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Abstract

In this thesis, the algebraic curve classification of the AdS/CFT correspondence
is investigated. A novel method of assigning algebraic curves to Wilson loop mini-
mal surfaces is proposed, different from the usual construction from flat connection
monodromy, which is trivial for such cases. The new definition is shown to be mean-
ingful, by recovering the original solution with the existing reconstruction formulae.
Two examples, namely the null cusp and quark–antiquark potential Wilson loops,
are worked out. Additionally, two examples of solutions dual to correlation func-
tions are compared. Even though described by the same quasi-momentum, they are
shown to have different algebraic curves.

Further, the algebraic curve formalism is applied to the description of a scat-
tering process with an exchange of the BFKL pomeron. A dual string solution with
appropriate conserved charges is constructed, along with a semi-classical expansion
of the Regge trajectory intercept. The position of cuts on the algebraic curve is
determined from the reality conditions, and results in the expected values of the
conserved charges.

W poniższej rozprawie badane są krzywe algebraiczne pojawiające się w ko-
respondencji AdS/CFT. Zaproponowana zostaje nowa metoda przypisywania krzy-
wych algebraicznych do powierzchni minimalnych dualnych do pętli Wilsona, dla
których typowa konstrukcja oparta na monodromii płaskiej koneksji nie znajduje
zastosowania. Poprzez odtworzenie oryginalnych rozwiązań przy użyciu istniejących
wzorów rekonstrukcyjnych pokazane zostaje, że nowa konstrukcja krzywych nie jest
trywialna. Szczegółowo zostają przedyskutowane przykłady pętli Wilsona w kształ-
cie przecięcia dwóch linii światłopodobnych oraz potencjału kwark–antykwark. Po-
nadto porównane zostają dwa przykłady rozwiązań dualnych do funkcji korelacji,
które, chociaż opisane przez ten sam kwazipęd, okazują się mieć różne krzywe alge-
braiczne.

W drugiej części formalizm krzywej algebraicznej zostaje zastosowany do opisu
rozpraszania cząstek z wymianą pomeronu BFKL. Zaproponowane zostaje dualne
rozwiązanie strunowe, a także rozwinięcie klasyczne wyrazu wolnego trajektorii
Regge. Opisana zostaje stosowna krzywa algebraiczna, której cięcia zostają zidenty-
fikowane w oparciu o warunki rzeczywistości, prowadząc do oczekiwanych wartości
zachowanych ładunków.
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Chapter 1

Introduction

The AdS/CFT correspondence is an astonishing conjecture stating that two, seem-
ingly unrelated, theories of physics are actually identical. These theories, the string
theory in AdS5 × S5 and the N = 4 supersymmetric Yang–Mills theory, differ not
only in the dimensionality of spaces on which they are defined, but even more in
character: one contains gravity, and the other is a gauge theory without neither
gravity, nor even a mass scale. And yet, there is a heuristic argument by which they
should coincide, followed by thousands of meaningful results published over less than
twenty years that support this claim.

This intrinsic beauty would be by itself a reason to study this correspondence,
but AdS/CFT has very interesting applications as well. Although neither of the two
theories is exactly a theory of our world, N = 4 SYM resembles quantum chromo-
dynamics in many aspects. Moreover, it is just one (albeit the best investigated)
member of the family of gauge–gravity dualities; what we learn about one, may be
fruitful for understanding another, in which the realistic theories may feature more
explicitly.

What makes AdS/CFT special (but not unique) is the phenomenon of inte-
grability. Both theories of the correspondence have been discovered to be exactly
solvable. Not only this means that more quantities can be computed in either, but
also suggests even stronger that the correspondence is true. It may even turn out
to be the technique to prove it.

In this thesis, we begin by introducing all the necessary physical context and
mathematical formalism. The extent is more or less tailored to the scope of the
subsequent results, and by no means exhaustive. Whatever this thesis is lacking in
this aspect, can be found in one of the reviews [AGM+99, Nast07, IntR10] or
excellent dissertations [Vice08, Viei08, Łuko10].

The central object that will be of our interest throughout this thesis is the
algebraic curve, a complex variety that appears in the study of many integrable
systems. Besides its theoretical importance, it has a practical aspect in the sense

7



8 CHAPTER 1. INTRODUCTION

that usually it is defined by a function called quasi-momentum that encodes the
conserved charges of the system. Most importantly, charges like energy or spin can
be obtained from quasi-momentum asymptotics at special values, without in fact
solving the non-linear equations of motion of the theory.

As the algebraic curve for strings is traditionally defined in terms of a parallel
transport of a matrix along the worldsheet, there are configurations, such as Wilson
loop minimal surfaces, for which this construction trivially fails. Studying these
objects, we propose a new construction, which is entirely local, ie. does not require
the knowledge of the full worldsheet. We also validate the result by reconstructing
the original configurations from principles of analytic properties of functions defined
on algebraic curves.

Further, we identify a pair of solutions dual to correlation functions. These do
have non-contractible contours, and the usual procedure assigns the same algebraic
curve to both. Surprisingly, we note that our construction predicts different algebraic
curves, which again allows for a reconstruction of the original solution. This calls for
a discussion of the usually implied one-to-one relation between the quasi-momenta
and algebraic curves.

We also apply the formalism to describe a particular process of high-energy
scattering. We modify a known string solution, the GKP curve, so that its non-zero
conserved charges correspond to the quantum numbers of the exchanged virtual
particle, the BFKL pomeron. Knowing the algebraic curve for the original solution,
we modify it accordingly. The position of cuts needs to be determined anew, but
the reality conditions are enough to fix it. The result produces the expected values
of the conserved charges and integral equations.

Technical remarks

This thesis is based on the following two journal articles:

• Surprises in the AdS algebraic curve constructions: Wilson loops and correla-
tion functions
Romuald A. Janik and Paweł Laskoś-Grabowski
Nuclear Physics B 861 (2012) 361, arXiv:1203.4246 [hep-th]

• Approaching the BFKL pomeron via integrable classical solutions
Romuald A. Janik and Paweł Laskoś-Grabowski
Journal of High Energy Physics 1401 (2014) 074, arXiv:1311.2302 [hep-th]

They are referred to as [JLg12, JLg13], respectively.

The structure of this thesis was designed to separate the introductory and review
parts and the new results, and this goal was achieved to a first approximation.
Specifically, chapter 2 is an introduction to the AdS/CFT correspondence and is

http://arxiv.org/abs/1203.4246
http://arxiv.org/abs/1311.2302
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rather sketchy, whereas chapter 3 reviews some of the existing results and techniques
of integrability in the context of AdS/CFT. In section 3.2 there is a new result,
namely the derivation of the asymptotics (3.50) in the AdS3 × S1 case, which for
convenience of the reader is located in its right context. The introductory part is
presented in a bottom-up order, namely we first introduce the theories involved in
the AdS/CFT correspondence before outlining the correspondence itself, and first
discuss the appearance of some aspects of integrability before hinting at the full
wealth of this formalism in AdS/CFT.

Subsequently, chapter 4 consists of the analysis of algebraic curves for Wilson
loops and correlation functions, and is based exclusively on [JLg12]. The algebraic
curve of the BFKL pomeron appears in chapter 5, which is based on [JLg13]. It
contains a derivation of the solution to the GKP folded string equations, which is
nothing new, but is again helpful to understand the modifications that are applied
to it later. Finally, chapter 6 is a with a brief summary and a review of possible open
problems, followed by an appendix A on elliptic functions, which appear copiously
throughout the text.

This thesis uses the ‘mostly plus’ signature for the Minkowski metric; the metric
itself is denoted by ηµν = diag(−1, 1, . . . ). The same symbol is used as ηAB for the
metric of the AdSd embedding space Rd+1, therefore having an additional component
ηd,d = −1. The worldsheet coordinates are τ, σ ≡ σ0, σ1, respectively time-like and
space-like in Lorentzian case. The light-cone coordinates are denoted by w, w̄ and
defined as

w = σ + τ w̄ = σ − τ (Lorentzian worldsheet) (1.1)

w = σ + iτ w̄ = σ − iτ (Euclidean worldsheet) (1.2)

and the following shorthands are used for the derivatives

∂ ≡ ∂

∂w
∂̄ ≡ ∂

∂w̄
(1.3)

Some effort has been made to keep the notation as unambiguous as possible,
but at times this would require violating consistency with the literature. And so,
depending on context, g may denote either the rescaled coupling, or genus, or isom-
etry group element, whereas J is either flat connection or spin of an operator. We
hope that the appropriate meaning of any given symbol will be clear from context.
Also we want to warn the reader that there are several quantities for which there
is no universally accepted definitions, and for instance many papers use ν that is
different by a factor of two with respect to this thesis. The same applies to the older
convention on the rescaled coupling g (2.22).

All figures were made with either Mathematica or TikZ.





Chapter 2

AdS/CFT correspondence

This chapter introduces the two physical theories that appear in the most popular
variant of the AdS/CFT correspondence, which is also the one that is studied in this
thesis. Then, the correspondence itself is outlined from a general angle, as well as
for the specific results that will prove useful later on. Some broader context is given,
albeit only slightly. Any comprehensive discussion would be beyond the scope of
this thesis due to the extremely fertile nature of the subject.

2.1 String theory in AdS5 × S5

String theory is an idea which began emerging in the 1960s, that generalised the
notion of elementary point-like particle. The basic objects now acquired finite dimen-
sions, and in case of just one dimension were called strings. Theories of their higher-
dimensional analogues, branes (generalised from two-dimensional membranes), did
not achieve much success, but branes themselves very often appear as background
objects in string theory, for instance with open strings attached to them. Over
the years, string theory was suspected to be the theory of strong interactions (its
original purpose), the theory of quantum gravity (which it is, despite some caveats
and criticisms), and even the theory of everything (which is still the highest hope
invested in it). The most secure statement is that it has proven to be a very useful
and powerful, even if unwieldy and controversial, tool that has produced significant
results in many branches of physics and even provided some insights in mathemat-
ics. A classical textbook on the topic is [Polc98], while an excellently accessible
introduction is [Tong09].

Just as a trajectory of a particle in spacetime is a worldline parameterised by
one variable, the evolution of a string is described by a two-dimensional worldsheet
embedded in the spacetime and parameterised by two coordinates, called τ, σ. The
Lagrangean formalism determines the motion of a string by the condition of minimis-
ing the area of the worldsheet. For a string moving in flat space, whose worldsheet is

11



12 CHAPTER 2. ADS/CFT CORRESPONDENCE

given in target space coordinates as Xµ(σ, τ), the induced metric on the worldsheet
is

γαβ =
∂Xµ

∂σα
∂Xν

∂σβ
ηµν (2.1)

where η is the Minkowski metric. The action would be then proportional to the area
of the worldsheet

S =
1

2πα′

∫
d2σ
√
−det γ =

1

2πα′

∫
d2σ

√
−(Ẋ)2(X ′)2 + (Ẋ ·X ′)2 (2.2)

where dot and prime respectively denote differentiation in τ, σ, and the prefactor 1
2πα′

can be interpreted as string tension. This action, called Nambu–Goto action, leads
to highly non-linear equations of motion, so an important development was made
by introducing the Polyakov action, in which γαβ(σ, τ) is promoted to a variable in
its own right

S =
1

4πα′

∫
d2σ
√
−det γγαβηµν∂αX

µ∂βX
ν (2.3)

Of course, the equations of motion as a whole would be just as troublesome as for
the Nambu–Goto action, but the gauge symmetries of the Polyakov action allow for
a very specific choice of gauge. Namely, by using the reparameterisation invariance,
one can impose the conformal gauge condition, in which the metric γ is proportional
(by a scalar factor) to the Minkowski metric. Further, Weyl invariance

γαβ(σ, τ) 7→ Θ(σ, τ)2 γαβ(σ, τ) (2.4)

can be used to impose the flat gauge, γαβ = ηαβ, in which the equations of motion
are just wave equations

∂α∂
αXµ = 0 (2.5)

This simplicity is slightly obfuscated by what remains of the γ equations of motion
after the gauge choice. These constraint equations, called the Virasoro constraints,
amount to the vanishing of the stress-energy tensor and read in general

∂αXµ ∂βX
µ − 1

2 ηαβ η
γδ ∂γXµ ∂δX

µ = 0 (2.6)

In the conformal gauge their explicit form is

(Ẋ)2 + (X ′)2 = Ẋ ·X ′ = 0 (2.7)

respectively for the diagonal and off-diagonal components. Also, in the light-cone
coordinates (1.1), in which the diagonal terms of the metric tensor vanish, and the
off-diagonal terms are equal, the diagonal components of the constraints read

(∂X)2 = (∂̄X)2 = 0 (2.8)

while the off-diagonal are satisfied trivially.
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A string theory course would proceed by considering excitations (vibrations) of
a string, quantising them, and arriving at two peculiarities. Firstly, the ground state
of a string is a tachyon, a particle of imaginary mass. Secondly, by a representation-
theoretical argument, the first excited states should be massless, which is achieved
only if the target space is 26-dimensional. In fact, from the point of view of ‘reality’
of string theory, the latter is less problematic than the former, as all the superfluous
dimensions can belong to a compact manifold of an imperceivably small size.

So far, the excitations have only been bosonic, therefore describing forces with-
out matter. Fermions are introduced by means of supersymmetry, and it turns out
that for such theories the tachyon is no longer present, whereas the critical dimen-
sion is 10. Moreover, there are five different types of superstring theories, differing
by field content, gauge symmetry group, and the existence of open strings. We will
not go into any further detail here, as our calculations on the string theory side will
be purely classical and the full supersymmetric Lagrangean will not even be needed.
Still, from now on, we will formally be working with type IIB (closed) strings.

We will also work on a non-flat background, namely the product space AdS5 ×
S5 of a five-dimensional anti-de Sitter space and a five-dimensional sphere. They
are spaces of constant negative and positive curvature, respectively, which can be
parameterised as embeddings in six-dimensional flat spaces with different metric
signatures. Explicitly, for general number of dimensions d

ηABY
AY B = −Y 2

0 + Y 2
1 + · · ·+ Y 2

d−1 − Y 2
d = −1 (2.9)

δABX
AXB = X2

1 + · · ·+X2
d+1 = 1 (2.10)

for the AdSd, Sd, respectively.

There are several useful ways of parameterising the AdS space in terms of d
independent coordinates, two of which can be expressed as follows

Y0 =
x0

z
= cosh ρ sin t Yd =

1

2z
(1 + z2 + xµxµ) = cosh ρ cos t

Yi =
xi
z

= ni sinh ρ Yd−1 =
1

2z
(−1 + z2 + xµxµ) = nd−1 sinh ρ (2.11)

The coordinates t, ρ are respectively the global time and the radial coordinate. The
time is not periodic, so the space should be actually understood as a universal
cover of AdSd, depicted in fig. 2.1 for AdS2. ni, nd−1, obeying ni · ni + n2

d−1 = 1,
span a sphere of dimension d − 2, which appears here as a factor of AdSd. Any
parameterisation of this sphere, together with t, ρ, form the global AdS coordinates,
in which the induced metric reads

ds2 = dρ2 − cosh2 ρ dt2 + sinh2 ρ dΩ2
d−2 (2.12)

In further discussion, a parameterisation of AdS3 subspace will be used, and can
be achieved by setting all but one Yi, and therefore also ni, to zero. Then, say,
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Figure 2.1: A rendering of an anti-de Sitter space, precisely AdS2 as embedded in
R3. The coordinate going around the ‘reel’ is the global time, and it is not periodic,
therefore a universal cover of the space is drawn in the form of overlapping sheets,
not unlike a roll of toilet paper.

n2
1 + n2

d−1 = 1 spans a S1 factor which can be parameterised by an angular variable
ψ so that

Y1 = sinh ρ cosψ Yd−1 = sinh ρ sinψ (2.13)

and the metric reads

ds2 = dρ2 − cosh2 ρ dt2 + sinh2 ρ dψ2 (2.14)

The region of large ρ, where the (covering) space has the geometry of Rt × Sd−2, is
the boundary of AdSd of dimension d− 1.

The other set of coordinates xµ, z are the Poincaré coordinates in which the
metric reads

ds2 =
1

z2
(dxµdxµ + dz2) (2.15)

where the summation uses Minkowski signature. The coordinate z > 0 measures
the distance from the boundary, and the metric can be understood as a Minkowski
metric with an additional deformation depending solely on that distance. Restriction
to the AdS3 subspace amounts just to setting the superfluous xµ to zero.

The Polyakov action on AdS5 × S5 is straightforwardly

S =
R2

4πα′

∫
d2σ

(
−∂αYA∂αY A + Λ(YAY

A + 1)− ∂αXA∂
αXA + Λ̃(XAX

A − 1)
)

(2.16)
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where the Lagrange multipliers Λ, Λ̃ are introduced as usual to enforce the embed-
ding conditions, and the radius R of both AdS and the sphere appears. The Virasoro
constraints now read

ẎAẎ
A + Y ′AY

′A + ẊAẊ
A +X ′AX

′A = ẎAY
′A + ẊAX

′A = 0 (2.17)

Note that due to the presence of a curved background (or equivalently, the Lagrange
multiplier terms in the action), the equations of motion are hard to solve even in
the conformal gauge.

The action is necessarily invariant under the embedding space symmetries,
SO(2, 4) × SO(6) for the AdS and spherical parts, respectively. The conserved
charges corresponding to these symmetries are [Tsey03, (2.13)]

SAB =
R2

2πα′

∫ 2π

0
dσ (YAẎB − YBẎA)

JAB =
R2

2πα′

∫ 2π

0
dσ (XAẊB −XBẊA) (2.18)

2.2 N = 4 supersymmetric Yang–Mills theory

We will introduce the maximally supersymmetric four-dimensional Yang–Mills the-
ory only in a very sketchy manner. The reason is that this thesis does not technically
rely on any calculation in this theory, and it is only required as one of the sides of the
AdS/CFT correspondence, and subsequently serves to motivate some of our work.

N = 4 SYM, as it is commonly abbreviated, is a Yang–Mills theory with
SU(Nc) gauge group that was obtained in [BSS77] as a dimensional reduction of
N = 1 ten-dimensional SYM. Its particle content encompasses a gauge field, four
fermionic fields, and six scalar fields, all interacting with a coupling constant gYM.
The scalars are quite often grouped in three pairs, whose complex combinations are
called X,Y, Z.

This theory has a remarkable property of being conformally invariant, even at
the quantum level. As a consequence, the beta function vanishes and there is no mass
scale in the theory. The bosonic symmetry group of N = 4 SYM is SU(2, 2)×SU(4),
where SU(2, 2) is the four-dimensional conformal group. Meanwhile SU(4) ' SO(6)

is an additional symmetry transforming scalar fields into one another, the so-called
R-symmetry. Taking into account the supersymmetric generators, the full symmetry
group is the projective special unitary group PSU(2, 2|4).

N = 4 SYM, as a SU(Nc) gauge theory, can be considered a close cousin of
quantum chromodynamics, only a better-behaved one. It is much more symmetric,
which makes it easier to handle, which, however, comes at a cost. It differs from
QCD in many crucial aspects, most notably by the lack of mass scale or confinement,
or the presence of supersymmetry, which is not present in QCD. Nevertheless, the
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relation between the two theories is one of the motivations to study N = 4 SYM, in
which the fields are characterised by anomalous dimension, ie. the number ∆ that
appears in the two-point function

〈O(x)Ō(y)〉 ∝ 1

|x− y|2∆
(2.19)

and is the eigenvalue of the dilatation operator D, much like the energy is the
eigenvalue of the Hamiltonian. A substantial part of what is meant by ‘solving the
N = 4 SYM’ is to determine the spectrum of anomalous dimension of fields. This
is a non-trivial task, especially because the anomalous dimension receives quan-
tum corrections. One of the striking and hardly coincidental resemblances is that
the full anomalous dimension of twist-two operators in N = 4 SYM matches the
highest-transcendentality part of the QCD result. There is so far no theoretical
understanding to this relation.

The observables of interest in N = 4 SYM include not only the two-point
functions, but also more complicated correlation functions, which contain the so-
called structure constants of the theory. Another type of observable is the Wilson
loop expectation value, ie. an ordered exponential of the gauge field along some
closed contour C

W (C) =
1

Nc
trP exp

∮
C
Aµdx

µ (2.20)

Also, as operators, albeit non-local, Wilson loops can enter correlation functions
with other objects as well.

2.3 The duality

The keystone of the thesis is the AdS/CFT correspondence, also more generally
called the gauge–gravity duality, which was initially introduced in [Mald97] and
soon amplified by [GKP98, Witt98]. The very rough statement of the correspon-
dence is that the two theories introduced in this chapter are actually two descriptions
of the same reality.

Before going into details, note that this relation is indeed remarkable. The theo-
ries are very different at first glance: the string theory is a five-dimensional (sweeping
the compactified subspace under the rug) theory of pure gravity, whereas N = 4

SYM is a four-dimensional theory of gauge interactions with no mass scale. How-
ever, the symmetry groups of both theories do coincide, therefore giving a humble
clue in favour of the correspondence.

AdS/CFT is usually motivated by painting a picture of a stack of Nc parallel
3+1-dimensional massive branes at negligibly small distances from one another in a
ten-dimensional space. Taking the low-energy limit, it can be argued that the open
strings with endpoints on the branes decouple from the theory in the bulk, which
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becomes a free supergravity theory. The open strings transform as U(Nc) fields due
to the number of stacked branes on which their endpoints are, and the description
of massless open string excitations actually matches the N = 4 SYM.

From the other point of view, the branes can be considered as sources for
supergravity fields. Then it turns out that for the observer at an infinite distance
from the branes, the closer the objects are to the branes, the lower their energy
appears. Thus, in the low-energy limit, the region close to the branes decouples
from the rest, which is again described by free supergravity. As it stands, we have
two low-energy descriptions of the same situation as two pairs of decoupled theories,
one of which is the same in both cases. Therefore it only makes sense to identify the
other theories, that is, N = 4 SYM, and closed strings in a curved background. Its
geometry is determined by the massive branes to be, unsurprisingly at this point,
AdS5 × S5.

It is crucial to correctly identify the parameters of the two corresponding the-
ories. We get

λ ≡ g2
YMNc =

R2

(α′)2
gstring = g2

YM =
λ

Nc
(2.21)

where λ is the newly introduced ’t Hooft coupling and gstring is the string interaction
coupling constant. Since N = 4 is exactly conformal even at the quantum level,
λ remains an arbitrary dimensionless parameter. For convenience, very often a
traditional rescaled coupling constant is used

g2 =
λ

16π2
(2.22)

The parameter space of AdS/CFT is two-dimensional, usually parameterised by λ

and 1/Nc.

It needs to be specified in what region of the parameter space the AdS/CFT
correspondence holds. The modest, most widely accepted variant is confined to the
planar limit, ie. Nc → ∞ with fixed λ. The name comes from the fact that for
general number of colours Nc, a Feynman graph of N = 4 SYM is proportional to
Nc to the power of minus the Euler characteristic (or genus) of the graph. Therefore,
the leading contribution in the limit is given by the graphs with the lowest Euler
characteristic, ie. planar. On the stringy side, by (2.21) the planar limit corresponds
to non-interacting strings.

Note that in the planar limit, keeping the coupling (which in AdS/CFT context
almost universally means ’t Hooft coupling λ) small corresponds to the perturbative
regime on the gauge theory side, or the dual theory of quantum free strings. Con-
versely, large coupling means either strongly coupled N = 4 SYM or classical free
strings. This is perhaps the biggest appeal, aside from its philosophical beauty, of
the AdS/CFT correspondence: by mapping strongly coupled regime of one theory
to the classical regime of the other, it allows to treat the quantities that are hard to
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compute straightforwardly by translating the system by some AdS/CFT dictionary
to a situation that will be easy to handle. For this reason, AdS/CFT is called a
weak-strong duality.

This fact, while of utmost practical importance, also presents a dramatic draw-
back to any attempt to actually prove the AdS/CFT. The correspondence still has
a status of conjecture, and even a more rigorous derivation would be a heuristic
requiring a leap of faith. On one hand, there is already a huge body of results that
act as clues in favour of the correspondence, and make this leap of faith rather non-
demanding, but on the other it is not universally accepted if AdS/CFT will ever
be proven (or even what it would exactly mean to prove it). Notably, one piece of
evidence is the discovery of integrability of both theories of the correspondence.

Let us mention in passing that there also exist other variants of the correspon-
dence, for instance strings onAdS4×CP 3 corresponding to a three-dimensional CFT,
and a class of dualities with different spaces of compactified dimension. The duali-
ties, in which the string theory is four-dimensional, can be perceived as attempts in
the direction of explaining ‘our’ four-dimensional gravity as a gauge theory, to mend
the long-standing disparity between the Standard Model and general relativity. Also
worth mentioning are some attempts at formulating what would be the AdS/QCD
correspondence, or some even more down-to-earth, even if speculative applications
to condensed matter theory. There also is a fertile field of research of the properties
of the quark–gluon plasma, where a non-zero temperature of the boundary theory
corresponds to the presence of a black brane in the bulk.

For the forthcoming discussion, we need to specify a few entries of the AdS/CFT
dictionary. Namely, the boundary theory Wilson loop expectation values correspond
to minimal surfaces in the bulk spanned by these loops, and the same goes for corre-
lation functions of a large class of non-protected operators. Mathematically, expec-
tation values of the Wilson loops or the correlators are essentially the exponentials
of the areas of the respective surfaces. In case of the Wilson loops, the minimal
surface can be viewed as the worldsheet of an open string, whose propagating end-
points trace out the loop. Two-point function minimal surface corresponds to a
string state emitted at the position of one operator, propagating out into the bulk
and back to the boundary to be absorbed at the position of the other operator. For
local operators, the string would be point-like at the boundary; for Wilson loops
it would be shaped like the loop, and obviously may change shape in the course of
evolution. Viewed in the Poincaré patch, the minimal surfaces are drawn into the
bulk by the scaling factor of the metric (2.15).

Another important part is the identification of the charges on both sides of
the correspondence. The string charges defined as (2.18) translate to the boundary
theory conformal group generators as follows [Tsey03, (2.20)]

Sµν = Mµν Sµ4 =
1

2
(Kµ − Pµ) Sµ5 =

1

2
(Kµ + Pµ) S54 = D (2.23)
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with Mµν , Pµ,Kµ, D being respectively the Lorentz boosts and rotations, transla-
tions, special conformal transformations, and dilatation. The energy is 1

2(K0 + P0),
and its relation to the dilatation is expressed as [DO02]

U · 1

2
(P0 +K0) · U−1 = −iD (2.24)

which means that the respective eigenvalues coincide and it is sound to interpret
the anomalous dimension as the conformal equivalent of AdS5 × S5 energies with
respect to the global AdS time.

2.4 The BFKL pomeron

For any gauge theory, aside from finding its spectrum, it is most important to
determine the particle scattering amplitudes, how do they depend on the type of
particles involved, as well as the interaction parameters. In practice, the analysis
is performed in some specific parameter regime. One of those is the Regge limit
of inelastic scattering, in which the particle energy (Mandelstam variable s) is very
large in comparison with the cut-off scale of the theory, and the energy transfer
(Mandelstam t) is fixed.

For such processes, the so-called Regge behaviour is expected and also confirmed
by experimental data; namely, that the amplitude is proportional to sα(t), where α(t)

is called Regge trajectory. α(t) is the position of a pole in the partial-wave expansion
of the amplitude, and is interpreted as an exchange of a virtual composite particle.
This particle, a reggeized gluon, or reggeon, can be thought of as a number of gluons,
which in turn exchange gluons between themselves, described by a ladder diagram.

The Regge trajectory is in fact approximated by a linear function, α(t) = j+α′t,
where α′ is the Regge slope and for string theory is related to the string tension.
However, for scattering, the intercept j is more relevant and has been an object
of investigation in various settings. One of them, in which t is large (but fixed
and much smaller than s), ie. of order of the cut-off, is called the BFKL regime
[Lipa76, KLF77, BL78]. The dynamics are dominated by a BFKL pomeron, which
is a bound state of two reggeized gluons.

This discussion works for both QCD and N = 4 SYM, and in fact the leading-
order contributions to the pomeron from the BFKL equation coincide [KL02]. Even
though the agreement does not hold to next orders, there is a lot of motivation to
study the pomeron intercept in CFT.

To leverage the power of the AdS/CFT correspondence in this setting, a dic-
tionary between the two theories is required. The direction of the collision defines
the longitudinal plane in the spacetime, whereas the other two coordinates form the
transverse plane. Somewhat in agreement with expectation, the BFKL equation is
invariant under the sl(2,C) symmetry of the transverse plane. Therefore, any quan-
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tity, such as the intercept, will be a function of the relevant principal continuous
series representation of this algebra, parameterised by

h =
1 + n

2
+ iν h̄ =

1− n
2

+ iν (2.25)

with n integer and ν real. Now, the dictionary is provided by an identification
between the generators of symmetries of the transverse plane and the isometries of
a relevant subspace of AdS5 [BST07]

J0 =
1

2
(−iD +M12) J+ =

1

2
(P1 − iP2) J− =

1

2
(K1 + iK2) (2.26)

J̄0 =
1

2
(−iD −M12) J̄+ =

1

2
(P1 + iP2) J̄− =

1

2
(K1 − iK2) (2.27)

where the eigenvalues of J0, J̄0 are respectively h + m, h̄ + m̄, for (independent)
integers m, m̄. Therefore, the relation to the string charges will read

−iD = 1 + 2iν +m+ m̄ S12 = n (2.28)

In turn, as the BFKL Hamiltonian is proportional to the boost operator in the
longitudinal plane, the intercept will be given by the relevant string charge as

j = −iS03 (2.29)



Chapter 3

Aspects of integrability

The concept of integrability is notoriously difficult to delineate, and even the best es-
tablished textbooks on the subject [BBT03] warn of its fragmented nature, promis-
ing understanding of ‘profound unity’ only later in the course of study. However, an
integrable (in the Liouville sense) system itself is a well defined notion, and means a
system with as many conserved charges as possible. This means n for systems with
phase space of finite dimension 2n, and infinity for the infinite-dimensional systems.
Note that precise statements in the latter case are stil rather problematic.

We will not separately introduce the the integrability formalism before applying
it to the relevant physical setup, as we are going to apply it only once. Instead, we
are going to discuss it already in context of AdS/CFT, so that the logic behind it is
more palpable.

3.1 Integrable strings in AdS3 × S1

Consider a string worldsheet completely contained in a subspace of the full AdS5 ×
S5, namely AdS3 × S1. The Polyakov action is obtained by setting Y2,3 to 0 and
parameterising the S1 by an angular variable φ. The result is (sans the Lagrange
multiplier term)

S =

√
λ

4π

∫ 2π

0
dσ

∫
dτ
(
−∂αYA∂αY A − ∂αφ∂αφ

)
(3.1)

To any point in AdS3 a matrix field can be associated as follows

g =

(
Y0 + Y1 Y5 − Y4

−Y5 − Y4 Y0 − Y1

)
(3.2)

Calculating det g immediately yields the hyperboloid constraint (2.9), and thus g ∈
SL(2,R). Then, the following current can be introduced

jα = g−1∂αg (3.3)

21
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It belongs to the corresponding Lie algebra sl(2,R) by definition, but its tracelessness
can be also seen by an explicit matrix calculation

tr jα = tr g−1∂α(exp log g) = tr g−1

∫ 1

0
dυ eυ log g(∂α log g) e(1−υ) log g

= tr

∫ 1

0
dυ ∂α log g = ∂α tr log g = ∂α log det g = ∂α0 = 0 (3.4)

where firstly the derivative of a matrix exponential [Wilc67, (4.1)] was used, and
the integral became trivial due to the cyclicity of trace. Using these quantities, the
action can be rewritten as

S =

√
λ

4π

∫ 2π

0
dσ

∫
dτ
(
−1

2 tr jαj
α − ∂αφ∂αφ

)
(3.5)

where the trace term just equals the corresponding term of (3.1), what can be easily
seen using its intermediate form, 1

2 tr ∂α(g−1)∂αg. The hyperboloid constraint is
satisfied automatically, and thus no Lagrange multiplier is introduced. This form of
the action is called the principal chiral model, and is invariant under the following
global symmetry of g

g 7→ ULgUR (3.6)

where the constant matrices UL,R immediately cancel in the trace term. Note that
the current jα is the Noether conserved current corresponding to the UR part of the
symmetry.

The Virasoro constraints for this action take the form

(−1
2 tr jαjβ − ∂αφ∂βφ)− 1

2 ηαβ η
γδ(−1

2 tr jγjδ − ∂γφ∂δφ) = 0 (3.7)

In the light-cone coordinates, with

j = g−1∂g j̄ = g−1∂̄g (3.8)

the components read explicitly

1
2 tr j2 = −(∂φ)2 1

2 tr j̄2 = −(∂̄φ)2 (3.9)

There always exists a gauge in which the right-hand sides are constant, which is in
turn dictated by what solution is chosen for the φ equation of motion

∂∂̄φ = 0 (3.10)

Note that for traceless 2 × 2 matrices such as j, j̄, tr j2 = −2 det j, therefore the
constraints can be rewritten as

det j = (∂φ)2 det j̄ = (∂̄φ)2 (3.11)

effectively determining eigenvalues of j, j̄. There are two equations of motion for j

∂j̄ + ∂̄j = 0 ∂j̄ − ∂̄j + [j, j̄] = 0 (3.12)
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where the former can be checked, even if laboriously, to exactly reproduce the equa-
tions in the original variables

∂α∂
αYA + (∂βYB ∂

βY B)YA = 0 (3.13)

complete with the second term arising from the hyperboloid constraint Lagrange
multiplier. The latter of (3.12) is trivially satisfied due to (3.8). However, it would
be non-trivial if the action (3.5) would be introduced in terms of j, without a priori
specifying their relation to g.

Now, let us define a connection

J =
j

1− x
J̄ =

j̄

1 + x
(3.14)

that additionally depends on a complex spectral parameter x. The flatness condition

∀x ∂J̄ − ∂̄J + [J, J̄ ] = 0 (3.15)

is satisfied if and only if both equations of motion (3.12) are satisfied simultaneously.
Specifically, the left-hand side of the flatness condition is a linear combination of the
left-hand sides of the equations of motion, while also yielding them under either the
limit x→∞ in the leading term or the substitution x = 0, respectively.

With a flat connection, one can consider a parallel transport of the connection
along some path C on the worldsheet

Ω(C;x) = P exp

∫
C
J dw + J̄ dw̄ (3.16)

It has a crucial property of being independent of continuous deformation of path C,
which is a consequence of flatness of J . Adapting from [AFSg97, §2], we will prove
this, starting from a statement equivalent to (3.16)

Ω′ + (Jw′ + J̄ w̄′) Ω = 0 (3.17)

where in this paragraph prime denotes differentiation with respect to the variable
υ smoothly parameterising C. Using the identities for (Ω−1)′, (δΩ)′ that follow
immediately, we can vary Ω to δΩ and write

(Ω−1δΩ)′ = −Ω−1 δ(Jw′ + J̄ w̄′) Ω (3.18)

= −Ω−1
(
(∂Jδw + ∂̄Jδw̄)w′ + Jδw′ + (∂J̄δw + ∂̄J̄δw̄)w̄′ + J̄δw̄′

)
Ω

We can integrate this quantity along the length of C. The δw′, δw̄′ terms can be
integrated by parts, and the boundary term will vanish due to the usual assump-
tion that δw, δw̄ vanish at the limits of integration. The remaining terms can be
rearranged to read

Ω−1δΩ =

∫
dυΩ−1

(
(w′δw̄ − w̄′δw)(∂J̄ − ∂̄J + [J, J̄ ])

)
Ω (3.19)
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Ω(w1, w̄1)

Ω(w, w̄)

U

Figure 3.1: A monodromy Ω is a parallel transport of the connection J, J̄ , here around
the string worldsheet. As changing the reference point w, w̄ amounts to a similarity
transformation with respect to U , the eigenvalues of Ω are conserved.

where one of the parentheses contain the flatness condition. Therefore, for flat
connections δΩ = 0.

A parallel transport along a closed path is called a monodromy (see fig. 3.1),
and for these the path independence justifies the notation Ω(w, w̄;x), as Ω depends
only on a reference point at which the path starts and ends (and the homotopy
class of the contour). Another consequence of path independence is that if the
path is contractible to a point, the monodromy is trivial, Ω = I. However, not all
monodromies are trivial, as the worldsheet may exhibit topological features, such
as punctures or holes, that the path may encircle and therefore be non-contractible.
A typical situation in which this is observed is when the path goes around the
worldsheet of a closed string, which has the topology of a cylinder.

Yet another crucial consequence of path independence is the following law of
monodromy transformation between different reference points

Ω(w1, w̄1;x) = U Ω(w0, w̄0;x)U−1 (3.20)

where U is some matrix, corresponding to the parallel transport of the connection
between w0, w̄0 and w1, w̄1. This is a similarity transformation and implies that
at any two reference points the eigenvalues of Ω are the same. In other words, Ω

exhibits isospectral evolution, and the eigenvalues are constants of motion. They
depend on the spectral parameter, so their values at any x are conserved, therefore
yielding an infinite set of conserved quantities. This is how integrability appears for
any system for which a flat connection can be constructed.
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The monodromy matrix satisfies the following equations

∂Ω + [J,Ω] = ∂̄Ω + [J̄ ,Ω] = 0 (3.21)

which can be considered an infinitesimal version of (3.20). Alternatively, one may
consider (3.17), taking into account that for a closed path both endpoints are dif-
ferentiated simultaneously. Precisely, Ω can be represented as a product of two
parallel transports Ω1Ω−1

2 , both from the same point to w0, w̄0, on opposite sides of
the worldsheet. Then, from (3.17)

∂Ω = (∂Ω1)Ω−1
2 + Ω1(∂Ω−1

2 ) = −JΩ1Ω−1
2 + Ω1Ω−1

2 J = −[J,Ω] (3.22)

and identically for ∂̄, J̄ . (3.21) is called the Lax equation and is another common
feature of integrable systems. In particular, for any Liouville integrable system,
matrices satisfying it can always be constructed, although such construction relies
on the knowledge of the conserved quantities and therefore does not uncover any
new information on the system.

The equation (3.21) can be seen as an operator commutation relation

[∂ + J,Ω] = [∂̄ + J̄ ,Ω] = 0 (3.23)

Together with the fact that ∂ + J, ∂̄ + J̄ also commute (their commutator is again
the flatness condition) we obtain a set of mutually commuting operators. Therefore,
there exists a basis of eigenvectors of Ω such that its elements are also eigenvectors
of ∂ + J, ∂̄ + J̄ ; we say that the three operators are simultaneously diagonalisable.
Any eigenvector of Ω is also an eigenvector of its logarithmic derivative

L(w, w̄;x) = − ∂

∂x
log Ω(w, w̄;x) (3.24)

and thus the operator L also satisfies the Lax equations (3.21).

In the present case, Ω ∈ SL(2,R) as an ordered exponential of an element of
the relevant Lie algebra. In particular, it is unimodular (has unit determinant),
so its conserved eigenvalues can be written as e±ip(x), where p is called the quasi-
momentum. Consequently, the eigenvalues of L are ±p′(x).

Let us also introduce the following auxiliary system of linear equations

∂Ψ + JΨ = 0 ∂̄Ψ + J̄Ψ = 0 (3.25)

This system generically has two linearly independent two-component vector solu-
tions, called wave functions (note that this is just a convenient name, as the object
is still classical). They can be arranged as columns of a matrix Ψ̂, which subse-
quently also satisfies (3.25). Note that the solution is determined up to a constant
matrix U , as

Ψ̂ 7→ Ψ̂U (3.26)
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maps solutions to one another. This ambiguity is essentially the freedom of choice
of integration constants in a differential equation.

The solution can be used to express the connection components as

J = −(∂Ψ̂)Ψ̂−1 J̄ = −(∂̄Ψ̂)Ψ̂−1 (3.27)

where the expressions are invariant under (3.26). Substituting these in the flatness
condition satisfies it identically, therefore it can be interpreted as a consistency
condition for the existence of solutions of the auxiliary system. The determinant of
Ψ̂(w, w̄;x) does not depend on w, w̄, as can be seen from

∂ log det Ψ̂ = − tr J = 0 ∂̄ log det Ψ̂ = − tr J̄ = 0 (3.28)

using (3.27) and transforming it as in (3.4). This is not surprising, as the def-
inition of the parallel transport (3.16) resembles a formal solution to (3.25), so
Ψ̂(w, w̄;x) can be understood as a parallel transport matrix from some fixed point
to w, w̄. In particular, it can be used to assemble monodromies. Indeed, a quantity
Ψ̂1(w, w̄;x)Ψ̂2(w, w̄;x)−1 satisfies the Lax equation straightforwardly from (3.25).
Conversely, a monodromy acts on wave functions as a transport operator.

At x = 0, the physical quantities can be recovered

j = −(∂Ψ̂)Ψ̂−1
∣∣∣
x=0

j̄ = −(∂̄Ψ̂)Ψ̂−1
∣∣∣
x=0

(3.29)

More importantly, taking (3.25) at this value, expressing j, j̄ in terms of g, and
left-multiplying sidewise by g, one gets

g(∂Ψ̂) + (∂g)Ψ̂
∣∣∣
x=0

= 0 g(∂̄Ψ̂) + (∂̄g)Ψ̂
∣∣∣
x=0

= 0 (3.30)

so consequently gΨ̂(w, w̄; 0) is a constant matrix. This ambiguity also encompasses
(3.26) and is fully consistent with the UL symmetry of (3.6). Bearing this in mind,
one usually writes

g =
√

det Ψ̂ Ψ̂−1
∣∣∣
x=0

(3.31)

where the additional factor is a constant that guarantees that g is unimodular, as
Ψ̂(w, w̄; 0) in general is not.

The reconstruction formulae (3.29), (3.31) seem rather tautological at this point,
as to obtain g one needs a solution of (3.25), which in turn is given in terms of g.
These will become more useful in the context of the following sections. Precisely,
we will show how to obtain Ψ, and consequently g throught (3.31), in a purely
algebraical fashion, ie. without resorting to solving any differential equation. This
will be achieved with help of the algebraic curve.

Let us finally mention how the string energy and spin appear in the asymptotic
behaviour of the quasi-momentum. The auxiliary linear system (3.25) can be ex-
panded to the leading term in x at either zero or infinity, and then formally solved
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for the respective asymptotic expression of Ω. Its trace, which by definition equals
2 cos p(x), can be compared with the expressions for the charges (2.18) in terms of
integrals of j, j̄ currents. As the series expansions in x are required to match, the
leading terms of p are discovered [KZ04, (3.28), (3.30)] to read

p(x) = −2π(E − S)√
λ

x+O(x2) (x→ 0) (3.32)

p(x) =
2π(E + S)√

λx
+O(x−2) (x→∞) (3.33)

3.2 The algebraic curve

Using any operator L satisfying the Lax equations, an algebraic curve can be defined
as a set of pairs of complex numbers obeying the characteristic equation of L

det(ỹ − L) = 0 (3.34)

The equation depends only on the eigenvalues of L, which in turn do not depend on
the worldsheet coordinates. Note that this object is different from the spectral curve
that is also a quantity of interest [Schä10], which is defined by the characteristic
equation of Ω (which also satisfies the Lax equation). The analytic properties of
the spectral curve are much more complicated, in part due to the fact that Ω has
essential singularities near x = ±1, where the connection diverges; L has only poles
there.

The following analysis is valid for such L that (3.34) is rational in x. Moreover,
to remove the multiple poles at x = ±1, a birational transformation in ỹ will be
performed, so that the algebraic curve in the new variable y will have the following
polynomial (hyperelliptic) form

yn =
∏
i

(x− ai) (3.35)

where n is the ỹ-degree of (3.34), or, equivalently, the order of the matrix L. This
can be done more explicitly for n = 2, where (3.34) reads

ỹ2 = −detL = p′(x)2 = r(x) (3.36)

where the ỹ1 term is proportional to trL and therefore vanishes. The right-hand
side r(x) is a rational function of x, for which a rational perfect square Q(x)2 can
be chosen so that r(x)Q(x)2 is a polynomial without double zeroes. Therefore,
multiplying (3.36) sidewise by Q(x)2 and birationally transforming

ỹ 7→ y = Q(x)ỹ (3.37)

we obtain the desired polynomial form

y2 = r(x)Q(x)2 (3.38)
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which is a desingularisation of the original algebraic curve.

The algebraic curve can be understood as an n-sheeted cover of the complex
plane. The sheets are unified at branch points where y = 0, therefore, at the roots of
the x-polynomial in (3.35). If the polynomial is of odd degree, there is an additional
branch point at infinity, and all branch points are pairwise connected by cuts. The
cuts correspond to the choice of branch in a radical expression for y in terms of x.

The solutions that fall in the category described above, ie. admitting a desin-
gularised, rational algebraic curve, are called finite-gap solutions. This traditional
nomenclature stems from the study of the integrable Korteweg–de Vries equation,
and in our analysis corresponds to the finite genus g of the algebraic curve. It is
believed that any classical string solution can be obtained as a limit of a sequence
of solutions of increasing but finite genus [DV06].

One of the crucial advantages of introducing the algebraic curve is that all
eigenvalues and eigenvectors of L that depend on a complex parameter x can be
treated as single functions defined on the curve. Except for the branch points,
for any complex x there are n points of the curve lying above it, ie. n values of y
satisfying (3.35), and each of them corresponds to one eigenvalue and one eigenvector
of L. Such points will be denoted as x(i) for i-th sheet, but only when specifying the
sheet is explicitly needed. In other cases, we will slightly abuse the notation, when
by x we will mean any (fixed) of the x(i).

In fact, the eigenvector Ψ of L is almost uniquely determined by the properties of
meromorphic functions on the algebraic curve. To see this, we start with determining
the number of poles of Ψ, by considering a square of the determinant of the matrix(
Ψ(x(1)); . . . ; Ψ(x(n))

)
. Such an expression has a double pole for each pole of some

Ψ(x(i)), and as a rational function of x it has as many poles as zeroes. In turn,
it has zeroes precisely where its two columns coincide, or, equivalently, at branch
points unifying two sheets of the curve. Consequently, Ψ has as many poles as half
the number of branch points, that is, g + n− 1 by the Riemann–Hurwitz formula.

Note that in one case that is examined later, this is seemingly violated, when a
degenerate algebraic curve with no finite-size cuts corresponds to a solution with two
poles. However, this algebraic curve has two point-like points of degeneracy, which
can be viewed as limits of two cuts, and in this sense solution should be related to
a genus-1 curve, which is precisely the case.

For the Lax operator of AdS3×S1 string worldsheets the situation is as simple
as possible, as the algebraic curve has just n = 2 sheets. The eigenvalues of L that
the sheets correspond to are ±p′(x), and accordingly x± will denote a point of the
algebraic curve lying above x on the respective sheet, assuming there is no branch
point at x. Passing to the corresponding point on the other sheet is equivalent to
changing the sign of the eigenvalue ±p′(x).

By choosing a particular normalisation of the eigenvector, n − 1 of the poles
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can be precisely determined. We define the normalised eigenvector Ψn to have 1
as its first component. If L is non-degenerate and with distinct eigenvalues in the
x → ∞ limit (meaning that there is no branch point there), its eigenvector will
behave around∞(i) (the point lying above infinity on the i-th sheet) as ei+O(x−1),
where all components of ei are zero except the i-th. The corresponding normalised
eigenvector is obtained by dividing all components by the first, which results in the
following behaviour

Ψn(∞(1)) =
(
1, O(x−1), O(x−1), . . .

)
Ψn(∞(i)) =

(
1, O(1), . . . , O(1)︸ ︷︷ ︸

i−2

, O(x), O(1), . . . , O(1)︸ ︷︷ ︸
n−i

)
2 ≤ i ≤ n (3.39)

Therefore, n − 1 poles appear at ∞(i) in the i-th component of the normalised
eigenvector for i > 1. These do not actually carry any information on the system
described by the algebraic curve, and are just artifacts of the chosen gauge, ie.
normalisation.

The remaining g poles are called dynamical, as their position can vary with
the worldsheet variables. Now, considering the non-trivial components ψi of the
normalised eigenvector, we know that each of them has a single pole at∞(i), at most
g dynamical poles, and one zero at∞(1). The Riemann–Roch theorem allows stating
that the space of such functions is one-dimensional, unless the set of dynamical poles
belongs to some very special case (see [Vice08, Def. 2.51/1.5.21] and the preceding
discussion; we mention this caveat purely for completeness, as our investigation will
not be affected by it). This means that all ψi are unique up to a multiplicative
constant, and thus the whole Ψn is determined up to a left-multiplication by a
constant diagonal matrix. This conclusion is not constructive itself, ie. it does not
provide a recipe for construction of ψi, but allows for stating that any function
constructed to meet the prerequisites is already of the most general form.

In the AdS3×S1 case, the normalised eigenvector will have just one non-trivial
component ψ that will be required to vanish at ∞+ and diverge at ∞−, as well as
at all of the g dynamical poles.

The relation between L and the operators ∂ + J, ∂̄ + J̄ , with which it is si-
multaneously diagonalisable, allows to expect that the algebraic curve will be a
suitable framework for constructing (as opposed to solving for) the wave function of
(3.25). Indeed, Ψ will be necessarily proportional to Ψn, but because ∂ + J, ∂̄ + J̄

are differential operators, the proportionality factor fBA in

Ψ(w, w̄;x) = fBA(w, w̄;x)Ψn(w, w̄;x) (3.40)

will exhibit a non-trivial dependence on the worldsheet.

To learn about the properties of fBA, one can examine the first component of
the auxiliary system equation, which yields

∂fBA

fBA
= −(JΨn)1 (3.41)



30 CHAPTER 3. ASPECTS OF INTEGRABILITY

with the barred equation employing the exact same analysis. Singular behaviour is
possible wherever either of the quantities on the right-hand side is divergent. At
x → ∞, Ψn has poles, but J vanishes and the product is regular. At a dynamical
pole γ(w, w̄) of Ψn, J is regular, but the residue of the right-hand side depends on
w, so this case needs to be treated in more detail. By the fact that L and ∂ + J

commute, Ψn and (∂ + J)Ψn are the eigenvectors of L with the same eigenvalue,
and therefore are proportional. The scaling between them is easily determined from
their first components to be (JΨn)1, so we can write

∂Ψn = (−J + (JΨn)1) Ψn (3.42)

and examine second-order poles of both sides at γ(w, w̄). Considering the com-
ponent(s) of Ψn that do have a pole at γ with residue p, the second-order poles
read

p ∂γ

(x− γ)2
=

(
0 +

r

x− γ

)
p

x− γ
(3.43)

so the residue r of (JΨn)1 (in general, containing contributions of more components
diverging at γ) equals ∂γ. Therefore, locally at γ(w, w̄), (3.41) reads

∂ log fBA = − ∂γ

x− γ
+ regular = ∂ log(x− γ) + regular (3.44)

Consequently, fBA vanishes at the dynamical poles.

Finally, (3.41) has a pole at x = 1 emerging from J (and the same holds for
x = −1 in the barred equation), so an exponential essential singularity of fBA is
expected there. Its coefficient is derived in [DV06, §D] for strings propagating in
Rt×S3, and the result is proportional to the eigenvalue of j, j̄. It is in turn dictated
by the Virasoro constraints akin to (3.11) and never vanishes, as the solutions are
expected to propagate in time. In our case, however, this eigenvalue may vanish for
solutions completely contained in AdS3, providing no information on the singular
behaviour. It turns out that some statement about it can still be made from very
general principles.

Consider a relation [BBT03, (3.15)] between the Lax operator and J, J̄ that
stems from a comparison of the poles in both terms of the Lax equation. In our
case, where J, J̄ have one pole each, this will read

J = [P+(L, x)]−x=1 J̄ = [P−(L, x)]−x=−1 (3.45)

where P±(ỹ, x) are some functions, polynomial in the first variable, with coefficients
rational in the second, and [·]− denotes the polar part at the given point. Unfortu-
nately, in the general case, the form of the polynomials P± cannot be significantly
restricted. We can only say that their coefficients will have non-negative powers of
(1 ∓ x), so that powers of L, which already has the relevant pole, will be matched
with the left-hand sides of (3.45), where the dependence is explicitly 1/(1∓x). Now,
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turning to the n = 2 case, the equations can be considered in the basis of diagonal
L

J = [P+(diag(p′,−p′), x)]−x=1 J̄ = [P−(diag(p′,−p′), x)]−x=−1 (3.46)

Now, L2 = p′(x)2 I, where p′(x)2 is rational for finite-gap solutions, so all terms can
be expressed as L or I with a rational factor, and the polynomials P± effectively
have degree 1. Taking into account that the projection [·]− of rational functions
preserves only the respective pole, we finally write

J =

[
c+L+

c′+I

1− x

]−
x=1

J̄ =

[
c−L+

c′−I

1 + x

]−
x=−1

(3.47)

where c±, c
′
± are constant and the x-dependence of the coefficients matches the

left-hand sides, remembering that L itself has poles at x = ±1. As all J, J̄ , L are
traceless, c′± need to vanish.

Applying (3.45) in (3.41), we obtain on the right-hand side

[P+(L, x)]−Ψn(x±) = [P+(±ỹ, x)]−Ψn(x±) =
±c+y

1− x
Ψn(x±) (3.48)

as Ψn(x±) is an eigenvector of L with eigenvalue ±ỹ, whose polar part is proportional
to the desingularised variable y. Locally, (3.41) reads thus

∂fBA

fBA
= −±c+y

1− x
+ regular (3.49)

and the local behaviour is

fBA ∝ exp

(
−±c+y

1− x
w − ±c−y

1 + x
w̄

)
(3.50)

where the second term follows from the analysis of the barred equation at x = −1.
It is crucial to note that each of the terms is in fact a priori valid only in the
neighbourhood of x = ±1.

We have established that the function fBA(w, w̄;x) vanishes at g dynamical
poles and has essential singularities of a prescribed type at x lying over ±1. Such
functions are known as Baker–Akhiezer functions, and there are general formulae
for their construction. Moreover, the Riemann–Roch theorem again allows for a
conclusion that in the present case their space is one-dimensional.

Consequently, Ψ is now fully determined up to overall factors of the components,
which may still depend on the worldsheet variables. However, the x → ∞ form of
(3.25) is

∂Ψ = ∂̄Ψ = 0 (3.51)

so that all components of the wave function should be constant in this limit. This
imposes a final condition in the reconstruction procedure, after which only purely
constant factors in each component remain ambiguous.
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0

dp 7→ −dp

Figure 3.2: If the sign of dp is flipped over some region of the complex plane, partially
bordered by the cut (solid), the cut of the redefined quasi-momentum appears along
the rest of the border of the region (dashed). Integrating along the (dotted) contours
from both sides, unimodularity is seen to be preserved.

The upshot of this analysis is that given an algebraic curve of genus g, g dynam-
ical poles, and the polynomials P±, a solution of (3.25) can be determined purely
from analyticity conditions of meromorphic functions on algebraic curves. The val-
ues of the eigenvector at points x(i) correspond to the linearly independent solutions
of the system.

In the n = 2 case, the reconstructed eigenvector can be meaningfully used
with (3.31), by assembling a matrix Ψ̂ = (Ψ(x+); Ψ(x−)). The ambiguity of the
overall constant factors in the components of Ψ amounts to left-multiplying Ψ̂ by a
constant diagonal matrix, which is encompassed by the UR symmetry (3.6) of g. The
only other undetermined constants in the reconstruction are c± of (3.50), and they
can be absorbed by the diffeomorphism symmetry, ie. rescaling the variables w, w̄.
Also note that as the solution matrix of (3.25) was established to have a constant
determinant, the same needs to be true about the reconstructed Ψ̂.

Large parts of the discussion seem to be also applicable to systems in which
the Lax operator is of order n > 2, for instance, for larger subsectors of AdS5 × S5.
In such cases, the auxiliary linear system would be a first-order equation for an
n-component vector, therefore with n linearly independent solutions. Each of those
correspond to one of n eigenvalues of L, and consequently to one of n sheets of the
algebraic curve. The only point in the analysis that directly relied on n = 2 was
the cap on the order of polynomials P± of (3.45). In general, some more intricate
analysis would be needed to tell if (and at what degree) such cap appears for larger
n. A natural guess would be n − 1, but even this would mean the presence of
polynomials of unknown coefficients in (3.50). Still, the worldsheet-dependence of
the exponents would remain linear.
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Let us make a final note that while the algebraic curve equation (3.35) does fix
the position of branch points, the exact location of cuts that connect them is not de-
termined. Considering the behaviour of the quasi-momentum in the neighbourhood
of x lying on the cut

p
(
(x+ ε)−

)
≈ p

(
(x− ε)+

)
(3.52)

we use the unimodularity of Ω

1 = det Ω = eip(x+ε)e−ip(x+ε) ≈ eip(x+ε)eip(x−ε) (3.53)

to obtain the following condition

p(x+ ε) + p(x− ε) = 2πn n ∈ Z (3.54)

that relates the values of p on the same sheet (or, simply, on the complex plane)
on the opposite sides of the cut. However, this condition does not fix the position
of the cut either. Namely, the positions of the cuts are determined by the branch
choice of the square root in dp, which can be arbitrarily chosen for different regions
of the complex plane. Let dp̃ differ from dp by sign only in some region partially
bordered by a cut, and for x on that part of the cut we have

p(x+ ε) + p(x− ε) =

∫ x+ε

0
dp+

∫ x−ε

0
dp =

=

∫ X+ε

0
dp̃+

∫ X−ε

0
dp̃ = p̃(X + ε) + p̃(X − ε) (3.55)

where the contours of integration do not cross any discontinuities. X, where the
contours leave the region of sign difference between dp, dp̃, is the new location of the
cut, for which (3.54) still holds (see fig. 3.2).

3.3 The Bethe ansatz

The Bethe ansatz, in one of its numerous forms, is an all-important tool of inte-
grability, this time in the quantum sense. As there is virtually no consensus about
the definition of quantum integrability, it may very often appear that precisely the
systems allowing a Bethe ansatz description are considered quantum integrable. Its
original application [Beth31] was to exactly determine the eigenstates and eigen-
values of the Hamiltonian of a one-dimensional spin chain.

A notable difficulty of such systems is that the dimension of the Hilbert space
grows exponentially with number of sites of the spin chain, so any kind of brute-force
approach to diagonalising the Hamiltonian would be thwarted for all but the smallest
examples, even with the computational power of today. In its original context,
the idea of the Bethe ansatz was to consider a number of excitations (spin-down
sites) of a vacuum (all sites spin-up) state of the spin chain, propose a particularly
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parameterised wave function of those excitations, and derive the equations that
the parameters need to satisfy so that the wave function is an eigenstate of the
Hamiltonian. The result are the so-called Bethe equations which, even if quite
complicated, do not grow exponentially in complexity. The sets of numbers solving
the equations are collectively called Bethe roots, are in general complex, and are
related to the momenta of the spin chain excitations.

The Bethe ansatz emerges somewhat naturally in the N = 4 SYM, where a
typical object of study is the spectrum of an operator of the type trZJ with some
‘impurities,’ like covariant derivatives or other SYM fields, inserted in the trace.
Even on the extremely superficial level, a trace of such form resembles a spin chain
with excitations, and indeed the Bethe ansatz has been applied to such objects. More
precisely, the one-loop correction to the dilatation operator was found to coincide
with the spin chain Hamiltonian [MZ02].

The AdS/CFT correspondence, as it predicts the same features both for its
gauge theory and string theory sides, would demand that the integrable structures
of both sides agree. So far, the string theory is classically integrable by the algebraic
curve description and the gauge theory has its Bethe ansatz. In a sequence of papers
[KMMZ04, KZ04, BKS04] a semi-classical limit of the gauge theory Bethe ansatz
was shown to match the algebraic curve for a sequence of subsectors of respective
theories, finally concluding with a full theory analysis in [BKSZ05]. The idea is to
consider a scaling limit, in which the spin chain length and excitation number are
infinite, but their ratio fixed, under which the Bethe roots condense as finite-length
cuts on the complex plane.

The Bethe roots density ρ (also called particle density, given the origin of Bethe
roots as magnon momenta) is supported only on the cuts and defines a function p

of the spectral variable that is continuous everywhere on the complex plane, except
for the cuts. Its (imaginary) discontinuity on the cuts is proportional to the density,
and the constant of proportionality can be determined from the fact that the density
is normalised to the rescaled excitation number, or total spin [KMMZ04, (2.14)]∫

ρ(u) du = S (3.56)

integrated over all cuts. Also, the values of p on the opposite sides of the cut satisfy

p(x+ ε) + p(x− ε) = 2πn n ∈ Z (3.57)

where the right-hand side has its origin in taking the logarithm of the Bethe equation.
By the comparison of the asymptotic behaviour to (3.32), (3.33), the function p is
determined to coincide with the string quasi-momentum, with (3.57) corresponding
to (3.54).

To obtain the quasi-momentum from the scaling limit of the Bethe ansatz, a
few integral conditions are imposed. For p to be single-valued, the following needs
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A1 A2

B

Γ2

Figure 3.3: The integrals of the quasi-momentum differential need to attain specific
values for several contours defined for the cuts of an algebraic curve, here of genus 1.
The integrals along the A-cycles (going around the cuts) vanish, while the B-cycles
(passing through pairs of cuts) and Γ-contours (linking cuts to infinities on either
side) are even multiples of π.

to be satisfied at each cut ∫
A
dp = 0 (3.58)

where the A-cycle is a contour going around the cut. Note that not all A-cycle
integrals are independent, as one of them can be obtained as a sum of all others by
a deformation of their integration contours. (3.57) corresponds to∫

Γ
dp = 2πn (3.59)

where the Γ-contour is a contour from infinity to the cut and back. Alternatively, if
p is considered on algebraic curve, the Γ-contour connects infinities on the opposite
sheets of the curve via a given cut (see fig. 3.3). Obviously, given the origin of (3.58),
(3.59), these will need to be satisfied also for dp obtained from the algebraic curve.

The classical integrability of string theory was expected to remain at the quan-
tum level. Nevertheless, the Bethe ansatz in this case was considerably harder to
develop, and indeed most of the approaches, starting with [AFS04], have been de-
scribed as heuristic. However, in fact, this is how ansätze in general are introduced,
and because the proposed equations resemble the Bethe equations, the use of the
name ‘Bethe ansatz for strings’ is fully justified. Moreover, an underlying long-range
spin chain description has been reverse-engineered later [Beis04].

For strings in AdS3 × S1, or the sl(2) sector, the Bethe ansatz equations read
[BS05, (2.48)]

(
x+
k

x−k

)J
=

M∏
j=1
j 6=k

(
x+
k − x

−
j

x−k − x
+
j

)−1 1− g2

x+
k x
−
j

1− g2

x−k x
+
j

σ2(xk, xj) (3.60)
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with the dressing factor [BS05, (2.46)]

σ(xk, xj) =
1− g2

x−k x
+
j

1− g2

x+
k x
−
j

1− g2

x−k x
+
j

1− g2

x+
k x

+
j

1− g2

x+
k x
−
j

1− g2

x−k x
−
j


i(uk−uj)

(3.61)

and the usual shorthands of xj = x(uj), x
±
j = x(uj ± i

2), where the relation be-
tween the Bethe roots (particle rapidities) and spectral parameter is given by the
Zhukovsky transformation [BS05, (2.28)]

x(u) =
u

2
+

1

2

√
u2 − 4g2 u(x) = x+

g2

x
(3.62)

We will now obtain the semi-classical limit of (3.60) in the non-standard situation in
which J = 0 and the left-hand side is trivial. The right-hand side can be expressed
in terms of Bethe roots only, which then are rescaled as u 7→ gu. To express the
g → ∞ limit, the leading terms of a series expansion are taken, and the result is
most conveniently obtained by taking a logarithm of both sides, and thus

2iπn =
i

g

M∑
j=1
j 6=k

−2xkxj(xkxj − 1)

(x2
k − 1)(x2

j − 1)(xk − xj)
(3.63)

where on the left-hand side the logarithm ambiguity appears, and the Bethe roots
have been expressed back in terms of the (rescaled) spectral parameter. The con-
tinuum limit replaces the sum by an integral or, more precisely, the principal value
integral to account for excluding the j = k divergent contribution, and weights the
integrand with the particle density

πn =
1

g
−
∫

−xx′(xx′ − 1)

(x2 − 1)(x′2 − 1)(x− x′)
ρ(u′) du′ (3.64)

where du′ =
(
1− (x′)−2

)
dx′ follows from (3.62) after rescaling and the integration

is understood over all cuts. A slightly simpler form can be obtained for a case where
all cuts are pairwise symmetric under x 7→ −x. Performing this substitution in one
cut of each such pair, therefore mapping it on its counterpart, we obtain with odd ρ

πn = −2

g
−
∫

xρ(u′) dx′

x2 − (x′)2
(3.65)

integrating over the ‘remaining’ cuts.

Finally, we can fix the relation of ρ to the discontinuity of the quasi-momentum.
Consider the following integral∫

C
disc p du =

∮
C
p(x)

(
1− 1

x2

)
dx (3.66)

taken along, and then around, all cuts. The contours can be deformed so that they
encircle infinity and 0, where poles of respectively p(x) and −p(x)x−2 will be picked
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up. Using (3.32), (3.33), we write∫
C

disc p du =

(∮
0

+

∮
∞

)
p(x)

(
1− 1

x2

)
dx =

= 2πi

(
2π(E − S)√

λ
− 2π(E + S)√

λ

)
= −8π2iS√

λ
(3.67)

By comparison with (3.56) we conclude

ρ =
i
√
λ

8π2
disc p (3.68)

We can also obtain an integral expression of energy, for which we first express
the magnon momentum [BS05, (2.30)]

Pk = −i log
x+
k

x−k
(3.69)

as a leading term in g in the scaling limit

P (x) =
1

g

x

(x2 − 1)
(3.70)

Inserting this into the dispersion relation, we obtain in the leading order

ε(x) =

√
1 + 16g2 sin2 P

2
=
x2 + 1

x2 − 1
(3.71)

Therefore we can confirm that∫
C
ρ ε du =

∫
C
ρ(x)

(
1 +

1

x2

)
dx = −1

2
(−(E − S)− (E + S)) = E (3.72)

by essentially flipping a sign with respect to (3.67). In fact, the reality conditions
imposed by the physical sense of these two integrals are the main criterion for de-
termining the exact location of the cuts.

3.4 Further results in AdS/CFT

The preceding sections offer just a glimpse into the numerous results and techniques
that integrability offers in the context of AdS/CFT, recently summarised in a size-
able review [IntR10]. In fact, the discovery of integrability itself on both sides of
the correspondence is a major piece of evidence in favour of the conjecture. At the
level of computation, integrability can be seen as a tool to enable moving further
away from the weak and strong coupling ends of the planar limit. Ultimately, it
may allow for an interpolation between these two regions and, perhaps, proving the
correspondence.

Let us sketch out a subset of what else integrability has to offer in AdS/CFT.
First, the algebraic/spectral curves can be perturbatively quantised, by introducing
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very short cuts between the sheets. The charges that could be computed from the
quasi-momentum asymptotics will receive their one-loop corrections.

From the spin chain perspective, the Bethe ansatz results are valid up to the
order at which there appears wrapping, that is, interaction over the whole length
of the spin chain. Lüscher corrections allow for including the leading wrapping
effects in the computation. Next, the so-called Y-system [GKV09, GKKV09] was
developed, that encodes the all-order energy of a state in the form of infinite number
of equations. These were in turn reduced to a useful form of finite system of non-
linear integral equations [GKLV11].

As for the BFKL pomeron, it should be noted that integrability appears also in
the QCD case [Korc95]. In AdS/CFT, on the weak coupling side, the investigation
mostly utilises the relation between the intercept and the anomalous dimensions
of the so-called twist-two local operators [KLR+07, BJŁ08, ŁRV09]. In these
calculations, the wrapping corrections played a crucial role.

At strong coupling, a series of results for increasingly better approximations
of the intercept also partially relied on the relation to the anomalous dimension
[CGP12, KL13]. Recently, using the newly proposed quantum spectral curve
[GKLV13], a number of hitherto missing coefficients of the expansion have been
computed [GLSV14, (6.8), §6.4]

j(ν) = 2− 2 + 2ν2

√
λ

(
1 +

1
2√
λ

+
−1

8 + 3
2ν

2

λ
(3.73)

+
−1− 3ζ3 + (21

8 − 3ζ3)ν2

λ3/2
+
−361

128 − 9ζ3 + (51
16 − 9ζ3)ν2 + 21

4 ν
4

λ2

+
−447

64 −
39
2 ζ3 − (13

64 + 45ζ3 + 15
2 ζ5)ν2 + (137

8 −
51
2 ζ3 − 15

2 ζ5)ν4

λ5/2
+ · · ·

)



Chapter 4

Extending the algebraic curve
classification

4.1 Algebraic curve for Wilson loops

As mentioned above, Wilson loop observables of the boundary theory are translated
by the AdS/CFT correspondence to the minimal surfaces in the bulk spanned by
these loops. As such, these surfaces do not have any topological features, so all closed
loops on these surfaces are contractible to a point. Consequently, monodromies
defined for such surfaces are equal to the unit matrix, by the argument of path
independence. This suggests that an attempt to repeat the algebraic curve analysis
as outlined in the previous chapter, inspired by its success for closed strings, is bound
to fail miserably, as the quasi-momentum is identically zero and does not define any
algeraic curve.

The idea now is to propose a different way of assigning an algebraic curve
to a given solution, which would be applicable regardless of the presence of non-
contractible worldsheet loops. Due to this assumption, the procedure will be purely
local, in opposition to the traditional construction that required knowledge of the
whole worldsheet to construct non-trivial monodromies. Using the machinery de-
scribed in the previous chapter, we will show how the original solutions can be
reconstructed from these newly defined, very simple algebraic curves.

However, the procedure has also introduced the auxiliary linear system (3.25),
which is still well-defined for the Wilson loop minimal surfaces. If it is solvable, the
wave function, or strictly speaking, a solution matrix Ψ̂, can be used to construct a
Lax operator. Namely, for any matrix A(x) that does not depend on w, w̄

L = Ψ̂(w, w̄;x)A(x) Ψ̂(w, w̄;x)−1 (4.1)

satisfies the Lax equations (3.21), what can be straightforwardly seen using (3.27).

The algebraic curve was defined (3.34) as the characteristic polynomial of a Lax

39
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operator, and L defined by (4.1) can be used for this purpose. Notably, the present
case does not require desingularisation (3.37), so ỹ = y,Q(x) = 1. However, by

det(y − Ψ̂AΨ̂−1) = det(Ψ̂(y −A)Ψ̂−1) = det(y −A) (4.2)

the characteristic polynomial of L is the same as for A, which is heretofore arbitrary
(note that this equation is invariant under (3.26)). As we expect the algebraic curve
to essentially encode crucial information on the solution for which it is defined, A
needs to be governed by some clever criterion if the whole construction is supposed
to make any sense.

Such criterion is inspired by the fact that Lax operators in general are assumed
to be rational in x. Therefore, we will always choose the simplest possible A such
that L is non-trivial and polynomial (one of the cases discussed actually relies on
the distinction between polynomial and rational). More precisely, the usual ansatz
will be

A(x) = f(x)

(
−1 0

0 1

)
(4.3)

for some function f . This further reinforces the connection with the original frame-
work, as the eigenvalues of L, identical by construction to those of A, will differ only
in sign. Note that the algebraic curve equation will then read

y2 = f(x)2 (4.4)

An ultimate argument which would demonstrate that such definition of the Lax
operator is meaningful would be the success of the reconstruction procedure outlined
in section 3.2. There is one detail which needs to be reformulated in the present case,
due to different analytic behaviour of L, namely the form of the essential singularities
of the Baker–Akhiezer factor (3.50). Specifically, (3.47) reads as follows

J =

[
c+L+ c′+I

1− x

]−
x=1

J̄ =

[
c−L+ c′−I

1 + x

]−
x=−1

(4.5)

as the present L is polynomial in x, and c′± vanish just as previously. However, as
ỹ = y, the end result (3.50) will remain the same.

In the following sections, we consider two cases of Wilson loops: the null cusp
and the quark–antiquark potential. For each of them we will firstly write out the
algebraic curve by performing the following steps:

• write down the auxiliary linear system (3.25) by specifying g (see below) and
using (3.8), (3.14);

• solve the system and verify that the solution matrix determinant is constant
in w, w̄, as well as (3.31);
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• by (4.1), construct the Lax operator L and the algebraic curve.

Subsequently, starting from the algebraic curve, we will reconstruct the wave func-
tion as Ψ = fBAΨn, demanding that:

• fBA vanishes at the dynamical poles of Ψn and locally behaves as (3.50),

• Ψn behaves as (3.39) under x→∞,

• components of Ψ become independent of w, w̄ under x→∞.

The result will be compared with the original solution.

For pedagogical reasons, the cusp is presented in an expository manner, per-
haps even with superfluous detail. For the quark–antiquark potential we notice
and discuss some caveats. Also, an analogous procedure will be later applied to
solutions corresponding to a particular correlation function, but the motivation and
the apparent peculiarities will be entirely different than for Wilson loops. Note that
throughout the whole chapter the underlying solutions have an Euclidean worldsheet
metric, and thus the light-cone coordinates are expressed as (1.2).

Before we proceed, we use the parameterisations (2.11), (2.13) to obtain some
useful forms of g from (3.2). In the Poincaré coordinates the result is

gPoincaré =
1

z

(
x0 + x1 1

x2
0 − x2

1 − z2 x0 − x1

)
(4.6)

gEuclidean =
1

z

(
ix0 + x1 1

−x2
0 − x2

1 − z2 ix0 − x1

)
(4.7)

where the latter form follows by Wick-rotating the time-like coordinate x0. In the
global coordinates, one can obtain

gglobal =

(
eit cosh ρ e−iψ sinh ρ

eiψ sinh ρ e−it cosh ρ

)
(4.8)

by direct substitution and then using (3.6) with UL = 1√
2

(
i −1
1 −i

)
, UR = 1√

2

(
1 −i
−i 1

)
.

It should be noted that the appearance of complex numbers in matrices that were
defined as real is not troublesome, as they still belong to some representation of the
same Lie group, determined by UL,R.

4.2 The null cusp contour

The null cusp, or two intersecting light-like lines, spans a surface whose parameter-
isation is explicitly given in [RT07, (2.3–5)] as

x0 = e−ασ−βτ cosh(βσ − ατ) z =
√

2 e−ασ−βτ

x1 = e−ασ−βτ sinh(βσ − ατ) (4.9)
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where α2 + β2 = 0. The form of z shows that the surface approaches the boundary
when the combination ασ + βτ tends to infinity; the intersecting lines forming the
cusp are seen when simultaneously βσ − ατ → ±∞. The domain of w, w̄ is the
full complex plane, so all loops on this surface are contractible just as expected.
The surface is embedded in the Poincaré patch of Minkowskian AdS3, so taking the
appropriate form (4.6) of the element g we arrive at

g =
1√
2

(
e−ατ+βσ eασ+βτ

−e−ασ−βτ eατ−βσ

)
(4.10)

and the following connection components

J =
(1 + i)(α− iβ)

4(1− x)

(
i e

e−1 −i

)
J̄ =

(1 + i)(β − iα)

4(1 + x)

(
−i e

e−1 i

)
(4.11)

with e = eσ(α−β)+τ(α+β), and the flatness condition can be easily verified.

The equations of the auxiliary linear system, just as any first-order linear dif-
ferential equations for two-component vectors

0 =

(
f1

f2

)′
+

(
a b

c d

)(
f1

f2

)
(4.12)

can be transformed to second-order equations for the components. Expressing one
component completely in terms of the other

f2 = −f ′1+af1

b (4.13)

allows to straightforwardly arrive at

f ′′1 + (a+ d− b′

b )f ′1 + (a′ − ab′

b + ad− bc)f1 = 0 (4.14)

As the currents J, J̄ are traceless by definition, the a + d subexpression will vanish
for all auxiliary linear systems.

For the cusp, also the subexpression ‘ad− bc’ will vanish, which is not a coinci-
dence, given that the right-hand sides of the Virasoro constraints (3.11) vanish for
this solution. The equations for the upper component look as follows

0 = ∂2f1 −
(1− i)(α− iβ)

2
∂f1 −

i(α− iβ)2

4(1− x)
f1 (4.15)

0 = ∂̄2f1 +
(1− i)(β − iα)

2
∂̄f1 −

i(β − iα)2

4(1 + x)
f1 (4.16)

and as the coefficients are constant, they are elementary to solve, even by hand. The
result is a linear combination of the exponentials

f1 ∝ exp
α− iβ

4

(
(1− i)± (1 + i)

√
1− x2

1− x

)
w

× exp
iα− β

4

(
(1− i)± (1 + i)

√
1− x2

1 + x

)
w̄ (4.17)
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for all four possible choices of signs, with four different coefficients. However, two
of them will vanish, due to the fact that there are two expressions for the lower
component of the type (4.13) and they need to coincide. Taking this into account,
one can finally write down the independent solutions

Ψ± = e
± 1+i

4

(
−w(α−iβ)

√
1−x2

1−x +w̄(iα−β)

√
1−x2

1+x

)

×

(
e

1−i
4

(w(α−iβ)+w̄(iα−β))

e−
1−i

4
(w(α−iβ)+w̄(iα−β))(−ix±

√
1− x2)

)
(4.18)

The structure of the solutions is indeed suggestive of an underlying algebraic
curve, namely by the presence of the square-root terms and the fact that the two
solutions differ precisely by a consistent sign change in those terms, ie. by choosing
a different branch for the root. Moreover, the exponential prefactor is reminiscent
of the Baker–Akhiezer function structure.

The solutions can be now arranged in a matrix as Ψ̂ = 1√
2
(Ψ+;−Ψ−). We see

that det Ψ̂ =
√

1− x2 is indeed constant, and (3.31) is satisfied, as Ψ̂−1|x=0 = g

without any symmetry transformation. Now, as mentioned before, the Lax operator
can be constructed according to (4.1), where the simplest choice of A is, perhaps
unsurprisingly, A =

√
1− x2 diag(1,−1) which leads to a Lax matrix L which indeed

is polynomial in x,

L =

(
ix e−

i−1
2

(w(α−iβ)+w̄(iα+β))

e
i−1

2
(w(α−iβ)+w̄(iα+β)) −ix

)
(4.19)

and the algebraic curve equation reads

y2 = 1− x2 (4.20)

which is a genus=0 case. Once again, the seemingly arbitrary factor
√

1− x2 in A

was in fact dictated by the requirement of L being polynomial. Also, by construction,
Ψ± are the eigenvectors of L with respective eigenvalues ±

√
1− x2. Finally note

that under x → ∞, the leading term of L is non-degenerate, specifically diagonal
with distinct eigenvalues.

Reconstruction

We now turn to the task of reconstructing the solution just from the algebraic curve
y2 = 1 − x2 according to the procedures outlined earlier. We use the following
uniformisation of the curve

x =
1− z2

1 + z2
y =

2z

1 + z2
(4.21)

under which passing to the other sheet is achieved by the transformation z 7→ −z.
The branch points x = 1,−1 correspond to z = 0,∞, respectively, while x = ∞±,
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the two points lying above infinity, correspond to z = ±i. The genus of the curve
is 0, therefore the normalized eigenvector will have no dynamical poles. As the
eigenvalues of L remain defined and distinct in the x → ∞ limit, the normalized
eigenvector will have distinct asymptotic behaviours at ∞±, and without loss of
generality we choose them to be

Ψn(w, w̄;∞+) =

(
1

0

)
Ψn(w, w̄;∞−) =

(
1

∞

)
(4.22)

Thus, we posit that the lower component of Ψn is proportional to z−i
z+i .

As for the Baker–Akhiezer functions, we first note that under our uniformisation
the asymptotic form (3.50) simplifies to

fBA(w, w̄;x) ∝ exp(− c+
z w − c−zw̄) (4.23)

It does not exhibit any singular behaviour except for the desired one at the branch
points. As we already know that there are no dynamical poles, this is a full, correct
expression of the spectral parameter dependence of the prefactor. All that now
remains to be determined is the worldsheet-independence of the full eigenvector at
infinity, which amounts to fixing the unknown functions q1,2 in

Ψ = fBAΨn = e−
c+
z
w−c−zw̄q1(w, w̄)

(
1

q2(w, w̄) z−iz+i

)
(4.24)

At ∞+, ie. z = i, the upper component yields

eic+w−ic−w̄q1(w, w̄) = 1 (4.25)

with a similar result from the lower component at ∞−, ie. z = −i

e−ic+w+ic−w̄q1(w, w̄)q2(w, w̄) = 1 (4.26)

Solving these two equations gives a final result

Ψ = e−
c+
z
w−c−zw̄

(
e−ic+w+ic−w̄

eic+w−ic−w̄ z−iz+i

)
(4.27)

To see if this reconstructed expression coincides with (4.18), we first need to
replace the z variable by x, precisely

z =
y

1 + x
=

√
1− x2

1 + x

1

z
=

y

1− x
=

√
1− x2

1− x
(4.28)

z − i
z + i

=
(z − i)2

z2 + 1
= −x− iy = −x− i

√
1− x2 (4.29)

where we implicitly choose a +
√

1− x2 branch of the solution, therefore expecting
to recover Ψ+. Comparing the form of x-dependence of the exponents, we identify
constants c± as

c+ = 1+i
4 (α− iβ) c− = −1+i

4 (iα− β) (4.30)



4.3. THE QUARK–ANTIQUARK POTENTIAL CONTOUR 45

It is now manifest that the remaining exponents also agree and the result exactly
reproduces Ψ+, up to a factor of i in the lower component. This is the residual
ambiguity that was expected.

What needs to be stressed at this point, as it is a salient feature of the idea, is
that the reconstruction procedure is indeed almost automatic. In this fairly generic
example, essentially the only information needed to carry out the procedure was the
equation of the algebraic curve. It had two distinct points lying above x =∞, which
corresponds to L being non-singular (diagonalisable) in this limit, so the asymptotic
behaviour we were able to impose on Ψ was constraining enough not to leave any
ambiguities.

4.3 The quark–antiquark potential contour

The contour considered here was introduced in [RY98, Mald98] as a limit of a
rectangular Wilson loop, under which it was deformed to consist of infinite, parallel
straight lines at a spacelike separation l. A conformally flat parameterisation of the
corresponding worldsheet was found in [CHR09, (2.21)]

z = z0 cnσ x0 =
z0√

2
τ x1 =

z0√
2
F (σ) (4.31)

z0 = Γ(1
4)2(2π)−

3
2 l [CHR09, (2.9)] is the maximum bulk extent of the surface,

reached at σ = 0, whereas the derivative of F is known due to [CHR09, (2.8)]

∂x1

∂σ
=
∂x1

∂z

∂z

∂σ
= − cn2 σ

snσ dnσ
(− z0√

2
) snσ dnσ =

z0√
2

cn2 σ (4.32)

and by (A.23) for k = 1√
2

F (σ) = 2E(amσ|12)− σ (4.33)

The special functions (elliptic integrals, Jacobi elliptic functions) are discussed in the
appendix A.2, and the suppressed parameter of the Jacobi functions is 1

2 throughout
this section. The domain is now only a strip corresponding to z ∝ cnσ ≥ 0, or
|σ| ≤ K(1

2). The surface approaches the boundary at the ends of this interval, and
its profile is plotted in fig. 4.1.

Taking in this case the Euclidean signature form of g (4.7), the procedure is
completely analogous to the case of the cusp, albeit noticeably harder due to the
special functions involved. The expressions for J, J̄ exhibit no simple dependence
on w, w̄, so we can consider the following linear combinations of the equations

∂σΨ + JσΨ = (∂Ψ + JΨ) + (∂̄Ψ + J̄Ψ) = 0 (4.34)

∂τΨ + JτΨ = i(∂Ψ + JΨ)− i(∂̄Ψ + J̄Ψ) = 0 (4.35)
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Figure 4.1: A slice of the quark–antiquark potential minimal surface of constant x0,
for z0 = 1. The full surface is obtained by translating the profile perpendicular to the
page.

determined by (1.2). The determinants of Jσ,τ no longer vanish, but still, with

Jσ =
1

2(1− x2) cn2 σ

(
p cn2 σ − q− xp (cn2 σ − x)

√
2/z0

z0(x(p2 + 2 cn2 σ)− r)/
√

2 −p cn2 σ + q + xp

)
(4.36)

Jτ =
i

2(1− x2) cn2 σ

(
x(p cn2 σ − q)− p (x cn2 σ − 1)

√
2/z0

z0(p2 + 2 cn2 σ − xr)/
√

2 −x(p cn2 σ − q) + p

)
(4.37)

where p = iτ + F (σ), q = 2 cnσ dnσ snσ, r = p2 cn2 σ − 2pq − 2 cn4 σ, the equation
in τ constructed along the lines of (4.14) is remarkably simple

∂2
τf1 =

x

2(1− x2)
f1 (4.38)

The one in σ is more complicated and has no obvious solution

0 = ∂2
σf1 −

2x dnσ snσ

cnσ(cn2 σ − x)
∂σf1 +

(
x

2(1− x2)
+

1

cn2 σ − x

)
f1 (4.39)

However, we can find an explicit solution in τ

f1,± = C±(σ) exp±
√
x(1− x2)√
2(1− x2)

τ (4.40)

then use it with (4.13) in (4.36) to obtain two first-order equations for each of C±.
They do coincide and take the following form

∂σC±(σ)

C±(σ)
= − dnσ snσ

cnσ(x cn2 σ − 1)
∓

(
i√

2
√
x(1− x2)

+
i
√
x(1− x2)√

2x(x cn2 σ − 1)

)
(4.41)
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that can even be integrated by hand. Namely substituting υ = cnσ in the first term
gives a rational integrand 1/(υ(xυ2 − 1)), while the integral of 1/(x cn2 σ − 1) after
substituting υ = amσ becomes explicitly equal by definition to the elliptic integral

1
x−1Π( x

x−1 ; amσ|12). Using this result, as well as (4.13) with (4.40), the complete
solution may be at last assembled as

Ψ± =

√
x cn2 σ − 1

cnσ
e
±
xτ−iσ+i(x+1)Π( x

x−1 ;amσ| 12 )
√

2
√
x(1−x2)

×

 1

z0

√
2x cnσ dnσ snσ±i

√
x(1−x2) cn2 σ

x cn2 σ−1
− z0

iτ+F (σ)√
2

 (4.42)

Again we see the telltale signs of the algebraic curve structure, namely an exponential
prefactor, and the difference between the two solutions being a branch choice of some
square root (here of x(1− x2)).

The
√
x cn2 σ − 1 factor looks puzzling, however, as on a first glance it may

give rise to a σ-dependent branch point that would go beyond any familiar algebraic
curve description. It turns out, though, that the exponential part also has a non-
trivial asymptotics at x = cn−2 σ. Let us examine the series expansions of the terms
of (4.41) in the vicinity of this point. The first term (which gives rise to the explicit
root in (4.42)) is already expanded, while the third has a regular part and a simple
pole with a coefficient of

i
√
x(1− x2)√

2x
=
i cn2 σ√

2

√
cn4 σ − 1

cn6 σ

=
i cn2 σ√

2

√
−2

dn2 σ sn2 σ

cn6 σ
= −|snσ|dnσ

cnσ
(4.43)

where we have assumed that the principal branch of a square root gives positive
multiplicities of i for negative arguments, and used the fact that cnσ, dnσ are pos-
itive (and even) for our range of σ. snσ is odd, though, and there are two mutually
opposite values of σ that correspond to x = cn−2 σ. Therefore, for any choice of
signs in (4.41), there is exactly one choice of one of those two values, for which the
polar part of the third term will cancel the first term, while for the other value it will
double its contribution. Then, integrating the expansion term by term (in which
the regular part converges, as for the full integrand the result was well defined),
the former situation means that the problematic contribution vanishes. The latter,
namely sgnσ = ∓1 for Ψ±, will double the coefficient of the relevant term in logC±,
and C± will exhibit a linear, instead of radical, behaviour at x = cn−2 σ.

A complement of this situation appears in the lower component of (4.42), where
the first term has a pole at x cn2 σ − 1. However, by the same argument and calcu-
lation, there is one sign of σ that cancels the pole, and it is the same that cancels
the root in the prefactor. The opposite σ preserves the pole, and the corresponding
linear vanishing term in the prefactor, which is in fact another sign indicating an
algebraic curve structure, more precisely of non-zero genus.
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However, in this case the x → 0 limit is harder to handle, as both Ψ± tend to
the same values and det(Ψ+; Ψ−) ∝

√
x(1− x2) vanishes. Another solution matrix

can be chosen, though, namely

(
Ψ+ −Ψ−

2
√
x(1− x2)

;
i

z0
Ψ±

)
(4.44)

which has unit determinant and its inverse is equal to g under x → 0 limit, again
confirming (3.31). This can be seen by employing the expansion

Π( x
x−1 ; amσ|12) = σ + (F (σ)− σ)x+O(x2) (4.45)

where both terms are needed to capture the x1 order of the numerator of the expo-
nent in (4.42).

To construct the Lax operator by (4.1), we do not have to choose (4.44) as Ψ̂,
as we want the result to be as simple as possible. Instead, taking Ψ̂ = (Ψ+; Ψ−) and
A(x) =

√
x(1− x2) diag(1,−1) we again obtain a result explicitly polynomial in x,

namely

L = − i√
2 cn2 σ

(
x(p cn2 σ − q)− p (x cn2 σ − 1)

√
2/z0

z0(p2 + 2x2 cn2 σ − xr)/
√

2 −(x(p cn2 σ − q)− p)

)
(4.46)

using the same shorthands as in (4.36). Note that the link with (4.44) can be still
made, as it is related to Ψ̂ by right-multiplication by a matrix constant in σ, τ , so for
a different (non-diagonal) A we would still obtain the same, (comparatively) simple
L. The algebraic curve that arises is

y2 = x(1− x2) (4.47)

of genus 1, again directly related to the
√
x(1− x2) factor in A that was chosen to

render L polynomial. Note that the algebraic curve (4.47) is very simple, what is
especially striking when compared with the original solution (4.31), (4.33) given in
terms of special functions.

Again, Ψ± are by construction the eigenvectors of L with respective eigenvalues
±
√
x(1− x2), but a novel feature appears in x → ∞. In this limit, L becomes

degenerate with leading-order term −iz0x
2( 0 0

1 0 ). This is related to the fact that
x =∞ is a branch point of the algebraic curve (4.47), which will have a significant
impact on our subsequent analysis, in which the asymptotics at that point play a
crucial role.
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Reconstruction

The algebraic curve (4.47) can be uniformised employing theta functions with quasi-
periods 2K = 2K(1

2), 2iK ′ = 2iK ′(1
2) = 2iK, namely

x(z) ∝ θ(z −K)θ(z +K)

θ(z − iK)θ(z + iK)
(4.48)

y(z) ∝ θ(z)θ(z −K)θ(z +K + iK)

θ(z − iK)θ(z + iK)2
(4.49)

with precise definitions given in the appendix A.3 for the nome e−π. x, y are both
of the form (A.33) and therefore doubly periodic. x has a double zero at K and a
double pole at iK, so the points above z = K, iK are the zero and infinity of the
algebraic curve, respectively. The normalisation of x is chosen so that x(0) = 1, and
consequently x(K + iK) = −1, as

x(K + iK)

x(0)
= −eπ θ(iK)4

θ(K)4
= −eπ

θ3(π2 )4

θ3( iπ2 )4
= −eπ θ4(0)4

θ2(0)4eπ
= −1 (4.50)

by (A.29), (A.26), and (A.27). y has simple zeroes at 0,K,K+ iK and a triple pole
at iK, thus the structure of poles and zeroes of both sides of the algebraic curve
equation is identical. Therefore, a normalisation of y can be chosen so that this
equation is exactly satisfied, for instance by taking the equation at z = K, where
y2 ≈ x and equating the leading coefficients on both sides. Then, the normalisation
constant cy is determined by

c2
y

2(z −K)2θ′(0)2θ(K)2θ(iK)2

θ(K − iK)2θ(K + iK)4
=

2(z −K)2θ′(0)2

θ(K − iK)θ(K + iK)

θ(iK)θ(−iK)

θ(K)θ(−K)
(4.51)

where the latter factor on the right-hand side is the normalisation constant of x. By
(A.29), cy = −ieπθ(K + iK)2/θ(K)2. Also by (A.29), x, y are respectively even and
odd in z, so passing to the other sheet is achieved by z → −z. The points in the
fundamental domain for which this is an involution are z = 0,K, iK,K + iK, for
which x = 1, 0,∞,−1, respectively, confirming that these are the branch points of
the curve.

As the present curve is of genus 1, one dynamical pole is expected to appear
in the normalised eigenvector. Its position will turn out to appear as a zero of the
Baker–Akhiezer function, so we start by examining its asymptotics. Because this
case study is already complicated as it is, we will now make an ‘educated guess’ for
c± of (3.50), or rather determine it from (4.5) and the known expression (4.46) for
L. Starting from L

1∓x , all x-dependence in the numerators of the components can
be removed by omitting the terms regular at x = ±1, ie. proportional to x∓ 1, and
the remaining polar parts are equal to −2

√
2iJ, 2

√
2iJ̄ for the respective choice of

sign. From (4.5) then

c+ = −c− =
i

2
√

2
(4.52)
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and the prescription for the Baker–Akhiezer factor gives

exp− i

2
√

2

(
y

1− x
w +

−y
1 + x

w̄

)
= exp

1√
2

(
x

y
τ − ix

2

y
σ

)
(4.53)

which a priori is valid only in the neighbourhoods of x = ±1, ie. z = 0,K + iK.
These are the only points where fBA may (and should) be singular, and from the
definition of x, y one sees that the coefficient of τ has poles at these exact points,
because of cancellations of theta functions in x/y. However, the coefficient of σ has
an additional pole at z = iK, which proves that (4.53) is not a valid global expression
for the Baker–Akhiezer function. This can be resolved by replacing x2/(

√
2y) with

G(z) = −1
2(δ(z) + δ(z −K − iK)) (4.54)

where δ is the logarithmic derivative of θ (see appendix). This trick preserves the
local structure, ie. residues at z = 0,K + iK, at the cost of forfeiting periodicity in
the imaginary direction. To remedy this, an additional factor can be introduced, so
that

fBA = M(σ, τ)
θ(z − γ(σ, τ))

θ(z − γ0)
exp

(
xτ√
2y

+ iG(z)σ

)
(4.55)

Now, after shifting z by the imaginary quasi-period 2iK, we apply (A.29), (A.32)
that give rise to additional exponential factors. These should cancel, as the whole
function should be periodic, and this is satisfied if

γ(σ, τ) = γ0 − iσ (4.56)

After setting γ0 = 0 for simplicity, all that remains unknown in fBA is an overall
factor M independent of x.

So far we have secured the proper singularity structure of fBA, as well as its
vanishing at z = γ, which thus is the dynamical pole of the normalised eigenvector.
Now, we demand that its lower component is a well-defined function with poles at
x =∞ and z = γ, and therefore its form can be restricted to

ψ = r0(σ, τ) + r1(σ, τ)(δ(z − iK)− δ(z + iσ)) (4.57)

where the residues add up to zero to guarantee periodicity by (A.34).

There remains one criterion provided by the procedure that has not been applied
yet, namely the worldsheet independence of the full eigenvector Ψ in the x → ∞
limit. As opposed to the case of the cusp, where the algebraic curve had two distinct
points lying above infinity, it has a branch point instead and there is only one
asymptotic condition to be imposed. To partially make amends for this shortage of
information, we take it at the second order, namely expanding

fBA = M(σ, τ) (f0(σ, τ) + (z − iK)f1(σ, τ) + · · · ) (4.58)

ψ =
ψ−1(σ, τ)

z − iK
+ ψ0(σ, τ) + · · · (4.59)
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with ψ−1,0, f0,1 being the relevant Laurent coefficients of ψ, fBA/M at z = iK, we
demand that all the coefficients explicitly spelled out in

Ψ = fBA

(
1

ψ

)
= M

(
0 + f0 + · · ·

f0ψ−1

z−iK + f1ψ−1 + f0ψ0 + · · ·

)
(4.60)

be constant. Heretofore unknown functions are now set to

M(σ, τ) =
C1

f0(σ, τ)
r1(σ, τ) ≡ ψ−1(σ, τ) =

C2

C1
(4.61)

ψ0(σ, τ) =
C3 −M(σ, τ)ψ−1(σ, τ)f1(σ, τ)

M(σ, τ)f0(σ, τ)
=
C3

C1
− f1(σ, τ)

f0(σ, τ)

C2

C1
(4.62)

r0(σ, τ) =
C3

C1
− f1(σ, τ)

f0(σ, τ)

C2

C1
− C2

C1

(
θ′′(0)

2θ′(0)
− δ(iK + iσ)

)
(4.63)

where r0 has been obtained from ψ0. This concludes the reconstruction.

The result as presented is definitely less satisfactory than in the case of the
cusp, as the relation to the originally obtained vectors Ψ± is completely obscured.
However, some agreement should be expected, firstly due to the fact that the Jacobi
elliptic functions can be expressed in terms of theta functions, and one could try to
find some analytic relation to the expression (4.42). Secondly, for any z, the solution
ceases to be well-defined at σ = ±K, as a factor of θ(iK + iσ) is present in f0, a
denominator of M . Thus the domain of the solution is |σ| < K, just as for the
original solution. It should be noted, however, that this is a direct consequence of
the judicious choice of γ0, and other values of this parameter would cause at least
shifting of the domain strip, if not complexifying the whole solution.

In lieu of showing an actual analytic equality between the two results, consider
the position of the dynamical pole given by z = −iσ. Then x(−iσ), including the
normalisation, can be expressed as

x(−iσ) =

(
θ3(π2 )θ3( iπσ2K + iπ

2 )

θ3( iπ2 )θ3( iπσ2K + π
2 )

exp
πσ

2K

)2

(4.64)

where the supressed nome of θ3 is q = e−π and the properties of quasi-periodicity
(A.25) and evenness have been applied. Next, the half-period shifts (A.26) can be
used

x(−iσ) =

(
θ4(0)θ2( iπσ2K )

θ2(0)θ4( iπσ2K )

)2

= cn2 iσ =
1

cn2 σ
(4.65)

where subsequently (A.12) and (A.19) have been used (keeping in mind that k = 1√
2
).

We thus see that the position of the dynamical pole exactly reproduces the zero of
the prefactor in (4.42).

Finally, a convincing cross-check can be made with numerics. Namely, for

C1 =
√

1− x C2 = i
√

2C1 C3 = 0 (4.66)
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the expressions agree very well for any z, σ, τ . The freedom of choice of C1,2 corre-
sponds to the already familiar ambiguity of the reconstruction procedure. However,
the lack of criteria to fix C3 is a new feature of this particular algebraic curve and
stems from the branch point at infinity, although the fact that the proper value is so
specific vaguely suggests that we might have overlooked some less obvious constraint.

4.4 Other elliptic reconstructions

In this section, we consider elliptic algebraic curves in more general context, assum-
ing only that there is no branch point at infinity (and neither at zero), as opposed to
the quark–antiquark case. Even without fully specifying the uniformisation of the
curve, fairly refined expressions for the corresponding string worldsheet appear. As
a consequence, the curve

y2 = (x2 − 1)(x2 − a2) (4.67)

will be shown to reproduce a folded string solution.

Assume that the uniformisation is done on a lattice in C with half-periods ω, ω′,
and x, y are respectively even and odd. Then the branch points will appear where
z 7→ −z is an involution, that is, at z = 0, ω, ω′, ω + ω′. The points corresponding
to x = ±1, denoted as z = I±, will necessarily be among these four. The pairs
of points above x = 0,∞, denoted respectively as z = 0±,∞±, will be related as
0+ = −0−,∞+ = −∞−.

The eigenvector on this algebraic curve will have the following form

Ψ = q1e
δ(z−I+)w+δ(z−I−)w̄ θ(z − γ)

θ(z − γ0)

(
1

q2
θ(z−∞+)
θ(z−∞−)

θ(z+∞+−∞−−γ)
θ(z−γ)

)
(4.68)

where q1,2, γ are functions of w, w̄. The Baker–Akhiezer prefactor has essential
singularities of the type (3.50) at I±, and vanishes at the dynamical pole γ. The
lower component of the normalised eigenvector vanishes at one of the infinities (here
at ∞+), and has a pole at the other (∞−), as well as the dynamical one. The
remaining theta function is chosen so that the product is periodic.

Periodicity needs to be restored in the prefactor, though. Again, shifting the
argument by the complex quasi-period 2ω′, applying (A.29), (A.32), and demanding
that the arising exponentials cancel, we fix

γ = w + w̄ + γ0 (4.69)

where γ0 remains an unspecified reference point.

Demanding that the eigenvector is constant at ∞±, we are able to fix q1,2.
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Inserting the result back into Ψ, we obtain

Ψ =

 eδ(z−I
+)w+δ(z−I−)w̄

eδ(∞+−I+)w+δ(∞+−I−)w̄

θ(z−γ)
θ(z−γ0)

θ(∞+−γ0)
θ(∞+−γ)

q eδ(z−I
+)w+δ(z−I−)w̄

eδ(∞−−I+)w+δ(∞−−I−)w̄

θ(z−∞+)
θ(z−∞−)

θ(z+∞+−∞−−γ)
θ(z−γ0)

θ(∞−−γ0)
θ(∞+−γ)

 =

(
Ψ1

qΨ2

)
(4.70)

where q is now constant. Note that the w, w̄ dependence is present only in the
exponentials and as γ.

A matrix of eigenvectors can be arranged as Ψ̂ = (q+Ψ(z); q−Ψ(−z)) for any
constants q±. Note that this is not a most general choice, as any linear combination
of Ψ(±z) is a solution of the auxiliary linear system at x(z). By (3.31)

g =
1√

det Ψ̂(0)

(
q−qΨ2(0−) −q−Ψ1(0−)

−q+qΨ2(0+) q+Ψ1(0+)

)
(4.71)

By comparison with (4.8), ratios or products of the components of this matrix will
contain expressions for the global AdS3 coordinates of the corresponding solution.
Explicitly we arrive at

e2it =
q−q

q+

Ψ2(0−)

Ψ1(0+)
e−2iψ =

q−

q+q

Ψ1(0−)

Ψ2(0+)
(4.72)

cosh2 ρ =
q+q−q

det Ψ̂(0)
Ψ1(0+)Ψ2(0−) (4.73)

The last expression is particularly worth attention. Even without examining the
exact form of det Ψ̂(z), it is guaranteed not to depend on w, w̄, and its value at 0 is
a constant. Now, both terms in the parentheses of

det Ψ̂(0) = q+q−q
(
Ψ1(0+)Ψ2(0−)−Ψ1(0−)Ψ2(0+)

)
(4.74)

have exactly the same exponential part. It can be thus cancelled with the exponential
part of the numerator in (4.73), and worldsheet dependence of cosh2 ρ will appear
only through γ, that is, as w+w̄. Therefore, this reconstruction scheme may produce
only configurations in which the radial coordinate is independent of τ . This does
not indicate any shortcomings of the whole formalism, but rather of some details of
the current derivation, in which for instance Ψ̂ was not taken in the most general
form.

We will apply these steps to the algebraic curve (4.67) with the following un-
formisation

x(z) ∝ θ(z − 0+)θ(z − 0−)

θ(z −∞+)θ(z −∞−)
(4.75)

y(z) ∝ θ(z − I+)θ(z − I−)θ(z −A+)θ(z +A−)

θ(z −∞+)2θ(z −∞−)2
(4.76)

where 0± = ∓ω
2 ,∞

± = ±(ω′ − ω
2 ), the branch points are I− = 0, I+ = ω,A+ =

ω′, A− = ω + ω′, and both functions are periodic by (A.33). By (A.29), x(I−) =
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−x(I+), so a normalisation for x can be chosen so that indeed x(I±) = ±1. More-
over, similarly x(A−) = −x(A+), and a proper (although highly non-trivial) choice
of half-periods will lead to x(A±) = ±a. Then, the poles and zeroes on both sides
of (4.67) coincide, so we conclude that y can be normalised accordingly. Finally, by
(A.29) x, y are respectively even and odd as required.

Considering the expression for t (4.72), the w, w̄-dependence remains only in
the exponential factor and the following ratio

θ(0− +∞+ −∞− − γ)

θ(0+ − γ)
= −e−

iπ
ω

(−ω
2
−γ) (4.77)

by (A.29), as here 0−+∞+−∞− = 0+ + 2ω′. Collecting all terms in the exponents
and applying (A.32), the coefficients of w, w̄ in the exponents turn out to be mutually
opposite, and the whole expression can be written as

e2it ∝ q−q

q+
ect(w−w̄) (4.78)

and the overall proportionality can be set to 1 by a judicious choice of q, q±. Simil-
iarly, for ψ (4.72), the only non-constant theta factors are

θ(0− − γ)

θ(0+ +∞+ −∞− − γ)
= −e

iπ
ω

(ω
2
−γ) (4.79)

as 0++∞+−∞− = 0−−2ω+2ω′. Collecting all the exponents, analogous behaviour
appears and thus

e−2iψ ∝ q−

q+q
ecψ(w−w̄) (4.80)

where there is still enough freedom in q, q± to set the overall proportionality to 1.
We have then established that t = ctτ, ψ = cψτ .

Finally, as mentioned before, ρ depends only on σ. Together with the obtained
form of t, ψ, this suffices to state that the solution corresponding to the algebraic
curve (4.67) is the folded string (see also section 5.1).

It needs to be stressed that this is not the only solution that can be obtained
within the described reconstruction procedure for the elliptic curves, even if it is
slightly limited. Another example is the generalised quark–antiquark potential that
was reconstructed in [JLg12, §B.3] out of an algebraic curve defined as

y2 = (x2 − 1)(x− a)(x+ 1
a) (4.81)

4.5 Ambiguities for correlation functions

Consider two correlation functions: 〈tr Z̄J trZJ〉 of two local operators and 〈W◦ trZJ〉
of a local operator with a circular Wilson loop. Their dual minimal surfaces stretch
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between two insertion points in the former case, described by a propagation of a
point-like (BMN) string, and between a circular contour and an insertion point in
the latter. The quasi-momentum of the BMN string is [GV07, (31)]

p(x) =
2πJ x
x2 − 1

(4.82)

where J = J/
√
λ. For the correlation function with W◦, the contour defining the

monodromy can be shifted as close as possible to the trZJ insertion point, and by
the argument of path independence the quasi-momentum will be precisely the same.
In fact, this argument holds for correlation functions of trZJ with arbitrary, possibly
very complex operators. This raises a question of how is it possible to encompass
within the algebraic curve approach more than one distinct solutions with the exact
same monodromy and, consequently, quasi-momentum.

Explicit parameterisations of the minimal surfaces take the simplest form, if an
insertion point is sent to spatial infinity beforehand, which can always be done by
virtue of conformal symmetries of the boundary theory. This corresponds to the
dual string propagating indefinitely outwards into the bulk, either from a point at
the origin in the BMN case, or from a circle centered at the origin in the Wilson loop
case, if another symmetry is used to appropriately translate the remaining operator.
The BMN solution then reads simply

z = eJ τ x0,1 = 0 φ = iJ τ (4.83)

with τ ∈ R, while the correlator with the Wilson loop corresponds to a surface
[Zare02, (4.7), (4.12)]

x0 =
J̃ eJ τ

cosh(J̃ τ + arsinhJ )
cosσ z =

(
J̃ tanh(J̃ τ + arsinhJ )− J

)
eJ τ

x1 =
J̃ eJ τ

cosh(J̃ τ + arsinhJ )
sinσ φ = iJ τ (4.84)

where J̃ =
√

1 + J 2, on a domain of τ ≥ 0 (approaching the boundary Wilson loop
at 0) and periodic |σ| ≤ π. The surface is plotted in fig. 4.2. In both cases both the
target space is Euclidean, so g is given by (4.7).

The BMN solution yields an almost trivial auxiliary linear system

J = − iJ
2(1− x)

(
1 0

0 −1

)
J̄ =

iJ
2(1 + x)

(
1 0

0 −1

)
(4.85)

with immediate solutions

Ψ+ = e
iJ
2 (− w

1−x+ w̄
1+x)

(
0

1

)
Ψ− = e−

iJ
2 (− w

1−x+ w̄
1+x)

(
1

0

)
(4.86)

Ψ̂ = (Ψ+;−Ψ−) has unit determinant, reproduces g directly from (3.31), and for
trivial A = diag(1,−1) gives a polynomial Lax matrix L = diag(−1, 1). The corre-
sponding algebraic curve is then

y2 = 1 (4.87)
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Figure 4.2: The minimal surface (4.84) of the correlation function of a circular Wil-
son loop and a local operator at spatial infinity. For large values of J , the surface
resembles a cylinder steadily contracting as propagating into the bulk. Here J = 1

5 .

with no poles nor cuts, therefore consisting of two disconnected copies of a complex
plane. By extension, one might say that its genus is −1.

For the surface (4.84), the situation is somewhat similar to the quark–antiquark
potential Wilson loop, where the equations in w, w̄ were harder to treat than their
linear combinations (4.34). Here we obtain

Jσ = − 1

(1− x2)s2

(
i(J xs2 + 1 + J 2) J̃ e−1 (c + (J − x)s)

J̃ e (c− (J − x)s) −i(J xs2 + 1 + J 2)

)
(4.88)

Jτ = − 1

(1− x2)s2

(
−(J s2 + x(1 + J 2)) iJ̃ e−1 (xc + (J x− 1)s)

iJ̃ e (xc− (J x− 1)s) J s2 + x(1 + J 2)

)
(4.89)

where e = eiσ+J τ , s = sinh J̃ τ, c = J̃ cosh J̃ τ . The equation in σ constructed by
(4.14) reads

0 = ∂2
σf1 + i∂σf1 +

J 2x2 + J x(1− x2)

(1− x2)2
f1 (4.90)

Its characteristic equation has a notable feature, namely its discriminant is a perfect
square

∆ = −
(

1 + 2J x− x2

1− x2

)2

(4.91)
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so the two solutions obtained do not differ by choosing a branch of some square root

f1,+ = C+(τ) exp
i(x2 − J x− 1)σ

1− x2
f1,− = C−(τ) exp

iJ xσ
1− x2

(4.92)

Again, we use these with (4.13) in (4.89) and obtain

∂τC+(τ)

C+(τ)
=

J x2

1− x2
− J̃ coth J̃ τ (4.93)

∂τC−(τ)

C−(τ)
= − J

1− x2
− 1 + J 2

sinh2 J̃ τ(J − x+ J̃ coth J̃ τ)
(4.94)

where in both cases the second terms are logarithmic derivatives and the integration
is elementary. Finally the solutions can be assembled as

Ψ+ =
1

J̃
e
J τ−ixσ

1−x2

(
J̃ e−iσ−J τ/ sinh J̃ τ
i(J − x− J̃ coth J̃ τ)

)
(4.95)

Ψ− = e
−J τ−ixσ

1−x2

(
J − x+ J̃ coth J̃ τ
−iJ̃ eiσ+J τ/ sinh J̃ τ

)
(4.96)

These solutions do not exhibit the typical structural traits witnessed for other cases,
as the differences between them are not as tangible as just choosing a branch of a
square root. On the other hand, though, Ψ− has a dynamical pole (explicit in a
factorisation in which the upper component is 1), which would hint at a non-zero
genus of the algebraic curve, whereas the trivial quasi-momentum suggests otherwise.

A good choice of the matrix of solutions is Ψ̂ = (iJ̃Ψ+;−Ψ−), whose de-
terminant equals 1 + 2J x − x2, and subsequently Ψ̂−1|x=0 = g. Setting A =

(1 + 2J x− x2) diag(1,−1), a polynomial Lax matrix arises

L =
1

s2

(
−2(1 + J 2)− (1 + 2J x− x2)s2 2ie−iσ−J τ J̃ (c + (J − x)s)

2ieiσ+J τ J̃ (c− (J − x)s) 2(1 + J 2) + (1 + 2J x− x2)s2

)
(4.97)

using the same shorthands as in (4.89), and, by construction, Ψ± are again eigen-
vectors of L with respective eigenvalues ±(1+2J x−x2). Note that the scalar factor
in A is itself a polynomial, so if one was to apply the traditional, relaxed criterion
of rational L, the simplest choice of A would be just diag(1,−1), and the algebraic
curve equation would be identical to the pathological BMN case considered earlier
in this section. However, with the above choice, the equation is

y2 = (1 + 2J x− x2)2 (4.98)

and the curve is still degenerate. Namely, the right-hand side of the equation has
only double zeroes (at x = J ± J̃ ) and no other features, which means that the
curve has no actual branch cuts, only two points of unification. This degeneracy
is yet another sign that this case is far from generic, and relates to the fact that
(4.95)–(4.96) do not have the typical structure.
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Reconstruction

For a degenerate algebraic curve like the one at hand (4.98), the whole formalism
employed before breaks down. Nondegenerate curves have branch cuts, over which
the analytical structure of functions can be meaningfully continued from one sheet
of the curve to the other. In the present case, there are only two isolated points at
which the sheets, and consequently the functions defined on them, are identified.

On the other hand, such curves can be understood as limits of particular non-
degenerate curves with cut length converging to zero. From this point of view, the
reconstruction procedure could be performed before taking the limit of the result.
For the case at hand, the curve would need to have two cuts and thus be elliptic
(genus-1). Both for simplicity and diversity of approach, we instead choose to per-
form some sort of ‘hand-crafted’ reconstruction on the degenerate curve, in which
we will use insights drawn from the actual elliptic case. The cost of this approach
is that the procedure may not be unique.

The outline of the procedure is then as follows: we will introduce two distinct
vector functions, each on one of the sheets of the curve. Firstly, without calling it a
‘Baker–Akhiezer function,’ we will determine an exponential prefactor that will have
the familiar local behaviour around x = ±1 (3.50). Secondly, just as with the elliptic
case, we will introduce two poles, one at infinity and the other dynamical, but we
will need to distribute them between the two vectors. Subsequently, the requirement
that in x → ∞ the functions are worldsheet-independent will be applied. Lastly,
the functions will be required to coincide at the identification points x = J ± J̃ , as
a remnant of continuity between the sheets.

Examining the polar part of L
1∓x (4.5), by dropping all regular terms one arrives

at −4iJ,−4iJ̄ for the respective choice of sign. Therefore in (3.50) c± = i
4 , and

Ψ ∝ exp− i
4

(
yw

1− x
+

yw̄

1 + x

)
(4.99)

Again, this cannot hold globally, as y = ±(1+2J x−x2) depending on the sheet, and
using the full expression for y would cause an essential singularity at infinity. Instead,
we use local values of y, that is y(1) = ±2J in the first term and y(−1) = ∓2J in
the second, thus

Ψ ∝ exp∓ iJ
2

(
w

1− x
− w̄

1 + x

)
= exp±J τ − ixσ

1− x2
(4.100)

Distributing the poles is the most speculative step of this procedure. We will
not put them in the same vector, as this would render the other trivial, ie. constant
save for the scalar exponential factor already specified. We will then put the pole at
x =∞ in Ψ+ and the dynamical one in Ψ−, mainly because we know that we want
to reproduce (4.95)–(4.96) (the reversed choice leads to results that do not solve the
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original auxiliary linear system). We then write

Ψ+ = e
J τ−ixσ

1−x2 q+(σ, τ)

(
1

q+
1 (σ, τ)(x− q+

2 (σ, τ))

)
(4.101)

Ψ− = e
−J τ−ixσ

1−x2 q−(σ, τ)(x− q−1 (σ, τ))

 1
q−2 (σ,τ)

x−q−1 (σ,τ)

 (4.102)

At x→∞, where the exponential factors vanish, the vectors should be worldsheet-
independent, and we infer that the coefficients of x1-terms are constant: q− =

q+q+
1 = 1, leaving

Ψ+ = e
J τ−ixσ

1−x2

(
q+(σ, τ)

x− q+
2 (σ, τ)

)
Ψ− = e

−J τ−ixσ
1−x2

(
x− q−1 (σ, τ)

q−2 (σ, τ)

)
(4.103)

The final step is to require that the two vectors be equal at the identification
points x = J ± J̃

Ψ+(σ, τ ;J ± J̃ ) = Ψ−(σ, τ ;J ± J̃ ) (4.104)

These two vector equations yield a system of four linear equations in the four un-
known functions q+, q+

2 , q
−
1,2 that solves to

q+ = −J̃ e−iσ−J τ/ sinh J̃ τ q+
2 = J − J̃ coth J̃ τ (4.105)

q−2 = J̃ eiσ+J τ/ sinh J̃ τ q−1 = J + J̃ coth J̃ τ (4.106)

The assembled result differs from (4.95)–(4.96) only by an overall constant factor
(−J̃ for Ψ+, −1 for Ψ−), and also by a factor of i in the lower components, consis-
tently for both Ψ±. The latter is an already familiar ambiguity of the reconstruction
procedure that is also exhibited by its variant for degenerate curves, whereas the
former corresponds to the global AdS3 rotation.





Chapter 5

Application to the BFKL
pomeron

In this chapter we will discuss how the strong coupling BFKL pomeron can be de-
scribed in the algebraic curve framework. The motivation is to prepare the ground
for a possible description of the pomeron in terms of Bethe ansatz or related (Y-
system, FiNLIE) machinery, and to this end an understanding of particle content of
excited states is needed. Even though there are fundamental conceptual problems,
like the existence of continuous quantum numbers j, ν which do not easily recon-
cile with the particle interpretation, its semi-classical limit can be obtained as the
algebraic curve.

We identify a suitable string dual, such that its non-zero conserved charges
match (2.28). For simplicity, we consider a highest-weight state, so that m = m̄ = 0,
also with vanishing conformal spin n = 0. We achieve this by modifying a well-
known solution, namely the folded string. As a by-product (or consistency check),
we derive an expansion of j(ν) that matches the semi-classical limit of (3.73), but
can be continued to arbitrary order.

Subsequently, the folded string algebraic curve is modified accordingly, and the
integral constraints and asymptotics of the quasi-momentum are discussed. We
identify the cuts on the curve due to reality conditions and argue that the relevant
limit of Bethe ansatz equations holds.

5.1 The dual string configuration

A good starting point of the construction is the well-known solution with only two
non-vanishing conserved charges, the GKP folded string [GKP02]. It appears in

61
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the global AdS3 coordinates

Y0 = cosh ρ sin t Y1 = sinh ρ cosψ Y3 = Y4 = 0

Y5 = cosh ρ cos t Y2 = sinh ρ sinψ (5.1)

by imposing the following simple dependence of the time and angular coordinate

t = κτ ψ = χτ (5.2)

and demanding that the radial coordinate do not depend on τ and be periodic,
ρ ≡ ρ(σ) = ρ(σ + 2π). Here, we will derive its useful parameterisation given in
[Tsey10, §4.1]. Of the two Virasoro constraints one is trivial, while the other reads

(ρ′)2 = κ cosh2 ρ− χ2 sinh2 ρ (5.3)

The variables ρ, σ are already separate, and an integration by substituting υ = iρ

yields an explicit elliptic integral, so we obtain a relation

κσ = iF (iρ|1− χ2

κ2 ) (5.4)

which can be inverted by the Jacobi amplitude function. Now, as we are chiefly
interested in computing the charges (2.18), we will transform the following

sinh ρ = −i sin am︸ ︷︷ ︸
sn

(−iκσ|1− χ2

κ2 )

= −k sd(χσ|k2) =
k√

1− k2
cn(χσ +K(k2)|k2) (5.5)

where we have used (A.19), (A.20), (A.18), and k = κ
χ . The function is odd in σ, as

manifestly seen from its penultimate form. Subsequently, we impose the requirement
of periodic ρ, and as the period of cn is 4K(k2), we finally fix the relation between
the two parameters

χ =
2K(k2)

π
κ =

2kK(k2)

π
(5.6)

Finally, let us comment that the equations of motion do not restrict the form of the
solution any further. They turn out to read

0 = κ2 cosh ρ+ (ρ′)2 cosh ρ+ ρ′′ sinh ρ (5.7)

0 = χ2 sinh ρ+ (ρ′)2 sinh ρ+ ρ′′ cosh ρ (5.8)

It can be separated into two independent equations, one for (ρ′)2, which reproduces
(5.3), and one for ρ′′, which reads

ρ′′ = (κ2 − χ2) sinh ρ cosh ρ (5.9)

and is a consequence of (5.3) by differentiating its sides with respect to σ.

In calculation of the charges (2.18), the dependence on τ factorises out. In most
of the cases, the integrand is then proportional to sinh ρ cosh ρ, which is odd, and
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the integral will vanish, as the limits of integration can be shifted to −π, π due to
periodicity. The remaining non-zero charges are then

S12 =
√
λ
K(k2)

π2

∫ 2π

0
sinh2 ρ dσ S50 =

√
λ
kK(k2)

π2

∫ 2π

0
cosh2 ρ dσ (5.10)

By (5.5), (A.23)∫ 2π

0
sinh2 ρ dσ =

k2

1− k2

π

2K(k2)

(
−1− k2

k2
· 4K(k2) +

1

k2
· 4E(k2)

)
(5.11)

where we have used quasi-periodicity (A.6), (A.21) of E(am υ|k2). Finally,

S12 =
√
λ

2

π

(
E(k2)

1− k2
−K(k2)

)
S50 =

√
λ

2

π

kE(k2)

1− k2
(5.12)

To conclude this introduction, let us comment on the physical meaning of the
parameter k. Its range is the real interval (0, 1), which interpolates between the
limits of very short string, when k → 0, and infinitely long string, when k → 1.
Both spin and energy tend to respectively 0 and infinity in these limits.

Our aim now is to construct a solution whose only non-vanishing charges will be
S54, S03. This can be achieved by a simple relabelling of the embedding coordinates.
What needs to be taken into account, though, is that the coordinates still need to
obey the embedding constraint (2.9). This is achieved by complexifying some of the
coordinates, and the result is

Y4 = i cosh ρ sin t Y0 = i sinh ρ sinψ Y1 = Y2 = 0 (5.13)

Y5 = cosh ρ cos t Y3 = sinh ρ cosψ (5.14)

Most notably, the Virasoro constraints take the same form as before, leading to the
same solution and analysis of ρ, and thus the same relation of κ, χ inside t, ψ to k.
We dub this solution the BFKL folded string.

By the same argument, there again are only two non-zero charges, this time

S54 = −i
√
λ
kK(k2)

π2

∫ 2π

0
cosh2 ρ dσ = −i

√
λ

2

π

kE(k2)

1− k2
(5.15)

S03 = i
√
λ
K(k2)

π2

∫ 2π

0
sinh2 ρ dσ = i

√
λ

2

π

(
E(k2)

1− k2
−K(k2)

)
(5.16)

Using (2.28), (2.29), these are related to the relevant parameters as

S54 = D = 2ν S03 = M03 = ij (5.17)

where the integer terms in D have been dropped, as they will become negligible in
the strong coupling limit, where ν and the right-hand side of (5.15) scale with

√
λ.

Now, a series expansion of (5.15) can be inverted to yield k in terms of ν/
√
λ,

and after plugging into (5.16) we get

j√
λ

= −2

(
ν√
λ

)2

− 3

(
ν√
λ

)4

− 21

2

(
ν√
λ

)6

− 391

8

(
ν√
λ

)8

+ · · · (5.18)
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Figure 5.1: Plot of ImS54 (5.15). Mesh lines are at z = 0, therefore marking the
values of argument k for which S54 is real. Dotted mesh lines are at Im k = ±2.18.

This expansion could be continued to an a priori arbitrary order, but we have
notably achieved full agreement with (3.73), which, after dividing sidewise by

√
λ and

keeping only ν2n/λn terms on the right-hand side, gives first three terms of (5.18).
This confirms that we have identified a classical string solution that explicitly realises
the classical limit of the strong coupling analog of the BFKL pomeron intercept.

Finally, we can make note on how the similarity relation (2.24) is apparent here,
realised by SO(4, 2) rotations by π

2 in the planes 13, 02, and 04 of the embedding
space. By using explicit rotation generators that are zero in all components except
for

(Mµ0)µ0 = (Mµ0)0µ = i (Mµν)µν = −(Mµν)νµ = 1 (5.19)

the similarity matrix is

U = e
π
2
M42e

π
2
M20e

π
2
M31 = exp

π

2

(
4

3
√

3
(M42 +M20 +M40) +M31

)
(5.20)

and it indeed maps a vector (Y0, Y1, Y2, 0, 0, Y5) to (iY2, 0, 0, Y1, iY0, Y5), therefore
transforming the GKP folded string into its BFKL counterpart.

What does not follow through from the original case is the restriction of k to
the real axis. The proper locus of k on the complex plane is determined by the
reality conditions that the sl(2,C) representation theory dictates for the charges.
The constraints

S54 = 2ν ∈ R S03 = ij ∈ iR (5.21)
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Figure 5.2: Values of ν/
√
λ (solid), j/

√
λ (dashed) for imaginary k.

are satisfied on the imaginary axis, k ∈ iR, what becomes evident from the ex-
pression for the charges once noticing that in such case E(k2),K(k2) ∈ R. Further
investigation, albeit largely numerical, indicates that this may only be a partial so-
lution. As seen in fig. 5.1, there are curved paths in the complex k plane branching
out of the imaginary axis and leading to k = 1, along which S54 is still real. The
value of k at which the paths appear can be numerically found as a root of ImS54

just off the imaginary axis, and equals approximately

k∗ ≈ ±2.18i (5.22)

This corresponds to the supplementary mesh lines of fig. 5.1. Similar behaviour is
apparent in ReS03, although the essentially complex paths that appear at the same
k∗ have a slightly different shape.

The behaviour of ν, j for imaginary k, cf. fig. 5.2, can be described as follows.
For positive Im k, ν rises from 0 at k = 0 to some maximum ν∗, and then falls off
to a finite limit of

√
λ/π at infinity. j falls off from 0 to some minimum j∗ and rises

to 0 at infinity. As for negative Im k, ν is odd and j is even. Now, to determine the
values of argument that correspond to the extremal values ν∗, j∗, we can calculate
the k-derivatives of the respective functions and using (A.7) obtain

dj

dk
=
ik

2

dν

dk
=
√
λ

2

π

k

(1− k2)2
(2E(k2)− (1− k2)K(k2)) (5.23)

The value of k at which this expression vanishes is not known analytically, but
numerically it turns out to be k∗.

From the point of view of representation theory ν is not expected to be bounded,
and it would be ideal to investigate the behaviour along the curved paths of essen-
tially complex k. Graphing the functions suggests that ν can reach arbitrarily large
values there, positive in the upper half-plane, negative in the lower. However, j
acquires an imaginary part. Another obstacle, of purely technical nature, is that the
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1 a

Figure 5.3: Position of cuts of the algebraic curve for the GKP folded string. a is real
and larger than 1.

location of these paths is not analytically known, not even the exact value of the
initial point k∗.

In the following discussion, k of the BFKL string will be then purely imaginary,
and implicitly also 0 ≤ Im k ≤ Im k∗.

5.2 Algebraic curve analysis

We have just learned that a string solution with charges relevant to BFKL is inti-
mately related to the GKP string. Anticipating an equally close relation between
their algebraic curves, we start by continuing over from section 4.4, where the curve
for the GKP string has been identified as (4.67). The cuts between the sheets extend
between 1 and real a, as well as between −1,−a, as seen in fig. 5.3. Accordingly,
the quasi-momentum differential reads

dp =
Ax2 +B

a(1− x2)
√

1− x2
√

1− x2

a2

dx (5.24)

where the structure of the square root has been altered in anticipation of the follow-
ing derivation. The possible sign change and ambiguity is absorbed in the unknown
constants A,B. Their values are constrained by (3.58), (3.59). In the present case
of genus 1, the two cuts map to one another when reflected over the origin, and the
differential is even. This implies that the values of the two A-cycles will be mutu-
ally opposite, as also evidenced by the possibility to continuously deform one to the
other, only with a different directionality. The same will hold for both Γ-contours,
and their sum is equal to the only B-cycle, which will subsequently vanish identi-
cally. Therefore the only actually non-trivial equations are the proper values of the
A-cycle (ie. vanishing) and the Γ-contour. These are enough to establish A,B.
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To this end, we decompose dp as follows

dp

dx
=
A+B

a

 x2

(1− x2)
√

1− x2
√

1− x2

a2

+
a2

a2 − 1

√
1− x2

a2

√
1− x2

− a2

a2 − 1

√
1− x2

a2

√
1− x2


+
B

a

1
√

1− x2
√

1− x2

a2

(5.25)

and integrate. Here, the elliptic integrals appear straight from their definitions,
while the remainder gives a quite compact expression

p(x) =
a(A+B)

a2 − 1

x
√

1− x2

a2

√
1− x2

− E(arcsinx|a−2)

+
B

a
F (arcsinx|a−2) (5.26)

The A-cycle can be deformed to follow the imaginary axis and close off by a
semicircle at infinity. As the integrand dp vanishes for the latter part, the value of
the A-cycle will be equal to 2p(i∞) (due to p being odd). Instead of directly taking
the limit of (5.26), we use an equivalent expression obtained by symbolic definite
integral of dp, that is∮

A
dp =

2i

a2 − 1

(
(A+B)E(1− a2)− (a2A+B)K(1− a2)

)
= 0 (5.27)

We require it to vanish, which allows us to express one of the constants in terms of
the other.

The Γ-contour is in turn equal to the difference of p evaluated at the opposite
sheets of the curve at one point of the cut. This is equal to double the value at that
point, as the integrand changes sign when passing between the two sheets, and in
our case, it is comparatively simple to evaluate at the branch point x = a, where
the first term of (5.26) simply vanishes. Immediately using (A.10), we get∫

Γ
dp = 2p(a) = −2

(
A+B

a2 − 1
E(a2) +AK(a2)

)
= −2A

KK ′ − EK ′ −KE′

K ′ − E′
(5.28)

where the last step follows from substituting B obtained from (5.27), and the short-
hands K,K ′, E,E′ denote respectively K(a2),K(1 − a2), E(a2), E(1 − a2). In the
numerator, one side of the Legendre relation (A.8) can be spotted, so the condition
on Γ-contours reads

Aπ

K(1− a2)− E(1− a2)
= 2πn (5.29)

The constants in the quasi-momentum are thus

A = 2n(K(1− a2)− E(1− a2)) B = 2n(E(1− a2)− a2K(1− a2)) (5.30)

These values play an important role, as they appear in the identities that relate
the asymptotic behaviour of p to the charges. Here we obtain

p(x) = xp′(0) + · · · = B

a
x+O(x2) (x→ 0) (5.31)

p(x) =
1

x
lim
υ→0

(
p( 1
υ )
)′

+ · · · = −A
x

+O(x−2) (x→∞) (5.32)
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1

a = eiα

Figure 5.4: Position of cuts for the BFKL folded string. a lies on the unit circle.

In both expressions there is an ambiguity of overall sign, which is resolved by the
requirement that p is continuous outside of the cuts. Above it has been already
taken into account, by examining the behaviour of arg dp along some line between
0 and infinity, for instance just next to the real axis, therefore parallel to the cuts.
By comparison with (3.32), (3.33), we obtain

E =
n
√
λ

2π

a− 1

a
(E′ + aK ′) =

n
√
λ

2π

a− 1

a
(aE(1− a−2) +K(1− a−2)) (5.33)

S =
n
√
λ

2π

a+ 1

a
(E′ − aK ′) =

n
√
λ

2π

a+ 1

a
(aE(1− a−2)−K(1− a−2)) (5.34)

using the same shorthands as (5.28), with the second step following from (A.9).
These expressions manifestly reproduce a special case of the results of [GSSV11,
(2.4), (2.6)] in which one of the branch points is set to 1.

Now we are able to connect the algebraic curve description to the string descrip-
tion, by comparing the charges in the last forms of (5.33), (5.34) to (5.12). They in
fact do coincide by (A.11) for k̃ = 1

a (and n = 1), therefore

a =
1 + k

1− k
(5.35)

For k ∈ (0, 1), a is indeed a real number larger than 1.

Now, the whole discussion, and most importantly the association of the alge-
braic curve (4.67) to the folded solution will be also valid for the BFKL string. The
physical values of a will be necessarily different, but the relation (5.35) still holds.
In the small ν < ν∗ region, where unambiguously k is purely imaginary, |a| = 1. We
express them in terms of a new, real parameter α

k = i tan
α

2
a = eiα (5.36)

The position of cuts will have to be determined anew, according to the reality
conditions of the particle density, which this time are imposed by (5.21). Instead
of searching for the most general solution, we will venture the most natural guess
of the cuts lying along the unit circle, and verify it. The situation is depicted in
fig. 5.4.
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Figure 5.5: The integrands of (5.40), (5.41) (multiplied by i), i.e. ρ(eiξ)dudξ /
√
λ (solid),

iερ(eiξ)dudξ /
√
λ (dashed), for α = 3

2 .

The analysis is done entirely numerically. A crucial point lies just at the begin-
ning, namely one needs to guarantee that dp is continuous outside of the cuts, and
the default choices of square root branches made by the software do not coincide
with them in general. Therefore the expression (5.24) needs to be multiplied by a
step function that will change its sign over certain regions, and in our investigation
these were determined to be

x : |x| < 1, 0 < arg(x2 − 1) < arg(a2 − 1) (5.37)

The required values of A-cycle and Γ-contour have been confirmed, and the discon-
tinuity of p turned out to be purely imaginary. Parameterising the cut as x = eiξ,
the infinitesimal element du = (1− 1

x2 )dx = (1− 1
x2 )ix dξ turns out to be real, while

the dispersion relation (3.71) is purely imaginary on the unit circle.

To complete the particle description, the charges need to be expressed as inte-
grals over particle density. We reverse-engineer the asymptotics of quasi-momentum
by replacing in (3.32), (3.33) the quantities that correspond by comparing (5.12) to
(5.16), (5.15). We obtain

p(x) =
2π(j − 2iν)√

λ
x+O(x2) (x→ 0) (5.38)

p(x) =
2π(j + 2iν)√

λx
+O(x−2) (x→∞) (5.39)

and for the density integrals

i
√
λ

8π2

∫
disc p du = −

√
λ

2π2

∫ α

0
Im p(eiξ)(1− e−2iξ)ieiξdξ = j (5.40)

i
√
λ

8π2

∫
εdisc p du = −

√
λ

2π2

∫ α

0
Im p(eiξ)(1 + e−2iξ)ieiξdξ = 2iν (5.41)

The conditions (5.21) are satisfied due to the integrands being purely real and imag-
inary in the respective cases, while the integrals indeed evaluate to their proper
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values obtained from (5.16), (5.15). The integrands are plotted in fig. 5.5. The
continuum Bethe equation (3.65) is also discovered to hold for n = −1.

There also appears a subtlety related to the interpretation of (3.56), which in
the case at hand means that the density is normalised to a negative quantity, ie.
negative definite. It is currently unknown if this should be resolved by some kind of
continuum Baxter equation interpretation, or just by a redefinition of the quantum
numbers of elementary particles. The latter would be justified by the fact that
the solution does not in fact belong to the standard sl(2) sector, but instead to its
reshuffled and complexified variant.



Chapter 6

Conclusions and outlook

The most concise summary of the results presented in this thesis is as follows: firstly,
we have proposed and tested a method with which the algebraic curve classification of
AdS/CFT can be broadened from spinning strings to Wilson loops minimal surfaces,
and possibly also two-point correlation function duals. Secondly, an algebraic curve
has been proposed for the processes involving the BFKL pomeron, that serves as a
semi-classical limit of the relevant Bethe ansatz equations.

More precisely, for the Wilson loops, where the conventional construction is
impossible as all monodromies are trivial, we have defined a Lax operator from a
solution of an auxiliary linear problem, fixing any ambiguity by some general con-
straints on the analytical structure of the operator. Subsequently, we have considered
two examples, for which we have proven that the algebraic curve arising from such
Lax operator properly describes the original solution, ie. it can be reconstructed, up
to the usual free coefficients, purely from the analytic properties of functions defined
on algebraic curves.

For the correlation functions, we have highlighted a puzzling feature, namely
the lack of one-to-one correspondence between the quasi-momenta and the algebraic
curves. We have considered two solutions of the same quasi-momentum, to which
our procedure assigned, and again meaningfully, different algebraic curves. This is
in contrast to the monodromy-based approach in which the two solutions would be
not distinguished.

Finally, we have found a stringy dual to the BFKL pomeron by simply demand-
ing that the relevant conserved charges were non-zero. The algebraic curve equation
for this solution is already known, and we have determined the position of branch
cuts from the reality conditions.

There is a number of possible directions of further research and open questions
left by the results presented. For completeness, we note that one of them would be
an improvement on the analytic structure of the quark–antiquark reconstruction, to
show that the result agrees with (4.42) not only numerically. Also, the unresolved

71
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ambiguity of the coefficient C3 of the reconstruction requires a deeper insight, as
such feature is bound to reappear in the reconstruction from any curve with a branch
point at infinity. Possible ideas include introducing some birational transformation
of the curve, or perhaps a modification of the original [BBT03] analysis, which from
the beginning relies on an assumption that the algebraic curve has n distinct points
above infinity.

An obvious continuation is to consider different solutions in context of the new
algebraic curve definition, and some work in this direction has already been done
[Ryan12, Cagn13]. However, it would be most interesting to see a solution to
which corresponds a non-degenerate curve of genus 2 (or larger). Also, for the
stringy solutions of [Ryan12], a comparison with the traditionally-derived curves
would be in order.

In general, the methodology could be also applied to other sectors of the full
string theory (or even the full string theory itself). Especially the larger ones would
be interesting, but several obstacles can appear. One is visible already at this
point, namely the larger rank of the Lax operator will correspond with the much
more general form of the x = ±1 asymptotics of the Baker–Akhiezer prefactor than
(3.50).

A major development for Wilson loops would be to somehow extend the no-
tion of monodromy to Wilson loop surfaces or open string worldsheets. This could
be done by introducing some new object that would enter the ordered exponential
whenever the defining contour would touch the boundary of the worldsheet. Reflec-
tion matrices like this were already considered in [MV06], although our very limited
attempts at providing this new definition along these lines failed.

Let us note at this point an interesting paper [Deke13] in which the author
proposes yet another scheme of assigning the algebraic curves to a broad class class of
solutions, which turns out to encompass all cases considered here and in [Ryan12].
As this scheme does not require introducing any functions as in (4.3), it can be
considered to be less arbitrary than ours (although we do not agree that ours is
arbitrary). There are also some issues with the new scheme, like an appearance of
two related but different algebraic curves for one of the solutions considered, and
the discussion is not complete yet.

As for the configurations dual to the correlation functions, we could boldly
extrapolate from the evidence we have got and state that a given quasi-momentum
can correspond to a number of algebraic curves that differ from one another by
the presence of degeneration points. This, of course, requires a much deeper insight,
and more relevant results for comparison could be gathered by considering two-point
functions of the operator trZJ with more complicated objects.

In general, analyticity arguments on degenerate curves would require a detailed
treatment. Using for instance the argument by which a curve with degeneration
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points is a limit of a curve with very short cuts, some more or less general properties
of eigenvectors defined on such curves could be derived. This could lead to developing
a method less haphazard than the reconstruction of section 4.5.

Another, even more puzzling question arises in context of correlation functions
beyond two points. By picking contours of different homotopy classes (ie. not equiv-
alent by continuous deformation), which is possible for higher-point functions (at
least three classes for 3-point, at least seven, including the ‘pants decomposition’
contours, for 4-point, etc.), there will naively appear a number of different quasi-
momenta and corresponding algebraic curves, possibly of different genera. How the
algebraic curve description would work for such surfaces is well beyond even the
scope of speculation at this point.

In the study of the BFKL pomeron algebraic curve, one possible continuation
would be to examine the behaviour at larger values of imaginary parameter k, that
is, beyond k∗. Our results indicate that to obtain arbitrary large values of the
intercept, k is required to belong to an essentially complex contour, whose shape
is not known analytically. It would be beneficial to investigate this region and the
behaviour of the solution in it, as well as to decide if the region of large, purely
imaginary parameter is physical and why.

Another proposal would be to look for a stringy dual with non-vanishing con-
formal spin n and discuss the relevant algebraic curve. Finally, our results are barely
an invitation to apply in this case the powerful integrability machinery that relies
on the particle description, along the lines of the Y-system.





Appendix A

Elliptic functions

This appendix essentially sums up the useful formulae of [HMF10].

There is more than one convention of notation for the elliptic integrals and
theta functions. We consequently use exactly one of them. For practical reasons, it
always is the one used by the respective functions in Mathematica. Consequently,
the complete elliptic integrals also use the Mathematica convention instead of the
traditional one, namely

KMathematica(k2) ≡ Ktextbook(k) (A.1)

and the same for E (we do not use the complete integral of the third kind). The
traditional notation is also used in [HMF10], so the formulae quoted here are recast
to match the rest of the text.

Second arguments of the Jacobi and theta functions (that is, the modulus or
parameter for Jacobi functions, and nome or lattice parameter for theta functions)
is often suppressed, unless there are explicit transformations in it. Its present value
should be clear from context. Most notably, the whole subsection 4.3 uses k = 1√

2

for Jacobi functions and τ = i (or q = e−π) for theta functions. On the other hand,
the modulus or parameter of incomplete elliptic integrals is never suppressed, to
avoid confusion with respective complete integrals.

A.1 Elliptic integrals

Elliptic integrals were introduced to deal with the fact that the arc length of an ellipse
cannot be expressed by elementary functions. The incomplete elliptic integrals,
respectively of the first, second, and third kind, are defined as follows [HMF10,
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§19.2(ii)]

F (φ|k2) =

∫ φ

0

dθ√
1− k2 sin2 θ

(A.2)

E(φ|k2) =

∫ φ

0

√
1− k2 sin2 θ dθ (A.3)

Π(n;φ|k2) =

∫ φ

0

dθ

(1− n sin2 θ)
√

1− k2 sin2 θ
(A.4)

Obviously, all three vanish at φ = 0, while at φ = π
2 they give the complete elliptic

integrals, respectively

K(k2) = F (π2 |k
2) E(k2) = E(π2 |k

2) Π(n|k2) = Π(n; π2 |k
2) (A.5)

They are quasi-periodic in the first argument, for instance [HMF10, (19.2.10)]

E(nπ ± φ|k2) = 2nE(k2)± E(φ|k2) (A.6)

Derivatives of the complete integrals read [HMF10, §19.4(i)]

dK(k2)

dk
=
E(k2)− (1− k2)K(k2)

k(1− k2)

dE(k2)

dk
=
E(k2)−K(k2)

k
(A.7)

There are several transformations relating the different kinds of elliptic integrals.
For complete integrals, we mention the Legendre’s relation [HMF10, (19.7.1)]

E(k2)K(1− k2) +K(k2)E(1− k2)−K(k2)K(1− k2) = π
2 (A.8)

and [HMF10, (19.7.2)]

K(1− k−2) = kK(1− k2) E(1− k−2) = 1
kE(1− k2) (A.9)

We also use the reciprocal modulus transformation of incomplete integrals
[HMF10, (19.7.4)] that with sinψ = 1

k sinφ ≤ 1 reads

F (φ|k−2) = kF (ψ|k2) E(φ|k−2) = 1
k (E(ψ|k2)− (1− k2)F (ψ|k2)) (A.10)

Note that we use it for a case where sinφ = a = k, thus ψ = π
2 and the right-hand

side integrals simplify to their complete counterparts.

Reversing in [HMF10, §18.8(ii)] the role of k, k′, renaming k to k̃ and then k1

to k, we obtain the following form of the descending Landen transformation: for
k = 1−k̃

1+k̃
,

K(1− k̃2) = (1 + k)K(k2) E(1− k̃2) =
2

1 + k
E(k2) + (k − 1)K(k2) (A.11)
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A.2 Jacobi elliptic functions

This is a set of twelve special functions that can be defined by their relation to the
theta-functions (see below), for instance [HMF10, (22.2.5)]

cnσ =
θ4(0, q)

θ2(0, q)

θ2(υ, q)

θ4(υ, q)
(A.12)

where υ = πσ
2K(k2)

and q = exp(−πK(1− k2)/K(k2)). We do not rely much on these
definitions, and instead several relations are crucial for our calculations, even if they
are not mentioned explicitly. For instance [HMF10, (22.6.1)]

sn2 σ + cn2 σ = k2 sn2 σ + dn2 σ = 1 (A.13)

and [HMF10, §22.3(i)]

cn′ σ = − snσ dnσ sn′ σ = cnσ dnσ dn′ σ = −k2 snσ cnσ (A.14)

The remaining (rarely used) functions are defined by the following mnemonic [HMF10,
(22.2.10)]

pq =
pr
qr

=
1

qp
(A.15)

where p, q, r are any of the letters c, s, d, n, and any function named with repeated
letters is constantly equal to 1. Finally, the Jacobi amplitude function is defined as

amσ = arcsin snσ (A.16)

and turns out to be the inverse function of the incomplete elliptic integral of the
first kind [HMF10, (22.16.10–11)]

φ = amσ ⇔ σ = F (φ|k2) (A.17)

The functions transform to one another under half-period shifts [HMF10, §22.4.(i)]

cn(σ +K(k2)) = −
√

1− k2 sdσ (A.18)

imaginary rotation in the argument [HMF10, §22.6(iv)]

cn(iσ|k2) =
1

cn(σ|1− k2)
sc(iσ|k2) = i sn(σ|1− k2) (A.19)

and inverse modulus transformation [HMF10, §22.17(i)]

sc(σ|k−2) = k sd(σk |k
2) (A.20)

The amplitude is quasi-periodic [HMF10, (22.16.2)]

am(σ + 2K(k2)) = π + amσ (A.21)
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From [HMF10, (22.16.3)] we see that

am 0 = 0 am′ σ = dnσ (A.22)

and we can integrate∫
cn2 σ dσ = −1− k2

k2
σ +

1

k2

∫
dn2 σ dσ = −1− k2

k2
σ +

1

k2

∫ √
1− k2 sin2 υ dυ

= −1− k2

k2
σ +

1

k2
E(amσ|k2) (A.23)

by substitution υ = amσ.

A.3 Theta functions

This is a set of four functions defined by their Fourier expansions. We will mostly
use one of them [HMF10, (20.2.3)]

θ3(z, q) = 1 + 2

∞∑
n=1

qn
2

cos 2nz (A.24)

where q = eiπτ is called the nome, and τ (Im τ > 0) the quasi-period. The points
(0, π, πτ, π+πτ) define the lattice or the fundamental parallelogram on the domain.
The theta functions are quasi-periodic on the lattice [HMF10, (20.2.8)], ie.

θ3(z + (m+ nτ)π, q) = q−n
2
e−2inzθ3(z, q) (A.25)

for m,n ∈ Z. Moreover, θ3 is odd.

The theta functions transform to one another under half-period shifts [HMF10,
§20.2(iii)]

θ3(z + π
2 ) = θ4(z) θ3(z + πτ

2 ) = θ2(z)e−iz−iπτ/4 (A.26)

There also holds a very curious equality at specific values of both arguments,
namely for τ = i = τ ′, z = 0 [HMF10, (20.7.31)]

θ2(0, e−π) = θ4(0, e−π) (A.27)

In the main text we predominantly use a theta function with rescaled and
shifted argument, so that the fundamental parallelogram is explicitly spanned by
half-periods ω, ω′, so τ = ω′/ω, and θ(0) = 0. Specifically

θ(z) = θ3

(
πz

2ω
− 1 + τ

2
π, eiπτ

)
(A.28)

and its second argument is always suppressed. It behaves as follows under argument
reflection and quasi-period shifts

θ(z + 2ω) = θ(z) θ(−z) = θ(z + 2ω′) = −e−iπz/ωθ(z) (A.29)
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We define also a logarithmic derivative

δ(z) =
θ′(z)

θ(z)
=

π

2ωθ(z)
θ′3

(
πz

2ω
− 1 + τ

2
π, eiπτ

)
(A.30)

so that by construction its residue at z = 0 is 1. To obtain its quasi-periodicity
properties we differentiate (A.29) with respect to z

−θ′(−z) = θ′(z + 2ω′) = iπ
ω e
−iπz/ωθ(z)− e−iπz/ωθ′(z) (A.31)

and divide the result side by side by (A.29) again to obtain

δ(z + 2ω) = δ(z) −δ(−z) = δ(z + 2ω′) = δ(z)− iπ
ω (A.32)

By (A.25), the expression

n∏
i=1

θ3(z −Ai)
θ3(z −Bi)

, with
n∑
i=1

(Ai −Bi) = mπ,m, n ∈ Z (A.33)

is periodic in both directions. By (A.29), the same holds for its analog defined in
terms of θ instead of θ3 (with

∑
(Ai − Bi) = 2mω,m ∈ Z), which also has the

advantage that it has manifest zeroes at z = Ai and poles at z = Bi (Ai do not need
to be pairwise distinct, and Bi similarly). By (A.32),

n∑
i=1

Riδ(z −Bi), with
n∑
i=1

Ri = 0, n ∈ Z (A.34)

is also periodic in both directions. These two expressions are extremely useful for
defining doubly-periodic functions, the former with manifest zeroes and poles, and
the latter with manifest poles with specified residues Ri.
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