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Regular and chaotic dynamics in scalar field cosmology

Abstract
This dissertation is devoted to investigations of dynamics of Friedmann–Robertson–Walker

cosmological models with a non-minimally coupled scalar field and a barotropic matter

content. Using dynamical systems methods two types of evolution: the complex behaviour

and the regular expansion of the universe were studied in details. Different manifestations

of the coexistence of chaotic and regular behaviour in the conformally coupled scalar field

cosmology were demonstrated. Also, the fragility of cosmological evolution with respect

to the value of non-minimal coupling parameter was presented. The full characteristic of

the dynamical evolution of a non-minimally coupled scalar field cosmological models was

performed. It was shown that the inclusion of both types of matter opens an enormous

dynamical complexity of possible evolutional paths of the universe, which are not present

in standard cosmological models or in the models filled with a scalar field only. The generic

evolutional path, which does not depend on the form of the scalar field potential function,

was found. It leads to new and natural possibility of unified description of the cosmological

evolution. Within one framework of a non-minimally coupled scalar field cosmology all the

major epochs in the history of the universe emerge as critical points of the corresponding

dynamical system (a finite scale factor singularity, an inflation (slow-roll and fast-roll),

a radiation era, a barotropic matter domination era and finally the present accelerated

expansion epoch).
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Chapter 1

Introduction

Scalar fields, the simplest physical fields, play a very important role in modern

cosmology. In an inflationary scenario they generate an exponential rate of expansion of

the universe as well as density fluctuations due to vacuum energy [1, 2]. The discovery

of accelerated cosmic expansion [3, 4] gave a motivation to study the dynamics of dark

energy models (see [5] for review). In the context of the quintessence idea [6, 7] the simplest

dynamical models involving the scalar field φ with a potential function U(φ) are used to

model a time dependent equation of state parameter wφ. While the simplest candidate for

dark energy seems to be a positive cosmological constant, the ΛCDM model is favoured by

observational data [8, 9, 10], such an explanation of the cosmic acceleration suffers from

the fine tuning problem [11] and the coincidence problem [12]. In order to alleviate those

problems many alternatives have been proposed, like for example phantom dark energy

[13, 14] or extended quintessence [15, 16, 17, 18].

Scalar fields are also very important in the description of dynamics in the loop

quantum cosmology, which is based on the background independent theory without the

canonical notion of time. In this theory one scalar field is chosen as an internal clock for other

fields [19]. The scalar fields with a potential function are also very important in modelling

of inflation. For example a scalar field with the simplest quadratic potential function was

assumed in Linde’s conception of chaotic inflation [2]. The 5 years of WMAP observations

[20] rejected many inflationary scenarios (potential functions U(φ)), while models with a

simple quadratic potential are admitted at the 1σ confidence level.

If we are going to generalise the scalar field cosmology minimally coupled to gravity,

then the inclusion of the non-minimal coupling term of type ξRφ2 [21, 22, 23] seems to

1



2 Chapter 1: Introduction

be natural and the simplest generalisation of the Lagrangian for scalar field dynamics in

the background of cosmological models with maximal symmetry of space-like slices. Of

course the value of this additional parameter should be estimated from observational data

[24, 25, 26] or given from some theoretical arguments [16]. The nonzero ξ arises from

quantum corrections [27] and it is required by the renormalization [22]. While the simplest

minimally coupled scalar field with a quadratic potential function has strong motivations

in observations [20, 28] its generalisations with a non-minimal coupling term was studied

[29] in the context of the origin of the canonical inflaton itself. The role of the non-minimal

coupling in evolution of the universe in the context of inflation and quintessence was studied

previously by many authors [30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47,

48, 49, 50, 51] and in connection with the development of the Standard Model with a non-

minimally coupled Higgs field [52, 53, 54, 55]. Moreover, recently there were great wave

of interest in generalisations of supergravity to the case with scalar fields non-minimally

coupled to gravity [56, 57, 58].

The Einstein field equations for spatially homogeneous cosmological models can

be reduced to the form of an autonomous dynamical system. This enables us to study the

evolution of cosmological models in the terms of dynamical systems theory [59, 60, 61].

The theory of dynamical systems give us the possibility of study all the evolutional

paths admissible for all initial conditions. It is especially important in cosmology where there

is the problem of initial conditions. Using the dynamical systems methods one hopes to

answer the question of what is the range of initial conditions and parameters of the system

for which the subsequent evolution is compatible with current observations of the universe

[61]. The observational cosmology can be dedicated to distinguish solutions obvious for our

universe.

The main aim of this dissertation is to study dynamical complexity of the dynam-

ical systems of cosmological origin. My investigations show that in the phase space both,

regular and chaotic, behaviour coexist. I characterise different manifestations of complex

chaotic behaviour in the class of model under consideration (chaotic and non-chaotic scat-

tering). Using the dynamical systems methods one is able to reveal all degree of complexity

of dynamical evolution of the cosmological models with a scalar field. One can distinguish

the generic and non-generic cases, study their stability, etc.

The organisation of this dissertation is as follows: Chapter 2 is devoted to in-

vestigations of the spatially closed FRW cosmological model with the conformally coupled
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scalar field and quadratic potential function. Complexity of dynamics is investigated in

a geometrical way by means of geodesics of the Jacobi metric, the Poincaré sections and

complex behaviour of trajectories in terms of symbolic dynamics. Dynamics of conformally

coupled phantom scalar field is investigated in Chapter 3. We demonstrate that this type

of cosmological model can be treated as a scattering process of two types: multiple chaotic

and classical non-chaotic and its character depends on whether the spontaneous symmetry

breaking takes place. In Chapter 4 we show that the dynamics of spatially flat FRW models

where there is no other form of matter except the non-minimally coupled scalar field can

be reduced to a two dimensional dynamical system on the phase plane. All evolutional

paths are visualised and classified on the phase plane and the parameter of non-minimal

coupling plays the role of a control parameter. The fragility of global dynamics with respect

to changes of the coupling constant is carefully studied. Dynamics of a flat FRW cosmo-

logical model with a non-minimally coupled scalar field (both canonical and phantom) and

a barotropic matter is investigated in Chapters 5 and 6. We show that the dynamics of

the models can be reduced to a three dimensional dynamical system. We have found the

stationary solutions of the system and discussed their stability. In Chapter 5 we formu-

late the notion of ”twister solution” travelling between three critical points representing

the radiation dominated universe, the barotropic matter dominating state and finally the

de Sitter attractor. The extension of these results to the arbitrary form of the potential

function of the scalar field is formulated in Chapter 6. We have found the set of fixed

points representing all important epochs in evolution of the universe: a finite scale factor

singularity, an inflation (slow–roll and rapid–roll), a radiation and matter domination and

finally a quintessence era. The discovered evolutional paths are realized only if the nonzero

coupling constant is present. The final and concluding remarks are given in Chapter 7.

We also discuss there possible future developments and projects in non-minimally coupled

scalar field cosmology.
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derivative operator and g denotes the determinant of the metric tensor gµν .

In terms of the Christoffel symbols

Γαµν =
1
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gασ
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the Ricci tensor is given by

Rµν = Γαµν,α − Γααν,µ + Γαµν Γββα − Γαβν Γβαµ (1.2)

and the Ricci scalar is

R = gµν Rµν . (1.3)

R > 0 for the standard metric on a sphere.

The d’Alembert’s operator is

� ≡ gµν ∇µ∇ν =
1√
−g

∂µ
(√
−g gµν∂ν

)
(1.4)

Basic equations of standard cosmology

The Friedmann–Robertson–Walker metric (from now on “FRW”) can be presented

as

ds2 = −dt2 + a2(t)
[ dr2

1− k r2
+ r2

(
dθ2 + sin2 θ dϕ2

)]
(1.5)

or

ds2 = −dt2 + a2(t)
[
dχ2 + f2(χ)

(
dθ2 + sin2 θ dϕ2

)]
(1.6)

where

f(χ) =


sinχ, 0 ≤ χ ≤ π k = +1

χ, 0 ≤ χ ≤ ∞ k = 0

sinhχ, 0 ≤ χ ≤ ∞ k = −1

(1.7)

k = 0, ±1 is the normalised curvature index, 0 ≤ ϕ ≤ 2π and 0 ≤ θ ≤ π are comoving

coordinates, t stands for the cosmological time.

In order to find the form of the equations which describe the evolution of the

universe we need to find the form of the Einstein tensor as well as the form of the energy–

momentum tensor of the matter component. The Einstein field equations are

Rµν −
1

2
gµν R+ Λ gµν = κ2Tµν (1.8)

where Rµν and R are the Ricci tensor and the Ricci scalar, respectively, and Tµν is the

energy-momentum tensor of the cosmic fluid.
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In the homogeneous and isotropic universe the Einstein field equations reduce to

the ordinary differential equation in the following form

H2 =
κ2

3
ρ− k

a2
, (1.9)

Ḣ =
ä

a
−H2 = −κ

2

2
(ρ+ p) +

k

a2
(1.10)

where H ≡ ȧ/a, an over dot denotes differentiation with respect to the cosmological time

t, ρ and p are the energy density and pressure of the cosmic fluid, respectively. From the

covariant conservation condition of the energy-momentum tensor

∇µTµν = 0, (1.11)

we have the conservation equation for the energy density and pressure

ρ̇ = −3H(ρ+ p). (1.12)

1.1 Scalar fields in cosmology

The action of the phantom or canonical scalar field minimally coupled to gravity

is of the form

S = Sg + Sφ =
1

2κ2

∫
d4x
√
−g R− 1

2

∫
d4x
√
−g
{
ε gµν∇µφ∇νφ+ 2U(φ)

}
(1.13)

where U(φ) is the potential function of the scalar field and ε = ±1 corresponds to the canon-

ical and phantom scalar field, respectively. The energy–momentum tensor of φ assumes the

following form

Tµν = ε∇µφ∇νφ− ε
1

2
gµν∇αφ∇αφ− U(φ)gµν (1.14)

In the special case of a homogeneous scalar field which depends only on the cosmological

time φ = φ(t) we have the energy density and the pressure of a scalar field in the following

forms

pφ = ε
1

2
φ̇2 − U(φ), ρφ = ε

1

2
φ̇2 + U(φ) . (1.15)

The equation of motion for the scalar field φ reads

�φ− ε∂U(φ)

∂φ
= 0 (1.16)



Chapter 1: Introduction 7

where � = 1√
−g∂µ(

√
−ggµν∂ν) which for the FRW cosmology simply reduces to

φ̈+ 3Hφ̇+ εU ′(φ) = 0. (1.17)

The phantom scalar field (with ε = −1) was introduced by Caldwell [62], who

proposed it as a possible explanation of the observed acceleration of the current Universe

when Ωm,0 & 0.2. Note that a coupling to gravity in the quintessence models was also

explored [40]. For example in the Friedmann–Robertson–Walker (FRW) model the phantom

field minimally coupled to a gravity field leads to ρ + p = −φ̇2 which is always a negative

quantity, and p < −ρ corresponds to a fluid with a super-negative pressure. Phantom fields

lead to the super-accelerated expansion of the Universe, i.e. dH/dt > 0. The simplest

models describe this field in terms of minimally coupled real scalar field with the negative

kinetic energy term −1
2 φ̇

2 [62, 13, 63]. It is interesting that phantom fields are also present

in string theories [64, 65, 66] and arise as a phenomenological description of quantum effects

of particle production in terms of bulk viscosity [67]. Because the phantom fields violate

the Lorentz invariance condition most physicists believe that the phantoms open the doors

to new physics [68]. The investigation of the theoretical possibility to describe dark energy

in terms of phantom field was the subject of many papers [69, 46, 70, 71, 72, 73, 74, 75, 76,

77, 14, 78, 79, 80, 81, 82, 83, 84, 47]. In the paper by Dabrowski et al. [85] it is considered

the quantisation of phantom field via the Wheeler-DeWitt equation in quantum cosmology.

They showed that quantum effects give rise to avoiding the big-rip singularity. Also some

other basic problems in cosmology like the problem of direction of time can be solved.

1.2 Scalar–tensor theories of gravitation

The introductory material presented below follows the book V. Faraoni, Cosmology

in Scalar–Tensor Gravity [86].

1.2.1 Brans–Dicke theory

The Brans–Dicke theory [87] referred as the prototype of gravitational theories

alternative to general relativity is described by the basic action

SBD =
1

16π

∫
d4x
√
−g
{
ϕR− ω

ϕ
gµν∇µϕ∇νϕ− V (ϕ)

}
+ Sm (1.18)
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where Sm is the action describing ordinary matter (any form of matter different from the

scalar field ϕ) and the dimensionless constant ω is the only parameter of the theory. The

factor ϕ in the denominator of the second term in brackets in (1.18) is introduced to make ω

dimensionless. The adjective “prototype” emphasises the unique features that characterise

the original model compared with many others extended versions. The dynamics of the

model is described by the gravitational field, which is described by the metric tensor gµν

and by the BD scalar field ϕ, and the matter Sm which does not depend on ϕ.

The search for a theory of gravity containing Mach’s principle, which is not com-

pletely embodied in general relativity, was the original motivation for the introduction of

the Brans–Dicke theory [87].

Lets take a better look at the first term on the right-hand side of (1.18), the

non-minimal coupling term. This replaces the Einstein–Hilbert action

SEH =
1

16πG

∫
d4x
√
−g R (1.19)

in the standard theory of gravitation. We find that the Brans–Dicke model has no gravi-

tational “constant” but is characterised by the effective gravitational constant Geff defined

by

Geff(φ) =
1

ϕ
(1.20)

as long as the dynamical field ϕ varies slowly enough. Thus the effective gravitational

coupling becomes a function of the spacetime point. The values of ϕ > 0 are usually chosen

which corresponds to attractive gravity.

From the theoretical point of view, a value of the DB parameter ω of order unity

would be natural [86], and it does appear in the low-energy limit of string theories. However,

the larger the value of ω is, the closer BD theory is to general relativity. The bound from

the VLBI experiments, concerning the light-deflection phenomenon involving light from

extragalactic radio sources places the constraint ω > 3300 [88, 89, 86].

The BD theory reduces to general relativity in the limit of large ω, this is why

many physicists believe that the large value of ω required to satisfy the experimental bounds

on this parameter amounts to a fine-tuning that makes BD theory unattractive from the

physical point of view. Currently, the growing interest in the scalar-tensor theories, which

the BD theory is a special case, comes from the discovery that BD theory is related to the

Kaluza–Klein compactification of extra spatial dimensions and that the low energy limit of

the gravitational sector of bosonic string theory yields a BD theory with ω = −1 [86].
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1.2.2 Kaluza–Klein theory

Growing interest in BD theory is motivated by the fact that in the Kaluza–Klein

theory the BD scalar has a geometrical origin in the determinant of the metric defined on

the submanifold of the extra dimensions [86]. In the classical Kaluza–Klein theory [90] the

spacetime is (M⊗K, ĝAB), whereM is a 4-dimensional manifold with one timelike dimension

and K is a submanifold with d spatial dimensions (d ≥ 1). The D = 4 + d–dimensional

metric with d–dimensional compactified space is:

ĝAB =

 ĝµν 0

0 φ̂ab

 . (1.21)

where A,B, · · · = 0, 1, . . . , (3 + d), µ, ν, · · · = 0, 1, 2, 3 and a, b, · · · = 4, 5, . . . , (3 + d)

It is assumed that the metric (1.21) is diagonal, i.e. there are no off-diagonal terms

which where present in the original formulation of Kaluza–Klein theory, introduced in order

to unify electromagnetism and gravity [90].

The Kaluza–Klein cosmology in vacuum is described by the general relativity ac-

tion in D = 4 + d dimensions

S =

∫
d(4+d)x

√
−ĝL(4+d) =

1

16πĜ

∫
d(4+d)x

√
−ĝ
{
R̂− 2Λ̂

}
(1.22)

where ĝ = det (ĝAB), R̂ is the Ricci curvature for the metric ĝAB, Λ̂ and Ĝ are the 4 + d-

dimensional cosmological and gravitational constant. We assume that there is no other

form of matter different from Λ̂ in order to consider a regime in which the dynamics of the

universe is dominated by a single scalar field.

Introducing the determinant of the metric of the extra dimensions,

ϕ ≡
∣∣ det φ̂ab

∣∣ (1.23)

and the symmetric tensor ρab ≡ ϕ−1/dφab it is, by definition, | det (ρab)| = 1. It is also

assumed that the extra dimensions are compactified to a scale of size l. Then, the integral

over the (4+d) dimensions in (1.22) can be separated into an integral over the four spacetime

dimensions
∫

d4x and an integral over the remaining d dimensions
∫

ddx. The action reduces

to

S =
V (l)

16πĜ

∫
d4x
√
−g√ϕ

{(
R+RK − 2Λ̂

)
+

(d− 1)

4d

gµν∇µϕ∇νϕ
ϕ2

}
(1.24)
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where V (l) is the volume of the compact manifold K of the extra dimensions and RK is the

Ricci curvature of K.

Introducing the scalar field variable

φ ≡ √ϕ

and defining G = Ĝ/V (l), the action is

S =
1

16πG

∫
d4x
√
−g
{
φ
(
R+RK − 2Λ̂

)
+
d− 1

d

gµν∇µφ∇νφ
φ

}
(1.25)

which describes a Brans–Dicke theory (1.18)with

ω = −d− 1

d
.

In most investigations of inflation or quintessence, a cosmological scalar field is

required. Usually it is done by introducing this field by hand. Due to the presence of

extra spatial dimensions in vacuum, higher dimensional, general relativity, the Kaluza–

Klein theory give us an aesthetic derivation of the cosmological scalar field.

1.2.3 The dilaton from string theory

At tree level, the low energy action of the bosonic string theory in the string frame

is [91]

S =
1

2k2
D

∫
dDx
√
−g e−2Φ

{
R+ 4gµν∂µΦ∂νΦ− 1

12
HαβγH

αβγ − D − 26

l2S

}
(1.26)

where Φ is the dimensionless string dilaton, the 3-form Hαβγ = ∂[αbβγ] is the strength of

the Kalb–Ramond field bαβ, kD is the D-dimensional gravitational constant, and ls is the

string scale. In a spatially homogeneous and isotropic cosmology the 3-form field reduces

to H0βγ = 0, H123 = h(t) and can be modelled by a perfect fluid [92, 86]. This is why one

usually sets HαβγH
αβγ = 0 and preserves only the strong dilaton.

In four dimensions, the redefinition of the dilaton

ϕ = e−2Φ

transforms (1.26) into the BD action (1.18) with ω = −1

S =
1

2k2

∫
d4x
√
−g
{
ϕR+

1

ϕ
gµν∂µϕ∂νϕ

}
. (1.27)
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1.3 Non-minimal coupling

This dissertation is devoted to investigations of dynamical evolution of the Friedmann–

Robertson–Walker cosmological models, where a scalar field is explicitly coupled to the Ricci

curvature of spacetime. The gravitational part of the action is given by

Sg =
1

2κ2

∫
d4x
√
−g
(
R− 2Λ

)
(1.28)

where κ2 = 8πG, the action of a non-minimally coupled scalar field is

Sφ = −1

2

∫
d4x
√
−g
{
ε
(
gµν∇µφ∇νφ+ ξRφ2

)
+ 2U(φ)

}
(1.29)

where ε = ±1 corresponds to the canonical and the phantom scalar field, respectively, and

the action

Sm =

∫
d4x
√
−gLm (1.30)

describes barotropic matter content in the model.

The Einstein field equations we obtained from variation of the full action

δ

δgµν
(
Sg + Sφ + Sm

)
= 0 (1.31)

are

Rµν −
1

2
gµνR+ Λgµν = κ2

(
T (φ)
µν + T (m)

µν

)
, (1.32)

where the energy-momentum tensor of a non-minimally coupled scalar field is

T (φ)
µν = ε∇µφ∇νφ− ε

1

2
gµν∇αφ∇αφ− U(φ)gµν

+εξ

(
Rµν −

1

2
gµνR

)
φ2 + εξ

(
gµνg

αβ∇α∇β −∇µ∇ν
)
φ2 (1.33)

and

T (m)
µν =

−2√
−g

δ

δgµν

(√
−gLm

)
(1.34)

is the energy–momentum tensor for a barotropic matter. In Appendix A we have presented

a pedagogical derivation of these equations. The dynamical equation for the scalar field we

can obtain from the variation δS/δφ = 0

�φ− ξRφ− εU ′(φ) = 0, (1.35)

where � = gαβ∇α∇β. In Appendix B we show that this equation is conformally invariant

in four spacetime dimensions for ξ = 1/6 and U(φ) = 0 or U(ψ) = λφ4. This is the main
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reason to include ε parameter in equation (1.29) that the conformal coupling value ξ = 1/6

is valid for canonical and phantom scalar fields.

Now one should answer the question why non-minimally coupled scalar field? The

non-minimal coupling of the scalar φ in equation (1.35) is commonly known from the work

of Callan, Coleman and Jackiw [22], but it was earlier introduced by Chernikov and Tagirov

[21]. The main motivation for introduction of non-minimal coupling in Ref. [22] was that

ξ 6= 0 is generated by first loop corrections even if it is absent in the classical action and is

required by renormalizability of the theory. For any value of ξ different from the conformal

coupling 1/6 the Einstein equivalence principle is violated, therefore if we study cases with

ξ 6= 1/6 we are probing cosmological implications of violation of this principle. From a

pragmatic point of view [86], since non-minimal coupling is usually crucial for inflation, it

is better to take it into account and then decide whether or not its effects can be verified

through the observational astronomical data.

It is easy to notice that the theory of a non-minimally coupled scalar field is

formally equivalent to a scalar–tensor theory. The redefinition of the scalar field

ϕ =
1

κ2
− εξφ2 (1.36)

transforms the actions (1.28) and (1.29) into

S =
1

2

∫
d4x
√
−g
{
ϕR− ω(ϕ)

ϕ
gµν∇µϕ∇νϕ− V (ϕ)

}
(1.37)

where

ω(ϕ) =
κ2ϕ

4ξ(1− κ2ϕ)
(1.38)

and

V (ϕ) = U(φ(ϕ)) = U

(
±

√
1− κ2ϕ

εξκ2

)
. (1.39)

On the other hand using an appropriate conformal transformation (see Appendix

B) and redefined scalar field [86] one can relate a cosmological scenario in the Jordan frame,

in which the scalar field is non-minimally coupled to the Ricci curvature, with an evolution

in an Einstein frame, in which the transformed scalar field is minimally coupled. At present

there is no satisfactory answer which frame is physical [93, 86], this is why we work in the

original formulation of the theory in the Jordan frame.

Note, that when a non-minimal coupling constant is present the Einstein field

equations can be written in three possible inequivalent ways, resulting in different ways
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of defining of the energy density ρφ and the pressure pφ of the scalar field. In the case

adopted in this dissertation, called the Callan–Coleman–Jackiw approach [86], the energy-

momentum tensor (1.33)

T (φ)
µν = ε∇µφ∇νφ− ε

1

2
gµν∇αφ∇αφ− U(φ)gµν

+εξ

(
Rµν −

1

2
gµνR

)
φ2 + εξ

(
gµνg

αβ∇α∇β −∇µ∇ν
)
φ2 (1.40)

in the fourth term contains a contribution proportional to the Einstein tensor. The con-

tracted Bianchi identities

∇µ
(
Rµν −

1

2
gµνR

)
= 0 (1.41)

(for clarity we have omitted the Λ term in (1.32) because it always can be put in the

right hand side of this equation together with the redefinition of the potential function

Ũ(φ) = U(φ) + Λ/κ2) yield

∇µT (φ)
µν +∇µT (m)

µν = 0. (1.42)

Since T
(m)
µν does not depend on φ and ∇µT (m)

µν vanishes when the action is varied with

respect to the matter variables, T
(m)
µν and T

(φ)
µν are conserved separately,

∇µT (m)
µν = 0, (1.43)

∇µT (φ)
µν = 0. (1.44)

This is the reason of choosing the energy-momentum tensor for a non-minimally coupled

scalar field in the form (1.33). As we will see below it is not always true for other forms

[94].

In the second way, called the effective coupling approach [86], one proceeds by

writing the field equations (1.32) and (1.33) taking the term proportional to the Einstein

tensor from right side to the left hand side of equation, then

(1− εξκ2φ2)

(
Rµν −

1

2
gµνR

)
= κ2

(
T (II)
µν + T (m)

µν

)
(1.45)

where now the energy-momentum tensor of a non-minimally coupled scalar field is

T (II)
µν = ε∇µφ∇νφ− ε

1

2
gµν∇αφ∇αφ− U(φ)gµν

+εξ
(
gµνg

αβ∇α∇β −∇µ∇ν
)
φ2 = T (φ)

µν − εξ
(
Rµν −

1

2
gµνR

)
φ2 (1.46)
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Next, dividing equation (1.45) by the factor (1− εξκ2φ2), we get

Rµν −
1

2
gµνR = κ2

eff

(
T (II)
µν + T (m)

µν

)
(1.47)

where

κ2
eff(φ) =

κ2

1− εξκ2φ2
(1.48)

is an effective time dependent gravitational coupling for both T
(φ)
µν and T

(m)
µν . From the

contracted Bianchi identities we have

∇µ
(
κ2

eff

(
T (II)
µν + T (m)

µν

))
= 0 (1.49)

which leads to

∇µ
(
T (II)
µν + T (m)

µν

)
= − ε2ξκ2φ

1− εξκ2φ2
(∇µφ)

(
T (II)
µν + T (m)

µν

)
. (1.50)

The third and last possible way to write the Einstein field equations of the non-

minimally coupled scalar field theory, called a mixed approach [86],

Rµν −
1

2
gµνR = κ2

(
T (III)
µν +

T
(m)
µν

1− εξκ2φ2

)
(1.51)

where

T (III)
µν =

1

1− εξκ2φ

[
ε∇µφ∇νφ− ε

1

2
gµν∇αφ∇αφ− U(φ)gµν

+εξ
(
gµνg

αβ∇α∇β −∇µ∇ν
)
φ2

]
=

T
(II)
µν

1− εξκ2φ2
. (1.52)

We clearly see that there is again the limitation due to presence of the factor 1/(1−εξκ2φ2)

in the energy-momentum tensor. Note that

κ2T (III)
µν = κ2

effT
(II)
µν . (1.53)

In this case the contracted Bianchi identities yield conservation of the total energy-momentum

tensor

∇µ
(
T (III)
µν +

T
(m)
µν

1− εξκ2φ2

)
= 0. (1.54)

One can easy note that in the absence of ordinary matter, T
(III)
µν is covariantly conserved,

i.e., ∇µT (III)
µν = 0. In general case T

(III)
µν alone

∇µT (III)
µν = − ε2ξκ2φ

(1− εξκ2φ2)2
(∇µφ)T (m)

µν (1.55)
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is not covariantly conserved.

Let us consider the flat FRW cosmology with a non-minimally coupled scalar field

and barotropic matter content. Then from (1.35) we have

φ̈+ 3Hφ̇+ ξRφ+ εU ′(φ) = 0, (1.56)

and energy conservation condition from the variation δS/δgµν = 0

E = ε
1

2
φ̇2 + ε3ξH2φ2 + ε3ξH(φ2)̇ + U(φ) + ρm −

3

κ2
H2. (1.57)

Then conservation conditions read

3

κ2
H2 = ρφ + ρm, (1.58)

Ḣ = −κ
2

2

[
(ρφ + pφ) + ρm(1 + wm)

]
(1.59)

where the energy density and the pressure of the scalar field are

ρφ = ε
1

2
φ̇2 + U(φ) + ε3ξH2φ2 + ε3ξH(φ2)̇, (1.60)

pφ = ε
1

2
(1− 4ξ)φ̇2 − U(φ) + εξH(φ2)̇− ε2ξ(1− 6ξ)Ḣφ2

−ε3ξ(1− 8ξ)H2φ2 + 2ξφU ′(φ). (1.61)

These expressions are very complicated and it is very hard to make any conclusions by

inspecting their form. Therefore, the dynamical systems methods seem to be an appropriate

tool to investigate evolution of the cosmological models with a non-minimally coupled scalar

field.



Chapter 2

Geometry of chaos in scalar field

FRW models

FRW cosmologies with conformally coupled scalar fields are investigated in a ge-

ometrical way by the means of geodesics of the Jacobi metric. In this model of dynamics,

trajectories in the configuration space are represented by geodesics. Because of the singular

nature of the Jacobi metric on the boundary set ∂D of the domain of admissible motion,

the geodesics change the cone sectors several times (or an infinite number of times) in the

neighbourhood of the singular set ∂D.

We show that this singular set contains interesting information about the dynam-

ical complexity of the model. Firstly, this set can be used as a Poincaré surface for con-

struction of Poincaré sections, and the trajectories then have the recurrence property. We

also investigate the distribution of the intersection points. Secondly, the full classification

of periodic orbits in the configuration space is performed and existence of unstable periodic

orbits is demonstrated. Our general conclusion is that, although the presented model leads

to several complications, like divergence of curvature invariants as a measure of sensitive

dependence on initial conditions, some global results can be obtained and some additional

physical insight is gained from using the conformal Jacobi metric. We also study the com-

plex behaviour of trajectories in terms of symbolic dynamics.

Published in :

O. Hrycyna, M. Szyd lowski, Chaos, Solitons and Fractals 28, 1252 (2006), arXiv:gr-qc/0505155
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Recently, a geometric description of chaos in Hamiltonian systems of cosmological

origin has been formulated using the tools of Riemannian (or pseudo-Riemannian) geom-

etry [95, 96]. We concentrate on the approach to dynamics of the systems with a natural

Lagrangian function L = 1
2gαβ q̇

αq̇β − V (q). On the level of constant energy E this system

can be reduced to the geodesics flow on a pseudo-Riemannian manifold with the Jacobi

metric ĝαβ = 2(E − V )gαβ [97, 98, 99, 100]. The conformal metric becomes degenerate for

certain values of energy E, at some points of configuration space {E = V } for classical

systems as well as for general relativistic ones. As a consequence one has the complication

of matching together geodesics well defined on open sets across a singular surface and the

divergence of curvature invariants characterising the property of sensitive dependence on

initial conditions. One can avoid this crucial problem addressed in the context of Mixmaster

models [101, 102] by formulating corresponding dynamical system as a system in the Finsler

[103] or Eisenhart metric [104].

The fact that Jacobi geometry is singular suggests that this model of dynamics1 is

one of the worst possible choices when it comes to achieving characterisation of property of

sensitive dependence on initial conditions it terms of curvature invariants or when it comes

to achieving global results. It will be demonstrated that it is not true for the example of the

behaviour of geodesics in the Jacobi metric for FRW cosmological models with conformally

coupled scalar field. Of course, because of the singular nature of the Jacobi geometry, the

geodesics change from time-like to space-like (sometimes several or an infinite number of

times) during their evolution, but in order to “piece together the results”, one is forced to

try to match geodesics (which are representing periodic orbits of their original dynamics)

each time the solution passes through a singular point. This leads to the full classification of

periodic orbits in terms of “just piecing together” segments of geodesics. It is an example of

the fact that some global theorem about geodesics can be achieved. Using this classification

numerous methods based on symbolic dynamics and detection of the existence of unstable

periodic orbits are proposed toward an invariant characterisation of dynamical complexity

in cosmology [106].

The organisation of the chapter is the following. In section 2.1 the cosmological

FRW model with conformally coupled scalar field is presented as a Hamiltonian dynamical

system. This system belongs to larger class of simple indefinite dynamical systems for

1For interesting applications of Jacobi metric in the context of Schrödinger equation see [105]
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which kinetic energy form is quadric in the momenta and has Lorentzian signature (is

indefinite). In section 2.2 we consider Poincaré sections of the trajectories, with the surface

formed by the boundary set of the domain classically admissible for motion, as an indicator

of complex behaviour. Note that the trajectories have the property of recurrence due to

multiple intersections of singular set. In this section the full classification of simple periodic

orbits is performed and the largest Lyapunov exponent is calculated numerically. Section 2.2

also contains the analysis of distributions of intersection points on the singular set. The

existence of a weak noise observed in the Fourier analysis of intersections seems to be a

complementary indicator of chaotic behaviour.

2.1 FRW models with scalar fields as a simple indefinite dy-

namical systems

The dynamical systems of cosmological origin have many special features which

distinguish them from those met in classical mechanics. It is in fact the origin of some

problems and controversy in understanding of chaos in cosmology [107, 108].

In this section we shall study the dynamical complexity of a simple inflationary

models of the Universe, regarded as Hamiltonian dynamical systems. They appeared, for

example, in Linde’s chaotic inflation scenario, where inflation is driven by the vacuum energy

of a single slowly rolling inflaton field [2].

The dynamics of cosmological models, allowing for an inflaton field, has been

studied by many authors [33]. The idea of inflation which was introduced to solve some

of the underlying problems in the standard big-bang cosmology becomes strictly connected

with the existence of a scalar field which generates the period of an accelerated expansion

of the Universe. In this case its energy density becomes dominated by the potential energy

U(ψ) of the scalar field ψ (the inflaton). Although the dynamics of inflation depends on

the specifics of the models, the basic mechanism lies in the equation of motion which for a

homogeneous scalar field (ψ = ψ(t)) takes the form

ψ̈ + 3Hψ̇ + U ′(ψ) +
1

6
Rψ = 0, (2.1)

where an over dot represents a derivative whit respect to the cosmological time t, and

U ′ = dU/dψ, R is the Ricci scalar here, and the last term vanishes for minimally coupled
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scalar fields (in general the last term is ξRψ, where ξ = 1/6 for the case of conformally

coupled scalar fields).

Here we deal with a single homogeneous and conformally coupled scalar field ψ

with potential U(ψ) on the FRW background. The same system was previously considered

in terms of the original dynamical systems without using the conformal Jacobi metric by

many authors in the context of inflation and chaos [109, 110, 111]. Our goal in this chapter

is to point out different manifestations of the complex dynamics in terms of geodesics in the

Jacobi metric. The motivation for such a study is to obtain an additional physical insight

using the conformal metric and the behaviour of periodic orbits.

Our cosmological model assumes the FRW spatial geometry, that is, the line ele-

ment is of the form

ds2 = a2(η){−dη2 + dχ2 + f2(χ)(dθ2 + sin2 θdϕ2)}, (2.2)

where 0 ≤ ϕ ≤ 2π, 0 ≤ θ ≤ π, 0 ≤ χ ≤ π and η is the conformal time dt/a = dη; a – the

scale factor;

f(χ) =


sinχ, 0 ≤ χ ≤ π k = +1

χ, 0 ≤ χ ≤ ∞ k = 0

sinhχ, 0 ≤ χ ≤ ∞ k = −1

k is the curvature index.

The gravitational dynamics is derived from the Einstein-Hilbert action

Sg =
1

2κ2

∫
d4x
√
−g(R− 2Λ), (2.3)

where g is the determinant of the metric; −g = a4f2(χ) sin θ and R is the curvature scalar

for metric (2.2) given by

R = 6

{
ä

a3
+

k

a2

}
, (2.4)

where a dot denotes differentiation with respect to η. In so far as Robertson-Walker sym-

metry holds, the scalar field should be homogeneous ψ = ψ(t).

The action for a conformally coupled (real) scalar field is given by

Sφ = −1

2

∫
d4x
√
−g
{
gµν∂µψ∂νψ +

1

6
Rψ2 + 2U(ψ)

}
(2.5)

where U(ψ) = 1
2m

2ψ2 + λ
4ψ

4 is the assumed form of potential for this scalar field.

After integration over the spatial variables (
∫

d3x = 2π2 is the conformal volume

of an spatial hypersurface of constant curvature) and discarding total derivatives in the full
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action we obtain dynamical system with two degrees of freedom: a and a rescaled scalar

field φ : ψ → φ =
√

1/6aψ with Hamiltonian

H =
1

2
{−(p2

a + ka2) + (p2
φ + kφ2) +m2a2φ2 + λφ4 + Λa4}, (2.6)

where m2 is the mass of the scalar field, Λ is constant proportional by the factor of 1/3 to

the cosmological constant.

The evolution of the system should be considered on the H = 0 energy level for

vacuum cosmology or on the H = −ρr,0 energy surface if we add a radiation component to

the energy-momentum tensor whose energy density scales like ρr = ρr,0a
−4, where ρr,0 =

const [112]. Let us note that system (2.6) belongs to a larger class of dynamical systems

which we call simple indefinite mechanical systems.

By simple indefinite mechanical system we understand the triple (M, g, V ), where

M is the configuration space carrying a metric g which defines the indefinite kinetic energy

form K = 1
2g(u,u), u ∈ TxM, x ∈ M. V is the potential function V : M → R which is

C∞, and g has the Lorentz signature (−,+,+,+).

The “simple” in the above context means that dynamical system has the natural

form of Lagrange function L = 1
2gαβ q̇

αq̇β − V (q), where α, β = 1, . . . , N and q and q̇ are

generalised coordinates and velocities respectively. The Hamilton function for such a system

is of the form

H(p, q) =
1

2
gαβpαpβ + V (q), pα = gαβ q̇

β. (2.7)

For the system under consideration (q1, q2) = (a, φ). Because of our general relativity and

cosmology application H = E = const ⇐⇒ gαβ q̇
αq̇β = 2(E−V (q)). Therefore trajectories

of the system in the tangent space of R2N with coordinates (qα, q̇α) are situated in the

domain described by Ω = {(qα, q̇α) ∈ R2N : gαβ q̇
αq̇β = ‖u‖2 = 2(E − V (q))}.

In the tangent space Tq(RN ) it is natural to distinguish three classes of vectors,

namely, a vector u is time-like if ‖u‖2 < 0, space-like if ‖u‖2 > 0 and null if ‖u‖2 = 0.

In the configuration space we distinguish three subsets

DS = {q ∈ RN : E − V (q) < 0},
DT = {q ∈ RN : E − V (q) > 0},
∂D = {q ∈ RN : E − V (q) = 0}.

(2.8)

Note that set ∂D is the boundary set because in its neighbourhood we can always find

points of DS and DT
∂DS = ∂DT = ∂D. (2.9)
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In the three distinguished domains the character of the vector tangent to a trajec-

tory is determined by the Hamiltonian constraint H = E. Therefore if a trajectory changes

the domain, say DS to DT , it crosses ∂D and the tangent vector to that trajectory at the

point q ∈ ∂D is situated on the cone determined by the kinetic form: gαβ q̇
αq̇β = E. In

Ref. [101] we can find the proof that in the case of Bianchi IX model trajectory crosses

the boundary set V = 0. During each of oscillations that occur close to boundary set the

solution is instantaneously Kasner and therefore V = 0 an infinite number of times.

The physical trajectories of the simple indefinite systems are geodesics on pseudo-

Riemannian manifold without the boundary (on which metric is degenerate) if we define

the metric

ĝαβ = 2|E − V |gαβ

and reparameterize the time variable η → s [113]:

ds

dη
= 2|E − V |.

In our further considerations, we will demonstrate the advantages of the analysis of be-

haviour of trajectories in a neighbourhood of the boundary set ∂D of the region classically

admissible for motion. It is also a surface of degeneration of the Jacobi metric. This sur-

face and points of its intersections with the trajectories of the system contain interesting

information about complex behaviour. For simplicity of presentation of this idea we assume

k = +1, i.e. the closed FRW model filled with the conformally coupled scalar field is con-

sidered. The domain (classically) admissible for motion, as well as the boundary set, are

shown on the figure 2.1 (q1 = a, q2 = φ).

2.2 Different evidences of chaotic behaviour

2.2.1 Poincaré sections

It is clear that if a trajectory passes trough the boundary set ∂D, then tangent

vector to the trajectory is null, i.e. it lies on the cone gαβ q̇
αq̇β = 0. The physical trajectories

of the indefinite mechanical systems for given total energy E (zero for vacuum cosmology)

are geodesics if we choose metric in the form ĝαβ = 2(E − V )gαβ in both domains DS and

DT . On the boundary E = V the metric is degenerate, which is a source of obstacles if

we define the property of sensitive dependence on initial conditions in terms of curvature
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Figure 2.1: The domain admissible for motion of the FRW closed system with a conformally
coupled scalar field. In the shaded area trajectories behave locally unstable Kg(u,u) < 0
where K is the Gauss curvature for the Jacobi metric.

invariants (the Gauss curvature in our case). In both open regions DS and DT the Euler-

Lagrange equation for the Lagrangian L = 1
2gαβ q̇

αq̇β − V (q), ( ˙ = d
dt) assumes the form of

geodesics equation after reparameterization of the time variable [113]

t→ s :
ds

dt
= 2|E − V | (2.10)

where s is the natural parameter defined along geodesics.

The criterion of local instability of geodesics flow can be formulated as Kg(u,u) <

0, where u is the vector tangent to the trajectory and K is the Gauss curvature for the

Jacobi metric. This domain is represented by shaded regions on the figure 2.1. Due to the

representation dynamics as a geodesics flow one can imagine fictitious free falling particle

in both domains DS and DT meeting the singularity (infinite curvature K) at the boundary

set ∂D which play the role of a scattering surface.

The figures 2.2, 2.3, 2.4 show three trajectories in the configuration space for

three different initial conditions together with Lyapunov exponents in time, calculated in

the standard way. Note that in all cases Lyapunov principal exponent goes to zero as

η →∞ which corresponds to the singularity at the conformal time. This suggests that the

system under consideration has no property of sensitive dependence on initial conditions

which is characteristic rather for integrable systems. Another property which distinguishes
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Figure 2.2: The trajectory in the configuration space for initial conditions a0 = 0, φ0 =
φ̇0 = 0.5 (ȧ0 calculated from Hamiltonian constraint) and Lyapunov principal exponent
which tends to zero which may suggest that the system is regular.

the system from other systems of classical mechanics with conception of absolute time

is that they do not posses property of topological transitivity which is crucial point for

understanding of classical chaos conception [60].

It is useful to choose degeneration line V (a, φ) = 0 as a Poincaré surface. Let us

concentrate on the simplest case of k = +1 and Λ = λ = 0. Then φ = ±a/
√

1 + a2 is an

algebraic equation of the boundary set. On figure 2.5 one can see Poincaré section on the

surface V (a, φ) = 0 on the plane (a, φ̇) for different initial conditions.

While in figure 2.5 we find most trajectories as regular, there are, of course, chaotic

trajectories. Some details of their concentrations in neighbourhood of saddle points and

forming stochastic layers is illustrated on figure 2.6.

2.2.2 Symbolic dynamics in detection of dynamical complexity

Hadamard [114] was the first to use methods of trajectories coding in investigations

of geodesics on compact space with negative curvature, which belongs now to the field of

symbolic dynamics. The significance of this method in the context of closed cosmology

with a scalar field was pointed out by Kamenshchik et al. [115]. The crucial feature of

this model is the existence of points of maximal expansion (ȧ = 0, ä < 0) and sometimes

points of minimal contraction (ȧ = 0, ä > 0) or “bounces”. Then it is possible to classify

all trajectories using localisation of their points of maximal expansion and calculate the
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Figure 2.3: The trajectory in the configuration space for initial conditions a0 = 0, φ0 =
φ̇0 = 0.55 (ȧ0 calculated from Hamiltonian constraint) and Lyapunov principal exponent.

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
−1.5

−1

−0.5

0

0.5

1

1.5

a

φ

0 5 10 15 20 25 30 35 40
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

η

λ

Figure 2.4: The trajectory in the configuration space for initial conditions a0 = 0, φ0 =
φ̇0 = 0.65 (ȧ0 calculated from Hamiltonian constraint) and Lyapunov principal exponent.
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Figure 2.5: Poincaré section surface V (a, φ) = 0 and ȧ < 0, φ̇ > 0.

topological entropy which measures the growth of the number of periodical orbits as their

period increases. Hence one can quantify the length of orbit by the number of symbols A

– bounce of trajectory (ȧ = 0, ä > 0), B – crossing the line φ = 0. Note that a ≥ 0 for

physical reasons the extension of trajectories to a < 0 domain means the extending the

solutions beyond the big crunch which is only mathematically admissible [107].

For the model under consideration, two different coding procedures were used. In

the first method we count all the intersections of trajectories with the axis {a = 0}. For

φ > 0 we put symbol (1) while in opposite case if φ < 0 we put symbol (0). Another method

of codding trajectories rests on the analysis of intersections points with the boundary set

∂D defined as the surface V (a, φ) = 0 in the configuration space (a, φ). One can quantify

the length of the orbit by two symbols : (1) – if φ > 0 at intersection point, and (0) in the

opposite case if φ < 0. In both approaches mentioned before the trajectories are represented

by a sequence of zeros and ones. The next step in our analysis is the division of all coding

trajectories into blocks in the simplest way. The blocks consist of to letters (00), (01), (10)

and (11) and blocks (01) and (10) are treated as a identical. Then, after counting different
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Figure 2.6: Details of Poincaré section from figure 2.5.
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blocks one can calculate the Shannon informative entropy following the rule

HS =
r∑
i=1

pi ln
1

pi
, (2.11)

where pi (i = 1, . . . , r) is the probability that a given block will appear in the trajectory

coding.

The informative Shannon entropy characterises the uncertainty degree of appear-

ance of a given result. Following definition (2.11) HS is a number which belongs to the

interval [0, ln r]. If for all i pi assumes the same value equal 1/r then from definition (2.11)

we obtain HS = ln r which is the maximal value of HS . From figure 2.7 one can observe

that HS is a growing function of initial conditions φ0 to the limit which corresponds to

purely chaotic behaviour.
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Figure 2.7: Shannon informative entropy as a function of φ0 for two different codding
methods. The horizontal line HS = ln 3 denotes the limit for purely random process.

2.2.3 Distribution of intersection points on the boundary set

It is interesting to check how the intersection points are distributed on the bound-

ary line described by function φ = a/
√

1 + a2. Let L be the length along that line calculated

from the origin to the intersection point and N denote number of such intersections in the

interval L±∆L. Of course N can be normalised to P and treated as a probability of finding

a fictitious particle moving along a geodesic at a given point of ∂D. The probability P as
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a function of L (normalised to unity) is shown in figure 2.8. For deeper analysis of the

distribution of the points Fourier analysis was performed and the results of such analysis

are shown in figure 2.9. The existence of weak noise in the power spectrum can indicate

chaotic distribution of the intersection points.
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Figure 2.8: Intersection points of the boundary set ∂D. Points of intersection of trajectory
with set ∂D as a function of time (left) and probability of finding a particle-universe on a
given subset of the set ∂D during evolution (right).

2.2.4 Unstable periodic orbits as an indicator of complexity of dynamics

It would by useful for classification of the periodic orbits to consider some reflection

symmetries of the system. Of course, the system possesses reflection symmetry η → −η
and qi → −qi (qi = a, φ). Therefore it is sufficient to investigate motion in one quarter, say

a > 0 and φ > 0, to reconstruct the motion in the remaining quarters.
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Figure 2.9: Fourier analysis of distributions from figure 2.8. Existence of weak noise in the
power spectrum can indicate a chaotic distribution of intersection points.

Due to the symmetries mentioned before the simplest periodic orbits in the con-

figuration space can be grouped in the following five classes

• trajectories of type ‘I a’ starting from the boundary line V (a0, φ0) = 0 with initial

conditions (ȧ0, φ̇0) = (0, 0) for which after a 1/4 of period the inflection point at φ at

a = 0 is reached with (ȧ, φ̇) = (−φ, 0) or (+φ, 0); see figure 2.10

• trajectories of type ’I b’ also starting from the boundary set and reaching the singular

point (a, φ) = (0, 0) for which ȧ = φ̇ or ȧ = −φ̇ after a 1/4 of the full period; see

figure 2.11

• trajectories of type ’II a’ starting from a point of configuration space (a0, 0) with

(ȧ0, φ̇0) = (0, a0) and arriving at the inflection point of φ(a) diagram at a = 0 (ȧ, φ̇) =

(−φ, 0) or (+φ, 0) after a 1/4 of full period; see figure 2.12

• trajectories of type ’II b’ starting from the point (a0, 0), (ȧ0, φ̇0) = (0, a0) and reaching

the singular point (a, φ) = (0, 0) and ȧ = φ̇ or ȧ = −φ̇ after a 1/4 of the full period;

see figure 2.13

• trajectories of type ’III’ (which are the union of all previously mentioned cases) start-

ing from the boundary set V (a0, φ0) = 0 with (ȧ0, φ̇0) = (0, 0), after a 1/4 of the full

period they reach one inflection point at scale factor a, and φ = 0 with (ȧ, φ̇) = (0,±a),
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Type q1
0 = a0 Period

I a 1.90228463575087 8.21179541505428
4.07891339562106 9.68359976287486
6.14180160301955 10.3389393707077

I b 2.63614545223571 9.49181146895361
4.67384662462167 10.4432886891063
6.68822113801299 10.8883259280963

II a 3.08416398565973 9.12958397138681
5.16022385714180 10.06129848810491
7.19459890603674 10.55370414489915

II b 1.64890985955010 8.45628399932237
3.71764148794895 10.07328719135456
5.72295574169836 10.69967308122208

III 2.47587020635594 17.99123630712047
2.75437747583008 19.56534435565128
2.94236929747301 20.15957644135879

Table 2.1: Unstable periodic trajectories.

after a 1/2 of the period they reach the symmetrical point to the initial condition with

respect to φ–axis; see figure 2.14

Of course there are also non-symmetric periodic orbits present (see figure 2.15) but they are

not a subject of our consideration. In Table 2.1 we can find the periods of typical periodic

orbits which we obtain by using the modified multi shooting method [116]. To illustrate

the property of sensitive dependence on initial conditions we investigate the evolution of

the separation vector in the phase space in the term of “Lyapunov like” principal exponent.

The principal Lyapunov exponent as well as the distance of the separation vector for initial

conditions’ separation ∆a = 10−12, are illustrated in figure 2.16. One can observe the

existence of unstable periodic orbits in the model which should be treated as a strong

evidence of chaos [117].

2.3 Conclusions

The complex behaviour of trajectories of FRW cosmological models with scalar

field was investigated by means of geodesics of the Jacobi metric.

We pointed out the role of the singular set ∂D of degeneration of the Jacobi metric
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Figure 2.10: Periodic trajectories of type ‘I a’ in the configuration space.
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Figure 2.11: Periodic trajectories of type ‘I b’ in the configuration space.

in detection of complexity of dynamical behaviour. We find that this domain can be useful

as a Poincaré surface. Moreover, the distribution of the intersection points as well as the

existence of periodic orbits contain interesting information about the degree of complexity

of its dynamics. Therefore all these investigations should be treated as a complementary

description of chaotic behaviour in a geometrical way.

We have demonstrated the complexity of dynamics in the sense of (1) Poincaré

sections, (2) random distribution of intersection points, (3) the existence of unstable periodic

orbits and (4) chaos in trajectories coding. All this evidence has rather mathematical

sense because we prolong trajectories to the nonphysical domain a < 0. The true sense of
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Figure 2.12: Periodic trajectories of type ‘II a’ in the configuration space.
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Figure 2.13: Periodic trajectories of type ‘II b’ in the configuration space.

complexity following Motter and Letelier [107] is in the nonintegrability of its dynamics.

In Ref. [118, 119, 120] authors have investigated the model under consideration in the

framework of nonintegrability and showed that they are non-integrable in the sense of

nonexistence of meromorfic first integrals for the generic case of the model’s parameters.

To that end, the Yoshida, Ziglin, and strong methods of differential Galois group are used.

The presented approach offers some new possibilities of coding trajectories for

which a well defined conception of Kolmogorov complexity can be also applied [121]. In

1963-1965 A. N. Kolmogorov proposed to consider a measure of complexity in the framework

of the general theory of algorithms. Let us consider model of dynamics in the form of
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Figure 2.14: Periodic trajectories of type ‘III’ in the configuration space.
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Figure 2.15: Non-symmetrical periodic trajectories in the configuration space.

mathematical object that has binary string α as its complete description. Then we can use

the length of the shortest program in bits as a measure of the complexity of the object [122].

Let us now consider a cosmological model as a mathematical object that has coding

dynamics in the form of binary string α as its complete description. Then for the purpose of

quantifying complexity, the notion of Kolmogorov idea can be useful. The question, whether

the FRW cosmological model is complex in the Kolmogorov sense, is open. In our opinion

the geometrical language introduced here offers a new, interesting possibility of trajectories

coding in the form of binary strings which makes answering this question easier.
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Figure 2.16: Stability analysis for the first trajectory from figure 2.10. Principal Lyapunov
exponent (left) and the distance of separation vector (right) for initial conditions’ separation
∆a = 10−12.



Chapter 3

Scattering processes in

cosmological dynamics

The general chaotic features of dynamics of the phantom field modelled in terms

of a single scalar field conformally coupled to gravity are studied. We demonstrate that the

dynamics of the FRW model with dark energy in the form of phantom field can be regarded

as a scattering process of two types: multiple chaotic and classical non-chaotic. It depends

whether the spontaneous symmetry breaking takes place. In the first class of models with the

spontaneous symmetry breaking the dynamics is similar to the one in Yang–Mills theory.

We find the evidence of a fractal structure in the phase space of initial conditions. We

observe similarities to the phenomenon of a multiple scattering process around the origin.

In turn the class of models without the spontaneous symmetry breaking can be described as

the classical non-chaotic scattering process and the methods of symbolic dynamic are also

used in this case. We show that the phantom cosmology can be treated as a simple model

with scattering of trajectories whose character depends crucially on the sign of a square of

mass. We demonstrate that there is a possibility of chaotic behaviour in the flat Universe

with a conformally coupled phantom field in the system considered on non-zero energy level.

We obtain that the acceleration is a generic feature in the considered model without the

spontaneous symmetry breaking.
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The main goal of this chapter is to model the phantom fields in terms of scalar

fields with a potential rather than in terms of the barotropic equation of state. For the latter

case the dynamics is regular and can be represented on the two-dimensional phase space

[123]. Usually phantom fields are modelled in terms of minimally coupled scalar fields The

case of phantom field minimally coupled to gravity was analysed in the context of existence

of periodic solutions [124]. The authors demonstrated that the dynamics is trivial in the

sense of nonexistence of periodic solutions. Faraoni used the framework of phase space for

investigating the dynamics of phantom cosmology, late-time attractors, and their existence

for different shapes of potential [125]. It was showed that dynamics of the flat FRW universe

can be reduced to the form of a two-dimensional dynamical system on a double sheeted phase

space. It is a simple consequence of an algebraic equation for ψ̇ which can be expressed

as a function of the Hubble parameter H and ψ. In this case there is no place for chaotic

behaviour of trajectories in the phase space (H,ψ, ψ̇) [126]. The exit on the inflationary

epoch and bounce was showed in the flat FRW universe with two interacting phantom

scalar fields [127]. In the closed FRW cosmological model with minimally coupled scalar

field there appears transient chaos which has the character of the scattering process [128].

The scattering process takes place during the bounce — a transition from a contracting

to expanding universe. In this context the language of symbolic dynamics and topological

entropy were used [129, 130, 115].

In this chapter we ask what kind of dynamics can be expected from the FRW model

with phantom field. It is well known that the standard FRW model reveals some complex

dynamics. The detailed studies gave us a deeper understanding of dynamical complexity and

chaos in cosmological models and resulted in conclusion that complex behaviour depends

on the choice of a time parameterisation or a lapse function in general relativity [131, 132,

111]. Castagnino et al. [133] showed that dynamics of the closed FRW models with a

conformally coupled massive scalar field is not chaotic if considered in the cosmological

time. The same model was analysed in the conformal time by Calzetta and Hasi [110] who

presented the existence of chaotic behaviour of trajectories in the phase space. Motter and

Letelier [107] explained that this contradiction in the results is obtained because the system

under consideration is non-integrable. Therefore we can speak about complex dynamics in

terms of nonintegrability rather than deterministic chaos. The significant feature is that

nonintegrability is an invariant evidence of dynamical complexity in general relativity and

cosmology [119].
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We can find many analogies between models with spontaneously symmetry break-

ing and the Yang-Mills systems. Problems of chaotic behaviour in the Yang-Mills cosmolog-

ical models have been investigated by Barrow and his collaborators. Chaos from Yang-Mills

can only occur in an anisotropic universe but it occurs for some arbitrarily small anisotropy

(see the study of Bianchi I [134] and other Bianchi types [135]). However, when a perfect

fluid is added things change in an interesting way that contrast with the situation with a

magnetic field [136].

For the FRW model with phantom it can be shown that there is a monotonous

function along its trajectories and it is not possible to obtain the Lyapunov exponents or

construct the Poincaré sections. Therefore it is useful to study the nonintegrability of the

phantom system and set it in a much stronger form by proving that the system does not

possess any additional and independent of Hamiltonian first integrals, which are in the

form of analytic or meromorphic functions. Of course, it is not the evidence of sensitive

dependence of solution on a small change of initial conditions. However, it is the possible

evidence of complexity of dynamical behaviour formulated in an invariant way [123].

The notion of deterministic chaos is a controversial issue in the Mixmaster models.

The value of the numerically computed maximal Lyapunov exponent for those systems de-

pends on the time parameterisation used [137]. However, the existence of fractal structures

in the phase space provides the coordinate independent signal of chaos in cosmology as it

was shown by Cornish and Levin [111]. In particular, they found that the Bianchi IX has a

form of chaotic scattering. The short scattering periods intermittent integrable motion and

evolution of the system is chaotic. It is similar to a pin-ball machine.

The main goal of this chapter is to show that dynamics of phantom cosmology

can be treated as a scattering process. If the spontaneous symmetry breaking is admitted

this process has chaotic character. Evidences of dynamical behaviour are studied in tools

of symbolic dynamics, fractal dimension, and analytically the Toda-Brumer-Duff test.

3.1 Hamiltonian dynamics of phantom cosmology

We assume the model with FRW geometry, i.e., the line element has the form

ds2 = −dt2 + a2(t)[dχ2 + f2(χ)(dθ2 + sin2 θdϕ2)], (3.1)
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where

f(χ) =


sinχ, 0 ≤ χ ≤ π k = +1

χ, 0 ≤ χ ≤ ∞ k = 0

sinhχ, 0 ≤ χ ≤ ∞ k = −1

(3.2)

k = 0,±1 is the curvature index, 0 ≤ ϕ ≤ 2π and 0 ≤ θ ≤ π are comoving coordinates, t

stands for the cosmological time.

It is also assumed that a source of gravity is the phantom scalar field ψ with

a generic coupling to gravity. The gravitational dynamics is described by the standard

Einstein-Hilbert action

Sg =
1

2κ2

∫
d4x
√
−g(R− 2Λ), (3.3)

where κ2 = 8πG; for simplicity and without lost of generality we assume 4πG/3 = 1. The

action for the matter source is

Sph = −1

2

∫
d4x
√
−g
{
− gµν∂µψ∂νψ − ξRψ2 + 2U(ψ)

}
, (3.4)

where U(ψ) is a scalar field potential. We assume

U(ψ) =
1

2
m2ψ2 +

1

4
λψ4 (3.5)

and that conformal volume
∫
d3x over the spatial 3-hypersurface is unity. ξ is the coupling

constant of the scalar field to the Ricci scalar

R = 6

(
ä

a
+
ȧ2

a2
+

k

a2

)
(3.6)

where a dot means the differentiation with respect to the cosmic time t.

The dynamical equation for phantom cosmology in which the phantom field is

modelled by the scalar field with an opposite sign of the kinetic term in action can be

obtained from the variational principle δ(Sg + Sph) = 0. After dropping the full deriva-

tives with respect to time we obtain the dynamical equation for phantom cosmology from

variation δ(Sg + Sph)/δg = 0 as well as the dynamical equation for field from variation

δ(Sg + Sph)/δψ = 0

ψ̈ + 3Hψ̇ − dU

dψ
+ ξRψ = 0. (3.7)

It can be shown that for any value of ξ the phantom behaves like some perfect fluid with

the effective energy ρψ and the pressure pψ in the form which determines the equation of

state factor

wψ =
−1

2 ψ̇
2 − U(ψ) + ξ[2H(ψ2)˙ + (ψ2)̈ ] + ξψ2(2Ḣ + 3H2)

−1
2 ψ̇

2 + U(ψ)− 3ξH[Hψ2 + (ψ2)˙]
≡
pψ
ρψ
. (3.8)
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In equation (3.8) the second derivative (ψ2)̈ in the expression for the pressure can

be eliminated and then we obtain

pψ =

(
−1

2
+ 2ξ

)
ψ̇2−ξH

(
ψ2
)
˙−2ξ

(
6ξ−1

)
Ḣψ2−3ξ

(
8ξ−1

)
H2ψ2−U(ψ)+2ξψ

dU

dψ
. (3.9)

Of course such perfect fluid which mimics the phantom field satisfies the conservation equa-

tion

ρ̇ψ + 3H(ρψ + pψ) = 0. (3.10)

We can see that complexity of a dynamical equation should manifest by complexity of wψ.

Let us consider the FRW quintessential dynamics with some effective energy den-

sity ρψ given in equation (3.8). This dynamics can be reduced to the form like of a particle

in a one-dimensional potential [138] and the Hamiltonian of the system is

H(a′, a) =
(a′)2

2
+ V (a) ≡ 0, V (a) = −ρψa4 (3.11)

where a prime means the differentiation with respect to the conformal time η.

The trajectories of the system lie on the zero energy level for flat and vacuum

models. Note that if we additionally postulate the presence of radiation matter for which

ρr ∝ a−4 then it is equivalent to consider the Hamiltonian on the level H = E = const. Of

course the division on kinetic and potential parts has only a conventional character and we

can always translate the term containing ψ̇2 into a kinetic term.

The dynamics of the model is governed by the equation of motion (3.7), which is

equivalent to the conservation condition (3.10) and the acceleration condition

ä

a
= −ρψ(1 + 3wψ). (3.12)

This equation admits the generalised Friedmann first integral which assumes the following

form

− 1

2
ψ̇2 + U(ψ)− 3ξH2ψ2 − 3ξH(ψ2)˙ =

1

2
H2 − 1

6
Λ− ρr. (3.13)

If we postulate existence of radiation in model then left hand of this equation can be

negative.

3.1.1 Conformally coupled phantom fields

For conformally coupled phantom fields we put ξ = 1/6 and rescaled the field

ψ → φ = ψa. Then the energy function takes the following form for a simple mechanical
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system with a natural Lagrangian function L = 1
2gαβ(qα)′(qβ)′ − V (q)

E =
1

2

(
(a′)2 + (φ′)2

)
− 1

2
m2φ2a2 − λ

4
φ4 − Λ

6
a4. (3.14)

In contrast to the FRW model with conformally coupled scalar field the kinetic energy form

is positive definite like for classical mechanical systems. The general Hamiltonian which

represents the special case of a two coupled non-harmonic oscillators system is

H =
1

2
gαβpαpβ + V (q) =

1

2
(p2
x + p2

y) +Ax2 +By2 + Cx4 +Dy4 + Ex2y2, (3.15)

where A, B, C, D, and E are constants.

In order to study the integrability of dynamical systems we use Painlevé’s ap-

proach. Painlevé’s analysis gives necessary conditions for the integrability of dynamical

systems and it is the most popular integrability detector. The recapitulation of Painlevé’s

analysis for system (3.15) was done by Lakshmanan and Sahadevan [139]. They found that

system (3.15) passes the Painlevé test and is integrable in the following four cases

Λ = λ m2 = 3Λ

Λ = λ m2 = Λ

Λ = 8λ m2 = 3Λ

Λ = 16λ m2 = 6Λ.

This result is in full agreement with conclusions concerning integrability of the two coupled

quartic non-harmonic oscillator systems. Therefore, phantom cosmology can be considered

as coupled quartic non-harmonic oscillators. Of course, Painlevé analysis gives necessary

conditions for the integrability of dynamical systems. However, there exist whole classes of

integrable systems which do not possess the Painlevé property. It means that the Painlevé

approach gives over-restrictive conditions for integrability. It is obvious that for m2 = 0 the

FRW phantom cosmology is integrable because of the possibility to separate of variables in

the potential. Then we have two decoupled quartic non-harmonic oscillators.

The non-integrability of the non-flat FRW model with the scalar field with the

potential V (φ) ∝ φ2 was investigated in an analytical way by Ziglin [140]. For a deeper

analysis of integrability in the terms of differential Galois group methods developed by

Ziglin and Morales-Ruiz and Ramis see [123].



Chapter 3: Scattering processes in cosmological dynamics 41

It would be useful to compare Hamiltonians for the cosmological model with phan-

tom fields and the standard cosmological model with scalar fields. Let us consider that

Λ = λ = 0 for simplicity of presentation. Then for both models we have Hamiltonians

Hph =
1

2
(−p2

a − p2
φ) +

k

2
(φ2 − a2) +

1

2
m2a2φ2 (3.16)

and

HFRW =
1

2
(−p2

a + p2
φ) +

k

2
(φ2 − a2) +

1

2
m2a2φ2. (3.17)

If we add a radiation component to the energy momentum tensor, whose energy density

scales like ρr = ρr,0a
−4 then both systems should be considered on the constant energy level

H = E = ρr,0 or the constant ρr,0 can be absorbed by the new Hamiltonian H̄ ≡ H − ρr,0

and H̄ is considered on the zero energy level.

Let us concentrate on the flat models to analyse the similarities to the Yang-Mills

systems. While the standard cosmological model is described by the Hamiltonian

HFRW =
1

2
(−p2

a + p2
φ) +

1

2
m2a2φ2. (3.18)

the phantom cosmological model is

Hph =
1

2
(−p2

a − p2
φ) +

1

2
m2a2φ2 (3.19)

The crucial difference between system (3.18) and (3.19) lies in the definiteness

of their kinetic energy forms. It is indefinite and has the Lorentzian signature for the

standard model, and it is positive definite for the phantom model. As a consequence we

obtain that the configuration space for the standard model is R2 whereas the condition

ρr,0 + 1
2m

2φ2a2 > 0 determines the domain of the configuration space admissible for motion

for the phantom model. Note that if m2 < 0 (the model with the spontaneous symmetry

breaking) then this domain is bounded by four hyperbolas in every quarter of the (a, φ)

plane. The same situation can be obtained for the model without the spontaneous symmetry

breaking (m2 > 0) and dark radiation (ρr,0 < 0).

The flat phantom model with the spontaneous symmetry breaking is well known

as the Yang-Mills systems which have been analysed since the pioneering paper by Savvidy

[141]. For this system the Lyapunov exponents were found [142] and the Poincaré sections

were obtained [143]. The spatially flat universes filled with the Yang-Mills fields exhibit

chaotic oscillations of these fields [134, 135, 136].
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This system was also investigated by using the Gaussian curvature criterion [144].

Let us apply this criterion to the non-flat phantom model. The potential function takes the

following form

V (a, φ) = −k(φ2 − a2)− 1

2
m2φ2a2 (3.20)

According to this criterion the periodic and quasi-periodic orbits appear in the domains

of the configuration space in which the Gaussian curvature of a diagram of the potential

function is positive. The line of zero curvature separates these domains from the instability

regions where the curvature is negative. If the total energy of the system E increases the

system will be in a region of negative curvature for some initial conditions and the motion

is chaotic.

Let us consider the dynamical system in an autonomous form in the form (xi)′ =

f i(xj) then we linearised around the special solution and we obtain equation

(δxi)′ =
∂f i

∂xk
δxk

where ∂f i

∂xk
builds the Jacobian and δxk is the deviation vector connecting the points on

two nearby trajectories corresponding the same value of parameter t. In our case x1 = a,

x2 = a′, x3 = φ, x4 = φ′ then the local instability of nearby trajectories are determined by

eigenvalues of the Jacobian matrix, i.e. the effective potential V (a, φ). The eigenvalues are

µ1,2 =
1

2

(
−3H ±

√
9H2 + 4γ

)
(3.21)

γ = γ1,2 =
1

2

(
−Vφφ − Vaa ±

√
(Vφφ + Vaa)2 − 4(VφφVaa − V 2

φa)
)

Therefore the necessary condition for local instability is that at least one of the eigenvalues

is positive [145]. These positive values decide about the local instability of trajectories.

Note that the negative sign of the Gaussian curvature of potential V (a, φ) is the sufficient

condition of local instability [144, 146]

sgnK = sgn(VφφVaa − V 2
φa) < 0 (3.22)

We can see that test (3.22) of negative curvature adopted in our case gives to K < 0.

However it is not a sufficient condition for the chaos. It should be pointed out that this

criterion has a purely local character in contrast to the Lyapunov exponent. Moreover the

compactness of a region admissible for motion is required for chaos existence.
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It is worthwhile to mention that the Toda criterion is only the measure of the local

instability of nearby trajectories [147]. Therefore the presented analysis of the order-chaos

transition should be combined with the Poincaré sections and other deeper indicators of the

chaotic behaviour.

3.2 Numerical investigations of chaos in phantom cosmology

To make the numerical analysis we need to distinguish the the model without the

spontaneous symmetry breaking (m2 > 0) and the model with the spontaneous symmetry

breaking (m2 < 0). In both cases the system is considered on the some energy level.

3.2.1 The positive quadratic potential function

We would like to stress out why we use the nonintegrability criterion instead of

standard measure like the Lyapunov exponents or Poincaré sections. The main reason is

that in analogy to Castagnino et al.’s work [133] we can find a monotonous function along a

trajectory. This excludes the property of the recurrence the trajectories or topological tran-

sitivity in the standard Wiggins chaos definition. Then F (φ, φ̇) (or F (a, ȧ)) is a monotonous

function of the time parameter along the trajectories and trajectories escape to infinity for

arbitrary initial conditions. In this case it is impossible to construct the Poincarè sections.

It is obvious for any curvature and positive values of Λ, λ, and m2. The phase space as

well as the configuration space is unbounded in this case. In contrast to classical chaotic

systems there is invariant compact chaotic set for this system. It does not mean the system

is non-chaotic as it does not follow the Wiggins definition of chaos. The essence of this

phenomenon has different nature. The system is oversensitive with respect to small change

of initial conditions like in chaotic scattering processes.

The typical case of the model is a class of models without the spontaneous sym-

metry breaking

class A: A = B = C = D = 0, E = −1 (or m2 > 0).

In this case the domain admissible for motion is unbounded. For the classical mechanical

systems with chaos there are chaotic sets of trajectories on a compact invariant submanifold.

However it does not mean that the system with an unbounded region admissible for motion

is nonchaotic because the essence of chaotic behaviour is of different nature. The system can



44 Chapter 3: Scattering processes in cosmological dynamics

-3

-2

-1

 0

 1

 2

 3

-3 -2 -1  0  1  2  3

φ

a

-3

-2

-1

 0

 1

 2

 3

-3 -2 -1  0  1  2  3

φ

a

Figure 3.1: Two samples of trajectories for model class I. Initial conditions a0 = 0, φ′0 =
0.779, φ0 = 0.75 (left) and φ0 = 0.751 (right), a′0 > 0 calculated from the Hamiltonian
constraint.

be oversensitive with respect to small changes of initial conditions—the key ingredient of

chaos. In this respect the system is similar to chaotic scattering processes [148]. Therefore

it seems to be natural to use the methods of investigation of scattering processes.

The class A model does not possess the property of sensitive dependence on initial

conditions. Moreover, there are no fractal structures of basin boundaries in the phase

space. Because the scattering of trajectories in the potential well is present, we deal with

the nonchaotic scattering process. In more details it will be discussed in Sec. 3.3.

The different chaotic behaviour was found in the Einstein-Yang-Mills (EYM)

colour field in the flat Bianchi I spacetime [134]. The authors considered the model with ra-

diation and isotropic curvature in contrast to the Mixmaster models. It was showed that the

EYM systems are also an example of chaotic scattering. Because the Lyapunov exponents

are coordinate dependent they cannot be used for invariant characterisation of chaos. For

this aim the methods of chaotic scattering are more suitable. They are extremely useful in

this context because of noncompact phase space (also the configuration space)—the major

obstacle of the standard analysis of chaos. Let us note that the case of their model with

flat spacetime is analogous to our second case with the cosmological constant.

3.2.2 The negative quadratic potential function

The idea of the description of a dark energy field in terms of a Higgs field which

creates inertial mass through the spontaneous symmetry breaking has been investigated
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Figure 3.2: Two samples of trajectories for model class II. Initial conditions a0 = 0, φ′0 =
0.779, φ0 = 0.75 (left) and φ0 = 0.751 (right), a′0 > 0 calculated from the Hamiltonian
constraint.

lately [149]. Form2 < 0 we can distinguish two subclasses of the model with the spontaneous

symmetry breaking for which chaotic behaviour can be detected

class I: A = B = C = D = 0, E > 0 (or m2 < 0),

class II: A = B = D = 0, C > 0 (or Λ < 0), E > 0 (or m2 < 0).

These are flat models with conformally coupled phantom fields for which trajectories have

the property of topological transitivity in contrast to the case m2 > 0. In figure 3.1 and

3.2 we present sample trajectories for both models and evolution of every trajectory lasts

for the same interval of time. From this simple picture we can initially conclude that the

systems are sensitive on initial conditions.

The first class of models is isomorphic with the well known Yang-Mills systems with

the potential function V ∝ x2y2. Because the domain admissible for motion is bounded and

its boundary has negative curvature, the property of recurrence of trajectories is present.

We consider both classes of systems on some distinguished energy level H = E ∝ ρr,0 > 0.

The Poincaré sections for both classes are represented in figures 3.3, 3.4, 3.5. The Poincarè

section for the flat cosmological model with vanishing Λ, λ, and m2 < 0 (class I) is shown

in the figure 3.3. If we postulate additionally the existence of radiation matter in the model

than we deal with the system on the constant non-zero energy level. In this case we obtain

some chaotic distribution of points on the Poincarè section (a, φ′). Figures 3.4 and 3.5

present the flat cosmological model with the negative cosmological constant Λ and m2 < 0
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Figure 3.3: The Poincaré section for the model class I, a = φ and a′ > 0 (upper); a = 0,
a′ > 0 (bottom). Motion in narrow field between two hyperbolas is completely regular.
Complexity of behaviour comes from motion near the origin of the configuration space.

(class II) on the plane (a, a′). In this case we can observe islands of stability. However,

the trajectories wander to the non-physical region of a < 0. This allows many cycles to be

considered if we continue the scale factor into negative values. But what it means physically

is not clear.

All these figures illustrate what we proved earlier, namely the standard chaos with

recurrence of orbits and the property of sensitive dependence on initial conditions.

We cannot perform the analogous analysis for the class of models with m2 > 0
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Figure 3.4: The Poincaré section for the model class II, φ = 0 and φ′ > 0. The empty region
at the upper section comes from motion of a particle-universe along the φ (a = 0) axis.

because there is no chaos in Wiggins’ standard sense. However they possess the property of

complex behaviour of trajectories similar to the non-chaotic scattering process. Note that

the evidence of chaos in terms of fractal basins, Cantori or stochastic layers requires the

recurrence of trajectories. Similarly the Poincaré sections can be constructed from many

cycles for a useful picture to emerge [111].

In the case of m2 < 0, trajectories of the system return to the neighbourhood of

the origin time after time and we have the multiple scattering process on the potential walls

(boundaries of the domain admissible for motion). We can control and count how many
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Figure 3.5: The Poincaré section for the model class II, a = 0 and a′ > 0.

times the trajectory gets closer to the origin than some fixed distance from the origin. With

increasing this fix distance the number of controlled scattering events increases and a more

complicated fractal structure arises. Figures 3.6, 3.7 and 3.8 illustrate fractal structures

of the phase space of initial conditions for trajectories reaching some values af and φf at

some moment of time evolution. The fractal dimension calculated by counting cells which

contain light and dark areas (i.e. leading to two types of the final outcome) is af = φf = 2

— D0 = 1.676; af = φf = 3 — D0 = 1.888; af = φf = 4 — D0 = 1.953; af = φf = 5 —

D0 = 1.971. The chosen method of counting cell enables us to order fractals with respect to

the increasing complexity, i.e. for a nearly regular system the fractal dimension is close to

one, in turn for a completely chaotic system is approaching two. One can also observe that

the longer the trajectories spend in the neighbourhood of the origin of the coordinate system

the more complex behaviour gets, because the motion between branches of hyperbolas is

regular (see figure 3.3).

Figures 3.9, 3.10, 3.11 and 3.12 present the fractal structure of phase space of

initial conditions for the category II model. At small enough values of φf the system is
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Figure 3.6: The fractal structure of the phase space of initial conditions of trajectories
chosen at a = 0 and a′ > 0 for class I and landing at |af | = 2, 3, 4, 5 (grey) or at |φf | = 2,
3, 4, 5 (white), respectively. Complexity of the fractal structure increases with the final
state of the trajectories which means that trajectories spend more time in the region near
the point (0, 0) in the configuration space. The solid areas in the center of figures come
from the motion along the φ-axis.

regular and no chaotic behaviour is present (figure 3.9). With an increasing value of φf :

φf = 2 — D0 = 1.812; φf = 3 — D0 = 1.967, we observe the transition to chaos which

causes the fractal structure of the space of initial conditions to emerge (figures 3.10–3.12).

In figure 3.13 we plot the phase space of initial conditions chosen at a = 0 and

a′ > 0 calculated from the Hamiltonian which lead to a given property in one cycle of
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Figure 3.7: Magnification of the fractal structure of the phase space of initial conditions
from figure 3.6.

evolution, i.e. to maximal expansion with a positive value of φ (grey) or negative value

of φ (white) – left image, and back to a final singularity again with a positive value of φ

(grey) or a negative value of φ (white) – right image. Therefore if we consider evolution

in a physical domain between initial and final singularities this system cannot be chaotic.

If we prolong its evolution to the non-physical domain a < 0 then we obtain chaos. Note

that non-integrability indicators measure the true intrinsic complexity of the system in both

cases [123].
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Figure 3.8: Magnification of the fractal structure of the phase space of initial conditions
from figure 3.7.

3.3 Phantom cosmology as a scattering process

In this section we investigate behaviour of a model without the spontaneous sym-

metry breaking. This is a model with A = B = C = D = 0 and E = −1 (m2 = 2) on

different energy levels E > 0, E = 0 and E < 0.

In the analysis of this case we explore analogy to the classical system in which

appears the chaotic scattering. From the equation of motion we obtain that for any initial

condition trajectories escape to infinity (φ → ±∞ a → ±∞ as time goes to infinity). For

energy E > 0 the configuration space is unbounded and trajectories pass from one quadrant
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Figure 3.9: The structure of phase space of initial conditions for class II trajectories chosen
at φ = 0 and φ′ > 0 and landing at φ = 0.75 (dark grey) and φ = −0.75 (grey) presented
in left figure and φ = 0.9 (dark grey) and φ = −0.9 (grey) in right figure. The white poles
correspond to the centres of stability in figure 3.4.

to another. On the other hand for E ≤ 0 motion is restricted to only this quadrant of the

configuration space where the initial conditions are.

In figure 3.14 we present the analysis of dependence of scattering on the energy

level. For this aim the initial condition in the configuration space are chosen on the line

φ = −a + 10 with a′ = φ′ < 0 under the conservation of the Hamiltonian constraint. For

E ≤ 0 trajectories go toward the origin of coordinate system and after some time escape to

infinity passing through a line φ = −a + 10. On the x-axis we mark the initial value of a

and y-axis we mark final distance from the symmetry point with coordinates (5, 5) at the

moment of intersection of line of initial conditions. In this figure there is no discontinuities,

we do not also observe the fluctuation of distance df . It enable us to conclude that we deal

with the scattering process although the domain of interaction is not finite [150]. So there

is no chaotic scattering. The motion of the system is regular and there is no sensitivity of

motion with respect to initial conditions.

For a deeper confirmation of this statement we study numerically a larger number

of initial conditions (figure 3.15). In the configuration space the initial conditions are chosen

as previously, i.e. φ = −a + 10 and the initial conditions for velocities are parameterised

in a natural way by an angle α, i.e. a′ = −V (a, φ, E) cosα, φ′ = −V (a, φ, E) sinα where



Chapter 3: Scattering processes in cosmological dynamics 53

Figure 3.10: The fractal structure of phase space of initial conditions of trajectories class
II landing at φ = 2 (left) and φ = 3 (right). Initial conditions leading to negative values of
φ omitted for clarity.

V (a, φ, E) =
√
E +m2a2φ2. In figure 3.15 (a) and (b) it is presented results of our analysis

for E < 0 and E = 0 respectively. The grey area corresponds to initial conditions for which

trajectories’ pass through line φ = −a+ 10 with φ > a. Figure 3.15 (c) illustrates domains

of initial conditions for E > 0 for which trajectories outcomes reach different quadrants :

I quadrant – dark grey, II quadrant – grey, III quadrant – black, IV quadrant — medium

grey. The black line presents initial conditions taken from figure 3.14. We cannot observe

chaotic scattering in this case.

3.4 Acceleration in Phantom Cosmology

The current Universe is in an accelerating phase of expansion that’s why we check

whether the scalar fields in the FRW cosmology can explain this phenomenon. For this

aim let’s are consider acceleration equation which can be obtained from the Raychaudhuri

equation

ä

a
= −(ρ+ 3p) = −(−2ψ̇2 − 2U(ψ) + 3ξH(ψ2)̇ + 3ξ(ψ2)̈ + 6ξḢψ2 + 6ξH2ψ2)− 2ρr (3.23)
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Figure 3.11: Magnification of the fractal structure of the phase space of initial conditions
of trajectories class II from figure 3.10.

In the special case of the phantom field minimally coupled to gravity ξ = 0 and without

radiation ρr = 0 we have
ä

a
= 2(ψ̇2 + U(ψ)). (3.24)

Next, for zero energy level and Λ = 0 from (3.13) we have that

H2 = 2ρψ = −ψ̇2 + 2U(ψ). (3.25)

and finally we receive the acceleration equation which is independent of the form of the

potential function
ä

a
= 3ψ̇2 +H2 ≥ 0. (3.26)

In the case of conformally coupled phantom field ξ = 1/6 we have

ä

a
= −(−ψ̇2 − 2U(ψ)−H2ψ2 −H(ψ2)̇ + ψ

dU

dψ
(ψ))− 2ρr (3.27)

and after the rescaling time and field variables: dt = adη, φ = aψ and inserting the potential

function (3.5) we have
ä

a
=

1

a4
(φ′2 − 1

2
λφ4 − 2ρr,0), (3.28)

where prime denotes differentiation with respect to the conformal time and dot with respect

to the cosmological time. We can also express equation of state parameter (3.8) in these
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Figure 3.12: Magnification of the fractal structure of the phase space of initial conditions
of trajectories class II from figure 3.11.

new variables

wφ ≡
pφ
ρφ

=
1
a4

(−1
6φ
′2 − 1

6m
2a2φ2 + 1

12λφ
4)

1
a4

(−1
2φ
′2 + 1

2m
2a2φ2 + 1

4λφ
4)
. (3.29)

We clearly see that this is a good expression only if a 6= 0. For the physical region a > 0

we can express the effective equation of state parameter as

weff ≡
−1

6φ
′2 − 1

6m
2a2φ2 + 1

3ρr,0

−1
2φ
′2 + 1

2m
2a2φ2 + ρr,0

(3.30)

In figure 3.16 we show the evolution of acceleration and evolution of coefficient of

the equation of state wφ for model class I (flat model with m2 < 0) with respect to the

conformal time η which is monotonous function of the cosmological time in the physical

domain. Note that in the case of m2 < 0 the universe is decelerating and wφ stays in the

interval 〈−1/3; 1/3〉, with wφ = −1/3 when φ′ = 0 and wφ = 1/3 when φ = 0.

The analogous analysis made for the model class A without the spontaneous sym-

metry breaking (presented in figure 3.17) shows that the universe is always accelerating. In

this case pressure pφ is always negative. In the case of E > 0 we can have positive value

of wφ and this means that density can be negative. Moreover, during evolution there are

crossings of the line wφ = −1 and then weff goes to minus one. The amplitude of these

oscillations depends on ρr,0.
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Figure 3.13: The structure of phase space of initial conditions for model class I chosen at
a = 0 with a′ > 0 for trajectories leading to a′ = 0 (or equivalent H = 0) with φ > 0 (grey)
and φ < 0 (white) – the left image, and initial conditions of trajectories leading to a = 0
with φ > 0 (grey) and φ < 0 (white) – the right image. There is no chaos in one cycle of
evolution.

3.5 Conclusions

In cosmology the Mixmaster models are well known for their chaotic behaviour

[111]. In these models chaos is caused by anisotropy of space. In this chapter we considered

the phantom cosmological models which are homogeneous and isotropic where the chaos

is the consequence of the nonlinearity of the potential function for the scalar field. We

found chaos is a generic feature of the phantom cosmology with the spontaneous symmetry

breaking. It assumes the form of the multiple chaotic scattering process. In the case of the

absence of symmetry breaking we did not find the sensitivity over initial conditions and the

system behaves as the standard scattering process.

There is no difference between the flat universes filled with minimal and confor-

mally coupled scalar fields. As it was demonstrated by Faraoni et al. [151, 126] there is no

chaos for the former class of models because the solution corresponding k = 0 are restricted

to move in some two-dimensional submanifold of the phase space (H,φ, φ̇). There are no

enough room for chaotic motion manifestation. The analogous result is valid for the other

value of the coupling constant ξ. Note that we can observe chaotic behaviour in some cases

of the conformally coupled scalar field in the flat universes, when we consider the system on
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non-zero energy level. Physically it means that the universe is filled with radiation matter.

The reason for which the flat universes with scalar field are non-chaotic lies in lack

of invariant measure of chaotic behaviour in the general relativity [97, 106]. In general the

standard chaos indicators like Lyapunov exponents or Kolmogorov-Sinai entropy depends

on time parameterisation. In general relativity there is freedom of choice of the lapse

function which defines reparameterization of time. The Hamiltonian is given modulo the

lapse function. Therefore if we consider the Hamiltonian FRW system with scalar field on

zero energy level it is possible that in the Hamiltonian constraint a i ȧ appear only in the

combination H = ȧ/a. Hence the motion of the system takes place in the 3-dimensional

phase space h(H,φ, φ̇) = 0 on some 2-dimensional submanifold. For any value of coupling

constant and general class of potentials there is no place for chaos (even the models with

the cosmological constant).

The new picture appears if the system is described on a non-zero energy level.

Then the motion of the system is in the 3-dimensional submanifold of the 4-dimensional

phase space. But in general case there is no possibility of choosing the lapse function in

such a way that a i ȧ contribute in the Hamiltonian constraint by the Hubble function.

Among the conformally coupled models there are in principal two types of be-

haviour. First, chaotic scattering process takes place for case m2 < 0 (the spontaneous

symmetry breaking). In this case trajectories possess the property of topological transitiv-

ity which guarantees their recurrence in the phase space and the scattering process takes

place around the origin. It is similar to the chaos that appears in the Yang-Mills theory.

Exploring this analogy to this system we calculate the Gaussian curvature of the potential

function which measure local instability of nearby trajectories. We prove that this curva-

ture is negative. Because the configuration space is bounded in this case the mixing of

trajectories is observed.

Second, in the opposite case of m2 > 0 we characterise dynamics in the system

in terms of symbolic dynamics. No fractal structure in the space of initial conditions was

found and conclude that the scattering process has not the chaotic character.

We also found that the universe filled with conformally coupled scalar field is

accelerating without the positive cosmological constant. In principle, there are two sources

of this acceleration. The acceleration is driven by negative energy density and coefficient

of equation of state wφ is greater than −1/3. Alternatively, energy density is positive and

the coefficient of equation of state can be smaller than −1/3. The latter there is crossing
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of wφ = −1. Of course, for the explanation of SNIa data apart from the acceleration of the

Universe itself, the rate of acceleration is also crucial.

The system with phantom scalar field coupled conformally to gravity in the FRW

universe can be treated as scattering process with chaotic and nonchaotic character. The

generic feature of this class of systems with the spontaneous symmetry breaking is the

chaotic scattering of trajectories.
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Figure 3.14: The scattering process in the class A model without the spontaneously sym-
metry breaking. For all trajectories initial conditions were chosen at line φ = −a + 10 in
configuration space and ȧ = φ̇ < 0 calculated from the Hamiltonian. On the x-axis we put
initial position a and on the y-axis we put a final distance from a symmetry point in the
configuration space (5, 5) when a trajectory is escaping to infinity. For E < 0 (a) and E = 0
(b) all the trajectories escape to infinity (a→∞, φ→∞) without crossing a = 0 or φ = 0.
For E > 0 (c) some trajectories change a quarter after starting from I quarter: I – solid line,
II – dashed line, III – dotted line and IV – dash-dot line.
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Figure 3.15: The scattering process in the class A model without the spontaneously sym-
metry breaking for a large number of trajectories. (See text for description). Figures (a)
and (b) correspond to E < 0 and E = 0, respectively. The grey areas correspond to initial
conditions for which trajectories pass through the line φ = −a + 10 with φ > a. Figure
(c) corresponds E > 0 (the configuration space is unbounded) and illustrates domains of
initial conditions for which trajectories outcomes reach different quadrants: I quadrant –
dark grey, II quadrant – grey, III quadrant – black, IV quadrant — medium grey. The black
lines represent initial conditions from figure 3.14.
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Figure 3.16: The evolution of acceleration from Eq. (3.28) with λ = 0 (left panel) and
equation of state parameter wφ from Eq. (3.29) (right panel) for model class I with respect
to conformal time for short period of time for trajectory from left panel of figure 3.1. Shaded
area denote unphysical regions of scale factor a ≤ 0. In physical regions acceleration is
always negative ä ≤ 0 model decelerates and equation of state parameter never crosses
wφ = −1 barrier.
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Figure 3.17: The evolution of acceleration from Eq. (3.28) (left panel) and the equation of
the state parameter weff from Eq. (3.30) (right panel) for model class A without spontaneous
symmetry breaking for a sample trajectory starting from the same initial conditions in the
configuration space (a0 = 4.75, φ0 = −a0 + 10 and a′0 = φ′0 < 0 calculated from the
Hamiltonian constrain) but for different energy levels: E < 0 (top), E = 0 (middle) and
E > 0 (bottom). For every sample we have acceleration but the equation of the state
parameter oscillates and approaches weff = −1.



Chapter 4

Non-minimally coupled scalar field

cosmology on the phase plane

We investigate dynamics of a flat FRW cosmological model with a non-minimally

coupled scalar field with the coupling term ξRψ2 in the scalar field action. The quadratic

potential function U(ψ) ∝ ψ2 is assumed. All the evolutional paths are visualised and

classified in the phase plane, at which the parameter of non-minimal coupling ξ plays the

role of a control parameter. The fragility of global dynamics with respect to changes of the

coupling constant is studied in detail. We find that the future big rip singularity appearing

in the phantom scalar field cosmological models can be avoided due to non-minimal coupling

constant effects. We have shown the existence of a finite scale factor singular point (future

or past) where the Hubble function as well as its first cosmological time derivative diverge.
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In this chapter we present a phase space analysis of the evolution of a spatially flat

Friedmann–Robertson–Walker (FRW) universe containing a scalar field non-minimally cou-

pled to gravity, both canonical and phantom, with the simplest form of quadratic potential

function. The similar analysis for the case of minimally coupled scalar field was performed

in [152]. We extend this analysis on models with a non-zero coupling constant ξ which

plays the role of a control parameter for an autonomous dynamical system on the phase

plane. Therefore the location of fixed points (physically representing asymptotic states of

the system) as well as their character depend upon the value of ξ. The values of parameter

ξ for which the global dynamics changes dramatically are called bifurcation values.

The main advantage of dynamical system analysis is that we can visualise all the

trajectories of the system admissible for all initial conditions. Therefore one can classify

generic routes to the accelerating phase (the de Sitter attractor where pψ = −ρψ). This

attractor corresponds to the model with the cosmological constant.

The chapter has the following organisation: in section 4.1 we reduce dynamics to

the form of an autonomous dynamical system which describes both canonical and phantom

scalar field models. Section 4.2 is devoted to a detailed analysis of the phase portraits for

different values of the parameter ξ. In this section we also discuss the change of evolutionary

scenarios depending on the value of parameter ξ.

4.1 Non-minimally coupled scalar field cosmologies as a dy-

namical system

We assume the flat model with the FRW geometry and that a matter source is in

the form of a scalar field ψ with a generic coupling to gravity. The gravitational dynamics

is described by the standard Einstein-Hilbert action

Sg =
1

2κ2

∫
d4x
√
−gR, (4.1)

the action for the matter source is

Sψ = −1

2

∫
d4x
√
−g
[
ε
(
gµν∇µψ∇νψ + ξRψ2

)
+ 2U(ψ)

]
. (4.2)

where κ2 = 8πG and R = 6(ä/a + ȧ2/a2) and ε = +1,−1 corresponds to the scalar field

and the phantom scalar field, respectively. For simplicity and without lost of generality we

will assume 4πG/3 = 1 which corresponds to κ2 = 6.
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After dropping the full derivatives with respect to time we obtain the dynamical

equation for scalar field from variation δ(Sg + Sψ)/δψ = 0

ψ̈ + 3Hψ̇ + ξRψ + εU ′(ψ) = 0. (4.3)

as well as the energy conservation condition from variation δ(Sg + Sψ)/δg = 0

E = ε
1

2
ψ̇2 + ε3ξH2ψ2 + ε3ξH(ψ2)̇ + U(ψ)− 3

κ2
H2 (4.4)

If we include other forms of matter this condition can be expressed as

3

κ2
H2 = ρψ + ρr + ρm (4.5)

where ρr and ρm are energy densities of radiation and matter, respectively. It can be shown

that for any value of ξ scalar field behaves like a perfect fluid with energy density ρψ and

pressure pψ

ρψ = ε
1

2
ψ̇2 + U(ψ) + εξ

[
3H(ψ2)̇ + 3H2ψ2

]
, (4.6a)

pψ = ε
1

2
ψ̇2 − U(ψ)− εξ

[
2H(ψ2)̇ + (ψ2)̈ + (2Ḣ + 3H2)ψ2

]
. (4.6b)

Changing the dynamical variables according to the relation

ψ̇ =
dψ

dt
=
ȧ

a

dψ

d ln a
= Hψ′

we can express the Hubble function as

H2 = 2
U(ψ) + ρr + ρm

1− ε
[
(1− 6ξ)ψ′2 + 6ξ(ψ′ + ψ)2

] . (4.7)

The denominator of (4.7) equal to zero defines a line of singularities of the Hubble function

which separates the phase space in two regions one physical H2 > 0, and the second one

nonphysical H2 < 0. It does not depend on the form of the potential function but only on

a value of the coupling constant.

The Euler-Lagrange equations for the system under consideration are given in the

form

a2 d2ψ

dη2
+ 6ξaψ

d2a

dη2
= −2a

da

dη

dψ

dη
− εa4U ′(ψ), (4.8a)

d2a

dη2
(1− ε6ξψ2)− ε6ξaψd2ψ

dη2
= −εa(1− 6ξ)

(dψ

dη

)2
+ ε12ξψ

da

dη

dψ

dη
+ 4a3U(ψ) + ρm,0.

(4.8b)
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where η stands for the conformal time, dη = dt/a.

After the elimination of the scale factor and its derivative from system (4.8) we

obtain the condition (
ψ′′ + ψ′

)(
1− ε6ξ(1− 6ξ)ψ2

)
− εψ′2(1− 6ξ)

(
ψ′ + 6ξψ

)
+

+
1

H2

{
εU ′(ψ)

(
1− ε6ξψ(ψ′ + ψ)

)
+
(
4U(ψ) + ρm

)(
ψ′ + 6ξψ

)}
= 0.

(4.9)

where the prime denotes differentiation with respect to the natural logarithm of the scale

factor.

Now we can simply present equation (4.9) in the form of the autonomous dynamical

system

ψ′ = y, (4.10a)

y′ = −y +
εy2(1− 6ξ)

(
y + 6ξψ

)(
1− ε6ξ(1− 6ξ)ψ2

) − 1

2

(
1− ε

[
(1− 6ξ)y2 + 6ξ(y + ψ)2

])(
1− ε6ξ(1− 6ξ)ψ2

)(
U(ψ) + ρr + ρm

)×
×
(
εU ′(ψ)

(
1− ε6ξψ(y + ψ)

)
+
(
4U(ψ) + ρm

)(
y + 6ξψ

))
. (4.10b)

In what follows we will assume a quadratic potential function U(ψ) = 1
2m

2ψ2, and that

there is no other form of matter than the scalar field, i.e that ρr = ρm = 0. It is easy

to notice that in this case the dynamics does not depend on the change of a sign of the

potential U(ψ)→ −U(ψ). Finally, the dynamical system is in the form

α
dψ

dσ
= yψ

(
1− ε6ξ(1− 6ξ)ψ2

)
, (4.11a)

α
dy

dσ
= −yψ

(
1− ε6ξ(1− 6ξ)ψ2

)
+ ε(1− 6ξ)ψy2(y + 6ξψ)−

−
(

1− ε
[
(1− 6ξ)y2 + 6ξ(y + ψ)2

])(
ε
(
1− ε6ξψ(y + ψ)

)
+ 2ψ

(
y + 6ξψ

))
. (4.11b)

where we have made the following “time” transformation

α
d

dσ
= ψ

(
1− ε6ξ(1− 6ξ)ψ2

) d

d ln (a)
(4.12)

where the parameter α

α = +1 ⇐⇒ ψ
(
1− ε6ξ(1− 6ξ)ψ2

)
> 0, (4.13a)

α = −1 ⇐⇒ ψ
(
1− ε6ξ(1− 6ξ)ψ2

)
< 0. (4.13b)

was introduced to preserve the orientation of the trajectories in this way that on all of the

phase portraits direction of arrows indicate the direction of growth of the scale factor.
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a)

b)

Figure 4.1: The phase portraits for the canonical scalar field ε = 1 for: a) minimal ξ = 0 and
b) conformal ξ = 1/6 coupling. The shaded region denotes nonphysical part of the phase
space for the strictly positive potential function. If the potential function is strictly negative
the meaning of the regions is reversed. The shape of the border between the regions does
not depend on the shape of the potential function. At the border of the physical region we
have two symmetric critical points at the ψ axis for both cases. The value of H2 at that
points is finite. The presence of a saddle type critical point in the case b) is the effect of
non-zero ξ.
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Figure 4.2: The phase portrait for the canonical scalar field ε = 1 and coupling constant
0 < ξ < 1/6. The shaded region is nonphysical: H2 < 0 for U(ψ) > 0. There are three
types of critical points at the finite domain of the phase space: 1) ψ0 = 0, y2

0 = 1 and
H2 = const. which are of a stable or unstable node type; 2) ψ2

0 = 1/6ξ, y0 = 0, H2 =∞ of
a saddle type 3) ψ0 6= 0, y0 6= 0, H2 = ∞ of unstable node type for U(ψ) > 0 and stable
node type for U(ψ) < 0 (shaded region). The dashed line denotes singularity of “time”
transformation (4.12). In comparison with the phase portrait from figure 4.1 for conformal
coupling we can see that both phase portraits are equivalent at the physical domain.

Table 4.1: The position (ψ0, y0) of finite critical points and their characters.

existence eigenvalues
ε = +1 ε = −1

ψ2
0 = 1

ε6ξ
, y0 = 0 ξ > 0 ξ < 0 λ1 = 1

2
(ε3− 5) 1

ψ0
, λ2 = 1

2
(ε3 + 5) 1

ψ0

ψ2
0 = − 1

ε6ξ
, y0 = 0 ξ < 0 ξ > 0 λ1,2 = −3(1− 3ξ)ψ0±

±
√
− ε

2ξ
(1− 3ξ)(3− 25ξ)

ψ0 = 0, y20 = ε ∀ξ ∈ R – λ1 = y0, λ2 = 2y0

ψ2
0 = 1

ε6ξ(1−6ξ)
, y0 = −ε 1

1−6ξ
1
ψ0

0 < ξ < 1
6

ξ < 0 or ξ > 1
6

λ1 = −2y0, λ2 = 6ξψ0

ψ2
0 = 1

ε6ξ(1−6ξ)
, – 1

6
< ξ < 1

3
λ1 = −2y0, λ2 = 2y0

y0 = −4ξ 1−3ξ
1−4ξ

ψ0 ±
2
√
−ε3ξ(1−3ξ)

3(1−4ξ)
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a)

b)

c)

Figure 4.3: The phase portraits for the canonical scalar field ε = 1 and for the specific
values of coupling constant: a) ξ = 3/16, b) ξ = 1/4, c) ξ = 3/10. In the cases a) and b)
there are the critical points at infinity of a mixed type (multiple critical points). At the
physical domain the phase portraits are topologically equivalent.
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a)

b)

c)

Figure 4.4: The phase portraits for the canonical scalar field ε = 1 and values of coupling
constant: a) 1/6 < ξ < 3/16, b) 3/16 < ξ < 1/4, c) ξ = 1/3.
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a)

b)

Figure 4.5: The phase portraits for the canonical scalar field ε = 1 and negative coupling
constant ξ < 0: in figure b) ξ is greater, but still negative, than in figure a). In the limit
ξ → 0− we receive phase portrait in figure 4.1a.
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a)

b)

Figure 4.6: The phase portraits for the phantom scalar field ε = −1 and: a) minimal ξ = 0
and b) conformal ξ = 1/6 coupling. All the phase space (ψ,ψ′) is admissible only for the
positive potential function. We can conclude, that for negative potential functions in the
case of minimally or conformally coupled phantom scalar fields, the scale factor is not a
monotonic function of the cosmological time. For the case b) a global attractor represents
the de Sitter state with wψ = −1. There are two types of trajectories which tend to this
attractor: 1) trajectories starting from ψ = 0, ψ′ = ±∞ state, and 2) two single trajectories
representing a separatrix of saddles at infinity (not shown).
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a)

b)

Figure 4.7: The global phase portraits for the phantom scalar field and values of coupling
constant: a) 0 < ξ < 3/25 and b) 3/25 < ξ < 1/6. In the case a) in the finite domain the
critical domain is of a stable node type and in the case b) of a focus type.
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a)

b)

c)

Figure 4.8: The global phase portraits for the phantom scalar field ε = −1 and for the
specific values of coupling constant: a) ξ = 3/16, b) ξ = 1/4, c) ξ = 3/10. In cases a)
and b) one of the critical points at infinity is of a mixed type (multiple critical points)
(see figure 4.3). On all figures one can see trajectories starting from the unstable node and
landing at the stable focus as a generic scenario of route to the de Sitter state.
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Figure 4.9: The global phase portrait for the phantom scalar field ε = −1 and distinguished
value of coupling constant ξ = 1/3. In this case critical point at the finite domain of the
phase space is located at the line of singularities of the time transformation (4.12).
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Figure 4.10: The global phase portrait for the phantom scalar field ε = −1 and the values
of coupling constant ξ > 1/3. The characteristic critical point of a focus type disappeared.

4.2 Phase space analysis of dynamics

In this section we present detailed discussion of the type of critical points of the

dynamical system (4.11).

If we write the evolutional equations for the non-minimally coupled scalar field

in the form of the dynamical system, the first step would be the identification of the crit-

ical points of the system. Physically they represent asymptotic (or stationary) states of

the system under consideration and mathematically correspond to vanishing r.h.s. of the

system. The second step is a characterisation of the type of critical point which can be

performed after calculation of the eigenvalues of the linearization matrix calculated of this

critical point. The critical points are usually represented by physically interesting solutions

and these solutions can be attractors for trajectories in its neighbourhood which evolve to

it independent of the initial conditions. In the quintessence cosmology we are looking for

the attractors, which give rise to solutions with desired property but we would like to know

whether it is a typical (generic) solution or an exceptional (non-generic). This is a reason

of our interest in the stability of the critical points.
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a)

b)

c)

Figure 4.11: The global phase portraits for the phantom scalar field ε = −1 and the values
of coupling constant: a) 1/6 < ξ < 3/16, b) 3/16 < ξ < 1/4, c) 1/4 < ξ < 3/10. In all
cases there is present scenario of reaching the global attractor (a focus type critical point)
from the unstable node. Note that in the case c) not all of the trajectories starting from an
unstable node are reaching the de Sitter state, in contrast to cases a) and b).
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a)

b)

Figure 4.12: The global phase portraits for the phantom scalar field ε = −1 and negative
coupling constant ξ < 0: in figure b) ξ is greater, but still negative, than in figure a). It is
easy to notice that in the limit ξ → 0− we receive phase portrait from the figure 4.6a. for
the phantom scalar field with minimal coupling.
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For full dynamical analysis of the behaviour of the trajectories at infinity is needed.

It can be performed by construction of Poincaré sphere [59]. If we complete the phase plane

by a circle at infinity which is a projection on the equator, then we obtain the global phase

portrait with a circle at infinity. In our case r.h.s. contain the non-minimal coupling constant

ξ as a free parameter. The global phase portraits depend on the value of this parameter

but for some ranges of the values of ξ phase portraits can be equivalent (indistinguishable

from the dynamical system point of view). If we fix the value of non-minimal coupling, then

one can study the influence of this parameter on the global dynamics. The equivalence of

the phase portraits is established by homeomorphism preserving direction of time along the

trajectories.

Critical point: ψ0 = 0, y2
0 = ε exists only for the canonical scalar field ε = +1.

Direct calculation of the Hubble function (4.7) at this point gives an undefined symbol 0
0 .

It is why we use the linearised solutions in the vicinity of this critical point to show that the

Hubble function at this point is finite and depends on the initial conditions of the linearised

solutions. They are in the form

ψ(σ) = ψ(i) exp (αλ1σ), (4.14a)

y(σ) = y0 − 6ξψ(i) exp (αλ1σ) +
(
6ξψ(i) + (y(i) − y0)

)
exp (αλ2σ), (4.14b)

where λ1 = y0 and λ2 = 2y0 are eigenvalues of the linearization matrix calculated at this

critical point, ψ(i) and y(i) are initial conditions and y0 is a coordinate of the critical point.

Inserting those solution into the formula (4.7) we receive that the Hubble function

in the vicinity of the critical point (ψ0 = 0, y2
0 = ε) is

H2
lin = m2ψ2

(i) exp (2αλ1σ)
[
− 6ξ(1− 6ξ)ψ2

(i) exp (2αλ1σ)−

− 2y0

(
6ξψ(i) + (y(i) − y0)

)
exp (αλ2σ)−

−
(
36ξ2ψ2

(i) + 12ξψ(i)(y(i) − y0) + (y(i) − y0)2
)

exp (2αλ2σ)
]−1

(4.15)

then taking the limit value of this function for σ → ±∞ (depending on the critical point

y0 = ∓1) we receive

limH2
lin = m2

ψ2
(i)

−2y0

(
6ξψ(i) + (y(i) − y0)

)
− 6ξ(1− 6ξ)ψ2

(i)

(4.16)
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which is always a positive quantity. For the special values of minimal ξ = 0 (see figure 4.1a)

and conformal coupling ξ = 1/6 (see figure 4.1b) the values of the Hubble function are

H2
lin = m2

ψ2
(i)

−2y0(y(i) − y0)
, for ξ = 0,

H2
lin = m2

ψ2
(i)

−2y0

(
ψ(i) + (y(i) − y0)

) , for ξ =
1

6
.

Critical point: ψ2
0 = 1

ε6ξ(1−6ξ) , y0 = −ε 1
(1−6ξ)ψ0

is very interesting because the

Hubble function (4.7) at this point is singular H2 =∞ and Ḣ = (1
2H

2)′ =∞.

Linearised solutions in the vicinity of this critical points are

ψ(σ) = ψ0 + exp (αλ2σ)
(
ψ(i) − ψ0

)
, (4.17a)

y(σ) = y0 + exp (αλ1σ)
(

2(1− 3ξ)
(
ψ(i) − ψ0

)
+
(
y(i) − y0

))
−

− exp (αλ2σ)
(

2(1− 3ξ)
(
ψ(i) − ψ0

))
(4.17b)

where λ1 = −y0 and λ2 = −2y0 are eigenvalues of the linearization matrix at the critical

point, ψ(i) and y(i) are initial conditions and ψ0 and y0 are coordinates of the critical point.

Using time transformation (4.12) we can calculate the scale factor growth along

the trajectory

∆ ln a =

∫ ∞
0

ψ(σ)
(
1− ε6ξ(1− 6ξ)ψ(σ)2

)
dσ, (4.18)

and the cosmological time growth

∆t =

∫ af

ai

1

H
d ln a =

∫ ∞
0

1

H
ψ(σ)

(
1− ε6ξ(1− 6ξ)ψ(σ)2

)
dσ. (4.19)

Linearised solutions are good approximations of the original system in the vicinity of the

critical point. In what follows we assume that
(
ψ(i)−ψ0

)2
=
(
y(i)−y0

)2
=
(
ψ(i)−ψ0

)(
y(i)−

y0

)
= 0, α = 1 and y0 > 0 (see figure 4.12). Then

∆ ln a = ε(1− 6ξ)
(
ψ(i) − ψ0

)
ψ0 (4.20)

and

∆t =
−1√
m2

ε12ξ(1− 6ξ)
(
ψ(i) − ψ0

)
ψ0

∫ ∞
0

√
A exp (−y0σ) +B exp (−2y0σ) exp (−2y0σ)dσ

=
1√
m2

ε12ξ(1− 6ξ)
(
ψ(i) − ψ0

) 1

y024B5/2

{3

2
A2
(

logA− 2 log (
√
B +

√
A+B)

)
−

−
√
B(A+B)(−A+ 2B)(3A+ 4B)

}
(4.21)
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where A and B are positive constants

A = −ε
(
y0 + 12ξψ0

)(
2(1− 3ξ)(ψ(i) − ψ0) + (y(i) − y0)

)
B = ε4(1− 6ξ)(y0 + 3ξψ0)(ψ(i) − ψ0)

For every case of existence of such a critical point (see figures 4.2, 4.8, 4.9, 4.10, 4.11 for

an unstable node and figure 4.12 for a stable node in the “physical region”) growth of the

scale factor and the cosmological time are finite.

Now we calculate the first derivative of the Hubble function (4.7) with respect to

the cosmological time at this point

Ḣ =
1

2
(H2)′ =

( U(ψ)

1− ε[ψ′2 + 12ξψψ′ + 6ξψ2]

)′
(4.22)

where a dot denotes differentiation with respect to the cosmological time and a prime with

respect to the natural logarithm of the scale factor. Then after the elimination of second

derivative of the field with respect to the natural logarithm of the scale factor we have

Ḣ = − 6ξU ′(ψ)ψ

1− ε6ξ(1− 6ξ)ψ2
−

ε2U(ψ)
(
(1− 6ξ)ψ′2 + (ψ′ + 6ξψ)2

)(
1− ε6ξ(1− 6ξ)ψ2

)(
1− ε[ψ′2 + 12ξψψ′ + 6ξψ2]

) (4.23)

This expression at the critical point ψ2
0 = 1

ε6ξ(1−6ξ) , ψ′0 = −ε 1
1−6ξ

1
ψ0

is singular since the

numerator is finite and the denominator is equal to zero.

The trajectories starting form this critical point corresponding to the singularities

of finite scale factor seems to be most interesting. For such state appearing for both, canon-

ical and phantom scalar fields we have curvature singularity because the Hubble parameter

is infinite but the scale factor assumes a finite value. They are typical because the critical

point is an unstable node (see figure 4.2 for an unstable node for the canonical scalar field

and and figures 4.8, 4.9, 4.10 and 4.11 for an unstable node and figure 4.12 for a stable node

for the phantom scalar field).

Next we can proceed to the analysis of behaviour of system (4.11) at the circle at

infinity. Introducing the polar variables in order to compactify the phase space by adjoining

the circle at infinity

ψ =
r

1− r
cos θ, y =

r

1− r
sin θ,
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where r and θ are the polar system coordinates, we receive the following dynamical system

α
dr

dσ
r(1− r)3 = r(1− r) sin θ

{
r2 cos θ(cos θ − sin θ)

(
(1− r)2 − ε6ξ(1− 6ξ)r2 cos2 θ

)
+

+ ε(1− 6ξ)r4 sin2 θ cos θ(sin θ + 6ξ cos θ)−

−
(

(1− r)2 − εr2
(
(1− 6ξ) sin2 θ + 6ξ(sin θ + cos θ)2

))
(
ε
(
(1− r)2 − ε6ξr2 cos θ(sin θ + cos θ)

)
+ 2r2 cos θ(sin θ + 6ξ cos θ)

)}
,

(4.24a)

α
dθ

dσ
r(1− r)3 = cos θ

{
− r2 sin θ(sin θ + cos θ)

(
(1− r)2 − ε6ξ(1− 6ξ)r2 cos2 θ

)
+

+ ε(1− 6ξ)r4 sin2 θ cos θ(sin θ + 6ξ cos θ)−

−
(

(1− r)2 − εr2
(
(1− 6ξ) sin2 θ + 6ξ(sin θ + cos θ)2

))
(
ε
(
(1− r)2 − ε6ξr2 cos θ(sin θ + cos θ)

)
+ 2r2 cos θ(sin θ + 6ξ cos θ)

)}
.

(4.24b)

For identification of the critical points at infinity we can calculate the polar angle

θ from those equations simply by putting r = 1. Then we receive the following equation for

the direction θ determining the localisation of the critical points

ε3 cos2 θ
(
2ξ cos θ + (1− 4ξ) sin θ

)(
sin2 θ + 6ξ cos2 θ + 12ξ sin θ cos θ

)
= 0. (4.25)

We can notice that positions of the critical points at infinity do not depend on the form of

scalar field assumed, i.e. critical points are the same for both canonical and phantom scalar

fields. In Table 4.2 we have gathered positions and the character of these points. Note that

there are specific values of the coupling constant ξ for which some critical points coincide.

For example for minimal ξ = 0 and conformal ξ = 1
6 coupling critical points 2) and 3) in

Table 4.2 have the same location. This is the reason why in these cases the critical points

at infinity are degenerated (i.e. the eigenvalues of linearization matrix calculated for the

critical points located at infinity is identically zero). Such points are called multiple critical

points. In our approach we treat the coupling constant ξ as a control parameter for which

the bifurcation analysis is performed. The values of ξ different from minimal and conformal

coupling split multiple critical points and remove the degeneration.
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Table 4.2: The critical points at infinity and their characters.

Critical point existence eigenvalues

1) cos θ = 0 ∀ξ ∈ R λ1 = λ2 = 0

2) tan θ = − 2ξ
1−4ξ

∀ξ ∈ R \ { 1
4
} λ1 = ε6ξ(1− 6ξ) 3−16ξ

1−4ξ
, λ2 = −ε12ξ2 1−6ξ

1−4ξ

3) tan θ = −6ξ ±
√

6ξ(6ξ − 1) ξ ≤ 0 or ξ ≥ 1
6

λ1 = −ε12ξ(1− 6ξ)
(
3(1− 4ξ)∓ 2

√
6ξ(6ξ − 1)

)
,

λ2 = −ε6ξ(1− 6ξ)
(
6ξ ±

√
6ξ(6ξ − 1)

)

Now we can simply calculate the value of the Hubble function (4.7) at critical

points at infinity. Using the polar coordinates with compactification with circle at infinity

we obtain

H2|∞ = −εm2 cos2 θ

sin2 θ + 12ξ sin θ cos θ + 6ξ cos2 θ
. (4.26)

Inserting the position angle of the critical points at infinity to the above expression we

can conclude that at critical point 1) in Table 4.2 H2 = 0, for the second point H2 =

−εm2 (1−4ξ)2

2ξ(1−6ξ)(3−16ξ) , and finally for the point 3) the Hubble function is singular H2 = ∞.

The most interesting critical point seems to be the second critical point because for the

wide range of values of the parameter ξ the final state can be the de Sitter attractor with

H2 = const in spite of the fact that the phase variables ψ and ψ′ assume the infinite values.

4.3 Conclusions

We study the dynamics of a scalar field with a simple quadratic potential function

and non-minimal coupling to the gravity via ξRψ2 term, where R is the Ricci scalar of

the Robertson-Walker spacetime. We reduce the dynamical problem to the autonomous

dynamical system on the phase plane in the variables ψ and its derivative with respect to the

natural logarithm of the scale factor. The constraint condition is solved in such a way that

the final dynamical system is free of it and is defined on the plane. We investigate the whole

dynamics at the finite domain and at infinity. All the trajectories for all admissible initial

conditions are classified, and critical points representing the asymptotic states (stationary

solutions) are found. We explore generic evolutionary paths to find the stable de Sitter

state as a global attractor and classify typical routes to this point. We study the effects of

the canonical scalar field as well as the phantom scalar field. The following conclusions, as

the results of our studies, can be drawn:
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1. The cosmological models with the quadratic potential function and non-minimal cou-

pling term ξRψ2 are represented by a 2-dimensional autonomous dynamical system

which is studied in details on the (ψ,ψ′) phase plane (see Table 4.1 for the critical

points at the finite domain). The shape of the physical region H2 ≥ 0 does not depend

on the form of the potential function, but only on the value of the coupling constant

ξ;

2. We investigated the fixed points of the dynamical system and their stability to find

the generic evolutional scenarios. We have shown the existence of a finite scale factor

singular point (both future and past) where the Hubble function as well as its first

cosmological time derivative diverge H2 =∞ and Ḣ =∞;

3. For the phantom scalar field ε = −1 we found existence of a sink type critical point

(i.e. a stable node or a focus, depending on the value of the parameter ξ) which

represents the de Sitter solution. Only for ξ < 1/6 the evolutional paths avoid a past

finite scale factor singularity (see for example figures 4.6 and 4.8);

4. For the canonical scalar field ε = 1 we found that for 0 < ξ < 1/6 exists the critical

point which corresponds to a past finite scale factor singularity for models with U(ψ) =

1
2m

2ψ2 > 0. If m2 < 0 then this point corresponds to a future finite scale factor

singularity (see figure 4.2).



Chapter 5

Twister quintessence scenario

We study generic solutions in a non-minimally coupled to gravity scalar field cos-

mology. It is shown that dynamics for both canonical and phantoms scalar fields with the

potential can be reduced to the dynamical system from which the exact forms for an equation

of the state parameter can be derived. We have found the stationary solutions of the system

and discussed their stability. Within the large class of admissible solutions we have found a

non-degenerate critical points and we pointed out multiple attractor type of trajectory trav-

elling in neighbourhood of three critical points at which we have the radiation dominating

universe, the barotropic matter dominating state and finally the de Sitter attractor. We

have demonstrated the stability of this trajectory which we call the twister solution. Dis-

covered evolutional path is only realized if there exists a non-minimal coupling constant.

We have found simple duality relations between twister solutions in phantom and canonical

scalar fields in the radiation domination phase. For the twister trajectory we have found an

oscillating regime of approaching the de Sitter attractor.
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In this contribution we investigate dynamics of the cosmological model with the

scalar field non-minimally coupled to the gravity with the positive and negative kinetic

energy forms (i.e., canonical and phantom scalar fields) in the background of the flat

Friedmann-Robertson-Walker (FRW) geometry. We point out interesting properties of a

three phase model obtained within these class of solutions. They are interesting because

they are generic and interpolate three physically important phases of the evolution of the

universe, namely, radiation, matter and dark energy domination in the evolution of the

universe. Therefore, this solutions can be treated as a natural extension of the quartessence

idea [153, 154, 155, 156]. In standard cosmology the expression “radiation dominated uni-

verse” implies a universe dominated by photons. In this chapter, the meaning is different:

it means a universe with effective equation of state parameter weff = 1/3 dominated by

non-minimally coupled scalar field. In this case the dynamics of the scale factor mimics the

evolution of the radiation dominated universe.

In our investigations we apply the dynamical systems methods in exploring sta-

tionary states represented by critical points in the phase space as well as their stability

[39, 157, 17, 18, 15, 16, 33, 34, 35, 36, 37, 38]. We characterise all generic scenarios ap-

pearing in the case of the constant non-minimal coupling for both canonical and phantom

scalar fields. In our dynamical study we relax the choice of the potential function. The

presented approach to study the dynamics with the dynamical form of the equation of the

state parameter is a different form the most popular one mainly used in the confrontation

of the assumed model with dynamical dark energy with the observational data [158, 159].

While the authors who estimate parameters from the observational data postulate at the

very beginning the form of the parameterisation of the equation of state parameter w(z)

as a function of the redshift z, in the presented approach such a form is directly derived

from the closed dynamics of the FRW model filled by the non-minimally coupled scalar

field. Moreover, basing on the twister solution one can derive approximated forms of the

effective equation of the state parameter w(z) in three characteristic phases of the evolution

of the universe, namely during the radiation, the barotropic matter and the dark energy

domination.

In the model under consideration we assume the spatially flat FRW universe filled

with the non-minimally coupled scalar field and barotropic fluid with the equation of the
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state coefficient wm. The action assumes following form

S =
1

2

∫
d4x
√
−g

(
1

κ2
R− ε

(
gµν∂µφ∂νφ+ ξRφ2

)
− 2U(φ)

)
+ Sm, (5.1)

where κ2 = 8πG, ε = +1,−1 corresponds to canonical and phantom scalar field, respec-

tively, the metric signature is (−,+,+,+), R = 6
(
ä
a + ȧ2

a2

)
is the Ricci scalar, a is the scale

factor and a dot denotes differentiation with respect to the cosmological time and U(φ) is

the scalar field potential function. Sm is the action for the barotropic matter part.

The dynamical equation for the scalar field we can obtain from the variation

δS/δφ = 0

φ̈+ 3Hφ̇+ ξRφ+ εU ′(φ) = 0, (5.2)

and energy conservation condition from the variation δS/δgµν = 0

E = ε
1

2
φ̇2 + ε3ξH2φ2 + ε3ξH(φ2)̇ + U(φ) + ρm −

3

κ2
H2. (5.3)

Then conservation conditions read

3

κ2
H2 = ρφ + ρm, (5.4a)

Ḣ = −κ
2

2

[
(ρφ + pφ) + ρm(1 + wm)

]
(5.4b)

where the energy density and the pressure of the scalar field are

ρφ = ε
1

2
φ̇2 + U(φ) + ε3ξH2φ2 + ε3ξH(φ2)̇, (5.5a)

pφ = ε
1

2
(1− 4ξ)φ̇2 − U(φ) + εξH(φ2)̇− ε2ξ(1− 6ξ)Ḣφ2 − ε3ξ(1− 8ξ)H2φ2 +

+2ξφU ′(φ). (5.5b)

In what follows we introduce the energy phase space variables

x ≡ κφ̇√
6H

, y ≡
κ
√
U(φ)√
3H

, z ≡ κ√
6
φ, (5.6)

which are suggested by the conservation condition

κ2

3H2
ρφ +

κ2

3H2
ρm = Ωφ + Ωm = 1 (5.7)

or in terms of the newly introduced variables

Ωφ = y2 + ε
[
(1− 6ξ)x2 + 6ξ(x+ z)2

]
= 1− Ωm. (5.8)
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The acceleration equation can be rewritten to the form

Ḣ = −κ
2

2

(
ρeff + peff

)
= −3

2
H2(1 + weff) (5.9)

where the effective equation of the state parameter reads

weff =
1

1− ε6ξ(1− 6ξ)z2

[
− 1 + ε(1− 6ξ)(1− wm)x2 + ε2ξ(1− 3wm)(x+ z)2 +

+(1 + wm)(1− y2)− ε2ξ(1− 6ξ)z2 − 2ξλy2z
]

(5.10)

where λ = −
√

6
κ

1
U(φ)

dU(φ)
dφ .

The dynamical system of the model under considerations is in the form [157]

x′ = −(x− ε1

2
λy2)

[
1− ε6ξ(1− 6ξ)z2

]
+

3

2
(x+ 6ξz)

[
− 4

3
− 2ξλy2z

+ε(1− 6ξ)(1− wm)x2 + ε2ξ(1− 3wm) (x+ z)2 + (1 + wm)(1− y2)

]
, (5.11a)

y′ = y

(
2− 1

2
λx

)[
1− ε6ξ(1− 6ξ)z2

]
+

3

2
y

[
− 4

3
− 2ξλy2z

+ε(1− 6ξ)(1− wm)x2 + ε2ξ(1− 3wm) (x+ z)2 + (1 + wm)(1− y2)

]
,(5.11b)

z′ = x
[
1− ε6ξ(1− 6ξ)z2

]
, (5.11c)

λ′ = −λ2(Γ− 1)x
[
1− ε6ξ(1− 6ξ)z2

]
, (5.11d)

where Γ =
U(φ),φφU(φ)

U(φ),2φ
and a prime denotes differentiation with respect to time τ defined as

d

dτ
=
[
1− ε6ξ(1− 6ξ)z2

] d

d ln a
. (5.12)

If λ is constant then we obtain the scaling potential exp (λφ) and the basic system reduces

to the 3-dimensional autonomous dynamical system in the case of the model with the

barotropic matter. In the case without the matter the dynamical system is a 2-dimensional

autonomous one.

In the rest of the chapter we will assume the following form of the function Γ(λ)

Γ(λ) = 1− α

λ2
(5.13)

where α is an arbitrary constant beside the case of α = 0 for which Γ = 1 which corresponds

to an exponential potential. For the assumed form of Γ(λ) function we can simply eliminate

one of the variables namely z given by the relation

z(λ) = −
∫

dλ

λ2
(
Γ(λ)− 1

) =
λ

α
+ const (5.14)
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Table 5.1: The location and eigenvalues of the critical points in twister quintessence scenario

weff wφ Ωφ location eigenvalues
1
3

1
3 1 x∗1 = 0, y∗1 = 0, (λ∗1)

2 = α2

ε6ξ
l1 = −6ξ, l2 = 12ξ, l3 = 6ξ(1− 3wm)

wm — 0 x∗2 = 0, y∗2 = 0, λ∗2 = 0 l1,3 = − 3
4
(1− wm)

(
1±

√
1− 16

3
ξ 1−3wm
(1−wm)2

)
,

l2 = 3
2
(1 + wm)

−1 −1 1 x∗3a = 0, (y∗3a)
2 = 1, λ∗3a = 0 l1,3 = − 1

2

(
3±
√
9 + ε2α− 48ξ

)
, l2 = −3(1 + wm)

−1 −1 1 x∗3b = 0, (y∗3b)
2 = 1

α
ε24ξ, l1 = −18ξ(1 + wm)

(
1 + ε

α
4(1− 6ξ)

)
(λ∗3b)

2 = α
(
α
ε6ξ
− 4
)

l2,3 = −3ξ
(
1 + ε

α
4(1− 6ξ)

)(
3±

√
−7+ ε

α
12(3+14ξ)

1+ ε
α
4(1−6ξ)

)

where in the rest of the chapter we take the integration constant as equal to zero.

From Eq. (5.13) and the definition of the function Γ we can simply calculate the

form of the potential function

U(φ) = U0 exp

[
−κ

2

6

(α
2
φ2 + βφ

)]
= Ũ0 exp

[
−ακ

2

12

(
φ+

β

α

)2
]

(5.15)

where β is the integration constant. As we can see the dynamics of the model does not

depend on the value of this parameter. In such a case we are exploring the solutions in the

very rich family of potential functions.

Following the Hartman-Grobman theorem [59] the system can be well approxi-

mated by the linear part of the system around a non-degenerate critical point. Then the

stability of the critical point is determined by eigenvalues of a linearization matrix only. In

Table 5.1 we have gathered critical points appearing in twister scenario together with the

eigenvalues of the linearization matrix calculated at those points.

The critical point of a saddle type which represents the radiation dominated uni-

verse weff = 1/3 is (x∗1 = 0, y∗1 = 0, (λ∗1)2 = α2

ε6ξ ) and the linearised solutions in the vicinity
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of this critical point are

x1(τ) = 1
2−3wm

{[
x

(i)
1 − 1

α(1− 3wm)(λ
(i)
1 − λ∗1)

]
exp (l1τ)+

+(1− 3wm)
[
x

(i)
1 + 1

α(λ
(i)
1 − λ∗1)

]
exp (l3τ)

}
,

y1(τ) = y
(i)
1 exp (l2τ),

λ1(τ) = λ∗1 − α
2−3wm

{[
x

(i)
1 − 1

α(1− 3wm)(λ
(i)
1 − λ∗1)

]
exp (l1τ)−

−
[
x

(i)
1 + 1

α(λ
(i)
1 − λ∗1)

]
exp (l3τ)

}
,

(5.16)

where l1 = −6ξ, l2 = 12ξ and l3 = 6ξ(1− 3wm) are eigenvalues of the linearization matrix

calculated at this critical point and the transformation from time τ into the scale factor can

be made using relation (5.12) calculated at the critical point

ln

(
a

a
(i)
1

)
=

∫ τ

0

[
1− ε6ξ(1− 6ξ)z(λ∗1)2

]
dτ = 6ξτ,

where a
(i)
1 is the initial value of the scale factor at τ = 0. In the case of canonical scalar

field ε = +1 this critical point exists only if ξ > 0 and for the phantom scalar field ε = −1

if ξ < 0.

The matter dominated universe where weff = wm is represented by the critical

point (x∗2 = 0, y∗2 = 0, λ∗2 = 0) which character depends on the value of the parameter d

d = 1− 16

3
ξ

1− 3wm
(1− wm)2

.

For d > 0 the critical point is of a saddle type and the linearised solutions are in

the form

x2(τ) = 1
2
√
d

{
(1 +

√
d)
[
x

(i)
2 + 1

α
3
4(1− wm)(1−

√
d)λ

(i)
2

]
exp (l1τ)−

−(1−
√
d)
[
x

(i)
2 + 1

α
3
4(1− wm)(1 +

√
d)λ

(i)
2

]
exp (l3τ)

}
,

y2(τ) = y
(i)
2 exp (l2τ),

λ2(τ) = − 2α
3(1−wm)

√
d

{[
x

(i)
2 + 1

α
3
4(1− wm)(1−

√
d)λ

(i)
2

]
exp (l1τ)−

−
[
x

(i)
2 + 1

α
3
4(1− wm)(1 +

√
d)λ

(i)
2

]
exp (l3τ)

}
.

(5.17)

where l1,3 = −3
4(1 − wm)

(
1 ±

√
1− 16

3 ξ
1−3wm

(1−wm)2

)
, l2 = 3

2(1 + wm) are eigenvalues of the

linearization matrix.
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For d < 0 the critical point is of an unstable focus type

x2(τ) = − exp
(
− 3

4
(1−wm)τ

)
√
|d|

{[
x

(i)
2 + 1

α
3
4(1− wm)(1 + |d|)λ(i)

2

]
sin

(
3
4(1− wm)

√
|d|τ

)
−

−
√
|d|x(i)

2 cos

(
3
4(1− wm)

√
|d|τ

)}
,

y2(τ) = y
(i)
2 exp

(
3
2(1 + wm)τ

)
,

λ2(τ) = 4
3

α exp
(
− 3

4
(1−wm)τ

)
(1−wm)

√
|d|

{[
x

(i)
2 + 1

α
3
4(1− wm)λ

(i)
2

]
sin

(
3
4(1− wm)

√
|d|τ

)
+

+ 1
α

3
4(1− wm)

√
|d|λ(i)

2 cos

(
3
4(1− wm)

√
|d|τ

)}
.

(5.18)

For both cases the transformation from time τ to the scale factor in the vicinity of the

critical point corresponding to matter dominated universe is the following

ln

(
a

a
(i)
2

)
= τ,

where a
(i)
2 is the initial value of the scale factor at τ = 0.

The final critical point represents the de Sitter universe with weff = −1 is (x∗3a =

0, (y∗3a)
2 = 1, λ∗3a = 0) its character depends on the value of the discriminant ∆3a = 9 +

ε2α− 48ξ of the characteristic equation.

For ∆3a < 0 the critical point is of a stable focus type and the linearised solutions

are

x3a(τ) = − exp (− 3
2
τ)√

|∆3a|

{[
3x

(i)
3 + 9+|∆3a|

2α λ
(i)
3

]
sin

(√
|∆3a|
2 τ

)
−

−x(i)
3

√
|∆3a| cos

(√
|∆3a|
2 τ

)}
,

y3a(τ) = y∗3 + (y
(i)
3 − y∗3) exp

(
− 3(1 + wm)τ

)
,

λ3a(τ) =
2α exp (− 3

2
τ)√

|∆3a|

{(
x

(i)
3 + 3

2αλ
(i)
3

)
sin

(√
|∆3a|
2 τ

)
+

+

√
|∆|

2α λ
(i)
3 cos

(√
|∆3a|
2 τ

)}
.

(5.19)

For 0 < ∆3a < 9 the critical point is of a stable node type and when ∆3a > 9 is of
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a saddle type. The linearised solutions in the vicinity of these types of critical points are

x3a(τ) = 1
2
√

∆3a

{
(3 +

√
∆3a)

[
x

(i)
3a + 1

2α(3−
√

∆3a)λ
(i)
3a

]
exp (l1τ)−

−(3−
√

∆3a)
[
x

(i)
3a + 1

2α(3 +
√

∆3a)λ
(i)
3a

]
exp (l3τ)

}
,

y3a(τ) = y∗3a + (y
(i)
3a − y∗3a) exp (l2τ),

λ3a(τ) = − α√
∆3a

{[
x

(i)
3a + 1

2α(3−
√

∆3a)λ
(i)
3a

]
exp (l1τ)−

−
[
x

(i)
3a + 1

2α(3 +
√

∆3a)λ
(i)
3a

]
exp (l3τ)

}
.

(5.20)

where l1,3 = −1
2

(
3±
√

9 + ε2α− 48ξ
)

and l2 = −3(1 +wm) are eigenvalues of the lineariza-

tion matrix and using relation (5.12) we can write down transformation form time τ to the

scale factor a

ln

(
a

a
(i)
3a

)
= τ,

where a
(i)
3a is the initial value of the scale factor at τ = 0. The phase diagram of the system

with the de Sitter state in the form of a stable focus critical point is presented in figure 5.1.

The next critical point represents also the de Sitter state with weff = −1 (x∗3b = 0,

(y∗3b)
2 = 1

αε24ξ, (λ∗3b)
2 = α

(
α
ε6ξ − 4

)
). The linearised solution in the vicinity of this critical

point can be presented in the condensed form as
x3b(τ)− x∗3b
y3b(τ)− y∗3b
λ3b(τ)− λ∗3b

 = P3b


exp (l1τ) 0 0

0 exp (l2τ) 0

0 0 exp (l3τ)

P−1
3b


x

(i)
3b − x

∗
3b

y
(i)
3b − y

∗
3b

λ
(i)
3b − λ

∗
3b

 (5.21)

where the matrix

P3b =


− 3
α(1 + wm) − 3

2α −
√

∆3b
2α − 3

2α +
√

∆3b
2α

6(1+wm)
(

1+ ε
α

6(wm−4ξ)
)

(1−3wm)y∗3bλ
∗
3b

y∗3bλ
∗
3b

8α +
√

∆3b
8α

y∗3bλ
∗
3b

8α −
√

∆3b
8α

1 1 1

 , (5.22)

is constructed form the corresponding eigenvectors of the linearization matrix of the system

under considerations calculated at this critical point. The eigenvalues are l1 = −18ξ(1 +

wm)
(
1 + ε

α4(1− 6ξ)
)
, l2,3 = −3ξ

(
1 + ε

α4(1− 6ξ)
)(

3±
√

∆3b

)
and ∆3b =

−7+ ε
α

12(3+14ξ)

1+ ε
α

4(1−6ξ) . The

transformation from time τ to the scale factor a from (5.12) is in the following form

ln

(
a

a
(i)
3b

)
= 6ξ

(
1 +

ε

α
4(1− 6ξ)

)
τ,
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Figure 5.1: The three-dimensional phase portrait of the dynamical system under consid-
eration for the canonical scalar field ε = +1, the positive coupling constant ξ = 6 and
α = −6. Trajectories represent a twister type solution which interpolates between the radi-
ation dominated universe R (a saddle type critical point), the matter dominated universe
(an unstable focus critical point) and the accelerating universe Q (a stable focus critical
point).
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where a
(i)
3b is the initial value of the scale factor at τ = 0. The phase space diagram for the

system with one de Sitter state represented by a saddle type critical point and two stable de

Sitter states is presented in figure 5.2. It is easy to check that if the critical point denoted

as 3a is a saddle type, i.e. in the case when ∆3a > 9, the critical point 3b is a stable one.

The solutions of the linearised system in the vicinity of each critical point xi(a),

yi(a) and λi(a) can be used to constrain the model parameters through the cosmological data

from various cosmological epochs. For example, the parameters for the solution describing

the radiation dominated universe (1) can be constrained from CMB data (its effects on CMB

spectrum may be different from pure photon gas [160]), and the solutions (3) describing the

current accelerating expansion of the universe through the SNIa data. Therefore one can

estimate the parameters of the variability with redshift of true w(a) (see figure 5.3). It is

possible because we have the linearization of the exact formula in different epochs.

The presented possibility of appearing of the twister type quintessence scenario

is not restricted to the considered case of the Γ(λ) function (5.13). One can easily show

that such a scenario will be always possible if only the following functions calculated at the

critical points [157]

f(λ∗) = (λ∗)2
(
Γ(λ∗)− 1

)
= const,

df(λ)

dλ

∣∣∣
λ∗

= f ′(λ∗) = const

are finite.

In this contribution we pointed out the presence of the new interesting solution

for the non-minimally coupled scalar field cosmology which we called the twister solution

(because of the shape of the corresponding trajectory in the phase space, see figures 5.1 and

5.2). This type of the solution is very interesting because in the phase space it represents

the 3-dimensional trajectory which interpolates different stages of evolution of the universe,

namely, the radiation dominated, dust filled and accelerating universe. We found linearised

solutions around all these intermediate phases and we are able to derive approximated

forms of the effective equation of the state parameter w(a) in those epochs. It is interesting

that the presented structure of the phase space is allowed only for a non-zero value of

coupling constant, therefore it is a specific feature of the non-minimally coupled scalar field

cosmology.
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Figure 5.2: The three-dimensional phase portrait of the investigated dynamical system for
the canonical scalar field ε = +1, the coupling constant ξ = 6 and α = 192. Trajectories
represent a twister typer solution interpolating between the radiation dominated universe
R (a saddle type critical point), the matter dominated universe (an unstable focus critical
point), the accelerating universe Qu represented by a saddle type critical point and final de
Sitter state Qs represented by a stable focus critical point.
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Figure 5.3: The evolution of weff given by the relation (5.10) (thick line), wφ – thin line and
Ωφ – dashed line for the non-minimally coupled canonical scalar field ε = +1 and ξ = 1

8 ,
α = −6 (left) and ξ = 1, α = −1 (right). The existence of moments where Ωφ = 0 indicate
singularities in wφ. The sample trajectories used to plot this relation start their evolution
at ln a = 0 near the saddle type critical point (weff = 1/3) and then approach the critical
point representing the barotropic matter domination epoch weff = wm = 0 and next escape
to the stable de Sitter state with weff = −1. The existence of a short time interval during
which weff ' 1

3 is the effect of the nonzero coupling constant ξ only.



Chapter 6

Toward a unified description of

cosmological evolution

We investigate dynamics of a flat FRW cosmological model with a barotropic matter

and a non-minimally coupled scalar field (both canonical and phantom). In our approach

we do not assume any specific form of a potential function for the scalar field and we are

looking for generic scenarios of evolution. We show that the dynamics of universe can be

reduced to a 3-dimensional dynamical system. We have found the set of fixed points and

established their character. These critical points represent all important epochs in evolution

of the universe : (a) a finite scale factor singularity, (b) an inflation (rapid-roll and slow-

roll), (c) a radiation domination, (d) a matter domination and (e) a quintessence era. We

have shown that the inflation, the radiation and matter domination epochs are transient

ones and last for a finite amount of time. The existence of the radiation domination epoch

is purely the effect of a non-minimal coupling constant. We show the existence of a twister

type solution wandering between all these critical points.
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In this chapter we investigate the dynamical evolution of scalar field cosmological

models with a non-vanishing coupling constant between a scalar field and gravity. We are

adopting dynamical systems methods in studying the evolution of the cosmological model

and its dynamics can be visualised in the phase space which is a geometric framework

for its exploration. Moreover one can investigate all evolutional paths of the system under

consideration for all admissible initial conditions. Therefore one should ask whether different

models with a desired property are typical (generic) in the class of all possible models. In

our opinion physically interesting cosmological models should be generic in the sense that

they do not depend on the special choice of initial conditions which should be determined

from quantum models.

To keep generality of our considerations we do not assume any specific form of the

potential function of a canonical or phantom scalar field. It will be demonstrated that the

parameter of non-minimal coupling ξ plays the crucial role during the cosmological evolu-

tion. We will show the emergence of a new phase space structure organised through critical

points and trajectories. For completeness we also include the model with the barotropic

matter with the constant equation of state parameter wm.

We demonstrate that, in principle, the phase space structure at a finite domain

is determined by five critical points corresponding to important events during the cosmic

evolution, namely, the singularity (of a finite scale factor type), inflation, radiation and

matter dominated epochs and finally the accelerated expansion era. In the previous chap-

ter we introduced the notion of the twister solutions the solutions linking the subsequent

cosmological epochs [161]. In the present we generalise this notion without assuming any

form of the potential function of the scalar field. The evolutional scenarios investigated in

this chapter are obvious only if the non-minimal coupling is different from minimal (ξ = 0)

and conformal (ξ = 1/6) coupling value. In this sense we study a unique type of evolution.

6.1 The model

In the model under consideration we assume the spatially flat FRW universe filled

with the non-minimally coupled scalar field and barotropic fluid with the equation of the

state coefficient wm. The action assumes following form

S =
1

2

∫
d4x
√
−g

(
1

κ2
R− ε

(
gµν∂µφ∂νφ+ ξRφ2

)
− 2U(φ)

)
+ Sm, (6.1)
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where κ2 = 8πG, ε = +1,−1 corresponds to canonical and phantom scalar field, respec-

tively, the metric signature is (−,+,+,+), R = 6
(
ä
a + ȧ2

a2

)
is the Ricci scalar, a is the scale

factor and a dot denotes differentiation with respect to the cosmological time and U(φ) is

the scalar field potential function. Sm is the action for the barotropic matter part.

The dynamical equation for the scalar field we can obtain from the variation

δS/δφ = 0

φ̈+ 3Hφ̇+ ξRφ+ εU ′(φ) = 0, (6.2)

and energy conservation condition from the variation δS/δgµν = 0

E = ε
1

2
φ̇2 + ε3ξH2φ2 + ε3ξH(φ2)̇ + U(φ) + ρm −

3

κ2
H2. (6.3)

Then conservation conditions read

3

κ2
H2 = ρφ + ρm, (6.4)

Ḣ = −κ
2

2

[
(ρφ + pφ) + ρm(1 + wm)

]
(6.5)

where the energy density and the pressure of the scalar field are

ρφ = ε
1

2
φ̇2 + U(φ) + ε3ξH2φ2 + ε3ξH(φ2)̇, (6.6)

pφ = ε
1

2
(1− 4ξ)φ̇2 − U(φ) + εξH(φ2)̇− ε2ξ(1− 6ξ)Ḣφ2

−ε3ξ(1− 8ξ)H2φ2 + 2ξφU ′(φ). (6.7)

Note that, when the non-minimal coupling is present, the energy density ρφ and

the pressure pφ of the scalar field can be defined in several possible inequivalent ways. This

corresponds to different ways of writing the field equations. In the case adopted here the

energy momentum tensor of the scalar field is covariantly conserved, which may not be true

for other choices of ρφ and pφ [94, 86]. For example, the redefinition of the gravitational

constant κ−2
eff = κ−2 − εξφ2 makes it time dependent. The effective gravitational constant

can diverge for a critical value of the scalar field φc = ±(εκ2ξ)−1/2. Though the FRW

model remains regular at this point, the model is unstable with respect to arbitrary small

anisotropic and inhomogeneous perturbations which become infinite there. This results in

the formation of a strong curvature singularity prohibiting a transition to the region κ2
eff < 0

[162].
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In what follows we introduce the energy phase space variables

x ≡ κφ̇√
6H

, y ≡
κ
√
U(φ)√
3H

, z ≡ κ√
6
φ, (6.8)

which are suggested by the conservation condition

κ2

3H2
ρφ +

κ2

3H2
ρm = Ωφ + Ωm = 1 (6.9)

or in terms of the newly introduced variables

Ωφ = y2 + ε
[
(1− 6ξ)x2 + 6ξ(x+ z)2

]
= 1− Ωm. (6.10)

The acceleration equation can be rewritten to the form

Ḣ = −κ
2

2

(
ρeff + peff

)
= −3

2
H2(1 + weff) (6.11)

where the effective equation of the state parameter reads

weff =
1

1− ε6ξ(1− 6ξ)z2

[
− 1 + ε(1− 6ξ)(1− wm)x2 + ε2ξ(1− 3wm)(x+ z)2 +

+(1 + wm)(1− y2)− ε2ξ(1− 6ξ)z2 − 2ξy2λz
]

(6.12)

where λ = −
√

6
κ

1
U(φ)

dU(φ)
dφ .

The dynamical system describing the investigated models is in the following form

[157, 161]

x′ = −(x− ε1

2
λy2)

[
1− ε6ξ(1− 6ξ)z2

]
+

3

2
(x+ 6ξz)

[
− 4

3
− 2ξλy2z +

+ε(1− 6ξ)(1− wm)x2 + ε2ξ(1− 3wm) (x+ z)2 + (1 + wm)(1− y2)

]
, (6.13a)

y′ = y

(
2− 1

2
λx

)[
1− ε6ξ(1− 6ξ)z2

]
+

3

2
y

[
− 4

3
− 2ξλy2z +

+ε(1− 6ξ)(1− wm)x2 + ε2ξ(1− 3wm) (x+ z)2 + (1 + wm)(1− y2)

]
,(6.13b)

z′ = x
[
1− ε6ξ(1− 6ξ)z2

]
, (6.13c)

λ′ = −λ2 (Γ− 1)x
[
1− ε6ξ(1− 6ξ)z2

]
. (6.13d)

where a prime denotes differentiation with respect to time τ defined as

d

dτ
=

[
1− ε6ξ(1− 6ξ)z2

]
d

d ln a
(6.14)
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Table 6.1: Different examples of potential functions for various configurations of parameters
values of the assumed form of the Γ(λ) function Γ(λ) = 1− 1

λ2

(
α+ βλ+ γλ2

)
.

parameters z(λ) potential function U(φ)

α 6= 0, β = 0, γ = 0 λ
α
+ const. U0 exp

(
−α

2
φ2 + const.φ

)
α = 0, β 6= 0, γ = 0 lnλ

β
+ const. U0 exp

(
const.
β

exp (βφ)
)

α = 0, β = 0, γ 6= 0 − 1
γλ

+ const. U0 (γφ− const.)
1
γ

α 6= 0, β 6= 0, γ = 0 ln (α+βλ)
β

+ const. U0 exp
(

1
β
(αφ+ conts. exp (βφ))

)
α 6= 0, β = 0, γ 6= 0

arctan (
√
γ
α
λ)

√
αγ

+ const. U0

(
cos
(√
αγ(φ− const.)

)) 1
γ

α = 0, β 6= 0, γ 6= 0 lnλ−ln (β+γλ)
β

+ const. U0 (exp (const.β) + γ exp (βφ))
1
γ

α 6= 0, β 6= 0, γ 6= 0
2 arctan

(
β+2γλ√
−β2+4αγ

)
√
−β2+4αγ

+ const. U0 exp
(
β
2γ
φ
)(

cos
(

1
2

√
−β2 + 4αγ(φ− const.)

)) 1
γ

where the expression in brackets is assumed as a positive quantity to assure that during the

evolution with τ > 0 the scale factor a is growing, i.e. the universe expands, and

Γ =
U ′′(φ)U(φ)

U ′(φ)2
.

To investigate the dynamics of the universe described by the dynamical system (6.13) we

need to define an unknown function Γ, i.e. we need to define the potential function U(φ).

In the special cases of the system with the cosmological constant or exponential potential,

U = U0 = const. or U = U0 exp (−λφ), the dynamical system (6.13) can be reduced to the

3-dimensional one due to the relation λ = 0 and Γ = 0 in the former case, and λ = const.

and Γ = 1 in the latter case. Then dynamical system consists of three equations (6.13a,

6.13b, 6.13c).

There is another possibility of reduction of the system (6.13) from a 4-dimensional

dynamical system to a 3-dimensional one. If we assume that z = z(λ) and Γ = Γ(λ), then

using (6.13c) and (6.13d) we can find the function z(λ) from the differential equation

dz(λ)

dλ
= z′(λ) = − 1

λ2
(
Γ(λ)− 1

) (6.15)

which can be integrated for some given function Γ(λ)

z(λ) = −
∫

dλ

λ2
(
Γ(λ)− 1

) . (6.16)

Then the dynamical system describing the investigated models is in the following form
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[157, 161]

x′ = −(x− ε1

2
λy2)

[
1− ε6ξ(1− 6ξ)z(λ)2

]
+

3

2
(x+ 6ξz(λ))

[
− 4

3
− 2ξλy2z(λ) +

+ε(1− 6ξ)(1− wm)x2 + ε2ξ(1− 3wm) (x+ z(λ))2 + (1 + wm)(1− y2)

]
, (6.17a)

y′ = y

(
2− 1

2
λx

)[
1− ε6ξ(1− 6ξ)z(λ)2

]
+

3

2
y

[
− 4

3
− 2ξλy2z(λ) +

+ε(1− 6ξ)(1− wm)x2 + ε2ξ(1− 3wm) (x+ z(λ))2 + (1 + wm)(1− y2)

]
, (6.17b)

λ′ = −λ2 (Γ(λ)− 1)x
[
1− ε6ξ(1− 6ξ)z(λ)2

]
. (6.17c)

where a prime denotes now differentiation with respect to time τ defined as

d

dτ
=

[
1− ε6ξ(1− 6ξ)z(λ)2

]
d

d ln a
(6.18)

and we assume that the term in bracket is positive in the phase space during the evolution.

Now we are able to express the acceleration equation (6.11) in terms of the energy

phase space variables and time τ

d lnH2

dτ
= −3

[
1− ε6ξ(1− 6ξ)z

(
λ(τ)

)2](
1 + weff

)
(6.19)

which together with (6.12) results in

ln

(
H

H ini

)2

= −3

∫ τ

0

{
1 + wm + ε(1− 6ξ)(1− wm)x(τ)2 +

+ε2ξ(1− 3wm)
(
x(τ) + z

(
λ(τ)

))2
−

−y(τ)2
(

2ξλ(τ)z
(
λ(τ)

)
+ 1 + wm

)
−

−ε8ξ(1− 6ξ)z
(
λ(τ)

)2}
dτ, (6.20)

where H ini denotes the initial value of Hubble’s function at time τ = 0. In what follows we

will be using this expression together with the linearised solutions in the vicinity of every

critical point to investigate the behaviour of Hubble’s function with respect to the scale

factor, as well as Hubble’s radius defined as

RH =
1

H
.

For example if the function Γ(λ) is assumed in the following form

Γ(λ) = 1− 1

λ2

(
α+ βλ+ γλ2

)
,
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then in Table 6.1 we have gathered forms of the functions z(λ) and corresponding potential

functions U(φ) for various configurations of values of parameters α, β and γ. As we see

there are various potential functions which are the most common ones used in the literature

of the subject. Of course this simple ansatz for the function Γ(λ) does not manage all

possible potential functions. Let us consider the following function

Γ(λ) =
3

4
− σ2λ2

4
(
2±
√

4 + σ2λ2
)2

as one can check from (6.16) we receive

z(λ) = −2±
√

4 + σ2λ2

λ
+ const.

and this example corresponds to the Higgs potential

U(φ) = U0

(
(φ− const.)2 − σ2

)2
.

We need to stress that the discussion presented below is not restricted to the specific po-

tential function but is generic in the sense that it is valid for any function Γ(λ) for which

the integral defined in (6.16) exists.

6.2 Dynamics of universe with a potential

In our investigations of dynamics of the system given by equations (6.17) we will

restrict ourselves to the finite region of the phase space, i.e. we will be interested only in

the critical points in the finite domain of the phase space. The full investigations of the

dynamics requires examination of critical points at infinity, i.e. compactification of the phase

space with the Poincaré sphere. The procedure of transforming dynamical variables into

the projective variables associated with the compactification requires that the right hand

sides of the dynamical system should be polynomial. In our case this is not always true

because of the form of function z(λ) (see table 6.1). In what follows we present detailed

discussion of character of critical points of the system (6.17) corresponding to different

stages of cosmological evolution (table 6.2).
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Table 6.2: Critical points of the system under consideration.

x∗ y∗ λ∗ weff

1. x∗1 = −6ξz(λ∗1) y∗1 = 0 λ∗1 : z(λ)
2 = 1

ε6ξ(1−6ξ)
±∞

2a. x∗2a = −6ξz(λ∗2a) (y∗2a)
2 = 4ξ

2ξλ∗
2az(λ

∗
2a)+(1+wm)

λ∗2a : z(λ)
2 = 1

ε6ξ(1−6ξ)
wm − 4ξ

2b. x∗2b = 0 (y∗2b)
2 = 2ξ(1−3wm)

(1−6ξ)
(
2ξλ∗

2b
z(λ∗

2b
)+(1+wm)

) λ∗2b : z(λ)
2 = 1

ε6ξ(1−6ξ)
wm−2ξ
1−6ξ

3a. x∗3a : g(x) = 0 1 y∗3a = 0 λ∗3a : z(λ)
2 = 1

ε6ξ(1−6ξ)
1
3

3b. x∗3b = 0 y∗3b = 0 λ∗3b : z(λ)
2 = 1

ε6ξ
1
3

4. x∗4 = 0 y∗4 = 0 λ∗4 : z(λ) = 0 wm

5. x∗5 = 0 (y∗5)
2 = 1− ε6ξz(λ∗5)2 λ∗5 : λz(λ)

2 + 4z(λ)− λ
ε6ξ

= 0 −1
1g(x) = ε(1− 4ξ − wm)x2 + ε4ξ(1− 3wm)z(λ∗3a)x+ 2ξ

1−6ξ
(1− 3wm)

6.2.1 Finite scale factor initial singularity

Our discussion of the dynamics of the model under consideration we begin with

the critical point located at

x∗1 = −6ξz(λ∗1), y∗1 = 0, λ∗1 : z(λ)2 =
1

ε6ξ(1− 6ξ)
(6.21)

where the last expression means that the coordinate λ∗1 of the critical point is the solution

to the equation z(λ)2 = 1
ε6ξ(1−6ξ) . This critical point represents a singularity because the

value of weff given by (6.12) calculated at this point is

weff = ±∞.

We need to stress that this critical point exists only if εξ(1− 6ξ) > 0, i.e. for the canonical

scalar field (ε = +1) for 0 < ξ < 1/6, and for the phantom scalar field (ε = −1) for ξ < 0

or ξ > 1/6.

In cosmological investigations one encounters usually various types of singularities

such as: initial finite scale factor singularity [163, 164], future finite scale factor singularities:

the sudden future singularities [165], the Big Brake singularity [166], and the Big Boost

singularity [167].

Linearised solutions in the vicinity of this critical point are

x1(τ) = x∗1 +
(
(xini

1 − x∗1) + 2(1− 3ξ)z′(λ∗1)(λini
1 − λ∗1)

)
exp (l1τ)−

−2(1− 3ξ)z′(λ∗1)(λini
1 − λ∗1) exp (l3τ), (6.22a)

y1(τ) = yini
1 exp (l2τ), (6.22b)

λ1(τ) = λ∗1 + (λini
1 − λ∗1) exp (l3τ). (6.22c)
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where

l1 = 6ξ, l2 = 6ξ, l3 = 12ξ

are the eigenvalues of the linearization matrix calculated at this critical point, xini
1 , yini

1 and

λini
1 are initial conditions. For positive values of the coupling constant ξ > 0 this critical

point represents an unstable node type critical point. For ξ < 0 which is possible only for

the phantom scalar field (ε = −1) the critical point is of a stable node type.

Using the time reparameterization (6.18)

d ln a =
(

1− ε6ξ(1− 6ξ)z
(
λ(τ)

)2)
dτ (6.23)

and expansion into the Taylor series around the critical point coordinate λ∗

z(λ) = z(λ∗) + z′(λ∗)(λ− λ∗)

up to linear terms

z(λ)2 = z(λ∗)2 + 2z(λ∗)z′(λ∗)(λ− λ∗)

and then together with (6.22c) we have

z (λ(τ))2 = z(λ∗1)2 + 2z(λ∗1)z′(λ∗1)(λini
1 − λ∗1) exp (l3τ).

Inserting this expansion into the time reparameterization we receive

d ln a = −ε12ξ(1− 6ξ)z(λ∗1)z′(λ∗1)(λini
1 − λ∗1) exp (l3τ)dτ

which can be directly integrated for l3 = 12ξ > 0

∆ ln a = −ε12ξ(1− 6ξ)z(λ∗1)z′(λ∗1)(λini
1 − λ∗1)

∫ 0

−∞
exp (l3τ)dτ

(we could take also l3 = 12ξ < 0 and the integration in this expression should be taken

(0,∞) because for ξ < 0 this critical point represents a stable node). Where the result is

∆ ln a = ln

(
aini

1

as

)
= −ε(1− 6ξ)z(λ∗1)z′(λ∗1)(λini

1 − λ∗1)

Finally we receive

aini
1 = as exp

{
− ε(1− 6ξ)z(λ∗1)z′(λ∗1)(λini

1 − λ∗1)
}

where the value in the exponent is finite, and aini
1 is the value of the scale factor at τ = 0

and as is the value of the scale factor at singularity. This equation gives us the scale factor
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growth from singularity to the some initial point where linear approximation is still valid.

From simple considerations we have that

z(λ∗1)z′(λ∗1)
(
λini

1 − λ∗1
)
< 0

which show that the critical point under consideration represents the finite scale factor

singularity. Moreover it is a past singularity for the canonical scalar field with 0 < ξ < 1/6

and the phantom scalar field with ξ > 1/6 and future singularity for the phantom scalar

field with ξ < 0.

Now, using linearised solutions (6.22), we can express (6.18) and (6.20) as para-

metric functions of time τ

ln
(

a
aini1

)
= ε(1− 6ξ)z(λ∗1)z′(λ∗1)

(
λini

1 − λ∗1
)(

1− exp (l3τ)
)
,

ln
(

H
Hini

1

)2
= 3

{
− 4ξτ − ε4

3(1− 6ξ)z(λ∗1)[(xini
1 − x∗1)+

+2(1− 3ξ)z′(λ∗1)
(
λini

1 − λ∗1
)
]
(
1− exp (l1τ)

)
+ε1

3(1− 6ξ)(1− 3wm − 12ξ)z(λ∗1)z′(λ∗1)
(
λini

1 − λ∗1
)(

1− exp (l3τ)
)}
.

(6.24)

The linearised solutions used to obtain these relations are valid up to the Lyapunov char-

acteristic time which is equal to the inverse of the largest eigenvalue of the linearization

matrix. In our case it is τend = 1
l3

= 1
12ξ . Inserting this in to equations (6.24) we obtain

maximal values of the scale factor and the Hubble’s function respectively:

ln
(
aend1

aini1

)
= ε(1− 6ξ)z(λ∗1)z′(λ∗1)

(
λini

1 − λ∗1
)(

1− e
)
,

ln
(
Hend

1

Hini
1

)2
= 3

{
− 1

3 − ε
4
3(1− 6ξ)z(λ∗1)[(xini

1 − x∗1)+

+2(1− 3ξ)z′(λ∗1)
(
λini

1 − λ∗1
)
]
(
1− e

)
+ε1

3(1− 6ξ)(1− 3wm − 12ξ)z(λ∗1)z′(λ∗1)
(
λini

1 − λ∗1
)(

1− e
)}
.

(6.25)

The plot representing the evolution of these quantities together with Hubble’s horizon is

presented in figure 6.1. As one can simply conclude

ξ > 0 : lim
τ→−∞

H2 →∞.

The general conclusion is that any phantom scalar field cosmological model with

the negative coupling constant ξ < 0 and the potential function which can be represented

by function z(λ) possesses the finite scale factor future singularity with weff = ±∞.
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Figure 6.1: Evolution of lnH2 (left panel) and RH (right panel) as a function of a natural
logarithm of the scale factor ln a for a sample trajectory with ε = +1, ξ = 1

8 , z′(λ∗1) = 1
α =

100 in the vicinity of the critical point corresponding to the finite scale factor singularity.
The solid black line represents the linearised solution (6.24) and the dotted line corresponds
to the numerical solution of the system (6.17).

6.2.2 Inflation with the non-minimal coupling and arbitrary potential

Now we proceed to the very important phase of the evolution of the universe,

namely the inflation.

Fast-roll inflation

The critical point located at

x∗2a = −6ξz(λ∗2a), (y∗2a)
2 =

4ξ

2ξλ∗2az(λ
∗
2a) + (1 + wm)

, λ∗2a : z(λ)2 =
1

ε6ξ(1− 6ξ)
(6.26)

with

weff = wm − 4ξ

we identify as a fast-roll inflation (or rapid-roll) [168, 169, 170]. The first reason is that weff

calculated at this critical point can be made close to −1 especially for the phantom scalar

field, and the second one is that the first coordinate of this point, using transformations

(6.8) can be put in the following form

φ̇ = −6ξHφ

which for the conformal coupling ξ = 1/6, reduces to condition for the rapid-roll inflation

given by Kofman and Mukohyama in [169]. That is we identify this critical point as a

generalisation to the non-minimally coupled case (both for the canonical and phantom
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scalar fields) with additional presence of the barotropic matter with the equation of state

parameter wm.

The linearization matrix for this critical point is the following

A2a =


0 0 ∂x′

∂λ

∣∣
2a

∂y′

∂x

∣∣
2a
−12ξ ∂y′

∂λ

∣∣
2a

0 0 12ξ

 , (6.27)

where

∂x′

∂λ

∣∣
2a

= −3(y∗2a)
2
(

1 + wm + 4ξ(1− 3ξ)λ∗2az(λ
∗
2a)
)
z′(λ∗2a),

∂y′

∂x

∣∣
2a

= −ε12ξ(1− 6ξ)y∗2az(λ
∗
2a),

∂y′

∂λ

∣∣
2a

= −3ξy∗2a

[
(y∗2a)

2z(λ∗2a) +
(
ε6(1− 6ξ)(1 + wm)z(λ∗2a) + (2 + (y∗2a)

2)λ∗2a

)
z′(λ∗2a)

]
The eigenvalues of the linearization matrix are obviously l1 = 0, l2 = 12ξ and l3 = −12ξ.

Thus the fixed point is a non-hyperbolic and we cannot make any conclusions concerning

its stability based on linearization and the Hartman-Grobman theorem is not applicable

[59, 60]. The answer to the question of stability or instability lies in the center manifold

theory (see appendix C).

We apply following procedure: first, we expand the right hand side of the dynam-

ical system (6.17) into the Taylor series around the critical point (6.26) up to second order,

and second, we make following change of dynamical variables


u

v

w

 = P−1
2a


x− x∗2a
y − y∗2a
λ− λ∗2a

 ,

where the matrix P2a is constructed from eigenvectors of the linearization matrix (6.27)

calculated for corresponding eigenvalues and its inverse is

P−1
2a =


1 0 − 1

12ξ
∂x′

∂λ

∣∣
2a

− 1
12ξ

∂y′

∂x

∣∣
2a

1 − 1
24ξ

(
− 1

12ξ
∂x′

∂λ

∣∣
2a
∂y′

∂x

∣∣
2a

+ ∂y′

∂λ

∣∣
2a

)
0 0 1

 .

Then dynamical system in the vicinity of the critical point representing the fast-roll inflation
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Figure 6.2: The phase portrait for the system (6.29) on the invariant submanifold in the
vicinity of the critical point corresponding to the rapid-roll inflation. The bold line repre-
sents the center manifold for the problem. On the left diagram we present an unstable case
for ε(1−3wm) < 0 and the right diagram for a stable case for ε(1−3wm) > 0. The example
is given for z(λ) = λ

α and α = 1, wm = 0 left for ε = −1 and ξ = 1/4, right for ε = 1 and
ξ = 1/8.

is in the following form

u′ = −3y∗2a

(
2ξλ∗2az(λ

∗
2a) + 1 + wm

)
uv +Auw

2 +Buvw + Cuuw, (6.28a)

v′ = −12ξv + ε
1

2
(1− 3wm)y∗2au

2 − 9

2

(
2ξλ∗2az(λ

∗
2a) + 1 + wm

)
y∗2av

2

+ε12ξ(1− 6ξ)z(λ∗2a)uv +Avw
2 +Bvvw + Cvuw, (6.28b)

w′ = 12ξw +Aww
2 +Bwuw, (6.28c)

where Ai, Bi and Ci are coefficients consisting of second derivatives of right-hand sides of

dynamical system (6.17) calculated at the critical point under considerations. We can note

that this dynamical system admits the invariant submanifold w = 0, and the dynamics can

be well approximated on this submanifold. Then

u′ = −3y∗2a

(
2ξλ∗2az(λ

∗
2a) + 1 + wm

)
uv, (6.29a)

v′ = −12ξv + ε
1

2
(1− 3wm)y∗2au

2 − 9

2

(
2ξλ∗2az(λ

∗
2a) + 1 + wm

)
y∗2av

2

+ε12ξ(1− 6ξ)z(λ∗2a)uv, (6.29b)

on the invariant submanifold w = 0.

From the center manifold theorem (appendix C) we have

v = h(u) = ε
1

24ξ
(1− 3wm)y∗2au

2 +
1− 6ξ

24ξ
(1− 3wm)z(λ∗2a)y

∗
2au

3 +O(u4)
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and inserting this approximation into (6.29a) we receive that the vector field restricted to

the center manifold is given by

η′ = −ε1

2
(1− 3wm)η3 +O(η4),

which indicates that for ε(1−3wm) < 0 it is an unstable and for ε(1−3wm) > 0 it is a stable

critical point on the invariant submanifold w = 0 (see figure 6.2 example for z(λ) = λ
α).

This equation can be simply integrated resulting in

η(τ)2 =
(ηini)2

(ηini)2ε(1− 3wm)τ + 1
.

Above equation describes behaviour of the system on the center manifold which constitutes

the invariant submanifold. This solution can be used in construction of exact solution of the

system (6.29) in the vicinity of the critical point representing the fast-roll inflation epoch.

Using the solution from the center manifold theorem and keeping linear term in w

only

u(τ)v(τ) ∝ u(τ)3 ≈ 0, v(τ)w(τ) ∝ u(τ)2w(τ) ≈ 0, v(τ)2 ∝ u(τ)4 ≈ 0,

w(τ)2 ≈ 0, u(τ)w(τ) ≈ 0

from (6.18) and (6.20) we get the parametric equations for the evolution of the scale factor

and Hubble’s function ln
(

a
aini2a

)
= −ε(1− 6ξ)z(λ∗2a)z

′(λ∗2a)w
ini
(

exp (12ξτ)− 1
)
,

ln
(

H
Hini

2a

)2
= − 1

4ξAw
ini
(

exp (12ξτ)− 1
)
,

(6.30)

which can be easy combine resulting in

ln

(
H

H ini
2a

)2

= − A

ε4ξ(1− 6ξ)z(λ∗2a)z
′(λ∗2a)

ln

(
a

aini
2a

)
(6.31)

where

A = 1

72
(

2ξλ∗2az(λ
∗
2a)+(1+wm)

){[ −ε144ξ(1− 6ξ)(1 + wm)(1 + 3wm)z(λ∗2a)+

+96ξ(2− 9ξ)λ∗2a + 288ξ2(λ∗2a)
2z(λ∗2a)

]
z′(λ∗2a)−

−288ξ2z(λ∗2a)
}
.

One can conclude that |A| � 1 is needed in order to achieve H2 ≈ const. during the

evolution. The linearised solution in w direction is valid up to the Lyapunov time τend =
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Figure 6.3: Evolution of lnH2 (left panel) and RH (right panel) as a function of natural
logarithm of the scale factor ln a for a sample trajectory with ε = −1, ξ = 1

4 , z′(λ∗1) = 1
α = 10

in the vicinity of the critical point corresponding to the fast-roll inflation. The solid black
line represents the linearised solution (6.30) and the dotted line represents the numerical
solution of the system (6.17).

1
12ξ , using this we obtain maximal values of the scale factor and the Hubble’s function

respectively:  ln
(
aend2a

aini2a

)
= −ε(1− 6ξ)z(λ∗2a)z

′(λ∗2a)w
ini
(
e− 1

)
,

ln
(
Hend

2a

Hini
2a

)2
= − 1

4ξAw
ini
(
e− 1

)
,

(6.32)

In figure 6.3 we present the evolution of Hubble’s function and Hubble’s horizon in the

vicinity of this critical point.

Slow-roll inflation

The critical point located at

x∗2b = 0, (y∗2b)
2 =

2ξ(1− 3wm)

(1− 6ξ)
(
2ξλ∗2bz(λ

∗
2b) + (1 + wm)

) , λ∗2b : z(λ)2 =
1

ε6ξ(1− 6ξ)
(6.33)

with

weff =
wm − 2ξ

1− 6ξ

we identify as representing the phase of a slow-roll inflation due to x ∝ φ̇ so the dynamics

in the vicinity of this point corresponds to the slow-roll condition φ̇ ≈ 0.

The linearization matrix is in the form

A2b =


∂x′

∂x

∣∣
2b

∂x′

∂y

∣∣
2b

∂x′

∂λ

∣∣
2b

∂y′

∂x

∣∣
2b

∂y′

∂y

∣∣
2b

∂y′

∂λ

∣∣
2b

0 0 0

 , (6.34)
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where nonzero elements are

∂x′

∂x

∣∣
2b

= 6ξ
1−6ξ (1− 3wm),

∂x′

∂y

∣∣
2b

= −18ξ
(

2ξλ∗2bz(λ
∗
2b) + (1 + wm)

)
y∗2bz(λ

∗
2b),

∂x′

∂λ

∣∣
2b

= 3
1−6ξ (y∗2b)

2
(
− εξ + (1− 6ξ)z′(λ∗2b)

(
6ξ2λ∗2bz(λ

∗
2b) + (1 + wm)

))
,

∂y′

∂x

∣∣
2b

= ε6ξ(1− 3wm)y∗2bz(λ
∗
2b),

∂y′

∂y

∣∣
2b

= − 6ξ
1−6ξ (1− 3wm),

∂y′

∂λ

∣∣
2b

= −3ξy∗2b

(
(y∗2b)

2z(λ∗2b) + z′(λ∗2b)
(
(y∗2b)

2λ∗2b + ε6z(λ∗2b)(1 + wm − 8ξ)
))
,

and additionally we have the following relation

∂x′

∂x

∣∣∣
2b

∂y′

∂y

∣∣∣
2b

= −
(

6ξ

1− 6ξ

)2

(1− 3wm)2.

The characteristic equation for the linearization matrix gives us vanishing eigenvalues l1 =

l2 = l3 = 0, so the critical point is degenerated. In this case we cannot use standard

procedures, following the Hartman-Grobman theorem [59, 60] of determining qualitative

behaviour of the investigated system in the vicinity of this critical point. Instead we can

notice that the linearization matrix A2b calculated at this critical point is nilpotent of order

3, i.e. (A2b)
3 = 0. Then solution of the linearised problem can be presented in the following

form

x(τ) =
[
1 +A2bτ +

1

2
(A2b)

2τ2
]
x0

Finally solutions in the vicinity of this degenerated critical point up to linear terms

are

x(τ) = xini
2b +

(
∂x′

∂x

∣∣∣
2b

(xini
2b − x∗2b) + ∂x′

∂y

∣∣∣
2b

(yini
2b − y∗2b) + ∂x′

∂λ

∣∣∣
2b

(λini
2b − λ∗2b)

)
τ

+1
2

(
∂x′

∂x

∣∣∣
2b

∂x′

∂λ

∣∣∣
2b

+ ∂x′

∂y

∣∣∣
2b

∂y′

∂λ

∣∣∣
2b

)
(λini

2b − λ∗2b)τ2,

y(τ) = yini
2b +

(
∂y′

∂x

∣∣∣
2b

(xini
2b − x∗2b) + ∂y′

∂y

∣∣∣
2b

(yini
2b − y∗2b) + ∂y′

∂λ

∣∣∣
2b

(λini
2b − λ∗2b)

)
τ

+1
2

(
∂y′

∂y

∣∣∣
2b

∂y′

∂λ

∣∣∣
2b

+ ∂y′

∂x

∣∣∣
2b

∂x′

∂λ

∣∣∣
2b

)
(λini

2b − λ∗2b)τ2,

λ(τ) = λini
2b .

(6.35)

where

∂x′

∂x

∣∣
2b
∂x′

∂λ

∣∣
2b

+ ∂x′

∂y

∣∣
2b
∂y′

∂λ

∣∣
2b

= 36ξ(1 + wm)
(
2 + 3ξλ∗2bz(λ

∗
2b)
)
(y∗2b)

2z′(λ∗2b),
∂y′

∂y

∣∣
2b
∂y′

∂λ

∣∣
2b

+ ∂y′

∂x

∣∣
2b
∂x′

∂λ

∣∣
2b

= 18ξ(1 + wm)
(
λ∗2b + ε4(1− 6ξ)z(λ∗2b)

)
(y∗2b)

3z′(λ∗2b).
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Figure 6.4: Evolution of lnH2 (left panel) and RH (right panel) as a function of the natural
logarithm of the scale factor ln a for a sample trajectory with ε = +1, ξ = 1

8 , z′(λ∗1) =
1
α = 100 in the vicinity of the critical point corresponding to the slow-roll inflation. The
solid black line represents the linearised solution (6.35) and the dotted line represents the
numerical solution of the system (6.17).

These linearised solutions are valid up to a maximal value of the time parameter τ = τmax

which can be used to calculate the scale factor growth during the slow roll inflation

ln
aend
si

astart
si

= −ε24ξ(1− 6ξ)z(λ∗2b)z
′(λ∗2b)

(
λini

2b − λ∗2b
)
τmax.

The direct application of the linearised solutions (6.35) to (6.18) and (6.20) gives

us the approximated evolution of Hubble’s function in the vicinity of the critical point

representing the slow-roll inflation (figure 6.4).

6.2.3 Radiation domination epoch generated by non-minimal coupling

The following critical point located at

x∗3a : g(x) = 0, y∗3a = 0, λ∗3a : z(λ)2 =
1

ε6ξ(1− 6ξ)
(6.36)

where g(x) = ε(1− 4ξ − wm)x2 + ε4ξ(1− 3wm)z(λ∗3a)x+ 2ξ
1−6ξ (1− 3wm) and at this point

value of the effective equation of the state parameter is

weff =
1

3

represents the radiation dominated universe. With solutions to g(x) = 0 equation in th

form

x1,2 =
1

ε2(1− 4ξ − wm)

{
−ε4ξ(1− 3wm)z(λ∗3a)±

√
−ε16

3
ξ(1− 3wm)

}
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which is real only if the expression in square root is positive and for the barotropic matter

with wm < 1
3 it is possible only if εξ < 0. We are interested only in evolution with ξ > 0

because of the discussion of the critical point representing the finite scale factor singularity,

and this is the reason we identify this critical point as representing a radiation dominated

epoch only for the phantom scalar field.

The linearization matrix calculated at this point is in the following form

A3a =


∂x′

∂x

∣∣
3a

0 ∂x′

∂λ

∣∣
3a

0 0 0

0 0 ∂λ′

∂λ

∣∣
3a

 , (6.37)

where

∂x′

∂x

∣∣
3a

= ε12ξ(1− 6ξ)z(λ∗3a)x
∗
3a,

∂x′

∂λ

∣∣
3a

= ε6ξz′(λ∗3a)
[
2(1− 6ξ)z(λ∗3a)x

∗
3a + (1− 3wm)

(
x∗3a + 6ξz(λ∗3a)

)(
x∗3a + z(λ∗3a)

)]
,

∂λ′

∂λ

∣∣
3a

= −ε12ξ(1− 6ξ)z(λ∗3a)x
∗
3a.

Eigenvalues of the linearization matrix are l1 = −ε12ξ(1 − 6ξ)z(λ∗3a)x
∗
3a, l2 = 0,

l3 = ε12ξ(1 − 6ξ)z(λ∗3a)x
∗
3a. This indicates that the critical point is non-hyperbolic one

and the standard linearization procedure will be inefficient and we need to proceed with the

center manifold theorem (see appendix C) and the procedure described during the discussion

of the critical point representing fast-roll inflation. We make following change of dynamical

variables 
u

v

w

 = P−1
3a


x− x∗3a
y − y∗3a
λ− λ∗3a

 ,

where matrix P3a is constructed from eigenvectors of the linearization matrix (6.37) and its

inverse is

P−1
3a =


0 0 1

0 1 0

1 0 χ

 , and χ =
∂x′

∂λ

∣∣
3a

∂x′

∂x

∣∣
3a
− ∂λ′

∂λ

∣∣
3a

.

Then dynamical system can be presented in the following form

u′ = −ε12ξ(1− 6ξ)z(λ∗3a)x
∗
3au+Auu

2 +Buuw,

v′ = Avuv +Bvvw,

w′ = ε12ξ(1− 6ξ)z(λ∗3a)x
∗
3aw +Awu

2 +Bwv
2 + Cww

2 +Dwuw,

(6.38)
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Figure 6.5: The phase portrait for the system (6.41) on the invariant submanifold u = 0
in the vicinity of the critical point corresponding to the radiation dominated universe with
weff = 1

3 . The bold parabola shaped line represents the center submanifold for the problem.
On the left diagram we present an unstable case and on the right diagram for a stable case.
The example is given for z(λ) = λ

α , ε = −1, wm = 0, ξ = 1/4 and α = 1 (left) and α = −4
(right).

where Ai, Bi, Ci and Di are coefficients consisting of second derivatives of the right hand

sides of dynamical system (6.17) calculated at the critical point (6.36).

One can note that above dynamical system admits two invariant submanifolds

namely v = 0 and u = 0.

On the first invariant submanifold the system can be simply reduced to

u′ = −ε12ξ(1− 6ξ)z(λ∗3a)x
∗
3au

w′ = ε12ξ(1− 6ξ)z(λ∗3a)x
∗
3aw,

(6.39)

resulting in the solution representing a saddle type critical point in the form

u(τ) = uini exp
(
− ε12ξ(1− 6ξ)z(λ∗3a)x

∗
3aτ
)
,

w(τ) = wini exp
(
ε12ξ(1− 6ξ)z(λ∗3a)x

∗
3aτ
)
.

(6.40)

On the other hand we can also restrict our system to the invariant submanifold

defined by u = 0, then

v′ = Bvvw,

w′ = ∂x′

∂x

∣∣∣
3a
w +Bwv

2 + Cww
2,

(6.41)

and from the center manifold theorem (see appendix C) we have

w = h(v) = − Bw
∂x′

∂x |3a
v2 +

B2
w

(∂x
′

∂x |3a)3
(2Bv − Cw)v4 +O(v5)
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and inserting this approximation into first equation of the system (6.41) we receive that the

vector field restricted to the center manifold is given by

η′ = −BvBw
∂x′

∂x |3a
η3 +O(η4)

where
BvBw
∂x′

∂x |3a
= −ε λ∗3a

2(1− 6ξ)z(λ∗3a)
− 3

2
(1 + wm)

and this indicates that for BvBw
∂x′
∂x
|3a

< 0 it is an unstable and for BvBw
∂x′
∂x
|3a

> 0 it is a stable critical

point on the invariant submanifold u = 0 (see figure 6.5 for an example for z(λ) = λ
α).

Now we are ready to present the evolution of Hubble’s function in the vicinity of

this critical point. First, we use approximated solutions (6.40) on the invariant submanifold

v = 0. We have
ln
(

a
aini3a

)
=

z′(λ∗3a)
x∗3a

uini
(

exp
(
− ε12ξ(1− 6ξ)z(λ∗3a)x

∗
3aτ
)
− 1
)
,

ln
(

H
Hini

3a

)2
= 1−3wm

1−6ξ
x∗3a+6ξz(λ∗3a)

(x∗3a)2
wini

(
exp

(
ε12ξ(1− 6ξ)z(λ∗3a)x

∗
3aτ
)
− 1
)
−

−
(

4 + 1−wm
4ξ

x∗3a
z(λ∗3a)

)
z′(λ∗3a)
x∗3a

uini
(

exp
(
− ε12ξ(1− 6ξ)z(λ∗3a)x

∗
3aτ
)
− 1
)

(6.42)

On the other hand, using the solution from a center manifold and keeping only

linear terms in u

w(τ)2 ∝ v(τ)4 ≈ 0, u(τ)w(τ) ∝ u(τ)v(τ)2 ≈ 0, u(τ)2 ≈ 0

we obtain ln
(

a
aini3a

)
=

z′(λ∗3a)
x∗3a

uini
(

exp
(
− ε12ξ(1− 6ξ)z(λ∗3a)x

∗
3aτ
)
− 1
)
,

ln
(

H
Hini

3a

)2
= −

(
4 + 1−wm

4ξ
x∗3a
z(λ∗3a)

)
z′(λ∗3a)
x∗3a

uini
(

exp
(
− ε12ξ(1− 6ξ)z(λ∗3a)x

∗
3aτ
)
− 1
)

(6.43)

which can easily be combined as

ln

(
H

H ini
3a

)2

= −
(

4 +
1− wm

4ξ

x∗3a
z(λ∗3a)

)
ln

(
a

aini
3a

)
. (6.44)

One can notice that this expression resembles the behaviour of the Hubble’s function

during the pure radiation domination epoch, but with contribution coming from non-

minimal coupling. The linearised solutions are valid up to the Lyapunov time τend =

1
−ε12ξ(1−6ξ)z(λ∗3a)x∗3a

> 0, then inserting this in to the latter equations we receive maximal
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Figure 6.6: Evolution of lnH2 (left panel) and RH (right panel) for a sample trajectory with
ε = −1, ξ = 10, z′(λ∗3a) = 1

α = 1
10 in the vicinity of the critical point corresponding to the

radiation dominated epoch for the phantom scalar field. The solid black line corresponds
to the linearised solution (6.43), the dashed line corresponds to exact radiation dominated
expansion of the universe lnH2 ∝ −4 ln a and the dotted line corresponds to the numerical
solution of the system (6.17).

values of the scale factor and Hubble’s function valid in the center manifold approximation

 ln
(
aend3a

aini3a

)
=

z′(λ∗3a)
x∗3a

uini
(
e− 1

)
,

ln
(
Hend

3a

Hini
3a

)2
= −

(
4 + 1−wm

4ξ
x∗3a
z(λ∗3a)

)
z′(λ∗3a)
x∗3a

uini
(
e− 1

) (6.45)

In figure 6.6 we present evolution of lnH2 and RH as a functions of ln a in the

vicinity of the critical point representing radiation domination epoch for the phantom scalar

field.

There is another critical point which represents the radiation dominated universe

located at

x∗3b = 0, y∗3b = 0, λ∗3b : z(λ)2 =
1

ε6ξ
(6.46)

with the effective equation of the state parameter

weff =
1

3

We need to stress that this critical point exists only if wm 6= 1
3 . Linearised solutions in the
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vicinity of this critical point are

x3b(τ) =
1− 3wm
2− 3wm

(
xini

3b + z′(λ∗3b)
(
λini

3b − λ∗3b
))

exp (l1τ) +

+
1

2− 3wm

(
xini

3b − (1− 3wm)z′(λ∗3b)
(
λini

3b − λ∗3b
))

exp (l3τ), (6.47a)

y3b(τ) = yini
3b exp (l2τ), (6.47b)

λ3b(τ) = λ∗3b +
1

2− 3wm

1

z′(λ∗3b)

(
xini

3b + z′(λ∗3b)
(
λini

3b − λ∗3b
))

exp (l1τ)−

− 1

2− 3wm

1

z′(λ∗3b)

(
xini

3b − (1− 3wm)z′(λ∗3b)
(
λini

3b − λ∗3b
))

exp (l3τ).(6.47c)

where

l1 = 6ξ(1− 3wm), l2 = 12ξ, l3 = −6ξ

are the eigenvalues of the linearization matrix calculated at this critical point. Simple

inspection of this eigenvalues gives us further constraint on the value of the barotropic

matter equation of state parameter wm, namely l1 should be positive resulting in wm < 1
3

to assure that in the (x,λ) plane the dynamics in the vicinity of this critical point would

correspond to a saddle type critical point. This will guarantee that the evolution proceeds

towards the next critical point representing matter dominated universe.

Using linearised solutions (6.47) we are able to express (6.18) and (6.20) as a

parametric functions of time τ

ln
(

a
aini3b

)
= 6ξτ − ε2 1−6ξ

(1−3wm)(2−3wm)z(λ
∗
3b)
(
xini

3b + z′(λ∗3b)
(
λini

3b − λ∗3b
))(

exp (l1τ)− 1
)
−

−ε2 1−6ξ
2−3wm

z(λ∗3b)
(
xini

3b − (1− 3wm)z′(λ3b)
(
λini

3b − λ∗3b
))(

exp (l3τ)− 1
)
,

ln
(

H
Hini

3b

)2
= −24ξτ − ε2

(
1− 4(1−6ξ)

(1−3wm)(2−3wm)

)
z(λ∗3b)

(
xini

3b + z′(λ∗3b)
(
λini

3b − λ∗3b
))(

exp (l1τ)− 1
)
−

+ε8 1−6ξ
2−3wm

z(λ∗3b)
(
xini

3b − (1− 3wm)z′(λ∗3b)
(
λini

3b − λ∗3b
))(

exp (l3τ)− 1
)

(6.48)

The linearised solutions (6.47) are valid up to the Lyapunov characteristic time τend = 1
l2

=

1
12ξ and inserting it in the latter equations we can obtain maximal values of the scale factor

and the Hubble’s function valid in the linear approximation.

The zero-order approximation (xini
3b = 0, λini

3b = λ∗3b, y
ini
3b 6= 0 but (yini

3b )2 ≈ 0) is ln
(

a
aini3b

)
= 6ξτ,

ln
(

H
Hini

3b

)2
= −24ξτ

(6.49)

and it can be combined to

H2 = (H ini
3b )2

(
a

aini
3b

)−4

,
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Figure 6.7: Evolution of lnH2 (left panel) and RH (right panel) for a sample trajectory
with ε = +1, ξ = 1

16 , z′(λ∗3b) = 1
α = 100 in the vicinity of the critical point representing the

radiation dominated epoch for the canonical scalar field. The solid black line corresponds
to the linearised solution (6.48), the dashed line corresponds to exact radiation dominated
expansion lnH2 ∝ −4 ln a and the dotted line corresponds to the numerical solution of the
system (6.17).

which is the exact behaviour of Hubble’s function during the radiation domination era.

This approximation is also valid up to τend = 1
12ξ so one can calculate that during radiation

domination epoch the scale factor grows at least

aend
3b = aini

3b

√
e.

In figure 6.7 we present evolution of lnH2 and RH as a function of ln a in the vicinity of

the critical point representing the radiation domination era.

6.2.4 Matter domination

The next critical point is located at

x∗4 = 0, y∗4 = 0, λ∗4 : z(λ) = 0 (6.50)

and weff given by (6.12) calculated at this point is

weff = wm.

We identify this critical point as representing the universe whose dynamics is dominated by

the barotropic matter included in the model with the equation of state parameter wm.
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The linearised solutions in the vicinity of this critical point are in the form

x4(τ) = l1
l1−l3

(
xini

4 − z′(λ∗4)l3
(
λini

4 − λ∗4
))

exp (l1τ)−

− l3
l1−l3

(
xini

4 − z′(λ∗4)l1
(
λini

4 − λ∗4
))

exp (l3τ),

y4(τ) = yini
4 exp (l2τ),

λ4(τ) = λ∗4 + 1

z′(λ∗4)
(
l1−l3

)(xini
4 − z′(λ∗4)l3

(
λini

4 − λ∗4
))

exp (l1τ)−

− 1

z′(λ∗4)
(
l1−l3

)(xini
4 − z′(λ∗4)l1

(
λini

4 − λ∗4
))

exp (l3τ).

(6.51)

where

l1 = −3

4

(
(1− wm) +

√
(1− wm)2 − 16

3
ξ(1− 3wm)

)
,

l2 =
3

2
(1 + wm),

l3 = −3

4

(
(1− wm)−

√
(1− wm)2 − 16

3
ξ(1− 3wm)

)
.

We need to note that this critical point can became degenerate for two specific values of wm,

namely, for wm = −1 the second eigenvalue vanishes and for wm = 1
3 the third eigenvalue

vanish, for any value of the coupling constant ξ, which makes the system in the vicinity of

this critical point degenerated.

From linearised solution (6.51) we have

x4(τ)2 ≈ 0, y4(τ)2 ≈ 0, z
(
λ4(τ)

)2 ≈ 0

and from (6.18) and (6.20) parametric equations for evolution of the scale factor and Hub-

ble’s function are  ln
(

a
aini4

)
= τ,

ln
(

H
Hini

4

)2
= −3(1 + wm)τ.

(6.52)

Combining these two expressions we get the Hubble’s function as function of the scale factor

during the barotropic matter domination epoch

H2 = (H ini
4 )2

(
a

aini
4

)−3(1+wm)

.

The linearised solutions (6.51) are valid up to the Lyapunov time τend = 1
l2

= 2
3(1+wm) ,

 ln
(
aend4

aini4

)
= 2

3(1+wm) ,

ln
(
Hend

4

Hini
4

)2
= −2.

(6.53)
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Figure 6.8: Evolution of lnH2 (left panel) and RH (right panel) for a sample trajectory
with ε = −1, ξ = 1

2 , z′(λ∗1) = 1
α = 100 in the vicinity of the critical point corresponding

to the barotropic matter dominated universe. The solid black line represents the linear
approximation (6.52) and the dotted line represents the numerical solution of the system
(6.17).

One can notice that for dust matter wm = 0 during the matter domination epoch the scale

factor grows at least
aend4

aini4
= e

2
3 ≈ 1.948 times.

In figure 6.8 we present evolution of the scale factor and Hubble’s function in the

vicinity of the critical point representing the barotropic matter domination epoch.

6.2.5 The present accelerated expansion epoch

Finally we proceed to the last critical points located at

x∗5 = 0, (y∗5)2 = 1− ε6ξz(λ∗5)2, λ∗5 : λz(λ)2 + 4z(λ)− λ

ε6ξ
= 0 (6.54)

with

weff = −1.

There can be more than one such critical points because of the third equation in (6.54)

which can have more than one solution. In what follows we will show that at least one of

them represents a stable critical point.

In this case the characteristic equation for eigenvalues of the linearization matrix

calculated at this critical point is in the form

l3 + pl2 + ql + r = 0
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where

p = 3(2 + wm)
(
1− ε6ξ(1− 6ξ)z(λ∗5)2

)
,

q =
(
1− ε6ξ(1− 6ξ)z(λ∗5)2

)[
− ε1

2
(y∗5)4

z′(λ∗5) + 12ξ(1 + ε6ξz(λ∗5)2)

+9(1 + wm)
(
1− ε6ξ(1− 6ξ)z(λ∗5)2

)]
,

r = 3(1 + wm)
(
1− ε6ξ(1− 6ξ)z(λ∗5)2

)2[− ε1
2

(y∗5)4

z′(λ∗5) + 12ξ
(
1 + ε6ξz(λ∗5)2

)]
.

In the most general case without assuming any specific form of the potential func-

tion we are unable to solve this equation. In spite of this we are able to formulate general

conditions for stability of this critical point. This requires that the real parts of the eigen-

values must be negative. From the Routh-Hurwitz test [60] we have that the following

conditions should be fulfilled to assure stability of this critical point

p > 0 and r > 0 and q − r

p
> 0

Simple inspection of these conditions gives us that, for any matter with wm > −2, p is

always positive because of
(
1− ε6ξ(1− 6ξ)z(λ∗5)2

)
> 0 due to time transformation and that

if r is a positive quantity it follows that q − r
p is positive too. We conclude that if the

following condition is fulfilled at the critical point

Re[l1,2,3] < 0 ⇐⇒ −ε1

2

(y∗5)4

z′(λ∗5)
+ 12ξ

(
1 + ε6ξz(λ∗5)2

)
> 0 (6.55)

it represents a stable critical point with the negative real parts of the eigenvalues.

In order to simplify this condition let us introduce the following function

h(λ) = λz(λ)2 + 4z(λ)− λ

ε6ξ
, (6.56)

where location of the critical point is the solution to the equation h(λ) = 0, and obviously

h(λ∗5) = 0.

Let us assume that λ∗5 6= 0 it follows from (6.56) that also z(λ∗5) 6= 0 but h(λ∗5) = 0.

Differentiation of Eq. (6.56) gives

h′(λ∗5) = z(λ∗5)2 − 1

ε6ξ
+ 2z′(λ∗5)

(
λ∗5z(λ

∗
5) + 2

)
which, after a little of algebra, can be transformed in to the following form

h′(λ∗5) = −(y∗5)2

ε6ξ
+ 4

z′(λ∗5)

(y∗5)2

(
1 + ε6ξz(λ∗5)2

)
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and finally we arrive to the reformulated stability condition (6.55) in the form

Re[l1,2,3] < 0 ⇐⇒ 3ξ
h′(λ∗5)

z′(λ∗5)
(y∗5)2 > 0 (6.57)

We have reduced analysis of stability of the critical point representing accelerated expansion

to the simple analysis of the sign of the quantity given by relation (6.57). If we assume

that the function z(λ) is a monotonic one, i.e. it is a growing or decreasing function in

the interesting region of the phase space then it follows that if we have at least two critical

points given by (6.54) one of them is definitely a stable critical point.

To present the evolution of Hubble’s function in the vicinity of this critical point,

as an example, we choose the simple form of the function z(λ) = λ
α , and values of the

parameters ξ and α in range for which there exists only one critical point corresponding the

present accelerated expansion of the universe [161]. The linearised solutions in the vicinity

of the critical point located at x∗5 = 0, (y∗5)2 = 1, λ∗5 = 0 are

x5(τ) = 1
2
√

∆5

{
(3 +

√
∆5)

[
xini

5 + 1
2α(3−

√
∆5)λini

5

]
exp (l1τ)−

−(3−
√

∆5)
[
xini

5 + 1
2α(3 +

√
∆5)λini

5

]
exp (l3τ)

}
,

y5(τ) = y∗5 + (yini
5 − y∗5) exp (l2τ),

λ5(τ) = − α√
∆5

{[
xini

5 + 1
2α(3−

√
∆5)λini

5

]
exp (l1τ)−

−
[
xini

5 + 1
2α(3 +

√
∆5)λini

5

]
exp (l3τ)

}
,

(6.58)

where l1,3 = −1
2

(
3±
√

9 + ε2α− 48ξ
)

and l2 = −3(1 +wm) are eigenvalues of the lineariza-

tion matrix and ∆5 = 9 + ε2α− 48ξ.

Then keeping only linear terms in initial conditions

x5(τ)2 ≈ 0, z
(
λ5(τ)

)2 ≈ 0, λ5(τ)z
(
λ5(τ)

)
≈ 0,

y5(τ)2 ≈ (y∗5)2 + 2y∗5
(
yini

5 − y∗5
)

exp (l2τ),

from (6.18) and (6.20) we receive the parametric equations of evolution of the scale factor

and Hubble’s function ln
(

a
aini5

)
= τ,

ln
(

H
Hini

5

)2
= 2y∗5

(
yini

5 − y∗5
)(

1− exp
(
− 3(1 + wm)τ

)) (6.59)
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Figure 6.9: Evolution of lnH2 (left panel) and RH (right panel) as a function of the natural
logarithm of the scale factor ln a for a sample trajectory with ε = −1, ξ = 1, z′(λ∗5) = 1

α =
20, yini

5 − y∗5 = − 1
100 in the vicinity of the critical point representing the present accelerated

expansion of the universe. The solid black line represents the linear approximation (6.59)
and the dotted line corresponds to numerical solution of the dynamical system (6.17).

Combining these two expressions we get Hubble’s function as a function of the scale factor

in the vicinity of the critical point corresponding to the present accelerated expansion of

the universe

H2 = (H ini
5 )2 exp

{
2y∗5
(
yini

5 − y∗5
)(

1−
( a

aini
5

)−3(1+wm)
)}

.

One can notice that taking the following limit

H2
fin = lim

τ→∞
H2 = lim

a→∞
H2 = (H ini

5 )2 exp
{

2y∗5
(
yini

5 − y∗5
)}
≈ (H ini

5 )2
(
1 + 2y∗5

(
yini

5 − y∗5
))

we get the asymptotic de Sitter expansion.

In figure 6.9 we present the evolution of lnH2 and RH as a function of ln a in the

vicinity of this critical point.

6.3 Conclusions

In this chapter we have shown that all the important epochs in the evolution of

the universe can be represented by the critical points of the dynamical system arising from

the non-minimally coupled scalar field cosmology in spite of not assuming a form of the

potential function. We have shown that for the positive coupling constant there exists a

past finite scale factor singularity for both types of the scalar fields. Additionally all the

intermediate states are transient ones, i.e. they are represented by unstable critical points



Chapter 6: Toward a unified description of cosmological evolution 125

S

RI

SI

R

M

Q

x
z

y

Figure 6.10: The phase space portrait for the model with the cosmological constant and
the canonical scalar field (ε = +1) with ξ = 1/8 and the dust matter wm = 0. The critical
points are: S – the finite scale factor singularity, RI – the rapid-roll inflation, SI – the
slow-roll inflation, R – the radiation dominated era, M – the barotropic matter dominated
era and Q – the quintessence era. Note that the critical points representing the finite scale
factor singularity, the rapid-roll inflation and the slow-roll inflation have the same value of
coordinate z.

in the phase space and the evolution in the vicinity of those points last for an finite amount

of time. The existence of the radiation dominated era is purely the result of the evolution

of the non-minimally coupled scalar field.

For the canonical scalar field ε = +1 and 0 < ξ < 1/6 we can construct the

unique evolutional path represented by the trajectory in the phase space which travels in

the vicinity of the following critical points (figure 6.10)

1 7→ 2b 7→ 3b 7→ 4 7→ 5
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Figure 6.11: The phase space portrait for the model with the cosmological constant and the
phantom scalar field (ε = −1) with ξ = 1/4 and the dust matter wm = 0. The critical points
are: S – the finite scale factor singularity, RI – the rapid-roll inflation, R – the radiation
dominated era, M – the barotropic matter dominated era and Q – the quintessence era. In
the case of the phantom scalar field the critical point representing slow-roll inflation is not
present. The critical pints denoted as S, RI and R have the same value of coordinate z.

and for the phantom scalar field ε = −1 and ξ > 1/6 (figure 6.11)

1 7→ 2a 7→ 3a 7→ 4 7→ 5

Within one framework of non-minimally coupled scalar field cosmology we were

able to unify all the major epochs in the history of the universe (see figure 6.12 for twister

type behaviour where trajectories interpolate between radiation era, matter domination era

and quintessence epoch).

From the analysis presented in this chapter one can draw the general conclusion

that if the non-minimal coupling constant is present and is different from the conformal

coupling ξ 6= 1/6 then new evolutional types emerge forming the structure of the phase



Chapter 6: Toward a unified description of cosmological evolution 127

R

R

Q

x Λ

y

Figure 6.12: The phase space portrait representing twister type behaviour. Trajectories in
this type solution interpolate between three major epochs in the history of universe: R –
the radiation dominated universe with weff = 1

3 , the matter domination epoch (an unstable
focus type critical point) and Q – the quintessence domination epoch with weff = −1. This
type of evolution does not depend on the form of assumed function z(λ) (i.e. the form of
the scalar field potential) and is generic for the canonical scalar field cosmologies (ε = +1)
with ξ > 0 and the barotropic matter with equation of state parameter −1 < wm < 1/3.
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space nontrivial and richer. Moreover the coupling constant gives us the effect of continua-

tion (glues the evolution) between different cosmological epochs which is very attractive in

cosmology, serving as a potential explanation of the global properties of the universe.



Chapter 7

Summary and Conclusions

Modern cosmology becomes very similar to the particle physics. Both theories

have parameters and characteristic energetic cut-offs. They are effective description of more

fundamental physics which is currently unknown. The values of these parameters should

be obtained from fundamental theories or from observations. In cosmology (ΛCDM model

is often called the Standard Cosmological Model) the role of such parameter is played by

the cosmological constant. Our proposition was to extend this paradigm, in which matter

content in the model is described in terms of barotropic perfect fluid, by introduction of

additional scalar field non-minimally coupled to gravity.

This dissertation was devoted to investigations of dynamical evolution of cosmo-

logical models with a scalar field with a potential function and non-minimally coupled to

the gravity via ξRφ2 term, where R is the Ricci scalar of the Roberson–Walker spacetime.

The conclusions of the work can be stated as follows:

The closed FRW cosmological model with the conformally coupled scalar field

was investigated by means of geodesics of the Jacobi metric. We showed that the singular

set ∂D of degeneration of the Jacobi metric can serve as a Poincaré surface in detection

of complexity of dynamical behaviour. The distribution of the intersection points and the

existence of unstable periodic orbits contain interesting information concerning the degree of

complexity of dynamics of the model. We were able to demonstrate the complex behaviour

in the sense of Poincaré sections, random distribution of intersection points of trajectories

with the singular set ∂D, chaotic trajectories coding and most important the existence of

the unstable periodic orbits. This last property should be treated as a very strong indication

of the existence of chaos in the investigated model [117]. The flat FRW cosmological model

129
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with the conformally coupled phantom scalar field and the quadratic potential function

can be treated as a scattering system of two types: multiple chaotic or standard scattering

process. We found that chaotic behaviour is a generic feature of the phantom cosmology

with the spontaneously symmetry breaking while in the case of absence of symmetry braking

we did not find the sensitivity dependence on the initial conditions and the system behaves

as the standard scattering process. We also found that in the second case the universe filled

with the conformally coupled scalar field is accelerating without the positive cosmological

constant.

The dynamics of expanding flat FRW cosmological models with non-minimally

coupled scalar fields, both canonical and phantom, can be reduced to two dimensional

autonomous dynamical system. The constraint condition is solved in such a way that the

final dynamical system is free from the constraint and is defined on the phase plane (φ, φ′)

where prime denotes the differentiation with respect to the natural logarithm of the scale

factor. For a quadratic potential function the global dynamics of the system was studied

where the method of compactification of the phase space with the circle at infinity was used.

We were able to show that the shape of the physical region H2 ≥ 0 on the phase plane does

not depend on the form of the potential function, but only on the value of the coupling

constant ξ. We have shown the existence of the finite scale factor singularity, both future

and past. For a wide range of the values of the coupling constant ξ we found a critical point

of the sink type for the phantom scalar field which represents the de Sitter solution, which

represents the present accelerated expansion of the universe.

We have shown that all important epochs in the evolution of the universe can be

represented by the critical points of the dynamical system arising from the non-minimally

coupled scalar field cosmology with barotropic matter content. This result is generic for

a very large class of potential functions of the scalar field. We discover new evolutional

paths which open new perspectives of description of the cosmological evolution in a unified

way. Within one framework of non-minimally coupled scalar field cosmology all the major

epochs in the history of the universe emerge in the natural way as critical points of the

corresponding dynamical system (a finite scale factor singularity, an inflation epoch (slow-

roll or fast-roll), a radiation era, a matter domination era and finally a quintessence epoch).

Moreover, this new type of evolution is realised only if non-minimal coupling constant is

present and different form the conformal coupling value ξ 6= 1/6.
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The main general results are:

• The coexistence of chaotic and regular behaviour in the conformally coupled scalar

field cosmology, together with different manifestations of dynamical complexity was

demonstrated. In the case of the phantom scalar field the process of a chaotic scat-

tering was detected.

• The fragility of cosmological evolution with respect to changes of coupling constant

ξ was presented. The inclusion of the non-zero coupling constant leads to a richer

dynamics of the cosmological models.

• It was shown that only inclusion of both types of matter, namely the standard

barotropic matter and a non-minimally coupled scalar field leads to new, rich and

interesting dynamics in the phase space. It was demonstrated that due to the non-

zero coupling constant it is possible to link different cosmological epochs (from the

big bang to the quintessence era).

• In the standard cosmology the matter content is usually described in the terms of a

perfect fluid with energy density and pressure depending on the cosmological time. In

contrast, in inflationary cosmology different approach is proposed. In this context the

matter in the form of a scalar field seems to be more adequate. The generalisation

of both paradigms and consideration of two components model of non interacting

matter was proposed. As a result we receive all cosmological epoch squeezed in one

evolutional scenario, from the big bang, through the inflation era, the radiation and

the barotropic matter domination epoch to the quintessence era, with all intermediate

states as transient ones.

Prospects for future work

We have to admit that our understanding of dynamics of non-minimally coupled

cosmological models is far from complete. The work presented in this dissertation is just

the beginning of the larger program which we will undertake in the near future.

From the conclusions presented above, natural questions emerge: What comes

next? What can and what should be done in description of dynamics of non-minimally

coupled cosmology? Our future projects will proceed essentially in two directions.
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First, let us point out the issues concerning the complexity of dynamics.

The dynamical systems of cosmological origin have many special features which distinguish

them from those met in the classical mechanics. It is in fact the source of some problems

and controversies in understanding of chaos in cosmology. The main aim of our upcoming

projects will be dynamical investigations of the models with the topological transitivity

property. The unstable periodic orbits are indicators of chaotic behaviour in any system.

Those orbits are connected with the quantisation scheme proposed by Gutzwiller [117, 171]

(e.g. quantisation of the helium atom starting form the chaotic classical dynamics). In this

procedure the semi-classical approximation to the wave function of the quantum system

is acquired from the summation of the series of contributions resulting from the unstable

periodic orbits of the classical system. We think that this procedure can be very useful in

the models of cosmological origin which dynamical behaviour is complex. We will establish

a connection between summation rules for classical dynamics of cosmological models with

indefinite kinetic energy forms. The semi-classical approximation of the wave functions

of cosmological models can be constructed from studying dynamical complexity of chaotic

cosmologies.

Second, let us touch the issues concerning the regular evolution of the models.

We will try to answer the following questions: How will the inclusion of curvature of the

FRW metric influence the twister quintessence scenario? Will perturbations destroy or

improve this evolutional scenario? We are aware that a toy model of evolution of universe

presented in this dissertation needs improvements to be close to reality.

Even more fundamental question about current status of the scalar–tensor cos-

mology. What is the precise definition of the energy-momentum tensor for a non-minimally

coupled cosmology? Is it possible to distinguish between various mathematically correct,

but physically inequivalent, definitions of this tensor (see Chapter 1) via observational as-

tronomical data?



Appendix A

Einstein equations and

energy–momentum tensor

We derive in a pedagogical manner the Einstein field equations in the presence of

non-minimal coupling. Consider the Einstein–Hilbert action for the gravitational field

Sg =
1

2κ2

∫
d4x
√
−g
(
R− 2Λ

)
(A.1)

and for non-minimally coupled scalar field

Sφ = −1

2

∫
d4x
√
−g
{
ε
(
gµν∇µφ∇νφ+ ξRφ2

)
+ 2U(φ)

}
(A.2)

where κ2 = 8πG, ε = ±1 correspond to the canonical and phantom scalar field, respectively,

and U(φ) is the scalar field potential function. A dimensionless parameter ξ describes

coupling between the scalar and the gravitational field. Two special values of the coupling

constant ξ have exceptional importance : minimal coupling with ξ = 0 and conformal

coupling ξ = 1/6 (in 4 spacetime dimensions, see Appendix B) the value that makes the

Klein–Gordon equation conformally invariant if U = 0 or U = λφ4.

Variation of the full action with respect to gµν

δ(Sg + Sφ) = 0

gives the Einstein field equation for the problem.

We begin with derivation of variation of the gravitational part (see books by Wald

[172] or Landau and Lifshitz [173])

δSg =
1

2κ2

∫
d4x
{
δ
√
−g(R− 2Λ) +

√
−gδR

}
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then using the following formula

δ
√
−g = − 1

2
√
−g

δg = −1

2

√
−ggµνδgµν

we obtain

δSg =
1

2κ2

∫
d4x
{
− 1

2

√
−ggµνδgµν(R− 2Λ) +

√
−gδgµνRµν +

√
−ggµνδRµν

}
=

1

2κ2

∫
d4x
√
−g
{
Rµν −

1

2
gµνR+ Λgµν

}
δgµν +

1

2κ2

∫
d4x
√
−ggµνδRµν (A.3)

Now we will show that the second term in this expression vanishes. Let us use a locally

geodesic system of coordinates. Then at a given point all the Γαµν = 0 and we can write the

variation of the Ricci tensor in the following form (remembering that also gµν,α = 0)

gµνδRµν = gµν
((
δΓαµν

)
,α
−
(
δΓαµα

)
,ν

)
= gµν

(
δΓαµν

)
,α
− gµα

(
δΓνµν

)
,α

= ωα,α (A.4)

where

ωα = gµνδΓαµν − gµαδΓνµν .

This expression is a vector and then the relation (A.4) in an arbitrary coordinate system

can be written as

gµνδRµν = ωα;α =
1√
−g

∂α
(√
−g ωα

)
.

Then the second integral in (A.3) is equal to

1

2κ2

∫
d4x
√
−ggµνδRµν =

1

2κ2

∫
d4x

(√
−g ωα

)
,α

and by Gauss’ theorem can be transformed into an integral of ωα over the hypersurface sur-

rounding the whole four-volume. Since the variations of the field are zero at the integration

limits, this term drops out [173]. Finally, the variation δSg is equal to

δSg =
1

2κ2

∫
d4x
√
−g
{
Rµν −

1

2
gµνR+ Λgµν

}
δgµν . (A.5)
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Now we can proceed to the calculation of the variation δSφ of the matter part in

the form of non-minimally coupled scalar field. We obtain

δSφ = −1

2

∫
d4x
{
δ
√
−g
(
εgµν∇µφ∇νφ+ εξRφ2 + 2U(φ)

)
+
√
−g
(
εδgµν∇µφ∇νφ+ εξδgµνRµνφ

2 + εξgµνδRµνφ
2
)}

= −1

2

∫
d4x
√
−g
{
ε∇µφ∇νφ− ε

1

2
gµν∇αφ∇αφ− U(φ)gµν

+εξ
(
Rµν −

1

2
gµνR

)
φ2
}
δgµν

−ε1

2
ξ

∫
d4x
√
−ggµνδRµνφ2 (A.6)

Now we will calculate the last term in this expression. As previously, using a locally geodesic

system of coordinates, at a given point Γαµν = 0 and gµν,α = 0 we have

gµνδRµνφ
2 = gµν

((
δΓαµν

)
,α
φ2 −

(
δΓαµα

)
,ν
φ2
)

= gµν
((
δΓαµνφ

2
)
,α
−
(
δΓαµαφ

2
)
,ν

)
− gµν

(
δΓαµνφ

2
,α − δΓαµαφ2

,ν

)
= gµν

(
δΓαµνφ

2
)
,α
− gµα

(
δΓνµνφ2

)
,α
− gµνδΓαµνφ2

,α + gµνδΓαµαφ
2
,ν

= ω̄α,α − gµνδΓαµνφ2
,α + gµνδΓαµαφ

2
,ν (A.7)

where we introduced the vector

ω̄α =
(
gµνδΓαµν − gµαδΓνµν

)
φ2.

Using the following formula

gµνΓαµν = gµνgασ
(
gµσ,ν −

1

2
gµν,σ

)
the second term in (A.7) can be written as

− gµνδΓαµνφ2
,α = −gµνgασ

((
δgµσ,ν

)
φ2
,α −

1

2

(
δgµν,σ

)
φ2
,α

)
= −gµνgασ

((
δgµσφ

2
,α

)
,ν
− 1

2

(
δgµνφ

2
,α

)
,σ

)
+gµνgασ

(
δgµσφ

2
,αν −

1

2
δgµνφ

2
,ασ

)
= ω̃ν,ν − φ2

,µνδg
µν +

1

2
gµνg

ασφ2
,ασδg

µν (A.8)

where the vector ω̃ν is

ω̃ν = −
(
gµνgασ − 1

2
gµσgαν

)
φ2
,αδgµσ .
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Then using

Γαµα =
1

2
gαβgαβ,µ

the third term in (A.7) can be written as

gµνδΓαµαφ
2
,ν =

1

2
gµνgαβ (δgαβ),µ φ

2
,ν

=
1

2
gµνgαβ

(
δgαβφ

2
,ν

)
,µ
− 1

2
gµνgαβδgαβφ

2
,µν

= ω̂µ,µ +
1

2
gµνg

αβφ2
,αβδg

µν (A.9)

where the vector ω̂µ is

ω̂µ =
1

2
gµνgαβφ2

,νδgαβ .

In an arbitrary coordinate system we need to replace the ordinary differentiation by the

covariant derivative

ωα,α 7→ ωα;α =
1√
−g
(√
−g ωα

)
,α

then using (A.8) and (A.9) the formula (A.7) can be written as

gµνδRµνφ
2 = (ω̄α + ω̃α + ω̂α);α +

(
gµνg

αβφ2
;αβ − φ2

;µν

)
δgµν

Then the last integral in (A.6) is equal to

− ε1

2
ξ

∫
d4x
√
−ggµνδRµνφ2 = −ε1

2
ξ

∫
d4x

(√
−g (ω̄α + ω̃α + ω̂α)

)
,α

−ε1

2
ξ

∫
d4x
√
−g
(
gµνg

αβφ2
;αβ − φ2

;µν

)
δgµν

and by Gauss’ theorem the first term drops out∫
d4x

(√
−g (ω̄α + ω̃α + ω̂α)

)
,α

= 0 .

Finally, the variation δSφ is equal to

δSφ = −1

2

∫
d4x
√
−g
{
ε∇µφ∇νφ− ε

1

2
gµν∇αφ∇αφ− U(φ)gµν

+εξ

(
Rµν −

1

2
gµνR

)
φ2 + εξ

(
gµνg

αβ∇α∇βφ2 −∇µ∇νφ2
)}

δgµν . (A.10)
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Thus from the principle of least action δSg + δSφ = 0 and in view of arbitrariness

of the δgµν we find the required equations of the gravitational field

Rµν −
1

2
gµνR+ Λgµν = κ2Tµν (A.11)

and energy–momentum tensor for non-minimally coupled scalar field

Tµν = ε∇µφ∇νφ− ε
1

2
gµν∇αφ∇αφ− U(φ)gµν

+εξ

(
Rµν −

1

2
gµνR

)
φ2 + εξ (gµν�−∇µ∇ν)φ2, (A.12)

where � = gαβ∇α∇β.
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Conformal invariance

We present a pedagogical derivation of invariance of the n–dimensional Klein–

Gordon equation in the presence of the non-minimal coupling under conformal transfor-

mation. Consider the action for the non-minimally coupled scalar field in n spacetime

dimensions

Sφ = −1

2

∫
dnx
√
−g
{
ε
(
gµν∇µφ∇νφ+ ξRφ2

)
+ 2U(φ)

}
(B.1)

then from the variation δSφ/δφ = 0 we can obtain the dynamical equation for the scalar

field, the Klein–Gordon equation

�φ− ξRφ− εU ′(φ) = 0. (B.2)

Using the conformal transformation we will find the value of of the ξ parameter for which

the form of the Klein–Gordon equation is conformally invariant.

Lets consider a spacetime (M, gµν) where M is a smooth n ≥ 2 dimensional mani-

fold and gµν a Lorentzian or Riemannian metric on it, the spacetime coordinate dependent

rescaling of the metric tensor

gµν → g̃µν = Ω2(x)gµν (B.3)

is called a Weyl or conformal transformation. The conformal factor Ω(x) is a nonsingular

and regular function of spacetime coordinates.

The following transformation properties of the metric tensor, the determinant of

the metric tensor and the scalar field are useful:

g̃µν = Ω2gµν , g̃µν = Ω−2gµν , g̃ = Ω2ng , φ̃ = Ω−
n−2
2 φ .
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We begin with calculation of the transformation rules for the d’Alambert’s operator �̃

acting on the scalar field φ̃

�̃φ̃ = g̃µν∇µ∇ν φ̃ =
1√
−g̃

∂µ

(√
−g̃ g̃µν φ̃,ν

)
=

Ω−n√
−g

∂µ

(
Ωn√−gΩ−2 gµν ∂ν

(
Ω−

n−2
2 φ

))
=

Ω−n√
−g

∂µ

(
Ω
n−2
2
√
−g gµν φ,ν −

n− 2

2
Ω
n−2
2 φ
√
−g gµν (ln Ω),ν

)
= Ω−

n+2
2

(
�φ− n− 2

2
φ�(ln Ω)−

(
n− 2

2

)2

φ gµν(ln Ω),µ(ln Ω),ν

)

= Ω−
n+2
2

(
�φ− n− 2

2
φ�(ln Ω)−

(
n− 2

2

)2

φ∇α(ln Ω)∇α(ln Ω)

)
. (B.4)

The Ricci tensor is given by

R̃µν = Γ̃αµν,α − Γ̃ααν,µ + Γ̃αµν Γ̃ββα − Γ̃αβν Γ̃βαµ (B.5)

and to derive its transformation the following transformation properties of the Christoffel

symbols will be useful:

Γ̃αµν =
1

2
g̃ασ
(
g̃νσ,µ + g̃σµ,ν − g̃µν,σ

)
= Γαµν + Ω−1

(
δαµ Ω,ν + δαν Ω,µ − gµν gασ Ω,σ

)
= Γαµν + Ω−1

(
δαµ ∇νΩ + δαν ∇µΩ− gµν ∇αΩ

)
(B.6)

Γ̃αµν,α = Γαµν,α + Ω−1
(
δαµ Ω,να + δαν Ω,µα − (gµν g

ασ Ω,σ),α
)

−Ω−2 Ω,α

(
δαµ Ω,ν + δαν Ω,µ − gµν gασ Ω,σ

)
= Γαµν,α + Ω−1

(
2 Ω,µν − (gµν ∇αΩ),α

)
−Ω−2

(
2∇µΩ∇νΩ− gµν ∇αΩ∇αΩ

)
(B.7)

Γ̃ααν =
1

2
g̃ασ g̃ασ,ν =

1

2
Ω−2 gασ

(
Ω2 gασ

)
,ν

= Γααν + δαα Ω−1 Ω,ν = Γααν + nΩ−1∇νΩ (B.8)

Γ̃ααν,µ = Γααν,µ + nΩ−1 Ω,µν − nΩ−2 Ω,µ Ω,ν (B.9)
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Γ̃αµν Γ̃ββα =
(

Γαµν + Ω−1
(
δαµ Ω,ν + δαν Ω,µ − gµν gασ Ω,σ

))(
Γββα + nΩ−1 Ω,α

)
= Γαµν Γββα + nΩ−1 Γαµν Ω,α

+ Ω−1
(

Γββµ Ω,ν + Γββν Ωµ − gµν gασ Γββα Ω,σ

)
+nΩ−2

(
2 Ω,µ Ω,ν − gµν gασ Ω,α Ω,σ

)
(B.10)

Γ̃αβν Γ̃βαµ =
(

Γαβµ + Ω−1
(
δαβ Ω,ν + δαν Ω,β − gβν gασ Ω,σ

))(
Γβαµ + Ω−1

(
δβα Ω,µ + δβµ Ω,α − gαµ gβγ Ω,γ

))
= Γαβν Γβαµ

+ Ω−1
(

4 Γαµν Ω,α + Γααµ Ω,ν + Γααν Ω,µ − gασ
(
gαµ,ν + gαν,µ

)
Ω,σ

)
+ Ω−2

(
(n+ 2) Ω,µ Ω,ν − 2 gµν g

αβ Ω,α Ω,β

)
(B.11)

where the following relation was used

gβν g
ασ Γβαµ = −Γσµν + gσα gαν,µ.

Now, inserting equations (B.7), (B.9), (B.10), (B.11) in to equation (B.5), we have

R̃µν = Γ̃αµν,α − Γ̃ααν,µ + Γ̃αµν Γ̃ββα − Γ̃αβν Γ̃βαµ

= Rµν

+ Ω−1
(
− (n− 2)Ω,µν − gµν gαβ Ω,αβ + (n− 2) Γαµν Ω,α + gµν g

αβ Γσαβ Ω,σ

)
+Ω−2

(
2(n− 2) Ω,µ Ω,ν − (n− 3)gµν g

αβ Ω,α Ω,β

)
(B.12)

which using the following equations

(ln Ω),µν = ∂ν

(
Ω,µ

Ω

)
= Ω−1 Ω,µν − Ω−2 Ω,µ Ω,ν

∇νAµ = Aµ,ν − Γσµν Aσ

∇µ∇ν(ln Ω) = ∇ν((ln Ω),µ) = (ln Ω),µν − Γαµν (ln Ω),α

can be presented as the final form of the transformation property of the Ricci tensor

R̃µν = Rµν − (n− 2)∇µ∇ν(ln Ω)− gµν �(ln Ω)

+ (n− 2)∇µ(ln Ω)∇ν(ln Ω)− (n− 2) gµν ∇α(ln Ω)∇α(ln Ω) . (B.13)
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The transformation property of the Ricci scalar can be presented in the following form

R̃ = Ω−2
(
R− 2(n− 1)�(ln Ω)− (n− 1)(n− 2)∇α(ln Ω)∇α(ln Ω)

)
. (B.14)

Finally, we arrive to the source–free Klein–Gordon equation in the presence of non-minimal

coupling

�̃φ̃− ξR̃ φ̃ = 0 (B.15)

which transformation property, using equations (B.4), (B.14), can be written as

Ω−
n+2
2

(
�φ− n− 2

2
φ�(ln Ω)−

(
n− 2

2

)2

φ∇α(ln Ω)∇α(ln Ω)

)
− ξΩ−2

(
R− 2(n− 1)�(ln Ω)− (n− 1)(n− 2)∇α(ln Ω)∇α(ln Ω)

)
Ω−

n−2
2 φ

= Ω−
n+2
2

{
�φ− ξRφ+

(
2(n− 1)ξ − n− 2

2

)
φ�(ln Ω)

+

(
(n− 1)(n− 2)ξ −

(
n− 2

2

)2
)
φ∇α(ln Ω)∇α(ln Ω)

}
= 0 (B.16)

Now one can simply notice that if

ξ =
n− 2

4(n− 1)

the source–free Klein–Gordon equation (B.15) is conformally invariant

�̃φ̃− n− 2

4(n− 1)
R̃ φ̃ = Ω−

n+2
2

(
�φ− n− 2

4(n− 1)
Rφ

)
= 0. (B.17)

In cosmological applications a potential function U(φ) of the scalar field is intro-

duced, yielding (B.2)

�φ− ξRφ− εU ′(φ) = 0 (B.18)

where ε = ±1 corresponds to the canonical and phantom scalar field, respectively. In four

spacetime dimensions this equation is conformally invariant if ξ = 1/6 and U(φ) = 0 or

U(φ) = λφ4 [22, 174, 86]. A constant potential function U(φ) = const, equivalent to the

inclusion of a cosmological constant, corresponds to an effective mass for the scalar breaks

conformal invariance [175].
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The Center Manifold Theorem

We present here the theorem concerning behaviour of nonlinear dynamical system

in the vicinity of degenerated critical point. Expanded discussion can be found, for example,

in books by Perko [59] or Wiggins [60].

Suppose we consider the following 3-dimensional nonlinear dynamical system

ẋ = f(x), x ∈ R3 (C.1)

We are interested in the nature of solution to this dynamical system near fixed point x̄ for

which f(x̄) = 0.

First, we transform the fixed point x = x̄ of (C.1) to the origin using the transfor-

mation y = x− x̄. Then the system (C.1) becomes

ẏ = f(x̄ + y), y ∈ R3 (C.2)

then Taylor expansion of f(x̄ + y) about x = x̄ gives

ẏ = Ay +R(y), y ∈ R3 (C.3)

where A = Df(x̄) ia a linearization matrix calculated at the fixed point, R(y) = O(|y|n)

and we have used f(x̄) = 0.

From now on we will assume that the linearization matrix has purely real eigen-

values and one is zero l1 = 0, one positive l2 > 0 and one negative l3 < 0. From elementary

linear algebra we can find a linear transformation P which transforms the linear part of
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equation (C.3) into a diagonal form
u̇

v̇

ẇ

 =


0 0 0

0 l2 0

0 0 l3




u

v

w

 (C.4)

with a linear transformation of variables

P−1y ≡


u

v

w


and the matrix P is constructed from the corresponding eigenvectors of the linearization ma-

trix A. Using this same linear transformation to transform the coordinates of the nonlinear

part of the system (C.3) gives the following

u̇ = F
(
u, v, w

)
,

v̇ = l2v +G
(
u, v, w

)
,

ẇ = l3w +H
(
u, v, w

)
.

(C.5)

where F (u, v, w), G(u, v, w) and H(u, v, w) are polynomial in the coordinates. The fixed

point (u, v, w) = (0, 0, 0) is unstable due to the existence of a 1-dimensional unstable man-

ifold associated with the negative eigenvalue l3 < 0.

Definition C.1 (Center Manifold) An invariant manifold will be called a center mani-

fold for (C.5) if it can be locally represented by

W c(0) =
{

(u, v, w) ∈ R3
∣∣v = h1(u), w = h2(u), |u| < δ, hi(0) = 0, h′i(0) = 0, i = 1, 2

}
(C.6)

for δ sufficiently small.

Theorem C.1 (Existence) There exists a Cr center manifold for (C.5). The dynamics

of (C.5) restricted to the center manifold is, for η sufficiently small, given by the following

1-dimensional vector field

η̇ = F
(
η, h1(η), h2(η)

)
. (C.7)

From the fact that the center manifold is invariant under the dynamics generated

by (C.5) we obtain

u̇ = F
(
u, h1(u), h2(u)

)
,

v̇ = h′1(u)u̇ = l2h1(u) +G
(
u, h1(u), h2(u)

)
,

ẇ = h′2(u)u̇ = l3h2(u) +H
(
u, h1(u), h2(u)

)
,

(C.8)
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which yields the following quasilinear differential equation for h1(u) and h2(u)

N
(
h1(u)

)
= h′1(u)F

(
u, h1(u), h2(u)

)
− l2h1(u)−G

(
u, h1(u), h2(u)

)
= 0,

N
(
h2(u)

)
= h′2(u)F

(
u, h1(u), h2(u)

)
− l3h2(u)−H

(
u, h1(u), h2(u)

)
= 0,

(C.9)

and the following theorem (see Theorem 18.1.4 in Wiggins [60, p. 248]) justify solving (C.9)

approximately via power series expansion:

Theorem C.2 (Approximation) Let φ : R→ R be a C1 mapping with φ(0) = φ′(0) = 0

such that N
(
φ(u)

)
= O

(
|u|q
)

as u→ 0 for some q > 1. Then

|h(u)− φ(u)| = O
(
|u|q
)

as u→ 0.

This theorem allows us to compute the center manifold to any desired degree of accuracy

by solving (C.9) to the same degree of accuracy.
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