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Streszczenie

Przedmiot mojej pracy doktorskiej stanowiło poszukiwanie optymalnej strate-

gii zwalczania epidemii, pray uwzglȩdnieniu kosztów ekonomicznych oraz społecznych

zwia̧zanych z choroba̧.

Moje badania pokazuja̧ istnienie trzech możliwych scenariuszy przeciwdzi-

ałania wybuchowi epidemii. Należa̧ do nich: leczenie całej populacji, określone

proporcji populacji w dobrze zdefiniowanym obszarze albo odsta̧pienie od ja-

kichkolwiek działań.

O wybór najbardziej efektywnej strategii decyduja̧ w głównej mierze czyn-

niki ekonomiczne. Mimo nieznajomości czynników chorobotwórczych, lub ich

własności, wybóptymalnej strategii jest możliwy wyła̧cznie w oparciu o analizȩ

ekonomiczna̧.

Na szczegóły dotycza̧ce strategii lokalnej maja̧ silny wpływ parametry epi-

demiologiczne, w szczególności czas pojawienia siȩ objawẃw choroby oraz czas

wymagany do rozpoczȩcia leczenia. Zakres obszaru profilaktyki proporcjon-

alny jest do wielkości obszaru narażonego na zakażenie i charakteryzuje siȩ

potȩgowym wzrostem wraz z rosna̧cym czasem pojawienia siȩ symptomów oraz

rozpoczȩciem leczenia.

Kolejnym czynnikiem maja̧cym niebagatelny wpływ na szczegóły stosowal-

ności strategii lokalnej jest spontaniczne nabywanie odporności. Swoja̧ pracȩ

poszerzyłam o analizȩ dwóch modeli rozprzestrzeniania siȩ choroby i przeci-

wdziałania jej. Modele sa̧ indentyczne w czȩści epidemiologicznej, natomiast

różnica polaga na sposobie traktowania osobników, które przeszły przez in-

fekcjȩ - właczeniu ba̧dź wykluczeniu ich z procesu leczenia. Kluczowym czyn-

nikiem decyduja̧cym o dopasowaniu odpowiedniego modelu do danej epidemii

jest możliwość odróżnienie osobników, ktróre przeszły infekcjȩ, od zdrowych.

Przejście przez chorobȩ może oznaczać dwie sytuacje (w zależności od epi-



demii): nabycie odporności lub zgon. Jeśli mamy do czynienie z choroba̧, której

skutkiem jest śmierć, różnica jest wyraźna. Czȩsto jednak, trudno odróżnić os-

obniki zdrowe i te, które uzyskały odporność wskutek choroby.

Analiza obu modeli pozwolila mi znaleźć zakres wystȩpowania różnych

strategii. Jedynie w przypadku niskich kosztów leczenia modele przewiduja̧

różne scenariusze (prewencyjne przeciwdzialłanie epidemii, któremu podddana

jest cała populacja lub tylko pewna jej cześć). Jednak mimo wyboru różnych

strategii, poniesione koszty sa̧ dla obu modeli niemal identyczne.

Sieci regularne i małych światów potrafia̧ uchwycić niektóre aspekty struk-

tury rzeczywistych kontaktów w danej populacji, nie sa̧ jednak wstanie uwzglȩdnić

efektów zwia̧zanych z klasteryzacja̧. Wykorzystanie w modelowaniu epidemio-

logicznym sklasteryzowanych sieci przypadkowych odzwierciedla wiele sytuacji

spotykanych w rzeczywistych systemach. Wpływ topologii sieci obrazuja̧cych

zależności w populacji, ma również zasadniczy wpływ na wybór optymalnej

strategii zwalczania epidemii.



Abstract

The main goal of my studies has been to search for the optimal control strategy

of controlling epidemics when taking into account both economical and social

costs of the disease. Three control scenarios emerge with treating the whole

population (global strategy, GS), treating a small number of individuals in a

well-defined neighbourhood of a detected case (local strategy, LS) and allowing

the disease to spread unchecked (null strategy, NS). The choice of the optimal

strategy is governed mainly by a relative cost of palliative and preventive

treatments. Although the properties of the pathogen might not be known in

advance for emerging diseases, the prediction of the optimal strategy can be

made based on economic analysis only.

The details of the local strategy and in particular the size of the optimal

treatment neighbourhood weakly depends on disease infectivity but strongly

depends on other epidemiological factors (rate of occurring the symptoms,

spontaneously recovery. The required extent of prevention is proportional to

the size of the infection neighbourhood, but this relationship depends on time

till detection and time till treatment in a non-nonlinear (power) law.

The spontaneous recovery also affects the choice of the control strategy. I

have extended my results to two contrasting and yet complementary models,

in which individuals that have been through the disease can either be treated

or not. Whether the removed individuals (i.e., those who have been through

the disease but then spontaneously recover or die) are part of the treatment

plan depends on the type of the disease agent. The key factor in choosing

the right model is whether it is possible - and desirable - to distinguish such

individuals from those who are susceptible. If the removed class is identified

with dead individuals, the distinction is very clear. However, if the removal

means recovery and immunity, it might not be possible to identify those who



are immune. The models are similar in their epidemiological part, but differ in

how the removed/recovered individuals are treated. The differences in models

affect choice of the strategy only for very cheap treatment and slow spreading

disease. However for the combinations of parameters that are important from

the epidemiological perspective (high infectiousness and expensive treatment)

the models give similar results. Moreover, even where the choice of the strategy

is different, the total cost spent on controlling the epidemic is very similar for

both models.

Although regular and small-world networks capture some aspects of the

structure of real networks of contacts between people, animals or plants, they

do not include the effect of clustering noted in many real-life applications. The

use of random clustered networks in epidemiological modelling takes an impor-

tant step towards application of the modelling framework to realistic systems.

Network topology and in particular clustering also affects the applicability of

the control strategy.
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1 Introduction

This thesis arises from an agreement between University of Stirling with Jagiel-

lonian University to offer me joint PhD studies in the field of Mathematics and

its Applications to Physics of Complex Systems. The collaboration between the

Department of Computing Science and Mathematics with the Marian Smolu-

chowski Institute of Physics and Mark Kac Center for Complex Systems Re-

search has been extended in the form of a programme of International PhD

studies in Physics of Complex Systems (MPD) supported by the grant from

the Polish Foundation for Science.

The primary motivation of my research were the serious epidemics out-

breaks of human [1], animal [2] and plant [3, 4] diseases and the strong need

to design an effective way of controlling them.

The underlying assumption of such strategies is the wide availability and

low economic or social cost of treatment as the form of preventive vaccination

or therapy [5]. However, these assumptions are not true in many cases, par-

ticularly for large outbreaks like cholera [6], AIDS [5], severe acute respiratory

syndrome (SARS) [1] or foot-and-mouth disease (FMD) [2]. Therefore, there is

a need for a ’marriage of economics and epidemiology’ [5] in designing effective

strategies for control of disease [7]. Key to this approach is the realization that

an optimal policy does not necessarily result in curing any individual in the

population regardless of costs. Instead, it might be acceptable to tolerate some

lower level of disease persistence in situation when the costs of eradication are

prohibitively high [8].

Epidemiological modelling plays an important role because it explains a

range of crucial issues:

• Estimation of the scale of the epidemic;

• Prediction of how far the disease could spread;
3



• Design of the effective ways of controlling the outbreaks.

In successful modelling all these tasks need to be achieved, even though in many

cases it is impossible to observe the whole process and measure the relevant

parameters [9]. Despite these uncertainties the mathematical modelling can be

used to design effective control measures. Control scenarios can be designed to

lead to the lowest overall cost of the epidemic outbreak [10, 8, 11] and a number

of studies have used network models to address this issue [9, 12, 13, 14].

My research has concentrated on mathematical modelling of the spread of

the epidemic on different types of networks that represent a map of contacts

between individuals in a population through which the disease can be trans-

mitted. The aim of my simulations was to search for the most optimal control

strategy to stop the epidemic outbreak when economic factors were consid-

ered. The analysis of both epidemiological and economic parameters allowed

me to find conditions under which different control scenarios are the most

cost-effective. Moreover, my research can be used to predict optimal control

strategy even with incomplete knowledge about emerging disease, based on

economic analysis only.
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2 Literature review - the scope of the studies

The effectiveness of such factors like improved sanitation, antibiotics, and vac-

cination programs made us believe that infectious diseases could be eliminated

from the environment [15]. However, diseases not only have continued to be

the major issue in developing countries but also infectious disease pathogens

adapt and evolve and new infectious diseases have emerged [16]. The hu-

man immunodeficiency virus (HIV), which is the etiological agent for acquired

immunodeficiency syndrome (AIDS), occurred in 1981 and has become an im-

portant sexually transmitted disease throughout the world [15]. Diseases such

as plague, cholera, and hemorrhagic fevers (Bolivian, Ebola, Lassa) happen

occasionally.

Mathematical models have become very important and indispensable tools

in analysing the spread and designing the control of infectious diseases. In

order to formulate mathematical models, assumptions, variables, and param-

eters must be predefined and clarified. As a result, epidemiological modelling

provides many crucial information in designing epidemic spread, like thresh-

olds, basic reproduction numbers or contact numbers. Moreover, with help

of computer simulations it is a useful tool for building and examine theories,

answering specific questions, determining sensitivities to changes in parameter

values, and estimating key parameters from data [15].

Most of mathematical models assume that all organisms in the population

stay in contact with each other and the probability of infecting any individuals

is equal. In the real world, each individual has contacts only with some fraction

of the total population and the number of interactions between organisms can

vary from one person to another [17]. That is the reason that we incorporate

network topology mimicking the pattern of contact in the system is the crucial

element in epidemiological modelling.
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The study of networks has been rooted in several fields ranging from so-

cial sciences [18] to mathematical graph theory [19, 20] and complex systems

[21, 22]. Social sciences mostly pay attention to the reason behind the connec-

tions rather than to the properties of the network structure itself. Investiga-

tions of complex networks have been used to describe evolution of ideas and

innovations in societies [18], and observed social dynamics can be understood

through analysis of the social networks that underlie them [20]. Research has

been concentrated mainly on the nature of connections, particularly proper-

ties such as a symmetry (whether a relationship between A and B implies a

relationship between B and A) and transitivity (whether the friend of a friend

is a friend) [23, 24]. Additionally, many simple as well as complex measures of

the importance of individuals can be derived: number of connections of each

individual or the number of paths between other actors in which an individual

features [20, 23].

In contrast, graph theory has provided a variety of quantitative measures.

’Adjacency matrix’ describes the connections within a population and with its

help other important characteristics such as the average number of contacts

per individual, average path length (the distance between two randomly cho-

sen nodes), clustering (group of individuals fully connected), and percolation

threshold (critical fraction of nodes that must be connected in order to create

a continuous path of nearest neighbours from one side to another) have been

applied in epidemiology [20, 25].

Several forms of networks have been studied for modelling disease trans-

mission: random [26], regular [27], small-world [28, 29] and scale-free [30, 31].

These networks models can be defined in terms of how individuals are dis-

tributed in space and how connections are formed.

Network analysis plays an important role in linking on qualitative and

quantitive measures of epidemic progress. In addition, many ways of control,
6



such as e.g. contact tracing [32, 33] or ring vaccination [34, 35], can only be

accurately modelled by means of network theory.
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3 General overview of modelling and results

3.1 Epidemiological model

Most mathematical studies of disease propagation make the assumption that

populations are "fully mixed", meaning that an infective individual is equally

likely to spread the disease [36, 37, 15]. In the limit of a large population

size this assumption allows us to write down nonlinear differential equations

denoting the evolution of e.g. numbers of infective individuals in time. Re-

sulting solutions provide means to understand such measures as typical sizes

of outbreaks, and allowed to predict under what circumstances the epidemics

occurred [17].

Epidemiological model that has been used in this work is an extended SIR

(Susceptible-Infected-Removed) model to account for pre-symptomatic and

symptomatic stages [12]. Initially all individuals are susceptible (S), except

of a fixed small number of infected pre-symptomatic (I) individuals (0.01%,

0.1% or 1% proportion of the total number), located randomly throughout the

population.

Each individual is in contact with a fixed number of neighbours and the

disease can be transmitted from/to each of them. Details of the spatial ar-

rangement and size of the neighbourhood are given below. With probability f

per single contact with either an infected individual (I) or the detected indi-

vidual (D), the disease is passed to a susceptible individual (S) that becomes

infectious but pre-symptomatic individual (I). Subsequently the infected in-

dividual displays symptoms and the transition to a symptomatic state (D)

occurs with probability q.

A symptomatic individual is assumed to be still infectious, but can sponta-

neously become removed (R) with probability r and cease to pass on infection.

Alternatively, it can also trigger a control event, with probability v. Thus, at
8



each time step, the detected individual stays in the same class with probability

(1� r)(1� v). This mechanism accounts for possible delays and imperfections

in detection of disease symptoms – any individual can show symptoms but not

be treated until after a number of steps.

The treatment event is a combination of two processes. Firstly, a detected

individual is treated and moves to the treated class (V). Secondly, all individ-

uals except removed (i.e. S, I or D) in the control neighbourhood (see below)

are also treated. This process enables the health control authorities to capture

individuals in the class I that do not show symptoms and all detected indi-

viduals (D) that are still waiting for treatment. In addition, it creates a zone

around the focus of infection in which there are no susceptible individuals.

Neither V nor R individuals can become infected again. The population has

a constant number of individuals N , so that N = S + I +D + V +R.

3.2 Network models

The subject of my research have been networks of various types : regular,

small-works, and random with different level of clustering. In regular networks,

I assume that individuals are located at nodes of a square lattice that represent

geographical distribution of hosts, for example. On this lattice, I define a

local neighbourhood of order z as a von Neumann neighbourhood in which

I include z shells and �(z) = 2z(z + 1) individuals, excluding the central

one. Accordingly, z = 0 corresponds to a single individual, which means that

this individual is not in contact with anyone, z = 1 corresponds to 4 nearest

neighbours while z = 1 corresponds to the whole population in the limit of

infinite size of the system.

For the small world model a fixed number of long range links has been

added to the regular network described above. Those links span the whole

9



population, but otherwise behave like local links.

In random networks a constant number of contacts for each node have been

chosen randomly from the whole population. Along links either the pathogen

is transmitted or the control process is triggered.

Although these kinds of networks can successively be used for modelling

emerging diseases and their control, they describe ideal situations. For real-

life contact structures, the more adequate description might be provided by

random clustered networks. These networks exhibit a certain proportion of

fully connected subgraphs in the form of cycles (termed otherwise cliques).

Each vertex (representing an individual) can be a part of a c-clique, i.e. a

group of c individuals that are fully connected, or can be a single node (i.e.

a member of a 1-clique). Nodes which are members of a c-cliques have c � 1

edges linking them with the neighbours within the same clique. For a random

node with k connections to other vertices in the network there are additional

k�c+1 edges outside the clique. In my work, I restrict the attention to random

graphs in which all nodes have the same degree k. Random clustered networks

are described by the joint probability �(k, c) that a randomly chosen vertex

has degree k and is a member of a c-qlique [38]. In turn, the local clustering

coefficient for a node is defined as a fraction of pairs of neighbours of this node

which are also neighbours of each other. The degree-dependent clustering (or

clustering spectrum ck) is the average of the local clustering coefficient over

the class of all nodes of degree k.

Separate network structure is used to model spread of the pathogen, which

can only be passed to individuals that are in infected neighbourhood, zinf . An-

other is created for the control process in neighbourhood of order z in order to

find the optimal size of treatment (or culling) zc, which, depending on economic

factors, may differ from infected neighbourhood. Infection can be passed to all

neighbours within the range described by z = zinf . As the spread of disease
10



involves asymptomatic individuals, there could be some infectious organisms

beyond the immediate neighbourhood of a detected individual. Thus control

process typically needs to be applied to a larger neighbourhood and I denote

by z the range of control neighbourhood.

3.3 Economic model

The effectiveness of a control strategy is found by considering severity of the

disease outbreak and its financial implications. Two types of costs can be

distinguished during the epidemics. Firstly, the costs associated with removed

individuals (e.g. hospitalisation, absence from work, loss of production) can

be estimated by the total number of individuals that have caught the infection

and have gone through the disease but have never been treated, i.e. R(t = 1).

Costs spent on preventive treatment (vaccination, culling) are calculated by

considering the final number of individuals that have been treated, i.e. V (t =

1). The cost-effectiveness of different control strategy can be quantified by

the total cost obtained by

X = c1R(t = 1) + c2V (t = 1) (1)

• c1 - a unit cost associated with each removed individual (R),

• c2 - a unit cost associated with each treated individual (V).

• R(t = 1) and V (t = 1) are counted at the end of a single simulation

run.

Without loss of generality the assumption that c1 = 1 and c2 = c is true,

which leads to an conclusion that the relative cost of treatment, c, is the main

control parameter. (The parameters describing the cost of treatment is called

11



as "c" in the first three publications, whereas in the forth paper it is denoted

by "a").

Effective strategy is equivalent to the minimal value of the total cost, X. In

simulation, the minimisation of the X has been achieved by sweeping through

different values of control neighbourhood size, z, while keeping other param-

eters constant. Once z is set, the disease evolve on networks and at the end

of epidemic outbreaks (t = 1) the value of X is computed in the stationary

state. This operation is repeated 100 times in order to yield the average values

of z denoted by zc and X described by Xc along with their standard deviations.

zc corresponds to the minimum of X, so that

min
�1zz

max

X(z, t = 1) = Xc(zc, t = 1) . (2)

12



4 Results

4.1 Structures of my Thesis

I am presenting four interconnected papers. Paper 1 formulates the basic

model and explores dependence of optimal control size, zc on both probability

of disease spread, f and treatment cost, c. It also introduces regular, small-

world and random networks as well as a mean-field model. Paper 2 is mainly

devoted to the relationship between optimal control range, zc and epidemio-

logical factors such as probability of disease spread, f , probability of detection,

q, probability of spontaneously recovery, v and the size of infected neighbour-

hood, zinf . Dependence on recovery/removal rate, r and comparison of two

similar epidemiological models are the subjects of the Paper 3. Finally, Paper 4

introduces clustered networks and analyses the influences of level of clustering

and node degree on optimal control size, zc.

4.2 Principal results

The main goal of my studies has been to search for the optimal control strategy

of controlling epidemics when taking into account both economical and social

costs of the disease. Three control scenarios emerge with treating the whole

population (global strategy, GS), treating a small number of individuals in a

well-defined neighbourhood of a detected case (local strategy, LS) and allowing

the disease to spread unchecked (null strategy, NS). The choice of the optimal

strategy is governed mainly by a relative cost of palliative and preventive

treatments. Although the properties of the pathogen might not be known in

advance for emerging diseases, the prediction of the optimal strategy can be

made based on economic analysis only.

The details of the local strategy and in particular the size of the optimal

13



treatment neighbourhood weakly depends on disease infectivity but strongly

depends on other epidemiological factors (rate of occurring the symptoms,

spontaneously recovery. The required extent of prevention is proportional to

the size of the infection neighbourhood, but this relationship depends on time

till detection and time till treatment in a non-nonlinear (power) law.

The spontaneous recovery also affects the choice of the control strategy. I

have extended my results to two contrasting and yet complementary models,

in which individuals that have been through the disease can either be treated

or not. Whether the removed individuals (i.e., those who have been through

the disease but then spontaneously recover or die) are part of the treatment

plan depends on the type of the disease agent. The key factor in choosing

the right model is whether it is possible - and desirable - to distinguish such

individuals from those who are susceptible. If the removed class is identified

with dead individuals, the distinction is very clear. However, if the removal

means recovery and immunity, it might not be possible to identify those who

are immune. The models are similar in their epidemiological part, but differ in

how the removed/recovered individuals are treated. The differences in models

affect choice of the strategy only for very cheap treatment and slow spreading

disease. However for the combinations of parameters that are important from

the epidemiological perspective (high infectiousness and expensive treatment)

the models give similar results. Moreover, even where the choice of the strategy

is different, the total cost spent on controlling the epidemic is very similar for

both models.

Although regular and small-world networks capture some aspects of the

structure of real networks of contacts between people, animals or plants, they

do not include the effect of clustering noted in many real-life applications. The

use of random clustered networks in epidemiological modelling takes an impor-

tant step towards application of the modelling framework to realistic systems.
14



Network topology and in particular clustering also affects the applicability of

the control strategy.
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4.3 Key results for paper 1

A. Kleczkowski, K. Oleś, E. Gudowska-Nowak, C.A. Gilligan, Searching for the

most cost-effective control strategy for controlling epidemics priding an regular

and small-world networks. Journal of the Royal Society of Interface, January

7 (2012) 9:158-169;

• Taking into account relative costs of treatment and illness, three main

control strategies emerge: treating a large number of individuals (global

strategy, GS), treating a proportion of individuals in a well-defined neigh-

bourhood of a detected case (local strategy, LS), refrain from treatment

(null strategy, NS).

• Destruction of local interactions, either by addition of long-range (small-

world) links or by inclusion of many initial foci, expands the range of

costs for which the null strategy (NS) is most cost-effective. The global

strategy (GS) emerges for the case when the cost of prevention is much

lower than the cost of treatment. Then there is a substantial non-local

component in the disease spread.

• In the mean-field case only two optimal solutions are possible: to treat

the whole population if the cost of the vaccine is low or to refrain from

control if cost is expensive.

• The basic reproduction ratio, R0, does not depend on the rate of re-

sponsive treatment and the disease always invades. However, it might

be stopped afterwards.

• The properties of the pathogen of emerging diseases may not be known

in advance. The broad choice of the strategy can be made based on

economic analysis only.

16



4.4 Key results for paper 2

K. Oleś, E. Gudowska-Nowak, A. Kleczkowski, Understanding disease control:

influence of epidemiological and economical factors. PLoS ONE (2012) 7(5):

e36026. doi:10.1371/journal.pone.0036026;

• The local strategy (LS, treating susceptible or infectious individuals in

well defined neighbourhood of certain size) matches the scale of epidemic

with the scale of control.

• The details of the local strategy and in particular the size of the opti-

mal treatment neighbourhood weakly depends on disease infectivity but

is strongly influenced by the other epidemiological factors, like rate of

occurring the symptoms or spontaneously recovery.

• The required extend of prevention is proportional to the size of the in-

fection neighbourhood.

• The control neighbourhood size depends on time till detection and time

till treatment, however this relationship is nonlinear but follows power

law.

• The optimal size of control neighbourhood is highly sensitive to the rel-

ative cost, particularly for inefficient detection and control application.

4.5 Key results for paper 3

K. Oleś, E. Gudowska-Nowak, A. Kleczkowski, Efficient control of epidemics

spreading on networks: Balance between treatment and recovery. PLoS ONE

(2013) 8(6): e63813. doi:10.1371/journal.pone.0063813;

• Comparison of two epidemiological models has been made to address

problem when examine the immunisation to the pathogen is very difficult
17



to achieve.

• The differences in models affect the choice of the strategy in situation

when treatment is very cheap and when disease spreads slowly.

• From the epidemiological point of view, in the crucial scenario (high

infectiousness and expensive treatment) models predict very similar re-

sults.

• Even where the choice of the strategy differs, the total cost spent on

controlling the epidemic is v at the same level for both models.

4.6 Key results for paper 4

K. Oleś, E. Gudowska-Nowak, A. Kleczkowski, Cost-benefit analysis of epi-

demics spreading on clustered random networks. Acta Physica Polonica B

(2014) 45(1): 103-120

• In order to adopt mathematical modelling to real life application the

model of random clustered networks has been used.

• Network topology and in particular clustering also affects the applicabil-

ity of the control strategy.

• The networks characteristics such as average path length or local clus-

tering coefficient appears to plan the most important role. Not only the

range for optimal control strategy is wider with the length of average

path in the networks but also the optimal radius of control extends.

• The proportion of individuals in cliques affects the local coefficient of

clustering. With higher density of cliques in networks and with greater

value of clustering coefficient, the range of the treatment costs, for which

control scenario is optimal, increases.
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5 Discussion and possible extensions

Mathematical epidemiology has now evolved into a separate area of popula-

tion dynamics that is parallel to mathematical ecology. Epidemiology mod-

els are now used to combine complex data from various sources in order to

study equally complex outcomes. Mathematical models are used in comparing,

planning and optimising the whole range of processes: detection, prevention,

therapy, control scenarios, making general forecasts, and estimating the un-

certainty in predictions [39, 15]. Moreover, the incomplete knowledge of the

newly emerged disease or the way it is transmitted through the system does

not prevent modellers to propose successful control options even at the begin-

ning of the epidemics. Incorporating economic factors into designing control

strategies results in a very powerful tool for authorities that need to decide

whether and how resources need to be allocate in order to stop the epidemics

as quickly as possible and at a manageable costs.

My research can be extended in several ways, and the most interesting as

well as challenging appear to be:

• SIRS model: a model in which after some period of immunity to the

disease, individuals become susceptible again and could catch a disease

few times. The best examples are influenza and sexually-transmitted

diseases.

• Dynamical networks: networks with connections that could change in

time, e. g. describing the situation when the behaviour of a population

can markedly change as a consequence of an outbreak of infection, which

needs to be considered when designing interventions.

• Social networks: e.g. scale-free networks, more realistic network type,

especially for modelling human diseases.
19



• Other economical circumstances, e.g. limited budget that could be spent

on epidemic outbreaks, and the resources need to be allocated wisely

presents situation to which the health authorities need to face up.

• Time dependent control: control, which size could change in time, may

properly allocate resources and better adopt efforts to the actual scale

of epidemics.

• Spread of more than one pathogen in the population: this extension

describes very serious real-life scenario that could results in higher vul-

nerability for one diseases when individuals are affected by the other

pathogen. Alternatively, an individual that catches one type of disease

and eventually gains immunity from it, might also acquire immunity to

the other one, even though has not been treated.
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6 Author Contributions

Results presented in my thesis have been achieved by numerical methods with

programmes written mainly in C, and by use of Matlab software.

I have developed myself code in C using Monte Carlo Methods to execute

disease evolution of SIDRV model and control process in a neighbourhood of

any size.

I used lattices with periodic boundary conditions to represent different

network types such as regular, small-world and random by different way of

choosing links between nodes. In regular networks, edges have been placed

between the nearest neighbours that described geographical distribution of

hosts. Small-world networks have been created on the basis of regular ones, by

adding number of randomly chosen links that could span the whole lattices. In

random networks all nodes have fixed number of connections that have been

placed uniformly random on the lattice. In order to properly adjust control

events and disease spread I have used two separate matrices corresponding to

infected and control neighbourhood.

Large size of the system (represented by lattices of 200 by 200 nodes),

puts special demands on memory. I run my programmes on the Jagiellonian

University computer grid called "Shiva" cluster, as a single threat programmes.

Afterwards, data mimicking evolution of the epidemic process were analysed.

For that purpose I have designed and written a code in C which uses the

economic model and takes into account the requirement of optimising control

strategy for the costs ranging from 10�4 to 103.

During my collaborative visit in the group of Professor James Gleeson

at the University of Limerick in Ireland, I was given a code in Matlab that

generates random networks with different level of clustering. Working with

Sergiej Melnik, I adopted the code in Matlab to generate random clustered
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networks with the whole range of size of neighbourhood needed in control

process and pathogen propagation.

Source code of all programs (except the Matlab code) is available on re-

quest.

1. Searching for the most cost-effective control strategy for controlling epi-

demics priding an regular and small-world networks.

• Conceived and designed the experiments: AK KO.

• Performed the experiments: KO.

• Analysed the data: KO.

• Contributed analysis tools: KO AK EGN.

• Wrote the paper: KO AK CAG EGN.

2. Understanding disease control: influence of epidemiological and econom-

ical factors.

• Conceived and designed the experiments: AK KO.

• Performed the experiments: KO.

• Analysed the data: KO EGN AK.

• Contributed analysis tools: KO EGN AK.

• Wrote the paper: KO EGN AK.

3. Efficient control of epidemics spreading on networks: Balance between

treatment and recovery.

• Conceived and designed the experiments: KO AK.

• Performed the experiments: KO.

• Analysed the data: KO EGN AK.
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• Contributed analysis tools: KO EGN AK.

• Wrote the paper: KO EGN AK.

4. Cost-benefit analysis of epidemics spreading on clustered random net-

works.

• Conceived and designed the experiments: KO JG EGN AK.

• Performed the experiments: KO.

• Analysed the data: KO EGN AK.

• Contributed reagents/materials/analysis tools: KO EGN AK.

• Wrote the paper: KO AK EGN.
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Searching for the most cost-effective
strategy for controlling epidemics

spreading on regular and
small-world networks
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and Christopher A. Gilligan3

1Department of Computing Science and Mathematics, University of Stirling,
Stirling FK9 4LA, UK

2Marian Smoluchowski Institute of Physics, Mark Kac Center for Complex Systems Research,
Jagellonian University, ulica Reymonta 4, 30–059 Kraków, Poland

3Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, UK

We present a combined epidemiological and economic model for control of diseases spreading
on local and small-world networks. The disease is characterized by a pre-symptomatic infec-
tious stage that makes detection and control of cases more difficult. The effectiveness of local
(ring-vaccination or culling) and global control strategies is analysed by comparing the net
present values of the combined cost of preventive treatment and illness. The optimal strategy
is then selected by minimizing the total cost of the epidemic. We show that three main strat-
egies emerge, with treating a large number of individuals (global strategy, GS), treating a
small number of individuals in a well-defined neighbourhood of a detected case (local strategy)
and allowing the disease to spread unchecked (null strategy, NS). The choice of the optimal
strategy is governed mainly by a relative cost of palliative and preventive treatments. If the
disease spreads within the well-defined neighbourhood, the local strategy is optimal unless
the cost of a single vaccine is much higher than the cost associated with hospitalization. In
the latter case, it is most cost-effective to refrain from prevention. Destruction of local corre-
lations, either by long-range (small-world) links or by inclusion of many initial foci, expands
the range of costs for which the NS is most cost-effective. The GS emerges for the case when
the cost of prevention is much lower than the cost of treatment and there is a substantial
non-local component in the disease spread. We also show that local treatment is only desirable
if the disease spreads on a small-world network with sufficiently few long-range links; otherwise
it is optimal to treat globally. In the mean-field case, there are only two optimal solutions, to
treat all if the cost of the vaccine is low and to treat nobody if it is high. The basic reproduction
ratio, R0, does not depend on the rate of responsive treatment in this case and the disease always
invades (but might be stopped afterwards). The details of the local control strategy, and in par-
ticular the optimal size of the control neighbourhood, are determined by the epidemiology of the
disease. The properties of the pathogen might not be known in advance for emerging diseases,
but the broad choice of the strategy can be made based on economic analysis only.

Keywords: epidemiological modelling; disease spread; stochastic modelling;
epidemiological control

1. INTRODUCTION

Epidemiological modelling has long been used to design
strategies to control disease outbreaks [1]. The under-
lying assumption of these strategies is the wide
availability and low economic or social cost of treat-
ment, be it in the form of preventive vaccination or
therapy [2]. These assumptions are however not true
in many cases, particularly for large outbreaks like cho-
lera [3], AIDS [2], severe acute respiratory syndrome
(SARS) [4] or foot-and-mouth disease [5]. There is,

therefore, a need for a ‘marriage of economics and epi-
demiology’ [2] in designing effective strategies for
control of disease [6]. Key to this approach is the realiz-
ation that an optimal policy does not necessarily result
in curing everybody in the population at any cost; it
might instead be acceptable to tolerate some lower
level of disease persistence if the costs of eradication
are prohibitively high [7]. Several recent papers have
combined epidemiological with economic constraints
to identify optimal strategies for disease control or man-
agement [8–12]. Most of these studies, however, ignore
the spatial components of disease spread and control*Author for correspondence (ak@cs.stir.ac.uk).
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while searching for an optimum strategy (see, however,
Rowthorn et al. [13]). The spatial scale at which control
is applied in relation to the spatial scale of the pathogen
dispersal has been identified for many diseases, notably
for plant diseases in which the spatial component of the
location of the hosts plays a particular important role
[14,15]. The relationship between the epidemic and con-
trol scales can however be affected by economic aspects
of both disease and treatment. Simple network models,
while capturing the essence of the topology of spread
and control, offer a unique opportunity to analyse the
relationship between the epidemic and control scales
when there are cost constraints [6,16–20]. In this paper,
we analyse a model for optimal control of disease spread-
ing on regular and ‘small-world’ networks [6,20]. The
importance of long-range transmissions in influencing
the efficiency of control strategies has been shown for
numerous major epidemics of human (e.g. SARS [4] and
influenza [21–23]), animal (e.g. foot-and-mouth disease
[5,24]) and plant diseases (e.g. citrus canker [25], sudden
oak death [26] and rhizomania of sugar beet [14,15]).

There exist two broad strategies in response to a
threat of an infectious disease. The authorities can
implement control measures before the potential out-
break (e.g. a preventive vaccination [1]) or prepare a
set of reactive measures, with a mixture of palliative
care and control implemented only after the outbreak.
In this paper, we consider the second case and assume
that the outbreak has already started. A successful reac-
tive control strategy needs to combine therapy
(i.e. treatment of existing cases) with prevention against
secondary cases (e.g. vaccination or culling) [2]. Treatment
limited to individuals who are displaying symptoms is
usually not enough to stop an outbreak, particularly
if the disease includes a pre-symptomatic stage [27].
Thus, by the time a symptomatic individual is detected,
the disease will have spread well beyond the original
focus. Combination of a palliative with a preventive
(although applied after the start of the outbreak) treat-
ment allows the control to be more effective, if enough
individuals are included in the population to catch all
infectious individuals or to remove susceptible ones from
the perimeter of the spreading focus [15]. However, such a
strategy is also costly—it invariably leads to treating
individuals that might never have been infected and
become diseased even when no action were taken. If treat-
ment is simple and cheap, this perhaps does not matter.
The experience of large outbreaks of foot-and-mouth
disease [28,29] and citrus canker [25] shows, however,
that treatment cost may be very important. Thus, the pro-
cess of designing the optimal strategy must involve in the
first step the identification of all potential costs (including
disease and control costs) and subsequently finding the
right balance between them [3].

In this paper, we identify two main sources of costs
associated with a disease outbreak and subsequent con-
trol [2]. These are the cost of untreated disease cases
and the cost of treating individuals located around
those cases (including the cost of surveillance needed
to identify existing cases). If no preventive measure is
taken, infection, and hence disease, spreads and many
individuals become ill and either recover or die. This
leads to direct costs associated with, for example,

hospitalization and drugs that need to be administered
and indirect costs associated with the loss of revenue
owing to illness, and with death or incapacity of individ-
uals. Such associated costs can be very high if the
epidemic is severe and affects all or most of the popu-
lation. The main objective of the preventive measures
is to lower the total cost by investing in treatment or vac-
cination in the initial stages of the epidemic, with the
hope that this will arrest the disease spread [30]. Control
might, for example, involve a mass vaccination as early
in the outbreak as possible, or continuous preventive vac-
cination [1,31,32]. Although there is a potentially large
cost associated with such a strategy, the investment is
seen as worthwhile if it leads to a significantly reduced
number of infections owing to removal of susceptible
individuals. Vaccination, culling or other forms of preven-
tive treatment can also be targeted, by concentrating on
individuals that exhibit disease symptoms or their neigh-
bours, regardless of their status [5,27,33,34]. Such a form
of ‘ring vaccination’ has been identified as a cost-effective
measure, since it concentrates the effort where it is
needed. The drawback of such strategies is that they
require a detailed knowledge of the actual location of
infected individuals and their contacts [17], and this
might also involve costly surveillance schemes [35].

In this paper, we compare spatially targeted control
strategies. We show that, depending on the relative cost
of treatment and infection, a choice of three strategies
arises: treating nobody (null strategy, NS), treating
only selected individuals within a well-defined neighbour-
hood of each detected (symptomatic) individual (local
strategy, LS) and treating as many individuals in the
whole population as possible (global strategy, GS).
We also show that the randomness of disease distribution
in the initial phases of the epidemic plays a very impor-
tant role in deciding which strategy to choose. This can
result either from an initial distribution of disease foci
or from topology of interactions. The details of the LS
depend on the epidemiology but not on the economic
parameters—it is the choice of the strategy that does
depend on the relative costs. The ‘bang–bang’ strategy
of either treating nobody or treating all individuals has
been observed in non-spatial systems where control strat-
egy varies over time [7,8,36], but to our knowledge not for
a spatial control strategy.

2. MODEL

The spatial model that underlies this paper is an
extension of the susceptible–infected–removed (SIR)
model to account for pre-symptomatic spread [6,20].
We first introduce a spatial model in which control is
applied locally in response to observed cases. Sub-
sequently, we construct mean-field approximations for
the spatial model.

2.1. Spatial model

For simplicity, we assume that individuals are located at
nodes of a square lattice that represents the geographical
distribution of hosts. On this lattice, we define a local
neighbourhood of order z as a von Neumann neighbour-
hood in which we include z shells and f (z) ¼ 2z(z þ 1)

2 Strategy for controlling epidemics A. Kleczkowski et al.
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individuals (excluding the central one). Thus, z ¼ 1 cor-
responds to the four nearest neighbours, while z ¼1
corresponds to the whole population in the limit of
infinite size of the system.

The epidemiological model is a version of an SIR
model [1], modified to include pre-symptomatic and
symptomatic stages of the illness and to account for
detection and treatment (figure 1). All individuals are
initially susceptible (S). The epidemic is initiated by
the introduction of a few infected but pre-symptomatic
(I) individuals. Each infectious (pre-symptomatic or
symptomatic) individual is in contact with a fixed
number of other individuals and infection is transmitted
along these contact routes with probability f per
contact. Upon successful infection, the susceptible
individual moves to the pre-symptomatic class. Sto-
chastic simulations are performed with a fixed time
step so that each probability is interpreted as a hazard.

We consider two models for transmission: local-
spread and small-world models. In the local-spread
model, a fixed number of individuals is chosen in the
nearest neighbourhood of order zinf surrounding each
susceptible individual. Each infected individual located
within the neighbourhood contributes to the total
hazard for this particular susceptible individual. We
consider zinf ¼ 1 with f(zinf ) ¼ 4 individuals in the
infection neighbourhood, but the results are similar
for other choices of zinf . A small-world model [6,37]
is similar to the local-spread model, but an additional
number of non-local links is added randomly to the
lattice of local interactions. These links can span the
whole population and the probability of passing an
infection along any of the long-range links is the same
as for local links.

With a probability q each pre-symptomatic individ-
ual develops symptoms that can be detected (and
hence moves to class D). Both pre-symptomatic and
symptomatic individuals can infect susceptible individ-
uals. At each time step, each symptomatic individual
can move to a removed class (R) with a probability r
or, if it does not recover, can trigger a treatment
event with probability v. This process models delays
in public health actions leading to preventive treatment
(vaccination or culling). Each treatment event affects

the central symptomatic individual and all susceptible
S, pre-symptomatic I and symptomatic D (but not
removed R) individuals located within a von Neumann
neighbourhood of order z centred on a detected individ-
ual, as they move to the treated class, V. This represents
a localized ‘ring’ treatment (vaccination or culling). For
convenience, we extend the definition of z to include
two cases: z ¼21 describes a strategy in which no
spatial control is applied, and z ¼ 0 corresponds to a
strategy in which the detected individual is treated
only. Neither R nor V can infect or be re-infected any
more. The number of individuals in each class is
denoted by S , I , D , R and V , respectively, and N ¼
S þ I þ D þ R þ V is the total number.

2.2. Mean-field equations

The model without control can be described by the
following set of mean-field equations:

dS
dt
¼ #bfðzinfÞ

N
SðI þ DÞ;

dI
dt
¼ bfðzinfÞ

N
SðI þ DÞ # qI ;

dD
dt
¼ qI # rD

and
dR
dt
¼ rD:

9
>>>>>>>>>>>>=

>>>>>>>>>>>>;

ð2:1Þ

The parametrization of the infection force by
bf(zinf ) allows a direct comparison of the simulations
with the fully spatial model, although b can only
cautiously be interpreted as an equivalent of f.
If the control is just applied to the detected individual
(z ¼ 0), these individuals are removed at the rate v
and the equation for D is modified by including a
term 2 vD,

dD
dt
¼ qI # rD # vD: ð2:2Þ

When z . 0, an additional number of individuals, f(z),
is selected for treatment. In the spatial model, those
individuals are located in the neighbourhood of the

infectious, Y

f per infected neighbour removed, R

treated, V

when in control neighbourhood of D

susceptible, S
infected,

pre-symptomatic,
/

infected,
symptomatic,

D

q

v

r

Figure 1. Block diagram illustrating transitions in the model considered in the paper. Thick lines represent transitions performed
at each time step, whereas light lines represent transitions triggered by treatment.
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detected individual, but, in the mean-field approxi-
mation, the spatial information is lost. Thus, the
corresponding number of individuals is selected at
random from the population at each control event.
As the control events occur at the rate 2vD, the rate
at which individuals are treated equals 2vf(z)D. Out
of these, a proportion of S/N individuals are suscep-
tible, I/N individuals are pre-symptomatic and D/N
are symptomatic (the control event does not distinguish
between the state of the individuals subject to treat-
ment, except for the removed class). Incorporating the
relevant terms into equation (2.1) we obtain

dS
dt
¼ "bfðzinfÞ

N
SðI þ DÞ " vfðzÞD S

N
;

dI
dt
¼ bfðzinfÞ

N
SðI þ DÞ " qI " vfðzÞD I

N
;

dD
dt
¼ qI " rD " vD " vfðzÞD D

N
;

dR
dt
¼ rD

and
dV
dt
¼ vfðzÞD S þ I þ D

N
þ vD:

9
>>>>>>>>>>>>>>>>=

>>>>>>>>>>>>>>>>;

ð2:3Þ

2.3. Cost of treatment

From an economic point of view, the problem of
designing an optimal control strategy can be viewed
as a special case of a net present value test [38]. In
this approach, the value of future benefits (reduction
in the number of infection cases) is compared with
the value of future and current costs (associated
with a particular control strategy). The values are
often discounted if the optimization horizon spans a
longer period of time. For simplicity, we assume that
the duration of an epidemic is short enough (e.g.
within 1 year) so that no discounting is necessary.
The strategy is decided at the beginning of the epi-
demic and is not changed over time. The economic
outcome, on the other hand, is deferred until the
end of the epidemic when costs are compared with
gains. We also assume that there are no budget con-
straints and so the decision maker can spend as
much as is necessary on controlling the disease
within the prescribed strategy.

In this paper, we aim to minimize the total cost of
the outbreak and we allocate costs to two groups. The
first term representing the palliative cost is associated
with individuals who are never treated and therefore spon-
taneously move into the removed class. This term is equal
to R(1) multiplied by a unit cost of treatment, c1. The
second term describes costs associated with treatment of
susceptible and pre-symptomatic individuals aimed at
prevention of further spread. For simplicity, we assume
that this term also includes surveillance costs involving
searching for and detection of infected (symptomatic)
individuals as well as treatment of any symptomatic indi-
viduals (including the one that triggered the treatment
event; figure 1). Thus, the second term is equal to
c2V(1), with c2 being a unit cost of preventive treatment.

These assumptions lead to the following general form for
the total cost of the epidemic:

X ¼ c1Rð1Þ þ c2V ð1Þ: ð2:4Þ

We are normally not interested in the absolute
measure of X, but only intend to use it to compare
different strategies. Thus, without loss of generality
we can put c1 ¼ 1 and c2 ¼ c, so that X ¼ R þ cV
with c measuring the relative cost of treatment to infec-
tion [6,17]. The goal of the simulation is to find an
optimal control strategy, identified here with a value
of z (and denoted zc) for the spatial model (and its
mean-field approximations), that minimizes the total
cost, X, with other parameters fixed. We call X the
severity index, as it characterizes the combined severity
of the epidemic including individuals that have been
through the disease but were not treated (R) and indi-
viduals that have been treated both in response to their
symptoms and preventively to halt the spread of the
disease (V ).

We consider two prevention strategies exemplifying
our approach, preventive vaccination (or spraying)
and culling (or destruction), for three complementary
diseases, influenza [39–41], foot-and-mouth disease
[24,27] and citrus canker [25], although our approach
is more general. Attempts to control an influenza out-
break include preventive vaccination or treatment
with anti-viral drugs [42]—a similar approach has
been suggested for measles [43] and for Ebola [44]. For
foot-and-mouth disease, both vaccination and preven-
tive slaughter of animals on contiguous premises
[24,45] have been used to control spread. Likewise,
citrus canker can be controlled by early spraying with
copper compounds on resistant varieties, but immediate
and rapid destruction of infected trees is essential for
controlling the spread [46]. The two exemplary treat-
ments differ in costs associated with them. Vaccination
(for influenza or foot-and-mouth disease) and preventive
spraying (for citrus canker) are typically cheaper than
loss of an individual owing to disease (foot-and-mouth
disease, canker) or costs associated with inability to
work or even hospitalization (influenza). Thus, for
example, Weycker et al. [40] estimates the costs of influ-
enza vaccine at c2 ¼ US$6–24, with direct costs of
infection at c3¼ US$70 and indirect at US$351, leading
to c ranging from 0.017 to 0.341 (see also Meltzer et al.
[39]). Similar estimates can be obtained for rotavirus
and hepatitis A [47,48], with c ¼ 0.01 2 0.85. On the
other hand, the cost of culling an animal or destroying
a tree is typically comparable to or more expensive than
the disease, as it includes not only the lost revenue associ-
ated with the culled animal or destroyed tree but also the
labour associated with treatment; this leads to c!1.

2.4 Simulations

Simulations were performed on a lattice of 200 by 200
individuals with periodic boundary conditions. The
size of the lattice was a compromise between numerical
efficiency and small-size effects that we wanted to avoid.
We performed simulations for other sizes and found no
effect for sufficiently large lattices. We have considered
a range of initial numbers of infected individuals, but
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the results are shown for 40 initial foci (0.1% of the
total population) and 400 initial foci (1% of the total
population). Smaller numbers of initial foci led to too
many cases in which disease died out without spreading,
which affected the optimization procedure. Except
when indicated otherwise, zinf ¼ 1, v ¼ 0.1 , r ¼ 0.1 and
q ¼ 0.5. Each simulation was run until I(t) þ D(t) ¼ 0
and X was computed at the end of the run. For the simu-
lation model, the minimization of X is achieved by
sweeping through different values of z while performing
only a single simulation for each value of z. For such a
sample, the actual minimal value of X and the corre-
sponding value of z are found. This procedure is then
repeated 100 times to yield average values of zc and Xc

and their standard deviations. Numerical solution of
the differential equations was done using R [49].

3. RESULTS

The long-term behaviour of the spatial model in the
absence of control (z ¼ 21) is determined by f, the
probability that infection is passed to a susceptible
node from any of the four neighbours (zinf ¼ 1). For
small values of f, the disease quickly dies out, whereas,
for large values of f, the pathogen and hence disease is
highly contagious and spreads through the whole popu-
lation when no treatment is applied, X ≃ R(1) ≃ N;
compare figure 2a,b. The extreme cases of f are
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Figure 2. (a,b) The proportion of spontaneously removed individuals, R(1); (c,d) treated individuals, V(1), as a function of the
control neighbourhood, z, for different values of f and c. The corresponding values of the severity index, X, are shown in (e,f).
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separated by a threshold for disease invasion, with an
exact critical value of f depending on the spatial struc-
ture of the network and presence or absence of long-
range links. For the simplest case of zinf ¼ 1 and no
long-range links, the transition occurs at f ¼ 0.04
(figure 3); addition of the small-world links shifts the
threshold towards the value of f ¼ 0.02 that can be com-
pared with the mean-field critical value of b ¼ 0.02
associated with R0 ¼ 1 (for details of mean-field calcu-
lations see below and in particular equation (3.1)).
When control is applied, z ! 0, R/N declines monotoni-
cally with the order of the control neighbourhood, z, for
both invasive and non-invasive diseases (figure 2a,b).
Thus, the increased control effort leads to a reduction
in the number of cases. However, the number of
individuals treated, V(1), increases at the same time
(figure 2c,d). The increase is monotonic for a non-
invading disease (figure 2c), but non-monotonic for an
invading disease (figure 2d). R(1) and cV(1) are
subsequently combined to form X ¼ R(1) þ cV(1)
(figure 2e,f). The special case of a vaccination that
does not cost anything, c ¼ 0 (not illustrated in figures),
corresponds to X ¼ R(1) and leads to an optimal strat-
egy of treating all (GS). If c = 0, various types of global
minima can be obtained depending on the value of
c and the shape of v.

First, consider a non-invasive disease (figures 2a,c,e
and 3). If vaccination is cheap (small but finite c),
X is dominated by R(1) (the cost of an uncontrolled epi-
demic) and the minimum value of X occurs at zc¼1
corresponding to the GS of treating all individuals (GS)

(figure 2e: filled circle). As the cost, c, increases, the mini-
mum rapidly shifts to z¼ 0, corresponding to treating just
the detected individual (a subset of the local strategy, LS;
figure 2e: filled triangle). For very high values of c (thick
line in figure 2e), the strategy shifts further to z ¼21
when nobody is treated (the NS). The value of a critical
control radius, zc, depends strongly on c but only
weakly on f for small values of f (figures 2e and 3).

As f increases and the epidemic character changes
from non-invading to invading, V(1) becomes a non-
monotonic function of z (figure 2d). While for small
values of c, the GS is still the best option (figure 2f),
a new type of LS appears for moderate values of c,
corresponding to the treatment within a well-defined
region around each detected case. For a very high
value of c, the minimum of X corresponding to a
finite value of z disappears and the NS of treating
nobody becomes optimal (figure 2f ). The switch from
GS to LS and subsequently to NS is clearly seen in
figure 3, which also shows the relative independence of
the choice of the optimal control strategy on f.

Thus, the choice of the optimal strategy is deter-
mined by two main factors: the infectiousness of the
disease, f, and the relative cost of the treatment, c.
The dependence on the rate of disease spread, f, is rela-
tively weak for most values of c (figure 3). The values of
the optimal control neighbourhood, zc, cluster in two
regions. For small c (c , 1024), zc is independent of f
and corresponds to a GS, zc ≃ 45. For moderate
c (0.01 , c , 1), zc is below 10 (for the parameters
discussed here) and slowly increases as the disease
switches from non-invasive to invasive. For high
values of c (10 , c , 100), the dependence on f is
non-monotonic as zc first increases and subsequently
drops back to 0 (treat only detected individuals).
Finally, for very high costs of treatment, zc ¼21
(refrain from treatment) for almost all values of f.

The economic aspects of the control determine three
regions for c (figure 4). To illustrate the details of the
behaviour, we assume that each untreated case (i.e.
the individual in the removed class, R, at the end of
the epidemic) costs £100. (We use arbitrary but realis-
tic values here, to illustrate general principles rather
than to focus on a particular disease.) We consider
two contrasting cases for the cost of each treated indi-
vidual (i.e. the individual in the treated class, V, at
the end of the epidemic), £0.01 and £1000. We also
assume that initially there are I(0) ¼ 40 cases in a popu-
lation of 40000. Consider first the costs of the NS, under
which nobody is treated and so X ≃ R(1). For the non-
invasive disease (small f ), the total cost is approxi-
mately £100I(0) ¼ 4000, whereas for the invasive
disease (high f ) the total cost reaches £100N ¼ 4
million. For the GS, we treat all individuals indiscrimi-
nately and as quickly as possible and so the cost is
£0.01N ¼ 400 for small c and £1000N ¼ 40 million
for large c, independent of f. Finally, for the LS, it is
not possible to obtain a simple estimate of the cost as
it depends on z and the effectiveness of prevention.

For the very cheap preventive treatment (e.g. costing
£0.01, i.e. c ¼ 1024), cN , I(0), the cost of treating the
whole population (GS, £400) is smaller than the cost
associated with the infection of the initial cases
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Figure 3. Critical value for the range of control neigh-
bourhood, zc, as a function of the probability of spread, f,
for different values of the relative treatment cost, c. Other
parameters: q ¼ 0.5, v ¼ 0.1, r ¼ 0.1 and zinf ¼ 1. The initial
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(NS, £4000). Thus, for both invasive and non-invasive
diseases, it is better to spend £400 and stop the epi-
demic immediately than to allow even the initial cases
to go through the disease process (at a minimum cost
of £4000). If the cost of treating the whole population
is comparable to or higher than treating the initial
cases, c ! I(0)/N, the GS is no longer optimal. For
high c and low f, if the treatment cost of just the few
initial cases (£40 000) is significantly higher than the
cost of allowing the epidemic to run to its completion
(NS for low f, £4000), we expect the NS to be optimal.
Similarly, the cost of the GS is high (£40 million) com-
pared with the NS (£4 million) for large f and the NS is
again optimal. The range of c between those two
extremes is occupied by the LS with zc ¼ 0 (treat only
detected individuals) for the non-invasive disease and
zc , 10 for the invasive disease (figure 4).

A remarkable feature of the LS is the stability of zc
as a function of c over a wide range of c and f,
(figure 4a; see also figure 3). Interestingly, even in
cases when the cost of the preventive treatment, c,
exceeds the cost of uncontrolled disease (c . 1), the

LS is still optimal for some combinations of c and f
(even though the NS is optimal for very high values
of c. The mechanism for this behaviour is related to
spatial correlations in the spread of the disease.
Consider a focus originating with a single pre-sympto-
matic but infectious individual. Infection subsequently
spreads to its nearest neighbour and then to their neigh-
bours, but the focus still remains undetected. It is only
when the first individual in the group shows symptoms
that the authorities might become aware of the infection
(this individual is usually the original source of infection,
but owing to the stochastic nature of the process it might
also be another one). Further delay (represented by the
finite value of v) before any responsive treatment (vacci-
nation or culling) is applied leads to further expansion of
the focus. Thus, with a high probability, we can expect
pre-symptomatic but infectious individuals in the
immediate neighbourhood of a detected one. The optimal
local control strategy will aim at treatment of all such pre-
symptomatic individuals, but without extending the con-
trol neighbourhood too far (which will lead to an
unnecessary increase in costs). This is a similar mechan-
ism to herd immunity [1], but local application makes it
a very effective strategy. Thus, the epidemic can be
stopped within a few steps, even though the rest of the
population remains susceptible. We also note that the
fewer the initial foci, the less effort is required to stop
the outbreak in this case, and so we expect that the criti-
cal value of c determining the transition between the LS
and the NS will increase with a decreasing number of
initial foci. However, once the spatial correlation is
destroyed, we expect the LS to be no longer efficient for
any value of c . 1.

3.1. Destroying spatial structure

The spatial correlations can be destroyed either by
introducing non-local spread, for example in the form
of long-range links in a small-world model, or by
increasing the number of initial foci. There is not much
change in the behaviour for small f (cf. figure 4 with
figure 5) where 30 per cent long-range links have been
added to the model structure. In this case, it is still pre-
ferable to treat individuals locally for a broad range of c .
However, as the disease becomes more infectious, the
probability of it spreading via long-range links increases.
In this case, the region of optimality for the GS extends
to higher values of c, whereas the range of the NS
extends to lower values of c until they merge at c ¼ 1
for high f (cf. figure 4 with figure 5).

The effect of changing the number of non-local links
is shown in figure 6, which is analogous to figures 4a and
5a, but for a smaller range of c and for a single value of
f ¼ 0.98. For 40 initial foci (0.1% of the total number)
and the purely local spread, the switch between the
LS and the NS occurs at approximately c ¼ 10 (thin
line in figure 6a) while zc ≃ 6 for c below 10. The
addition of 2 per cent links decreases the range of c
for which the LS is still optimal but does not increase
zc (dashed line). However, the number of individuals
treated preventively, V(1), increases markedly com-
pared with the purely local case (figure 6b). Addition
of 30 per cent long-range links shifts the critical value
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for c close to c ¼ 1, while increasing the size of the con-
trol neighbourhood to zc ≃ 40 (thick line in
figure 6a). In this case, the proportion of the population
that needs to be treated, V(1)/N, is also very high for
c , 1 (figure 6b).

If the number of initial foci is increased without
addition of long-range links, the effect on the critical
value of c is similar to the addition of links, although
there is no noticeable increase in zc below the critical
value (the dashed-dotted line in figure 6a). Thus, in
each treatment event, we are still treating a small
number of individuals. However, overall, we still need
to treat a large proportion of individuals (figure 6b).

The change in zc and V(1) can be very rapid as long-
range links are added to the system (figure 7a). This is
reminiscent of the rapid transition associated with the
small-world model in which addition of only a few
links can drastically change the behaviour of the
system [37]. If the preventive treatment (e.g. vacci-
nation or culling) is even marginally more costly than
allowing the disease to run without control, c ¼ 1.25,
the addition of 6 per cent of long-range links renders
the LS inefficient (figure 7a). In this case it is best to
refrain from any preventive treatment (and follow the
NS), even if 4 per cent links still leave the LS optimal.
The reason for this critical behaviour is clear from
figure 7b. Consider the case of c ¼ 1 for which it is opti-
mal to treat locally even for a large number of non-local
links. However, in this case, the proportion of treated
individuals exceeds 50 per cent of the total population
for 5 per cent or more of long-range links (marked by

the arrow in figure 7b). This shows how critical it is to
reduce the number of non-local links in the population
[6,17], if local control strategies are applied.

3.2 Mean-field limit

With the increase in the number of non-local links, we
are approaching the mean-field approximation
(figure 6a). In this case, there are only two options for
treatment. The GS is optimal for c ! 1 and the NS is
optimal for c . 1. This can be confirmed by the analysis
of the mean-field equations (2.3). The responsive treat-
ment in which the treatment rate depends on the
current number of detected cases is not capable of con-
trolling the invasion of the disease. When the basic
reproduction ratio, R0, is computed for equation (2.3),
the result does not depend on the rate of treatment v,

R0 ¼ bfðzÞ 1
q
þ 1

r

! "
: ð3:1Þ
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Figure 6. (a) The optimal control neighbourhood, zc, and (b)
the proportion of treated individuals, V(1)/N, as functions of
the treatment cost, c, for local network, small-world network
and mean-field models. For the number of initial foci I(0) ¼ 40
the number of non-local links as a proportion of the total
number of nodes is marked as follows: 0%, solid line; 2%,
dashed line; 8%, thick dashed line; and 30%, thick line. The
dashed-dotted line corresponds to the local spread (0%
links), but the number of initial foci is increased to I(0) ¼
400. The thin-dashed line represents the simulation of the
mean-field model. The rate of disease spread is f ¼ 0.98;
other parameters: q ¼ 0.5, r ¼ 0.1, v ¼ 0.1. (Online version
in colour.)
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In this formula, bf(z) is the rate of infection, 1/q
is the average time an infected individual spends
before detection and 1/r is the average time a detected
individual spends before spontaneous removal. As a
consequence, the stability of the disease-free equilibrium
(I ¼ 0, D ¼ 0) is unaffected by the control since,
for low levels of infection (I,D! N), the control term
is very small. Although as the number of cases increases,
so does the control effort, but the dependence of the con-
trol rate on D means that the effort always follows the
infection. Simulations show that the final number of
treated individuals, V(1), and the final number of spon-
taneously removed individuals, R(1), are closely related
in this case so that, if c ¼ 1, X ¼ R(1) þ V(1) ¼ N
independently of v. Thus, if it is cheaper to prevent the
disease than to avoid treatment, c # 1, it is best to
treat all individuals (GS). By contrast, if it is cheaper
to refrain from treatment, c . 1, it is best not to treat
anybody (NS). However, regardless of the applied con-
trol strategy, the whole population is affected either by
the infection or by the control (figure 6b). The results
agree with simulations of a stochastic spatial model in
which individuals contact f(zinf) individuals randomly
(not shown here).

4. DISCUSSION

The main objective of the ‘optimal’ control strategy is
to stop the epidemic not only in the shortest possible
time but also at a manageable cost. Faced with a
large outbreak, health authorities need to decide
quickly whether to build up a coordinated effort to vac-
cinate or to treat a large proportion of the population,
despite often substantial costs involved [3]. In some
cases, refraining from treatment might be a more cost-
effective choice than to act. Such decisions are often
very difficult, as they involve many unknown factors.
Mathematical modelling is then used to provide help
and guidance by, among others, pointing to factors
that do or do not influence the final outcome of the con-
trol process. Among the factors that mainly influence
the decision are the costs associated with both preven-
tive control and the disease itself. While the first
category can be estimated with a certain degree of accu-
racy, the second factor might be difficult to determine.

In this paper, we provide a systematic study of the
choice of the optimal strategy for a range of diseases
for which spread is either localized or not. We have
identified three basic strategies, the GS (treat all), the
local strategy (treat within a well-defined neighbour-
hood of any detected individual or treat just the
detected individual) and the NS (do not preventively
treat any individual). In the last case, the individuals
can still be treated for disease symptoms, but no
prevention is effected on the population.

The details of the LS (when it is applied) surprisingly
do not depend strongly on the cost of treatment,
although the decision whether to apply the control
locally or globally (or not at all) does depend on the
cost. Once we decide on application of the local control,
it is the epidemiology and social network structure that
determine the spatial extent of LS. The results presented
here for the LS show that it is important to match the
scale of control with the scale of the disease dispersal;
see [14] for a practical application in matching scales
for control with the inherent scale of spread for a crop
disease at the landscape scale. There are, however, also
cases when the balance of costs is an over-riding factor
and it is necessary to treat all individuals as quickly as
possible (GS) or to refrain from treatment (NS).

When the purely local structure of the disease spread
is destroyed by an increase in the number of initial foci
or by addition of long-range links, local control can still
be applied. Dybiec et al. [6] found that, for a small
number of links, the local strategy still works, but at a
cost of an increased control neighbourhood. This is
necessary to catch the pre-symptomatic individuals
before they cause new foci to appear via long-range
links. Interestingly, the case of c ¼ 1 that was con-
sidered by Dybiec et al. [6] corresponds to the
minimal impact of a small-world structure in the
order of control neighbourhood. If the cost of treatment
is only marginally higher than the cost associated with
infection (i.e. c . 1), it might be more profitable to
withhold treatment completely rather than to use
local control strategies.

Our cost function, equation (2.4), is linear in R and
V and we assume that the budget is unlimited. For
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Figure 7. (a) The optimal control neighbourhood, zc, and (b)
the proportion of treated individuals, V(1)/N, for the small-
world model with a varying number of long-range links and
for two similar values of c ¼ 1 and c ¼ 1.25. Other parameters
as in figure 6; I(0) ¼ 40. The arrow marks the point at which
V/N ¼ 0.5 (see text).
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rapidly spreading epidemics, there might be a situation
when the number of cases in a certain locality exceeds
the maximum capacity of the control system (either
health or veterinary care system). This leads to a
rapid increase in costs per treated individual when com-
pared with a small-size outbreak [50,51]. We extended
our model to include nonlinear (quadratic) terms in
either R and V, but there was no qualitative change
compared with the linear cost function. In particular,
increasing 1 in X ¼ (R(1) þ 1R2(1)) þ cV(1) shifts
the curve in figure 4a horizontally towards the higher
values of c (results not shown). Thus, the range of c
for which the GS is optimal increases, whereas the
range for which the NS is optimal decreases. This can
be understood in terms of the penalty against outbreaks
with a large value of r, leading to more strict criteria for
control. The effect of including a nonlinear (quadratic)
term in v is opposite, as the areas of the NS and LS shift
in the direction of lower values of c. The critical value of
zc at the plateau is unaffected in both cases. Here we are
penalizing against outbreaks leading to large spending
on prevention and therefore are more likely to let the
disease spread unchecked.

The critical control neighbourhood, zc, and the result-
ing severity index, X, are very sensitive to the percentage
of long-range links (figure 6). However, precise network
structure and the actual number of long-range links are
unlikely to be exactly known. In this case, the precau-
tionary principle suggests to expect the worst case
scenario and to either use the largest possible number
of expected links, if known, or use the mean-field
approximation corresponding to a large number of such
links. In this case, the critical value of c is 1 and therefore
the GS is optimal for c "1 and the NS for c . 1.

The current work assumes that the time span of the
potential epidemic is very short and so no discounting is
applied. In addition, we assume that, once the strategy
is decided at the start of the epidemic, the authorities
continue with the implementation. Each of these
assumptions can be relaxed. A general relationship
between the cost and the epidemic variables can be
written as

X ¼
ð1

0
ðF1ðI ðtÞ;DðtÞÞ þ F2ðDðtÞÞ

þ F3ðDðtÞ;V ðtÞÞÞe&dtdt; ð4:1Þ

where F1 is a functional representing responsive costs,
F2 represents surveillance costs and F3 corresponds to
prevention costs while d is a discounting factor. Under
some simple assumptions on the functionals F1, F2
and F3, we recover equation (2.4) if discounting is
ignored and if the costs are only counted at the end of
the epidemics. In general, however, the costs need to
be evaluated as the epidemics unfold. Similarly, the
radius of control neighbourhood z can change in time.
This approach would require changes to the simulation
procedure as it is no longer efficient to scan all possible
values of z to search for zc as done in this paper.

The model describes a single, relatively short out-
break of a disease that either kills the infected
individuals or leads to complete immunity and also
ignores influx of new susceptibles. Extension of the

model to include recovery and/or re-infection (as in
an SIS model) is planned for the future, but would
require a different approach to cost calculations. We
have also assumed that all social, economic and epide-
miological parameters are fixed and well known in
advance. This is not the case for emerging diseases.
There is, therefore, a need to study the sensitivity of
various control strategies to uncertainties in f, zinf and
the structure of the network. The long-term goal is to
identify a selection of strategies that can be applied at
the beginning of an emerging epidemic, even if we do
not know the details of the disease, and then modified
as the epidemic unfolds. However, the results of this
paper suggest that if c can be reliably estimated in
advance, we can decide between the overall control
strategies (NS, LS or GS) even without knowing exactly
what the value of f is for a given emerging disease.
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Abstract

We present a model of disease transmission on a regular and small world network and compare different control options.
Comparison is based on a total cost of epidemic, including cost of palliative treatment of ill individuals and preventive cost
aimed at vaccination or culling of susceptible individuals. Disease is characterized by pre-symptomatic phase, which makes
detection and control difficult. Three general strategies emerge: global preventive treatment, local treatment within a
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proportional to the size of the infection neighborhood, but depends on time till detection and time till treatment in a non-
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Introduction

The network-based approaches are a common tool in epidemi-
ological studies [1]. These individual-based methodologies allow
incorporating the diverse patterns of interaction that underlie
disease transmission and have been proved to capture topology of
populations [2,3]. An interesting aspect of such studies, with an
obvious goal to target spread of the disease, is identification of
optimal strategies for the control of a disease under additional
constraints [4–6]. Network modelling has been successfully used
for many systems in order to design such control strategies [7].
However, there are only very few attempts to incorporate
economic factors in such realistic models. Conversely, bioeco-
nomic models usually ignore the spatial components of the disease
spread [8–10].

In this paper we present a combined epidemiological and
economic model to address the problem of optimization of disease
control on networks with incomplete knowledge. Two main
sources of costs can be associated with a disease outbreak and its
control: the palliative cost associated with disease case and costs of
measures aimed at preventing further cases [11,12]. The objective
of preventive actions is to lower the total cost by investing e.g. in
vaccination at the initial stages of the epidemic or culling of
infected/susceptible individuals.

In our approach, we define a measure of the total cost of the
epidemic (the severity index, X) and analyze the influence of the

parameters on its minimum. Work so far has shown that it is
possible in such models to find an optimal control strategy [12].
Three optimal control scenarios (Global Strategy (GS), Local
Strategy (LS), Null Strategy (NS)) emerge from the cost-
effectiveness analysis. However, the relationship between the
details of the Local Strategy and the model parameters is still
elusive [7,12]. Establishing such a relationship is an essential step
in designing control strategies for emerging diseases and hence we
have concentrated on this task in the paper. We investigate
propagation of the disease in a small-world network. The basic
topology represents a regular lattice, with additional long-range
bonds between randomly chosen pairs of sites. Inclusion of
shortcuts into a regular lattice enhances communication of the
disease and causes proliferation of epidemics at locations far apart
from the original infected source.

Our principal objective is to identify optimal strategies for
eradication of the disease by determining the threshold size of the
control neighborhood. In the proposed model, the neighborhood
order z is introduced as a measure of either the distance that the
disease can spread (epidemic neighborhood), or the spatial
extension of the control measures in a single ‘‘event’’ (control
neighborhood). To investigate how limited resources should be
balanced between disease detection and eradication, we analyze
combined effects of the average time until detection and the
treatment rate on optimal control size of the neighborhood.
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We have found that the scale of control matches the scale of
dispersal of a disease and so the larger the infection neighborhood,
the further the control has to be extended. This relationship can be
approximated by a linear function which coefficients depend
algebraically on the detection and treatment rates following a
power law. Small change in the relative cost of preventive to
palliative treatment may result in big changes in this relationship.
Addition of small world links narrows the range where the scaling
(power) law is valid but the scaling persists for small values of
detection and treatment times.

Methods

Model
We assume that individuals are located at nodes of a regular

(square) lattice that represents geographical distribution of hosts.
On this lattice, we define a local neighborhood of order z as a von
Neumann neighborhood in which we include z shells and
w(z)~2z(zz1) individuals, excluding the central one. According-
ly, z~0 corresponds to a single individual, which means that this
individual is not in contact with anyone, z~1 corresponds to 4

nearest neighbors while z~? corresponds to the whole popula-
tion in the limit of infinite size of the system. For the small world
model a fixed number of long range links has been added to the
regular network described above. Those links span the whole
population, but otherwise behave like local links.

The epidemiological model is a standard SIR (Susceptible-
Infected-Removed) model [13], modified to include pre-symp-
tomatic and symptomatic stages of the disease and to account for
detection and treatment (cf. fig. 1). All individuals are initially
susceptible (S) and the epidemic is initiated by introduction of
several infected (I), pre-symptomatic individuals. Each of infected
individuals (symptomatic and pre-symptomatic) stays in contact
with a given (fixed) number of other individuals in its infection
neighborhood of order zinf : After infection, the susceptible
individual moves first to infected, pre-symptomatic class, (I)
compartments. It can further infect its neighbors with probability
f per a contact but cannot be treated yet. As symptoms develop
with probability q, individual moves to D class and can be
detected. It is still infectious but can spontaneously recover with
probability r and accordingly, move to a recovery class, (R) and
cannot be further infected or treated.

Figure 1. Block diagram illustrating transitions in the model: transitions performed at each time step (blue solid lines) and
transitions triggered by treatment (orange thin lines).
doi:10.1371/journal.pone.0036026.g001
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Detection triggers the control process which becomes activated
with probability v. In consequence, all individuals (except R)
within control neighborhood of size z centered at the detected
host, transfer to the treated class V. The order of control
neighborhood z may be different from the order of infectious
neighborhood zinf and is typically larger. Accordingly, the group
of individuals subject to the treatment is composed of at least one
symptomatic and a mixture of susceptible and infected pre-
symptomatic individuals. For convenience, we extend the defini-
tion of the neighborhood z to capture situations when no spatial
control is applied (z~{1), or when the treatment is applied solely
to the detected individual (z~0).

Numbers of individuals in each class are denoted by S, I, D, R
and V, respectively with N = S+I+D+R+V being the total constant
number of individuals in the population.

In order to investigate the optimal control strategy, we need to
compare value of future benefits (reduction of infection cases) with
the value of future and current costs associated with a particular
choice of measures in disease control and treatment. In this paper
we allocate the costs to two groups:

X (z,t~?)~R(z,t~?)zcV (z,t~?): ð1Þ

The first term represents the palliative cost and is associated
with individuals who are not treated and therefore spontaneously
move into the R class. The second term describes costs associated
with treatment of detected individuals and their neighbors and is
assumed to be proportional to the number of treated individuals V.
In the above formula c represents a cost of treatment relative to the
cost of infection and z stands for the control neighborhood size.
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Figure 3. Control neighborhood size as a function of treatment cost c and infectiousness of the disease f for regular network and
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Both estimates of R and V are evaluated at the end of each
simulation run (t??).

Simulations
Monte Carlo simulations have been performed on a regular grid

of 200 by 200 cells with periodic boundary conditions with and
without long-range links. This choice of size has been dictated by a
trade off between numerical efficiency and avoidance of small-size
effects which could influence results. Additional numerical tests
proved the consistency of results for different system sizes [12].

Epidemics have been initiated by addition of 40 infected
individuals to an otherwise susceptible population. Each simula-
tion run has been continued until I(t)zD(t)~0 (i.e. up to the
time when no further infection can occur). Subsequently the
severity index X has been evaluated from the formula eq.(1). The
optimal strategy is then determined by the minimal value of the
severity index Xc: The corresponding value of z gives the optimal
size of the control neighborhood, zc (see fig. 2 for illustration). In
the simulations, the minimization of the severity index is achieved
by sweeping through different values of the control neighborhood
size z, while keeping other parameters fixed. For each value of z
only a single simulation has been performed. Collections of this
results yield a dependence of X on z. A minimum value of X in this
collection gives an estimate of Xc and the corresponding z gives an
estimate of zc: This procedure has been repeated 100 times to
yield representative average values of zc and Xc and their
corresponding standard deviations.

Results

The long time (t??) behavior of the model in the absence of
control (Null Strategy, NS, i.e. z~{1) is determined by the
probability f of passing the infection to a susceptible node from any
of its neighbors within the neighborhood size ranging from 4
(z~1) to 144 (z~8). For small f, the infection quickly dies out.
Disease spreads invasively over the population for large f, when no
control is applied, X (z,?)!R(z,?)^N: When z§1, the ratio
R=N declines with the order of the control neighborhood.
However, at the same time the number of treated individuals V
increases, contributing to the total cost X, cf. eq.(1). For c=0, X (z)
is either a monotonic function of z for small values of f or a non-
monotonic function for highly contagious disease (large f), see fig. 2.

Three regions can be identified in the dependence of zc on c and
f, see fig. 3. For small values of c, Global Strategy (GS) is
dominating, whereas for large c, it is best to refrain from treatment,
Null Strategy (NS), fig. 3.

Although the location of the minimum of X (z) varies with
increasing f and c values (see figs. 2, 3), a relatively wide plateau
region with an almost constant zc develops for intermediate values
of c and f and corresponds to the local strategy (LS), fig.3. The
structure in fig. 3 is partially deformed by addition of long-range
links, however, the plateaux persists for small values of f.

We have therefore focused on the plateaux region (LS) of zc and
have explored its dependence on epidemiological parameters:
zinf ,q,v, with constant f and c. We have first explored dependence
of zc on the size of infection neighborhood for c~1, see fig. 4. The
relationship can be accurately approximated by a linear function
for a wide range of parameters, infectiousness f (fig.4a), the rate at

which symptoms appear, q (fig.4b) and the treatment rate, v (fig.4c)
for zinf [ ½1,8":

As already seen in fig. 3, infectiousness f hardly affects the slope
and intercept of the linear relationship, fig.4a. Increasing q and v
causes the lines to shift towards lower values of zc, with major
changes in the intercept but slope only slightly affected (cf.
fig.4b,c). In contrast, the relationship between zc and q (or v) for
fixed zinf is non-linear. It is more convenient to consider 1=q
instead of q as tq~1=q has an interpretation of average time till
detection of symptoms. Similarly, tv~1=v can be interpreted as an
average time till treatment.

Broadly speaking, zc increases with tq and tv, fig. 5. This is
consistent with the following mechanism. Consider a single
infected but pre-symptomatic individual. The disease focus
centered on it will spread until appearance of symptoms after
time tq: Thus, the longer it takes to discover symptoms of the
disease, the farther the disease would spread from its original
focus. As a consequence, the infected area becomes larger and so
does zc: Similarly, the longer time from detection until treatment,
the further the disease moves away from original focus. As a result,
the control size grows with increasing treatment time.

Figure 4. Relationship between zc and zinf for treatment cost c~1: Points mark the simulation results whereas lines correspond to fitted linear
function zc~zinf # azb: From top to bottom, the following sets of constant kinetic parameters have been assumed: (a) q~0:5,v~0:1, (b)
v~0:1,f ~1, (c) q~0:5,f ~1: Errors (standard deviation from the mean) are too small to be visible.
doi:10.1371/journal.pone.0036026.g004
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Intriguingly, it appears that zc scales algebraically with tq (and
with tv) following a power law: zc~aqtb

q and zc~avtb’
v eq.(3) (see

fig. 5) with exponents well below 1.
The exponents b, b’ are similar for a range of zinf within the

plateaux regime of an optimal control radius of the epidemic, (see
fig.3), i.e. for zint [ ½1,8", b [ ½0:14,0:25" and b’ [ ½0:10,0:27":.

While fig. 5 is representative of results for cƒ1, moving c just
beyond c~1 causes a dramatic change in the zc(tv) dependence
for large values of tq and tv, corresponding to detection and
vaccination time comparable with duration of epidemics (approx-
imately 104 time steps for large values of tv and tq). The control
neighborhood zc decays abruptly for increasing times tq, tv, as
illustrated in fig. 6. This change is associated with very inefficient
control (long time till detection, tq&1 and long time from
detection to treatment, tv&1). If the cost of control is lower or
equal to the cost of palliative care, it is still better to treat, even

though we are not very efficient with treatment and most
individuals are spontaneously removed. However, if the cost of
vaccination is only marginally higher than the cost of untreated
case, prevention is no longer cost-effective. We also note that it is
only a combination of very long values of tq and tv that leads to a
limited range of application of the scaling formulas (zc~aqtb

q and
zc~avtb’

v ).
The scaling region of zc as a function of tq and tc also depends

on c in a fashion reminiscent of fig. 3. For small values of c, Global
Strategy of treating everybody is optimal regardless of the
parameters, cf. fig. 3 with fig. 7. In contrast, Null Strategy is
optimal for large c (figs. 3 and 7). The region where Local Strategy
is optimal occupies the region near c~1, but it becomes narrower
when the disease is more infectious (fig. 3) or when the control is
less efficient (for increasing values of tq (fig. 7a) and tv (fig. 7b).
Within this region, zc is given by scaling formulas. As seen before,
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c~1 is a special case asymptotically associated with a breakdown
of LS for very large or very small f (fig. 3) and very large values of
tq and tv (fig. 7).

The addition of long range links shitfs the optimal radius of
control towards larger values, figs. 3, 8. The scaling behaviour (cf.
fig.5 ) is characteristic for a regular network and changes when
long-range bonds is added (see fig.8). With 400 random long-range
contacts (corresponding to 1% of all links) the scaling relation
between zc and tq (tv) breaks down for detection (treatment) times
exceeding 10. This is clearly indicated by deviation of the results
from red bottom line (in fig.8) denoting simulation data for regular
networks (the same as in fig. 5). Altogether, addition of small world
links reduces the range of detection tq and treatment tv times for
which the power law relationship is valid. This is caused by long
range links allowing disease to escape from the local control. In
contrast, if we are able to detect disease quicker, it has not much
chance to escape and the disease spread is effectively short range.
Consequently, the scaling can be observed for small values of
detection and treatment times, tq,tv: In summary, with increasing
degree of randomness of networks (larger number of links) not only
the control radius rises but also the scaling disappears. Note that
the dashed black line, zc~40 in fig. 8, represents Global Strategy.

Discussion

In order to design a successful strategy for controlling a disease
we need to take into account not only epidemiological and social
factors (including the topology of the social network of contacts
and in particular zinf ), but also economic considerations. Some of
these factors might be unknown or hard to estimate, particularly in
real time as the epidemic unfolds. It is therefore crucial to
understand the relationship between the optimal control strategy
and parameters, for a wide range of possible values. It is even more
important to establish those processes and parameters to which a
selection of optimal strategy is not particularly sensitive, as this
allows us to find strategies that can be designed in advance, even
without knowing their actual values for a given emerging disease.

Regular networks have been traditionally used for modelling
epidemic outbreaks of human, animal and plant diseases [14,15]
and many variants of such an approach (with e.g. constant or
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randomized probabilities of infection passed to neighbouring
nodes on a grid) have been studied. However, an accumulated
experimental evidence demonstrates that real systems rarely follow
this kind of idealization being neither completely random nor
located on regular lattices. Among other types of networks that
have been the object of intense studies are the small-world and
scale-free networks. In particular, the small world network with
randomly chosen shortcuts between the nodes, is considered a
model well extrapolating between extremes like regular and
random network. It has been also preferentially used by modellers
discribing outbreaks of disease starting simultaneously in different
regions of the world (propagation of the SARS virus, [16].
Accordingly, in order to assess the occasional long distance
dispersal of the disease, we have also considered small world links,
representing e.g. random transport by wind or by plane.

In our previous paper we have shown that for a given set of zinf ,
q and v, the broad choice of the strategy is determined by the
relative cost of the treatment, c. For small values of c, GS is
optimal, for large values of c, NS. Close to c~1, a LS dominates
and the detailed value of the control neighborhood zc depends on
the epidemiological parameters, although not on f in a wide range.
In this paper we extend this analysis to include other epidemio-
logical parameters. In particular we show that the broad division
between GS (for c%1), NS (for c&1) and LS (for c^1) holds for a
wide range of parameters q and v (inverse of time to detection and
inverse of time to treatment, respectively), fig. 7.

Three other key results emerge from our analysis. Firstly, it is
very important to match scale of control to the scale of infection
dispersal. This has already been seen in other papers [17], but this
is the first time we show it for spatial control on networks in the
presence of economic evaluation. However, we also show that the
size of the control neighborhood is not just simply equal to the size
of the infection neighborhood (see fig. 4 and compare the scale of
horizontal and vertical axes). In the presence of pre-symptomatic
individuals (tq&0) and in the face of delays associated with
application of control (tv&0) we need to extend zc well beyond
zinf : The relationship between zinf and zc is one of the key
formulas for planning response to epidemics. It enables authorities
to plan actions aiming at eradication of the disease by setting a
sufficiently large – but not too large – zone of eradication around
each detected case. Traditionally, such recommendations are
based on the dispersal patterns of the disease, although increas-
ingly simulation models are used. This procedure has led to
establishment of the 1,900ft rule for citrus canker [18] whereby all
citrus trees are cut down within this radius from every affected tree
and the 3 km/10 km rule for foot-and-mouth disease [19].

However, our results show that the relationship between zc and
zinf is non-trivial and in particular it involves non-linear functions
of tq and tv: Although we are still far from being able to provide a
formula relating zc to all epidemiological parameters, our result
stresses importance of using models to design control strategies
[20].

We also show that c~1 is a special case. In particular, we show
high sensitivity of zc to changes in c for large values of tq and tv:
Thus, if the symptom detection time (tq) and reaction time (tv) are
both long, small change in c leads to very big changes in zc, see
fig. 6 and 7. Without knowing the exact value of c it is therefore
very difficult to design the strategy in this case. Suppose we believe
that cw1 and therefore we chose a small value of zc based upon
fig. 6b. However, if in reality cƒ1 (although very close to 1), zc

should be close to 50 (fig. 6a). This shows the importance of
knowing what the actual value of c is [12] estimated that for
vaccination c~0:01–0.85, but can be larger than 1 for culling.

In this paper we have used regular and small wold networks to
describe the topology of interaction between individuals. Addition
of small world links into population narrows the range where the
scaling (power law) relationship of zc on tq and tv is valid but the
scaling persists for small values of detection and treatment times.

Our studies can also be extended in other ways. The current
work assumes relatively short overall time length of each epidemic
and so no discounting is applied when the costs and benefits are
estimated. We also assumed that the strategy is unchanged
throughout the epidemic and that the network structure is static
and relatively simple. Each of these assumptions can be relaxed.
Discounting is often used in economics, but we expect for it to
have a small impact on our results. Adapting the strategy to the
current status of the epidemic often leads to a bang-bang solution
[21], similar to our distinction between NS and GS.

Finally, a lot of attention have been recently given to non-local
and random networks (small-world or scale-free networks) [12,22],
to dynamic networks [23], and networks with random parameters
[24]. Further extension of this work to include static and dynamic
disorder is in progress.
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Introduction

Networks can provide a good representation of how individuals
interact [1–3]. Despite many simplifications, models based upon
network structures have successfully been used in many applica-
tions [4,5] including spread of rumours and news [3] and
computer viruses [1]. A particularly important application of
network models has been in epidemiology [6–10] of plant, animal
and human pathogens [11–13]. Modelling in epidemiology plays
an important role: It allows us to estimate the scale of the
epidemic, to predict how far the disease could spread and to design
effective ways of control. All these tasks need to be achieved
despite the fact that in many cases we are not able to observe the
whole process and/or measure all relevant parameters [14]. The
state of individuals, whether they are susceptible, infected and pre-
symptomatic, infected and symptomatic or recovered, is in
particular often difficult to ascertain [15]. Despite these uncer-
tainties it is possible to use modelling to design effective control
measures leading to the lowest overall cost of the epidemic
outbreak [16–19] and a number of studies have used network
models to address this issue [14,20–23].

Economic and behavioural aspects influence the spread of
disease and affect the choice of a control strategy. For instance, if
the treatment does not cost anything, the best strategy is to control
the whole population. Contrarily, for very expensive control
measures it might be better to refrain from treatment at all.
Optimisation of total disease costs, including palliative cost
associated with disease cases and cost of appropriate control
measures, leads to appearance of three basic strategies [20]: The
Global Strategy (GS) whereby all individuals are treated regardless

of their status can be contrasted with the Null Strategy (NS) when
the public authorities completely refrain from preventive treat-
ment and concentrate on palliative treatment of cases. The Local
Strategy (LS) emerges for intermediate costs of treatment. In this
case, not only detected symptomatic individuals are treated
preventively, but the treatment includes also their neighbours.

The work so far has concentrated on the role of processes
associated with disease spread on the broad choice of the
treatment strategy [20] and on the details of the local strategy
[21]. However, the spontaneous recovery also may affect the
results and in the current paper we explore this dependence in
detail.

We extend our results to two contrasting and yet complemen-
tary models in which we either treat individuals that have been
through the disease or not. Whether the removed individuals (i.e.
those who have been through the disease but then spontaneously
recover or die) are part of the treatment plan depends on the type
of the disease agent. The key factor in choosing the right model is
whether it is possible – and desirable – to distinguish such
individuals from those who are susceptible. If the removed class is
identified with dead individuals, the distinction is very clear.
However, if the removal means recovery and immunity, it might
not be possible to identify those who are immune. For example,
many people might not want to report that they have been
through the infection, or the disease symptoms might be relatively
mild. For animal diseases, immunological testing might be the only
way to identify such individuals, but this leads to increased costs
and test results might not be reliable. In other situations, we might
know the status of the individual, but might not be able to target
the treatment to susceptible and infected individuals. Plant and
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crop diseases might serve as an example here, whereby it might be
easier to treat the whole field regardless of whether some plants
there are already immune to the disease.

Although such individuals do not contribute to the spread of the
disease, the cost of treating them affects the economic side of the
evaluation and therefore leads to changes in the design of the
optimal strategy. We study this case in our paper and show that
although there is a difference in the choice of the strategy (LS vs.
GS) and the resulting number of treated individuals, there is only a
small difference in the overall total cost of the epidemic.

Methods

We assume that individuals are located at nodes of a square
lattice that represents geographical distribution of hosts, see fig. 1.
On this lattice, we define a local infection neighbourhood of order
zinf as a von Neumann neighbourhood. In that neighbourhood

2zinf (zinf z1)z1 individuals are included, involving the central

one. We additionally define z~0 as corresponding to this central
individual, which means that this individual is not in contact with
anyone, while z~? corresponds to the whole population, see
fig. 1. To increase realism of our analysis, we also consider the
small-world model [24,25] which adds a certain number of links
among randomly chosen nodes, thus adding some long-range
connections to the regular lattice ones [24]. Although the disease
can spread along these long-range links, we assume that they are
so difficult to identify that they are not included in any treatment
strategy (see below).

The epidemiological SIDRV model is a standard SIR
(Susceptible-Infected-Removed) model [26], modified to account
for latent period and preventive and responsive treatment (fig. 2),
see also [21]. Taking into consideration the latent period, the
infectious class is now composed of two separate, pre-symptomatic
and symptomatic classes (S, I, D, R and V, respectively). Number
of individuals in each class is denoted by S, I , D, R, and V ,
respectively, and N~SzIzDzRzV is the total constant
number of individuals in the population.

Initially, all individuals are assumed to be susceptible (S). The
epidemic is initiated by an introduction of few infected but pre-
symptomatic (I) individuals, which are located randomly and
uniformly over the whole network. Each infected individual is in
contact with a fixed number of other individuals in its infection
neighbourhood zinf . These connections do not change during the

epidemic. The disease is transmitted along these contact routes
with probability f per contact. Upon a successful infection, the
susceptible individual moves to the pre-symptomatic class.

Each infected pre-symptomatic individual moves to a symp-
tomatic class (D) with probability q. Detected individuals still can
infect other individuals. Subsequently, each detected individual
can spontaneously move to a removed class (R) with probability r.
However, detection also triggers a control event with probability v
and subsequently a number of individuals selected from the von
Neumann neighbourhood of order z centered at the detected
individual move to a treated class (V); for details see below. Neither
R nor V can infect or be re-infected any more.

According to the responsive treatment two versions of the
SIDRV model have considered: (i) model 1 with control of all
individuals in selected area except removed (R class), see fig. 1b,

Figure 1. (a) Definition of the von Neumann neighborhood of
different values of order z, as used in the simulations and
analysis. (b) Illustration of spread of a disease (model 1) on a regular
network with additional randomly chosen long-range links represented
by curved lines (approximation of a small-world network). The applied
control of radius z is centered on node D (yellow shaded area). Note
that in model 1 the R individuals are excluded from the control and
thus non-treated. (c) Representation of model 2: All individuals
contained in the control neighbourhood of order z are preventively
treated and moved to V class. In both models treatment does not take
into account individuals connected by additional long-range links. S, I,

D, R symbols stand for Susceptible, Pre-symptomatic, Symptomatic and
Recovered, respectively. The order z of infection neighbourhood equals
zinf ~2 in (b) and (c).
doi:10.1371/journal.pone.0063813.g001
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and (ii) model 2 with control of all individuals in selected area
regardless of their status (and thus including R), see fig. 1c.

The control event is localized within a von Neumann
neighbourhood of order z centred on a symptomatic individual.
The order of control neighbourhood, z, can be different than the
order of the infection neighbourhood, zinf , and is typically found

larger. Thus, a group of individuals in the treatment neighbour-
hood consists of a mixture of susceptible, infected pre-symptom-
atic, infected symptomatic and recovered individuals (preventive
treatment). We have extended the definition of control neighbor-
hood size in order to include the situation when no control is
applied, z~{1.

Simulations
All simulations have been performed on the lattice of 200 by

200 individuals with periodic boundary conditions. Simulations
started with 40 initial infected foci, which corresponds to 0:1% of
the total population.

Control size, z, has been varied, while other parameters (such as
f , q, v, r, zinf ,) have been kept constant. Each simulation has been

run until I(t)zD(t)~0, which means that no infection can occur
afterwards. At the end of the run all R and V individuals have
been counted, yielding information about severity of the epidemic
as well as effectiveness of the treatment involved.

Effectiveness of control strategies
The effective control strategy is found by taking into account

severity of the epidemic and its financial implications. In order to
quantify the effectiveness of different control strategies we
introduce the severity index, X [15,20]. By seeking the minimum
values of X , we find which strategy is optimal.

The severity index, X , includes two terms corresponding to the
cost of infection and control. First term describes costs associated
with death, absence in work, lower productivity etc., whereas
second term includes costs of vaccine, quarantine, transport of
drugs to infection foci, etc. We assume that X is a linear
combination of number of individuals which have gone through
disease and recovered (R) and treated individuals (V).

We measure X in units of a number of single infected
individuals, so that:

X (z,t~?)~R(z,t~?)zcV (z,t~?) : ð1Þ

Here c represents a cost of treatment relative to the cost of
infection and z stands for the control neighbourhood size. Both
R(z,t~?) and V (z,t~?) are counted at the end of a single
simulation run.

Effective strategy is equivalent to the minimal value of X , which
means that the epidemic is stopped at the manageable cost. In our
simulation, the minimization of the severity index has been
achieved by sweeping through different values of control
neighbourhood size, z while keeping other parameters constant.
Once z is set, we let the system evolve and then compute the value
of X in the stationary state. We repeat this operation 100 times
and then we denote with zc and Xc the average values, of z and X ,
corresponding to the minimum of X , so that

min
{1ƒzƒ50

X (z,t~?)~Xc(zc,t~?) : ð2Þ

Results

In the absence of control, the disease will either progress
through the population until it exhausts a large part of initially
susceptible population (for large values of the infection probability
f ) or it will quickly stop spreading (for small values of f ). As control
is applied in extended neighbourhood of radius zc centred at a
symptomatic individual, the number of recovered (R) individuals
declines rapidly, see fig. 3a. Models 1 and 2 examined in this work
differ in the way they treat or not treat the recovered class, R, cf
fig. 1 We observe the same behaviour for both considered models
(with and without treating R class). However, when we allow the
control of R individuals (model 2), the proportion of recovered
declines faster than in model 2, see fig. 3a (insert). The proportion
of preventively treated individuals, V, in both models is similar for
the whole range of control size, z. With increasing control
neighbourhood, V(z) grows very quickly, then drops near z~6 and
finally rises monotonically till z*50 (fig. 3b). Combination of these
two relationships, R(z) and V (z), according to eq(1), gives total

Figure 2. Model scheme of disease transition (black lines) and control (orange lines). In model 2 there is a possible transition between
recovered (R) and treated (V) class when R-individual is in the control neighbourhood of any symptomatic D-individual.
doi:10.1371/journal.pone.0063813.g002
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cost of epidemic, X , as a function of z, see fig. 3c. For a very low
treatment cost, e.g. c~0:0003, total cost of control of epidemic, X ,
is almost equal for both models, with difference less than 0:1%, see
fig. 3c (insert). The choice of optimal strategies is different for
model 1 (GS) than for model 2 (LS), although the corresponding X
values are similar. In model 1 the minimal value of X corresponds
to the highest value of control size, zc~50 (GS), whereas in model
2, the minimum is identified with zc~6, (LS) fig. 3c.

Regular networks – influence of recovery rate, r on control
strategies

Increasing cost of treatment, c, decreases the optimal control
neighbourhood, zc. For very cheap control the optimal scenario is
identified with zc*45 (GS) for model 1, regardless of the recovery
rate, r (fig. 4a). The more expensive the treatment, the higher the
total costs spent on controlling outbreaks. This leads to change in
optimal strategy, see fig. 4a, b. We cannot afford the preventive
control of the whole population (GS) and have to shift into treating
in neighbourhood of symptomatic individuals. We observe that zc

rapidly decreases with increasing costs, especially for model 1. For
intermediate values of c, zc drops to *10 depending on recovery
rate, r. Higher recovery rate, r, results not only in a shorter
plateaux for LS (see fig. 4a, b) but also moves the plateaux towards
larger control size, zc. As treatment becomes more expensive,
second threshold is observed that describes change from LS to NS.
Although for model 2 the global strategy is selected rather than the
local one as for model 1 (fig. 4b, d) for the high values of recovery
rate, r and low c, the total cost of epidemic, Xc, does not differ
much between the two models, see fig. 5. The highest costs are
associated with fast spreading diseases (large f ) and expensive
treatment (large c) for both models (upper right part of plots in
fig. 5). Slow spreading disease does not significantly affect the
budget for control regardless of treatment costs (lower part of plots
in fig. 5) and model selected. For model 2 the global strategy is
predominantly selected for high values of recovery rate r and at
low c, in contrast to model 1 (fig. 4b, d) where the local strategy
prevails. Despite these differences, the total cost of epidemic, Xc,
does not differ between the two models, see fig. 5.

Regular networks – control strategies
Control size, zc depends strongly on the cost of treatment, c,

and on the infectiousness of the disease, f (fig. 6). For small f and
c, both models suggest preventive control extended to the whole
population (GS) (lower left part of each plot in fig. 6). In case of
highly infectious disease and low treatment costs, model 1 predicts
higher effectiveness of GS whereas model 2 selects LS as an
optimal solution, upper left part of each plot in fig. 6. However, in
both examined models the total cost of epidemic, X, is
approximately the same, see fig. 3. As treatment cost, c, increases,
LS becomes the most cost-effective strategy. LS changes to NS
when c is of order 1 for small f and of order 10 for high f ,
regardless of the choice of the model or the exact value of r,
compare fig. 6a, b with fig. 6c, d.

The main difference in selection of the optimal strategy occurs
for small c. Changes in r affect only low c regions. Increasing r
from 0:1 to 0:2 extends the region of validity of GS and moves it
towards marginally larger values of c and high values of f , fig. 6c,
d. This trend is continued for larger values of r, see fig. 4, and can
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Figure 3. (a) The proportion of recovered individuals, R=N , (b)
the fraction of treated (controlled) individuals, V=N and (c) the
total cost of epidemic as a fraction of the system size, X=N , for
c~0:0003 and various control sizes z. Red solid line: model 1; blue
dotted line: model 2. Results of simulations with parameters f ~0:5,

q~0:5, r~0:1, v~0:1 and zinf ~1 performed on regular networks.
Inserts show the relevant magnifications of the graph.
doi:10.1371/journal.pone.0063813.g003
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be associated with faster removal of individuals without triggering
control events.

Small world networks – control strategies
Addition of small-world links does not change the behaviour for

small f and c. However, there are substantial differences for large
f and the effect differs for the two models. Introducing disorder
into the topology by adding long-range links changes ranges of
optimal strategy for both considered models, compare fig. 6a, b
with fig. 7. In model 1 small number of links, e.g.6%, fig. 7a,
extends GS when disease spreads fast and costs are higher. The
small number of links 6% in model 2 does not change choice of
control strategy, compare fig. 6b with fig. 7b, as in model 1 (top
panel in fig. 7). Nonetheless, the total cost of epidemic remains
almost the same. For large values of f , destroying spatial structure
by adding 20% links results in only two effective strategies for
highly infectious disease, GS for cv1 and NS otherwise, fig. 7c.
The higher disorder (20% of long range links) in model 2,
introduces GS when probability of spreading the epidemic, f ,
increases, fig. 7d.

Discussion

The goal in designing cost-effective control strategy is to stop the
epidemic outbreak very quickly at a minimal possible cost. In
order to achieve this by using the local strategy (LS) we need to
catch in the preventive control neighbourhood as many infected
but pre-symptomatic individuals and to form a fire-break by
treating around the infection focus. The extend of control is a
crucial factor; however, it is not obvious by how much we need to
enlarge the neighborhood in which preventive treatment is
applied. We need to balance epidemiological and economic

aspects of disease spread and control [27]. When we extend
prevention to the whole population we might be able to
successfully protect population from epidemic outbreaks but we
will need to spend a lot of resources. On the other hand, when we
apply control to too small neighbourhood, we will spend a lot but
the disease will still invade the whole population. Under some
conditions an optimal solution emerges in between these two
extremes and can be associated with the Local Strategy; in other
cases the extreme solutions (Global Strategy and Null Strategy) are
optimal. As we have already shown [20,21], the effective control
neighbourhood can be chosen based on combined epidemiological
and economic analysis.

The previous analyses [20,21] left three key questions unan-
swered. Firstly, should we treat individuals that are already
immune? Although the answer clearly depends on the nature of
the disease and the treatment, some general principles can be
established. This depends on the relative – economic, social and
medical – cost of the preventive treatment compared to the
palliative care (when we just let the disease to run its natural
course). Secondly, are our results stable with respect to structural
changes of the model? We illustrate the stability by considering
two versions of the same model, with and without treating
recovered R individuals. Finally, it is the dependence of the results
on the actual recovery rate, r. In real-life applications it is difficult
to distinguish between individuals that have been through the
disease and those who do not. It is therefore very important to
check whether the model and the resulting policy implications are
robust with respect to the potential uncertainties. We show that
this is the case in general but also identify the region of the
parameters when the two models have different behavior (small c,
large f ).

Figure 4. Control size zc as a function of the treatment cost c ((a) and (b)) and as a function of the recovery rate, r, and the treatment
cost, c ((c) and (d)) for model 1 (left column) and model 2 (right column). In (a) and (b) r~0:10 (red line), r~0:63 (green dashed line), r~0:98
(blue dotted line). All simulations done on regular networks with parameters f ~0:1, q~0:5, v~0:1, zinf ~1.
doi:10.1371/journal.pone.0063813.g004
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Figure 5. Total cost of epidemic at optimum, Xc, as a function of the treatment cost c ((a) and (b)) and as a function of both
infectiousnes, f , and cost, c ((c) and (d)) for model 1 (left column) and model 2 (right column). In (a) and (b) f ~0:001 (red line), f ~0:032
(green dashed line), f ~0:1 (blue dotted line). All simulations done with parameters q~0:5, v~0:1, r~0:1, zinf ~1. Disease spreading on regular
networks.
doi:10.1371/journal.pone.0063813.g005

Figure 6. Control size, zc, as a function of both infectiousness, f , and treatment cost, c, for model 1 (left column) and model 2 (right
column). Simulation parameters for top panel ((a) and (b)): r~0:1; for bottom panel ((c) and (d)): r~0:2; other parameters: q~0:5, v~0:1, I(0)~40,
zinf ~1. Disease spreading on regular networks.
doi:10.1371/journal.pone.0063813.g006
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Two contrasting cases can be distinguished in answer to the first
question. If the treatment is costly and/or may lead to
complications, the authorities might want to invest in testing
individuals in order to find out who is and who is not naturally
immune. This would identify individuals in the R class who then
might not be offered the treatment. Contrariwise, if it is not
immediately obvious what the actual status of the individual is and
testing is expensive, lengthy or unreliable, the authorities might
decide to treat all individuals regardless of their status. Our results
from this paper suggest that the choice of the strategy depends on
whether treatment includes or excludes R but the total budget
spent on controlling epidemic remains similar for both models.

Secondly, in the most important region of parameter space,
corresponding to expensive preventive treatment and a highly
infectious disease, both models yield very similar scenarios (right
part of fig. 4c, d). Thus, the results appear to be stable with respect
to structural changes of the model. Where the difference is
marked, for low c and high f , the models suggest a different choice
of strategy (GS for model 1 and LS for model 2). However, we also
found that in this case the economic outcome of either GS or LS is
very similar (see fig. 3c).

Thirdly, the main effect of increasing r is to shift the boundary
between the GS and LS for small c, rendering the GS less
attractive as r decreases – and the infectious period increases. For
model 2 (without treatment of R) the area of preference of GS over
LS is limited to very small values of c. Thus, the longer the
infectious period, the more likely the local strategy is to work. The

boundary between LS and NS for large values of c remains
unchanged.

Addition of long-range links enlarges the region of applicability
of GS towards higher f and c for both models. The large number
of randomly placed long-range links destroys spatial structure of
spreading the pathogen and causes that it spreads mostly globally
so that LS is no longer effective option of control the epidemic.

The results obtained in this paper can be used for those diseases
for which spread is dominated by local transmission or by a
mixture of local and long-range links. Examples include human
(notably SARS [28] and influenza [29–31]), animal (foot-and-
mouth disease [32]) and plant diseases (citrus canker [33], sudden
oak death [34–36] and rhizomania of sugar beet [37,38]).
Although our model assumes a simple network structure, we
believe that the results can be generalised to more complex, but
also more realistic networks, including social networks [31]. This
work can also be extended in several ways. The most interesting
will be the SIRS model, in which after some period of immunity to
the disease individuals become susceptible again and could catch a
disease few times; with influenza [29–31] and sexually-transmitted
diseases [39,40] being the best examples.
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10

We study, control of infectious disease epidemics spreading on random11

networks with different levels of clustering. We use Gleeson’s et al., Phys.12

Rev. E80, 036107 (2009) algorithm to create clustered networks in which13

a proportion of individuals are located in fully-connected cliques of certain14

size. A SIR model is extended to include delayed and imperfect detection15

of infectious individuals. We also include a combination of responsive (pal-16

liative) and preventive (vaccination) treatments and design cost-effective17

disease control strategies. Cost-benefit analysis is used in combination with18

epidemiological simulations to identify an optimal radius for a treatment19

centred upon the symptomatic individual. Three general control strategies20

occur depending on the relative cost of treatment and prevention. Network21

topology and, in particular, clustering also affects the applicability of the22

control strategy. The average path length appears to be more important;23

the range for thecontrol strategy is wider with the length, but the optimal24

radius of control also extends. As the proportion of individuals in cliques25

and therefore the coefficient of clustering is higher, the range of the costs26

for which control scenario is optimal is greater. This results have impor-27

tant consequences for designing disease control strategies that also satisfy28

economic optimality criteria.29
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30

1. Introduction31

The spread of many human [1–3], animal [4, 5] and plant [6, 7] epidemics32

can successfully be described by network models [8–12]. In this approach,33

individuals are represented as nodes on a network and their interactions by34

edges [13–15]. Analytical solutions arising from the graph theory [16, 17]35

(103)
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and percolation [18, 19] or simulations can be used to answer questions36

concerning the potential for a particular disease to invade the population and37

persist there [20, 21], the relationship between the network structure and rate38

of spread [22–24], the future course of an unfolding epidemic [25], and, finally,39

to assess control strategies that either prevent the disease from invading [26]40

or aim at its eradication [27–29]. Network models are particularly suitable41

for the latter task, as they allow to represent spatial aspects of the disease42

spread [30, 31] and, therefore, help in designing responsive and local control43

strategies that target particular individuals or their connections [32].44

A successful disease control strategy should not only aim to stop the45

disease from spreading, but should achieve this at the lowest possible overall46

cost [31, 33–35], including both costs of the treatment as well as of the disease47

itself. In this approach, an optimal strategy is the one that minimises the48

total cost of the epidemic [31, 32, 35–37] with monetary as well as social49

costs included.50

However, the task of identifying an optimal strategy is made complicated51

by a typical lack of information about the status of the individuals and their52

connectivity to others. We typically do not know whether a particular indi-53

vidual is already infected and infectious, unless symptoms are displayed and54

can be identified. For many diseases this lack of knowledge can be a serious55

problem [2, 4] as the disease can spread far before the first symptomatic56

individual is discovered. This makes responsive and local strategies difficult,57

as they depend on our ability to identify epidemic foci around which they58

are applied. Despite this problems, contact tracing [23, 38], “clean ring”59

strategies [39–41], and similar treatment and vaccination options either are60

used or are proposed to combat the disease spread. In these approaches,61

an observation of a symptomatic individual triggers an action which typi-62

cally affects a number of individuals connected to the observed case. The63

inclusion of individuals is based upon a typical distance at which the disease64

can travel unobserved [3, 31, 34], although this relationship is not always65

clear [32]; this usually means treatment within a certain distance from the66

focus measured in an appropriate metric [7, 42, 43].67

The ability of capturing the network structure is essential for successful68

epidemiological modelling of the kind studied here [22–24, 30, 37, 44]. For69

convenience and tractability, many models represent interactions between70

individuals as a regular network, possibly with addition of “small-world”71

interactions [10, 45, 46]. Alternatively, random network models including72

scale-free networks have been used [13, 14, 19, 26, 28]. However, there is a73

mounting evidence [47] that many real-life networks are not tree-like, but74

instead possess substantial degree of clustering [48]. Clustering (or transi-75

tivity) in a complex networks refers to the tendency of two neighbours of a76

given node to also be neighbours of each other, thus forming a triangle of77
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edges within the graph [18, 49]. It has been shown that presence of clustering78

increases the bond percolation threshold and affects the threshold behaviour79

of the epidemic spread [50] when networks with the same degree distribution80

and similar correlation structure are compared.81

In this paper, we extend the results of our previous work [31, 32, 35]82

to more realistic clustered networks. We begin by briefly reviewing the83

epidemiological model used in our studies. We further apply a recently pro-84

posed model of embedded cliques [18, 49] to examine epidemics spreading85

in clustered random networks. We show that three broad control strategies86

can be identified, the Global Strategy (GS) whereby the location of treated87

individuals does not depend on their distance from the focus, the Null Strat-88

egy (NS) when it is more cost-effective not to treat anybody, and the Local89

Strategy (LS) which targets individuals located in the neighbourhood of the90

detected (symptomatic) individual. The choice of the strategy as well as the91

details of LS (the size of the treatment “ring”) are shown to depend on the92

level of clustering in the network.93

2. Model94

Three elements form a description of our model. Firstly, we present95

the epidemiological scheme describing the progress of the disease in the96

individual and its spread to other individuals conditioned on a link existing97

between them. Secondly, we describe the structure of the network with98

contributing links that provide the potential for the spread of the disease.99

Finally, we describe the epi-economic framework in which we assess the cost100

and benefits of the control measures.101

2.1. Epidemiological model102

Epidemiological model that has been used in this work is an extended SIR103

(Susceptible-Infected-Removed) model to account of pre-symptomatic and104

symptomatic stages [31]. Initially, all individuals are susceptible (S), except105

of a fixed small number of infected pre-symptomatic (I) individuals (5 in the106

total population of 5 000), located randomly throughout the population.107

Each individual is in contact with a fixed number of neighbours and the108

disease can be transmitted from/to each of them. Details of the spatial109

arrangement and size of the neighbourhood are given below. With probabil-110

ity f per single contact with either an infected individual (I) or the detected111

individual (D), the disease is passed to a susceptible individual (S) that112

becomes infectious but pre-symptomatic individual (I). Subsequently, the113

infected individual displays symptoms and the transition to a symptomatic114

state (D) occurs with probability q.115
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A symptomatic individual is assumed to be still infectious, but can spon-116

taneously become removed (R) with probability r and cease to pass on in-117

fection. Alternatively, it can also trigger a control event, with probability v.118

Thus, at each time step, the detected individual stays in the same class with119

probability (1� r)(1� v). This mechanism accounts for possible delays and120

imperfections in detection of disease symptoms — any individual can show121

symptoms but not be treated until after a number of steps.122

The treatment event is a combination of two processes. Firstly, a de-123

tected individual is treated and moves to the treated class (V). Secondly,124

all individuals except removed (i.e. S, I or D) in the control neighbourhood125

(see below) are also treated. This process enables the health control author-126

ities to capture individuals in the class I that do not show symptoms and127

all detected individuals (D) that are still waiting for treatment. In addi-128

tion, it creates a zone around the focus of infection in which there are no129

susceptible individuals. Neither V nor R individuals can become infected130

again. The population has a constant number of individuals N , so that131

N = S+ I+D+V +R.132

2.2. Network model133

Interactions between individuals are captured by a network structure134

that exhibits a certain density of fully connected subgraphs in the form of135

cycles (termed otherwise cliques). Each vertex (representing an individual)136

can be a part of a c-clique, i.e. a group of c individuals that are fully con-137

nected, or can be a single node (i.e. a member of a 1-clique). Nodes which138

are members of a c-cliques have c � 1 edges linking them with the neigh-139

bours within the same clique. For a random node with k connections to140

other vertices in the network, there are additional k � c + 1 edges outside141

the clique. Here, we restrict our attention to random regular graphs, i.e.142

random graphs in which all nodes have the same degree k. Accordingly,143

each individual node simply connects to k other nodes (either single or in144

cliques).145

Random clustered networks are described by the joint probability �(k, c)146

that a randomly chosen vertex has degree k and is a member of a c-clique [49].147

In turn, the local clustering coefficient for a node is defined as a fraction of148

pairs of neighbours of this node which are also neighbours of each other.149

The degree-dependent clustering (or clustering spectrum ck) is the average150

of the local clustering coefficient over the class of all nodes of degree k. The151

joint probability �(k, c) is represented by k by c matrix. In our paper, we152

consider random clustered networks where all vertices have the same degree153

(k = 4 or k = 10, see Fig. 1), and can be either a single node or part of154

a c-clique. The proportion of individuals in cliques is denoted by p. As an155
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example, the joint probability distribution �(k, c) that generates network156

with all nodes with degree k = 4, where p individuals are in 4-cliques and157

the rest (1� p) are single nodes is presented below:158

�(k, c) =

0 0 0 0

0 0 0 0

0 0 0 0

1� p 0 0 p

. (1)

In practice, the algorithm by Gleeson et al. [49] works as follows. First,159

it generates a list of sizes of cliques in the network (in our model, the sizes160

are fixed). It then adds cliques directly into the adjacency matrix Aij by161

selecting c nodes at random and connecting all nodes within the clique (by162

definition Aij is 1 if the nodes i and j are connected, and 0 if not). A list163

of external stubs is also created which subsequently form inter-clique edges.164

Edges connecting cliques to other cliques, to individual points, and between165

individual points are then added to the adjacency matrix. Finally, self-166

and multi-connections are removed so that there is no more than one link167

connecting two different nodes. Each vertex can be a part of only one clique.168

Figure 1 shows three examples of different clustered networks.169

a)
b)

c)

Fig. 1. Clustered random networks with a 4-cliques and a single nodes of degree 4
— network A (a), 4-cliques and a single nodes of degree 10 — network B (b),
10-clique and a single nodes of degree 10 — network C (c).
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Infection and control neighbourhoods are defined iteratively. A neigh-170

bourhood z = 1 describes a set of k points which are connected to the central171

neighbour (note that each vertex has k connections). Then z = 2 extends172

this set to include all first-order neighbours of each neighbour from the set173

with z = 1. This procedure is then performed for higher-order neighbours.174

The zone z = �1 corresponds to an empty set (only applies to control),175

whereas z = 0 corresponds to the central individual only. Infection vicinity176

(characterised by zinf) contains nodes to which disease can be transmitted177

(if the central node is infectious, either I or D), or from which the disease178

can be contracted (if the central node is susceptible, S). This neighbour-179

hood is different to, and typically smaller than, the control neighbourhood180

(described by z).181

The neighbourhoods naturally extend to cliques. In particular, if a con-182

trol event is triggered by an individual that belongs to a c-clique, all individ-183

uals in this clique and at least one individual node that does not belong to184

any clique, are treated. If z > 2, than more cliques than one can be included185

in a single control event.186

2.3. Network characteristics187

Networks used in this paper can be characterized (among other measures)
by the degree-dependent clustering coefficient, ck, and by an average path
length, L, see Table I. The degree-dependent clustering coefficient [18, 49]
is given in terms of the sum

ck =

X

c

�(k, c)

Pk

(c� 1)(c� 2)

k(k � 1)

, (2)

where the degree distribution of the network (i.e. the probability that a ran-
dom node has k neighbours) is obtained from the relation Pk =

Pk+1
c=1 �(k, c).

The mean degree of the network is then hki =
P

k kPk. A node chosen at
random from the set of all k-degree vertices is a member of a c-clique with
probability �(k, c)/Pk. Being a member of a c-clique, it is then a part of✓

c� 1

2

◆
triangles, so that its local clustering coefficient [18] is expressed

by a fraction
✓

c� 1

2

◆.✓
k
2

◆
. The average path length [12] is de-

fined by

L =

logN

loghki , (3)

where N is the number of nodes in the network, and hki = k (in our work)188

stands for an average number of links per node. Increase in any of the189
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three parameters, k, c, and p results in increase of the clustering coefficient,190

representing increase in the proportion of individuals that are located in191

cliques. In contrast, the average length decreases when k increases from192

4 to 10, and is not dependent on c and p (as in our network each node has193

exactly k links). However, the non-local properties of the neighbourhood194

control strategy means that all the clustering characteristics, c, k, p and ck195

affect the optimal choice of control strategies.196

TABLE I

Values of the parameters for networks used in the paper, ordered by a decreasing
clustering coefficient. The last column lists an average path length. Note that
c  k always.

k = hki c p ck L

10 10 0.75 0.6 4.7
4 4 0.75 0.375 7.8
10 10 0.25 0.2 4.7
4 4 0.25 0.125 7.8
10 4 0.75 0.05 4.7
10 4 0.25 0.0167 4.7

2.4. Economic model197

The effectiveness of a control strategy is assessed in terms of a total198

“cost” associated with a disease outbreak when such a strategy is applied.199

In particular, we distinguish between two types of costs. Firstly, the costs200

associated directly with diseased individuals (e.g. palliative treatment, hos-201

pitalisation, absence from work, loss of production) can be estimated by the202

total number of individuals that have been through the disease throughout203

the outbreak, i.e. R(t = 1). Costs associated with preventive treatment204

(vaccination, culling) can be estimated by considering the final number of205

individuals in the V class, i.e. V (t = 1). Both approaches are possible206

because in our model there is no transition out of either R or V classes.207

Thus, the total cost of the outbreak can be estimated by

X = a1R(t = 1) + a2V (t = 1) , (4)

where a1 is a unit cost associated with each diseased individual, while a2 is a208

unit cost associated with each treated individual. Without loss of generality,209

we assume that a1 = 1 and a2 = a. The relative cost of treatment, a, is the210

main control parameter in our paper and varies between 10

�4 (preventive211

treatment much cheaper than disease costs) to 10

3 (prevention much more212

expensive than disease). Although it is difficult to estimate this values for213
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real epidemics, values corresponding to a = 0.017–0.341 for influenza [51, 52]214

and a = 0.01–0.85 for rotavirus and hepatitis A [53, 54] can be found in lit-215

erature. Even smaller values of a can be associated with diseases for which216

a vaccine is readily available and very cheap, e.g. measles (a = 0.001–0.01).217

However, when costs of developing, producing and administering a vaccine,218

including costs of delivery, are taken into account, a can exceed 1. In addi-219

tion, culling animals or cutting trees, is also likely to bring a above 1.220

In this context, we define the optimal strategy as a value of the treatment221

neighbourhood, zc (which is typically larger than the infection neighbour-222

hood, zinf), for which the total cost, X is minimal (and then X = Xc). The223

optimisation is performed by fixing all parameters except control size, z,224

performing a single replicate of a simulated outbreak for a range of values225

of z. A minimum value of X, Xc, is then found for this series together226

with the associated neighbourhood, zc. The whole process is then repeated227

100 times to find the average values of Xc and zc and their standard de-228

viations. As a consequence of this procedure, the optimal control size, zc229

does not need to be an integer (even though, the control size, z, is a discrete230

number) and in that way our results are illustrated in figures. However,231

in practice, the optimal control radius, zc, will be rounded up due to the232

precautionary principle.233

2.5. Simulation parameters234

The population size is N = 5000. In this paper, we assess sensitivity of235

the optimal control strategy to changes in probability of disease spread, f ,236

probability of symptoms development, q, and probability of treatment, v.237

Where not indicated otherwise, f = 0.1, q = 0.5, and v = 0.1. Other238

parameters are fixed; probability of spontaneous recovery, r = 0.1, infection239

neighbourhood, zinf = 1 (i.e. k immediate neighbours are affected in one240

step). Initial number of infected (pre-symptomatic) individuals is I(0) = 5241

(i.e. 0.1% of the population) and they are distributed randomly throughout242

the population.243

To assess sensitivity of the results to network structure and clustering,244

we consider two levels of the number of links per node, k = 4 and k = 10;245

two levels of cluster sizes, c = 4 (for k = 4 and k = 10) and c = 10 (for246

k = 10); and three levels of the proportion of individuals in clusters, p = 0247

(random network), p = 0.25 (25% individuals in clusters), and p = 0.75248

(75% individuals in clusters). Note that c  k.249

3. Results250

As shown in our previous papers [31, 32, 35], the behaviour of system251

without control is characterised by a transition from limited, non-invasive252
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disease for small values of f to an invasive epidemic for larger f . As f253

tends to 1, all individuals in the population become infected. An addition254

of control allows the authorities to stop the disease spread even for high255

values of f , however, at the increased cost of treatment. There is, therefore,256

a trade-off between the costs of disease cases and preventive treatment [31].257

If the treatment neighbourhood, z, is too small, the disease escapes control258

resulting in high values of R and, therefore. X. In contrast, if z is too259

big, treatment is wasted on healthy individuals which have no contact with260

infectious individuals (V and therefore X are large). As a result, a clear261

optimal value of z, zc, appears, associated with the minimum of X, Xc. In262

the following, we analyse how the choice of optimal strategy represented by263

zc changes with the relative cost of treatment, a, for different properties of264

the network (number of links per node, k, and size of the cluster, c) and the265

epidemiological parameters.266

3.1. Effect of changing probability of spread, f267

In absence of clustering, the network is identical to a random network.268

When the disease is invasive (for all f except the lowest one, f = 0.01), the269

only admissible control strategies are the Global Strategy (GS) whereby the270

control extends to all individuals in the population in one or very few steps,271

and the Null Strategy (NS) when it is optimal not to treat any individual,272

Fig. 2. GS is associated with control size zc ' 8 (for node degree k = 4,273

almost all individuals are within distance of z = 8 from a random node and274

so will be treated in a single event) or zc ' 4 (for k = 10). NS corresponds to275

zc = �1 as no individual is treated — not even the infected one (see above276

 0

 2

 4

 6

 8

 10

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

O
p

ti
m

al
 c

o
n

tr
o

l,
 z

c

Treatment cost, a

k=4, f=0.01
k=4, f=0.25
k=4, f=0.50
k=4, f=0.98

a) 

 0

 2

 4

 6

 8

 10

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

O
p

ti
m

al
 c

o
n

tr
o

l,
 z

c

Treatment cost, a

k=10, f=0.01
k=10, f=0.25
k=10, f=0.50
k=10, f=0.98

b) 

Fig. 2. No clustering: Control size, zc, as a function of treatment cost, a, for
different probabilities of spreading disease, f : f = 0.01 (solid/red lines), f = 0.25
(dashed/navy lines), f = 0.5 (dotted/blue lines), and f = 0.98 (dash-dotted/grey
lines). Networks with degree k = 4 (left graph), with degree k = 10 (right graph).
Other parameters: q = 0.5, and v = 0.1.
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for the definition of z). The transition occurs at a = 1, except for small f277

(below invasion threshold), when it is best to treat the nearest neighbours278

(zc = 1) for most values of a. For intermediate values of probability of279

disease spread, f , Local Strategy (LS), when treatment is applied to the280

neighbourhood of a detected individual, appears for all values of costs a281

smaller than 1. However, the radius of control, zc, associated with LS is282

relatively high, 5  zc  7, and increases with increasing f . LS largely283

disappears for f ' 1, Fig. 2, as well as for the networks with degree k = 10.284

In the case with clustering, we can identify three distinct control options,285

Fig. 3, the Global Strategy (GS), the Local Strategy (LS) and the Null286

Strategy (NS). However, regions of applicability for each scenario depend on287

the network properties and on whether the disease is invading or not.288

Figure 3 (a) illustrates the situation when probability of disease spread,289

f , is very low (f = 0.01) and therefore the disease is not transmitted beyond290

the initial focus (cf. Fig. 1). All networks present the same behaviour. When291

the cost of treatment is very low (a  0.005), GS is the cost-effective option292

but with increasing costs, a, zc decreases gradually and reaches zc = �1293

that corresponds to NS. The exception are networks with low k, for which294

zc = 0 (treating only the detected individual) is optimal for high a. Figures 3295

(b), (c), (d) show the results with increasing probability of disease spread296

(f = 0.25 in (b), f = 0.5 in (c) and f = 0.98 in (d)). Three different297

strategies can still be found, similarly to the random network case.298

Networks with 4-cliques and node degree k = 4 (thick black/red lines299

in Fig. 3) are characterized by the longest mean path length. Therefore,300

the optimal control, zc, reaches the highest values when GS is the most301

cost-effective scenario. Moreover, the plateaux that corresponds to LS is302

the widest for networks with c = k = 4 and p = 0.75, Fig. 3. However, the303

plateaux is getting narrower with increasing probability of disease spread, f .304

Networks with k = 10 and with either c = 4 or c = 10 show results almost305

identical to random networks with p = 0. Increase of p to 0.75 extends the306

plateaux in this case as well, although the effect is small.307

Number of cliques in networks affects the change between LS and NS. As308

the number of cliques in the population increases, the shift between LS and309

NS becomes sharper and moves towards lower treatment costs (approaching310

a = 1). The higher node degree, the smaller the difference between choice311

of control strategy for different number of cliques.312

Finally, the network B with c = 4 and k = 10 largely follows the case of313

network C with c = k = 10 regardless of proportion of nodes in cliques, p,314

showing that the main effect is due to the change in the number of links315

per node, k, not the size of a clique, c. The apparent decrease in zc in316

the region corresponding to GS (small values of a) is due to changes in the317

connectivity of the network. For k = 10, a single control event with z = 5318
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already reaches most of the nodes on the network, whereas for k = 4 it is319

necessary to extend z to z = 8 to achieve the same effect. Note that we keep320

the same f even though k increases, so the overall effect is of making the321

disease spread more rapidly.322
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Fig. 3. With clustering: Control size, zc, as a function of treatment cost, a, for
different graph topology: networks A with node degree k = 4 and the size of
cliques c = 4 (thick black/red lines), networks B with k = 10 and c = 4 (grey/blue
lines) and networks C with k = 10 and c = 10 (thin/grey lines). All solid lines
correspond to 75% (p = 0.75) of nodes in cliques, whereas dashed lines to 25%

(p = 0.25). Probability of spreading disease, f , changes from f = 0.01 in (a),
f = 0.25 in (b), f = 0.50 in (c) to f = 0.98 in (d). Other parameters: q = 0.5, and
v = 0.1.

3.2. Effect of changing time until detection, 1/q323

The other important factor influencing the choice of the control strategy324

is the detection time, 1/q. We first examine the effect of changing 1/q325

on random networks without clustering and then determine the effects of326

clustering.327

We start with small values of q = 0.01 and, therefore, long times until328

detection, 1/q. The longer it takes to examine the symptoms, the further329

the disease can spread without being noticed. This results in only two pos-330
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sibilities in the choice of the optimal control strategy: GS is chosen if costs331

a < 1 and NS (with zc = �1) if a � 1, Fig. 4. The same sharp transition332

occurs when the network is clustered, Fig. 5 (a), although increasing pro-333

portion of individuals in cliques, p, shifts the values of control, zc, in GS334

upwards. LS is not an optimal choice in that case (Fig. 5 (a)). The disease335

is transmitted without being detected and when the symptoms finally occur,336

pathogen already has reached the whole population.337
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Fig. 4. No clustering: Control size, zc, as a function of treatment cost, a, for
different probabilities of occurring the symptoms, q: q = 0.01 (solid/red lines),
q = 0.25 (dashed/navy lines), q = 0.50 (dotted/blue lines), and q = 0.98 (dash-
dotted/grey lines). Networks with degree k = 4 (left graph), with degree k = 10

(right graph). Other parameters: f = 0.1, and v = 0.1.
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Fig. 5. With clustering: Control size, zc, as a function of treatment cost, a, for
different graph topology: networks A with node degree k = 4 and the size of
cliques c = 4 (thick/red lines), networks B with k = 10 and c = 4 (grey/blue
lines) and networks C with k = 10 and c = 10 (thin/grey lines). All solid lines
correspond to 75% of nodes in cliques (p = 0.75), whereas dashed lines to 25%

(p = 0.25). Probability of examine the symptoms q = 0.01 in (a) and q = 0.50 in
(b). Other parameters: f = 0.1, and v = 0.1.
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With decreasing detection time, 1/q, the LS starts appearing with the338

associated zc also decreasing, see Fig. 4 and compare with Fig. 5 (b). In-339

terestingly, the region in which LS is optimal expands significantly as 1/q340

decreases. For fast detection times, LS can be applied even if the treat-341

ment is about 100 times more expensive than disease cases, a ' 100. The342

proportion of nodes in cliques, p, affects not only the region in which LS is343

valid, but also the value of zc at the plateaux, Fig. 5, although the latter344

effect is relatively small. The larger p, the more cost-effective LS is, as the345

transition from LS and NS occurs at higher values of a for p = 0.75 than for346

p = 0.25. Also, increase in p results in small decrease in zc at the plateaux.347

The biggest effect on the transition is, however, due to changes in k, for348

both non-clustered, Fig. 4, and clustered networks, Fig. 5.349

As before, in the region where GS is valid, smaller values of zc correspond350

to treating the whole population for k = 10 than for k = 4, see Fig. 5 and351

compare with Fig. 4. The results for c = 4 and k = 10 again follow the352

case with c = k = 10, so the main effect is associated with changing k.353

Interestingly, the effect of increasing k is opposite for LS, as zc increases in354

this case, see Fig. 5 (b). This is due to the disease spreading much quicker355

for k = 10 than for k = 4, with the same f . This must be countered by356

increasing the size of the control neighbourhood.357

3.3. Effect of changing time until treatment, 1/v358

Finally, we look at the efficiency of treatment, v. The balance between359

this parameter and probability of removal, r, determines the proportion of360

detected individuals that either are removed spontaneously, or are treated361

in control events. Thus, 1/v can be interpreted as time from detection to362

treatment, with the caveat that some individuals might become removed (R)363

(recover and become immune, or die) while waiting for treatment. Similarly364

to the case of detection rate, q, there is a big difference between low and365

high values of recovery, v, both for the non-clustered, Fig. 6, and clustered366

networks, Fig. 7.367

When recovery rate, v, is small and the time until treatment, 1/v, is long,368

the situation presents similar behaviour to the case of small probability of369

showing the symptoms,q. As long as the symptomatic individuals remain370

infectious, they continue to spread the disease while waiting for treatment.371

As a result, broadly speaking, there is only a choice between GS for a < 1372

and NS for a � 1. However, there is some gradual change in control size, zc,373

for GS and the transition at a = 1 is not as sharp as before, see Fig. 6.374

Interestingly, although the fact that for long times till treatment, 1/v,375

clustering introduces some evidence of a plateaux associated with LS, the376

values of control size, zc is rather high (zc ' 6). The plateaux is also377
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Fig. 6. No clustering: Control size, zc, as a function of treatment cost, a, for differ-
ent probabilities of recovery, v: v = 0.01 (solid/red lines), v = 0.25 (dashed/navy
lines), v = 0.50 (dotted/blue lines), and v = 0.98 (dash-dotted/grey lines). Net-
works with node degree k = 4 (left graph) and with node degree k = 10 (right
graph). Other parameters: f = 0.1, and q = 0.5.

extended towards treatment costs a > 1 when proportion of individuals in378

cliques p = 0.75 as compared to p = 0.25, Fig. 7. There is no consistent379

effect of clustering on control size, zc, in the region of GS, Fig. 7. In addition,380

increase in degree of nodes, k, decreases the value of zc for GS and shifts the381

transition from GS to NS towards costs a = 1. The reason of that behaviour382

is the infection that spreads easier in the networks with degree k = 10 than383

for networks with k = 4 (and for the same transmission rate, f).384
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Fig. 7. With clustering: Control size, zc, as a function of treatment cost, a, for
different graph topology: networks A with node degree k = 4 and the size of
cliques c = 4 (thick/red lines), networks B with k = 10 and c = 4 (grey/blue
lines) and networks C with k = 10 and c = 10 (thin/grey lines). All solid lines
correspond to 75% of nodes in cliques (p = 0.75), whereas dashed lines to 25%

(p = 0.25). Probability of recovery v = 0.01 in (a) and v = 0.50 in (b). Other
parameters: f = 0.1, and q = 0.5.
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When treatment control can be applied without any delay (large v, small385

1/v), control size, zc, is significantly lower than before. There is practically386

no evidence of GS as the optimal option and the plateaux associated with LS387

extends towards very small values of treatment costs, a. Thus, if we can act388

quickly, it is optimal to treat population locally even if the treatment cost, a,389

is very low and there is a temptation to treat indiscriminately (as in GS).390

We do not assume that some additional cost is associated with detection.391

Increase in clustering (from p = 0 to p = 0.25 and p = 0.75) shifts the392

extend of the plateaux towards higher values of costs, a, although the effect393

is small for small node degree, k, and the size go cliques, c.394

The effect of changing k is similar as for the probability of showing the395

symptoms, q, both for GS (decrease in control size zc as k increases) and for396

LS (increase in zc), Fig. 7.397

4. Discussion398

Faced with an outbreak of a novel disease, the authorities need to de-399

cide on the approach to controlling its spread. One possibility might be400

to refrain from any preventive action and concentrate on palliative treat-401

ment of infected cases, effectively letting the epidemic to unfold itself (Null402

strategy). Alternatively, they can attempt to treat the whole population403

as quickly as possible (Global strategy). Finally, there is a possibility of a404

gradual responsive approach, whereby new cases are identified and then con-405

tact tracking is used to preventively treat individuals who might have links406

with the pre- and symptomatic individual (Local strategy). The extent of407

this “ring” control needs then to be determined by taking into account both408

epidemiological and economic factors.409

In our previous work, we studied the dynamics of the disease spreading410

on regular, small-world and random networks. Although they capture some411

aspects of the structure of real networks of contacts between people, animals412

or plants, they do not include the effect of clustering noted in many real-life413

applications [47, 48]. This paper fills in this gap and takes an important414

step towards application of the modelling framework to realistic systems.415

We have shown here and elsewhere [31] that the broad strategy choice416

(NS, GS or LS) is primarily determined by the relative cost of palliative417

and preventive treatments. In this paper, we are particularly interested418

in finding conditions under which the local strategy (LS) is optimal for as419

wide range of treatment costs, a, as possible. If the prevention is expensive420

(a � 1), the choice favours the NS. The GS becomes optimal for very low421

cost of vaccination (a ⌧ 1). However, the LS emerges for a ' 1 for disease422

agents with certain properties. Higher the probability of disease spread, f ,423

decreases the range of optimality of LS and, at the same time, increases424

optimal control size, zc, so that LS eventually merges with GS. Rise in425
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either detection q or treatment rate v (corresponding to the decline in the426

time till detection, 1/q, and the time till treatment, 1/v) expands the range427

in which LS is optimal, mainly towards high values of treatment costs, a.428

Thus, boost efficiency of detection and reaction of public health systems429

makes the LS more attractive, even if the actual treatment and prevention430

remain very expensive. The reason is that we are able to catch the outbreak431

early and stop it from expansion. Interestingly, higher treatment rate, v,432

also reduces the range of optimality for GS for very low treatment.433

Network topology and its effect on the choice of the optimal control434

strategy form the key element addressed in this paper. Our analysis shows435

that the average path length, L appears to be the decisive factor — the436

larger L, the larger the interval for which LS is optimal. However, this is437

at the cost of growing control size, zc. The degree-dependent clustering438

coefficient, ck is the other crucial parameter. The large value of ck leads to a439

small expansion of the range of LS applicability, particularly for a > 1. The440

relative insensitivity of the results to clustering is an important result for441

public health measures. We are not very likely to know the exact properties442

of the real network, therefore the knowledge of details of LS predicted by443

the mathematical models is significant, even if they do not exactly represent444

the real levels of clustering.445

Altogether, in this paper, we studied the effect of topological and epi-446

demiological factors on the choice of the optimal control strategy for epi-447

demics spreading on clustered random networks. We particularly addressed448

the applicability of the local strategy (LS) in which individuals are treated in449

a neighbourhood of a detected case. The work can be extended in a number450

of directions. The network can be made more realistic, using real-world data451

collected for example by usage of mobile phones. The epidemiological model452

can also be extended to include different levels of mixing and changes in the453

network due to disease appearance. The current economic model is also very454

simple; there are many levels of costs that can be incorporated, including455

detection and contact tracing, hospitalisation, and delivery of vaccines.456
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