ounter them in one pla
e later on.We see that there is a 
ollinear pole 1/ε in the result, whi
h 
an
els the similar pole in

dσa. Next, if we 
hoose the fa
torization s
heme to be MS, we have
Sab

(
z, µ2

r, µ
2
f

)
= 0, (1.23)

S
(
µ2
r, µ

2
f

)
=

1

Γ (1− ε)

(
4πµ2

r

µ2
f

)ε

. (1.24)Let us 
on
lude this se
tion by giving some summarizing remarks. First is thathadroni
 PDFs are essentially nonperturbative, and have to be obtained from experiment,latti
e 
al
ulations or low energy e�e
tive models. Most reliable are those obtained byglobal �ts to data (e.g. [38℄). Moreover, PDFs are s
heme dependent, and as su
h areunphysi
al. Therefore one have to be 
areful when mixing PDFs obtained by one methodwith 
al
ulations in some other s
heme, as the reminder (O (. . .) terms) in fa
torizationtheorem 
an be
ome large.1.2 Jets in QCDIn the previous se
tion we have 
onsidered the fa
torization theorem essentially for in
lu-sive DIS s
attering. One of the elements of the a
tual proof of the fa
torization propertyis the 
an
ellation of the soft singularities. In this se
tion, we take a 
loser look at thisproblem. In parti
ular, we des
ribe a method allowing for this 
an
ellation in 
ase whenthe pro
ess is not fully in
lusive but 
onsist in jets. This shall be a very general presen-tation of the topi
 and it will evolve throughout the whole dissertation. We follow [9℄ inthis introdu
tion.Before we start, let us introdu
e some notation. The n-parti
le invariant phase spa
e(PS) shall be denoted as
dΦn (p, q; p1, . . . , pn) ≡ dΦn (p, q; {pi}ni=1) , (1.25)
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Figure 1.2: Illustrative presentation of the amplitudes for n-jet produ
tion. A) LOamplitude, B) real emission 
orre
tions, C) virtual 
orre
tions.where p and q are in
oming momenta. On the right hand side we have used mathemati-
ians' notation for sets, as it will often allow to make formulae shorter. The phase spa
e
an be expressed as
dΦn (p, q; {pi}ni=1) = (2π)

D
δ(D)

(
p+ q −

n∑

i=1

pi

)
n∏

i=1

dΓi (1.26)in terms of the invariant measures for a parti
le i
dΓi ≡ dΓ (pi) =

dDpi δ+
(
p2i −m2

i

)

(2π)
D−1

. (1.27)All the de�nitions are written in D spa
e-time dimensions.A tree-level amplitude with in
oming momenta p, q and n outgoing states shall bedenoted as Mn (p, q; {pi}ni=1). At this stage all possible 
olour or spin indi
es are sup-pressed. If relevant, we will adorn the amplitude by various symbols and/or indi
es, forexample we will put a hat if we 
onsider external fermions to underline that we workwith a matrix. Very often we will refer to a part of the amplitude, for example when twoexternal legs are repla
ed by one. Then the reminder is referred to as redu
ed amplitude.Let us now swit
h to the a
tual matter of this se
tion. We start with the verys
hemati
 des
ription of NLO 
al
ulation for n-jets. Suppose for simpli
ity that thereare no initial state hadrons, e.g. ele
tron-positron annihilation. A detailed formulae forDIS shall be given in Se
tion 4.3.To NLO a

ura
y, the total 
ross se
tion 
an be written as
σn = σLO

n + σNLO
n . (1.28)The leading order 
ontribution reads (Fig. 1.2A )

σLO
n =

ˆ

dΦn |Mn|2 Fn, (1.29)where Mn and dΦn are explained above (we suppress all momenta dependen
e), while
Fn is 
ertain (generalized) fun
tion that gives us an observable we are interested in (i.eit may in
lude step-fun
tions for kinemati
 
uts, delta fun
tions for di�erential 
rossse
tion, jet algorithms et
.). We shall refer to Fn as a jet fun
tion. We des
ribe itsproperties in detail later.The next-to-leading order term has in turn the following form

σNLO
n = σR

n + σV
n , (1.30)
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orre
tions, i.e the ones 
onne
ted to the emissions ofadditional on-shell parti
les in the �nal state (Fig. 1.2B ). Next, σV 
orresponds to loop
orre
tions toMn (Fig. 1.2C ). The last 
an be written as
σV
n =

ˆ

dΦnM(loop) 2
n Fn. (1.31)The notation is symboli
 here,M(loop) 2

n is a
tually an interferen
e between the tree levelamplitude and the one 
ontaining loop 
orre
tions. For the real 
orre
tions we write
σR
n =

ˆ

dΦn+1 |Mn+1|2 Fn+1. (1.32)As already stated in the previous se
tion, higher order 
al
ulations in QCD lead todivergen
es. First, there are UV singularities, whi
h are removed by renormalization andwe do not 
onsider them here any more. Se
ond, there are mentioned IR singularities
oming from vanishing propagators due to almost zero energy of massless parti
les or
ollinear emissions. We shall de�ne them pre
isely in Se
tion 3.2. Both kinds of sin-gularities appear in σR and σV and are regularized e.g. dimensionally. However thephysi
al 
ross se
tion, whi
h does not distinguish between the soft or 
ollinear emissions,has to be �nite. Therefore IR singularities have to 
an
el between both terms in 
rossse
tions (ex
ept possible pure 
ollinear singularities 
onne
ted with initial state emis-sions whi
h are removed by fa
torization). It is pre
isely stated by means of the KLNtheorem (Kinoshita-Lee-Nauenberg) and its extensions, see e.g. [48, 49℄ and referen
estherein to the original papers. In what follows we assume that the jet 
ross se
tion under
onsideration is infra-red safe, that is it ful�ls all the assumptions of the KLN theorem.This however requires to impose some restri
tions on the jet fun
tions. Namely, ifone of the �nal state gluons in (n+ 1)-parti
le phase spa
e is soft (its four-momentumvanishes) we must have Fn+1 = Fn. Similarly, if two of the �nal state partons be
ome
ollinear, their Fn+1 fun
tion must also 
oin
ide with Fn. On the other hand, if we entera singular region in n-parti
le phase spa
e Fn must vanish. Those rules 
an be extendedto initial state partons and massive partons as well.Now, sin
e we know that IR singularities 
an
el, there remains the problem of te
h-ni
al nature, whi
h however is of great importan
e. Namely, both 
orre
tions σR and
σV are integrated over di�erent phase spa
es with di�erent jet fun
tions. Analyti
al 
al-
ulations are here extremely di�
ult and impra
ti
al, thus one often uses Monte Carlomethods. The problem is now to 
an
el the singularity that appears during numeri
alintegration in σR with analyti
al singularities in σV , e.g. 1/ε poles.Histori
ally the �rst method was so 
alled phase spa
e sli
ing method. It 
an beillustrated by simple mathemati
al example (e.g. [36℄). Suppose we have the following�nite expression

I = lim
κ→0

{
ˆ 1

0

dx
h (x)

x1−κ
− 1

κ
h (0)

}
, (1.33)where the dependen
e on x in h is very 
ompli
ated but su
h that the integral exists.The �rst term in 
urly bra
ket 
orresponds to a real 
ontribution regularized dimension-ally, while the se
ond term is the 
orresponding soft pole in �virtual 
orre
tion�. Bothsingularities 
an
el as a
tually the real value of the integral is

I =

ˆ 1

0

dx
h (x) − h (0)

x
. (1.34)
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an
el them numeri
ally. To this end, we divide theintegration domain ´ 1
0
. . . =

´ δ

0
. . . +

´ 1

δ
. . ., with δ ≪ 1. Sin
e h (x) is regular enough,we 
an approximate h (x) ≈ h (0) for x ∈ [0, δ]. Then, after simple steps we get

I ≈ h (0) log δ +
ˆ 1

δ

dx
h (x)

x
. (1.35)Note, that the singularities 
an
elled and the integral 
an be now performed numeri
allywith removed regularization, i.e. we set κ = 0. There is however a disadvantage as theresult is approximate.Another method, advo
ated in this work, is the subtra
tion method [36℄. One 
on-stru
ts an auxiliary 
ross se
tion

σsub =

ˆ

dΦn+1

∣∣Msub
n+1

∣∣2 Fn (1.36)whi
h mimi
s all the singularities of σR, i.e σsub = σR in the singular regions of PS (note,there is Fn for n partons). Beside those points of phase spa
e it 
an be anything thathave the properties of a 
ross se
tion. On the other hand, it must be 
hosen in su
h away, that the analyti
al integration over one-parti
le subspa
e is possible. That is, if wewrite PS s
hemati
ally as
dΦn+1 = dΦn ⊗ dφ, (1.37)we must be able to perform ´ dφ ∣∣Msub

n+1

∣∣2 analyti
ally. It leads then in dimensionalregularization to poles of the form 1/ε whi
h 
an
el those in virtual 
orre
tions due tothe KLN theorem. The pro
edure of 
al
ulating NLO 
ontribution using this method
an be summarized as follows
σNLO =

(
σR − σsub

)
+
(
σV + σsub

)

=

ˆ

dΦn+1

(
|Mn+1|2 Fn+1 −

∣∣Msub
n+1

∣∣2 Fn

)

+

ˆ

dΦn

{
M(loop) 2

n +

ˆ

dφ
∣∣Msub

n+1

∣∣2
}
Fn. (1.38)In the se
ond line, due to IR properties of the jet fun
tions, we 
an perform the integrationin four dimensions and it is �nite. In the third line a 
an
ellation of the poles takes pla
eand after that we 
an set D = 4.This method has an obvious advantage, namely it is exa
t. Se
ond, all the integralsover one-parti
le subspa
e have to be made only on
e and they are universal. This 
anbe also generalized to higher orders, we however need mu
h more subtra
tion terms.A parti
ular 
hoi
e for σsub is realized in [9, 25℄ for massless partons, and in [10℄ formassive quarks in the �nal state (with some restri
tions dis
ussed in 3.1). This spe
i�

hoi
e is 
alled dipole subtra
tion term. A
tually, a solid part of this work is devotedto generalizing this approa
h to 
ompletely massive 
ase, su
h that one 
an pra
ti
allyapply massive fa
torization pro
edure des
ribed in the Chapter 2.The dipole method has, however, also some drawba
ks. First, it is relatively 
ompli-
ated, as we shall see. Moreover, it is unlikely to be generalized easily to higher orders.The reason is that it operates on the amplitudes squared and the number of subtra
tionterms in
reases rapidly. There is some hope 
onne
ted with so 
alled antenna methodwhi
h 
onstru
ts subtra
tion terms at the amplitude level, see e.g. [33℄. Se
ond problem,
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h a
tually 
on
erns the subtra
tion pro
edure in general, is that of numeri
al nature.Namely, depending on implementation, there may be some problems when performingthe integration in the se
ond line of (1.38). Thus e�e
tively, one may be for
ed to use asupport in a form of a sli
ing-like method.1.3 Quark masses in QCDIn the previous se
tions we did not pay spe
ial attention to the quark masses. Here were
all some basi
 fa
ts 
onne
ted with their in
lusion in perturbative 
al
ulations. Thefollowing material is essential to the whole work. In some parts we rely on [13℄.Today we know six �avours of quarks with the following masses3 [43℄:
mu = 1.7-3.1MeV, md = 4.1-5.7MeV, ms ≈ 100MeV, (1.39)
mc ≈ 1.29GeV, mb ≈ 4.19GeV, mt ≈ 172.9GeV. (1.40)Re
all now, that the basi
 requirement to be in a perturbative regime, is that the typi
alenergy s
ale, say Q, satis�es Q ≫ ΛQCD. Sin
e ΛQCD ≈ 200MeV we 
an safely negle
tthe masses of u, d, s quarks in perturbative 
al
ulations. If the s
ale is high enough, we
an also make su
h an approximation with the other quarks.On the other hand, apriori we do not known if there exist heavier quarks. Similarsituation used to be before the dis
overy of the top quark. Thus, the question was aboutthe relevan
e of �eld theoreti
 
al
ulation, where some of the quarks are possibly missed.The solution to this problem is formulated by means of so 
alled de
oupling theorem [4℄.It states that for a Feynman amplitude with a typi
al momentum s
ale Q we 
an dropall the diagrams with quark mass m ≫ Q, doing error O (Q/m). Let us now assume,that the remaining number of quark �avours is Nf , thus all the renormalized parameters(masses, 
ouplings et
.) in su
h an e�e
tive theory are 
al
ulated using this number.In general, the renormalized parameters in the e�e
tive theory with Nf + 1 �avours aredi�erent.The problem however arises, when the masses are not extremely di�erent, as a
tuallyhappens for 
harm and bottom quarks. For instan
e, when the s
ale is 
lose tomc, we 
anmake a mistake of the order mc/mb ≈ 30% (for an example see e.g. [13℄). Fortunately,there is a better method than su
h an un
ontrolled de
oupling. It redu
es to the lastin the limit of very large masses. It is a spe
ial renormalization s
heme existing in theliterature as CWZ (Collins-Wil
zek-Zee) renormalization s
heme [19, 45, 14℄. In orderto de�ne its basi
s let us introdu
e an a
tive number of quarks Na. It is a number ofquarks lighter than the �xed external energy s
ale (note, that we do not have to set thosemasses to zero). The CWZ s
heme 
onsist in the subs
hemes 
hara
terized by Na. Inea
h subs
heme the renormalization is done a

ording to the following points:a) the graphs with internal lines being a
tive are renormalized using MSb) the graphs with at least one internal heavy quark line (ina
tive) are renormalizedby zero-momentum subtra
tion
) masses of heavy quarks are usually de�ned as the pole masses3As the free quark states are unobservable, these are just parameters obtained in MS s
heme at s
aleabout 2GeV.
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heme possesses several important properties (see e.g. [13℄). For us two of them arethe most important. First is that it satis�es manifest de
oupling. That is, if the externals
ale is mu
h smaller than the masses of ina
tive quarks, the renormalized parameters ofa subs
heme with Na a
tive �avours are the same as in e�e
tive theory with Nf = Na.Hen
e we 
an just drop all the diagrams with ina
tive quarks. The se
ond importantproperty is that the evolution of the renormalized parameters in ea
h subs
heme is exa
tlythe same as in MS with Nf = Na, in parti
ular the evolution kernels are massless.This last property is of great importan
e in this thesis. As we have seen in Se
tion1.1, the operational de�nition of parton distribution fun
tions in
ludes a renormalizations
heme. Sin
e we are going to treat fa
torization with the heavy quarks it is 
onvenientto de�ne PDFs in CWZ s
heme. Then, due to the se
ond property, su
h PDFs undergothe standard DGLAP evolution equation in ea
h subs
heme. We shall dis
uss it in detailsin Se
tion 2.4, while in Se
tion 4.2 we 
al
ulate some of them in this s
heme.There is one more 
omment in order. The purpose of introdu
ing su
h a s
heme, is tobe able to evolve a given parameter through all appli
able s
ales without loosing a

ura
y.It is realized by swit
hing the s
hemes at given swit
hing points. Therefore, we have tostate a mat
hing 
onditions at those points4 in order to have a starting parameters inevolution. Su
h 
onditions were obtained even up to three loops for the 
oupling (usinge�e
tive theory formalism [12℄) and up to two loops for PDFs [8℄.In the end, let us introdu
e some more notation we shall use throughout. First, weoften need to distinguish between heavy and light �avours. Thus we de�neNf = Nq+NQ,where q is a generi
 light quark, while Q 
orresponds to heavy quarks. Sometimes werefer to light partons number, whi
h is simply Nl = Nq + 1, as gluon is always light. Ifwe want to refer to all the quark �avours, but in
luding gluon, we use the symbol N ′
f .For all the de�ned symbols, we introdu
e the sets, 
ontaining 
orresponding �avours andtheir anti-�avours. The sets shall be denoted by bla
kboard font, for instan
e Nf , Nl et
.

4In general, one should distinguish between the swit
hing point and a mat
hing point. The �rst is thepoint in whi
h the transition between the s
hemes takes pla
e. The se
ond is a point used to re
al
ulateparameters from one s
heme to another. In this thesis we set them equal.
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Chapter 2In
lusive DIS with heavy quarks
2.1 Introdu
tionAs we have seen in Se
tion 1.3, there are 
ertainly some 
ompli
ations when there areheavy quarks with masses that are neither marginally large nor negligibly small. Theproblems are even more evident in the pro
esses whi
h require fa
torization. In Se
tion1.1 we re
alled the fa
torization theorem assuming that the masses 
an be negle
ted. In
ase, when they 
annot, su
h a treatment is obviously very ina

urate. In this 
hapter,we shall analyse this issue in more details in the 
ontext of in
lusive DIS s
attering.First, in the next se
tion we re
all the simplest possible way of in
luding heavy quarks,a
tually treating them as massless partons. This s
heme, often 
alled zero-mass variable�avour number s
heme (ZM-VFNS) is most often used in phenomenologi
al analysis ofDIS pro
esses. However, as we shall see, it is ina

urate in non-asymptoti
 regions ofenergy s
ale. That se
tion is also devoted to introdu
ing some notation whi
h we usein this and the next 
hapters. Further, in Se
tion 2.3 we brie�y des
ribe more a

uratetreatment, however aiming at 
ompletely di�erent kinemati
 regime than the latter. Thisse
ond solution is often referred to as �xed-�avour number s
heme (FFNS), and takesall the e�e
ts of heavy quarks into a

ount. The problem is however, that as the energys
ale in
reases, su
h a predi
tion be
omes less a

urate, unless we go to higher orders ofperturbation theory. Needless to say, su
h a massive high-order 
al
ulations are mu
hmore involved and time-
onsuming than the massless ones, not to mention generalizationsto ex
lusive pro
esses.Therefore, it is desirable to have a s
heme whi
h is appli
able at intermediate energys
ales and 
ontains both above s
hemes as a limiting 
ases. Su
h solutions were indeeddeveloped [2, 50, 8℄, however with expli
it treatment of in
lusive pro
esses only. Whatis worth emphasizing, the approa
h 
ited as [2℄ was proved to all orders of perturbationtheory [15℄. We shall brie�y des
ribe this approa
h, referred to as ACOT (Aivazis-Collins-Olness-Tung) s
heme, in Se
tion 2.4. It is based on CWZ renormalization s
heme forparton densities and 
an be easily generalized to another IR safe 
ross se
tions.For a short review of the mentioned treatments of heavy quark produ
tion in in
lusiveDIS see e.g. [51, 52℄.We remark, that although this 
hapter is 
onsidered to be introdu
tory, we dis
ussalso a new improvement of existing methods at the end of Se
tion 2.4.25
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hemeLet us start by de�ning our obje
t of interest in this 
hapter. We shall be 
on
entratedhere mainly on the stru
ture fun
tions parametrizing the 
ross se
tion for in
lusive DISpro
esses, notably F2

(
xB , Q

2
), and its dependen
e on the photon virtuality Q2. Re-member, that the stru
ture fun
tions are obtained by means of a suitable proje
tion ofhadroni
 tensorWµν , de�ned as usual in terms of matrix element of ele
troweak 
urrentssandwi
hed between hadron states

Wµν
(
q, P ;xB , Q

2
)
=

1

4π

∑

spin

∑

Px

ˆ

dΦ1 (q, P ;PX)
〈
P
∣∣j†µ (0)

∣∣PX

〉
〈PX |jν (0)|P 〉 ,(2.1)where the se
ond sum goes over all �nal states PX . The proje
tion is made using suitablebase tensors made of the ve
tors P , q and the metri
 tensor. Negle
ting the hadron masswe get for F2

F2

(
xB, Q

2
)
=

2 xB
D − 2

(
−Wµ

µ + (D − 1)
2 xB
P · qWµνP

µP ν

)
. (2.2)If we repla
e the hadroni
 state by a parton, su
h a tensor is 
alled the partoni
tensor. We shall denote it as wµν . Both tensors are related by means of fa
torizationtheorem � we shall give some examples below. We do not give further details relatedto other stru
ture fun
tions and related issues as they are all standard (for the pre
isede�nitions in
orporating quark and target masses see [3℄). Su
h limited 
onsiderationsare 
ompletely enough to elu
idate the basi
 problems with heavy quark masses, as weshall see.Before we pro
eed, let us re
all, that we denote a generi
 heavy quark by symbol Q.The light quarks are denoted as q, there should be no 
onfusion sin
e this is only usedin this meaning as a subs
ript.Let us start further 
onsiderations by noting, that the simplest possible approa
h toheavy quarks is when Q2 → ∞ with xB �xed, su
h that all the existing heavy quarkmasses 
an be negle
ted. Then, the pre
ise predi
tions are given by the fa
torizationtheorem (1.20), whi
h is exa
t. All the quarks (in
luding heavy quarks) are treatedas massless partons having 
orresponding PDFs. Su
h situation is obviously not veryplausible. In pra
ti
e the energy s
ales do not tend to in�nity, moreover many interestingphenomena exist at lower s
ales. Se
ondly, we have several heavy quarks with large masssplittings, as dis
ussed in Se
tion 1.3. On the other hand, when Q2 is mu
h smaller thanthe mass of a given heavy quark, it may be dropped from 
al
ulations due to de
ouplingtheorem mentioned also in Se
tion 1.3.These two marginally di�erent situations (Q2 ≫ m2

Q and m2
Q ≫ Q2) motivate thefollowing simplest s
heme of treating �heavy� quarks:a) 
ompletely de
ouple given heavy quark Q when m2

Q > Q2, i.e. treat it as in�nitelyheavyb) treat Q as a massless parton with asso
iated PDF, when Q2 > m2
QWe have assumed here that the fa
torization and renormalization s
ales are equal to Q.If there are several heavy quarks, we have the 
omposite s
heme, with subs
hemes 
har-a
terized by an a
tive number of �avours Na. Thus we have a set of parton distributionfun
tions f (Na)

a and 
ouplings α(Na)
s . We note, that this s
heme is a spe
ial kind of CWZ
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heme mentioned earlier, in whi
h PDFs are de�ned. All the masses are however setto zero. Sin
e CWZ satis�es manifest de
oupling, we just drop the ina
tive quarks, andea
h subs
heme is e�e
tively a MS s
heme with Na �avours and 
orresponding DGLAPmassless evolution of PDFs. As already mentioned, the s
hemes with di�erent Na area
tually di�erent renormalization s
hemes, they di�er by �nite terms and a relationbetween s
hemes with Na and Na + 1 �avours 
an be stated.Here the swit
hing point is usually 
hosen to be µth = mQ, where Q is (Na + 1)-th�avour. It is 
onvenient, sin
e then the heavy quark density f
(Na+1)
Q is zero at thethreshold1. It follows from two fa
ts. First is just a pre
ise form of the relation betweenPDFs in two subs
hemes [18℄. Se
ond is that below µth it is suppressed by power of

ΛQCD/mQ due to de
oupling theorem. Thus we have the 
ontinuity 
ondition
f
(Na)
Q

(
z, µ2

th

)
= f

(Na+1)
Q

(
z, µ2

th

)
= 0 (2.3)Then, above the threshold it is evolved using DGLAP equations with Na + 1 �avoursstarting from zero value.As already mentioned in the introdu
tion, su
h a s
heme is 
alled zero-mass variable�avour number s
heme (ZM-VFNS). Corresponding fa
torization theorem takes the form

W (Na)
µν

(
q, P ;xB , Q

2
)
=
∑

a∈Na

f (Na)
a

(
µ2
f

)
⊗ ŵ(Na)

µν

(
q, pa;

Q2

µ2
f

)
, (2.4)where we expli
itly denoted the dependen
e on the fa
torization s
ale (equal here to therenormalization s
ale). We also introdu
ed the 
onvolution symbol, whi
h simpli�es thenotation; it is de�ned here as

f ⊗ w =

ˆ 1

xB

dξ

ξ
f (ξ)w

(
xB
ξ

)
. (2.5)In (2.4) pa = ξP , nevertheless we leave pa as this notation is more general. As wevary the s
ale, the a
tive number of partons 
hanges. Su
h a formula is a
tually validup to 
orre
tions of order O (m2

Na
/Q2

), where mNa
would be the mass of the heaviesta
tive quark, if we did not set it to zero. Therefore, in reality su
h an approa
h isunreliable for Q2 around the masses of heavy quarks. Moreover, as we rea
h the regionof validity of (2.4) for one heavy quark, say 
harm, we simultaneously 
an enter theregion of inappli
ability for the beauty quark. Thus, only at really asymptoti
 regimesthis s
heme is 
orre
t, as we remarked earlier.To illustrate this approa
h, 
onsider now a 
al
ulation of F2 stru
ture fun
tion inthis s
heme up to order αs. Let us assume we work in the s
heme with Na = 4, that isbesides gluon, u, d and s quarks, whi
h are always massless, we have also 
harm c

Na =
{
g, u, u, d, d, s, s, c, c

}
. (2.6)Then, to this order

1

xB
F2

(
xB , Q

2
)
=
∑

a∈Na

fa
(
µ2
f

)
⊗
[
C(0)

a

(
Q2

µ2
f

)
+ C(1)

a

(
Q2

µ2
f

)]
. (2.7)1It is however true only at leading and next to leading order, see [8℄.
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Figure 2.1: A) Feynman diagrams 
ontributing to stru
ture fun
tions in ZM-VFNS upto order α1

s; B) The same for FFNS. There is only boson-gluon fusion at order α1
s. Thi
kline 
orresponds to a heavy quark.We are a
tually interested in 
harm 
ontribution to F2, whi
h 
an be pi
ked up from theabove equation. Setting µ2

f = Q2 (and the same for renormalization s
ale) we have
F c
2

(
xB , Q

2
)
=
[
fc
(
Q2
)
+ fc

(
Q2
)]
⊗
[
C(0)

c + C(1)
c

]
+ fg

(
Q2
)
⊗ C(1)

g , (2.8)where the result for 
oe�
ients Ci in massless MS s
heme is well known (e.g. [28℄, for
orresponding diagrams see Fig. 2.1A ) and reads
C(0)

c (z) = e2c zδ (1− z) , (2.9)
C(1)

c (z) = e2c
αs

2π
CF

[
1 + z

1− z

(
log

1− z
z
− 3

4

)
+

1

4
(9 + 5z)

]

+

, (2.10)
C(1)

g (z) = e2c
αs

2π

[
2Pgq (z) log

1− z
z

+ 8z (1− z)− 1

]
. (2.11)The splitting fun
tion Pgq and �plus� distribution were de�ned in Se
tion 1.1.The behaviour of this solution will be expli
itly demonstrated in Se
tion 2.4, wherewe present some plots 
omparing this NLO 
al
ulation to other s
hemes.Although � as we have just seen � su
h a s
heme is very simpli�ed, it is still most
ommonly used in PDFs global �ts to data (e.g. CTEQ �ts [38℄ and earlier). Its greatadvantage is simpli
ity and pra
ti
ality. It should be also mentioned that it was verysu

essful in des
ribing large amount of modern high energy data.2.3 Fixed �avour number s
hemeLet us now present another approa
h, whi
h is appli
able when Q2 is about the heavyquark mass m2

Q. A
tually, it is a generalization of the previous s
heme, where Q isina
tive, but has �nite mass. Thus we have Na massless partons undergoing masslessevolution and one heavy �avour, whi
h 
an be only produ
ed dynami
ally. For example,at LO in DIS it is the boson-gluon fusion (BGF) pro
ess depi
ted in Fig. 2.1B.The fa
torization theorem in this 
ase takes the form
Wµν

(
q, P ;xB , Q

2,m2
Q

)
=
∑

a∈Na

fa
(
µ2
f

)
⊗ ŵµν

(
q, pa;

Q2

µ2
f

,
m2

Q

µ2
f

)
+O

(
Λ2
QCD

m2
Q

)
. (2.12)
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ale is given by the heavy quark mass and on the 
ontrary to (2.4) Nadoes not 
hange. Therefore su
h a s
heme is 
alled �xed �avour number s
heme (FFNS)and was pioneered in [28, 27, 37, 29℄. We note, that here the 
onvolution symbol isde�ned as in (2.5) but the integration limits depend on quark masses (we shall see theexample below).In order to dis
uss some of its properties, let us again 
onsider the expli
it result,namely the 
ontribution to F2 
oming from the 
harm quark. As already mentioned, thesituation where 
harm 
onne
ts the hard and soft parts is suppressed by Λ2
QCD/m

2
c , thusthe perturbative 
al
ulation for F c

2 starts at α1
s with BGF pro
ess (Fig. 2.1)

1

xB
F c
2

(
xB, Q

2
)
= fg

(
Q2
)
⊗ C(1)

g

(
m2

c

Q2

)
, (2.13)with 
oe�
ient given by (e.g. [47℄)

C(1)
g (z, ρ) = e2c

αs

2π

{
[
2Pgq (z) + 4ρz2 (1− 3z)− 8ρ2z3

]
log

1 + v

1− v

+ (4z (1− z) (2− ρ)− 1) z v

}
, (2.14)where we abbreviated ρ = m2

c/Q
2 and v =

√
1− 4ρz/ (1− z) is the velo
ity of the
harm quark in the photon-gluon CM frame. Now the lower limit on the 
onvolution is

zmin = xB (1 + 4ρ).Let us dis
uss now this result. First, let us note that it 
ontains the powers of m2
c/Q

2,whi
h are la
king in ZM-VFNS treatment (higher twists). Therefore indeed it is reliable
al
ulation when Q2 is of the order of m2
c . Now, the question is what is the behaviour ofthis solution when the s
ale is mu
h larger. In this 
ase, we �nd that

C(1)
g (z, ρ) = e2c

αs

2π
Pgq (z) log ρ+O (ρ) . (2.15)Thus we see, that we have a potentially large logarithm of the heavy quark mass andthe hard s
ale ratio. Su
h logarithms appear in every next order of perturbation theory,typi
ally

C(m)
a =

m∑

k=0

c
(m)
a, k logk ρ, (2.16)what makes su
h an expansion unreliable. The solution is to resum all the powers of

αs in front of the given power of logarithm, i.e. to suitably rearrange the above series.Then, we a
tually arrive at the zero-mass s
heme with 
harm being a massless parton.However, one has to bear in mind that it happens at a pri
e of loosing 
ontrol of theterms O (m2
c/Q

2
) (a
tually, if we do not tra
k higher twist terms, whi
h is not easy andso far has not been solved). In the next se
tion we shall present some plots 
omparingthis s
heme to ZM-VFNS.There is one more 
omment in order. One 
an ask when this �xed �avour approa
hfails, sin
e logarithm is a very slowly in
reasing fun
tion. In [29℄ it was argued, thatthe 
ross se
tions 
al
ulated in this approa
h at NLO are stable even for relatively larges
ales, however one has to use a spe
ial sets of PDFs, namely so 
alled dynami
al PDFs(see e.g. [53℄). Su
h an approa
h however does not solve the basi
s of the problem,therefore we shall not follow this path in this thesis.
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hemeAs we already anti
ipated in the introdu
tion, there exist solutions whi
h 
ontain ZM-VFNS and FFNS as a spe
ial 
ases. In the following se
tion we des
ribe one of them,the so 
alled ACOT s
heme [2, 15℄. We believe it is the best solution that 
an be easilygeneralized to less in
lusive pro
esses, in parti
ular jets. This is in 
ontrast to otherapproa
hes like [50, 8℄. As we have already remarked, it has been proved for in
lusiveDIS to all orders in [15℄.Basi
 assumption of the s
heme is that the PDFs are de�ned using CWZ renormal-ization s
heme and that the masses relevant to a
tual energy s
ale are kept �nite. Thisresults in the higher twist errors of the order of Λ2
QCD/Q

2 over the whole kinemati
allyallowed region of Q2. We shall see how it works in pra
ti
e below.Consider again the hadroni
 tensor Wµν and suppose for simpli
ity that there is onlyone heavy quark Q. The fa
torization is realised a
tually by two di�erent theorems [15℄.The �rst one is essentially the same as (2.12), i.e. it is appli
able when Q2 . m2
Q. These
ond one, is when Q2 & m2

Q, that is both theorems have an overlap region. Let usanalyse the se
ond 
ase. The theorem under 
onsideration has the following form
Wµν

(
q, P ;xB , Q

2,m2
Q

)
=
∑

a∈Na

fa
(
µ2
f

)
⊗ ŵµν

(
q, pa;

Q2

µ2
f

,
m2

Q

µ2
f

)
+O

(
Λ2
QCD

Q2

)
. (2.17)Super�
ially it is almost the same as (2.12), however there are di�eren
es. First is thatin this s
heme (i.e. above some swit
hing point µth ∼ mQ) the set of a
tive quarks Nadoes in
lude the quark Q. Se
ond di�eren
e is subtle. It is 
onne
ted with IR �nitepartoni
 tensor. To see this let us 
al
ulate it to the �rst order in αs. Re
all, that it isdone with fa
torization (2.17), but on the partoni
 level (let us set all the s
ales equal to

Q)
wµν

a

(
q, pa;Q

2,m2
Q

)
=
∑

b∈Na

FCWZ
ab

(
Q2

m2
Q

)
⊗ ŵµν

b

(
q, pb;

m2
Q

Q2

)
. (2.18)We denoted that the parton densities inside a parton are renormalized using CWZ. Tothe �rst order it be
omes (below we drop all the arguments, ve
tor indi
es and CWZsupers
ript for transparen
y)

w(0)
a + w(1)

a =
∑

b∈Na

(
F (0)

ab + F (1)
ab

)
⊗
(
ŵ

(0)
b + ŵ

(1)
b

)
+O

(
α2
s

)
. (2.19)Thus, the zeroth order partoni
 tensor is IR safe

w(0)
a = ŵ(0)

a . (2.20)Solving further the re
urren
e we get for a light quark
w(1)

q = F (1)
qq ⊗ w(0)

q + ŵ(1)
q , (2.21)for heavy quark

w
(1)
Q = F (1)

QQ ⊗ w
(0)
Q + ŵ

(1)
Q (2.22)and for a gluon

w(1)
g = F (1)

gq ⊗ w(0)
q + F (1)

gQ ⊗ w
(0)
Q + ŵ(1)

g . (2.23)



2.4. ACOT SCHEME 31We have used the fa
t that zeroth order densities are trivial
F (0)

ab = 1 δab. (2.24)Equations (2.21)-(2.23) 
an be now solved for IR safe quantities o

urring in (2.17).Proje
ting the hadroni
 tensor suitably to get F2 stru
ture fun
tion we now have
1

xB
F2 =

∑

q∈Nq

fq ⊗
(
C(0)

q + C(1)
q −F (1)

qq ⊗ C(0)
q

)

+ fQ ⊗
(
C

(0)
Q + C

(1)
Q −F (1)

QQ ⊗ C
(0)
Q

)

+ fg ⊗


C(1)

g −
∑

q∈Nq

F (1)
gq ⊗ C(0)

q −F (1)
gQ ⊗ C

(0)
Q


 . (2.25)The parton densities are renormalized inMS s
heme here sin
e we are above the swit
hingpoint and Q is treated as a
tive parton. Thus for massless partons we have pre
isely theresult (1.22) while for the heavy quarks we get

FMS
gQ

(
x,

Q2

m2
Q

)
=
αs

2π
log

(
Q2

m2
Q

)
Pgq (x) , (2.26)

FMS
QQ

(
x,

Q2

m2
Q

)
=
αs

2π
CF

{
1 + x2

1− x

[
log

(
Q2

m2
Q

)
− 2 log (1− x)− 1

]}

+

. (2.27)Those results were partially 
al
ulated in [45℄, but we had to re-derive them as explainedin Se
tion 4.2. The �rst one is however well known (e.g. [2℄), while the se
ond wasobtained e.g. in [35℄ by di�erent method (by 
omparing asymptoti
 expressions).In order to better understand this result, let us pi
k up only heavy quark 
ontributionto F2, where Q is e.g. a 
harm quark. That is we 
onsider
1

xB
FQ
2 = fQ ⊗

(
C

(0)
Q + C

(1)
Q −F (1)

QQ ⊗ C
(0)
Q

)
+ fg ⊗

(
C(1)

g −F (1)
gQ ⊗ C

(0)
Q

)
. (2.28)First note, that the 
oe�
ients of order α1

s without a hat are a
tually �nite. For instan
e
C

(1)
g is pre
isely the one given in (2.14). However they are not IR safe as dis
ussed in theprevious se
tion. However, when Q2 ≫ m2

Q they be
ome IR safe by 
onstru
tion, thanksto the subtra
tion terms terms F (1)
QQ ⊗ C

(0)
Q and F (1)

gQ ⊗ C
(0)
Q . Therefore in this limitsu
h FQ

2 be
omes equal to the one obtained in ZM-VFNS s
heme. This is illustrated inFig. 2.2.Now let us 
onsider what happens when Q2 & m2
Q, i.e. just above the mat
hing point,whi
h for 
onvenien
e is 
hosen to be pre
isely at µth = mQ (see Se
tion 2.2). Then, theACOT s
heme should reprodu
e the FFNS s
heme with Q being ina
tive. Indeed it isthe 
ase here. First, let us note that the evolution equations for all PDFs are standardDGLAP equations (1.9) with massless splitting fun
tions. This is a simple 
onsequen
eof 
hoosing CWZ s
heme to de�ne PDFs. Sin
e it may be not obvious that in a massive
al
ulation we may have massless evolution, we prove this fa
t in Se
tion 4.2.2. Next,due the above 
hoi
e of the swit
hing point, the density fQ is zero there. Therefore,
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Figure 2.2: A) Charm 
ontribution at order α1
s to F2 stru
ture fun
tion in di�erents
hemes (dashed: ZM-VFNS, solid: ACOT, dot-dashed: ACOT-χ, dotted: FFNS). Cal-
ulation is done for xB = 0.05 and CTEQ LO PDF set. Fa
torization and renormalizations
ales are all set to Q2. B) The same around the mat
hing point µ2

th = m2
c = 1.69GeV2(we do not show the dashed line here as it does not make sense in this region). TheACOT s
heme 
urve is obtained without quark-s
attering NLO 
ontribution, as it wasoriginally introdu
ed.solving evolution equation for fQ (µ2

) just above the mat
hing point, i.e. for µ2 & m2
Q(whi
h is straightforward) we get at LO

fQ
(
µ2
)
≈ αs

2π
fg
(
m2

Q

)
⊗ PgQ log

µ2

m2
Q

= fg
(
m2

Q

)
⊗F (1)

gQ

(
µ2

m2
Q

)
. (2.29)Analysing (2.28) in the same regime we �nd that most of the terms 
an
el and whatremains is just fg ⊗ C(1)

g , i.e. FFNS. Moreover, we 
an go with this formula below themat
hing point. There it be
omes exa
tly FFNS. This is due to CWZ renormalizations
heme. It turns out, that F (1)
gQ vanishes below the mat
hing point (see Se
tion 4.2.2), thesame is true for fQ. Hen
e, what remains is again just the boson-gluon fusion pro
ess.This is illustrated in Fig. 2.2, with dropped NLO quark-s
attering 
ontribution as orig-inally done by the authors of [2℄. This have been later �xed in [35℄ and 
on�rmed thatthis 
ontribution is usually negligible. We also 
on�rm this fa
t by expli
it 
al
ulationusing our MC program in Se
tion 4.5.There are several subtle points, whi
h we have skipped above. First, there is 
ertainfreedom 
on
erning the fa
torization theorem with heavy quarks ([2℄, see also [15℄ formore details). This fa
t was used in Ref. [34℄ where the version of fa
torization theoremwith massless initial state partons was 
onsidered. The s
heme just mentioned for in
lu-sive pro
esses is 
alled SACOT s
heme (Simpli�ed ACOT). It is usefull in the 
ontextof higher order 
al
ulations, as it may 
onsiderably simplify the situation. The freedommentioned above 
an be used also di�erently, namely we set the initial state masses tozero only in the terms C(0)

Q above, i.e. we leave the mass in fQ ⊗C(1)
Q . This approa
h iselu
idated in Se
tion 4.3.2, where we dis
uss this for jet produ
tion.Next, there is a problem that C(0)

Q does not have 
orre
t threshold behaviour forheavy quark produ
tion. It is obvious, sin
e it is a di�erent me
hanism. There are someapproa
hes in the literature, whi
h try to in
orporate some arti�
ial s
aling variables in



2.4. ACOT SCHEME 33order to �x it. For instan
e, so 
alled χ-pres
ription assumes repla
ement
x←→ χ = x

(
1 +

m2
Q

Q2

) (2.30)in fun
tions involving C(0)
Q , i.e. where Q enters the redu
ed matrix element. Then, thephysi
al threshold for Q produ
tion is in
orporated. We show an example 
al
ulation inFig. 2.2, as ACOT-χ.Although su
h pres
riptions are allowed by the freedom we have dis
ussed, we �ndthem impra
ti
al as far as jet produ
tion is 
on
erned. Moreover, there is a more naturalapproa
h. Noti
e, that when all the o

urren
es of C(0)

Q in (2.28) are the same, the
an
ellation taking pla
e around the mat
hing point is the most e�e
tive. We meanhere not only the form of C(0)
Q , but also the way it is 
onvoluted. Then, it is easy tosee that they 
an be the same only when the mass of the initial state is set to zero in

C
(0)
Q (what is allowed due to the freedom we have dis
ussed). Otherwise, even if C(0)

Qare everywhere the same the 
onvolutions are di�erent, sin
e the integrals have di�erentlimits. For example the 
onvolutions fg ⊗ F (1)
gQ and fQ ⊗ CQ are not the same (in theoperational sense) when mQ 6= 0. On the other hand, when mQ = 0 both lower boundsin the 
onvolutions are just xB whilst the upper ones equal to 1. We turn attention,that the only dependen
e on mass that remains in subtra
tion terms is hidden underlogarithms in F (1)

gQ and F (1)
QQ.In summary, we interpret LO term fQ⊗C(0)

Q as an `asymptoti
' expression appearingafter resummation of logarithms, thus it should be subtra
ted around the mat
hing pointleaving only BGF me
hanism. Sin
e it is the asymptoti
 expression the initial state massis set to zero. A

ordingly, we set mQ = 0 in C(0)
Q appearing in subtra
tion terms. Thisallows for 
omplete 
an
ellation around the mat
hing point as shown in Fig. 2.2. Westress that we do not set all initial state masses to zero. We shall 
ome ba
k to this issuein Se
tion 4.3.2.
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Chapter 3Massive dipole subtra
tionmethod3.1 Introdu
tionThe dipole subtra
tion method is a spe
i�
 realization of the subtra
tion method de-s
ribed in Se
tion 1.2. The subtra
tion term is 
onstru
ted as a sum of so-
alled dipoles,motivated by very general behaviour of matrix elements. It was �rst developed in anextensive paper by S. Catani and M. Seymour [9℄ in 1996. Their method is appli
ablefor lepton-lepton, lepton-hadron and hadron-hadron pro
esses, also with the possibleidenti�ed partons in a �nal state. However, it was developed for massless partons only.The method of [9℄ was later extended in [23℄ to a general 
ase of massive quarks (also inthe initial state), however for the pro
esses, where the photons radiate o� the fermions.Moreover, they used a �nite photon mass in order to regularize IR singularities. There-fore, their results are not su�
ient for QCD pro
esses, where not only gluons are emittedfrom initial quarks, but also the gluons 
an split into qq and gg �nal state pairs. Thiswas the reason for a joint work of the authors of Refs. [9, 23℄ and independently [44℄.In [10℄ they developed the dipole method for massive partons, however, they resign totake into a

ount the masses of possible initial state heavy quarks, as they allow onlythe standard (massless) fa
torization theorem. We note, that they treat as massless notonly the initial state splitting pro
esses like q → qg, but also they use massless quarks in
g → qq splitting. However, as we have seen in the pre
eding se
tions, taking into a

ountthe masses of possible initial state heavy quarks, espe
ially taking into a

ount massive
g → qq splitting, is essential if we want to get 
onsistent and reliable predi
tions for largerange of external s
ale.In the present 
hapter we develop the fully massive dipole subtra
tion method, whi
hallows for NLO 
al
ulations of neutral 
urrent DIS pro
esses. We take into a

ount allthe masses of the quarks, in
luding possible initial states. Our method is a generalizationof the one mentioned above [10℄, therefore we try to keep similar notation. Most of thematerial presented in this 
hapter is new. It should however be mentioned, that in orderto 
al
ulate a full jet 
ross se
tion the material should be supplemented by the results of[10℄ whi
h do not involve initial states and are not treated here.The 
hapter is arranged as follows. Before we explain in details (Se
tion 3.3) howthe dipole subtra
tion method is 
onstru
ted, we must learn how the matrix elements35
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le, while dots denote the rest of�nal states. Shaded blob 
orresponds to a redu
ed amplitude M̂n.behave in the soft and 
ollinear limits, espe
ially when the quarks are massive. We shallsee that in the 
ontext of this work, it is desirable to 
onsider so 
alled quasi-
ollinearlimit instead of the usual 
ollinear one. This is done in Se
tion 3.2. Next, we des
ribea spe
ial kinemati
s, that has to be introdu
ed (Se
tion 3.4) in order to fa
torize the
(n+ 1)-parti
le phase spa
e into n-parti
le and a subspa
e that after integration leadsto singularities. Using these variables, we de�ne the dipole splitting fun
tions in Se
tion3.5. They are the 
ore of the subtra
tion terms and mimi
 the true singular behaviourof the matrix elements. Next, in Se
tion 3.6, we des
ribe in details the phase spa
efa
torization pro
edure. Finally, we integrate all the dipoles over the fa
torized subspa
ein Se
tion 3.7.We note, that the fully massive dipole subtra
tion method presented below, is still notsu�
ient to make reasonable 
al
ulations. As we shall see, there are potential 
ollinearsingularities that have to be fa
torized into PDFs. This step shall be done in the nextChapter 4.3.2 Singular behaviour of tree-level matrix elementsLet us start with the investigation of singularities, that appear in the tree-level matrixelements. They emerge from two di�erent kinemati
 regions (whi
h 
an however overlap).First one is so 
alled soft region, 
onne
ted with an emission of a gluon with zero energy.Se
ond region, a
tually more 
ompli
ated, is the 
ollinear region (more pre
isely � quasi-
ollinear, see below). Essentially, we follow [10℄, however we give more details and presentsome results, whi
h do not appear in the literature expli
itly.3.2.1 Soft limitThe 
ontent of this se
tion is essentially well known, although most often the masses ofquarks are negle
ted. In some parts we follow [9, 10, 22℄.Let us 
onsider a generi
 (n+ 1)-parti
le amplitude M̂n+1. The hat reminds that itgenerally is an obje
t with spinor and 
olour indi
es, whi
h are suppressed. Alternativelywe may think, that 
olour or spin indi
es 
an be pulled out by treating M̂ as a ve
torin 
olour and heli
ity spa
e and proje
ting it onto suitable basis ve
tors. Let us assumefor a moment that all the partons are �nal states.Let us now suppose that i-th parti
le is a gluon that is emitted from an o�-shell quark
q with mass m (we assume also that all the other partons are on-shell). This situation is
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ted in Fig. 3.1. The 
ontribution to full amplitude from this kind of emission 
anbe written as
M̂(q)

n+1 (p1, . . . , pn+1) = ε∗µ (ν) (−ig) t̂A u (pq) γµ i
6piq +m

p2iq −m2

˜̂Mn

(
{pk}k∈A′

)
, (3.1)where t̂A are standard matri
es of 
olour group generators, εµ (ν) is a photon polarizationve
tor with heli
ity ν and u (pq) is an adjoint spinor for a quark with momentum pq. Herewe have de�ned

pµiq = pµi + pµq (3.2)and the set A is de�ned as
A

′ = {1, . . . , n+ 1} \ {i, q} ∪ {iq} , (3.3)that is we have removed the partons i, q from the original matrix element and repla
eby single iq. Note, however that at this stage the leg piq in the amplitude on the RHS of(3.1) is o�-shell. This fa
t is marked by a tilde adorning the amplitude. Also, in (3.1),we have suppressed a spin index in the external spinor.The soft limit is rea
hed when for any �xed four-ve
tor rµ we have [9℄
pµi = λrµ, λ→ 0. (3.4)Then, using simple spinor algebra and Dira
 equation we get from (3.1)1

M̂(q)
n+1 (p1, . . . , pn+1) −→

λ→0

1

λ
g ε∗µ (ν) t̂

A
pµq
r · pq

M̂n

(
{pk}k∈A

)
, (3.5)where now

A = {1, . . . , n+ 1} \ {i} , (3.6)Note that now the momentum of a quark piq left after removing the gluon is on-shell,sin
e
pµiq −→

λ→0
pµq . (3.7)In 
omplete analogy, we obtain the 
ontribution from the emission from an anti-quark q

M̂(q)
n+1 (p1, . . . , pn+1) −→

λ→0

1

λ
g ε∗µ (ν)M̂n

(
{pk}k∈A

) (
−t̂A

) pµq
r · pq

. (3.8)Finally, we have to 
onsider the situation when the soft gluon is emitted from anothero�-shell gluon, as in Fig. 3.1C. The result 
an be simply obtained if one uses the fa
tthat the gluon propagator be
omes transverse for λ→ 0, resulting in
M̂(g)

n+1 (p1, . . . , pn+1) −→
λ→0

1

λ
g ε∗µ (ν) (−ifABC)

pµg
r · pg

M̂C
n

(
{pk}k∈A

)
. (3.9)We see, that all the 
ontributions M̂(q)

(n+1), M̂(q)
(n+1), M̂(g)

(n+1) have the same stru
ture,ex
ept the 
olour fa
tors. This re�e
ts the fa
t that the soft gluon has a very longwavelength and thus is insensitive to the spin stru
ture of the emitting parti
le.In order to write the full amplitude with the soft gluon emission in a uniform fashion,let us introdu
e the 
olour operator T̂A
j for a parton j, whi
h generates pertinent 
olour1The repla
ement of the gluon-quark (or photon-quark) vertex γµ by 2pµq is the eikonal approximation.
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ture. Its a
tion is most transparently de�ned introdu
ing the orthonormal basis inthe 
olour spa
e; for n parti
les in the �nal state and m parti
les in the initial state wede�ne
(

m⊗

a=1

|ca〉
)
⊗




n⊗

j=1

|dj〉


 ≡ |c1, . . . , cm; d1, . . . , dn〉 ≡ |{ca} ; {dj}〉 , (3.10)su
h that

〈
M̂n ({pa} ; {pj})

∣∣∣ {ca} ; {dj}
〉
=

1∏
a

√
nca

M̂c1,...,cm,d1,...,dn
n ({pa} ; {pj}) , (3.11)where ca is a 
olour 
harge of an initial state parton a whereas dj is the same for �nalstate parton j. On the LHS we treat the amplitude as a ve
tor in the 
olour spa
e,normalized in su
h a way that 
olour averaged amplitude squared 
an be written as

∣∣∣M̂n ({pa} ; {pj})
∣∣∣
2

=
〈
M̂n ({pa} ; {pj})

∣∣∣M̂n ({pa} ; {pj})
〉
. (3.12)In the above formulae the range of the index numbering the elements of sets {.} is droppedfor transparen
y; we shall often do this, if it does not lead to a 
onfusion. On
e we have
hosen the 
olour basis, we 
an de�ne the 
olour operators as follows

T̂A
j |{ca} ; d1, . . . , dj , . . . , dn〉 =





tAdjb
|{ca} ; d1, . . . , b, . . . , dn〉 , j = q

−tAbdj
|{ca} ; d1, . . . , b, . . . , dn〉 , j = q

−ifAdjB |{ca} ; d1, . . . , B, . . . , dn〉 , j = g

(3.13)if the operator a
ts on a �nal state, and
T̂A
a |c1, . . . , ca, . . . , cm; {dj}〉 =





−tAbca |c1, . . . , b, . . . , cm; {dj}〉 , a = q

tAcab |c1, . . . , b, . . . , cm; {dj}〉 , a = q

ifAcaB |c1, . . . , B, . . . , cm; {dj}〉 , a = g

(3.14)for operation on initial state. The a
tion of the �nal state 
olour operators is evidentfrom our derivation above, eqs. (3.5)-(3.9), while the a
tion of the initial state operators
an be easily obtained using 
rossing symmetry. Let us note, that
T̂ 2
k ≡

∑

A

T̂AT̂A =

{
CF , k = q, q

CA, k = g.
(3.15)Due to 
olour 
onservation we have also the following property


∑

a

T̂A
a +

∑

j

T̂A
j



∣∣∣M̂n ({pa} ; {pj})

〉
= 0. (3.16)Using the above notation, we 
an write the 
omplete amplitude with the soft gluonemission (now we take into a

ount the possible initial states) as

M̂A
n+1 ({pa} ; {pj}) −→

λ→0

1

λ
g ε∗µ (ν) Ĵ

µA (r)M̂n

(
{pa} ; {pk}k∈A

)
, (3.17)
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PSfrag repla
ements emitter

spe
tator 
utFigure 3.2: De�nition of the emitter and spe
tator. The last one is a parton that re
oilsemitted parti
le on the other side of the 
ut. Both emitter and spe
tator 
an be �nal orinitial states.where so 
alled insertion (or eikonal) 
urrent Jµ is de�ned as
ĴµA (r) =

∑

a

T̂A
a

pµa
r · pa

+
∑

j 6=i

T̂A
j

pµj
r · pj

=
∑

I 6=i

T̂A
I

pµI
r · pI

, (3.18)where in the last step we introdu
ed the index I that runs over both initial and �nalstates.Let us now square the amplitude and sum/average over 
olours and spins. First, theeikonal 
urrent squared and summed over A 
an be written as
∑

A

ĴµA (r) ĴA
µ (r) =

∑

I 6=i

1

r · pI
∑

K 6=I

T̂I · T̂K
(

2pI · pK
r · (pI + pK)

− m2
I

r · pI

)
. (3.19)This form was obtained by partial fra
tioning the expressions of the type

1/ (r · pI) (r · pK) and using 
olour 
onservation (3.16). The amplitude squared thustakes the following form (in D dimensions)
∣∣Mn+1 ({pa} ; {pj})

∣∣2 −→
λ→0
− 1

λ2
8πµ2ε

r αs

∑

I 6=i

1

r · pI
∑

K 6=I

(
pI · pK

r · (pI + pK)
− m2

I

2 r · pI

)

〈
M̂n ({pa} ; {pj})

∣∣∣ T̂I · T̂K
∣∣∣M̂n ({pa} ; {pj})

〉
. (3.20)Above formula is the key for 
onstru
ting dipole subtra
tion terms, although as weshall see in Se
tion 3.3 there are several points to over
ome.For further 
onvenien
e, let us introdu
e the following notation for the 
olour-
orrelated amplitudes

〈
M̂n ({pa} ; {pj})

∣∣∣ T̂I · T̂K
∣∣∣M̂n ({pa} ; {pj})

〉
≡ |Mn ({pa} ; {pj})|2I,K . (3.21)It will allow for more 
ompa
t formulae later on.In the end of this se
tion, let us introdu
e a nomen
lature following [9℄ that we shalluse throughout. A parti
le whi
h emits a gluon (or in general any other parton) we 
allan emitter. Further, as far as one 
onsiders the amplitude squared, an emitted parti
leis re
oiled on the other side of the 
ut by a parton that we 
all a spe
tator (Fig. 3.2).There is a symmetry between all emitter-spe
tator 
ases, as is evident e.g. from (3.20).In general, we 
an distinguish the following 
ases

• �nal state emitter - �nal state spe
tator (FE-FS)
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• �nal state emitter - initial state spe
tator (FE-IS)
• initial state emitter - �nal state spe
tator (IE-FS)
• initial state emitter - initial state spe
tator (IE-IS).In the present work we shall 
onsider the �rst three 
lasses, sin
e we are so far 
on
en-trated on lepton-hadron pro
esses only.3.2.2 Quasi-
ollinear limitLet us now 
onsider another region where a tree-level amplitude 
an be divergent. Thepropagators, as those in Fig. 3.1, 
an be
ome in�nite when the momenta of the masslesspartons are 
ollinear. If the quarks are massive there is no true 
ollinear singularity,however the singularity arises again when the mass 
an be negle
ted 
omparing to ex-ternal energy s
ales. Therefore in view of the present work it is 
onvenient to 
onsiderso 
alled quasi-
ollinear limit [11, 10℄ and quasi-
ollinear singularity. In the followingsubse
tions we re
all this idea in details. We pay parti
ular attention to the 
ase of anemission from the initial state with heavy quark masses taken into a

ount. This is theelementary 
ase, whi
h � as far as we are 
on
erned � has not been given expli
itly inthe literature.3.2.2.1 Initial state emitter 
aseLet us start with the 
ase where an initial state parton a with momentum pa emitsanother parton i with momentum pi. Three possible in QCD 
ases, that involve quarksare shown in Fig. 3.3. Su
h an emission, where there are massive partons is not 
onsideredin [10, 11℄ while in [23℄ only photon radiation o� fermions is worked out. Therefore, weshall give brief, but detailed dis
ussion.Let us �rst introdu
e the short
ut notation (Fig. 3.3)

pµai = pµa − pµi . (3.22)The momentum pai is o�-shell, while for pi and pa we assume the on-shell 
onditions
p2i = m2

i , p2a = m2
a. (3.23)
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ollinear limit, let us introdu
e the Sudakov parametrizationof momenta. We de
ompose pi into a 
omponent parallel to pa and a transverse one. Tothis end we 
hoose auxiliary light-like four-ve
tor n,
n2 = 0. (3.24)Then the Sudakov de
omposition reads

pµi = (1− x) pµa + kµT −
k2T + (1− x)2m2

a −m2
i

1− x
nµ

2n · pa
. (3.25)The transverse 
omponent is perpendi
ular to pa and n,

kT · pa = kT · n = 0. (3.26)A

ordingly, due to (3.22), we have
pµai = xpµa − kµT +

k2T + (1− x)2m2
a −m2

i

1− x
nµ

2n · pa
. (3.27)The variable x has an obvious physi
al interpretation. It is the fra
tion of the originalmomentum pa that enters the redu
ed matrix element (the shaded blobs in Fig. 3.3).Now, 
onsider the denominator of one of the propagators from Fig. 3.3. It reads

p2ai −m2
ai =

k2T + x (1− x)m2
a − xm2

i − (1− x)m2
ai

1− x , (3.28)where mai is the on-shell mass of the parton 
orresponding to momentum pai. Usual
ollinear limit is de�ned by |kT | → 0. Then however, the inverse propagator (3.28) is ingeneral nonzero. In order to make it zero, we use a uniform res
aling
|kT | → λ |kT | , mq → λmq, λ→ 0, (3.29)for q = a, i, ai, su
h that the propagator (3.28) indeed be
omes zero. The limits (3.29)de�ne advo
ated quasi-
ollinear behaviour.Let us now swit
h to the more spe
i�
 
ases. Let us start with the splitting pro
essshowed in Fig. 3.3A, namely

Q (pa)→ Q (pai) g (pi) . (3.30)In this 
ase we have
ma = mai = mQ ≡ m, mi = 0. (3.31)The amplitude 
an be written as

M̂n+1 (pa; pi, . . .) =
˜̂M

†

n (pai; . . .) i
6pai +m

p2ai −m2

(
−igγµt̂A

)
us (pa) ε

∗
µ (ν) . (3.32)The notation used above is similar to the one used in Se
tion 3.2.1. We adorned by tildethe redu
ed matrix element on the RHS in order to underline that it has amputated leg
orresponding to the o�-shell momentum pai. Spinor supers
ript s refers to a spin state.Squaring the amplitude and summing/averaging over 
olour and spin we get

∣∣∣M̂n+1 (pa; pi, . . .)
∣∣∣
2

= 2παsµ
2ε
r

CF

Nc

dµν (pi;n)
˜̂M

†

n (pai; . . .)
Γ̂µν

(p2ai −m2)
2
˜̂Mn (pai; . . .) ,(3.33)
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Γ̂µν = (6pai +m) γµ (6pa +m) γν (6pai +m) , (3.34)and the polarization tensor for the gluon with momentum pi reads

dµν (pi;n) = −gµν +
pµi n

ν + pνi n
µ

pi · n
. (3.35)Next, we apply the Sudakov de
omposition and the limit (3.29). It leads to

dµν Γ̂
µν = −λ2

[
(D − 2) (1− x)

(
p2ai −m2

)
+

4xk2T

(1− x)2

]
6pa +O

(
λ3
)
. (3.36)Thus, in the quasi-
ollinear limit we �nally obtain

∣∣∣M̂n+1 (pa; pi, . . .)
∣∣∣
2

→ − 1

λ2
8παsµ

2ε
r

1

x

1

p2ai −m2

M̂
†

n

(
pai; . . .

)
P̂QQ (x) M̂n

(
pai; . . .

)
, (3.37)where the splitting matrix reads (the unit matrix in heli
ity spa
e is suppressed)

P̂QQ (x) = CF

(
1 + x2

1− x − ε (1− x) +
2xm2

p2ai −m2

)
. (3.38)The momentum pai refers to limiting, on-shell version of pai, i.e. pai = xpa and p2ai = 0in the limit (3.29).There are several 
omments 
on
erning (3.37). First, there is a fa
tor 1/x, whi
h
omes from the 
onversion

M̂ †
n (pai; . . .) 6paM̂n (pai; . . .)→

1

x

∣∣∣M̂n

(
pai; . . .

)∣∣∣
2

. (3.39)Se
ond, we adorned the amplitudes in (3.37) by a bar, sin
e we in
luded fa
tors from
olour and spin averages. Finally, sin
e splitting matri
es a
t in heli
ity spa
e, in generalthere are spin 
orrelations. In this 
ase however the splitting matrix is diagonal.Let us now move to the next splitting 
ase (Fig. 3.4B)
g (pa)→ Q (pai)Q (pi) (3.40)where we have

ma = 0, mai = mi = mQ ≡ m. (3.41)Analogous 
al
ulation to the one above leads again to (3.37) with however di�erentsplitting matrix
P̂gQ (x) = TR

[
1− 2

1− ε

(
x (1− x) + xm2

p2ai −m2

)]
. (3.42)It is again diagonal in heli
ity (identity matrix was dropped). We re
all, that the 
on-vention for naming the splitting fun
tions was given in Se
tion 1.1.Finally, let us turn to the pro
ess from Fig. 3.3C

Q (pa)→ g (pai)Q (pi) (3.43)
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ma = mi = mQ ≡ m, mai = 0. (3.44)As one 
an expe
t, the behaviour of the matrix element is the same as before withdi�erent splitting matrix. Now it reads
(
P̂Qg (x)

)µν
= CF (1− ε)

(
−xgµν − 4

kµTk
ν
T

x p2ai

)
. (3.45)We see, that this time it is not diagonal in heli
ity, thus we 
annot simply fa
torize thematrix element squared as before. Note, that during the derivation, we used the followingrelation between the 
olour fa
tors

TR
Nc

=
CF

NA

. (3.46)This was used to transform the 
olour average from the one over quark 
olours to theone over gluon 
olour states. The fa
tor (1− ε) follows from the spin 
onversion.There is one more possible splitting pro
ess, whi
h involves only gluons
g (pa)→ g (pai) g (pi) . (3.47)Sin
e it does not involve massive partons we 
an use the result from [9℄. The splittingpro
ess is symmetri
 with respe
t to ex
hange of partons, thus we 
an overtake their�nal state formula and 
onvert to our initial state kinemati
s. We get

(
P̂gg (x)

)µν
= 2CA

[
−gµν

(
x

1− x +
1− x
x

)
− (D − 2)x

kµTk
ν
T

p2ai

]
. (3.48)The splitting matri
es introdu
ed above redu
e to the well known splitting fun
tionsafter averaging over heli
ities, taking massless limit, and setting D = 4.3.2.2.2 Final state emitterLet us now analyze the 
ase, where initially o�-shell �nal state parton is split into partons

i and j with the momenta pi and pj respe
tively, as showed in Fig. 3.4.The Sudakov parametrization of �nal state momenta takes the following form
pµi = zpµij + kµT −

k2T + z2m2
ij −m2

i

z

nµ

2 pij · n
, (3.49)

pµj = (1− z) pµij − kµT −
k2T + (1− z)2m2

ij −m2
j

1− z
nµ

2 pij · n
. (3.50)



44 CHAPTER 3. MASSIVE DIPOLE SUBTRACTION METHODThese equations are a
tually de�ning formulae for the four-ve
tor pij , i.e. in the quasi-
ollinear limit (3.29) (with res
aling masses suitably to this se
tion of 
ourse) pi and pjare parallel to pij . For further purposes we introdu
e
pµij = pµi + pµj . (3.51)Note the di�eren
e between pij and pij .The 
ase of �nal state quasi-
ollinear emission is 
overed in [10℄. Sin
e derivation is
ompletely analogous to that of the previous subse
tion, we limit ourselves to listing theformulae as we shall need them later.The matrix element squared behaves as

∣∣∣M̂n+1 (pa; pi, pj . . .)
∣∣∣
2

→ − 1

λ2
8παsµ

2ε
r

1

p2ij −m2
ij

M̂
†

n

(
pa; pij , . . .

)
P̂ij,i (z) M̂n

(
pa; pij , . . .

)
. (3.52)Note, that this time there is no analog of 1/x fa
tor 
omparing to (3.37). The splittingmatri
es are as follows

P̂QQ (z) = CF

(
1 + z2

1− z − ε (1− z) +
2m2

p2ij −m2

)
, (3.53)

P̂Qg (z) = CF

(
1 + (1− z)2

z
− εz + 2m2

p2ij −m2

)
, (3.54)

(
P̂gQ (z)

)µν
= TR

(
−gµν − 4

kµTk
ν
T

p2ij

)
, (3.55)

(
P̂gg (z)

)µν
= 2CA

[
−gµν

(
z

1− z +
1− z
z

)
− (D − 2)

kµT k
ν
T

p2ij

]
. (3.56)The mass m ≡ mQ above refers to pertinent heavy quark Q involved in splitting pro
ess.The splitting matri
es (3.53)-(3.56) are in general di�erent than those from the previ-ous subse
tion, as one 
ould expe
t. Here for instan
e there is a symmetry z → (1− z) for

P̂QQ and P̂Qg splittings as 
an be seen from Fig. 3.4A, C. It is not the 
ase for initial statesplitting. The universal obje
ts, suitable for initial and �nal state, are four-dimensional,massless and averaged versions of the matri
es presented in this se
tion.3.3 Constru
tion of dipolesAs we have seen in Se
tions 3.2.1, 3.2.2, a tree level amplitude squared 
an be written inthe both singular regions in the following s
hemati
 form
∣∣∣M̂n+1

∣∣∣
2

→ 8παsµ
2ε
r

1

S V̂ ⊗
∣∣∣M̂n

∣∣∣
2

, (3.57)where S represents adequate s
alar propagator, V̂ en
odes the information aboutsoft/
ollinear splitting pro
ess leading to singularities, and the 
onvolution sign realizesspin and 
olour 
orrelations.



3.3. CONSTRUCTION OF DIPOLES 45The above stru
ture 
an be used to 
onstru
t subtra
tion term in the dipole method.Re
all that su
h a term is just a fake 
ross se
tion, that be
omes equal to the real one inthe singular regions (
f. Se
tion 1.2). First problem to over
ome, is that away from thesoft limit there is no momentum 
onservation in redu
ed matrix element M̂n (re
all, weremoved the soft gluon, whi
h was legitimate only in the stri
t soft limit), 
onsequently(3.57) 
annot be 
al
ulated as an usual 
ross se
tion. Se
ond, one 
ould 
onstru
t thesubtra
tion term by just adding the limiting formulae for soft and 
ollinear behaviour,in order to mimi
 both regions. The problem is however, that there is an overlap region,with a 
ollinear and a soft parti
le at the same time. It is evident for example from(3.56), when z → 0 we have double soft-
ollinear singularity. Thus adding both kinds oflimiting formulae leads to double 
ounting of soft singularities.The solution given in [9℄ is the following. The subtra
tion term whi
h mimi
s the
(n+ 1)-parti
le matrix element squared, is given by (for simpler notation we assume onlyone initial state parton a)
D
(
pa; {pi}n+1

i=1

)
=

n+1∑

i=1

n+1∑

j=1
j 6=i

{
DIE-FS

i,j,a

(
p̃ai; {pl}l∈XIE-FS

)
+DFE-IS

i,j,a

(
p̃a; {pl}l∈XFE-IS)

+

n+1∑

k=1
k 6=i,j

DFE-FS
i,j,k

(
pa; {pl}l∈XFE-FS

)} (3.58)where
DIE-FS

i,j,a

(
p̃ai; {pl}l∈XIE-FS

)
= − 1

Sa,i
1

x

〈
M̂n

(
p̃ai; {pl}l∈XIE-FS

) ∣∣ T̂j · T̂ai
T̂ 2
ai

V̂ IE-FS
a→ai i, j

∣∣M̂n

(
p̃ai; {pl}l∈XIE-FS

) 〉
, (3.59)

DFE-IS
i,j,a

(
p̃a; {pl}l∈XFE-IS) = − 1

Si,j
1

x

〈
M̂n

(
p̃a; {pl}l∈XFE-IS) ∣∣ T̂a · T̂ijT̂ 2

ij

V̂ FE-IS
ij→i j, a

∣∣M̂n

(
p̃a; {pl}l∈XFE-IS) 〉, (3.60)

DFE-FS
i,j,k

(
pa; {pl}l∈XFE-FS

)
= − 1

Si,j
〈
M̂n

(
pa; {pl}l∈XFE-FS

) ∣∣ T̂k · T̂ij
T̂ 2
ij

V̂ FE-FS
ij→i j, k

∣∣M̂n

(
pa; {pl}l∈XFE-FS

) 〉
. (3.61)Let us now 
arefully explain the notation. First, Si,j , Sa,i are pertinent inverse s
alarpropagators

Si,j = (pi + pj)
2 −m2

ij , (3.62)
Sa,i = (pa − pi)2 −m2

ai. (3.63)



46 CHAPTER 3. MASSIVE DIPOLE SUBTRACTION METHODNext, some of the momenta are adorned by a tilde. They are new momenta 
onstru
tedin su
h a way that momentum 
onservation holds in M̂n. In what follows, we shall referto them as dipole momenta. In soft or quasi-
ollinear limit they behave as
p̃ij → pij , p̃ai → pai, . . . (3.64)They are 
onstru
ted in Se
tion 3.4. The sets of indi
es are de�ned as

XIE-FS = {1, . . . , n+ 1} \ {i, j} ∪
{
j̃
}
, (3.65)

XFE-IS = {1, . . . , n+ 1} \ {i, j} ∪
{
ĩj
}
, (3.66)

XFE-FS = {1, . . . , n+ 1} \ {i, j, k} ∪
{
ĩj, k̃

}
, (3.67)where the tilde over the parton symbol means that 
orresponding momentum should bemarked by tilde, e.g.

pµ
j̃
≡ p̃µj , pµ

ĩj
≡ p̃µij . (3.68)Finally, the obje
ts V̂ are dipole splitting fun
tions. They are matri
es a
ting in theheli
ity spa
e, their form being 
lose to the usual splitting matri
es. They be
ome thelatter in the quasi-
ollinear limit on one hand and ful�l soft limit without double 
ountingof soft singularities, on the other. We shall 
onstru
t them in Se
tion 3.5.In the end of this se
tion, let us 
he
k that provided the dipole splitting matrix tendsto the true splitting matrix obtained in Se
tion 3.2, i.e. if

V̂A→BC,D → P̂AB, (3.69)we indeed re
over 
orre
t quasi-
ollinear behaviour. Clearly, sin
e the dependen
e onthe spe
tator parton is lost in V̂ , as shows the above formula, we 
an make use of the
olour 
onservation (3.16) (redu
ed matrix elements do not depend on the spe
tator inthis limit). Thus, the 
olour 
orrelations vanish and the 
olour fa
tors 
an
el yieldingthe required result.3.4 Dipole kinemati
sIn the following se
tion we 
onstru
t an expli
it realization of the dipole momenta thatare on-shell and ful�l momentum 
onservation away from the soft limit. It should bepointed out that there is no unique solution - their pre
ise form depends on the kinemati
variables one is going to use. The latter have to be de�ned in su
h a way, that one 
aneasily 
ontrol soft and 
ollinear limits.We 
on
entrate here on the FE-IS and IE-FS 
ases, sin
e the situation when all theparti
les (emitter and spe
tator) are in the �nal state is fully 
overed in [23, 10℄.3.4.1 Final State Emitter - Initial State Spe
tatorThe situation we want to des
ribe is the following. A �nal state parti
le pi is emittedfrom another �nal state parton, whi
h after emission has the momentum pj . Afterwardsit is absorbed by an initial state pa (a spe
tator). Let us introdu
e the following notationwe shall use throughout (Fig. 3.5A )
Pµ = pµi + pµj , (3.70)
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Qµ = Pµ − pµa . (3.71)That is, P is the total dipole momentum and Q is the relative (with respe
t to the dipole)momentum transfer. It must not be 
onfused with q � the total momentum transfer tothe hard pro
ess. We assume that Q is spa
e like Q2 < 0 and that the parti
les areon-shell

p2a = m2
a, p2i,j = m2

i,j . (3.72)As already mentioned in Se
tion 3.3, in dipole method we have to introdu
e thenew momenta p̃ij , p̃a (Fig. 3.5B ), in su
h a way that in the soft limit (de�ned here by
pi → 0) we have p̃ij → pj and p̃a → pa. In the quasi-
ollinear limit p̃ij approa
hes the�xed 
ollinear dire
tion of pi and pj (see Se
tion 3.2.2.2). Of 
ourse in QCD reality,the soft limit 
on
erns only the gluons, however on general ground it is enough to have
mij = mj at this stage. We shall analyse the soft and quasi-
ollinear behaviour of thetilded momenta later, in Se
tions 3.4.1.3, 3.4.1.4.One of the possible forms of the dipole momenta is

p̃µij = w̃Pµ − ũpµa , (3.73)
p̃µa = p̃ij −Qµ = (w̃ − 1)Pµ − (ũ− 1) pµa . (3.74)In the next subse
tion we shall �x arbitrary at this stage parameters ũ and w̃ in su
h a waythat p̃ij ful�l boundary 
onditions mentioned above. Noti
e, that we should have ũ→ 0,

w̃ → 1 in the soft limit. Note also that we have the expli
it momentum 
onservation.In order to 
ontrol the quasi-
ollinear behaviour, let us also introdu
e the �angular�variable (de�nition and notation is due to [9℄)
z̃ =

pi · pa
Pa

(3.75)where
Pa ≡ P · pa. (3.76)Note, that neither ũ nor z̃ are the Sudakov variables used in Se
tion 3.2.2.2, althoughthey are obviously related. We shall state the relation between both kinds in Se
tion3.4.1.4.In what follows we shall refer to ũ, w̃ and z̃ variables as dipole variables.



48 CHAPTER 3. MASSIVE DIPOLE SUBTRACTION METHOD3.4.1.1 Standard dipole kinemati
sA already mentioned, we require that the dipole momenta are on-shell. This gives ustwo 
onditions
p̃2ij = m2

ij , (3.77)
p̃2a = m2

a, (3.78)whi
h readily 
an be solved yielding solutions for ũ and w̃ in terms of the invariants madeup of ve
tors pa, pi, pj . We however shall use more natural quantities in our approa
h,namely P2, Q2 and Pa. In terms of these invariants the solution reads
ũ =

(
Pa − P2

)
R

2vQ2Pa

+
Q2 +m2

ij −m2
a

2Q2
(3.79)

w̃ = −
(
Pa −m2

a

)
R

2vQ2Pa

+
Q2 +m2

ij −m2
a

2Q2
, (3.80)where

Q2 = (P − pa)2 = P2 − 2Pa +m2
a, (3.81)

R =

√(
Q2 −m2

ij −m2
a

)2
− 4m2

am
2
ij , (3.82)and

v =

√
1− m2

aP2

P2
a

. (3.83)We shall later interpret v as a velo
ity of pa in the CM(Q, pa) system.Note, that if ma = 0 we have v = 1 and
ũ =

P2 −m2
ij

2Pa

, (3.84)
w̃ = 1, (3.85)whi
h agrees with [10℄.Summarizing, if we are given pa, pi and pj (thus we know P2, Pa), we 
an obtain ũand w̃ and thus re
onstru
t p̃ij and p̃a, whi
h are needed in dipole subtra
tion term. Weshall refer to this approa
h as a standard dipole kinemati
s.One 
an 
onsider also the equations (3.77), (3.78) as some kind of equations of state,and ũ, w̃, P2, Pa as �thermodynami
al� parameters. We 
an 
onsider for instan
e Pa =

Pa

(
P2, ũ

) and w̃ = w̃
(
P2, ũ

), et
. Sin
e some of the relations of this type are veryuseful, we list a few of them in Appendix A.1 together with some relations between thederivatives.3.4.1.2 Kinemati
s with additional invariant (gamma-kinemati
s)It turns out that it is 
onvenient to introdu
e an additional invariant, let us denote it
γ̃. This will allow us to derive simpler formulae when we integrate the dipole splittingfun
tions.



3.4. DIPOLE KINEMATICS 49There are several possibilities to 
hoose γ̃, for example it 
an be Q2 or even p̃ij · p̃a,however we shall use the following
γ̃ = p̃ij · pa. (3.86)A

ording to (3.73) we have

γ̃ = w̃Pa − ũm2
a. (3.87)This equation, together with the two on-shell 
onditions (3.77), (3.78) gives the solutionfor w̃, P2 and Pa in terms of ũ and γ̃ ,̃

w =
χ+ δ

2γ̃ +m2
ij

, (3.88)
Pa =

(χ− δ)
(
γ̃ + ũm2

a

)

ũ (2γ̃ + ũm2
a) +m2

ij

, (3.89)
P2 =

(χ− δ)2
ũ (2γ̃ + ũm2

a) +m2
ij

, (3.90)where
χ = γ̃ + ũ

(
γ̃ +m2

a

)
+m2

ij , (3.91)
δ =

√
ũm2

a

(
2γ̃ + ũm2

a −m2
ij (ũ− 2)

)
+ γ̃2 (1− ũ)2. (3.92)Let us now make a very general analysis of the bounds on ũ and γ̃ variables. Suppose,we have the following bounds on the �standard� invariants

P2
− ≤ P2 ≤ P2

+, (3.93)
Pa−

(
P2
)
≤ Pa ≤ Pa+

(
P2
)
. (3.94)We shall give expli
it expressions for those bounds later in Se
tion 3.6, however immedi-ately we 
an write

P2
− = (mi +mj)

2
. (3.95)The rest of the limits depend on the spe
i�
 �external� kinemati
al 
ase, thus we donot give them here. Using (3.90), (3.89) we 
an 
onvert (3.93), (3.94) to the followinginequalities

ũ− (γ̃) ≤ ũ ≤ ũ+ (γ̃) , (3.96)
γ̃− ≤ γ̃ ≤ γ̃+. (3.97)This pro
edure is however more 
ompli
ated than it looks. This is be
ause in the mostgeneral 
ase, in di�erent regions of [γ̃−, γ̃+] the bounds on ũ are obtained from di�erent
onditions (3.93)-(3.94). This shall be dis
ussed in details in Se
tion 3.6.4. However, inthe most interesting 
ases the lower bound on ũ is always obtained by solving (3.90) forthe lower limit on P2. When ũ = ũ− we shall en
ounter singularities, therefore let usgive here the result

ũ− (γ̃) =
m2

ijρ
2
− +

(
γ̃ +m2

ij

) (
4γ̃P2

− − υ−
)
+ ρ−ϑ−γ̃ṽij

m2
aυ− − 4γ̃P2

− (γ̃ + 2m2
a)

, (3.98)



50 CHAPTER 3. MASSIVE DIPOLE SUBTRACTION METHODwhere
ṽij =

√

1−
m2

am
2
ij

γ̃2
, (3.99)

ρ− = 2γ̃ +m2
ij + P2

−, (3.100)
υ− = ρ2− − 4m2

aP2
−, (3.101)

ϑ− =

√
(ρ− − 2P−)

2 − 4m2
aP2

−. (3.102)We turn attention to the variable ṽij - we shall often en
ounter quantities of this type(with di�erent masse) later on. The upper bounds on ũ and γ̃ will be dis
ussed later.The result of this se
tion will be useful for the integration of dipole splitting fun
tionsin Se
tion 3.7. In the following we shall refer to the above solution as the gamma-kinemati
s.3.4.1.3 Soft and 
ollinear limits of the dipole variablesIn this se
tion we shall investigate the behaviour of the dipole variables in singularregions. This is 
ru
ial for 
onstru
ting the dipole splitting fun
tions.Re
all that the soft limit is de�ned as
pµi = λlµ, λ→ 0, (3.103)where l is any �xed four-ve
tor and pi must be a �nal state gluon. This implies, that

mij = mj and of 
ourse mi = 0. Then it 
an be shown using e.g. (3.79) that in the softlimit
ũ→ 0, P2 → m2

ij . (3.104)Moreover
z̃ → 0, (3.105)as immediately follows from its de�nition.Next let us 
onsider the quasi-
ollinear limit. The Sudakov parametrization of the�nal state momenta has the general form

pµi = zp̃µij + kµT + α1
nµ

2p̃ij · n
, (3.106)

pµj = (1− z) p̃µij − kµT + α2
nµ

2p̃ij · n
, (3.107)where αi are fun
tions of k2T and relevant masses - the details are not important here (seeSe
tion 3.2.2.2). This de
omposition is slightly di�erent than those in Se
tion 3.2.2.2, ashere we use p̃ij instead of pij . They are equivalent in the quasi-
ollinear limit de�ned bythe res
aling (3.29). In this limit αi = O

(
λ2
) and we have

pµi = z p̃µij + λkµT +O
(
λ2
)
, (3.108)

pµj = (1− z) p̃µij − λkµT +O
(
λ2
)
. (3.109)Hen
e

P2 = O
(
λ2
)
→ 0, (3.110)
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Pa = O

(
λ0
)
, (3.111)and from (3.79) we get

ũ = O
(
λ2
)
→ 0. (3.112)Similarly, sin
e w̃ → 1, by 
ontra
ting (3.108) with pa we get

z̃ = z +O (λ) . (3.113)Thus in the quasi-
ollinear limit z̃ be
omes the Sudakov z.3.4.1.4 Relation between dipole and the Sudakov variablesIn order to better understand the meaning of the dipole variables ũ and z̃, let us relatethem to the Sudakov variables of Se
tion 3.2.2.2. We shall see, that they are similar,but not equal; they redu
e to the Sudakov variables in the massless limit as one 
ouldexpe
t.Let us start with the variable ũ. In general, the Sudakov parametrization of themomentum p̃a has the form
p̃µa = xpµa + k

µ

T + β
nµ

2pa · n
, (3.114)where β is a fa
tor depending on the pertinent mass 
on�guration and is irrelevant inthis dis
ussion. Note, that kT , n and β are adorned by the bar sign in order to underlinethat they are in general di�erent from those in (3.106). The parameter x is di�erent thanthe one introdu
ed in (3.27) (see also Se
tion 3.4.2.4), although it has similar physi
alinterpretation: it is a fra
tion of the original momentum pa that enters the redu
edmatrix element, de�ned with initial p̃a momentum. Comparing this with (3.74), we seethat

x = 1− ũ+ (w̃ − 1)
P · n
pa · n

. (3.115)As a spe
ial 
ase we get
x=̇1− ũ, for ma = 0, (3.116)as 
an be easily seen from (3.85). Thus, in the massless initial state 
ase, ũ is justthe fra
tion of initial state momentum pa. In order to get more transparent result it is
onvenient to use the CM(pa,Q) frame (see Se
tion 3.6.1.1 for expli
it formulae) with

nµ = (1, 0, 0, 1). We obtain
x = 1− ũ+ (w̃ − 1)

P2

Pa (1− v)
, (3.117)where v is given in (3.83).For further purposes let us investigate ũ → 0 behaviour with �xed γ̃. Then, asshown in Eqs. (3.88)-(3.92) w̃, P2, Pa depend on ũ. Using the gamma-kinemati
s andexpanding in ũ we get very transparent result

1− x = ũṽij +O
(
ũ2
)
, (3.118)with ṽij de�ned in (3.99). Thus, as far as we 
onsider the soft behaviour in gamma-kinemati
s, the Sudakov 1− x is basi
ally the same as ũ, however with di�erent slope inthe general massive 
ase. In the quasi-
ollinear limit both variables are equal.



52 CHAPTER 3. MASSIVE DIPOLE SUBTRACTION METHODLet us now turn to the z̃ variable and its relation to z. Again, using (3.106), thede�nition of z̃ and the CM(pa,Q) frame, we get
z =

2z̃P2 − (1− v)
(
m2

i −m2
j + P2

)

2v [w̃P2 − ũPa (1− v)]
. (3.119)In the 
ase of massless initial state, both variables are equal

z=̇z̃, for ma = 0, (3.120)as we 
ould already guess from (3.113). Let us investigate the relation (3.119) 
lose tothe ũ→ 0 limit with γ̃ �xed. Using the gamma-kinemati
s and expanding in ũ we get
z = z̃

1

ṽij
−
m2

a

(
m2

i −m2
j +m2

ij

)

2ṽij

(
1 + ṽij

)
γ̃2

+O (ũ) . (3.121)Noti
e, that due to the 
onstant term (of the order O (z̃0)), the soft limit is indeedpossible only within spe
i�
 
on�guration of masses, as already stated in Se
tion 3.4.1.For instan
e, the radiation of gluon from a �nal state massive quark 
orresponds to the
on�guration where mi = 0, mij = mj . Then there is no 
onstant term and pi 
anbe
ome zero.3.4.1.5 Dipole variable as a free parameterIn Se
tion 3.6 we shall 
onsider ũ as a free parameter in order to properly fa
torize thephase spa
e (more pre
isely it will be a 
onvolution variable). Let us refer to it as u(without tilde) in this 
ontext. In order to make it possible, we have to drop the on-shell
ondition for p̃ij ; we denote this o�-shell ve
tor as p̃ij (u). During this pro
edure we haveto keep some other invariants �xed.Let us start with P2 and Pa kept 
onstant. Then we have
p̃µij
(
u,P2,Pa

)
= w

(
u,P2,Pa

)
Pµ − upµa , (3.122)

p̃µa
(
u,P2,Pa

)
=
(
w
(
u,P2,Pa

)
− 1
)
Pµ − (u− 1) pµa , (3.123)where

w
(
u,P2,Pa

)
=
P2 − Pa (1− u− r)

P2
(3.124)with

r =
√
1 + u (u− 2) v2. (3.125)We have obtained w (u,P2,Pa

) solving the only one on-shell 
ondition p̃2a (u,P2,Pa

)
=

m2
a, whi
h we assume to hold always.On the other hand, we 
an keep variables Pa and γ̃ �xed. Then we get

w (u, γ̃,Pa) =
γ̃ + um2

a

Pa

, (3.126)
P2 (u, γ̃,Pa) =

( Pa

γ̃ + um2
a − Pa

)2 [
2 (1− u) (Pa − γ̃) + u2m2

a

]
. (3.127)
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an use either method (also other are possible), depending whi
h of the kinemati
invariants we want to make the �external� ones. We shall return to this point with theexpli
it example later in Se
tion 3.6.4. Let us now introdu
e the generi
 notation forthese �external� invariants
X , Y ∈

{
P2,Pa, γ̃

}
. (3.128)Sin
e now u is a free parameter, we have to spe
ify its bounds umin, umax. We haveto 
hoose the support in su
h a way that it in
ludes the point u = ũ, that is for

umin ≤ u ≤ umax (3.129)we must have
ũ ∈ [umin, umax] . (3.130)It is natural to set

umin = ũ−, umax = ũ+, (3.131)where ũ± are the bounds on ũ dis
ussed in Se
tion 3.4.1.2.3.4.2 Initial State Emitter - Final State Spe
tatorNow, in 
ompletely analogous way we treat the 
ase, where the emission pro
ess o

ursfrom the initial state parton. Due to the similarity of the pro
edure we give mu
h less
omments and 
on
entrate rather on the di�eren
es to the previous 
ase.Consider the situation depi
ted in Fig. 3.6. We introdu
e new dipole momenta p̃aiand p̃j , where now the �rst one is a new initial state momentum that repla
es pa and
pi. The momentum p̃j repla
es the spe
tator momentum pj . The form of the new dipolemomenta is 
ompletely the same as for the FE-IS 
ase

p̃µj = w̃Pµ − ũpµa , (3.132)
p̃µai = p̃j −Qµ = (w̃ − 1)Pµ − (ũ− 1) pµa , (3.133)but the form of ũ, w̃ is in general di�erent due to di�erent on-shell 
onditions (see below).Note, that again we have the expli
it momentum 
onservation. In the next subse
tionwe shall �x arbitrary at this stage parameters ũ and w̃ in su
h a way that p̃ai and p̃jful�l

p̃2j = m2
j , (3.134)

p̃2ai = m2
ai. (3.135)We shall also need z̃ variable, whi
h is de�ned as in (3.75) without 
hange. It is alsouseful to re
olle
t the relative momentum already introdu
ed in Se
tion 3.2.2.1

pµai = pµa − pµi . (3.136)Note the di�eren
e with p̃ai.
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ements Q

pj

pi

pa

pai PSfrag repla
ements Q
p̃j

p̃aiFigure 3.6: A) the momenta assignment in IE-FS 
ase, dashed line represents a relativemomentum transfer; B) redu
ed diagram for IE-FS 
ase, the new tilded momenta areon-shell and ful�l momentum 
onservation.3.4.2.1 Standard kinemati
sRe
all, that standard kinemati
s refers to a situation, where we express dipole variables
ũ, w̃ through �standard� invariants P2, Pa.Solving the two on-shell 
onditions (3.134), (3.135) we obtain

ũ =

(
Pa − P2

)
R

2vQ2Pa

+
Q2 +m2

j −m2
ai

2Q2
(3.137)

w̃ = −
(
Pa −m2

a

)
R

2vQ2Pa

+
Q2 +m2

j −m2
ai

2Q2
, (3.138)where now

R =

√(
Q2 −m2

j −m2
ai

)2
− 4m2

aim
2
j , (3.139)while Q2 and v remain the same, i.e. they are given by (3.81), (3.83) respe
tively.Note, that the above equations are almost identi
al to the 
orresponding equationsfrom Se
tion 3.4.1.1. Te
hni
ally, one has to simply repla
e some o

urren
es (but notall!) of ma by mai and mij by mj .3.4.2.2 Gamma-kinemati
sRe
all, that in gamma-kinemati
s we express dipole variable w̃ and invariants P2, Pa by

ũ and the additional invariant γ̃. It is a preparation for making ũ a free parameter.In the present 
ase of the emission from initial state, we de�ne this additional invariantas
γ̃ = p̃j · pa. (3.140)Thus, a

ording to (3.132) we have

γ̃ = w̃Pa − ũm2
a. (3.141)This equation is super�
ially identi
al with the one for FE-IS 
ase.The expressions for w̃ and the �standard� invariants in terms of γ̃ and ũ read

w̃ =
χ+ δ

2γ̃ +m2
a −m2

ai +m2
j

, (3.142)
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Pa =

(χ− δ)
(
γ̃ + ũm2

a

)

ũ (2γ̃ + ũm2
a) +m2

j

, (3.143)
P2 =

(χ− δ)2
ũ (2γ̃ + ũm2

a) +m2
j

, (3.144)where
χ = γ̃ + ũ

(
γ̃ +m2

a

)
+m2

j , (3.145)
δ =

√
ũm2

ai (2γ̃ + ũm2
a) +m2

j

(
m2

ai −m2
a (1− ũ)2

)
+ γ̃2 (1− ũ)2. (3.146)Again they are very similar to the ones for FE-IS 
ase.The analysis of the bounds follows the same steps as in Se
tion (3.4.1.2). Here weonly 
olle
t the analogous formulae.In further dis
ussion only the lower bound on ũ is relevant. It reads

ũ− (γ̃) =
m2

jρ
2
− +

(
γ̃ +m2

j

) (
4γ̃P2

− − υ−
)
+ ρ−ϑ−γ̃ṽj

m2
aυ− − 4γ̃P2

− (γ̃ + 2m2
a)

, (3.147)where this time
ṽj =

√

1−
m2

am
2
j

γ̃2
, (3.148)

ρ− = 2γ̃ +m2
a −m2

ai +m2
j + P2

−, (3.149)
υ− = ρ2− − 4m2

aP2
−, (3.150)

ϑ− =
√
(ρ− − 2P−)

2 − 4m2
aiP2

−. (3.151)The lower bound on P2 is the same as in the FE-IS 
ase, P2
− = (mi +mj)

2.3.4.2.3 Dipole variable as a free parameterIn full analogy to the FE-IS 
ase, later we shall treat the dipole variable ũ as a freeparameter u. Let us re
all, that in order for this to work, we have to release one on-shell
ondition. More pre
isely the spe
tator p̃j must be o�-shell. It drops into its physi
almass when u = ũ.All the relevant equations are analogous to the ones we have obtained for FE-IS 
ase.Let us only list relevant solutions for single on-shell 
ondition. For w (u,P2,Pa

) it is thesame as (3.124) with however
r =

√

(u− 1)
2
+
m2

aiP2

P2
a

. (3.152)Further, w (u, γ̃,Pa) remains the same as (3.126) while
P2 (u, γ̃,Pa) =

( P2
a

γ̃ + um2
a − Pa

)2 [
2 (1− u) (Pa − γ̃) +

(
u2 − 1

)
m2

a +m2
ai

]
. (3.153)
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ollinear limitsLet us now 
he
k the soft and quasi-
ollinear behaviour of the dipole variables in the
ase where the emitter 
omes from the initial state.Re
all, that the soft limit is rea
hed when the momentum of the emitted gluon goesto zero. The pre
ise de�nition was given e.g. in (3.103). This is of 
ourse possible onlyif ma = mai and mi = 0. Then, again ũ and z̃ tend to zero
ũ→ 0, z̃ → 0 (3.154)while this time
P2 → m2

j . (3.155)Thus, the soft behaviour in the IE-FS 
ase is essentially the same as in FE-IS 
ase.Next let us 
onsider the quasi-
ollinear limit. We have to use the Sudakovparametrization, but this time for the initial state momenta. Let us re
all from Se
-tion 3.2.2.1 that
pµai = xpµa − kµT + α1

nµ

2pa · n
, (3.156)

pµi = (1− x) pµa + kµT + α2
nµ

2pa · n
, (3.157)where αi is a fun
tion of k2T and the relevant masses. Note, that the Sudakov x aboveis apriori 
ompletely di�erent from x de�ned in Se
tion 3.4.1.4 for the FE-IS 
ase. Theanalogue of the last is however x de�ned as

p̃µai = xpµa − kT + α
nµ

2pa · n
(3.158)and is interpreted as the fra
tion of in
ident momentum pa entering the redu
ed matrixelement. We shall 
ome ba
k to the above de
omposition below, in Se
tion 3.4.2.5.The quasi-
ollinear limit is again de�ned as the res
aling (3.29) with respe
t to kTde�ned in the de
ompositions (3.156), (3.157). We get in this limit

pµai = xpµa − λkµT +O
(
λ2
) (3.159)

pµi = (1− x) pµa + λkµT +O
(
λ2
)
. (3.160)Contra
ting the se
ond equation with pa we get

z̃ = O
(
λ2
)
→ 0, (3.161)sin
e

Pa = O
(
λ0
)
. (3.162)On the other hand, 
ontra
ting (3.160) with pj we obtain

P2 = 2 (1− x) (1− z̃)Pa +O (λ) → 2 (1− x)Pa. (3.163)There are two remarks in order. First is that now z̃ tends to zero in quasi-
ollinearlimit. Se
ond, we note that quasi-
ollinear limit does not imply any parti
ular limitingvalue of ũ. This is 
onne
ted to the fa
t, that ũ plays a role of the Sudakov variable.This 
onne
tion shall be 
lari�ed in the next subse
tion.



3.5. DIPOLE SPLITTING FUNCTIONS 573.4.2.5 Relation between dipole and the Sudakov variablesThe analysis of the previous subse
tion leads to the 
on
lusion, that in the IE-FS 
ase, itis z̃ variable that 
ontrols the quasi-
ollinear limit. Thus we expe
t ũ plays a role of thelongitudinal Sudakov variable. To �nd the expli
it relation we use (3.137), res
ale themasses a

ording to the de�nition of the quasi-
ollinear limit and use (3.162), (3.163).This leads to the expe
ted result
ũ = 1− x+O (λ) . (3.164)Moreover, 
ontra
ting (3.158) with P , using (3.133), again (3.163) and res
aling all themasses we get
x = x+O (λ) . (3.165)Thus, in the quasi-
ollinear limit the two Sudakov longitudinal fra
tions are the same,as desired.For 
ompleteness, let us also dis
uss the relation between the above variables in thesoft limit, 
ontrolled by ũ → 0 and z̃ → 0. For x we obtain analogous result to FE-IS
ase, namely we have in gamma-kinemati
s

1− x = ũṽj +O
(
ũ2
)
, (3.166)with ṽj de�ned in (3.148). Next, for x variable, we obtain

1− x =
m2

j

γ̃ṽj (1− ṽj)

(
m2

aṽ
2
j

γ̃ (1− ṽj)
ũ− z̃

)
+O (ũz̃) . (3.167)Thus we see that x, x→ 1 in the soft limit.We note, that in order to obtain the above formulae the assumption mai = ma hasto be made. Moreover one has to drop the terms proportional to the mass of the gluon

mi.3.5 Dipole splitting fun
tionsNow we are ready to give the pre
ise form of the dipole splitting matri
es introdu
ed inSe
tion 3.3. Our fun
tions are similar to those in [10℄, however they need modi�
ationsrequired by the massive initial state partons. In what follows, we treat FE-IS and IE-FS
ases separately. The 
ase FE-FS is 
ompletely 
overed in [10℄. Moreover, the 
ase ofinitial state g → gg splitting is also the same, thus it is not 
onsidered here.3.5.1 Final state emitter - Initial state spe
tator3.5.1.1 Q→ Qg and Q→ Qg splittingsThe assignment of the momenta is shown in Fig 3.7. Here we assume
mi = 0, mj = mij = mQ ≡ m (3.168)while we do not assume anything about ma, sin
e it 
an be either a quark (massive ormassless) or a gluon.
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ements
Q

P
pj

pi
paFigure 3.7: The �nal state splitting Q → Qg with the spe
tator pa in the initial state.The spe
tator 
an be either massive quark or massless quark or gluon. The 
ase withanti-quarks is formally identi
al.We postulate the following dipole splitting matrix

(
V̂ FE-IS
Q→Qg, a

)ss′
= δss

′

8πµ2ε
r αsCF

[
2

ũṽ2 + z̃
+ (1− ε) z̃ − 2− m2

pi · pj

]
, (3.169)where ṽ was de�ned in (3.99) and here takes the form

ṽ ≡ ṽQ =

√
1− m2

am
2

γ̃2
. (3.170)Re
all that µr is the mass s
ale that keeps the 
oupling 
onstant dimensionless.The origin of the dipole splitting fun
tion (3.169) 
an be understood as follows. First,re
all the soft behaviour (3.20) when pi → 0. Here we are a
tually interested in one termfrom the sum in (3.20), namely in the expression

pa · pj
pi (pa + pj)

− m2

2pi · pj
. (3.171)We see, that the se
ond term does mat
h the last one in (3.169). Consider thus the �rstone

pa · pj
pi (pa + pj)

=
(1− z̃)Pa

z̃Pa +
1
2 (P2 −m2)

. (3.172)Using the gamma-kinemati
s we have
P2 −m2 =

2 ũ ṽ2 γ̃2
(
m2 (ũ− 2)− ũm2

a − 2γ̃
)

(γ̃ +m2) (m2 + ũ (2γ̃ + ũm2
a))− w̃ (2γ̃ +m2) (m2 + ũ (γ̃ +m2

a) + γ̃)
.(3.173)The leading behaviour in ũ turn out to be

P2 −m2 = 2γ̃ũṽ2 +O
(
ũ2
)
. (3.174)Thus we see that ũ→ 0 limit indeed 
ontrols the soft behaviour. Moreover

Pa = γ̃ +O (ũ) . (3.175)Therefore (3.172) be
omes
1

z̃ + ũṽ2
+O (1) (3.176)in 
onsisten
y with (3.169). On the other hand, when we rea
h quasi-
ollinear limit, wehave also ũ→ 0 due to (3.112) and z̃ → z a

ording to (3.121). Thus the squared bra
ketin (3.169) equals exa
tly the splitting matrix for Q→ Qg pro
ess (3.53).
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ements
Q

P
pj

pipaFigure 3.8: The �nal state splitting g → QQ with the spe
tator pa in the initial state.The spe
tator 
an be either massive quark or massless quark or gluon.There is one more 
omment in order. As shown in Se
tion 3.4.1.4, our variable ũis equivalent to 1 − x̃i appearing in Ref. [10℄ (more pre
isely, they are the same when
ma = 0). Now, if we translate the 
orresponding dipole splitting fun
tion of [10℄ to ourvariable ũ we get (3.169), but without ṽ2 in the denominator of the �rst term. However,pre
isely this 
oe�
ient is ne
essary in order to maintain the soft limit when ma 6= 0, asargued above.3.5.1.2 g → QQ splittingLet us now turn to the pro
ess in Fig. 3.8. The 
on�guration of masses is the following

mij = 0, mi = mj = mQ ≡ m, (3.177)In the present 
ase the splitting matrix is 
orrelated with the redu
ed matrix elementin the heli
ity spa
e (see Se
tion 3.2.2.2). Therefore this 
ase is less trivial than theprevious one. Below, we des
ribe the pro
edure whi
h leads to a suitable dipole splittingfun
tion, whi
h 
an be later integrated over the one-parti
le subspa
e.First, re
all the real splitting matrix (3.55)
(
P̂gQ

)µν
= TR

(
−gµν − 4

kµTk
ν
T

P2

)
, (3.178)where kµT is the Sudakov four-ve
tor transverse to p̃ij . The strategy in 
hoosing V̂ FE-IS

g→QQis to repla
e (3.178) by an expression leading to (3.178) in the quasi-
ollinear limit (herethere is no soft singularity) and is suitable for analyti
al integration. Those requirementsare satis�ed by the following form
(
V̂ FE-IS
g→QQ, a

)µν
= 8πµ2ε

r αsTR

(
−gµν − 4

Cµν
P2

)
, (3.179)where we shall refer to the tensor Cµν as a 
orrelation tensor. By assumption, it istransverse to the 
ollinear dire
tioñ

pµijCµν = p̃νijCµν = 0. (3.180)In what follows, we shall �nd a suitable form of this tensor.To this end, it is instru
tive to investigate the 
orresponding tensor used in [10℄. Letus denote it by Cµν∗ . It has the form
Cµν∗ =

[
z̃pµi − (1− z̃) pµj

] [
z̃pνi − (1− z̃) pνj

]
. (3.181)



60 CHAPTER 3. MASSIVE DIPOLE SUBTRACTION METHODIt 
an be easily shown using on-shell 
ondition for p̃ij (see e.g. (A.1)) that
p̃µij (z̃pi µ − (1− z̃) pj µ) =

1

2
(1− 2z̃)

m2
aũ

2

w̃
. (3.182)Therefore, if we assume that initial state is massless, Cµν∗ is the 
orre
t tensor. Howeverit is no longer the 
ase when ma 6= 0. Nevertheless it gives us a hint what modi�
ationshould be used. It 
an be easily 
he
ked, that the following tensor possesses the requiredproperty

Cµν =

[
z̃pµi − (1− z̃) pµj −

ũm2
a

2w̃Pa

(
pµi − pµj

)] [
z̃pνi − (1− z̃) pνj −

ũm2
a

2w̃Pa

(
pνi − pνj

)]
.(3.183)It obviously redu
es to Cµν∗ in the 
ase of massless initial state. Note, the tensor (3.183)is 
onstru
ted as a dyadi
 formed from the ve
tor

Vµ = z̃pµi − (1− z̃) pµj −
ũm2

a

2w̃Pa

(
pµi − pµj

) (3.184)whi
h is orthogonal to p̃ij
p̃ij · V = 0. (3.185)Now, what remains, is to 
he
k, that (3.179) with (3.183) indeed reprodu
e the 
orre
tquasi-
ollinear behaviour. Using the Sudakov de
omposition for pi, pj and the results ofSe
tion 3.4.1.4 we �nd that

Cµν =
[
p̃µij (2z − 1) + kµT

] [
p̃νij (2z − 1) + kνT

]
+O

(
|kT |3

)
. (3.186)Sin
e terms with p̃ij do not give 
ontribution, Cµν is of the order O (|kT |2). Of the sameorder is the denominator in (3.179), thus we indeed obtain the splitting matrix (3.178).3.5.1.3 g → gg splittingAlthough this subpro
ess involves the massless partons only (Fig. 3.9)

mi = mj = mij = 0, (3.187)it is not legitimate to take the massless dipole splitting fun
tion as in [10℄ or [9℄. Thereason originates in non-zero mass of the spe
tatorma 6= 0. This 
ase is paradoxi
ally themost 
ompli
ated one and in fa
t a

ommodates both of the 
ases des
ribed in Se
tions3.5.1.1, 3.5.1.2.Let us �rst re
all the true splitting matrix (3.56)
(
P̂gg

)µν
= 2CA

[
−gµν

(
z

1− z +
1− z
z

)
+ 2 (1− ε) k

µ
T k

ν
T

P2

]
, (3.188)where z is the Sudakov parameter. Re
all, that this gives the behaviour of matrixelement squared in the quasi-
ollinear limit. However, there are also the soft singularitieswhen z = 0, 1, what 
orresponds to vanishing four-momentum of the gluon i or j. The
onstru
tion of dipole splitting fun
tion for these singularities is analogous to the one
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tator pa in the initial state.The spe
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Figure 3.10: The initial state splitting Q→ Qg with the spe
tator pj in the �nal state.The spe
tator 
an be either massive quark or massless quark or gluon.des
ribed in Se
tion 3.5.1.1. Namely, in terms of our dipole variables we repla
e thedenominators in 3.188 as follows
z

1− z →
z̃

1− z̃ + ũ
=

1

1− z̃ + ũ
− 1 +O (ũ) , (3.189)

1− z
z
→ 1− z̃

z̃ + ũ
=

1

z̃ + ũ
− 1 +O (ũ) . (3.190)Noti
e, there is no ṽ2ij fa
tor multiplying ũ, sin
e now simply ṽij = 1.Consider now the transverse part in (3.188). It is treated in exa
tly the same wayas in Se
tion 3.5.1.2 by means of the 
orrelation tensor. Therefore, the dipole splittingfun
tion takes the following form

(
V̂ FE-IS
g→gg, a

)µν
= 16πµ2ε

r αsCA

[
−gµν

(
1

1− z̃ + ũ
+

1

z̃ + ũ
− 2

)
+ 2 (1− ε) C

µν

P2

]
,(3.191)where Cµν is given in (3.183).3.5.2 Initial State Emitter - Final State Spe
tator3.5.2.1 Q→ Qg and Q→ Qg splittingsLet us start by looking at the 
on�guration of masses in the 
onsidered 
ase (Fig. 3.10)

ma = mai = mQ ≡ m, mi = 0. (3.192)The dipole splitting matrix 
an be 
onstru
ted in similar manner as in FE-IS 
asein Se
tion 3.5.1.1. Let us �rst analyse the soft behaviour, whi
h our dipole splitting
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ements Q
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pi

pjpaiFigure 3.11: The initial state splitting g → QQ with the spe
tator pj in the �nal state.The spe
tator 
an be either massive quark or massless quark or gluon.fun
tion should possess. Now, we are interested in the following term from the sum in(3.20)
pa · pj

pi (pa + pj)
− m2

2pi · pa
. (3.193)The �rst term is exa
tly the same as in FE-IS 
ase (3.171), while in the se
ond termthere is a di�erent s
alar propagator. In pertinent kinemati
s, it 
an be shown in 
loseanalogy to Se
tion 3.5.1.1, that the �rst term be
omes

pa · pj
pi (pa + pj)

=
1

z̃ + ũṽ2j
+O (1) . (3.194)Next, we have to look at the quasi-
ollinear behaviour, in parti
ular at the splittingmatrix (3.38)

(
P̂QQ

)ss′
= δss

′

CF

(
1 + x2

1− x − ε (1− x) +
2xm2

p2ai −m2

)
. (3.195)Re
alling that x = 1−ũ+O

(
λ2
) and z̃ = O (λ2), where λ→ 0 
ontrols the quasi-
ollinearlimit, we see that the following dipole splitting matrix has the required behaviour

(
V̂ IE-FS
Q→Qg, j

)ss′
= δss

′

8πµ2ε
r αsCF

[
2

ũṽ2j + z̃
+ (1− ε) ũ− 2− (1− ũ)m2

pi · pa

]
. (3.196)3.5.2.2 g → QQ splittingThe 
orresponding mass 
on�guration reads

ma = 0, mai = mi = mQ ≡ m. (3.197)For 
onvenien
e, let us re
all the splitting matrix obtained in Se
tion 3.2.2.1 in (3.42)
(
P̂gQ

)
ss′

= δss′ TR

[
1− 2

1− ε

(
x (1− x) + xm2

p2ai −m2

)]
. (3.198)Sin
e in this 
ase there are no soft singularities, we 
an easily �nd the dipole splittingmatrix. Here it is just

(
V̂ IE-FS
g→QQ, j

)
ss′

= 8πµ2ε
r αs δss′TR

[
1− 2

1− ε

(
ũ (1− ũ) + (1− ũ)m2

p2ai −m2

)]
. (3.199)It 
oin
ides with (3.198) (up to the fa
tors) in the quasi-
ollinear limit (due to (3.164)).
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ements Q

pa

pi
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paiFigure 3.12: The initial state splitting Q→ gQ with the spe
tator pj in the �nal state.The spe
tator 
an be either massive quark or massless quark or gluon.3.5.2.3 Q→ gQ and Q→ gQ splittingsIn this 
ase the 
on�guration of masses is the following (Fig. 3.12)

ma = mi = mQ ≡ m, mai = 0. (3.200)Again we fa
e the 
orrelations of the dipole splitting matrix and redu
ed matrixelement. Using the experien
e gained in the FE-IS 
ase, we 
an dedu
e the followingform
(
V̂ IE-FS
Q→gQ, j

)µν
= 8πµ2ε

r αsCF (1− ε)
[
−gµν (1− ũ)− 4

1− ũ
Cµν
p2ai

]
, (3.201)where the 
orrelation tensor is again the dyadi


Cµν = VµVν , (3.202)formed from the following ve
tors (they are di�erent than in the FE-IS 
ase)
Vµ = (1− z̃) pµi − z̃pµj −

(w̃ − 1)
[
m2 −m2

j + P2 (1− 2z̃)
]

2p̃ai · P
Pµ. (3.203)For later 
onvenien
e let us note that

p̃ai · P = P2 (w̃ − 1)− Pa (ũ− 1) . (3.204)The ve
tors V are 
onstru
ted in su
h a way that
p̃ai · V = 0 (3.205)as 
an be easily 
he
ked using on-shell 
onditions. When ma = 0 it redu
es to

Vµ
∗ = (1− z̃) pµi − z̃pµj , (3.206)whi
h is the same as used in [10℄.Let us now prove, that (3.201) indeed possesses 
orre
t quasi-
ollinear behaviour (softlimit does not exist here), i.e. that it redu
es to

Pµν
QQ = CF (1− ε)

(
−xgµν − 4

x

kµT k
ν
T

p2ai

)
. (3.207)



64 CHAPTER 3. MASSIVE DIPOLE SUBTRACTION METHODFirst, re
all from Se
tion 3.4.2.4, that then z̃ = O (λ2) and ũ→ 1−x. Moreover it turnsout that
w̃ − 1 = λ2

m2
(
P2 − 2Pa

)

4P2
a

+O
(
λ4
)
. (3.208)Thus, the term proportional to Pµ in (3.203) vanishes. The same is true for the term

z̃pj sin
e pj is the �xed spe
tator momentum. Now, using the Sudakov de
omposition(3.157) we see that
Vµ = (1− x) pµa + λkµT +O

(
λ2
)
. (3.209)However

(1− x) pµa = p̃µai +O
(
λ2
)
. (3.210)The momentum p̃ai 
orresponds to a massless gluon, thus only the term proportional to

kT survives due to the Ward identity (the dipole splitting matrix is 
ontra
ted with theredu
ed matrix element). Finally, the propagator also behaves as O (λ2)
p2ai = (pa − pi)2 = λ2 2

(
m2 − z̃Pa

)
. (3.211)Putting all the pie
es together we indeed re
over (3.207). Another 
he
k 
an be madeafter the integration of dipole splitting matrix, as we shall see in Se
tion 3.7.3.3.3.6 Phase spa
e fa
torizationAs explained in Se
tion 1.2, the dipole subtra
tion method requires separation of the

(n+ 1)-parti
le PS into n-parti
le PS and a subspa
e, whi
h after integration leads toIR singularities. In the following se
tion we present 
omplete treatment of the two 
ases:FE-IS and IE-FS in the most general situation of non-zero quark masses, in
luding initialstate. Our treatment is 
lose to the one in [23, 10℄. The third possible 
on�guration with�nal state emitter and �nal state spe
tator, is developed in [10℄ and need not be modi�ed,as it does not involve the initial state at all.Before we start, let us make some general 
omments. First, sin
e in the new fa
torizedphase spa
e the initial state is modi�ed as des
ribed in Se
tion 3.4 (with the help of a
ontinuous parameter), a
tually we obtain a whole family of phase spa
es. Therefore itis natural to expe
t that the form of fa
torization will be a 
onvolution rather than asimple produ
t. Se
ond, when the initial state is massive, one parameter is not enoughto �x the new (Lorentz transformed) frame. This leads to some 
ompli
ations whi
h weshall also dis
uss below.3.6.1 PreliminariesIn order to derive the phase spa
e fa
torization formula, let us start with the (n+ 1)-parti
le PS and write it as follows
dΦn+1 (q, pa; p1, . . . , pn+1) = dΦ2 (Q, pa; pi, pj)

∏

k∈M

dΓk, (3.212)where
Qµ = qµ −

∑

k∈M

pµk (3.213)



3.6. PHASE SPACE FACTORIZATION 65and the set of indi
es is de�ned as
M = {1, . . . , n+ 1} \ {i, j} . (3.214)Our notation for phase spa
e ingredients was introdu
ed in Se
tion 1.2.So far, in (3.212) we have only disentangled two-parti
le PS for two 
hosen �nal statepartons i and j. Further development is addressed to the next subse
tions.3.6.1.1 Two-parti
le phase spa
eFirst, let us 
al
ulate two-parti
le phase spa
e disentangled above. The result is wellknown and represents usual two-body phase spa
e slightly adjusted to our notation.Using 
enter of mass frame of momenta Q and pa (denote it as CM(Q, pa)) andnotation introdu
ed in Se
tion 3.4 we have

dΦ2 (Q, pa; pi, pj)

=
dDpi δ+

(
p2i −m2

i

)

(2π)
D−1

dDpj δ+
(
p2j −m2

j

)

(2π)
D−1

(2π)D δD (Q+ pa − pi − pj)

=̇δ
(
P2 − 2

√
P2Ei +m2

i −m2
j

) |~pi|
Ei

(|~pi| sin θ)D−4 d~pi
2d (cos θ) dΩD−2

4 (2π)D−2
. (3.215)When deriving this result we used (A.48) from the Appendix A.3. Utilizing delta fun
tionwe get

dΦ2 (Q, pa; pi, pj) =
dΩD−2

4 (2π)D−2
p (p̂ sin θ)

D−4
d (cos θ) , (3.216)where

p =
p̂

P2
=

1

2

√
1− 2

(
m2

i +m2
j

)
+
(
m2

i −m2
j

)2 (3.217)with
m2

q =
m2

q

P2
, q = i, j (3.218)The variable p̂ is the modulus of the outgoing parti
les three-momentum in CM(Q, pa)and dΩD−2 is the solid angle element on hyperplane perpendi
ular to z axis (Fig. 3.13).In general we 
an parametrize it using

dΩN =

N−1∏

k=1

sinN−1−k θk dθk. (3.219)We require at this stage
P2 ≥ P2

− = (mi +mj)
2
. (3.220)For 
ompleteness and future use we give also the energies and the momenta of theparti
les in CM(Q, pa)

Ea =
Pa√
P2

, (3.221)
|~pa| =

√
P2
a −m2

aP2

√
P2

, (3.222)
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ements
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ulate two-parti
lephase spa
e.
EQ =

√
P2 − Ea =

P2 − Pa√
P2

, (3.223)
Ei =

m2
i −m2

j + P2

2
√
P2

, (3.224)
Ej =

√
P2 − Ei =

m2
j −m2

i + P2

2
√
P2

. (3.225)3.6.1.2 Two-parti
le phase spa
e in dipole variablesSin
e the dipole splitting fun
tions are expressed among others in spe
ial variables ũ and
z̃, we start by trading cos θ for z̃ in (3.216). This is easily done using the de�nition of z̃(3.75) in CM(Q, pa). We get
dΦ2 (Q, pa; pi, pj) ≡ dΦ2

(
P2,Pa

)

=
dΩD−2

4 (2π)
D−2

v3−D
(
P2
)D

2
−2

[(z̃+ − z̃) (z̃ − z̃−)]
D
2
−2 dz̃, (3.226)where

z̃− ≤ z̃ ≤ z̃+ (3.227)with
z̃± =

1

2

(
1 +m2

i −m2
j ± 2vp

)
. (3.228)and v = |~pa| /Ea de�ned in (3.83).Now, using the results of Se
tion 3.4.1.2, we 
an express the invariants {P2,Pa

} interms of the dipole variable ũ and one of the other invariants γ̃, Pa or P2. That is one
an use the relations of the type
Y = Y (ũ,X ) , (3.229)where X ,Y ∈ {P2,Pa, γ̃

} and X 6= Y of 
ourse. Let thus write generi
ally
dΦ2 ≡ dΦ2 (X , ũ) . (3.230)At this stage it is not ne
essary to de
ide what X and Y are, neither to insert theirpre
ise forms, whi
h in fa
t depend on the kinemati
al 
on�guration (FE-IS or IE-FS
ase). Those distin
t 
ases are treated in the next subse
tions.



3.6. PHASE SPACE FACTORIZATION 673.6.2 Final state emitter - initial state spe
tatorNow we are ready to derive the fa
torized form of two-parti
le phase spa
e. We startwith FE-IS 
ase, but IE-FS goes in the same fashion.There are several possible approa
hes to phase spa
e fa
torization. One of the simplestpossibilities is to �go ba
kward� from (3.226) using some elementary identities. This isthe path we 
hoose in this dissertation.Let us 
onsider the phase spa
e (3.230) and insert the following delta fun
tion
dΦ2 (X , ũ) =

ˆ

du δ (u− ũ) dΦ2 (X , u) . (3.231)Next, let us 
onvert δ (u− ũ) into the on-shell delta fun
tion for p̃µij de�ned in (3.73).A

ording to Se
tion 3.4.1.5, we mean by this, that ũ is repla
ed by u and w̃ ≡ w isobtained as a fun
tion of u and two �external� invariants X , Y ∈ {P2,Pa, γ̃
}, see Se
tion3.4.1.5. Thus, we use the following identity

δ (u− ũ)
J (u,X ) = δ+

(
p̃2ij (u,X ,Y)−m2

ij

)
, (3.232)where

J (u,X ) =
∣∣∣∣∣
∂p̃2ij (u,X ,Y)

∂u

∣∣∣∣∣ ≡
∣∣∣∣∣
∂p̃2ij

∂u

∣∣∣∣∣
X ,Y

. (3.233)Note, that we 
al
ulate the above derivative with the invariants X , Y �xed (as expli
itlydenoted using �thermodynami
al� notation) and next used Y = Y (ũ,X ) = Y (u,X ) dueto the delta fun
tion.Finally, we insert D-dimensional delta fun
tion for momentum 
onservation with theappropriate integration
dΦ2 (X , ũ) =

ˆ

du

ˆ

dD p̃ij δ+

(
p̃2ij −m2

ij

)
dΦ2 (X , u)

J (u,X ) δD
(
Q+ p̃a (u,X ,Y)− p̃ij

)
. (3.234)Re
all, that

p̃µa (u,X ,Y) = w (u,X ,Y)Pµ
a − u pµa , (3.235)where w (u,X ,Y) was obtained using single on-shell 
ondition p̃2a = m2

a.Equation (3.234) is just an identity, however it has already the required fa
torizedform. To see this more 
learly, let us introdu
e the following measure
dφFE-ISij→i j, a (u,X ) =

1

4 (2π)
D−1

v3−D
(
P2
)D

2
−2 J [(z̃+ − z̃) (z̃ − z̃−)]

D
2
−2 dΩD−2dz̃,(3.236)where we impli
itly understand, that all the quantities above should be expressed through

u and X . Using this notation we 
an 
ast (3.234) into
dΦ2 (Q, pa; pi, pj) =

ˆ

du (2π)
D
δD (Q+ p̃a (u,X ,Y)− p̃ij) dΓ

(
p̃ij

)
dφFE-ISij→i j (u,X )

=

ˆ

du dΦ1

(
Q, p̃a (u,X ,Y) ; p̃ij

)
dφFE-ISij→i j (u,X ) . (3.237)



68 CHAPTER 3. MASSIVE DIPOLE SUBTRACTION METHODFinally, using (3.212) we 
an write the fa
torization formula for (n+ 1)-parti
le phasespa
e
dΦn+1

(
q, pa; {pm}n+1

i=1

)
=

ˆ

du dΦn

(
Q, p̃a (u,X ) ; {pm}m∈XFE-IS) dφFE-ISij→i j (u,X ) ,(3.238)where the set XFE-IS is de�ned as

XFE-IS = {1, . . . , n+ 1} \ {i, j} ∪
{
ĩj
}
. (3.239)Re
all that the tilde above ij means that 
orresponding momentum should be adornedby a tilde, i.e. pĩj ≡ p̃ij .In what follows, we shall refer to the phase spa
e dΦn

(
q, p̃a (u,X ,Y) ; {pm}m∈XFE-IS),as a skewed phase spa
e.3.6.3 Initial state emitter - �nal state spe
tatorThe treatment of the IE-FS 
ase is 
ompletely analogous to FE-IS. This time we havean initial state (an emitter) given by the ve
tor p̃ai (3.133) and a spe
tator given by p̃j(3.132). Therefore the phase spa
e fa
torization formula takes the form

dΦn+1

(
q, pa; {pm}n+1

i=1

)
=

ˆ

du dΦn

(
Q, p̃ai (u,X ,Y) ; {pm}m∈XIE-FS

)

dφIE-FSa→ai i, j (u,X ) , (3.240)where
XIE-FS = {1, . . . , n+ 1} \ {i, j} ∪

{
j̃
}
. (3.241)The measure is de�ned again as in (3.236) with the ja
obian

J (u,X ) =
∣∣∣∣∣
∂p̃2j (u,X ,Y)

∂u

∣∣∣∣∣ ≡
∣∣∣∣∣
∂p̃2j
∂u

∣∣∣∣∣
X ,Y

. (3.242)All the relevant kinemati
s is worked out in Se
tion 3.4.2.3.6.4 Fa
torization of three-parti
le phase spa
eIn this subse
tion we present expli
it formulae for the fa
torization of three-parti
le phasespa
e as an illustration of our approa
h. We shall use them later in 
onstru
ting a MonteCarlo program for numeri
al 
al
ulations.We demonstrate the 
onstru
tion for FE-IS 
ase (for IE-FS it is analogous). Thephase spa
e fa
torization formula reads
dΦ3 (q, pa; pi, pj, k) =

ˆ

du dΦ2

(
q, p̃a (u,X ,Y) ; k, p̃ij

)
dφFE-ISij→i j, a (u,X )

=

ˆ

du (2π)D δD
(
q + p̃a (u,X ,Y)− p̃ij − k

)
dΓ
(
p̃ij

)
dΓ (k) dφFE-ISij→i j, a (u,X ) .(3.243)
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ements
Z

pa
q

k
θtransversehyperplaneFigure 3.14: Center of mass system of momenta q and pa used to 
al
ulate fa
torizedthree-parti
le phase spa
e.We assume, that the initial state momenta q and pa are �xed. Note however, thatnevertheless the CM energy of the p̃ij and k system is not �xed for �xed u. To see thisexpli
itly, let us 
hoose for example X = P2, Y = Pa, we have then for the CM energy

s̃ =
(
q + p̃a

(
u,P2,Pa

))2
= s (w − u)+(w − 1)

(
P2 −m2

k − 2Pa

)
+u
(
q2 +m2

a

)
, (3.244)where w = w

(
u,Pa,P2

). Above
s = (q + pa)

2 (3.245)and we used the following relations
q · P =

s−m2
k + P2 − 2Pa

2
, (3.246)

q · pa =
s− q2 −m2

a

2
, (3.247)whi
h originate in momentum 
onservation in the form

qµ + pµa = kµ + Pµ. (3.248)Further we have the on-shell 
ondition p̃2ij = m2
ij in dΦ2

(
q, p̃a

(
u,P2,Pa

)
; k, p̃ij

), whi
hallows to express for instan
e Pa = Pa

(
u,P2

). Thus, in order to have �xed the energyof the p̃ij and k system, we need u and P2 to be �xed in (3.244). In general they 
ouldbe u and any other of the invariants {P2,Pa, γ̃
}.We shall now be 
on
entrated on the skewed phase spa
e. Let us derive expli
itexpressions for the 
hoi
e X = P2, Y = Pa. Due to the 
omment made above it isreasonable to 
hoose CM(q, pa) as a referen
e frame (Fig. 3.14). In order to express

dΦ2 (q, p̃a; k, p̃ij) as a fun
tion of the invariants P2 and Pa, we represent the kinemati
parameters ∣∣∣~k∣∣∣ and cos θ a

ordingly (we 
an use some of the results from subse
tion3.6.1.1)
∣∣∣~k
∣∣∣ =

√
s [s− 2 (m2

k + P2)] + (m2
k − P2)

2

2
√
s

≡ k̂, (3.249)
cos θ =

(
m2

a − q2
) (
m2

k − P2
)
− s

(
s+ P2 −m2

k +m2
a − 4Pa − q2

)

4s p̂ak̂
, (3.250)
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p̂a =

√
s [s− 2 (m2

a + q2)] + (m2
a − q2)2

2
√
s

. (3.251)Cal
ulating the ja
obian
∣∣∣∣∣
D
(∣∣~p2i

∣∣ , cos θ
)

D (P2,Pa)

∣∣∣∣∣ =
s+m2

k − P2

2s p̂ak̂
(3.252)we get

dΦ2

(
q, p̃a

(
u,P2,Pa

)
; k, p̃ij

)
=

dΩD−2

4 (2π)
D−2

δ
(
p̃2ij
(
u,P2,Pa

)
−m2

ij

) p̂3−D
a√
s

[(
P+
a − Pa

) (
Pa − P−

a

)]D
2
−2
dP2 dPa,(3.253)where the bounds on Pa integration read

P±
a =

(
s+m2

a − q2
) (
s−m2

k + P2
)

4s
± p̂ak̂. (3.254)Moreover

(mi +mj)
2 ≤ P2 ≤

(√
s−mk

)2
. (3.255)Finally, we 
an perform one of the remaining integrations due to the on-shell delta fun
-tion

dΦ2

(
q, p̃a

(
u,P2,Pa

)
; k, p̃ij

)
=

dΩD−2

4 (2π)
D−2

∣∣∣∣∣
∂p̃2ij

∂Pa

∣∣∣∣∣

−1

u,P2

p̂3−D
a√
s

[(
P+
a

(
P2
)
− Pa

(
u,P2

)) (
Pa

(
u,P2

)
− P−

a

(
P2
))]D

2
−2
dP2 (3.256)where we suppressed all the fun
tional dependen
e on �xed variables, su
h as s or q2.Re
all, that the formula (3.256) is a
tually used in the 
onvolution (3.243) and 
orre-sponds to X = P2, Y = Pa

(
u,P2

). It means that all the invariants in dφFE-ISij→i j have to beexpressed a

ordingly in terms of u and P2. The advantage of the above 
hoi
e X = P2,
Y = Pa is that one 
an relatively easily obtain the bounds on u and P2. In pra
ti
ehowever, it is more 
onvenient to keep u and γ̃ �xed when integrating over dφFE-ISij→i j , i.e.to 
hoose X = γ̃. Thus, let us now derive needed formulae. It is a
tually straightforward,one needs only to insert appropriate ja
obian. We obtain
dΦ2

(
q, p̃a (u, γ̃,Pa) ; k, p̃ij

)
=

dΩD−2

4 (2π)D−2

∣∣∣∣∣
∂p̃2ij

∂Pa

∣∣∣∣∣

−1

u,γ̃

(
∂P2

∂γ̃

)

Pa

p̂3−D
a√
s

[(
P+
a (u, γ̃)− Pa (u, γ̃)

) (
Pa (u, γ̃)− P−

a (u, γ̃)
)]D

2
−2
dγ̃. (3.257)Using relations (A.7)-(A.9) from the Appendix A.1 and 
omparing the above formulawith (3.256), we 
an prove that (3.257) is indeed 
orre
t.The nontrivial issue in this 
hoi
e of X and Y is however to �nd analyti
ally the 
orre
tsupport for the variables u and γ̃ (see also Se
tion 3.4.1.5). For an expli
it example, see
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tion. The problems exist be
ause the fun
tion γ̃ (P2,Pa

) (see 3.87) 
anhave a minimum in Pa inside the region [Pa−,Pa+] de�ned by (3.254). If one doesnot need analyti
al expressions for the bounds and skewed phase spa
e integration isperformed via Monte Carlo, those problems are not essential. Unfortunately, in some
ases we do need the analyti
al expressions for the bounds, namely when we �nd �plus�distributions in our 
al
ulations. Thus, it seems that there is a problem: on one hand wewant to have �simple� formulae of integrated dipoles (a
hieved when X = γ̃), on the otherwe want to have analyti
al expressions for the support of ũ variable. Both requirementsseem to be in a 
ontradi
tion. However, there is a very simple solution. We 
an justmix both approa
hes, i.e. we 
an generate PS using 
hoi
e X = P2 while integratedipoles using X = γ̃ with however some 
are when treating the �plus� distributions. Tosummarize, it is a te
hni
al problem whi
h 
an be solved in one or the other way and wedo not dis
uss it further.For the IE-FS 
ase, one 
an obtain analogous formulae. Basi
ally, one should repla
e
p̃a by p̃ai and p̃ij by p̃j in the above equations, a

ording to Subse
tion 3.6.3.3.6.4.1 Expli
it examplesSin
e the presented phase spa
e fa
torization pro
edure is rather non-trivial, it requires
areful veri�
ation. In this paragraph we shall 
he
k our results against the usual ex-pression for the three-parti
le phase spa
e, whi
h we derive in A.3.First, noti
e that pure, fully integrated phase spa
e ´ dΦ3 (q, pa; pi, pj , k) dependsonly on the masses mi, mj , mk and the CM energy s. We have 
he
ked numeri
allyusing (3.256) and (3.257) dire
tly inside (3.243), that the result depends neither on manor mij . Moreover, it pre
isely equals three-body phase spa
e obtained by standardmethod des
ribed in the Appendix A.3. The sample results are presented in Fig. 3.15 for
X = P2, Y = Pa and in Fig. 3.16 for X = γ̃, Y = Pa. The solid angle was integrated outanalyti
ally. We show also the supports in these 
ases. Note in parti
ular the 
omplexityof the support in u and γ̃ variables, as we have dis
ussed in the previous subse
tion.3.7 Integration of the dipolesAs explained in Se
tion 3.1, the 
an
ellation of soft poles in virtual 
orre
tions requiresintegration of the dipoles over the measure dφ. In the following, we shall 
ompute all thene
essary integrals and disentangle the soft poles.Let us �rst make some general remarks. To be spe
i�
, let us 
on
entrate on FE-IS
ase. Re
all, that the unintegrated dipole splitting fun
tions are - as a matter of fa
t -matri
es in the heli
ity spa
e. Let us also re
all that they are sandwi
hed between theredu
ed matrix elements (see Se
tion 3.3); the 
omplete general dipole has the form

DFE-IS = − 1

S M̂
† (
q, p̃a; {pm}m∈XFE-IS) ĈV̂ M̂ (

q, p̃a; {pm}m∈XFE-IS) , (3.258)where S is a s
alar propagator relevant to the splitting 
ase, V̂ is a pertinent dipolesplitting matrix. Re
all that X is the set enumerating the 
orresponding �nal statemomenta entering the redu
ed matrix element. The matrix Ĉ is the adequate 
olour
orrelation matrix. Suppose we want to integrate the dipole over the subspa
e dφ. Wehavê
dφDFE-IS = −M̂

† (
q, p̃a; {pm}m∈XFE-IS) ĈÎFE-IS M̂ (

q, p̃a; {pm}m∈XFE-IS) , (3.259)
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Figure 3.15: Sample results for the three-parti
le phase spa
e in terms of u and P2variables and FE-IS 
ase. All the plots are made for s = 60GeV2, m2
k = 2GeV2,

m2
i = 3GeV2, m2

j = 4GeV2 and fra
tional dimension D = 4.3. In 
olumn A) we showsurfa
e plot (top) and the support (bottom) for m2
a = 5GeV2, m2

ij = 1GeV2; 
olumnB) - the same for m2
a = 15GeV2, m2

ij = 0. Noti
e, that in general umax > 1 
ontrary tothe massless 
ase. The solid angle was integrated out.A) B)
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Figure 3.16: Same as Fig. 3.15 but in terms of u and γ̃ variables. In 
olumn A) m2
a =

15GeV2, m2
ij = 5GeV2, in 
olumn B) m2

a = 5GeV2, m2
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ÎFE-IS =

ˆ

dφ
1

S V̂ . (3.260)The integral is in general 
orrelated (in heli
ity spa
e) with the matrix element. However,it turns out that it is super�
ial. As we shall see, after integration the 
orrelations vanishand we are left with
ˆ

dφDFE-IS = −IFE-IS Ĉ ∣∣∣M̂ (
q, p̃a; {pm}m∈XFE-IS)∣∣∣2 , (3.261)with

IFE-IS =

ˆ

dφ
1

S
〈
V̂
〉
, (3.262)where 〈.〉 denotes heli
ity average in D dimensions. The redu
ed matrix element in(3.261) is averaged over initial state polarizations of parton p̃a whi
h is the same as for

pa. It is not the 
ase for IE-FS, see below.For initial state emitter, the overall situation is very similar. The only di�eren
e atthis stage is due to the fa
t, that the number of polarizations of the new initial state p̃aiis di�erent. That is we have
ˆ

dφDIE-FS = −IIE-FS Ĉ ⊗ ∣∣∣M̂ (
q, p̃ai; {pm}m∈XIE-FS

)∣∣∣
2

, (3.263)where now the redu
ed matrix element is averaged over polarizations of ai. Therefore,we have to in
lude a spin-transition fa
tor into the dipole splitting fun
tions or into theintegral. In our 
ase, we have in
luded it in the splitting fun
tion. Note, this is di�erentthan in [10℄, where dipole splitting fun
tions are de�ned without these fa
tors. Morepre
isely, the dipole integral is then
IIE-FS∗ =

nai

na

ˆ

dφ
1

S
〈
V̂
〉
, (3.264)where nai, na are number of spin states of partons ai and a respe
tively. In our 
ase it is

IIE-FS =

ˆ

dφ
1

S
〈
V̂
〉
. (3.265)We note, that although those spin transition fa
tors equal to 1 or 1−ε, they are essentialas the integrals are in general singular.3.7.1 The notationLet us introdu
e some helpful notation we shall use throughout this se
tion. We de�nes
aled, dimensionless masses for a quark q as follows

η2q =
m2

q

2γ̃
. (3.266)In this fashion, it is also useful to de�ne other s
aled quantities. For any quantity Xwith the dimension of the mass squared we de�ne

η2X =
X

2γ̃
. (3.267)
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η2P2 =

P2

2γ̃
, (3.268)

η2Pa
=
Pa

2γ̃
(3.269)and so on. It is also useful to de�ne ũ-s
aled variables of this kind

η̃2X =
η2X
ũ

=
X

2ũγ̃
. (3.270)The motivation in introdu
ing su
h a notation is that we want to disentangle ũ depen-den
e as mu
h as possible, sin
e it 
an lead to the singularities. This point shall be
lari�ed later in this se
tion.It is 
onvenient to introdu
e a redu
ed dipole integral Ĩ, de�ned as follows

I =
αs

2π

1

Γ (1− ε)

(
4πµ2

r

2γ̃

)ε

Ĩ , (3.271)where the integrated dipole I is de�ned in (3.262). That is we pull out the standardfa
tors relevant to MS 
al
ulations.3.7.2 Final state emitter - Initial state spe
tator3.7.2.1 Q→ Qg and Q→ Qg splittingsIn that 
ase the dipole splitting matrix (3.169) is diagonal in heli
ity. Therefore thereare no 
orrelations between the dipole and the redu
ed matrix element. Averaged dipolesplitting fun
tion reads simply
〈
V FE-IS
Q→Qg, a

〉
= 8πµ2ε

r αsCF

[
2

ũṽ2 + z̃
+ (1− ε) z̃ − 2− m2

pi · pj

]
. (3.272)Let us de�ne the integral of the dipole fun
tion

IFE-ISQ→Qg, a =

ˆ

dφFE-ISQ→Qg, a

1

2pi · pj

〈
V̂ FE-IS
Q→Qg, a

〉
. (3.273)Note we in
luded the propagator. Let us express the dipole splitting fun
tion, propagatorand the subspa
e dφ via the s
aled variables introdu
ed in Se
tion 3.7.1. The propagatorreads

2pi · pj = P2 −m2 = 2γ̃
(
η2P2 − η2

)
= 2uγ̃ η̃2P2−m2 , (3.274)where we introdu
ed res
aled inverse propagator

η̃2P2−m2 =
η2P2−m2

u
=
P2 −m2

2γ̃u
. (3.275)Note, that we use u instead of ũ, due to phase spa
e fa
torization pro
edure. We turnspe
ial attention that η̃P2−m2 is res
aled also by u 
omparing to similar quantities. Thisfa
t is marked by the notation with the tilde (see also 3.7.1). The reason to make su
hres
aling is to disentangle possible u = 0 singularity; in this limit the propagator inFig. 3.7 vanishes. We shall analyse the support in u in more detail below.



3.7. INTEGRATION OF THE DIPOLES 75Let us now rewrite the sub-spa
e dφ (3.236) using s
aled variables. We have (afterintegration over azimuthal angles whi
h is trivial)
dφFE-ISQ→Qg, a =

2 (2γ̃)
1−ε

(4π)
2−ε

Γ (1− ε)
η2J
(
η2P2

)−ε
v2ε−1 [(z̃+ − z̃) (z̃ − z̃−)]−ε

dz̃, (3.276)where the velo
ity reads
v =

ṽ

1 + 2uη2a
, (3.277)with (
ompare (3.99))

ṽ =
√
1− 4η2η2a. (3.278)The s
aled ja
obian (3.233)

η2J =
J
2γ̃

(3.279)is given in Appendix (A.2.1.1). In the 
onsidered 
ase the bounds on z̃ are
z̃± =

u η̃2P2−m2

(
1 + 2uη2a ± ṽ

)

2η2P2 (1 + 2uη2a)
. (3.280)Now we are ready to integrate the dipole splitting fun
tion over dz̃. As anti
ipatedalready in Se
tion 3.7.1, it is 
onvenient to de�ne the redu
ed integral ĨFE-ISQ→Qg, a as

IFE-ISQ→Qg, a =
αs

2π

1

Γ (1− ε)

(
4πµ2

r

2γ̃

)ε

ĨFE-ISQ→Qg, a, (3.281)i.e. we pull out the standard fa
tors appearing in the MS NLO 
al
ulations. Using theintegrals 
al
ulated in Appendix B.1 (integrals I1, I2, I3) we obtain
ĨFE-ISQ→Qg, a =

2CF η
2
J

(
η2P2

)ε

u1+2ε
(
η̃2P2−m2

)1+2ε

{
1

v
F (A (u) ;−ε)

−B (1− ε)
[
η2

η2P2

+
η̃2P2−m2

η2P2

u

(
1 +

η̃2P2−m2

4η2P2

uv (ε− 1)

)]}
, (3.282)where

A (u) =
2ṽη̃2P2−m2

2η2P2 ṽ2 (1 + 2uη2a) + η̃2P2−m2 (1 + 2uη2a − ṽ)
. (3.283)The fun
tion F 
an be expressed as a hypergeometri
 fun
tion and is pre
isely de�ned in(B.21); we also refer to Appendix B.1 for some of its useful properties. We turn attentionto our spe
ial notation of Euler's beta fun
tion with two equal arguments

B (1− ε, 1− ε) ≡ B (1− ε) . (3.284)Remember that w, η2P2 , η2P2−m2 , η2Pa
should all be 
onsidered as the fun
tions of u. Wedo not write it expli
itly for more transparen
y (the expli
it expressions are 
olle
ted inAppendix A.2.1.1).



76 CHAPTER 3. MASSIVE DIPOLE SUBTRACTION METHODLet us now analyse the support of the integral in u (re
all, that it will be 
onvolutedwith the redu
ed matrix element). A

ording to (3.98) we have for the lower bound inour mass 
on�guration
u− = 0 (3.285)and in general the upper bound u+ is di�erent than one (we do not give it expli
itlyhere). We see that the integral (3.282) is singular at the point u = u− in D = 4. This isthe soft singularity. In order to regularize this singularity we de�ne

κ = −ε, κ > 0. (3.286)and disentangle the divergen
e using the �plus� distribution f[0,u+] de�ned as (see alsoAppendix B.3)
f (u) = f[0,u+] (u) + δ (u)

ˆ u+

0

f (u) du. (3.287)Noti
e, that our distribution has the support [0, u+], rather than 
ommonly used [0, 1].Let us now write (3.282) as̃
IFE-ISQ→Qg, a =

1

u1−2κ
K (u;κ) , (3.288)where K (u;κ) is now free from the singularity. Using (3.287) we have

ĨFE-ISQ→Qg, a =

(
1

u

)

[0,u+]

K (u; 0) + δ (u)K (0;κ)

(
1

2κ
+ log u+

)
+O (κ) . (3.289)The logarithm of u+ re�e
ts our de�nition of the �plus� distribution with a non-standardsupport. The two distin
t limits of the quantity K read

K (u; 0) =
2CF η

2
J

η̃2P2−m2

{
1

v
log (1 +A (u))−

[
η2

η2P2

+
uη̃2P2−m2

η2P2

(
1−

uv η̃2P2−m2

4η2P2

)]}
, (3.290)

K (0;κ) = −2CF ṽ
4κη−2κ

(
B (1 + κ)− 1

ṽ
F (A;κ)

)
, (3.291)where

A ≡ A (0) =
2ṽ

1 + 2η2 − ṽ . (3.292)Let us write the full result as
ĨFE-ISQ→Qg = J (u) + δ (u) (Jpole + Jfinite) . (3.293)The subsequent pie
es read
Jpole = −CF

1

κ

(
1− 1

ṽ
log (1 +A)

)
, (3.294)

Jfinite = CF

[
2 +

1

ṽ
F1 (A)−

(
1− 1

ṽ
log (1 +A)

)
log

u2+ṽ
4

η2

]
, (3.295)
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J (u) =

(
1

u

)

[0,u+]

K (u; 0) , (3.296)where F1 is the 
oe�
ient in expansion
F (A;κ) = log (1 +A) + κF1 (A) +O (κ) , (3.297)
al
ulated in Appendix B.2.Let us now 
he
k, if in the limit of massless initial state parton we re
over the resultof [10℄. When ma → 0, we have in parti
ular

v = ṽ = 1, w = 1, (3.298)
η2P2 = u+ η2, η̃2P2−m2 = 1, η2J = 1, (3.299)

A (u) =
1

u+ η2
. (3.300)Now, the terms in de
omposition (3.293) read (we have adorned them by a star tounderline that they are evaluated for the massless spe
tator)

J∗
pole = −CF

1

κ

(
1− log

1 + η2

η2

)
, (3.301)

J∗
finite = CF

[
2 + F1

(
1

η2

)
+

(
1− log

1 + η2

η2

)
log η2

]
, (3.302)

J∗ (u) = 2CF

(
1

u

)

+

{
log

1 + u+ η2

u+ η2
− 1 +

u2

4 (u+ η2)
2

}
. (3.303)Now, we use some e�ort to reshu�e the terms between the above equations using (B.74)in order to get the same �plus� distributions as in [10℄. We get

ĨFE-ISQ→Qg

∣∣∣
m2

a=0
= 2CF

(
1

u

)

+

log
(
1 + u+ η2

)

+ CF

[
1

u

(
u2

2 (u+ η2)
− 2 log

(
u+ η2

)
− 2

)]

+

+ CF δ (u)

[
1

κ

(
log
(
1 + η2

)
− 1
)
+

(
1

2
− 1

κ

)
log η2 − 1

2
log2 η2 +

3

2
− 2

3
π2

+
1

2
log
(
1 + η2

) (
1 + log

(
1 + η2

))
− 2 log η2 log

(
1 + η2

)
− 4Li2

(
−η2

)
+

η2

2 (1 + η2)

]
.(3.304)We note that the u-dependent part is identi
al to the one in [10℄. The same is true forthe endpoint 
ontributions, whi
h are �nite in massless limit. We obtain full agreementon
e we expand the η2κ term2 whi
h multiplies some poles and �nite fa
tors in [10℄. Su
ha fa
tor was introdu
ed there, in order to keep possibility to obtain massless results atany time. After expanding η2κ it is no longer possible, sin
e the limits κ→ 0 and η2 → 0do not 
ommute.2adapted to our notation.



78 CHAPTER 3. MASSIVE DIPOLE SUBTRACTION METHODIn the end, let us give two remarks. First, note an interesting tri
k. As far as we
onsider soft and soft/
ollinear poles in a massive 
al
ulation, i.e. the end-point terms
ontaining log η2, the 
orresponding poles in massless 
al
ulation 
an be always re
overedby means of the following 
orresponden
e rules
log η2 =

1

κ

(
η2κ − 1

)
+O (κ) → − 1

κ
, (3.305)

1

κ
log η2 +

1

2
log2 η2 =

1

κ2
(
η2κ − 1

)
+O (κ) → − 1

κ2
. (3.306)Thus, using this method we 
an 
he
k soft singularities in a massive 
al
ulation against
orresponding massless results, whi
h are either well known or are simple to obtain. Thisof 
ourse does not work for the �nite terms.Se
ond observation is that we 
annot set the mass of heavy quark Q literarly to zeroin our integrated dipole fun
tion (3.293). This is be
ause we have not kept tra
k of η2κfa
tors and they are expanded, see more extensive dis
ussion below in Se
tion 3.7.3.1. Wegive separate formula in Appendix B.4, as the 
al
ulation requires some tools introdu
edbelow in Subse
tion 3.7.2.3.3.7.2.2 g → QQ splittingLet us �rst re
all, that in this 
ase we have the following 
on�guration of masses

mi = mj = mQ ≡ m, mij = 0. (3.307)For 
onvenien
e, we re
all also that the dipole splitting matrix derived in Se
tion 3.5.1.2reads
(
V̂ FE-IS
g→QQ, a

)µν
= 8πµ2ε

r αsTR

(
−gµν − 4

Cµν
P2

)
, (3.308)where

Cµν =

[
z̃pµi − (1− z̃) pµj −

ũm2
a

2w̃Pa

(
pµi − pµj

)] [
z̃pνi − (1− z̃) pνj −

ũm2
a

2w̃Pa

(
pνi − pνj

)]
.(3.309)Let us de�ne the integral of the dipole splitting matrix as

Kµν =

ˆ

dφFE-IS
g→QQ, a

1

P2

(
V̂ FE-IS
g→QQ, a

)µν
, (3.310)where the detailed expression for the measure dφ is derived in Se
tion 3.6. Due to theLorentz invarian
e, the integral 
an be de
omposed as

Kµν = −gµνA1 +
p̃µij p̃

ν
a + p̃νij p̃

µ
a

p̃ij · p̃a
A2 + p̃µij p̃

ν
ij A3 + p̃µa p̃

ν
a A4. (3.311)Sin
e the momentum p̃ij is the one of the massless gluon, the A2, A3 terms do not
ontribute to the full subtra
tion term. This is due to the gauge invarian
e and thefollowing Ward identity

p̃µijMµ = 0. (3.312)
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ed amplitudeMµ 
orresponds to the shaded blob in Fig. 3.8. Let us nowturn to the A4 
oe�
ient. Contra
ting (3.311) with p̃µij p̃νij we get
A4 =

ˆ

dφ
1

P2
(
p̃ij · p̃a

)2 p̃
µ
ij p̃

ν
ij

(
V̂ FE-IS
g→QQ

)
µν

= 0, (3.313)due to the transversality property of Cµν (3.180) and the on-shell 
ondition
p̃2ij = 0. (3.314)Thus, only A1 
ontributes to the full subtra
tion term. It 
an be disentangled by takingthe average over heli
ities of the gluon p̃ij by means of the polarization tensor

dµν
(
p̃ij ; pa

)
= −gµν +

p̃µijp
ν
a + p̃νijp

µ
a

p̃ij · pa
−m2

a

p̃µij p̃
ν
ij

(
p̃ij · pa

)2 . (3.315)Here pa is used as an auxiliary ve
tor. In pra
ti
e - again due to the transversality of
Cµν - the gauge terms in dµν 
an be omitted.Summarizing, only the average of the dipole splitting fun
tion 
ontributes. Thisaverage reads 〈

V FE-IS
g→QQ, a

〉
=

1

D − 2
dµν

(
p̃ij ; pa

)(
V FE-IS
g→QQ, a

)µν
. (3.316)The only non-trivial (although straightforward) point is to evaluate the average of Cµν .It turns out to be simple

dµν

(
p̃ij ; pa

)
Cµν = P2 (z̃+ − z̃) (z̃ − z̃−) (3.317)Hen
e 〈

V FE-IS
g→QQ, a

〉
= 8πµ2ε

r αsTR

[
1− 2

1− ε (z̃+ − z̃) (z̃ − z̃−)
]
, (3.318)where the bounds z̃± on z̃ variable are given in Se
tion 3.6.1.2. Let us list their form forthe present mass 
on�guration:

z̃± =
1

2
(1± vp) , (3.319)where p was de�ned in (3.217) and reads here

p =

√
1− 4m2

P2
. (3.320)Now, we shall perform the integral over the measure dφ. Note, that in the present
ase

ṽij = 1. (3.321)Further
v =

γ̃

γ̃ + um2
a

(3.322)



80 CHAPTER 3. MASSIVE DIPOLE SUBTRACTION METHODand thus the measure reads
dφFE-IS

g→QQ, a
=

2 (2γ̃)
1−ε

(4π)
2−ε

Γ (1− ε)
(
uη̃2P2

)−ε
η2J
(
1 + 2uη2a

)1−2ε
[(z̃+ − z̃) (z̃ − z̃−)]−ε

dz̃.(3.323)Let us re
all, that η2J is the s
aled ja
obian J , that has di�erent form depending onthe 
hoi
e of the �external� kinemati
 variables. The form we use is given in AppendixA.2.1.2. We de�ne the pertinent integral as
IFE-IS
g→QQ, a

=

ˆ

dφFE-IS
g→QQ, a

1

P2

〈
V̂ FE-IS
g→QQ, a

〉 (3.324)and introdu
e - similarly as before - the integral without the standard fa
tors, ĨFE-IS
g→QQ, a

,see (3.271) for de�nition. In terms of the integrals de�ned and 
al
ulated in the AppendixB.1 we have (again 
onverting ε→ −κ)
ĨFE-IS
g→QQ

=
TR

u1−κη̃2P2

η2J
(
1 + 2uη2a

)1+2κ
[
I2 −

2

1 + κ
I7
]

=
TRB (1 + κ)

u1−κη̃2P2

η2J p
1+2κ

[
1 +

p2

(3 + 2κ) (1 + 2uη2a)
2

]
. (3.325)We see that there is a potential singularity due to the denominator 1

u
. However, it isnot the 
ase as long as we deal with massive quarks. To see this, 
he
k the lower boundon u. It reads

u− =
8η2

1 + 16η2 (η2 − η2a) + (1 + 4η2)

√
(1− 4η2)

2 − 16η2η2a

(3.326)and equals zero only for m = 0 (not even for ma = 0). The la
k of the �formal�singularity, however, does not make ne
essarily life easier. This is be
ause for largemomenta u− → 0 and thus it is desirable to 
ontrol the potential singular behaviour.Possible solution to this problem, is the following (see [10℄). Regularize this potentialsingularity by introdu
ing the �plus� distribution with the support extending from non-zero value, namely (see also Appendix B.3)
f (u) = f[u−,u+] (u) + δ (u− u−)

ˆ u+

u−

f (u) du. (3.327)It has the property that
f[u−,u+] −→

m→0
f[0,u+], (3.328)In the 
ontext of (3.325), the above pro
edure is realised by the following repla
ement

1

u
=

(
1

u

)

[u−,u+]

+ δ (u− u−)
1

κ

(
uκ+ − uκ−

)
. (3.329)At this stage we are still free to literally set m = 0 � then we get the soft pole (sin
e

u− = 0). However in pra
ti
e, if we want to deal with massive quarks, we have to expandthe numerator in κ and we get
1

u
=

(
1

u

)

[u−,u+]

+ δ (u− u−) log
u+
u−

. (3.330)
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ĨFE-IS
g→QQ, a

=

(
1

u

)

[u−,u+]

K (u) + δ (u− u−)K (u−) log
u+
u−

, (3.331)where
K (u) = TR

η2J
η̃2P2

p

[
1 +

p2

3 (1 + 2uη2a)
2

]
. (3.332)Note, we have set κ = 0, as it was legitimate.One 
an wonder about the usefulness of su
h a de
omposition. Normally in su
hsituation, we have δ (u) and a soft part 
an be added to virtual 
orre
tion under thesame integrand, sin
e for u = 0 the dipole momentum p̃a be
omes the usual pa (i.e. theskewed PS be
omes a usual one). Here however, the skewed phase spa
e is generatedfrom p̃a (u−) 6= pa. Therefore the 
onsidered end-point 
ontribution 
annot be added tovirtual part under the same PS. One 
an extend the support of the distribution (3.327)in order to in
lude u = 0 point. But this is not ne
essary. Consider a situation, where allthe integrations are made by MC. The above endpoint integral is binned into di�erentbins than the one for virtual 
orre
tions, sin
e their PS do not 
oin
ide. However, when

η2 → 0 the bins start to overlap and the 
an
ellation 
an o

ur.3.7.2.3 g → gg splittingFinally, let us 
onsider pure gluoni
 splitting, with a possible massive spe
tator. For
onvenien
e, let us re
all the dipole splitting fun
tion introdu
ed in Se
tion 3.5.1.3
(
V̂ FE-IS
g→gg, a

)µν
= 16πµ2ε

r αsCA

[
−gµν

(
1

1− z̃ + ũ
+

1

z̃ + ũ
− 2

)
+ 2 (1− ε) C

µν

P2

]
,(3.333)where Cµν is given for instan
e in (3.309). The masses are mi = mj = mij = 0 and

ma 6= 0 in general.In 
omplete analogy to Se
tion 3.7.2.2 we 
an prove that the 
ontribution to theintegral of the dipole splitting matrix 
omes from its average
IFE-ISg→gg, a =

ˆ

dφFE-ISg→gg, a

1

P2

〈
V̂ FE-IS
g→gg, a

〉
, (3.334)where this time

dφFE-ISg→gg, a =
2 (2γ̃)

1−ε

(4π)
2−ε

Γ (1− ε)
(
uη̃2P2

)−ε
η2J
(
1 + 2uη2a

)1−2ε
[(z̃+ − z̃) (z̃ − z̃−)]−ε

dz̃.(3.335)The average itself is easily 
al
ulated in the same manner as in Se
tion 3.7.2.2 and reads
〈
V FE-IS
g→gg, a

〉
= 16πµ2ε

r αsCA

[
1

1− z̃ + ũ
+

1

z̃ + ũ
− 2 + (z̃+ − z̃) (z̃ − z̃−)

]
. (3.336)Here

z̃± =
1± v
2

, (3.337)while the rest of the quantities, like η2J , η̃2P2 et
., are given in Appendix A.2.1.2.
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omplete analogy to previous 
ases we de�ne the s
aled integral ĨFE-ISg→gg, a, see (3.271)for de�nition. Using integrals from Appendix B.1 we get
ĨFE-ISg→gg, a = 2CA

η2J

η̃
2(1−κ)
P2

1

u1−κ

(
1 + 2uη2a

)

[
F (A1 (u) ;κ)−F (A2 (u) , κ) +B (1 + κ) v

(
1 + κ

2 (3 + 2κ)
v2 − 2

)]
, (3.338)where

v =
1

1 + 2uη2a
, (3.339)

A1 (u) =
1

u

1

1 + (1 + 2u) η2a
, (3.340)

A2 (u) =
−1

1 + u (1 + (1 + 2u) η2a)
. (3.341)The di�eren
e of F fun
tions in (3.338) 
an be further simpli�ed, due to the relation

F (A1;κ) = −F (A2, κ) . (3.342)following the Pfa� transformation3 (see Appendix B.1) and the relation
A1

1 +A1
= −A2. (3.343)Now, we have to disentangle the soft singularity that appears due to the fa
t, that inthe present 
ase u− = 0. This time however - apart from the singular fa
tor 1/u - thereis also a singularity hidden in fun
tion F , due to the behaviour of A1 as a fun
tion of u;we shall see this more pre
isely in a moment. Therefore we expe
t a double soft/
ollinearpole.Sin
e the expansion in κ of the fun
tion F (A1;κ) is not analyti
 at u = 0, we haveto put it inside the �plus� distribution, i.e. we make the following repla
ement

1

u1−κ
F (A1 (u) ;κ) =

(F (A1 (u) ; 0)

u

)

[0,u+]

+ δ (u)

ˆ u+

0

dy
1

y1−κ
F (A1 (y) ;κ) +O (κ) . (3.344)The integration above is rather non-trivial when ma 6= 0, be
ause A1 is a nontrivialfun
tion of u.In order to simplify the pro
edure, let us de�ne the spe
ial variable, whi
h plays ananalogous role as u,

r =
1

A1
= u

(
1 + (1 + 2u) η2a

)
. (3.345)Thus u 
an be repla
ed by

u = rB (r) , (3.346)3This 
an be also dedu
ed already from (3.336) by simply noting the symmetry of the �rst twointegrals.
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B (r) = 2

1 + η2a +
√

1 + η2a [η
2
a + 2 (1 + 4r)]

. (3.347)Noti
e that
B (r) = 1 for ma = 0 (3.348)and
B (0) = 1

1 + η2a
. (3.349)Let us now de�ne the �plus� distribution using this new variable

1

r1−κ
F
(
1

r
;κ

)
=

[
F
(
1
r
; 0
)

r

]

+

+ δ (r)

ˆ 1

0

dy
1

y1−κ
F
(
1

y
;κ

)
+O (κ) . (3.350)Note, we de�ned the usual �plus� distribution, i.e. the support is [0, 1]. This a

ounts forsimpler evaluation of the integral � it is 
al
ulated up to order O (κ) in Appendix B.1 asIntegral M. In the end we get

1

r1−κ
F
(
1

r
;κ

)
=

1

r
log (1 + r) +

[
1

r
log

1

r

]

+

+ δ (r)

(
1

2κ2
− π2

4

)
+ O (κ) , (3.351)where we used the relation[

1

r
log (1 + r)

]

+

=
1

r
log (1 + r)− δ (r) π

2

12
(3.352)following Appendix B.3.To be 
onsistent, we also use the new variable r for the rest of the terms in (3.338).We 
an easily transform the end-point delta fun
tion δ (r) into δ (u). More attention hasto be paid to pra
ti
al integration of the �plus� distributions in the new variable r. Auseful formula is given in Appendix B.3.Let us now 
olle
t the singular and non-singular pie
es and de
ompose the integralsimilarly as before

ĨFE-ISg→gg, a = J (u) + δ (u) [Jfinite + Jpole] , (3.353)For the subsequent parts we obtain
Jpole = 2CA

[
1

κ2
− 11

6κ
− 1

κ
log
(
1 + η2a

)]
, (3.354)

Jfinite = 2CA

{
67

18
− π

2
+

[
1

2
log
(
1 + η2a

)
+

11

6

]
log
(
1 + η2a

)}
, (3.355)

J (u) = 2CA

η2J
B (r) η̃2P2

(
1 + 2rB (r) η2a

)

[
2

r
log (1 + r) +

(
2

r
log

1

r

)

+

+
v

6

(
v2 − 12

)(1

r

)

+

]
, (3.356)where the fun
tional dependen
e r (u) was skipped.It 
an be easily 
he
ked, that for ma = 0 we arrive at the known result from [9℄. Weturn attention, that we have an additional pole with a logarithm 
ontaining the spe
tatormass 
omparing to [9℄. This is however perfe
tly right, as for every FE-IS 
ase, there isa 
orresponding IE-FS 
ase. The last 
an have similar singularities to those in (3.354)sin
e we allow for massive quark there.



84 CHAPTER 3. MASSIVE DIPOLE SUBTRACTION METHOD3.7.3 Initial State Emitter - Final State Spe
tator3.7.3.1 Q→ Qg and Q→ Qg splittingsNow we swit
h to the IE-FS 
ase. Let us start with Q → Qg splitting. Note, here wedistinguish this 
ase from Q → gQ. In the former a gluon has momentum pi and isradiated out, while in the last it enters a redu
ed matrix element. In FE-IS both 
aseswere treated simultaneously.Let us start with the pre
ise de�nition of the dipole integral. We de�ne
IIE-FSQ→Qg, j =

ˆ

dφIE-FSQ→Qg, j

−1
p2ai −m2

〈
V̂ IE-FS
Q→Qg, j

〉
, (3.357)where the dipole splitting matrix was de�ned in (3.196). The whole pro
edure is quiteanalogous to FE-IS 
ase. The fa
t that we 
an use the averaged dipole splitting matrixis due to its diagonality. The propagator in (3.357) reads

p2ai −m2 = −2z̃Pa. (3.358)The measure dφ reads here expli
itly
dφIE-FSQ→Qg, j =

2 (2γ̃)
1−ε

(4π)2−ε Γ (1− ε)
η2J
(
η2P2

)−ε

ṽ1−2ε
j

(
1 + 2uη2

)1−2ε
[(z̃+ − z̃) (z̃ − z̃−)]−ε dz̃,(3.359)where

z̃± =
uη̃2

P2−m2
j

(
1 + 2uη2 ± ṽj

)

2η2P2 (1 + 2uη2)
. (3.360)We delegate the expli
it forms of η2J , η2P2 et
. to the Appendix A.2.2.1.Performing the integration over dz̃ (using Appendix B.1) we obtain for the redu
edintegral ĨIE-FSQ→Qg, j de�ned as usual in (3.271)

ĨIE-FSQ→Qg, j = −
CF η

2
J

(
η̃2
P2−m2

j

)2κ (
1 + 2uη2

)

u1−2κ
(
η2P2

)κ
ṽ3j η

2
Pa

{
F (A1 (u) ;κ)

+
1

2

[
u (2− u (1 + κ)) ṽ2j − 2

]
F (A2 (u) ;κ)

+
η2η2P2 ṽ2j (1− u)

(
1 + 2uη2

)

η̃2
P2−m2

j

η2Pa
(1− ṽj + 2uη2)

G (A2 (u) ;κ)

}
, (3.361)where

A1 (u) =
2uṽj η̃

2
P2−m2

j

η2P2

[
2u
(
η2 + ṽ2j (1 + 2uη2)

)
+ 1− ṽj

]
− η2j (1 + 2uη2 − ṽj)

, (3.362)
A2 (u) =

2ṽj
1 + 2uη2 − ṽj

. (3.363)Re
all, that the fun
tions F , G are de�ned in Appendix B.1.Sin
e we 
onsider the emission of a gluon, we expe
t the soft singularity. Indeed thereis 1/u term in (3.361), while the minimal value of u variable is u− = 0. Therefore, we



3.7. INTEGRATION OF THE DIPOLES 85disentangle the singularity by means of the plus distribution (3.287). To this end de�nethe regular (in the limit u→ 0 and η2 6= 0) quantity K (u;κ) as
ĨIE-FSQ→Qg, j =

1

u1−2κ
K (u;κ) . (3.364)We obtaiñ

IIE-FSQ→Qg, j =

(
1

u

)

[0,u+]

K (u; 0) + δ (u)

(
1

2κ
+ log u+

)
K (0;κ) , (3.365)where

K (u; 0) = −CF η
2
J

(
1 + 2uη2

)

2ṽ3j η
4
Pa
η̃2
P2−m2

j{
η2Pa

η̃2P2−m2
j

[
2 log (1 +A1 (u))− log (1 +A2 (u))

(
2 + u (u− 2) ṽ2j

)]

+
4ṽ3j η

2η2P2 (1− u)
(
1 + 2uη2

)

(1 + 2uη2 + ṽj) (1 + 2uη2 − ṽj)

}
, (3.366)

K (0;κ) = −2CF

(
η2j
)−κ

ṽ4κ−1
j

[
F (A1 (0) ;κ)−F (A2 (0) ;κ)

+
1

2
(1 + ṽj)G (A2 (0) ;κ)

]
. (3.367)When deriving (3.367) we used

η2P2

∣∣
u=0

= η2j , η2Pa

∣∣
u=0

=
1

2
, (3.368)

η2P2−m2
j

∣∣∣
u=0

= ṽ2j , η2J
∣∣
u=0

= ṽ2j . (3.369)Moreover
A1 (0) =

2ṽj
1 + 2η2j − ṽj

≡ A1, (3.370)
A2 (0) =

2ṽj
1− ṽj

≡ A2. (3.371)Let us note interesting identity, whi
h holds if η2j = η2a

1 +A1

1 +A2
=

1

1 +A1
. (3.372)We de
ompose the result into three parts

ĨIE-FSQ→Qg, j = J (u) + δ (u) (Jfinite + Jpole) . (3.373)For the subsequent pie
es we get
Jpole = −CF

1

κ

(
1 +

1

ṽj
log

1 +A1

1 +A2

)
, (3.374)
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Jfinite = −CF

(
1 +

1

ṽj
log

1 +A1

1 +A2

)
log

ṽ4ju
2
+

η2j

− CF

1

ṽj
(F1 (A1)−F1 (A2)− log (1 +A2)) , (3.375)

J (u) =

(
1

u

)

[0,u+]

K (u; 0) . (3.376)There are two 
omments in order here. First, there is no standard 
ollinear pole of theform 1
κ
PQQ in our result. However, analysing Eq. (3.366) in the quasi-
ollinear limit, we�nd that there is a term of the form log η2 PQQ whi
h plays analogous role. Therefore,our dipole fun
tion in the present form are not infrared safe. Later, in Chapter 4 weshall �x this using methods des
ribed in Se
tion 2.4.Next, our result (3.373)-(3.376) is not well suited for massless spe
tator 
ase, i.e.for mj = 0. This is seen e.g. by looking at K (u; 0) whi
h should be �nite for u = 0.However, if mj = 0 we have

log (1 +A2 (u)) = − log
(
uη2
)
+O

(
η2
)
. (3.377)In order to assure the smooth limit, we 
ould have kept tra
k of fa
tors η2κj and do notexpand them, whi
h however is not easy in the fully massive 
ase. Another solution, issimply to have distin
t formulae, with mj set to zero literally from the very beginning.This is reasonable, sin
e if we dealt with 
ompletely massless spe
tator (like gluon orquarks u, d, s) we should have put the fa
tors η2κj to zero manually. On the other hand,when we deal with heavy quark spe
tator, we nevertheless have to expand those fa
torsmanually.Therefore, in the following we derive the 
orresponding formulae with a spe
tatorassumed to be massless in the beginning.Let us thus start with (3.361) with η2j = 0. Now it be
omes

ĨIE-FSQ→Qg, j

∣∣∣
η2
j=0

= −CF η
2
J

(
η̃2P2

)κ (
1 + 2uη2

)

u1−κη2Pa

{
F (A∗

1 (u) ;κ)

+
1

2
[u (2− u (1 + κ))− 2]F (A∗

2 (u) ;κ)

+
(1− u)

(
1 + 2uη2

)

2η2Pa

G (A∗
2 (u) ;κ)

}
, (3.378)where

A∗
1 (u) = A1 (u)|η2

j=0 =
1

u

1

1 + (1 + 2u) η2
, (3.379)

A∗
2 (u) = A2 (u)|η2

j=0 =
1

uη2
. (3.380)We see, that the fun
tions A∗

1 (u), A∗
2 (u) do not behave well in the u→ 0 limit and wehave to in
lude F , G fun
tions in the �plus� distribution.First split (3.378) into three distin
t parts

ĨIE-FSQ→Qg

∣∣∣
η2
j=0

= K1 +K2 +K3, (3.381)whereK1 , K2, K3 are the �rst, the se
ond and the third term in (3.378) 
orrespondingly.



3.7. INTEGRATION OF THE DIPOLES 87Let us start with K1. We follow similar steps of Se
tion 3.7.2.3 for FE-IS 
ase. Wede�ne the variable
r =

1

A∗
1 (u)

= u
(
1 + (1 + 2u) η2

)
. (3.382)Note it is the same as in Se
tion (3.345) if we repla
e η2a ←→ η2. Thus we 
an immediatelyuse the other results from that se
tion, in parti
ular, we have

1

u1−κ
F (A∗

1 (u) ;κ) =
Bκ−1 (r)

r1−κ
F
(
1

r
;κ

)
, (3.383)where B (r) is given in (3.347) with repla
ement η2a ←→ η2 and

1

r1−κ
F
(
1

r
;κ

)
=

1

r
log (1 + r) +

[
1

r
log

1

r

]

+

+ δ (r)

(
1

2κ2
− π2

4

)
+ O (κ) . (3.384)Thus we get

K1 = −CF η
2
J

(
1 + 2rB (r) η2

)

η2Pa
B (r)

[
1

r
log (1 + r) +

[
1

r
log

1

r

]

+

]

− δ (r)CF

(
1 + η2

) [ 1

κ2
− 1

κ
log
(
1 + η2

)
− 1

2

(
π2 − log2

(
1 + η2

))]
. (3.385)Next 
onsider K2. Here the res
aling of the soft variable u is trivial, namely we de�ne

s =
1

A∗
2 (u)

= uη2. (3.386)We 
an thus obtain mu
h of the results by repla
ing B (r) above by 1/η2. We obtain
K2 = −CF η

2
J (1 + 2s) η2

η2Pa

1

2

[
s

η2

(
2− s

η2

)
− 2

] [
1

s
log (1 + s) +

[
1

s
log

1

s

]

+

]

+ δ (s)CF η
2

[
1

κ2
− 1

κ
log η2 − 1

2

(
π2 − log2 η2

)]
. (3.387)Finally, we 
al
ulate K3. We in
lude G in the �plus� distribution. Introdu
ing thevariable s as above, we make the repla
ement

1

s1−κ
G
(
1

s
;κ

)
=

[
1

s1−κ
G
(
1

s
;κ

)]

+

+ δ (r)J2 (κ) , (3.388)where the integral J2 (κ) is 
al
ulated up to the order O (κ) in Appendix B.1 as IntegralN. Expli
itly we get
1

s1−κ
G
(
1

s
;κ

)
=

(
1

s

1

1 + s

)

+

+ δ (s)

(
1

2κ
− log 2

)
+O (κ)

=

(
1

s

)

+

1

1 + s
+ δ (s)

1

2κ
+O (κ) , (3.389)



88 CHAPTER 3. MASSIVE DIPOLE SUBTRACTION METHODwhere we have used the relation (B.74). Gathering all the pie
es we obtain
K3 = −CF η

2
J (1 + 2s)

2

2η4Pa

η2 − s

1 + s

(
1

s

)

+

− CF δ (s) η
2

(
1

κ
− log η2

)
. (3.390)Let us now 
olle
t the full integral. We de
ompose it as in (3.373). We however adornthe quantities by a star to underline that they are evaluated for the massless spe
tator.We get

J∗
pole = −CF

1

κ

(
1 + log η2 − log

(
1 + η2

))
, (3.391)

J∗
finite = −

1

2
CF

[
log2

(
1 + η2

)
− log η2

(
log η2 + 2

)]
, (3.392)

J∗ (u) = −CF η
2
J

η2Pa

{
1 + 2rB (r) η2
B (r)

[
1

r
log (1 + r) +

[
1

r
log

1

r

]

+

]

+
1

2
(1 + 2s) η2

[
s

η2

(
2− s

η2

)
− 2

] [
1

s
log (1 + s) +

[
1

s
log

1

s

]

+

]

−
(
s− η2

)
(1 + 2s)

2

2η2Pa
(1 + s)

(
1

s

)

+

}
. (3.393)We skip fun
tional dependen
e on u for s and r in the above equation.Later, in Se
tion 4.4 we will need the above formulae in the limit η → 0. Then, the�plus� distributions in r variable be
ome straightforwardly the distributions in u due to(3.382). This is not the 
ase for �plus� distributions in s variable. The relation is thefollowing: for the distribution originating in F fun
tion

η2
[
1

s
log

1 + s

s

]

+

= η2
1

s
log (1 + s) + η2

[
1

s
log

1

s

]

+

− δ (u) π
2

12

=

[
1

u
log

1 + uη2

uη2

]

[0,u+]

− δ (u)
[
Li2
(
−u+η2

)
+

1

2
log2

(
u+η

2
)
+
π2

12

]
+O (κ) , (3.394)and for the distribution originating in G fun
tion

η2
[
1

s

1

1 + s

]

+

= η2
(
1

s

)

+

1

1 + s
+ δ (u) log 2

=

[
1

u

1

1 + uη2

]

[0,u+]

− δ (u) log 1 + u+η
2

2u+η2
+O (κ) . (3.395)It is interesting to note, that in the limit η2 → 0 the above relations e�e
tively leads tothe opposite sign in front of log η2 (log η2 + 2

) in Eq. (3.392).3.7.3.2 g → QQ splittingThe integral of the dipole splitting fun
tion (3.199) is de�ned as
IIE-FS
g→QQ, j

=

ˆ

dφIE-FS
g→QQ, j

−1
p2ai −m2

〈
V̂ IE-FS
g→QQ, j

〉
. (3.396)



3.7. INTEGRATION OF THE DIPOLES 89The averaged dipole splitting fun
tion reads (averaging is trivial, sin
e the dipole matrixis diagonal, see (3.199))
〈
V̂ IE-FS
g→QQ, j

〉
= 8πµ2ε

r αs TR

[
1− 2 (1− ũ)

1− ε

(
ũ+

m2

p2ai −m2

)]
. (3.397)Here, the one parti
le subspa
e reads

dφIE-FSQ→gQ, j =
2 (2γ̃)1−ε

(4π)2−ε Γ (1− ε)
(
η2P2

)−ε
η2J [(z̃+ − z̃) (z̃ − z̃−)]−ε dz̃. (3.398)The s
aled ja
obian η2J and other s
aled quantities are expli
itly listed in AppendixA.2.2.2. Note that

v = 1 (3.399)in (3.398) (sin
e the mass of the initial state ma = 0), and 
onsequently the bounds on
z̃ are

z̃± =
η2 − η2j
2η2P2

+
1

2
(1± 2p) . (3.400)The propagator in (3.396) is the same as in (3.358). Evaluating the integrals over dz̃we obtain for the redu
ed integral

ĨIE-FS
g→QQ, j

=
TR

1 + κ

η2J
(
η2P2

)κ
(2p)

2κ

2
(
η2Pa

)2
{
η2Pa

(1− 2u (1− u) + κ)F (A (u) ;κ)

+
2η2η2P2 (1− u)

η2 − η2j + η2P2 (1− 2p)
G (A (u) ;κ)

}
, (3.401)where

A (u) =
4η2P2p

η2 − η2j + η2P2 (1− 2p)
. (3.402)Sin
e the integral (3.401) is �nite (for �nite mass m), we 
an safely set κ = 0. Thenwe get

ĨIE-FS
g→QQ, j

=
−TR η2J
2
(
η2Pa

)2
{
− η2Pa

(1− 2u (1− u)) log (1 +A (u))

− 8η2
(
η2P2

)2
p (1− u)[

η2 − η2j + η2P2 (1− 2p)
] [
η2 − η2j + η2P2 (1 + 2p)

]
}
. (3.403)In Se
tion 4.4, we will 
he
k that the leading behaviour is of the form log η2 Pgq , whenthe mass m be
omes negligible 
omparing to other s
ales. A
tually it is already apparentin the above formula. Su
h an analysis will be starting point towards fa
torization of themass singularity.As an another preparatory step, let us note, that our unintegrated dipole splittingfun
tion (3.199) is exa
tly the same as the one in [10℄, when we set m = 0. Some
aution however must be paid, sin
e our dipole splitting fun
tion already in
ludes spin
onversion fa
tor (we de�ned quasi-
ollinear limit with redu
ed matrix element alreadyaveraged over spins). Sin
e in Chapter 4 we shall need our result for m = 0 set in thebeginning, a

ording to what we stated above, we will not have to 
al
ulate it as it 
anbe just taken from [10℄.



90 CHAPTER 3. MASSIVE DIPOLE SUBTRACTION METHOD3.7.3.3 Q→ gQ and Q→ gQ splittingsIn 
omplete analogy to the splittings g → QQ and g → gg in the FE-IS 
ase, it 
an beshown, that the 
ontribution of the integrated dipole splitting matrix de�ned in Se
tion3.5.2.3 redu
es to the average over the heli
ities in D dimensions
IIE-FSQ→gQ, j =

ˆ

dφIE-FSQ→gQ, j

−1
p2ai

〈
V̂ IE-FS
Q→gQ, j

〉
. (3.404)Similarly as before we introdu
e ĨIE-FSQ→gQ, j , see (3.271) for de�nition.Let us re
all the dipole splitting matrix for 
onvenien
e (note, that we inserted thespin 
onversion fa
tor in front)

(
V̂ IE-FS
Q→gQ, j

)µν
= 8πµ2ε

r αsCF (1− ε)
[
−gµν (1− ũ)− 4

1− ũ
Cµν
p2ai

]
, (3.405)with Cµν = VµVν and

Vµ = (1− z̃) pµi − z̃pµj −
(w̃ − 1)

[
m2 −m2

j + P2 (1− 2z̃)
]

2p̃ai · P
Pµ. (3.406)The average over heli
ities is performed using the following polarization tensor

dµν
(
p̃ai; pa

)
= −gµν +

p̃µaip
ν
a + p̃νaip

µ
a

p̃ai · pa
−m2

a

p̃µaip̃
ν
ai(

p̃ai · pa
)2 , (3.407)
orresponding to the gluon with momentum p̃ai. As an auxiliary ve
tor we 
hoose pa,however in pra
ti
e only the metri
 tensor gives 
ontribution. The average reads

〈Cµν〉 = 1

D − 2

[
(1− ũ)Pa

p̃ai · P

]2
P2 (z̃+ − z̃) (z̃ − z̃−) , (3.408)where the denominator reads

p̃ai · P = P2 (w̃ − 1)− Pa (ũ− 1) . (3.409)Using this, we get for the averaged dipole splitting matrix
〈
V̂ IE-FS
Q→gQ, j

〉
= 8πµ2ε

r αsCF (1− ε)
[
1− ũ− 2

1− ε
1− ũ
p2ai

( Pa

p̃ai · P

)2

P2 (z̃+ − z̃) (z̃ − z̃−)
]
.(3.410)Again, it is instru
tive to 
he
k whether in quasi-
ollinear limit (3.410) gives averagedsplitting matrix

〈
P̂Qg (x;κ)

〉
= CF (1− ε)

[
x+

2

1− ε

(
1− x
x

+
xm2

p2ai

)]
, (3.411)where x is the Sudakov variable de�ned e.g. in (3.156). To this end, note that in thequasi-
ollinear limit (3.29) we have

〈Cµν〉 = 1

D − 2
λ2

[
z̃P2 −m2

(
1 +

( P2

2Pa

)2
)]

, (3.412)
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ount the fa
t that z̃ = O (λ2), more pre
isely
z̃ = λ2

m2
(
1 + (1− x)2

)
− k2T

2 (1− x)Pa

. (3.413)Re
alling also that
p2ai = λ2 2

(
m2 − z̃Pa

)
= λ2

k2T − x2m2

1− x (3.414)and P2 = 2 (1− x)Pa +O
(
λ2
) we indeed re
over (3.411).Now, let us perform the integration over the subspa
e dφ. For pertinent mass 
on�g-uration it reads

dφIE-FSQ→gQ, j =
2 (2γ̃)1−ε

(4π)
2−ε

Γ (1− ε)
(
η2P2

)−ε
η2J v

2ε−1 [(z̃+ − z̃) (z̃ − z̃−)]−ε dz̃. (3.415)The s
aled quantities like η2J et
. are expli
itly given in the Appendix A.2.2.3.Using the results from Appendix B.1 for the integrals over dz̃, we obtain
ĨIE-FSQ→gQ, j = (1 + κ)CF

(1− u) (2p)2κ
(
η2P2

)κ
η2J

2vη2Pa
F (A (u) ;κ) +

2vη2P2η2Pa
p

(1 + κ)
(
η2p̃ai·P

)2 H (A (u) ;κ)


 , (3.416)where the fun
tion H (A;κ) reads (see Integral L. in Appendix B.1)

H (A;κ) = A2B (κ+ 2)F (2, κ+ 2, 2 (κ+ 2) ;−A) . (3.417)Moreover
η2p̃ai·P = η2Pa

(1− u) + ηP2 (w − 1) , (3.418)
A (u) =

4vpη2P2η2Pa

η2Pa

(
η2 − η2j + η2P2 (1− 2vp)

)
− 2η2η2P2

, (3.419)where p is de�ned in (3.217) and is not simpli�ed at all for the 
onsidered 
ase, thus wedo not repla
e it by its expli
it form.Inspe
tion of (3.416) leads to the 
on
lusion, that there are no singularities that shouldbe regularized. The only possible singular behaviour 
omes from 
ollinear logarithms.Therefore we are allowed to set κ = 0. Then (3.416) redu
es to
ĨIE-FSQ→gQ, j = −CF

(1− u) η2J
2vη2Pa


2vη2P2η2Pa

p
(
η2p̃ai·P

)2 − log (1 +A (u))


1 +

η2Pa

(
η2 − η2j + η2P2

)
− 2η2η2P2

(
η2p̃ai·P

)2





 . (3.420)Let us note, that the integrated dipole fun
tion has smooth behaviour for vanishingspe
tator mass mj → 0. In Chapter 4 we shall investigate the behaviour of (3.420) in the



92 CHAPTER 3. MASSIVE DIPOLE SUBTRACTION METHODlimit m→ 0. We shall �nd, that its leading behaviour is of the required form log η2 PQg ,whi
h is not obvious at this stage.In the end of this se
tion, let us give appropriate expression, for a 
ase when initialstate mass is set to zero from the very beginning. We shall need it in Chapter 4. Note,that our unintegrated dipole splitting fun
tion is now di�erent than the 
orresponding onein [10℄, thus we have to make a separate 
al
ulation. This 
al
ulation is straightforwardand mu
h simpler than in the massive 
ase, thus we skip all the details. We obtain
ĨIE-FSQ→gQ, j

∣∣∣
η2=0

= (1 + κ) (u+ ηj)
κ

[(
1

κ
+ 2 log

u

u+ η2j

)
Pqg (1− u)− CF

4u

1− u

]

=

(
1

κ
+ log

u2

u+ η2j
+ 1

)
Pqg (1− u)− CF

4u

1− u. (3.421)3.7.4 Complete expressions for integrated dipolesLet us now 
ome ba
k to the full expressions for dipoles, i.e. (3.59)-(3.61). We shallnow introdu
e some useful notation, that will be helpful in Chapter 4. In order to betterunderstand the motivation for this se
tion, the reader might look at Se
tion 4.3.1 inadvan
e.Let us re
all, that when 
al
ulating the jet 
ross se
tion via dipole subtra
tion method,say n-jet 
ross se
tion with one initial state, we add and subtra
t the dipole 
ontributions,whi
h live in the (n+ 1)-parti
le phase spa
e. Let us write this 
ontributions as follows
Dn (pa) =

∑

Π(n+1|a)

1

sΠ(n+1|a)

ˆ

dΦn+1

(
pa; {pj}n+1

j=1

)
DFn

(
pa; {pi}n+1

i=1

)
. (3.422)Here the �rst summation is over all the 
on�gurations Π(n+ 1|a) of n+1 partons in the�nal state, with parton a in the initial state. sΠ(n+1|a) is a symmetry fa
tor for identi
alparti
les in the �nal state for 
on�guration Π(n+ 1|a). To be pre
ise, in order to de�nea real subtra
tion term as in Se
tion 1.2 it should be 
onvoluted with parton densitiesand equipped in some normalization fa
tors. Moreover in (3.422) we used

DFn

(
pa; {pi}n+1

i=1

)
=

n+1∑

i=1

n+1∑

j=1
j 6=i

{
DIE-FS

i,j,a

(
p̃ai; {pl}l∈XIE-FS

)
Fn

(
p̃ai; {pl}l∈XIE-FS

)

+DFE-IS
i,j,a

(
p̃a; {pl}l∈XFE-IS) Fn

(
p̃a; {pl}l∈XFE-IS)

+
n+1∑

k=1
k 6=i,j

DFE-FS
i,j,k

(
pa; {pl}l∈XFE-FS

)
Fn

(
pa; {pl}l∈XFE-FS

)}
. (3.423)There are three distin
t n-parti
le jet fun
tions Fn, sin
e for ea
h type of dipole we haveto generate a di�erent set of momenta (the sets X are de�ned in (3.65)-(3.67)). Theintegration in (3.422) is over the full phase spa
e � all the 
uts (step fun
tions) and Dira
deltas (for di�erential 
ross se
tion) are hidden in Fn. In what follows, we shall use themore 
ompa
t notation, namely we assume, that Fn and any amplitudes that appearhave the same arguments as the phase spa
e dΦ. Hen
e we shall not write the argumentsexpli
itly.
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an fa
torize the phase spa
e in (3.422) and integrate thedipoles in order to obtain analyti
al poles, whi
h in turn should 
an
el with virtual
orre
tions. Then we get4
Dn (pa) = −

∑

Π(n+1|a)

1

sΠ(n+1|a)

n+1∑

i=1

n+1∑

j=1
j 6=i

{
ˆ

du IIE-FSa→ai i, j (u) dS(n) ai,j

(
p̃a (u) ; {pl}l∈XIE-FS

)

+

ˆ

du IFE-ISij→i j, a (u) dS(n) a,ij

(
p̃a (u) ; {pl}l∈XFE-IS)+ n+1∑

k=1
k 6=i,j

IFE-FSij→i j, k dS(n) k,ij

(
pa; {pl}l∈XFE-FS

)}
,(3.424)where �pseudo� 
ross se
tions dS are de�ned as

dS(n) I,J (p; {pl}) =
ˆ

dΦn (p; {pl}) Fn

∣∣Mn

∣∣2
I,J

, (3.425)Re
all, that the matrix elements squared with subs
ripts are 
orrelated in 
olour spa
e;they were de�ned in (3.21). We note, that there are also FE-FS 
ontributions in (3.424),whi
h were not given in the present work (they have to be taken from [10℄). The phasespa
e fa
torization in that 
ase is a produ
t of a measure dφ and the skewed phase spa
e,i.e. there is no 
onvolution over u.It is possible to 
onvert the sum in (3.424) over pairs (i, j) into a simpler sum (notealso, that parton i appears only in the integrated dipole splitting fun
tions as a pro
essindex). This pro
edure is des
ribed in details in [9℄ (se
tions 7.2 and 8.1), thus we onlyapply this method to our formula. To this end it is 
onvenient to split (3.424) into threedistin
t terms
Dn (pa) = DIE-FS

n (pa) +DFE-IS
n (pa) +DFE-FS

n (pa) , (3.426)whi
h 
orrespond to the three 
ontributions in (3.424). Then we obtain for IE-FS
D

IE-FS
n (pa) = −

∑

b∈N′

f

∑

Π(n|b)

1

sΠ(n|b)

n∑

j=1

ˆ

du IIE-FSa,b,j (u) dS(n) b,j (p̃b (u) ; {pl}nl=1) ,(3.427)where we have 
hanged the name of parton ai to b in order to 
ompletely remove appear-an
e of parton i whi
h in fa
t is not needed any more. We re
all, that N ′
f is the totalnumber of �avours (in
luding gluon). Moreover we 
hanged the notation

IIE-FSa,b, j ≡ IIE-FSa→b i, j (3.428)for the same purpose. Now, turn to FE-IS 
ase:
DFE-IS

n (pa) = −
∑

Π(n|a)

1

sΠ(n|a)

n∑

j=1

ˆ

du IFE-ISj, a (u) dS(n) j,a (p̃a (u) ; {pl}nl=1) , (3.429)4For IE-FS and FE-IS 
ontributions there is also a fa
tor 1/x, whi
h we used to have outside thedipole splitting fun
tions. Here we hide it for transparen
y.
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onverted ij to j and introdu
ed
IFE-ISj, a =





IFE-ISq→qg, a j = q, q

1
2I

FE-IS
g→gg, a +

∑
l∈Nf

IFE-ISg→qlql, a
j = g.

(3.430)Finally, for FE-FS we have
D

FE-FS
n (pa) = −

∑

Π(n|a)

1

sΠ(n|a)

n∑

j=1

n∑

k=1
k 6=j

IFE-FSj, a dS(n) k,j (pa; {pl}nl=1) , (3.431)with
IFE-FSj, k =





IFE-FSq→qg, k j = q, q

1
2I

FE-FS
g→gg, k +

∑
l∈Nf

IFE-FSg→qlql, k
j = g.

(3.432)The symbol Nf (without prime) is a number of all quark �avours (without a gluon) eitherlight or heavy.Now, we 
ould insert the results for integrated dipole splitting fun
tions to get expli
itform for the kernels I, as in [9, 10℄. Instead, we shall only write the general form, as wewill need it later in Chapter 4.First let us note, that we 
an write
DIE-FS

n (pa) +DFE-IS
n (pa) =

−
∑

b∈N′

f

∑

Π(n|b)

1

sΠ(n|b)

n∑

j=1

ˆ

du Ja,b,j (u) dS(n) b,j (p̃b (u) ; {pl}nl=1) , (3.433)where
Ja,b,j (u) = −

[
IIE-FSa,b,j (u) + δabI

FE-IS
j, a (u)

]
. (3.434)Next, as we have seen earlier in this 
hapter, we have to disentangle end-point 
ontribu-tions, thus the above 
an be written as

Ja,b,j (u) = J
coll
a,b,j (u) + J

remn
a,b,j (u) +

(
J
pole
a,b,j + J

finite
a,b,j

)
δ (u) , (3.435)where Jcoll is a part that leads to 
ollinear singularities, Jremn, Jfinite are the �nite partsthat will remain after 
an
ellation of all singularities and Jpole is a part that 
ontainssoft poles only. For FE-FS 
ase the stru
ture is similar to the 
oe�
ient in front of δ (u)in (3.435). Therefore, we 
an write the integrated dipole (3.424) in the following form

Dn (pa) =

{
∑

b∈N′

f

∑

Π(n|b)

1

sΠ(n|b)

n∑

j=1

ˆ

du
(
Jcolla,b,j (u) + Jremn

a,b,j (u)
)
dS(n) b,j (p̃b (u) ; {pl}nl=1)

+ dSdip-soft
(n) a (pa; {pl}nl=1)

}
, (3.436)
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ontribution into a new symbol
dSdip-soft

(n) a (pa; {pl}nl=1) =

n∑

j=1

[
∑

b∈N′

f

∑

Π(n|b)

1

sΠ(n|b)

(
J
pole
a,b,j + J

finite
a,b,j

)
dS(n) b,j (pb; {pl}nl=1)

+
∑

Π(n|a)

1

sΠ(n,a)

n∑

k=1
k 6=j

IFE-FSj, a dS(n) k,j (pa; {pl}nl=1)

]
. (3.437)Let us 
omment this general stru
ture of integrated dipole fun
tion. The term

dSdip-soft 
ontains all the soft singularities, that should 
an
el with the virtual 
ontribu-tion. All the 
ollinear (for massless partons) and quasi-
ollinear singularities are hiddenin Jcoll. We shall need this formula in the next 
hapter, when we 
onstru
t infra-red safe
ross se
tion.
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Chapter 4General Mass S
heme for Jets4.1 Introdu
tionIn the previous 
hapter we 
onstru
ted dipole subtra
tion method taking into a

ountpossible massive initial state splittings. We have seen, that dipoles 
onne
ted with thiskind of splitting 
an be free from �standard� 
ollinear singularities appearing as the poles.Instead, we en
ounter terms 
ontaining logarithms of a quark mass, whi
h spoils a

ura
yof the predi
tions when the mass 
an be negligible. In this 
hapter we 
onstru
t a s
heme,whi
h fa
torizes out those quasi-
ollinear singularities. It follows from the ACOT s
hemeoutlined for in
lusive pro
esses in Se
tion 2.4.Our further work is divided into several parts. First, in Se
tion 4.2, we derive one-loop parton densities in CWZ renormalization s
heme. They were a
tually derived in[45℄, however in di�erent s
heme, so 
alled dimensional redu
tion. In 
onsequen
e, someof the results are di�erent from those used in standard 
al
ulations in D dimensions.There are also some other problems 
onne
ted with 
al
ulations in [45℄, therefore we hadto rederive them again. Perhaps those results exist somewhere else in the literature, asthey are only one-loop 
al
ulations with massive quark, nevertheless it is very instru
tiveto obtain them 
onsistently as they are 
ru
ial ingredients of our s
heme. Basing onthose parton densities, we 
onstru
t in Se
tion 4.3 the subtra
tion terms whi
h removepotential 
ollinear singularities from the dipoles. Finally, we demonstrate that in thekinemati
 limit when the masses 
an be negle
ted, we re
over 
orre
t massless dipoleformulae. This is one of the tests of our formalism and is done in Se
tion 4.4.We turn attention, that there are at least two kinds of subtra
tion terms in the presentwork, whi
h should not be 
onfused. First, there is a dipole subtra
tion term, whi
hremoves all the singularities from the tree matrix elements. Se
ond, there is a 
ollinear(or quasi-
ollinear) subtra
tion term, whi
h removes potential 
ollinear singularities fromthe dipole subtra
tion term.4.2 Parton densities in CWZ renormalization s
hemeThe densities of parton inside a parton were de�ned in Se
tion 1.1. Let us re
all, that theyare needed in order to 
al
ulate IR �nite partoni
 
ross se
tion. Sin
e in our approa
h wehave masses in the initial state splittings, we have to have partoni
 PDFs where massesare not negle
ted. Moreover, as explained in Se
tion 1.3, it is 
onvenient to 
hoose spe
ial97



98 CHAPTER 4. GENERAL MASS SCHEME FOR JETSrenormalization s
heme, designed for massive 
al
ulation (CWZ).First we sket
h derivation of bare densities at one-loop a

ura
y. Next, using CWZ
ounter terms we obtain the renormalized ones. As already mentioned, all the pie
eswere a
tually derived in [45℄. However, there are several problems with those 
al
ula-tions. First, they are 
arried in a s
heme, 
alled dimensional redu
tion, where one usesanalyti
 
ontinuation to D dimensions for the integrals, while the tensors are purelyfour dimensional obje
ts. Clearly, it must lead to di�erent result for the unobservableobje
ts like parton densities. More about dimensional redu
tion 
an be found e.g. in[30℄. Therefore, we have to tra
e and re
al
ulate diagrams whi
h leads to 
ontra
tion ofmetri
 tensors. However, there is another problem 
onne
ted with 
al
ulations in [45℄.Namely we en
ounter some misprints or errors, thus also the other diagrams have to be
he
ked.4.2.1 Unrenormalized parton densitiesTo one loop a

ura
y we 
an write
Fab (x) = δabδ (1− x) + F (1)

ab (x) (4.1)As already remarked in Se
tion 1.1 those obje
ts 
an be 
al
ulated order by order inperturbation theory by means of Feynman rules. Besides the set of standard QCD rules,we have a few additional obje
ts. We shall not des
ribe them here in details, they 
anbe found for instan
e in [16, 45, 17℄. Instead we shall des
ribe the ingredients of su
h
al
ulations using the spe
i�
 example below.PSfrag repla
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al
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lude an �on-shell� delta fun
tion. The
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Figure 4.2: Cut Feynman's diagrams for the parton density FgQ. A
tually only A) andB) give 
ontribution (see the main text).whole expression 
orresponding to this diagram turns out to be
F (1)

Qg = g2µ2ε
r CF

ˆ

dDq

(2π)D−1

1

2
Tr [γµ (6q +m) γν (6p+m)] δ

(
p+ − q+ − k+

)

δ
(
q2 −m2

)
(
(p− q)2 + iǫ

)2
k · n

(
k · n gαµ − (p− q)αnµ

)
(k · n gαν − (p− q)αnν) , (4.2)where we have already summed over spins and 
olours and where mQ ≡ m. The deltafun
tions set

δ
(
p+ − q+ − k+

)
= δ

(
p+ − q+ − xp+

)
⇒ q+ = (1− x) p+, (4.3)

δ
(
q2 −m2

)
= δ

(
2q+q− − q2T −m2

)
=

1

2p+x
δ

(
q− − q2T +m2

2p+x

)
. (4.4)The integration measure with our 
hoi
e of light-
one ve
tors reads

dDq = dD−2qTdq
+dq−. (4.5)Performing the tra
e and integrating out the delta fun
tions, we get

F (1)
Qg =

αsµ
2ε
r 4CF

(2π)
2(1−ε)

ˆ

d2(1−ε)qT

{
2m2x (1− x)
(q2T + x2m2)

2 −
2− x (2− x (1− ε))
x (q2T + x2m2)

}
. (4.6)Using Integral D. from Appendix B.1 we �nally obtain

F (1)
Qg =

αs

2π
S (ε)

(
µ2
r

m2

)ε

CF x
−2ε−1

{
2 (1− x)− [2− x (2− x (1− ε))] 1

ε

}
, (4.7)where we put some standard fa
tors into one quantity

S (ε) = (4π)
ε
Γ (1 + ε) . (4.8)Next, let us 
al
ulate the density FgQ. At the one loop a

ura
y there are threedistin
t Feynman diagrams (Fig. 4.2). Thus we write

F (1)
gQ = F (A)

gQ + 2F (B)
gQ + F (C)

gQ , (4.9)
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Figure 4.3: Cut Feynman's diagrams for the parton density FQQ.where the three terms 
orrespond to the three diagrams (the fa
tor of two in front of these
ond diagram is the symmetry fa
tor). The 
al
ulation is very similar to the previousone, thus we skip the details. The result reads
F (A)

gQ =
αs

2π
S (ε)

(
µ2
r

m2

)ε

TR

[
1

ε
+

2x (1− x)
1− ε

]
, (4.10)

F (B)
gQ = −αs

2π
S (ε)

(
µ2
r

m2

)ε

TR
x (1− x)
(1− ε) ε , (4.11)

F (C)
gQ = 0.The last diagram is simply zero, be
ause of the kinemati
 argument. The 
ut eikonal linegive δ (−q+ − k+) what results in q+ = −xp+, thus q+ must lie in the past light-
one.On the other hand the anti-quark with momentum q is on-shell (see Fig. 4.2B ) and thuswe have δ+ (q2 −m2

). Therefore the 
ommon support shrinks to zero volume.Let us now give the result for FQQ showed in Fig. 4.3. As before, we de
ompose
F (1)

QQ = 2
[
F (A)

QQ + F (B)
QQ

]
+ F (C)

QQ + F (D)
QQ . (4.12)The 
al
ulation of diagrams B and C go in a similar manner as before. They read

F (B)
QQ =

αs

2π
S (ε)

(
µ2
r

m2

)ε

CF

1

ε
x (1− x)−1−2ε

, (4.13)
F (C)

QQ = −αs

2π
S (ε)

(
µ2
r

m2

)ε

CF (1− x)−1−2ε

[
2x− (1− x)2

(
1

ε
− 1

)]
. (4.14)In the 
ase of the diagram A we have full integration over the loop momenta q, i.e. theintegrals over dq+ and dq− are not utilized by the delta fun
tions. The integral over

dq− 
an however be easily 
arried out by the residue te
hnique, while the integral over
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dq+ is left out, be
ause it is a
tually divergent for ε > 0. It is the soft singularity, thatshould 
an
el between a

ompanying graph with real emissions (B and C). The detailsof this 
al
ulation are given 
orre
tly in [45℄. Following the authors, it is 
onvenient tointrodu
e the dimensionless variable in order to parametrize this integral

ξ = 1− q+

p+
. (4.15)The result reads

F (A)
QQ = −αs

2π
S (ε)

(
µ2
r

m2

)ε

CF δ (1− x)
1

ε

ˆ 1

0

dξ ξ (1− ξ)−1−2ε
. (4.16)Finally, we 
al
ulate the diagram D. The following expression appears as a part of thediagram

1

2

∑

s

us (p) γ+
−i
6p−mΣ (6p,m)us (p) , (4.17)where Σ (6p,m) is a quark self energy de�ned by

= −iΣ (6p,m) . (4.18)Sin
e the full quark propagator 
an be written as (we negle
t 
olour indi
es)
S (6p,m) =

i

6p−m− Σ (6p,m)
=

iZOS
2

6p−mOS
(4.19)we have to one-loop a

ura
y

Σ (6p,mOS) ≈
(
ZOS
2 − 1

)
(6p−mOS) . (4.20)Above ZOS

2 is the quark �eld renormalization 
onstant in the on-shell s
heme, while mOSis the pole mass. Inserting this to (4.17) we get simply
F (D)

QQ =
(
ZOS
2 − 1

)
δ (1− x) =

(
∂Σ (6p,mOS)

∂ 6p

)

p2=m2
OS

δ (1− x) . (4.21)The result for the quark self-energy or renormalization 
onstant is well known (e.g. [20℄).Thus we get
F (D)

QQ = −αs

2π
S (ε)

(
µ2
r

m2

)ε

CF δ (1− x)
[
1

2ε
− 2

ˆ 1

0

dξ ξ (1− ξ)−1−2ε

]
. (4.22)We repla
ed the renormalized mass for the bare one, as this is allowed to this order andsimpli�es the notation. Let us now rearrange the diagrams in a more logi
al manner

F (A+B)
QQ =

αs

2π
S (ε)

(
µ2
r

m2

)ε

CF

1

ε

[
x (1− x)−1−2ε

]
+
, (4.23)

F (C+D)
QQ = −αs

2π
S (ε)

(
µ2
r

m2

)ε

CF

{
2
[
x (1− x)−1−2ε

]
+
+
[
(1− x)1−2ε

]
+

(
1− 1

ε

)}
,(4.24)



102 CHAPTER 4. GENERAL MASS SCHEME FOR JETSwhere we have used the standard �plus� distribution.Let us now �nally turn into the density Fgg. There are several diagrams, all ofthem do not involve masses ex
ept one (we do not depi
t them). It is the one withthe gluon self energy graph with heavy quark loop. We must note, that it seems that
al
ulation 
on
erning those diagrams in [45℄ is in
orre
t. They 
on
lude that only selfenergy 
orre
tions give 
ontribution; it is not true as we know that one loop result has tohave Pgg (x), while the self energy 
orre
tions are proportional only to δ (1− x). Thusour strategy is the following. We do not 
al
ulate the massless loops as they lead to thestandard, veri�ed result for gluon-gluon splitting (1.14). We have to add to this resultthe heavy quark 
ontribution to gluon self energy, whi
h however is also well known. Weshall do this in the next se
tion at the level of renormalized PDFs already.4.2.2 Renormalization of parton densitiesLet us re
all from Se
tion 1.3, that in CWZ s
heme we �rst de
ide whether given quarkis a
tive, or ina
tive. Next, for the diagrams with ina
tive quarks o

urring in the loopswe perform zero-momentum subtra
tions, while for the others the MS renormalization.Therefore, some of the quantities 
al
ulated in the previous se
tion have to be renormal-ized twi
e, in two di�erent s
hemes.Let us start, with MS s
heme, i.e. we preserve the masses of the quarks but useminimal subtra
tion (re
all, that it is in 
ontrast to mMS pres
ription de�ned in Se
tion1.1, whi
h refers to the s
heme most often identi�ed with MS, where the masses are setto zero). Renormalization is done simply by expanding our results in ε into Laurentseries, with the ex
eption of the fa
tor S (ε), and subtra
ting the pole parts. Let us listthe results
FMS

gQ (x) =
αs

2π
S (ε) TR log

(
µ2
r

m2

)
(1− 2x (1− x)) , (4.25)

FMS
Qg (x) =

αs

2π
S (ε) CF

1 + (1− x)2
x

[
log

(
µ2
r

m2

)
− 2 logx− 1

]
, (4.26)

FMS
QQ (x) =

αs

2π
S (ε) CF

{
1 + x2

1− x

[
log

(
µ2
r

m2

)
− 2 log (1− x) − 1

]}

+

. (4.27)The massless mMS result for Fgg was given in (1.22) with (1.14). We have to add to thisthe MS renormalized gluon self-energy graph with heavy quark loop multiplied by treelevel Fgg i.e. δ (1− x). The full result reads
FMS

gg (x) =
αs

2π
S (ε)

{
2CA

[(
1

1− x

)

+

+
1− x
x
− 1 + x (1− x)

]

+ δ (1− x)
(
11

6
CA −

2

3
Nf TR −

2

3
TR log

µ2
r

m2

)}
. (4.28)Now, we assume that the quarks appearing inside the loops are ina
tive. We do not
onsider here partoni
 densities where initial state is a heavy quark, be
ause they aresuppressed by O (Λ2

QCD/m
2
) as dis
ussed in Se
tion 2.4 (they are 
onvoluted with fQwhi
h is zero to leading twist). In order to renormalize the remaining diagrams by zero-momentum subtra
tion, we have to evaluate them �rst o� shell and then set p2 = 0. For
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FgQ it is however trivial, sin
e this diagram is already 
al
ulated with the gluon beingon-shell. Thus we have

F mom
gQ (x) = 0, (4.29)where the supers
ript denotes expli
itly usage of zero-momentum subtra
tion for relevantdiagrams. For Fgg the situation is also simple due to the same reason. We are left with

Fmom
gg (x) =

αs

2π
S (ε)

{
2CA

[(
1

1− x

)

+

+
1− x
x
− 1 + x (1− x)

]

+ δ (1− x)
(
11

6
CA −

2

3
Nf TR

)}
. (4.30)Note, that the usage of the supers
ript �mom� is 
onventional; it means that we performzero-momentum subtra
tions only to the diagrams with heavy quark loop, but the othersare renormalized by MS.Summarizing, we denote above renormalized parton densities in 
ommon by FCWZ

ab ,where �mom� s
heme should be used if a heavy quark is treated as ina
tive and MS whenit is a
tive (leaving the mass �nite).Let us now 
he
k, that indeed the evolution equations for PDFs have massless kernels.This is a
tually 
ompletely straightforward. We have to look at the 
ounterterms we haveused to renormalize the above partoni
 densities (we 
onsider only 
ase when Q is a
tive,otherwise it is power-suppressed). They are massless in MS s
heme. On the other hand,the evolution kernels are de�ned in (1.10). Therefore, already at this stage we see thatthese kernels are also massless. In order to derive their pre
ise form, we have to go ba
kand read o� the 
oe�
ients in front of the poles. They turn out to be exa
tly the splittingfun
tions Pab.4.3 Quasi-
ollinear subtra
tion terms for massivedipolesNow, as we have the ne
essary ingredients, we 
an perform the mass fa
torization. How-ever before we 
onstru
t quasi-
ollinear subtra
tion terms for the dipoles, let us �rstde�ne in details the IR safe 
ross se
tion for DIS, assuming 
ompletely massless 
ase. Itwill enable us to set up all the ne
essary notation, within the well known framework.4.3.1 Massless treatment of fa
torizationSimilar to Chapter 1.1, we 
onsider a virtual neutral boson with momentum q intera
tingwith a hadron having momentum P . We assume that the 
ross se
tion was proje
ted onsuitable tensor stru
ture, therefore we omit the ve
tor indi
es.Re
all, that to NLO a

ura
y we have for n-jet 
ross se
tion
σn = σLO

n + σNLO
n . (4.31)As we have the dipole formalism, let us now write the subsequent terms in more details
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omparing to Se
tion 1.2. First, the leading order 
ross se
tion is
σLO
n

(
P, q;

{
k
(J)
i

}n

i=1

)
= N (P, q)

∑

a∈N′

f

∑

Π(n|a)

1

sΠ(n|a)

ˆ

dz fa (z)

ˆ

dΦn

(
pa (z) ; {pj}nj=1

)
Fn

∣∣Mn

∣∣2 , (4.32)where k(J)i are the momenta of the re
onstru
ted jets. At LO the jet momenta 
orrespondexa
tly to the momenta of the �nal state partons pj. The fa
tor N (P, q) hides all thefa
tors needed to obtain normalized 
ross se
tion. The momentum pa depends on thelongitudinal momentum fra
tion z, as denoted expli
itly above. For the rest of thenotation we refer to Se
tion 3.7.4. In parti
ular we re
all our short
ut 
onvention: thefun
tion Fn, the amplitudes and dipoles have the same arguments as the phase spa
ethey belong.The NLO 
ontribution is a sum of virtual σV and real σR 
orre
tions. The real
ontribution is
σR
n

(
P, q;

{
k
(J)
i

}n

i=1

)
= N (P, q)

∑

a∈N′

f

∑

Π(n+1|a)

1

sΠ(n+1|a)

ˆ

dz fa (z)

ˆ

dΦn+1

(
pa (z) ; {pj}n+1

j=1

){
Fn+1

∣∣Mn+1

∣∣2 −DFn

}
. (4.33)The sum over dipoles DFn

was de�ned in (3.423).The virtual 
ontribution reads
σV
n

(
P, q;

{
k
(J)
i

}n

i=1

)
= N (P, q)

∑

a∈N′

f

ˆ

dz fa (z)

{ ∑

Π(n|a)

1

sΠ(n|a)

ˆ

dΦn (pa (z) ; {pk}nk=1)M
loop 2

n

+Dn (pa (z))− CmMS
n (pa (z))

} (4.34)In order to explain appearan
e of the term CmMS
n , let us re
all, that massless integrateddipoles 
ontain 
ollinear poles of the form Pab/κ, whi
h do not 
an
el with M loop 2

n , asthe soft poles do. By means of the fa
torization theorem, those 
ollinear poles have to beremoved. To this order of a

ura
y and in massless MS s
heme (denoted here by mMS)it is done by means of the following 
ollinear subtra
tion term (see e.g. [9℄)
CmMS
n (pa) = −

∑

b∈N′

f

∑

Π(n|b)

1

sΠ(n|b)

ˆ

dx



(
µ2
r

µ2
f

)−κ

F mMS
ab (x)




ˆ

dΦn (xpb (z) ; {pk}nk=1) Fn

∣∣Mn

∣∣2 (4.35)where
F mMS

ab (x) =
αs

2π
S (κ)

1

κ
Pab (x) (4.36)



4.3. QUASI-COLLINEAR SUBTRACTION TERMS FOR MASSIVE DIPOLES 105is the massless, renormalized parton density (see (1.22) in Se
tion 1.1). We 
an further usethe general form of Dn obtained in Se
tion 3.7.4, namely equation (3.436). In 
onsidered
ase this equation 
an be written as
Dn (pa) =

∑

b∈N′

f

∑

Π(n|b)

1

sΠ(n|b)

n∑

j=1

ˆ

dx
[
J
mMS
a,b,j (1− x) + J

remn
a,b,j (1− x)

]
dS(n) b,j (xpb; {pl}nl=1)

+ dS dip-soft
(n) a (pa; {pl}nl=1) (4.37)where here we have used Jcoll in the form

J coll
a,b,j (u) ≡ JmMS

a,b,j (u) = −αs

2π
S (κ)

(
µ2
r

2pb · pj

)−κ
1

κ
Pab (u) , (4.38)sin
e in that form it appears in massless dipole formalism [9℄. Note, we put the 
ommonfa
tor Γ (1− κ) (4π)−κ we en
ountered in dipole integration into S (κ) and repla
ed γ̃by the s
alar produ
t pb · pj1. Moreover, we repla
ed u by 1 − x and p̃a (u) by xpa, aswe work in the massless limit. In order to write the 
ollinear subtra
tion term CmMS

n insimilar form to (4.37) we 
an use the following tri
k
C

mMS
n (pa) = −

αs

2π
S (κ)

∑

b∈N′

f

∑

Π(n|b)

1

sΠ(n|b)

ˆ

dx

ˆ

dΦn (xpb; {pk}nk=1) Fn

{〈
Mn

∣∣


(
µ2
r

µ2
f

)−κ

+

n∑

j=1

T̂j · T̂b
T̂ 2
b

(
µ2
r

2pb · pj

)−κ

 1

κ
Pab (x)

∣∣Mn

〉

−
n∑

j=1

〈
Mn

∣∣ T̂j · T̂b
T̂ 2
b

(
µ2
r

2pb · pj

)−κ
1

κ
Pab (x)

∣∣Mn

〉}
, (4.39)that is we added and subtra
ted the term that is responsible for 
olour 
orrelations in

dS(n) b,j . Due to the 
olour 
onservation the square bra
ket above redu
es to
(
µ2
r

µ2
f

)−κ

+

n∑

j=1

T̂j · T̂b
T̂ 2
b

(
µ2
r

2pb · pj

)−κ

= −κ
n∑

j=1

T̂j · T̂b
T̂ 2
b

log

(
µ2
f

2pb · pj

)
+O

(
κ2
) (4.40)and in 
onsequen
e, we obtain

CmMS
n (pa) =

αs

2π
S (κ)

∑

b∈N′

f

∑

Π(n|b)

1

sΠ(n|b)

n∑

j=1

ˆ

dx dS(n) b,j (xpb; {pl}nl=1)

[
log

(
µ2
f

2pb · pj

)
−
(

µ2
r

2pb · pj

)−κ
1

κ

]
Pab (x) . (4.41)1Re
all that γ̃ was originally de�ned as pa · p̃j for IE-FS 
ase, however it was the de�nition relevantto (n+ 1)-parti
le matrix element; later, in Se
tion 3.7.4, we 
hanged tilded spe
tator to �normal� �nalstate parton.
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tly the same 
oe�
ient as in Dn (pa). Thus we getfor the virtual 
ontribution
σV
n

(
P, q;

{
k
(J)
i

}n

i=1

)
= N (P, q)

∑

a∈N′

f

ˆ

dz fa (z)

{
ˆ

dSloop
n (pa (z) ; {pl}nl=1) +

ˆ

dSdip-soft
(n) a (pa (z) ; {pl}nl=1)

+
∑

b∈N′

f

∑

Π(n|b)

1

sΠ(n|b)

n∑

j=1

ˆ

dx
[
Jremn
a,b,j (1− x, z) + Jfacta,b,j (x, z)

]

ˆ

dS(n) b,j (xpb (z) ; {pl}nl=1)

}
, (4.42)where

J
fact
a,b,j (x, z) = −

αs

2π
S (κ) log

(
µ2
f

2pb (z) · pj

)
Pab (x) (4.43)is a remnant of 
an
ellation of the 
ollinear poles. Above in Eq. (4.42) we introdu
ed

dSloop
n (pa; {pl}nl=1) =

∑

Π(n|a)

1

sΠ(n|a)

ˆ

dΦn (pa; {pk}nk=1)M
loop 2

n . (4.44)Note, that the sums over �nal state 
on�gurations and 
orresponding symmetry fa
torsare 
ontained in the de�nitions of dSloop and dSdip-soft.In the next subse
tion, we shall generalize above formulae to the massive 
ase. Wewill see, that this is a
tually straightforward, on
e we have massive dipole kinemati
sand partoni
 PDFs with masses taken into a

ount. There are however some subtletiessimilar to those dis
ussed in Se
tion 2.4.4.3.2 Fully massive 
aseNow, basing on (4.35) we are going to 
onstru
t analogous subtra
tion term with themassless fun
tions F mMS
ab repla
ed by the massive ones F CWZ

ab . There is however a
ompli
ation. Namely, the question is, whether to treat the tree level amplitude Fn

∣∣Mn

∣∣2in (4.35) as massive or not, and 
onsequently what are the bounds on x 
onvolution. Thisis not restri
ted by fa
torization itself as dis
ussed in Se
tion 2.4.In the massive 
ase, we 
annot simply pass the simple fra
tion of pa into ∣∣Mn

∣∣2as in (4.35), be
ause partons a and b 
an have di�erent types (a gluon or quark) and
onsequently di�erent masses. Of 
ourse it is the �plus� 
omponent of pa momentum,that should be a
tually passed to the redu
ed matrix element. However, equivalentlythis 
an be solved using the kinemati
s we developed for dipoles, i.e we 
an write
C̃CWZ
n (pa) = −

∑

b∈N′

f

∑

Π(n|b)

1

sΠ(n|b)

ˆ

duF CWZ
ab (1− u)

ˆ

dΦn (p̃b (u) ; {pk}nk=1) Fn

∣∣Mn

∣∣2 . (4.45)
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ed matrix element is 
al
ulated with an on-shell momentum p̃b �xed bythe fra
tion 1 − u and some additional invariants, as we learnt in Se
tion 3.6.4. In thelimit of vanishing mass mQ it be
omes
C̃

CWZ
n (pa) = −

∑

b∈N′

f

∑

Π(n|b)

1

sΠ(n|b)

ˆ

dxF CWZ
ab (x)

ˆ

dΦn (xpb; {pk}nk=1) Fn

∣∣Mn

∣∣2 +O
(
η2
)

= C
CWZ
n (pa) +O

(
η2
)
. (4.46)Note, the di�eren
e between C̃CWZ

n (pa) and CCWZ
n (pa). The �rst one is 
al
ulated withthe full mass dependen
e in kinemati
s and the matrix element, while in the latter theonly dependen
e on mass mQ is in F CWZ

ab . Nonetheless, both 
an be used as a 
ollinearsubtra
tion term, be
ause the only singular dependen
e on mass is in F CWZ
ab .This ambiguity 
an be resolved analogously to the in
lusive 
ase dis
ussed in Se
tion2.4. Namely, we expe
t, that around the swit
hing point for a given heavy quark, the last
an be mostly generated dynami
ally from lighter �avours. Thus, 
onsistent formalismshould lead to subtra
tion from σLO

n those 
ontributions whi
h originate in heavy quark-initiated pro
esses. It is most e�e
tively done, when we treat the initial state quarks asmassless, both in σLO
n and in Cn. Only then this 
an
ellation 
an be 
omplete withoutintrodu
ing arti�
ial s
aling variables, as we have seen in Se
tion 2.4. We underline, thatit does not mean that we set the masses of heavy quarks to zero everywhere in σLO

n or
Cn, thus still the diagrams like BGF are the dominant produ
tion 
hannels. Moreover,we 
an have initial state massive quarks in other subpro
esses, see below.In order to 
larify the above statements, let us dis
uss a spe
i�
 example in moredetails. Consider the pro
ess

γH → 2 JQ, (4.47)where H is a hadron and we denoted by JQ a jet with possible heavy �avour Q. Note,that a
tually the jets 
an be �avourless when there is QQ pair, nevertheless they �feel�heavy quarks. In order to simplify the notation, let us assume that there is only oneheavy quark and one light quark. A

ording to fa
torization theorem, the 
ross se
tion
an be 
al
ulated as
σγH→2JQ

=
∑

a∈N′

f

fa ⊗ σ̂aγ→2 JQ
, (4.48)where the hat denotes IR safe 
ross se
tion as usual. PDFs are de�ned in the 
ompositeCWZ s
heme, thus for a given value of external s
ale, we have to spe
ify the a
tivenumber of �avours Na. Hen
e, we have fa ≡ f

(Na)
a , where Na in
reases as one 
rossesswit
hing point. However, below the swit
hing point for a given heavy quark Q, fQ = 0up to the power 
orre
tions. Therefore, the summation 
an go over all the �avours andgluon N′

f .The relation de�ning IR safe 
ross se
tion is
σaγ→2 JQ

=
∑

b∈N′

f

FCWZ
ab ⊗ σ̂bγ→2 JQ

. (4.49)More spe
i�
ally, we have for a gluon initiated pro
ess at NLO (we drop �CWZ� indi
ation



108 CHAPTER 4. GENERAL MASS SCHEME FOR JETSin what follows and denote the order in αs in supers
ript)
σ
(1)
gγ→2 JQ

+ σ
(2)
gγ→2 JQ

=
∑

b∈N′

f

(
F (0)

gb + F (1)
gb

)
⊗
(
σ̂
(1)
bγ→2 JQ

+ σ̂
(2)
bγ→2 JQ

)

= σ̂
(1)
gγ→2 JQ

+ σ̂
(2)
gγ→2 JQ

+
∑

b∈N′

f

F (1)
gb ⊗ σ̂

(1)
bγ→2 JQ

= σ̂
(1)
gγ→2 JQ

+ σ̂
(2)
gγ→2 JQ

+ F (1)
gg ⊗ σ̂(1)

gγ→2 JQ
+ F (1)

gQ ⊗ σ̂
(1)
Qγ→2 JQ

(4.50)Here and belowQ ≡
{
Q,Q

} for more transparen
y. Solving this for the �hatted� quantitywe get for a gluon initiated pro
ess
σ̂
(2)
gγ→2 JQ

= σ
(2)
gγ→2 JQ

−F (1)
gg ⊗ σ(1)

gγ→2 JQ
−F (1)

gQ ⊗ σ
(1)
Qγ→2 JQ

. (4.51)For a light quark initiated pro
ess we have
σ
(1)
qγ→2 JQ

+ σ
(2)
qγ→2 JQ

= σ̂
(1)
qγ→2 JQ

+ σ̂
(2)
qγ→2 JQ

+ F (1)
qg ⊗ σ̂(1)

gγ→2 JQ
+ F (1)

qq ⊗ σ̂(1)
qγ→2 JQ

(4.52)and thus
σ̂
(2)
qγ→2 JQ

= σ
(2)
qγ→2 JQ

−F (1)
qg ⊗ σ̂(1)

gγ→2 JQ
−F (1)

qq ⊗ σ̂(1)
qγ→2 JQ

. (4.53)Similar relation holds for a heavy quark in the initial state
σ̂
(2)
Qγ→2 JQ

= σ
(2)
Qγ→2 JQ

−F (1)
Qg ⊗ σ̂

(1)
gγ→2 JQ

−F (1)
QQ ⊗ σ̂

(1)
Qγ→2 JQ

. (4.54)For the subpro
esses 
ontributing to di�erent me
hanisms of two jets produ
tion seeFig. 4.4.Summarizing, the 
ross se
tion on a hadroni
 target 
an be written in terms of barepartoni
 
ross se
tions as follows
σγH→2 JQ

= fg ⊗
(
σ
(1)
gγ→2 JQ

+ σ
(2)
gγ→2 JQ

)

+ fq ⊗
(
σ
(1)
qγ→2 JQ

+ σ
(2)
qγ→2 JQ

)
+ fQ ⊗

(
σ
(1)
Qγ→2 JQ

+ σ
(2)
Qγ→2 JQ

)

−
[
fg ⊗F (1)

gg + fq ⊗F (1)
qg + fQ ⊗F (1)

Qg

]
σ
(1)
gγ→2 JQ

−
[
fg ⊗F (1)

gQ + fQ ⊗F (1)
QQ

]
σ
(1)
Qγ→2 JQ

. (4.55)The third and fourth lines 
ontain 
ollinear subtra
tion terms. Note, that the �rst twoterms in the third line are pure poles and should be 
an
eled by hand with similar polesappearing after integration of massless 
ontributions to dipoles. Then we are left onlywith �nite terms. When the external s
ale is very large, we have the IR safe 
ross se
tionby 
onstru
tion,
σγH→2 JQ

−→
mQ→0

fg ⊗
(
σ̂
(1)
gγ→2 JQ

+ σ̂
(2)
gγ→2 JQ

)

+ fQ ⊗
(
σ̂
(1)
Qγ→2 JQ

+ σ̂
(2)
Qγ→2JQ

)
+ fq ⊗ σ̂(2)

qγ→2 JQ
. (4.56)
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Figure 4.4: The diagram types o

urring in a 
al
ulation of two-jets 
ross se
tion withthe heavy quark e�e
ts. The total number of �avours is Nf = 6. Shaded blob denotestree level amplitude, the blob with L stands for loop 
orre
tions, while with S for a
ollinear subtra
tion term. Empty legs denote heavy quarks with masses set to zero, as
orresponding diagrams are treated as asymptoti
 expressions.
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e, now there are IR safe (�hatted�) NLO partoni
 
ross se
tions. Onthe other hand, slightly above the mat
hing point for a quark Q

fQ ⊗ σ(1)
Qγ→2 JQ

− fQ ⊗F (1)
Qg ⊗ σ

(1)
gγ→2 JQ

− fQ ⊗F (1)
QQ ⊗ σ

(1)
Qγ→2 JQ

≈ 0. (4.57)As explained above, those are the terms where it is reasonable to set the masses of initialstate heavy quarks to zero in σ(1)
Qγ→2 JQ

.There are two 
omments in order. First, we stress that setting initial state massesto zero in the above terms is not a limitation of the present method. We are free tokeep a 
omplete mass dependen
e. Se
ond, both pres
riptions de�ne a
tually two di�er-ent s
hemes, whi
h should be used to obtain PDFs, as they are also s
heme dependent.After this is done, one should a
tually 
ompare 
al
ulations in both s
hemes. Neverthe-less, a s
heme just des
ribed seems to be more 
ompatible with existing PDFs, whi
hevolve a

ording to massless DGLAP equations (also the bounds in the 
onvolutions aremassless).The above example is also illustrated in a 
omi
s form in Fig. 4.4, where we takeinto a

ount two heavy quarks c and b. We show what pro
esses 
ontribute if the s
ale
rosses the swit
hing points for Na = 3, 4, 5.4.4 Massless limit and 
onsisten
y 
he
kLet us now 
he
k, that introdu
ed in the previous se
tion subtra
tion terms indeedfa
torize the quasi-
ollinear singularities. This is done by applying the quasi-
ollinearsubtra
tion terms and taking massless initial state limit in our IE-FS dipoles. As a resultwe should obtain exa
tly the massless version of the dipoles (more pre
isely with masslessinitial state, a spe
tator 
an be massive), with subtra
ted 
ollinear poles a

ording to
MS s
heme. That is, we require

lim
m→0

[
DIE-FS

n (pa)− C̃CWZ
n (pa)

]
= DIE-FS

n (pa)
∣∣
m=0
− CmMS

n (pa) . (4.58)We note, that this equation is required to hold after the soft singularities were 
an
elled.A
tually, it is enough to 
he
k (4.58) for integrated dipole splitting fun
tion only. To seethis, let us re
all, that
DIE-FS

n (pa) = −
∑

b∈N′

f

∑

Π(n|b)

1

sΠ(n|b)

n∑

j=1

ˆ

du IIE-FSa,b,j (u) dS(n) b,j (p̃b (u) ; {pl}nl=1) . (4.59)On the other hand, we 
an rewrite the 
ollinear subtra
tion term in any s
heme as
Cn (pa) = −

∑

b∈N′

f

∑

Π(n|b)

1

sΠ(n|b)

n∑

j=1

ˆ

duFab (1− u) dS(n) b,j (p̃b (u)) , (4.60)where we used the 
olour 
onservation in order to write Cn in similar form to Dn. Thisis possible, sin
e the kernel Fab does not depend on j. Now, we 
an 
ast (4.58) into
lim
m→0

[
IIE-FSa,b,j (u)−FCWZ

ab (1− u)
]
= IIE-FSa,b,j (u)

∣∣
m=0
−F mMS

ab (1− u) . (4.61)Let us thus start with exploring the massless limit of our integrated dipole fun
-tion 
orresponding to the initial state g → QQ splitting, i.e. we are interested in for-mula (3.403). First, we have to �nd the leading behaviour of the 
ollinear logarithm
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log (1 +A (u)), with

A (u) =
4η2P2p

η2 − η2j + η2P2 (1− 2p)
(4.62)when the mass of the initial state goes to zero. To this end, we �rst obtain the followingexpansions

η2P2 =

(
η2j + u

) (
2η2 + u− 1

)

u− 1
+O

(
η4
)
, (4.63)

p =
2η2η2j + u (u− 1)

(
u− η2

)

2u (u− 1)
(
u+ η2j

) +O
(
η2
)
, (4.64)with the help of

w = 1 +
η2

1− u +O
(
η4
)
. (4.65)Consequently, we get

log (1 +A (u)) = log
u2

u+ η2j
− log η2 +O

(
η2
)
. (4.66)Taking the massless limit with the rest of the expression (3.403) we �nd the followinganswer

IIE-FSg,Q,j (u) =
αs

2π

[
Pgq (u)

(
log

u2

u+ η2j
− log η2

)
+ 2TR u (1− u)

]
+O

(
η2
)
. (4.67)Let us subtra
t now the 
ollinear 
ontribution

lim
m→0

[
IIE-FSg,Q,j (u)−FMS

gQ (1− u)
]

=
αs

2π

[
Pgq (u)

(
log

u2

u+ η2j
− log

µ2
f

2pj · pg

)
+ 2TR u (1− u)

] (4.68)First, observe that now it is �nite in m→ 0 limit. Here we use MS subs
heme of CWZ,sin
e we are in the region where the quark is treated as a
tive parton. Now we have to
he
k whether it equals to the RHS of (4.61). We have �rst (note the massless quark inthe subs
ript)
IIE-FSg,q,j (u) =

αs

2π
S (κ)

(
µ2
r

2pj · pg

)−κ
[(

1

κ
+ log

u2

u+ ηj

)
Pgq (u) + 2TR u (1− u)

]
.Note, this is the same result as in [10℄. As already explained in Se
tion 3.7.3.2, this isbe
ause when m = 0 we have the same dipole splitting fun
tion. Next, we 
al
ulate

IIE-FSg,q,j (u)−F mMS
gq (1− u) = αs

2π
S (κ)

(
µ2
r

2pj · pg

)−κ

[
 1

κ
− 1

κ

(
2pj · pg
µ2
f

)−κ

+ log
u2

u+ ηj


Pgq (u) + 2TR u (1− u)

]

=
αs

2π

[(
log

u2

u+ ηj
− log

µ2
f

2pj · pg

)
Pgq (u) + 2TR u (1− u)

]
. (4.69)



112 CHAPTER 4. GENERAL MASS SCHEME FOR JETSThus we see, that (4.68) and (4.69) are indeed identi
al.Let us swit
h now to Q→ gQ 
ase. This time the logarithm behaves as
log (1 +A (u)) = log

u2

(1− u)2
(
u+ η2j

) − log η2 +O
(
η2
)
. (4.70)Analysing the rest of the expression (3.420) in the massless limit, we get

IIE-FSQ,g,j (u) =
αs

2π

[(
log

u2

(1− u)2
(
u+ η2j

) − log η2

)
Pqg (1− u)− CF

4u

1− u

]
+O

(
η2
)
.(4.71)Performing the subtra
tion we get

lim
m→0

[
IIE-FSQ,g,j (u)−FMS

Qg (1− u)
]

=
αs

2π

[(
log

u2(
u+ η2j

) − log
µ2
f

2pj · pq
+ 1

)
Pqg (1− u)− CF

4u

1− u

] (4.72)On the other hand, the massless result (3.421) reads
IIE-FSq,g,j (u) =

αs

2π
S (κ)

(
µ2
r

2pj · pq

)−κ

[(
1

κ
+ log

u2

u+ η2j
+ 1

)
Pqg (1− u)− CF

4u

1− u

] (4.73)and as 
an be easily 
he
ked, again IIE-FSq,g,j (u)−FmMS
qg (1− u) equals pre
isely to (4.72).Finally, let us turn to Q → Qg splitting 
ase. This 
ase is slightly harder. Let us�rst note that in this 
ase the pertinent logarithms behave as

log (1 +A1 (u)) = log
1 + η2j
η2j

+O
(
η2
)
,

log (1 +A2 (u)) = log
1

u+ η2j
− log η2 +O

(
η2
)
.Therefore, the whole expression (3.364) redu
es to

IIE-FSQ,Q,j (u) =
αs

2π

(
µ2
r

2pj · pq

)−κ

CF

{(
1

u

)

+

[
−
(
1 + (1− u)2

) (
log η2 + log

(
u+ η2j

))

− 2 log
1 + u+ η2j
u+ η2j

− 2 (1− u)
]

− δ (u)
[
1

κ

(
1 + log η2 + log

(
1 + η2j

))
+

1

2
log η2

(
2 + log η2

)

− 1

2
log2

(
1 + η2j

)
− 2Li2

(
1

1 + η2j

)
+
π2

3

]}
+O

(
η2
) (4.74)
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tion and rearranging the terms we get
lim
m→0

[
IIE-FSQ,Q,j (u)−FMS

QQ (1− u)
]
=
αs

2π
S (κ)

(
µ2
r

2pj · pq

)−κ

CF

{
− 1

CF

Pqq (1− u) log
(

µ2
f

2pj · pq

)
+ (2− u) log

(
u+ η2j

)

− 2

(
1

u

)

+

log
(
1 + u+ η2j

)
+ 4

(
log u

u

)

+

+ 2 (u− 2) log u+ u

− δ (u)
[
1

κ

(
1 + log η2 + log

(
1 + η2j

))
− 3

2
log η2 + 2

+
1

2
log η2

(
2 + log η2

)
− 1

2
log2

(
1 + η2j

)
− 2Li2

(
1

1 + η2j

)
+
π2

3

]}
. (4.75)Now we 
an 
ompare this with the 
al
ulation of [10℄, as in this 
ase our dipole splittingfun
tion is pre
isely the same in the massless initial state limit. Massless MS subtra
tionpro
edure is analogous as before, thus we skip this step. We �nd, that indeed our resultful�ls (4.61). However, as already mentioned, we have to drop the endpoint 
ontribu-tion �rst (the one proportional to delta fun
tion as it 
an
els with virtual 
orre
tions).Nevertheless some 
omparison 
an be made also with this part. First, we �nd that allthe terms involving spe
tator do agree with [10℄. Moreover, we 
an 
he
k, that thesoft/
ollinear poles are also 
orre
t. This 
an be done by the help of the 
orrespond-ing formulae (3.305), (3.306). The relation (4.58) is also true for our formula with themassless spe
tator assumed at the beginning.The remaining initial state splitting pro
ess is g → gg with dipole fun
tion given in[10℄. However, sin
e there are only 
ollinear poles it is trivial. The only observation isthat now our 
ollinear subtra
tion term has the end-point 
ontribution with a logarithmof mass (4.28). This 
ontribution 
an
els the singularity of the massive loop 
orre
tionto gluon initial state leg.4.5 Pra
ti
al appli
ation and MassJet proje
tLet us now sket
h a relatively simple example of NLO 
al
ulation using general-massdipole formalism. It is very instru
tive and the results 
an be 
ompared with existing
al
ulations.Consider heavy quark stru
ture fun
tion dis
ussed in Chapter 2. All relevant dia-grams are shown in Fig. 2.1. We assume that there is a massive heavy quark Q in theinitial state. That is, we 
onsider also the quark s
attering (QS) pro
ess γQ → Q andits virtual and real 
orre
tions. Both have soft singularities and �live� on di�erent phasespa
es: the former on dΦ2 while the latter on dΦ1. The real 
orre
tion is γQ → Qg,where the gluon 
an be emitted either from initial or �nal state. There is also boson-gluon fusion pro
ess γg → QQ whi
h does not have any singularities. However bothBGF and QS have quasi-
ollinear emissions whi
h have to be treated appropriately.Sin
e it is in
lusive pro
ess, the jet fun
tion is just a unity. We need three dipoles,two for the initial state emission and one for the �nal state. We 
an write somewhatsymboli
ally

FLO
2Q = fQ ⊗

ˆ

dΦ1 |MγQ→Q|2 , (4.76)
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Figure 4.5: The ratio of a matrix elements for real emission and the 
orresponding dipolesubtra
tion terms A) for quark s
attering pro
ess, B) for boson-gluon fusion. Here θ isthe angle in photon-parton CM frame. The edge ũ = 0 
orresponds to the soft singularity,while θ = π to quasi-
ollinear. Note, that for QS the ratio is equal to 1 on both edges,while for BGF only on the one 
orresponding to quasi-
ollinear region. The plots aremade for transverse proje
tion of matrix elements, Q2 = 104 GeV and the 
harm quark.and for NLO
FNLO
2Q = fQ ⊗

ˆ

dΦ2

[
|MγQ→Qg|2 −

(
V IE-FS
Q→Qg + V FE-IS

Q→Qg

)
⊗ |MγQ→Q|2

]

+ fg ⊗
ˆ

dΦ2

[∣∣∣Mγg→QQ

∣∣∣
2

− V IE-FS
g→QQ

⊗ |MγQ→Q|2
]

+ fQ ⊗
ˆ

dΦ1

[
Mloop 2

γQ→Q +
(
IIE-FSQ→Qg + IFE-ISQ→Qg − IcollQQ

)
⊗ |MγQ→Q|2

]

+ fg ⊗
ˆ

dΦ1

(
IIE-FS
g→QQ

− IcollgQ

)
⊗ |MγQ→Q|2 . (4.77)The real matrix elements are easy to obtain, while the virtual 
orre
tions are givenin [35℄ for a general massive 
ase. We �nd that the pole part ofMloop 2
γQ→Q 
an
els exa
tlywith the pole part of (IIE-FSQ→Qg + IFE-ISQ→Qg

). The singularities in the real 
orre
tions arealso subtra
ted in a proper way as shown in Fig. 4.5.Those analyti
al observations are 
on�rmed by our C++ MC implementation of thegeneral-mass s
heme (Fig. 4.6) (see also below). We observe that in 
onsidered 
ase:a) phase spa
e is fa
torized 
orre
tly, as we have 
he
ked it expli
itly 
omparing suit-able histogramsb) dipole splitting fun
tions are 
hosen 
orre
tly, as the MC integration in the �rstline of (4.77) is �nite and stable (we do not need an additional IR 
uto� here)
) integrated dipoles are 
orre
t; for BGF it 
an be 
he
ked expli
itly sin
e thereare no soft poles, while for QS it 
an be 
he
ked by 
omparison with analyti
al
al
ulationsIn Fig. 4.6 we 
ompare the present 
al
ulation with the one of Se
tion 2.2. In the latter theNLO QS 
ontributions were dropped as they are usually negligible (they are e�e
tively
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Figure 4.6: The 
omparison of 
harm stru
ture fun
tion 
al
ulated semi-analyti
ally inACOT s
heme (dotted) and using demo version of MC program MassJet. The latterin
ludes NLO quark-s
attering pro
ess with heavy quark in the initial state. The di�er-en
e is negligible as e�e
tively QS pro
ess is of higher order. The 
al
ulations are donefor xB = 0.05.of higher order). Indeed we observe only little di�eren
e between our numeri
al resultsand the former one.The working name of our C++ proje
t is MassJet. It is based on FOAM MC algo-rithm [31℄, whi
h is used to generate events and weights. The program is still under de-velopment, however we have already implemented most of the ne
essary features neededfor NLO dijets 
al
ulations in DIS within our s
heme. The major la
k are fully massivevirtual 
orre
tions, whi
h, although 
al
ulated in the literature are not well suited to ourpurposes and still need some work.
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Chapter 5Summary and outlookIn the present work we have given a detailed des
ription of the general method for
al
ulating jets 
ross se
tions with heavy quark e�e
ts taken into a

ount. In the �rstpla
e, we have revised the dipole subtra
tion method and extended it to the 
ase, wherethe initial state splitting pro
esses may involve massive quarks. Su
h a situation havebeen treated only for QED-like pro
esses before and is by no means suited to jets in QCD.In parti
ular, this approa
h does not take into a

ount gluon splitting into heavy quarks,what is of great importan
e due to largeness of gluon density. In
lusion of massive initialstate partons is a minor 
hange only super�
ially. In reality, we have to rede�ne most ofthe existing dipole splitting fun
tions and the 
orresponding kinemati
s. Hen
e we hadto perform all the integrals again.Moreover, we supply the dipole formalism in the spe
ial subtra
tion terms. They areintended to fa
torize out the mass quasi-singularities and retain the massless DGLAPevolution for PDFs. This is done by the method based on �rm theoreti
al ba
kgroundand 
ould be in prin
iple generalized to any desired order of perturbation theory. Wehave 
he
ked that our 
ross se
tions are free from 
ollinear initial state singularities inthe massless limit.Presented results are a
tually enough to prepare a Monte-Carlo algorithm for 
al
u-lating multi-jets 
ross se
tion at NLO in DIS pro
esses. They 
an be applied to bothneutral and 
harged 
urrent rea
tions, sin
e the information of the latter are buriedinside a redu
ed matrix elements. Su
h generalizations are 
onstrained mainly by the
omplexity of loop 
al
ulations in a fully massive 
ase.The method 
an be also extended to fragmentation pro
esses and hadron-hadronrea
tions. This is a
tually not an extremely di�
ult task. In 
ase of hadron-hadrons
attering one needs to 
onsider one additional 
ase, namely initial state emitter withinitial state spe
tator and 
orresponding kinemati
s. There is however another di�
ulty,namely so 
alled DFT disease [24℄. There is a 
on�rmed violation of KLN theorem attwo loops when there are two massive partons in the initial state. Su
h non-
an
ellationof IR singularities may invalidate fa
torization theorem at NNLO. Those and relatedsubje
ts are left for the future studies.We did not dis
uss the jet algorithms. There are several IR safe routines, in
ludingsolutions for heavy quarks [46, 6℄. We however realise, that this topi
 needs furtherveri�
ation as massive initial state quarks were not used in jet 
al
ulations before. Wehowever do not expe
t any 
ompli
ations as any 
ollinear safe observable 
an be extendedto a quasi-
ollinear one [10℄. 117



118 CHAPTER 5. SUMMARY AND OUTLOOKIn order to support our theoreti
al 
al
ulations, we have 
onstru
ted a dedi
atedC++ modular MC program based on the FOAM algorithm. Although the proje
t isunder development, we have performed sample in
lusive 
al
ulations 
on�rming e�
a
yof our method. So far, we have implemented most (but not all) of the 
onstituents neededfor dijets 
al
ulations at NLO a

ura
y in our general-mass s
heme with any number ofheavy quarks. Still, some virtual 
orre
tions within a suitable renormalization s
hemehave to be taken into a

ount.
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Appendix AKinemati
sA.1 Thermodynami
s of the invariantsWe have the following �equations of state�
ũ2m2

a + w̃
(
w̃P2 − 2Paũ

)
=

{
m2

ij FE-IS
m2

j IE-FS (A.1)
(1− ũ)2m2

a + (1− w̃)
[
(1− w̃)P2 − 2Pa (1− ũ)

]
=

{
m2

a FE-IS
m2

ai IE-FS (A.2)If we introdu
e the additional invariant γ̃ we have also
γ̃ = w̃Pa − ũm2

a. (A.3)We 
an obtain some useful relations between the partial derivatives. For example
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124 APPENDIX A. KINEMATICSFor IE-FS 
ase the formulae are analogous. All the identities are derived using well-knownja
obian te
hniques. Note we use the thermodynami
al notation for partial derivatives,i.e. subs
ripts denote �xed parameters.If we have all three equations of state (A.1)-(A.3) satis�ed, we 
an express P2 asfollows
P2 (Pa, γ̃) =

4δ2Pa
Pa

(
2γ̃ +m2

ij
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+m2
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+m2
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ase(A.10)
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√
γ̃ − Pa. (A.12)Let us also give w̃ and Pa in terms of ũ and P2. In the FE-IS 
ase we have

Pa

(
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a

]
− σ2

3

36P2
+m2

ij

}
, (A.13)
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ase we get
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2ũ (ũ− 1)

{
ũ
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2A.2 Expli
it expressions for res
aled variablesWe give here the expli
it forms of the res
aled fun
tions η2X = X/2γ̃, ja
obians andother variables used in the integrated dipoles. They are useful when analysing di�erentlimits of the integrals. In pra
tise they are most 
onvenient 
al
ulated dire
tly from theinvariants. Below we use η2 ≡ η2Q.A.2.1 Final State Emitter - Initial State Spe
tatorA.2.1.1 Q→ Qg and Q→ Qg splittings
w =
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(A.30)and the ja
obian η2J has the same form as in the previous subse
tion.A.2.2 Initial State Emitter - Final State Spe
tatorA.2.2.1 Q→ Qg and Q→ Qg splittings
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)
− 1
)
]−1

, (A.34)
η2J =

∣∣∣∣∣
2
(
η4Pa
− η2η2P2

) (
σ + (1− u)

(
η2P2 − η2Pa

))

η2P2σ

∣∣∣∣∣ , (A.35)where
σ =

√
(u− 1)2η4Pa

− η2(u− 2)u η2P2 . (A.36)
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w =

2η2j +
√
4η2η2j + u (4η2 + u− 2) + 1 + u+ 1

2
(
η2j + 1

)
− 2η2

(A.37)
η2P2 =

(
−η2 + η2j + 1

) (
η2j + u

)

(2w − 1)η2j + u(w − 1) + w
(A.38)

η2Pa
=

2η2j + w
(
η2 − η2j − 1

)
+ u+ 1

2
(
η2j + u

) (A.39)
η2J =

∣∣∣∣∣∣

2η4Pa

[√
(u− 1)2η4Pa

+ η2η2P2 + (1− u)
(
η2P2 − η2Pa

)]

η2P2

√
(u− 1)2η4Pa

+ η2η2P2

∣∣∣∣∣∣
(A.40)A.2.2.3 Q→ gQ and Q→ gQ splittings

η2P2 = 2
(
η2 + η2j + 1

)
2
(
η2j + η2u2 + u

)
{
u2
(
−
((
2η2 + 1

)
ṽj − 2η2

(
η2 − η2j + 1

)
− 1
))

+ 2u
(
η2
(
ṽj + 4η2j + 1

)
+ η2j (1− ṽj)

)
+ 2η2j

(
ṽj − η2 + η2j + 1

)
+ ṽj + 1

} (A.41)
η2Pa

=

(
2η2u+ 1

) (
u
(
ṽj + 2η2 + 1

)
− ṽj + 2η2j + 1

)

4
(
η2j + η2u2 + u

) (A.42)
w =

u
(
−ṽj + 2η2 + 1

)
+ ṽj + 2η2j + 1

2
(
η2 + η2j + 1

) (A.43)
η2J =

2vη2Pa

(
(1− v)η2Pa

− η2P2

)

η2P2

(A.44)A.3 Three-parti
le phase spa
e in D dimensionsLet us 
onsider
ˆ

dΦ3 (K; k1, k2, k3) =

ˆ

(2π)D δD (K − k1 − k2 − k3)

dDk1 δ+
(
k21 −m2

1

)

(2π)D−1

dDk2 δ+
(
k22 −m2

2

)

(2π)D−1

dDk3 δ+
(
k23 −m2

3

)

(2π)D−1
. (A.45)We introdu
e the notation

K2 =M2, (A.46)
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ements
Z

k3

k1

k2
αtransversehyperplaneFigure A.1: Center of mass system of the momenta k1, k2 and k3. We orient the framein su
h a way that k1 points towards +Z axis. In D dimensions ΩD−2 is a solid angleon the transverse hyperplane and the orientation of the Z axis is given by Ω

(+Z)
D−1 .

m2
ab = (ka + kb)

2
. (A.47)Re
all that

dΓ (k) =
dDk

(2π)D−1
δ+
(
k2 −m2

)
=

dD−1k

(2π)D−1 2Ek

=

∣∣∣~k
∣∣∣
D−2

d
∣∣∣~k
∣∣∣ dΩD−1

(2π)D−1 2Ek

=
1

4 (2π)
D−1

∣∣∣~k
∣∣∣

Ek

(∣∣∣~k
∣∣∣ sin θ

)D−4

d~k2d (cos θ) dΩD−2 (A.48)where ΩD−1 is a solid angle on the D−1 dimensional sphere, while ΩD−2 is a solid angleon transverse hyperplane to Z axis.Let us now 
hoose CM(K) system and orient it in su
h a way that k1 points towards
+Z axis (Fig. A.3). Integrating (A.45) and using (A.48) we get
ˆ

dΦ3 (K; k1, k2, k3) =

ˆ

(2π) δ
(
(K − k1 − k2)2 −m2

3

) ( 1

4 (2π)
D−1

)2

∣∣∣~k1
∣∣∣
D−3

E1

∣∣∣~k2
∣∣∣

E2

(∣∣∣~k2
∣∣∣ sinα

)D−4

d~k21d
~k22d (cosα) dΩD−2dΩ

(+Z)
D−1 , (A.49)where dΩ(+Z)

D−1 is an solid angle representing orientation of +Z axis in D− 1 dimensionalspa
e. The delta fun
tion gives
0 =M2 +m2

1 +m2
2 −m2

3 − 2M (E1 + E2) + 2E1E2 − 2
∣∣∣~k1
∣∣∣
∣∣∣~k2
∣∣∣ cosα (A.50)and thus

ˆ

dΦ3 (K; k1, k2, k3) =
24−D

8 (2π)2D−1

[
4~k21

~k22 −
(
M2 +m2

1 +m2
2 −m2

3 − 2M (E1 + E2) + 2E1E2

)2]D
2
−2

dE1dE2dΩD−2dΩ
(+Z)
D−1 ,(A.51)
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ab

ˆ

dΦ3 (K; k1, k2, k3) =
24−D

32 (2π)
2D−1

1

MD−2
â

D
2
−2 dm23dm13dΩD−2dΩ

(+Z)
D−1 , (A.52)where

â =M2
(
m2

3

(
m2

1 +m2
2 +m2

13 +m2
23

)
+
(
m2

1 −m2
13

) (
m2

2 −m2
23

)
−m2

3

(
m2

3 +M2
))

−m4
1m

2
2 +m2

1

(
m2

13

(
m2

23 −m2
3 +m2

2

)
+m2

2

(
m2

23 +m2
3 −m2

2

))

+m2
23

(
m2

3

(
m2

13 −m2
2

)
−m2

13

(
m2

13 +m2
23 −m2

2

))
. (A.53)In the derivation we used

E1 =
M2 +m2

1 −m2
23

2M
, (A.54)

E2 =
M2 +m2

2 −m2
13

2M
, (A.55)

E3 =
M2 +m2

3 −m2
12

2M
, (A.56)whi
h was obtained using relations of the type (K − k1)2 = (k2 + k3)

2
= m2

23 et
. in
CM(K).What remains is to �nd the support. Let us start with m2

23. Clearly
(m2 +m3)

2 ≤ m2
23 ≤ (M −m1)

2
. (A.57)The upper bound 
omes from the fa
t that m2

23 = M2 + m2
1 − 2ME1 is maximal for

E1 = m1. Let us now swit
h to CM(k2, k3) for a moment (we shall mark by starquantities in this frame). We have
E∗

1 =
M2 −m2

23 −m2
1

2m23
. (A.58)

E∗
2 =

m2
23 −m2

3 +m2
2

2m23
(A.59)

E∗
3 =

m2
23 −m2

2 +m2
3

2m23
(A.60)However

m2
13 = m2

1 +m2
3 + 2E∗

1E
∗
3 − 2

∣∣∣~k∗1
∣∣∣
∣∣∣~k∗3
∣∣∣ cosβ∗, (A.61)where β∗ is an angle between ~k1 and ~k3 in CM(k2, k3). Therefore the bounds on m2

13read
m2

1 +m2
3 + 2E∗

1E
∗
3 − 2

∣∣∣~k∗1
∣∣∣
∣∣∣~k∗3
∣∣∣ ≤ m2

13 ≤ m2
1 +m2

3 + 2E∗
1E

∗
3 + 2

∣∣∣~k∗1
∣∣∣
∣∣∣~k∗3
∣∣∣ . (A.62)
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Appendix BMathemati
al supplementB.1 The integralsIn this 
hapter we list and solve some of the appearing integrals. We start with thestandard spe
ial fun
tions and next we swit
h to the integrals spe
i�
 to this work. Thespa
e-time dimension is de�ned as D = 4− 2ǫ = 4 + 2κ, ε, κ > 0.Integral A. (Euler's Gamma) For Re (z) > 0 it is de�ned as
Γ (z) =

ˆ ∞

0

dt tz−1e−tdt. (B.1)It has the following property
Γ (1 + z) = zΓ (z) . (B.2)We also use the following in
omplete Gamma fun
tion

Γλ (z) =

ˆ ∞

λ

dt tz−1e−tdt. (B.3)We shall need also the following expression
Γλ (z) = λze−λ

ˆ ∞

0

dw (1 + w)z−1 e−λw. (B.4)Integral B. (Euler's Beta) The integral de�nition of Beta fun
tion reads
B (x, y) =

ˆ 1

0

dt (1− t)y−1 tx−1 (B.5)for Re (x) > 0 and Re (y) > 0. It is related to Gamma fun
tion by means of the formula
B (x, y) =

Γ (x) Γ (y)

Γ (x+ y)
. (B.6)If both arguments are equal, we use the following notation

B (x, x) ≡ B (x) . (B.7)131



132 APPENDIX B. MATHEMATICAL SUPPLEMENTIntegral C. (Dilogarithm) This fun
tion is de�ned via the integral
Li2 (z) = −

ˆ z

0

dt
log (1− t)

t
. (B.8)Its spe
ial value is

Li2 (1) =
1

6
π2. (B.9)Let us note the following useful properties (for suitable x)

Li2 (x) + Li2 (1− x) =
π2

6
− log x log (1− x) , (B.10)

Li2 (x) + Li2

(
1

x

)
= −π

2

6
− 1

2
log2 (−x) . (B.11)Integral D. (Transverse integrals)When 
al
ulating the parton densities we en
ounter the integrals of the following form

ˆ

dD−2qT

(q2T +A)
N

= π
D
2
−1A

D
2
−1−N

Γ
(
N + 1− D

2

)

Γ (N)
. (B.12)Integral E. (Hypergeometri
 fun
tion) We de�ne the hypergeometri
 fun
tion bymeans of the following series (for z lying in the unit 
ir
le)

F (a, b, c; z) = 1 +
ab

c
z +

1

2

a (a+ 1) b (b+ 1)

c (c+ 1)
z2 + . . . . (B.13)More suitable integral de�nition involves Beta fun
tion

B (b, c− b)F (a, b, c; z) =

ˆ 1

0

dt (1− t)c−b−1 tb−1 (1− zt)−a (B.14)for su
h a, b, c that the integral exists.Let us note some of the useful properties:a) Gauss's theorem
F (a, b, c; 1) =

Γ (c) Γ (c− a− b)
Γ (c− a) Γ (c− b) (B.15)b) Pfa� transformation

F (a, b, c; z) =
1

(1− z)a F
(
a, c− b, c;− z

1− z

) (B.16)
) 
ontiguous relation
F (a+ 1, b, c; z) =

(
1− b

a

)
F (a, b, c; z) +

b

a
F (a, b+ 1, c; z) (B.17)



B.1. THE INTEGRALS 133Integral F. Let us de�ne the following integral
I1 (y; ε) =

ˆ z+

z−

dz
(z+ − z)−ε

(z − z−)−ε

y + z
, (B.18)where 0 ≤ z− < z+ ≤ 1 and y is su
h that the integral exists. The result is

I1 (y; ε) = A (y) (z+ − z−)−2ε
B (1− ε, 1− ε)F (1, 1− ε, 2 (1− ε) ;−A (y)) , (B.19)where
A (y) =

z+ − z−
y + z−

. (B.20)Let us introdu
e the following notation (re
all κ = −ε)
F (A;κ) = AB (1 + κ)F (1, 1 + κ, 2 (1 + κ) ;−A) . (B.21)Its integral form reads

F (A;κ) = A

ˆ 1

0

dt
[t (1− t)]κ
1 +At

. (B.22)Note we have the following re�e
tion relations
F (A;κ) = −F

(
−A;κ

)
, (B.23)where

A =
A

1 +A
. (B.24)Proof. The integral (B.18) 
an be easily transformed into the form of (B.14) viathe substitution

t =
z − z−
z+ − z−

. (B.25)We get
I1 (y; ε) = A (y) (z+ − z−)−2ε

ˆ 1

0

dt (1− t)−ε
t−ε (1 +A (y) t)

−1
, (B.26)and (B.19) easily follows from Integral E..Integral G.

I2 (ε) =
ˆ z+

z−

dz (z+ − z)−ε
(z − z−)−ε

= (z+ − z−)1−2ε
B (1− ε) . (B.27)Integral H.

I3 (ε) =
ˆ z+

z−

dz z (z+ − z)−ε
(z − z−)−ε

=
1

2
(z+ + z−) I2 (ε) . (B.28)



134 APPENDIX B. MATHEMATICAL SUPPLEMENTIntegral I. Consider now
I4 (y; ε) =

ˆ z+

z−

dz
(z+ − z)−ε

(z − z−)−ε

z (y + z)

=
z−1
− A1 (y)

A1 (y)−A2
(z+ − z−)−2ε {F (A1 (y) ;−ε)−F (A2;−ε)} , (B.29)where

A1 (y) = A (y) , A2 =
z+ − z−
z−

(B.30)with A (y) de�ned in (B.20).Proof. We use the substitution (B.25) and de
ompose the integrand into theproper fra
tions. Finally use Integral F.Integral J.
I5 (ε) =

ˆ z+

z−

dz
(z+ − z)−ε

(z − z−)−ε

z
= (z+ − z−)−2εF (A2;−ε) . (B.31)Integral K.

I6 (y; ε) =
ˆ z+

z−

dz
(z+ − z)−ε

(z − z−)−ε

z2
= (z+ − z−)−2ε

z−1
− G (A2;−ε) , (B.32)where we have de�ned the fun
tion

G (A;κ) = AB (1 + κ)F (2, 1 + κ, 2 (1 + κ) ;−A) . (B.33)Let us note the following re�e
tion formula
G (A;κ) = −

(
1−A

)
G
(
−A;κ

)
, (B.34)where the �bar� operation is de�ned in (B.24). We note however, that one has to verifyif this operation is permitted for κ being 
lose to zero as it is not always the 
ase inpra
ti
e.Integral L.

I7 (y; ε) =
ˆ z+

z−

dz
(z+ − z)1−ε

(z − z−)1−ε

(y + z)
2

= (z+ − z−)1−2ε H (A (y) ;−ε) , (B.35)where A (y) is as in (B.20) and we have introdu
ed
H (A;κ) = A2B (2 + κ)F (2, 2 + κ, 2 (2 + κ) ;−A) . (B.36)



B.1. THE INTEGRALS 135Integral M. The following integral is needed to order O (κ)

J1 (κ) =
ˆ 1

0

dy
1

y1−κ
F
(
1

y
;κ

)
=

1

2κ2
− π2

6
+O (κ) . (B.37)Proof. Using (B.22) we have

J1 (κ) =
ˆ 1

0

dy

ˆ 1

0

dt
yκ−1 [t (1− t)]κ

y + t
. (B.38)We 
an separate both the integrals using the following tri
k

1

y + t
=

ˆ ∞

0

dλ e−λ(y+t). (B.39)We get
J1 (κ) =

ˆ ∞

0

dλ

ˆ 1

0

dt [t (1− t)]κ e−λt

ˆ 1

0

dy yκ−1e−λy. (B.40)The last integral reads
ˆ 1

0

dy yκ−1e−λy = λ−κ (Γ (κ)− Γλ (κ)) . (B.41)Now we have
J1 (κ) = J1a (κ)− J1b (κ) , (B.42)where

J1a (κ) = Γ (κ) Γ (1− κ)B (2κ, 1 + κ) , (B.43)
J1b (κ) =

ˆ 1

0

dt [t (1− t)]κ
ˆ ∞

0

dλλ−κe−λtΓλ (κ) . (B.44)The �rst integral was evaluated using
ˆ ∞

0

dλλ−κe−λt = Γ (1− κ) tκ−1 (B.45)and the de�nition of Beta fun
tion (B.5). Let us �nd the expansion in κ of J1b. First,note that using the alternative de�nition (B.4) of Γλ (κ) it 
an be written as follows
J1b (κ) =

ˆ 1

0

dt [t (1− t)]κ
ˆ ∞

0

dw
(1 + w)κ−1

1 + w + t
, (B.46)where we performed the trivial integration over dλ. The remaining expression is �nitefor κ = 0, thus

J1b (κ) =
π2

12
+O (κ) . (B.47)On the other hand, a

ording to Appendix B.2 we have

J1a (κ) =
1

2κ2
− π2

12
+O (κ) . (B.48)Thus we get (B.37).



136 APPENDIX B. MATHEMATICAL SUPPLEMENTIntegral N. The following integral is needed to order O (κ)

J2 (κ) =
ˆ 1

0

dy
1

y1−κ
G
(
1

y
;κ

)
=

1

2κ
− log 2 +O (κ) . (B.49)Proof. Let us �rst express the fun
tion G using (B.17) as follows

G
(
1

y
;κ

)
= −κF

(
1

y
;κ

)
+ κB (κ+ 2, κ)

1

y
F

(
1, κ+ 2, 2 (1 + κ) ;−1

y

)
. (B.50)However

B (κ+ 2, κ)
1

y
F

(
1, κ+ 2, 2 (1 + κ) ;−1

y

)
=

ˆ 1

0

dt
tκ+1 (1− t)κ−1

y + t
. (B.51)Therefore, we have to evaluate the following integral

J ⋆
2 (κ) =

ˆ 1

0

dy

ˆ 1

0

dt
yκ−1tκ+1 (1− t)κ−1

(y + t)
. (B.52)Repeating several the same steps as in Integral M. we get

J ⋆
2 (κ) = J ⋆

2a (κ)− J ⋆
2b (κ) , (B.53)where

J ⋆
2a (κ) = Γ (κ) Γ (1− κ)B (κ, 1 + 2κ) , (B.54)

J ⋆
2b (κ) =

ˆ 1

0

dt tκ+1 (1− t)κ−1
ˆ ∞

0

dw
(1 + w)κ−1

1 + w + t
. (B.55)In order to �nd the Laurent expansion in κ of J ⋆

2b (κ), let us use the following tri
k
J ⋆
2b (κ) =

ˆ 1

0

dt tκ+1 (1− t)κ
ˆ ∞

0

dw
(1 + w)

κ−1

1 + w + t

+

ˆ 1

0

dt tκ+1 (1− t)κ−1
ˆ ∞

0

dw
(1 + w)

κ−1

2 + w
. (B.56)The �rst integral is �nite, thus is of order O (1) and 
an be dropped; re
all that J ⋆

2 ismultiplied by κ, see (B.50). Therefore, up to required order we get (using de�nition ofBeta fun
tion and performing elementary integral)
J ⋆
2b (κ) =

log 2

κ
+O (1) . (B.57)Using the result for Integral M. and gathering all the pie
es we �nally obtain (B.49).B.2 Expansions in εIn this Appendix we list some of the ne
essary expansions. The spa
etime dimension isde�ned as D = 4− 2ε = 4 + 2κ, ε, κ > 0.



B.2. EXPANSIONS IN ε 137Expansion A. (Euler's Gamma) The expansion has the following form
Γ (ε) =

1

ε
− γ +

1

12

(
6γ2 + π2

)
ε+O

(
ε2
)
, (B.58)where γ is Euler's 
onstant

γ ≈ 0.577216. (B.59)It is useful to list also
Γ (1 + ε) = 1− γε+O

(
ε2
)
. (B.60)Expansion B. (Euler's Beta) The following expansions are useful

B (1− ε) = 1 + 2ε+

(
4− π2

6

)
ε2 +O

(
ε3
)
, (B.61)

B (a ε, 1− ε) = 1

a

1

ε
+
π2

6
ε+O

(
ε2
)
. (B.62)Expansion C.

F (A;κ) = log (1 +A) + κF1 (A) +O
(
κ2
)
, (B.63)where

F1 (A) = log (1 +A) log

(
1 +A

A

)
− 1

6
π2 + Li2

(
1

1 +A

)
+ Li2 (−A) . (B.64)Proof. We start with the integral de�nition of F (A;κ) (B.22) and expand integrandto desired order. The less trivial integrals to be 
al
ulated are

ˆ 1

0

dt
log (1− t)
1 +At

=
1

A
Ja −

logA log (1 +A)

A
, (B.65)

Ja =

ˆ 1

1
1+A

dz
log [(1 +A) (1− z)]

z
= log2 (1 +A)− 1

6
π2 + Li2

(
1

1 +A

)
, (B.66)where we used (B.8), (B.9).

ˆ 1

0

dt
log t

1 +At
=

1

A
Jb −

logA log (1 +A)

A
, (B.67)

Jb = lim
η→0

ˆ 1+A

1+η

du
log (u− 1)

u
= logA log (1 +A) + Li2 (−A) . (B.68)Expansion D.

G (A;κ) = 1

1 +A
− κ 2 +A

1 +A
log (1 +A) +O (κ) . (B.69)



138 APPENDIX B. MATHEMATICAL SUPPLEMENTExpansion E. Let us also note the following expansion
F (1, κ, 2κ+ 1;−A) = 1− κ log (1 +A) +O (κ) . (B.70)Proof. We use the de�nition (B.13)

F (1, κ, 2κ+ 1; z) = 1+z
κ

2κ+ 1
+

1

2!
z2

2!κ (κ+ 1)

(2κ+ 1) (2κ+ 2)
+

1

3!
z3

3!κ (κ+ 1) (κ+ 2)

(2κ+ 1) (2κ+ 2) (2κ+ 3)
+. . .

= 1 + κ

[
z +

1

2!
z2

2!

2!
+

1

3!
z3

3!2!

3!
+ . . .+

1

n!
zn (n− 1)! + . . .O (κ)

]

= 1 + κ

∞∑

n=1

zn

n
= 1− κ log (1− z) +O

(
κ2
)
. (B.71)B.3 The �plus� distributionWe de�ne the generalized �plus� distribution f[a,b] as follows

f[a,b] (u) = f (u)− δ (u− a)
ˆ b

a

dy f (y) . (B.72)The a
tion on su�
iently smooth test fun
tion ϕ (u) with the support [umin, umax] is thus
ˆ umax

umin

du f[a,b] (u)ϕ (u) =

ˆ umax

umin

du f (u) [ϕ (u)− ϕ (a)]

+ ϕ (a)

[
ˆ a

umin

dy f (y) +

ˆ umax

b

dy f (y)

]
, (B.73)if a ∈ [umin, umax].Note the following useful property

f[a,b] (u)h (u) = [f (u)h (u)][a,b] + δ (u− a)
ˆ b

a

dy f (y) [h (y)− h (a)] , (B.74)whi
h is the simple 
onsequen
e of the de�nition.Now, suppose that u is a fun
tion of some other variable, i.e. there is the followingtransformation
u = u (z) , (B.75)

umin = u (zmin) , (B.76)
umax = u (zmax) . (B.77)De�ne also
za = u−1 (a) , (B.78)
zb = u−1 (b) . (B.79)Then, the a
tion of the distribution in u (B.72) on a test fun
tion of z 
an be 
al
ulatedas follows

ˆ zmax

zmin

dz f[a,b] (u (z))ϕ (z) =

ˆ zmax

zmin

dz f (u (z))

[
ϕ (z)− ϕ (za)

u′ (z)

u′ (za)

]

+ ϕ (za)

[
ˆ a

umin

dy f (y) +

ˆ umax

b

dy f (y)

]
. (B.80)
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tatorThe starting point is the formula for integrated dipole (3.282) with η2 = 0. It reads
ĨFE-ISq→qg, a =

2CF η
2
J

u1−κ
(
η̃2P2

)1−κ

{
1

v
F (A (u) ;κ)−B (1 + κ)

(
1− 1

4
v (1 + κ)

)}
, (B.81)where we repla
ed heavy quark indi
ator Q for q in the subs
ript of the integral. In
onsidered limit

A (u) =
1

u

1

1 + (1 + 2u) η2a
, (B.82)

v =
1

1 + 2uη2a
(B.83)and η̃2P2 , η̃2J are easily re
overed from Appendix A.2.1.1. Follwoing Se
tion 3.7.2.3 weintrodu
e

u = rB (r) , (B.84)with B (r) given in Eq. (3.347). Rearranging the terms we get
ĨFE-ISq→qg, a =

2CF

vB (r)
η2J
η̃2P2

[
1

r
log (1 + r) +

(
1

r
log

1

r

)

+

]
− CF

η2J
η̃2P2

(
2− v

2

)( 1

u

)

[0,u+]

+ δ (u)CF

[
1

κ2
− 1

κ
log
(
1 + η2a

)
− 1

2

(
π2 − log2

(
1 + η2a

))
− 3

2κ
− 3

2
log u+ +

7

2

]
.(B.85)It 
an be now 
onfronted with [10℄ for massless spe
tator, η2a = 0, �nding agreement.
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Nomen
lature
ai the parton that results in splitting pro
ess a→ ai i, page 53
CM(p, q) 
enter of mass frame for momenta p and q, page 65
Cn the (quasi-)
ollinear subtra
tion term for n-parton 
on�guration, see equa-tion (4.34), page 104
DFn

the sum over all the dipoles with 
orresponding jet fun
tions, see equa-tion (3.423), page 92
p̃µk , ũ, w̃, z̃ dipole momentum and variables, page 47
η2X the res
aled mass or any other quantity X ; if X is a parton indi
ator,

X = i, j, a, . . ., then η2X = m2
X/2γ̃; if X is any other kinemati
 quantity

X = P2,Pa, . . . then ηX = X/2γ̃, see equation (3.267), page 74
η̃2X η̃2X = η2X/u, see equation (3.270), page 74
fa (z, µr) the renormalized distribution fun
tion for a parton a inside a hadron,page 17
F (R)

ab the parton inside a parton density renormalized in a s
heme R, page 18
Fn the jet fun
tion, page 19
γ̃ spe
ial invariant p̃ij · pa for FE-IS or p̃j · pa for IE-FS, page 48
mMS `masslessMS' � indi
ation for a massless 
al
ulation inMS renormalizations
heme, see equation (1.22), page 18
Na a
tive number of �avours used to de�ne CWZ subs
heme, page 22
N ′

f the number of all quark �avours plus gluon, page 23
Nf the total number of quark �avours (light and heavy), page 22
Nl the number of light partons (i.e. light quarks and a gluon), page 23
Nq the number of light quarks, page 23
NQ the number of heavy quarks, page 23
Nx the set of partons 
orresponding to the index x = f, q,Q, l et
.
P total dipole momentum pi + pj , page 47141
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Pa the invariant (pi + pj) · pa, page 47
Pab ordinary splitting fun
tions, page 17
pai pa − pi, page 53
Π(n|a) 
on�guration of n partons in �nal state, when the initial state is a, page 92
ij the parton that splits to i and j, page 47
Q dipole momentum transfer P − pa, page 47
dS(n) I,J the pseudo 
ross se
tion, see equation (3.425), page 93
v velo
ity of pa in CM(Q, pa) frame, page 48
ṽq

√
1−m2

am
2
q/γ̃

2 , page 50
XT the set of indi
es for enumerating the �nal state momenta in fa
torizedphase spa
e, where T is either FE-IS, IE-FS or FE-FS, see equation (3.67),page 46
X , Y the external invariants, see equation (3.128), page 53
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