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Preface

Quantum chromodynamics (QCD) is — as we believe — the correct theory of the strong
interactions, with quarks and gluons being its fundamental degrees of freedom. Although
there are many puzzles remaining unsolved, it is very successful in describing various
aspects of the modern high energy data. Theoretical predictions are based on two major
issues. The most important one is the asymptotic freedom, which asserts that the value
of the strong coupling constant is relatively low at high energy scales. It enables us
to use perturbation theory in calculations concerning scattering amplitudes. However,
there are no free quarks and gluons in the nature — they are all bounded in colourless
hadrons, thus the perturbative calculations are not the whole story, as the hadrons are
clearly of non-perturbative nature. Therefore, the second basic issue are factorization
theorems, which allow for a separation of a process to a non-perturbative bound state
physics and calculable in QCD hard scattering amplitudes. Technically the former is
described in terms of various distribution functions and distribution amplitudes, which
so far are most reliably taken from experiments.

Phenomenologically the most important non-perturbative input comprises parton dis-
tribution functions (PDFs). Historically, they appeared in a description of inclusive
lepton-hadron deep inelastic scattering (DIS) as an element of the parton model. Nowa-
days they are used also in the other high energy experiments like proton-proton collisions
at LHC for instance. In order to obtain PDFs one has to fit the theoretically calculated
cross section with suitable analytical parametrizations of PDFs to the real data. Most
often the electron-proton HERA data are used in this procedure. There are several
groups making an effort in extracting PDFs, e.g. CTEQ group [5] or MRST group [41]
to mention only the most known.

One may ask the question: what is the difference between various sets of PDFs? There
are at least a few odds. The first are different functional parametrizations and different
statistical methods used in fitting the data. However the main difference is connected to
a scheme in which the actual cross section is calculated. This issue is inseparably related
to heavy quarks and the problem of scales in QCD. Namely, there is a difficulty with
finite-order perturbative calculations if there are a few external parameters (scales) that
are very different. Those scales can be fixed e.g. by an external energy or by the masses
of the quarks. Actually it is the case in reality, as we have six quark flavours with three of
them being marginally heavier than the others. Moreover there is also substantial mass
splittings between the heavy quarks. In some situations, this difficulty can be solved by
means of the renormalization group methods, however there does not exist a uniform
perturbative expansion suitable for all the scales. Therefore one has to choose a specific
scheme. Intuitively it corresponds to a situation, where our measurement resolution is
too small to distinguish some tiny details and to large to see the whole thing. We can
however always change the instrument to get different insights. The same is true for the
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schemes in perturbative QCD.

For many years, a completely massless scheme have been the most standard in treating
DIS scattering. Actually, the scheme was massless in the sense of neglecting the mass
parameters in calculations, but changing the number of flavours in the same time. We
shall see the details later, however even intuitively we see that such an approach is very
limited in accuracy. It can be satisfactory only in certain, relatively narrow ranges of
kinematic space. Therefore also the other schemes were used, treating the heavy quarks
in a more ordered way. In particular, the schemes for charm, and bottom quarks were
used. Those calculations are very accurate in a suitable kinematic range, but — again —
those ranges are limited. Further development must have led to a composite scheme, that
is to change the number of flavours on one hand (like in the massless scheme mentioned
in the beginning of the paragraph) and to keep the masses finite on the other. The
most common name for the approach of this type is a “general-mass scheme” or “variable
flavour number scheme”. We shall see such a solution in details below in this work. So far
the general-mass schemes were used in inclusive processes, both in extracting the PDFs
and predicting experimental outcome.

There is however another very important class of high energy processes, namely the
production of jets. Since one measures also the spatial distribution of the outgoing
particles it can give much more information about underlying parton dynamics. Loosely
speaking, a jet — a collimated bunch of hadrons — is a remnant of a parton ejected from the
center of collision. Thus by analysing the momentum and energy of the jet, we get almost
direct access to the parton level subprocess. It allows for more precise measurements of
some quantities, for instance strong coupling constant (e.g. the analysis performed by
ZEUS collaboration using dijet production in DIS [1] and by H1 collaboration using
inclusive-jet, dijets and trijet analysis [32]). The jets production processes are also used
to obtain the parton distribution functions (together with the inclusive data). Theoretical
calculations needed to this procedure are again scheme dependent. In case of jets, there
is however much less theoretical development concerning heavy quarks. There are several
Monte-Carlo (MC) programs using massless quarks, e.g. NLOJET++ [42], DISENT [9],
both for hadron-hadron and lepton-hadron collisions (the last for neutral current without
ZY-exchange). For heavy quarks, there are some calculations for inclusive-jet and two
jets production at NLO [26] in a scheme with fixed number of flavours. It should be
remarked, that we mean here strict QCD calculations, not a model-based ones. For jets,
the former are much more involved and require special treatments of singularities that
appear at NLO (and higher) orders.

In this work, we propose a solution intended to fill the gap in existing heavy flavour
treatments. It is a general-mass scheme for jets production processes, based on some
solutions available on the market. We concentrate herein on DIS processes with neutral
current interactions. Further extensions are possible, as we shortly discuss in Chapter 5.
The developments we are presenting are essentially theoretical. However, in order to
support the validity of our calculations we give some sample numerical results using a
dedicated MC program. It is a part of a larger project that is currently under develop-
ment.

The material is organised as follows. First, in Chapter 1 we recall the basic formalism
we shall use throughout, including factorization theorems and jets treatment. Chapter 2
is devoted to existing approaches to heavy quarks in inclusive DIS processes and its
problems. Notably, it introduces the general-mass solution, which we later apply to jets.
Those two chapters possess mainly introductory character. Next, in Chapter 3, we re-
analyze so called dipole subtraction method for jets, assuming the most general situation
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of massive partons, including possible initial state heavy quarks. Finally we gather all the
pieces and construct the general-mass scheme for jets in Chapter 4. We introduce tons
of symbols throughout this work. Some of them may look messy, however this accounts
for the precise theoretical formulation of the material. In order to facilitate the reading
we put some of them in a Nomenclature. The technical details that are not essential in
the main text are listed in the appendices.
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Chapter 1

Hadrons, partons and jets in

QCD

1.1 Factorization theorems

Although QCD has incredible amount of successes, the theory is still not solved. For
instance, there is a colour confinement hypothesis, stating that all observable particles
are colour singlets. This conjecture has very strong experimental evidence; so far free
quark or gluon has not been found. However, such a property has not been derived
yet from QCD, although there are several theoretical clues, both perturbative and non-
perturbative. Moreover, there does not exist a complete description of composed objects
like hadrons in terms of the fundamental QCD degrees of freedom (i.e. quarks and
gluons). For example, it is known that many features of a proton can be explained by
assuming that it is build of three quarks w,u,d. Their masses (i.e. the parameters in
QCD lagrangian; mass is poorly defined quantity for an unobservable particle) are about
a few MeV. On the other hand, the proton mass is well defined and can be measured — it
turns out to be around 1 GeV, clearly not about three times the masses of constituents.
This is an evidence of very important non-perturbative phenomenon, namely spontaneous
chiral symmetry breaking. It generates so called constituent quark mass, which should
be about one third of the proton mass. Such a value cannot be described by perturbation
theory, the tool which at present is best understood and under control. There are much
more problems in describing hadrons within perturbative QCD.

All these features draw hadrons as a very complicated, non-perturbative objects.
Nevertheless, there are possibilities to get certain insight into the structure of hadrons
using perturbation theory. As it was already mentioned, QCD has a property of being
asymptotically free, i.e. at very short distances the QCD coupling is very weak, giving
some chances to use perturbation theory. This is a key observation leading to modern
high-energy experiments; collisions of particles with higher energies can probe smaller
space-time volumes. However, since we probe only a small part of a colourless hadron,
we can hope to have perturbative description only partially — the rest must be somehow
parametrized, or obtained by other methods. This is in fact a very loose description of
famous factorization theorems, which we now shall recall in some details. In our intro-
duction we shall try to give mostly necessary results, but we recall also some completely
elementary facts concerning factorization.

13



14 CHAPTER 1. HADRONS, PARTONS AND JETS IN QCD

We are mainly concentrated on lepton-hadron deep inelastic processes throughout.
Moreover, in this section we limit ourselves to inclusive processes only. There are es-
sentially two possible approaches to factorization, which percolate at some stages. Both
have its own cons and pros.

First one, relies on the operator product expansion (OPE) [54] and is historically the
first approach to factorization [7], of course except Feynman’s parton formalism consid-
ered before QCD had been born. Although OPE allows for very systematic treatment
of all terms that can appear, its applicability is rather limited to the inclusive processes
only.

Second approach is based on general power counting theorems [40, 39] and methods
developed in [21]. Let us recall the basic ideas, as they shall be important later, when
we discuss more complicated topics. For a review see e.g. [17, 15].

Consider a generic unpolarized boson-hadron cut amplitude, as shown in Fig. 1.1A.
We denote proton momentum as P and boson as ¢, with ¢> = —Q?. Moreover, we assume
that the boson virtuality Q2 is much larger than all the quark masses (including possible
heavy quarks) and that the Bjorken variable 25 = Q?/P - ¢ is fixed. The situation where
Q? is of the same order as the mass of a given heavy quark will be discussed in the
next chapter. It turns out that all the leading contributions to the cut amplitude can be
characterized by the cut amplitudes that have the form showed in Fig. 1.1B. The upper
blob has all the internal momenta off-shell by order Q2 and thus is called a hard part.
Note, that although some of the internal lines are cut and hence on-shell, they effectively
can be treated as off-shell lines by virtue of the optical theorem. The lower part in
Fig. 1.1B, the soft part, incorporates hadronic states and two partonic lines joining it
with the hard part. Those lines are either quark or gluon lines with virtuality much lower
than Q2 and momenta collinear to the hadronic momentum. Tt should be mentioned that
the internal blob of the soft part, can still have UV singularities, see below.

The contributions that have structure described above are called twist-2, as they
correspond in OPE language to a series of matrix elements of local operators with twist!
equal to 2. Contributions which have more than two lines joining hard and soft parts have
higher twist. Recall that such higher twist contributions are suppressed by m?/Q?, where
m? is the mass of the heaviest quark taken into account. There are several complications
(see e.g. [15]), however the general picture is as just described.

Note, that the two lines joining both parts cannot correspond to a heavy quark with
mass of the order of 2, due to the assertion that they have low virtuality comparing to
Q?. This fact shall be important later on.

Now, we come to more precise definitions of the soft part and its connection to the
rest of the process. As is commonly known, the soft part can be parametrized in terms
of parton distribution functions (PDF) (we shall interchangeably call it parton density)
inside a hadron. In order to proceed we introduce light-cone coordinates; any four-vector
v can be decomposed as

o = ot 40Tk + ok, (1.1)

where
vP=v-n, v =v-n (1.2)

with two light-like vectors n,n defined as

1 1
n=—(1,0,0,—1), ,7=-—(1,0,0,1). 1.3
ﬁ( ) \/5( ) (1.3)

1In OPE formalism twist is the difference between spin and canonical dimension of the operator.
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Figure 1.1: A) Cut Feynman amplitude for unpolarized boson-hadron process. B) Lead-
ing regions of the cut amplitude for large virtuality of the boson. The lines connecting
upper and lower parts have low virtuality and can be light quarks or a gluon.

Let us now assume that the momentum £ joining the hard and soft parts is parametrized
using the light-cone variables and that suitable frame is chosen, such that P% is large
~ \/@ Then, since k have small virtuality comparing to Q? its k= and k7 components
can be neglected in the hard part. Then, the connection of the two parts can be realised as
an integral over the k™ component. The rest of the momentum integration (i.e transverse
and “minus” components) are embodied in the definition of PDF, where they cannot be
neglected. Its external lines (connecting it with the hard part) effectively lie on the
light-cone.

All these remarks lead to the following definitions of the parton distributions. For
the quark density we have

f,;B) (x) = i /dyfefmlﬁyi <P Wq (yfn) AT [yfn, 0] g (O)‘ P> (1.4)

and for gluon

B (2) = — /dy—e—“”’“f <P‘FX# (yn) [y n.0] ., Fif, (o)‘ Py (15)

T 2rzPt

Let us now explain the above notation. First, there are quark field operators 1, and the
gluon field strength operator F5” = 0" Ay, — 0V AL + g fopr AL AY,. All these fields are
unrenormalized, thus the PDFs defined in such a way are the bare ones as indicated by
the superscript?. Parameter x corresponds to a fraction of “plus” component. of hadron
momentum that is transferred to the hard part, that is we assume kT = zPT and is
fixed. Next, y is a space-time point we integrate over, with however fixed y* = 0;
the integration over y~ in disentangled while the one over yr is performed (or hidden).
Finally, there is a gauge link in order to make the definitions gauge invariant. It reads
in the present case

[y™n,0] =P exp { ig /Oy dz A (2) tc} , (1.6)

where the path joining both points is chosen to be a straight line. In particular, when
we use light-cone gauge defined as A - n = 0 the gauge link is a unity operator (it is

2Since we follow here mainly [15] and other papers of this author, we use the term “bare” in the sense
of “unrenormalized”. It has nothing to do with the IR unsafe PDFs, which actually are not needed in
the formalism.
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useful in some general considerations). The last remark concerning (1.4), (1.5) is that
only connected diagrams should be taken into account.

Ag already mentioned, the parton distribution functions defined above contain UV di-
vergences. Required renormalization concerns not only the elementary fields, but also the
bilocal quark or gluon operators itself. As is well known, the renormalization introduces
additional dependence on apriori unspecified mass scale ..

It can be proved that the relation between the bare densities and the renormalized
ones has the form [16, 15]

£ (e, p27) :Z/%Kab (ga (u?);E) 22 (2), (1.7)
b

where the renormalization kernel K, is a perturbatively calculable quantity. Note that
we have introduced dimensional UV regulator ¢ defined as

D=4-—2, (1.8)

where D is the spacetime dimension. The summation in (1.7) goes over all possible
kinds of the lines joining the soft and hard parts (exact sets shall be defined in the next
chapter). The kernel K, can be calculated by considering the same objects as f, but
with the hadronic states replaced by the partonic ones. Thus we define the quantity Fyp,
which we refer to as a density of parton b inside a parton a. The definition is exactly the
same as for f, with the hadronic state replaced by the on-shell state a. The quantities
Fap can be calculated perturbatively in QCD with the help of special Feynman rules
[16, 17] — we shall use them for massive quarks in Chapter 4.2. Actually, we have to
again distinguish between the bare F éf) and the renormalized one F éf), however the
relation between the two remains the same as (1.7). This allows to obtain K, once
specific renormalization scheme is chosen (see also below).

Since the bare densities féB) are defined by means of the bare fields only, they are
completely independent on the renormalization scale. Therefore it is relatively straight-
forward to derive an evolution equation for the densities. It reads

d dz z
(R) (1 12) — “p (_ ) (R) (2 1.9
dlogﬂr fa (:L',,LLT) ;/ P ab xﬂaﬁ b (Z,,LLT) s ( )
where the evolution kernel P, is related to the renormalization kernel by the formula
aKll i) S
P, (i, as) — %, M (1.10)
T Oarg
with K4, defined by the Laurent expansion
oo 1 n
Kap (2, 0018) = 6 (2 = 1) 0ap + Y <—) Kapn (2, 00). (1.11)
n=1 €
For example, in the MS scheme with N + flavours we obtain
Pay (2,05) = 6 (2 — 1) 60 + ;“_SP;,y (2)+ 0 (a?), (1.12)
Y

where Pa(;) are famous lowest order splitting functions. They read

1+ 22
PV (z)=Cp ( - )+, (1.13)
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1 1-—
( ) + Z—1+z(1—z)
1—=z X z
11 2

+5(1-2) (EC ngTR), (1.14)

1
P{) () =2Ca

Pl (z)=Tr [1-22(1-2)], (1.15)

1+ (1—2)°
—

Pl (z)=CF (1.16)

The “plus” distribution is defined in a standard way as

hy (z)h(z)5(lz)/0 dyh(y). (1.17)

Note, that the support is [0,1] — we pay attention to this detail, since we shall often
use distributions with different supports (see also Appendix B.3). Since the splitting

functions Pé;) are often used in this thesis we drop the superscript in what follows
PY) (2) = Puy (2). (1.18)

We turn also attention to our convention of ordering the subscripts. The notation ab
corresponds to a splitting process a — b, where parton b takes the fraction z of the
original momentum. The physical interpretation of the functions P, is then such, that
it gives a probability density for such a splitting.

Let us now come back to the factorization. Once the renormalization of the PDFs
and of the hard part is done, we can finally write the factorization formula. In what
follows we drop the renormalization indication in the hadronic PDFs

£ (2007) = fa (2,053) - (1.19)
The factorization theorem takes the following form

m2

1 d .
do (P,q;25,Q%) =) / 72 fa (205, 02) déa (2P, q; Q% i3, pi2) + O (@) . (1.20)

Here do corresponds to a differential DIS inclusive cross section, while dé, is a partonic
cross section which is infra-red (IR) finite. Besides UV singularities, there are also
divergences which originate in zero mass of the gluons and there are two sorts of them: the
soft singularities and the collinear ones. They remain even after renormalization, however
the soft and mixed soft-collinear divergences are cancelled between different contributions
(we shall take up this issue in the next section). What remains are the collinear ones.
The factorization procedure asserts, that they can be included in PDFs as it is essentially
a nonperturbative object and we shall never calculate it using perturbation theory. Such
a procedure is at the expense of introducing additional factorization scale yf. Apriori it
is arbitrary scale and one often sets it equal to the renormalization scale. Moreover, there
is certain freedom in choosing actually subtracted terms. Such a prescription defines the
factorization scheme. Once it is specified, we can unambiguously derive dé, as follows.
We use the factorization formula (1.20) at the partonic level (compare to derivation of
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the kernel K,;). Thus, we have

1
d
o (p, ¢, Q% p7) = / TS (23 FGD (2o2) + S (2, 113) |
b x

m2

where the functions ]-'(Sf) are the renormalized densities of parton inside a parton dis-
cussed before (we indicated also that unsubtracted cross section is renormalized). The
quantities S and S,; define our factorization scheme, see below. The above equation can
be solved order by order, calculating ngR) and F lgf’) to a desired order.

As an illustration, let us consider completely massless case. Choosing MS scheme to
define PDFs we get at the lowest nontrivial order

]:trzrl;TS (ma,u'g) =06(1—2)da + % (_%> Py (). (1.22)

The superscript mMS explicitly indicates that we use MS renormalization scheme and
completely massless calculation. Since MS can be also used in a massive case, we feel a
necessity to distinguish both situations as we shall encounter them in one place later on.
We see that there is a collinear pole 1/e in the result, which cancels the similar pole in
do,. Next, if we choose the factorization scheme to be MS, we have

Sab (2,12, 17) =0, (1.23)

22\ _ 1 Ay 8 1.94
S(,U'ra:uf) F(l*{-j) ( ’u? ) ( )

Let us conclude this section by giving some summarizing remarks. First is that
hadronic PDFs are essentially nonperturbative, and have to be obtained from experiment,
lattice calculations or low energy effective models. Most reliable are those obtained by
global fits to data (e.g. [38]). Moreover, PDFs are scheme dependent, and as such are
unphysical. Therefore one have to be careful when mixing PDFs obtained by one method
with calculations in some other scheme, as the reminder (O (...) terms) in factorization
theorem can become large.

1.2 Jets in QCD

In the previous section we have considered the factorization theorem essentially for inclu-
sive DIS scattering. One of the elements of the actual proof of the factorization property
is the cancellation of the soft singularities. In this section, we take a closer look at this
problem. In particular, we describe a method allowing for this cancellation in case when
the process is not fully inclusive but consist in jets. This shall be a very general presen-
tation of the topic and it will evolve throughout the whole dissertation. We follow [9] in
this introduction.

Before we start, let us introduce some notation. The n-particle invariant phase space
(PS) shall be denoted as

d®y, (p,¢;p1,- - - pn) = d®p (0, q; {pi}iy), (1.25)
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A) B) C)
: n . n+1 R n

Figure 1.2: Tllustrative presentation of the amplitudes for n-jet production. A) LO
amplitude, B) real emission corrections, C) virtual corrections.

where p and ¢ are incoming momenta. On the right hand side we have used mathemati-
cians’ notation for sets, as it will often allow to make formulae shorter. The phase space
can be expressed as

d®,, (p,q; {pi}i_y) = (2m)7 6P (p +q- Zm) [[dr: (1.26)
=1 =1

in terms of the invariant measures for a particle 4

dPpi oy (p7 —m?
dl; = dT (p;) = (2+7T§D‘1 ). (1.27)

All the definitions are written in D space-time dimensions.

A tree-level amplitude with incoming momenta p, ¢ and n outgoing states shall be
denoted as M,, (p,q; {pi};—,)- At this stage all possible colour or spin indices are sup-
pressed. If relevant, we will adorn the amplitude by various symbols and/or indices, for
example we will put a hat if we consider external fermions to underline that we work
with a matrix. Very often we will refer to a part of the amplitude, for example when two
external legs are replaced by one. Then the reminder is referred to as reduced amplitude.

Let us now switch to the actual matter of this section. We start with the very
schematic description of NLO calculation for n-jets. Suppose for simplicity that there
are no initial state hadrons, e.g. electron-positron annihilation. A detailed formulae for
DIS shall be given in Section 4.3.

To NLO accuracy, the total cross section can be written as

on = o0 4 gNLO, (1.28)

The leading order contribution reads (Fig. 1.2A )
okO = /d(I)n M., |° E,, (1.29)

where M,, and d®,, are explained above (we suppress all momenta dependence), while
F,, is certain (generalized) function that gives us an observable we are interested in (i.e
it may include step-functions for kinematic cuts, delta functions for differential cross
section, jet algorithms etc.). We shall refer to F), as a jet function. We describe its
properties in detail later.
The next-to-leading order term has in turn the following form
oNLO — B4 5V (1.30)

n



20 CHAPTER 1. HADRONS, PARTONS AND JETS IN QCD

where o represents the real corrections, i.e the ones connected to the emissions of

additional on-shell particles in the final state (Fig. 1.2B ). Next, " corresponds to loop
corrections to M, (Fig. 1.2C ). The last can be written as

oV :/d<I>n MleoP) 2 o (1.31)

The notation is symbolic here, M{°°®? is actually an interference between the tree level

amplitude and the one containing loop corrections. For the real corrections we write

ol = /d@,ﬂr1 IMpi1|® Frgr. (1.32)

As already stated in the previous section, higher order calculations in QCD lead to
divergences. First, there are UV singularities, which are removed by renormalization and
we do not consider them here any more. Second, there are mentioned IR singularities
coming from vanishing propagators due to almost zero energy of massless particles or
collinear emissions. We shall define them precisely in Section 3.2. Both kinds of sin-
gularities appear in o' and ¢v and are regularized e.g. dimensionally. However the
physical cross section, which does not distinguish between the soft or collinear emissions,
has to be finite. Therefore IR singularities have to cancel between both terms in cross
sections (except possible pure collinear singularities connected with initial state emis-
sions which are removed by factorization). It is precisely stated by means of the KLN
theorem (Kinoshita-Lee-Nauenberg) and its extensions, see e.g. [48, 49] and references
therein to the original papers. In what follows we assume that the jet cross section under
consideration is infra-red safe, that is it fulfils all the assumptions of the KLN theorem.

This however requires to impose some restrictions on the jet functions. Namely, if
one of the final state gluons in (n + 1)-particle phase space is soft (its four-momentum
vanishes) we must have F,, 1 = F,,. Similarly, if two of the final state partons become
collinear, their F;,;1 function must also coincide with F;,. On the other hand, if we enter
a singular region in n-particle phase space F,, must vanish. Those rules can be extended
to initial state partons and massive partons as well.

Now, since we know that IR singularities cancel, there remains the problem of tech-
nical nature, which however is of great importance. Namely, both corrections o and
oV are integrated over different phase spaces with different jet functions. Analytical cal-
culations are here extremely difficult and impractical, thus one often uses Monte Carlo
methods. The problem is now to cancel the singularity that appears during numerical
integration in of* with analytical singularities in ¢, e.g. 1/& poles.

Historically the first method was so called phase space slicing method. It can be
illustrated by simple mathematical example (e.g. [36]). Suppose we have the following

finite expression
1
. hz) 1
I=lim {/0 dx e Eh(O)}, (1.33)

~K—0

where the dependence on x in h is very complicated but such that the integral exists.
The first term in curly bracket corresponds to a real contribution regularized dimension-
ally, while the second term is the corresponding soft pole in “virtual correction”. Both
singularities cancel as actually the real value of the integral is

Y AWIGEYI0)
17/0 d . (1.34)

T
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Suppose however, that we want to cancel them numerically. To this end, we divide the
integration domain fol co= f06 oot f; ..., with < 1. Since & (z) is regular enough,
we can approximate h (z) = h (0) for « € [0, ]. Then, after simple steps we get

1
Izh(O)logé—i—/ dm@. (1.35)
5

Note, that the singularities cancelled and the integral can be now performed numerically
with removed regularization, i.e. we set k = 0. There is however a disadvantage as the
result is approximate.

Another method, advocated in this work, is the subtraction method [36]. One con-
structs an auxiliary cross section

O.Sub = /dq)n_;,_l |MZU£1‘2F’” (136)

which mimics all the singularities of 0%, i.e 0®"P = ¢® in the singular regions of PS (note,
there is F,, for n partons). Beside those points of phase space it can be anything that
have the properties of a cross section. On the other hand, it must be chosen in such a
way, that the analytical integration over one-particle subspace is possible. That is, if we
write PS schematically as

d®, 11 = dP, ® do, (1.37)

we must be able to perform [ d¢ ‘M;“jﬁl ° analytically. It leads then in dimensional
regularization to poles of the form 1/¢ which cancel those in virtual corrections due to
the KLN theorem. The procedure of calculating NLO contribution using this method
can be summarized as follows

O_NLO _ (O’R _ o_sub) + (O’V + o_sub)

su 2
= /dq)n+1 (|./\/ln+1|2 Fn+1 - |Mn4tr)1‘ Fn)
+/d‘1)n {MS°°p)2+/d¢\MZ”+b1 2}Fn_ (1.38)

In the second line, due to IR properties of the jet functions, we can perform the integration
in four dimensions and it is finite. In the third line a cancellation of the poles takes place
and after that we can set D = 4.

This method has an obvious advantage, namely it is exact. Second, all the integrals
over one-particle subspace have to be made only once and they are universal. This can
be also generalized to higher orders, we however need much more subtraction terms.

A particular choice for 05" is realized in [9, 25] for massless partons, and in [10] for
massive quarks in the final state (with some restrictions discussed in 3.1). This specific
choice is called dipole subtraction term. Actually, a solid part of this work is devoted
to generalizing this approach to completely massive case, such that one can practically
apply massive factorization procedure described in the Chapter 2.

The dipole method has, however, also some drawbacks. First, it is relatively compli-
cated, as we shall see. Moreover, it is unlikely to be generalized easily to higher orders.
The reason is that it operates on the amplitudes squared and the number of subtraction
terms increases rapidly. There is some hope connected with so called antenna method
which constructs subtraction terms at the amplitude level, see e.g. [33]. Second problem,
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which actually concerns the subtraction procedure in general, is that of numerical nature.
Namely, depending on implementation, there may be some problems when performing
the integration in the second line of (1.38). Thus effectively, one may be forced to use a
support in a form of a slicing-like method.

1.3 Quark masses in QCD

In the previous sections we did not pay special attention to the quark masses. Here we
recall some basic facts connected with their inclusion in perturbative calculations. The
following material is essential to the whole work. In some parts we rely on [13].

Today we know six flavours of quarks with the following masses® [43]:

My = 1.7-3.1MeV, mg =4.1-5.7MeV, my ~ 100 MeV, (1.39)

me ~ 1.29GeV, mp~4.19GeV, m; =~ 172.9GeV. (1.40)

Recall now, that the basic requirement to be in a perturbative regime, is that the typical
energy scale, say @, satisfies Q) > Aqcp. Since Aqep ~ 200 MeV we can safely neglect
the masses of u, d, s quarks in perturbative calculations. If the scale is high enough, we
can also make such an approximation with the other quarks.

On the other hand, apriori we do not known if there exist heavier quarks. Similar
situation used to be before the discovery of the top quark. Thus, the question was about
the relevance of field theoretic calculation, where some of the quarks are possibly missed.
The solution to this problem is formulated by means of so called decoupling theorem [4].
It states that for a Feynman amplitude with a typical momentum scale @ we can drop
all the diagrams with quark mass m > @, doing error O (Q/m). Let us now assume,
that the remaining number of quark flavours is Ny, thus all the renormalized parameters
(masses, couplings etc.) in such an effective theory are calculated using this number.
In general, the renormalized parameters in the effective theory with Ny + 1 flavours are
different.

The problem however arises, when the masses are not extremely different, as actually
happens for charm and bottom quarks. For instance, when the scale is close to m.., we can
make a mistake of the order m./m; ~ 30% (for an example see e.g. [13]). Fortunately,
there is a better method than such an uncontrolled decoupling. It reduces to the last
in the limit of very large masses. It is a special renormalization scheme existing in the
literature as CWZ (Collins-Wilczek-Zee) renormalization scheme [19, 45, 14]. In order
to define its basics let us introduce an active number of quarks N,. It is a number of
quarks lighter than the fixed external energy scale (note, that we do not have to set those
masses to zero). The CWZ scheme consist in the subschemes characterized by N,. In
each subscheme the renormalization is done according to the following points:

a) the graphs with internal lines being active are renormalized using MS

b) the graphs with at least one internal heavy quark line (inactive) are renormalized
by zero-momentum subtraction

c) masses of heavy quarks are usually defined as the pole masses

3 As the free quark states are unobservable, these are just parameters obtained in MS scheme at scale
about 2 GeV.
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This scheme possesses several important properties (see e.g. [13]). For us two of them are
the most important. First is that it satisfies manifest decoupling. That is, if the external
scale is much smaller than the masses of inactive quarks, the renormalized parameters of
a subscheme with N, active flavours are the same as in effective theory with Ny = N,.
Hence we can just drop all the diagrams with inactive quarks. The second important
property is that the evolution of the renormalized parameters in each subscheme is exactly
the same as in MS with Ny = N,, in particular the evolution kernels are massless.

This last property is of great importance in this thesis. As we have seen in Section
1.1, the operational definition of parton distribution functions includes a renormalization
scheme. Since we are going to treat factorization with the heavy quarks it is convenient
to define PDFs in CWZ scheme. Then, due to the second property, such PDFs undergo
the standard DGLAP evolution equation in each subscheme. We shall discuss it in details
in Section 2.4, while in Section 4.2 we calculate some of them in this scheme.

There is one more comment in order. The purpose of introducing such a scheme, is to
be able to evolve a given parameter through all applicable scales without loosing accuracy.
It is realized by switching the schemes at given switching points. Therefore, we have to
state a matching conditions at those points* in order to have a starting parameters in
evolution. Such conditions were obtained even up to three loops for the coupling (using
effective theory formalism [12]) and up to two loops for PDFs [8].

In the end, let us introduce some more notation we shall use throughout. First, we
often need to distinguish between heavy and light flavours. Thus we define Ny = N,+Nq,
where ¢ is a generic light quark, while Q corresponds to heavy quarks. Sometimes we
refer to light partons number, which is simply N; = N, + 1, as gluon is always light. If
we want to refer to all the quark flavours, but including gluon, we use the symbol N }
For all the defined symbols, we introduce the sets, containing corresponding flavours and
their anti-flavours. The sets shall be denoted by blackboard font, for instance N¢, N; etc.

4In general, one should distinguish between the switching point and a matching point. The first is the
point in which the transition between the schemes takes place. The second is a point used to recalculate
parameters from one scheme to another. In this thesis we set them equal.
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Chapter 2

Inclusive DIS with heavy quarks

2.1 Introduction

As we have seen in Section 1.3, there are certainly some complications when there are
heavy quarks with masses that are neither marginally large nor negligibly small. The
problems are even more evident in the processes which require factorization. In Section
1.1 we recalled the factorization theorem assuming that the masses can be neglected. In
case, when they cannot, such a treatment is obviously very inaccurate. In this chapter,
we shall analyse this issue in more details in the context of inclusive DIS scattering.

First, in the next section we recall the simplest possible way of including heavy quarks,
actually treating them as massless partons. This scheme, often called zero-mass variable
flavour number scheme (ZM-VFNS) is most often used in phenomenological analysis of
DIS processes. However, as we shall see, it is inaccurate in non-asymptotic regions of
energy scale. That section is also devoted to introducing some notation which we use
in this and the next chapters. Further, in Section 2.3 we briefly describe more accurate
treatment, however aiming at completely different kinematic regime than the latter. This
second solution is often referred to as fixed-flavour number scheme (FFNS), and takes
all the effects of heavy quarks into account. The problem is however, that as the energy
scale increases, such a prediction becomes less accurate, unless we go to higher orders of
perturbation theory. Needless to say, such a massive high-order calculations are much
more involved and time-consuming than the massless ones, not to mention generalizations
to exclusive processes.

Therefore, it is desirable to have a scheme which is applicable at intermediate energy
scales and contains both above schemes as a limiting cases. Such solutions were indeed
developed [2, 50, 8], however with explicit treatment of inclusive processes only. What
is worth emphasizing, the approach cited as [2] was proved to all orders of perturbation
theory [15]. We shall briefly describe this approach, referred to as ACOT (Aivazis-Collins-
Olness-Tung) scheme, in Section 2.4. It is based on CWZ renormalization scheme for
parton densities and can be easily generalized to another IR safe cross sections.

For a short review of the mentioned treatments of heavy quark production in inclusive
DIS see e.g. [51, 52].

We remark, that although this chapter is considered to be introductory, we discuss
also a new improvement of existing methods at the end of Section 2.4.

25
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2.2 Zero-mass variable flavour number scheme

Let us start by defining our object of interest in this chapter. We shall be concentrated
here mainly on the structure functions parametrizing the cross section for inclusive DIS
processes, notably F (zp,Q?), and its dependence on the photon virtuality Q*. Re-
member, that the structure functions are obtained by means of a suitable projection of
hadronic tensor WH¥, defined as usual in terms of matrix element of electroweak currents
sandwiched between hadron states

1
v . 2\ __ . : 2
W (a, Prep, Q%) = - 3 PZ/dcbl (g, P; Px) (P51 (0)] Px) (Px |5 (0)| P),
spin P,

(2.1)
where the second sum goes over all final states Px. The projection is made using suitable
base tensors made of the vectors P, g and the metric tensor. Neglecting the hadron mass
we get for Fy

2R 2xp v
B (2p,Q%) = 53 <W§ +(D-1) P—qVI@,P“P ) : (2.2)

If we replace the hadronic state by a parton, such a tensor is called the partonic
tensor. We shall denote it as w*”. Both tensors are related by means of factorization
theorem — we shall give some examples below. We do not give further details related
to other structure functions and related issues as they are all standard (for the precise
definitions incorporating quark and target masses see [3]). Such limited considerations
are completely enough to elucidate the basic problems with heavy quark masses, as we
shall see.

Before we proceed, let us recall, that we denote a generic heavy quark by symbol Q.
The light quarks are denoted as ¢, there should be no confusion since this is only used
in this meaning as a subscript.

Let us start further considerations by noting, that the simplest possible approach to
heavy quarks is when Q? — oo with xp fixed, such that all the existing heavy quark
masses can be neglected. Then, the precise predictions are given by the factorization
theorem (1.20), which is exact. All the quarks (including heavy quarks) are treated
as massless partons having corresponding PDFs. Such situation is obviously not very
plausible. In practice the energy scales do not tend to infinity, moreover many interesting
phenomena exist at lower scales. Secondly, we have several heavy quarks with large mass
splittings, as discussed in Section 1.3. On the other hand, when Q? is much smaller than
the mass of a given heavy quark, it may be dropped from calculations due to decoupling
theorem mentioned also in Section 1.3.

These two marginally different situations (Q* > mg and mg > Q?) motivate the
following simplest scheme of treating “heavy” quarks:

a) completely decouple given heavy quark Q when m2Q > 2, i.e. treat it as infinitely
heavy

b) treat Q as a massless parton with associated PDF, when Q* > mg

We have assumed here that the factorization and renormalization scales are equal to Q.
If there are several heavy quarks, we have the composite scheme, with subschemes char-
acterized by an active number of flavours N,. Thus we have a set of parton distribution

functions f,EN“) and couplings agN“). We note, that this scheme is a special kind of CWZ
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scheme mentioned earlier, in which PDFs are defined. All the masses are however set
to zero. Since CWZ satisfies manifest decoupling, we just drop the inactive quarks, and
each subscheme is effectively a MS scheme with N, flavours and corresponding DGLAP
massless evolution of PDFs. As already mentioned, the schemes with different N, are
actually different renormalization schemes, they differ by finite terms and a relation
between schemes with N, and N, + 1 flavours can be stated.

Here the switching point is usually chosen to be 1, = mq, where Q is (N, + 1)-th
flavour. It is convenient, since then the heavy quark density féN“H) is zero at the
threshold!. Tt follows from two facts. First is just a precise form of the relation between
PDFs in two subschemes [18]. Second is that below pyy it is suppressed by power of
Aqcp/mq due to decoupling theorem. Thus we have the continuity condition

1" (zotn) = 1 () = 0 (23)

Then, above the threshold it is evolved using DGLAP equations with N, + 1 flavours
starting from zero value.

As already mentioned in the introduction, such a scheme is called zero-mass variable
flavour number scheme (ZM-VFNS). Corresponding factorization theorem takes the form

2
Wi (¢, Pixg, Q%) = Y fN) (u7) ® by (q,pa; %) , (2.4)
a€N,

where we explicitly denoted the dependence on the factorization scale (equal here to the
renormalization scale). We also introduced the convolution symbol, which simplifies the
notation; it is defined here as

f@wz/;%f@w(%). (25

In (24) p, = &P, nevertheless we leave p, as this notation is more general. As we
vary the scale, the active number of partons changes. Such a formula is actually valid
up to corrections of order O (m?va / Qz), where my, would be the mass of the heaviest
active quark, if we did not set it to zero. Therefore, in reality such an approach is
unreliable for Q% around the masses of heavy quarks. Moreover, as we reach the region
of validity of (2.4) for one heavy quark, say charm, we simultaneously can enter the
region of inapplicability for the beauty quark. Thus, only at really asymptotic regimes
this scheme is correct, as we remarked earlier.

To illustrate this approach, consider now a calculation of F5 structure function in
this scheme up to order a,. Let us assume we work in the scheme with N, = 4, that is
besides gluon, u, d and s quarks, which are always massless, we have also charm ¢

N, = {g,u,ﬂ, d,d,s,s, c,E} . (2.6)

cl? (Q—j> +cfM (Q—jﬂ : (2.7)
Ky Ky

Tt is however true only at leading and next to leading order, see [8].

Then, to this order

Py (on @) = Y fa (1)

a€Ng,
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Figure 2.1: A) Feynman diagrams contributing to structure functions in ZM-VFNS up
to order a!; B) The same for FFNS. There is only boson-gluon fusion at order o!. Thick
line corresponds to a heavy quark.

We are actually interested in charm contribution to F», which can be picked up from the
above equation. Setting ,ufc = ? (and the same for renormalization scale) we have

F5 (05,Q%) = [£. (Q%) + £ (@)] & [C + ] + £, (@) 2 €. (28)

where the result for coefficients C; in massless MS scheme is well known (e.g. [28], for
corresponding diagrams see Fig. 2.1A ) and reads

CO(2)=e220(1—2), (2.9)
Wy 2o |LE2 122 3 1
CiY (z) = e 5 Cr [1_2 <1og . 1)t (94 52) L (2.10)
as

- {2qu (2)log . - Z 1 82(1—2) - 1] . (2.11)
The splitting function P, and “plus” distribution were defined in Section 1.1.

The behaviour of this solution will be explicitly demonstrated in Section 2.4, where
we present some plots comparing this NLO calculation to other schemes.

Although — as we have just seen — such a scheme is very simplified, it is still most
commonly used in PDFs global fits to data (e.g. CTEQ fits [38] and earlier). Its great
advantage is simplicity and practicality. It should be also mentioned that it was very
successful in describing large amount of modern high energy data.

2.3 Fixed flavour number scheme

Let us now present another approach, which is applicable when @Q? is about the heavy
quark mass mQQ. Actually, it is a generalization of the previous scheme, where Q is
inactive, but has finite mass. Thus we have N, massless partons undergoing massless
evolution and one heavy flavour, which can be only produced dynamically. For example,
at LO in DIS it is the boson-gluon fusion (BGF) process depicted in Fig. 2.1B.

The factorization theorem in this case takes the form

W (0, Py e, Q% mb) = 2) @i & M), (Lao
uv \4, 7$BaQ amQ) - Z fa (/j/f)®w;,w q;Pa; MQ; ,UQ + 2 . (212)

a€N, roPf mq
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Here, the hard scale is given by the heavy quark mass and on the contrary to (2.4) N,
does not change. Therefore such a scheme is called fixed flavour number scheme (FFNS)
and was pioneered in [28, 27, 37, 29]. We note, that here the convolution symbol is
defined as in (2.5) but the integration limits depend on quark masses (we shall see the
example below).

In order to discuss some of its properties, let us again consider the explicit result,
namely the contribution to F5 coming from the charm quark. As already mentioned, the
situation where charm connects the hard and soft parts is suppressed by A?QCD /m?2, thus
the perturbative calculation for F¥ starts at ol with BGF process (Fig. 2.1)

Loe 2 2 y (me
o (z5,Q )zfg(Q)®C§,)(@ , (2.13)
with coefficient given by (e.g. [47])
CW (z,p) = e? % [2Pyq (2) + 4p2® (1 — 3z) — 8p*2%] log Lo
s (2 ¢ o 94 1_ v

+(4z(1—-2)(2—p) — 1)21}}, (2.14)

where we abbreviated p = m?2/Q? and v = /1 —4pz/ (1 — z) is the velocity of the

charm quark in the photon-gluon CM frame. Now the lower limit on the convolution is
Zmin = LB (1 + 4p).

Let us discuss now this result. First, let us note that it contains the powers of m2/Q?,
which are lacking in ZM-VFNS treatment (higher twists). Therefore indeed it is reliable
calculation when @Q? is of the order of m?2. Now, the question is what is the behaviour of
this solution when the scale is much larger. In this case, we find that

a,
i) (2.p) = €2 5= Py () log p + O (p). (2.15)
Thus we see, that we have a potentially large logarithm of the heavy quark mass and
the hard scale ratio. Such logarithms appear in every next order of perturbation theory,
typically

m
clm) = Z cgm,c) log" p. (2.16)

k=0
what makes such an expansion unreliable. The solution is to resum all the powers of
as in front of the given power of logarithm, i.e. to suitably rearrange the above series.
Then, we actually arrive at the zero-mass scheme with charm being a massless parton.
However, one has to bear in mind that it happens at a price of loosing control of the
terms O (m?/Q?) (actually, if we do not track higher twist terms, which is not easy and
so far has not been solved). In the next section we shall present some plots comparing
this scheme to ZM-VFNS.

There is one more comment, in order. One can ask when this fixed flavour approach
fails, since logarithm is a very slowly increasing function. In [29] it was argued, that
the cross sections calculated in this approach at NLO are stable even for relatively large
scales, however one has to use a special sets of PDFs, namely so called dynamical PDFs
(see e.g. [53]). Such an approach however does not solve the basics of the problem,
therefore we shall not follow this path in this thesis.
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2.4 ACOT scheme

As we already anticipated in the introduction, there exist solutions which contain ZM-
VFNS and FFNS as a special cases. In the following section we describe one of them,
the so called ACOT scheme [2, 15]. We believe it is the best solution that can be easily
generalized to less inclusive processes, in particular jets. This is in contrast to other
approaches like [50, 8]. As we have already remarked, it has been proved for inclusive
DIS to all orders in [15].

Basic assumption of the scheme is that the PDFs are defined using CWZ renormal-
ization scheme and that the masses relevant to actual energy scale are kept finite. This
results in the higher twist errors of the order of Ap,/Q? over the whole kinematically
allowed region of Q2. We shall see how it works in practice below.

Consider again the hadronic tensor W#* and suppose for simplicity that there is only
one heavy quark Q. The factorization is realised actually by two different theorems [15].
The first one is essentially the same as (2.12), i.e. it is applicable when Q* < mg. The
second one, is when Q2 > mé, that is both theorems have an overlap region. Let us
analyse the second case. The theorem under consideration has the following form

. Q2 m2 A2C
Wi (0, P2, Q2 m) = Y fo (13) @ty | @003 S5, —2 | +O [ =252 | . (2.17)
acm, Wy Hj @

Superficially it is almost the same as (2.12), however there are differences. First is that
in this scheme (i.e. above some switching point u¢n ~ mq) the set of active quarks N,
does include the quark Q. Second difference is subtle. It is connected with IR finite
partonic tensor. To see this let us calculate it to the first order in a,. Recall, that it is
done with factorization (2.17), but on the partonic level (let us set all the scales equal to

Q)
2 2
Wi (q,pa; Q% mgy) = Y FG* (%) ® " <q,pb; %) : (2.18)

bEN, Q

We denoted that the parton densities inside a parton are renormalized using CWZ. To
the first order it becomes (below we drop all the arguments, vector indices and CWZ
superscript for transparency)

w® +w) = 3" (fég) + f,ﬁ},)) ® (uﬁéo) + wlﬂ”) +0(a?). (2.19)
beEN,

Thus, the zeroth order partonic tensor is IR safe
w® = 0. (2.20)

Solving further the recurrence we get for a light quark

1 _ (1 0 A (1
wé ) — ]:(gq) ®wg ) +wg ), (2.21)
for heavy quark
wg) = ]:822 ® wg) + 1218) (2.22)

and for a gluon
o) = 7 uf? + 5 0wl 4l 22
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We have used the fact that zeroth order densities are trivial
FO = 15,. (2.24)

Equations (2.21)-(2.23) can be now solved for IR safe quantities occurring in (2.17).
Projecting the hadronic tensor suitably to get Fy structure function we now have

—F2 >t ®( clO + oW f§;>®cgo>)

q€ENy

O, O _ 21 o o0
+la® (CQ +C§ - Foh© C§ )

+fe |- Fhec -Fiecy |. (225
q€ENy

The parton densities are renormalized in MS scheme here since we are above the switching
point and Q is treated as active parton. Thus for massless partons we have precisely the
result (1.22) while for the heavy quarks we get

_ 2 2
fsll\/ézs (:I:, %) = % log (%) Py, (x), (2.26)

Q
— 2 . 1+ 22 2
F (e L) = Lo I o (L) 2t0g(1—x) 1]} . (27)
meq 27 1—a mQ
+
Those results were partially calculated in [45], but we had to re-derive them as explained
in Section 4.2. The first one is however well known (e.g. [2]), while the second was
obtained e.g. in [35] by different method (by comparing asymptotic expressions).
In order to better understand this result, let us pick up only heavy quark contribution
to Fs, where Q is e.g. a charm quark. That is we consider

1
— PR = fq (€ +C§ -~ Foqw Q) + fyo (¢ - Fgecl)).  (229)

IB

First note, that the coefficients of order ol without a hat are actually finite. For instance

Cél) is precisely the one given in (2.14). However they are not IR safe as discussed in the
previous section. However, when Q? >> mg, they become IR safe by construction, thanks

to the subtraction terms terms }“822 ® CgJ) and fg(g ® C’SJ). Therefore in this limit

such F2Q becomes equal to the one obtained in ZM-VFNS scheme. This is illustrated in
Fig. 2.2.

Now let us consider what happens when Q* 2 mg,, i.e. just above the matching point,
which for convenience is chosen to be precisely at pn = mq (see Section 2.2). Then, the
ACOT scheme should reproduce the FFNS scheme with Q being inactive. Indeed it is
the case here. First, let us note that the evolution equations for all PDFs are standard
DGLAP equations (1.9) with massless splitting functions. This is a simple consequence
of choosing CWZ scheme to define PDFs. Since it may be not obvious that in a massive
calculation we may have massless evolution, we prove this fact in Section 4.2.2. Next,
due the above choice of the switching point, the density fq is zero there. Therefore,
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Figure 2.2: A) Charm contribution at order ol to F, structure function in different
schemes (dashed: ZM-VFENS, solid: ACOT, dot-dashed: ACOT-y, dotted: FFNS). Cal-
culation is done for g = 0.05 and CTEQ LO PDF set. Factorization and renormalization
scales are all set to Q2. B) The same around the matching point z2, = m2 = 1.69 GeV?
(we do not show the dashed line here as it does not make sense in this region). The
ACOT scheme curve is obtained without quark-scattering NLO contribution, as it was
originally introduced.

solving evolution equation for fq (u*) just above the matching point, i.e. for u* = mg
(which is straightforward) we get at LO

2 2
Qs M K
fa (MQ) ~ o fq (mé) ® Pyq 1Ogm—é =fq (mé) ®]—'§8 (m_?g> : (2.29)

Analysing (2.28) in the same regime we find that most of the terms cancel and what

remains is just f; ® C’él), i.e. FFENS. Moreover, we can go with this formula below the
matching point. There it becomes exactly FFNS. This is due to CWZ renormalization
scheme. It turns out, that ]-'9(3 vanishes below the matching point (see Section 4.2.2), the
same is true for fq. Hence, what remains is again just the boson-gluon fusion process.
This is illustrated in Fig. 2.2, with dropped NLO quark-scattering contribution as orig-
inally done by the authors of [2]. This have been later fixed in [35] and confirmed that
this contribution is usually negligible. We also confirm this fact by explicit calculation
using our MC program in Section 4.5.

There are several subtle points, which we have skipped above. First, there is certain
freedom concerning the factorization theorem with heavy quarks ([2], see also [15] for
more details). This fact was used in Ref. [34] where the version of factorization theorem
with massless initial state partons was considered. The scheme just mentioned for inclu-
sive processes is called SACOT scheme (Simplified ACOT). It is usefull in the context
of higher order calculations, as it may considerably simplify the situation. The freedom
mentioned above can be used also differently, namely we set the initial state masses to
zero only in the terms Cg) ) above, i.e. we leave the mass in fq ® CS ). This approach is
elucidated in Section 4.3.2, where we discuss this for jet production.

Next, there is a problem that C((QO ) does not have correct threshold behaviour for
heavy quark production. It is obvious, since it is a different mechanism. There are some
approaches in the literature, which try to incorporate some artificial scaling variables in
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order to fix it. For instance, so called y-prescription assumes replacement,

mg
T x=2a 1+@ (2.30)
in functions involving C(SO ), i.e. where Q enters the reduced matrix element. Then, the
physical threshold for Q production is incorporated. We show an example calculation in
Fig. 2.2, as ACOT-y.

Although such prescriptions are allowed by the freedom we have discussed, we find
them impractical as far as jet production is concerned. Moreover, there is a more natural
approach. Notice, that when all the occurrences of C((QO) in (2.28) are the same, the
cancellation taking place around the matching point is the most effective. We mean
here not only the form of C((QO ), but also the way it is convoluted. Then, it is easy to
see that they can be the same only when the mass of the initial state is set to zero in
C’g ) (what is allowed due to the freedom we have discussed). Otherwise, even if C((QO )
are everywhere the same the convolutions are different, since the integrals have different
limits. For example the convolutions f; ® }“g(g and fq ® Cq are not the same (in the
operational sense) when mq # 0. On the other hand, when mq = 0 both lower bounds
in the convolutions are just xp whilst the upper ones equal to 1. We turn attention,
that the only dependence on mass that remains in subtraction terms is hidden under
logarithms in F, ;3 and .7-'822

In summary, we interpret LO term fq ® C ©) a5 an ‘asymptotic’ expression appearing
after resummation of logarithms, thus it should be subtracted around the matching point
leaving only BGF mechanism. Since it is the asymptotic expression the initial state mass
is set to zero. Accordingly, we set mqg = 0 in C’g ) appearing in subtraction terms. This
allows for complete cancellation around the matching point as shown in Fig. 2.2. We
stress that we do not set all initial state masses to zero. We shall come back to this issue
in Section 4.3.2.
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Chapter 3

Massive dipole subtraction
method

3.1 Introduction

The dipole subtraction method is a specific realization of the subtraction method de-
scribed in Section 1.2. The subtraction term is constructed as a sum of so-called dipoles,
motivated by very general behaviour of matrix elements. It was first developed in an
extensive paper by S. Catani and M. Seymour [9] in 1996. Their method is applicable
for lepton-lepton, lepton-hadron and hadron-hadron processes, also with the possible
identified partons in a final state. However, it was developed for massless partons only.
The method of [9] was later extended in [23] to a general case of massive quarks (also in
the initial state), however for the processes, where the photons radiate off the fermions.
Moreover, they used a finite photon mass in order to regularize IR singularities. There-
fore, their results are not sufficient for QCD processes, where not only gluons are emitted
from initial quarks, but also the gluons can split into ¢g and gg final state pairs. This
was the reason for a joint work of the authors of Refs. [9, 23] and independently [44].
In [10] they developed the dipole method for massive partons, however, they resign to
take into account the masses of possible initial state heavy quarks, as they allow only
the standard (massless) factorization theorem. We note, that they treat as massless not
only the initial state splitting processes like ¢ — ¢g, but also they use massless quarks in
g — qq splitting. However, as we have seen in the preceding sections, taking into account
the masses of possible initial state heavy quarks, especially taking into account massive
g — qq splitting, is essential if we want to get consistent and reliable predictions for large
range of external scale.

In the present chapter we develop the fully massive dipole subtraction method, which
allows for NLO calculations of neutral current DIS processes. We take into account all
the masses of the quarks, including possible initial states. Our method is a generalization
of the one mentioned above [10], therefore we try to keep similar notation. Most of the
material presented in this chapter is new. It should however be mentioned, that in order
to calculate a full jet cross section the material should be supplemented by the results of
[10] which do not involve initial states and are not treated here.

The chapter is arranged as follows. Before we explain in details (Section 3.3) how
the dipole subtraction method is constructed, we must learn how the matrix elements

35
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A) B) C)

Di / pi / Di
Piq Diq ggg Pig
Dq . Pg 900 Pg
Figure 3.1: Emission of a soft gluon from A) quark, B) anti-quark and C) gluon. The

lines without arrows correspond to any type of particle, while dots denote the rest of
final states. Shaded blob corresponds to a reduced amplitude M,,.

XY

behave in the soft and collinear limits, especially when the quarks are massive. We shall
see that in the context of this work, it is desirable to consider so called quasi-collinear
limit instead of the usual collinear one. This is done in Section 3.2. Next, we describe
a special kinematics, that has to be introduced (Section 3.4) in order to factorize the
(n 4 1)-particle phase space into n-particle and a subspace that after integration leads
to singularities. Using these variables, we define the dipole splitting functions in Section
3.5. They are the core of the subtraction terms and mimic the true singular behaviour
of the matrix elements. Next, in Section 3.6, we describe in details the phase space
factorization procedure. Finally, we integrate all the dipoles over the factorized subspace
in Section 3.7.

We note, that the fully massive dipole subtraction method presented below, is still not
sufficient to make reasonable calculations. As we shall see, there are potential collinear
singularities that have to be factorized into PDFs. This step shall be done in the next
Chapter 4.

3.2 Singular behaviour of tree-level matrix elements

Let us start with the investigation of singularities, that appear in the tree-level matrix
elements. They emerge from two different kinematic regions (which can however overlap).
First one is so called soft region, connected with an emission of a gluon with zero energy.
Second region, actually more complicated, is the collinear region (more precisely — quasi-
collinear, see below). Essentially, we follow [10], however we give more details and present
some results, which do not appear in the literature explicitly.

3.2.1 Soft limit

The content of this section is essentially well known, although most often the masses of
quarks are neglected. In some parts we follow [9, 10, 22].

Let us consider a generic (n + 1)-particle amplitude M, 1. The hat reminds that it
generally is an object with spinor and colour indices, which are suppressed. Alternatively
we may think, that colour or spin indices can be pulled out by treating M as a vector
in colour and helicity space and projecting it onto suitable basis vectors. Let us assume
for a moment that all the partons are final states.

Let us now suppose that i-th particle is a gluon that is emitted from an off-shell quark
¢ with mass m (we assume also that all the other partons are on-shell). This situation is
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depicted in Fig. 3.1. The contribution to full amplitude from this kind of emission can
be written as
- DN AA C Pig M X
Mfqu)rl (P1,-- s Pny1) = 5; (v) (—ig) thu (pg) " i h M, ({pk}keA/) ) (3.1)
iq
where i are standard matrices of colour group generators, e* (1) is a photon polarization
vector with helicity v and u (p,) is an adjoint spinor for a quark with momentum p,. Here
we have defined
Pig =i + 1} (3.2)

and the set A is defined as

A ={1,...,n+1}\ {i,q} U {ig}, (3.3)

that is we have removed the partons 7, ¢ from the original matrix element and replace
by single ¢q. Note, however that at this stage the leg p;, in the amplitude on the RHS of
(3.1) is off-shell. This fact is marked by a tilde adorning the amplitude. Also, in (3.1),
we have suppressed a spin index in the external spinor.

The soft limit is reached when for any fixed four-vector r* we have [9]

pi =Xt A —=0. (3.4)

Then, using simple spinor algebra and Dirac equation we get from (3.1)*

“((a) 1 * ~A J 2P
MEL (1, Patr) A (v)t . f;q Mo ({Pr}ren) » (3.5)
where now
A={1,....n+1}\ {i}, (3.6)

Note that now the momentum of a quark p;, left after removing the gluon is on-shell,
since

I 7

Ply ):6 jus (3.7)

In complete analogy, we obtain the contribution from the emission from an anti-quark g

(7 1T, - o Py
M B parn) 55 5950 0) Mo (i) ((8) 7= 39)

Finally, we have to consider the situation when the soft gluon is emitted from another
off-shell gluon, as in Fig. 3.1C. The result can be simply obtained if one uses the fact
that the gluon propagator becomes transverse for A\ — 0, resulting in

Py
T'pg

- 1 ) -
ML 1) =3 3950 0) (Sifane) == ME ({(Pidies) - (39)

We see, that all the contributions MEZ)H)’ MEZ)H)’ MEZ)H) have the same structure,
except the colour factors. This reflects the fact that the soft gluon has a very long
wavelength and thus is insensitive to the spin structure of the emitting particle.

In order to write the full amplitude with the soft gluon emission in a uniform fashion,

let us introduce the colour operator TJA for a parton j, which generates pertinent colour

IThe replacement of the gluon-quark (or photon-quark) vertex v* by 2pg is the eikonal approximation.
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structure. Its action is most transparently defined introducing the orthonormal basis in
the colour space; for n particles in the final state and m particles in the initial state we
define

<®|0a>>® ®|dj> = e emidy, o dn) = Head s {d;}) (3.10)

such that

(Mo ({pa} s 131 {ea} i3} ) = Magrmensdida (0} {p}), - (3.11)

1
I, Ve

where ¢, is a colour charge of an initial state parton a whereas d; is the same for final
state parton j. On the LHS we treat the amplitude as a vector in the colour space,
normalized in such a way that colour averaged amplitude squared can be written as

Mo () )] = (M (oo )| Mo (o) s 0))) . (312)

In the above formulae the range of the index numbering the elements of sets {.} is dropped
for transparency; we shall often do this, if it does not lead to a confusion. Once we have
chosen the colour basis, we can define the colour operators as follows

) t;?jb|{ca};d1,...,b,...,dn>, ji=q
TH {catsdr,. . dj, ... dy) = —tiy Heatidis b, dy), j=7q (3.13)
77:fAij|{Ca};d17"'7Bv"'7dn>5 ]:g

if the operator acts on a final state, and

_t?ca|cla"'aba---;cm;{dj}>, a=q
T(;X|Cl,---,Ca,...,Cm;{dj}>: tfab|cl""aba---acm;{dj}>a a=4q (314)
ifacon |ty s By emiids}), a=g

for operation on initial state. The action of the final state colour operators is evident
from our derivation above, egs. (3.5)-(3.9), while the action of the initial state operators
can be easily obtained using crossing symmetry. Let us note, that

. o Cr. k=07
2= 1A= & (3.15)
Ca, k=g.

Due to colour conservation we have also the following property

ZTf+ZTJA Wn ({pa};{pj})> =0. (3.16)

Using the above notation, we can write the complete amplitude with the soft gluon
emission (now we take into account the possible initial states) as

M () 031) =3 5 955 0) FA 0) Kt (pa) s ipidyen) . B17)
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emitter

spectator cut

Figure 3.2: Definition of the emitter and spectator. The last one is a parton that recoils
emitted particle on the other side of the cut. Both emitter and spectator can be final or
initial states.

where so called insertion (or eikonal) current J* is defined as

JHA ZTA pa ZTA pj ZTA 1.71 (318)

J#i

where in the last step we introduced the index I that runs over both initial and final
states.

Let us now square the amplitude and sum/average over colours and spins. First, the
eikonal current squared and summed over A can be written as

S JrA ) =Y - Z Ty - TK( 2propic My ) (3.19)

A 1751 I jZ1 r-(pr+px) T-pr

This form was obtained by partial fractioning the expressions of the type
1/ (r-pr)(r-pk) and using colour conservation (3.16). The amplitude squared thus
takes the following form (in D dimensions)

M1 ({pa} o1 H*% Smpias Y 1p1 >

( br-pxk My )
A—0 —repn i r-(pr+pr)  2r-pr
(M (pad i psD)| T1 - T | Mo ({pa}s 0D - (3:20)

Above formula is the key for constructing dipole subtraction terms, although as we
shall see in Section 3.3 there are several points to overcome.

For further convenience, let us introduce the following notation for the colour-
correlated amplitudes

(Mo @pads oD)| T T [Ma (e} i 403))) = Mo (o (DD i (32D)

It will allow for more compact formulae later on.

In the end of this section, let us introduce a nomenclature following [9] that we shall
use throughout. A particle which emits a gluon (or in general any other parton) we call
an emitter. Further, as far as one considers the amplitude squared, an emitted particle
is recoiled on the other side of the cut by a parton that we call a spectator (Fig. 3.2).
There is a symmetry between all emitter-spectator cases, as is evident e.g. from (3.20).
In general, we can distinguish the following cases

e final state emitter - final state spectator (FE-FS)
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A) B) C)

Figure 3.3: Initial state splitting processes with massive quark Q: A) Q — Qg splitting,
B) g —QQ, C) Q — Q.

e final state emitter - initial state spectator (FE-IS)
e initial state emitter - final state spectator (IE-FS)
e initial state emitter - initial state spectator (IE-IS).

In the present work we shall consider the first three classes, since we are so far concen-
trated on lepton-hadron processes only.

3.2.2 Quasi-collinear limit

Let us now consider another region where a tree-level amplitude can be divergent. The
propagators, as those in Fig. 3.1, can become infinite when the momenta of the massless
partons are collinear. If the quarks are massive there is no true collinear singularity,
however the singularity arises again when the mass can be neglected comparing to ex-
ternal energy scales. Therefore in view of the present work it is convenient to consider
so called quasi-collinear limit [11, 10] and quasi-collinear singularity. In the following
subsections we recall this idea in details. We pay particular attention to the case of an
emission from the initial state with heavy quark masses taken into account. This is the
elementary case, which — as far as we are concerned — has not been given explicitly in
the literature.

3.2.2.1 Initial state emitter case

Let us start with the case where an initial state parton a with momentum p, emits
another parton ¢ with momentum p;. Three possible in QCD cases, that involve quarks
are shown in Fig. 3.3. Such an emission, where there are massive partons is not considered
in [10, 11] while in [23] only photon radiation off fermions is worked out. Therefore, we
shall give brief, but detailed discussion.

Let us first introduce the shortcut notation (Fig. 3.3)

Py =1l — Pl (3.22)
The momentum p,; is off-shell, while for p; and p, we assume the on-shell conditions

pi=mi, pg=mg. (3.23)
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In order to define the quasi collinear limit, let us introduce the Sudakov parametrization
of momenta. We decompose p; into a component parallel to p, and a transverse one. To
this end we choose auxiliary light-like four-vector n,

n? = 0. (3.24)
Then the Sudakov decomposition reads

K2+ (1—2)°m2 —m2  no

= (1-— [RRY g . 3.25
pz ( x)pa—*— T 1750 2n.pa ( )
The transverse component is perpendicular to p, and n,
kT *Pa = kT -n =0. (326)
Accordingly, due to (3.22), we have
k2 4+ (1—z)°m2—m2 n*
= app — k4 LA M T (3.27)

1—x 2n Py

The variable z has an obvious physical interpretation. It is the fraction of the original

momentum p, that enters the reduced matrix element (the shaded blobs in Fig. 3.3).
Now, consider the denominator of one of the propagators from Fig. 3.3. It reads

a i ai

= “ (3.28)

1—x

k2 +x(1—2)m2 —am?— (1 —2)m?

2 2
Pai — mll_i
where mg; is the on-shell mass of the parton corresponding to momentum p,;. Usual
collinear limit is defined by |kr| — 0. Then however, the inverse propagator (3.28) is in
general nonzero. In order to make it zero, we use a uniform rescaling

|kr| = Akr|, mg— Amg, A —0, (3.29)

for ¢ = a,1,ai, such that the propagator (3.28) indeed becomes zero. The limits (3.29)
define advocated quasi-collinear behaviour.

Let us now switch to the more specific cases. Let us start with the splitting process
showed in Fig. 3.3A, namely

Q (pa) = Q (Pai) 9 (i) - (3.30)

In this case we have
Mg = Mg =mq=m, m;=20. (3.31)

The amplitude can be written as

~ /\;/T . Zf ) + m . T 5 *
Mopt1 (Paipiy - - -) = My, (Pais - ) h (—igy"t*) u® (pa) €, (v) - (3.32)
ar
The notation used above is similar to the one used in Section 3.2.1. We adorned by tilde
the reduced matrix element on the RHS in order to underline that it has amputated leg
corresponding to the off-shell momentum p,;. Spinor superscript s refers to a spin state.
Squaring the amplitude and summing/averaging over colour and spin we get

- 2 ~ 1 Tuv ~

C

MnJrl (pa;pi7 .- ) = 27“345,“436 -£ d,uv (pi;n) Mn (pai; .. ) DI —— M, (pai; .- ) ;
(pﬁi —m?)

(3.33)

Ne
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where R
'™ = (Pai +m) " (Pa +m) 7" (ai +m), (3.34)

and the polarization tensor for the gluon with momentum p; reads

pyn” + pint

d" (pin) = —g"" + (3.35)
pi-n
Next, we apply the Sudakov decomposition and the limit (3.29). It leads to
P 2 2 2 4k 3
Ay TH = =\ uyfmufzﬂmfwn)+a——7 Yo+ O (N). (3.36)
-

Thus, in the quasi-collinear limit we finally obtain

) 1
Mopi1 (Pas pis---)| — e 8mas p m
— 1 . _
M,, (paii---) Paq (x) My (Pais---), (3.37)

‘ 2

where the splitting matrix reads (the unit matrix in helicity space is suppressed)

14 22 22 m?
Rk rm ) (3.38)

PQQ(:L')CF<1 ,5(1,x)+

2 2
- Pai—m

The momentum p,; refers to limiting, on-shell version of pg;, i.e. pa; = zp, and pi =0
in the limit (3.29).
There are several comments concerning (3.37). First, there is a factor 1/z, which
comes from the conversion
. . 19 - 2
./\/lﬂ; (Pais - - ) YaMun (Pai; - --) — p ’Mn (pal; .. )’ (3.39)
Second, we adorned the amplitudes in (3.37) by a bar, since we included factors from
colour and spin averages. Finally, since splitting matrices act in helicity space, in general
there are spin correlations. In this case however the splitting matrix is diagonal.
Let us now move to the next splitting case (Fig. 3.4B)

9 (Pa) = Q(pai) Q (pi) (3.40)

where we have
Mg =0, Mei =m; =mq =m. (3.41)

Analogous calculation to the one above leads again to (3.37) with however different
splitting matrix

Pyq (2) = Tw {1 - 1%5 (m (1—a)+ ﬂ)] . (3.42)

2 2
Poi —Mm

It is again diagonal in helicity (identity matrix was dropped). We recall, that the con-
vention for naming the splitting functions was given in Section 1.1.
Finally, let us turn to the process from Fig. 3.3C

Q (pa) = 9 (Pai) Q (p2) (3.43)
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A) B) C)
i pi
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Figure 3.4: Final state splitting processes with massive quark Q: A) Q — Qg, B)
9—QQ,C) Q—yQ.

with the masses
Mg =M; =MqQ =M, Mg =0. (3.44)

As one can expect, the behaviour of the matrix element is the same as before with
different splitting matrix. Now it reads

D mv v kéﬁk’ly"
(PQg (:c)) =Cp(l—¢)(—axg" —4"15L ) (3.45)

L Pai
We see, that this time it is not diagonal in helicity, thus we cannot simply factorize the
matrix element squared as before. Note, that during the derivation, we used the following

relation between the colour factors
T CF
L 3.46
N, ~ N, (3.46)

This was used to transform the colour average from the one over quark colours to the
one over gluon colour states. The factor (1 — &) follows from the spin conversion.
There is one more possible splitting process, which involves only gluons

9 (Pa) = 9 (pai) g (pi) - (3.47)

Since it does not involve massive partons we can use the result from [9]. The splitting
process is symmetric with respect to exchange of partons, thus we can overtake their
final state formula and convert to our initial state kinematics. We get

. v 1- kb kY
(ng (x)) — 20, [—g’“’ (L + ””) —(D-2)z LT (3.48)
1—x x i
The splitting matrices introduced above reduce to the well known splitting functions
after averaging over helicities, taking massless limit, and setting D = 4.

3.2.2.2 Final state emitter

Let us now analyze the case, where initially off-shell final state parton is split into partons
i and j with the momenta p; and p; respectively, as showed in Fig. 3.4.
The Sudakov parametrization of final state momenta takes the following form
k% + szfj — m? nt

= zph 4k — = 3.49
pz Zpﬂ—i_ T > 2pﬂna ( )

k2 4+ (1—2)°m2, —m?  u
B (1= 2)ph — kM — E— . 3.50
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These equations are actually defining formulae for the four-vector p;;, i.e. in the quasi-
collinear limit (3.29) (with rescaling masses suitably to this section of course) p; and p;
are parallel to p;;. For further purposes we introduce

pi; = pi + 1) (3.51)

Note the difference between p;; and p;;.

The case of final state quasi-collinear emission is covered in [10]. Since derivation is
completely analogous to that of the previous subsection, we limit ourselves to listing the
formulae as we shall need them later.

The matrix element squared behaves as

2

= 1 1
M pipy )| o = ST ———
n+1 (pa Di, Py ) 22 TQs by ngj — mgi

M, (pa;pﬂ, . ) 152Z (z) My, (pa;pﬁ, . ) . (3.52)

Note, that this time there is no analog of 1/x factor comparing to (3.37). The splitting
matrices are as follows

. 1+ 22 2m?
PQQ(Z)CF(l—Z 5(12’)+m>, (353)
ij
. 1+ (1-2)? 2 m?
PQg (Z) =Cp (% —ez+ m) , (3.54)
ij
R nz )ty 24
(Pra(2)) =Tn (—g‘“’ —4 ;2?) , (3.55)
ij
- 24 w2 1—2 kS EY.
(ng (z)) =20, (i +— ) —(D-2) | (3.56)

The mass m = mq above refers to pertinent heavy quark Q involved in splitting process.

The splitting matrices (3.53)-(3.56) are in general different than those from the previ-
ous subsection, as one could expect. Here for instance there is a symmetry z — (1 — 2) for
PQQ and PQg splittings as can be seen from Fig. 3.4A, C. It is not the case for initial state
splitting. The universal objects, suitable for initial and final state, are four-dimensional,
massless and averaged versions of the matrices presented in this section.

3.3 Construction of dipoles

As we have seen in Sections 3.2.1, 3.2.2, a tree level amplitude squared can be written in
the both singular regions in the following schematic form

— 2
’./\/anrl‘ — 8T —

, (3.57)

where S represents adequate scalar propagator, V encodes the information about
soft /collinear splitting process leading to singularities, and the convolution sign realizes
spin and colour correlations.
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The above structure can be used to construct subtraction term in the dipole method.
Recall that such a term is just a fake cross section, that becomes equal to the real one in
the singular regions (cf. Section 1.2). First problem to overcome, is that away from the
soft limit there is no momentum conservation in reduced matrix element M,, (recall, we
removed the soft gluon, which was legitimate only in the strict soft limit), consequently
(3.57) cannot be calculated as an usual cross section. Second, one could construct the
subtraction term by just adding the limiting formulae for soft and collinear behaviour,
in order to mimic both regions. The problem is however, that there is an overlap region,
with a collinear and a soft particle at the same time. It is evident for example from
(3.56), when 2 — 0 we have double soft-collinear singularity. Thus adding both kinds of
limiting formulae leads to double counting of soft singularities.

The solution given in [9] is the following. The subtraction term which mimics the
(n + 1)-particle matrix element squared, is given by (for simpler notation we assume only
one initial state parton a)

+1n+1
n+1 5 1E- FS FE-IS (~ .
Paj {p1 Z Z D’L ,J,a paz, {pl}leXIE FS) + Dz ,J,a (pa, {pl}leXFE,IS)

=1 j=1
J#i
n+1
+ Z D’L s k pa, {pl}leXFE FS) } (358)
k;éz 7
where
1 1
IE-FS
D»L (p‘”’{pl}IEXIE FS) = _Sai E
T N

(M (e {Prhiexie vs) [ =5 VIE;Z%JW (Pas I hiestyg pa) )s - (3:59)

FE-IS
D i,J,a (pa, {pl}ZEXFE IS) = 78.
(2

<M" (ﬁa; {pl}leXFE-Is) ’ ;- = Vii_’gia’M" (pa; {pl}ZGXFE-IS) >’ (360)

7
1
DF»JE7 s (pa’ {pl}IEXFE FS) = _S. .
.3
<M" (pa; {pl}ZGXFE-Fs) | TQ = Viifjsﬁk‘M" (pa; {pl}ZGXFE-Fs) > (361)

ij

Let us now carefully explain the notation. First, S;;, Sa; are pertinent inverse scalar
propagators
2
Sijj = (pi+p;)” —mi, (3.62)

Saii = (pa — pi)° —m2,. (3.63)
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Next, some of the momenta are adorned by a tilde. They are new momenta constructed
in such a way that momentum conservation holds in M,,. In what follows, we shall refer
to them as dipole momenta. In soft or quasi-collinear limit they behave as

ﬁﬂ — pﬁ’ ﬁa_i — Pais - - - (364)

They are constructed in Section 3.4. The sets of indices are defined as

Xiprs = {1,....,n+1}\ {i,5} U {j}, (3.65)
Xpgas = {1,...,n+1}\ {i,5 U {ij}, (3.66)
Xpprs = {1,...,n+ 13\ {4, 5, k} U {ﬂk} (3.67)

where the tilde over the parton symbol means that corresponding momentum should be
marked by tilde, e.g.

Pt =7y, pé Eﬁfl (3.68)

Finally, the objects V are dipole splitting functions. They are matrices acting in the
helicity space, their form being close to the usual splitting matrices. They become the
latter in the quasi-collinear limit on one hand and fulfil soft limit without double counting
of soft singularities, on the other. We shall construct them in Section 3.5.

In the end of this section, let us check that provided the dipole splitting matrix tends
to the true splitting matrix obtained in Section 3.2, i.e. if

VA—>BC, b — Pag, (3.69)

we indeed recover correct quasi-collinear behaviour. Clearly, since the dependence on
the spectator parton is lost in \7, as shows the above formula, we can make use of the
colour conservation (3.16) (reduced matrix elements do not depend on the spectator in
this limit). Thus, the colour correlations vanish and the colour factors cancel yielding
the required result.

3.4 Dipole kinematics

In the following section we construct an explicit realization of the dipole momenta that
are on-shell and fulfil momentum conservation away from the soft limit. It should be
pointed out that there is no unique solution - their precise form depends on the kinematic
variables one is going to use. The latter have to be defined in such a way, that one can
easily control soft and collinear limits.

We concentrate here on the FE-IS and IE-FS cases, since the situation when all the
particles (emitter and spectator) are in the final state is fully covered in [23, 10].

3.4.1 Final State Emitter - Initial State Spectator

The situation we want to describe is the following. A final state particle p; is emitted
from another final state parton, which after emission has the momentum p;. Afterwards
it is absorbed by an initial state p, (a spectator). Let us introduce the following notation
we shall use throughout (Fig. 3.5A )

PH = pf +p§,‘7 (3.70)
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Figure 3.5: A) the momenta assignment in FE-IS case, dashed line represents a relative
momentum transfer; B) reduced diagram for FE-IS case, the new tilded momenta are
on-shell and fulfil momentum conservation.

ot =PH —py. (3.71)

That is, P is the total dipole momentum and Q is the relative (with respect to the dipole)
momentum transfer. It must not be confused with ¢ — the total momentum transfer to
the hard process. We assume that Q is space like Q2 < 0 and that the particles are
on-shell

Pa = mi, pzz,j = m?,j' (3.72)

Ag already mentioned in Section 3.3, in dipole method we have to introduce the
new momenta p;j, P, (Fig. 3.5B ), in such a way that in the soft limit (defined here by
p; — 0) we have | Dij — p; and P, — pg. In the quasi-collinear limit p;; approaches the
fixed collinear direction of p; and p; (see Section 3.2.2.2). Of course in QCD reality,
the soft limit concerns only the gluons, however on general ground it is enough to have
m;; = m; at this stage. We shall analyse the soft and quasi-collinear behaviour of the
tilded momenta later, in Sections 3.4.1.3, 3.4.1.4.

One of the possible forms of the dipole momenta is

ph; = wP" — upy, (3.73)

Py =pij — " =(@—-1)P"—(a—1)p. (3.74)

In the next subsection we shall fix arbitrary at this stage parameters @ and @ in such a way
that p;; fulfil boundary conditions mentioned above. Notice, that we should have @ — 0,
@ — 1 in the soft limit. Note also that we have the explicit momentum conservation.

In order to control the quasi-collinear behaviour, let us also introduce the “angular”
variable (definition and notation is due to [9])

Pi* Pa
Pa

(3.75)

2:

where
Po =P - pa- (3.76)

Note, that neither @ nor z are the Sudakov variables used in Section 3.2.2.2, although
they are obviously related. We shall state the relation between both kinds in Section
3.4.1.4.

In what follows we shall refer to @, w and Z variables as dipole variables.
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3.4.1.1 Standard dipole kinematics

A already mentioned, we require that the dipole momenta are on-shell. This gives us
two conditions
ﬁ?i =m2 (3.77)

27

Pa = Mg, (3.78)

which readily can be solved yielding solutions for @ and @ in terms of the invariants made
up of vectors p,, p;, pj. We however shall use more natural quantities in our approach,
namely P2, Q2 and P,. In terms of these invariants the solution reads

(Po—P)R  Q*+m —mg

0= 3.79
T 0P, 202 (8.79)
N (Po—m2)R Q'+ my—mg 5 80
YS T Terp, T 202 (3.80)
where
Q* = (P —pa)’ =P* = 2P, +m, (3.81)
2 2 2
R= (Q2 —mg; — mg) - 4m§mﬁ, (3.82)
and
m2P?
v=[1- T (3.83)
We shall later interpret v as a velocity of p, in the CM (Q, p,) system.
Note, that if m, = 0 we have v = 1 and
P2 —m?,
~ 1
= — 3.84
i= (3.84)
=1, (3.85)

which agrees with [10].

Summarizing, if we are given p,, p; and p; (thus we know P2, P,), we can obtain @
and w and thus reconstruct p;; and p,, which are needed in dipole subtraction term. We
shall refer to this approach as a standard dipole kinematics.

One can consider also the equations (3.77), (3.78) as some kind of equations of state,
and @, w, P?, P, as “thermodynamical” parameters. We can consider for instance P, =
P (PQ,TL) and W = W (PQ,ﬂ), etc. Since some of the relations of this type are very
useful, we list a few of them in Appendix A.1 together with some relations between the
derivatives.

3.4.1.2 Kinematics with additional invariant (gamma-kinematics)

It turns out that it is convenient to introduce an additional invariant, let us denote it
4. This will allow us to derive simpler formulae when we integrate the dipole splitting
functions.
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There are several possibilities to choose 7, for example it can be Q? or even p;; - pa,
however we shall use the following

Y = Dij * Pa- (3.86)

According to (3.73) we have
¥ = WP, — am?. (3.87)

This equation, together with the two on-shell conditions (3.77), (3.78) gives the solution
for 1w, P? and P, in terms of @ and 7,

N

U= (3.88)
 (x—0) (3 +am?
Pa = @ (25 + am2) +m?;’ (3.89)
2

2 _ (x —9)

Pr= @ (27 + am2) +m?2,’ (3.90)
where

X =7 +a (¥ +m;) +mi, (3.91)
5= \/amg (2& + am?2 —m?2, (ii — 2)) 132 (1— @)% (3.92)

Let us now make a very general analysis of the bounds on # and ¥ variables. Suppose,
we have the following bounds on the “standard” invariants

P2 <P <P3, (3.93)

Pa— (P?) < Pa < Pay (P?). (3.94)

We shall give explicit expressions for those bounds later in Section 3.6, however immedi-
ately we can write
P2 = (m; +my)>. (3.95)

The rest of the limits depend on the specific “external” kinematical case, thus we do
not give them here. Using (3.90), (3.89) we can convert (3.93), (3.94) to the following
inequalities

i (7) <a <y (9), (3.96)

s (3.97)

This procedure is however more complicated than it looks. This is because in the most
general case, in different regions of [7_,4;] the bounds on @ are obtained from different
conditions (3.93)-(3.94). This shall be discussed in details in Section 3.6.4. However, in
the most interesting cases the lower bound on @ is always obtained by solving (3.90) for
the lower limit on P2. When % = %_ we shall encounter singularities, therefore let us
give here the result

¥- <7

IN

LT (ﬁ + mi) (49P% —wv_) + p_0 by o8
i (3) = m2vu_ — 45P2 (§ + 2m32) ’ (3.98)
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where
mgm?j
bij =\/1- 7 (3.99)
p- =27 +mj; + P2, (3.100)
v_ = p —4m2P?, (3.101)
0. = \/(p_ —2P_ )% —4m2P2. (3.102)

We turn attention to the variable 0;; - we shall often encounter quantities of this type
(with different masse) later on. The upper bounds on @ and 4 will be discussed later.

The result of this section will be useful for the integration of dipole splitting functions
in Section 3.7. In the following we shall refer to the above solution as the gamma-
kinematics.

3.4.1.3 Soft and collinear limits of the dipole variables

In this section we shall investigate the behaviour of the dipole variables in singular
regions. This is crucial for constructing the dipole splitting functions.
Recall that the soft limit is defined as

ph=NF, A0, (3.103)

where [ is any fixed four-vector and p; must be a final state gluon. This implies, that
m;; = m; and of course m; = 0. Then it can be shown using e.g. (3.79) that in the soft
limit
@—0, P*—mj. (3.104)
Moreover
Z—0, (3.105)

as immediately follows from its definition.
Next let us consider the quasi-collinear limit. The Sudakov parametrization of the
final state momenta has the general form

nu

Py = 2Py +kp +on TR (3.106)
p?z(le)pé‘jfk%+a22ﬁ”n, (3.107)
- Y

where «; are functions of k% and relevant masses - the details are not important here (see
Section 3.2.2.2). This decomposition is slightly different than those in Section 3.2.2.2, as
here we use p;; instead of p;;. They are equivalent in the quasi-collinear limit defined by

the rescaling (3.29). In this limit o; = O (A\?) and we have
Pl =20l + Ak + O (X)) (3.108)

P = (1= 2) By — Akf + O (X)) (3.109)

Hence
P?=0(\?) — 0, (3.110)
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Pa=0(X), (3.111)
and from (3.79) we get
i=0(N) — 0. (3.112)
Similarly, since w — 1, by contracting (3.108) with p, we get

Z=24+0()N). (3.113)

Thus in the quasi-collinear limit Z becomes the Sudakov z.

3.4.1.4 Relation between dipole and the Sudakov variables

In order to better understand the meaning of the dipole variables @ and Zz, let us relate
them to the Sudakov variables of Section 3.2.2.2. We shall see, that they are similar,
but not equal; they reduce to the Sudakov variables in the massless limit as one could
expect.
Let us start with the variable w. In general, the Sudakov parametrization of the
momentum p, has the form
nt

P =Tp + Fr + By —. (3.114)

where 3 is a factor depending on the pertinent mass configuration and is irrelevant in
this discussion. Note, that k7, 7@ and 3 are adorned by the bar sign in order to underline
that they are in general different from those in (3.106). The parameter T is different than
the one introduced in (3.27) (see also Section 3.4.2.4), although it has similar physical
interpretation: it is a fraction of the original momentum p, that enters the reduced
matrix element, defined with initial p, momentum. Comparing this with (3.74), we see
that
P-n

T=1—-a+(w-1) —.
Pa -

(3.115)

3

As a special case we get
=1 — 1, for mg =0, (3.116)

as can be easily seen from (3.85). Thus, in the massless initial state case, @ is just
the fraction of initial state momentum p,. In order to get more transparent result it is
convenient to use the CM (pg, Q) frame (see Section 3.6.1.1 for explicit formulae) with
n* = (1,0,0,1). We obtain

- P2

m, (3117)

where v is given in (3.83).

For further purposes let us investigate @ — 0 behaviour with fixed 4. Then, as
shown in Egs. (3.88)-(3.92) w, P?, P, depend on @. Using the gamma-kinematics and
expanding in 4 we get very transparent result

1 -7 = avy; + O (a%), (3.118)

with 9;; defined in (3.99). Thus, as far as we consider the soft behaviour in gamma-
kinematics, the Sudakov 1 — z is basically the same as %, however with different slope in
the general massive case. In the quasi-collinear limit both variables are equal.
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Let us now turn to the Z variable and its relation to z. Again, using (3.106), the
definition of Z and the CM (p,, Q) frame, we get

2zP% — (1 —v) (mi —m3 +P?)
2 =

3.119
20 [WP? — UPy (1 — )] ( )

In the case of massless initial state, both variables are equal
Z=Z, for m, =0, (3.120)

as we could already guess from (3.113). Let us investigate the relation (3.119) close to
the & — 0 limit with 4 fixed. Using the gamma-kinematics and expanding in @ we get

(3.121)

Notice, that due to the constant term (of the order O (z°)), the soft limit is indeed
possible only within specific configuration of masses, as already stated in Section 3.4.1.
For instance, the radiation of gluon from a final state massive quark corresponds to the
configuration where m; = 0, m;; = m;. Then there is no constant term and p; can
become zero. -

3.4.1.5 Dipole variable as a free parameter

In Section 3.6 we shall consider @ as a free parameter in order to properly factorize the
phase space (more precisely it will be a convolution variable). Let us refer to it as u
(without tilde) in this context. In order to make it possible, we have to drop the on-shell
condition for p;;; we denote this off-shell vector as p;; (). During this procedure we have
to keep some other invariants fixed. N

Let us start with P2 and P, kept constant. Then we have

2 (u, P?,Pa) = w (u,P?,Py) P* — upht, (3.122)
Pl (u, P?,Pa) = (w (u, P?, Py) — 1) P — (u—1) pk, (3.123)
where ,
— 1—u—
w (PP =L P“;ﬂ u=r) (3.124)
with

r= T a2 (3.125)

We have obtained w (u, P?,P,) solving the only one on-shell condition p? (u, P%, P,) =
m?2, which we assume to hold always.
On the other hand, we can keep variables P, and 7 fixed. Then we get

5 2
w (u, ¥, Pa) = %, (3.126)

2 5 — Pa ’ _ X 2, 2
P (u,,Pa) = Tum? P [2(1—u) (Py—7) +u’m2]. (3.127)
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We can use either method (also other are possible), depending which of the kinematic
invariants we want to make the “external” ones. We shall return to this point with the
explicit example later in Section 3.6.4. Let us now introduce the generic notation for
these “external” invariants

X, Y€ {P%Pu7}. (3.128)

Since now u is a free parameter, we have to specify its bounds wmin, Umax- We have
to choose the support in such a way that it includes the point v = u, that is for

Umin S u S Umax (3129)
we must have
U S [Umirn umax] . (3130)
It is natural to set
Umin = U—, Umax = ﬂ/-l-a (3131)

where %4 are the bounds on @ discussed in Section 3.4.1.2.

3.4.2 [Initial State Emitter - Final State Spectator

Now, in completely analogous way we treat the case, where the emission process occurs
from the initial state parton. Due to the similarity of the procedure we give much less
comments and concentrate rather on the differences to the previous case.

Consider the situation depicted in Fig. 3.6. We introduce new dipole momenta pq;
and p;, where now the first one is a new initial state momentum that replaces p, and
p;i. The momentum p; replaces the spectator momentum p;. The form of the new dipole
momenta is completely the same as for the FE-IS case

P = @P — apl, (3.132)

Doy =05 — Q' = (0 —1)P" —(a—1)py, (3.133)

but the form of @, @ is in general different due to different on-shell conditions (see below).
Note, that again we have the explicit momentum conservation. In the next subsection
we shall fix arbitrary at this stage parameters @ and @ in such a way that pa; and p;
fulfil

p; =m3, (3.134)
Py =mp;. (3.135)

We shall also need Z variable, which is defined as in (3.75) without change. It is also
useful to recollect the relative momentum already introduced in Section 3.2.2.1

Py =1l — Pl (3.136)

Note the difference with pg;.
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~ .
S S pj

Di p“—i/

Figure 3.6: A) the momenta assignment in ITE-FS case, dashed line represents a relative
momentum transfer; B) reduced diagram for IE-FS case, the new tilded momenta are
on-shell and fulfil momentum conservation.

3.4.2.1 Standard kinematics

Recall, that standard kinematics refers to a situation, where we express dipole variables
@, W through “standard” invariants P2, P,.
Solving the two on-shell conditions (3.134), (3.135) we obtain

(Pa—PHR Q*+mi—m;

T 7 (3.137)
w__('Pa—mg)R_i_QQ—i-m?—mi (3.138)
200%P, 202 ’ '
where now
R = \/(92m2m2.)2 — 4m2m? (3.139)
j ai ai't

while Q2 and v remain the same, i.e. they are given by (3.81), (3.83) respectively.

Note, that the above equations are almost identical to the corresponding equations
from Section 3.4.1.1. Technically, one has to simply replace some occurrences (but not
alll) of mq by me; and m;; by m;.

3.4.2.2 Gamma-kinematics

Recall, that in gamma-kinematics we express dipole variable @ and invariants P2, P, by
@ and the additional invariant 4. It is a preparation for making % a free parameter.

In the present case of the emission from initial state, we define this additional invariant
as

;5/ — ﬁ] * Da- (3.140)
Thus, according to (3.132) we have
§ = P, — am?. (3.141)

This equation is superficially identical with the one for FE-IS case.
The expressions for w and the “standard” invariants in terms of 4 and @ read

x+9
2% +m2 —m2;, +m3’

W = (3.142)
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o (x — ) (7 +am2)
¢ @ (27 + am?2) +m3’
7)2: (X_(S)Q

@ (25 4 am2) +m3’
where
X =7 +a(y+m2)+m3,

5= \/ﬂmé (25 + @m2) + m? (mé— m2 (1 — a)Q) 132 (1—a)

Again they are very similar to the ones for FE-IS case.

The analysis of the bounds follows the same steps as in Section (3.4.1.2).

only collect the analogous formulae.
In further discussion only the lower bound on 4 is relevant. It reads

m2p® + (3 +m?) (49P2 —v_) + p_0 70,
m2v_ — 45P2 (3 + 2m2)

i (3) =

)

where this time

m2m?
j
Y

p— :2ﬁ+m§—m;+m?+7)g,

v_ = p* —4m2P?,

Vo = \/(p_ —2P_)? — 4m2,P?.

The lower bound on P? is the same as in the FE-IS case, P? = (m; + mj)2.

3.4.2.3 Dipole variable as a free parameter

35

(3.143)

(3.144)

(3.145)

(3.146)

Here we

(3.147)

(3.148)

(3.149)

(3.150)

(3.151)

In full analogy to the FE-IS case, later we shall treat the dipole variable @ as a free
parameter u. Let us recall, that in order for this to work, we have to release one on-shell
condition. More precisely the spectator p; must be off-shell. It drops into its physical

mass when v = 4.

All the relevant equations are analogous to the ones we have obtained for FE-IS case.
Let us only list relevant solutions for single on-shell condition. For w (u, P%, P,) it is the

same as (3.124) with however

5 miPQ
r=4/(u—1)"+ Pz

Further, w (u,?,P,) remains the same as (3.126) while

_Pa
¥4+ um? —

PP -

pa)2 [2(1_1&)(73@—?)—1—(u2—1)mi+m;}_

(3.152)

(3.153)
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3.4.2.4 Soft and collinear limits

Let us now check the soft and quasi-collinear behaviour of the dipole variables in the
case where the emitter comes from the initial state.

Recall, that the soft limit is reached when the momentum of the emitted gluon goes
to zero. The precise definition was given e.g. in (3.103). This is of course possible only
if m, = mg; and m; = 0. Then, again @ and Z tend to zero

=0, Z—=0 (3.154)

while this time
P? = m). (3.155)

Thus, the soft behaviour in the IE-FS case is essentially the same as in FE-IS case.

Next let us consider the quasi-collinear limit. We have to use the Sudakov
parametrization, but this time for the initial state momenta. Let us recall from Sec-
tion 3.2.2.1 that

nt
ph.=axpl — kb 4+ oy TR (3.156)
I o nt
pi =1 —x)ph + kp + o (3.157)

2pq -1’

where «; is a function of k2. and the relevant masses. Note, that the Sudakov z above
is apriori completely different from T defined in Section 3.4.1.4 for the FE-IS case. The
analogue of the last is however T defined as

nt

ph=7pl —kr+a (3.158)

2pq - M

and is interpreted as the fraction of incident momentum p, entering the reduced matrix
element. We shall come back to the above decomposition below, in Section 3.4.2.5.

The quasi-collinear limit is again defined as the rescaling (3.29) with respect to kr
defined in the decompositions (3.156), (3.157). We get in this limit

Pl = apl — Mkl + 0 (3) (3.159)
Pl = (1—a)ph + Ak + O (\?). (3.160)

Contracting the second equation with p, we get
i=0(N) = 0, (3.161)

since
Pa=0(X\"). (3.162)

On the other hand, contracting (3.160) with p; we obtain
P2=2(1-2)1-2)P.+0(\) — 2(1—2)P,. (3.163)

There are two remarks in order. First is that now Z tends to zero in quasi-collinear
limit. Second, we note that quasi-collinear limit does not imply any particular limiting
value of @. This is connected to the fact, that @ plays a role of the Sudakov variable.
This connection shall be clarified in the next subsection.
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3.4.2.5 Relation between dipole and the Sudakov variables

The analysis of the previous subsection leads to the conclusion, that in the IE-FS case, it
is Z variable that controls the quasi-collinear limit. Thus we expect @ plays a role of the
longitudinal Sudakov variable. To find the explicit relation we use (3.137), rescale the
masses according to the definition of the quasi-collinear limit and use (3.162), (3.163).
This leads to the expected result

i=1-2z+0()). (3.164)

Moreover, contracting (3.158) with P, using (3.133), again (3.163) and rescaling all the
masses we get
T=xz+0(N). (3.165)

Thus, in the quasi-collinear limit the two Sudakov longitudinal fractions are the same,
as desired.

For completeness, let us also discuss the relation between the above variables in the
soft, limit, controlled by « — 0 and zZ — 0. For T we obtain analogous result to FE-IS
case, namely we have in gamma-kinematics

1—7=ap; + O (@°), (3.166)
with ©; defined in (3.148). Next, for = variable, we obtain
2

1 ™ mall o + O (a2) (3.167)
— T = —Z — — = u—z uz). .
Ao (1 —v;) \ 7 (1 —9;)

Thus we see that z, 7T — 1 in the soft limit.

We note, that in order to obtain the above formulae the assumption m,; = m, has
to be made. Moreover one has to drop the terms proportional to the mass of the gluon
m;.

3.5 Dipole splitting functions

Now we are ready to give the precise form of the dipole splitting matrices introduced in
Section 3.3. Our functions are similar to those in [10], however they need modifications
required by the massive initial state partons. In what follows, we treat FE-IS and IE-FS
cases separately. The case FE-FS is completely covered in [10]. Moreover, the case of
initial state g — gg splitting is also the same, thus it is not considered here.

3.5.1 Final state emitter - Initial state spectator
3.5.1.1 Q — Qg and Q — Qg splittings
The assignment of the momenta is shown in Fig 3.7. Here we assume

m; =0, mj=my =mq=m (3.168)

while we do not assume anything about m,, since it can be either a quark (massive or
massless) or a gluon.
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Figure 3.7: The final state splitting Q — Qg with the spectator p, in the initial state.
The spectator can be either massive quark or massless quark or gluon. The case with
anti-quarks is formally identical.

We postulate the following dipole splitting matrix

2 2
st (a2 m (3.169)
ad? + 2 i D

~ ss’ "
(V858,.)" = smiacr |

where 0 was defined in (3.99) and here takes the form

b=iig=4|1— 4. (3.170)

Recall that pu, is the mass scale that keeps the coupling constant dimensionless.

The origin of the dipole splitting function (3.169) can be understood as follows. First,
recall the soft behaviour (3.20) when p; — 0. Here we are actually interested in one term
from the sum in (3.20), namely in the expression

Pa - Pj m2

pi (Pa +Dpj)  2pi-p;

(3.171)

We see, that the second term does match the last one in (3.169). Consider thus the first

one o
Pa - Pj = ( : Z) a . (3172)
pi(pa+1j)  ZPu+ i (P2—m2)

Using the gamma-kinematics we have

20232 (m2 (@ — 2) — am? — 27)

PQ _ 2 = — _ _ _ _ _ —— .
T G mE) (m? @ (25 + am2)) — @ (25 + m2) (m? + a5 + m2) + 7)
(3.173)
The leading behaviour in @ turn out to be
P? —m? = 270”4+ O (@?) . (3.174)
Thus we see that @ — 0 limit indeed controls the soft behaviour. Moreover
P.=7+0(a). (3.175)
Therefore (3.172) becomes
+0(1) (3.176)

Z 4 uv?
in consistency with (3.169). On the other hand, when we reach quasi-collinear limit, we
have also @ — 0 due to (3.112) and Z — z according to (3.121). Thus the squared bracket
in (3.169) equals exactly the splitting matrix for Q — Qg process (3.53).
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Figure 3.8: The final state splitting ¢ — QQ with the spectator p, in the initial state.
The spectator can be either massive quark or massless quark or gluon.

There is one more comment in order. As shown in Section 3.4.1.4, our variable 4
is equivalent to 1 — &; appearing in Ref. [10] (more precisely, they are the same when
me = 0). Now, if we translate the corresponding dipole splitting function of [10] to our
variable 4 we get (3.169), but without 92 in the denominator of the first term. However,
precisely this coefficient is necessary in order to maintain the soft limit when m, # 0, as
argued above.

3.5.1.2 ¢ — QQ splitting

Let us now turn to the process in Fig. 3.8. The configuration of masses is the following

mi; =0, m; =m; =mq =m, (3.177)
In the present case the splitting matrix is correlated with the reduced matrix element
in the helicity space (see Section 3.2.2.2). Therefore this case is less trivial than the
previous one. Below, we describe the procedure which leads to a suitable dipole splitting
function, which can be later integrated over the one-particle subspace.
First, recall the real splitting matrix (3.55)

N n% y )l 24
(PgQ) =Ty (—g“ —4 ;g;) , (3.178)
where kf. is the Sudakov four-vector transverse to Pij- The strategy in choosing Vglfé%

is to replace (3.178) by an expression leading to (3.178) in the quasi-collinear limit (here
there is no soft singularity) and is suitable for analytical integration. Those requirements
are satisfied by the following form

SrEIs P 2 v cr
(VEeas ) =smu¥aTh (g” 4o ) , (3.179)
where we shall refer to the tensor C*” as a correlation tensor. By assumption, it is
transverse to the collinear direction

In what follows, we shall find a suitable form of this tensor.
To this end, it is instructive to investigate the corresponding tensor used in [10]. Let
us denote it by CL”. Tt has the form

e = [z — (1= 2)pf] [2}) — (1= 2)pj]. (3.181)
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It can be easily shown using on-shell condition for p;; (see e.g. (A.1)) that

g~ N 1 N mifﬂ
pfl- (Zpip— (1 —=2)pju) = 3 (1—22) — (3.182)

Therefore, if we assume that initial state is massless, C£" is the correct tensor. However

it is no longer the case when m, # 0. Nevertheless it gives us a hint what modification

should be used. It can be easily checked, that the following tensor possesses the required

property

o= |k — (1 - 2)pt — g (" _pﬁ)} |:Zp’.’ (1= 3)pt — amg (o —p?)
‘ T2uP, Yt ’ Too20P,

(3.183)

It obviously reduces to C£” in the case of massless initial state. Note, the tensor (3.183)

is constructed as a dyadic formed from the vector

am?

V=2 = (1= 2)p) = gm0 = 7)) (3.184)
which is orthogonal to Dij
pij -V =0. (3.185)

Now, what remains, is to check, that (3.179) with (3.183) indeed reproduce the correct
quasi-collinear behaviour. Using the Sudakov decomposition for p;, p; and the results of
Section 3.4.1.4 we find that

v D SV v 3
e = [ty (22— 1) + K] [ (22— 1) + k| + 0 (Jkrl). (3.186)
Since terms with p;; do not give contribution, C*” is of the order O (|kT|2) Of the same

order is the denominator in (3.179), thus we indeed obtain the splitting matrix (3.178).

3.5.1.3 g — gg splitting

Although this subprocess involves the massless partons only (Fig. 3.9)

it is not legitimate to take the massless dipole splitting function as in [10] or [9]. The
reason originates in non-zero mass of the spectator m, # 0. This case is paradoxically the
most complicated one and in fact accommodates both of the cases described in Sections
3.5.1.1, 3.5.1.2.

Let us first recall the true splitting matrix (3.56)

N4 z 1—2 kR kY
— v _ T
(ng) 204 { g (1 — + . ) +2(1—¢) 5| » (3.188)

where z is the Sudakov parameter. Recall, that this gives the behaviour of matrix
element squared in the quasi-collinear limit. However, there are also the soft singularities
when z = 0, 1, what corresponds to vanishing four-momentum of the gluon i or j. The
construction of dipole splitting function for these singularities is analogous to the one
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Figure 3.9: The final state splitting ¢ — gg with the spectator p, in the initial state.
The spectator can be either massive quark or massless quark or gluon.

Pa \pj

Di

Figure 3.10: The initial state splitting Q — Qg with the spectator p; in the final state.
The spectator can be either massive quark or massless quark or gluon.

described in Section 3.5.1.1. Namely, in terms of our dipole variables we replace the
denominators in 3.188 as follows

—1+0 (@), (3.189)

ISIEIY

+u 1—-Z+u

1—=2 1-—
Z

z 1 _
= 1H0@), (3.190)

Z+u
Notice, there is no ¢7; factor multiplying @, since now simply 0;; = 1.

Consider now the transverse part in (3.188). It is treated in exactly the same way
as in Section 3.5.1.2 by means of the correlation tensor. Therefore, the dipole splitting
function takes the following form

SrEas MY 2 v 1 1 cr
(Vq%gg,a) - 167”1/7“8@8014 |:_gﬂ ( + F ¥ i - 2) + 2 (1 - E) 7)2 B

1-z+u

where C*” is given in (3.183).

3.5.2 Initial State Emitter - Final State Spectator
3.5.2.1 Q — Qg and Q — Qg splittings

Let us start by looking at the configuration of masses in the considered case (Fig. 3.10)

Ma = Mg; =mMq =m, m; =0. (3.192)

The dipole splitting matrix can be constructed in similar manner as in FE-IS case
in Section 3.5.1.1. Let us first analyse the soft behaviour, which our dipole splitting
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Figure 3.11: The initial state splitting ¢ — QQ with the spectator pj in the final state.
The spectator can be either massive quark or massless quark or gluon.

function should possess. Now, we are interested in the following term from the sum in

(3.20)

L E— (3.193)
pi (Pa+1;)  2pi-Pa
The first term is exactly the same as in FE-IS case (3.171), while in the second term
there is a different scalar propagator. In pertinent kinematics, it can be shown in close
analogy to Section 3.5.1.1, that the first term becomes

Pa 'Pj 1
= +0(1). 3.194
pi (Pa +pj) 2+ U3 @ (3.194)

Next, we have to look at the quasi-collinear behaviour, in particular at the splitting
matrix (3.38)

. ss’ s 1 4 22 20m2
(PQQ) =06° Cp < 1_2 €(1$>+m> . (3195)

Recalling that z = 1-a+O (A?) and Z = O (A\?), where A — 0 controls the quasi-collinear
limit, we see that the following dipole splitting matrix has the required behaviour

N ss’ , 1—a)m?
LIS ) = 6% 8np*a,Cp |———+ (1 —e)i— 2 — a-@m? . (3.196)
( Q—Qg,J r uv?- Ttz Di * Pa
3.5.2.2 ¢ — QQ splitting
The corresponding mass configuration reads
me =0, Mg =m; =mq=m. (3.197)

For convenience, let, us recall the splitting matrix obtained in Section 3.2.2.1 in (3.42)

(PgQ)SS/ = b3 Th {1 - %E <z (1-—2)+ ﬂ)] . (3.198)

2 2
Doy —Mm

Since in this case there are no soft singularities, we can easily find the dipole splitting

matrix. Here it is just
1—a 2
(a (1-a)+ %)] . (3.199)
Py —Mm

X 2
IE-FS _ 2 .
(Vg»QG,j) = 87" 955 T [1 1

ss’ — &

It coincides with (3.198) (up to the factors) in the quasi-collinear limit (due to (3.164)).
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Figure 3.12: The initial state splitting Q — ¢Q with the spectator p; in the final state.
The spectator can be either massive quark or massless quark or gluon.

3.5.2.3 Q — ¢gQ and Q — ¢Q splittings

In this case the configuration of masses is the following (Fig. 3.12)

Mg =m; =mqQ =m, Mg =0. (3.200)

Again we face the correlations of the dipole splitting matrix and reduced matrix
element. Using the experience gained in the FE-IS case, we can deduce the following
form

1o

(7&5,)" =smifacr (=) g™ (1-0) - 2= | (20D
where the correlation tensor is again the dyadic
cH =ypHryr, (3.202)
formed from the following vectors (they are different than in the FE-IS case)
VE = (1—2)pt — 2p — (@ —1) [m? gﬁzf ;:7’2 (1 - 22)] i (3.203)
For later convenience let us note that
Pai - P =P*(—1) =P, (i —1). (3.204)
The vectors V are constructed in such a way that
Dai -V =0 (3.205)
as can be easily checked using on-shell conditions. When m, = 0 it reduces to
ViE=(1-2)pl — Epg‘, (3.206)

which is the same as used in [10].
Let us now prove, that (3.201) indeed possesses correct quasi-collinear behaviour (soft
limit does not exist here), i.e. that it reduces to

4 kb kY
Pho =Cr(1—¢) (—xg“” —— T—T) . (3.207)

2
T Pai
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First, recall from Section 3.4.2.4, that then Z = O ()\2) and w — 1 —x. Moreover it turns
out that
, m? (P? —2P,)

w—1=A P2

+0 (M. (3.208)
Thus, the term proportional to P* in (3.203) vanishes. The same is true for the term
Zp; since p; is the fixed spectator momentum. Now, using the Sudakov decomposition
(3.157) we see that

VH = (1—a)ph + Ak + O (\?). (3.209)

However

(1 —2)ph =gy + O (N?). (3.210)

The momentum py; corresponds to a massless gluon, thus only the term proportional to
kr survives due to the Ward identity (the dipole splitting matrix is contracted with the
reduced matrix element). Finally, the propagator also behaves as O (\?)

Pei = (pa —pi)* = A\22(m* — 2P,). (3.211)

Putting all the pieces together we indeed recover (3.207). Another check can be made
after the integration of dipole splitting matrix, as we shall see in Section 3.7.3.3.

3.6 Phase space factorization

As explained in Section 1.2, the dipole subtraction method requires separation of the
(n + 1)-particle PS into n-particle PS and a subspace, which after integration leads to
IR singularities. In the following section we present complete treatment of the two cases:
FE-IS and IE-FS in the most general situation of non-zero quark masses, including initial
state. Our treatment is close to the one in [23, 10]. The third possible configuration with
final state emitter and final state spectator, is developed in [10] and need not be modified,
as it does not involve the initial state at all.

Before we start, let us make some general comments. First, since in the new factorized
phase space the initial state is modified as described in Section 3.4 (with the help of a
continuous parameter), actually we obtain a whole family of phase spaces. Therefore it
is natural to expect that the form of factorization will be a convolution rather than a
simple product. Second, when the initial state is massive, one parameter is not enough
to fix the new (Lorentz transformed) frame. This leads to some complications which we
shall also discuss below.

3.6.1 Preliminaries

In order to derive the phase space factorization formula, let us start with the (n + 1)-
particle PS and write it as follows

A, 11 (¢, Pai P15 Payr) = A2 (Q,pas pipy) [ [ AT, (3.212)
keM

where

Qr=q" > p (3.213)

keM
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and the set of indices is defined as
M=A{1,....n+1}\{i,j}. (3.214)

Our notation for phase space ingredients was introduced in Section 1.2.
So far, in (3.212) we have only disentangled two-particle PS for two chosen final state
partons ¢ and j. Further development is addressed to the next subsections.

3.6.1.1 Two-particle phase space

First, let us calculate two-particle phase space disentangled above. The result is well
known and represents usual two-body phase space slightly adjusted to our notation.

Using center of mass frame of momenta Q and p, (denote it as CM (Q,p,)) and
notation introduced in Section 3.4 we have

d®s (Q, pa; pi, pj)
_ dPpi by (p7 —m3) dPp; oy (pF —m3)

27m)7 6 (Q + pa — pi — p;)

pa dp;?d(cos®) dQp_s
4 (2m)P~2

=5 (732 — 2VP2E; +m? — mZ) iz (|p;] sin @) (3.215)

J E?,

When deriving this result we used (A.48) from the Appendix A.3. Utilizing delta function
we get

dQp_ _
AP (Q, pai pi,pj) = 4(27[;,32_223 (psin6)”~ d (cos), (3.216)
s
where . )
_ p . __ __ )
pzﬁz§\/1—2(m§+m§)+(m§—m§) (3.217)
with 5
M=l 218
My = 3y 4= 0] (3.218)

The variable p is the modulus of the outgoing particles three-momentum in CM (Q, p,)
and dQp_» is the solid angle element on hyperplane perpendicular to z axis (Fig. 3.13).
In general we can parametrize it using

N-1
dy = ] sin™ "% 0, do.. (3.219)
k=1
We require at this stage
P2 >P% = (m; +my)°. (3.220)

For completeness and future use we give also the energies and the momenta of the

particles in CM (Q, p,)
Pa

E, = N (3.221)
} PZ — m2P?
|Pa| = ———="— (3.222)

V=R
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Figure 3.13: Center of mass system of momenta Q and p, used to calculate two-particle
phase space.

P2_P,
Eo=VP?—E, = —7 (3.223)
m; —m? +P?
Bi= =, (3.224)
2 —mi+P?
E;=VP2 - F; = % (3.225)

3.6.1.2 Two-particle phase space in dipole variables

Since the dipole splitting functions are expressed among others in special variables @ and
Z, we start by trading cos for Z in (3.216). This is easily done using the definition of 2
(3.75) in CM (Q, p.). We get

AP (Q,pa;pis pj) = dPs (P?,Pa)

aQp p_ b_
= B (P T - ) (- 2| TV, (3:226)
4 (2m)
where
P<i<i, (3.227)
with 1
Ze =g (L+m} —m; £ 20p) . (3.228)

and v = |p,| /E, defined in (3.83).

Now, using the results of Section 3.4.1.2, we can express the invariants {732,73,1} in
terms of the dipole variable @ and one of the other invariants ¥, P, or P2. That is one
can use the relations of the type

y=Y(u,xX), (3.229)
where X, Y € {P?,P,,7} and X # Y of course. Let thus write generically
APy = dd, (X, 1) . (3.230)

At this stage it is not necessary to decide what X' and Y are, neither to insert their
precise forms, which in fact depend on the kinematical configuration (FE-IS or IE-FS
case). Those distinct cases are treated in the next subsections.
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3.6.2 Final state emitter - initial state spectator

Now we are ready to derive the factorized form of two-particle phase space. We start
with FE-IS case, but IE-FS goes in the same fashion.

There are several possible approaches to phase space factorization. One of the simplest
possibilities is to “go backward” from (3.226) using some elementary identities. This is
the path we choose in this dissertation.

Let us consider the phase space (3.230) and insert the following delta function

4By (X, 0) = /du 5 (u— @) ds (X, ). (3.231)

Next, let us convert ¢ (u — @) into the on-shell delta function for p;; defined in (3.73).
According to Section 3.4.1.5, we mean by this, that @ is replaced by « and @ = w is
obtained as a function of v and two “external” invariants X', ) € {732, Pa, ﬁ}, see Section
3.4.1.5. Thus, we use the following identity

§(u— i _
% =4, (p?i (u, X, ) — mi) , (3.232)
where 05 (. X.3) 932
pi‘ U, 9 pz
J (u, X) = JT‘ = 8ui (3.233)
X,y

Note, that we calculate the above derivative with the invariants X', ) fixed (as explicitly
denoted using “thermodynamical” notation) and next used Y =Y (4, X) = ) (u, X) due
to the delta function.

Finally, we insert D-dimensional delta function for momentum conservation with the
appropriate integration

D, (X, i) = /du /dDﬁQ o (B3 —m¥) ds (X,u)
T (0, 2) 67 (Q+ fu (u, X, ¥) =y ) - (3.234)

Recall, that
ﬁg(uv‘)(vy):w(uvxvy),])g‘*upg, (3235)

where w (u, X, ) was obtained using single on-shell condition p? = m?.

Equation (3.234) is just an identity, however it has already the required factorized
form. To see this more clearly, let us introduce the following measure

S

-2 - o\~ ~ L_o ~
J Gy —2)(2—2.)]2 77 dQp_2dZ,
(3.236)
where we implicitly understand, that all the quantities above should be expressed through
u and X. Using this notation we can cast (3.234) into

Aoy o (u, X) =

3—D 2
i L2mP 1’ (%)

D—-1

A5 (Q, pa; pi, ps) = / du (2m)° 67 (Q+ pu (u, X, ) = iy) dI" (iy ) oS, (u, X)

— [ dudw: (@5 (0. 2,3):55) oSS, (0, ). (3.257)
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Finally, using (3.212) we can write the factorization formula for (n + 1)-particle phase
space

n+1 ~ -
AP, 11 (q,pa; {pm}i;ﬁ) = /du A, (Q.Pa (s X) 5 {Pim Y mestpnrs) 4055 (s X)),
(3.238)
where the set Xpg.1s is defined as
Xpgas = {1,....,n+1}\ {i, 5} U {ij}. (3.239)
Recall that the tilde above ij means that corresponding momentum should be adorned
by a tilde, i.e. p;; = pij.

In what follows, we shall refer to the phase space d®, (¢, pa (4, X, V) ; {Pm }mexpnrs )
as a skewed phase space.

3.6.3 Initial state emitter - final state spectator

The treatment of the IE-FS case is completely analogous to FE-IS. This time we have
an initial state (an emitter) given by the vector p,; (3.133) and a spectator given by p,
(3.132). Therefore the phase space factorization formula takes the form

dq)n+1 (Qapa; {pm}?;T) = /du dq)n (Q;ﬁtﬂ (u, X, y) ; {pm}mexn}ps)
dolEES. (u, X), (3.240)

a—aii, j
where
Xig-rs = {1,...,n+1}\ {i, 5} U {j}. (3.241)
The measure is defined again as in (3.236) with the jacobian
~2
op;
ou

T (u, X) = (3.242)

ou

op? (u, X, ) |

XY

All the relevant kinematics is worked out in Section 3.4.2.

3.6.4 Factorization of three-particle phase space

In this subsection we present explicit formulae for the factorization of three-particle phase
space as an illustration of our approach. We shall use them later in constructing a Monte
Carlo program for numerical calculations.

We demonstrate the construction for FE-IS case (for IE-FS it is analogous). The
phase space factorization formula reads

40 .pui iy ) = [ duds (0,50 (0. 2,)3k 55 A0S, (0, 0)

— /du (2m)” 07 (a4 Ba (1, X,¥) = iy — k) dT (55 ) dU (k) dofES, , (u, X).
(3.243)
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Figure 3.14: Center of mass system of momenta ¢ and p, used to calculate factorized
three-particle phase space.

We assume, that the initial state momenta ¢ and p, are fixed. Note however, that
nevertheless the CM energy of the p;; and k system is not fixed for fixed u. To see this

explicitly, let us choose for example X = P2, Y = P,, we have then for the CM energy
5= (q+7a (u, P2, P))° = s (w— u)+(w— 1) (P2 —m} — 2P,)+u (6> + m?), (3.244)

where w = w (u, Pq, P?). Above
s=(q+pa)° (3.245)

and we used the following relations

s—mji+P?*—2P,

q-P= 5 ) (3.246)
22
g-po= -1 Ta q2 Mo (3.247)
which originate in momentum conservation in the form
¢+ plt =k PR (3.248)

Further we have the on-shell condition p; = mZ; in d®; (q, Pa (u, P2, Py) s k, ﬁﬁ), which

allows to express for instance P, = P, (u, P?). Thus, in order to have fixed the energy
of the p;; and k system, we need u and P? to be fixed in (3.244). In general they could
be v and any other of the invariants {PQ, P, ’y}.

We shall now be concentrated on the skewed phase space. Let us derive explicit
expressions for the choice X = P?, ) = P,. Due to the comment made above it is
reasonable to choose CM (¢, p,) as a reference frame (Fig. 3.14). In order to express
d®s (¢, Pa; k, Pij) as a function of the invariants P? and P,, we represent the kinematic

parameters ‘E’ and cosf accordingly (we can use some of the results from subsection
3.6.1.1)

V/sls — 2 (m2 +P2)] + (m3 — P?)?
25
(m2 = ¢?) (mi —P?) —s(s+P?—mi +m2 — 4P, — ¢*)

cosf = - , (3.250)
45 pak

k| = k, (3.249)
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where

Vsls —2(m2 + )]+ (m2 — @)’

Do = NG (3.251)
Calculating the jacobian
D (|92 2 _ p2
(17 |27 cost) | _ s+ mi—P (3.252)
D (P?,Pa) 25 pak
we get
D, (q,ﬁa (u, P2, Py) ;kz,ﬁﬁ) _
dp o . 2 2\ Pa o 122 1p2
1P’ (% (0. P2 P0) = miy) B [(PE = P) (Pa = P)] 2 dP aP,
(3.253)
where the bounds on P, integration read
22\ (o 2 2 .
PE = (o +mi — ) (s —mi + P°) £ pok. (3.254)
4s
Moreover
(mi +m;)* <P?< (Vs —my)”. (3.255)

Finally, we can perform one of the remaining integrations due to the on-shell delta func-
tion

—1

~ _ Ao | 0D 33D
u,P?

(P (P2) = P (u,P?)) (Pu (u,P?) — Py (P2))]* 2 aP? (3.256)

where we suppressed all the functional dependence on fixed variables, such as s or ¢?.
Recall, that the formula (3.256) is actually used in the convolution (3.243) and corre-
sponds to X = P2, Y = P, (u, P?). It means that all the invariants in d¢! 5. have to be

1] —1]
expressed accordingly in terms of v and P2. The advantage of the above choice X = P2,
Y = P, is that one can relatively easily obtain the bounds on u and P2. In practice
however, it is more convenient to keep u and 7 fixed when integrating over d¢f %5, i.e.
to choose X = 7. Thus, let us now derive needed formulae. It is actually straightforward,
one needs only to insert appropriate jacobian. We obtain

—1 (a—’])?) p‘ng
N7 ), v
[(,P;_ (ua’?) —Pa (ua’?)) (Pa (u,’?) _Pa_ (U,’?))]%_Q d’? (3257)

Using relations (A.7)-(A.9) from the Appendix A.1 and comparing the above formula
with (3.256), we can prove that (3.257) is indeed correct.

The nontrivial issue in this choice of X and ) is however to find analytically the correct
support for the variables u and ¥ (see also Section 3.4.1.5). For an explicit example, see

P,

dQp_o
4 (2m)P~2

003 (g, 5 (1,7, Pa) 1 i) =

u1
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the next subsection. The problems exist because the function ¥ (PQ, 77,1) (see 3.87) can
have a minimum in P, inside the region [P, _, P, 4| defined by (3.254). If one does
not need analytical expressions for the bounds and skewed phase space integration is
performed via Monte Carlo, those problems are not essential. Unfortunately, in some
cases we do need the analytical expressions for the bounds, namely when we find “plus”
distributions in our calculations. Thus, it seems that there is a problem: on one hand we
want to have “simple” formulae of integrated dipoles (achieved when X = 4), on the other
we want to have analytical expressions for the support of @ variable. Both requirements
seem to be in a contradiction. However, there is a very simple solution. We can just
mix both approaches, i.e. we can generate PS using choice X = P? while integrate
dipoles using X = ¥ with however some care when treating the “plus” distributions. To
summarize, it is a technical problem which can be solved in one or the other way and we
do not discuss it further.

For the TE-FS case, one can obtain analogous formulae. Basically, one should replace
Da by Pai and p;; by p; in the above equations, according to Subsection 3.6.3.

3.6.4.1 Explicit examples

Since the presented phase space factorization procedure is rather non-trivial, it requires
careful verification. In this paragraph we shall check our results against the usual ex-
pression for the three-particle phase space, which we derive in A.3.

First, notice that pure, fully integrated phase space [ d®s (q,pa;pi,p;, k) depends
only on the masses m;, m;, my and the CM energy s. We have checked numerically
using (3.256) and (3.257) directly inside (3.243), that the result depends neither on m,
nor m;;. Moreover, it precisely equals three-body phase space obtained by standard
method described in the Appendix A.3. The sample results are presented in Fig. 3.15 for
X =P2 Y =P, and in Fig. 3.16 for ¥ =7, Y = P,. The solid angle was integrated out
analytically. We show also the supports in these cases. Note in particular the complexity
of the support in u and ¥ variables, as we have discussed in the previous subsection.

3.7 Integration of the dipoles

Asg explained in Section 3.1, the cancellation of soft poles in virtual corrections requires
integration of the dipoles over the measure d¢. In the following, we shall compute all the
necessary integrals and disentangle the soft poles.

Let us first make some general remarks. To be specific, let us concentrate on FE-IS
case. Recall, that the unintegrated dipole splitting functions are - as a matter of fact -
matrices in the helicity space. Let us also recall that they are sandwiched between the
reduced matrix elements (see Section 3.3); the complete general dipole has the form

1 —= - A A TR _
DFE_IS - _§ M (q’pa; {pm}mEXFE-Is) CV .M (q’pa; {pm}mEXFE-Is) ’ (3258)

where S is a scalar propagator relevant to the splitting case, V is a pertinent dipole
splitting matrix. Recall that X is the set enumerating the corresponding final state
momenta entering the reduced matrix element. The matrix C' is the adequate colour
correlation matrix. Suppose we want to integrate the dipole over the subspace d¢. We
have

/dgb DFE-IS _ 7ET

(q’ﬁa; {pm}WEXFE—IS) CITFS M (q’ﬁa; {pm}WEXFE—IS) , (3:259)
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Figure 3.15: Sample results for the three-particle phase space in terms of u and P2
variables and FE-IS case. All the plots are made for s = 60 GeV?, m3 2GeV?,
m? = 3GeV?, m? = 4GeV? and fractional dimension D = 4.3. In column A) we show

surface plot (top) and the support (bottom) for m2 = 5GeV?, my; =1 GeV?; column

B) - the same for m2 = 15 GeV?, mfj = 0. Notice, that in general Emax > 1 contrary to
the massless case. The solid angle was integrated out.
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Figure 3.16: Same as Fig. 3.15 but in terms of u and 7 variables. In column A) m? =
15GeV?, m% = 5GeV?, in column B) m? = 5GeV?, m%, = 10 GeV*.
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where )
JFE-IS — / do gv. (3.260)

The integral is in general correlated (in helicity space) with the matrix element. However,
it turns out that it is superficial. As we shall see, after integration the correlations vanish
and we are left with

A~ |— 2
/ 4o DFETS — IFE-ISC‘ M (@, Pas 1P mespnra)| (3.261)

with )
FEIS _ 1/¢
I _/d¢8 <V> (3.262)

where (.) denotes helicity average in D dimensions. The reduced matrix element in
(3.261) is averaged over initial state polarizations of parton p, which is the same as for
Pa- It is not the case for IE-FS, see below.

For initial state emitter, the overall situation is very similar. The only difference at
this stage is due to the fact, that the number of polarizations of the new initial state pg;
is different. That is we have

2
, (3.263)

IE-FS IE-FS A o | A () 5 .
/dd)D =7 C® ‘M (q,pg, {pm}mEXIE—FS)

where now the reduced matrix element is averaged over polarizations of ai. Therefore,
we have to include a spin-transition factor into the dipole splitting functions or into the
integral. In our case, we have included it in the splitting function. Note, this is different
than in [10], where dipole splitting functions are defined without these factors. More
precisely, the dipole integral is then

[iEFs _ Nal /dq% <V> : (3.264)

Nq

where ny;, n, are number of spin states of partons ai and a respectively. In our case it is

[IEFS _ /d(bé <V> : (3.265)

We note, that although those spin transition factors equal to 1 or 1 — ¢, they are essential
as the integrals are in general singular.

3.7.1 The notation

Let us introduce some helpful notation we shall use throughout this section. We define
scaled, dimensionless masses for a quark ¢ as follows

m2

2 q
= —. 3.266

77(1 2,’? ( )
In this fashion, it is also useful to define other scaled quantities. For any quantity X
with the dimension of the mass squared we define

X

5 (3.267)

nx =
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For example, we shall use

7)2
Moo = % (3.268)
P
2 a
) .2
T = 5 (3.269)
and so on. It is also useful to define @-scaled variables of this kind
2
=9 x X
— - = 3.270
x 11 25 ( )

The motivation in introducing such a notation is that we want to disentangle u depen-
dence as much as possible, since it can lead to the singularities. This point shall be
clarified later in this section.

It is convenient to introduce a reduced dipole integral I, defined as follows

: 1 4rp2\° -
%0 (Z)) f (3.271)
2rT(1—¢e) \ 2%

where the integrated dipole I is defined in (3.262). That is we pull out the standard
factors relevant to MS calculations.

3.7.2 Final state emitter - Initial state spectator
3.7.2.1 Q — Qg and Q — Qg splittings

In that case the dipole splitting matrix (3.169) is diagonal in helicity. Therefore there
are no correlations between the dipole and the reduced matrix element. Averaged dipole
splitting function reads simply

2 m?
VEES, o) = 8muXaCr | ——— +(1—¢)2 -2 — : 3.272
< Q—>Qg,a> Ty XU 2 +3 + ( E) z Pi - D ( )
Let us define the integral of the dipole function
1 N
FE-IS  _ FE-IS FE-IS
Ig=qg,a = /d(bQHQg, “3p 1y <VQ%nga> : (3.273)

Note we included the propagator. Let us express the dipole splitting function, propagator
and the subspace d¢ via the scaled variables introduced in Section 3.7.1. The propagator
reads

2pi - pj = P? —m? =25 (np2 — 0°) = 2uF Tpz_ 2, (3.274)
where we introduced rescaled inverse propagator
2 2 2
2 Np2 2 Pe—m
77732—777,2 u 2;5/,“ ( )

Note, that we use u instead of u, due to phase space factorization procedure. We turn
special attention that fp2_,,2 is rescaled also by u comparing to similar quantities. This
fact is marked by the notation with the tilde (see also 3.7.1). The reason to make such
rescaling is to disentangle possible u = 0 singularity; in this limit the propagator in
Fig. 3.7 vanishes. We shall analyse the support in v in more detail below.
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Let us now rewrite the sub-space d¢ (3.236) using scaled variables. We have (after
integration over azimuthal angles which is trivial)

2(27)' ¢ . e
A3 590 = ( 4@2(]3 i Wy (mbe) S0 (34— 5) (E— )7 dE, (3.276)

where the velocity reads

= 3.277
V= T (3.277)
with (compare (3.99))
0 =+/1—4nn2. (3.278)
The scaled jacobian (3.233)
J
2
J 2,)/

is given in Appendix (A.2.1.1). In the considered case the bounds on Z are

Uide o (142un?+ o
5, =4 7 ( 1 % 0) . (3.280)
20752 (14 2un?)

Now we are ready to integrate the dipole splitting function over dZ. As anticipated

already in Section 3.7.1, it is convenient to define the reduced integral I§%8, , as

1>
FE-1S _ O 1 4”#3 FFE-IS
la5Qe =9 v =g ( 5 ) lasqea (3.281)

i.e. we pull out the standard factors appearing in the MS NLO calculations. Using the
integrals calculated in Appendix B.1 (integrals Z;, Zo, Z3) we obtain

Q-Qg.a = B 42
ult2e (777)2 7m2)

2 2 \¢
rES 2 (v2) {%(A (u): )

. - i
~B(1-¢) | L 4 T (1 + nzz;mz w (e — 1))1 } (3.282)
P2 P2 p2
where )
257
A(u) P2 —m? (3.283)

T 22,02 (Lt 2un?) + B (L+ 2un? —0)°

The function F can be expressed as a hypergeometric function and is precisely defined in
(B.21); we also refer to Appendix B.1 for some of its useful properties. We turn attention
to our special notation of Euler’s beta function with two equal arguments

B(l—-gl—¢e)=B(l-¢). (3.284)

Remember that w, n%., 7%2_,,2, %, should all be considered as the functions of u. We
do not write it explicitly for more transparency (the explicit expressions are collected in
Appendix A.2.1.1).
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Let us now analyse the support of the integral in u (recall, that it will be convoluted
with the reduced matrix element). According to (3.98) we have for the lower bound in

our mass configuration
u_ =0 (3.285)

and in general the upper bound wu. is different than one (we do not give it explicitly
here). We see that the integral (3.282) is singular at the point © = u_ in D = 4. This is
the soft singularity. In order to regularize this singularity we define

k=—¢e, k>0. (3.286)

and disentangle the divergence using the “plus” distribution f , ] defined as (see also
Appendix B.3)

F () = fromn (u) +5 (u) / 7 F ) d (3.287)

Notice, that our distribution has the support [0, u4], rather than commonly used [0, 1].
Let us now write (3.282) as

“pp 1
Q5Qg a = =3 K (Ui k), (3.288)

where K (u; k) is now free from the singularity. Using (3.287) we have

u

- 1 1
re1s _ (L , _ 1
185Qg,a = ( >[O,u+] K (u;0) + 6 (u) K (0; k) (2/1 + logu+> + O (k). (3.289)

The logarithm of w4 reflects our definition of the “plus” distribution with a non-standard
support. The two distinct limits of the quantity K read

2C 0>
K (u;0) = - Fllgy
Np2 _p2
1 ’172 uﬁ?ﬂ,mz uv 777232,7,#
{—10g(1+A(u)) st (1l }, (3.290)
v Np2 Np2 477732
1
K (0; k) = —2Cpo*n=2F <B (1+k)— 5}“(A; K)) , (3.291)
where -
A= A@0)= — 20 (3.292)
- 1422 -9 '
Let us write the full result as
1§58, = 7 (W) + 6 (u) (Jpole + Jainite) - (3.293)
The subsequent pieces read
1 1
Jpole = —CF E (1 — 5 lOg (1 + A)) , (3294)

1 1 u2
Jinite = Cr |2 + 5.7:1 (A —(1- 3 log (1 + A) | log 2| (3.295)
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1
J(u) = (—) K (u;0), (3.296)
u
[0,u4]

where Fj is the coefficient in expansion
F(Ask) =log(1+A)+rFi1 (A)+ O (k), (3.297)

calculated in Appendix B.2.
Let us now check, if in the limit of massless initial state parton we recover the result
of [10]. When m,, — 0, we have in particular

v=0=1 w=1, (3.298)

Moz =U+0°, Tea_pe=1, 1y =1, (3.299)
1

- 3.300

A (u) P ( )

Now, the terms in decomposition (3.293) read (we have adorned them by a star to
underline that they are evaluated for the massless spectator)

\ 1 1+
pole — —Cp E <1 - log 772 ) ) (3301)
1 1 2
Jinite = CF {2 + F <?) + (1 —log ;;277 ) log 772} , (3.302)
J* (u) = 20 (1) log iUt g W (3.303)
L . g ut 12 4(u+772)2 . .

Now, we use some effort to reshuffle the terms between the above equations using (B.74)
in order to get the same “plus” distributions as in [10]. We get

FFE-IS
Q—Qg

=2CF <l> log (1 +u+ 772)
m2=0 u/)

+Cr [% (2@“7;72) —2log (u+17?) —2)}

1 11 1 3 2
+Cré (u) [— (log (1+n%) = 1) + (— - —) logn® — = log”n’ + 5 — =7
K K

+

2 2 2 3

772

2(1+7?)
(3.304)

+ %log (14+7%) (1+1og (1+7°)) — 2logn”log (1 +7°) — 4Liy (=) +

We note that the u-dependent part is identical to the one in [10]. The same is true for
the endpoint, contributions, which are finite in massless limit. We obtain full agreement
once we expand the n?* term? which multiplies some poles and finite factors in [10]. Such
a factor was introduced there, in order to keep possibility to obtain massless results at
any time. After expanding 7" it is no longer possible, since the limits x — 0 and 7 — 0
do not commute.

2adapted to our notation.
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In the end, let us give two remarks. First, note an interesting trick. As far as we
consider soft and soft/collinear poles in a massive calculation, i.e. the end-point terms
containing log n?, the corresponding poles in massless calculation can be always recovered
by means of the following correspondence rules

1 1
logn? = - (* —1)+0 (k) — ——, (3.305)

K

1 1 1 1

—log n” + 3 log? n? = = (n* =1)+0(k) — - (3.306)
Thus, using this method we can check soft singularities in a massive calculation against
corresponding massless results, which are either well known or are simple to obtain. This
of course does not work for the finite terms.

Second observation is that we cannot set the mass of heavy quark Q literarly to zero
in our integrated dipole function (3.293). This is because we have not kept track of 7>~
factors and they are expanded, see more extensive discussion below in Section 3.7.3.1. We
give separate formula in Appendix B.4, as the calculation requires some tools introduced
below in Subsection 3.7.2.3.

3.7.2.2 ¢ — QQ splitting

Let us first recall, that in this case we have the following configuration of masses

m; =mj =mqg=m, m;; =0. (3.307)

For convenience, we recall also that the dipole splitting matrix derived in Section 3.5.1.2
reads

pv . crv
(VEeas L) = smu¥a.Th (—g“ 4o ) , (3.308)
where
v z = ami SV = v amz v v
e = [anl = (1= 2108 - g (- )| [ant = (- 200 - e ot )|

(3.309)
Let us define the integral of the dipole splitting matrix as

FE-IS SFEIs \PY
/ ¢g—>QQ, (Vg—>Q6, a) ) (3.310)

where the detailed expression for the measure d¢ is derived in Section 3.6. Due to the
Lorentz invariance, the integral can be decomposed as

, pwpa + PijPa
KM = —g'v Ay + i h Ao —|—p”pw As +phph Ay (3.311)
ﬂ a

Since the momentum p;; is the one of the massless gluon, the As, A3 terms do not
contribute to the full subtraction term. This is due to the gauge invariance and the
following Ward identity

P My (3.312)
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Here the reduced amplitude M, corresponds to the shaded blob in Fig. 3.8. Let us now
turn to the Ay coefficient. Contracting (3.311) with p;p}; we get

1 ~p ~v [ {yFE-IS
Ay = /d¢ i (V) =0, (3.313)
P2 ( "

ﬁﬂ : ﬁa)
due to the transversality property of C** (3.180) and the on-shell condition
Py = 0. (3.314)

Thus, only A; contributes to the full subtraction term. It can be disentangled by taking
the average over helicities of the gluon p;; by means of the polarization tensor

R T T
Pii D —Ma 3
24 (pﬂ : pa)
Here p, is used as an auxiliary vector. In practice - again due to the transversality of
CH - the gauge terms in d"” can be omitted.

Summarizing, only the average of the dipole splitting function contributes. This
average reads

g (@; pa) N (3.315)

- 1 - ~ v
<‘@F_I?é%,a> =5 5w (pg;pa) (‘Q]F_}fé%ﬂ) : (3.316)

The only non-trivial (although straightforward) point is to evaluate the average of C*.
It turns out to be simple

Qv (Bigipa) € = P? (34 = 2) (5~ 5-) (3.317)

Hence

<ng§3%’@> = 8mp¥a,Th [1 L ICEE] P (3.318)
where the bounds Z+ on Z variable are given in Section 3.6.1.2. Let us list their form for
the present mass configuration:

1
Zy = 5 (1+vp), (3.319)
where D was defined in (3.217) and reads here

_ 4m?
Now, we shall perform the integral over the measure d¢. Note, that in the present
case
by = 1. (3.321)
Further

o
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and thus the measure reads

~\1—
QFEIS_ 2(29)°
979 (4’ I (1 —¢)

(uith) "% (14 2un?)' > [(34 —2) (- 5.)]° dz.

(3.323)
Let us recall, that 77?7 is the scaled jacobian J, that has different form depending on
the choice of the “external” kinematic variables. The form we use is given in Appendix
A.2.1.2. We define the pertinent integral as

FE-IS FE-IS *FE-IS
1,.0q,q / 19,50q.0 <V‘HQ6J> (3.324)
and introduce - similarly as before - the integral without the standard factors, I JFE- éSQ e

see (3.271) for definition. In terms of the integrals defined and calculated in the Appendlx
B.1 we have (again converting ¢ — —k)

T 142k 2
FFE-IS  _ R 2 2\ 1+ _
Ig%QQ ul*/{ﬁ%2 TIJ (1 + 2U7’]a) |:I2 1 + K I7:|

=2

TRB 1+~
_TeBO4K)

_ P 1+ . (3325
ul=ri2, 7 l (3+2ﬁ)(1+2m73)2] (8.525)

We see that there is a potential singularity due to the denominator % However, it is
not the case as long as we deal with massive quarks. To see this, check the lower bound
on u. It reads

8 2
u_ = il (3.326)
1+16n2 (n* —n3) + (1 +4n?) \/(1 —4n?)* = 1692
and equals zero only for m = 0 (not even for m, = 0). The lack of the “formal”

singularity, however, does not make necessarily life easier. This is because for large
momenta u_ — 0 and thus it is desirable to control the potential singular behaviour.
Possible solution to this problem, is the following (see [10]). Regularize this potential
singularity by introducing the “plus” distribution with the support extending from non-
zero value, namely (see also Appendix B.3)

U
£ = i ()4 8= [ f ) du (3.327)
It has the property that
f[u Juy) n:>0 f[O w4 ] (3328)

In the context of (3.325), the above procedure is realised by the following replacement
- = <—> +60(u—u_)— (uf —ut). (3.329)
[u 7u+]

At this stage we are still free to literally set m = 0 — then we get the soft pole (since
u_ = 0). However in practice, if we want to deal with massive quarks, we have to expand
the numerator in £ and we get

1 /1
1o (_) +6(u—u_)log £, (3.330)
[ uy] -

(7 (7
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With this substitution we obtain

. 1 u
el (5)[ 0+ 50w K () o e (3.331)
U, U4
where
2 =2
Ny _ p
Kw=Tg-Lp|1+—"— 1. (3.332)
P 3 (1+ 2un?)?

Note, we have set k = 0, as it was legitimate.

One can wonder about the usefulness of such a decomposition. Normally in such
situation, we have 0 (u) and a soft part can be added to virtual correction under the
same integrand, since for u = 0 the dipole momentum p, becomes the usual p, (i.e. the
skewed PS becomes a usual one). Here however, the skewed phase space is generated
from p, (u—) # po. Therefore the considered end-point contribution cannot be added to
virtual part under the same PS. One can extend the support of the distribution (3.327)
in order to include v = 0 point. But this is not necessary. Consider a situation, where all
the integrations are made by MC. The above endpoint integral is binned into different
bins than the one for virtual corrections, since their PS do not coincide. However, when
n? — 0 the bins start to overlap and the cancellation can occur.

3.7.2.3 g — gg splitting

Finally, let us consider pure gluonic splitting, with a possible massive spectator. For
convenience, let us recall the dipole splitting function introduced in Section 3.5.1.3

1 1 cH
I :ta i+a 2) +2(1-9) PQ} ’
where C* is given for instance in (3.309). The masses are m; = m; = m;; = 0 and
mg # 0 in general. -

In complete analogy to Section 3.7.2.2 we can prove that the contribution to the
integral of the dipole splitting matrix comes from its average

. pv
(Vo)™ = 16mu2a,Ca {g“” (

- B 1 p—
A TR (i (3.334)

where this time

\1—
FE-IS _ 2 (27) i
9g—4g99,a (471')2_6 1—\ (1 _ 5)

(uitha) "% (1+2un?) ™ (24 = 2) (- 2)] % dz,

(3.335)
The average itself is easily calculated in the same manner as in Section 3.7.2.2 and reads

d¢

1 1
FE-IS _ 2 ~ ~ ~ ~
(Vo ) = 16mp*a,Ca et 24+ (2, —2)(2-2.).  (3.336)
Here -
= v (3.337)

while the rest of the quantities, like né, ﬁ%z etc., are given in Appendix A.2.1.2.
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In complete analogy to previous cases we define the scaled integral I, ;‘E-;g o> See (3.271)
for definition. Using integrals from Appendix B.1 we get

2
FFE-IS UKz 1
1y 99,0 =2C4 2(1—r) yl-r (1 + 2un)
Np2
F (A ()55) — F (As (), k) + B+ r)v [ 29[| (3.338)
e 2 2(3 + 2r) o
where .
V= T (3.339)
1 1
= 34
A () wl+ (14 2u)n?’ (3.340)
-1
Ag (u) (3.341)

T ltu(l 4 (T+2u)n2)
The difference of F functions in (3.338) can be further simplified, due to the relation

F (A k) = =F (A2, ). (3.342)

following the Pfaff transformation® (see Appendix B.1) and the relation

A
T T A (3.343)

Now, we have to disentangle the soft singularity that appears due to the fact, that in
the present case u— = 0. This time however - apart from the singular factor 1/u - there
is also a singularity hidden in function F, due to the behaviour of A; as a function of w;
we shall see this more precisely in a moment. Therefore we expect a double soft/collinear
pole.

Since the expansion in & of the function F (Aj; k) is not analytic at u = 0, we have
to put it inside the “plus” distribution, i.e. we make the following replacement

%]—‘(fh (u) k) = (M) [0,us)

(7 (7

+ 6 () /O oy yll_ﬁ]-“(Al () :k) + O (k). (3.344)

The integration above is rather non-trivial when m, # 0, because A; is a nontrivial
function of w.
In order to simplify the procedure, let us define the special variable, which plays an

analogous role as u,
1
v=—=u (1+(14+2u)n7). (3.345)
Ay
Thus u can be replaced by

u=tB(r), (3.346)

3This can be also deduced already from (3.336) by simply noting the symmetry of the first two
integrals.
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where 5
B(x) = . (3.347)
T4+n2+ 1+ 022 +2(1 + 4v)]
Notice that
B(t)y=1 form,=0 (3.348)
and 1
B(0)=——. 3.349
0= 137 (3.349)
Let us now define the “plus” distribution using this new variable
1 1 F (%50 ! 1 1
—F | =k ) = M —|—5(t)/ dy—F | =6 | +O(kK). (3.350)
tl K t T . 0 yl K y

Note, we defined the usual “plus” distribution, i.e. the support is [0, 1]. This accounts for
simpler evaluation of the integral — it is calculated up to order O (k) in Appendix B.1 as
Integral M. In the end we get

1 1 1 1 1 1 2
tl_nf (;, Ii) = ; 10g (1 + t) + |:; log ;:|+ +94 (t) (2_%2 - I) + O (H), (3351)
where we used the relation
Log(140)] = Llog(1+1) —5(0) = (3.352)
—lo =-1lo — — )
v & Lt & 12

following Appendix B.3.

To be consistent, we also use the new variable v for the rest of the terms in (3.338).
We can easily transform the end-point delta function 6 (t) into 0 (u). More attention has
to be paid to practical integration of the “plus” distributions in the new variable t. A
useful formula is given in Appendix B.3.

Let us now collect the singular and non-singular pieces and decompose the integral
similarly as before

IS o = J (1) + 6 () [Janite + Jpole) , (3.353)
For the subsequent parts we obtain
111 1 )
Jpole = 2C'4 {? “en R log (1 + na)} , (3.354)
67 1 11
Jtinite = 2Ca {E — g - [5 log (1+n2) + ﬂ log (1 + ni)} , (3.355)

2

J(u) =204 B’(?ﬁ (1+2eB(v)n;)
7)2

2 2 1 vV, 1
~log (147) + <t log t>++ 5 (v* —12) <t>+] . (3.356)
where the functional dependence v (u) was skipped.

It can be easily checked, that for m, = 0 we arrive at the known result from [9]. We
turn attention, that we have an additional pole with a logarithm containing the spectator
mass comparing to [9]. This is however perfectly right, as for every FE-IS case, there is
a corresponding IE-FS case. The last can have similar singularities to those in (3.354)
since we allow for massive quark there.
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3.7.3 Initial State Emitter - Final State Spectator
3.7.3.1 Q — Qg and Q — Qg splittings

Now we switch to the IE-FS case. Let us start with Q — Qg splitting. Note, here we
distinguish this case from Q — ¢Q. In the former a gluon has momentum p; and is
radiated out, while in the last it enters a reduced matrix element. In FE-IS both cases
were treated simultaneously.

Let us start with the precise definition of the dipole integral. We define

-1 .
IE-FS  _ IE-FS IE-FS
1Q5Qg.5 = /d%—@g,j prep— <VQ—>Qg,j>’ (3.357)
where the dipole splitting matrix was defined in (3.196). The whole procedure is quite
analogous to FE-IS case. The fact that we can use the averaged dipole splitting matrix
is due to its diagonality. The propagator in (3.357) reads

pai —m? = —2ZP,. (3.358)

The measure d¢ reads here explicitly

] 2029)' 7 0% (nd) 125 e o e -
dpIEFsS J TP 1+ 2un? Iy —2) (220 ° dz,
¢Q_>Q97] (471')2_6 r (1 - E) 17;—26 ( U ) [( + ) ( )]
(3.359)

where
uﬁ?,Lm? (14 2un? + ;)

3.360
27772,2 (1 4+ 2un?) ( )

Zy =

We delegate the explicit forms of 1%, 7%, etc. to the Appendix A.2.2.1.
Performing the integration over dz (using Appendix B.1) we obtain for the reduced

integral I3-1¢,  defined as usual in (3.271)

2K
2 ~22 1 2 2
&S = _CF 7 (7773 *mf) (1 -+ 2ur’) {]:(Al (u); K)
—Qg, ok R ~ )
ST TR

+%[u(27u(1+n))6572}}'(¢42 (u); k)

7727772,217]2 (1 —w) (1+ 2un?)
oo, (L= 1+ 2u)

G (As (u); k) }, (3.361)

where
2u@jﬁ;27m§
A ) = N [2u (0 + 02 (14 2un?)) + 1 —0;] —n? (14 2un? — 0;)’ (3.362)
As(u) = — 2% (3.363)
1+ 2un? — 0,

Recall, that the functions F, G are defined in Appendix B.1.
Since we consider the emission of a gluon, we expect the soft singularity. Indeed there
is 1/u term in (3.361), while the minimal value of u variable is u_ = 0. Therefore, we
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disentangle the singularity by means of the plus distribution (3.287). To this end define
the regular (in the limit u — 0 and 7? # 0) quantity K (u; k) as

T80 = o K (). (3.364)
We obtain
I(IQEHFS!] = (%) - K (u;0) + 0 (u) <i + 1ogu+> K (0;K), (3.365)
where
K (u:0) = O (1 + 2un?)

26?77;13a 77723'277712
L ey 2108 (1 As (1) g (14 45 (1) (2w = 2) )]

41)37]27772,2 (1 —u) (1 + 2un?) }

3.366
(14 2un? +v;) (1 + 2un? — v;) ( )

K (0;5) = —2CF (7) " 5} | F (A1 (0)55) — F (A2 (0) ; k)
% (149;)G (A2 (0);k) ] . (3.367)

When deriving (3.367) we used

1
M2 luco =10 Mhuluso = 5 (3.368)
Mormz| =T Wl =05 (3.369)
Moreover 05
s
0)= 3= = 3.370
A0 = g = A (3:370)
2”’ .
A2 (0) = £ Y = g, (3.371)
—b;
Let, us note interesting identity, which holds if n? = 72
1+ A 1
= . 3.372
I+A 1+A4 ( )
We decompose the result into three parts
I(IQE—>F(3g i J (u> + o (u) (Jﬁnite + Jpole) . (3373)
For the subsequent pieces we get
1 1 1+ A4
Joole = —Cp— [ 1+ =1 3.374
pole FK( +1~)j og1+A2), ( )
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1 1+A1) 174“1
Jnite = —Cr [ 1+ — lo log -2
finit F( Uj g1+A2 77]2

- CF% (F1 (A1) — F1 (As) —log (1+ A3)),  (3.375)

J

T (u) = (1) K (u0). (3.376)
U/ 0,uy]

There are two comments in order here. First, there is no standard collinear pole of the
form % Py in our result. However, analysing Eq. (3.366) in the quasi-collinear limit, we
find that there is a term of the form logn? Pgo which plays analogous role. Therefore,
our dipole function in the present form are not infrared safe. Later, in Chapter 4 we
shall fix this using methods described in Section 2.4.

Next, our result (3.373)-(3.376) is not well suited for massless spectator case, i.e.
for m; = 0. This is seen e.g. by looking at K (u;0) which should be finite for u = 0.
However, if m; = 0 we have

log (1 + A (u)) = —log (un®) + O (n?) . (3.377)

In order to assure the smooth limit, we could have kept track of factors 77?-” and do not
expand them, which however is not easy in the fully massive case. Another solution, is
simply to have distinct formulae, with m; set to zero literally from the very beginning.
This is reasonable, since if we dealt with completely massless spectator (like gluon or
quarks u, d, s) we should have put the factors 77?’i to zero manually. On the other hand,
when we deal with heavy quark spectator, we nevertheless have to expand those factors
manually.

Therefore, in the following we derive the corresponding formulae with a spectator
assumed to be massless in the beginning.

Let us thus start with (3.361) with 57 = 0. Now it becomes

1 CrnZ (ip2)" (1+ 2un?) )
I(IQEHFSQJ n2=0 == = uﬁ,ﬁn%a {I(J‘h (u); k)
5 @14 )~ 2 F (A5 () 1)
1-— 1+ 2un?
PR 6 i ) s
np,
where . .
A (u) = Ay (U)|n]2:o = Trt20)2 (3.379)
% 1
Az (u) = Az (u)],2—0 = et (3.380)

We see, that the functions A7 (u), A5 (u) do not behave well in the v — 0 limit and we
have to include F, G functions in the “plus” distribution.
First split (3.378) into three distinct parts

Q7G| ,_, = 1+ Ko + K, (3.381)

3=

where K , Ko, K3 are the first, the second and the third term in (3.378) correspondingly.
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Let us start with K;. We follow similar steps of Section 3.7.2.3 for FE-IS case. We

define the variable )

CT A ()

Note it is the same as in Section (3.345) if we replace 2 «+— 7%. Thus we can immediately
use the other results from that section, in particular, we have

= u (14 (1+2u)7%). (3.382)

ul—n tl—n

e P i) = S (). (3.38)

where B (t) is given in (3.347) with replacement 72 <— n? and

1 1 1 1 1 1 2
Thus we get
Crng (1+2eB(x)n?) |1 1.1
K, =— Zlog (1 ~log =
1 77723’16('() © Og( +t)+ v Ogt .
1 1 1
—6(x)Cr (1+7?) [? ——log (1+7%) =5 (7" - log” (1 + 772))} . (3.385)

Next consider K. Here the rescaling of the soft variable w is trivial, namely we define

_ L — u772
As (u) '

s (3.386)

We can thus obtain much of the results by replacing B (r) above by 1/n?. We obtain

Crn% (1+25)n 1 1 1 1
np, 2 |n n s 5 5],

1

1 1
+ 6 (5) Cpn? [? - logn? — 5 (m* — log? 772)} . (3.387)

Finally, we calculate K3. We include G in the “plus” distribution. Introducing the
variable s as above, we make the replacement

1 g(%;m):[ 1 g(%;m)LJré(t)jg(n), (3.388)

51711 51711

where the integral 7> (r) is calculated up to the order O (k) in Appendix B.1 as Integral
N. Explicitly we get

511_,€g <§;n> = (% ] i5>+ +4(s) <i 10g2> + O (k)

(1) L S 10w, (3.389)

5 +1—|—5 2K
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where we have used the relation (B.74). Gathering all the pieces we obtain

B Crn%(1+25)° 2 —s (1 Al )
K3 =— 25 75 \s +—CF5(5)77 E—logn . (3.390)

Let us now collect the full integral. We decompose it as in (3.373). We however adorn
the quantities by a star to underline that they are evaluated for the massless spectator.
We get

1
pole = —Cr— (141logn® —log (1+7%)), (3.391)

1
inite = —5Cr [log® (1 +n%) = logy® (logn® + 2)] (3.392)

C 2 2
I (u) = — 7 {1+2t3(t)77

1 1 1
oy B0 [; log (1+t) + [; log ;] J

+%(1+25)772 {% (2 %) 2] Elog(1+s)+ Elogﬂj

(=) (14297 (1) } (3.393)
+

2, (1+5) 5

We skip functional dependence on u for s and ¢ in the above equation.

Later, in Section 4.4 we will need the above formulae in the limit 7 — 0. Then, the
“plus” distributions in v variable become straightforwardly the distributions in u due to
(3.382). This is not the case for “plus” distributions in s variable. The relation is the
following: for the distribution originating in F function

1 1+s 1 1 1
2 21 —_ 2_1 1 2 | _ P
L 0g — L - log(1+5)+n 50g5+ ()
2

7172] FO(R), (3.394)

1 1+ un? , 1
[— log 72] -6 (u) [ng (—u+772) + 3 log? (u+772) +
wnm Jo,uy)

and for the distribution originating in G function

772[1 : ] =n2(§) L 5 (u) log2

51+5Jr +1+5

1+ ugn?

1 1
= |- — — 5 (u)l ) .
{u g UUQ] . (u) log S +0O (k). (3.395)

It is interesting to note, that in the limit n> — 0 the above relations effectively leads to
the opposite sign in front of log n* (logn? +2) in Eq. (3.392).

3.7.3.2 ¢ — QQ splitting
The integral of the dipole splitting function (3.199) is defined as

JIE-FS IE-FS TE-FS
gHQQ J / ¢9HQQ i p2— m2 <V9HQ67J>' (3.396)
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The averaged dipole splitting function reads (averaging is trivial, since the dipole matrix
is diagonal, see (3.199))

. 2(1—a) (. m?
1E-FS _ 2¢e _
(VIEES ) =8mu¥a, Th {1 [ <u o )] . (3.397)

—m2
Here, the one particle subspace reads

(SIS 220 " ) (G- D) (-2 s (3.398)

Q—9Q,j — (471')2_6 T (1 . 5)

The scaled jacobian 77?7 and other scaled quantities are explicitly listed in Appendix
A.2.2.2. Note that
v=1 (3.399)

in (3.398) (since the mass of the initial state m, = 0), and consequently the bounds on
z are ) )

- n—nj 1 —

= —(1£2p). 3.400
5= Tyt 45 (12 2) (3.400)

The propagator in (3.396) is the same as in (3.358). Evaluating the integrals over dz
we obtain for the reduced integral

cers _ Tr ty (132)" (D)™ { _
Ig—>Q67j7 1+k 2(772 )2 P, (1*2U(1*U)+I€)]:(A(u),fi)

a

20 nps (1 — u)
n2 =17 + e (1 - 2P)

G(A(u);k) }, (3.401)

where

4772 2P
A(u) = P _— 3.402
W = . =) (3.402)

Since the integral (3.401) is finite (for finite mass m), we can safely set x = 0. Then
we get

S —Trn>
s fg{ng,a (1= 2u (1 = u)) log (1 + A(u))
2 (n3,)

_ 802 (n%:)° P (1 —u)

In Section 4.4, we will check that the leading behaviour is of the form logn? P,,, when
the mass m becomes negligible comparing to other scales. Actually it is already apparent
in the above formula. Such an analysis will be starting point towards factorization of the
mass singularity.

As an another preparatory step, let us note, that our unintegrated dipole splitting
function (3.199) is exactly the same as the one in [10], when we set m = 0. Some
caution however must be paid, since our dipole splitting function already includes spin
conversion factor (we defined quasi-collinear limit with reduced matrix element already
averaged over spins). Since in Chapter 4 we shall need our result for m = 0 set in the
beginning, according to what we stated above, we will not have to calculate it as it can
be just taken from [10].



90 CHAPTER 3. MASSIVE DIPOLE SUBTRACTION METHOD

3.7.3.3 Q — ¢Q and Q — ¢Q splittings

In complete analogy to the splittings ¢ — QQ and g — gg in the FE-IS case, it can be
shown, that the contribution of the integrated dipole splitting matrix defined in Section
3.5.2.3 reduces to the average over the helicities in D dimensions

1 .
1E-FS IE-F'S 1E-FS
Ia%9q, 5 :/d¢Q—>gQ,j o < Q—>gQ,j>- (3.404)

Similarly as before we introduce I§"F%, ., see (3.271) for definition.
Let us recall the dipole splitting matrix for convenience (note, that we inserted the

spin conversion factor in front)

J— 1% y 5 4 CH
( Qe j) = 8mp2* 0 Cr (1 —¢) [—g“ -0 - =% } : (3.405)
with C* = VH*VYY and
(0 — 1) [m* —m? +P? (1 - 22)]
VE = (1—3)p" — zp* — J PH. 3.406
( Z) pl zp; s P ( )
The average over helicities is performed using the following polarization tensor
Sp v ~y g e /]
PaiPa + paipg PaiPai
A" (Pai; pa) = =g + ————— —mi ———— (3.407)

ﬁﬂ'pa a(ﬁa_i'pa)2,

corresponding to the gluon with momentum p,;. As an auxiliary vector we choose pq,
however in practice only the metric tensor gives contribution. The average reads

) =+ i 5 {“ﬁ;?);“] P23 —2)(3- %), (3.408)

where the denominator reads
Pai - P =P* (0 —1) =Py (@ —1). (3.409)

Using this, we get for the averaged dipole splitting matrix

2 1—a [ Pa \'og,o .
A () e -]
(3.410)
Again, it is instructive to check whether in quasi-collinear limit (3.410) gives averaged
splitting matrix

(VEES, ;) = 8mia,Cr (1 - ) ll —i-

(Pay (z:8)) = Cr (1—¢) [;c+ 2 (1_x+$m2)}, (3.411)

1—¢ x P2,

where x is the Sudakov variable defined e.g. in (3.156). To this end, note that in the

quasi-collinear limit (3.29) we have
1 2\?
7P —m? <1 + (27; > )] , (3.412)

HrN 2
) =552
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where we have taken into account the fact that Z = O (/\2), more precisely

m? (1+(1—x)2)—k%

~ 12
2= 2(1—2) P,

(3.413)

Recalling also that

2 _ 2,2

k
Pai = A2 (m* — ZP,) = A* L (3.414)

1—=x

and P? =2 (1 — 2) P, + O (A?) we indeed recover (3.411).
Now, let us perform the integration over the subspace d¢. For pertinent mass config-
uration it reads

2(29)"
(4r)>° T (1—¢)

by 5q,; = (pa) “mFv*Tt (B - 2)(F-2) T dE (3.415)

The scaled quantities like 7% etc. are explicitly given in the Appendix A.2.2.3.
Using the results from Appendix B.1 for the integrals over dZ, we obtain

(1—w) (2p)*" (n32)" %
20m3,

[975q.; = (1+ ) Cr

200321, D
2
(1+) (n2.0)

where the function H (A; k) reads (see Integral L. in Appendix B.1)

F(A(u); k) +

H(A(u);k)|, (3.416)

H(AK)=A’B(k+2)F(2,k+2,2(k+2);—A). (3.417)
Moreover
Moo =1, (1= 1) +7p2 (w = 1), (3.418)
A 2 ) 2
A(u) Sl —, (3.419)

S g, (17 =3+ s (1—20D)) — 2%,

where D is defined in (3.217) and is not simplified at all for the considered case, thus we
do not replace it by its explicit form.

Inspection of (3.416) leads to the conclusion, that there are no singularities that should
be regularized. The only possible singular behaviour comes from collinear logarithms.
Therefore we are allowed to set x = 0. Then (3.416) reduces to

2
IE-FS  _ (L —u)n7
IQHgQ J Cr 21”772)&

2 = 2 2 2 2 2,2

nh, (1% =107 +npa) — 20° e
T ~log (1 A(w) 1+ » = ~
(77;5%..77) (nﬁa—i‘P)

Let us note, that the integrated dipole function has smooth behaviour for vanishing
spectator mass m; — 0. In Chapter 4 we shall investigate the behaviour of (3.420) in the

(3.420)
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limit m — 0. We shall find, that its leading behaviour is of the required form logn? Pgg,
which is not obvious at this stage.

In the end of this section, let us give appropriate expression, for a case when initial
state mass is set to zero from the very beginning. We shall need it in Chapter 4. Note,
that our unintegrated dipole splitting function is now different than the corresponding one
in [10], thus we have to make a separate calculation. This calculation is straightforward
and much simpler than in the massive case, thus we skip all the details. We obtain

4u
-

55,y = 00y

1 U
—+2log——= | Py (1 —u) —
<n+ Ogu#—nf—) ag (1= v) CFl

1 u? 4u
= —+1 1| Py (1 —u)— 421
<m+ Curp "t ) ag (1—u) = Cry—. (3421)

3.7.4 Complete expressions for integrated dipoles

Let us now come back to the full expressions for dipoles, i.e. (3.59)-(3.61). We shall
now introduce some useful notation, that will be helpful in Chapter 4. In order to better
understand the motivation for this section, the reader might look at Section 4.3.1 in
advance.

Let us recall, that when calculating the jet cross section via dipole subtraction method,
say n-jet cross section with one initial state, we add and subtract the dipole contributions,
which live in the (n + 1)-particle phase space. Let us write this contributions as follows

ou) = Y o [ (pai o) Do (par o) (a22)

T(nt1]a) ST (n+1|a)

Here the first summation is over all the configurations IT (n 4 1|a) of n+ 1 partons in the
final state, with parton a in the initial state. s(n1jq) is @ symmetry factor for identical
particles in the final state for configuration I (n + 1|a). To be precise, in order to define
a real subtraction term as in Section 1.2 it should be convoluted with parton densities
and equipped in some normalization factors. Moreover in (3.422) we used

n+1ln+1
Dr (pm {pl n+1) Z Z {ID?? gs p‘“’ {pl}IEXIE FS) By (ﬁa_i; {pl}ZGXIE-FS)

i=1 j=1
J#i

S =
+ ,DzF;EaI (pa’ {pl}leXFE IS) Ey (pa’ {pl}lEXFE-Is)
n+1
S . .
+ Z ,Df‘f]kF Pas {pl}ZGXFE-Fs) Fn (p"*7 {pl}ZGXFE-Fs) } (3423)
k#w

There are three distinct n-particle jet functions F,,, since for each type of dipole we have
to generate a different set of momenta (the sets X are defined in (3.65)-(3.67)). The
integration in (3.422) is over the full phase space — all the cuts (step functions) and Dirac
deltas (for differential cross section) are hidden in F,,. In what follows, we shall use the
more compact notation, namely we assume, that F;, and any amplitudes that appear
have the same arguments as the phase space d®. Hence we shall not write the arguments
explicitly.
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On the other hand, we can factorize the phase space in (3.422) and integrate the
dipoles in order to obtain analytical poles, which in turn should cancel with virtual
corrections. Then we get*

1 n+ln+1 .
Dn (pa) = — Z - Z Z { /du Ii%ﬁ_?z‘,j (u) dG(n)a_i,j (pa (u); {pl}leXIE,Fs)

s
H(ntila) “H(Fa) 325 55

J#i
n+1
-IS = . -FS .
+/ du IZEE],(I (U) dG(n) ‘1»2 (pa (’U,) ) {pl}lEXFEJS)%» Z IZEF], k dG(n) k7ﬁ (pa’ {pl}ZEXFE,Fs) }’
k=
Kgiy
(3.424)
where “pseudo” cross sections d& are defined as
— 2
08y 10 (i on}) = [ a0 i (o)) Fo [ (3.425)

Recall, that the matrix elements squared with subscripts are correlated in colour space;
they were defined in (3.21). We note, that there are also FE-FS contributions in (3.424),
which were not given in the present work (they have to be taken from [10]). The phase
space factorization in that case is a product of a measure d¢ and the skewed phase space,
i.e. there is no convolution over w.

It is possible to convert the sum in (3.424) over pairs (¢, 7) into a simpler sum (note
also, that parton i appears only in the integrated dipole splitting functions as a process
index). This procedure is described in details in [9] (sections 7.2 and 8.1), thus we only
apply this method to our formula. To this end it is convenient to split (3.424) into three
distinct terms

Dy (pa) = QLE_FS (pa) + QEE_IS (pa) + QEE_FS (pa) ) (3426)

which correspond to the three contributions in (3.424). Then we obtain for IE-FS

D3 (pa) = — Z Z ! Z /du LI5S (u) dS (a5 (B (uw) i {pi}iy)
ben, Ti(njb) “TI0) 5=
(3.427)
where we have changed the name of parton ai to b in order to completely remove appear-
ance of parton 7 which in fact is not needed any more. We recall, that N J’c is the total
number of flavours (including gluon). Moreover we changed the notation
LEES = IS (3.428)

a—bi,j

for the same purpose. Now, turn to FE-IS case:

n

! > /duij,E'IS (u) dS ) ja (Pa (w) s {m1}=,),  (3.429)

S
M(nla) =4

DS (pa) =~ Y

(n|a)

4For TE-FS and FE-IS contributions there is also a factor 1/z, which we used to have outside the
dipole splitting functions. Here we hide it for transparency.
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where this time we converted ¢j to j and introduced

15, =01
IS = (3.430)
1 7FE-IS JFE-IS -
Elgﬁggy ot EleNf g—ag,a J =Y
Finally, for FE-FS we have
DN (pa) = — Z Z LS dS gy 1 (pas (i) 5 (3.431)
H(n\a) I(n|a) j=1k=1
k#j
with
B i=0
Iﬁ%_FS _ (3.432)
1 7FE-FS JFE-FS . _
Ig—>gg kT ZleNf g—ag,k J =Y

The symbol Ny (without prime) is a number of all quark flavours (without a gluon) either
light or heavy.

Now, we could insert the results for integrated dipole splitting functions to get explicit
form for the kernels I, as in [9, 10]. Instead, we shall only write the general form, as we
will need it later in Chapter 4.

First let us note, that we can write

007 (pa) + 2,7 (pa) =

-2 )

bEN, T1(n|b)

Z/dudaba w) dS )b, (Py (u); {pi}i=y), (3.433)

STI(n|b)

where
Japg (W) = = [LF5° (w) + 0 I} 57" (u)] . (3.434)

Next, as we have seen earlier in this chapter, we have to disentangle end-point contribu-
tions, thus the above can be written as

Jous () = 358, () + 35w () + (3B +3055) 0 (), (3.435)

where J°°!! is a part that leads to collinear singularities, Jr™», Jfirite are the finite parts
that will remain after cancellation of all singularities and grole ig a part that contains
soft poles only. For FE-FS case the structure is similar to the coefficient in front of § (u)
n (3.435). Therefore, we can write the integrated dipole (3.424) in the following form

Y

j=1

Dn (pa) = { Z

beN, T(nfp) “T(10)

/MVﬂwm+ﬁww»mmw@mmwﬁg

+ de’p " (pa; {m}1) }, (3.436)
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where we put the following contribution into a new symbol
A& (po; {pi}yy) =

>y

j=1 L beN, 1(n|b)

55016- +3§nit¢) A& o (i {1 nﬁ
ST1(n|b) ( big TR ()b, (Po; {pihizy)

1 < ] n
+ D - IS () kg (pai {pi}y) |- (3.437)
M(nla) ~1m) k=1

k#j

Let us comment this general structure of integrated dipole function. The term
dG&%iPoft contains all the soft singularities, that should cancel with the virtual contribu-
tion. All the collinear (for massless partons) and quasi-collinear singularities are hidden
in 3. We shall need this formula in the next chapter, when we construct infra-red safe
cross section.
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Chapter 4

General Mass Scheme for Jets

4.1 Introduction

In the previous chapter we constructed dipole subtraction method taking into account
possible massive initial state splittings. We have seen, that dipoles connected with this
kind of splitting can be free from “standard” collinear singularities appearing as the poles.
Instead, we encounter terms containing logarithms of a quark mass, which spoils accuracy
of the predictions when the mass can be negligible. In this chapter we construct a scheme,
which factorizes out those quasi-collinear singularities. It follows from the ACOT scheme
outlined for inclusive processes in Section 2.4.

Our further work is divided into several parts. First, in Section 4.2, we derive one-
loop parton densities in CWZ renormalization scheme. They were actually derived in
[45], however in different scheme, so called dimensional reduction. In consequence, some
of the results are different from those used in standard calculations in D dimensions.
There are also some other problems connected with calculations in [45], therefore we had
to rederive them again. Perhaps those results exist somewhere else in the literature, as
they are only one-loop calculations with massive quark, nevertheless it is very instructive
to obtain them consistently as they are crucial ingredients of our scheme. Basing on
those parton densities, we construct in Section 4.3 the subtraction terms which remove
potential collinear singularities from the dipoles. Finally, we demonstrate that in the
kinematic limit when the masses can be neglected, we recover correct massless dipole
formulae. This is one of the tests of our formalism and is done in Section 4.4.

We turn attention, that there are at least two kinds of subtraction terms in the present
work, which should not be confused. First, there is a dipole subtraction term, which
removes all the singularities from the tree matrix elements. Second, there is a collinear
(or quasi-collinear) subtraction term, which removes potential collinear singularities from
the dipole subtraction term.

4.2 Parton densities in CWZ renormalization scheme

The densities of parton inside a parton were defined in Section 1.1. Let us recall, that they
are needed in order to calculate IR finite partonic cross section. Since in our approach we
have masses in the initial state splittings, we have to have partonic PDFs where masses
are not, neglected. Moreover, as explained in Section 1.3, it is convenient to choose special

97
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renormalization scheme, designed for massive calculation (CWZ).

First we sketch derivation of bare densities at one-loop accuracy. Next, using CWZ
counter terms we obtain the renormalized ones. As already mentioned, all the pieces
were actually derived in [45]. However, there are several problems with those calcula-
tions. First, they are carried in a scheme, called dimensional reduction, where one uses
analytic continuation to D dimensions for the integrals, while the tensors are purely
four dimensional objects. Clearly, it must lead to different result for the unobservable
objects like parton densities. More about dimensional reduction can be found e.g. in
[30]. Therefore, we have to trace and recalculate diagrams which leads to contraction of
metric tensors. However, there is another problem connected with calculations in [45].

Namely we encounter some misprints or errors, thus also the other diagrams have to be
checked.

4.2.1 Unrenormalized parton densities

To one loop accuracy we can write
Fap () = 646 (1 — 2) + FV) () (4.1)

As already remarked in Section 1.1 those objects can be calculated order by order in
perturbation theory by means of Feynman rules. Besides the set of standard QCD rules,
we have a few additional objects. We shall not describe them here in details, they can
be found for instance in [16, 45, 17]. Instead we shall describe the ingredients of such
calculations using the specific example below.

Figure 4.1: Cut Feynman diagram for the bare parton density Fqg.

Let us thus start with the simplest parton density Fq4. The one loop contribution
has only one corresponding Feynman diagram showed in Fig. 4.1. Let us briefly describe
its main elements. The double, so called eikonal line, arises from an expansion of the
path exponential in (1.5). In Feynman gauge the gluons can be attached to this line
also in the middle (see other PDFs). In what follows it is assumed that we use Feynman
gauge as the light-cone gauge is less practical in actual calculations. The most top lines
correspond to the operators and carry fixed “plus” component kT = xp* of the initial
state momentum p. The last is assumed to be on-shell. Since the eikonal line carries
only “plus” component, once we cut it we must include an “on-shell” delta function. The
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A) B

)
k p—q—k k\p—q—k_q_k/ \

C)

RN

Figure 4.2: Cut Feynman’s diagrams for the parton density F,q. Actually only A) and
B) give contribution (see the main text).

whole expression corresponding to this diagram turns out to be

dP 1
) =auce | Gnp T 3 @ m) Y G m] 8 (g = k)
) (q2 — m2)

((p*Q)QJrie)Q k-n

(k-ngy——a)nu) (k-ngay — (0 — Qan), (4.2)

where we have already summed over spins and colours and where mqg = m. The delta
functions set

S(pt—q"—kT)=0(p" —¢" —ap?) = ¢ =(01-2)p", (4.3)
_ 1 _ q2 +m?
) (q2 - m2) =9 (2q+q - q% - m2) = 2p+55 <q - ngf) . (4.4)

The integration measure with our choice of light-cone vectors reads
dPq =dP2qpdgtdg. (4.5)
Performing the trace and integrating out the delta functions, we get

2e 2 _ _ _ _
]__8) _ Qs 4Cg /dQ(lfs)q 2m2z (1 z)Q 2 z(g z(1—¢)) . (4.6)
T (em)T (g3 +a2m?)” @ (gp +a%m?)

Using Integral D. from Appendix B.1 we finally obtain

2 €
(1) _ O ,LLT. —2e—1 1
where we put some standard factors into one quantity
S(e)=Am) T (1+e¢). (4.8)

Next, let us calculate the density Fyq. At the one loop accuracy there are three
distinct Feynman diagrams (Fig. 4.2). Thus we write

1 A B C
Fyo =Fsa + 270+ Fig (+9)
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A) B)

N i/ N /

1

P—q !
1

1

P q

TO000YT0000

Figure 4.3: Cut Feynman’s diagrams for the parton density Fqq.

where the three terms correspond to the three diagrams (the factor of two in front of the
second diagram is the symmetry factor). The calculation is very similar to the previous
one, thus we skip the details. The result reads

2 €
(4) _ Qs . 1 2e(1-2)
A = 2510 (£2) n L 22023 i)
2 €
(B) _ _ Qs 1y (l—x)
Foq = 5250 (mQ) Tr = (4.11)
©) _
Fig =o.

The last diagram is simply zero, because of the kinematic argument. The cut eikonal line
give § (—¢™ — k™) what results in ¢t = —zp™, thus ¢ must lie in the past light-cone.
On the other hand the anti-quark with momentum ¢ is on-shell (see Fig. 4.2B ) and thus
we have 0 (q2 — m2). Therefore the common support shrinks to zero volume.

Let us now give the result for Fqq showed in Fig. 4.3. As before, we decompose

W _ o[£ | £B)] . £C) | £(D)
Foh =2 |[FGE + FQa| + FSa + Faa: (4.12)

The calculation of diagrams B and C go in a similar manner as before. They read

2 1>
(B) _ Qs M 1412
Foo = o S (e) <m2> Cr i (1—-m) ) (4.13)
2\ €
) O My —1-2¢ 2 (1

In the case of the diagram A we have full integration over the loop momenta g, i.e. the
integrals over dg* and dg~ are not utilized by the delta functions. The integral over
dg~ can however be easily carried out by the residue technique, while the integral over
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dg™ is left out, because it is actually divergent for € > 0. It is the soft singularity, that
should cancel between accompanying graph with real emissions (B and C). The details
of this calculation are given correctly in [45]. Following the authors, it is convenient to
introduce the dimensionless variable in order to parametrize this integral

qt
5:175:_ (4.15)
The result reads
F = -2 (L 2750—-)1/2%£O—£Yk% (4.16)
QQ = o P& 2] CF ) ' '

Finally, we calculate the diagram D. The following expression appears as a part of the
diagram

3T D7 ) (), (@.17)

where X (p,m) is a quark self energy defined by

o T

Since the full quark propagator can be written as (we neglect colour indices)

(4.18)

; £ 708
1 145

T Y—m-S(m) J—mos

S (p,m) (4.19)

we have to one-loop accuracy

3 (¢, mos) ~ (25 = 1) (§ — mos) - (4.20)

Above Z93 is the quark field renormalization constant in the on-shell scheme, while mog
is the pole mass. Inserting this to (4.17) we get simply

Foa = (299 -1)6(1-a) = (%ﬁ) BRI CEORCE 1)

The result for the quark self-energy or renormalization constant is well known (e.g. [20]).
Thus we get

Foa=—5-5() <:1—22> Cré (1 2) [2—1&_ - 2/01 de (1~ g)lﬂ S (42

We replaced the renormalized mass for the bare one, as this is allowed to this order and
simplifies the notation. Let us now rearrange the diagrams in a more logical manner

2 g
(A+B) _ s Hy l oy—1-2
Foq = 5 S (g) ( 2) Cr - [m (1—2x) L_ , (4.23)

Foaa =525 <T‘;—Z) Cr {2 p@-07 ] +a-ot] (1 - é) } ,
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where we have used the standard “plus” distribution.

Let us now finally turn into the density F,,. There are several diagrams, all of
them do not involve masses except one (we do not depict them). It is the one with
the gluon self energy graph with heavy quark loop. We must note, that it seems that
calculation concerning those diagrams in [45] is incorrect. They conclude that only self
energy corrections give contribution; it is not true as we know that one loop result has to
have P, (x), while the self energy corrections are proportional only to ¢ (1 — x). Thus
our strategy is the following. We do not calculate the massless loops as they lead to the
standard, verified result for gluon-gluon splitting (1.14). We have to add to this result
the heavy quark contribution to gluon self energy, which however is also well known. We
shall do this in the next section at the level of renormalized PDFs already.

4.2.2 Renormalization of parton densities

Let us recall from Section 1.3, that in CWZ scheme we first decide whether given quark
is active, or inactive. Next, for the diagrams with inactive quarks occurring in the loops
we perform zero-momentum subtractions, while for the others the MS renormalization.
Therefore, some of the quantities calculated in the previous section have to be renormal-
ized twice, in two different schemes.

Let us start, with MS scheme, i.e. we preserve the masses of the quarks but use
minimal subtraction (recall, that it is in contrast to mMS prescription defined in Section
1.1, which refers to the scheme most often identified with MS, where the masses are set
to zero). Renormalization is done simply by expanding our results in ¢ into Laurent
series, with the exception of the factor S (¢), and subtracting the pole parts. Let us list
the results

S () = ;‘—ﬁ S (¢) Tr log (:1—22) (1-2z(1— 1)), (4.25)
FOS (2) = ;‘—W S(e) Cp L;””)Q [1og (7’;—%) —2logz — 1] , (4.26)
TS (2) = ;‘—W S(e) Cr { 1;:22 [1og (:;) ~2log(1— ) — 1} }+ . (4.27)

The massless mMS result for 7y, was given in (1.22) with (1.14). We have to add to this
the MS renormalized gluon self-energy graph with heavy quark loop multiplied by tree
level Fg4i.e. § (1 — ). The full result reads

( ! >++1_Tx—1+$(1—:13)

1—x

_ o
Foud (x) = 5 5 (e) {20,4

2

11

2 iy
NyTg— gTR log W) . (4.28)

Now, we assume that the quarks appearing inside the loops are inactive. We do not
consider here partonic densities where initial state is a heavy quark, because they are
suppressed by O (Agcp/m?) as discussed in Section 2.4 (they are convoluted with fq
which is zero to leading twist). In order to renormalize the remaining diagrams by zero-
momentum subtraction, we have to evaluate them first off shell and then set p? = 0. For
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Fgq it is however trivial, since this diagram is already calculated with the gluon being
on-shell. Thus we have

Tmom (1) = 0, (4.29)

where the superscript denotes explicitly usage of zero-momentum subtraction for relevant
diagrams. For Fg, the situation is also simple due to the same reason. We are left with

(11z>++1;$—1+x(1—x)]

4601 —a) (%CA _ 2, TR> } (4.30)

oM Qs
Fog o (x) = Gy S (e) {QCA

3

Note, that the usage of the superscript “mom” is conventional; it means that we perform
zero-momentum subtractions only to the diagrams with heavy quark loop, but the others
are renormalized by MS.

Summarizing, we denote above renormalized parton densities in common by
where “mom” scheme should be used if a heavy quark is treated as inactive and MS when
it is active (leaving the mass finite).

Let us now check, that indeed the evolution equations for PDFs have massless kernels.
This is actually completely straightforward. We have to look at the counterterms we have
used to renormalize the above partonic densities (we consider only case when Q is active,
otherwise it is power-suppressed). They are massless in MS scheme. On the other hand,
the evolution kernels are defined in (1.10). Therefore, already at this stage we see that
these kernels are also massless. In order to derive their precise form, we have to go back
and read off the coefficients in front of the poles. They turn out to be exactly the splitting
functions Pg.

CWZ
ab ’

4.3 Quasi-collinear subtraction terms for massive
dipoles

Now, as we have the necessary ingredients, we can perform the mass factorization. How-

ever before we construct quasi-collinear subtraction terms for the dipoles, let us first

define in details the IR safe cross section for DIS, assuming completely massless case. It
will enable us to set up all the necessary notation, within the well known framework.

4.3.1 Massless treatment of factorization

Similar to Chapter 1.1, we consider a virtual neutral boson with momentum ¢ interacting
with a hadron having momentum P. We assume that the cross section was projected on
suitable tensor structure, therefore we omit the vector indices.

Recall, that to NLO accuracy we have for n-jet cross section

on = o0 4 oNLO, (4.31)

As we have the dipole formalism, let us now write the subsequent terms in more details
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comparing to Section 1.2. First, the leading order cross section is

o (P {K} J=NPa) Y ¥

a€N’; TI(n|a)

/dz fa (z)/dq)n (pa (z);{pj}?zl) F, ’ﬂnf, (4.32)

STI(na)

where k:g‘]) are the momenta of the reconstructed jets. At LO the jet momenta correspond
exactly to the momenta of the final state partons p;. The factor N (P, ¢) hides all the
factors needed to obtain normalized cross section. The momentum p, depends on the
longitudinal momentum fraction z, as denoted explicitly above. For the rest of the
notation we refer to Section 3.7.4. In particular we recall our shortcut convention: the
function F,,, the amplitudes and dipoles have the same arguments as the phase space
they belong.

The NLO contribution is a sum of virtual ¢" and real ¢® corrections. The real
contribution is

A (P} ) =N w0 TS

a€N, Ti(nt1la) “THPHHa)
" — 2
@20 [ s (s t033) { Bt Mo 2} (039

The sum over dipoles Dy, was defined in (3.423).
The virtual contribution reads

oy (P,q;{kf”};) =N(Pq) Y

!
aENf

Jara{ ¥ [ i) T

II(n|a) STi(nla)

1D, (pa (2)) — P (p, (2)) } (4.34)

In order to explain appearance of the term €™MS et us recall, that massless integrated

. . . . .., ——loop 2
dipoles contain collinear poles of the form P,;/k, which do not cancel with /\/anOp , as

the soft poles do. By means of the factorization theorem, those collinear poles have to be
removed. To this order of accuracy and in massless MS scheme (denoted here by mMS)
it is done by means of the following collinear subtraction term (see e.g. [9])

mMS _ 1 T ,LL_% ) mMS
o)==, ) n<nb>/d (”?) Fab

S
bEN TI(n]b)
/ 0%, (epy (2); {pr}i_y) Fa [Mu|* (4.35)

where

FIMS (1) = 37 S (k) %Pab (z) (4.36)
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is the massless, renormalized parton density (see (1.22) in Section 1.1). We can further use
the general form of ©,, obtained in Section 3.7.4, namely equation (3.436). In considered
case this equation can be written as

beN/, TI(n|b) Jj=1
[z (32 (1= )+ 325 (1= )] Sy, (o {ondiy)

+d& d‘P N (o {pi})—,)  (4.37)

STI(n|b)

where here we have used 3 in the form

co m d ,U,g - 1
W 0= @ =550 (F) Pt @

since in that form it appears in massless dipole formalism [9]. Note, we put the common
factor I' (1 — k) (47)"" we encountered in dipole integration into S (k) and replaced 7
by the scalar product p;, - p;'. Moreover, we replaced u by 1 — z and p, (u) by zp,, as

we work in the massless limit. In order to write the collinear subtraction term ¢»MS in
similar form to (4.37) we can use the following trick
S (pa) = —5= S () 3
" 27

1 n
/dz /d@n (zpv; {prtiz1) Fn
b Ti(njp) “THIY)

9 —K n ~ N 9 K
o | [ T; - T) ( K > 1 Vi
M, +y L =Py (z) [M,,
{ M| (M?) o Ty \%Po-p P () [M)

Jj=1

_i<mn}fj;fb( 12 >“1 ab(x)’ﬂn>}, (4.39)

T2 \2py-pj K

that is we added and subtracted the term that is responsible for colour correlations in
dS ) p,j- Due to the colour conservation the square bracket above reduces to

2

9 —K n ~ ~ 2 —K n ~ A
i 7Ty ( 1y > 7Ty iy 2
— + - R =—K — log + O (K 4.40
(M?) Z T2 \2pv-pj ; T3 2pp - pj () (440)

J=1

and in consequence, we obtain

e (pa) = 35S () Y

beN/, T(n|b)

Z/dmdﬁ )b.j (zpo; {pi}=1)

STI(n|b)

2 —K
log [ 1) — ( 1y ) 1
2py - pj 2py - pj K

'Recall that 4 was originally defined as p, - §; for IE-FS case, however it was the definition relevant
to (n + 1)-particle matrix element; later, in Section 3.7.4, we changed tilded spectator to “normal” final
state parton.

Py (z). (4.41)
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We see, that now the pole has exactly the same coefficient as in ©,, (p,). Thus we get
for the virtual contribution

o (P f)) =N S

’
aeNf

/dea (Z){/d@?(’p (Pa (2); {p1}i=y) + /de:f;SO&( o (2)3{Phiy)

Py Yy

/ v 3 (1 - 2,2) + 3% (2, 2)]
1

ben, Ti(nlb) ") =
/dG(n) b,j (:pr (Z) ; {pl}?:l) }a (442)
where
e} ,u?
~fact S
—— S (k)1 —— | P, 4.43
38 (2,2) = — 22 5 (x) og<2pb(z),pj> b (@) (4.43)
is a remnant of cancellation of the collinear poles. Above in Eq. (4.42) we introduced
n loo 2
1S ot i) = Y e [ i) M
O(n|a) nla

Note, that the sums over final state configurations and corresponding symmetry factors
are contained in the definitions of d&'°°P and d&dip-soft,

In the next subsection, we shall generalize above formulae to the massive case. We
will see, that this is actually straightforward, once we have massive dipole kinematics
and partonic PDFs with masses taken into account. There are however some subtleties
similar to those discussed in Section 2.4.

4.3.2 Fully massive case

Now, basing on (4.35) we are going to construct analogous subtraction term with the

massless functions .Far;;MS replaced by the massive ones .Fa(f)wz. There is however a

complication. Namely, the question is, whether to treat the tree level amplitude F}, |ﬂn‘2
in (4.35) as massive or not, and consequently what are the bounds on 2 convolution. This
is not restricted by factorization itself as discussed in Section 2.4.

In the massive case, we cannot simply pass the simple fraction of p, into |ﬂn‘2
as in (4.35), because partons a and b can have different types (a gluon or quark) and
consequently different masses. Of course it is the “plus” component of p, momentum,
that should be actually passed to the reduced matrix element. However, equivalently
this can be solved using the kinematics we developed for dipoles, i.e we can write

EVe ) =—3 3 — / W FSVE (1 - u)

S
b, T(np) ~11(nIb)

/d% (Bo (w) ; {pr}ioy) Fu [Ma|®. (4.45)
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Now the reduced matrix element is calculated with an on-shell momentum p;, fixed by
the fraction 1 — u and some additional invariants, as we learnt in Section 3.6.4. In the
limit of vanishing mass mgq it becomes

~ 1
Q:T(EWZ (Pa) = — Z Z s
b, Ti(np) ~1L(P10)

/ de FGWV () / A (wpy; {prtpey) Fo [Ma|” + 0 (n?)
=&V (pa) + O (1) . (4.46)

Note, the difference between €SW% (p,) and €SW% (p,). The first one is calculated with
the full mass dependence in kinematics and the matrix element, while in the latter the
only dependence on mass mq is in }“a%WZ. Nonetheless, both can be used as a collinear
subtraction term, because the only singular dependence on mass is in fa%WZ.

This ambiguity can be resolved analogously to the inclusive case discussed in Section
2.4. Namely, we expect, that around the switching point for a given heavy quark, the last
can be mostly generated dynamically from lighter flavours. Thus, consistent formalism
should lead to subtraction from o~ those contributions which originate in heavy quark-
initiated processes. It is most effectively done, when we treat the initial state quarks as
massless, both in ¢%© and in &,. Only then this cancellation can be complete without
introducing artificial scaling variables, as we have seen in Section 2.4. We underline, that
it does not mean that we set the masses of heavy quarks to zero everywhere in J,I;O or
¢, thus still the diagrams like BGF are the dominant production channels. Moreover,
we can have initial state massive quarks in other subprocesses, see below.

In order to clarify the above statements, let us discuss a specific example in more

details. Consider the process
vH — 2 Jq, (4.47)

where H is a hadron and we denoted by Jq a jet with possible heavy flavour Q. Note,
that actually the jets can be flavourless when there is QQ pair, nevertheless they “feel”
heavy quarks. In order to simplify the notation, let us assume that there is only one
heavy quark and one light quark. According to factorization theorem, the cross section
can be calculated as
OvH—2J]q — Z fa & 6—a’y—)2 Jq» (448)
aGN}

where the hat denotes IR safe cross section as usual. PDFs are defined in the composite
CWZ scheme, thus for a given value of external scale, we have to specify the active
number of flavours N,. Hence, we have f, = ,gN“), where N, increases as one crosses
switching point. However, below the switching point for a given heavy quark Q, fq =0
up to the power corrections. Therefore, the summation can go over all the flavours and
gluon N’

The relation defining IR safe cross section is

CWZ ~
Tarmys2 Jq = Z FVE® 6y g (4.49)
beN}

More specifically, we have for a gluon initiated process at NLO (we drop “CWZ” indication
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in what follows and denote the order in « in superscript)

1 2 0 1 (1 (2
0’27)%2 Jo T 0’27)%2 Jo = Z (]:;b) + féb)) ® (O’ISW)—)Q Jo T U£7L2 JQ)
beN}
1 (2 1 (1
57)—>2 Jo T 05(77)—>2 Jo T Z ]:;b) ® U£7L2 Jq
beN}

_ () - (2) 1) o aD) (1) o 5(1)
=60 a0 T Ogrsa0q T Fag) @ 0o s0 s+ Fga ©0Q) 425 (4:50)

=0

Here and below Q = {Q, Q} for more transparency. Solving this for the “hatted” quantity
we get for a gluon initiated process

5(2) — 52 1 (€] 1) (1)
Tgv—2Jq = Pgy—2Jq ~ ]:zgg) ® 05y 21q ]:gQ ©0Qy—2.q- (4.51)

For a light quark initiated process we have

oéil+2JQ + éi{+2JQ ::aé;{+2JQ +7aéi{+2JQ
FF 00 s+ T @0 0, (452)
and thus
G2 iq = Ounsa g — Fag) @ Os s = F ®60) 0 4. (4.53)
Similar relation holds for a heavy quark in the initial state
s = s~ PR sy - PR OO sy (430

For the subprocesses contributing to different mechanisms of two jets production see
Fig. 4.4.

Summarizing, the cross section on a hadronic target can be written in terms of bare
partonic cross sections as follows

_ (1) (2)
OyH—2Jq = [g ® (Ug’y—>2JQ + O—gv—>2JQ)

1 2 1 2
+ fq® (01(17)—)2 ot o-((]’y)—)Q JQ) + fQq® (UEQ»)HQ o T UEQ»)HQ JQ)
nl
- [l 8 FR + 110 FY + fa © F§) 08 s

(1 1) (1)
_ |:fg ®‘Fg(—3 + fq ®]?(3Q} TQy—2.7g" (4.55)

The third and fourth lines contain collinear subtraction terms. Note, that the first two
terms in the third line are pure poles and should be canceled by hand with similar poles
appearing after integration of massless contributions to dipoles. Then we are left only
with finite terms. When the external scale is very large, we have the IR safe cross section
by construction,

~(1) ~(2)
OyH—2Jq mq—4>)0 fe® (097%2 Jo T 0gy—21q

~(1 ~(2 (2
+ fQ @ (O—(Q’)YA)2 Jq + O—EQ’)YA)Q JQ) + fq Y O—((I’Y)‘)Q JqQ* (456)



4.3. QUASI-COLLINEAR SUBTRACTION TERMS FOR MASSIVE DIPOLES 109

L0 ¢, oNLO
e — Ty —
— O~ 60~
e~ My
50~ TS T~
L L P P %g‘%%’L/
N, =3 &~ 76568\ S S
e s | T e
€5~ - O NN 0 NN
— ~ ~
N N
00 NN
g e
My | N 7S
% ﬁ@s\ W, {_M” -l
N, =4
“~ Myooged | N 7
S M,
S —
~ N
g e
Mo =SS
W, 60 ms\ W, {_M” f.
N,=5
x| WSS ” N 7SN
o | =
- N
— ={u,d,s, u,d,5} ———= = {¢ ¢} withm.=0
m—— _ () C—3 = {bb} withm =0
- ()]

Figure 4.4: The diagram types occurring in a calculation of two-jets cross section with
the heavy quark effects. The total number of flavours is Ny = 6. Shaded blob denotes
tree level amplitude, the blob with L stands for loop corrections, while with S for a
collinear subtraction term. Empty legs denote heavy quarks with masses set to zero, as
corresponding diagrams are treated as asymptotic expressions.
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Note the difference, now there are IR safe (“hatted”) NLO partonic cross sections. On
the other hand, slightly above the matching point for a quark Q

1 1 1 1
fa ®Ut(gzy—>2JQ —fq®F )®05(]’y)—>2JQ —fQ®F ( ) ®0((;2%_>2JQ ~ 0. (4.57)

As explained above, those are the terms where it is reasonable to set the masses of initial
state heavy quarks to zero in 08,1%2 I

There are two comments in order. First, we stress that setting initial state masses
to zero in the above terms is not a limitation of the present method. We are free to
keep a complete mass dependence. Second, both prescriptions define actually two differ-
ent, schemes, which should be used to obtain PDFs, as they are also scheme dependent.
After this is done, one should actually compare calculations in both schemes. Neverthe-
less, a scheme just described seems to be more compatible with existing PDFs, which
evolve according to massless DGLAP equations (also the bounds in the convolutions are
massless).

The above example is also illustrated in a comics form in Fig. 4.4, where we take
into account two heavy quarks ¢ and b. We show what processes contribute if the scale
crosses the switching points for N, = 3,4, 5.

4.4 Massless limit and consistency check

Let us now check, that introduced in the previous section subtraction terms indeed
factorize the quasi-collinear singularities. This is done by applying the quasi-collinear
subtraction terms and taking massless initial state limit in our IE-FS dipoles. As a result
we should obtain exactly the massless version of the dipoles (more precisely with massless
initial state, a spectator can be massive), with subtracted collinear poles according to
MS scheme. That is, we require

lim [ DS (o) = €TV (pa)] = DIFFS (pa) ],y — €™ (pa) (4.58)

m—0

We note, that this equation is required to hold after the soft singularities were cancelled.
Actually, it is enough to check (4.58) for integrated dipole splitting function only. To see
this, let us recall, that

) == D

bEN, TI(n|b)

S [ AT 00 48 0005 o) smH) - (459

ST(nlb) 5

On the other hand, we can rewrite the collinear subtraction term in any scheme as

IO

beN/, T(n|b)

Z / du Fop (1 — ) dS b5 (By (w)), (4.60)

Hn Jl

where we used the colour conservation in order to write €, in similar form to ©,,. This
is possible, since the kernel F,; does not depend on j. Now, we can cast (4.58) into
: IE-FS CWZ 1E-FS mMS
7}11210 [Iabj ( ) ]: ( —U)} - Iabj (u)|m _]: (1—’&) (461)
Let us thus start with exploring the massless limit of our integrated dipole func-

tion corresponding to the initial state ¢ — QQ splitting, i.e. we are interested in for-
mula (3.403). First, we have to find the leading behaviour of the collinear logarithm
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log (1 + A(uw)), with

477?321_7
n? =07 + 0 (1 - 2p)
when the mass of the initial state goes to zero. To this end, we first obtain the following
expansions

Au) = (4.62)

(77]2» +u) (2772 +u— 1)

%o = o (n 4.63
% — +0(n'), (4.63)
27727]? +u(u—1) (u - 7}2)
P= +0 (n?), 4.64
P 2u (u—1) (u+n?) (r) (4.64)
with the help of
2

w=1+1—+0(r'). (4.65)

Consequently, we get

2

log (1 4+ A(u)) = log #772 —logn®+ O (n?). (4.66)

J

Taking the massless limit with the rest of the expression (3.403) we find the following
answer

IE-FS( ) = Qs

9.Q.j o +0(n%). (467

u2
Py, (u) <1og TR logn® | +2Tru (1 —u)

u J

Let us subtract now the collinear contribution

77131110 [Isli%l?js (u) J gQS (1 “)}
=2 0p (u) [1 v —1 i +2Tru(l—u)| (4.68)
= U 0 0 U U .
o2 |91 & u+7}? g2pj.pg r

First, observe that now it is finite in m — 0 limit. Here we use MS subscheme of CWZ,
since we are in the region where the quark is treated as active parton. Now we have to
check whether it equals to the RHS of (4.61). We have first (note the massless quark in
the subscript)

2 —K
- s :ur
15 W) = 52500 ()

2T 2p;j - g

K u —+ 1

(1 + log v )qu (u) +2TRu (1 “)]'

Note, this is the same result as in [10]. As already explained in Section 3.7.3.2, this is
because when m = 0 we have the same dipole splitting function. Next, we calculate

2 — K
- mMS Qs Hy
I;EqES (u) — fngS (1—u)= S (k) ( )

T or 2p; - pg
11 (20, u?
- — = = I P, 2T 1-—
[ K n( Iy +Ogu+77j o0 (u) + 2T (1~ )

&s l(log v log i )qu (u) + 2TRu (1 u)‘|. (4.69)

o U+ n; 2pj - pyg
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Thus we see, that (4.68) and (4.69) are indeed identical.
Let us switch now to Q — ¢gQ case. This time the logarithm behaves as

u2

(1—u)? (u+ 77]2)

Analysing the rest of the expression (3.420) in the massless limit, we get

log (1+ A (u)) = log —logn® + O (n?). (4.70)

, 2 4,
IEFS () = 25 | [ Y —logn® | P, (1—u)—C
Q.9.J (u) 2 g(l—u)2 (U+77J2‘) &1 as ( ) 1w

Performing the subtraction we get

+ O (772) )
(4.71)

lim, (18505 (u) — Foy (1= w)]

m—0

Qs u? Nfc 4u

= lo —lo +1|P,(1—u)—C 4.72
2W[<g(u+n]2_) o ag (1—u) = Cp—r| (472)

On the other hand, the massless result (3.421) reads

2 —K
JIE-FS _ G S Hy
9,9,] (U) 27 (H) 2p] . pq

1 u? 4u
— 1—u)— 4.
<H+10g’u+77]2-+1>qu( u) C’Fl_u] (4.73)

and as can be easily checked, again II%ES (u) — FIiMS (1 — u) equals precisely to (4.72).

Finally, let us turn to Q — Qg splitting case. This case is slightly harder. Let us
first note that in this case the pertinent logarithms behave as

1+n2
2

log (1 + A; (u)) = log +0 (772) ,

J

1
log (1 =log —— —logn® + O (n?).
og (1+ Az (u)) 08 e B +0 (%)

Therefore, the whole expression (3.364) reduces to

=5 (5255) "o (3), [~ (v 0-w) G oy

2p;j - pq

1 1
— 0 (u) p (1 +logn? + log (1 +7]j2-)) + Elogn2 (2+1og772)

1 2 2 . 1 7T2
_ 5IOg (1+77J) *2L12 <rnj2> + ?

} +0(n*) (4.74)
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Making the subtraction and rearranging the terms we get

: IE-FS MS s It -

2pj - pq

1 5
{—C—Fqu(l—u)log< ! >+(2—u)10g(u+77j2-)
1 1
2<—) log(1+u+n?)+4<%> +2(u—2)logu+u
u + U +

1
— 6 (u) - (1+1logn® +log (1+n3)) — §logn2 + 2

2

7T2

3

}. (4.75)

Now we can compare this with the calculation of [10], as in this case our dipole splitting
function is precisely the same in the massless initial state limit. Massless MS subtraction
procedure is analogous as before, thus we skip this step. We find, that indeed our result
fulfils (4.61). However, as already mentioned, we have to drop the endpoint contribu-
tion first (the one proportional to delta function as it cancels with virtual corrections).
Nevertheless some comparison can be made also with this part. First, we find that all
the terms involving spectator do agree with [10]. Moreover, we can check, that the
soft/collinear poles are also correct. This can be done by the help of the correspond-
ing formulae (3.305), (3.306). The relation (4.58) is also true for our formula with the
massless spectator assumed at the beginning.

The remaining initial state splitting process is ¢ — gg with dipole function given in
[10]. However, since there are only collinear poles it is trivial. The only observation is
that now our collinear subtraction term has the end-point contribution with a logarithm
of mass (4.28). This contribution cancels the singularity of the massive loop correction
to gluon initial state leg.

1 2 2y L, o 2 . 1
+§log77 (2+1ogn)—§1og (147n7) — 2Liy THJQ +

4.5 Practical application and MassJet project

Let us now sketch a relatively simple example of NLO calculation using general-mass
dipole formalism. It is very instructive and the results can be compared with existing
calculations.

Consider heavy quark structure function discussed in Chapter 2. All relevant dia-
grams are shown in Fig. 2.1. We assume that there is a massive heavy quark Q in the
initial state. That is, we consider also the quark scattering (QS) process yQ — Q and
its virtual and real corrections. Both have soft singularities and “live” on different phase
spaces: the former on d®, while the latter on d®;. The real correction is vQ — Qg,
where the gluon can be emitted either from initial or final state. There is also boson-
gluon fusion process vg — QQ which does not have any singularities. However both
BGF and QS have quasi-collinear emissions which have to be treated appropriately.

Since it is inclusive process, the jet function is just a unity. We need three dipoles,
two for the initial state emission and one for the final state. We can write somewhat
symbolically

FJg=fq® /d(I)l IMyqoql®, (4.76)
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Figure 4.5: The ratio of a matrix elements for real emission and the corresponding dipole
subtraction terms A) for quark scattering process, B) for boson-gluon fusion. Here 6 is
the angle in photon-parton CM frame. The edge & = 0 corresponds to the soft singularity,
while 0 = 7 to quasi-collinear. Note, that for QS the ratio is equal to 1 on both edges,
while for BGF only on the one corresponding to quasi-collinear region. The plots are
made for transverse projection of matrix elements, Q% = 10* GeV and the charm quark.

and for NLO
B = [ doy [[Moananl’ ~ (VEES, + VEEE) @ Mool
#1,0 [ a [ aa] - ViR © IMoaal
tfe® /dq)l {M:)(Sp—?Q + (Ig]jgg + I(SEISQ o (30(3) ® |MVQ%Q|2}
+f® /dcbl (I;Eg%— ;OQ“) ® [ Mygoal?. (4.77)

The real matrix elements are easy to obtain, while the virtual corrections are given

in [35] for a general massive case. We find that the pole part of M:’ép_?Q cancels exactly

with the pole pfﬂ‘t of (I(IQE;FSg + Igil(g g).. Thfe singularities in the real corrections are
also subtracted in a proper way as shown in Fig. 4.5.
Those analytical observations are confirmed by our C++4 MC implementation of the

general-mass scheme (Fig. 4.6) (see also below). We observe that in considered case:

a) phase space is factorized correctly, as we have checked it explicitly comparing suit-
able histograms

b) dipole splitting functions are chosen correctly, as the MC integration in the first
line of (4.77) is finite and stable (we do not need an additional IR cutoff here)

c) integrated dipoles are correct; for BGF it can be checked explicitly since there
are no soft poles, while for QS it can be checked by comparison with analytical
calculations

In Fig. 4.6 we compare the present calculation with the one of Section 2.2. In the latter the
NLO QS contributions were dropped as they are usually negligible (they are effectively
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Figure 4.6: The comparison of charm structure function calculated semi-analytically in
ACOT scheme (dotted) and using demo version of MC program MassJet. The latter
includes NLO quark-scattering process with heavy quark in the initial state. The differ-
ence is negligible as effectively QS process is of higher order. The calculations are done
for zg = 0.05.

of higher order). Indeed we observe only little difference between our numerical results
and the former one.

The working name of our C++ project is MassJet. It is based on FOAM MC algo-
rithm [31], which is used to generate events and weights. The program is still under de-
velopment, however we have already implemented most of the necessary features needed
for NLO dijets calculations in DIS within our scheme. The major lack are fully massive
virtual corrections, which, although calculated in the literature are not well suited to our
purposes and still need some work.
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Chapter 5

Summary and outlook

In the present work we have given a detailed description of the general method for
calculating jets cross sections with heavy quark effects taken into account. In the first
place, we have revised the dipole subtraction method and extended it to the case, where
the initial state splitting processes may involve massive quarks. Such a situation have
been treated only for QED-like processes before and is by no means suited to jets in QCD.
In particular, this approach does not take into account gluon splitting into heavy quarks,
what is of great importance due to largeness of gluon density. Inclusion of massive initial
state partons is a minor change only superficially. In reality, we have to redefine most of
the existing dipole splitting functions and the corresponding kinematics. Hence we had
to perform all the integrals again.

Moreover, we supply the dipole formalism in the special subtraction terms. They are
intended to factorize out the mass quasi-singularities and retain the massless DGLAP
evolution for PDFs. This is done by the method based on firm theoretical background
and could be in principle generalized to any desired order of perturbation theory. We
have checked that our cross sections are free from collinear initial state singularities in
the massless limit.

Presented results are actually enough to prepare a Monte-Carlo algorithm for calcu-
lating multi-jets cross section at NLO in DIS processes. They can be applied to both
neutral and charged current reactions, since the information of the latter are buried
inside a reduced matrix elements. Such generalizations are constrained mainly by the
complexity of loop calculations in a fully massive case.

The method can be also extended to fragmentation processes and hadron-hadron
reactions. This is actually not an extremely difficult task. In case of hadron-hadron
scattering one needs to consider one additional case, namely initial state emitter with
initial state spectator and corresponding kinematics. There is however another difficulty,
namely so called DFT disease [24]. There is a confirmed violation of KLN theorem at
two loops when there are two massive partons in the initial state. Such non-cancellation
of IR singularities may invalidate factorization theorem at NNLO. Those and related
subjects are left for the future studies.

We did not discuss the jet algorithms. There are several IR safe routines, including
solutions for heavy quarks [46, 6]. We however realise, that this topic needs further
verification as massive initial state quarks were not used in jet calculations before. We
however do not expect any complications as any collinear safe observable can be extended
to a quasi-collinear one [10].

117
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In order to support our theoretical calculations, we have constructed a dedicated
C++ modular MC program based on the FOAM algorithm. Although the project is
under development, we have performed sample inclusive calculations confirming efficacy
of our method. So far, we have implemented most (but not all) of the constituents needed
for dijets calculations at NLO accuracy in our general-mass scheme with any number of
heavy quarks. Still, some virtual corrections within a suitable renormalization scheme
have to be taken into account.
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Appendix A

Kinematics

A.1 Thermodynamics of the invariants

We have the following “equations of state”

2. FE-IS
@2m2 + 1 (TP? — 2P,i) = {2 (A.1)

¢ m?  IE-FS

2 FE-IS
1—a)?m2+(1—@) [1-@)P?— 2P, (1—a)] =4 @ A2
(1= @) m? + (1) [(1- ) -] =% e ()
If we introduce the additional invariant 4 we have also

§ = WP, — am?. (A.3)

We can obtain some useful relations between the partial derivatives. For example

(%)ﬁm—mim(a;“)a:o, (A.4)
(), - (%), (w0). (52). a9
(%)~ (%), [ (7). ().

where all derivatives are evaluated with p;; on-shell. Moreover, we note the following
useful identities -

(A.6)

aﬁzj B @ﬁzj B % A7)
OPa | ou I T P '
P, P2 Py =my
-1 -
3p2 8pé oP, (A8)
6Pa wi au P 6’& ’?1132 —mf_]7
2
oP, (aP ) B ’ (L) , (A.9)
ou 7321}512 —m 3, ﬁzj_m (97
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For IE-FS case the formulae are analogous. All the identities are derived using well-known
jacobian techniques. Note we use the thermodynamical notation for partial derivatives,
i.e. subscripts denote fixed parameters.

If we have all three equations of state (A.1)-(A.3) satisfied, we can express P? as
follows

2
483, Pa (27 +m3) ) +m2 (263, +m2)

mg (7’71?i - (5723’1) — 270p, ((577@ + ’172\/ op, + 27713)

P2 (Pa,7) = , for FE-IS case

(A.10)
P2 (P, 5) = {mg [m2 — 2 (m2, —m? — 253, )]
- m2 [mi; = 2m2, (m2 + 263, ) + i+ 4m26%,_ +4 (6, — 7Pa)]

4P, [5 (m, — 263, ) — m263, }{mg (m2 = m2, —m2 +263,)

-1
+27 |65, + 7, \/mg (mg —m2; + 25%@) + 03, } , for IE-FS case (A.11)

where
op, = /7 — Pa- (A.12)

a

Let us also give w and P, in terms of % and P?. In the FE-IS case we have

R 1 1 2 2 =2 o3 2

_ 1 p2_ 2 _ 2 A3
Pa (@, P?) B P= = mig + g | = gems om0 (A.13)

. _ 03
W (4, Py) = 62 (A.14)

where
4 2
o3 = —: [fﬁ (3m2 +P?) + (1 — @) (3m3j + PQ)} + 2P2% (1 4 ) + o9, (A.15)
N ij

W=

oo = {4[@-2P! [P (1+ @) Qi — 1) -9 (22m2 + (@ - )m) )| + P2},
(A.16)

2

o1 =P {732 (@ — 2)° (9 (2m§a2 F@-1) mfj) — P2 (202 + i — 1))

4 (3m§a2 —3m (@ — 1)+ P> (1+4 (0 - 1)))3 } . (A7)

For TE-FS case we get

2
P57 = g {50 P D] - g ),
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where now

a* (3m?2 + P?) —ﬂ(3 (m2 —m2; +m} ) +’P2) +3m + P2 +2P% (1 + @) +oa,
(A.19)

oy = {4[(112)734 [P? (14 @) (24— 1) — 9mj (@ — 1)]

ol

+ 9P [m2 (3 - 20) @ — 1)+ mZ, (a+1)] + 7>201] } (A.20)

o3 :P{P2 (98 (m2 (@—1) @a—1) = m2, @+ 1) + (@ -2) (9m§(a—1)—7>2(m1)(2a—1))]2

74[3ﬁ(m3(ﬂ71)+m2)73m (@ — 1)+ P2 (i (i — 1)“)}3}5

A.2 Explicit expressions for rescaled variables

We give here the explicit forms of the rescaled functions n3 = X/27, jacobians and
other variables used in the integrated dipoles. They are useful when analysing different
limits of the integrals. In practise they are most convenient calculated directly from the
invariants. Below we use 7° = 7.

A.2.1 Final State Emitter - Initial State Spectator
A.2.1.1 Q — Qg and Q — Qg splittings

1
=573 T Vu(dn2 (202 +1) +u (1 — 49202) + 4npu — 2) + 1
+2(n*+n2u) +u+1|, (A.21)

(? +1) (n* + n2u? + u)

A.22
—n? —n2u? + u(2nZw +w — 1) + 20w + w’ ( )

2
Np2 =

o2 (*(u—2) —n2u—1)

-9
Np2_p2 = )
PRt T 22 1) 2u? — 2w — 1) —w) —u (=202 + (> + 1) (202 + Dw —(1/3 )
2n2u + 1 0
2 ="la = A24
7773@ 2’(1} 9 v 2772” + 15 ( )
2 4 2.2 o+ 1—u 2 2
0% = (mp, — manp) (o + ( ) (12 = n3,)) , (A.25)

7772720
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where

o= \/(u — 1)277;13(1 —n2(u—2)u n3,.

A.2.1.2 ¢g— QQ and g — gg splittings

1
w:§<2u772+\/u(4773+4u773+u—2)+1+u+1),

) (2unZ+1) 2un2 +u—w+1)

. = 2u (un? +1) ’
2 un, + 1
TP 2w —2w) + 1) + (—u— D’
1
V=
2n2u+1

and the jacobian 77?7 has the same form as in the previous subsection.

A.2.2 Initial State Emitter - Final State Spectator
A.2.2.1 Q — Qg and Q — Qg splittings

2(77?+772“)+\/“(4772—4772(u—2)77?+(4774+1)u—2)+1+u+1
2(n +1)

w = 5

2 (nf +1) (n} +n*u® +)
P2 = 2w —1)n? +u (n?(—u) + 2n%w +w — 1) + w’

- (2772u+1) (2 (77?+772u) fw(n?+1)+u+1)
P, = 2(77?4‘772“2"‘“)

)

Mp2_m2 = o7 (207 +u(n®=n7) +1) | (207 +1) (w—Dn; —n*u”® + w)

+u(—2n§+(2n2+1)w(n§+1)—1)]

ny =

2 (nh, —*ns) (0 + (1 —u) (n2e —13,)) ‘
2 9
Np20

where

o= \/(u - 1)277?% —n?(u—2)u 777232.

(A.26)

(A.27)

(A.28)

(A.29)

(A.30)

(A.31)

(A.32)

(A.33)

(A.34)

(A.35)

(A.36)
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A.2.2.2 ¢ — QQ splitting

277?—1—\/477277]2-+u(4772+u—2)+1+u+1
B 2(n?+1) — 292

w

(=n® +05 +1) (0 + )
2w — 1) +u(w —1) +w

77’]232:(

) 7277]2-+w(772777j2-71)+u+1
" 207} +1)

21p, {\/(u — 1203, +120he + (1 —w) (1h: — 1,

)]

ny =

e \/(u —1)2n%, + 1*0pe

A.2.2.3 Q — ¢gQ and Q — ¢Q splittings

npe =2 (0407 +1)% (0] +n’v’ + u)

{ (- (@r 4o -2 op - +1) - 1)

+2u(n2(ﬁj+4n§+1)+n§(1—ﬁj))+2n§(ﬁj—n2+n§+1)+ﬁj+1}

o (@Pu+1) (u (0 +20* + 1) —0; + 207 +1)

np, = 4 (7732 + n2u2 + u)

w (=05 +20° +1) + 05+ 207 +1
2(n?+n7 +1)

w =

20mp, ((1—v)np, — nps)
2
Np2

ny =

A.3 Three-particle phase space in D dimensions

Let us consider

/d‘l)s (K ki, ko, k3) = / 2m)” 6P (K — k1 — ko — k3)

APk 5y (k2 —m3) dPhy Sy (k2 —m32) dPks 6, (k2

(27T)D71 (27T)D71 (27T)D71

We introduce the notation
K2 —_ M2
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(A.37)

(A.38)

(A.39)

(A.40)

(A.41)

(A.42)

(A.43)

(A.44)

(A.45)

(A.46)
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Figure A.1: Center of mass system of the momenta k1, ko and k3. We orient the frame
in such a way that k; points towards +Z axis. In D dimensions 2p_5 is a solid angle

on the transverse hyperplane and the orientation of the Z axis is given by Qg—_zl) .

m2, = (ka + ks)” . (A.47)
Recall that
D=2 |
D D1 ‘k:‘ d‘k‘dQD_l
a0k = N () = o
(2m) (2m) 2F), (2m) 2F),

1 I;: o D74d12;2d o i N
Toar i, (Flsm0)” dPateosnans s (149

where Q2p_; is a solid angle on the D — 1 dimensional sphere, while 2p_» is a solid angle
on transverse hyperplane to Z axis.

Let us now choose CM (K) system and orient it in such a way that k; points towards
+7 axis (Fig. A.3). Integrating (A.45) and using (A.48) we get

/d@g (K;kl,kz,ke,):/(2w>5((ka1fk2>2—m§) (ﬁ)

D-3

—

Ky ko
B, By (

—

k2

D—4
sina) dk2dR3d (cos o) dQp—_dQT2) | (A.49)

where dﬂg_zl) is an solid angle representing orientation of +7 axis in D — 1 dimensional
space. The delta function gives

0=M2+m?+m2—m2—2M (B + Ey) + 2B, By — 2 ‘121‘ ‘EQ‘ cosa (A.50)

and thus
247D

/d% (K ki ko, ks) = W

D

(4283 — (M2 4 2 4 — = 2M (By + Eo) + 21 Eo)’]

2
dE dEydQp_odOST?)
(A.51)
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or in terms of the invariants mib

24-D 1 b, (+2)
/d(I)3 (K; kl, 1{32, k3) = 39 (277)2D_1 MD72 a 2 dmggdmlngD_ngD_l s (A52)
where
a=M?* (m3 (mi +m3 +mis +m3s) + (mi —mis) (m3 — mis) —m3 (m3 + M?))

—mim3 +m3 (mis (m3s — m3 +m3) +m3 (m3s +m3 —m3))
+ m%B (m§ (m%3 - mg) - m%3 (mfa + m§3 - mg)) . (A-53)

In the derivation we used
M? +mi —m3,

Ei = oL , (A.54)
M2 2 9

By = At ;1]\2‘4 Ut (A.55)
M2 2 9

By= 2 M5y ;n]\} 4y (A.56)

which was obtained using relations of the type (K — k;)* = (ko + k3)® = m2; etc. in
CM (K).
What remains is to find the support. Let us start with m3;. Clearly

(ma 4+ ms)® <miy < (M —my)”. (A.57)

The upper bound comes from the fact that m3; = M? + m} — 2M F; is maximal for
E; = my. Let us now switch to CM (ko, k3) for a moment (we shall mark by star
quantities in this frame). We have

M — i, — m?

Ef = ————. A.
T (A.59)

2 2 2
Moz — M3 + My

Ep=—2 5T 72 (A.59)
2ma3
m2, —m?2 + m2
E* — 23 2 3 A‘
T (4.60)

However

mis =m3 +m3 + 2B E5 — 2 ‘Ef‘ /;;; cos 8%, (A.61)

where 5* is an angle between k1 and ks in CM (k2, k3). Therefore the bounds on m?,
read

m? +m3 + 2B By — 2 |kf| |k3| <m2y <m? 4+ mk+2E5E; +2|kF| | ks

. (A62)
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Appendix B

Mathematical supplement

B.1 The integrals

In this chapter we list and solve some of the appearing integrals. We start with the
standard special functions and next we switch to the integrals specific to this work. The
space-time dimension is defined as D =4 — 2e =4 + 2k, ¢,k > 0.

Integral A. (Euler’s Gamma)  For Re(z) > 0 it is defined as

I'(z)= / dtt*~te~tdt. (B.1)
0

It has the following property
F(1+z2)=2T(z). (B.2)

We also use the following incomplete Gamma function
'y (2) = / dtt*"te~tdt. (B.3)
A
We shall need also the following expression

Ty (z) = )\Ze_’\/ dw (1+w)* e v, (B.4)
0

Integral B. (Euler’s Beta) The integral definition of Beta function reads

1
B(z,y) = / dt (1—¢)Y~ ¢! (B.5)
0
for Re (z) > 0 and Re (y) > 0. It is related to Gamma function by means of the formula
I'(2)T (y)

B(z,y) = —~—2/ B.6
@9 = F o (B.6)

If both arguments are equal, we use the following notation
B(z,z) = B(x). (B.7)
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Integral C. (Dilogarithm) This function is defined via the integral

Lis (2) = /0 dt k’g(%t). (B.8)

Its special value is

Liy (1) = %w? (B.9)

Let us note the following useful properties (for suitable x)

2

Lis (2) + Lis (1 — 2) = % —logz log (1 — =), (B.10)
Lis () + Lis ( - o1 2 (~z) (B.11)
i Ll—)=—F—= —x). -

2 (T 2 - 6 5 og X

Integral D. (Transverse integrals)
When calculating the parton densities we encounter the integrals of the following form

dP—2¢ b .. o vO(N+1-2
/7(2+A§N7r2 1471 nIN+1-3) TN 2). (B.12)
ar

Integral E. (Hypergeometric function) We define the hypergeometric function by
means of the following series (for z lying in the unit circle)

ab la(a+1)bd+1) ,
= z

F(a,b,c;z) =1+ — B.1
More suitable integral definition involves Beta function
1
B (b,c—b) F (a,b,c;2) :/ dt (1—8) (1 —zt)™ (B.14)
0
for such a, b, ¢ that the integral exists.
Let us note some of the useful properties:
a) Gauss’s theorem
LT (c—a—Db)
F(a,b,c;1) = B.1
b) Pfaff transformation
F(a,b,c;2) LI b & (B.16)
a,b,c;z) = a,c—b,c;— .
» (1 o Z)a ) b 1 —

c) contiguous relation

b b
Fa+1,b,¢2)= (1 - —) F(a,b,c;z)+ —F (a,b+1,¢;2) (B.17)
a

a
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Integral F. Let us define the following integral

#+ 2e—2) (z—2z2_)"F
IM%E%:/ gz &t )yfz ) :

where 0 < z_ < z; <1 and y is such that the integral exists. The result is

7, (QQE):A(?J) (Z+_Z—)_2€B(1_5’1_E)F(lal_5’2(1_5);_14(9))’

where
Zy — 22—
Aly) = —.
W=7
Let us introduce the following notation (recall Kk = —¢)

F(A;k)=AB(1+kr)F(L,1+k,2(1+k);—A).

Its integral form reads

g [ a0l
]-'(A,n)fA/O dtw.

Note we have the following reflection relations
F(A;k)=—-F (—Z; ,‘ﬁ) ,

where
— A

A= ——.
1+A4

133

(B.18)

(B.19)

(B.20)

(B.21)

(B.22)

(B.23)

(B.24)

Proof. The integral (B.18) can be easily transformed into the form of (B.14) via

the substitution
+— 2 — Z_

2y — 2

We get

Ty (g:2) = Ay) (2 — 2-) % / dt (1— )=t (14 A(y) )",

and (B.19) easily follows from Integral E..

Integral G.

Is(e) = /z+ dz (24 —2) S (z—2_) " =(24 —2_) " *B(1-¢).

Integral H.

Is (e) = /Z+ dzz(zy —2) S (z—2_)"° = % (24 +2-)ZIa(g).

(B.25)

(B.26)

(B.27)

(B.28)
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Integral I.  Consider now

Ty (y;e) = /Z+ dz (24 — 2)78 (z — 27)75

_ z(y + 2)
Z:lAl (y) o . .
=40 A (24 —20) 7 {F (A1 (y); —e) — F (Ag;—)}, (B.29)
where )
A (y)=Aly), Ay= % (B.30)

with A (y) defined in (B.20).
Proof. We use the substitution (B.25) and decompose the integrand into the
proper fractions. Finally use Integral F.

Integral J.

Is (e) = /z+ dz (r=2) (zz) = (24 —2_) F F(Ay;—¢). (B.31)

z

Integral K.

Is (y;¢) = /Z+ G- Z)_Zgz —) (21 —2-) 7271 G (Ay;—¢),  (B.32)

where we have defined the function
G(A;k)=AB(1+K)F(2,1+k,2(1+k);—A). (B.33)
Let us note the following reflection formula
G(AR)=—(1-A4)G(-4r), (B.34)

where the “bar” operation is defined in (B.24). We note however, that one has to verify
if this operation is permitted for x being close to zero as it is not always the case in
practice.

Integral L.

RN Z(Z+—Z)1_E(Z—Z—)1_E
I?(y7 ) /27 d (y+z)2

= (24 —2) "F H(A(y);—e), (B.35)
where A (y) is as in (B.20) and we have introduced

H(A; k) =A2B(2+kK)F(2,2+K,2(2+kK);—A). (B.36)
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Integral M. The following integral is needed to order O (k)

jl(n)/oldy 11_R]:<$;H>L§+O( ). (B.37)

Yy 2k2

Proof.  Using (B.22) we have

/ dy/ FrEAR 1y+1t_t)] . (B.38)

We can separate both the integrals using the following trick

L / dxe vt (B.39)
y+t  Jo
We get
o'} 1 1
= / d\ / dt [t(1—1t))"e M / dyy~le™ . (B.40)
0 0 0
The last integral reads
1
/ dyy"~te ™ = \T"(I' (k) — T'x (). (B.41)
0
Now we have
Ji (k) = Jra () = T (K) (B.42)
where
Jia (k) =T (k)T (1 — k) B(2k,14+ k), (B.43)
1 o0
Tio () = / dt [t (1— )" / dAA""e M, (i) (B.44)
0 0

The first integral was evaluated using
/ AN e M =T (1 — k)" ! (B.45)
0

and the definition of Beta function (B.5). Let us find the expansion in x of Jyp. First,
note that using the alternative definition (B.4) of T’y (k) it can be written as follows

i) = [are-op [T (B.46)

where we performed the trivial integration over d\. The remaining expression is finite
for k = 0, thus

T (k) = E + 0O (k). (B.47)

On the other hand, according to Appendix B.2 we have

7T2

D + 0 (k). (B.48)

1
Jia (k) = o2

Thus we get (B.37).
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Integral N. The following integral is needed to order O (k)

! 1 1 1
T2 (k) :/0 dy Jiw G (;;H) =50 log2+ O (k). (B.49)

Proof.  Let us first express the function G using (B.17) as follows

g (é;n) = n]—“<$;m) + KB (k+2,K) iF (1,n+2,2(1+n);1) . (B.50)

Y
However
1 1 Lot (1 — )t
B(k+2,k) —F<1,n+2,2(1+n);—>/ dté. (B.51)
Yy Yy 0 y+t
Therefore, we have to evaluate the following integral
1 1 r—1pr+1 k—1
* Y 3 (1 — t)
jm:/dy/dt . B.52
2 () 0 0 (y+1) (B.52)
Repeating several the same steps as in Integral M. we get
T3 (k) = Ts4 (k) = T3y (K) (B.53)
where
Jou (k) =T (k)T (1 — k) B(k,1+2k), (B.54)
1 %) k—1
* _ k+1 k-1 (1 + ’LU)
Tap (k) 7/0 dtt" (1 —1) /0 dw Treott (B.55)

In order to find the Laurent expansion in s of 73} (k), let us use the following trick

1

0 0 l+w+t

1 o0 K—l
_ 1+ w)
+ Attt (1 — )" 1/ d (7 B.56
/O (1-1) A v (B.56)

The first integral is finite, thus is of order O (1) and can be dropped; recall that J5 is
multiplied by &, see (B.50). Therefore, up to required order we get (using definition of
Beta function and performing elementary integral)

T3, (k) = 1052 o). (B.57)

Using the result for Integral M. and gathering all the pieces we finally obtain (B.49).

B.2 Expansions in ¢

In this Appendix we list some of the necessary expansions. The spacetime dimension is
defined as D =4 — 2e =4+ 2k, ¢,k > 0.
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Expansion A. (Euler’s Gamma)  The expansion has the following form

1 1
I‘(s):g—7+ﬁ(672+7r2)€+(9(€2), (B.58)
where v is Euler’s constant
v ~ 0.577216. (B.59)
It is useful to list also
F(l+e)=1—7e+0(?). (B.60)

Expansion B. (Euler’s Beta)  The following expansions are useful

2
B(1€)1+2€+<4%)52+O(53), (B.61)
B(ace 1—5)—11+W—25+O(52) (B.62)
’ Cae 6 ' '

Expansion C.

F(Ajr) =log (14 A) + k F1 (A) + O (k?), (B.63)
where
B 1+4\ 1, .. [ 1 .

F1(A) =log(1+ A)log (T) — 57 + Liy (H—A) + Liy (—A). (B.64)

Proof. ~ We start with the integral definition of F (A; k) (B.22) and expand integrand
to desired order. The less trivial integrals to be calculated are

/ihbgﬂﬂ 1, logAlog(l+A4)
0

1+A A" A ’

(B.65)

1 z

ja _ /1 & 1Og[(1 =+ A) (1 - Z)] _ 10g2 (1 + A) o %7_(_2 + L12 <H;A> , (B66)

1+A

where we used (B.8), (B.9).

! logt 1 log A log (1+ A)
=—T — B.
K;ﬁ1+At a7 A ! (B.67)
1+A
1 -1
o = lim a8 Y e 4 og (14 A) + Lis (—4) (B.68)
n—0 1+n
Expansion D.
1 2+ A
G(Aik) = —— — T Do (14 A) + O (k). (B.69)

14 A 1+ A
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Expansion E. Let us also note the following expansion
F(1,r26+1;—A)=1—rlog(1+A)+ O (k). (B.70)
Proof. ~ We use the definition (B.13)

5 2lk(k+1) 1 5 3Blek+1)(k+2)

F(1,k2c+1;2) =142 +

K 1
2% +1 217 26+1)(26+2) 317 (2h+1) (26 +2) (26 +3)
1,20 1 4302

1 n
=1+k z—l—gz 5—}—3!,2 3 +EZ (n—D!+...0(k)

:1+KZ%:17K10g(172>+0(f12). (B.71)
n=1

B.3 The “plus” distribution

We define the generalized “plus” distribution f, s as follows

b
Srow) () = f () — 6 (u— a) / dy f (y). (B.72)

The action on sufficiently smooth test function ¢ (u) with the support [tmin, Umax] is thus

/“max du flap) (w) @ (u) = /“m du f (u) [p (u) = ¢ (a)]

min Umin

se@|f wio+ [ asw). @

ifa S [umina Umax]-
Note the following useful property

b
fay () b (u) = [f (u) h(u)] g ) + 0 (u—a) / dy f (y) [h(y) = h(a)], (B.74)

which is the simple consequence of the definition.
Now, suppose that u is a function of some other variable, i.e. there is the following
transformation

u=u(z), (B.75)
Umin = U (Zmin) ; (B.76)
Umax = U (Zmax) - (B.77)
Define also
2 =u" ' (a), (B.78)
2 =u"t (D). (B.79)

Then, the action of the distribution in u (B.72) on a test function of z can be calculated
as follows

/ZW dz flap) (u(2)) ¢ (2) = /m dz f (u(2)) [(p (2) — ¢ (2a)

Zmin

e ]

u' (zq)

Zmin

st | [ wrws [Taie)]. ®so

min

+—=z —+. ..
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B.4 Dipole integral for massless FE-IS Q — Qg split-
ting with massive spectator

The starting point is the formula for integrated dipole (3.282) with % = 0. It reads

[y 50 0 = % {%7@4(%);%) ~B(1+k) <1 - %v(lJrli)) } (B.81)

where we replaced heavy quark indicator Q for ¢ in the subscript of the integral. In
considered limit

1 1
= — B.8&2
Aw) w1+ (14 2u)n?’ ( )
1
N B.83
! 1+ 2un? ( )

and ﬁ%z, ﬁ% are easily recovered from Appendix A.2.1.1. Follwoing Section 3.7.2.3 we
introduce
u=tB(r), (B.84)

with B (t) given in Eq. (3.347). Rearranging the terms we get

— 2Cr 7 |1 1.1
IFE Is _ J | = 1 1 21 -
q—q9, a vB (t) ﬁ%z © Og( +t> + © og t N

2
1
"hp> 27\ 0,y

3 3 7
(7r2 — log® (1—1—773)) ~on T §logu+ + 5] .

(B.85)

Q

+ 6 (u)

N | =

1 1
F [E—Elog(lﬁﬁ)—

It can be now confronted with [10] for massless spectator, 2 = 0, finding agreement.
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Nomenclature

the parton that results in splitting process a — ai 4, page 53
center of mass frame for momenta p and ¢, page 65

the (quasi-)collinear subtraction term for n-parton configuration, see equa-
tion (4.34), page 104

the sum over all the dipoles with corresponding jet functions, see equa-
tion (3.423), page 92

dipole momentum and variables, page 47

the rescaled mass or any other quantity X; if X is a parton indicator,
X =1i,j,a,..., then n% = m%/27%; if X is any other kinematic quantity
X =P2%P,,... then nxy = X/27, see equation (3.267), page 74

% = n% /u, see equation (3.270), page 74

the renormalized distribution function for a parton a inside a hadron,
page 17

the parton inside a parton density renormalized in a scheme R, page 18
the jet function, page 19
special invariant p;; - po for FE-IS or p; - p, for IE-FS, page 48

‘massless MS’ — indication for a massless calculation in MS renormalization
scheme, see equation (1.22), page 18

active number of flavours used to define CWZ subscheme, page 22
the number of all quark flavours plus gluon, page 23

the total number of quark flavours (light and heavy), page 22

the number of light partons (i.e. light quarks and a gluon), page 23
the number of light quarks, page 23

the number of heavy quarks, page 23

the set of partons corresponding to the index x = f, ¢, Q, 1 etc.

total dipole momentum p; + p;, page 47
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the invariant (p; + p;) - pa, Page 47

ordinary splitting functions, page 17

Pa — Di, Page 53

configuration of n partons in final state, when the initial state is a, page 92
the parton that splits to ¢« and j, page 47

dipole momentum transfer P — p,, page 47

the pseudo cross section, see equation (3.425), page 93

velocity of p, in CM(Q, p,,) frame, page 48

\/1—mZm2/5% , page 50

the set of indices for enumerating the final state momenta in factorized
phase space, where T is either FE-IS, IE-FS or FE-FS, see equation (3.67),
page 46

the external invariants, see equation (3.128), page 53
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