
Strongly correlated systems

by

 Lukasz Cincio

DISSERTATION

Submitted in Partial Fulfillment

of the Requirements for the Degree of

DOCTOR OF PHILOSOPHY

in the

Marian Smoluchowski Institute of Physics

of the

Jagiellonian University in Kraków

Dr hab. Jacek Dziarmaga, prof. UJ, Supervisor

2010



Contents

1 Introduction 4

2 The MERA algorithm 8

2.1 Tensors and their graphical representation . . . . . . . . . . . . . . . . . . 8

2.2 Contraction of tensors – implementation details . . . . . . . . . . . . . . . 10

2.3 Basics of the MERA algorithm. Role of isometries and disentanglers . . . . 12

2.3.1 Isometries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3.2 Disentanglers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.4 MERA: Definition and properties . . . . . . . . . . . . . . . . . . . . . . . 17

2.4.1 Causal cones . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.4.2 Raising and lowering operations . . . . . . . . . . . . . . . . . . . . 21

2.5 MERA update: Obtaining the ground state . . . . . . . . . . . . . . . . . 27

3 MERA in two dimensions: Quantum Ising model 33

3.1 Symmetric two-dimensional MERA . . . . . . . . . . . . . . . . . . . . . . 33

3.2 Two-dimensional quantum Ising model . . . . . . . . . . . . . . . . . . . . 35

4 Infinite MERA: Spontaneous symmetry breaking in a generalized orbital

compass model 39

4.1 Generalized compass model . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.2 Infinite MERA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.3 Correlations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.4.1 Symmetry breaking transition . . . . . . . . . . . . . . . . . . . . . 44

4.4.2 Magnetization in the ground state . . . . . . . . . . . . . . . . . . . 46

4.5 Conlusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5 Finite-range MERA: Further applications 49

5.1 J1 − J2 model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.2 Fermions in a non-abelian gauge field . . . . . . . . . . . . . . . . . . . . . 55

A Spin wave expansion for the generalized compass model 61

2



Acknowledgments

First and foremost, I owe my deepest gratitude to my supervisor, dr hab. Jacek Dziar-

maga, prof. UJ for all the hope he has put on me throughout my PhD studies. I am very

grateful for his support and assistance during my MSc and PhD studies as well as when

writing this dissertation. He has taught me how good theoretical physics is done and how

to appreciate and cooperate with other scientists effectively and efficiently as well as take

the most of their expertise and experience. Moreover, I particularly appreciate that our

relations have always been based on partnership.

I also thank prof. Guifre Vidal from the University of Queensland, Brisbane, who gave

me a unique chance to work with him as well as talented and full of passion members of

his group. I am honored that I have had the opportunity to learn from Guifre’s broad

specialist knowledge in the atmosphere of friendship and encouragement.

I would also like to acknowledge prof. Maciej Lewenstein from ICFO, Barcelona, for

a possibility of visiting him and collaborating with his group twice. I could gain a lot of

experience and have learnt a lot during my stays as well as in Poland, when working on

our common project.

Next, I would like to thank my colleague, Marek M. Rams, member of Jacek’s group,

for invaluable discussions and exchange of information and materials on all the projects

we have been engaged in.

Finally, I would like to express special thanks to my beloved wife – Ola, for her

love, faithful support, patience and time devoted to my scientific work as well as this

dissertation.

3



Chapter 1

Introduction

The so-called strongly correlated systems are one of the most interesting and at the same

time most difficult phenomena to describe. Here, the interactions between individual

parts of the system are of fundamental importance to the behavior of the whole system.

These interactions are responsible for serious theoretical problems as well as computational

obstacles in the case of most methods of description that are known at present.

In most cases, the above-mentioned interactions are strong enough to create entan-

glement between the parts of the system giving rise to the phenomena such as high-Tc

superconductors, quantum phase transitions and fractional quantum Hall effect.

Therefore, the main objective of this Dissertation involves developing and applying

powerful tools with a view to examining the phenomena of strongly correlated systems.

Strongly correlated systems have been in focus of research for a long time. Due to

the progress in the computer-aided numerical methods, simulations of such systems have

recently become an useful technique of research. The first step in this field is due to

White [36], who proposed a density matrix renormalization group algorithm (DMRG).

This algorithm has been a breakthrough and become an important tool in investigating

one-dimensional quantum systems.

The quantum information theory which was developing rapidly at that time gave rise

to a number of tools which made it possible for effective calculations to be carried out

in quantum many-body systems. This progress has facilitated the establishment of new

research techniques in Quantum Physics. One of such tools has been proposed by Vidal

[31, 32, 33] in his recent articles. Vidal proposes an improved version of the DMRG

algorithm according to which proper decomposition into two parts of the quantum state

on one-dimensional lattice is implemented.

It turns out that for a ground state of typical Hamiltonian, coefficients of this decom-

position decay exponentially. This property is well satisfied outside the critical point.

The exponential decay of these coefficients suggests approximate and effective descrip-

tion of the quantum state: in order to obtain such description, one should keep only a

small number m of the largest coefficients. In [4], we use this algorithm to investigate the

dynamics of quantum phase transitions in one-dimensional quantum Ising model.

Algorithms of this kind are based on a certain representation of the quantum state

known as matrix product state (MPS). In this method, each spin S is assigned 2S + 1
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matrices of size m × m. MPS can be naturally generalized to higher dimensions. The

generalization of MPS to higher dimensions boils down to replace the matrices by higher

dimensional tensors in order to take larger number of nearest neighbors on a lattice into

account. These states can also be obtained as projected entangled pair states (PEPS). It

occurs that in this representation, it is convenient to prove that every quantum state can

be accurately described by way of PEPS for sufficiently large dimension m.

Despite undeniable benefits, MPS and its generalizations confront some technical ob-

stacles. The time, which is required to make all calculations within these algorithms,

scales polynomially in dimension m. In one-dimensional setting, the degree of polynomial

is small enough to carry out computations for large values of m. However, this degree be-

comes large in two dimensions. As a result, the calculations may become time-consuming

and it might be difficult to go to higher dimension m. Unfortunately, in many intriguing

situations, it may turn out that large dimension m is required to obtain accurate results.

A refreshingly new idea of multi-scale entanglement renormalization Ansatz (MERA),

which is tailored for the description of quantum critical points, seems to be a workable

and cost-effective solution to this problem [34]. Using the example of one-dimensional

quantum Ising model in the critical point, it has been established that it is possible to

reduce the necessary dimension m by orders of magnitude without any loss of accuracy in

comparison with the standard DMRG. This astonishing improvement in the performance

has been achieved thanks to the proper removal (renormalization) of short-range entan-

glement in the system. The effectiveness of this new algorithm consists in the fact that

the calculations remain polynomial in dimension m and it needs emphasizing that this

dimension does not have to increase along with a growth of the system size, as in the case

of the DMRG algorithms.

There are many possible realizations of the geometry of MERA. Given a physical

model, it is possible to select the most adequate and effective one. The geometries differ

from each other in the amount of entanglement they remove and in the way the calcula-

tions scale with dimension m. In [15], another example of the two-dimensional geometry

was introduced with the aim to solve quantum Ising model defined on large and even

infinite systems.

MERA has also been applied to study the geometrically frustrated antiferromagnet. In

this approach, the properties of the ground state of spin-1
2

Heisenberg model on kagome

lattice are investigated in detail [17]. Special attention has to be paid to the recent

applications of MERA to the fermionic systems, which play a fundamental role in our

understanding of condensed matter phenomena [9]. In contrast to the Quantum Monte

Carlo techniques, which break down in the fermionic models due to a negative sign prob-

lem, MERA is fully capable of describing such systems. Whereas there are fundamental

physical differences between bosonic and fermionic models, there are no significant ones

in the structure of MERA in both cases. Test calculations have been performed in free

and interacting fermionic systems which positively verified the applicability of the new

Ansatz [10].

The ability to make effective and accurate calculations at zero temperature for two-
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dimensional systems is of fundamental importance for our comprehension of strongly

correlated quantum systems which are defined on two-dimensional lattices. It suffices to

mention possible applications of high-Tc superconductors which effectively turn out to

be two-dimensional, strongly correlated systems of electrons on the lattice. In order to

describe the electrons, Hubbard model [19] is used, however, it has not been solved so far

in spite of long-lasting and labor-intensive works on the subject. It is not even known

yet, if this model predicts superconductivity.

The MERA algorithm is a new numerical approach which in the scientific community

is perceived as a fascinating and crucial breakthrough in analyzing the properties of

extended quantum systems. The area of its applications has been significantly extended

after recognizing that this approach is free of the fermionic negative sign problem [9, 10],

which is a major obstacle in other quantum-mechanical techniques.

Although the approach is relatively fresh, it brings very promising and problem-solving

results which is encouraging to carry out further and in-depth research. The algorithm

develops other well-known approaches in an innovative way by means of supplementing

it with novel and stimulating ideas. It can be safely said that progress in works on this

algorithm is a vital step towards understanding and solving problems in condensed matter

physics.

This Dissertation is organized as follows. Chapter 2 provides an overview of the

MERA algorithm. For simplification, the reasoning included there is carried out for one-

dimensional quantum systems. The content involves an apt description of two components

that the algorithm is built of: isometries and disentanglers. This description is accompa-

nied by illustrative examples. The remaining part of the chapter is devoted to an analysis

of MERA properties together with some hints on the more technical issues which stem

from our experience with MERA. We conclude with providing details of the MERA opti-

mizing procedures aimed at obtaining the ground state description which are applied in

the following chapters.

In the next chapter, we show how MERA can be naturally generalized to higher

dimensions. We examine one of its possible generalizations by obtaining the ground state

of two-dimensional quantum Ising model on a small square lattice, but already outside

the scope of exact diagonalization. We verify that surprisingly accurate results can be

obtained even with the smallest non-trivial dimension m.

In Chapter 4, we show that the modified MERA schemes may be applied to investigate

interesting physical systems. They are used to make calculations in the two-dimensional

generalized quantum compass model on an infinite square lattice. We take a close look

at the quantum phase transition between Ising-like ground state and anisotropic one of

the generalized compass model. The MERA algorithm allows us to demonstrate that the

transition under examination is of the second order and it takes place very close to the

compass model where quantum fluctuations are sufficiently large to break the symmetry.

The results presented in Chapters 3 and 4 are based on [5, 6].

The last Chapter develops the notion of another variation of MERA algorithm: finite-

range MERA. We begin with discussing its major feature according to which finite-range
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MERA is capable of addressing directly the infinite systems at low cost. Next, we discuss

the possible area of implementation of an even simpler scheme, namely, finite-range MERA

consisting of only one layer of tensors. After that, we provide instances of its application

to two frustrated quantum systems. The material presented in this chapter is the subject

of evolving research [7, 8].
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Chapter 2

The MERA algorithm

Since the MERA algorithm is easier to describe by means of graphical representations,

we begin with establishing a formal correspondence between algebraic objects and their

graphical representations.

2.1 Tensors and their graphical representation

In this Dissertation, we consider tensors as linear mappings between two (finitely dimen-

sional) Hilbert spaces:

t : V1 → V2, (2.1)

where V1 and V2 stand for tensor products of some given number of spaces Ck:

V1 = C
n1 ⊗ · · · ⊗ C

nN , V2 = C
m1 ⊗ · · · ⊗C

mM . (2.2)

We then say that tensor t has N input and M output wires (or indices). As a linear map,

t is fully represented by a set of n1 · . . . ·nN ·m1 · . . . ·mM complex numbers which can be

naturally arranged into a multidimensional array:

t |i1 . . . iN〉 =

m1−1∑

j1=0

· · ·
mM−1∑

jM=0

ti1...iN
j1...jM

|j1 . . . jM〉 , (2.3)

where {|k〉}n−1
k=0 forms a basis of C

n.

Because of the specific structure of spaces V1 and V2 in (2.2), there exists a useful

graphical representation of tensors. Fig. 2.1(a) shows an example of such a representation

for N = 2 and M = 3.

To avoid ambiguity, we set the following rule of drawing tensor representations: Upper

wires correspond to spaces Ck in a domain whereas lower ones – to spaces in a range of

a tensor. The wires are arranged in exactly the same sequence as their corresponding

spaces, i.e. from left to right.

Tensors undergo all standard linear operations: addition, multiplication by scalar and

composition. However, thanks to the tensorial character of spaces V1 and V2 in (2.2), we

can extend the definition of composition for linear mappings and consider general tensor

contractions. In general, every two wires of one or two tensors can be contracted if their

corresponding Hilbert spaces have the same dimension.

8



Figure 2.1: (a) Graphical representation of tensor t : Cn1 ⊗ Cn2 → Cm1 ⊗ Cm2 ⊗ Cm3 .
Tensor t has two input and three output wires with elements: ti1i2

j1j2j3
. (b) Example of

contraction of two wires which belong to the same tensor (partial trace). (c) General
contraction of two tensors. The application of the rule of ordering wires of tensor r.

Fig. 2.1(b) serves as an example of contraction in a special case when both wires

belong to the same tensor. In algebraic notation, this operation can be written as follows:

t : C
n1 ⊗ C

n2 ⊗C
n3 → C

m1 ⊗ C
m2 ⊗C

m3 , s : C
n2 ⊗C

n3 → C
m2 ⊗ C

m3 , (2.4)

where n1 = m1. The elements of tensor s read:

si1i2
j1j2

=

n1−1∑

k1=0

tk1i1i2
k1j1j2

. (2.5)

In literature, this operation is referred to as a partial trace.

Fig. 2.1(c) provides another instance of tensor contraction. In this case, four wires are

contracted, two of them belong to tensor t. Note that some of the output wires of t as well

as input wires of s are not contracted. Due to this, we set a second rule of manipulating

tensor representations: All wires of tensor t that are not contracted become input wires

of the resulting tensor r. These wires are ordered in the same way as they are in the

case of tensor t. Additionally, the input wires of t are placed at the beginning. Similarly,

all the remaining wires of s turn into output wires of r by means of the same method of

ordering as input wires of r.

Algebraically, the contraction presented in Fig. 2.1(c) is as follows:

t : C
n1 ⊗ C

n2 → C
m1 ⊗C

m2 ⊗ C
m3 , s : C

n′
1 ⊗ C

n′
2 ⊗C

n′
3 → C

m′
1 ⊗ C

m′
2 ⊗ C

m′
3 ,

r : C
n1 ⊗ C

n2 ⊗ C
m1 → C

n′
2 ⊗C

m′
1 ⊗C

m′
2 ⊗ C

m′
3 ,

(2.6)

where n′
1 = m3 and n′

3 = m2. The elements of tensor r are such that:

ri1i2i3
j1j2j3j4

=
m2−1∑

k1=0

m3−1∑

k2=0

ti1i2
i3k1k2

sk2j1k1

j2j3j4
. (2.7)
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2.2 Contraction of tensors – implementation details

It turns out that contraction of two tensors is the basic procedure that is constantly

repeated in the MERA algorithm. That is why, from a technical point of view, it is

important to implement tensor contraction as efficiently as possible.

In this section, we examine various approaches to programming contraction of tensors.

Let us focus on the example provided in Fig. 2.1(c).

Firstly, the simplest approach to programming this contraction involves direct imple-

mentation of Eq. (2.7) by means of a nested loop construction. In this case, seven external

loops are used to address all the elements of final tensor r and two internal loops in or-

der to perform summation over indices k1 and k2. Although this method is conceptually

simple and easy to program, it proves to be inefficient, especially when high dimensions

of individual spaces Cn are involved.

In the second approach, matrix multiplication is used to calculate the elements of final

tensor r. This is carried out in three steps:

(i) Reshaping initial tensors t and s into matrices Mt and Ms, respectively;

(ii) Performing matrix multiplication of Mt and Ms to obtain matrix Mr; and

(iii) Reshaping matrix Mr into the final tensor r.

This procedure is shown in Fig. 2.2.

Figure 2.2: Method of contracting tensors based on the matrix multiplication. Contraction
is conducted in three steps: (i) reshaping t and s into Mt and Ms, respectively, (ii)
multiplication Mr = MtMs and (iii) reshaping Mr into r.

Let us analyze each step of this procedure in more detail.

(i) All wires of tensor t that are not contracted are grouped into one index α of matrix

Mt. These wires will become the input ones of the final tensor r. The remaining

wires of t will be contracted – they are grouped into one index β of matrix Mt
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(compare Fig. 2.2 with Fig. 2.1(c)). According to the rules of manipulating tensor

representations, the construction of matrix Mt ∈M(n1n2m1, m2m3) is as follows:

(Mt)
α
β = ti1i2

j1j2j3
, where

α = [i1, i2, j1] = i1 + i2 · n1 + j1 · n1n2 ,

β = [j3, j2] = j3 + j2 ·m3 .

(2.8)

The construction of matrix Ms ∈ M(m2m3, n
′
2m

′
1m

′
2m

′
3) corresponding to tensor s

is performed in a similar way:

(Ms)
β
γ = sk1k2k3

l1l2l3
, where

β = [k1, k3] = k1 + (k3 − 1) ·m3 ,

γ = [k2, l1, l2, l3] = k2 + l1 · n′
2 + l2 · n′

2m
′
1 + l3 · n′

2m
′
1m

′
2 .

(2.9)

(ii) Matrices Mt and Ms are multiplied. In this step, the actual tensor contraction takes

place:

Mr = MtMs . (2.10)

(iii) Indices α and γ of matrix Mr ∈ M(n1n2m1, n
′
2m

′
1m

′
2m

′
3) shown in Fig. 2.2 are

ungrouped in order to form input and output wires of a final tensor r, respectively.

Elements of tensor r are restored in a following way:

ri1i2i3
j1j2j3j4

= (Mr)
α
γ , where

α = [i1, i2, i3] = i1 + i2 · n1 + i3 · n1n2 ,

γ = [j1, j2, j3, j4] = j1 + j2 · n′
2 + j3 · n′

2m
′
1 + j4 · n′

2m
′
1m

′
2 .

(2.11)

In the majority of applications, a list of tensors are contracted in a sequence in such

a way that a tensor, which is a result of given contraction, is immediately used in a

subsequent one as an initial tensor. In this case, steps (iii) and (i) from the consecutive

contractions can be merged into one step to avoid unnecessary tensor reshaping.

Contraction of tensors based on matrix multiplication proves to be more efficient than

the simplest one resulting from the direct use of Eq. (2.7). The reason for this is the ability

to use highly optimized libraries for matrix multiplication that considerably outperforms

direct contraction based on Eq. (2.7). What is more, in this approach, it may be verified

that additional reshaping steps have only small contribution to overall time that is spent

on tensor contraction.

The graphical representation of tensors and their contraction allows us to almost

completely resign from algebraic expressions. Sometimes, however, we use a shortened

algebraic notation. By writing ts = r, we refer to a special case of tensor contraction

in which all output wires of tensor s are contracted with all input wires of t without

permutation of indices. In any other case, we use central dot · to denote tensor contraction,

e.g. Eu = t2 · r7. Notice that the notation is ambiguos, it can be used only in situations

when we are not interested in details of the contraction.
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2.3 Basics of the MERA algorithm. Role of isome-

tries and disentanglers

Entanglement renormalization has been developed by Vidal [34] on the basis of standard

renormalization techniques proposed by Kadanov [20] and Wilson [37]. In order to un-

derstand better how Vidal’s idea of disentanglers contributes to the previous proposal,

let us first examine the standard renormalization procedure in the language of isometric

tensors.

2.3.1 Isometries

The method of renormalization group is established on the idea of grouping spins in larger

blocks and truncating Hilbert space in which this block is described in order to eliminate

all redundant degrees of freedom.

The spin grouping and Hilbert space truncation may be described by an isometric

tensor w:

w : C
m → C

n1 ⊗ C
n2 , w†w = ICm , (2.12)

where product Cn1 ⊗Cn2 is a physical space of two particles with spins S1 and S2, where

n1 = 2S1 + 1 and n2 = 2S2 + 1. Effective block spin S ′ is represented in space Cm. The

graphical representation of isometry w is depicted in Fig. 2.3(a).

Figure 2.3: (a) Graphical representation of
isometry w in Eq. (2.12). (b) Condition of
isometry for tensor w. (c) Initial state |ψ〉 on
8 spins is coarse-grained into effective state
|ψ′〉 on 4 block spins by means of the product
of isometries w1 ⊗ · · · ⊗ w4.

Tensor w† acts on the state of two

particles and builds one effective block

spin. Note that in the case of m = n1n2,

the mapping given by tensor w† is ex-

act, whereas some information about ini-

tial state may be lost when m < n1n2.

If properly expanded on all spins of the

chain, this operation causes the so-called

coarse graining of the initial state (see Fig.

2.3(c)).

In this renormalization technique, the

dimension m of the target space of ten-

sor w† is the key parameter. On the one

hand, it should be reasonably small since

the cost of computation of expected val-

ues of observables scales polynomially with

this dimension. On the other, it should be

sufficiently large as it is desirable to have

accurate description of a given state. We see, that a careful choice of tensor w as well as

dimension m is essential.

In [36], White suggests to analyze the reduced density matrix for two spins [s1s2] that

are going to be grouped into one block spin s′. The reduced density matrix is hermitian
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and its trace equals one, thus, it can always be written in a diagonal form with decreasing

eigenvalues:

ρ[s1s2] =

n1n2−1∑

i=0

pi |ρi〉〈ρi| , where

1 ≥ p0 ≥ p1 ≥ · · · ≥ pn1n2−1 ≥ 0 and

n1n2−1∑

i=0

pi = 1 .

(2.13)

Following White, the optimal choice of dimension m of the target space of tensor w† is

as follows: Let ε << 1 be an truncation error. Parameter m is then the smallest number

which satisfies inequality:

1−
m−1∑

i=0

pi ≤ ε . (2.14)

For every i ∈ {0, 1, . . . , m − 1}, vector wi is selected so as to be the i-th eigenstate of

reduced density matrix ρ:

wi
j1j2 = 〈j1j2|ρi〉 . (2.15)

Intuitively, during the above-mentioned procedure, only the most important part of the

description of the initial state is kept. The rest of them, redundant or unimportant degrees

of freedom, are neglected.

In other words, the full space for two spins Cn1 ⊗Cn2 is truncated in such a way that

n1n2−m directions which correspond to eigenvectors of ρ[s1s2] to the smallest eigenvalues

are eliminated.

Let us now consider the following example to illustrate the method of selecting tensor

w and dimension m. Suppose that the system consists of four spin-1
2

particles [e1s1s2e2]

arranged in a chain and that, during the renormalization step, two spins [s1s2] are going

to be grouped into one effective block spin s′ as shown in Fig. 2.4. The previous, general

approach is thus reduced to the case: n1 = n2 = 2. Let ρ[e1s1s2e2] = |ψ〉〈ψ| be the density

matrix of the system, where:

|ψ〉 =

1∑

k1,...,k4=0

ψk1k2k3k4
|k1k2k3k4〉 (2.16)

=
1

3

(
2 |1001〉+

√
2 |0110〉 −

√
2 |1100〉+ |0100〉

)
. (2.17)

At first, we calculate the reduced density matrix for subsystem [s1s2] and write it in the

diagonal form:

ρ[s1s2] = Tre1e2

[
ρ[e1s1s2e2]

]
=

3∑

i=0

pi |ρi〉〈ρi| , where (2.18)

p0 = p1 = 4
9
, p2 = 1

9
, p3 = 0 and

|ρ0〉 =
2√
6
|10〉+ 1√

3
|11〉 , |ρ1〉 = |00〉 ,

|ρ2〉 = − 1√
3
|10〉+ 2√

6
|11〉 , |ρ3〉 = |01〉 .

(2.19)

13



Note that one of the eigenvalues of ρ[s1s2] is zero and, therefore, direction |ρ3〉 = |01〉 can

be removed from space C2 ⊗ C2 without losing any information about the state of the

system.

Figure 2.4: Example of coarse graining op-
eration. State |ψ〉 is replaced with state
|ψ′(m)〉. Choice of tensor w and dimension
m is discussed in the text.

The second smallest eigenvalue of ρ[s1s2]

is 1
9

and hence, in some rough approxima-

tion of the initial state, one could also elim-

inate direction |ρ2〉 and choose m = 2. In

this case, non-zero elements of tensor w

would be:

w0
10 =

2√
6
, w0

11 =
1√
3
, w1

00 = 1 .

(2.20)

In this example, an increase in dimen-

sion m to 3 already gives the exact coarse graining. To achieve this, isometry w needs to

be extended by third vector w2:

w2
10 = − 1√

3
, w2

11 =
2√
6
. (2.21)

During the coarse graining step, initial state |ψ〉 is replaced with the state |ψ′(m)〉 (com-

pare with Fig. 2.4):

|ψ′(m)〉 =
1∑

k1,k3=0

m−1∑

k2=0

ψ′(m)k1k2k3
|k1k2k3〉 , (2.22)

where:

ψ′(m)i1i2i3 =

1∑

k1,k2=0

wi2
k1k2

ψi1k1k2i3 . (2.23)

The explicit form of |ψ′(m)〉 for m = 2 and m = 3 is as follows:

|ψ′(m = 2)〉 =
4

3
√

6
|000〉 − 2

3
√

3
|100〉+ 2

3
|111〉 , (2.24)

|ψ′(m = 3)〉 =
4

3
√

6
|000〉 − 2

3
√

3
|100〉+ 2

3
|111〉+ 1

3
√

3
|020〉+ 2

3
√

6
|120〉 .(2.25)

2.3.2 Disentanglers

The effectiveness of the renormalization method studied in the previous section depends

on the amount of entanglement between a group of spins that undergoes renormalization

and the rest of the system. The more entanglement is involved, the larger space dimension

m has to be used in order to maintain accurate description. At the same time, large spaces

negatively influence the efficiency of this algorithm which results in limiting the scope of

application of this method.
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Figure 2.5: (a) Disentangler u1 defined in Eq.
(2.26). (b) Unitary condition for tensor u1.
(c) Transformations u1 and u2 acts on the
boundary of block [s1s2].

In [34], Vidal proposes a variation of the

standard renormalization procedure that

provides a possible solution to this prob-

lem. His idea is astonishingly simple. As

the entanglement poses an obstacle in trun-

cating the space of effective spins, it is

worth trying to reduce it before the ac-

tual truncation occurs. This reduction is

achieved by means of carefully chosen uni-

tary transformations that can affect the

amount of entanglement between a given

group of spins and the rest of the system.

For simplicity reasons, let us now study

this idea in detail in the special case of a

one-dimensional lattice of spins (i.e. each

spin has two nearest neighbors), where two

spins [s1s2] will be grouped into one block spin at some point of the algorithm. We consider

unitary operations u1 and u2, each of them acts on one spin in block [s1s2] and its nearest

neighbor outside the block.

u1 : C
m1 ⊗ C

n1 → C
m1 ⊗ C

n1 , u†1u1 = u1u
†
1 = ICm1⊗Cn1 , (2.26)

u2 : C
n2 ⊗ C

m2 → C
n2 ⊗C

m2 , u†2u2 = u2u
†
2 = ICn2⊗Cm2 . (2.27)

This situation is illustrated in Fig. 2.5.

Properly selected transformations u1 and u2 decrease the entanglement between block

[s1s2] and its nearest neighbors on a lattice (spins e1 and e2 in Fig. 2.5(c)). As a conse-

quence, the initial reduced density matrix for spins [s1s2]:

ρ[s1s2] = Tre1e2

[
ρ[e1s1s2e2]

]
(2.28)

is replaced with ρ̃ [s1s2] which is partially disentangled with nearest neighborhood on the

lattice:

ρ̃ [s1s2] = Tre1e2

[
(u1 ⊗ u2)ρ

[e1s1s2e2](u1 ⊗ u2)
†
]
. (2.29)

Transformations u1 and u2 are referred to as disentanglers because of their application

– their aim is to (partially) disentangle block [s1s2] with the rest of the lattice.

As a result of combining the standard renormalization technique and the new idea

of disentanglers, we obtain the following construction shown in Fig. 2.6. Firstly, the

entanglement between block [s1s2] and the rest of the system is removed in order to,

secondly, truncate the space Cn1 ⊗ Cn2 more effectively.

Without disentanglers, in order to achieve pre-established truncation error ε while

coarse-graining the block [s1s2], dimension m is chosen based on Eqs. (2.13) and (2.14).

Due to the presence of disentanglers u1 and u2, it is feasible to achieve the same truncation
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error in a significantly smaller space of effective spin s̃, i.e. writing partially disentangled

state ρ̃ [s1s2] in a diagonal form:

ρ̃ [s1s2] =

n1n2−1∑

i=0

p̃i |ρ̃i〉〈ρ̃i| , where

1 ≥ p̃0 ≥ p̃1 ≥ · · · ≥ p̃n1n2−1 ≥ 0 and
n1n2−1∑

i=0

p̃i = 1 ,

(2.30)

it is possible to find m̃ < m that satisfies inequality:

1−
em−1∑

i=0

p̃i ≤ ε . (2.31)

Figure 2.6: Decimation step of
the new renormalization tech-
nique that is split into two
steps: (i) disentangling and (ii)
truncating the space.

This approach solves one of the basic problems of

Wilson’s renormalization which consists in that, with

consecutive decimations, the dimension of constructed

effective spaces grows rapidly. This feature may limit

the applicability of this method only to small systems.

To demonstrate the effectiveness of disentanglers, let

us now study the following example. As in the previ-

ous one, four spin-1
2

particles form the whole system

[e1s1s2e2] and a group of two spins [s1s2] undergoes

renormalization. This time, the state of the system is

given by:

|ψ〉 =

[
1√
2
(|01〉+ |10〉)

]⊗ 2

. (2.32)

The reduced density matrix for subsystem [s1s2] takes the form:

ρ[s1s2] =

3∑

i=0

pi |ρi〉〈ρi| , (2.33)

where pi = 1
4

for all i ∈ {0, 1, 2, 3}, which means that all directions |ρi〉 in the space

C2 ⊗ C2 are equally significant. This is the case of maximum amount of entanglement

between group [s1s2] and the rest of the system. In this situation, it is not possible to

truncate the space of an effective block spin without losing a considerable part of the

initial state and thus, dimension m needs to equal 4.

Consider now two unitary transformations u1 = u2 = u that act on the state as

shown in Fig. 2.6. Operation u is selected in such a way that the state (|01〉+ |10〉)/
√

2

is transformed into state |00〉. This can be made by the following choice of non-zero

elements of u:

u00
01 = u00

10 = u01
01 = − u01

10 =
1√
2
,

u10
00 = u11

11 = 1 .

(2.34)
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Disentanglers u transform ρ[s1s2] into ρ̃ [s1s2]. Using Eq. (2.29), one obtains:

ρ̃ [s1s2] =

3∑

i=0

p̃i |ρ̃i〉〈ρ̃i| , (2.35)

where p̃0 = 1, p̃1 = p̃2 = p̃3 = 0 and |ρ̃0〉 = |00〉. Since as many as 3 eigenvalues of ρ̃ [s1s2]

equal 0, the dimension of effective block spin m̃ is trivial, i.e. m̃ = 1. Isometry w that

maps [s1s2] into s̃ (see Fig. 2.6) is also trivial with one non-zero element: w0
00 = 1.

The above example shows the extreme situation: proper use of disentanglers allows

to decrease the dimension of an effective block spin from its maximal value m = 4 to

minimal m̃ = 1.

2.4 MERA: Definition and properties

The construction of disentangling and truncating the Hilbert space presented in the pre-

vious section, naturally extends to larger spin chains. To this end, it suffices to provide

additional layers of tensors, that is, after the first step of grouping spins into blocks, this

operation is repeated for spin blocks.

Fig. 2.7 presents a network of tensors which describes a state on a chain consisting of

32 spins. Here we assume periodic boundary conditions, i.e. spins s2 and s32 are nearest

neighbors of spin s1 while spins s31 and s1 are nearest neighbors of s32. For that reason,

wires denoted by the same numbers on the right and left side in Fig. 2.7 are connected.

Periodic boundary conditions naturally fit MERA algorithm. Although other types are

also possible, they require far-reaching changes in the tensor network.

Figure 2.7: MERA for state |ψ〉 of 32 spins. Periodic boundary conditions are assumed
– wires with the same numbers are connected. Arrows indicate two directions in which
MERA scheme can be read: (i) as a renormalization technique: from bottom to top and
(ii) as a quantum circuit: from top to bottom.

At the bottom of the network in Fig. 2.7, there is a chain L of 32 spins. The first

layer of tensors involves disentanglers u1, the following one – isometries w1. These two
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layers together map state |ψ〉 of 32 spins into the coarse-grained state |ψ1〉 of 16 effective

spins. The following layers carry out subsequent decimations which reduce the number

of effective spins by half each time. After the last decimation, we get state |ψ4〉 of two

effective block spins which is directly specified by top tensor t. Top tensor is normalized

as:
m−1∑

k1,k2=0

tk1k2
(tk1k2

)∗ = 1 . (2.36)

The presented network of tensors {ui, wi}4i=1 together with top tensor t are known as

MERA for state |ψ〉. Although it may not be evident form Fig. 2.7, each layer does not

have to involve the same tensors. For instance, the first layer of disentanglers may include

16 various tensors. It should also be noted that one can consider different dimensions of

spaces in which effective block spins are described.

MERA can be seen from two different perspectives: as a renormalization algorithm

and as a quantum circuit. Both of them are useful while studying MERA properties.

According to the first point of view, the scheme in Fig. 2.7 is read from bottom to top.

We start with a given state |ψ〉 and search for its best description in terms of tensors

{ui, wi}4i=1 and top tensor t. At each layer, we choose dimensions of block spins and

tensors uτ , wτ according to the pre-established truncation error ε. In this approach, we

obtain a sequence of coarse-grained states:

|ψ〉 ≡ |ψ0〉
u†
1
,w†

1−−−→ |ψ1〉
u†
2
,w†

2−−−→ |ψ2〉
u†
3
,w†

3−−−→ |ψ3〉
u†
4
,w†

4−−−→ |ψ4〉 = t (2.37)

defined on coarse-grained lattices:

L ≡ L0

u†
1
,w†

1−−−→ L1

u†
2
,w†

2−−−→ L2

u†
3
,w†

3−−−→ L3

u†
4
,w†

4−−−→ L4 . (2.38)

Lattice Lτ consists of 32 · 2−τ effective spins.

Figure 2.8: MERA as a quan-
tum circuit. In this approach,
isometries are replaced with
a unitary transformation with
one input wire fixed.

In the second perspective, we treat MERA as a quan-

tum circuit of unitary gates. This can be achieved by

extending isometries w to unitary transformations u:

w : C
m → C

n1 ⊗C
n2 ,

u : C
m ⊗C

n1n2/m → C
n1 ⊗ C

n2 .
(2.39)

An additional input wire of tensor u acts on fixed state

|0〉 ∈ Cn1n2/m as shown in Fig. 2.8. Now, the scheme in

Fig. 2.7 is read from top to bottom. Having all tensors in

the network given, state |ψ〉 can be computed by means

of subsequent actions of quantum gates in discrete time τ ′. During this process, a sequence

of intermediate states {|ψτ ′〉}τ ′ are calculated:

t = |ψ4〉
w4,u4−−−→ |ψ3〉

w3,u3−−−→ |ψ2〉
w2,u2−−−→ |ψ1〉

w1,u1−−−→ |ψ〉 . (2.40)

Apart from the similarities between Eqs. (2.37) and (2.40), one should be aware of

fundamental differences between these two approaches. In the first one, state |ψ〉 is given
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and MERA is constructed on this basis, while in the second one, MERA is given and

state |ψ〉 is encoded.

Let us now scrutinize the MERA structure. One of its key features is the fact that the

number of tensor layers scales logarithmically with the size of a lattice. In general, the

number of tensors describing state |ψ〉 grows linearly with the size of the lattice. Thus,

if m denotes the dimension of each space in which consecutive block spins are described,

then the number of parameters used to span the tensor network scales as m4N , where N

stands for the chain’s length. Exponent 4 comes from the fact that the largest tensor in

this structure – disentangler – has two input and two output wires.

Recall that in the exact standard description of the quantum state of a system of N

particles with spin S, one would need to specify (2S + 1)N complex coefficients ψi1...iN :

|ψ〉 =
2S∑

i1,...,iN=0

ψi1...iN |i1 . . . iN 〉 . (2.41)

Hence, we obtain a dramatic reduction in the number of parameters. Certainly, it may

turn out that in order to describe the state accurately, large dimension m would be

needed and the number of MERA parameters may become large. However, it occurs that

in many practical applications, due to the presence of disentanglers, dimension m may be

very small.

The fact that MERA can reflect the symmetry of a state under description is its

another asset. For instance, if the state is translationally invariant, all tensors in a given

layer are identical. This brings another reduction in the number of parameters which

span the tensor network: in the case of translationally invariant systems, the number of

parameters which describe the state does not increase linearly with the system size, but

logarithmically.

2.4.1 Causal cones

Figure 2.9: Causal cone for nearest neighbor spins
s and r. Thickness of this cone is three.

Another feature to consider is the lo-

cality of the tensor structure shown

in Fig. 2.7. In order to explain this

notion, we adopt the perspective ac-

cording to which MERA is a quan-

tum circuit, as discussed earlier. Sup-

pose that all tensors in Fig. 2.9 are

given and we aim at calculating the

reduced density matrix for two neigh-

boring spins s and r, which are high-

lighted at the bottom of the figure. To this end, the tensors are contracted from top to

bottom, as can be seen in Fig. 2.9. Note, however, that ρ[sr] does not depend on the whole

tensor structure but only on a small part of it. In other words, only a small number of

tensors is connected with spins s or r. Remember that in the quantum circuit perspective,
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we apply gates in order defined by discrete time τ ′. That is, there is no need to apply, for

instance, tensor w2,3, since it influences neither s nor r.

Tensors that contribute to ρ[sr] are marked in Fig. 2.9. A set of tensors which has to

be taken into consideration while calculating ρ[sr] is called the causal cone for spins [sr].

The locality feature of MERA comes from the fact that disentanglers are unitary and

all isometries satisfy the condition w†
τwτ = I. To understand it properly, let us analyze

Fig. 2.10.

Figure 2.10: The calculation method of the reduced density matrix ρ[sr]. (a) Upper part:
MERA description of |ψ〉, lower part: MERA description of 〈ψ|. All sites of lattice L
besides [sr] are contracted. Rules in Fig. 2.5(b) and Fig. 2.3(b) are used to eliminate
from the contraction the tensors that lie outside the causal cone. (b) Efficient contraction
of the network that leads to ρ[sr]. Cost of this calculation scales as m9.

Fig. 2.10 shows the details of calculating ρ[sr] and clarifies the notion of causal cones.

The upper part of Fig. 2.10(a) is the MERA representation of |ψ〉, whereas the lower is its

Hermitian conjugate, i.e. the MERA representation of 〈ψ|. The reduced density matrix:

ρ[sr] = TrL\[sr] |ψ〉〈ψ| (2.42)

is calculated and, hence, all sites L \ [sr] are contracted. Multiple application of rules

Fig. 2.5(b) and Fig. 2.3(b) allows us to eliminate all tensors that are outside causal

cones: Firstly, tensors u1 and u†1 are removed by the usage of 2.5(b), then w1 and w†
1 by

2.3(b) and so on until the remaining tensors w3 and w†
3 are eliminated. At the end of

this procedure, we obtain a simplified tensor structure illustrated ed in Fig. 2.10(b) that

needs to be contracted in order to calculate ρ[sr].

We would like to emphasize once again that thanks to the particular tensor structure

and certain conditions which are fulfilled by disentanglers and isometries, the calculation

of reduced density matrices for nearest neighbors (or more general: any local observables)

is efficient within the MERA algorithm. At any stage, it is not necessary to operate on a
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state of the whole system |ψ〉 ∈
(
C

2S+1
)⊗32

(in the case of an example in Fig. 2.9). This

allows us to study very large systems at low cost.

There is one more feature of causal cones which deserves attention, namely, the fact

that their thickness is bounded by some constant which does not depend on the lattice

size but only on the geometry of a particular tensor structure, i.e. on the type of tensors

used and the way they are connected. Thickness of the causal cone is measured by the

total number of input wires of isometries inside the cone in a given layer. In the example

presented in Fig. 2.9 thickness of the cone equals 3.

This parameter is very important because it directly translates into the complexity of

the algorithm. The thicker a causal cone is, the more complex the algorithm becomes.

It can be demonstrated that the cost of computation of the density matrix for nearest

neighbors ρ[sr] scales as m9 in the MERA scheme presented in Fig. 2.7 where, for the sake

of simplicity, we assume that every dimension of effective spin equals m. A proof of this

fact is provided in the next section.

2.4.2 Raising and lowering operations

As discussed before, MERA can be treated as a renormalization technique. Once the

whole tensor structure is created, we can examine the system at different length scales.

In this situation, it is possible to study how operators defined on physical lattice L undergo

a renormalization procedure. Let us look into the case of operators o[sisi+1] and o[si+1si+2],

defined on two nearest neighbor sites. Because of the particular structure of MERA in Fig.

2.7, we may transform them either into two-site operator o
[s′is

′
i+1

]

1 or three-site operator

o
[s′is

′
i+1

s′i+2
]

1 on L1 depending on the mutual position of operators o[sisi+1], o[si+1si+2] and

disentangler u1. Figs. 2.11(a) and (b) illustrate these two cases.

Thickness of the causal cone in this MERA scheme is 3, hence, the two-site and

three-site operators on lattice Lτ become at most three-site ones on Lτ+1. Fig. 2.11(c)

presents a general case: three-site operator on Lτ is transformed by (τ + 1)-th layer of

disentanglers and isometries into the three-site operator on Lτ+1. The operation that

transforms operator oτ into oτ+1 is referred to as a raising operation Rτ+1 of oτ :

oτ+1 = Rτ+1oτ . (2.43)

In Section 4.3, we employ the technique of raising operators in order to examine correla-

tions in the ground state of the two-dimensional orbital compass model.

The raising operation is one of the most common procedure in the MERA algorithm

which is constantly repeated during its run. From a technical viewpoint, it is thus prefer-

able to program this procedure as effectively as possible. Let us now have a closer look

at the general case presented in Fig. 2.11(c). In order to calculate o
[s′is

′
i+1

s′i+2
]

τ , all 17

pairs of wires have to be contracted. Because high dimension m of effective block spins

is desirable, optimally, the contraction of the whole structure in Fig. 2.11(c) should scale

with the lowest possible power of m. To simplify, we assume here that the Hilbert space

of every effective spin has the same dimension m.
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Figure 2.11: Raising operation. (a),(b) Physical, two-site operator is transformed into a
two-site or three-site operator on coarse-grained lattice L1. (c) General case of transform-
ing a three-site operator into three-site one.

The best strategy to contract such tensor structures is to divide the procedure into

small steps and during each of them only two tensors are contracted. This strategy

should be used to facilitate finding the optimal order of contracting pairs of tensors. A

clear example of such an optimal choice is shown in Fig. 2.12. It can be treated as the

basis for further optimization which is dealt with later on.

Thus, first of all, we divide contraction in Fig. 2.11(c) into ten steps (i) – (x), as

depicted in Fig. 2.12. In each step, the black color designates a part of the contraction

that has been made in previous steps. In a given step, tensors that are contracted are

painted with their color which has been previously used in Fig. 2.11(c). The contractions

which have to be performed at each stage are highlighted. The most expensive steps

involve: (iii), (iv) and (v) – the cost of each scales as m9, therefore, the contraction cost

of the whole structure scales also as m9.

Let us now show that there does not exist a contraction of the structure illustrated

in Fig. 2.11(c) the cost of which scales as m8. One of the steps of this contraction has

to involve operator o
[sisi+1si+2]
τ that are connected with some other parts of the structure

(this may involve one tensor or a couple of them contracted in previous steps). Note

that there are only two possibilities that scale as m8: o
[sisi+1si+2]
τ can be contracted with

uτ+1 or with u†τ+1 which is placed on the left of the structure in Fig. 2.11(c). The

former contraction is shown in 2.12(i), as a result, tensor t1 is created. There is only one

possibility of contraction involving tensor t1 that scales as m8 – the one with uτ+1. Fig.

2.12(ii) illustrates this process. This time, tensor t2 is created. The cost of contracting
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Figure 2.12: Optimal way of performing contraction presented in Fig. 2.11(c). The
ontraction is split into ten steps (i) – (x), the cost of three of them scales as m9. In-
termediate results are stored in tensors {ti}9i=1. Part of the structure painted black is
contracted during previous steps. Highlighted wires designate contractions being made in
a given step. The cost of contraction as well as memory used by the resulting tensor are
shown in each step. Further optimization of this procedure is discussed in the text. For
shorter description, here, the central dot · denotes tensor contraction.

t2 with any other part of the remaining structure scales at least as m9 with only one

exception: contraction of t2 with a previously created pair consisting of wτ+1 and w†
τ+1

scales as m8. Note, however, that such a contraction does not provide a solution, because

after this process, we are still left with a tensor with six wires as before. This shows that

during the contraction of the structure in Fig. 2.11(c), there has to be at least one step

that scales as m9.

As mentioned before, Fig. 2.12 provides a simple example of an efficient method of

contracting a large tensor structure. The calculation within this procedure scale with the

lowest possible power of m, still, some further optimizations are feasible. The procedure
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involves three steps that scale as m9. This can be reduced to two steps by means of the

following method. Tensors uτ+1 and wτ+1 that are used in steps (iii) and (iv) can be

contracted earlier, as a side calculation: uτ+1 · wτ+1 = z1 with cost m6. Supplementary

tensor z1 is now used to skip step (iii) in Fig. 2.12 by means of contraction: t2 · z1 = t4.

This method not only reduces the number of steps that scale as m9, but moreover, it

decreases the amount of memory required to perform calculations from m8 to m7.

By analogy, we can revise steps (v) and (vi) by introducing tensor z2: u
†
τ+1 ·w†

τ+1 = z2,

calculated with cost m6. This is how it is possible to omit the construction of tensor t5

by the use of t4 · z2 = t6 with cost m9. As a consequence, one step which scales as m8 is

replaced with another one – m6.

Further optimizations (which are yet less significant) are achieved by a partial con-

traction of isometries. Due to this, steps (vii) and (ix) can be skipped.

A special case of the raising operator concerns Hamiltonians defined on L. Since the

thickness of causal cone of the studied MERA scheme is 3, it is natural to restrict our

analysis to Hamiltonians that describe interactions between nearest neighbors and next

nearest neighbors:

H =
∑

si∈L

h[sisi+1si+2] . (2.44)

Each term in the above sum undergoes renormalization in structurally the same way

as shown in Fig. 2.11(c). Note that renormalized three-body Hamiltonian h
[s′is

′
i+1

s′i+2
]

1 is a

sum of two contributions. Thus, Hamiltonian H1 on coarse-grained lattice L1 reads:

H1 =
∑

s′i∈L1

h
[s′is

′
i+1

s′i+2
]

1 , (2.45)

where for all sites si ∈ L:

h
[s′is

′
i+1

s′i+2
]

1 = R1h
[sisi+1si+2] + R1h

[si+1si+2si+3] . (2.46)

Fig. 2.13 illustrates the situation referred to above.

Figure 2.13: Procedure of raising a physical Hamiltonian. Coarse-grained Hamiltonian

h
[s′is

′
i+1

s′i+2
]

1 comprises two contributions which have the same structure of contraction.

Despite the fact that the two contributions in Fig. 2.13 are in general different, the

structures of their contraction remain the same. From this observation, it follows that it is
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useless to develop two separate procedures in order to calculate h
[s′is

′
i+1

s′i+2
]

1 . It is sufficient

to apply contraction in Fig. 2.12 two times: each time with a different set of component

tensors. Assuming that MERA is translationally invariant, we use the following algorithm:

(i) Apply Fig. 2.12 to calculate R1o using component tensors u1, w1 and o = h[sisi+1si+2].

(ii) Apply Fig. 2.12 to calculate R1õ using component tensors ũ1, w̃1 and õ given by:

(ũ1)
i1i2
j1j2

= (u1)
i2i1
j2j1

, (2.47)

(w̃1)
i1
j1j2

= (w1)
i1
j2j1

, (2.48)

õ i1i2i3
j1j2j3

=
(
h[si+1si+2si+3]

)i3i2i1

j3j2j1
. (2.49)

(iii) Use R1o and R1õ to calculate h
[s′is

′
i+1

s′i+2
]

1 :

(
h

[s′is
′
i+1

s′i+2
]

1

)i1i2i3

j1j2j3
= (R1o)

i1i2i3
j1j2j3

+ (R1õ)
i3i2i1
j3j2j1

. (2.50)

The above algorithm can be easily generalized to MERA without translational invariance.

For that purpose, we change Eqs. (2.47) and (2.48) in such a way that all disentanglers

ũ1 and isometries w̃1 have to be assigned with proper u1 and w1, respectively, according

to the rotation (left ↔ right) of the tensor structure.

As a consequence, we note that in the case that MERA, apart from translational

invariance, has additional symmetry:

(u1)
i1i2
j1j2

= (u1)
i2i1
j2j1

, (2.51)

(w1)
i1
j1j2

= (w1)
i1
j2j1

(2.52)

and at the same time the physical Hamiltonian is also translationally invariant and sym-

metric: (
h[sisi+1si+2]

)i1i2i3

j1j2j3
=
(
h[sisi+1si+2]

)i3i2i1

j3j2j1
(2.53)

then, the procedure of raising the Hamiltonian given by Eq. (2.46) simplifies to:

h
[s′is

′
i+1

s′i+2
]

1 = 2 R1h
[sisi+1si+2] . (2.54)

The lowering operation is defined analogically to the raising one. In this approach, the

MERA scheme is read from top to bottom. Having the reduced density matrix for three

consecutive sites in Lτ , we can calculate the reduced density matrix for corresponding

sites of Lτ−1. Note, however, that this operation is ambiguous, i.e. two reduced density

matrices: ρ
[sisi+1si+2]
τ and ρ

[si+1si+2si+3]
τ can be constructed from ρ

[s′is
′
i+1

s′i+2
]

τ+1 as presented in

Fig. 2.14.

Because of this ambiguity, we define two operations of lowering: L
L
τ+1 and L

R
τ+1 for

contractions shown in Fig. 2.14(a) and Fig. 2.14(b), respectively:

ρ[sisi+1si+2]
τ = L

L
τ+1 ρ

[s′is
′
i+1

s′i+2
]

τ+1 , (2.55)

ρ[si+1si+2si+3]
τ = L

R
τ+1 ρ

[s′is
′
i+1

s′i+2
]

τ+1 . (2.56)
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Figure 2.14: Lowering operation. Two (different in general) three-body reduced density

matrices are created from ρ
[s′is

′
i+1

s′i+2
]

τ+1 : (a) using L
L
τ+1: ρ

[sisi+1si+2]
τ and (b) using L

R
τ+1:

ρ
[si+1si+2si+3]
τ . To make the figures more transparent, reduced density matrix ρ

[s′is
′
i+1

s′i+2
]

τ+1 is
splitted to upper and lower “half” (u.h. and l.h. respectively).

Since tensor structures illustrated in Fig. 2.14(a) and Fig. 2.11(c) share certain

similarities, it is not necessary to seek an optimal way of contracting tensors in Fig. 2.14(a)

in order to calculate ρ
[sisi+1si+2]
τ . It suffices to follow the previously developed optimal

contraction method shown in Fig. 2.12 in the reversed order. Hence, the computation of

ρ
[sisi+1si+2]
τ takes place in ten steps presented below. Tensors {ri}9i=1 stores intermediary

results, central dot · denotes a tensor contraction as in Fig. 2.12.

(i) ρ
[s′is

′
i+1

s′i+2
]

τ+1 · w†
τ+1 = r1 , (ii) r1 · wτ+1 = r2 ,

(iii) r2 · w†
τ+1 = r3 , (iv) r3 · wτ+1 = r4 , (v) r4 · w†

τ+1 = r5 ,

(vi) r5 · u†τ+1 = r6 , (vii) r6 · wτ+1 = r7 , (viii) r7 · uτ+1 = r8 ,

(ix) r8 · u†τ+1 = r9 , (x) r9 · uτ+1 = ρ
[sisi+1si+2]
τ .

(2.57)

As with the raising operation, the procedure which leads to calculating ρ
[sisi+1si+2]
τ in

Fig. 2.14(a) can be implemented to compute ρ
[si+1si+2si+3]
τ in Fig. 2.14(b) by appropriate

tensor substitutions, similar to those in Eqs. (2.47) – (2.49). In the presence of additional

symmetries of MERA Eqs. (2.51) and (2.52), two reduced density matrices ρ
[sisi+1si+2]
τ

and ρ
[si+1si+2si+3]
τ are equal.

While working with translationally invariant systems, it is expected to remain transla-

tional symmetry also in coarse-grained lattices. Note hovewer that even for translationally

invariant MERA, reduced density matrices given by Eqs. (2.55) and (2.56) do not have

to be the same in general. Because of this, in translationally invariant systems we impose

this symmetry by taking an average over different reduced density matrices.
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2.5 MERA update: Obtaining the ground state

As seen in Sections 2.4.1 and 2.4.2, since the causal cone of the studied MERA scheme is

3, it is natural in this approach to examine ground state properties of Hamiltonians that

describe interactions between nearest neigbors and next nearest neighbors on a lattice of

size N with periodic boundary conditions:

H =
∑

si∈L

h[sisi+1si+2] . (2.58)

The lattice size is given by N = 2K+1, where K stands for the number of different layers

of disentanglers and isometries.

Assume for a while that all tensors in MERA are specified. Then, the energy of state

|ψ〉 which is defined by MERA reads:

E =
∑

si∈L

Tr
(
h[sisi+1si+2] ρ[sisi+1si+2]

)
, (2.59)

where ρ[sisi+1si+2] ≡ ρ
[sisi+1si+2]
0 is the reduced density matrix for three subsequent spins

on physical lattice L. All N reduced density matrices ρ can be calculated by means of

multiple action of lowering operations L
L and L

R starting from the top tensor which

defines two density matrices:

(
ρ

[s′
1
s′
2
]

K

)i1i2

j1j2
= ti1i2 (tj1j2)

∗ ,
(
ρ

[s′
2
s′
1
]

K

)i1i2

j1j2
= ti2i1 (tj2j1)

∗ . (2.60)

Th aim of one of the approaches to calculating {ρ[sisi+1si+2]}Ni=1 (and hence, total energy

E) is to compute each reduced density matrix separately. To achieve this, for given three

consecutive spins [sisi+1si+2], we draw their causal cone and, by reading it from top to

bottom, we decide on whether to use L
L
τ or L

R
τ in order to transform ρτ to ρτ−1 in a given

layer. For some sites [sisi+1si+2] of L, this technique leads to the following formula for

reduced density matrix ρ:

ρ[sisi+1si+2] = L
L
1 L

L
2 · · ·LR

K−1L
L
K ρ

[s′1s′2]
K . (2.61)

In Section 2.4.2, we have verified that the cost of lowering operation L scales as m9,

what follows, is that the cost of performing the above calculations scales as m9K, i.e.

as m9 logN . In order to determine the energy of the state, we need to add up N such

contributions. Then the total cost of computing the energy scales as m9N logN .

By choosing another method of computing {ρ[sisi+1si+2]}Ni=1, it is possible to reduce the

cost of evaluating the total energy to O(m9N). To this end, we calculate all reduced

density matrices in all layers, layer by layer, starting from two density matrices defined

by top tensor: {ρα
K}2α=1. This method leads to a sequence of reduced density matrices on

different coarse-grained lattices:

{ρα
K}2α=1

2×{LL
K ,LR

K}−−−−−−−→
{
ρα

K−1

}4

α=1

4×{LL
K−1

,LR
K−1

}
−−−−−−−−−−→

{
ρα

K−2

}8

α=1
· · ·

· · · 2K−1×{LL
2 ,LR

2 }−−−−−−−−−→ {ρα
1}2

K

α=1

2K×{LL
1 ,LR

1 }−−−−−−−→ {ρα
0}Nα=1 .

(2.62)
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The total number of lowering operations amounts to:

K+1∑

n=2

2n = 2N − 4 . (2.63)

The cost of calculating the energy of state given by MERA in this approach scales thus

as m9N . In the case of translationally invariant MERA, all the reduced density matrices

on given lattice Lτ are the same. That is, only two lowering operations are crucial to

transform ρτ into ρτ−1. In this situation, the cost of computing energy scales as m9 logN .

There are basically two approaches to updating MERA in order to obtain the ground

state of a given Hamiltonian, both of which are used in this Dissertation to examine the

properties of two-dimensional systems.

The first one involves parametrization of every tensor of MERA. This process has to

be carried out so as to preserve all the conditions that are met by tensors in MERA.

Additionally, having some knowledge of symmetries that must be obeyed by the ground

state under investigation, one may incorporate them into MERA tensors. This makes it

possible to lower the total number of parameters that span the whole tensor structure.

The application of this technique is detailed in Chapter 3.

As a result of the parametrization, the energy of the state in Eq. (2.59) is a function

of some number of variational parameters: E = E(q1, . . . , qM). In order to obtain the

ground state, it is sufficient to minimize the function by applying standard minimization

procedures.

This method is set out in more detail in Chapter 3 where the ground state of a two-

dimensional quantum Ising model on 4× 4 and 8× 8 square lattices is determined.

Figure 2.15: Future causal cone of u2,4. Hamilto-
nians h[s6s7s8] and h[s26s27s28] lie outside the cone,
whereas h[s11s12s13] and h[s16s17s18] intersect with
it. Subset A of lattice L is given by A =
{s11, s12, . . . , s18}.

The second approach is based on

the idea of optimizing the whole ten-

sor which results in minimizing the to-

tal energy at each step. That is, the

parametrization of the tensor network

is not required. For the sake of con-

creteness, let us focus on optimizing

disentangler u2,4, while the rest of ten-

sors are fixed. It is straightforward to

generalize this method to other disen-

tanglers and isometries.

At the beginning, we extract

the maximal number of terms that

does not depend on u2,4 from the

sum in Eq. (2.59). These

terms lie outside the future causal

cone of u2,4, as shown in Fig.

2.15. To achieve this, let A denote a part of lattice L that is given by:

A = {si ∈ L | h[sisi+1si+2] intersects with the future causal cone of u2,4}. We can thus
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write:

E =
∑

si∈A

Tr
(
h[sisi+1si+2] ρ[sisi+1si+2]

)
+
∑

si∈L\A

Tr
(
h[sisi+1si+2] ρ[sisi+1si+2]

)

= EA + EL\A . (2.64)

Figure 2.16: Two contributions to the energy given by Eq. (2.64). (a) EA – contribution
to the energy that comes from Hamiltonians h[sisi+1si+2] which intersects with the future
causal cone of u2,4. (b) EL\A – contribution to the energy that comes from Hamiltonians
h[sisi+1si+2] which lie outside the cone. Only EA contribution depends on u2,4 since in an

expression for EL\A, tensors u2,4 and u†2,4 are eliminated.

Only the first part (EA) of Eq. (2.64) depends on u2,4 and thus, EL\A is an irrelevant

constant from the minimization procedure point of view. Fig. 2.16 illustrates this situa-

tion. In order to minimize EA we construct the so-called environment of tensor u2,4. The

environment of u2,4 constitutes, by definition, a network of tensors that is constructed in

order to obtain EA with eliminated tensor u2,4. What follows from this definition is that

environment Eu2,4
contracted with u2,4 gives energy EA:

EA = Tr(Eu2,4
u2,4) . (2.65)

Notice that environment Eu2,4
actually depends on u2,4 as one of the tensors that comprises

the environment is u†2,4. Still, if we treat u2,4 and u†2,4 as independent tensors, the optimal

choice of u2,4 that minimizes EA in Eq. (2.65) is given by:

u2,4 = − V U † , (2.66)

where U and V are unitary matrices that are obtained by means of singular value decom-

position of environment Eu2,4
:

Eu2,4
= UDV † . (2.67)
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To calculate Eu2,4
, we proceed as follows. First of all, note that a part of the tensor

structure presented in Fig. 2.16(a) can be contracted by means of raising and low-

ering operations. To do so, we apply raising operation R1 to eight physical Hamil-

tonians {h[sisi+1si+2]}18i=11 by transforming them into four coarse-grained Hamiltonians

{h[s′is
′
i+1

s′i+2
]

1 }8i=5. The next step involves multiple application of lowering operations L
L
τ

and L
R
τ applied with a view to computing two reduced density matrices {ρ[s′′i s′′i+1

s′′i+2
]

2 }4i=3.

Having completed these two steps, environment Eu2,4
becomes a sum of four contributions

shown in Fig. 2.17.

Figure 2.17: Environment of disentangler u2,4 defined by Eq. (2.65). Eu2,4
consists of four

independent contributions: Eu2,4
=
∑4

i=1 E
(i)
u2,4. Each of them can be calculated by reusing

the parts of raising and lowering procedures.

It is worth mentioning that also this time, it is not necessary to search for an optimal

method of contracting any of these four contributions. The best strategy (that scales as

m9) is achieved by following some selected steps from the procedure of raising depicted in

Fig. 2.12 and from the lowering one presented in the set of Eqs. (2.57). To illustrate so,

let us calculate E (1)
u2,4 , i.e. the first contribution to Eu2,4

shown in Fig. 2.17. We identify

a particular step of raising procedure h
[s′

5
s′
6
s′
7
]

1 where disentangler u2,4 is used. In Fig.

2.12, this is step (iii). This provides us with information that steps (i) and (ii) from the

procedure of raising can be reused in order to determine E (1)
u2,4 . The same is applicable

to the procedure of lowering (LL
2 ) ρ

[s′′3s′′4s′′5 ]
2 . It follows from Eqs. (2.57) that disentangler

u2,4 is present in step (viii), i.e. steps (i) – (vii) can be used in the current calculation.

Once these steps are performed, it is enough to contract two intermediary tensors: t2 from
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Fig. 2.12 and r7 from Eqs. (2.57), as presented in Fig. 2.18.

Figure 2.18: Calculating E (1)
u2,4 . (a) Parts of the raising procedure (tensor t2) and (b)

lowering procedure (tensor r7) are used. Cost of contraction presented in (c) scales as m9.

In parallel, E (3)
u2,4 is calculated by joining parts of the procedures of raising h

[s′
7
s′
8
s′
9
]

1 and

lowering (by L
L
2 ) reduced density matrix ρ

[s′′4s′′5s′′6 ]
2 . However, here, the above technique

is degenerate because u2,4 appears already in the first step of raising h
[s′7s′8s′9]
1 (see Fig.

2.12), and in the last step of lowering ρ
[s′′4s′′5s′′6 ]
2 . In those circumstances, E (3)

u2,4 is obtained

as contraction of h
[s′

7
s′
8
s′
9
]

1 with intermediary tensor r9 from Eqs. (2.57). Contributions

E (2)
u2,4 and E (4)

u2,4 are computed analogously using modified raising and lowering operations

by means of an indices exchange given by Eqs. (2.47) - (2.49).

The calculation of environments of isometries is like the above described referring to

disentanglers. The future causal cones of isometries are thicker as compared to those of

disentanglers and, hence, there are more contributions to environments. It is uncompli-

cated to check that there are exactly six different contributions to the environment of

isometries in the MERA scheme studied in this chapter. The environment of the top

tensor is structurally different because there are no reduced density matrices to be taken

into account. This fact simplifies calculations since in order to calculate Et, it suffices to

contract the renormalized Hamiltonian on coarse-grained lattice LK with tensor t†.

The method of optimizing MERA based on the idea of computing environments of

tensors leads us to the following algorithm for obtaining the ground state. Steps (i) –

(vii) are iterated up to the convergence of the total energy of a state.

(i) Calculate all reduced density matrices on coarse-grained lattices LK ,LK−1, . . . ,L1

using the optimal technique proposed at the beginning of the present section (by

means of sequence in Eq. (2.62)).

(ii) Compute environment Eu1,1
of disentangler u1,1 by means of physical Hamiltonians

{h[sisi+1si+2]}Ni=1 and previously calculated {ρ[s′is
′
i+1

s′i+2
]

1 }N/2
i=1 .

(iii) Perform singular value decomposition of Eu1,1
:

Eu1,1
= UDV † (2.68)
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and update disentangler u1,1 with its new version:

u1,1 = − V U † . (2.69)

(iv) Repeat steps (ii) and (iii) for all disentanglers and isometries in the first layer.

(v) Raise all Hamiltonians {h[sisi+1si+2]
0 }Ni=1 to coarse-grained lattice L1 using the newest

version of u1 and w1.

(vi) Repeat steps (ii) – (v) for all layers of tensors up to the top tensor.

(vii) Update the top tensor.

The second approach is used in Chapter 4 in order to study a quantum phase transition

between the Ising-like ground state and anisotropic one of the generalized compass model

in two spatial dimensions. Generalization to infinite systems is presented there, as well.
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Chapter 3

MERA in two dimensions: Quantum

Ising model

3.1 Symmetric two-dimensional MERA

Chapter 2 discusses the properties of one-dimensional MERA. In Ref. [34], this algorithm

is generalized further to two-dimensions, and in Ref. [11], it is put in a more general

unifying framework. In this chapter, we propose an alternative two-dimensional Ansatz

presented in Fig. 3.1. Part (a) of this figure depicts a three-dimensional view of the

structure of the proposed tensor network for a 4 × 4 lattice with a periodic boundary

condition. Consecutive intersections of this tensor network are shown in Fig. 3.1(b).

This figure explains how the original lattice is coarse-grained in a general case of an

arbitrary size of the system.

Figure 3.1: (a) Symmetric two-dimensional MERA on a periodic 4× 4 lattice. Isometries
w replace 4-spin square plaquettes with one effective block spin in just one decimation
step.

33



In this symmetric Ansatz, 2 × 2 square plaquettes shown in Fig. 3.1(b) are replaced

with effective block spins in each decimation step. The symmetric Ansatz is disentangling

in a systematic way all those pairs of nearest neighbor spins which belong to different

2× 2-spin decimation blocks, see Fig. 3.2, where the spins on a two-dimensional square

lattice are grouped into blue and red plaquettes.

Figure 3.2: Symmetric decimation in two di-
mensions: each blue 4-spin square plaquette
is replaced with a block spin whose Hilbert
space is truncated to its m most important
states. Yet, before this decimation, a unitary
4-spin disentangler is applied to each red pla-
quette. The disentanglers remove unwanted
entanglement between all those (red) near-
est neighbor pairs of spins which belong to
different (blue) decimation blocks.

We propose that, in each decimation

step, each blue plaquette is replaced with

an effective block spin whose Hilbert space

is truncated to its m most important

states. Still, before each decimation, the

blue plaquettes are partly disentangled by

4-spin unitary disentanglers acting on the

red plaquettes. They remove entanglement

between all those pairs of nearest neighbor

spins which belong to different blue deci-

mation blocks.

Indeed, note that in Fig. 3.2, all links

joining such pairs of spins are painted red.

These red links are naturally grouped into

red plaquettes and the proposed 4-spin dis-

entanglers remove all the unwanted “red”

nearest neighbor entanglement before the

next decimation.

The red plaquettes need crucially be

disjoint because due to this, all the un-

wanted “red” entanglement can be re-

moved by the small 4-spin disentanglers

acting on individual red plaquettes. Other

decimation schemes either do not remove

all the unwanted nearest neighbor entanglement between different decimation blocks or

they require disentanglers acting on more than 4 spins.

The symmetric variant of the renormalization group motivates MERA shown in Fig.

3.1 in the case of a 4 × 4 periodic lattice. This graph represents the following quantum

state:
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ti11i12i21i22 ×

wi11
j44j41j14j11

wi12
j42j43j12j13

wi21
j24j21j34j31

wi22
j22j23j32j33

×

uj11j12j21j22
k11k12k21k22

uj13j14j23j24
k13k14k23k24

uj31j32j41j42
k31k32k41k42

uj33j34j43j44
k33k34k43k44

×

∣∣∣∣∣∣∣∣

k11 k12 k13 k14

k21 k22 k23 k24

k31 k32 k33 k34

k41 k42 k43 k44

〉
. (3.1)

Here the double subscript indices numerate rows and columns of the lattice and the

repeated indices imply summation. A generalization to greater 2n×2n lattices is obtained

by adding (n− 2) layers of isometries and disentanglers.

3.2 Two-dimensional quantum Ising model

In this section, we use MERA to find the ground state of the spin-1
2

transverse quantum

Ising model

H = − g
∑

i

σx
i −

∑

〈i,j〉

σz
i σ

z
j (3.2)

on 2×2, 4×4 and 8×8 periodic square lattices. Here, σx and σz are Pauli matrices. Tensors

t and all layers of different wτ and uτ are optimized to minimize total energy. Provided

that the minimization preserves all constraints on t, wτ , uτ (normalization, orthonormality

and unitarity, respectively), there is no need to obtain vectors (wτ )
i as leading eigenstates

of reduced density matrices and to construct tensors uτ as disentanglers that minimize the

entropy of those matrices. Tensors wτ and uτ that minimize the energy are at the same

time good candidates for the leading eigenstates and optimal disentanglers, respectively.

In most calculations, we use m = 2 in all tensors i.e. the minimal non-trivial value

of the truncation parameter, except for the 8× 8 lattice where it is necessary to increase

the parameter to m = 3, but only in top tensor t near the critical g = 3.04. For any g,

the initial state for the minimization is the Schrödinger cat state |↑↑↑ . . . ↑〉+ |↓↓↓ . . . ↓〉
which is the ground state when g → 0. This state translates into trivial disentanglers

uτ = I, top t having only two non-zero elements t0000 = t1111 = 1/
√

2, and all wτ ’s being

non-zero only when (wτ )
0
0000 = (wτ )

1
1111 = 1.

As we seek the ground state, we assume that all tensors t, wτ , uτ are real. Tensor

t and each vector (wτ )
i are quantum states on a 2 × 2 square plaquette. We assume

that t is symmetric under all exchanges of lower indices that correspond to symmetry

transformations of the 2 × 2 plaquette. Since each vector (wτ)
i is an eigenstate of the

reduced density matrix, it must be either symmetric or anti-symmetric under each of

these symmetry transformations. In all considered cases, we find that the lowest energy

is obtained when all vectors (wτ )
i are assumed symmetric under all transformations. In
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this symmetric subspace, it is convenient to parametrize the tensors as (here m = 2)

tijkl ≃
6∑

α=1

tα v
α
ijkl ,

(wτ )
n
ijkl ≃

6∑

α=1

(wτ )
n
α v

α
ijkl ,

u = exp

(
i

21∑

α=1

qαAα

)
, (3.3)

where ≃ means equality up to normalization. Here vα
ijkl =

〈
i j
k l
|vα
〉
, where the states

∣∣v1
〉

=
∣∣0 0
0 0

〉
,

∣∣v2
〉

=
∣∣1 1
1 1

〉
,

∣∣v3
〉

=
1

2

(∣∣1 0
0 0

〉
+
∣∣ 0 1
0 0

〉
+
∣∣0 0
1 0

〉
+
∣∣0 0
0 1

〉)
,

∣∣v4
〉

=
1√
2

(∣∣1 0
0 1

〉
+
∣∣ 0 1
1 0

〉)
,

∣∣v5
〉

=
1

2

(∣∣1 1
0 0

〉
+
∣∣ 0 0
1 1

〉
+
∣∣1 0
1 0

〉
+
∣∣0 1
0 1

〉)
,

∣∣v6
〉

=
1

2

(∣∣0 1
1 1

〉
+
∣∣ 1 0
1 1

〉
+
∣∣1 1
0 1

〉
+
∣∣1 1
1 0

〉)
(3.4)

are a basis of symmetric states on the 2 × 2 plaquette. Thus, if m = 2, there are 6

symmetric states while for m = 3, there are 21 such states. Aα’s are imaginary 4-spin

hermitian operators invariant under the symmetries of the 2× 2 plaquette:

A1 ≃
[
σy I

I I

]
+

[
I σy

I I

]
+

[
I I

σy I

]
+

[
I I

I σy

]
,

A2 ≃
[
σy σx

I I

]
+

[
σx σy

I I

]
+

[
I I

σy σx

]
+

[
I I

σx σy

]
+

[
σy I

σx I

]
+

[
σx I

σy I

]
+

[
I σy

I σx

]
+

[
I σx

I σy

]
,

A3 ≃
[
σz I

I σy

]
+

[
σy I

I σz

]
+

[
I σz

σy I

]
+

[
I σy

σz I

]
,

...

A21 ≃
[

I σy

σy σy

]
+

[
σy I

σy σy

]
+

[
σy σy

I σy

]
+

[
σy σy

σy I

]
, (3.5)

where we use the following operator notation.

For a, b, c, d : V→ V and |i〉 , |j〉 , |k〉 , |l〉 ∈ V, we define:

[
a b
c d

]
: V

⊗4 → V
⊗4,

[
a b
c d

] ∣∣∣∣
i j
k l

〉
=

∣∣∣∣
i′ j′

k′ l′

〉
, (3.6)

where |i′〉 = a |i〉, |j′〉 = b |j〉, |k′〉 = c |k〉 and |l′〉 = d |l〉.
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Figure 3.3: In (a), we compare transversal magnetization 〈σx〉 on the 4×4 lattice obtained
from MERA with exact diagonalization. In (b) and (c), transversal magnetization and
nearest neighbor ferromagnetic correlator obtained from MERA are shown for different
lattice sizes. In (d), we compare transversal magnetization on the 8×8 lattice when m = 2
in all tensors and when it increases tom = 3 in the top tensor with the perturbative results
from Ref. [29].

Each Aα is a symmetrized sum of tensor products of Pauli matrices with each term in

the sum including an odd number of σy’s. They are normalized so that Tr
[
A†

αAβ

]
= δαβ .

The minimized energy is a sum of all bond energies

Ei,j = −1

4
g
(
〈σx

i 〉+ 〈σx
j 〉
)
− 〈σz

i σ
z
j 〉 . (3.7)

However, thanks to the assumed symmetry of the tensors, only some of them need to be

calculated. For example, on the 4× 4 lattice in Fig. 3.2, only two bond energies: E11,12

and E12,13 need to be evaluated. By symmetry, all other bond energies equal either E11,12

or E12,13, and the total energy is 〈H〉 = 16E11,12 + 16E12,13. Similarly, the 8 × 8 square

lattice has 6 and, in general, an N × N square lattice has N2

16
+ N

4
independent bond

energies. The total number of bonds is 2N2 so, for large N , we save a factor of 32 simply

by using the assumed tensor symmetries. Thus, for large N , the cost of calculating energy

is proportional to the lattice size times the cost of calculating any bond energy Ei,j which

is polynomial in m. Here the proof follows similar lines as in Sections 2.4.2 and 2.5 . The

indices are contracted along causal cones whose horizontal cross-section is 3×3 (or 4×4)
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spins when cut above (or below) a layer of isometries w. To avoid the intermediate 4× 4

stage, we do not apply all isometries first and then all disentanglers, but we apply some

isometries earlier than others, gradually including disentanglers, i.e. we pass through a

series of intermediate non-horizontal cross-sections never exceeding 11 spins.

The energy is minimized with respect to the variational parameters {tα, (wτ)
n
α, (qτ )α}

in Eq. (3.3) using different standard minimization routines. However, the best perfor-

mance is achieved with the simplest steepest descent method with gradients of the energy

estimated from finite differences. Total number of variational parameters is as follows: for

4×4 lattice with m = 2, there are 39 parameters and in the case of 8×8 lattice with m = 2

and m = 3 (in top) – 72 and 93 parameters, respectively. Our calculations demonstrate

that the energy of MERA can be minimized in a fairly straightforward manner.

In figure 3.3, we summarize our results for 2×2, 4×4 and 8×8 periodic square lattices.

Panels (a) and (d) are of special interest since we compare transversal magnetization

obtained from MERA with exact results on the 4 × 4 lattice and perturbative results

on the 8 × 8 lattice. On the 4 × 4 lattice, m = 2 is accurate enough, but on the 8 × 8

lattice, m in the top tensor has to be increased to m = 3. This is essential because with

an increasing lattice size, the Ising model develops a critical point at g = 3.04 – this

tendency can be observed in panels (b) and (c).

To conclude, in this Chapter we proposed and tested a symmetric version of MERA

in 2D. Using the smallest non-trivial truncation parameter m = 2 in most tensors and

fairly straightforward optimization methods we obtained surprisingly accurate numerical

results for the ground state of the 2D quantum Ising model.
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Chapter 4

Infinite MERA: Spontaneous

symmetry breaking in a generalized

orbital compass model

In this chapter, we introduce a generalized two-dimensional orbital compass model which

interpolates continuously from the classical Ising model to the orbital compass model with

frustrated quantum interactions, and investigate it using the infinite MERA algorithm.

The orbital compass model (OCM) is physically motivated by the orbital interactions

which arise for strongly correlated electrons in transition metal oxides with partly filled

degenerate 3d orbitals and lead to rich and still poorly understood quantum models.

Although conceptually quite simple, the OCM has an interdisciplinary character as it

plays an important role in a variety of contexts beyond the correlated transition metal

oxides, such as: (i) the implementation of protected qubits for quantum computations

in Josephson lattice arrays [13, 26], (ii) topological quantum order [27], or (iii) polar

molecules in optical lattices and systems of trapped ions [23]. Numerical studies [12, 35]

suggest that when anisotropic interactions are varied through the isotropic point of the

2D OCM, the ground state is not an orbital liquid type but, instead, a first order quantum

phase transition (QPT) occurs between two different types of Ising-type order dictated

by one or the other interaction. Recently, the existence of this transition, similar to the

one which occurs in the exact solution of the one-dimensional OCM [2, 14], has been

confirmed using the projected entangled-pair state algorithm [28]. This implies that the

symmetry is spontaneously broken at the compass point and the spin order follows one

of the two equivalent frustrated interactions.

Having the knowledge that the ground states of the 2D Ising model and the 2D OCM

are quite different, we introduce a generalized OCM which interpolates between these

two limiting cases. This model allows us to investigate: (i) the physical consequences of

gradually increasing frustration in a 2D system, (ii) where a QPT occurs from the Ising

ground state to the degenerate ground state of the OCM, and, finally, (iii) the order and

the physical mechanism of this QPT. As increasing frustration of the orbital interactions

introduces entangled states, the present problem provides a unique opportunity to use

the infinite MERA algorithm in order to find reliable answers to the above questions. As
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explained below, the QPT in the generalized OCM occurs only surprisingly close to the

maximally frustrated interactions in the OCM. We also explain the physical origin of this

behavior using an analytic approach based on the spin-wave theory. These calculations

are included in Appendix A.

4.1 Generalized compass model

In this section, we examine the nature and position of the QPT when the OCM point is

approached in a different way than the one studied before [12, 35, 28], namely, when frus-

tration of interactions along two nonequivalent directions gradually increases. Therefore,

we introduce a 2D generalized OCM with ferro-like interactions on a square lattice in ab

plane (we assume the exchange constant J = 1),

H(θ) = −
∑

ij∈ab

{
σa

ij(θ)σ
a
i+1,j(θ) + σb

ij(θ)σ
b
i,j+1(θ)

}
. (4.1)

The interactions occur between nearest neighbors and are balanced along both lattice

directions a and b. Here {ij} labels lattice sites, with i (j) increasing along a (b) axes,

and {σa
ij(θ), σ

b
ij(θ)} are linear combinations of Pauli matrices describing interactions for

S = 1/2 spins:

σa
ij(θ) = cos(θ/2) σx

ij + sin(θ/2) σz
ij , (4.2)

σb
ij(θ) = cos(θ/2) σx

ij − sin(θ/2) σz
ij . (4.3)

The interactions in Eq. (4.1) include the classical Ising model at θ = 0◦ for σx
ij

operators and become gradually more frustrated with increasing angle θ ∈ (0◦, 90◦] – they

interpolate between the Ising model (at θ = 0◦) and the isotropic OCM (at θ = 90◦),

see Fig. 4.1. The latter case is equivalent to the 2D OCM with standard interactions

σz
ijσ

z
i,j+1 and σx

ijσ
x
i+1,j along the a and b directions [22, 21, 25, 24, 13, 26, 12, 35] by a

straightforward unitary transformation. The model (4.1) also includes as a special case,

the 2D orbital model for eg electrons at θ = 60◦ describing, for instance, the orbital part

of the superexchange interactions in the ferromagnetic planes of LaMnO3 [18].

Since the isotropic model has the same interaction strength, for the bonds along both

a and b axis, it is symmetric under transformation a ↔ b, and the issue of the QPT

between different ground states of the anisotropic compass model [28] does not arise. On

one hand, this symmetry is obeyed by the classical Ising ground state, while on the other

hand, in the ground state of the OCM, this symmetry is spontaneously broken (and the

ground state is degenerate). Thus, an intriguing question concerning the ground state

of the model (4.1) arises whether it has the same high symmetry as the Ising model in

a broad range of θ, or the symmetry is soon spontaneously broken when θ increases, i.e.

there are degenerate ground states with lower symmetries, also for the eg orbital model,

see Fig. 4.1(b). This question is addressed by investigating the energy contributions along

two equivalent lattice directions a and b by applying the infinite MERA algorithm.
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Figure 4.1: Artist’s view of the evolution of orbital interactions in the generalized OCM
Eq. (4.1) with increasing angle θ. Blue lines indicate favored spin direction induced by
interactions along two nonequivalent lattice axes a and b. Different panels show: (a) the
Ising model at θ = 0◦, (b) the 2D eg orbital model at θ = 60◦, and (c) the OCM at
θ = 90◦. Spin order follows the interactions in the Ising limit, while it follows one of the
equivalent interactions, σa or σb, in the OCM. It results in the symmetry breaking QPT
which occurs between (b) and (c), as we show in Section 4.4 and Appendix A.

4.2 Infinite MERA

In order to obtain the ground state, we use a translationally invariant MERA on an

infinite lattice [16]. Since every layer represents a coarse-graining renormalization group

transformation, depicted in Fig. 4.2 (a) and (b), we assume that after a finite number of

such transformations a fixed point of the renormalization group is reached (either trivial or

non-trivial) and from that time on, the following transformations are the same. In other

words, at the bottom of the tensor network, there is a finite number of non-universal

layers whose tensors are different in general, but above certain level, all layers are the

same. The bottom layers describe non-universal short range correlations and the universal

layers above this level, describe universal properties of the fixed point. Number N of the

non-universal bottom layers is one of the parameters of the infinite-lattice MERA. We

have verified that it is sufficient to keep up to three non-universal layers, depending on

how close the critical point is.

Starting with randomly selected tensors, the structure is optimized layer by layer, from

the top to bottom and backwards. In given layer τ , we calculate an environment of each

tensor type by means of renormalized Hamiltonians hτ and density matrices ρτ computed

from other layers, as explained in Section 2.4.2. The environments are aimed at updating

tensors to minimize the total energy. In the universal layer, this updating technique is

slightly different, notably, h∞ and ρ∞ are fixed points of the renormalization procedure

defined by tensors in this layer. The above steps are iterated until the convergence of

energy is achieved. For given θ, we obtain the ground state for different values of dimension

m. It turns out that in most cases it suffices to work with m = 3, which is the same in

each layer. However, it is vital to increase m to 4 in the neighborhood of the critical

point. The number of operations and the required memory scale as O(m16) and O(m12),

respectively. The inset in Fig. 4.4(a), Section 4.4, presents the convergence of the energy

of the ground state with an increasing bond dimension. Here we also present a comparison
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Figure 4.2: MERA schemes applied to the OCM. (a) 9-to-1 scheme: red boxes repre-
sent the action of disentanglers u, uh, uv and green ones – isometries w; arrows indicate
subsequent transformations used. This is a coarse-graining renormalization group trans-
formation where each 3×3 plaquette in the top-left panel is replaced with a coarse-grained
spin in the bottom-right panel (nine spins are replaced with one coarse-grained spin). To
minimize the number of states m of the coarse-grained spin, the microscopic spins are
disentangled prior to decimation. (b) 5-to-1 scheme: disentanglers u act on the corners
of a 3 × 3 plaquette and additionally rotate four spins by 45◦. Disentanglers uh and uv

used in the 9-to-1 scheme are replaced here with tensors vh and vv, which are represented
by blue boxes. Isometries w group five spins into one effective spin in this scheme. The
labels of spins s1 - s9 in a single block are addressed in the text.

of results obtained with an alternative 5-to-1 scheme.

The algorithm is implemented in c++ and optimized in order to work on multi-

processor computers. On an eight-core 2.3 GHz processor, it takes about half an hour to

update the whole tensor network which consists of four layers of tensors with m = 4. Near

the critical point, i.e. at θ ≃ θc, the convergence requires several thousands of iterations

whereas it is significantly faster far from θc. When θ is scanned from 0◦ to 90◦ (or back),

it is more efficient to use the previous ground state as an initial state for the next discrete

value of θ instead of starting from a random initial state for each value of θ. We carefully

verify the convergence to the ground state by scanning θ back and forth and comparing

the results with those obtained from random initial states for selected values of θ.

4.3 Correlations

In order to calculate correlations, we take advantage of the special structure of the renor-

malization group transformations, as illustrated in Fig. 4.2 (a) and (b). The consid-

erations below apply to both schemes. A site of the lattice that lies in the center of

a 3 × 3 decimation block (s9 in Fig. 4.2 (a) and (b)) undergoes renormalization in a

particularly easy manner. Since no disentangler is applied to this central site, a one-site

operator oτ−1 at this site is mapped by the τ -th renormalization group transformation
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into a coarse-grained one-site operator

oτ = Rτoτ−1 . (4.4)

Here, Rτ is a renormalizer superoperator for the 9-to-1 scheme built out of contracted

isometries only, as shown in Fig. 4.3(a):

(Rτ )
ij
kl =

m−1∑

n1,...,n8=0

(wτ )
i
n1...n8k (w†

τ )
n1...n8l
j . (4.5)

Renormalizer superoperator for the 5-to-1 scheme can be constructed in a similar way. In

that case, isometry wτ would have five lower indices; four of them located at the edges

are contracted with proper indices from w†
τ .

Figure 4.3: (a) Renormalizer superoperator for the 9-to-1 scheme which consists of isome-
tries only. The connections show how the isometries are contracted; compare Eq. (4.5).
(b) Method of calculating correlations 〈oxoy〉 = 〈o0o0〉 between two sites separated by
distance 3n+N . The scheme presents a graphical explanation of Eq. (4.9). (c) Deriving

ρ
(2)
∞ from ρ∞ when sites are separated vertically (top) and horizontally (bottom).

The meaning of transformations wτ and w†
τ is demonstrated in Figs. 4.2 and 4.3(a).

Thus, if we have N non-universal layers at the bottom of the MERA scheme, then renor-

malized one-site operators at the central sites just below the universal layer are given by

(see Fig. 4.3(b)):

oN = RNRN−1 · · ·R1o0 , (4.6)

where o0 ≡ o denotes a physical, microscopic one-site operator at one of the central sites

at the very bottom of the MERA tensor network.

To extract information on the correlations, it is convenient to write eigendecomposition

of renormalizer R∞ in the universal layer:

R∞vα = λαvα . (4.7)

It is straightforward to verify the basic property of the spectrum of R∞: |λα| ≤ 1. The

orthonormality of vectors (w∞)i in Eq. (4.5) implies that the identity operator (v1)ij = δij
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is an eigenvector with eigenvalue λ1 = 1. In our numerical calculations, this is the only

eigenvalue with modulus 1.

After the operator oN is decomposed as oN =
∑

α o
α
Nvα, a repeated action of the

renormalizer R∞ in the universal layers can be written as

Rn
∞oN =

∑

α

λn
α o

α
N vα . (4.8)

A correlator between two central sites x and y separated by distance |x − y| = 3n+N in

the horizontal (vertical) direction is thus given by:

〈oxoy〉 = Tr
{
ρ(2)
∞ (Rn

∞oN ⊗Rn
∞oN)

}
(4.9)

=
∑

α,β

oα
No

β
N cαβλ

n
αλ

n
β (4.10)

=
∑

α,β

oα
No

β
N cαβ

r− log3(λαλβ)
, (4.11)

where r = 3n and

cαβ = Tr
{
ρ(2)
∞ (vα ⊗ vβ)

}
. (4.12)

Here ρ
(2)
∞ is a two-site reduced density matrix in a universal layer derived from ρ∞ as

depicted in Fig. 4.3(c).

Correlations corresponding to the leading eigenvalue λ1 = 1 do not decay with the

distance between x and y. They describe a long range order in operator o and can be

used to extract its expectation value 〈o〉:

〈o〉2 = lim
|x−y|→∞

〈oxoy〉 = o1
No

1
Nc11 =

(
o1

N

)2
, (4.13)

where we use the property: limn→∞ λn
α = 0 that holds for α > 1 and the fact that c11 = 1

which is a consequence of v1 being an identity. Thus, only a one-site operator with a

non-zero coefficient o1
N has a non-zero expectation value. A trivial example involves the

identity o = I. Indeed, we obtain oN = I in Eq. (4.6), which is equivalent to o1
N = 1, and

Eq. (4.13) yields 〈I〉2 = 1, as expected.

4.4 Results

4.4.1 Symmetry breaking transition

Information about the ground state of the OCM exhibited in Eq. (4.1) is contained in

average energy per bond E(θ) and energy anisotropy ∆E(θ):

E(θ) = −1

2

〈
σa

ij(θ)σ
a
i+1,j(θ) + σb

ij(θ)σ
b
i,j+1(θ)

〉
, (4.14)

∆E(θ) =
∣∣∣
〈
σa

ij(θ)σ
a
i+1,j(θ)〉 − 〈σb

ij(θ)σ
b
i,j+1(θ)

〉 ∣∣∣. (4.15)

In the classical limit of Ising interactions, E(0◦) = −1 and ∆E(0◦) = 0. Due to increasing

frustration, energy E(θ) gradually increases for increasing angle θ in Eq. (4.1) and reaches
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Figure 4.4: Ground state obtained for the generalized OCM Eq. (1) using MERA: (a)
average energy E per bond given by Eq. (4.14), (b) energy anisotropy ∆E given by Eq.
(4.15), (c) spontaneous magnetization M given by Eq. (4.17), and (d) magnetization
orientation φ given by Eq. (4.18). Embedded L×L clusters coupled with the neighboring
spins by mean-field terms (L × L MF) exhibit qualitatively similar behavior. Inset :
Convergence of the ground state energy obtained by two MERA schemes with increasing
bond dimension m. Black: 9-to-1 scheme presented in Fig. 4.2(a); blue: 5-to-1 scheme
shown in Fig. 4.2(b). The 9-to-1 scheme results prove to converge faster for θ close to θc.
The comparison is made for schemes with the same dimension of effective block spins in
all layers. The performance of the 5-to-1 scheme can be further improved by considering
different dimensions on some of the effective spins.

a maximum of E(90◦) ≃ −0.57 in the OCM, see Fig. 4.4(a). This growth is smooth and

does not indicate the existence of a QPT.

However, by investigating anisotropy ∆E(θ) shown in Eq. (4.15) between the a and b

bonds, we identify angle θc at which ∆E(θ) starts to grow. Although a gradual evolution

of the ground state staring from θ = 0◦ might also be expected, the Ising-type state is

first surprisingly robust in a broad range of angles θ ∈ [0◦, θc], and the energy associated

with the bonds along the a and b axes remains unchanged, i.e. ∆E(θ) ≡ 0. Next, the
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symmetry between the a and b directions is spontaneously broken above θc, where a finite

value of ∆E(θ) is found, and then ∆E(θ) grows rapidly with further increasing angle θ,

that is, large spin correlations develop along only one of the two equivalent directions a

and b. This QPT is detected by MERA at θc ≃ 84.8◦, see Fig. 4.4(b).

4.4.2 Magnetization in the ground state

In order to get a better understanding of the QPT at θc, let us consider the expectation

value of spontaneous magnetization M ≡ {Mx,My,Mz} derived from the long range

order in the correlation function:

lim
|x−y|→∞

〈σk
xσ

l
y〉 = MkM l , (4.16)

where k(l) = x, y, z. For the interactions in Eq. (1), one finds My ≡ 0 for any θ.

We find that the ground state obtained using MERA for θ < θc is characterized by

Mz = 0 and an Ising-type long range order of Mx which gradually decreases but still

remains rather large, |Mx| > 0.93, in this parameter range. The symmetry between

directions a and b is broken above θc by appearance of non-zero component Mz.

The value of the total magnetization

M = |M| ≡
√

(Mx)2 + (Mz)2 , (4.17)

obtained from MERA decreases continuously from M(0◦) = 1 in the Ising model to

M(90◦) ≃ 0.92 in the OCM, see Fig. 4.4(c). Thus, the reduction in order parameter

M by quantum fluctuations arising from the admixture of the z-th component, is here

rather small, and reproduces qualitative results obtained for the eg orbital model within

the linear orbital wave theory [1]. Furthermore, on closer inspection of M(θ), we find that

derivative (∂M(θ)/∂θ) does not exist at θ = θc.

As expected from the behavior of ∆E, the obtained symmetry breaking shown in

Fig. 4.4 implies that the direction of spontaneous magnetization M, parametrized by an

orientation angle

φ = arctan

(
Mz

Mx

)
, (4.18)

begins to change when θ increases above θc, see Fig. 4.4(d). For θ < θc, the magnetization

has only one component Mx 6= 0 with φ = 0, pointing either parallel or anti-parallel to

σx which is half-way between σa(θ) and σb(θ), see Fig. 4.1. Below θc, the ferromagnetic

ground state is doubly degenerate and the magnetization is ±M = ±|Mx|. When θ

increases above θc, the magnetization begins to rotate in the {Mx,Mz} plane by the

non-zero angle ±φ Eq. (4.18) with respect to the ±|Mx| initial magnetization below θc,

and each of these two states splits off into two ferromagnetic states rotated by ±|φ| with

respect to the σx-axis. As a result, one finds four degenerate states above θc, and each of

them is tilted with respect to ±σx, either toward ±σa(θ) or toward ±σb(θ), depending on

the sign of rotation angle φ. In the OCM limit, θ = 90◦ is approached, the magnetization

angle approaches φ = π/4. In this limit, there are four degenerate Ising-type ferromagnetic
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states, with magnetization either along ±σa(90◦) (and 〈σb(90◦)〉 = 0), or ±σb(90◦) (and

〈σa(90◦)〉 = 0).

In qualitative terms, the same results are obtained from the embedded L×L clusters

and they are also shown in Fig. 4.4 for comparison. While the 2× 2 cluster is too small

and the quantum fluctuations are severely underestimated, the two larger 3× 3 and 4× 4

clusters are qualitatively similar and estimate the QPT point from above, see Fig. 4.4.

Rather slow convergence of these results toward the MERA result for ∆E and for |φ|
demonstrates the importance of longer-range correlations for the correct description of

the QPT at θ = θc.

Altogether, these results prove that the degenerate ground state of the generalized

OCM consists of a manifold of states with broken symmetry. This confirms that the OCM

is in the Ising universality class [12, 35, 24] with no quantum coupling between different

broken symmetry Ising-type states. However, we find the large value of θc ≈ 84.8◦ rather

surprising and we investigate it further using the spin-wave theory. These calculations

are presented in Appendix A.

The absence of any algebraically decaying spin-spin correlations in the MERA ground

state at θc is another surprise. They can arise from the subleading eigenvalues λ2, λ3, . . .

which we find to be non-zero. Still, their corresponding coefficients cαβ with α > 1 or

β > 1 in Eq. (4.11) are small (at most ≃ 10−4) and they decay with increasing dimension

m and especially the number of non-universal layers N . As a consequence, the only non-

vanishing term in Eq. (4.11) is the leading one for α = β = 1, describing the non-decaying

long range order. Notice that this observation does not exclude non-trivial short range

correlations up to a distance 3N described by the N non-universal layers. We believe that

when N is too small, then the missing short range correlations find their way to show up

in the small but non-zero universal coefficients cαβ, but these coefficients decay quickly

with increasing N as the short range correlations become accurately described by the

increasing number of non-universal layers.

4.5 Conlusions

In sum, we have found that the second order quantum phase transition in the generalized

orbital compass model (Eq. (4.1)) occurs at θc = 84.8◦ which is surprisingly close to

compass point θ = 90◦, i.e. only when the interactions are sufficiently strongly frustrated.

There is spontaneous ferromagnetic magnetization at any angle θ ∈ [0◦, 90◦]. Below θc,

the ferromagnetic ground state is doubly degenerate with the spontaneous magnetization,

either parallel or anti-parallel to average direction σa
ij + σb

ij . None of the directions,

neither a nor b, is preferred in this symmetric phase. In contrast, when θ increases above

θc, the symmetry between a and b becomes spontaneously broken and the ferromagnetic

magnetization begins to align parallel/anti-parallel to either σa
ij or σb

ij . The ground state

is fourfold degenerate in this symmetry-broken phase. The spontaneous magnetization M

is close to 1 and quantum fluctuations remain small in the whole range of θ ∈ (0◦, 90◦].

These results are obtained using MERA and the mechanism of the QPT is explained
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within the spin-wave theory. For classical spins, the minimum of energy is at one of the

two symmetric states with the magnetization either parallel or anti-parallel to σa
ij + σb

ij ,

see Fig. A.1. The minimum becomes more and more shallow as compass point θ = 90◦ is

approached. However, the quantum fluctuations are weak due to the gapful orbital wave

excitations, and only very close to the above OCM point, become strong enough to split

the shallow minimum into two distinct minima in the vicinity of the OCM point. In this

way, the symmetry between the a and b axes is spontaneously broken. For this reason, the

orbital eg model with ferro-orbital interactions, considered in Ref. [1], and corresponding

to a “moderate” value of θ = 60◦ (see Fig. 4.1(b)), orders in a symmetric (uniform) phase

induced by the stronger (here ∝ σx
ijσ

x
i′j′) interaction component.

Interestingly, since – unlike in the Landau paradigm – the symmetry in the present

model (cf. Eq. (4.1)) is broken rather than restored by quantum fluctuations, we do not

find any algebraically decaying spin-spin correlations at the critical point found in the

generalized orbital compass model (Eq. (4.1)). The spin waves also remain gapful at this

point.

48



Chapter 5

Finite-range MERA: Further

applications

In this chapter, we consider another variation of the MERA algorithm, namely, finite-

range MERA. Typically, for a lattice with N sites, MERA consists of log2N layers of

tensors (Fig. 2.7). In this approach, we eliminate some number of layers that lie at the

top of the network. Additionally, we replace the uppermost layer of isometries by top

tensors t. This reduction causes that correlations in state |ψ〉 described by this tensor

network are limited, i.e. there is no correlation between sites of the lattice which are

separated by a distance larger than given number ζ . This follows from the fact that

causal cones for such sites are disjoined. Fig. 5.1 provides an example of finite-range

MERA for the lattice of 32 spins with periodic boundary conditions. This figure depicts

pairs of sites which are both still correlated and not correlated.

This example includes finite-range MERA consisting of a usual layer of disentanglers

u1 and isometries w1 together with the second layer where the isometries are replaced by

top tensors t. In the absence of three layers, sites si and si+r where r ≥ ζ = 10 are not

correlated which means that 〈o[si]o[si+r]〉 = 〈o[si]〉〈o[si+r]〉.
From the perspective of a renormalization algorithm, the MERA scheme in 5.1 gener-

Figure 5.1: Example of finite-range MERA for a lattice of 32 spins with periodic boundary
conditions. Wires denoted by the same numbers are connected. Sites s11 and s25 are
not correlated because their causal cones are disjoined, i.e. 〈o[s11]o[s25]〉 = 〈o[s11]〉〈o[s25]〉.
However, it is possible to have non-zero correlations between e.g. s7 and s11.
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ates a sequence of states:

|ψ〉 u†
1−→ |ψ1〉 w†

−→ |ψ2〉
u†
2−→ |ψ3〉 . (5.1)

What follows from the above construction is that state |ψ3〉 is a product state: |ψ3〉 =⊗8
i=1 |ψt

i〉, where each |ψt
i〉 is a state directly given by top tensor t.

Finite-range MERA can also be used in order to find the ground state of a given

Hamiltonian. The algorithm for updating the network is the same as the one described

in Section 2.5. Still, in this case, the procedure is computationally less demanding since

the network comprises fewer layers and hence, there are fewer tensors to optimize. The

computational cost scales as m9, i.e. it does not depend on the system size. This explains

why such an ansatz is more suitable for describing the ground state with a finite range of

correlations ξ. Here, the number of layers should be such that corresponding ζ would be

larger than ξ.

Let us now consider two lattices of N1 = 2K1 and N2 = 2K2 sites, where K2 > K1

and two translationally invariant Hamiltonians with the same three-body interactions on

each lattice. In order to obtain the ground states, in both cases, we employ the same

translationally invariant finite-range MERA scheme with K < K1 < K2 layers as well

as the updating technique based on the method of calculating environments which begin

with the same initial conditions. Note that, in spite of the fact that lattices differ in size,

we use the same number of tensors to describe both ground states.

Recall that the environment of a tensor in a given layer τ depends on other tensors

in that layer, reduced density matrices ρτ and Hamiltonians hτ−1. ρτ is calculated by

means of a multiple action of lowering operation L. Since in both cases there is the same

number of layers above layer τ , the corresponding reduced density matrices ρτ are also

the same, i.e. they do not depend on the lattice size. As a consequence, the environments

and therefore, the updated tensors are also identical. It follows that irrespective of the

lattice size, at the end of the updating procedure, the descriptions of the ground state

and also their energies are exactly the same.

Figure 5.2: Finite-range MERA can be con-
structed on the basis of the more complicated
MERA schemes. In this case, two layers of
disentanglers are followed by top tensors. In
this scheme, we have ξ = 6.

This property can be used to take the

limit of an infinite lattice. In this way,

we obtain a very compact description (by

means of just a few tensors) of translation-

ally invariant, infinite systems.

It is clear that the above argument

cannot be used for full MERA schemes:

as there are more layers above layer τ in

MERA for a larger lattice, reduced density

matrices ρτ are in general different.

We can go further with this idea and

reduce the number of layers in finite-range

MERA to just one. The scheme presented

Fig. 5.1 becomes trivial as it consists of one layer of disentanglers that is followed by top
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tensors. This single layer allows to further simplify the updating procedure. The opera-

tions of raising and lowering are not needed in this approach. Because of this, the cost

of calculations scales as m6 for a two-body, physical Hamiltonian, which is significantly

lower than the cost in the general case. Notice that in full MERA scheme, the width of the

causal cone is 3, and thus, the overall cost of calculations for a two-body and three-body

Hamiltonian scales identically (as m9).

Although the above example leads to a trivial scheme, one can think of more com-

plicated schemes than those studied in Chapter 2. For instance, instead of one layer of

disentanglers, two layers of disentanglers can be considered in order to enhance the dis-

entangling power of the scheme. In full MERA scheme, it would result in an increase

in the width of the causal cone up to 5. Using this scheme as a base, we can construct

finite-range MERA with one layer of tensors, as shown in Fig. 5.2. In this example, ζ = 6

but still the cost of calculations scales as m8 even for a three-body, physical Hamiltonian.

Figure 5.3: Enhancing the computational
power of the scheme in Fig. 5.2 by means
of replacing disentanglers u by tensors ũ. In
the case of dim V = m2, tensor ũ is a disen-
tangler.

The low cost of computation makes it

possible to use large values of dimension m.

This may be achieved by introducing addi-

tional changes into the scheme in Fig. 5.2.

To this end, we extend disentanglers in the

first layer in such a way that they act on

more than two spins of a physical lattice.

In the example presented in Fig. 5.3, ten-

sor ũ is a disentangler provided that the

dimension of spaces V is m2 – in this case

no information about the described state is

lost. On a moderate computer, it is possi-

ble to extend disentanglers u to act on 16 spins. Such an extension of the first layer of

tensors lead to ζ = 48 as well as allows to consider Hamiltonians which describe interac-

tions on a longer range, at the same computational cost.

In two dimensions, considering finite-range MERA that comprises one layer leads to

more spectacular gains in computational cost. For instance, we can built finite-range

MERA by means of using only one layer of disentanglers in the two-dimensional scheme

Fig. 3.1 and replacing the first layer of disentanglers with four-body tops. The cost of

calculation in such a scheme scales as m12 whereas because of the fact that the width

of the causal cone is 3 × 3, the cost in the corresponding full MERA is m28. Again, we

can benefit from this low cost and propose a one-layer scheme that is more efficient in

removing entanglement. Analogously to the one-dimensional case discussed above, we

add another layer of disentanglers, as presented in Fig. 5.4(a). In this scheme, pairs of

spins si,i and si+5,i as well as si,i and si+5,i+5 can be correlated. Each spin of lattice L0 is

entangled with 35 neighboring spins.

The computational cost scales as m2m7
1m

10
2 where m1 and m2 are the dimensions of
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Figure 5.4: (a) Two-dimensional equivalent of the scheme presented in Fig. 5.2. (b)
Disentanglers in the first layer are enlarged to take into account more spins of physical
lattice L0 (8 in this example).

effective spins on lattices L1 and L2, respectively:

u : (Cm1)⊗4 → (Cm)⊗4 ,

v : (Cm2)⊗4 → (Cm1)⊗4 (5.2)

and t ∈ (Cm2)⊗4. In spin-1
2

systems, the amount of calculations is small and the disen-

tanglers may be enlarged in the first layer as shown in Fig. 5.4(b). Now, tensors ũ map

8 sites of L0 into 4 effective sites of L1:

ũ : (Cm1)⊗4 → (Cm)⊗8 . (5.3)

The extended scheme involves the pairs of spins (si,i, si+11,i), (si,i, si,i+10) and (si,i, si+5,i+5)

which are correlated. In this case, each spin is entangled with as many as 71 neighboring

spins of the physical lattice.

If m1 = 4, this mapping is exact. However, we can introduce additional truncation of

Hilbert space and use m1 < 4. The same is applicable to the next layer of disentanglers. In

this approach we deal with two refinement parameters: m1 and m2 in which convergence

of results may be verified.

We employ both schemes presented in Fig. 5.4 in order to study ground state properties

of the J1−J2 model as well as the spin model which emerges as a limit of some fermionic

Hamiltonian.
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5.1 J1 − J2 model

In this section we study the J1 − J2 model given by the following Hamiltonian:

H = J1

∑

〈i,j〉

Si · Sj + J2

∑

〈〈i,j〉〉

Si · Sj , (5.4)

where J1 > 0 is the strength of the nearest neighbor interaction and J2 ≥ 0 is the next-

nearest neighbor exchange constant. For simplicity, we assume that J1 = 1.

There are two cases in which properties of the ground state of Hamiltonian (5.4) are

well-known. For J2 = 0, the ground state is a Heisenberg antiferromagnet with Néel order,

whereas for J2 → ∞, the lattice is split into two sub-lattices with Néel order on each.

The non-zero value of J1 brings about the so-called collinear order in limit J2 →∞. The

above two cases are illustrated in Fig. 5.5(a). For intermediate values of J2, the ground

state becomes frustrated, and hence at some value of J2, it is expected that Néel order is

destroyed. For the same purpose, at a particular value of J2 (possibly larger), the collinear

order emerges. It has been verified that between the two points mentioned above, there

exists a phase where no magnetic order exists. Some properties of this phase have been

established by means of variational Monte Carlo [3] and series expansion [30]. Although

an approximate phase diagram is established (see Fig. 5.5(b) for reference), still, there is

a number of open questions that stimulate further research.

Figure 5.5: (a) Two limits of the J1−J2 model: J1 ≫ J2 poses a standard two-dimensional
Néel order while J2 ≫ J2 results in the collinear order. (b) Approximate phase diagram
for the J1 − J2 model. There are at least three distinct phases with two quantum phase
transitions between them. Néel order survives up to J2 ≃ 0.4 when it changes into
quantum paramagnet (QPM). Another known phase transition occurs at J2 ≃ 0.6. At
that point, the order of the state changes into collinear. This phase preserves for J2 →∞.

In order to study the ground state of Hamiltonian Eq. (5.4), we apply finite-range

MERA which consists of one layer of tensors only. In this approach, we use both two-

dimensional schemes discussed in the previous section presented in Fig. 5.4. Note that

both of them are fully capable of describing all possible orders that are expected in the

J1−J2 model. Special attention has to be paid to the scheme shown in Fig. 5.4(b) where

nontrivial extension of disentanglers which is compatible with Néel and collinear order is

proposed.
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Figure 5.6: Ground state properties of the J1 − J2 model obtained by means of finite-
range MERA presented in Fig. 5.4. (a) energy per lattice site; (b) magnetization: M =
((Mx)2 + (My)2 + (Mz)2)1/2, (c) correlations between nearest horizontal neighbors given
by Eq. (5.5), and (d) next-nearest neighbors correlations given by Eq. (5.6).

It needs pointing out that not every MERA scheme is suitable for characterizing

Néel (collinear) order. For instance, both schemes used in Chapter 4 require further

modification since, in every decimation step, they group a 3×3 plaquette into one effective

spin. For this reason, one should replace such a translationally invariant scheme by one

that in every layer is split into two sublayers of tensors.

Finite-range MERA is designed to be a simple tool for obtaining the phase diagram

of a given model at a relatively low cost. Information about a possible order allows to

develop a more specialized scheme in order to enhance accuracy. We expect that the near

critical points accuracy of finite-range MERA may be lower, therefore, we employ the

following technique of investigating the phase diagram. We start with getting the ground

state in one point in each known phase, e.g. at J2 = 0, J2 = 0.5 and J2 = 1. From

these points we scan the entire diagram: for small ∆J2, we calculate the ground state in

J2+∆J2 taking a starting point previously computed state at J2. This method is fast and

reliable provided that the critical points are not crossed. That is why we handle separate

calculations for each phase. Fig. 5.6 presents preliminary results.

In accordance with the previously provided results, energy per lattice site grows while

J2 approaches point 0.6 from both sides, i.e. ground state become more frustrated
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(Fig. 5.6(a)). Panels (c) and (d) present correlations between nearest (horizontally) and

next-nearest neighbors on a lattice which are given by:

C(1,0) = 〈S(a,b) · S(a+1,b)〉 , (5.5)

C(1,1) = 〈S(a,b) · S(a+1,b+1)〉 . (5.6)

It can be seen that MERA predicts a correct ground state order: In the regime J2 ∈
[0, 0.6): Néel order (C(1,0) < 0 and C(1,1) > 0) and analogously collinear in J2 ∈ (0.6, 1].

At present however, the phase obtained at J2 ∈ (0.4, 0.6) is incorrect (magnetization in

panel (b)).

Table 5.1 summarizes the results in the collinear phase for J2 = 1. Here we compare

ground state energies for both applied schemes with different dimensions m1 and m2.

These results prove that the extended scheme in Fig. 5.4(b) significantly outperforms the

basic one. It is sufficient to increase dimension m1 up to 3 to obtain better energy per

lattice site. Further improvements are achieved in higher dimensions m1 and m2.

Table 5.1: Results for the collinear phase for J2 = 1 derived by means of two finite-range
MERA schemes in Fig. 5.4: in the first row, the results are calculated using basic scheme,
the rest – using the enhanced one.

dimensions energy per site correlator correlator
(m1, m2) E C(1,0) C(1,1)

(2, 2) −0.6745312 0.2193617 −0.3189142
(3, 2) −0.6827038 0.2093609 −0.3202768
(3, 3) −0.6834429 0.2107143 −0.3208897
(4, 2) −0.6849389 0.2089632 −0.3149432

Work in progress includes: (i) The application of the extended scheme to phase J2 ∈
(0.4, 0.6) in order to learn more about its structure. This is helpful in designing more

suitable MERA schemes for this particular phase. (ii) As the computational cost of

investigating the system with next-next-nearest neighbors scales in the same way, we

aim at studying the phase diagram of the J1 − J2 − J3 model. (iii) The enhancement of

computation power of the algorithm to extend the first layer of disentanglers to even larger

spin blocks. This can be achieved from both programing as well as purely algorithmical

points of view. Details can be found in [8].

5.2 Fermions in a non-abelian gauge field

In this section, we consider spin-1
2

fermions on an arbitrary lattice, given by Hamiltonian

H = − t
∑

〈i,j〉

∑

α,β=0,1

uij
αβc

†
αicβj + U

∑

i

n0in1i . (5.7)

Here, cαi is a fermionic annihilation operator at site i and internal state α ∈ {0, 1} in

the computational basis. nαi = c†αicαi denotes a number of fermions in state α at site i.
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t is a hopping rate between nearest neighbor sites of a lattice, and U is on-site interaction

strength. Matrix uij is a unitary transformation. Matrix uij can be parametrized by

uij = exp
(
i~φij~τ

)
, (5.8)

where ~φij = (φx
ij, φ

y
ij, φ

z
ij) is a real vector, and ~τ = (τx, τ y, τ z) is a vector of Pauli matrices

in the Hilbert space of internal states α ∈ {0, 1}. For Hamiltonian Eq. (5.7) to be

Hermitian, it is sufficient to assume uji = (uij)
†

or, equivalently, ~φji = −~φij .

We assume here that the number of fermions is equal to the number of lattice sites

and, moreover, we take the strong interaction limit of U ≫ t. The interaction U -term

has a degenerate zero energy subspace of states where no site is occupied by 2 fermions.

This subspace is separated from states with double occupations by an energy gap of U .

The matrix elements of the hopping term in the degenerate subspace are zero. To obtain

a non-zero effective Hamiltonian in the degenerate subspace, we have to go to the second

order in perturbative expansion. For instance, when ~φij = (φx, 0, 0), then we obtain an

effective Hamiltonian Heff
i,j given by

Heff
ij (φx, 0, 0) =

t2

U

[
−1 + σx

i σ
x
j +

(σy
i σ

y
j + σz

i σ
z
j ) cos 2φx +

1

2
(σy

i σ
z
j − σz

i σ
y
j ) sin 2φx

]
. (5.9)

Here the Pauli operators represent fermionic operators

σx
i = c0†i c

1
i + c1†i c

0
i ,

σy
i = i

(
c0†i c

1
i − c1†i c0i

)
,

σz
i = n1i − n0i . (5.10)

This effective Hamiltonian describes an interaction between two effective spins 1
2

at nearest

neighbor sites 〈i, j〉.
In a similar way we obtain

Heff
ij (0, φy, 0) =

t2

U

[
−1 + σy

i σ
y
j +

(σz
i σ

z
j + σx

i σ
x
j ) cos 2φy +

1

2
(σz

i σ
x
j − σx

i σ
z
j ) sin 2φy

]
, (5.11)

Heff
ij (0, 0, φz) =

t2

U

[
−1 + σz

i σ
z
j +

(σx
i σ

x
j + σy

i σ
y
j ) cos 2φz +

1

2
(σx

i σ
y
j − σy

i σ
x
j ) sin 2φz

]
. (5.12)

Let us now assume an infinite, two-dimensional square lattice. We take ~φij = (φx, 0, 0)

on horizontal links 〈i, j〉 and ~φij = (0, φy, 0) on vertical ones. Effective Hamiltonian in

this case reads:

Heff =
∑

a,b

[
Heff

(a,b),(a+1,b)(φx, 0, 0) + Heff
(a,b),(a,b+1)(0, φy, 0)

]
, (5.13)
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Figure 5.7: Phase diagram obtained from coupled 2 × 2 plaquettes. The diagram is
symmetric under transformations: (φx, φy) → (φx, π − φy), (φx, φy) → (π − φx, φy) and
(φx, φy) → (π − φx, π − φy). + +

+ +
denotes ferromagnetic phase; + −

− +
– antiferromagnetic;

+ +
− − – collinear-h; + −

+ − – collinear-v, red lines denote magnetization equaling zero. ± signs
represent positive (negative) values of a given component of magnetization. In each phase,
the ground state is (at least) two-fold degenerate. E.g. mean-field calculation gives + +

− −

or − −
+ +

depending on initial (random) conditions. The diagram is partially confirmed by
4 × 4 coupled clusters. Away from phase boundaries, the order is the same as shown
above. However, we do not exclude the possibility that the near boundaries phase order
may vary.

where Heff
(a,b),(a+1,b) and Heff

(a,b),(a,b+1) are given by Eqs. (5.9) and (5.11), respectively.

Notice first that line φx = φy is a symmetry axis of the system. Corresponding

transformation reads:

i ←→ j ,

φx ←→ φy ,

σx ←→ σy ,

σz ←→ −σz . (5.14)

We begin analyzing the ground state of Hamiltonian (5.13) by studying its phase

diagram in parameters (φx, φy). To this end, as a first approximation, we assume that the

ground state is a product of L×L plaquettes that are coupled with the neighboring sites

by mean-field terms. Because of the antiferromagnetic order in some regime of (φx, φy),

odd values of L are excluded. Thus, the calculations are performed for L = 2 and L = 4.

Fig. 5.7 shows the phase diagram. Diagram is rich: it is split into three parts – each part

represents an order of a given component of magnetization. We encounter ferromagnetic

and antiferromagnetic order as well as collinear one. Notice that there is the symmetry

between x and y component of magnetization whereas the order of the z component is

different. This behavior could be expected from the form of effective Hamiltonians Eqs.

(5.9) and (5.11).

Observe that the z component of magnetization equals zero on a segment which starts
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Figure 5.8: A perpendicular cross through a segment with 〈σz〉 = 0 presented in phase
diagram Fig. 5.7 at point φx = φy = 74.5◦. (a), (b) correlations between nearest horizontal

neighbors on a lattice in the x and y components, respectively. C
(1,0)
x and C1,0

y are given

by Eq. (5.15). (c), (d) analogous correlations between vertical neighbors. C
(0,1)
x and C0,1

y

are given by Eq. (5.16). The Panels present results obtained by means of 2 × 2, 4 × 4
coupled clusters as well as finite-range MERA (Fig. 5.4(a)). Points acquired from 4× 4
coupled clusters and finite-range MERA almost coincide.

at φx = φy ≃ 71.3◦ and ends in φx = φy = π/2. An interesting question arises: whether

this behavior is physical and hence leads to an unusual phase transition or it is an artifact

of mean-field approximation.

To answer the above question, we firstly apply finite-range MERA described at the

beginning of this chapter to see whether the order of phases in the neighborhood of the

segment predicted by mean-field calculations are confirmed also by finite-range MERA.

Information about the nature of the ground state can be used to propose a more suitable

scheme for investigating the possible quantum phase transitions at line φx = φy.

To this end, we obtain the ground state for (φx, φy) on line that is perpendicular to

line φx = φy and crosses the segment. One such line is chosen: φy = 149◦ − φx, i.e. the

line crosses the segment at φx = φy = 74.5◦.

Because of the possible phase transition, we employ a technique of scanning with

MERA described in the previous section. This time we handle two separate calculations

starting from points to the left and to the right from the segment. Fig. 5.8 summarizes

the results derived by means of 2×2 and 4×4 coupled clusters as well as from finite-range

MERA. Correlations presented in different panels of this figure are given by:
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C(1,0)
x = 〈σx

(a,b) σ
x
(a+1,b)〉 , C(1,0)

y = 〈σy
(a,b) σ

y
(a+1,b)〉 , (5.15)

C(0,1)
x = 〈σx

(a,b) σ
x
(a,b+1)〉 , C(0,1)

y = 〈σy
(a,b) σ

y
(a,b+1)〉 . (5.16)

It turns out that finite-range MERA breaks symmetry of Eq. (5.14) and produces

an asymmetric solution. This may be due to initialization of the algorithm from random

values that prefers one particular direction (x or y). At present, we are working on

incorporating this symmetry into the existing MERA algorithm to overcome this problem.

-0.62

-0.618

-0.616

-0.614

-0.612

Figure 5.9: MERA solution undergoes sym-
metry transformation (5.14). The trans-
formed solution (tMERA) has lower energy
for φ < 74.5◦. The results presented in Fig.
5.8 are derived from a proper joining of these
two solutions.

Apart from these difficulties, we can

employ transformation (5.14) to the ob-

tained solution and restore the symmetry

in the following way: Having two solutions

(from MERA and the transformed one),

we compare their energies at each point

(φx, φy) and select a solution with lower

energy. Fig. 5.9 depicts both of them.

For φx > 74.5◦, the solution due to MERA

has lower energy whereas for φx < 74.5◦

– the one transformed by means of Eq.

(5.14). Black points in Fig. 5.8 illus-

trate the results from finite-range MERA

with restored symmetry obtained by this

method.

Preliminary results from finite-range

MERA (basic scheme) confirm the pattern

of bonds found by 2× 2 and 4× 4 coupled clusters for the x and y components of mag-

netization.

The z component (not shown) tends to zero not only on line φx = φy but also on its

neighborhood. This conclusion is drawn on the basis of the results from 4 × 4 clusters

and finite-range MERA in Fig. 5.4 and requires further investigation.

Work in progress [7] involves designing more suitable MERA scheme for closer inves-

tigation of this region of the diagram as well as obtaining more reliable results by means

of enhanced finite-range MERA in Fig. 5.4.
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Conclusions and outlook

In this Dissertation, we have developed and applied the MERA algorithms to various

physical systems. Both, an intuitive view of the subject as well as a range of technical

details have been provided and exhaustively discussed. Chapter 3 presents the very first

approach to two-dimensional systems by means of entanglement renormalization tech-

niques. In Chapter 5, as a part of the ongoing research, we give examples of MERA

applications to the frustrated quantum models. MERA is a flexible tool which can be

adapted in a straightforward way to frustrated systems. Thanks to its unique properties,

various realization of frustrating interactions between even distant sites of a given lattice

can be investigated.

In the near future, we intend to further develop the MERA algorithms in two direc-

tions: (i) exploiting the internal symmetries of the state being described and (ii) enhanc-

ing the computational power of the algorithms using the advanced Monte Carlo sampling

techniques.

As we have seen in Chapter 3, due to the particular tensor structure, MERA can

reflect the symmetries of the underlying quantum state, i.e. if it is known that a quantum

state in question must satisfy certain symmetry properties, then this information can be

used to make the algorithm more efficient. These simplifications are helpful in turning

difficult problems into more accessible ones. We aim at pushing further the ideas outlined

in Chapter 3 and developing new versions of the algorithms which would suit best in a

given physical situation in the presence of the symmetries.

On the other hand, in the most general setting (or without any additional knowledge),

computations within the MERA algorithm might become complex and time-consuming.

One way to overcome this difficulty would be to perform calculations within MERA in an

approximate way by means of the Monte Carlo sampling methods. This novel approach

can provide a significant progress and it certainly opens new areas of possible applications

of the MERA algorithm.
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Appendix A

Spin wave expansion for the

generalized compass model

In this Appendix, we present details of the spin-wave calculation for the generalized

compass model and compare the results with the ones obtained by means of MERA in

Chapter 4. We consider here the general case of an L × L square lattice, with L being

odd for convenience. Before comparison is drawn, we take thermodynamic limit L→∞
in these calculations.

0
0

0.002

0.004

Figure A.1: Mechanism of the QPT in
the generalized OCM Eq. (1) for S =
1/2 and θ = 87◦ > θc. The mini-
mum of classical energy E0(87◦, φ) Eq.
(A.1) (dashed line) at φ = 0 is shallow
and thus unstable against weak quantum
fluctuations which induce two symmet-
ric minima at a finite value of ±φmin

obtained from E6(87◦, φ) derived from
Eq. (A.4). For better comparison, E0

and E6 are shifted to have a minimum
value of 0.

Since the spin-wave expansion in powers of

1/S becomes exact when the spin S → ∞, we

introduce a large-S extension of the generalized

OCM Hamiltonian Eq. (4.1) with rescaled spin

operators: σx → Sx/S and σz → Sz/S. We

consider first the classical energy per site:

E0(θ, φ) ≡ 〈H(θ)〉φ = −1

2
[1 + cos θ cos(2φ)] ,

(A.1)

obtained using the mean-field (MF) for the or-

dered state of classical spins ~S, with the magne-

tization direction given by Eq. (4.18). The clas-

sical energy has a minimum at φ = 0 for the en-

tire range of θ ∈ [0◦, 90◦). However, when angle

θ approaches 90◦, the minimum becomes more

and more shallow, and finally disappears com-

pletely at θ = 90◦. Thus, the classical ground

state becomes very sensitive to quantum fluc-

tuations in the vicinity of the maximally frus-

trated interactions in the OCM.

This behavior of the classical ground state energy provides an explanation of why

small energy contributions due to quantum fluctuations may play such a crucial role in

the generalized OCM only in the regime of θ, close to 90◦, where they trigger a QPT by

splitting the shallow symmetric classical energy minimum at φ = 0 into two symmetry-

broken minima at finite values ±φmin – we show an example of this behavior in Fig. A.1
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for a particular value of θ > θc. Since here the quantum fluctuations induce the symmetry

breaking instead of making the ground state more symmetric, this mechanism goes beyond

the Landau functional paradigm.

We analyze the effects of quantum fluctuations and the arising symmetry breaking

using the Holstein-Primakoff representation of spin {Sα
ij} operators via {bij} bosons:

cosφ Sx
ij + sinφ Sz

ij = S − b†ijbij , (A.2)

− sinφ Sx
ij + cosφ Sz

ij =
b†ij
2

√
2S − b†ijbij + H.c. . (A.3)

Operators {bij , b†ij} satisfy standard bosonic commutation relations: [bij , bi′j′] = 0 and

[bij , b
†
i′j′] = δii′δjj′. In this approach, we look for a critical value θc, above which it is

energetically favorable to change the direction of magnetization M from symmetric state

φ = 0 to a symmetry-broken state with a finite value of φ 6= 0. We expand the square

root in Eq. (A.3) in powers of 1/(2S) and obtain an expansion of Hamiltonian Eq. (4.1)

in powers of operators {bij , b†ij}. As we apply Wick’s theorem to reduce the obtained

Hamiltonian to an effective quadratic Hamiltonian, the terms proportional to the odd

powers of 1/(2S) do not contribute and are skipped below. When truncated at the sixth

order term, this expansion reads

H̃6 ≃ H0 + (2S)−1H2 + (2S)−2H4 + (2S)−3H6 . (A.4)

Here, H2n is a sum of all terms of the 2n-th order in the {bij , b†ij} operators. In a similar

way, H̃4 and H̃2 denote expansions truncated at the fourth and second order terms,

respectively. We find a posteriori that the second order expansion H̃2 (non-interacting

spin waves) does not suffice and higher order terms are necessary. Consequently, we

consider below Hamiltonian Eq. (4.1) expanded up to the sixth order.

For given θ and φ, the ground state of the boson Hamiltonian Eq. (A.4) is approxi-

mated by a Bogoliubov vacuum obtained as the ground state of a mean-field quadratic

Hamiltonian H̃MF
2 (to be derived later on). Terms H2, H4 and H6 in Eq. (A.4) are given

by:

H2 = 4[1 + cos θ cos(2φ)]
∑

r

b†rbr −

sin2

(
φ− θ

2

)∑

r

(
b†rbr+ex

+ brbr+ex
+ H.c.

)
−

sin2

(
φ+

θ

2

)∑

r

(
b†rbr+ey

+ brbr+ey
+ H.c.

)
, (A.5)
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Figure A.2: Symmetry breaking in the ground state as obtained from the boson expansion
Eq. (A.4). Panels (a) and (b) show results for S = 1, (c) and (d) – for S = 1/2; (a) and
(c) depict magnetization M Eq. (4.17), (b) and (d) – the value of magnetization angle φ

Eq. (4.18) that minimizes energy. Calculations for H̃6 predict the following values of θc:
85.89◦, 86.9◦, 88.2◦, and 89.2◦ for S = 1/2, S = 1, S = 2, and S = 5, respectively (the
last two not presented), and θc → 90◦ for S →∞.

H4 = −4 cos2

(
φ− θ

2

)∑

r

b†rb
†
r+ex

brbr+ex
−

4 cos2

(
φ+

θ

2

)∑

r

b†rb
†
r+ey

brbr+ey
+

1

2
sin2

(
φ− θ

2

)∑

r

{
b†rb

2
r(br+ex

+ br−ex
+ b†r+ex

+ b†r−ex
) + H.c.

}
+

1

2
sin2

(
φ+

θ

2

)∑

r

{
b†rb

2
r(br+ey

+ br−ey
+ b†r+ey

+ b†r−ey
) + H.c.

}
, (A.6)
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and

H6 =
1

8
sin2

(
φ− θ

2

)∑

r

{(
b†rbr

)2
br(br+ex

+ br−ex
+ b†r+ex

+ b†r−ex
)−

2b†rb
†
r+ex

b2r(br+ex
+ b†r+ex

)br+ex
+ H.c.

}
+

1

8
sin2

(
φ+

θ

2

)∑

r

{(
b†rbr

)2
br(br+ey

+ br−ey
+ b†r+ey

+ b†r−ey
) −

2b†rb
†
r+ey

b2r(br+ey
+ b†r+ey

)br+ey
+ H.c.

}
, (A.7)

where r = (i, j), ex = (1, 0) and ey = (0, 1).

In order to derive quadratic approximation H̃MF
2 , we replace the boson terms in H4

and H6 with two-boson terms and proper averages by means of the MF approximation

and Wick’s theorem. This justifies a posteriori why the (A.4) expansion is limited only to

the terms with an even number of boson operators. As an example of this approximation,

consider one of the contributions to H4 in Eq. (A.6): b†rb
2
rbr+ex

, which is replaced with a

quadratic term:

b†rb
2
rbr+ex

≃ 2〈b†rbr〉 brbr+ex
+ 2〈brbr+ex

〉 b†rbr +

〈b†rbr+ex
〉 b2r + 〈b2r〉 b†rbr+ex

− 〈b†rb2rbr+ex
〉 . (A.8)

The above replacement procedure leads to six MF parameters {mi}6i=1 that should

satisfy self-consistency conditions. These are in fact all possible combinations of operators

defined on nearest-neighbor sites that cannot be derived one from another by commutation

relations and translational invariance of the lattice, i.e. m1 = 〈b†rbr〉, m2 = 〈b†rbr+ex
〉,

m3 = 〈b†rbr+ey
〉, m4 = 〈b2r〉, m5 = 〈brbr+ex

〉, and m6 = 〈brbr+ey
〉.

The obtained Hamiltonian H̃MF
2 is diagonalized by the Fourier transformation followed

by the Bogoliubov transformation. The Fourier transformation which is consistent with

periodic boundary conditions bL+1,j = b1,j and bi,L+1 = bi,1 takes the following form:

br =
1

L

∑

k

bk e
ik·r , (A.9)

where k = (kx, ky) is the momentum. In the above sum, momentum components kx and

ky take the values (for odd L considered here):

kx, ky ∈
{

0 · 2π
L
, ±1 · 2π

L
, . . . , ±L− 1

2
· 2π
L

}
. (A.10)

Diagonalization of H̃MF
2 is completed by the Bogoliubov transformation:

bk = ukγk + v∗−kγ
†
−k , (A.11)

where modes uk and vk are normalized such that |uk|2 − |vk|2 = 1. The obtained modes

are used to calculate new values of the MF parameters {mi}6i=1. For instance, one of

them reads: m2 = 〈b†rbr+ex
〉 = 1

L2

∑
k |vk|2 cos kx. Starting from random values, the above

steps are iteratively applied until full convergence of {mi}6i=1 is reached, which results in

satisfying the self-consistency conditions.
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Figure A.3: Energy gap calculated within the
spin-wave theory. H̃2 fails for large θ while
H̃4 and H̃6 predict gapful spectrum for all
values of θ. The minimum is attained at θc.
Surprisingly, ∆(θc) = 1.52 6= 0 (calculated

using H̃6).

Firstly, we perform separate calcula-

tions for H̃2, H̃4 and H̃6 for several val-

ues of spin S ≥ 1 when the 1/(2S)-

expansion given in Eq. (A.4) is convergent.

Quadratic H̃2 fails for large θ, where Bo-

goliubov frequencies become non-real and

magnetization M Eq. (4.17) diverges. In

contrast, H̃4 and H̃6 give only small reduc-

tion in M in the entire range of θ, see Fig.

A.2(a) and A.2(c). Interestingly, the Bo-

goliubov spectrum remains gapful at θc in

both the fourth and sixth order expansions

and, just like in MERA, there are no al-

gebraically decaying spin-spin correlations.

Critical angle θc at which the symmetry-

breaking QPT occurs, increases toward 90◦

with increasing S when the quantum fluctuations become less significant. Therefore, mag-

netization M increases with increasing S and it tends to 1 in the classical limit S →∞.

Encouraged by these results, we also perform similar calculations for the generalized

OCM, see Eq. (4.1) with S = 1/2, where the convergence of the 1/(2S)-expansion becomes

problematic. Unlike for S ≥ 1, we find that the fourth order expansion is insufficient as

it predicts the first order QPT (Fig. A.2(d)) and does not agree qualitatively with the

prediction of MERA, see Section 4.4. Only in the sixth order, one finds a qualitative

agreement between the present boson expansion and MERA, both giving the second

order QPT at θc. A cusp in M(θ) seen in Fig. A.2(c) shows that even the sixth order

expansion is not quite converged for S = 1/2. Again, the Bogoliubov spectrum remains

gapful at θc in the sixth order expansion, with finite gap ∆(θc) = 1.52, as shown in Fig.

A.3. No algebraically decaying spin-spin correlations are found.
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