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Abstract

We study unconventional superconductivity in strongly correlated electron sys-
tems and in applied magnetic (Zeeman) field. The strong correlations among quasi-
particles are accounted for by means of the Gutzwiller approximation within the
statistically-consistent scheme proposed recently in our group. We analyze the
situation for a gas of heavy quasiparticles and obtain a phase diagram on the mag-
netic field-temperature plane (for both two- and three-dimensional cases, including
the s-wave- and d-wave-gap symmetry solutions). In low magnetic fields the sys-
tem is in the Bardeen-Cooper-Schrieffer (BCS) phase, whereas for the increasing
magnetic field a transition to the Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) phase
with nonzero Cooper pair momentum takes place. To distinguish novel features
of the case with strong correlations we compare our results with those for a non-
correlated situation. In all analyzed situations the FFLO phase is more robust for
the case with strong correlations, which implies that strong correlations stabilize
the FFLO phase (and possibly other high-field low-temperature unconventional
phases). We explain the stabilization mechanism.

Next, we study conductance of a normal metal - strongly-correlated super-
conductor junction in order to provide an experimental test of our results. The
conductance spectra in the cases with and without strong correlations differ essen-
tially, and the differences should be easily observable experimentally, providing a
hallmark of strong correlations in the superconducting state. Namely, correlations
alter the distance between the conductance peaks for carriers with spin-up and
spin-down. In the non-correlated case this distance is twice the Zeeman energy. In
the correlated case this distance is about 30-50% smaller, but in other models it
may be larger, depending on details of the electronic structure.

Additionally, we perform analysis of the coexistence of antiferromagnetism
(AF) and superconductivity (SC) within ¢-J model for a system with strong cor-
relations and in applied magnetic field in the Pauli limit. The coexisting phase
exhibits two superconducting gaps (a consequence of the AF and SC coexistence):
singlet and staggered-triplet. The triplet component has a nonzero Cooper pair
momentum, and can be viewed as an analogue of the FFLO phase. We obtain a
phase diagram on the band filling - magnetic field plane. For band filling close to
unity (i.e., close to the half-filled band situation) our results resemble those obtained
recently in the heavy fermion system CeCo(Iny_,Cd,)s. Namely, with the increas-
ing magnetic field the system evolves from the coexisting phase, through AF phase,
towards the spin-polarized normal state. Moreover, the onset of superconducting
order decreases antiferromagnetic magnetization.

Keywords: strongly correlated electrons, unconventional superconductivity,
heavy fermions, Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) phase, spin-dependent
masses, Andreev reflection, Andreev-reflection spectroscopy, Gutzwiller approach,
antiferromagnetism, CeColns, d-wave superconductivity, t-J model, statistically-
consistent Gutzwiller approximation (SGA).






Streszczenie

W rozprawie rozwazono niekonwencjonalne nadprzewodnictwo w uktadach sil-
nie skorelowanych elektronéw w polu magnetycznym (typu Zeemana). Silne ko-
relacje miedzy kwaziczastkami uwzgledniono poprzez przyblizenie Gutzwillera w
ramach statystycznie-konsystentnego podejscia zaproponowanego ostatnio w na-
szym zespole. Poddano analizie sytuacje gazu ciezkich kwaziczastek i otrzymano
diagram fazowy w funkcji pola magnetycznego i temperatury (dla przypadku dwu-
i tréj-wymiarowego oraz uwzgledniajac symetrie przerwy typu s-wave oraz d-wave).
W niskich polach magnetycznych uktad jest w stanie Bardeena-Coopera-Schrieffera
(BCS), natomiast przy zwiekszaniu pola magnetycznego nastepuje przejscie do fazy
typu Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) z niezerowym pedem srodka masy
par Coopera. Celem wyodrebnienia nowych cech przypadku z silnymi korelac-
jami, wyniki zostaly poréwnane z otrzymanymi dla przypadku bez korelacji. We
wszystkich analizowanych sytuacjach faza FFLO wystepuje w szerszym przedziale
temperatur i pol w przypadku silnych korelacji co implikuje, ze silne korelacje sta-
bilizujg faze FFLO (i prawdopodobnie inne niekownencjonalne fazy pojawiajace
sie w silnych polach i niskich temperaturach). W rozprawie wytlumaczono takze
mechanizm stabilizacji tego stanu.

Przeanalizowano takze przewodnos¢ ztacza typu normalny metal - silnie-skorelo-
wany nadprzewodnik w celu sformulowania eksperymentalnego testu naszych wyni-
kéw. Przebiegi przewodnosci w przypadkach z obecnoscia i absencja silnych ko-
relacji réznia sie znacznie. Réznice te powinny by¢ tatwo mierzalne doswiadczalnie,
dostarczajac testu wystepowania silnych korelacji w stanie nadprzewodzgcym. Mi-
anowicie, korelacje zmieniaja odleglto$¢ pomiedzy maksimami przewodnosci pocho-
dzacymi od nosnikow o spinie w gore i tych o spinie w dét. W sytuacji braku
korelacji ta odleglo$¢ jest rowna podwojonej energii Zeemana. Dla przypadku z
korelacjami, odleglosé ta jest 30-50% mniejsza, ale w innych modelach moze tez
by¢ wieksza w zaleznosci od szczegdltow struktury elektronowej.

Dodatkowo, rozwazono koegzystencje antyferromagnetyzmu (AF) i nadprze-
wodnictwa (SC) w ramach modelu t-J dla uktadu z silnymi korelacjami oraz
w polu magnetycznym, w granicy Pauliego. Faza z koegzystencja wykazuje sie
dwiema przerwami: singletowa oraz przerwa trypletowa typu staggered-triplet.
Sktadowa trypletowa charakteryzuje sie niezerowym pedem srodka masy par Co-
opera i moze by¢ postrzegana jako analogon fazy FFLO. Otrzymano diagram fa-
zowy w funkcji wypemhienia pasma i pola magnetycznego. Dla sytuacji pasma
prawie do polowy wypelnionego nasze wyniki przypominajg otrzymane ostatnio
w uktadzie ciezkofermionowym CeCo(Iny_,Cd,)s. Mianowicie, przy zwiekszaniu
pola magnetycznego uktad ewoluuje z fazy z koegzystencja, poprzez faze AF, ku
spinowo-spolaryzowanemu stanowi normalnemu. Co wigcej, pojawienie si¢ przerwy
nadprzewodzacej zmniejsza magnetyzacje podsieci w stanie AF+SC.

Stowa kluczowe: silnie skorelowane elektrony, niekonwencjonalne nadprze-
wodnictwo, ciezkie fermiony, faza Fulde-Ferrell-Larkin-Ovchinnikov (FFLO), spino-
wo-zalezne masy, odbicie Andreeva, metoda Gutzwillera, CeColns, antyferromag-
netyzm, statystycznie konsystentne przyblizenie Gutzwillera (SGA), nadprzewod-
nictwo typu d-wave, model ¢-J.
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Chapter 1

Introduction

In this Chapter we review briefly different types of unconventional superconduc-
tivity and emphasize the role of strong electronic correlations in formation of
those unconventional phases. Next, we concentrate on the Fulde-Ferrell-Larkin-
Ovchinnikov (FFLO) phase, which is the central topic of the Thesis. We review
the experimental systems in which the FFLO phase has been indicated, concen-
trating on the heavy fermion superconductor CeColny - the most likely candidate
as the host for the FFLO phase. Finally, we substantiate why strong correlations
should be a key ingredient in theories of the FFLO state, and we set the aim of
the Thesis as to provide such a formulation.

1.1 Unconventional superconductivity

Unconventional superconductivity is recently a very hot topic in the condensed-
matter physics. It is studied almost as frequently as high-temperature supercon-
ductivity and comprises a number of heavy-fermion [I] and organic metallic [2]
systems. Among the novel states observed and discussed intensively recently is the
superconductivity in the systems without space-inversion [3], 4], and time-reversal
[5, 6] symmetry, the states in which superconductivity coexists with antiferro-
magnetic [7HI] or ferromagnetic [10} [I1] order, as well as the FFLO state [12HI4]
coexisting with the incommensurate spin-density wave order [I5HIT].

Since all the systems of interest have narrow bands, the role of electronic cor-
relations is crucial in formation of exotic phases. To support this point of view let
us quote a few authors:

e Strong electron-electron correlation is one of the central issues of the current
condensed-matter physics. The so-called heavy-fermion materials represent a
typical example of systems in which strong correlation effects are essential in
determining their physical properties., Tsunetsugu et al. 1997, Ref. [18.

o A systematic search for novel forms of superconductive pairing interactions
and pairing symmetries hence requires a systematic quantitative determina-
tion of the quasiparticle interactions in the presence of strong electronic cor-
relations., Pfleiderer 2009, Ref. [1.



e The relationship between large-moment magnetism and superconductivity (...)
cannot be explained by conventional models (...). Electronic duality mani-
fested in CeRhlIns requires a new conceptual framework that poses a challenge
to theory. An appropriate description of strong electronic correlations must
be a key ingredient of this framework., Park et al. 2008, Ref. [19.

In brief, by unconventional superconductivity we understand the superconduc-
tivity, which is not described by the BCS theory and the superconducting state
under consideration involves usually (strongly) correlated fermions.

1.2 Fulde-Ferrell-Larkin-Ovchinnikov phase

1.2.1 Theory

The FFLO superconducting state has been proposed theoretically in the 1960s
[20, 21]. In this unconventional superconducting state the Fermi surface splitting
of the electrons due to the Zeeman term of the magnetic field makes it favor-
able for the Cooper pair to have a nonzero total momentum Q. Consequently,
the phase of the superconducting gap oscillates spatially with the wave vector Q,
ie. A(r) = Aqe’@. By forming such a condensate of moving Cooper pairs, the
superconducting state survives to the magnetic fields higher than the Pauli H.
limit. The simplest FFLO phase (with A(r) = Aqe@) is called the Fulde-Ferrell
(FF) state. By forming superposition of such superconducting gaps with different
directions of the Cooper pair momentum Q, the Larkin-Ovchinnikov (LO) state
is obtained. In the simplest case of LO phase, the gap is a standing wave, i.e.,
A(r) = (AQe™® + Aqe Q) /2 = Agq cos(Qr), but more complicated phases are
possible [14], 21]. In this Thesis we will consider only FF type of FFLO state. We
will sometimes call this state as FFLO, since it is a subclass of FFLO states.

For the stability of the FFLO phase the orbital effects must be strongly sup-
pressed and the Maki parameter [22] high. This parameter is defined as the
ratio of the upper critical fields coming from orbital effects H%® to the upper
critical field coming from the Pauli paramagnetism (Zeeman term) HL, namely
o = v/2H%Y/HE. The Maki parameter expresses the relative importance of or-
bital and Pauli effects in destabilizing the condensed state. The required minimum
value of the Maki parameter for the formation of the FFLO state is a = 1.8 [23].
For lower Maki parameters the influence of the orbital effects becomes the domi-
nating factor, and the FFLO state is not stable.

1.2.2 Experimental realization

The FFLO state has suddenly gained renewed interest recently (for a review see
Ref. [14) because of its possible realization in the heavy fermion superconductor
CeColns [12) 13), 17, 24H26] (for details see Section [1.2.3), although the nature of
the high-field low-temperature (HFLT) phase observed in this system is still under
hot debate after incommensurate spin-density wave order has been observed in the
vicinity of this phase [I5HI7, 27H30].



The FFLO state has also been proposed for the organic superconductor k-
(BEDT-TTF);Cu(NCS), [31,32], 8”-(ET)2SF5CHoCF2SO;3 [33], and other layered
organic superconductors (see References in Ref. [32)). Also, the FFLO state has
been indicated in other heavy-fermion systems: PuRhGas [34], CesPdIng [35] (see
Ref. [, Sec. V.B.1 for a more detailed account), as well as in the pnictide
superconductor LiFeAs [36]. The FFLO state is also investigated in high density
quark and nuclear matter [37], as well as in optical lattices [38-40].

1.2.3 The case of CeColn;

CeColny is a member of the Ce-based 115" heavy-fermion compounds - the fam-
ily of CeMIns (with M = Co, Rh, Ir) [41H43]. Superconductivity in CeColns has
been reported by Petrovic et al. [44]. It has the highest critical temperature
(T. = 2.25K) of all the heavy fermion compounds and superconductivity is
believed to be magnetically mediated. The relevant energy scale for such super-
conductivity is T, the characteristic spin-fluctuation temperature. In CeColns,
Ty = 10 K [44], which gives T,/Ts; = 0.2, quite close to the maximum theoreti-
cally predicted value of 20 — 40% [45] (in Ref. [46], the authors claim that in zero
field Tsy ~ 5 K, what yields the ratio T./Tss = 0.4). The electronic structure of
the normal phase of CeColn; is quasi-2D [44] [47-49] and the superconducting gap
exhibits a d-wave symmetry [50-52]. The band structure calculations for CeColns
have also been performed [53H55], but they are not directly relevant to the topics
tackled in this Thesis.

A novel HFLT superconducting phase has been indicated in CeColns for the
first time by Murphy et al. [56] by magnetization measurements. This state has
been further investigated by specific heat measurements by Bianchi et al. [24] (see
Figure for the obtained phase diagram). Radovan et al. [57] performed heat
capacity and magnetization measurements, and interpreted their data as indicative
of regions of superconductivity alternating with walls of spin-polarized unpaired
electrons as expected in the FFLO phase but this interpretation has been contested
[58]. Kakuyanagi et al. [12] performed the first Nuclear Magnetic Resonance
(NMR) study of the HFLT phase (for a review of application of the NMR technique
to probing the superconducting state of heavy fermions see Ref. [59)). This analysis
has also been contested [60] and defended [61]. Similar NMR measurements for the
parallel field orientation (with respect to the ab plane) were performed in Ref. [13
(see Figure for the phase diagrams obtained for both field orientations).

The first indication of an intricate interplay of magnetism and superconductiv-
ity as origin of the HFLT phase has been provided by Mitrovic et al. [27]. The
authors observed an increased spin susceptibility in the HFLT phase as compared
to the uniform SC state. Magnetic order in the vicinity of the HFLT phase has
been investigated by Young et al. [I5]. The authors interpreted NMR spectra as
indicative of ordered static spin moments in the vortex cores. Kenzelmann et al.
[16, B0] investigated the HFLT phase by high-field neutron diffraction to search
for magnetic Bragg peaks within HFLT phase. The authors found that this phase
simultaneously carries cooperating superconducting and magnetic orders and the
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latter exists only in the vicinity of the HFLT phase. Moreover, the magnetic order
extends over a length scale much larger than the diameter of the vortex cores. The
Cooper pair momentum |Q| has been found to be field-independent in CeColns,
contrary to the FFLO picture.

Meanwhile, the FFLO scenario has been supported by pressure [25] and doping
[62H64] studies (for a theoretical interpretation see Ref. [65). Namely, the HFLT
phase expands with applying pressure, i.e. with lowering the influence of antiferro-
magnetic fluctuations [25]. Moreover, the HFLT phase turns out to be sensitive to a
minute amount of impurities [62], what indicates that it is not magnetically-driven
but fundamentally superconducting.

Koutroulakis et al. [17] performed NMR measurements and proposed an al-
ternative phase diagram with a region dominated by strong spin fluctuations but
without static magnetic long-range order, referred to as “exotic” SC, ESC (see
Figure for the phase diagram), which could be an FFLO phase without the
magnetic long-range order. They also deduced that the long-range magnetic order
appearing in the vicinity of the HFLT phase is an incommensurate Spin Density
Wave (SDW) with moments oriented along the ¢ axis, independent of the in-plane
field orientation. Kenzelmann et al. [30] interpreted this independence (seen also
in their neutron-scattering measurements) as evidence for modulation of AF order
along the lines of nodes of the d-wave superconducting order parameter. They
suggested that the SDW order may hence have its origin in the local magnetism
inside the vortex cores observed in Refs. [15 and 66l

Very recently, Kumagai et al. [20] (using the NMR technique) provided direct
evidence of the normal quasiparticles appearing in the HFLT phase, what speaks
in favor of the FFLO scenario. Also, it has been shown theoretically that paramag-
netic pair breaking induces not only the FFLO state but also an incommensurate
SDW order [67, [68].

Therefore, one clearly sees, that there is no consensus on the true nature of
the HFLT phase in CeColns, and no existing theory explains all experimental
findings. As yet, no measurements have provided direct evidence for the spatial
modulation of the order parameter, what would unambiguously prove the FFLO
scenario. A candidate technique for such measurements is the Andreev reflection
spectroscopy, as it is a probe sensitive to both the phase and amplitude modulation
of the superconducting order parameter [69] [70].

1.3 Aim and scope of the Thesis

All the systems suggested to be a host to the FFLO phase have a reduced dimen-
sionality, what is crucial for the FFLO phase stability, as then the orbital effects
are suppressed and the Pauli effect (Zeeman splitting) may become the dominant
factor. Another feature, which suppresses the orbital effects is the heavy quasi-
particle mass. These characteristics of possible FFLO hosts indicate that these
systems are likely to have strong electron (fermion) correlations.

The role of strong correlations in the most likely candidate for the FFLO state,
CeColny is essential not only because this system is a heavy fermion supercon-
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ductor, with a narrow band originating from 4f electrons and large Hubbard U.
Additionally, spin-dependent masses (SDM) of quasiparticles have been observed in
this system [47] by means of the de Haas-van Alphen oscillations in strong applied
magnetic field. SDM are a hallmark of strong correlations, as they appear natu-
rally in theories incorporating correlations (Gutzwiller [71], slave-bosons [72H74],
Dynamical Mean Field Theory, DMFT [75], fluctuation-exchange approximation,
FLEX [76]) when the system is spin-polarized ]

In effect, since CeColnjs is clearly a strongly-correlated superconductor, it is
important to provide a theory of the superconducting state in an applied Zeeman
field, which would account for strong correlations among the paired quasiparticles.
This is the principal aim of the present Thesis. This goal has not yet been achieved
in the context of the FFLO phase. All theories relating to CeColns, although pro-
viding important results (i.e. the correct orders of phase transitions, similar phase
diagram, coexistence with antiferromagnetism), are uncorrelated [68], 79, 80]. For
example the Hubbard U assumed [79] is about two orders of magnitude smaller
than the value coming from e.g. band structure calculations. These theories also
contain phenomenological terms in the starting Hamiltonian (are not microscopic).
Note also, that superconductivity with the spin-asymmetric bandwidths (on the
technical level similar to spin-dependent masses) has been investigated in Ref. K1
There, the bandwidths were assumed as free parameters (not determined by e.g.
the Gutzwiller scheme). Moreover, that study reflects a different physical situ-
ation, i.e. the coexistence of strong pairing correlations and itinerant electron
ferromagnetism, although the authors have also made a reference to CeColns.

Additional motivation for the research described in this Thesis has been pro-
vided by results of the M. Sc. Thesis of the author [82]. Therein, the single Cooper
pair has been investigated in the case of a strongly-correlated system and in applied
field. The single Cooper pair is a precursor of the condensed state of pairs. In low
magnetic fields the Cooper pair has a zero momentum and is in the spin-singlet
state, whereas for the increasing magnetic field the transition to a moving-Cooper-
pair state takes place. The moving Cooper pair is in the spin-specific state, which
can be viewed as a superposition of the singlet and the triplet components (see
Figure [1.2] and Ref. [83).

1.4 A brief summary

In the present Thesis we intend to describe superconductivity in a system with
strong correlations and in an applied Zeeman field. The need for such study is
provided by the observation of high-field low-temperature phase (possibly FFLO)
in the heavy-fermion superconductor CeColns, in which strong correlations un-
doubtedly play important rolef]

1SDM have also been observed in other heavy-fermion systems [77, [78].
2 Although the motivation for our study is material-related, we perform calculations for a model
situation, as already such analysis leads to quite interesting and universal physical conclusions.
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Therefore, the basic questions we pose at the beginning of this Thesis are:

What is the role of strong correlations in stabilization of the FFLO phase and

1.
other high-field low-temperature unconventional superconducting phases?

How do the correlations manifest themselves experimentally in a supercon-

ducting state?
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to different spin orientations and express unequal, spin-dependent masses.



Chapter 2

Theoretical framework

In this Chapter we set the theoretical framework of a theory of strongly-correlated
superconductors. The strong correlations among quasiparticles are discussed and
taken into account first by means of the Gutzwiller method. We review this method
in the simplest formulation (still used in the literature, mostly in the context of
high-Tc superconductors under the name of Renormalized Mean-Field Theory,
RMEFT). Next, we explain, why this formulation turns out insufficient, and we
provide an improved formalism (called Statistically-consistent Gutzwiller Approx-
imation, SGA [84]). This version is equivalent with the slave-boson formalism (for
a formal proof see Ref. 84) and will be used throughout the Thesis. Finally, we
comment on how to obtain both Gutzwiller band narrowing factors and the pairing
term in the model Hamiltonian. The resulting Hamiltonian is a one-band effective
Hamiltonian which accounts for both strong correlations and the pairing, and will
be used in the following Chapters.

2.1 Gutzwiller Approximation

To introduce Gutzwiller Approximation (GA) we start from the simplest Hamilto-
nian in which electron correlations play an important role, namely the single-band
Hubbard Hamiltonian, which has the form

7:[ = Z tz‘jC;rngo + U Z ﬁmﬁu + Z O'hCl-LUCw, (21)
ijo A o

where the first term expresses particle hopping between the sites ¢ and j (with the
hopping amplitude ¢;;), the second describes the intra-atomic repulsive interaction
characterized by the Hubbard parameter U, and the third is the Zeeman term
with the reduced field h = gupH. In the following A, N, (N|), and D denote the
number of lattice sites, of spin up (down) electrons, and of double occupied sites,
respectively. Also, n, = N, /A for ¢ =1, | and D/A = d? (this quantity is identical
with the quantity d of Ref. 85 and d? of Ref. [86).

We summarize here the standardE] GA [87] following the notation of Ref. 85l
The Gutzwiller trial state |¢) is derived from an uncorrelated, normalized single-

'The word ”standard” refers to e.g. expressions for the approximate ground-state energy. The
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particle state |¢)y) by suppressing the weight of those components of the latter,
which correspond to doubly occupied sites. In the simplest case, |¢)) depends on a
single variational parameter g, i.e. the many-body trial wave function is postulated
of the form )

) = H[l — (1 = g)furigy]|vbo) = Pelibo). (2.2)
In the present case [1)g) represents an ordinary Fermi sea, although it may be
magnetically polarized (more complicated uncorrelated states exhibiting e.g. anti-
ferromagnetic and/or superconducting order, can also be considered [8§], cf. also
Chapter @ Using the pro ectlon , one may try to evaluate the expectation
value of the Hamiltonian , (¢|7—[|¢>/(@/}|1/1> However, this is a nontrivial
task and to deal with it we have to introduce further approximations, which will
not be discussed in detail here [85, 87]. In result, following Gutzwiller [87], w
obtain a relatively simple formula for the ground-state energy F,, which for the
translationally invariant state reads

<¢IH|¢>
A (Wly)
In the above, the quantity

{[(no = @) (A = ny = n5 + d*)]'* + d[(ns — d*)]'/*}?
ne(1 —ngy) ’

o/ A = qi(d,ny,m))er + g (d,ng,ny e, + Ud (2.3)

Go(d,my,my) = (2.4)

has an interpretation of the band narrowing (renormalization) factor and

= A ¢0’ Z tl] zacjo'|w0 ! Z €k, (25)

where the k-summation is taken over the filled part of the bare band with spin o
and €, is an average bare band energy per site for particles of spin ¢ = +1. It
is also convenient to change variables from n, ton = ) _n, and m = >__on,
representing the band filling and magnetic moment (spin-polarization) per site,
respectively. It is important to note, that due to the approximate evaluation of
the Lh.s. of Eq. it is not guaranteed that E, is higher then the exact ground-
state energy of the Hubbard model. Eq. may be interpreted as an expectation
value of an effective single-particle Hamiltonian, Hea, evaluated with respect to
|¢0>’ € R

Ey = (¢o|Haalto)- (2.6)

From Egs. (2.3)-(2.5)) it follows directly that

ﬁGA(d,n,m) = Zqo (d,n,m)t;; wcjg — ZUhCZTUCw + AUd?

ijo o
= Z (qa(d7 n, m)ek - O-h)cltgcka -+ AUd2 (27)
ko

method of solution presented here is the simplest one, but it cannot be called standard, as in the
literature there are many different ways of solving the mean-field (MF) model resulting from GA.
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Furthermore, |t¢)y) is chosen to be the ground state of Hen, 7:lGA|zZJo> = E o).
Thus, the Gutzwiller approximation can be alternatively introduced as based on
the effective quasiparticle Hamiltonian (for an intuitive formulation of the
description see Refs. [89 and [90)). This type of approach is termed the renormalized
mean-field theory (RMFT) [88] 1], as the Hamiltonian (2.7]) contains renormalized
(by g») bare hopping integral ¢;; (or single-particle energy ex). In its essence, the
original Hamiltonian has been brought to a single-particle form (2.7)), with
extra parameters to be evaluated either self-consistently or variationally.

Namely, Hamiltonian Hen depends in a non-Hartree-Fock manner on the pa-
rameters n, m, and d, the values of which are not determined as yet. The first two

of them have the meaning of expectation values of single particle operators, i.e.
n = N/A and m = M/A, where

N=(N) =) (d,on),

ko

Z ol cx). (2.8)

Although the Gutzwiller approach was devised for zero temperature, we may
still construct (from Hga—pN) the partition function and the (generalized) grand-
potential functional F(©4)

1 A
F@GA) — -3 > [l + e PG 4 AU, (2.9)

where = 1/(kgT) is the inverse temperature and the quasiparticle energies are
given by
ESY = ge — oh — pu. (2.10)

Explicitly, within GA procedure one minimizes the “Landau functional” (2.9) with
respect to the variational parameter d, which leads to the condition

OF(E
od

= 2\Ud + Z o (BEYYe =0, (2.11)

ko

with f(F) being the Fermi-Dirac distribution function. This equation is supple-
mented with the self-consistent equations coming from Eq. (2.8]), namely

= Z FESM), = Z o f(ESY). (2.12)

Thus we see, the GA solution contains a mixture of self-consistent equations for
m and p and a variational minimization of d. Eqgs. — form a complete
set for d, m, and p (for a fixed n), which is solved numerically. Strictly speak-
ing, the above equations express the way of solving the Gutzwiller approximation
(GA) which is used frequently e.g. in the context of the ¢-J model [92H94]. This
formulation differs from that of Ref. [85.

Note, that the nonzero temperature formalism presented here, in the § — oo
limit, is fully equivalent to the original Gutzwiller approach devised for T" = 0.
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Also, the appearance of spin-dependent k-independent band-narrowing factor
¢, in Eqs. and leads to the spin-dependent masses (SDM) of quasi-
particles. From comparison of these Eqs. with the dispersion relation of a free
clectron gas €9"* = h?k%/(2m*) one can deduce that the quasiparticle mass m*
is inversely proportional to the band narrowing factor ¢,. As a consequence, m*
is spin dependent in the spin-polarized situation (i.e. when m # 0, what implies
¢+ # q;). In the investigation of strong correlations we will always work in the
U — oo limit, in which d — 0, and then the expression for the masses becomes

1 1—n, My 1

. — . e = 2.13
Mo & QJ<n7m) IL—n mp 4o ( )

where mp represents uncorrelated (band) mass of bare particles.

2.2 Statistically-consistent Gutzwiller Approxi-
mation - SGA

In this Section we start with explaining deficiencies of the scheme presented in
the previous Section. Next, we provide a corrected version, which will be called
Statistically-consistent Gutzwiller Approximation (SGA) [84]. Finally, we present
the minimal version of this formulation, which will be used in the following part
of the Thesis.

2.2.1 Motivation for the approach: Deficiency of the Gutz-
willer approximation

To demonstrate directly that the basic method of solving GA summarized in Sec-
tion [2.1]represents not fully-optimized approach, we analyze the ground state in the
general case, i.e. when ¢, depends on the spin polarization m. Then, it is straight-
forward to show that the derivative dFC4) /om = 3, 2eldnm) d"m 9aoldinm) ¢ (o) # 0,
which physically means that by transferring a small number of particles from one
spin-subband to the other (i.e. by changing spin polarization m), we observe a
decrease in the total energy of the system (see Figure for illustration). We
may understand this decrease intuitively by noting that the spin transfer process
between the subbands leads not only to a change in the energy level occupation (as
would be for bare particles), but also to an alteration of the renormalization factor
¢-(d,n,m) for all the single particle energy levels. Such instability is present only
if the Gutzwiller factors depend explicitly on the spin polarization m [

Within the method to be introduced next, we treat m and other mean-fields
as variational parameters, with respect to which the appropriate grand-potential

2This deficiency of GA may, or may still not cause problems depending on the model stud-
ied. For example, when studying properties of a strongly-correlated paired gas of quasiparticles
(Chapter 4] Ref. [83) analysis within GA lead to nonphysical results: jump of free energy at the
BCS-FFLO phase transition. On the other hand, analysis of the same problem within tight-
binding approximation is free of such a jump [95].
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Figure 2.1: Spin-resolved density of states for the spin-majority (¢ =1) and the
spin-minority (o =) subbands calculated in the standard Gutzwiller approxima-
tion. The dot-dashed lines show the reference energy (defined by ¢,e, — p = 0).
Those points of the subbands are shifted by the Zeeman spin splitting 2h. The
calculations were performed for U = 12 and A = 0.05 (in units of ¢) for a two-
dimensional band on a grid of size A = 512 x 512 (also the nearest- and next-
nearest-neighbor hoppings were assumed as t = 1 and ¢’ = 0.25, respectively). The
quantities m; and mgy are the corresponding spin-dependent mass-enhancement

factors in units of mp.
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(Landau) functional is minimized. To carry out the procedure, we introduce con-
straints as discussed next.

2.2.2 Formal structure of SGA

On the technical level, a direct minimization of F(¢4) with respect to m would lead
to violation of the self-consistency equation (2.8). Therefore, in order to preserve
the self-consistency, additional constraint on m has to be imposed by means of
the Lagrange-multiplier method. Analogously, we introduce the constraint on n.
In general, there should be a constraint for each mean field appearing explicitly
in a non-Hartree-Fock manner in the effective MF Hamiltonian (also, for e.g. not
included here the staggered magnetization and the pairing amplitude, cf. Chapter
@. Here, m and n appear in Hea via ¢o(d,n,m). The presence of those constraints
leads to a redefinition of the Hamiltonian , according to the prescription

Hy = Han — An(M — M) — A\ (N — N). (2.14)

The Lagrange multipliers A, and A, play the role of (spatially homogenous) molec-
ular fields, which are coupled to the spin polarization and the total charge, respec-
tively (the general, inhomogeneous case can be treated analogously). Similar terms
are present in some papers [96-98] and absent in others (for the latter cf. treatment
in Ref. 85/ and in those on application of RMFT to the t-J model [88, 02-94]). On
the contrary, the variational parameter d is not an average value of any operator ap-
pearing in Hea— MN and as such, does not require any self-consistency-preserving
constraint.

Next, we construct the generalized grand-potential functional F for the effective

Hamiltonian ,
FBCA = _5711n 2, Z\ = Trlexp (— 5(7:1)\ - ,UN))} (2.15)

Explicitly, we have now the generalized grand potential functional (of the Landau
type), which takes the form

FEGA) = Z In[1 + e P 4+ AQun + A + Ud?). (2.16)

Note that the definition of F(5%4) is based on ., not on Hea. The quasiparticle
energies are thus defined now in the form

El(cerA) = (o€k — O-(h + /\m) - ﬂ? (217)

with i = u + A\, as shifted chemical potential and h + ), as an effective field. All
the averages appearing above are defined with the help of the following density
operator

pr = 25 exp (— B(Hy — uN)) (2.18)
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Figure 2.2: Density of states for the spin-majority (¢ =1) and spin-minority (o =)
subbands obtained within SGA. The Fermi liquid can be viewed equivalently as
either (a) with a single chemical potential or (b) with different effective chemical
potentials p, = fi + 0A,,. The dashed line in (b) marks the Fermi-level position
if we put \,, = 0. The dot-dashed lines show the reference energy (defined by
¢o€x — ft = 0). Those points are now shifted not only by 2h as previously, but
by 2h + 2),,, which leads to the much greater mass-splitting than in the standard
Gutzwiller case (cf. Figure 2.1). The calculations were performed for the same
parameter values as in Figure 2.1 The masses are in units of mp.
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in a standard manner, i.e. A = (A) = Tr[Ap,]. The equilibrium values of the mean
fields and the Lagrange multipliers are obtained from the necessary conditions for
F to have a minimum subject to the constraints, i.e.

oOF OF OF

— =0, — =0, — =0. 2.19

0A o\ od (2.19)
In the above equations: 0.F/ 0A =V AF, etc., and by ff, X we denote respectively
the sets of the mean fields and of Lagrange multipliers; explicitly: A = (n,m)
and A = (A, \pn). Needless to say, that the conditions OF /OX = 0 guarantee the
realization of the self-consistent equations automatically. Explicitly, in the present

case, Eqs. (2.19) yield
8610

A = —K > S d (™ ec (2.20)

A = —x Z%ﬂ B ) (2.21)

n = AZf EL5EA)y (2.22)

m = AZ o f(EEEY), (2.23)

2d = _K 8% Sl (B e (2.24)
-

In effect, the following variables are to be determined from the variational min-
imization procedure: d, m, A\, A\,, and pu, for fixed n. The reason behind the
presence of both A\, and p is the following: the former ensures a self-consistent
way of evaluating n, whereas the latter fixes n at a desired value. The physical
meaning of A, is illustrated in Figure 2.2l Namely, A, optimizes the free energy
by allowing for the Fermi-level mismatch between the spin-subbands to readjust.
The MF thermodynamics is constructed by defining the grand potential Q(7T', h, )
from the generalized grand-potential functional F, evaluated for the optimal values
of all parameters (i.e. the solutions of Eqgs. ), and has the form

QT h, ) = F(T, b, pi: Ao(T, b, 1), Xo(T, o, 1), do (T, b, ). (2.25)

In the above formula A, (T, h, ), XO(T, h, 1), and do(T), h, i) denote the equilibrium
values of the mean-fields, the Lagrange multipliers, and the double occupancy,
respectively. Consequently, the free energy is defined as F' = 2 4+ uN. Note
that u, not i = p + A, is present in the above formulas. The (equilibrium)
thermodynamic potentials depend neither on the mean-fields, nor on the molecular
fields, as they are calculated explicitly in the process of the corresponding functional
minimization. Therefore, the quantity u plays the role of the thermodynamic
chemical potential entering in the relations

0N oF
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2.2.3 Formulation without the constraint on N

If we disregarded A, (putting A, = 0), then the condition 0F/0On = 0 should
not be used. In such scheme (labeled in the following as SGA’), the values of the
quantities m, \,,, d*> would be the same, but the relations would not be
fulfilled. Then, for fixing n the self-consistency condition (Egs. and )
should be used and the value of x4 in this scheme would correspond to p+ A, from
the full formulation. This is the scheme we utilize in Chapters 3}j5], and therefore
we provide below a proof of its “equivalency” with the full SGA formulation.

Explicitly, in this scheme we define the Hamiltonian Ty similarly as in Eq. (2.14])
but without the constraint on N

Hy=Hea — An(M — M). (2.27)

Then, we use the generalized free-energy functional, and not the grand-potential
functional, namely

Fre = Z [l + e 5] 4 A(\wm + Ud®) + Apn, (2.28)

with the quasiparticle energies differing from those in Eq. (2.17) by the absence
of \,
El((iGA) = gpex — 0(h + A\p) — p. (2.29)

In the solution procedure we minimize F I(FSEGA/) with respect to m, \,,, and d as
previously, but for fixing n we use the self-consistency condition (2.8)). Explicitly,
we obtain the following equations

A = —% gim (EE“ e, (2.30)

n = AZf (BN, (2.31)

m = %Zafwlii@“), (2.32)
ko

2Ud = —% > % (B Ve (2.33)

It can be seen that the present set of equations is equivalent to Eqs. (2.21))-(2.24)

with the only difference being the presence of p (in Egs. — and disper-
sion (2.29))) instead of p + A, in Eq. (2.21)-(2.24) and dispersion (2.17)) with A,
set by the “additional” Eq. (| . Therefore, the parameters (g, Mo, Ao, Amos
dy) are solution of Egs. - , 1f and only if the parameters (1 = po + Ao,
Mo, Amo, do) are solution of Eqs 0)-(2.33).

The free energy of the system is the quantity which, in the case of a fixed number
of particles N (or equivalently, of a fixed band filling n), determines the stable phase
from a choice of a priori possible phases. Obviously the stable phase is the one
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with the lowest free energy. In our two schemes of approach (SGA and SGA’), the
free energy is obtained from the grand-potential functional (2.16|) or free-energy
functional (2.28)) by evaluating them for the values of parameters obtained from

the solution of either, Eqgs. (2.20])-(2.24) or Egs. (2.30)-(2.33)), respectively, and

according to the prescription

F(sGA)  _ ]_-éSGA) _ 1 Z W[l + eiﬁE(SGA)]
+A(Amomo + Ud3 + (/\no + fo)no), (2.34)
F(sGay F%GSV _ Z [l + eiﬁE(SGA >]
+A(Nomo + Ud0 + Lgno). (2.35)

After noting that uj, = p10 + Ano, We see that these two free energies are indeed the
same. Therefore, the above scheme, without the explicit constraint for N (~ Apn), is
sufficient to analyze the system properties in a statistically-consistent manner. The
only disadvantage of such simplification is that the chemical potential p it provides
is not the physical chemical potential, which enters e.g. in the thermodynamic
relations, Eq. . Since we do not use such relations, this scheme is sufficient
for our analysis of the strongly-correlated condensed state and we use it in Chapters
There, it has been additionally adjusted to the quasiparticle gas case (we have
N/n instead of A, since Y, 1 =A = (>, n)/n= N/n) and to the U — oo limit
(in this limit d = 0 and hence, there is no expression corresponding to Eq. (2.33)).
In Chapter [6] we utilize the full SGA approach.

2.2.4 The concept of an Almost Localized Fermi Liquid
(ALFL)

The concepts of k-independent, spin-dependent band narrowing factor (or of spin-
dependent mass) and of the correlation field renormalizing both the applied ﬁeldE|
and the chemical potential [cf. Egs. and ] extend the concept of the
Landau quasiparticle in an essential manner. Moreover, those renormalizations
are strong when the band filling n — 1, i.e., the system is close to the Mott-
Hubbard localization (i.e. the Hubbard-interaction magnitude U is comparable
or larger than the bare bandwidth 1W). In that situation the liquid composed of
such quasiparticles exhibits metamagnetism [72], 5], a phenomenon absent in the
Fermi liquid. Furthermore, in distinction to Landau Fermi liquid, in the present
situation the chemical potential is readjusted (recalculated) in each phase (normal,
magnetic, superconducting), as the interaction is neither small (as compared to
the Fermi energy), nor its effects limited to the vicinity of the Fermi surface (as
hwe/ep =~ 0.13). Therefore, it is proper to call this Fermi liquid as an Almost

3The presence of A, can be regarded as an applied-field dependent renormalization of the
Lande’ g factor (as e.g. in magnetic semiconductors), but the present interpretation is better, as
it allows to see clearly its physical influence on the system properties.
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Localized Fermi Liquid (ALFL) [71,199]. Within this paradigm, the unconventional
superconductivity, as it is understood here, concerns the paired superfluid states
of ALFL.

2.3 The pairing Hamiltonian

In the following investigation of the superconductivity in the situation with strong
correlations we will use as a starting point a BCS-like Hamiltonian with Gutzwiller
band narrowing factors already included, namely

N 1
7—[0 = Z(qaﬁk — O'h)CLUCkU + N Z ka'CL+Q/2TCik+Q/2¢C*k/+Q/2¢Ck/+Q/2T7 (236)
ko kk/'Q

where €y is the bare dispersion relation, N is the total number of electrons, (for a
lattice case A = N/n gives the number of sites). After introduction of the constraint
on magnetization with the Lagrange multiplier A, = A, []and subtraction of the
chemical potential term, we obtain

/7':[ - ﬁo_hcor (mk_m>_ﬂzﬁko:
k ko
= Z(%Ek —oh — cheor — ,u)Cleckg

ko

1 N
TN > Vi ey qor iy Uy O +Q 210 QU2 + —Mtheor,  (2.37)
kk'Q

where My = nyy — nk; and we have used the relation >, 1 = A = N/n.

The Hamiltonian can also be justified microscopically starting from the
Periodic Anderson Model. This procedure has been introduced in Ref. 100, and
the way it leads to our starting Hamiltonian has been summarized in Ref. 95,
Appendix A.

Note that we do not perform calculations for a realistic band with a full micro-
scopic Hamiltonian, because we intend to single out novel features of a strongly-
correlated superconductivity in a model situation, as it already leads to very in-
teresting conclusions.

2.4 Concluding remarks

e We use an improved GA scheme - the SGA scheme - proposed recently in our
group [84]. This scheme introduces additional constraints for the magnetic
moment and the total number of particles to the standard GA approach.

4We have renamed the Lagrange multiplier \,, as heor, and will call it correlation field in
the following in order to underline that this quantity enters into the formulation because of
correlations, and in a similar manner to the magnetic field h.
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e The introduction of Lagrange multipliers makes the SGA scheme equivalent
to the slave-boson approach [86], but the present formulation contains no
auxiliary (slave) Bose fields. For a formal proof of the equivalence (at least
in the analysis of the normal state) see Ref. 84l

e We disregard the constraint on the total number of particles (in Chapters
and [4)) in the starting Hamiltonian (—\,(N — N)), as it leads only to a shift
of the chemical potential, which is not important in our analysis.

e We solve the mean-field model by constructing from a starting effective
Hamiltonian H — ,uN the generalized free-energy functional (in Chapters
and ' or generalized grand-potential functional (in Chapter @H This func-
tional is minimized with respect to the mean-fields A (e.g. m, A), as well
as with respect to the Lagrange multipliers X. The minimization procedure
yields a system of integral equations, which are solved numerically to ob-

tain the equilibrium values of mean fields A = Ay and Lagrange multipliers
)\ = )\0.

e Since we perform calculations for a fixed number of particles N (or equiva-
lently for a fixed band filling n), we solve the equations for u, with n being
fixed.

e The system free-energy F' is obtained from the free-energy functional or
grand-potential functional F, by evaluating them at the equilibrium values
Ay and Xg. When starting from the grand-potential functional, the term /N
is also added (see Eq. (6.50))).

e The stable phase from a choice of a priori possible phases is the one with the
lowest free energy F'.

5As in Chapter |§| we consider a different model, both functionals are labeled as F for clarity.
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Chapter 3

Normal state properties

We summarize here the normal-state properties resulting from the Hamiltonian
(2.37), but without the pairing part (i.e. for Vigs = 0), namely

A N __
HNS = nggcltgckg -+ Emhwr, (31)
ko
where we have renamed the spin polarization as m to distinguish it from the quasi-
particle mass m,, and the dispersion relation is given by

fko = o€k — oh — oheor — H- (32)

We underline once again that in the spin-polarized situation presence of the Gutz-
willer band narrowing factors ¢, leads to emergence of spin-dependent masses
(SDM) [71HT76] of quasiparticles, with m} «x 1/¢, = (1 — n,)/(1 —n) (the last
equation holds in the U — oo limit).

3.1 Quasiparticle gas

We analyze first the normal state properties of a three-dimensional quasiparticle gas
with the spin-direction (0 = 1) dependent masses m;: = m, and the effective field
induced by correlations h..,.. Quasiparticle energies in the applied field h = gugpH
have the form

h2k?
-~ 2m,

éka

where we have taken the simple parabolic dispersion relation (e, = h*k?/(2mp))
and have defined from the start the energy with respect to the chemical potential p.
The spin dependence of the masses is taken in the simplest form corresponding to
the narrow-band or the Kondo-lattice limits with the Hubbard interaction U — oo,
ie.

—oh — oheor — 1, (3.3)

My 1 l1—-n, 1-—n/2 m 1
_—— = = — = — av — A 27 34
ms (s 1—n 1—n 02(1—71) mB(m oAm/2) (3-4)

where o = £1 is the spin quantum number, mp is the bare band mass, m = ny —n
is the system spin polarization and n is the band filling (n = ns + ny). Also,
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Am = mgy — my is the mass difference and mg,, = (m; + my)/2 is the average
mass (where m; = my and me = my). Note that in the magnetic saturation limit
(ny —ny)/(ny +ny) = 1 we recover the band limit with ms/mp = 1, whereas
the heavy quasiparticles in the spin-minority band disappear (n; = 0). Note also,
that the convention is such that the state with ¢ = +1 is regarded as that with
magnetic moment along the applied field direction.

The system of self-consistent equations determining thermodynamic properties
of the normal state starting from the free-energy functionall] 7, is as follows

F= —kBTgln(l + e7P%e) 4 uN + %mhm, (3.5)
o n agka
heor = == ; fle) 5o (3.6)
= >0 f(G), (3.7)
ko
n=npn = 3 f(G), (3.8)
ko

where f(£k,) is the Fermi-Dirac distribution, and f = 1/(kgT) is the inverse
temperature. The free energy functional F (T, H, j1; heor, T, 1) given by de-
scribes a Fermi sea with the spin-dependent masses m, and the correlation field
heor- The equations and are derived from the conditions 0F/0m = 0
and OF /Oh.or = 0 respectively, and the last equation is the self-consistency
equation on the band filling (defined by n/Veem = N/V, where Ve, is the
elementary cell volume). The normal-state properties determined via Egs. (3.5)
- are to be compared with those for the paired state obtained in the next
Chapter.

To compare our results with those for the non-correlated case, we assume heavy;,
but equal masses of quasiparticleﬁ (in other words we assume that ¢, does not
depend on ). In such situation (which will be referred to as the case with spin-
independent masses, SIM), the dispersion relation takes the form

h2k?
b= g —oh = (3.9)

and obviously h., = 0 (because the corresponding Hamiltonian does not depend
on the spin-polarization via ¢, as in the SDM case). In the SIM case we solve only

Eqs. (-6,

IThis free-energy functional is equivalent to F I(,ﬂsl';GA,) from Eq. and has been adjusted
to the quasiparticle gas case. Namely, instead of A we use N/n, and as we work in the U — oo
limit, the AUd? term is absent.

20One may argue, that we should have assumed light masses of quasiparticles in the non-
correlated case, but then (to study superconductivity) we would have to use different pairing
potentials Vy and energy cutoffs fiwe. In such situation direct comparison of the results in the
SIM and SDM cases would be obscured. Additionally, in the SIM case, the results for lighter
quasiparticles are qualitatively similar (provided Vj and hiwe are readjusted to obtain a stable
condensed state).
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Even in the more involved SDM case, the equations describing the Fermi sea
characteristics can be easily solved numerically by their reduction to a single equa-
tion for n, of the following form

2/3

nnj n(n —ny)?/?

(n —ny)(2mgy, — mp) + mpny N n1(2mey, — mp) + mp(n —ny)

A+ o) (Velem>2/3, (3.10)

h? 672
with n; = ny. The Fermi sea characteristics obtained for such a gas are summa-
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Figure 3.1: Panel with the three-dimensional Fermi sea characteristics of correlated
gas in the normal state as a function of applied magnetic field (for 7" = 0.05 K).
Dashed line in (a) represents the mass in the spin-minority subband, whereas the
solid line characterizes that in the spin-majority subband. The dotted-dashed lines
in (d) represent the results for subband Fermi wave vector in the case with spin-
independent masses (SIM) with m, = mg,. Note much greater Fermi wave vector
splitting in the SIM case; this is important for understanding of the results for
superconducting state. The red circles in (d) mark the Fermi wavevectors at the
critical field to superconductivity (H.), as determined in Chapter . The thin
dashed black lines are guide to the eye. For details see main text.

rized in Figure 3.1 The mass difference, the Fermi vector splitting and magne-
tization increase linearly with the increasing field. Although we analyze a model
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situation of the heavy electron gas, we take the values of parameters emulating

the heavy-fermion systems: n = 0.97, Vi, = 161 A? (data for CeColns) and the
h = 0 value of the quasiparticle mass mg,, = mB% = 100mg (heaviest band
of CeColns [47]). The assumed mass enhancement magnitude corresponds to the
moderate heavy fermions, with the value of v in the range 100 — 200 mJ/mol K.
Also, the value of n = 0.97 corresponds to the effective valence of the Ce ions
+4 —ny = 3.03, a typical value. Note that the mass splitting is only about 7%
in the field of H = 30 T, but more important is the Fermi wave vector splitting
Akp = kpy — kpy, displayed in Figure [3.Td. The Fermi wave vector is calculated
according to the relation kr, = (6720, /Veem)'/®. Most of the characteristics are

indeed linear in H, as stated above.

m_ =100 m,
T=0.05K

Correlation field (K)

0 2 4 6 8 10 12 14 16 18 20 22 24 26

-10

Magnetic field (T)

Figure 3.2: Correlation field h.,. as a function of the applied magnetic field for
the normal state. The linear dependence is h.,, = —0.6 h and hence, the presence
of the correlation field reduces strongly the applied field.

In Figure [3.2] we display the h dependence of the effective field hey. It is
linear in h and typical values are h., =~ —0.6 h. More importantly, it is always
antiparallel to the applied field, and hence partly compensates it in the sense
that it reduces the Zeeman contribution to the quasiparticle energy. Also, the
external field induces the effective-mass splitting and this factor, together with
the presence of h,,., drastically decreases the difference Akp. In other words,
correlated electrons experience a lower effective Zeeman field and hence, one can
expect that the superconducting state survives to much higher fields. We return
to this question in later Chapters when discussing FFLO state stability on expense
of the BCS state.

3.2 Square-lattice case in the tight-binding ap-
proximation

Here we present the analysis of the situation with electrons in a two-dimensional
square lattice treated within the tight-binding approximation. We utilize both
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the GA and the SGA approaches. [| We start from the Hamiltonian (3.1]) with
dispersion relation of the form

ex = —2t(cosk, + cosky) + 4t' cosk, cos ky, (3.11)
Ska

Go€x — 0h — Oheor — f1. (3.12)

We assume ¢ = 1 and ¢’ = 0.25 and perform the minimization procedure analogi-
cally to that of the preceding Section (in the present case we solve the model on a
lattice of size A = 512 x 512). It turns out that in the U — oo limit the saturated
ferromagnetic solution (M = n) is the ground state for the SGA method even at
h = 0, whereas the GA approach provides a paramagnetic ground state (m = 0)
for h = 0 and ferromagnetic ground state (0 < m < n) in the applied field A > 0.
The density of states for both methods is exhibited in Figure 3.3, The starting
mass enhancement for h = 0 was ¢~! = 17.2

To understand the reason behind the saturated ferromagnetic ground state in
the SGA method it is useful to recall the physical meaning of \,, = h,-. Namely,
this parameter optimizes the free energy by allowing for a mismatch between chem-
ical potentials of the spin-subbands (cf. Figure[2.2b). It turns out that in the limit
of d = 0 it is beneficial for one subband to be completely empty, while all electrons
occupy the other one. This is easy to understand as in such situation one of the
bands becomes very broad (acquires the bare bandwidth value as ¢; = 1). Such
broad band is favorable, as then its ” center-of-gravity” shifts to negative energies.
This ferromagnetic behavior is present even in zero Zeeman field h. The tendency
in the present method of approach towards ferromagnetism makes it inappropriate
to study the FFLO phase.

Parenthetically, in the ¢-J and ¢-J-U models ferromagnetism is strongly sup-
pressed by the J > _, i~ Si-8j term, which favors antiferromagnetism (on the other
hand, ferromagnetism can be still present in the ¢-J model, even at h = 0, see
Chapter @ The presence of the saturated ferromagnetism in the extreme limit
n — 1 is in agreement with the Nagaoka theorem [101] (cf. also [T02HI05]).

3We do not use the SGA approach for square lattice to study superconductivity, as it turns
out that in this scheme the results show a very strong tendency towards ferromagnetism and this
feature makes the interesting us FFLO phase unstable. We return to the full SGA treatment for
square lattice in Chapter @ where we include also the antiferromagnetic order.
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Figure 3.3: Density of states in the limit of U — oo (d = 0) for the spin-majority
(0 =1) and the spin-minority (¢ =|) subbands, for both GA (a) and SGA (b). The
dot-dashed lines show the reference energy (defined by ¢,ex — p = 0). Note that
the coordinate axes in (b) are scaled for clarity. The calculations were performed
for h = 0.05. The ground state in b) is that of a saturated ferromagnet (m = n).
The masses are in units of mp.
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Chapter 4

Fulde-Ferrell-Larkin-Ovchinnikov
state in a correlated gas of
quasiparticles

In this Chapter we start discussing the main part of the Thesis, namely we consider
a paired state of correlated quasiparticles (SDM case) in the Zeeman field within the
SGA scheme introduced in Chapter [2|and compare our results with those obtained
in the uncorrelated situation (SIM case). The Chapter is organized as follows. In
Section we formulate the problem and provide expressions for the system free
energy, as well as the set of equations determining the system properties. Next, in
Section we discuss the results: phase diagrams on the temperature - applied
field plane, superconducting gaps, magnetization curves, and other properties for
a choice of situations: (i) for a three-dimensional (3D) gas with s-wave gap sym-
metry, (ii) for a two-dimensional (2D) gas with s-wave symmetry, and (iii) for a
2D gas with d-wave gap symmetry. We observe, that in all the cases studied the
FFLO state is more robust in the SDM case than in the SIM case. We conclude
that the correlations stabilize the FFLO phase and possibly other high-field low-
temperature (HFLT) phases. We explain the stabilization mechanism in relation to
the three cases studied. In Section [4.3] we mention the results obtained within the
tight-binding approximation in the GA scheme. Finally, in Section we provide
a summary and relate our results to experiment.

4.1 Model

We start from the BCS-like Hamiltonian (2.37)), in which the possibility of a nonzero
center-of-mass momentum Q of a Cooper pair is allowed

H = Z é ko C]T(o— Cko
ko

1 N__
t¥ D Vil o Chicrq o C-k+Q 2100+ Q/21 + —Titheor. (4.1)
Kk'Q
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The dispersion relations for the cases with SDM and SIM are chosen, respectively,
in the forms

h2k?

fka - m - U(h + hcor) - M, (42)
h2k?

¢S — o —oh—p. (4.3)

The magnetic field is accounted for only via the Zeeman term, as the Maki pa-
rameter [22] (cf. discussion in Section in the systems of interest is high (Pauli
limiting case). For example, in CeColns the Maki parameters for H || ab and
H 1 ab are estimated to be ay = 4.6 and o, = 5.0 [I3],[I06]. Note also that the re-
quired minimum value of the Maki parameter for the formation of the FFLO state
is @ = 1.8 [23]. As in the BCS theory, we assume a separable pairing potential in a
small region around the Fermi surface. Namely, the interaction is assumed to exist
only in region +hAwe around the Fermi surface, more precisely in the region

(4.4)

— k ky, kg ke
W:[MJF b, Fat + i}’

)
where ky, is defined by &, » = —hwe, and keg, by &, o = hwell] Explicitly, the
pairing potential is given by

{ —Vonenw, for kX € W,
Vi =

0, in other cases, (4.5)

where 7, = cos (ak,) — cos (ak,) for the d-wave case (with a = 4.62 A being the
lattice constant) and n, = 1 for the s-wave case.ﬂ Under these assumptions, the
Q-dependent superconducting gap parameter can be expressed as

1
Ak,Q = N Z ka’<c—k+Q/2¢Ck+Q/2T> = Aan. (46)
k

Nonzero Q leads to spatial oscillations of the superconducting gap, namely the gap
in real space can be expressed as

A(r) = Aqe'®” (4.7)

Hamiltonian (4.1)) is diagonalized within the standard mean-field procedure [10§]
followed by the Bogolyubov-de Gennes [109] transformation of the form

_ i
Okt = UkCk+Q/2t — VkC i1 qyay <4 8)
aLi = UkCk+Q/2t T+ UkC_y g/

!Such interaction region has been chosen because its width does not change significantly
with the magnetic field h. We performed also calculations by selecting the interaction regime
differently (namely, by choosing W = [kp, kat] and W = [kyt, kay]) and have obtained almost
the same results.

2Note that the pairing potential is chosen of a separable form, i.e., the k and k’ dependencies
are factorized as in the case with real-space pairing for correlated electrons e.g. in the t-J model
[90, [107].
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Figure 4.1: Unpaired regions in the reciprocal space for the SIM (a) and SDM
(b) situations and for the field close to the critical value h.. The boundaries of
these regions, are given by the Fy, = 0 lines, as marked in the figure. These
regions are populated by o =7 unpaired quasiparticles (blue) and o =] unpaired
quasiparticles (red), the latter only in the SIM case. These regions are obtained
from the self-consistent calculations detailed below.

which leads to the diagonal form

2

s Ag | N
Z Eyoal oy, + Z © B+ N7 + mhm, (4.9)

and the quasiparticle spectrum characterized by energies [110]

By = Byp+ o6, B = \/&27 + A2, (4.10)

1 a
§(€k+Q/2T + fkarQ/?i)’ 51(< )=

A
40
Il

(€k+Q/2T - €7k+Q/2¢)- (4.11)

DO | —

In the form of the Bogolyubov-de Gennes transformation the quasiparticle
operators ays and oy are distinguished by the spin label 1+ and |. Note also
that because of the presence of {1({“) in Eq. , there are regions of reciprocal
space with Fy, < 0, which represent nongapped excitations. In other words, these
regions are populated by unpaired quasiparticles of spin o (see Figure . This
amounts to a substantial spin polarization 7 > 0 in high fields and in the FFLO
state (cf. Figure , where the Fyxi = 0 lines are shown - the contour given by
these lines encircles the unpaired region of the reciprocal space). The Bogolyubov
transformation coherence factors in are given by

S =) IR RS ) AR

29



Finally, the complete set of equations determining the superconducting state prop-
erties is as follows,

F = —kBTZInl—I—e Pl ) +Z — Ey) +N%+/LN
+%mhm, (4.13)
heor = ;Zf<Ekg>%+% k ‘iﬁg (1—E‘(‘—€:), (4.14)
m = N%Jf(Eko), (4.15)
R Y e (4.10)
no= mptn = NZ{ukf(Eka)ﬂk[ — (o))} (4.17)

ko

where F(T, H, it; heor, m,n, Aq) is the system free-energy functional for the case

of a fixed number of particles [40)]. Similarly as for the unpaired Fermi sea (Chap-
ter , the equations , and are equivalent with 0F/0m = 0,
OF [Oheor = 0, and 0F /0Aq = 0, respectively. In effect, the numerical analysis
involves solving the system of four integral equations. Let us note once again the
presence of the two different effective chemical potentials, p, = p+ oheo,, for parti-
cles with spin up and down in the spin-polarized situation. This is an unavoidable
consequence of the SGA scheme [84] (or equivalently slave-boson formalism, cf.
Refs. [12H74, [86) used to derive expression for the masses , and the dispersion
relation (3.3)). Parenthetically, we have also performed calculations by disregard-
ing the different effective chemical potentials (i.e. we have utilized the GA scheme
of Section , by putting h.,, = 0, and disregarding Eq. ) and the results
obtained were nonphysical (a free-energy jump occurred at the BCS-FFLO phase
transition).

The final solution within our approximation is that with a particular Q which
minimizes the free energy I’ obtained from the free-energy functional at the
values of parameters being solution to Egs. —. The state with Q = 0
is called the BCS state (or simply, BCS), and that with |Q| # 0 - the FFLO state
(or simply, FFLO). More precisely, the latter is of the Fulde-Ferrell (FF) type of
the FFLO state (see Section [1.2| for details).

4.2 Numerical analysis and discussion

4.2.1 Numerical methods

The solution procedure consists of two principal tasks. First is the solution of Eqs.

(4.14)-(4.17) (in the SDM case) or Eqgs. (4.15)-(4.17) (in the SIM case, in which

30



heor = 0 and the dispersion relation is given by Eq. ) The second task is the
minimization of ' with respect to |Q|.

In the procedure of solving the appropriate set of equations we use the hybrids
algorithm (solver: gsl_multiroot_fsolver_hybrids) from the GNU Scien-
tific Library (GSL). We typically use the precision epsabs = 1071, that is, the
procedure converges when the relation ) . |fi| < epsabs is fulfilled (where the sum
is taken over all equations, which have been brought to the form f; = 0). Next, the
minimization procedure with respect to Q is carried out with the help of GSL (we
use the gsl_min_fminimizer_ brent minimizer). In search of the minimum
free energy, we use the accuracy 0.004. Namely, the procedure converges, when
the Cooper pair momentum |Q|/Akp is determined with accuracy 0.004.

The sums in Egs. — are calculated by integration over the density
of states in the k-space. The integral is computed in the radial (r, #) or spheri-
cal (r, 0, ¢) coordinates. This yields a two-dimensional integral in both 2D and
3D situations, as in the latter the integration over the azimuthal angle ¢ is triv-
ial (provided the Cooper pair momentum Q is set along the # = 0 line). For
performing the integration we use the GSL QAG adaptive integration procedure
(gsl_integration_gag) with the precision 107%. Adaptive procedures sub-
divide the region of integration into subintervals, and at each iteration step, the
subinterval with the largest error is bisected. This assures that the procedure con-
centrates on regions with local difficulties in the integral (steps, cusps, etc.), and
results in quick convergence.

Additionally, as the integration procedure is time-costly, we perform the in-
tegration in parallel for the most time-consuming integrals. The parallelization
is done by utilizing Win32 API Threads (note that it can be done easier with
OpenMP). The integral region is subdivided into 8 subintervals and each thread
performs integration over one of these subintervals.

Computing of each of the (SDM) phase diagrams shown in the following part of
this Section took about one day on a machine with Quad-Core Intel Xeon E5420
processor.

In Table I the exemplary numerical values of the parameters have been provided
for the situation with the d-wave form of the superconducting gap. The quantity
Fys is the free energy of the normal state, and therefore AF is the condensation
energy. Also, Am = my — my is the mass difference and h.,, pg is the correlation
field value in the normal state. The free energies are calculated per elementary
cell.

Table I. Equilibrium values of mean-field variables and related quantities
for the d-wave solution with H = 20.01 T and 7' = 0.1 K.
Variable Value Variable Value
m 0.0271583 Am (my) 5.27346
heor (K) -6.47761 heor s (K) -6.53133
Aq(K) | 0.807311 Q| (A7) 0.0162
1 (K) 126.424 1Q|/Akp 1.05
F(K) |61.044366175 || AF (K) = Fns — F -0.000479434
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4.2.2 Values of parameters

Although our calculations are performed for a model situation (i.e. for a gas of
heavy quasiparticles) we have assumed the following values of the parameters,
emulating the heavy fermion system: n = 0.97, Vien = 161 A? (3D case),
Setem = 4.62 x 4.62 A? (2D case), mg, = 100 mg, hwe = 17 K, and Vy/n =90 K
(in the 3D s-wave and 2D d-wave situations) or Vp/n = 110 K (in the 2D s-wave
case). The characteristic energy scale associated with spin-fluctuations in CeColn;
is T,y = 10 K [44] - a value comparable to our hwc[]] For those parameters, the
chemical potential was equal to p ~ 140 K (3D) and p ~ 126 K (2D). This means
that Vj < e and the (weak coupling) BCS approximation can be regarded only as
a proper solution on a semiquantitative level. In contrast to standard BCS formu-
lation, the chemical potential is readjusted in the superconducting state so that n
is constant. Furthermore, for the assumed values of parameters one can calculate
the coupling constant p(u)Vy =~ 0.48 (data for 3D case) and the coherence length
at T = 0K, & ~ 40 A, both already at the border of the strong-coupling limit.
Also, such values have been taken to obtain the critical temperature of the order
of the experimental value T, ~ 2.3 K.

We now discuss the phase diagrams for the cases of SDM and SIM in the three
selected situations. See also our papers, Refs. 83, 111l

4.2.3 Three-dimensional correlated gas, s-wave gap sym-
metry

The phase diagram is exhibited in Figures for the SDM and the SIM cases.
Both the BCS (state with Q = 0) and the FFLO (Q # 0) phases extend to much
higher fields if the masses are spin-dependent. This is a consequence of the smaller
Fermi-vector splitting Akp for the SDM case (cf. Figure B.1d). Note that the
superconducting state in both the SDM and SIM cases survives to the field at
which the splitting Akr ~ 0.012 A" is the same (see Figure ) This means
that indeed the Fermi-vector splitting is the factor destabilizing superconductivity.

The most interesting is the fact that in the SDM situation the FFLO state
becomes much more robust compared to BCS state, especially for T" ~ 0. The
FFLO state extends far beyond the BCS critical field H. marked by the dashed
lind’| only in the SDM case. The reason for the robustness of the FFLO phase in
the SDM case (the FFLO stabilization mechanism) is as follows: the superconduc-
tivity in the Pauli-limiting case is destroyed by the Fermi-vectors splitting Akp
(cf. Figure [3.1d). This splitting in the case of SDM is generally smaller (in this
respect SDM compensate partially the Zeeman term influence on the condensed

3Vetem and Seem are elementary cell volume and area, respectively. They are taken as exper-
imental values for CeColns - see e.g. Ref. [44. The average mass mg, is taken for the heaviest
band of CeColns [47].

4In Ref. 46 the authors argue that T, s ~ 5 K and is field dependent. For the modeling
purposes we assume it is constant.

®H,, is determined as the applied field in which the BCS solution becomes unstable (its free
energy becomes higher than the normal-state free energy).
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Figure 4.2: Phase diagram for the cases with the spin-dependent (a) and the
spin-independent masses (b). Light (yellow) region corresponds to Q = 0 (BCS
phase), the darker (blue-red) one to Q # 0 (FF phase) and the white to normal
state. The dashed lines mark the BCS critical field H.. Note that with increasing
temperature, the transition from BCS to FFLO state occurs at higher fields, in
qualitative agreement with experimental results [12, 13, 17, 24]. The FFLO phase
is stable in an extended H-T regime only in the SDM case.

state), hence the higher critical fields. However, for the masses to depend on the
spin direction, the magnetic moment m = ny — n has to be non-zero, and in the
BCS state around 7' < 0.5 K the magnetization is close to zero (see Figure
what weakens the mass dependence on the spin ¢, and in effect produces larger
Akp in the BCS superconducting phase. Therefore, the BCS state is not enhanced
much by the SDM influence in that temperature interval. In the FFLO state, on
the other hand the magnetization is nonzero even at 7' = 0 K. This is because
in the FFLO state there are regions with unpaired quasiparticles in the reciprocal
space (cf. Figure [4.1). The FFLO state becomes stable in an extended regime of
field h then, as a result of a smaller Fermi-vectors splitting in that case. This sta-
bilization mechanism should also hold for other HFLT phases, as they have higher
spin polarization than the BCS phase (see e.g. Refs. [112] and 27)).

Another interesting feature is the fact that with the increasing temperature, the
transition from the BCS to the FFLO state occurs at high fields (cf. Figure [1.2h)
consistent with experimental results [12, [13], 17, 24]. It can also be easily explained.
Namely, as temperature increases, the magnetization in the BCS state increases
(see Figure , allowing a substantial mass difference, and decreasing the Fermi
wave vectors splitting, sustaining the BCS superconductivity. In brief, the BCS
state benefits from the smaller Akp for SDM at higher temperatures (7" 2 0.5 K)
and becomes more stable in this regime.

Systematic evolution of the spin polarization in the condensed state is shown
in Figure (the orbital part is obviously not included). It increases at the BCS-
FFLO border at lower T', as one would expect.

In the panel composing Figure we plot the gap magnitude Aq and the
magnitude of the wave vector Q for the SDM and SIM cases. The behavior of the
order parameter Aq differs substantially in these two cases. Namely, there is no
jump of Aq at BCS-FFLO transition for SDM, whereas for SIM this transition
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Figure 4.3: Spin polarization, m as a function of applied magnetic field for selected
values of temperature. For T = 0 — 0.5 K, the magnetization in the BCS state
is small, than it increases with applied field after the continuous BCS to FFLO
transition. For higher temperatures magnetization in the BCS state becomes sub-
stantial and this produces a higher critical field for the BCS-FFLO transition at
T2 0.5 K.

is always discontinuous. Transitions from superconducting to normal state are
continuous for the case of SDM in disagreement with the experimental results [12],
13 [17, 24]. The reasons for this discrepancy are discussed in the following Section.

Finally in Figure [4.5 we show the correlation-field dependencies on field and
temperature. It can be seen that for BCS and around 7' = 0 K this field is close
to zero, then increases and approaches for H — H.,, the value for the unpaired
Fermi sea (i.e. that from Section , denoted here as heo,rs.

4.2.4 Two-dimensional correlated gas, s-wave gap symme-
try

This case is presented for the sake of completeness, and is relevant to the subsequent
analysis of normal metal-superconductor junction conductance (cf. Chapter. We
present here only the phase diagrams for the SDM and SIM cases (see Figure .
It can be seen that in the SDM case the FFLO state fills comparable portion of
the superconducting regime as in the 3D case. On the other hand, in the SIM
case the FFLO state is stable in much wider field range than in the 3D case. This
is obviously because of geometrical reasons (better nesting conditions for the Q
vector in 2D case).
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Figure 4.4: Left (a, ¢): gap parameter Aq as a function of temperature and
magnetic field for SDM (top) and SIM (bottom). All transitions in the SDM case
are continuous. Right (b, d): Cooper pair momentum in the FFLO state in units
of Fermi wave vector splitting Ak for SDM (top) and SIM (bottom). The FFLO
phase momentum |Q| changes continuously in the SDM case (at the transition
BCS-FFLO), contrary to the case for SIM. Typical value of the momentum is
Q| ~ Akp.
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Figure 4.5: Left: Correlation field for the 3D s-wave state in units of the field ob-
tained for the unpaired Fermi sea (heorrs). Note that as H — H,o, the correlation-
field value approaches the one for the unpaired Fermi sea. Right: Correlation field
in absolute units. It is negative, i.e. it acts opposite to the applied magnetic field,
partly compensating the Zeeman term.
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Phase Diagram: SDM, 2D, s—wave Phase Diagram: SIM, 2D, s-wave
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Figure 4.6: Phase diagram for the two-dimensional correlated gas with s-wave gap
symmetry in the SDM (a) and SIM (b) cases. Light (yellow) region corresponds to
Q = 0 (BCS phase), the darker to the state with Q # 0 (FF phase) and the white
to the normal state (NS). Note the greater difference between SDM and SIM cases
than for d-wave gap symmetry (see Figure below).

4.2.5 Two-dimensional correlated gas, d-wave gap symme-
try

The overall phase diagrams in 2D case with d-wave pairing are exhibited in Fig-
ure [4.7| for the cases with the spin-dependent (SDM) (a) and the spin-independent
(SIM) (b) effective masses. The FFLO phase is robust only in the former case,
as for the s-wave solution (discussed earlier), although the difference is greater in
the s-wave case. The specific difference is that in the present case two distinct
phase-boundary lines appear inside the FFLO state, as detailed in Figure 1.7} the
topmost and the lowest parts (red color) have the Cooper-pair momentum Q ori-
ented along the k, (or k,) direction, whereas the middle phase (blue color) has Q
along the diagonal (k, = k). Also, superconductivity of the FFLO type exists up
to the field of 36 T in the SDM case, i.e. to the field about 4 times larger than
that for the SIM case. Hence, the former system indeed belongs to the class of
high-field low-temperature superconductors. Note also that the FFLO states exist
far beyond the second critical field for BCS state, marked by the dashed line.

To visualize the detailed nature of the transition to the FFLO phase we have
plotted in Figure profiles of the gap magnitude Aq and the Cooper pair mo-
mentum |Q|, both on the H - T plane. In the low-T" limit the observed gap jumps
meaning that the transitions BCS — FF1 (Q || k. axis), as well as the transition
FF1 — FF2 (Q || (ky, ky) diagonal) and FF2 — FF1’ (Q || k, axis) are discontinu-
ous, whereas the transition to the normal state is continuous. As the temperature
increases, all the transitions (except that from FF2 to FF1’) become continuous,
but the exact position of the terminal bicritical point will not be discussed in detail
here. The phase FF1’ illustrates a reentrant high-field behavior for FF1 phase.

The above phase transitions can be connected with the magnetization changes.
This is because the FFLO phase encompasses regions of k-space with gapless quasi-
particle excitations in the superconducting phase (see Figure , where these re-
gions are exhibited for the s-wave case, in the d-wave situation these regions are
similar). This means that the magnetization curve will show a nontypical behav-
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a) Phase Diagram: SDM, 2D, d-wave b) Phase Diagram: SIM, 2D, d-wave
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Figure 4.7: Phase diagram for 2D correlated gas on temperature-applied field
plane with the d-wave gap symmetry and for the cases with SDM, (a), and SIM,
(b). Light (yellow) regions correspond to Q = 0 (BCS phase), the darker (blue,
red) to the state with Q # 0 (FF phase) and the white to normal state (NS).
The red region corresponds to the Cooper-pair momentum Q in the k, direction
(fq = 0), whereas the blue one to the momentum along the diagonal (k, = k,,
6q = m/4). Note that this anisotropy results solely from the d-wave gap symmetry,
as the unpaired gas is isotropic. The dashed lines mark the BCS critical field Ho,
and the dot-dashed lines mark Hg for the solution with g = 0. Note that for
the SDM case with the increasing temperature, the transition from BCS to FF
state occurs at higher fields, in a qualitative agreement with experimental results
[12], (13, 17, 24].
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Figure 4.8: (a) Gap parameter Aq (in units of K) and (b) Cooper pair momentum
Q in units of the Fermi momentum difference Akp = kpy — k|, both for the SDM
case on the H - T plane for the d-wave SC state. Transitions between various phases
are seen as a change of gap magnitude: the lower-field transition are first-order,
whereas the transition to the normal state is continuous.
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Figure 4.9: Spin polarization m = ny — n, as a function of applied field. Note
the weak jumps corresponding to the discontinuous transitions at T'= 0.02 K and
T = 0.50 K for SDM case (a) and much larger in the SIM case (b). For the SDM
case all transitions at 7" =1 K are already continuous.

ior, particularly in the vicinity of the transition to FFLO state, as displayed in
Figure . Namely, m(H) exhibits a weak metamagnetic behavior accompanied
by a weak jump at the two lower-field transition points. It is surprising at first look
that the corresponding jump is much larger in the SIM case. However, one must
remember that in the SDM case the field h.,, compensates largely the applied field
(see Figure for details).

To compare our results with those for the s-wave pairing symmetry we recall
here the mechanism behind the FFLO stabilization by SDM presented in Section
[4.2.3] Namely, SDM compensate the Zeeman effect influence by reducing the Fermi
wave vectors splitting. Therefore, superconducting state with SDM has higher
critical fields (here H.o = 10 T for SIM, and H., = 36 T for the SDM case, cf.
Figure [4.7). The FFLO state benefits from SDM by a greater extent than BCS
because spin polarization 7 in the latter is smaller (cf. Figure , and from ((3.4])
the mass difference Am oc . Therefore, in BCS the mass difference is smaller, and
the Fermi wave vectors splitting larger than in FFLO (the Zeeman term influence
is compensated less effectively). Hence, at T = 0 the FFLO fills about 1/2 of
the phase-diagram area for SIM, and about 2/3 for SDM. On the other hand,
as temperature T increases, the spin polarization increases in the BCS state (see
Figure allowing larger mass difference Am and reducing Fermi wave vectors
splitting enhancing superconductivity. This is why the transition line between BCS
and FFLO is curved upwards in the SDM case (and so is H. for the BCS phase).
In the d-wave situation, the BCS state can have a substantial spin-polarization
already at 7' = 0 (unlike in the s-wave case). Therefore, the BCS state can benefit
from SDM already at 7" = 0 and the FFLO state is not stabilized so spectacularly
in that situation, as it was in the s-wave case (where in the BCS phase m ~ 0 at
T =0).

For the sake of completeness, we draw in Figure the effective field in-
duced by the correlations. The jumps reflect the discontinuous transitions discussed
above. The field Ay (in units of hers for the unpaired Fermi sea) increases both
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Figure 4.10: Correlation field A, in the d-wave superconducting state on H — T
plane relative to that in the normal state h...rs, which is typically equal to —0.5h,
and therefore the field h.,. compensates partly the applied field H.

with the increasing temperature and the applied field.

4.3 Superconducting states within the tight-binding
approximation for electrons in square lattice

We have performed also analysis of the strongly correlated superconductivity using
the SGA scheme and within the tight-binding approximation by assuming disper-
sion relation in the form of —. Unfortunately, in the U — oo limit the
saturated ferromagnetic phase is the ground state (see Section , and super-
conductivity cannot compete with it (at least for reasonable values of the pairing
potential). On the other hand, for finite U (and nonzero double occupancy prob-
ability d), the tendency towards ferromagnetism is still quite strong (see Ref. 84)),
with positive and strong h.,. = 5 — 8h. For such situation the FFLO state turned
out unstable against the BCS state.

Analysis within the GA scheme has been performed by us in cooperation with
Prof. M. Magka and Prof. M. Mierzejewski from the University of Silesia [95].
The results obtained lead to the similar conclusions, as in the gas case. Namely
the FFLO phase is more robust in the strongly-correlated case (see Figure for
the obtained phase diagram), what indicates that correlations stabilize the FFLO
phase.

4.4 Conclusions, relation to experiment

We have analyzed superconducting states of a strongly-correlated gas of heavy
quasiparticles (SDM case). To distinguish the novel features coming from the inter-
particle correlations we have studied also the case without correlations (SIM case).
Despite the simplicity of our model (parabolic dispersion relation, separable and
simple pairing potential, single narrow-band model), qualitative results obtained
are very meaningful for the FFLO phase detectability and could hold for more
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Figure 4.11: Phase diagram for the paired quasiparticles in a two-dimensional
square lattice with d-wave gap symmetry and in the SDM (a) and SIM (b) cases,
after Ref. 05l Red region corresponds to Q = 0 (BCS phase), the blue to the state
with Q # 0 (FFLO phase) and the white to the normal state.

general and realistic models and other high-field low-temperature (HFLT) phases.
This is because the spin-dependent factor renormalizing mass is k-independent, as
is heor, and they are obtained in a self-consistent manner from global equations,
integrated over k.

The most striking result is the fact that for the case of SDM the FFLO state
becomes stable in much wider range of applied field and temperature. We be-
lieve that the mechanism of stabilization of the FFLO state by SDM is universal.
Therefore, it should also apply to other unconventional HFLT phases such as for
example the mixed staggered w-triplet SC 4 d-wave singlet SC + SDW phase pro-
posed recently [80] as possible ground state of CeColns. This is because in such
field-induced phases the spin-polarization is always higher than that for the con-
ventional BCS (s-wave or d-wave) state [27, [[12]. Those phases will benefit, from
the compensation of Zeeman effect by SDM, on the expense of the BCS phase, as
discussed earlier.

The detailed application of our results to concrete systems is rather limited.
This is because three topics require still a conjoined analysis from the theoretical
side. This is the inclusion of magnetism (incommensurate SDW) appearing in
the vicinity of the FFLO phase. Associated with it is the singlet-triplet mizing
[80}, TI3H115] (cf. also Chapter [6). Inclusion of those factors introduces additional
self-consistent integral equations making the whole approach much more complex
from the numerical side. Then, one has also to carry out the whole procedure for
a realistic electronic structure. The inclusion of magnetism should result in the
first-order nature of the BCS-FFLO phase boundary [79, [80].

The nature of the HFLT unconventional phase in the heavy - fermion system
CeColnys is still unclear. Some studies suggest FFLO character, others reject it (see
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discussion in Section . We claim that whatever this state really is, it may be
stabilized by SDM due to its higher spin-susceptibility [27]. So far the observation
of FFLO phase in organic metals has been indicated (see Ref. [32] and References
therein), but no spin-dependence of the effective mass has been investigated for
those systems.

To conclude, the simultaneous observation of the spin-dependent masses and
of an unconventional HFLT superconducting phase in the same system should not
be regarded as coincidental. Hence, other unconventional HFLT phases may be
searched for in the systems in which spin-split masses have been observed [77] and
vice versa.
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Chapter 5

Andreev reflection spectroscopy
for a strongly-correlated
superconductor with FFLO phase

5.1 Introduction

In the present Chapter we concentrate on providing experimentally accessible char-
acteristics of a superconducting state with strong correlations. Namely, we study
conductance of a normal metal - superconductor junction (NSJ) with the strongly-
correlated superconductor in either the Fulde-Ferrell (FF) type of the FFLO state,
or in the Bardeen-Cooper-Schrieffer (BCS) state (the latter in lower fields). The
properties of the superconductors are taken as those obtained in the previous Chap-
ter. Conductance spectroscopy of a NSJ is a phase sensitive experiment and, as
such, it can reveal the spatial oscillations of the order parameter. A crucial role in
the conductance spectrum is played by the Andreev reflection (AR) processes [116].
In the simplest view of the Andreev reflection, an incident electron entering from
normal metal into superconductor is converted at the NSJ interface into a hole
moving in the opposite direction and Cooper pair inside SC (cf. Figure . Such
processes increase conductance of the junction, which is analyzed in the framework
provided by Blonder, Tinkham, and Klapwijk [117].

The conductance characteristics for a NSJ, with superconductor in the FFLO
state, has already been investigated for both the cases of FF (with A(r) = Aqe'@®)
[69, 118, 119] and LO (A(r) = Aqcos(Qr)) [70] types of the FFLO state, as well
as for the case of superconductor with supercurrent [120] 121] (i.e. the situation
similar from formal point of view). See also Refs. 122H125 for the case of NSJ with
superconductor being in the BCS state of d-wave symmetry. Let us note that none
of these papers takes into account strong electron correlations.

Here we consider a two-dimensional strongly-correlated superconductor in mag-
netic field in a Pauli-limiting situation. We perform the analysis for both s-wave
and d-wave gap symmetry, and as parameters of the superconductor we take the
values obtained in Sections [4.2.4] and [4.2.5] respectively. Let us remind that the
strong correlations are taken into account by assuming spin-dependent masses
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(SDM) of quasiparticles and the correlation field h.,., as given e.g. by the Gutz-
willer approximation [71], or slave-boson theory [72]. The case without strong
correlations (with spin-independent masses, SIM) is analyzed for comparison. In
low magnetic fields the superconductor is in the BCS state, and in higher magnetic
fields a transition to the FFLO state takes place. We consider here only the FF
type of FFLO state (see Section and set the direction of the Cooper pair
momentum Q as either perpendicular, or parallel to the junction interface, with
more attention paid to the latter case. Let us note that the analysis is performed
self-consistently. Namely, in the procedure of obtaining the superconductor pa-
rameters (Chapter ) we choose such Cooper pair momentum Q, which minimizes
the free energy of the system. It has been shown that such careful examination
of the superconductor properties is important, and non-self-consistent calculations
may lead to important alterations of the conductance spectrum [I1§].

As we deal with heavy quasiparticles on the superconductor side of NSJ, we
should in principle take into account the Fermi-velocity-mismatch effects. Then
the AR processes would be severely limited by a high effective barrier strength
Z. On the other hand, AR is clearly observed in junctions with heavy-fermion
superconductors [126, 127] and theoretical efforts have been made to understand
why this is the case [128-130]. Based on these studies, in our analysis we neglect the
Fermi-velocity mismatch by assuming equal chemical potentials and equal average
masses of quasiparticles on both sides of the junction. Namely, we choose masses
on the normal side as m,,, and on the superconductor side we have that (ms +
my)/2 = Mgy, with my, = 100 my, which roughly corresponds to the heaviest
band of CeColns [47]. The masses m, are determined from the superconductor
parameters via Eq. (3.4). We consider here only two-dimensional NSJ.

5.2 Junction conductance - theoretical analysis

5.2.1 Bogolyubov - de Gennes equations

Kinematics of the reflection may be analyzed by means of the Bogolyubov-de
Gennes (BdG) equations [109]

E%@):7QM@+/wA@ﬂ%@% (5.1)
Euy(x) — —ﬁm%@y+/dwagww4x% (5.2)

where s = x — X', r = (x + x)/2, and ¢ = %1 is the spin quantum number of the
incoming quasiparticle and u,(x) and v,(x) are the particle and hole components.
The one-particle Hamiltonian is given by

ﬂdﬂ:—@%zﬂ@—ah—dwxﬂ—u+V@y (5.3)

where h = gupH is the reduced field, the correlation field is nonzero only on the
superconducting side of the junction (he.(r) = heor©(z)), and we have used the
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effective mass approximation [131] to express the kinetic part as @%@, with
m(r) = m(z) = meO(—z) + m,0(z)[] similarly as in Refs. [[32 and 133, Also,
r = (z,y) and the interface scattering potential is chosen as a delta function of

strength H,i.e. V(r) = H §(z). The gap function can be Fourier transformed as
following

A(s,r) = /dkeikSA(k, r) = /dkeikSAk,Q T O(x), (5.4)

with Ay q given by Eq. (4.6). We neglect the proximity effects by assuming
a step-like gap function. To solve the BdG equations we make the plane-wave
ansatz. Namely, we assume that the two-component pair wave function has the

T = () e (i), o

with @ and o as constants, with q = Q/2, and with @ = —o (we have also dropped
the o indices of @ and ©). By substituting (5.4) and (5.5]) into BAG equations (5.1)),
(5.2) and after some algebra we obtain the following matrix equation

—E+ gk—s-q,a Ak,Q u | > _
< Avq  —EF—&as ) < vla) ) -0 (56)

where unpaired quasiparticle energies £y, are given by (4.2)) or (4.3)). Eq. (5.6) gives
the dispersion relations for quasiparticles and quasiholes in the superconductor

R

1(((1) + \/5128)2 + AkaA*—k,Q for o :T,

E =g = (a) (s)2 . B
= T T AkQAY q foro =,

(5.7)

where 51((8’a) have been defined in Eq. (4.11). One may check that the above

equation is in accordance with Eq. (4.10), as Ex; = FEx (quasiparticle) and
Ex. = — Ex; (quasihole) for incoming particle with spin ¢ =7, as well as
Ex. = E_y (quasiparticle) and Ex_. = — E_i4 (quasihole) for incoming

particle with spin o =]. This holds as long as A*, 5 = A} o, which is true for
any real k. Dispersion relations Fj. have been presented in Figure for a choice
of situations. The situation with incident particle of energy E in Figure (E'
in (b)) leads to the Andreev reflection process (cf. also Figure [5.4). We call the
corresponding range of energies as the Andreev window (AW) after Ref. 119/ (cf.
also Ref. [118]).

5.2.2 Junction geometry

As already mentioned, we study the FF type of the FFLO superconducting state, in
which A(r) = Aqe™® and set the direction of the Cooper pair momentum Q = 2q
as either perpendicular (Q = (Q,0)), or parallel (Q = (0,Q)) to the junction
interface. The parallel configuration (Q = (0,Q)) may lead to accommodating

'Tn the SIM case we take m, = Mgy and Ao = 0.
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Figure 5.1: Quasiparticle and quasihole dispersion relations Eyy in the 2D SIM

situation: (a) for BCS state at H = 1.01 T; (b), (c) for FF state at H = 4.61 T <
H. (b) and H =4.01 T (c) for incoming electron with spin ¢ =1 (b) and 0 = —1
(c); (d)-(e) closer view at the region around k ~ +kp with magnetic field close to
H.y. (d) shows Eyy for a set of magnetic field H values; (e) shows Ey4 for a choice
of angle of incidence 0 values. The AW region has been marked in (b)-(d). The
angle of incidence is § = 0 in (a)-(d). The quasimomenta ki, marked in (a) and
(b) are solutions to the equations F = Eyxy (Eq. (5.7)) propagating in the positive
(superscript "4 ) and negative ("—") x direction.
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Normal metal, m,, Superconductor, m,

Insulator

Figure 5.2: Junction geometry for incoming particle of spin ¢ =1. Normal-state
and superconductor regions are marked. Interface lies at the x = 0 line. The
superconducting gap is also presented: « is the angle between the k, axis and
maximum-gap (antinodal) direction. Full circles mark quasiparticles and empty
ones mark quasiholes. Momentum of each of them is marked with a boldface
letter, and amplitude with an italic letter. Namely, incoming particle has the
momentum k, and amplitude 1, reflected hole has p and a, reflected quasiparticle:
k', b, transmitted quasiparticle: ki, ¢, and transmitted quasihole: ki, d. The
angle of incidence is equal to 6 and to the angle of reflection but other angles (of
reflection of quasihole and those of transmissions) may differ (cf. also Figure [5.3)).

of normal and/or supercurrent at the NSJ interface, therefore we will pay more
attention to the perpendicular configuration. Note also that the accommodation
processes are slow for the case of heavy quasiparticles.

As we consider electron injected from the conductor side of the junction (junc-
tion geometry is presented in Figure , the corresponding wave functions can be
expressed as (we have omitted the spin part for clarity)

Yo (r) = ( (1] ) e 4q ( (1) ) e'Pr +b( (1) ) kT, (5.8)

QT . iQz T )
bo(r) = d ( e ) e™iT 4 ¢ ( 12¢ ) el (5.9)

Ule_iqzx U26_iQII

where 9. (r) and - (r) describe wave function on the normal-metal and super-
conductor sides, respectively. The quasimomenta ki (for quasihole) and k3 (for
quasiparticle) are solutions of Eq. for a given incident energy E propagat-
ing in the positive x direction. From the translational symmetry of the junction
along the y direction comes conservation of the ¥y momentum component. Namely,
ky =k, =p, = kf;J = k;; All the wave vectors are presented in Figure .
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a) Normal state BCS Superconductor

Figure 5.3: The junction geometry in the reciprocal space. All vectors are marked.
It can be seen that only the incident and reflection angles are equal to 6. It
can be anticipated at this point that changing 6 for BCS state does not lead
to drastic changes in the transmission/reflection probabilities, whereas for the FF
state the situation is quite different since Q # 0 induces anisotropy in the reciprocal
space. The energy F value has been chosen as 10 K for all graphs except (b) "FF
Superconductor” for which £ = 0.01 K ~ 0 (for £ > 0.5 K there would be no
E = Ey_ regions in this case). The dashed lines are guide to eye and illustrate the
conservation of momentum y-component.
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5.2.3 System of equations and probabilities of scattering
processes

We use boundary conditions with the appropriate masseﬁ and the interface po-
tential jump H; they are as follows

Ve(r)lo=o = > (r)]a=0, (5.10)
1 9yc 1 oY 2H
Mgy w@gs(r) o0 = My wax(ﬂ la=0 — ﬁ¢<(r)|x:0- (5.11)

Those conditions lead to the following set of 4 equationsﬂ for the amplitudes
(a,b,c,d)

14+b—cuy—du; =0, (5.12)
a— cvy —dv; =0, (5.13)
k(1= (g + kS duilg, + k) 26
ik ( ) cugi(ge +ky,)  duni(ge + k7, + = (14b) =0, (5.14)
Mgy Mg Mo h2
Py cvai(ky, — qx) _ dvi(ky, — gs) + ﬁa =0, (5.15)
Mgy mz Mz h?

which are similar to those in e.g. Ref.[132, but for our case vectors are replaced by
their x-components: e.g. k <> k., p <> p,, and also SDM are properly accounted

for[] From the solution of Eqgs. (5.12)-(5.15) one can obtain probabilities of hole

reflection pZ, = ]a|2%, particle reflection p?, = |b|?, quasiparticle transmission
xr

(5 — Sl )R] + (B2 + 2D,

Pl = le|*may,——= L ) (5.16)
and quasihole transmission
| R Y RIEF] + [ + [va]?
m Mg x m my )4
pfh—ldlzmav( ; RG]+ (5 =) (5.17)

Kz ’

where the o superscript indicates the spin of the incoming electron. These proba-
bilities are exhibited in Figure for a choice of situations. It can be seen that in
the range of energies corresponding to the AW, the probability of hole reflection is
high. For example the AW is in the range of energies 0.02 — 0.1 K in Figure [5.1p,
and this yields high p,, in the same range of energies in Figure (upper and
middle graph).

In the following we use the dimensionless barrier strength Z = 2mg, H/(kph?),

where we define Fermi wave vector kp using the zero-field value kp = +/2m, T

2Boundary conditions with unequal masses on different sides of the junction have been used
before e.g. in Ref. [133l

3These equations are written for y = 0. If y # 0 additional terms e**%¥ appear, but they do
not alter the solution, so they are usually omitted for clarity.

4Obviously, in the SIM case we have that ms = m| = mg,.
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Figure 5.4: Probabilities of reflection and transmission processes in the SIM
situation: (a) for BCS state and several barrier strength Z values; (b) for FF
state for barrier strengths Z = 0 (top), Z = 0.5 (middle) and magnetic field
H = 451 T (bottom); (c) for FF state with incoming electron of spin ¢ = —1
and field H = 4.01 T. The AW regions are shown in (b) and (c¢). The angle of
incidence is taken as 6 = 0 unless stated otherwise. Note that the probabilities for
BCS state (a) do not change much with 6.

Note also that we do not use the assumption k = k' = p = kI = kJ ~ kp utilized
at this point in majority of papers on the Andreev reflection spectroscopy, because
we deal with heavy quasiparticles for which p is of the order of 100 K. Therefore
the usual assumption p > F is not, strictly speaking, applicable in the present
situation.

5.2.4 Differential conductance

Differential conductance (G = dI/dV) can be obtained from the reflection and
transmission probabilities [117, [134] in a straightforward manner

1 /2
Gro=y [ dbcostlt— yrL(E.0) + 3 (E.6) (5.18)
—7/2
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The final result of our calculation is the conductance G averaged over spin and
normalized with respect to the conductance G?, of the junction with A = 0 but
still with the same other parameters (m,, i, heor), as the superconducting state.
Namely,

+ 0
G = Gns + Gns

— . 5.19
G Gh (5:19)

This quantity is exhibited in the following figures, sometimes with the spin-resolved
conductance G° = G7./G% . We assume the barrier strength equal to Z = 0
(contact limit), Z = 0.5 (intermediate limit), and Z = 5 (tunneling limit).

5.2.5 Numerical methods

The whole numerical procedure has been carried out using Mathematica 7. The
most difficult part is solving of Eq. . This equation is solved for k, at a given
incident energy E (and incident angle #). In the s-wave case this is easy, and
analytically tractable, but in the d-wave situation the m = cos (ak,) — cos (ak,)
factor of the superconducting gap complicates the procedure. In effect, one has
to search for the solution with a numerical root-finding algorithms (we use the
Newton methods implemented under the findRoot Mathematica procedure). In
order to find the desired solution, this procedure needs to start close enough to the
searched root. Ensuring this requires a lot of tweaking and a lengthy case by case
analysis (note also that the solutions can be complex numbers). In order to obtain
the differential conductance, Eq. must be solved for each point appearing in
the integration in Eq. , and therefore the solution procedure cannot be time
consuming.

After finding the solutions of Eq. corresponding to quasiparticles propa-
gating in the positive-z direction, the next two steps of the numerical procedure
are fairly easy (i.e. solution of a linear system of equations — and calcu-
lating the scattering probabilities). Finally, the integration in Eq. (5.18]) is carried
out (we use the NIntegrate Mathematica procedureED. This integration requires
a number of recursive subdivisions to be made. Namely, we set the corresponding
MaxRecursion parameter of NIntegrate to a value 20 — 40, much larger than
the standard setting. Otherwise, the precision of 10~® would not be obtained.

Computation of all the conductance curves exhibited in the following Section
took one hour at most (on a PC with Intel i7 processor). The computation of
these curves has also been parallelized. This can be easily done by using the
Parallelize procedure of Mathematica, with each thread calculating conduc-
tance at a different energy point.

5Please note that integration of complicated user-defined functions within Mathematica re-
quires the “?NumericQ” phrase to be added after the argument of the user function. Otherwise,
Mathematica tries to evaluate the integrand algebraically and returns an error. For instance,
the procedure calculating conductance for a given energy E and spin ¢ would have a heading
“G[E_?NumericQ, o_?NumericQ]”.
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Figure 5.5: Conductance spectra for the case of s-wave FF state for SIM (a) and
SDM (b) cases. The Q vector is oriented perpendicular to the junction and we
take the intermediate barrier strength Z = 0.5. The distance between the peaks
is twice the Zeeman energy 2h = 2gugH only for the SIM case. In the SDM case
the correlations compensate the Zeeman splitting (by means of A, and m,), and
the peaks are closer than 2gupH.

5.3 Results

Our goal in the following is to identify novel, model-independent features of the
strongly-correlated situation (SDM). Namely, these features should not depend on
the assumed dispersion relation or on the pairing potential. We first discuss the
results for the s-wave case with the Cooper pair momentum Q oriented perpendic-
ular to the junction interface, as then the Andreev window is most clearly visible.
Next, we concentrate on the results for the parallel orientation (with both s-wave
and d-wave gap symmetry).

5.3.1 s-wave pairing symmetry

In Figure |5.5| the conductance for the s-wave gap symmetry and Q vector oriented
perpendicular to the junction, is presented. It can be seen that there are peaks
in the conductance originating from AR processes of quasiparticles with different
spins [118]. Namely, the spin-up peak at E =~ 0 results from AR processes taking
place when the energy F (of incoming ¢ =1 particle) fits into the corresponding
AW - see Figure (lower panel). The spin-down peak at F =~ 6 K results from
analogous processes for incoming particle with ¢ =, for which the AW is in much
higher range of energies (cf. Figure [5.4k). Also, the broadness of the spin-down
peak (the tail at lower energies: E = 4 — 6 K in Figure [5.5h) results from the
fact that AW shifts to lower energies with the increasing 6 (see Figure , lower
panel).

The conductance peaks are separated by a distance equal to twice the Zee-
man energy (2h = 2gupH) only in the case without strong correlations (SIM,
Figure ) For the SDM case the correlations compensate the Zeeman splitting
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(by means of h., and m,, cf. Chapter 4 and Refs. 83 and [I11]) and as result the
conductance peaks are closer than twice the Zeeman energy (Figure ) We
identify this feature as a hallmark of strong correlations in the superconducting
state. Another interesting feature differentiating the SIM and SDM cases is ab-
sence of the o =71 peak for SDM at magnetic fields H = 12 T. For such fields
the junction is transparent to incoming particles with o =71 because the AW falls
below £/ = 0. In other words, the quasiparticle energy Fj, within FF supercon-
ductor is below zero around the whole Fermi surface. This leads to breaking of
Cooper pairs and produces normal state region filling whole angular space around
the Fermi surface (see Figure SDM case). Since there are normal particles
with ¢ =1 within the FF superconductor, the incoming ¢ =71 quasiparticle does
not feel the superconducting gap presence, and the junction is transparent, what
yields G4 ~ 1.

In all the following figures the parallel orientation of the Q vector has been
assumed. In Figure[5.6the NSJ conductance for the s-wave gap symmetry has been
presented. Again, at high magnetic fields H = 12 T the junction is transparent
to incoming quasiparticles with ¢ =71. In the present case it is difficult to discern
characteristic features of the conductance from the spin-up and spin-down channels,
in such a way that the splitting of peaks would be measured. For this purpose,
spin-resolved signals G, would have to be analyzed, as shown in Figure [5.6bd.
Again, the characteristic features of spin-up and spin-down signals are separated
by a distance equal to twice the Zeeman energy for SIM (Figure ) and are
closer for SDM (Figure [5.6{).

5.3.2 d-wave pairing symmetry

In Figure the conductance in the case of FF state with 6q = 0 is presented.
Such phase is stable in the high-field regime (see Figure . Note that by fixing
the direction of Q with respect to the NSJ interface we fix also the angle « (see
Figure , as Oq is determined from the results presented in Chapter . Namely,
the parallel vector Q orientation with respect to the junction interface implies that
a = 0. In this case no remarkable, model-independent differences between the
SDM and SIM cases are present.

The conductance spectra for the d-wave FF phase with g = 7/4 (with o =
7/4) have been presented in Figure [5.8] As in the s-wave case, and for the same
reasons, at high magnetic fields the junction is transparent to spin-up quasiparticles
in the SDM case. Only at H < 14.4 T we were able to discern characteristic
features of the spectra (see Figure d for the spin-resolved spectra). These
features are again split by twice the Zeeman energy for SIM, and are closer for
SDM.

Finally, in Figure [5.9] we show the conductance spectra for the d-wave BCS
state with (100) contact. In this case, in the tunneling limit (Z = 5) the peaks
originating from AR of quasiparticles with different spins, are most clearly visible.
As previously, these peaks are split by twice the Zeeman energy for SIM, and closer
for SDM. We identify this case as the most promising for experimental verification,
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Figure 5.7: Conductance spectra for the case of d-wave FF state for different Z
values, for the SIM and SDM cases. The Cooper pair momentum is oriented along
the gap node (i.e. g = 0 and o = 0; see Figures and . The magnetic field
is close to H.,. There is no clear distinct feature, which differentiates between the
SIM and the SDM situations for this configuration.

as discussed in the following.

5.4 Relation to experiment

Our results imply that the splitting between the spin-up and the spin-down features
of the conductance spectra is equal to twice the Zeeman energy only in the non-
correlated case (SIM). In the strongly-correlated case, due to the presence of spin-
dependent masses (SDM) m, and correlation field h.,,, the separation of the spin-
up and the spin-down features differs essentially. In the present case of a two-
dimensional, correlated electron gas, this separation is smaller (because m, and
heor compensate the Zeeman term; typically he, ~ 0.5 X (—h) - see Chapter {]),
but in general it may be larger. For example in the two-dimensional Hubbard
model, our recent calculations [84] yield typically heor = 5 X h, and therefore in
that model correlations enhance splitting of the conductance peaks.

It should be in principle possible to measure the conductance-peaks splitting ex-
perimentally. Especially the BCS case with (100) contact and high barrier strength
Z (Figure f) looks promising, as the peaks are clearly visible, and the BCS state
exists in lower magnetic fields than FFLO, what should make the whole analysis
simpler (the orbital effects [135], which may be essential especially on the normal
metal side, are less important in that regime).

Another feature differentiating the SIM and SDM cases is the absence of the
spin-up features of conductance spectra for high magnetic fields and for the FF
state. It is difficult to say, if this feature is model-independent or characteristic of
the model with dispersion relation of a free-electron gas with renormalized masses.

Andreev reflection spectroscopy in magnetic field has already been reported in
some compounds [I36HI40]. For example in Mo3Sb; point contact AR spectroscopy
lead to identification of this compound as an unconventional superconductor [140)].
Such measurements have also been performed on pure and Cd-doped CeColn;
[138, [139]. This compound, as a heavy-fermion superconductor and possibly host
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Figure 5.8: Conductance spectra for the d-wave FF state with g = /4 (Q along
the antinodal direction, o« = 7/4) for selected barrier strengths for the SIM (a-c)
and the SDM (d-f) cases. In (a) and (d) also the spin-resolved conductance G, has
been presented to identify spectra features for both spin channels. These features
are separated by twice the Zeeman energy for SIM, and are closer for SDM.
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Conductance spectra for the d-wave BCS state with (100) contact
(v = 0) for selected barrier strengths for the SIM (a-c) and the SDM (d-f) cases.
In (c) and (f) in the tunneling regime (Z = 5) conductance peaks from spin-up and
spin-down channels are clearly visible already in the total conductance G. These
peaks are separated by twice the Zeeman energy for SIM (c), and are closer for
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to the FFLO phase, is a natural candidate for verification of the present results.
Spectra presented in Figure 4 of Ref. 138 resemble our Figure [5.9k, with splitting
between the spin-up and the spin-down features of the order of 8 T in fields of
approximately 2 T. This might indicate that hey 1T h (heor enhances h), but in
CeColny the one-band model assumed in our calculations may not be sufficient
[141] and therefore, our interpretation is only a speculation. On the other hand,
for a two-band model with strong correlations the h.,. terms are also present (for
both bands), and our conclusions should also hold.

Let us note that, in view of the present results, spectra of the BCS state with
(100) contact and in the tunneling limit (high Z) would be most helpful in inves-
tigations of strong correlations in superconductors.

5.5 Concluding remarks

In this Chapter we have provided a detailed analysis of the conductance spectra
of normal metal - strongly-correlated superconductor junction. The splitting of
conductance peaks in the strongly correlated case differs from that in the uncor-
related case (it is equal to twice the Zeeman energy only in the latter case). We
identify this feature as one of the hallmarks of strong correlations in the super-
conducting phase, as it should hold true for other models with different dispersion
relations. It is most clearly visible in the case of BCS superconductor with (100)
contact and in the tunneling regime (high Z). In other cases it is also present, but
the spin-resolved conductance must be analyzed in order to identify the splitting
unambiguously.

o8



Chapter 6

Coexistence of
antiferromagnetism and
superconductivity

In the foregoing Chapters we have considered BCS type of pairing among strongly
correlated quasiparticles. Now we consider a real-space pairing in which magnetism
and superconductivity are intimately connected. Explicitly, the coexistence of an-
tiferromagnetism with superconductivity is studied within the ¢-J model with the
Zeeman term included. The strong electron correlations are accounted for by means
of the extended Gutzwiller projection method. The phase diagram on the band
filling - magnetic field plane is shown, and subsequently the system properties
are analyzed for the fixed band filling n = 0.97. In this regime, the results re-
semble those observed recently in some heavy fermion systems. Namely, (i) with
the increasing magnetic field the system evolves from coexisting phase, through
antiferromagnetic phase, towards the normal state with nonzero spin polarization
(ferromagnetic state), and (ii) the onset of superconducting order suppresses partly
the staggered moment. The superconducting gap has both the spin-singlet and the
staggered-triplet components, a consequence of a coexistence of the superconduct-
ing state with antiferromagnetism.

The Chapter is organized as follows. In Section we provide an introduction.
In Section we present the theoretical formulation. Next, in Section we
characterize the details of the numerical analysis. In Section we provide the
numerical results, and finally in Section [6.5], our findings are briefly summarized.

6.1 Introduction

The interplay of antiferromegnetism (AF) with superconductivity (SC) is one of
the important topics in condensed-matter physics [142], as better understanding
of this subject would improve our knowledge of systems such as high-Tc [143],
heavy-fermion [I], and organic [2] superconductors. In all those systems, super-
conductivity appears in the vicinity of magnetic phases (mostly antiferromagnetic,
but also ferromagnetic [10, [11]). Moreover, magnetic interactions or fluctuations

29



are very frequently considered to be the pairing mechanism in unconventional su-
perconductors [45] 144]. Typically, antiferromagnetism and superconductivity are
competing quantum phenomena because of the competition between the Meissner-
supercurrent screening and the internal-fields generation by magnetic ordering.
This antagonism can be overcome by a spatial separation of the AF and the SC
phases or by subdivision of the f electrons into more localized (resulting in AF)
and more itinerant parts (participating in SC). However, especially interesting is
the situation, when the same electrons are involved in both phenomena as is the
case for some heavy-fermion systems. There, SC and AF can coexist easily, when
the periodicity of magnetic structure Asp(= 2a) is much smaller than the coher-
ence length £ for the Cooper pair. In other words, when £ > a, as then the
staggered exchange field averages out to zero within the coherence volume. In this
respect the Ce-based "115” heavy-fermion compounds - the family of CeMIns (with
M = Co, Rh, Ir) [41H43] is the most promising, as both antiferromagnetism and
superconductivity are believed to arise from 4f electrons, and the interplay (not
necessarily the competition) of the two orders can be studied by tuning the system
with pressure, magnetic field, or doping.

Recently, a competitive coexistence of AF and SC has been reported in CeRhlnj
[8, 19], 106, 145] and CeCo(In;_,Cd,)s [7, 146]. In the latter system, mutual influ-
ence of AF and SC has been observed, namely the onset of SC order with lowering
temperature prevents any further increase of the antiferromagnetic magnetization
[7]. Also, such coexistence has been observed in CeRhSis [9].

In the heavy-fermion systems strong correlations among electrons are the rea-
son for emergence of new interesting physics. Therefore, they should be properly
accounted for when modeling those systems. In this Chapter, an investigation of
the coexistence of AF with SC in an applied magnetic field is presented. To account
for strong electron correlations, the Gutzwiller-projected t-J model is used with
the Zeeman term included. The extended Gutzwiller scheme proposed recently
[147] is utilized for calculation of operator averages.

It is commonly believed that the minimal model for investigation of heavy-
fermion systems should be the two-band Periodic Anderson Model (PAM) (see
e.g. Ref. [148) or the Kondo lattice model [18]. On the other hand, the one-band
calculations have already proved fruitful in the analysis of AF and SC coexistence
in CeRhIn; [149], as well as in investigations of the high-field low-temperature
unconventional superconducting phase of CeColns [79], 80]. The single-band limit
of PAM has also been obtained theoretically elsewhere (see Ref. 95 Appendix A).

6.2 Model

We start from the ¢-J model [I50] with the Zeeman term included
7:[tj == p(Ztichcja + JZ SIS_] — hz Uﬁw)fj, (61)
ijo (ig) io
where (ij) denotes the summation over bonds, and 0 = +1 is the spin z-component.

The advantage of using this model is that both AF and SC come from a microscopic
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parameter - antiferromagnetic exchange J and therefore, there are no phenomeno-
logical terms in the Hamiltonian (as opposed to some earlier studies of AF and
SC coexistence). We neglect the orbital effects, as the the Maki parameter [22]
in the systems of our interest here is high [13, 106]. The Gutzwiller projector
P = IL;(1 — nin,y) eliminates double occupancies in real space. In the following
we will use the more general correlator

Po = AN (1 — fugigy), (6.2)

where \;, are the so-called fugacity factors. Also, this correlator connects the
correlated |¥) and uncorrelated |¥y) wave functions [I51], via

W) = Pe|Ty). (6.3)
This allows to express average of any operator O in the correlated state as

(PCOPC>

(0) = (¥|0¥) = ol

(6.4)

where (...)g = (Uyl...| Vo). With the above equation one can in principle calculate
average value of Hamiltonian (6.1)), namely

= (Huy) = th CisCjo +JZ ((S2S7)+(S7ST + Sf5§/>)—h20(ﬁw>,

ijo

but this is a nontrivial task (because the correlator is non-local), and one has
to make some approximations at this point. There are a few ways to perform this
operation, and this is still an active field of research, so one can expect new calcula-
tion schemes to appear. Here, we use the scheme proposed recently by Fukushima
[147, [152] in the local-constraint version, which assumes that the average number
of particles at any site and with any spin is unchanged by the projection,

(Rig) = (flic)o- (6.6)

This formalism is known to reproduce the Variational Monte Carlo results better
than the conventional Gutzwiller approximation (at least, for the projected uniform
nonmagnetic d-wave BCS superconductor - see Figures 3 and 4 of Ref. [147)). The
local-constraint version of the formalism is quite general in the sense that it is capa-
ble of accounting for antiferromagnetism, superconductivity, and the ferromagnetic
polarization. The explicit expressions for all averages appearing in Eq. are
given in Ref. 147 To express them in terms of mean-fields of our interest, we need
to assume what is the character of the uncorrelated wave function |¥y). Since our
goal is the description of coexistence of AF and SC, we assume the corresponding
mean-fields as nonzero at the level of |¥y) as in the following. We start with the
particle number

1 )
Nie = (Nig)o = §<n +ompy + 0omar e’Qri>, (6.7)
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where n is the band filling (assumed as constant), mpgy is the ferromagnetic spin
polarization, and m 4 is the antiferromagnetic polarization. The term Q% (with
Q = (m,m)) is responsible for the appropriate change of sign of the antiferro-
magnetic magnetization when switching sublattices [153]. We also assume the
superconducting order parameter

7,;84, for i€ A — sublattice,

Aij = (¢jicit)o = { 7,;Ap, for i € B — sublattice, (6:8)

where 7;; ensures the d-wave gap symmetry by setting 7;,; = +1(—1) for j =i £ 2
(j = i+ 9), with Z, g being the lattice vectors. The d-wave solution is taken
throughout in the following analysis. The superconducting order parameter can
be expressed in terms of the singlet and the staggered m-triplet components, namely

Ay = ejcit)o = %(@Mn + ¢ircip)o + {cjpcin — cj¢cu>0> -
= %((mcm — cicir)o + (¢ + c@-¢ch>0) = AZ(].S) + AEJ-T) ¢ (6.9)
Ay = %”j (BatAs), (6.10)
AP = gr(da=as) (6.11)

Such superconducting order parameter is defined on a bond (n.n. pair of sites).
To define the gap per site, we make use of the standard [154] d-wave relation

s 1 1
AP = ) D mii(Aije) — Ajy) = 5(Aa+Ap), (6.12)
)
- 1 1 on
A = 1 D 7i(Aije) + Ajy) = 5(Aa—Ap)e R (6.13)

3 (@)

where j(i) denotes the nearest neighbors of site i. The existence of the triplet
component is inevitable even if there is no triplet channel in the pairing poten-
tial. Namely, the triplet component is dynamically induced by the singlet and
antiferromagnetism [80, [154HI56]. From a microscopic point of view this is also
not surprising (see Figure . An interesting feature of the superconducting gap
given by Eq. is the nonzero momentum of Cooper pairs for the triplet com-
ponent (it results from the e/Qi term, analogously as for the FFLO phase). A
superconducting state with nonzero momentum has been investigated in a number
of cases [20} 21], 80, [157], and even in zero external magnetic field [I58]. The one
presented here is analogous to that from Ref. [80.

With the above assumptions, we can express the ground-state energy W from
Eq. as a function of band filling n, magnetizations mgy; and map, super-
conducting gaps Ay and Ap, as well as hoppings x;j», = <cZT-chU>0. We assume as
nonzero first- and second-nearest-neighbor hopping integrals ¢ and ¢, which leads
to 6 different hopping parameters

Xijo = <CZTUC]'U>0 € {XABt) XABL, XAA+) XAAL, XBBt) XBBL}- (6.14)
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By

Figure 6.1: Spin-majority (blue, bigger arrows) and spin-minority (red arrows)
electrons in a system with AF order and superconducting gap. A4 binds two
spin-majority electrons, and Apg binds two spin-minority electrons and therefore,
there is a priori no reason for these two gaps to be equal (as would be the case
for no staggered m-triplet component). In other words, the two distinct gaps make
effectively the T — | and | — 1 pairing components of the spin pairs distinguishable.

The resulting expression for W is quite lengthy and has been reproduced in Ap-
pendix . Next, as in the SGA methodﬂ [84], 159, [160], to solve the model in a
statistically-consistent way, we impose constraints on all introduced mean fields by
means of the Lagrange multipliers method. Namely, we use the following energy
operator

> A
K = - Z[Agﬁ(cjacjg — Xijo) + h.c] — Z[)‘Z(j )(cﬂcﬁ — Ajj) + h.c
ijo ij
N h g As An vir
Z io (nw nla) + W(nv MAF, MFM, RA, 2B, ijcr)

ijo

—1 Y fig (6.15)

This method of approach is equivalent in the 7" — oo (f — 0) limit to that
presented in Refs. 161 and [162l. The equivalence can be seen from the comparison
of Eq. (6.15) and Egs. - with the corresponding Eqs. form Refs. [161
and 162 (e.g. Eq. (13) from Ref. [161] gives a Hamiltonian with operator part
equivalent to our K ). The Lagrange multipliers have the same symmetries, as the
mean fields to which they correspond. We also assume they are homogeneous.
Namely,

A = X 4 Ay + T €90 (6.16)
N = AR AR e (6.17)

!There are two equivalent formulations of the SGA method. In the one used in the preceding
Chapters the constraints are added to the Hamiltonian (as in Eq. (2.14), (2.27), (2-37) and in
Refs. [84] and 159). In an alternative formulation, the constraints are added to the average value
W of the Hamiltonian (see Eq. (6.15))). This scheme has been introduced in Ref. [160] and is used
throughout this Chapter.
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with
1
)\(AS) = é(AAA+)\AB>7 (6.18)

1
AD = 5(Aas = Aay). (6.19)

After performing Fourier transformation of the operator part of K we obtain
f( = Z L\III(MR‘IJk + A(:u + An — /\mFM) + W(A)
+A [n)\n + mFM/\mFM + mAF)\mAF + 4(AA/\AA + AB/\AB)

+4 Z(QXABO')\XABU + X446 A a0 T XBBoAYs5,) |5 (6.20)

g

where the primed sum denotes summation over the folded (magnetic) Brillouin

zone, by A we denote all mean-fields, A is the total number of sites, and the
four-component operator \IJL has the following form

‘I’L = (Cle C—kl, 011-(+QT7 Cox+QL)- (6.21)

The matrix My is given as

51& —22 e Ck+(%¢ —2)3"Mciq

Y . L (6:22)

CTkT =27 " §1§+QT 2AA"ThetQ

“2Uniq  Ceqr 208 meiq —&xrau

where

(o = —20009¢ — Apirs (6.23)
Cko = —H—An = Ohmpyy — 26 A apn — 26 A, (6.24)
ex = 2(cosk, + cosky), (6.25)
e = 4cosk,cosky,, (6.26)
me = cosk, —cosk,, (6.27)

and the combinations of Lagrange multipliers have been introduced for clarity,
namely

- 1
ASX) = 5()‘XAAU + /\XBBU)’ (6'28)
1
6)\((7?() - 5()\XAAU - )\XBBU)' (629)

We have also used the fact that >, ex = >, ¢ = 0. Note that in the present
formulation A,,,,, corresponds to both the magnetic field h, and the correlation-
induced field h., [83 111 (or equivalently the Lagrange multiplier 5 in the slave-
boson theory [72H74], 86]). Namely, Ay, = b+ heor = h+ 3 what is evident from
comparison of Eq. with appropriate Eqgs. from Refs. [72] [83, [111.
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Next, we determine the eigenvalues of My, as they correspond to quasiparticle
excitations in the system. Unfortunately, an analytical diagonalization of My
produces very long expressions, and more importantly, expressions with square
roots of possibly negative numbers. For subsequent implementation, we diagonalize
this matrix numerically. Having determined the eigenvalues { Ey; }i—1 2,34, we define
the generalized grand potential functional

—,

F o= =B imrasan(l+ 59 4 A+ Ay — Ay, ) + W(A)
TA [nAn F mea ey + MarAmay + 4D aAa, + Apia,)

+4 Z(2XABU)\XABU + XAAU)\XAAU + XBBU)\XBBO‘) : (630)

The physical (equilibrium) values of the mean fields and the Lagrange multipliers
are obtained from the necessary conditions for F to have a minimum subject to
the constraints, i.e.,

=0, —=0, (6.31)

where by X we denote collectively the Lagrange multipliers. Equations 0F / 0A =0
provide the explicit analytic expressions for the Lagrange multipliers, i.e.,

A = —AT'9,W(A), (6.32)
Mgy, = —A 'O, W(A), (6.33)
Amap = —A YO W(A), (6.34)
Aa, = —ZA Lo, W (A), (6.35)
1 .

Ay, = _ZA oA, W (A), (6.36)
1. o

>\XAB0 = _gA laXABoW( )7 (6'37)
1 .

AXAAG‘ = _ZA 18XAA(7 (A)’ (6'38)
1 o

/\XBBo = _ZA laXBBa ( ) (639)

The above expressions can be used to eliminate Lagrange multipliers X from the
solution procedure and obtain 11 equations to be solved numerically for the mean
fields f_f, instead of 22 equations for A and \. The equations for the mean fields
(obtained from OF /&X = 0) have the following form
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0 = B0\ fs(X) — Aln—1), (6.40)
0 = B0, fs(X) — Ampas + 1), (6.41)
0 = B0, fs(X) — Amar, (6.42)
0 = B7'0n, fo(X) — 4AAL, (6.43)
0 = B0, fo(N) — 4AA, (6.44)
0 = B0, fs(X) — 8AXapo, (6.45)
0 = B0, fo(N) — 4Axaso, (6.46)
0 = B0, fs(X) — 4Axss,, (6.47)
where
fo) = Y (14 e ), (6.48)
k,i=1..4

-

The derivative 0y, fs(\) is computed numerically with a 5-point stencil method (as
it gives two-three orders of magnitude better precision than the standard 3-point
stencil). For example

1

a)\nfg(X) = @ —fﬁ()\n+2x,>\mpM,)\mAF,...)+8f5()\n+:c,)\mFM,)\mAF,...)
—8f5(An = &, Amrts Aars ) + F5(hn = 20, A, A )|
+O@) (6.49)

where we use the “equilibrium” values of X as given by Eqgs. |D|} The
step x is typically equal to x = 0.0001. Larger values of x would cause greater error

in the above formula. Smaller values would result in loss of numerical precision.

6.3 Numerical methods

The equations — are solved numerically with the use of GNU Scientific
Library (we use the gs1_multiroot_fsolver_hybrids solver which imple-
ments the hybrids algorithm) on a grid of size A = 256 x 256. We use the
precision epsabs = 1077. Namely, the procedure converges when the relation
> i 1fil < epsabs is fulfilled (where the sum is taken over all equations, which have
been brought to the form f; = 0 and divided by A to ensure lattice-independent
convergence conditions).

The most time-consuming part of the computations is to carry out explicitly
the summation in Eq. (6.48), which takes place when computing derivatives of
F3(X) (according to Eq. (6.49)) in Eqs. @ -(6.47)).

This summation is performed over the folded (magnetic) Brillouin zone. The
summing procedure is parallelized with OpenMP. In Appendix[B] we show a sample
of the code performing the summation (in both single- and multi-thread versions).
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Calculation of the phase diagram, exhibited in Figure took about one day
using a 24-thread task of “SHIVA” cluster located in our Institute. Such 24-thread
task was found to perform about 5 times better than a PC with Intel i7 processor.
Note that performing the code optimization described in Appendix [Bl would result
in approximately 4 times faster computation.

In Table II the exemplary numerical values of the parameters have been pro-
vided for the sake of completeness. Numerical accuracy is on the level of the last
digit specified. The energy scale has been set by taking the value of the exchange
integral as unit, J = 1.

Table II. Equilibrium values of mean-field variables, Lagrange multipliers,
free energy F' and grand potential functional F at h = 0.3 and S = 500.

Variable Value Variable Value

1 3.2997360 An -5.1331996
MEM 0.0000000 Py 0.3000001
MAF 0.8100315 p Yy 2.5817963
Ay 0.0922998 YW 0.2730140
Ap 0.0479298 AAg 0.4395630
XABt 0.1218625 Axans 0.4258402
XAB| 0.1218625 Axan, 0.4258402
X AAT -0.0167505 Axaar -0.1031297
XAAL 0.0275895 Axaa, -0.0120561
XBBt 0.0275895 Axsr -0.0120561
XBB| -0.0167505 Axsiy -0.1031297
F/A -1.0110048 F/A -4.2117488

6.4 Results

We assume the following values of parameters: ¢t = 3, ¢/ =t/4 = 0.75, J = 1, and
B = 500, what yields the temperature "= 1/5 = 0.002 ~ 0.

A number of stable phases emerge as solutions of the equations depending on
the physical condition (n, h). As already mentioned in Chapter [2, working with
a constant number of particles n implies that the stable phase is the one with the
lowest free energy, defined by

F =F + unA, (6.50)

where the equilibrium values of A and X have been inserted in F. The exemplary
phase diagram on the band filling n - magnetic field h plane is exhibited in Fig-
ure [6.2] It can be seen that antiferromagnetism is the dominating phenomenon
in the low-field regime above n = 0.8. For n 2 0.935 antiferromagnetism coexists
with superconductivity what amounts to a phase with coexisting three order pa-
rameters (similarly as in e.g. Ref. [80). In the low-n part of the phase diagram
(for n < 0.8) the saturated ferromagnetic (SFM) phase with mpy; = n becomes
the most favorable energetically. This phase is stable even in the h — 0 limit.
This is an interesting result, which adds to the discussion of ferromagnetism in the
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Phase Diagram: T = 1/ = 0.002, t'=t/4, J=t/3=1
1.2

0.8
0.6

0.4

Magnetic field, h

0.2

0.98 0.96 0.94 0.92 0.9 0.88 0.86 0.84 0.82 0.8
Band filling, n

Figure 6.2: Phase diagram on the band filling - magnetic field plane. The phases
are labeled as follows: AF+SC - phase with coexisting superconductivity and an-
tiferromagnetism, AF - antiferromagnetic phase, FM - ferromagnetic phase, SFM
- saturated ferromagnetic phase (with mpgy, = n). For further analysis we re-
strict ourselves to n = 0.97 as marked by the dashed vertical line. No stable pure
superconducting solution has been found.

t-J [163, 164] model. There is also a number of papers (see e.g. Refs. and
093) analyzing the ¢-J model with the Gutzwiller-type of approach with the
parameters in a similar range (i.e. with n < 0.8 and similar values of ¢;; and J).
Some of those papers disregard completely the Zeeman-term influence, and this
disregarding is justified by application of the model to high-Tc superconductors,
where orbital effects dominate over the Pauli magnetism. We have shown, that
even at h = 0 the system may be completely spin-polarized and therefore, the
inclusion of ferromagnetic polarization mpgy, is important in treatment of the ¢-J
model.

At band filling n = 0.97 the phase diagram (or phase sequence as a func-
tion of field h) resembles those observed recently in the heavy-fermion compounds
CeCo(In;—,Cd,)s [7] at doping z = 0.0075 and CeRhSi; [J] at pressure p ~ 17 kbar[]
Namely, in low magnetic fields a phase with coexisting antiferromagnetic and su-
perconducting orders (AF+SC) is stable, whereas for higher magnetic fields a con-
tinuous transition to the antiferromagnetic (AF) phase takes place, followed by a
discontinuous transition to the ferromagnetic (FM) phase. The phases appearing

2Although in CeRhSiz the phases have only been analyzed as a function of temperature.
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Free energy at n = 0.97
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Magnetic field, h

Figure 6.3: Free energy per site as a function of magnetic field for the specified
choice of phases. Types of order are marked explicitly at the bottom. The “SC”
phase is the pure superconducting phase (i.e. with mapr = 0), which obviously has
higher energy than other phases and hence does not appear in the phase diagram.
The vertical dashed lines mark the phase boundaries: the AF+SC - AF line marks
a continuous transition, whereas that for the AF - FM is discontinuous, as one can
see by looking at the behavior of the slope OF/0h.

at this band filling (n = 0.97) are analyzed in detail in the following.

In Figure [6.3] we show the free energy lines for a choice of a priori possi-
ble phases. It can be seen (also from the following Figures) that the transition
AF+SC — AF is continuous, whereas the transition AF — FM is of the first
order. Also, pure superconducting (SC) solution is unstable, and this holds for
other band fillings as well. It can be concluded from Figure that antiferro-
magnetism is the “dominating” phenomenon, since the energy gain from develop-
ing antiferromagnetic order (which can be seen from closer look at the difference
(Frp — Far)) is much higher than the gain from developing superconducting or-
der (Fry — Fsc). Moreover, the energy gain from developing AF order within SC
phase (Fsc — Farisc) is much higher than that from developing SC order within
the AF phase (FAF — FAF+SC’)-

In Figure[6.4] we exhibit the magnetic moment per site of the system for different
phases. Namely, we plot the staggered magnetization m4r and the ferromagnetic
magnetization mpgy, (spin-polarization). The staggered magnetization is close to
the limiting value of mar = n = 0.97. The spin-polarization of the pure AF phase is
equal to mpy; = 1—n at all magnetic fields. Also, it can be seen that development of
SC order within the AF phase alters by a small amount the staggered magnetization
mar, which drops by approximately 1% (see Figure [6.4h).
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Staggered magnetic moment at n = 0.97
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Spin polarization at n=0.97
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Figure 6.4: Magnetic moment, staggered (a) and spin-polarization (b) for the
selected phases. Obviously, the staggered moment of the SC and FM phases is 0,
and has not been plotted in (a). The magnetic moment value is insensitive to the
projection (i.e., it is the same in both the correlated |¥) and the uncorrelated |¥)
states).
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Figure 6.5: Superconducting gaps versus magnetic field for AF4+SC and SC phases.
(a) Ay and Ap gaps obtained for the uncorrelated wave function |¥y); (b) and (c)
gaps for the state specified by the correlated wave function (labeled as A,), as given
by Eq. (6.4). (b) shows the sublattice-specific A4 and Ap gaps, and (c) shows
the singlet and triplet components of the gap. Note that the superconducting gaps
(A.) are enhanced in the AF+SC state (with respect to the SC state).
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In Figure [6.5| various superconducting gaps are shown. Namely we exhibit
both the “uncorrelated” gap for the wave function |¥g), as well as the gap for the
correlated wave function |¥), the latter defined by Eq. and labeled as A..
Note that in the SC phase the sublattice gaps are equal (A4 = Ap), what amounts
to the absence of the triplet component. Note that although the uncorrelated gaps
(A4, Ap) are larger in the pure SC phase than in the AF+SC phase, the correlated
gaps (A((;S), A&T)) are much larger in the AF+SC phase than in the pure SC phase.
This very important conclusion means that magnetism supports superconductivity
in the present situation. The opposite is not true as the staggered moment is
slightly larger in the AF phase than in the AF+SC phase.

The picture with large antiferromagnetic magnetization mp (Figure and
small superconducting gap (Figure is consistent with the energy curves dis-
played in Figure 6.3 To shift the energy balance towards the SC phase one could
decrease t', increase J, and/or include the intersite attraction (V'3 .. f;i;) in
the starting Hamiltonian (this would stabilize further the d-wave superconducting
state [79]). It seems that even doing so, antiferromagnetism would still remain the
predominant phenomenon. This may represent an apparent feature of the Gutz-
willer scheme used [147], in which magnetization is not changed by the projection,
as follows directly from Eq. .

Finally, in Figure we plot the quasiparticle energies (bands) for the states
discussed above for n = 0.97. The crossing of one of the bands with the zero
energy line at the S point of the Brillouin zone in Figure [6.6bc means that the
quasiparticles will be spontaneously created, a circumstance leading to nonzero
spin-polarization (cf. Figure [6.4), similarly as in the case of the FFLO state [20]

(cf. also Chapter [4] and Figure [4.1]).

6.5 A brief summary

In this Chapter we have carried out a detailed analysis of the coexistence of an-
tiferromagnetism and superconductivity within microscopic t-J model, with the
Zeeman term included. The strong correlations were accounted for by means of
the extended Gutzwiller projection method. We have obtained the phase diagram
on the band filling-magnetic field plane, in which for the band fillings in the range
n ~ 0.935—0.970 and with the increasing magnetic field, a series of transitions takes
place. Namely, the system evolves from the coexisting phase, through the antiferro-
magnetic phase, to the normal state with nonzero spin polarization (ferromagnetic
state). Also, the onset of superconducting order limits the AF order parameter.
These features resemble the experimental findings in the CeCo(In;_,Cd, )5 [7, 146]
and CeRhSi;z [9] heavy fermion systems. Additionally, both antiferromagnetism
and superconductivity originate from the same electrons. The driving force for
both of these orders is the (real-space) exchange coupling term. This is clearly
visible by e.g. the circumstance that the presence of antiferromagnetism enhances
superconducting order parameter. Note that the real-space pairing is the pairing
without “boson glue”, i.e. without paramagnons. It is the mechanism of pairing
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Figure 6.6: Quasiparticle energies (bands) for phases obtained at n = 0.97: (a)
AF+SC phase, (b) AF+SC phase with nonzero spin-polarization, (¢) AF phase,
and (d) FM phase (for a different path in the Brillouin zone). Note that in (a-c)
two of the energies Fy; (those with Ey; > 0) describe quasiparticle states, and the
other two represent quasihole states. Also, in (d) only two energies are displayed,
as the Brillouin zone is not the folded (magnetic) one, but the full Brillouin zone,
because there is no antiferromagnetism in this case. The red curve in (d) describes a
quasiparticle with ¢ =7, and the green curve describes a quasihole with o =]. The
fully gapped electronic structure in (a)-(c) is caused by the magnetic (renormalized
Slater) gap appearance in the AF+SC and the AF phases. Energy scale is in units
of J.
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arising entirely from interelectron correlations.

As said earlier, it would be very interesting to perform similar analysis within
the Periodic Anderson Model, as this might allow for a comparison with the ex-
periments [work along this line is in progress [165]]. Also, testing other Gutzwil-
ler schemes seems important, as well as verifying if the strong antiferromagnetism
dominating superconductivity and the tendency towards saturated ferromagnetism
are only the characteristic feature of the utilized scheme, or represent a universal
tendency of the projected t-J model. For that purpose, the inclusion of realis-
tic, orbitally degenerate f level structure, not just pseudospin I'; doublet of Ce3*,
would be desirable.
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Chapter 7

Summary and conclusions

7.1 A brief summary

In this Thesis we have analyzed unconventional superconductivity in a system with
strong correlations and in an applied Zeeman field. We have concentrated here
mainly on concrete predictions for a given model situation by taking into account
known (but not tested so far) novel characteristics of the quasiparticle states in the
strong-correlation limit and (in the quoted paper, Ref. 05), the real-space pairing
among the quasiparticles. We have shown that the correlations may stabilize the
FFLO phase and explained the mechanism of its stabilization. This mechanism
is universal, and hence correlations may stabilize other high-field low-temperature
(HFLT) phases as well.

We have also performed the detailed analysis of the conductance across a normal
metal - strongly-correlated superconductor junction (NSJ). It turns out that the
conductance in the case with strong correlations differs essentially (from that in
the uncorrelated case), and the differences should be detectable experimentally.
Therefore, our analysis provides among others a test for the presence of strong
correlations in the superconducting state.

Finally, we have studied the coexistence of antiferromagnetism (AF) and su-
perconductivity (SC) within ¢-J model for a system with strong correlations and in
an applied magnetic field. We have obtained a phase diagram on the band filling
- magnetic field plane. At band filling close to unity, our results resemble those
obtained recently in the heavy fermion system CeCo(Iny_, Cd, )s. The last topic is
particularly relevant to the strong-correlation limit as in that situation magnetism
and pairing are intimately connected by the same exchange interaction.

7.2 Relation to experiment

Our results indicate that strong-correlations may be viewed as one of the driving
forces for the appearance of the FFLO and other HFLT phases. Existence of
such phases has been suggested for: (i) heavy fermion systems: CeColns [12]
13, 16, 17, 26], PuRhGaj [34], CesPdIng [35] (see Ref. [I, Sec. V.B.1 for a more
detailed account), (ii) organic superconductors x-(BEDT-TTF),Cu(NCS), [31],32],
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p"-(ET)2SF5CHoCFoSO3 [33], and others (see References in Ref. 32), and (iii)
pnictide superconductor LiFeAs [36]. Obviously, our model is too simplified to
account for a fully quantitative behavior of e.g. the HFLT phase of CeColnz. On
the other hand, the mere fact that the FFLO phase is stabilized by the correlations
is, in our view, an important observation and calls for its reexamination within
more sophisticated models (see the next Section).

Our analysis of conductance of NSJ for a strongly-correlated superconductor
provides a test for the presence of strong correlations in superconductors. Namely,
the splitting of the spin-specific features of the NSJ conductance is twice the Zee-
man energy only in the non-correlated case. The most promising for experimental
verification seems the analysis of situation for the BCS phase, (100) contact, and
high Z, as then the spin-specific features are most clearly visible and orbital effects
of the magnetic field on the normal side of the junction are not so problematic
as in the situation for the FFLO phase (the latter requires much higher magnetic
fields). Measurements of NSJ conductance in strongly-correlated systems and in
applied magnetic fields have already been performed [138, [139], but only in the
low-Z limit, in which the spin-specific features are not so clearly visible as for the
high Z.

Finally, our analysis of AF and SC coexistence within the ¢-J model pro-
vides results being in qualitative agreement with those obtained recently in the
CeCo(In;_,Cd,)s system. Namely, with the increasing magnetic field the system
evolves from coexisting phase, through AF phase, towards spin-polarized normal
state. To be able to compare those results with the experiment more directly, an
analysis within the Periodic Anderson Model (PAM) should be performed [165].
We should be able to see a progress along these lines in the near future.

7.3 Outlook: future projects

There is a number of projects which can be viewed as continuation of the work
carried out by us in this Thesis. Among them are the following:

e [t would be desirable to account for the incommensurate SDW appearing in
the vicinity of the HFLT phase in CeColns; within a strong-correlation ap-
proach. For example, to tackle this problem, the model proposed by Yanase
and Sigrist [79] could be analyzed in the Gutzwiller method in a range of
parameters reflecting better the experimental values (i.e. 8¢t < U < 16¢,
instead of U = t, as assumed in Ref. [79). Such model is solved by utiliz-
ing the Bogolyubov-de Gennes (BdG) equations, and in effect the theory is
formulated in real space, a circumstance that permits an analysis of the LO
type of the FFLO state. The Gutzwiller method has already been applied in
connection with solving of the BAG equations in Refs. [166/ and [167. On the
other hand, the numerical complexity of such approach can become a major
problem to resolve.

e By considering the ¢t-J-U model [168], [169] within the Gutzwiller approach
and in an applied Zeeman field, the phase diagram obtained by Aperis et al.

76



[80] might be revised within our approach taking into account correlations
and assuming a smaller number of phenomenological terms in the starting
Hamiltonian. Such formulation can be carried through explicitly with the
help of the method similar to that presented in Chapter [6] The principal dif-
ficulty is connected with an appropriate formulation of the Gutzwiller method
in that situation.

e The scheme presented in Chapter[6can be applied to PAM, which would allow
for a more direct comparison with the experiment, as PAM is considered as
a minimal model for studying heavy-fermion systems. Such work is in the
process [165].

e The Andreev reflection in the strongly-correlated situation should be studied
for a more realistic situation. Namely, the analysis could be performed within
a tight-binding approximation (as e.g. in Ref.I70) or in a multichannel model
[T41] taking into account both light and heavy itinerant electrons, as well as
the localized f-electron states on the SC side of the junction.

e [t would be interesting to study systematically a nonzero-temperature sit-
uation by using an extended Gutzwiller approximation. Such formulations
have been discussed in Refs. [I71H174] for simple situations in the standard
version of GA.

e Finally, the strong correlations should be incorporated into a reliable single-
electron (band) scheme (for example in the full potential Korringa-Kohn-
Rostoker (FP-KKR) method [I75HI78]) to account for e.g. the wave-function
readjustment in the correlated state [for model calculations see Refs. 179
181]. The existing approaches LDA+DMFT [182] [183] and LDA+U [184], [185]
incorporate the correlation aspects of the problem in, strictly speaking, a
non-consistent manner (due to the so-called Coulomb energy double-counting
problem).

Work along these lines is planned in our group within the project “TEAM” in
the near future.
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Appendix A

Explicit expression for W

We provide here the expression for W = (’}:[t 7)0- This expression can be divided

into parts coming from different terms of Hamiltonian with W, =3~ tij (el cio)

and Wy = J 32, ((S7S7) + (S7ST + 57SY)), as follows W = W, + W; — Ahmpas.
The expressions for W; and W, are given by

A(xaBiXaBt + AalAp)
Ve 4 (mky — (=24 n)2)% = 2m2 (%, + (2 +n)?)

W, = 2JA(—

1
+Z((_mAF +mpn)(map + mpar)

—(4(A% (=1 + map — mpy)(—1 4+ map + mpy)

X(24+map —mppm —n)(2+ mar +mpy —n)

+X1243T(1 +map —mpp)(—1+map + mpy)

X(24+map +mpy —n) (=2 +map —mpy +n)

+X,24]3¢(—1 +mar —mpep)(L+map + mpp)

X(24+map —mpy — n)(—=2+ map +mpy +n)

+AL(1+map — mpar)(1+map +mpea)

X(=2+marp —mppy +n)(=2+map + mpey +n)))

/(24 map —mpy —n)(2 4+ map + mpyr —n)

X (=2 4+ map —mpy + 1) (=2 + map + mpy +1n)))) (A1)

and
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Axap AaAp + Xapr(4X g, + mip — (2+mpy —n)?)
(m2p — 24+ mpy — n)2)/—m%p + (=2 + mpar +n)?
+4XABTAAAB + XaBL (X g + Map — (=2 +mpy +n)?) )i

V=mhp + 2+ mes —n) (i — (=2+ mpa + n)?)
(XBB1(—4XBp, + (=2 4+ map — mpy +n)?))

(2+map —mpy —n)
+XBB¢(—2 +mar —mpy + n)(_4X2BBT + (=2 —map +mpy + n)2)2
=2 —mar +mpy +n

/(=24 mar — mpar + n)?
+(2(=1 4 n)(xaar(—4x%a, + (2 + map + mpy —1)?) (=2 + map + mpy + n)
—xXa4,(2+ map + mpy — 1) (= ar + (=2 4+ mar + mpy +n)?))t)
J(2+map +mpar — 1) (=2 + map + mpy +n)?)). (A.2)

W, = 2A(—4(1 —n)(

+2(—1+n)(—

)t')

80



© 0w N OO R W N

DO N NN R e e e
DU A X NR O © NG R WN R~ O

27
28
29

30
31
32
33
34
35
36
37
38
39
40
41
42
43
44

Appendix B

Code performing the summation
over the folded Brillouin zone

double f_beta(void) {
double result = 0;

const int MAXNX (int) L/2 — 1;
const int MINNX = — (int) L/2 + 1;

int nx, ny, nxp;
#ifdef FLAG_PARALLEL
double resultV [MAXNX — MIN.NX + 1];

gsl_vector sevalk [MAXNX — MINNX + 1];
gsl_matrix *Mk[MAXNX — MINNX + 1];

for (nx = MINNX; nx <= MAXNX; nx++) {

resultV [nx — MINNX] = 0;
evalk [nx — MINNX] = gsl_vector_calloc (4);
Mk[nx — MINNX] = gsl_matrix_calloc (4, 4);

}

#pragma omp parallel for shared(resultV, evalk, Mk) private(nx, ny, nxp)
for (nx = MINNX; nx <= 0; nx++) {

for (ny = —(MAXNX — abs(nx)); ny <= MAXNX — abs(nx) + 1; ny++)
compute_f_beta_atk(&resultV [nx — MINNX], Mk[nx — MINNX], evalk [nx — MINNNX
}7 nx, I'ly),
nxp = nx + (int)L/2;
for (ny = —(MAXNX — abs(nxp)); ny <= MAXNX — abs(nxp) + 1; ny++)

compute_f_beta_atk(&resultV [nxp — MINNX], Mk[nxp — MINNX], evalk[nxp —
MINNX], nxp, ny);

}

for (nx = MINNX; nx <= MAXNX; nx++) {
result 4+= resultV [nx — MINNX];
gsl_vector_free (evalk[nx — MINNX]);
gsl_matrix_free (Mk[nx — MINNNX]) ;

}

#else
gsl_vector xevalk = gsl_vector_calloc(4);
gsl_matrix *Mk = gsl_matrix_calloc (4, 4);
for (nx = MINNX; nx <= MAXNX; nx++) {
for (ny = —(MAXNX — abs(nx)); ny <= MAXNX — abs(nx) + 1; ny++) {
compute_f_beta_atk(&result , Mk, evalk, nx, ny);

}
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54
55
56
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59
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65
66

}

gsl_vector_free (evalk);
gsl_matrix_free (MKk);
#endif
return result ;
}
/o sk sk ok ok ok s ok ok ok ok sk ok ok ok sk ok ok ok sk ok ok ok sk ok ok ok sk ok ok sk sk ok ok ok K s ok ok ok K sk ok ok R R sk ok sk ok ok ok ok ok sk ok ok kK Rk koK ok /)
void compute_f_beta_atk (double *result , gsl_-matrix *Mk, gsl_vector *evalk, int nx,
int ny) {
const double LIM_EXP = 40.;
double temp;

buildMk (Mk, n2k(nx), n2k(ny));
diagonalize (Mk, evalk);

for (int i=0; i<4; i++) {

temp = — gsl_vector_get (evalk, i) % beta;

if (temp > LIM_EXP) xresult 4+= temp;

else if (temp < —LIM_EXP) xresult 4= exp(temp);
else xresult += log (1. + exp( temp ));
}

}

The double f_beta (void) function computes f3(X) as defined in Eq. .
The procedure buildMk (Hk, n2k (nx), n2k(ny)) in line 57 builds the My
matrix (as defined in Eq. (6.22)) for a given k point.

The code presented here can be further optimized by utilizing the symmetry of
the k space. Namely the transformations k, — —k, and k, — —k, do not change
any energies (as all energies appearing e.g. in My or F depend on k via cos k, and
cos k, factors). This allows to reduce the summations to a quarter of the reduced
Brillouin zone, and would amount to reduction of time of calculations by about
a factor of 4. We did not utilize this symmetry. Also, collapsing the nested for
loopsﬂ (lines: 23 and 25, 28) would lead to some calculation-time improvement.
On the other hand, the processor usage for the presented code was above 95%, and
therefore, we do not expect an essential improvement from collapsing, as its effect
is only a better distribution of the computation work among threads.

I Collapsing means bringing them to a form of one for loop with a single index and calculating
nx and ny from this index. Such loops are more efficiently parallelized.
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