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What we call chaos is just patterns we haven’t

recognized. What we call random is just pat-

terns we can’t decipher. What we can’t under-

stand we call nonsense

Survivor,Chuck Palahniuk 0
The study of real complex systems- general

introduction

The analysis of complex systems in a unified framework has become recognized in the recent

years as a new scientific discipline. Its development is strongly affected by the advances in many

branches of science, ranging from physics, multivariate analysis to economics and quantitative

finance. The existing literature on the subject is tremendous. The most common approach

in complex systems research, is to try to establish universal laws and search for phenomena

governing their behavior. Qualitalively to understand the behavior of a complex system we

must understand not only the behavior of individual parts, but also how they act together and

how they are influenced by e.g. external distortion. The dynamics of such a system is usually

nontrivial.

0.1 Dynamical properties and Random Matrix Theory

Random matrix theory – a new tool in complexity studies is already changing the point of view

on large random systems and how we understand their behavior([DFGZJ95],[GMG98],[Ver94]).

Recent explosion of mathematical techniques in fields like quantum gravity, quantum chro-

modynamics etc. suddenly become crucial in handling in a neat way thousands of data sets

omnipresent in so many areas of science. Nowadays it’s extremely hard to find a branch of

theoretical physics or any quantitative discipline, where random matrix models can be com-

pletely ignored. Surprisingly, most of the studies are limited to building models, that are able

to reproduce accurately only the static (equilibrium) properties of complex structures. Complex

systems in nature, on the other hand, exhibit potentially a very rich dynamical structure, rep-

resented by a mixture of eg. different stochastic processes on various time scales. It is therefore

tempting to enrich random matrix model with an additional dynamical parameter (e.g. real

time, temperature, area of the string, length of mesoscopic wire, finite volume etc). These fluc-

tuating structures may capture new features and new scaling phenomena of systems affected by

bewildering number of variables and observations.

0.2 Outline of the present work

Spatio-temporal structure of correlations and optimal forecasts of future correlations is a task

of major importance. However, the information about cross-correlations and their temporal

dynamics is usually inferred from historical (past) observations, which are inevitably contam-

inated by measurement noise and it is a constant challenge to unscramble signal from noise.

1



CHAPTER 0. THE STUDY OF REAL COMPLEX SYSTEMS- GENERAL INTRODUCTION

The main purpose of this thesis is to study the dynamical properties of real complex systems

such as e.g. economy and/or financial market by looking at their spectral properties eg. density

of eigenvalues under umbrella of Free Random Variables Calculus and Random Matrix Theory.

The thesis can be roughly decomposed into two parts. The first one was meant as quick guide

to methodology and tools used.

• In first chapter we give brief insight into methods of analyzing real complex systems,

particularly focusing on correlation analysis and classical dimension reduction techniques

and describe the distorting effects when the number of samples N is large and comparable

to the number of observations T (Random Matrix Theory setting).

• Next we introduce Free Probability Theory and Free Random Variables as an analogue

to classical probability theory and a powerful alternative to standard random matrix the-

ory in such a complex noncommutative setting. FRV may be considered as mathematical

framework for dealing with random variables that do not commute (i.e., large random ma-

trices can be regarded as free random variables). It’s cornerstone is the notion of freeness,

which can be viewed as non–commutative counterpart of classical independence of random

variables. As such, it introduces new quality to RMT version of complex systems analysis,

not only allows to extend many classical results eg. Central Limit Theorem for Gaussian

Random Matrices and Marčenko–Pastur equation in terms of Free Poisson distribution,

but also simplifies conceptually and technically many random matrix calculations.

Recent years have witnessed a rapid growth in data acquisition and a number of applications

of large panel data sets emerged. The lack of methods and systematic description of complex

systems resulted in mismatch between empirical findings and theory. The second part of this

thesis is written in the spirit of applicability of Free Probability Theory to analysis data sets

where the number of experimental variables is comparable to the size of the sample. While most

of the work presented in the last three chapters is original, some is the result of collaborative

work or the work of others and is cited accordingly in the text. Throughout the chapters we

will assume, that cross–correlations of N variables can be described by the two–point covariance

(correlation) function,

Cia,jb ≡ 〈XiaXjb〉 . (1)

For Xia ≡ xia − 〈xia〉, which describe the fluctuations (with zero mean) of the returns around

the trend, and collect them into a rectangular N × T matrix X. The average 〈. . .〉 is under-

stood as taken according to some probability distribution whose functional shape is stable over

time, but whose parameters may be time–dependent. In chapter 3 and 4 we will employ a

very simplified form of the two–point covariance function (5.1), namely with cross–covariances

and auto–covariances factorized, non–random, and decoupled the temporal dependence of the

distribution of variable is the same, and the structure of cross–correlations does not evolve in

time

Cia,jb = CijAab (2)

With coefficient assembled into a N×N cross–covariance matrix C and a T ×T auto–covariance

matrix A; both are taken symmetric and positive–definite). We will discover that the matrix of

“temporal covariances” A is a way to model two temporal effects: the (weak, short–memory)

lagged correlations between the returns, as well as the (stronger, long–memory) lagged corre-

lations between the volatilities. On the other hand, the matrix of cross–covariances (“spatial

2



0.2. OUTLINE OF THE PRESENT WORK

covariances,” using a more physical language) C models the hidden factors affecting the assets,

thereby reflecting the structure of mutual dependencies between variables. For our approach

to be valid, both covariance matrices obviously must be finite, which is acquired by assuming

the multivariate Gaussian distribution for the random variables, which displays the two–point

covariances (5.2),

Pc.G.(X)DX = 1
Nc.G.

exp
(
−1

2

∑N
i,j=1

∑T
a,b=1Xia

[
C−1

]
ij
Xjb

[
A−1

]
ba

)
DX =

= 1
Nc.G.

exp
(
−1

2TrXTC−1XA−1
)

DX
(3)

where the normalization constant Nc.G. = (2π)NT/2(DetC)T/2(DetA)N/2, and the integration

measure DX ≡∏i,a dXia; the letters “c.G.” stand for “correlated Gaussian,” and the expecta-

tion map w.r.t. this distribution will be denoted by 〈. . .〉c.G., while “T” denotes matrix transpo-

sition.

• Chapter 3 is devoted to the analysis of dynamical properties of equal–time correlations

matrices on an example of Warsaw Stock Exchange data. We extend the results from

[KS06], taking as starting point the case of ordinary Wishart ensemble [Wis28], for which

a spectral density is well known as Marčenko–Pastur (Bai-Silverstein) distribution [MP67,

SB95]. In this setting we will develop one–factor cleaning technique and check the stability

of eigenvalues spectrum over time. Furthermore we try different weighted schemes for

empirical cross–correlations in order to put more importance to the more recent data.

• In chapter 4 we look more closely at large covariance matrices generated by ARMA pro-

cesses. Finite order vector autoregressive moving average models (VARMA) are motivated

by Wold decomposition theorem [Wol38] as an appriopriate multivariate setting for study-

ing the dynamics of stationary time series. The main goal of chapter 5 is to show how

random matrix theory can be applied to derive spectral density of sample covariance ma-

trices generated by multivariate VMA(q), VAR(q) and VARMA(q1, q2) processes in a limit

where the number of random variables N and the number of consecutive time measure-

ments T are both large but the ratio N/T is fixed. In this regime the underlying random

matrices are asymptotically equivalent to Free Random Variables and FRV calculus can be

applied to calculate the eigenvalue density of the sample covariance for several VARMA–

type processes and to explicitly solve the VARMA(1, 1) case. The proposed method is

purely algebraic and can be easily generalized to q1 > 1 and q2 > 1. The results are then

confirmed by a Monte - Carlo simulation. We also present application to the real data

set - Polish macroeconomic data. Ideas and methods presented in this chapter were first

presented in [BJNS10] and are repeated in this chapter with minor changes only.

• Chapter 5 follows slightly different approach, first presented by [BLMP07]. The idea is to

divide all variables into two subsets i.e., focus on N input factors Xa a = 1, . . . , N and

M output factors Yα α = 1, . . . ,M with the total number of observations being T and

remove potential correlations inside each subset in order to avoid interferences with the

out-of-sample signal. Then one builds an empirical rectangular M ×N correlation matrix

and compare its singular value spectrum with a benchmark obtained using Random Matrix

Theory results, assuming there are no correlation between the variables. We extend the

results obtained by the author [Sna08] for the data set from previous chapter.

3



CHAPTER 0. THE STUDY OF REAL COMPLEX SYSTEMS- GENERAL INTRODUCTION

Most of the ideas presented in here have been already published, they have been revised, com-

pletely redone or at least greatly expanded.

4



The sun comes up just about as often as it goes

down, in the long run, but this doesn’t make its

motion random.

Donald E. Knuth 1
The nature of correlations

The analysis and measurement of dependence between variables, between sets of variables and

between variables and sets of variables are fundamental tools of multivariate or complex systems

analysis. In many real cases one has to describe the system by a large number of possible factors

of large number of observations.

In the following chapter we briefly review classical methods for identifying universal behaviors in

complex systems (correlation analysis, regression analysis) and main technical tools for reducing

the complexity and factor analysis (i.e. dimension reduction techniques - PCA - Principal

Component Analysis, FCA- Factor Component Analysis). For a more concise description of the

methods c.f.[Eve06] or any book covering the subject of multivariate analysis.

1.1 Correlation and Covariance matrix estimation and analysis in classical setting

Searching for patterns, rules and universalities is the heart of any quantitative discipline. Re-

gression and correlation analysis are certainly the most important tools at modern multivariate

analysis disposal with its applications in various quantitative branches of science like e.g. physics,

time series analysis. It is of particular interest in analyzing complex behavior of economy and

financial markets [PGR+99, BLMP07].

1.1.1 Covariance and Correlation Matrix - Basic Notions

Dispersion Matrix

Covariance matrix or dispersion matrix is a matrix of covariances between elements of a random

vector. It is the natural generalization to higher dimensions of the concept of the variance of a

scalar-valued random variable. If entries in the column vector

X =



X1
...

XN


 (1.1)

are random variables, each with finite variance, then the covariance matrix Σ is the matrix

whose (i, j) entry is the covariance

Σij = cov(Xi,Xj) = E
[
(Xi − µi)(Xj − µj)

]
(1.2)

5



CHAPTER 1. THE NATURE OF CORRELATIONS

where µi = E(Xi) is the expected value of the ith entry in the vector X. In other words, we have

Σ =




E[(X1 − µ1)(X1 − µ1)] · · · E[(X1 − µ1)(XN − µN )]

E[(X2 − µ2)(X1 − µ1)] · · · E[(X2 − µ2)(XN − µN )]

...
...

. . .
...

E[(XN − µN )(X1 − µ1)] · · · E[(XN − µN )(XN − µN )]




. (1.3)

The definition above is equivalent to the matrix equality

Σ = E
[
(X− E[X]) (X− E[X])⊤

]
(1.4)

This form can be seen as a generalization of the scalar-valued variance to higher dimensions.

Recall that for a scalar-valued random variable X

σ2 = var(X) = E[(X − µ)2], (1.5)

here µ = E(X).

Covariance Matrix Estimator

From practical reasons one often defines an N × T matrix X, where each row of X corresponds

to N measurements of a particular type and each column contains a set of T measurements from

particular trial (sample). Then sample covariance matrix estimator (Pearson’s estimator)is often

defined as:

CX =
1

T
XXT (1.6)

CX captures the covariance between all possible sets of measurements and reflects the noise

and redundancy in our measurements. In the diagonal terms, by assumption, large values

correspond to interesting structure, while the off-diagonal terms large magnitudes correspond

to high redundancy.

The Correlation Matrix

The correlation matrix of N random variables X1, . . . ,XN is the N × N matrix whose (i, j)

entry is is the Pearson’s correlation coefficient ̺X1,X2 between two random variables X1 and X2

with expected values µX1 and µX2 and standard deviations σX1 and σX1 is defined as:

corr(X1,X2) = ̺X1,X2 =
cov(X1,X2)

σX1σX2

=
E[(X1 − µX1)(X2 − µX2)]

σX2σX1

(1.7)

where E is the expected value operator and cov means covariance.

If the measures of correlation used are product-moment coefficients, or if for simplicity one

assumes, that random variables come from the distribution for which second moment - variance

σ(Xi) exists and is finite (like in Gaussian case for instance), the correlation matrix is the same

as the covariance matrix of the standardized random variables Xi
σ(Xi)

for i = 1, . . . , N.
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1.2. LARGE N AND LARGE T LIMIT ISSUES

1.1.2 Correlation analysis

The correlation coefficient ̺ measures the degree of linear association between two variables. If

a pair of variables is said to be correlated, it means both variables are treated in a completely

symmetric way. Thus it is not implied that changes in one variable cause changes in the second

one or vice versa. Rather it is simply stated, that there is an evidence for linear relationship

between the two and the movements in them are on average related to an extent given by

correlation coefficient.

Figure 1.1: If the correlation coefficient ̺ is of order +1, two variables are perfectly correlated. If

one variable gains in value, one would expect the other one to gain as well. Correlation coefficient

of 0 simply states there is no correlation between two random variables, while the coefficient of

-1 indicates that these two move in opposite directions.

1.1.3 Regression analysis

While in correlation analysis one simply identifies strength and direction of a relation between

pair of random variables and we do not bother with causation, regression takes the analysis one

step further, trying to fit equation to the data. In very general terms regression is concerned with

describing and evaluating the relationship between given set of explained or dependent variables

and one or more other variables. More specifically regression is an attempt to explain movements

in a variable by reference movements of set of other variables. To choose the appropriate set

of regressors and regressands one have to follow the rule, that regressands have to be at most

weakly correlated with each other but strongly correlated with the set of explanatory variables.

1.2 Large N and large T limit issues

Today high amount of data is stored in the memories of computers in the form of huge matrices.

Typical examples include financial markets data, wireless technology, gene expression networks

etc. These data are usually blurred by the high amount of noise due to finiteness of the sample

and are rapidly affected by the dimensionality curse. In this section we give some comments

on possible issues when dealing when the number of possible variables present in the system is

large compared to the sample size.

1.2.1 Dimensionality curse

In the absence of information on the phenomenon under study, a brute force strategy would

consist in listing a large number of possible variables, and systematically look for correlations

between pairs, in the hope of finding some significant signal (i.e. relevant variables). This

procedure is rapidly affected by the “dimensionality curse ”, also called the problem of sunspot

7



CHAPTER 1. THE NATURE OF CORRELATIONS

or dummy variables in the literature [Woo90]. Since the number of observations is always limited,

it can happen that two totally unrelated phenomena appear to be correlated over a certain time

interval T . More precisely, the correlation coefficient ρ, which would (presumably) be zero if

very long time series could be studied, is in fact of the order of 1/
√
T and can be accidentally

large. When one tries to correlate systematically N input variables with M output variables,

the number of pairs is NM . In the absence of any true correlation between these variables,

the largest of these NM empirical correlation coefficients will be, for Gaussian variables, of

order ρmax ∼
√

2 ln(NM)/T , which grows with NM . If the input and output variables are non

Gaussian and have fat-tails, this number can be even larger. If two strongly fluctuating random

variable accidentally take large values simultaneously, this will contribute a lot to the empirical

correlation even though ρ should be zero for large T [Bel61].

1.2.2 Spurious relationships

When dealing with real data one also has to be very careful in order to avoid so called spurious

relationships. Spurious relationship (spurious regression or spurious correlation) is a mathemat-

ical relationship in which two occurrences have no causal connection, yet it may be inferred that

they do, due to a certain third, unseen factor (referred to as a ”confounding factor” or ”lurking

variable”). The spurious relationship gives an impression of a worthy link between two groups

that is invalid when objectively examined. When the effects of the lurking variable are removed,

they are said to have been partialed out. A spurious correlation is sometimes called an ”illusory

correlation”. In that case, ”spurious” is then reserved for the special case in which a correlation

is not present in the original observations but is produced by the way the data are handled

[GN74].

1.3 Classical methods for reducing the complexity- factor analysis

Availability of many time series and over very long span is today an inevitable fact. While

more data at scientists disposal provide the opportunity to understand behavior of complex

systems better, the researchers can also suffer from an information overload without some way

to organize the data into an easy to interpret manner. The scope of this section is to describe

principles of factor analysis techniques as the means of reducing the dimensionality and detecting

the structure of relationships between variables.

1.3.1 General Purpose

The main applications of factor analytic techniques are to reduce the number of variables and to

detect structure in the relationships between variables, that is to classify variables. Therefore,

factor analysis is applied as a data reduction or structure detection method (the term factor

analysis was first introduced by Thurstone, 1931). We will assume that the Reader is familiar

with the basic logic of statistical reasoning and concepts of variance and correlation. There are

many excellent books on factor analysis, especially Principal Component Analysis. For example,

a hands-on how-to approach can be found in [Shl05] or [BN08].
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1.3. CLASSICAL METHODS FOR REDUCING THE COMPLEXITY- FACTOR ANALYSIS

1.3.2 Factor Analysis as a Data Reduction Method

Suppose we have two variables, that are highly correlated. Given a high correlation between the

two items, we can conclude that they are quite redundant. One can summarize the correlation

between two variables in a scatterplot. A regression line can then be fitted that represents the

”best” summary of the linear relationship between the variables. If we could define a variable

that would approximate the regression line in such a plot, then that variable would capture most

of the ”essence” of the two items. In a sense we have reduced the two variables to one factor,

where the new factor is actually a linear combination of the two variables. One can easily extend

the above example to multivariate case, then the computations become more involved, but the

basic principle of expressing two or more variables by a single factor remains the same.

1.3.3 Principal Components

Principal Component Analysis (PCA) is quite common method in multivariate analysis. Math-

ematically it is defined as an orthogonal linear transformation that takes the data to a new

coordinate system such that the greatest variance by any projection of the data comes to lie on

the first coordinate (called the first principal component), the second greatest variance on the

second coordinate, and so on. With minimal effort PCA provides a roadmap for how to reduce

a complex data set to a lower dimension to reveal the sometimes hidden, simplified structures

that often underlie it. We do not want to go into the details about the computational aspects

of principal components analysis here, which can be found elsewhere. There is a huge literature

like e.g.[Jol02].1 Basically, the extraction of principal components amounts to a variance max-

imizing rotation of the original variable space. Suppose we have N variables X1, . . . ,XN . For

a data matrix XT with zero empirical mean (the empirical mean of the distribution has been

subtracted from the data set), where each row represents a different repetition of the experiment,

and each column gives the results from a particular probe, the PCA transformation is given by:

YT = XTW = VΣ, (1.8)

where W,Σ, V T is the singular value decomposition(SVD) of X and Σ = (σk,k′) is the covariance

matrix composed of the mean-corrected second moments.

σk,k′ = cov(Xk,Xk′) = E [(Xk − µk)(Xk′ − µk′)] (1.9)

The goal is to reduce dimensionality by constructing a smaller number of W = VΣ having the

variance

V ar(W ) = VTΣV (1.10)

To concentrate the variation in as few consecutive factors as possible, one looks for vectors that

maximize V ar(W ). Given a set of points in Euclidean space, the first principal component (the

eigenvector with the largest eigenvalue) corresponds to a line that passes through the mean and

minimizes sum squared error with those points. The second principal component corresponds

to the same concept after all correlation with the first principal component has been subtracted

out from the points. Each eigenvalue indicates the portion of the variance that is correlated

with each eigenvector. Thus, the sum of all the eigenvalues is equal to the sum squared distance

of the points with their mean divided by the number of dimensions. PCA essentially rotates

1For a nice and pedagogical introduction see [Smi02]
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CHAPTER 1. THE NATURE OF CORRELATIONS

Quick Summary of PCA

Organize data as N × T matrix,

where N is the number of variables and T is the number of observations

Subtract off the mean from each measurement type

Calculate the SVD or the eigenvalues and eigenvectors of Covariance Matrix

Select a subset of the eigenvectors as the new basis

Standardize the dataset and project onto the new basis

Table 1.1: Review of Principal Components Analysis

the set of points around their mean in order to align with the first few principal components.

This moves as much of the variance as possible (using a linear transformation) into the first few

dimensions. The values in the remaining dimensions, therefore, tend to be highly correlated and

may be dropped with minimal loss of information. Successive linear combinations are sought

that are orthogonal to those previously chosen. The principal component eigenvalues λj and

principal component eigenvectors Vj are thus obtained from:

λj = max V TΣV : (V TV )j′ = 0; j′ < j, |V | = 1 (1.11)

As we extract consecutive factors, they account for less and less variability. The decision of

... .. .... . .. ..
.. ...

.

.
.

.....
...

.
.

.
..

.....
.

...
rotate

Figure 1.2: We can think of the regression line as the original X axis, rotated so that it approxi-

mates the regression line. After we have found the line on which the variance is maximal, there

remains some variability around this line. In principal components analysis, after the first factor

has been extracted, that is, after the first line has been drawn through the data, we continue

and define another line that maximizes the remaining variability, and so on. In this manner,

consecutive factors are extracted. Because each consecutive factor is defined to maximize the

variability that is not captured by the preceding factor, consecutive factors are uncorrelated and

orthogonal to each other. In this two-dimensional picture we might keep the first direction and

discard the second

when to stop extracting factors is arbitrary and basically depends on when there is only very

little ”random” variability left. Without further ado, we are extracting factors that account for

less and less variance. To simplify matters, one usually starts with the correlation matrix, where

the variances of all variables are equal to 1.0. Therefore, the total variance in that matrix is

equal to the number of variables. The eigenvalues of the correlation matrix are usually related

to the variance extracted by the factors. The problem of how many factors to retain is now

related to the problem of keeping the arbitrary number of eigenvalues.
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1.4. ASYMPTOTIC N/T LIMIT - FOCUS ON RANDOM MATRIX THEORY

1.3.4 Factor Component Analysis

One can also think of the data reduction problem in another way. First, there can exist some

underlying common factors. Each item measures some part of this common factor. Second,

each item also captures a unique aspect that is not addressed by any other item. Then we

should not expect that the factors will extract all variance from our items; rather, only that

proportion that is due to the common factors and shared by several items. In the language of

factor analysis, the proportion of variance of a particular item that is due to common factors

(shared with other items) is called communality. Therefore, an additional task facing us when

applying this model is to estimate the communalities for each variable, that is, the proportion

of variance that each item has in common with other items. The proportion of variance that

is unique to each item is then the respective item’s total variance minus the communality. The

defining characteristic then that distinguishes between the two factor analytic models is that

in principal components analysis we assume that all variability in an item should be used in

the analysis, while in principal factor analysis we only use the variability in an item that it

has in common with the other items. In most cases, these two methods usually yield very

similar results. However, principal components analysis is often preferred as a method for data

reduction, while principal factors analysis is often preferred when the goal of the analysis is to

detect structure.

1.4 Asymptotic N/T limit - focus on Random Matrix Theory

The goal of PCA is to identify the most meaningful basis to re-express a data set. The hope

is that this new basis will filter out the noise and reveal hidden structure. However, when ex-

tracting principal components one must use covariance matrix, which for N → ∞, T → ∞, NT =

r, r ∈ [0,∞) becomes unreliable 2. The complexity of finite size distributions makes the use

of asymptotic approximations appealing. Traditional statistical approach keeps the number of

variables N fixed while letting the sample size T → ∞. This is no longer valid in the presence

of modern data. Interestingly the distorting effects of high dimensionality upon covariance ma-

trix eigenvalue spectra and eigenvectors are well known from Random Matrix Theory [Joh07],

which inform us about the expected sample covariance eigenvalue spectrum in the above limit

and consequently about limits of any procedure which is based on spectral decomposition of

covariance matrix.

From its origin Random Matrix Theory has been heavily influenced by its applications in

physics, multivariate statistics and engineering. The landmark contributions from Wishart(1928)

[Wis28], Wigner(1955)[Wig55],[Wig58] and Marčenko and Pastur(1967)[MP67] were motivated

to a large extent by practical experimental problems. In this section we review a wide range

of results, which are relevant to the analysis of universal statistical properties of large random

matrices, that arise in the context of real complex systems. We start with some results that

are relevant to the analysis of statistics of random matrices and then we simply move on to the

large N and large T limit.

2We will often call this setting ”thermodynamic limit”
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CHAPTER 1. THE NATURE OF CORRELATIONS

1.4.1 Empirical correlations estimator - Challenge for Free Probability Theory

It is obvious, that any historical correlation matrix’ estimator is inevitably marred by the mea-

surement noise; it will reflect the true covariances only to a certain degree, with a superimposed

broadening due to the finiteness of the time series. More precisely, there are N(N + 1)/2 inde-

pendent elements in C, to be estimated from NT measured quantities Y, hence the estimation

accuracy will depend on the “rectangularity ratio”,

r ≡ N

T
; (1.12)

the closer r to zero, the more truthful the estimate. This is a cornerstone of classical multivariate

analysis. Unfortunately, a practical situation will typically feature a large number of variables

sampled over a comparably big number of time snapshots, so that we may approximately talk

about the “thermodynamical limit,”

N → ∞, T → ∞, such that r = fixed. (1.13)

On the other hand, it is exactly this limit in which the Free Random Variables calculus (see

chapter 2 for its brief elucidation) can be applied; hence, the challenge of de–noising is somewhat

counterbalanced by the computationally powerful FRV techniques.

1.4.2 Gaussian and Wishart Distributions

The simplest assumption about the data is that N random variables X1, . . . ,XN follow a N -

variate Gaussian distribution NN (µ,Σ)3 with probability density function given by

Pβ,N(X) = det(
√

2πΣ)−1/2 exp(
−βN

2
(X − µ)TΣ−1(X − µ)) (1.14)

It is common assumption, that data sample consists of T independent draws from X ∼ NN (µ,Σ),

collected into a N × T matrix X.

The non-normalized cross - product matrix H = XXT is said to have N − variate [Wis28] with

T degrees of freedom, with the density function supported on the cone of non-negative definite

matrices:

Pβ,N(H) = cβT,N det(Σ)−βT/2 detHβ(T−N−1)/2 exp{−β
2
tr(Σ−1H)} (1.15)

with normalization constant cβT,N , positive defined Σ and T ≥ N .

1.4.3 Joint Density of Eigenvalues

The joint distribution of eigenvalues for principal components is defined as follows:

̺β(λ) = f(λ1, . . . , λN ) = cβ
∏

i

λ
βT/2−1−β(N−1)/2
i exp(−λi)

∏

i<j

|λi − λj |β (1.16)

Where the normalization constant

cβ = 2−TNβ/2
N∏

i=1

Γ(1 + β
2 )

Γ(1 + β
2 i)Γ(β2T − β

2 (N − i))

3In practice, when focusing on covariances we will assume for simplicity of calculations, that µ = 0, since mean

can always be subtracted first from real-life data.
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1.4. ASYMPTOTIC N/T LIMIT - FOCUS ON RANDOM MATRIX THEORY

Relation of eigendecomposition of the Wishart matrix to PCA.

Start with a Gaussian data Matrix X ∼ NN (µ,Σ)

Form the covariance CX , yielding a Wishart density for H = T · Cx
The eigenvalues λiH and eigenvectors Ui of H given by

HUi = λiHUi λ1H ≥ . . . λNH
≥ 0

are related to principal eigenvalues λi and eigenvectors Vi via

λiH = Tλi Ui = Vi

Table 1.2: Eigendecomposition of Wishart Matrix and PCA

Then for β = 1 we have:

̺β=1(λ) = f(λ1, . . . , λN ) =
2−TN/2πN

2/2

ΓN (N/2)ΓT (T/2)

∏

i

λT−N−1
i exp(−λi)

∏

i<j

(λi − λj) (1.17)

where ΓN (a) = πN(N−1)/4
∏N
i=1 Γ(a − (i − 1)/2) is a multivariate Gamma function. We should

mention here, that general formulation of this problem takes the form:

f(λ1, . . . , λN ) = cβ

N∏

i

w(λi)
β/2
∏

i<j

|λi − λj|β (1.18)

Dyson [Dys62] showed that the scaling factor - β can be restricted to one of three values and

w(λ) is a weight function. We will restrict our deliberations in here to the real case, as

Symmetry of Random Matrix Matrix Entries

β = 1 orthogonal real

β = 2 unitary complex

β = 4 symplectic quaternion

Table 1.3: Dyson[Dys62] symmetry classes, see eg.[Zir10] for a more deeper perspective.

w(λ)= e−λ
2/2 Gaussian

λae−λ Wishart

(1 − λ)a(1 + λ)b Double Wishart

Table 1.4: Three standard weight functions and corresponding probability distributions

it is a natural way to describe complex systems (economy, stock exchange etc.) in terms of

distributions derived from Gaussian (see Appendix A for details).

1.4.4 Asymptotic limit for eigenvalues of a Covariance Matrix

Given the equation(1.16) it is tempting to conclude, that all eigenvalues are quite different from

another. This spread is indeed an example of repulsion of eigenvalues given by Vandermonde

term in (1.16). Marčenko and Pastur(1967)[MP67] first presented a systematic description of

this phenomena. We consider only the case where H ∼ W1(T,N). The empirical distribution
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Figure 1.3: Simulation of Marc̆enko and Pastur limit density for different values of r. One can

observe, that the actual distribution depends only on the ratio r = N/T . The larger the N

compared to T the more spread is out in the limiting density

FN (λ) = N−1#{λi ≤ λ}, which counts how many eigenvalues fall below given value λ is related

to the empirical spectral density function via

F ′
N (λ) = ρN (λ) =

1

N
〈δλ1(H) + . . . + δλN (H)〉 , (1.19)

where the expectation 〈. . .〉 is taken w.r.t. the probability measure P (H)DH of the matrix H.

The empirical distribution has a limit density distribution if the sample size T and the number

of variables N grow together N/T → r

̺MP (λ) =

(
1 − 1

r

)
δ(λ) +

√
(λ− λ−)(λ+ − λ)

2πrλ
(1.20)

where δ(x) is a Dirac delta and λ± = (1 ±√
r)2. For r < 1 it is common to omit the term with

the δ(. . .) and concentrate only on the support limited to the interval [λ−, λ+].
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Things should be made as simple as possible,

but not simpler.

Albert Einstein

2
Not so Short Introduction to Free Random

Variables’ Calculus

Free Probability Theory, sometimes referred to as ”Probability Calculus of the XXI Century”1

is a non-commutative probability theory, in which the concept of independence of classical prob-

ability theory is replaced by that of freeness. This idea incorporates both the probabilistic

idea of no correlations involved and the algebraic notion of the absence of relations between eg.

group generators. Furthermore Free Probability Theory, invented by Voiculescu [DNV92] in the

context of operator algebras, has a very nice connection with Random Matrices as asymptotic

models of free noncommutative variables (i.e in the large matrix size limit). In fact, free proba-

bility can be viewed as the theory providing concepts and notations without relying on random

matrices, for dealing with the limit N → ∞, T → ∞ for large N × T random matrices but

with deep connections with classical probability. The focus of this chapter is to point out main

concepts of free probability and review some standard Random Matrix Theory results under

umbrella of Free Random Variables calculus in an analogy to classical probability calculus of

random variables avoiding rigorous mathematical proofs whenever its possible. Furthermore, we

will most likely adhere to the survey provided in [BJJ+09] and the series of lectures [Now10].

2.1 Basics of Free Probability and Random Matrices

In this section we give a bunch of definitions of Free Probability theory, in analogy to classical

random variables calculus. We assume the Reader possesses some standard knowledge in clas-

sical probability theory (eg. classical probability space, random variables and its distributions,

moments, characteristic functions etc.) for details please refer to [Fel68].

2.1.1 Free Random Variables

We will start with some purely algebraic notions in free probability and provide a gentle and

pedagogical synopsis on the subject of non–commutative probability theory. For a more detailed

and accurate introduction please see [Voi97, ENV00, Bia98, Spe09]. Let’s remind here that, the

empirical eigenvalue distribution of a selfadjoint N ×N matrix H is the probability measure on

R which puts mass 1/N on each of the N eigenvalues λi of H, counted with multiplicity. If µH
is determined by its moments mn then it can be recovered from the knowledge of all traces of

1 c©M.A.Nowak
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CHAPTER 2. NOT SO SHORT INTRODUCTION TO FREE RANDOM VARIABLES’ CALCULUS

powers of H:
1

N
Tr(Hk) =

1

N

〈
λk1 + · · · + λkN

〉
=

∫

R

λkdµH(λ),

where by tr = 1
NTr we denote the normalized trace on matrices (so that we have for the identity

matrix 1 that 1
N 〈Tr〉 1 = 1), and the expectation 〈. . .〉 is taken with respect to rotationally

invariant probability measure P (H)dH. This is the basis of the moment method which tries to

understand the asymptotic eigenvalue distribution of a sequence of matrices by the determination

of the asymptotics of traces of powers.

Definition 2.1.1. We say that a sequence {HN}N∈N of N × N matrices has an asymptotic

eigenvalue distribution if the limit limN→∞ 1
NTr

〈
Hk
N

〉
exists for all k ∈ N.

Notation 2.1.2. A pair (H, 1
NTr) consisting of a unital algebra (unitary vector space with bilin-

ear vector product2H) and a linear functional limN→∞ 1
NTr : H → C with 1

N 〈Tr1〉 = 1 is called

a non-commutative probability space. Elements from H are addressed as (non-commutative) ran-

dom variables, the numbers ∀n : {mn = 1
N 〈TrHn

i 〉} for such random variables H1, . . . ,Hk ∈ H
are called moments, the collection of all moments m1, . . . ,mk is called the joint distribution of

H1, . . . ,Hk.

Definition 2.1.3. Let (H, 1
NTr) be a non-commutative probability space and let I be an index

set.

1. Let, for each i ∈ I, Hi ⊂ H, be a unitary vector subspace (math.unital subalgebra). The

vector subspaces (Hi)i∈I are called free or freely independent, if 1
N 〈TrH1 · · ·Hk〉 = 0

whenever we have: k is a positive integer; Hj ∈ Hi(j) (with i(j) ∈ I) for all j = 1, . . . , k;
1
N 〈TrHj〉 = 0 for all j = 1, . . . , k; and neighboring elements are from different vector

subspaces, i.e., i(1) 6= i(2), i(2) 6= i(3), . . . , i(k − 1) 6= i(k).

2. Let, for each i ∈ I, Hi ∈ H. The elements {Hi}i∈I are called free or freely independent,

if their generated unital vector subspaces are free, i.e., if {Hi}i∈I are free, where, for each

i ∈ I, Hi is the unital vector subspaces of H which is generated by Hi.

2.1.2 Random Matrix as Free Random Variable

Mean Spectral Density

In probability theory and statistics, a random matrix H is in general a matrix-valued random

variable drawn from some probability distribution P (H). We will start our study of a (real

symmetric N ×N) random matrix H with a fundamental question about the average values of

its (real) eigenvalues λ1, . . . , λN , which is concisely encoded in the “mean spectral density”(see

for example (see for example [Meh04, Eyn00, AGZ09, Gui09]).

ρH(λ) ≡ 1

N

N∑

i=1

〈δ (λ− λi)〉 =
1

N
〈Tr (λ1N −H)〉 =

1

N
E (δλ1(H) + . . . + δλN (H)) (2.1)

2Unitary vector space H is a vector space which contains a multiplicative identity element (unit) i.e., an

element 1 with the property

∀x ∈ H 1x = x1
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2.1. BASICS OF FREE PROBABILITY AND RANDOM MATRICES

where δ(λ) is the real Dirac delta function and 1N denotes the unit N × N matrix. Here the

expectation map 〈. . .〉 is understood to be taken w.r.t. the rotationally invariant probability

measure P (H)DH of the random matrix -i.e., H → OTHO, with O orthogonal). Hence the full

information about H resides in its eigenvalues, distributed on average according to (2.1).

Green’s function (resolvent)- Stieltjes transform

The resolvent (also known as Green’s function, Stieltjes transform, Cauchy transform) – complex

function of a complex variable z is a primary tool in studying spectral properties of random

matrix(or more for the most part operator in Hilbert space), because can capture the spectral

properties of this matrix in the analytic structure.

G(z) =
1

N

〈
Tr

1

z · 1N −H

〉
=

1

N

〈
N∑

i=1

1

z − λi

〉
=

∫

cuts
dλρH(λ)

1

z − λ
(2.2)

It is customary to write the relationship between (2.1) and (2.2) in terms of this latter,

ρH(λ) = − 1

π
lim
ǫ→0+

ImGH(λ+ iǫ) = − 1

2πi
lim
ǫ→0+

(GH(λ+ iǫ) −GH(λ− iǫ)) . (2.3)

resulting from a Sokhotsky’s formula for generalized functions,

lim
ǫ→0+

1/(x± iǫ) = PV(1/x) ∓ iπδ(x). (2.4)

Moments’ generating function

The Green’s function has another nice property - it is the function, that generates moments of a

probability distribution. For finite N (2.2) is meromorphic with the poles at the λi’s on the real

axis. On the other hand, in the usually considered limit of an infinitely large random matrix

(N → ∞), the mean eigenvalues tend to merge into continuous intervals (“cuts”; they can be

infinite or finite, connected or not), and the Green’s function becomes holomorphic everywhere

on the complex plane except the cuts on the real line. As such, it can typically be expanded

into a power series around z → ∞,

GH(z) =
∑

n≥0

MH,n

zn+1
, MH,n ≡ 1

K
〈TrHn〉 =

∫

cuts
dλρH(λ)λn, (2.5)

G(z) = 1
z

〈
1
NTr 1

1−H

z

〉
= 1

z + 1
z

〈
1
NTrH

〉
1
z + . . .+ 1

zn

〈
1
NTrHn

〉
=

= 1
N

〈
Tr
[
1
z + 1

zH
1
z + 1

zH
1
zH

1
z

]〉
= 1

N

∑
n

1
zn+1 〈TrHn〉 .

(2.6)

This function is even for symmetric and centered H, so odd terms vanish and the coefficients

are called the “moments” of H

mn =
1

N
〈TrHn〉 =

∫
ρH(λ)λndλ (2.7)

In particular, in the strict limit z → ∞:

GH(z) → 1

z
, for z → ∞. (2.8)
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The above expansion (2.5) suggests working with an alternative object to the Green’s function,

namely the “generating function of the moments” (or the “M–transform”), simply related to

the former,

MH(z) ≡ zGH(z) − 1 =
∑

n≥1

MH,n

zn
. (2.9)

Both will be exploited, depending on convenience. We need to annotate, that even if the moments

do not exist, and thus the expansions (2.5), (2.9) are not valid, the knowledge of the analytical

structure of the Green’s function (2.2) is sufficient to extract the statistical spectral properties

of the random matrix, since the density can always be inferred from the behavior of the Green’s

function in the imaginary vicinity of the eigenvalues’ cuts on the real axis.

Blue’s function and N - transform

Finally, let us introduce the functional inverses of the Green’s function (Blue’s function [Zee96])

and the moments’ generating function N–transform ,

GH (BH(z)) = BH (GH(z)) = z, MH (NH(z)) = NH (MH(z)) = z. (2.10)

These two functions are fundamental objects within the FRV approach. Additionally, the Blue’s

function can be expanded into a power series around z = 0: it must start from a singular term

1/z due to (2.8) plus a regular expansion,

BH(z) =
1

z
+
∑

n≥0

κH,n+1z
n, (2.11)

where the coefficients are referred to as “free cumulants”.

2.1.3 Large Matrices as Free Random Variables

It is common question in spectral analysis, to unravel the spectrum of a sum or a product of two

N × N random matrices H1 and H2, knowing the spectra of each individual random matrix.

As a rule the set of possible spectra of H1 + H2 depends in a complicated way on the spectra

of H1 and H2. However when N becomes large, a stunning phenomenon occurs. For almost all

choices of H1 and H2 of given eigenvalues density, the asymptotic spectrum of H1 + H2 can be

easily computed analytically, without knowing detailed structure of the matrices H1 and H2 (i.e.

without relying on the eigenvectors). Random matrix in free probability calculus can be only a

model of single noncommutative variable. The reason why random matrices play fundamental

role in Free Probability is the asymptotic freeness of random matrices. Roughly speaking, when

two matrices are free, there exist a rule to compute any asymptotic moment of the sum of two

matrices (and thus their asymptotic spectrum) as a function of individual moments.

2.1.4 Asymptotic Freeness

The definition of asymptotic freeness is somewhat reminiscent of the concept of independent

random variables. Unfortunately, defining freeness is thoroughly more complicated than defining

independence. Think about four random matrices and assume

〈
1
NTr(H1H2H3H4)

〉
=

〈
1
NTr(H1H2)

〉 〈
1
NTr(H3H4)

〉
〈

1
NTr(H1H3H2H4)

〉
6=

〈
1
NTr(H1H2)

〉 〈
1
NTr(H3H4)

〉 (2.12)
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For commutative random variables both equalities would contradict each other, while for non-

commutative multiplication both relations might be true at the same time. In fact, actual

equation for calculating mixed moments is different for different random matrix ensembles

[DNV92, ENV00], however the relation between moments remains the same i.e.,

Definition 2.1.4. Two Hermitian random matrices H1 and H2 are called free [DNV92] with

respect to H = limN→∞
〈

1
NTrH

〉
cl

if for arbitrary polynomials p1, r1, p2, r2, . . . ≥ 1

limN→∞ 〈 1
NTr

((
Hp1

1 − 1
N 〈Tr(Hp1

1 )〉
) (

Hr1
2 − 1

N 〈Tr(Hr1
2 )〉
)
·

·
(
Hp2

1 − 1
N 〈Tr(Hp2

1 )〉
)
· . . .

)
〉 = 0

In other words

〈p1(H1)r1(H2)p2(H1)r2(H2)〉 = 0 if 〈pi(H1)〉 = 〈rj(H2)〉 = 0

The basic feature of this definition is that consecutive polynomials should depend on different

variables. Note that, 〈. . .〉cl is just some classical (commutative) expectation value, which we

define for arbitrary (usually polynomial) potential V (H):

〈P (H)〉cl ≡
∫
dHe−NTrV (H)P (H) (2.13)

Freeness (2.1.4) is a rule for calculating mixed moments in H1 and H2 from the separate moments

of H1 and of H2

Example 2.1.5.
〈

1

N
Tr

((
Hn

1 − 1

N
〈Tr(Hn

1 ) · 1〉
)(

Hm
2 − 1

N
〈Tr(Hm

2 ) · 1〉
))〉

= 0

thus 〈
1
NTr(Hn

1H
m
2 )
〉
−
〈
1
NTrHn

1 · 1
〉 〈

1
NTrHm

2 · 1
〉

+

+
〈

1
NTrHn

1

〉 〈
1
NTrHm

2

〉 〈
1
NTr(1 · 1)

〉
= 0

and hence 〈
1

N
Tr(Hn

1H
m
2 )

〉
=

〈
1

N
TrHn

1

〉
·
〈

1

N
TrHm

2

〉
.

If the matrices are not centered 〈Hi〉 6= 0, we can use the trick and rename them as H̃i ≡
Hi − 〈Hi〉 and since by definition

〈
H̃1H̃2

〉
= 0, the first mixed moments are:

Example 2.1.6.

〈H1H2〉 = 〈H1〉 〈H2〉
〈H1H2H1H2〉 =

〈
H2

1

〉
〈H2〉2 + 〈H1〉2

〈
H2

2

〉
− 〈H1〉2 〈H2〉2

〈H1H1H2H2〉 =
〈
H2

1

〉 〈
H2

2

〉

This justifies, that freeness is also called free independence. One should however remember,

that freeness is a more restrictive property than independence in classical probability theory

i.e., mixed moments are in fact combinations of products of individual moments and not just

products. In other words, the mixed moments of free non–commutative random variables gen-

erally do not factorize into separate moments, as it is the case for independence. Borrowing a

picture from physics, we may say that freeness is equivalent to planarity in the limit of a large

number of colors in field theory [CLS82, tH74].

19



CHAPTER 2. NOT SO SHORT INTRODUCTION TO FREE RANDOM VARIABLES’ CALCULUS

2.2 FRV calculus in a Nut-Shell

Free probability theory allows one to calculate the asymptotic eigenvalue distribution involving

several random matrices, provided the spectral distribution of each individual random matrix is

known.

2.2.1 Addition Algorithm - R -transform and Blue’s function

Classical addition law

An important problem in classical probability [Fel68] is to find the probability density function

(”pdf”) of the sum of two random variables, x1 + x2, provided they are independent, and we

are given their separate pdfs, p(x1) and p(x2). The moments are conveniently encoded in terms

of the “characteristic function,”

gx(z) ≡
∑

n≥0

Mx,n

n!
zn = 〈ezx〉. (2.14)

which for z = ik is a Fourier transform of the pdf. Expanding the characteristic function in

frequency i.e., applying the Newton’s formula to(2.14) yields all the moments 〈(x1 + x2)
n〉.

M(x1 + x2, n) = 〈(x1 + x2)n〉 =
n∑

k=0

(
n

k

)
M(x1, k)M(x2, n− k)

Thus, the problem of calculating the mixed moments 〈(x1 + x2)
n〉 can be simplified by taking

the Fourier transforms for both pdfs p(x1) and p(x2), multiplying the resulting characteristic

functions and inverting the Fourier transform to obtain the pdf for x1 + x2. In addition, if we

take the logarithm of the characteristic functions,

rx(z) ≡ log gx(z), (2.15)

the convolution problem reduces to an additive one

rx1+x2(z) = rx1(z) + rx2(z), for independent x1, x2. (2.16)

The moments generated by the logarithm of the characteristic function are the cumulants κx,n.

They are additive under the convolution of two measures, or in other words, under the addition

of two independent random variables [Fel68].

FRV Addition algorithm

The above algorithm can not apparently be extended to non-commutative case. After Voiculescu

et al. and Speicher [DNV92, Spe94] we can develop a precise answer to this question. We have

already defined the moments’ generating function MH(z) and the resolvent GH(z). The FRV

calculus tells us that an analogue of the logarithm of the characteristic function is another

complex function R–transform, RH(z), defined as the generating function of free cumulants,

RH(z) =
∑

n≥0

kH,n+1z
n GH

(
RH(z) +

1

z

)
= z (2.17)
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By definition, the R–transform is additive. Therefore, the R–transform of the sum of two

independent random matrix ensembles H1 and H2 is a sum of the corresponding R–transforms

RH1+H2(z) = RH1(z) +RH2(z). (2.18)

Trivially, the free cumulants (2.11) are additive as well,

κH1+H2,n = κH1,n + κH2,n.

Without any proofs (which are not very complicated but lengthy), we will just describe the

resulting procedure, using for convenience the functional inverse of the resolvent (2.10). It is

related to the original R–transform by

RH(z) = BH(z) − 1

z
. (2.19)

1. Since moments of the free random matrices H1 and H2 can be obtained from

Green’s functions a (2.2), (2.5), we construct GH1(z) and GH2(z),

2. The Green’s functions are inverted functionally to obtain the corresponding

Blue’s functions BH1(z) and BH2(z) (2.10)

3. We use the law of addition

BH1+H2(z) = BH1(z) +BH2(z) − 1

z
, for free H1, H2 (2.20)

to get the Blue’s functions for the sum H1 + H2,

4. We functionally invert BH1+H2(z) to obtain GH1+H2(z) and subsequently spec-

tral density through (2.3).

2.2.2 Multiplication Rule - S transform method

Another problem is how to deduce a composition law for the multiplication of free random

matrices. The distribution of a product of independent random variables is not widely discussed

in textbooks on classical probability theory, since it can always be derived from the relation

expx1 expx2 = exp(x1 + x2), which reduces the multiplication problem to the addition one by

a change of variables. However, this is not the case for random matrices H1 and H2, which

in general do not commute and expH1 expH2 6= exp(H1 + H2). This notwithstanding, there

exists [DNV92] a multiplicative transformation (called the “S–transformation”) which allows

one to calculate the resolvent of a product of free random matrices H1H2 from the resolvents

of each separate term, just like there is the R–transformation for the sum.

SH1H2(z) = SH1(z)SH2(z). (2.21)

It relates to each resolvent as follows

SH(z) =
1 + z

z
χH(z), where

1

χH(z)
GH

(
1

χH(z)

)
− 1 = MH

(
1

χH(z)

)
= z, (2.22)
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i. e. 1/χH(z) is a functional inverse of the moments’ generating function MH(z). For notational

convenience we will use the N–transform a functional inverse of the moments generating function

MH(z) which is related to the original χ–transform (2.22) by

χH(z) =
1

NH(z)
. (2.23)

Again without proofs, the algorithm for multiplication of two matrices H1 and H2 goes now in

the following steps:

1. From the knowledge of GH1(z) and GH2(z), we calculate the corresponding mo-

ments’ generating functions(2.9) MH1(z) and MH2(z),

2. Then we use(2.10) to functionally invert the M–transforms and obtain respective

N–transforms NH1(z) and NH2(z).

3. SinceN–transforms obey the “non–commutative multiplication law”, we use the

multiplication law

NH1(z)NH2(z) =
1 + z

z
NH1H2(z) (2.24)

we immediately get the N–transform for the matrix product H1H2, Equivalently

in the original language [DNV92, Spe94], this means that“S–transforms,”

SH(z) ≡ (1 + z)/(zNx(z)) (2.25)

are multiplicative,

SH1H2(z) = SH1(z)SH2(z) (2.26)

4. We functionally invert NH1H2(z) to obtain MH1H2(z), and subsequently

GH1H2(z) and mean spectral density.

2.3 Classical vs. Non-commutative Probability and its analogies

The parallel between classical and free probability theory is very deep. In particular, there

exists free equivalent of a central limit theorem or free analogues of infinitely divisible and

stable distributions. To emphasize it, here we present two instances of the FRV theory, namely

Free Poisson Distribution and Wigner semicircle. These results have already been mentioned

by several authors [PBL05, HP00]. We complete the picture by step-by-step rederivation of the

Central Limit Theorems for Gaussian and Wishart matrices in analogy with classical results

[Fel68].

2.3.1 Binomial distribution

Consider an experiment, whose results are always one of two mutually excluding possibilities

i.e., classical two-point distribution, which reflects the dychotomic probability p of a success

and probability q = 1 − p of a failure (loss). Let us define a random variable xi, which assigns

the value of 1 to each success and consequently 0 to each loss. Then Bernoulli probability

distribution is well known:

Pxi(p) = pk(1 − p)1−k for xi = 0, 1 E(xi) = p, V ar(xi) = p(1 − p) (2.27)
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We can repeat this experiment n-times and formally examine the probability distribution of a

random variable X = x1 +x2 + . . .+xn. Probability of k- successes in n trials is then, according

to the combinatorics rules given by the binomial distribution:

P (k) =

(
n

k

)
pkqn−k =

n!

k!(n− k)!
pk(1 − p)n−k (2.28)

The proper normalization is due to Newton expansion of a polynomial

(q + p)n =
n∑

k=0

(
n

k

)
pkqn−k = (1 − p+ p)n = 1

One can simply calculate the first few moments of this probability distribution. The expectation

(mean) is

E(xi) = 〈xi〉 =
∑n

k=0 k
n!

k!(n−k)p
k(1 − p)n−k =

∑n
k=1 k

n!
k!(n−k)!p

k(1 − p)n−k =

=
∑n

k=1
n!

(k−1)!(n−k)!p
k(1 − p)n−k =

= np
∑n

k=1 k
n!

(k−1)!(n−k)!p
k−1(1 − p)n−k =

= np
∑n

k=1 k
(n−1)!

(k−1)!((n−1)−(k−1))!p
k−1(1 − p)(n−1)−(k−1) = np

(2.29)

To calculate the variance first it is necessary to calculate the following quantity:

E(x2i ) =
〈
x2i
〉

=
∑n

k=0 k
2 n!
k!(n−k)p

k(1 − p)n−k =

= np
∑n

k=1 k
(n−1)!

(k−1)!((n−1)−(k−1))!p
k−1(1 − p)(n−1)−(k−1) = . . .

= np((n− 1)p+ 1)

V ar(xi) = E(x2i ) − E(xi)
2 = np((n− 1)p + 1) − n2p2 = np(1 − p) = npq

(2.30)

Which for xi/n is

V ar
(xi
n

)
=

1

n2
V ar(xi) =

pq

n

The normal approximation of the binomial distribution

Consider now the asymptotic behavior of binomial distributions. Suppose p is fixed and let’s look

more closely at the distributions for different values of n. One can easily convince oneself, that

for large n the distribution becomes more symmetric and concentrates around the expectations.

For large n-number of trials and large k number of successes with fixed probability p. Making

use of well known Stirling formula

Γ(n+ 1) = n! ≈
√

2πnn+
1
2 exp

(
−n+

1

12n
− 1

360n2
+ . . .

)
(2.31)

P (k) = n!pkqn−k

k!(n−k)! ≈
√
2πnn+1

2 e−npkqn−k

√
2πkk+

1
2 e−k

√
2π(n−k)n−k+1

2 e−n+k
=

= nn+1
2 pkqn−k

√
2πkk+

1
2 (n−k)n−k+1

2
= 1√

2πn

(
k
n

)−k− 1
2
(
n−k
n

)−n+k− 1
2 pkqn−k

(2.32)

One introduces an auxiliary variable x, which is the deviation of k-successes from the mean,

namely k = np + x and and looks for a probability distribution where x is small comparing to

the mean np, which leads to:

k

n
= p+

x

n
= p

(
1 +

x

np

)
n− k

n
= q − x

n
= q

(
1 − x

nq

)
(2.33)
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and consequently

P (k) ≈ 1√
2πn

p−k+
1
2

(
1 + x

np

)−k− 1
2
q−n+k−

1
2

(
1 − x

nq

)−n+k− 1
2
pkqn−k

= 1√
2πnpq

(
1 + x

np

)−np−x− 1
2
(

1 − x
nq

)−nq+x− 1
2

≈ 1√
2πnpq

exp
(
−
(
np+ x+ 1

2

)
ln
(

1 + x
np

)
−
(
nq − x+ 1

2

)
ln
(

1 − x
nq

))
(2.34)

The number of trials n is large and p 6= 0, so typically the number of successes is large and we

can expand ln up to the second order

ln

(
1 +

x

np

)
∼= x

np
− 1

2

(
x

np

)2

ln

(
1 − x

nq

)
∼= − x

nq
− 1

2

(
x

nq

)2

(2.35)

Inserting (2.35) into (2.34) up to the lowest order in x = k − np we finally obtain Gaussian

distribution

P (k) ≈ 1√
2πnpq

exp

(
−(k − np)2

2npq

)
=

1√
2πσ

exp

(
−(k − µ)2

2σ2

)
(2.36)

with σ2 = npq and µ = np. The above derivation can be also regarded as another manifestation

of central limit theorem.

The Poisson approximation of the binomial distribution

We have also another limiting form of the binomial distribution, which is usually derived under

assumption, that number of trials n→ ∞ and p→ 0 in each trial, but np = µ is constant, while

the number of successes k is arbitrary and finite. We will use again Stirling formula (2.31); this

time however only for n! and (n− k)!

P (k) ≈
√
2πnn+1

2 e−n

k!
√
2π(n−k)n−k+1

2 e−n+k

(µ
n

)k (
1 − µ

n

)n−k
=

= nn+1
2

k!(1− k
n)

n−k+1
2 nn−k+1

2 ek

(µ
n

)k (
1 − µ

n

)n−k
=

= 1

k!(1− k
n)

n−k+1
2 ek

µk
(
1 − µ

n

)n−k −−→n→∞
µk

k! e
−µ

(2.37)

2.3.2 Free Central Limit Theorem - Wigner semicircle

Similarly as in classical probability theory, there is a corresponding central limit theorem for

FRV i.e., Wigner semicircle. We are asking, what is the spectral distribution of the sum of

Hi i = 1, 2, . . . , N mutually free random matrices

H1 +H2 + . . . +HN√
N

for N → ∞ (2.38)

We know that Green’s function (2.2)

G(z) =
1

N

〈
Tr

1

z −H

〉

Then

Ga(z) =
1

N

〈
Tr

1
az
a − H

a

〉
= aGa(z) Ba(z) =

1

a
B
(z
a

)
Ra(z) =

1

a
R
(z
a

)
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We assume, that for each Hi

Ri(z) = ri(z)z → Rai(z) =
z

a2
ri

(z
a

)
a =

√
N

Then by substituting z → G(z) into (2.39) and making use of eq.(2.20)

BH1+H2+...+HN√
N

(z) =

N∑

i=1

z

a2
ri

(z
a

)
+

1

z
(2.39)

we arrive at

z =

N∑

i=1

G(z)

a2
ri

(
G(z)

a

)
+

1

G(z)
(2.40)

This equation is completely insolvable for N finite. However for N → ∞ we get

z = σ2G(z) +
1

G(z)
where σ2 =

1

N

N∑

i=1

ri(0) (2.41)

and Green’s function immediately reads

G(z) =
1

2σ2

(
z −

√
z2 − 4σ2

)
(2.42)

From Sokhotsky formula (2.3)we arrive at Wigner semicircle with only few lines of calculations3

[Wig58]

ρ(λ) =
1

2πσ2

√
4σ2 − λ2 (2.43)

2.3.3 Free Poisson Approximation of Wishart Distribution

There exist a very rich correspondence between classical Poisson process and Free Poisson

process, whose counterpart is the eigenvalue density (1.20) for Wishart correlation matrices

[MP67, SB95]. Consider an empirical correlations matrix E of N variables and T observiations,

both very large, with r = N/T finite. Suppose,that the true correlations are given in terms of

two point correlations function
〈
xitxjt′

〉
= Cijδtt′ . This defines the Wishart ensemble [Wis28].

In order to find the eigenvalue density we introduce the resolvent

GXXT

T

(z) =
1

N

〈
Tr

1

z − XXT

T

〉
(2.44)

w.r.t. the Gaussian measure
∫
dXe−

N
2
TrXXT

The simplest case is when C = 1. Then E is a

sum of rotationally invariant matrices i.e.,

E =
∑

t

δEti,j =
1

T
(xi1xj1 + xi2xj2 + . . . + xiTxjT ) =

∑(
1

T
|x〉〈x|

)
(2.45)

3When performing the simulations we have used the so called ”self–averaging” property of random matrices.

Namely the empirical spectrum of eigenvalues is identical for one matrix of size N = 1000 and average of 100

eigenvalues of size 10× 10.
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Figure 2.1: Numerical simulation of Free Central Limit Theorem for the eigenvalues Gaussian

random matrices of different sizes N . The red line represents the theoretical spectral density -

we notice a striking pattern- the density of eigenvalues forms a semicircle. The larger the matrix,

the more deterministic the distribution.

Each of the above matrices has exactly one eigenvalue equal to λ and exactly N − 1 zero modes

i.e., N − 1 eigenvalues equal to zero.

λ =
1

T
Tr〈x|x〉 =

N

T
= r

Then Green’s function simply states:

G(z) =
1

N

N∑

i=1

1

z − λi
=
N − 1

N

1

z
+

1

N

1

z − r
(2.46)

We assume the matrices equalling the relation (2.45) are mutually free and rewrite the Green’s

function (2.46) in terms of its functional inverse z = B(G(z))

z =
N − 1

N

1

Bi(z)
+

1

N

1

Bi(z)
(2.47)

In the limit N → ∞
Bi(z) = b(z) +

1

N
b1(z) with b(z) =

1

z
(2.48)

If we plug (2.48) into (2.47) and collect coefficient up to first order in 1/N , then

b1(z) =
r

1 − rz

and

Bi(z) =
1

z
+

1

N

r

1 − rz
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Since B(z) = R(z) + 1
z then

Ri(z) =
1

N

r

1 − rz

The full R–transform (and Blue’s function) for N eigenvalues

R(z) =

T∑

i=1

Ri(z) =
T

N

r

1 − rz
=

1

1 − rz
B(z) = R(z) +

1

z
=

1

1 − rz
+

1

z

To find the spectral density, we make an ansatz z → G(z)

z = 1
1−rG(z) + 1

G(z) = G(z)+1−rG(z)
G(z)(1−rG(z)) then

0 = rzG2(z) + (1 − r − z)G(z) + 1 and finally

G(z) =
(r+z−1)∓

√
(1−r−z)2−4rz

2rz

(2.49)

If we use Sokhotsky formula (2.3) we finally arrive at the famous Marčenko-Pastur [MP67](Bai

and Silverstein [SB95]) result for eigenvalue density ,

ρ(λ) =

√
4λr − (1 − r − λ)2

2πλr
=

√
(λ+ − λ)(λ− λ−)

2πλr
(2.50)

with λ∓ = (1 ∓√
r)2
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Figure 2.2: Numerical simulation of distribution of eigenvalues for sample correlations matrix

with Marčenko-Pastur density superimposed. We see that even for rather small matrices, the

theoretical limiting density approximates the actual density very well.
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CHAPTER 2. NOT SO SHORT INTRODUCTION TO FREE RANDOM VARIABLES’ CALCULUS

Classical Probability FRV

independence freeness

x - random variable, p(x) H - random matrix, P (H)

pdf spectral density ̺(λ)dλ

↓ ↓
characteristic function Green’s function

G(z) = 1
N

〈
Tr 1

z·1−H

〉
=

∑
n=0

1
zn+1

〈
1
NTrHn

〉

logarithm of characteristic function R–transform

f.generating moments
〈

1
N TrH

n
〉

=
∫
dλ̺(λ)λn

addition law R1+2(z) = R1(z) +R2(z)

whereG
[
R(z) + 1

z

]
= z

multiplication law S1·2(z) = S1(z) · S2(z)

Central Limit Theorem Free Central Limit Theorem

In large N limit distribution of a sum of

independent random variables tends to

Gaussian

In large N limit distribution of a

convolution of free random variables tends

to Semicircle

Table 2.1: The correspondence between classical probability and FRV

2.4 Summary

We will end up this chapter with few comments

• The concept of freeness allows for a one–to–one correspondence between classical and free

random variables, which in particular allows one to map probability densities of random

variables into the corresponding eigenvalues’ densities of large free random matrices [BP99].

• Also, one can define the analog of the concept of stability [BV93], which in the FRV

calculus assumes the form of spectral stability.

• A consequence of the above two observations is that the eigenvalues’ distribution of a

properly normalized sum of many random matrices for which the second spectral moment

is finite tends to a universal limiting distribution known in RMT as Wigner’s semicircle

law [Wig55]. The Wigner’s distribution in the FRV calculus corresponds to the Gaussian

distribution in the standard probability calculus.

• Another consequence is the equivalence between classical Poisson distribution is the Free

Poisson distribution, whose counterpart is the Marc̆enko -Pastur [MP67] distribution for

Wishart matrices [Wis28].

• Since the majority of data collected nowadays is naturally stored in the form of huge

matrices, we believe that the FRV technique is the most natural candidate for the “matrix–

valued probability calculus” that can provide efficient algorithms for cleaning (de–noising)

large sets of data and unraveling essential but hidden spatio–temporal correlations. These

features will be exploited in further chapters
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2.4. SUMMARY

• For completeness, let us also mention that FRV can also generate dynamical stochastic

processes [BS01, JW04, GNJJN05], in a similar way like Gaussian distributions generate

random walks in classical probability. We will not discuss them in this work, restricting

ourselves to stationary properties of FRV only.
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3
Equal-Time Correlations

The analysis of equal-time correlations has been actively investigated in recent years for vari-

ous complex systems with major attention attracted to financial markets [LCBP99, PGR+99,

LCPB00, PGR+00, JM03, GK03, UIO04, WG04, SCSR04, BJ04, KOD06, URH07, PPNK05,

CRC09b, CRC09a, SH09]. The motivation behind is the modern portfolio theory [EGBG06],

which heavily relies on accurate estimates of covariance matrix. Correlated moves of financial as-

sets diminish the possibility of optimal portfolio diversification. In classical portfolio theory it is

blindly assumed, that correlations are perfectly known. However, the information about correla-

tions is typically unraveled from historical data, that are to large extent noisy due to finiteness of

the samples (c.f. section1.4.1). In particular, Random Matrix Theory (RMT), has been applied

to filter the relevant information from the statistical fluctuations [LCBP99, BJ04, WG04, KS06],

inherent in empirical cross-correlation matrices, for various financial time series. By comparing

the eigenvalue spectrum of the correlation matrix to the analytical results, obtained for ran-

dom matrix ensembles, significant deviations from RMT eigenvalue predictions provide genuine

information about the correlation structure of the system. This information has been used to

reduce the difference between predicted and realized risk of different portfolios [PBL05]. The

main aim of this chapter, given a Voiculescu FRV approach [DNV92], is to analyze more deeply

and expand the results from [KS06].

3.1 Theoretical Framework

Modern Portfolio Theory (MPT) refers to an investment strategy that seeks to construct an

optimal portfolio by considering the relationship between risk and return. MPT suggests that

the fundamental issue of capital investment should no longer be to pick out dominant stocks

but to diversify the wealth among many different assets. The success of investment does not

purely depend on return, but also on the risk, which has to be taken into account. Risk itself

is influenced by the correlations between different assets, thus the ability to predict future

movements in prices (price changes) allows one to minimize the risk. Let us briefly remind

several key tools and concepts, that MPT uses, i.e. the Markowitz’s Model [Mar52], which is

crucial in further analysis.

3.1.1 Mathematical Notation

Suppose one builds a portfolio of N assets with wi being portion of wealth invested in asset

i. Consider T quotations of the i -th stock and introduce a vector of returns yi,1,where yi,t,

t = 1, . . . , T is the observed realization of a random variable yi. Denote Si(t) - time series of
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CHAPTER 3. EQUAL-TIME CORRELATIONS

prices for a certain stock i. Then

yi,t = lnSi(t + 1) − lnSi(t) (3.1)

and ln is a natural logarithm. Then the expected return of a single asset is given by

Yi = E(yi) = ŷi = ȳi =
1

T

T∑

t=1

yi,t (3.2)

Denoting y as a vector of expected returns of single stocks, we see, that an expected return of

a whole portfolio is a linear combination of returns of assets in a portfolio

Yp =

N∑

i=1

wi · Yi = wT ·Y

The daily variance of a portfolio return is given by:

Y 2 =
∑

i,j

wiσiCijσjwj (3.3)

Where σ2i is the daily asset i and Cij is the correlation matrix. In order to measure and optimize

risk of this portfolio one has to come up with reliable estimate of the correlations matrix Cij .

This is difficult in general [JM03] since one has to determine N(N + 1)/2 coefficients out of N

time series of length T , and in general T is not much larger than N

3.1.2 Stock exchange as a dynamic complex system - initial analysis

Throughout this chapter we will focus on the analysis cross-correlations in Polish stock market.

Several similar studies have been accomplished recently [RKDO08, KDS03, DKSW02, SDG09].

The WIG index - major and the oldest index of Warsaw Stock Exchange is a sort of market

indicator and economy’s barometer, consisted of about 80% of all assets quoted during continuous

trading. The influence of individual stock is limited to 10%, with no more than 30% of stocks

belonging to one sector. WIG is calculated not only on the basis of daily prices of stocks included

in it but also incorporates the income from dividends and subscription rights, though it is often

treated as an income index. From our point of view, it is interesting to examine the connections

(i.e. correlations) between the constituent stocks.

Sampling error

Suppose we have data set consisting of N stocks with T returns in each time series and compute

a sample correlation matrix. Furthermore, let’s assume for a while, that the true correlation

were the identity matrix i.e., the stocks are initially not correlated. This is not true in general

and we will relax this statement in next sections. For normally distributed distributed returns,

the median maximum correlation ρmax should satisfy:

ln 2 ≈ N(N − 1)

2
N

(
−ρmax

√
T
)

(3.4)

With N = 500, T = 1000, we obtain ρmax = 0.14 So, sampling error induces spurious (and

potentially significant) correlations between stocks.
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3.1. THEORETICAL FRAMEWORK

Indentification of the stable period in financial data

Correlation analysis of financial markets indirectly assumes the stationarity of the data i.e., that

the expectation and the variance of the data set exist and do not change over time. We have

related it with the period of the lowest volatility of the WIG index.

1. We have started with the conversion of absolute changes of the WIG time series S(t) to

the relative ones according to

y(t) =
S(t+ 1) − S(t)

S(t)
(3.5)

Figure 3.1: Fluctuations of relative WIG changes

2. Then for a fixed time window width T = 990 quotations, the volatility of the time series

y(t) was calculated:

σ(t0) =

√√√√ 1

T − 1

T∑

i=0

(
Y (t0 + i) − y(T )

)2
(3.6)

where y(T ) is the average y(t) over the whole time window T . This results can be presented

on the diagram:

Figure 3.2: Volatility changes in time for a fixed window length
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CHAPTER 3. EQUAL-TIME CORRELATIONS

It is easy to notice, that first few years of quotations are determined by a relatively high volatility.

This is related to the initial period of Polish Stock Exchange, where vast changes in WIG index

dominated and investors needed to learn the rules of the stock market.

The Analysis of stocks

Another problem we have encountered during the analysis of historical data, was the incomplete

information about some of 120 stocks, which may result in the infinities in relative changes x(t),

when the lack of information was replaced by zeros in the original S(t) time series. ”Zeros”appear

when one is unable to settle the price of an individual stocks. The separate ”zeros” were

extrapolated from the future and previous relative changes of a given time series. In the case, if

more information is lost in the way, one is unable to predict the further prices, then this stock

is not very examined in further research.

Final data set

For the fixed period from 29 : 01 : 1999 till 17 : 01 : 2003 = 990 days we have finally chosen the

100 stocks in the WIG index1 with the average standard deviation of price changes 〈σ〉 = 0, 4767

and average correlation of returns between stocks 〈corrij〉 = 0, 0657. Thus, in this case, N = 100

and T = 990, r = N/T = 10/99. There are N(N−1)/2 = 4950 distinct entries in the correlation

matrix to be estimated from 990 × 100 = 99000 data points. With these parameters, we would

expect the maximum error in our correlation estimates to be around 0.013.

3.2 Estimators of equal–time correlations

It is well known result, that any set of correlated Gaussian random variables can always be

decomposed into a linear combination of independent Gaussian random variables. The converse

is also true, since the sum of Gaussian random variables is also a Gaussian random variable. In

other words, correlated Gaussian random variables are fully characterized by their correlation

matrix. Which can be constructed in the simplest way via Pearson estimator (1.6).

3.2.1 Uncorrelated Wishart ensemble C = 1

Assume now that all returns comes from the Gaussian distribution

Pc.G.(Y)DY =
1

Nc.G.
exp

(
−1

2
TrYTC−1YA−1

)
DY, (3.7)

where the normalization constant Nc.G. = (2π)NT/2(DetC)T/2(DetA)N/2, and the integration

measure DY ≡∏N
i=1

∏T
a=1 dYia, while the letters “c.G.” stand for “correlated Gaussian”and we

impose (C = A = 1).

3.2.2 Cleaning technique - one factor model

If one considers N assets, the covariance matrix need to be determined from N time series of

length T ≫ N . Typically T is not very large compared to N and one should expect that the

determination of the covariances is noisy. This noise cannot be removed by simply increasing

1An exact of time series used is available from the author upon request
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3.2. ESTIMATORS OF EQUAL–TIME CORRELATIONS

the number of independent measurement of the investigated financial market, because economic

events, that affect the market are unique and cannot be repeated. Therefore the structure of

the matrix estimator is dominated by ”measurement” noise. In this section we will compare

properties of an empirical correlation matrix to a purely random matrix, well defined in the sense

of Random Matrix Theory [GMG98]. Deviations from the RMT might then suggest the presence

of true information [LCBP99]. The problem is now to extract these significant eigenvalues.

Empirical spectrum of correlation matrix

First, we have computed numerically the eigenvalue spectrum and superimposed the Marčenko-

Pastur [MP67] density with r ≈ 0.1 (see Fig 3.3). An immediate observation is that, the

largest eigenvalue is λ1 = 12.62 is about 7 times larger, than the predicted λ+ = 1.737. This

largest mode reflects the strength of collective evolution of eigenvalues. We will call the largest

λ1 a ”market mode”, since the corresponding eigenvector has roughly equal components on all

N = 100 stocks. Furthermore the constituents of the eigenvector are at minimum 10% for

individual time series and maximum 30% if the stocks belong to one of the ordinary market

sectors, which to large extent mimics the structure of WIG index.
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Figure 3.3: Full empirical spectrum of a covariance matrix for Polish stock market data and

fit using MP distribution.The edges are predicted by (2.50). In the presence of one very large

eigenvalue,corresponding to the ”market mode”, the fit reveals systematic deviations, suggesting

a non-trivial structure of the covariance matrix.If we look closely we can observe, that there

are several large eigenvalues (the largest one is labeled as the market one, since it consists the

information about all the stocks in the market i.e. is closely related to the WIG index), however

the greater part of the spectrum is concentrated between 0 and 2 (i.e. The Wishart- fit). We

believe, that behind this Random part of the spectrum there exists single eigenvalue, which carries

nontrivial and useful information.
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CHAPTER 3. EQUAL-TIME CORRELATIONS

The effect of non-synchronous trading

One may argue, that this unique structure is the effect of finiteness of the sample. Suppose

we make an experiment and shuffle the returns in each time series (Fig. 3.4). Then again form

eigenvalue spectrum for a sample correlation matrix with theoretical fit superimposed. It is

easy to notice, that with this simple trick the unique spatio–temporal structure is destroyed.

We relate this phenomena, that affects the dynamical structure of the eigenvalues spectrum to

non–synchronous character of trading on a stock exchange. Stock exchange transactions have

different activity over trading day. If we are about to consider daily data, we actually mean

the close price and we treat them in a manner as if there were a 24 − hour period between two

observations, which is not true. As a consequence we have cross correlations between returns in

a portfolio of stocks and autocorrelation of individual returns mixed in an extremely non-linear

structure.
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Figure 3.4: Spectrum with randomized data. The process of scrambling the returns destroys the

interesting structure. The agreement between the empirical spectrum and predicted Marčenko-

Pastur density is nearly perfect.

Interim conclusions

From this simple experiment, we note that:

• Even though financial return series are fat-tailed, the Marčenko-Pastur density is a very

good approximation to the density of eigenvalues of the correlation matrix of the random-

ized returns.

• The large part of the empirical correlation matrix is considered as noise and cannot be

trusted in any method involving inverse of the correlation matrix. Noise in the sample
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3.2. ESTIMATORS OF EQUAL–TIME CORRELATIONS

covariance estimate leads to spurious portfolio estimates with very low or zero predicted

variance.

• The Marčenko-Pastur density does not remotely fit the eigenvalue spectrum of the sample

correlation matrix from which we conclude that there is non–random structure in the

return data.

• The numerical results clearly show, that empirical correlation matrix constructed from

financial time series has one dominant eigenvalue. This suggest that, each return can be

decomposed into

yit = βiθt + ǫit (3.8)

with θt - return associated with the market mode, common for all stocks, ǫt - idiosyncratic

noise term and βi- coefficient specific to individual asset.

Gaussian filtering

We will assume here that the only randomness in the model comes from the Gaussian Probability

Distribution. Let X denotes N × T matrix, whose entries are i.i.d. random variables, which

are normally distributed with zero mean and unit variance. We have already shown in chapter

refch2:FRVintro, that as N,T → ∞ and while r = N
T is kept fixed, the probability density

function for the eigenvalues of the Wishart matrix C = 1

T
Y ·YT is given by eq.(2.50). Let us

just mention here that the above problem may be tackled along similar lines using the formalism

of N and M–transforms and respective duality relations Exploiting the knowledge from Linear

Algebra,we may rewrite our correlation matrix C as:

C = O ·D ·OT (3.9)

Here D is a diagonal matrix of eigenvalues of the original matrix C and O is an orthogonal matrix

whose columns are normalized eigenvectors corresponding with proper eigenvalues, which means

that O fulfills the equation:

O ·OT = 1 = O ·O−1 (3.10)

The trace is conserved, so we write:

TrC = Tr(O ·D ·OT) (3.11)

Using the (3.10) and cyclic properties of the trace we get

TrD = TrC (3.12)

Following the fact, D is a diagonal matrix of eigenvalues one can decompose its trace in the

following way:

TrC = TrD =
∑

i

λi +
∑

j

λj (3.13)

where λi ∈ [λ−, λ+] and λj ∈ [λ1, λ−) ∪ (λ+, λN ] is set of these eigenvalues, which do not obey

the RMT conditions. If we now replace
∑

i λi by one eigenvalue ζ, we get

ζ = TrC −
∑

j

λj (3.14)
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CHAPTER 3. EQUAL-TIME CORRELATIONS

This results in squeezing the Random part of the spectrum to a single degenerated eigenvalue.

This amounts to subtracting the contribution of the market mode from nominal value of volatil-

ity. Several eigenvalues, that are still above λ+ contain some potentially useful information

about different economic sectors. This 5% of eigenvalues is however responsible for 20% of the

total volatility. Which concurs the observations by [LCBP99, PGR+99] on the basis of S&P500

index.

Unraveling eigenvalues – a hand–waiving approach

The predicted r, λ+, λ− follow from the equations

r = N/T = 100/900 ≈ 0.101

λ+ = (1 +
√
r)2 = 1, 7367 λ− = (1 −√

r)2 = 0, 4654 (3.15)

Suppose we find the values of r, λ+, λ− that best fit the bulk of the eigenvalue spectrum. We

find

r = 0.1055 ± 0.0129 λ+ = 1.5238 ± 0.1456 λ− = 0.3797 ± 0.0101 (3.16)

and obtain the plot (Fig. 3.5). If we are to believe this estimate, a fraction 0.76 of the variance
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Figure 3.5: LEFT:Spectrum with fitted data.Finiteness effects could take the maximum eigenvalue

to 1.67 at the most. RIGHT:Spectrum with reduced data.

is explained by eigenvalues that correspond to random noise. The remaining fraction 0.24 has

information. From the (Fig. 3.5), it looks as if we should cut off eigenvalues above 1.6 or so.

Summing the eigenvalues themselves, we find that 5% of the variance is explained by eigenvalues

greater than 1.6. A more deeper analysis of the correlation spectrum needs the analysis of

the residuals i.e., for each stock, we have subtracted factor returns associated with the top 5

eigenvalues. We have found that r ≈ 0.101 gives the best fit of the Marčenko-Pastur density

(see Fig. 3.5). Maximum and minimum eigenvalues are 1, 7365 and 0, 4646. Which is consistent

with the data predicted from equation (2.50). The resulting recipe for diminishing the noise

effect consists of the following steps:
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3.2. ESTIMATORS OF EQUAL–TIME CORRELATIONS

• Fit the Marčenko-Pastur distribution to the empirical density to determine r and

λ+, λ−

• All eigenvalues above some number λ∗ ≈ λ+ are considered informative; other-

wise eigenvalues relate to noise.

• Replace all noise-related eigenvalues λi below λ∗ with a constant and renormalize

so that the trace is conserved.

• Undo the diagonalization of the sample correlation matrix C to obtain the de-

noised estimate C ′.

3.2.3 Noise reduction technique in a Market + sectors model

In the first approximation we have assumed after [JM03], that the components orthogonal to

the ”market” mode represents pure noise. If we however analyze the spectrum more carefully

we notice, that there are 4 distinct eigenvalues, that do not fit very well the predicted spectrum

i.e., λ2 = 3.067, λ3 = 2.214, λ4 = 2.0961, λ5 = 1.6598. Furthermore it is a common belief, that

evolution of stock market can be decomposed into Kmax factors associated with the eigenvalues

of the correlation matrix.In our case part of these factors might also be hidden in the ”bulk” of

the spectrum. These small eigenvalues correspond to portfolios of stocks that have very small

out–of–sample variance (risk). The key to identifying the number of latent factor lies in correctly

understanding the structure of noise, namely the idiosyncratic effects in the data. Once we can

separate the estimated eigenvalues of a large factor model into those due to the latent structure

and those due to the noise, we can construct the procedure that will consistently estimate the

number of factors.

Correlated Wishart Ensemble

We consider now the case, where the true correlations matrix is no more unity matrix i.e.,

assets can interplay with each other, but where the temporal correlations still represent trivial

structure (we assume the stationarity over time). Then the two-point correlation function is

given by 〈
XitXjt′

〉
= Cijδtt′

FRV derivation

In order to unravel the hidden correlation structure, first we need to construct the Green’s

function

G(z) =
1

N

∫
dX exp

(
−1

2
TrXC−1XT

)
Tr

(
1

z − 1
TXX

T

)
(3.17)

We already know, that in the case of uncorrelated random variables, the respective Green’s

function reads

G(z) =
1

N

∫
dX exp

(
−1

2
TrXXT

)
Tr

(
1

z − 1
TXX

T

)
(3.18)

Since C is positive, the trick is now to consider:

XC−1XT = XC−1/2C−1/2XT = Y Y T → X = Y C1/2 (3.19)
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Then using the cyclic properties of the Tr

1

T k
Tr(Y AY T )k

cyclic
↓
=

1

T k
Tr(AY TY )

G(z) is just a product of 1
T Y

TY and C,and 1
T Y

TY has the same non–zero eigenvalues as 1
T Y Y

T

and T −N eigenvalues equal to zero

G(z) ∼ 1
N

∫
dY exp

(
−1

2TrY Y T
)

Tr
(

1
z− 1

T
(C)1/2Y Y T (CT )1/2

)

= 1
N

∫
dY exp

(
−1

2TrY Y T
)

Tr
(

1
z− 1

T
Y TCY

) (3.20)

Making use of (2.9) and the multiplication algorithm for N –transforms (2.24) we immediately

recover

G(z) =
(r+z−1)−

√
(1+r+z)2−4rz

2rz

M(z) = zG(z) − 1 =
(z−r−1)−

√
(1+r+z)2−4rz

2r

z → N 1
T
Y Y T (z)

(3.21)

Then

N 1
T
Y Y T (z) =

(1 + z)(1 + rz)

z
N 1

T
Y T Y (z) =

(1 + z)(r + z)

z
(3.22)

and

MC(z) = MC(ω(z)) where ω(z) =
z

(1 + rMC(z))
(3.23)

One then immediately recovers the relation between the moments of the true spectrum and that

of empirical one [BGJJ04]

∞∑

k=1

mk

zk
=

∞∑

k=1

Mk

zk


1 + r

∑

j=1

ml

zl



k

(3.24)

and the first few relations between the empirical moments mk and true ones Mk are:

M1 = m1

M2 = m2 − rm2
1

M − 3 = m3 − 3rm1m2 + 2r2m3
1

(3.25)

To see it, consider again one–point Green’s function and rewrite it in terms of the moments

[J+10]

G(z) = 1
N

〈
Tr 1

z−H

〉
→ . . .

zG(z) = 1 + 1
zm1 + 1

z2
m2 + . . . = 1 +

∑∞
k=1

(
1
z

)k 1
N

∑
i(λi)

kpi
(3.26)

Then λi and pi are the parameters of the spectrum, that we need, for they can be helpful

in reconstructing the hidden structure. For practical reasons a finite number of k = Kmax is

assumed to carry almost all information about the underlying distribution. Cutting down the

series leads to equation in the form

1 +

Kmax∑

k=1

mk

(
1

z

)k
= 1 +

Kmax∑

k=1

(
1

z

)k 1

N

∑

i

(λi)
kpi (3.27)
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Now on the left hand side we have the expression with the moments calculated from empirical

correlation matric, while on the right hand side the true moments. Since these expression has

to be satisfied for all powers of 1
z , we end up with a set of Kmax nonlinear relations in mi and

Mk. To reproduce them we will use the well known Padé approximation scheme [PTVF07] and

rewrite zG(z) in a rational form in terms of 1
z .2

zG(z) = z 1
N

〈
Tr 1

z−XXT

T

〉
=
∑Kmax

k=1
zpk
z−λk

=
∑Kmax

k=1
pk

1− 1
z
λk

=
AKmax−1( 1

z )
AKmax( 1

z )
=

P( 1
z )

Q( 1
z )

(3.28)

Zeros of Q
(
1
z

)
are successive λk, while pk can be calculated as follows

pk =
1

z

P
(
1
z

)

d
dzQ

(
1
z

) |z=λk (3.29)

Data analysis and discussion of the results

We will use the relations between the moments to directly reproduce the structure of correla-

tions burried in the ”bulk” of the spectrum (Fig. 3.6). From practical reasons sophisticated

optimal liquidation portfolio algorithms that balance risk against impact cost involve inverting

the correlation matrix. Eigenvalues of the correlation matrix that are small (or even zero) cor-

respond to portfolios of stocks that have nonzero returns but extremely low or vanishing risk;

such portfolios are invariably related to estimation errors resulting from insufficient data. The

above described version of Factor Analysis can be exploited to identify the hidden dimensions,

which were not apparent from direct analysis. These hidden eigenvalues cannot be practically

measured due to the uniqueness of financial sample i.e., inferred in repeated experiments. The

main achievement is the reduction of dimensionality. Large number of observable eigenvalues

is now aggregated in a model to represent underlying structure. These directly unobservable

factors represent shared variance or in other words, the degree to which financial time series

move together. Except for 5 eigenvalues identified in the previous analysis we have discovered

6 new, that potentially carry important information. For these we have analyzed the structure

of eigenvectors and identify the companies, that belong to specified sectors of economy and

financial markets. We summarize the results in the (Table 3.1).

3.3 Estimators with weighting schemes

The standard Pearson estimator – an average of the realized cross-correlations over past time

T allows all the past values to have an equal impact on current correlations structure. However

it is common phenomenon in financial time series to include long memory and power-law tails

[Eng82, EB86, Bol86, AFV10, BGW06]. It is now common to set-up updating schemes for cross-

covariances like EWMA (exponentially weighted moving average [PPK04, PBL05, Sve07]. The

original derivation from [PBL05] will be shown here step-by-step. Roughly speaking, the older

2One can reproduce the numerical results along similar lines by minimizing the function

F ({Mi}, {mi}, r, {λi}, {pi}) with respect to observed set of {mi} and unknown {Mi}, {λi}, {pi}, which is

a complicated task. The conformity of this method from statistical point of view is however not satisfactory and

is the purpose of different study[J+10].
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Figure 3.6: The true correlations structure vs. empirical one. The difference is pretty drastic.we

have neglected the largest eigenvalue.Recall that each eigenvalue relates to the variance of a

portfolio of stocks. A very small eigenvalue means that there exists a portfolio of stocks with

very small out-of-sample variance.

No. eigenvalue sectors

1 12,62 market mode - no more than 10%, no less than 30% financial

sector, software and communication, metals and mining,

construction

2 3,06764 Steel, steel mines, luxuries

3 2,32 Construction of private homes and real estate

4 2,214 Pharmacy, personal investments and personal electronics

5 2,0961 Construction in industrial sector

6 1,66 Food distributors and mobile internet

7 1,86 Automatics, electroengineering and machinery

8 1,3 KGHM(copper)&Dȩbica(Rubber)&Sygnity(software)

9 0,88 Financial and banking sector

10 0,53 Luxury clothes, chemofarmaceuticals and home furnishing,

PEKAO(largest bank in Poland)

11 0,333 Metal distributors, foundries,STALEXPORT (steel constructions)

Table 3.1: Companies and sectors that drive Stock Exchange in Poland.
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the realized (portfolio) variance (3.3)), the more obsolete it is. We will consider the case where

C = 1, but where the empirical matrix is computed according to an exponentially weighted

moving average:

EEWMA
ij = ǫ

t−1∑

t′=−∞
(1 − ǫ)t−t

′
xt

′
i x

t′
j for ǫ = 1/T (3.30)

Since

EEWMA
ij = (1 − ǫ)EEWMA

ij + ǫxtix
t
j (3.31)

We can invert the resolvent G(z) to find the Blue’s function:

δBt(z) =
1

z
+

r

N(1 − rz)
(3.32)

Using the scaling properties of G(z) and (2.20) allows one to write:

BEWMA(z) = B(1−ǫ)E(z) +Bt(z) −
1

z
(3.33)

and finally we obtain

BEWMA(z) =
1

z

(
1 − 1

rT ǫ
ln

(
1 − rT ǫz

1 − rT ǫz
exp rT ǫ−1

))
(3.34)

Going back to the resolvent to find the density, we finally get the result first obtained in [PPK04]:

ρ(λ) =
1

π
ImG(z) where G(z) solves zrG(z) = q − ln(1 − rG(z)) (3.35)

And the edges of the eigenvalue spectrum (λ±)[Zee96]

λ± = B(z±) where B′(z±) = 0 (3.36)

In the case at hand, by evaluating B(z) when B′(z) = 0 we can write directly an equation whose

solutions are the spectrum edges (λ±)

λ± = log(λ±) + r + 1 (3.37)

When r is zero, the spectrum is a δ in 1 as expected. But as the noise increases (or the

characteristic time decreases) the lower edge approach zero very quickly as λ− ∼ exp(−r).

3.3.1 Evidence from the data

Although there are no exact zero eigenvalues for EWMA matrices,the smallest eigenvalue is

very close to zero. This is evidently confirmed in the empirical case, where we put a stress

on investigation of delayed dependencies among the stocks. Uniform weights, means that the

weight factors are equally distributed, while ”noweights” scheme is simply EWMA with all

weight factors equal to 1. Standard EWMA gives today’s measurement twice the significance,

that the uniform scheme would assign. In this section we investigate the problem whether

so called ”implied correlations” given in EWMA scheme are useful in unraveling unobserved

temporal structure. Or in other words if a forward looking structure, that puts more impact

on recent observations and incorporates market expectations may provide interesting additional
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Figure 3.7: Empirical correlations calculated with EWMA schemes. The standard scheme reflect

to the ordinary EWMA (3.30) weights, while exponential, gamma and uniform weights, are drawn

from respective probability distribution. The case with no weights is the case, where empirical

correlations matrix is calculated according to the standard Pearson estimator, though it reflects

the ordinary Marčenko - Pastur case [MP67].One can clearly see, that the bulk of the spectrum for

all weighted schemes, remains in an almost unchanged form,as it should [PBL05] while position

of the largest eigenvalues that significantly differ from (2.50)”pure” random spectrum, changes

drastically according to the calculations scheme.

information not provided by the historical Pearson estimator (1.6). Various forms of weighted

moving averages have been developed to address the objection, that more recent values play

major role. Instead of just adding up the measurements for a sequence of days and divide by

the number of days T in EWMA scheme each measurement was first multiplied by a weight

factor, which differed from day to day. The final sum is divided not by the number of days,

but by the sum of all weight factors. Larger weight factors used for more recent days and

consecutively smaller for measurements further back in time - the dynamics is more responsible

to recent changes. We haven’t however notice any significant improvements compared to the

previous section – deviations are only due to the hidden spatio–temporal structure between the

returns (Fig. 3.7). Different weighting schemes leave the ”bulk” practically unchanged, while

the largest eigenvalue is strongly affected by the parameter ǫ. This is due to the fact, that

market mode created on the basis of all the stocks (mostly minor companies) is more sensitive

to the short term movements in price changes. The smaller the ǫ, the more responsive the

”market” to the daily price changes.The bulk, reacts much slower, since we have extracted out

the ”ghost” effect of a single price change – shocks die out exponentially and more smoothly

than in the unweighted scheme. The approach from previous sections assumed that past is

prologue. We measure history in the hope it is predictive. Factor models on the other hand

hope that ”market knows best” and the market price contains, even if implicitly a consensus

estimates of risk. EWMA ensures, that covariance is weighted or biased towards more recent

data. A more general class of ”weighted estimators”of the cross–correlations for the correlated
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Gaussian random variables Y i.e., the doubly correlated Wishart ensemble, will be extensively

studied in chapter 4 in the context of VARMA(q1, q2) processes.

cweight =
1

T

√
CỸ

√
AW

√
AỸT

√
C where W ≡ Tdiag (w1, . . . , wT ) . (3.38)

3.4 Empirical properties of Correlations matrix

The correlation matrix encapsulates not only the information about mutual dependencies, but

also how they behave over certain period of time. Within time dependency, the eigenvalues

are themselves time–series which contain the same information as the raw correlation. The

analysis of temporal structure of correlation matrices for NYSE has already been proposed by

[Zum09, CRC09a]. The authors analyzed projector dynamics and the empirical properties of

the time–series of eigenvalues by means of sliding window technique. In this section we will stick

to the latter approach.

3.4.1 Cross-correlations dynamics

The salient feature of the Random Matrix Theory [Meh04, Eyn00] is that distribution of eigen-

values are stationary over a certain period of time3. Though information about price changes

and other important events (e.g. announcement of inflation) truly affect the correlation struc-

ture. It is then obvious, that these relations bombed by incoming information can themselves

evolve in time. In this section we verify this assumption more deeply and to analyze the relation

between empirical financial cross correlations and those of the pure noise we have performed the

following analysis. For N = 100 stocks from Warsaw stock exchange, we calculate the equal-

time cross-correlation matrix between time-series of stock returns using sliding time window

for within time frame of T = 200 observations. This period was chosen to ensure the data

would be close to non–stationary in each sliding window. To study the dynamics of each of the

eigenvalues using a sliding window, we normalize each eigenvalue in time by adjusting the mean

and dividing by the standard deviation of the eigenvalue i over a particular period τ . This nor-

malization allows us to visually compare eigenvalues, even if their magnitudes are significantly

different (Fig. 3.8). The correlations in the volatility are now represented by eigenvalues and

it is easy to notice, that they remain positive over a long period of time (”bull” market). The

repulsion between the largest eigenvalue and the smaller ones is evident. This is the consequence

of the properties of the trace. The trace must remain constant under any transformation of the

correlations matrix. Though any change of the largest eigenvalue is immediately compensated

by a change in one or more other eigenvalues. Small eigenvalues move counter to the largest

eigenvalue. Overall the spectrum is pretty static, in agreement with common belief, that the

largest part of dynamics is captured by volatility. This is also consistent with the ”central limit

theorems” for large random matrices i.e., the larger the matrix, the more deterministic it be-

haves. Yet the eigenvalues closely related to the ”true” spectrum represent clear and distinct

time evolution, though estimation by stationary spectrum seems inappropriate. This together

shows, that reduction of a correlation matrix to just a few leading eigenmodes misses a lot of

dynamics.

3 Any stochastic process is considered strict stationary if it is a series of independent identically distributed

samples. For weak stationarity we only assume, that mean and the variance for this stochastic process exist and

are invariant under translations in time.
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Figure 3.8: Cross-correlations dynamics over sliding window.TOP:The first 7 largest eigenvalues

of a daily correlation matrix for Polish Stock Market. FIRST BELOW: the dynamics of the

”bulk” of the spectrum.The last two figures represent, the normalized dynamics of the correlation

spectrum for largest eigenvalues and the ”bulk”.

Stability of eigenvalues

Furthermore we have analyzed the stationarity of the resulting time–series of eigenvalues. For

each of them standard unit-root tests were performed [Gre03]. It resulted (see Table 3.2 for

details), that eigenvalues in the vicinity of ”true” eigenvalues the hypothesis of non–stationarity

could not be rejected, namely not all eigenvalues in the ”bulk” look like stationary white noise

without correlations. The empirical part of the spectrum ”close” to the latent factors exhibits

highly non-stationary (probably of Brownian origins) or close to non-stationary behavior which

can be easily encoded in terms of Ornstein-Uhlenbeck process. This also demonstrates, that

non–trivial dynamics is consequently married with the ”true” correlations spectrum and is a

potential result of time structure, that may affect the movement of the spectrum.

Dynamics of the top eigenvalue vs ”bulk”

As we have already presented the financial covariance matrices are such that the largest eigen-

value is well separated from the ”bulk”, where all other eigenvalues reside. The financial inter-

pretation of this large eigenvalue – so-called ”market mode”: in a first approximation, all stocks

move together, up or down. One can state this more precisely in the context of the one factor

model [Noh00, MS04, LM03, Sha64], where the ith stock return at time t is written[PBL05] as:

yit = βiφt + εit, (3.39)

where the market mode φt is common to all stocks through their market exposure βi and the εit
are idiosyncratic noises, uncorrelated from stock to stock. Within such a model, the correlation
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p-value ADF test empirical eigenvalues true spectrum

0,7905 12,62 12,62

0,4607 3,06764 3,06764

0,0594 2,21402 2,32

0,1106 1,46029 2,214

0,1082 1,42788 1,86

0,1241 1,41732

0,1197 1,38858

0,1564 1,37285

0,2631 1,35017

0,2818 1,33494

0,2833 1,30438 1,3

0,1905 1,27726

0,166 1,25024

0,1377 1,24385

0,1646 1,22344

0,127 1,19213

0,1421 1,17177

0,1071 1,15646 0,88

0,1123 0,41438 0,53

0,1455 0,40478

0,1626 0,39469

0,2051 0,39015

0,1905 0,37672

0,2466 0,34793 0,333

0,1746 0,29782

0,1422 0,26703

Table 3.2: Results from stationarity test for eigenvalues. The table shows eigenvalues for which

the non-stationarity hypothesis could not be rejected.
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matrix reads:

Cij = βiβjσ
2
φ + σ2i δij . (3.40)

When all σi’s are equal, this matrix is easily diagonalized; for N stocks, its largest eigenvalue is

Λ0 = (
∑

j β
2
j )σ2φ + σ2 and is of order N , and all the other N − 1 eigenvalues Λα are equal to σ2.

The largest eigenvalue corresponds to the eigenvector βi. More generally, the largest eigenvalue

Λ0, normalized by the average square volatility of the stocks, can be seen as a proxy for the

average interstock correlation. The empirical matrix E evolves in time as:

Eij,t = (1 − ǫ)Eij,t−1 + ǫritr
j
t . (3.41)

Denoting as λ0t the largest eigenvalue of Et associated to ψ0t and using standard perturbation

theory, valid for ǫ≪ 1

λ0t = (1 − ǫ)λ0t−1 + ǫ〈ψ0t−1|C|ψ0t−1〉 + ǫ〈ψ0t−1|ηt|ψ0t−1〉, (3.42)

with ηij = rirj − 〈rirj〉. For Gaussian returns

〈ηijηkℓ〉 = CikCjℓ + CiℓCjk. (3.43)

In the limit where Λ0 becomes much larger than all other eigenvectors, the above equation

simplifies to:

λ0t ≈ (1 − ǫ)λ0t−1 + ǫ cos2 θt−1Λ0 [1 + ξt] , (3.44)

leads to a Langevin equation for λ0:

dλ0
dt

= ǫ(cos2 θΛ0 − λ0) + ǫ cos2 θξt, (3.45)

where cos θt ≡ 〈ψ0t|Ψ0〉 and ξt is a random noise term of mean zero and variance equal to 2,

which becomes Gaussian for large matrices.

Evolution of the uninformative eigenvalues

The most popular model of stock price dynamics assumes, that the return is a Gaussian sta-

tionary process and stocks are uncorrelated. A direct analysis of all pairs of stocks is, of course,

unreasonable even for moderate size of N . That is why we only dwell on the evolution of eigenval-

ues in a spectrum (Fig.3.9). We have especially focused on the largest eigenvalues. The analysis

of the eigenvalues evolution in the sliding time window discovers a slow temporal dynamics of

the statistical properties of the ensemble, which is consistent with the assumption that common

economic factors affecting the time evolution of stock prices are present in financial markets.

For comparison we have compared the dynamics of one of the redundant eigenvalues with the

dynamics of the eigenvalues generated from the pure noise i.e., that came from artificially gen-

erated correlation matrix, for which the samples had a standard Normal distribution with zero

mean and unit variance. We have recovered that the redundant (uninformative) eigenvalues

are in fact indistinguishable from pure noise. The result of these analyzes show that a picture

based on the assumption that all stock prices are uncorrelated is not a realistic one. The stock

exchange is far more ”complex” than a collection of several independent random processes and

the presence of cross-correlation and temporal correlations between pairs of stocks supports the

assumption that common economic factors are affecting the time evolution of stock prices in

financial markets.
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Figure 3.9: LEFT:Time evolution of the 7 largest eigenvalues.RIGHT: Sample eigenvalue from the

bulk of the spectrum, far from true correlation structure versus pure white noise time series.They

are almost indistinguishable, which again confirms that these eigenvalues are redundant, do not

capture the dynamics of the spectrum and might be eliminated without loss of important infor-

mation.

Distribution of eigenvector components

The deviations from RMT (Fig. 3.3) should also be displayed in the statistics of the corre-

sponding eigenvector components. If there is no information in an eigenvalue, we expect the

distribution of the components of its eigenvector to be a maximum entropy distribution. Gaus-

sian distribution in that case can be easily proven. If we superimpose the empirical distribution

of eigenvector components and the zero-information limiting density for various eigenvalues we

see, that true eigenvalues, that do not fall into the RMT predictions are informative (i.e., the

components of its eigenvectors deviate systematically from Gaussian distribution), while most of

the bulk represents white noise dynamics. Fig.3.10 shows that for the typical eigenvalues from

the bulk the conformity is very good. The distribution of the component of the eigenvector cor-

responding to the largest eigenvalue is apparently uniform – mostly the components are shifted

to the right (have the same sing), again confirming that significant stocks participating in the

eigenvector have common component, that affects them in the same manner. The stock market,

as viewed through the eigenspectrum and the eigenvectors of the correlation matrix shows that

the collective dynamics of the largest eigenvalue -”market mode” cannot be approximated by

pure white noise. The bulk itself is also not fully composed of the squares of white noises - some

eigenvalues close to the specific factors -”true ” spectrum have nonlinear dynamics both in space

and time.

3.5 Summary

While factor models have been used for almost a century, standard multivariate methods were

developed under assumption, that time dimension T grows large, while the number of samples

N is small and fixed. We have shown the fluency of Free Random Variables calculus in the

context of equal–time correlations estimators, where standard theory becomes an unreliable

guide to data analysis. Even quite complex problems can be solved within not very lengthy and

complicated framework. The implementation of this new tool in complexity town, which takes

into account the special nature of large datasets leads us to reconsider stylized facts we have taken
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Figure 3.10: ABOVE:Three eigenvectors corresponding to the three largest informative eigenval-

ues.BELOW: Three eigenvectors for the uninformative eigenvalues from the bulk of the spectrum.

for granted. Applications of the above described approaches to financial correlation matrices

are relatively recent [LCBP99, Zum09] but very active [DKRS01, PBL05, AFV10]. We have

shown that comparing the empirical eigenvalues to the empirical correlation matrix build from

Warsaw Stock Exchange assets to the theoretical upper edge of the Marčenko-Pastur [MP67]

spectrum allows one to extract statistically significant factors [JM03]. We have also considered

the case, when these assets are initially spatially correlated with each other i.e., the case when

off–diagonal terms in true correlation matrix are significantly different from zero. Then, relating

via relation between true moments of the spectrum and that of empirical estimator we have

immediately recovered the true correlation structure buried below the band edge, as expected

[BJ04]. In our approximation scheme it is commonly assumed, that underlying random variables

for the correlations matrix are stationary i.e., its general properties (eg. moments) do not change

over time. We have focused on the analysis of eigenvalues spectrum over time. For that we have

used ”sliding window” procedure to recover time series for each eigenvalues. By performing

simple unit root tests we have shown, that indeed most of the spectrum behave stationary i.e.,

it is comparable to white noise, while the eigenvalues close to the true correlations structure are

relatively far from stationarity.
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That which is static and repetitive is boring.

That which is dynamic and random is confus-

ing. In between lies art.

John Locke 4
Lagged Correlations from VARMA(p,q)

Finite order vector autoregressive moving average models (VARMA) motivated by Wold de-

composition theorem [Wol38] as an appriopriate multivariate setting for studying the dynamics

of stationary time series. Vector autoregressive (VAR) models are cornerstones in contem-

porary macroeconomics, being a part of an approach called the “dynamic stochastic general

equilibrium”(DSGE), which is superseding traditional large–scale macroeconometric forecasting

methodologies [Sim80]. The motivation behind them is based on the assertion that more recent

values of a variable are more likely to contain useful information about its future movements

than the older ones. On the other hand, a standard tool in multivariate time series analysis is

vector moving average (VMA) models, which is really a linear regression of the present value of

the time series w.r.t. the past values of a white noise. A broader class of stochastic processes

used in macroeconomics comprises both these kinds together in the form of vector autoregressive

moving average (VARMA) models. These methodologies can capture certain spatial and tem-

poral structures of multidimensional variables which are often neglected in practice; including

them not only results in more accurate estimation, but also leads to models which are more

interpretable. The contents of this chapter were first published in [BJNS10]. The last section -

conclusions is however considerably expanded.

4.1 Doubly Correlated Wishart Ensembles and Free Random Variables

VARMA models are constructed from a number of univariate ARMA (Box–Jenkins; see for

example [BJR94]) processes, typically coupled with each other. Here however we investigate

only a significantly simplified circumstance when there is no coupling between the many ARMA

components (in fact we consider N copies of the same ARMA process). One may argue that this

is too far fetched and will be of no use in describing an economic reality. However, we will treat

it as a “zeroth–order hypothesis,” analogously to the idea of [LCBP99, PGR+99] in finance,

namely that the case with no cross–covariances is considered theoretically, and subsequently

compared to some real–world data modeled by a VARMA process. One may then suppose, that

any discrepancy between the two will reflect nontrivial cross–covariances present in the system,

thus permitting their investigation.

4.1.1 Doubly Correlated Wishart Ensembles

A challenging and yet increasingly important problem is the estimation of large covariance ma-

trices generated by these stationary VARMA(q1, q2) processes, since high dimensionality of the

data as compared to the sample size is quite common in many statistical problems (the “dimen-
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sionality curse”). Therefore, an appropriate “noise cleaning” procedure has to be implemented,

and random matrix theory (RMT) provides a natural and efficient outfit for doing that. In

particular, the mean spectral densities (a.k.a. “limiting spectral distributions,” LSD) of the

Pearson estimators of the cross–covariances for the VMA(1) and VAR(1) models, in the relevant

high–dimensionality sector and under the full decoupling, have been derived in [JWMH09] by

applying the framework proposed by [BS06]. The main aim of this chapter is to show how

these calculations can be considerably simplified by resorting to a mathematical concept of the

free random variables (FRV) calculus [DNV92, Spe94], succinctly introduced in sec. 4.1. Our

general FRV formula [BJJ+09] allows not only to rediscover, which much less strain, the two

fourth–order polynomial equations obtained in [JWMH09] in the VMA(1) and VAR(1) cases,

but also to derive a sixth–order equation (B.6) which produces the mean spectral density for

a more involved VARMA(1, 1) model. The results are verified by numerical simulations, which

show a perfect agreement. Also, practical relevance of VARMA(1, 1) is reinforced by fitting the

density retrieved from (B.6) to real macroeconomic data. This is all done in section. 4.2.

VARMA models vs.Correlated Gaussian Random Variables

VARMA(q1, q2) stochastic processes, fall within quite a general set–up encountered in many

areas of science where a probabilistic nature of multiple degrees of freedom evolving in time is

relevant, for example, multivariate time series analysis in finance, applied macroeconometrics

and engineering. Namely consider N time–dependent random variables which are measured at

T consecutive time moments (separated by some time interval δt); let Yia be the value od the

i–th (i = 1, . . . , N) random number at the a–th time moment (a = 1, . . . , T ); together, they

make up a rectangular N × T matrix Y. In what usually would be the first approximation,

each Yia is supposed to be drawn from a Gaussian probability distribution. We will also as-

sume that they have mean values zero, 〈Yia〉 = 0. These degrees of freedom may in principle

display mutual correlations. A set of correlated zero–mean Gaussian numbers is fully character-

ized by the two–point covariance function, Cia,jb ≡ 〈YiaYjb〉 if the underlying stochastic process

generating these numbers is stationary. Linear stochastic processes, including VARMA(q1, q2),

belong to this category. We will restrict our attention to an even narrower class where the

cross–correlations between different variables and the auto–correlations between different time

moments are factorized, i.e.,

〈YiaYjb〉 = CijAab. (4.1)

In this setting, the inter–variable covariances do not change in time (and are described by

an N × N cross–covariance matrix C), and also the temporal covariances are identical for all

the numbers (and are included in a T × T auto–covariance matrix A; both these matrices

are symmetric and positive–definite). The Gaussian probability measure with this structure of

covariances is known from textbooks,

Pc.G.(Y)DY =
1

Nc.G.
exp


−1

2

N∑

i,j=1

T∑

a,b=1

Yia
[
C−1

]
ij
Yjb
[
A−1

]
ba


DY =

=
1

Nc.G.
exp

(
−1

2
TrYTC−1YA−1

)
DY, (4.2)

where the normalization constant Nc.G. = (2π)NT/2(DetC)T/2(DetA)N/2, and the integration

measure DY ≡∏N
i=1

∏T
a=1 dYia, while the letters “c.G.” stand for “correlated Gaussian.” A
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standard way to approach correlated Gaussian random numbers is to recall that they can always

be decomposed as linear combinations of uncorrelated Gaussian degrees of freedom

Y =
√
CỸ

√
A, which yields PG.(Ỹ)DỸ =

1

NG.
exp

(
−1

2
TrỸTỸ

)
DỸ, (4.3)

where the square roots of the covariance matrices, necessary to facilitate the transition, exist

due to the positive–definiteness of C and A; the new normalization reads NG. = (2π)NT/2.

Estimating Equal–Time Cross–Covariances

An essential problem in multivariate analysis is to determine (estimate) the covariance matrices

C and A from given N time series of length T of the realizations of our random variables Yia.

For simplicity, we do not distinguish in notation between random numbers, i.e., the population,

and their realizations in actual experiments, i.e., the sample. Since the realized cross–covariance

between degrees i and j at the same time a is YiaYja, the simplest method to estimate the today’s

cross–covariance cij is to compute the time average,

cij ≡
1

T

T∑

a=1

YiaYja, i.e., c =
1

T
YYT =

1

T

√
CỸAỸT

√
C. (4.4)

This is usually named the “Pearson estimator”, up to the prefactor which depending on the

context is 1/(T − 1) or 1/T . Other estimators might be introduced, such as between distinct

degrees of freedom at separate time moments (“time–delayed estimators”), or with certain de-

creasing weights given to older measurements to reflect their growing obsolescence (“weighted

estimators”), but we will not investigate them here. Furthermore, in the last equality in (4.4),

we cast c through the uncorrelated Gaussian numbers contained in Ỹ, the price to pay for this

being that the covariance matrices now enter into the expression for c, making it more compli-

cated; this will be the form used hereafter. The random matrix c is called a “doubly correlated

Wishart ensemble” [Wis28]. Let us also mention that the auto–covariance matrix A can be

estimated through

a ≡ (1/N)YTY

However, it is verified that this object carries identical information to the one contained in c

(it is “dual” to c), and therefore may safely be discarded. Indeed, these two estimators have

same non–zero eigenvalues (modulo an overall rescaling by r), and the larger one has |T − N |
additional zero modes.

4.1.2 The Multiplication Algorithm in terms of FRV

We have presented the original mathematical formulations [DNV92, Spe94] in chapter 2 in a

slightly different language, namely in terms of S–transforms and R–transforms. For the purposes

of this chapter -(multiplication of random matrices) we will employ slightly different definitions,

as they serve better than the original ones.

The M–Transform and the Spectral Density

As disclosed in chapter 2 to explore the eigenvalue density of a (real symmetric N ×N) random

matrix H it is convenient to work with either “Green’s function” (or the “resolvent”) or the
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“M–transform” of H

GH(z) ≡ 1

N

〈
Tr

1

z1N −H

〉
, or MH(z) ≡ zGH(z) − 1, (4.5)

The latter is also called the “moments’ generating function,” since if the “moments”

MH,n ≡ (1/N)〈TrHn〉

of H exist, it can be expanded into a power series around z → ∞ as MH(z) =
∑

n≥1MH,n/z
n.

1

The N–Transform and Free Random Variables

The doubly correlated Wishart ensemble c (4.4) may be viewed as a product of several ran-

dom and non–random matrices. The general problem of multiplying random matrices seems

formidable. In classical probability theory, it can be effectively handled in the special situation

when the random terms are independent: then, the exponential map reduces it to the addition

problem of independent random numbers, solved by considering the logarithm of the character-

istic functions of the respective PDFs, which proves to be additive. In matrix probability theory,

a crucial insight came from D. Voiculescu and coworkers and R. Speicher [DNV92, Spe94], who

showed how to parallel the commutative construction in the noncommutative world. It starts

with the notion of “freeness,” which basically comprises probabilistic independence together

with a lack of any directional correlation between two random matrices. This nontrivial new

property happens to be the right extension of classical independence, as it allows for an efficient

algorithm of multiplying free random variables (FRV), which we state below:

Step 1: Suppose we have two random matrices, H1 and H2, mutually free. Their spectral

properties are best wrought into the M–transforms (4.5), MH1(z) and MH2(z).

Step 2: The critical maneuver is to turn attention to the functional inverses of these M–

transforms, the so–called “N–transforms,”

MH (NH(z)) = NH (MH(z)) = z. (4.6)

Step 3: The N–transforms submit to a very straightforward rule upon multiplying free random

matrices (the “FRV multiplication law”),

NH1H2(z) =
z

1 + z
NH1(z)NH2(z), for free H1, H2. (4.7)

Step 4: Finally, it remains to functionally invert the resulting N–transform

NH1H2(z) to gain the M–transform of the product, MH1H2(z), and consequently, all the

spectral properties via formula (2.3).

With such a simple prescription (relying on the choice of the M–transform as the carrier of

the mean spectral information, and the construction of its functional inverse, the N–transform,

which essentially multiplies under taking the free product) one resolves the multiplication prob-

lem for free random noncommutative objects.

1It should however be underlined that even for probability measures disallowing such an expansion (heavy–

tailed distributions), the quantities (4.5) still manage to entirely capture the spectral properties of H; hence the

name “M–transform” more appropriate, in addition to being more compact.
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Doubly Correlated Wishart Ensembles from Free Random Variables

The innate potential of the FRV multiplication algorithm (4.7) is surely revealed when inspecting

the doubly correlated Wishart random matrix(4.4).

c = (1/T )
√
CỸAỸT

√
C

This has been done in detail in [BJJ+09], so we will only accentuate the main results here,

referring the reader to the original paper for a thorough explanation. The idea is that one uses

twice the cyclic property of the trace (which permits cyclic shifts in the order of the terms),

and twice the FRV multiplication law (4.7) (to break the N–transforms of products of matrices

down to their constituents), in order to reduce the problem to solving the uncorrelated Wishart

ensemble (1/T )ỸTỸ. This last model is further simplified, again by the cyclic property and the

FRV multiplication rule applied once, to the standard GOE random matrix squared (and the

projector P ≡ diag(1N ,0T−N ), designed to chip the rectangle Ỹ off the square GOE), whose

properties are firmly established. Let us sketch the derivation,

Nc(z)

cyclic
↓
= N 1

T
ỸAỸTC

(z)
FRV
↓
=

z

1 + z
N 1

T
ỸAỸT(z)NC(z)

cyclic
↓
=

cyclic
↓
=

z

1 + z
N 1

T
ỸTỸA

(rz)NC(z)
FRV
↓
=

z

1 + z

rz

1 + rz
N 1

T
ỸTỸ

(rz)NA(rz)NC(z) =

= rzNA(rz)NC(z). (4.8)

This is the basic formula. Since the spectral properties of c are given by its M–transform,

M ≡Mc(z), it is more pedagogical to recast (4.8) as an equation for the unknown M ,

z = rMNA(rM)NC(M). (4.9)

It provides a means for computing the mean spectral density of a doubly correlated Wishart

random matrix once the “true” covariance matrices C and A are given. In this study, only

a particular instance of this fundamental formula is applied, namely with an arbitrary auto–

covariance matrix A, but with trivial cross–covariances, C = 1N . Using that N1K
(z) = 1 + 1/z,

equation (4.9) thins out to

rM = MA

(
z

r(1 +M)

)
, (4.10)

which will be strongly exploited below. Let us mention that these equalities (4.9), (4.10) have

been derived through other, more tedious, techniques (the planar Feynman–diagrammatic ex-

pansion, the replica trick) in [BGJJ04, BJ04, BJW05b, BGJW06, BJW05a].

4.2 VARMA from Free Random Variables

In what follows, we will assume that the VMA(q), VAR(q), or VARMA(q1, q2) stochastic pro-

cesses are covariance (weak) stationary; for details, we refer to [L0̈5]. It implies certain restric-

tions on their parameters, but we will not bother with this issue in the current work. Another

consequence is that the processes display some interesting features, such as invertibility. For all

this, we must in particular take both N and T large from the start, with their ratio r ≡ N/T

fixed (1.13). More precisely, we stretch the range of the a–index from minus to plus infinity.
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This means that all the finite–size effects (appearing at the ends of the time series) are readily

disregarded. In particular, there is no need to care about initial conditions for the processes,

and all the recurrence relations are assumed to continue to the infinite past.

4.2.1 The VMA(q) Process

The Definition of VMA(q)

We consider a situation when N stochastic variables evolve according to identical independent

VMA(q) (vector moving average) processes, which we sample over a time span of T moments.

This is a simple generalization of the standard univariate weak–stationary moving average

MA(q). In such a setting, the value Yia of the i–th (i = 1, . . . , N) random variable at time

moment a (a = 1, . . . , T ) can be expressed as

Yia =

q∑

α=0

aαǫi,a−α. (4.11)

Here all the ǫia’s are independent identically distributed standard (mean zero, variance one)

Gaussian random numbers (white noise), 〈ǫiaǫjb〉 = δijδab. The aα’s are some (q + 1) real con-

stants; importantly, they do not depend on the index i, which reflects the fact that the processes

are identical and independent (no “spatial” covariances among the variables). The rank q of the

process is a positive integer.

The Auto–Covariance Matrix

In order to handle such a process (4.11), notice that the Yia’s, being linear combinations of

uncorrelated Gaussian numbers, must also be Gaussian random variables, albeit displaying

some correlations. Therefore, to fully characterize these variables, it is sufficient to calculate

their two–point covariance function; this is straightforwardly done (see appendix B.1 for details),

〈YiaYjb〉 = δijA
(1)
ab , (4.12)

where
A

(1)
ab = κ

(1)
0 δab +

∑q
d=1 κ

(1)
d (δa,b−d + δa,b+d) ,

with κ
(1)
d ≡∑q−d

α=0 aαaα+d, d = 0, 1, . . . , q.
(4.13)

In other words, the cross–covariance matrix is trivial, C = 1N (no correlations between different

variables), while the auto–covariance matrix A(1), responsible for temporal correlations, can

be called “(2q + 1)–diagonal.” In the course of this article, we will use several different auto–

covariance matrices, and for brevity, we decide to label them with superscripts; their definitions

are all collected in appendix B.1.1. For example, in the simplest case of VMA(1), it is tri–

diagonal,

A
(1)
ab =

(
a20 + a21

)
δab + a0a1 (δa,b−1 + δa,b+1) . (4.14)

The Fourier Transform and the M–Transform of the Auto–Covariance Matrix

Such an infinite matrix (4.13) is translationally invariant (as announced, it is one of the im-

plications of the weak stationarity), i.e., the value of any of its entries depends only on the
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distance between its indices, A
(1)
ab = A(1)(a− b); specifically, A(1)(±d) = κ

(1)
d , for d = 0, 1, . . . , q,

and A(1)(|d| > q) = 0. Hence, it is convenient to rewrite this matrix in the Fourier space,

Â(1)(p) ≡
∑

d∈Z
eidpA(1)(d) = κ

(1)
0 + 2

q∑

d=1

κ
(1)
d cos(dp). (4.15)

In this representation, the M–transform of A(1) is readily obtained [BJJ+09],

M
A(1)(z) =

1

2π

∫ π

−π
dp

Â(1)(p)

z − Â(1)(p)
. (4.16)

This integral can be evaluated by the method of residues for any value of q, which we do in

appendix B.1.2, where also we print the general result (B.3). In particular, for q = 1,

M
A(1)(z) =

z√
z − (a0 + a1)2

√
z − (a0 − a1)

2
− 1, (4.17)

where the square roots are principal.

The Pearson Estimator of the Covariances from Free Random Variables

We will be interested in investigating the spectral properties of the Pearson estimator(4.4)

c = (1/T )YYT = (1/T )ỸA(1)ỸT. TheM–transform of this correlated Wishart random matrix,

M ≡Mc(z), can be retrieved from equation (4.10). We could write it for any q using (B.3),

but we will restrict ourselves only to q = 1, in which case the substitution of (4.17) leads to a

fourth–order polynomial (Ferrari) equation for the unknown M ,

r4
(
a20 − a21

)2
M4 + 2r3

(
−
(
a20 + a21

)
z +

(
a20 − a21

)2
(r + 1)

)
M3+

+r2
(
z2 − 2

(
a20 + a21

)
(r + 2)z +

(
a20 − a21

)2 (
r2 + 4r + 1

))
M2+

+2r
(
z2 −

(
a20 + a21

)
(2r + 1)z +

(
a20 − a21

)2
r(r + 1)

)
M+

+ r
(
−2
(
a20 + a21

)
z +

(
a20 − a21

)2
r
)

= 0. (4.18)

The FRV technique allowed us therefore to find this equation in a matter of a few lines of a

simple algebraic computation. It has already been derived in [JWMH09], and (4.18) may be

verified to coincide with the version given in that paper. In [JWMH09], the pertinent equation

is printed before (A.6), and to compare the two, one needs to change their variables into ours

according to y → 1/r, x → z/r, and m→ −r(1 +M)/z. The last equality means that m and

m of [JWMH09] correspond in our language to the Green’s functions −rGc(z) and −Ga(z/r),

respectively, where a = (1/N)YTY is the Pearson estimator dual to c. As mentioned, a quick

extension to the case of arbitrary q is possible, however the resulting equations for M will

be significantly more complicated; for instance, for q = 2, a lengthy ninth–order polynomial

equation is discovered.
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4.2.2 The VAR(q) Process

The Definition of VAR(q)

A set–up of N identical and independent VAR(q) (vector auto–regressive) processes is somewhat

akin to (4.11), i.e., we consider N decoupled copies of a standard univariate AR(q) process,

Yia −
q∑

β=1

bβYi,a−β = a0ǫia. (4.19)

It is again described by the demeaned and standardized Gaussian white noise ǫia (which triggers

the stochastic evolution), as well as (q+1) real constants a0, bβ, with β = 1, . . . , q. As announced

before, the time stretches to the past infinity, so no initial condition is necessary. Although at

first sight (4.19) may appear to be a more involved recurrence relation for the Yia’s, it is actually

easily reduced to the VMA(q) case: It remains to remark that if one exchanges the Yia’s with the

ǫia’s, one precisely arrives at the VMA(q) process with the constants a
(2)
0 ≡ 1/a0, a

(2)
β ≡ −bβ/a0,

β = 1, . . . , q. In other words, the auto–covariance matrix A(3) of the VAR(q) process (4.19) is

simply the inverse of the auto–covariance matrix A(2) of the corresponding VMA(q) process

with the described modification of the parameters,

A(3) =
(
A(2)

)−1
. (4.20)

This inverse exists thanks to the weak stationarity supposition.

The Fourier Transform and the M–Transform of the Auto–Covariance Matrix

The Fourier transform of the auto–covariance matrix A(3) of VAR(q) is therefore a (number)

inverse of its counterpart for VMA(q) with its parameters appropriately changed,

Â(3)(p) =
1

Â(2)(p)
=

1

κ
(2)
0 + 2

∑q
d=1 κ

(2)
d cos(dp)

, (4.21)

where

κ
(2)
d =

1

a20

q−d∑

α=0

bαbα+d, d = 0, 1, . . . , q, (4.22)

and where we define b0 ≡ −1. In order to find the M–transform of the inverse matrix, A(3) =

(A(2))−1, one employs a general result, true for any (real symmetric) random matrix H, and

obtainable through an easy algebra,

MH−1(z) = −MH(1/z) − 1. (4.23)

Since the quantity M
A(2)(z) is known for any q (B.3), hence is M

A(3)(z) via (4.23), but we will

not print it explicitly. Let us just give it for q = 1, in which case (4.23) and (4.17) yield

M
A(3)(z) = − 1√

1 − (1−b1)2
a20

z

√
1 − (1+b1)

2

a20
z

. (4.24)
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The Auto–Covariance Matrix

Despite being somewhat outside of the main line of thought of this article, an interesting question

would be to search for an explicit expression for the auto–covariance matrix A(3) from its Fourier

transform (4.21),

A(3)(d) =
1

2π

∫ π

−π
dpe−idp 1

κ
(2)
0 + 2

∑q
l=1 κ

(2)
l cos(lp)

, (4.25)

where we exploited the fact that A(3) must be translationally invariant, A
(3)
ab = A(3)(a − b).

This computation would shed light on the structure of temporal correlations present in a VAR

setting. This integral is evaluated by the method of residues in a very similar manner to the one

shown in appendix B.1.2, and we do this in appendix B.2. We discover that the auto–covariance

matrix is a sum of q exponential decays,

A(3)(d) =

q∑

γ=1

Cγe−|d|/Tγ , (4.26)

where Cγ are constants, and Tγ are the characteristic times (B.5), γ = 1, . . . , q; these constituents

are given explicitly in (B.4). This is a well–known fact, nevertheless we wanted to establish it

again within our approach. For example, for q = 1, the auto–covariance matrix of VAR(1) is

one exponential decay,

A(3)(d) =
a20

1 − b21
b
|d|
1 , (4.27)

where we assumed for simplicity 0 < b1 < 1 (the formula can be easily extended to all values of

b1).

The Pearson Estimator of the Covariances from Free Random Variables

Having found an expression for the M–transform of the auto–covariance matrix A(3) of a VAR(q)

(4.23), (B.3), we may proceed to investigate the equation (4.10) for the M–transform M ≡Mc(z)

of the correlated Wishart random matrix c = (1/T )YYT = (1/T )ỸA(3)ỸT (4.4). We will do

this explicitly only for q = 1, when (4.24) leads to a fourth–order (Ferrari) polynomial equation

for the unknown M ,

a40r
2M4 + 2a20r

(
−
(
1 + b21

)
z + a20r

)
M3+

+
((

1 − b21
)2
z2 − 2a20r

(
1 + b21

)
z +

(
r2 − 1

)
a40

)
M2 − 2a40M − a40 = 0. (4.28)

This equation has been derived by another method in [JWMH09], and our result confirms their

equation (A.8), with the change in notation, y → 1/r, x→ z/r, z → rM .

4.2.3 The VARMA(q1, q2) Process

The Definition of VARMA(q1, q2)

The two types of processes which we elaborated on above, VAR(q1) and VMA(q2), can be

combined into one stochastic process called VARMA(q1, q2),

Yia −
q1∑

β=1

bβYi,a−β =

q2∑

α=0

aαǫi,a−α. (4.29)
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Now it is a straightforward and well–known observation (which can be verified by a direct

calculation) that the auto–covariance matrix A(5) of this process is simply the product (in any

order) of the auto–covariance matrices of the VAR and VMA pieces; more precisely,

A(5) =
(
A(4)

)−1
A(1), (4.30)

where A(1) corresponds to the generic VMA(q2) model (4.13), while A(4) denotes the auto–

covariance matrix of VMA(q1) with a slightly different modification of the parameters compared

to the previously used, namely a
(4)
0 ≡ 1, a

(4)
β ≡ −bβ, for β = 1, . . . , q1. We have thus already

made use here of the fact that the auto–covariance matrix of a VAR process is the inverse of the

auto–covariance matrix of a certain corresponding VMA process (4.20), but the new change in

parameters necessary in moving from VAR to VMA has effectively a0 = 1 w.r.t. what we had

before (4.20); it is understandable: this “missing” a0 is now included in the matrix of the other

VMA(q2) process.

The Fourier Transform and the M–Transform of the Auto–Covariance Matrix

The Fourier transform of the auto–covariance matrix A(5) of VARMA(q1, q2) (4.30) is simply

the product of the respective Fourier transforms (4.15) and (4.21),

Â(5)(p) =
κ
(1)
0 + 2

∑q2
d2=1 κ

(1)
d2

cos (d2p)

κ
(4)
0 + 2

∑q1
d1=1 κ

(4)
d1

cos (d1p)
, (4.31)

where

κ
(4)
d1

=

q1−d1∑

α1=0

bα1bα1+d1 , κ
(1)
d2

=

q2−d2∑

α2=0

aα2aα2+d2 ,

d1 = 0, 1, . . . , q1, d2 = 0, 1, . . . , q2, (4.32)

where we recall b0 = −1. For instance, for VARMA(1, 1) (it is described by three constants, a0,

a1, b1), one explicitly has

Â(5)(p) =
a20 + a21 + 2a0a1 cos p

1 + b21 − 2b1 cos p
. (4.33)

The M–transform of A(5) can consequently be derived from the general formula (4.16). We will

evaluate here the pertinent integral only for the simplest VARMA(1, 1) process, even though an

arbitrary case may be handled by the technique of residues,

M
A(5)(z) = 1

a0a1+b1z
(−a0a1 +

+
z(a0a1+(a20+a21)b1+a0a1b21)√

(1−b1)2z−(a0+a1)
2
√

(1+b1)
2z−(a0−a1)2

)
.

(4.34)

The Auto–Covariance Matrix

One might again attempt to track the structure of temporal covariances in a VARMA process.

This can be done either by the inverse Fourier transform of (4.31), or through a direct compu-

tation based on the recurrence relation (4.29) (importantly, adhering to the assumption that it

stretches to the past infinity). Let us print the result just for VARMA(1, 1),

A(5)(d) = −a0a1
b1

δd,0 +
(a1 + a0b1) (a0 + a1b1)

b1
(
1 − b21

) b
|d|
1 , (4.35)
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Figure 4.1: The mean spectral density ρc(λ) of the Pearson estimator c of the cross–covariances

in the VARMA(1, 1) process computed numerically from the sixth–order polynomial equation

(B.6), for various values of the process’ parameters. The scale of these parameters is determined

by choosing a0 = 1 everywhere. Recall that the theoretical formula (B.6) is valid in the thermo-

dynamical limit (1.13) of N,T → ∞, with r = N/T kept finite.

UP LEFT: We set the remaining VARMA parameters to a1 = 0.3, b1 = 0.2, while the rectangu-

larity ratio takes the values r = 0.5 (the purple line), 0.1 (red), 0.02 (magenta), 0.004 (pink);

each one is 5 times smaller than the preceding one. We observe how the graphs become increas-

ingly peaked (narrower and taller) around λ = 1 as r decreases, which reflects the movement of

the estimator c toward its underlying value C = 1N .

UP RIGHT: We fix r = 0.25 and consider the two VARMA parameters equal to each other, with

the values a1 = b1 = 0.6 (purple), 0.4 (red), 0.2 (magenta), 0.01 (pink).

DOWN LEFT: We hold r = 0.25 and b1 = 0.2, and modify a1 = 0.6 (purple), 0.4 (red), 0.2

(magenta), 0.0 (pink); for this last value, the VARMA(1, 1) model reduces to VAR(1).

DOWN RIGHT: Similarly, but this time we assign r = 0.25 and a1 = 0.2, while changing b1 = 0.6

(purple), 0.4 (red), 0.2 (magenta), 0.0 (pink); this last value corresponds to VMA(1).

where for simplicity 0 < b1 < 1. This is an exponential decay, with the characteristic time of the

VAR piece, with an additional term on the diagonal.

The Pearson Estimator of the Covariances from Free Random Variables

Expression (4.34), along with the fundamental FRV formula (4.10), allow us to write the equa-

tion satisfied by the M–transform M ≡Mc(z) of the Pearson estimator c = (1/T )YYT =

(1/T )ỸA(5)ỸT (4.4) of the cross–covariances in the VARMA(1, 1) process; it happens to be

polynomial of order six, and we print it (B.6) in appendix B.2.1. It may be solved numerically,

a proper solution chosen (the one which leads to a sensible density: real, positive–definite, nor-

malized to unity), and finally, the mean spectral density ρc(λ) derived from (2.3). We show the

shapes of this density for a variety of the values of the parameters r, a0, a1, b1 in fig. 4.1. More-

over, in order to test the result (B.6), and more broadly, to further establish our FRV framework
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Figure 4.2: Monte Carlo simulations of the mean spectral density ρc(λ) (the green plots) com-

pared to the theoretical result obtained numerically from the sixth–order equation (B.6) (the

dashed red lines). The conformity is nearly perfect. We generate the matrices Y of sizes N = 50,

T = 200 (i.e., r = 0.25) from the VARMA(1, 1) process with the parameters a0 = 1, a1 = 0.3,

b1 = 0.2. The Monte Carlo simulation is repeated 1, 000 (LEFT) or 10, 000 (RIGHT) times; in

this latter case, a significant improvement in the quality of the agreement is seen. One notices

finite–size effects at the edges of the spectrum (“leaking out” of eigenvalues): in the numerical

simulations, N and T are obviously finite, while equation (B.6) is legitimate in the thermodynam-

ical limit (1.13) only, hence the small discrepancies; by enlarging the chosen dimensions 50× 200

one would diminish this fallout.

in the guise of formula (4.10), the theoretical form of the density is compared to Monte Carlo

simulations in fig. 4.2; they remain in excellent concord. These are the main findings of this

article.

4.2.4 Example from Macroeconomic Data

We apply the method described above to Polish macroeconomic data. The motivation behind

is twofold. First of all economic theory rarely has any sharp implications about the short-run

dynamics of economic variables (so called scarcity of economic time series). Secondly in these

very rare situations, where theoretical models include a dynamic adjustment equation, one has

to work hard to exclude the moving average terms from appearing in the implied dynamics of

the variables of interest.

An Application to Macroeconomic Data

Let us pursue further the above analysis of the VARMA(1, 1) model on a concrete example of real

data. Economists naturally think of comovement in economic time series as arising largely from

relatively few key economic factors like productivity, monetary policy and so forth. Classical way

of representing this notion is in terms of statistical factor model, for which we allow the limited

spatio–temporal dependence expressed via our VARMA(1, 1) model. Two empirical questions

are addressed in this section:

1. How the empirical data behave? Does the eigenvalues represent similar structure to fi-

nancial market data? In other words, does the macroeconomic data represent collective

response to the shock expressed in term of VARMA(1, 1) model or are there any apparent

outliers.

2. Should then the forecasts be constructed using small factor models or are there any non-

62



4.2. VARMA FROM FREE RANDOM VARIABLES

zero, but perhaps small coefficients. If so, then the large scale model framework is appro-

priate.

We investigate N = 52 various macroeconomic time series for Poland of length T = 118. They

have been selected on a monthly basis in such a manner so as to cover most of the main sectors of

the Polish economy, i.e., the money market, domestic and foreign trade, labor market, balance

of payments, inflation in different sectors, etc. (their full list is attached in the appendix C.1).

The time series were taken directly from the Reuters c©3000Xtra database. Although longer

time series for Poland are accessible, we restrict ourselves to the last ten years in order to avoid

the effects of structural change. We assume that each economic variable is affected by the same

shock (i.e., the “global market shock”) of an ARMA(1, 1) type with unknown parameters, which

we are to estimate; the AR part implies that the shock dies quite quickly, while the MA part

is responsible for the persistency of the shock. To preserve the proper VARMA representation,

the original time series were transformed using one of the following methods:

• First, many of the series are seasonally adjusted by the reporting agency.

• Second, the data were transformed to eliminate trends and obvious nonstationarities. For

real variables, this typically involved transformation to growth rates (the first difference

of logarithms), and for prices this involved transformation to changes in growth rates (the

second difference of logarithms).

• Interest rates were transformed to first differences.

• Finally, some of the series contained a few large outliers associated with events like labor

disputes, other extreme events, or with data problems of various sorts. These outliers were

identified as observations that differed from the sample median by more than 6 times the

sample interquartile range, and these observations were dropped from the analysis.

In fig. 4.3 we plot these time series (LEFT), and we make (RIGHT) a histogram of the mean

spectral density ρc(λ), which we compare to a theoretical prediction from our FRV equation

(B.6) with the estimated values of the parameters a0, a1, b1. We have also plotted the standard

Marčenko-Pastur (Bai-Silverstein) [SB95, MP67] as of eq.(2.50)

Discussion

The result is important for forecast design, but more importantly, it provides information about

the way macroeconomic variable interact. The empirical data as compared to the spectral

density given by eq.(2.50) suggest that a lot of eigenvalues, similarly to stock market data

express marginal predictive content. One can suppose, that each of the economic time series

contains important information about the collective movements, that cannot be gleaned from

other time series. Alternatively, if we suppose that macro variables interact in the simplest low-

dimensional way suggested by VARMA(1, 1) model,the conformity is nearly ideal (modulo the

finite–size effects at the right edge of the spectrum). The economic time series express common

response to the ”global shock” process i.e., each eigenvalue now contains useful information

about the values of the factors, that affect comovement and hence useful information about

the future behavior of economy. Thus, while many more eigenvalues appear to be useful, the

predictive component is apparently common to many series in a way suggested by our simplified

VARMA(1, 1) model.
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Figure 4.3: LEFT: The original N = 52 time series of length T = 118; they are non–stationary,

with the seasonal components.

RIGHT: The histogram of the mean spectral density ρc(λ) (the solid black line) compared to the

theoretical result obtained by numerically solving the sixth–order equation (B.6) (the solid orange

line) and the ”Wishart-fit” (purple line).

4.3 Conclusions

In this chapter we have again shown, how powerful and flexible the Free Random Variables

calculus can be.

• The FRV calculus is ideally suited for multidimensional time series problems (e.g. multi-

variate stochastic processes of the VARMA type), provided the dimensions of the underly-

ing matrices are large. The operational procedures are simple, algebraic and transparent.

• The structure of the final formula which relates the moments’ generating function of the

population covariance and the sample covariance allows one to easily derive eigenvalue

density of the sample covariance.

• We in detail illustrated how this procedure works for VARMA(1, 1), confronted the theo-

retical prediction with numerical data obtained by Monte Carlo simulations of the VARMA

process and observed a perfect agreement.

• We have also pursued the above analysis on a real - complex systems example - i.e. Econ-

omy of Poland, for which we have assumed, that each of the time series under study is

generated by the same type of univariate VARMA(q1, q2) process. A stunning fact, is that

again the flawless correspondence between theoretical spectral density and empirical data

is found.

• We are in the position, where we cannot reject the hypothesis, there are indeed no autocor-

relations among macroeconomic time series. One may also argue, that all these time series

are closely bounded with the process, which we will identify as ”global shock-process”i.e.,

all time series represent the global response complex system under study, to a distortion

and its adjustment to equilibrium state. This process is of univariate VARMA(q1, q2) i.e.,

ARMA(1, 1) type with hidden structure, that has to be revealed based on historical time

series data.
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• This crude empirical study allows potentially for variety of extensions. At least two are

possible. First, the approach used here identifies the underlying factors only up to a linear

transformation, making economic interpretation of the factors themselves difficult. It

would be interesting to be able to relate the factors more directly to fundamental economic

forces in the spirit of DSGE models. Secondly, our theoretical result covers only stationary

models, but say nothing about integrated, cointegrated and cotrending variables. We

know that common long-run factors are important for describing macroeconomic data,

and theory needs to be developed to handle these features in a large model framework.
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5
Temporal Correlations from Singular Value

Spectra

In order to investigate the temporal properties of the correlations between two data sets one

is often interested not only in the analysis of it’s static properties given by Pearson estimator

(1.6), CX = 1
TXXT but more likely how this features behave over a certain period of time. We

have already seen in previous chapters, that the primary way to describe cross–correlations in a

Gaussian framework is through the two–point covariance function,

Cia,jb ≡ 〈XiaXjb〉 . (5.1)

Where Xia ≡ xia−〈xia〉 are mean adjusted data, that can be further collected into a rectangular

N × T matrix R. The average 〈. . .〉 is understood as taken according to some probability

distribution whose functional shape is stable over time, but whose parameters may be time–

dependent. So far (see. chapter 3 and chapter 4) we have used a very simplified form of

the two–point covariance function(5.1), namely with cross–covariances and auto–covariances

factorized and non–random,

Cia,jb = CijAab (5.2)

(we have assembled coefficients into an N × N cross–covariance matrix C and a T × T auto–

covariance matrix A; both are taken symmetric and positive–definite). The matrix of “temporal

structure” A is a way to model two temporal effects: the (weak, short–memory) lagged corre-

lations between the returns (see chapter 4), as well as the (stronger, long–memory) lagged

correlations between the volatilities (weighting schemes, eg.EWMA [PPK04]; see chapter 3 for

details). On the other hand, the matrix of spatial correlations C models the hidden factors

affecting the variables, thereby reflecting the structure of mutual dependencies of the complex

system(see chapter 3). The salient feature assumed so far, these two matrices were decoupled

and the assumption about the Gaussianity of random variables provides crude approximation,

that variances of all random variables always exist. This was sufficient to fully characterize

the dependencies of the Xia’s. However, in more realistic circumstances (i.e., building efficient

multivariate models,which help understanding the relation between a large number of possible

causes and resulting effects) one is more interested in the situations, where the spatio–temporal

structure does not factorize. Cross-correlations technique (sometimes alluded as ”time–lagged

correlations technique”) is most likely meets these critical requirements.

Cia,ja+∆(∆) =
1

T

T∑

a=1

XiaXja+∆ (5.3)
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The precise answer boils down to how to separate the spectrum of such a covariance matrix in

the large N , large T limit (i.e., thermodynamical limit), when one can make use of the power

of FRV calculus (see [TB07] for a solution based on the circular symmetry of the problem and

Gaussian approximation). In this chapter we will very closely follow the method presented in

[BLMP07], where the authors suggested to compare the singular value spectrum of the empirical

rectangular M×N correlation matrix with a benchmark obtained using Random Matrix Theory

results (c.f. [ERR05]), assuming there are no correlation between the variables. For T → ∞
at N,M fixed, all singular values should be zero, but this will not be true if T is finite. The

singular value spectrum of this benchmark problem can in fact be computed exactly in the

limit where N,M,T → ∞, when the ratios m = M/T and n = N/T fixed. Since the original

description is veiled, for pedagogical purposes we rederive all these results in the language of

FRV presented in chapter 2. Furthermore we extend the results obtained in [Sna08] to meet

encounter time-lagged correlations.

5.1 Mathematical Formulation of a Problem

Due to the works [Gra01, BEW88, Sim80] it is believed that, the system itself should determine

the number of relevant input and output factors. In the simplest approach one would take

all the possible input and output factors and systematically correlate them, hoping to unravel

the hidden structure. This procedure swiftly blow up with just few variables (see sec. 1.2.1).

The cross - equation correlation matrix contains all the information about contemporaneous

correlation in a Vector model and may be its greatest strength and its greatest asset. Since no

questionable a priori assumptions are imposed, fitting a Vector model allows data–set to speak

for itself i.e., find the relevant number of factors. Still without imposing any restrictions on

the structure of the correlation matrix one cannot make a causal interpretation of the results.

The theoretical study of high dimensional factor models is indeed actively pursued in literature

[Gew97, SW05, SW02b, SW02a, FHLR00, FHLR04, Bai03, BN02]. The main aim of this chap-

ter is to present a method, which helps extract highly non-trivial spatio–temporal correlations

between two samples of non-equal size (i.e. input and output variables of large dimensionality),

for these can be then treated as ”natural” restrictions for the correlations matrix structure.

5.1.1 Basic framework and notation

We will divide all variables into two subsets i.e., focus on N input factors Xa (a = 1, . . . , N)

and M output factors Yα (α = 1, . . . ,M) with the total number of observations being T . All

time series are standardized to have zero mean and unit variance. The data can be completely

different or be the same variables but observed at different times. First one has to remove

potential correlations inside each subset, otherwise it may interfere with the out-of-sample signal.

To remove the correlations inside each sample we form two correlation matrices,which contain

information about in-the-sample correlations.

CX =
1

T
XXT CY =

1

T
Y Y T (5.4)

The matrices are then diagonalized,provided T > N,M , and the empirical spectrum is compared

to the theoretical Marčenko-Pastur spectrum [MP67, LCBP99, BJ04, BGJJ04]in order to unravel
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statistically significant factors.1 Having found all eigenvectors and eigenvalues, one can then

construct a set of uncorrelated unit variance input variables X̂ and output variables Ŷ .

X̂at =
1√
Tλa

V TXt Ŷαt =
1√
Tλα

UTYt (5.5)

where V,U , λa, λα are the corresponding eigenvectors and eigenvalues of CX , CY respectively.

It is obvious, that CX̂ = X̂X̂T and CŶ = Ŷ Ŷ T are identity matrices, of dimension, respectively,

N and M . Using general property of diagonalization, this means that the T × T matrices

DX̂ = X̂T X̂ and DŶ = Ŷ T Ŷ have exactly N (resp. M) eigenvalues equal to 1 and T −N (resp.

T −M) equal to zero. These non-zero eigenvalues are randomly arranged on a diagonal. Finally

we can reproduce the asymmetric M ×N cross-correlation matrix G between the Ŷ and X̂ :

G = Ŷ X̂T (5.6)

which includes only the correlations between input and output factors. In general the spectrum

of such a matrix is complex, but we will use the singular value decomposition (SVD) technique

(c.f. [FIS02]) to find the empirical spectrum of eigenvalues.

The Singular Value Decomposition

The singular value spectrum represent the strength of cross-correlations between input and

output factors. Suppose G is an M×N matrix whose entries are either real or complex numbers.

Then there exists a factorization of the form

G = UΣV † (5.7)

where U is an M ×M unitary matrix. The columns of U form a set of orthonormal ”output”

basis vector directions for G - these are the eigenvectors of G†G. Σ is M ×N diagonal matrix

with nonnegative real numbers on the diagonal,which can be thought of as scalar ”gain controls”

by which each corresponding input is multiplied to give a corresponding output. These are the

square roots of the eigenvalues of GG† and G†G that correspond with the same columns in U

and V. and V † denotes the conjugate transpose of V , an N ×N unitary matrix,whose columns

form a set of orthonormal ”input” or vector directions for G. These are the eigenvectors of

GG†. A common convention for the SVD decomposition is to order the diagonal entries Σi,i in

descending order. In this case, the diagonal matrix Σ is uniquely determined by G (though the

matrices U and V are not). The diagonal entries of Σ are known as the singular values of G.

5.2 Singular values from free random matrix theory

In order to evaluate these singular eigenvalues, assume without loss of generality M < N . The

trick is to consider the matrix M ×M matrix GGT (or the N × N matrix GTG if M > N),

which is symmetrical and has M positive eigenvalues, each of which being equal to the square

of a singular value of G itself. Furthermore use the cyclic properties of the trace. Then non-zero

eigenvalues of

GGT = Ŷ X̂T X̂Ŷ T

1The eigenvalues,which lie much below the lower edge of the Marčenko-Pastur spectrum represent the redun-

dant factors, rejected by the system, so one can exclude them from further study and in this manner reduce

somewhat the dimensionality of the problem, by removing possibly spurious correlations.
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are then the same (up to the zero modes) as those of the T × T matrix

D = DX̂DŶ = X̂T X̂Ŷ T Ŷ

obtained by swapping the position of Ŷ from first to last. In the limit N,M,T → ∞ where the

X̂’s and the Ŷ ’s are independent from each other, the two matrices DX̂ and DŶ are mutually

free [Voi91], and we can use the results from FRV, where given the spectral density of each

individual matrix, one is able to construct the spectrum of the product or sum of them.

5.2.1 FRV Algorithm for Cross-correlation matrix

As usual we will start with constructing the Green’s function for matrices DX̂ and DŶ . Each

of these matrices, have off-diagonal elements equal to zero, while on diagonal a set of M (or N

respectively) randomly distributed eigenvalues equal to 1

GD
X̂

= 1
T

(
M
z−1 + T−M

z

)
= m

z−1 + 1−m
z m = M

T ;

GD
Ŷ

= 1
T

(
N
z−1 + T−N

z

)
= n

z−1 + 1−n
z n = N

T ;
(5.8)

From chapter 2 we know, that

SD
X̂
·D

Ŷ
(z) = SD

X̂
(z) · SD

Ŷ
(z) (5.9)

or equivalently
1 + z

z
ND

X̂
·D

Ŷ
(z) = ND

X̂
(z) ·ND

Ŷ
(z), (5.10)

where:

Sx(z) =
1 + z

z
χx(z) Nx(z) =

1

χx(z)
Nx(z)G (Nx(z)) − 1 = z

From this, one easily obtains:

ND
X̂
(z)

(
m

ND
X̂

(z)−1 + 1−m
ND

X̂
(z)

)
− 1 = z

ND
X̂
(z)m

ND
X̂
(z)−1 + 1 −m− 1 = z

(5.11)

ND
X̂

(z) =
m+ z

z
ND

Ŷ
(z) =

n+ z

z
(5.12)

ND
X̂
N·D

Ŷ
(z) =

(m + z)(n+ z)

z2
(5.13)

and one readily gets the N–transform for the matrix D
X̂
·D

Ŷ

ND
X̂
·D

Ŷ
(z) =

(m + z)(n+ z)

z(1 + z)
(5.14)

Inverting functionally (5.14)

ND
X̂
·D

Ŷ
(z)GD

(
ND

X̂
·D

Ŷ
(z)
)

= z + 1 (5.15)

i.e., solving the second order equation in z, one is able to find the Green’s function of a product

DX̂ ·DŶ

0 = z2(1 −N(z)) + (n+m−N(z))z +mn

G(N(z)) =
2−(n+m+N(z))−

√
(n+m−N(z))2−4(1−N(z))mn

2N(z)(1−N(z)) ,
(5.16)
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where we have omitted the subscripts for brevity. Subsequently mean spectral density is obtained

from the standard relation (2.3), which yields

lim
ǫ→0+

1

λ+ iǫ
= PV

(
1

λ

)
− iπδ(λ) ⇒ ρD(λ) = − 1

π
ImGD(λ+ iǫ). (5.17)

The final result i.e., the benchmark case where all (standardized) variables X and Y are un-

correlated, meaning that the ensemble average E(CX) = E(XXT ) and E(CY ) = E(Y Y T ) are

equal to the unit matrix, whereas the ensemble average cross-correlation E(G) = E(Y XT ) is

identically zero, reads as in original paper [BLMP07]:

ρD(λ) = max(1 − n, 1 −m)δ(λ) + max(m+ n− 1, 0)δ(λ − 1)+

+
Re
√

(λ2 − s−)(λ+ − s2)

πλ(1 − λ2)
(5.18)

where s± = n + m − 2mn ± 2
√
mn(1 − n)(1 −m) are the two positive roots of the quadratic

expression under the square root It is easy to discover the fact, that in the limit T → ∞ at

m=0.4 , n=0.2

m=n=0.3

m=0.7

n=0.3

m=0.18

n=0.8
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Figure 5.1: Simulation of a continuous part of the theoretical random singular value spectrum

ρ(λ) for different values of n and m.It is obvious to see that λ+ ≤ 1 for all values of n,m < 1.

The upper bound is reached only when n+m = 1, in which case the upper edge of the singular

value band touches λ = 1 i.e., for n = m the spectrum extends down to λ = 0, whereas for

n+m → 1, the spectrum develops a (1 − λ)−1/2 singularity, just before the appearance of a δ

peak at λ = 1 of weight n+m− 1.

fixed N , M , all singular values collapse to zero, as they should since there is no true correlations

between X and Y ; the allowed band in the limit n,m → 0 becomes:

λ ∈
[
|√m−√

n|,√m+
√
n
]
. (5.19)

When n → m, the support becomes λ ∈ [0, 2
√
m(1 −m)] (plus a δ function at λ = 1 when

n + m > 1), while when m = 1, the whole band collapses to a δ function at λ =
√

1 − n. For

n + m → 1− there is an initial singularity of ρ(λ) λ = 1 diverging as (1 − λ)−1/2. Ultimately

m→ 0 at fixed n, one finds that the whole band collapses again to a δ function at λ =
√
n.
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5.3 SVD cleaning technique and the MP 2 case

The results from the previous section were obtained under belief there were no correlations

between input and output samples of infinite sizes. However, for a given finite size sample, the

eigenvalues of CX and CY will differ from unit, and the singular values of G will not be zero and

instead cross-correlations between input and output variables are involved. The SVD spectrum

in that case is the convolution of two Marčenko-Pastur [MP67] distributions with parameters m

and n, respectively, which reads, for r = n,m < 1:

ρMP (λ) =
1

2πβλ
Re
√

(λ− λ−)(λ+ − λ) (5.20)

with λ± = (1 ± √
r)2 The N -transform of this density takes a particularly simple form (cf.

[BJJ+09] for an exact derivation)

NMP (z) =
1 + z

1 + rz
(5.21)

The singular values of G are obtained as the square-root of the eigenvalues of D = XTXY TY .

Under assumption, that XTX and Y TY are mutually free, after having noted that the N -

transform of the T × T matrices XTX and Y TY are now given by:

N(z) =
(1 + z)(1 + rz)

rz
(5.22)

one can again use the multiplication rule of N -transforms and finds the Green’s function of D

by solving the following cubic equation for z:

(1 + z)(1 + nz)(1 +mz)N(z) −mnz = 0 (5.23)

which with little effort can be solved analytically. Then Green’s function is readily obtained by

inserting the solution of the eq.(5.23)

G(N(z)) =
z(N(z)) + 1

N(z)
⇒ ρ(λ2) = − 1

π
ImG(λ+ iǫ) (5.24)

This will lead to a rather complicated form of the final function

ρ(λ) =

(
2

θ(λ2)

)1/3 3−1/2

πλ

(
2−2/3 + ϕ(λ2)

)
(5.25)

where

ϕ(λ2) = 2 − 3m(1 −m) − 3n(1 − n) − 3mn(n+m− 4) + 2(m3 + n3) + 9λ2(1 +m+ n)

θ(λ2) = ϕ(λ2) −
√
ϕ(λ2) − 4(1 +m2 + n2 −mn−m− n+ 3λ2)3

5.4 Example from the Data

The last decade has been a witness of an enormous progress in the development of small-scale

macroeconomic models. It’s not too much an overstatement to say, that the statistical anal-

ysis of VAR models, Kalman filter models etc. is nowadays complete. The major issue with

these models is that they can accurately approximate small number of time series only. On
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the other hand Central Banks must construct their forecasts in rich data environment [BB03].

This mismatch between standard macroeconometric models and real world practice has led to

unfortunate consequences. Forecasters have had to rely on informal methods to distill infor-

mation from the available data, and their published forecasts reflect considerable judgement

in place of formal statistical analysis. Forecasts are impossible to reproduce, and this makes

economic forecasting a largely non-scientific activity i.e., formal small-scale models have little

effect on day-to-day policy decisions, making these decisions more ad hoc and less predicable

than if guided by the kind of empirical analysis that follows from careful statistical modeling.

The goal of this research is to use the wide range of economic variables that practical forecasters

and macroeconomic policymakers have found useful, and establish a direction that explicitly

incorporates information from a large number of macroeconomic variables into formal statistical

models. We have focused on two different data sets, namely Polish macroeconomic data and

generated set of data, where temporal cross - correlations are introduced by definition.The full

data set is the same as it was used in previous chapter.

5.4.1 Polish Macroeconomic data

Poland is and interesting emerging market with unique social and business activity in the process

of rapid growth and industrialization. We hope our analysis might be helpful in understanding

the factors that helped Poland to survive during the 2008 crisis. The main problem to be solved

is to choose the correct variables to include. This is the familiar problem of variable selection

in regression analysis. Economic theory is of some help, but usually suggests large categories of

variables (money, interest rates, wages, stock prices, etc.) and the choice of a specific subset of

variables then becomes an open problem. The analysis began with checking, whether the method

described in [BLMP07] is relevant for describing the relation between the inflation indexes for

Polish macroeconomic indexes and other Polish macroeconomic data published by different

government and non-government agencies. A consumer price index (CPI) is a measure estimating

the average price of consumer goods and services purchased by households. A consumer price

index measures a price change for a constant market basket of goods and services from one

period to the next within the same area (city, region, or nation). It is a price index determined

by measuring the price of a standard group of goods meant to represent the typical market

basket of a typical urban consumer. The percent change in the CPI is a measure estimating

inflation. It is commonly viewed as the indicator not only the measure of inflation, but rather

the indicates the change of costs of maintenance. The data set represent a wide range of

macroeconomic activity and were initially transformed to ensure stationarity and diminish the

effects of seasonal components. The same data set we have already analyzed in chapter 4 and

the detailed list of all time series is attached in the appendix C.1. This time, the whole set of

52 time series,observed on a monthly basis between Jan− 2000 and Oct− 2009 (T = 118) was

divided into two subsets i.e.,

• We have used monthly M = 15 changes of different CPI indicators as our predicted

variables (i.e. output sample Y )

• The input sample X consisted of N = 37 monthly changes of economic indicators (eg.

sectoral employment, foreign exchange reserves, PPI’s) as explanatory variables.
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The data were standardized and mean adjusted, but following the general idea of [BLMP07] the

input and output samples’ factors were not selected very carefully, so the data could speak for

themselves and system could be able to select the optimal combination of variables. The resulting
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Figure 5.2: Correlation matrices representing generic in-the-sample correlations.The data were

mean adjusted and standardized. In a perfect situation, one is expecting that cross–correlations

tends to zero, however still nontrivial correlations are present. LEFT:Matrix with 37 input variables

X.RIGHT: Matrix with 15 input variables Y - components of CPI.

diagrams (see Fig.5.2) now demonstrate, that even standardized and converted to stationary

time series may represent nontrivial in-the-sample correlations. Short – term economic forecasts

build from these type data in consequence may be poor and show no sign of improving over

time. The next step involved cleaning internal correlations in each sample. To do it, we have

used equation (5.4). The effective matrices were then diagonalized and two sets of internally

uncorrelated data were prepared.

Results for Equal-time spectra

From the uncorrelated data we create the rectangular matrix G and diagonalize it to calcu-

late singular eigenvalues. Finally we have used the benchmark calculated in equation (5.5)

to compare the data with the predicted eigenvalue density. For the same data sets we have

also created the set of correlated samples i.e., the set, where internal spatial cross–correlations

were not a-priori removed (see Fig. 5.3). Apparently there is enough idiosyncratic variation in

standard activity measures like the unemployment rate and capacity utilization, that removing

noisy components from these might provide a clearer picture of factor models affecting inflation.

We have excluded from further analysis series responsible for reference NBP bill rate balance

of payments, and from the set of explanatory variables ordinary measures of inflation - CPI in

food sector, beverages and tobacco ans services. This approach allows us to directly reproduce

temporal cross–correlations.

The lack of symmetry condition allows us to focus only on out-of-the-sample correlations with-

out mixing them with inner ones and to study temporal properties of such matrix. The results

show, that there exists some singular eigenvalues, which do not fit the benchmark. Among them,

the highest singular eigenvalue s1 = 2.5 and the corresponding singular eigenvector, represent

standard negative correlation between expenses for electricity and net balance of payments in

the energy and positive correlation between CPI in health sector and unemployment. In our ap-
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Figure 5.3: Comparison of cleaning techniques for equal–time SVD spectra. ABOVE: Cumulative

singular density and ”heat map” for the cleaned problem. BELOW LEFT: Empirical density of

eigenvalues in the MP 2 framework.BELOW RIGHT: Benchmark calculated according to MP 2

spectrum.

proach we can not only observe this relations, but also interpret them in terms of causality. That

is, larger unemployment rate causes increase in the CPI. There are other non-trivial relations

between eg. CPI in telecommunication sector and foreign exchange reserves. All of these corre-

lations are however well known from textbooks or can be easily explained by means of classical

economic theory. When some of the eigenvalues become strongly related, zero modes emerge

- clearly the majority (around 80% of all eigenvalues are concentrated close to zero, meaning

that there are strong spatial correlations inside X and Y data set. If we are to use the MP 2

benchmark then it is clear, that empirical spectrum is affected by idiosyncratic components,

again confirming, that spatial structure strongly interferes with temporal, and it is crucial to

”remove” redundant factors to avoid spurious (confunding) correlations.

Solution for lagged spectra

A natural way to examine macroeconomic data is via factor models. In previous section we

have assumed that the inflation can be accurately explained by the factor model using relatively

small number of latent variables. Pushing the factor model one step further, these latent factors

might also explain the predictive relationship between current values of variables and those

of the previous month. The next step of our study involved shifting the input and output
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CHAPTER 5. TEMPORAL CORRELATIONS FROM SINGULAR VALUE SPECTRA

data set by one observation (one month). The Y were calculate from t = 2, . . . , 118 and X’s

for (t = 1, . . . , 117). We were motivated by the common belief, that it is the ”yesterday”

shock, that affects ”today” change i.e., there is some persistency and long memory within

this system. This is the same approach, that underlies the idea of VARMA(q1, q2) processes

[L0̈5]. The temporal structure (Fig.5.4) manifests itself via the existence of significant non–
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Figure 5.4: Results for lagged-by-one-month spectra.LEFT: There is a bunch of singular values

that do not fit the benchmark. The largest s ≈ 0.77 represents the same correlation structure

as within unshifted framework.RIGHT: Note, that now we can see whole bunch of islands of

non-trivial factors, that affect CPI’s.

symmetric relation (represented by one singular eigenvalue, that does not fit the benchmark)

between data sets X and Y , that are shifted by one month. It is easy to notice, that only

few factors are responsible for the model’s performance. CPI in telecommunication sector is

affected by the largest number of possible explanatory variables (c.f. Table 5.1). Among them

the most unexpected is the correlation with heavy trucks. Two or three factors are useful for

some categories of series, but only a single factor is responsible for the predictability of prices

in all sectors. Apparently, the first factor is foreign exchange reserves level, and the results

say that it is an important predictor of future prices in telecommunication, manufacturing and

transport sector. We can say that when forecasting inflation a large model might be a clue, but

if we remove redundant factors the inflation can be forecasted by using simple measures of real

activity like the unemployment rate, industrial production or capacity utilization. While the first

factor is easy to interpret, a complete understanding of the results requires an understanding of

other factors as well. Unfortunately, their interpretation and role in explaining future changes

in the consumer prices is an open question.

5.5 Conclusions

We will now recap this illustrative study with few comments:

• In general both input and output data sets may represent highly complex correlation

structure strongly interfered by redundant noisy factors. This significant amount of noise

need to be carefully eliminated by performing initial decoupling of spatial correlations, so

these large matrices become mutually free.

• This is again precisely the case when FRV approach ”takes the stage” and reduces the
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Y X Type of correlation

CPI in communication

sector

completed dwellings negative

net balance of payments of goods

M3 money aggregate

Employment in manufacturing sector

employment in enterprize sector positive

Direct investments

Foreign exchange reserves

Official reserve assets

New heavy trucks registration

Balance of payments - services

CPI in clothing sector Total export negative

CPI in restaurants and

hotels sector

Foreign exchange reserves positive

CPI in transport sector Foreign exchange reserves positive

Total production in manufacturing

sector

negative

Total export

Table 5.1: Factors affecting the set of output variables for lagged spectra.

solution to few lines.

• The procedure tested on real data within the case of unshifted variables hasn’t show any

significant improvement in comparison to standard factor analysis known in econometric

literature for similar data sets[SW99]. For data lagged by one observation we have however

recovered the sea of different non–trivial relations, and it might be interesting to compare

these results from a more general perspective of factor models, however no implicitly close

approach was found in the literature.
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Perfection is achieved, not when there is noth-

ing more to add, but when there is nothing left

to take away.

A. de Saint-Exupery 6
Conclusions

Cross-correlations analysis lies at the confluence of many branches of science, where unraveling

dependencies from data sets is fundamental. The ability to find good estimates however heavily

relies on spatio–temporal structure and becomes quite a complex task, when the dimension of

the data set grows. At the same time Random Matrix Theory may hold the key to solving

critical problems for a broad range of complex systems from biophysics to quantum chaos to

signals and communication theory to machine learning to finance to geoscience modeling. The

Voiculescu Free Random Variables (FRV) Technique [DNV92], is the most natural candidate

for the “matrix–valued probability calculus”, that can provide efficient yet elegant algorithms

for cleaning (de–noising) large sets of data and unraveling essential but hidden correlations and

in this way promote new insights into classical methods of data analysis and reduction. The

primary goal of this thesis, was to show the fluency of FRV approach in solving complex problems

of unwinding spatio–temporal correlations omnipresent in large covariance matrices generated

by various complex systems, like eg. financial markets or economies. We have showed how

complex and almost unsolvable problems on a basis of ordinary Random Matrix Theory can be

easily tackled and solved analytically within just few lines of not very complicated calculations

The salient feature was the larger the matrix, the more deterministic it becomes.

• First chapter was generally devoted to give a quick summary of classical methods of data

analysis and data reduction techniques , like PCA of Factor Analysis for instance. We

have stressed not only the important aspects, but also main weakness, also known as

”dimensionality curse”.This weakness is however challenge for our FRV approach, where

large dimension is an innate assumption.

• In chapter 2 we have presented a short survey of Free Probability Theory, whose crucial

part was the notion of freeness i.e., the counterpart of classical independence. Further-

more have explored the interplay of classical probabilistic aspects to FRV version random

matrix theory and construct a short dictionary of matrix–valued probability calculus in a

correspondence with classical results. In particular we have enhanced the conformity by

deriving the Free Central limit theorem and Free Poisson process in analogy with asymp-

totic limits of classical binomial distribution.

Over the recent years the practical environment has changed dramatically withe the spectac-

ular evolution of data acquisition technologies and computing facilities and many applications

have emerged in which the number of experimental variables is comparable to the underlying

dimension. At the same time methodology hasn’t responded vigorously to these challenges.

There is still need of consolidation in the form of systematic and critical assessment of the
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new approaches as well as development of an appropriate theoretical underpinning for analysis

dynamical properties of these data. The rest of the thesis represents original work tailored to

specific problems. We have used Free Random Variables approach to the analysis of spectral

densities that accurately represent the problem’s dynamics.

• Chapter 3 deals with estimators of equal-time cross correlations in large N,T limit. The

complex system under study was Warsaw Stock Exchange. We have analyzed spectral

density function under assumption of uncorrelated and correlated assets. The original

idea of one factor model comes from [JM03]. We have shown, that the unique structure of

financial market data is an effect of non-synchronous character of the data and vanishes if

we shuffle the returns. For the latter case of correlated assets we have used the version of

factor analysis developed by [J+10] to identify hidden structure, that drives the behavior

of a portfolio.We have identified 6 new sectors of activity. Hasty assumption is that eigen-

values are stationary over time. We have focused on the dynamics of the eigenvalues by

means of sliding windows and discovered, that indeed noisy eigenvalues are stationary over

time whereas eigenvalues that represent nontrivial correlations are far from stationarity.

Their dynamics can be fully characterized by Langevin equation. In this spirit we have

reconsidered the one factor model [JM03] and found that previously identified true eigen-

values have informative eigenvectors. Furthermore, to analyze long-range persistency in

temporal correlations, we have introduced weighting schemes into correlations estimator

i.e., Exponentially Weighted Moving Average (EWMA) estimator and again we have used

flexible FRV rules to calculate the spectral density in this regime afterwards applied to

the empirical eigenvalues spectrum.

• Chapter 4 studied the correlations matrices generated by widely known, and widely used

VARMA(q1, q2) processes. The correlations estimators are symmetric. Since hey are built

of lagged data, may still carry some information about delayed temporal correlations. It

resulted, that these matrices can be easily treated in a framework of doubly correlated

Wishart ensembles. We have derived respective spectral densities for VAR(q),VMA(q)

and VARMA(q1, q2) processes. The results were then confirmed by numerical simulations.

The empirical data as compared to the spectral density given by eq.(2.50) suggest that

a lot of eigenvalues, similarly to stock market data express marginal predictive content.

Tests performed on real–life macroeconomic data showed surprisingly ”perfect agreement”.

This suspected to be the manifestation of the collective response to ”global” shocks and

the identification of these is crucial for forecast constructions.

• Finally in chapter 5 we attracted our attention to time–delayed cross–correlations. The

correlations matrix is then nonsymmetric and the eigenvalues are complex numbers. There-

fore we have used singular eigenvalues instead. We have compared this spectrum with a

benchmark obtained under assumption, there are no correlations. This results applied

again to Polish macroeconomic data showed, that non-trivial temporal structure survives

when the input and output matrices are shifted at least by one observation (”month”)

and are not visible for data in an non–delayed scheme. The lack of symmetry condition

allowed us to focus only on out-of-the-sample correlations without mixing them with inner

ones and to study temporal properties of such matrix. The results show, that there exists

some singular eigenvalues, which do not fit the benchmark. Among them, for non–delayed
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spectra the highest singular eigenvalue s1 = 2.5 and the corresponding singular eigen-

vector, represent standard negative correlation between expenses for electricity and net

balance of payments in the energy and positive correlation between CPI in health sector

and unemployment. Apparently, the major factor was foreign exchange reserves level, and

the results say that it is an important predictor of future prices in telecommunication,

manufacturing and transport sector.

• The last two chapters opens a door to the macroeconomic studies and are of certain impor-

tance for central banks, which operate on large data sets, but where striking mathematical

procedures are so far unknown and the prominent forecasts are usually intuitive and sub-

jective.

The FRV approach opens new possibilities to quantify the character of temporal fluctuations

of eigenvalue spectrum in an analytic way. It is tempting to conclude, that various potentially

complex problems does not really need sophisticated numerical methods, but may be tackled

within few lines of calculations instead. My hope is, that dissertation would be a small contri-

bution to a continuing and fruitful influence of Free Probability Theory developments in large

Random Matrix Theory in specific frontier fields and application of methods to analyze complex

systems, high dimensional data analysis and variety of intriguing applications, furthering our

understanding of the spectral properties of random matrices, behavior of eigenvalues of matrix

valued stochastic processes and recovering the information from an observed data set.
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A
A.1 Notational aspects of RMT

The most important distribution is the N(µ, σ2) normal distribution with mean µ and variance

σ2.(For complex random variables z = x + iy, Ñ(µ, σ2) refer to a distribution ,whose entries x

and y are iid from N(µ, σ2)). It is worth this special place, due to the central limit theorem,

which loosely speaking, states that a sum of large number of random variables quite frequently

behave as if they were drawn from a normal distribution. Furthermore most of the distributions

useful in complex systems analysis are derived from normal distribution. Following this rule,

we will be interested in the matrix ensembles derived on the basis of normal distribution, while

they are invariant under orthogonal transformations [ERR05].

• Gaussian ensemble Xβ(T,N) - T ×N random matrix, whose entries are (real for β = 1,

complex for β = 2, quaternion for β = 4)independent and identically distributed iid from

Nβ(0, 1).

• Gaussian Orthogonal Ensemble (GOE)=
Xβ+X

T
β

2 : Symmetric N ×N matrix, whose

entries are iid elements, N1(0,
1
2 ) on the upper triangle and iid N1(0, 1) on the diagonal

and Xβ is an N ×N Gaussian matrix with real entries and β = 1.

• Gaussian Unitary Ensemble (GUE)=
Xβ+X

†
β

2 Hermitian N ×N matrix, whose entries

are iid elements, that are complex N2(0,
1
2) on the upper triangle and iid N1(0, 1) on the

diagonal.Xβ is an N ×N Gaussian matrix with complex entries and β = 2.

• Gaussian Symplectic Ensemble (GSE)=
Xβ+X

D
β

2 , β = 4 is self–dual N × N matrix.

Where D denotes the dual transpose of a quaternion matrix. The diagonal elements are

iid with the normal distribution N1(0, 1) and the off-diagonal entries subject to being

self–dual are iid with distribution N4(0, 12)

• Wishart ensemble Wβ(T,N) = XβX
′
β , T ≥ N - symmetric (for β = 1), Hermitian (for

β = 2) or self–dual (for β = 4) N × N random matrix, where X ′ denotes XT , X†,XD

depending on whether the entries of Xβ(T,N) are real, complex, quaternion, respectively.
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B
B.1 The Auto–Covariance Matrix for VMA(q)

In this appendix, we sketch a proof of the formula (4.13) for the auto–covariance matrix of the

VMA(q) process. As mentioned, since the random variables are centered Gaussian, this matrix

alone suffices to completely capture all their properties. We set i = j; the dependence on this

index may be dropped as there are no correlations here. We use the definition (4.11) of VMA(q),

as well as the auto–covariance structure of the white noise, 〈ǫiaǫjb〉 = δijδab. This leads to

A
(1)
ab = 〈YiaYib〉 =

q∑

α=0

q∑

β=0

aαaβ 〈ǫi,a−αǫi,b−β〉 =

q∑

α=0

q∑

β=0

aαaβδa−α,b−β = . . . .

The double sum is symmetrized, the index β replaced by d ≡ β − α,

. . . =
1

2

q∑

α=0

q−α∑

d=−α
aαaα+d (δb,a+d + δb,a−d) = . . . ,

and the order of the sums interchanged (an elegant method for this is explained in [GKP94]),

. . . =
1

2

q∑

d=−q




q−min(0,d)∑

α=max(0,−d)
aαaα+d


 (δb,a+d + δb,a−d) ,

which, upon splitting the sum over d into three pieces (from −q to −1, d = 0, and from 1 to q),

is quickly seen to coincide with (4.13).

B.1.1 A List of the Various Auto–Covariance Matrices Used

For the reader’s convenience, let us collect in this appendix the five auto–covariance matrices

which are defined throughout chapter 4:

• By A(1) we denote the auto–covariance matrix of the VMA(q) process with the generic

constants aα, with α = 0, 1, . . . , q, as defined in (4.11).

• By A(2) we denote the auto–covariance matrix of the VMA(q) process with the constants

a
(2)
0 ≡ 1/a0, a

(2)
β ≡ −bβ/a0, where β = 1, . . . , q.

• By A(3) we denote the auto–covariance matrix of the VAR(q) process with the generic

constants a0, bβ, with β = 1, . . . , q, as defined in (4.19). There holds A(3) = (A(2))−1

(4.20).

• By A(4) we denote the auto–covariance matrix of the VMA(q1) process with the constants

a
(4)
0 ≡ 1, a

(4)
β ≡ −bβ, where β = 1, . . . , q1.
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• By A(5) we denote the auto–covariance matrix of the VARMA(q1, q2) process with the

generic constants bβ, aα, with β = 1, . . . , q1 and α = 0, 1, . . . , q2, according to the definition

(4.29). There is A(5) = (A(4))−1A(1) (4.30), where in the latter piece q = q2.

B.1.2 The M–Transform of the Auto–Covariance Matrix for VMA(q)

We will derive here the M–transform (4.16) of the auto–covariance matrix A(1) of an arbitrary

VMA(q) process, using the expression for its Fourier transform (4.15). It is a little simpler to

consider the Green’s function,

G
A(1)(z) =

1 +M
A(1)(z)

z
=

1

π

∫ π

0
dp

1

z − Â(1)(p)
, (B.1)

where the integration range has been halved due to the evenness of the integrand.

This integral is performed with help of the change of variables y ≡ 2 cos p. The measure,

when p ∈ [0, π], reads dp = −dy/
√

4 − y2. A basic observation is that the denominator of the

integrand is a linear combination of cos(dp), for d = 1, . . . , q, and each such a cosine can be cast

as a polynomial of order d in y through the de Moivre formula. Hence, the denominator is a

polynomial of order q in y,

Â(1)(p) − z = κ
(1)
0 − z + 2

q∑

d=1

κ
(1)
d cos(dp) = ψ

q∏

β=1

(y − yβ) , (B.2)

where the yβ’s are the q roots (which we assume to be single), and ψ is the coefficient at yq.

Using the method of residues, one readily finds

G
A(1)(z) = − 1

π
1
ψ

∫ 2
−2 dy 1√

4−q2
1∏q

β=1(y−yβ)
=

= 1
ψ

∑q
γ=1

1∏q

β=1
β 6=γ

(yγ−yβ)
1√

yγ−2
√
yγ+2

, (B.3)

where the two square roots on the r.h.s. are principal. This is an explicit formula for the Green’s

function of A(1), provided one has factorized the order–q polynomial (B.2).

B.2 The Auto–Covariance Matrix for VAR(q)

Let us argue now that the Fourier transform (4.21) leads to the auto–covariance matrix of VAR(q)

(4.25) of the form of a sum of exponential decays (4.26), and let us give precise expressions for

the constants Cγ and the characteristic times Tγ , γ = 1, . . . , q.

We proceed by the technique of residues, analogously to (B.1.2), however this time with aid

of another variable, x ≡ e−ip, related to the previously used through y = 2 cos p = x + 1/x.

The integration measure is dp = idx/x, and the integration path is counterclockwise around the

centered unit circle. The denominator of the integrand is a polynomial of order q in the variable

y, having thus some q roots ỹβ, β = 1, . . . , q. Therefore, there are 2q corresponding solutions

for the variable x, with a half of them inside the integration path and a half outside; let x̃β be

the solutions to x+ 1/x = ỹβ with the absolute values less than 1. Only them contribute to the

integral, and their residues straightforwardly give

A(3)(d) =
1

ψ

q∑

γ=1

(x̃γ)|d|+q−1

∏q
β=1
β 6=γ

(x̃γ − x̃β)
∏q
β=1

(
x̃γ − 1

x̃β

) . (B.4)
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This is indeed q exponents (x̃γ)|d|, γ = 1, . . . , q. Remark that the solutions may be complex,

hence this is really q different exponential decays exp(−|d|/Tγ), with the characteristic times

Tγ ≡ − 1

log |x̃γ |
(B.5)

(these times are positive as the roots have the absolute values less than 1), possibly modulated

by sinusoidal oscillations when a root has an imaginary part. For example, for q = 1 there is

one exponential decay (4.27), while for q = 2, one obtains either two exponential decays (the

two roots are real and different), or one exponential decay modulated by oscillations (the two

roots are complex and mutually conjugate), etc.

B.2.1 The Equation for the M–Transform of the Pearson Estimator of the Co-

variances for VARMA(1, 1)

The sixth–order polynomial equation obeyed by M ≡Mc(z) in the case of VARMA(1, 1) reads,

r4a20a
2
1

(
a20 − a21

)2
M6 + 2r3a0a1

(((
a40 − 6a20a

2
1 + a41

)
b1−

+a0a1
(
a20 + a21

) (
b21 + 1

) )
z + (1 + 2r) a0a1

(
a20 − a21

)2
)
M5+

+r2

(((
a40 − 20a20a

2
1 + a41

)
b21 − 4a0a1

(
a20 + a21

)
b1
(
b21 + 1

)
+

+a20a
2
1

(
b41 + 1

))
z2 + 2a0a1

((
(1 + 3r)

(
a40 + a41

)
− 2 (5 + 9r) a20a

2
1

)
b1−

+ (2 + 3r) a0a1
(
a20 + a21

) (
b21 + 1

))
z +

(
1 + 8r + 6r2

)
a20a

2
1

(
a20 − a21

)2
)
M4+

+2r

(
b1

(
− 6a0a1b

2
1 −

(
a20 + a21

)
b1
(
b21 + 1

)
+ a0a1

(
b41 + 1

))
z3 +

+

((
−10 (1 + 2r) a20a

2
1 + r

(
a40 + a41

))
b21 − 2 (1 + 2r) a0a1

(
a20 + a21

)
b1
(
b21 + 1

)
+

+ (1 + r) a20a
2
1

(
b41 + 1

))
z2 + a0a1

((
3r (1 + r)

(
a40 + a41

)
− 2

(
2 + 15r + 9r2

)
a20a

2
1

)
b1−

+
(
1 + 6r + 3r2

)
a0a1

(
a20 + a21

) (
b21 + 1

))
z+

+ 2r
(
1 + 3r + r2

)
a20a

2
1

(
a20 − a21

)2
)
M3 +

(
b21
(
1 − b21

)2
z4+

+2b1

(
− 2 (1 + 3r) a0a1b

2
1 − r

(
a20 + a21

)
b1
(
b21 + 1

)
+ (1 + r) a0a1

(
b41 + 1

))
z3 +

+

(
−
((

1 − r2
) (
a40 + a41

)
+ 2

(
3 + 20r + 10r2

)
a20a

2
1

)
b21 −
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− 2
(
1 + 4r + 2r2

)
a0a1

(
a20 + a21

)
b1
(
b21 + 1

)
+ r (4 + r) a20a

2
1

(
b41 + 1

))
z2+

+2ra0a1

((
r (3 + r)

(
a40 + a41

)
− 6

(
2 + 5r + r2

)
a20a

2
1

)
b1−

+
(
3 + 6r + r2

)
a0a1

(
a20 + a21

) (
b21 + 1

))
z+

+ r2
(
6 + 8r + r2

)
a20a

2
1

(
a20 − a21

)2
)
M2 + 2

(
a0a1b1

(
1 − b21

)2
z3 +

+

(
−
(
a40 + a41 + 2 (3 + 5r) a20a

2
1

)
b21 − 2 (1 + r) a0a1

(
a20 + a21

)
b1
(
b21 + 1

)
+

+ra20a
2
1

(
b41 + 1

))
z2 + ra0a1

((
r
(
a40 + a41

)
− 2 (6 + 5r) a20a

2
1

)
b1−

+ (3 + 2r) a0a1
(
a20 + a21

) (
b21 + 1

))
z + r2 (2 + r) a20a

2
1

(
a20 − a21

)2
)
M+

−b1
((

a40 + 6a20a
2
1 + a41

)
b1 + 2a0a1

(
a20 + a21

) (
b21 + 1

))
z2−

− 2ra20a
2
1

(
4a0a1b1 +

(
a20 + a21

) (
b21 + 1

))
z + r2a20a

2
1

(
a20 − a21

)2
= 0. (B.6)
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C
C.1 A detailed list of macroeconomic time series

No. Name

1 Reference Rate (7-Day NBP Bill Rate)

2 Overall balance of payment on a balance basis

3 Domestic Budget balance (public finances)

4 Net Balance of Payment on Capital Account basis

5 Inflation in Clothing and footwear sector

6 Inflation in Communication’s sector

7 Inflation excluding food and energy prices

8 Inflation in Education’s sector

9 Inflation - Electricity, gas and other fuels sector

10 Inflation in Food sector

11 Inflation al. beverages and tobacco

12 Inflation food and non-alcoholic beverages

13 Inflation Health

14 Inflation Furnishings and household equipment

15 Inflation Housing, water, electricity, gas and other fuels

16 Inflation Miscellaneous goods and services

17 Inflation Recreation and culture

18 Inflation Restaurants and hotels

19 Inflation Transport, Total

20 Inflation Credit, households

21 Total credits

22 Total Current Account Balance

23 Net Current transfers

24 Completed Dwellings in Construction sector

25 dwellings Under construction
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No. Name

26 Total Employment in Enterprise sector

27 Total Exports

28 Total Direct Investment

29 Total Financial Account Balance

30 Net Investments in financial derivatives

31 Net Investments financial account

32 Total Other Investments financial account

33 Foreign exchange rate

34 Credit, general government, net

35 Net Goods - current account

36 Total Imports

37 Net Current Account income

38 M3 financial aggregate

39 Total New Heavy Trucks Registration

40 Total Portfolio Investments on financial account balance of payments

41 Employment in Manufacturing Sector

42 Total Production in Manufacturing Sector

43 Official reserve assets

44 Total Domestic trade

45 Retail sales Solid, liquid and gaseous fuels

46 Net Balance of Payment/Current Account/Services

47 Total foreign trade balance

48 Total unemployment rate

49 Central Bank Forex Reserves

50 General government credit

51 Total retail sales

52 Base money market rate
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[DOI:10.1016/S0246-0203(00)01074-8].

[BS06] Z.D. Bai and J.W. Silverstein. Spectral Analysis of Large Dimensional Random

Matrices. Science Press, Beijing, 2006. [DOI:10.1007/978-1-4419-0661-8].

[BV93] H. Bercovici and D.V. Voiculescu. Free convolution of measures with unbounded

support. Indiana University Mathematics Journal, 42:733, 1993.
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