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Abstract

In this Thesis we present a fully microscopic, �rst-principle approach to describe the sys-
tems of molecular and atomic hydrogen. We apply the Exact Diagonalization Ab Initio
approach (EDABI) both with the employment of the exact Hamiltonian diagonalization
procedures and the so-called Statistically-Consistent Gutzwiller Approximation (SGA), to
model the system described by the so-called extended Hubbard model. We analyze the
selected hydrogenic systems, and study their stability under high pressure, observing the
insulator-to-metal transition of the Mott-Hubbard type and molecular-to-atomic transition,
as well as assessing the zero-point motion amplitude and energy and electron�lattice cou-
pling constants. These all are important steps in description of superconductivity in the
hydrogenic systems with both the inclusion of interelectronic correlations and the electron�
lattice interaction. From the last point of view, the present work represents the �rst step
towards this goal.

The EDABI method provides a realistic depiction of many-electron states, starting from
the renormalization of the single-particle wave-function basis. This allows us to obtain
quality results while using rather small number of basis functions. Also, we are able to
characterize the many-body wavefunction in the resultant correlated state.

We study metallization of solid atomic hydrogen by applying the EDABI method com-
bined with SGA to the simple-cubic lattice with half-�lled 1s Slater-type orbitals. This
allows us to describe the insulator�metal transition of the weakly �rst-order Mott-Hubbard
type, at the external pressure „ 100GPa. We also examine the e�ect of applied magnetic
�eld and the critical scaling of the ground-state energy and the inverse wave-function size
(one of the variational parameters in EDABI). We have also made a �rst assessment of the
zero-point motion energy in the correlated state.

Next, we take steps to include the vast spectrum of the solid molecular-hydrogen phases.
We start from the complex description of the H2 molecule, taking into account all elec-
tronic interactions, electron�proton coupling, and estimating the zero-point energy with
the ground-state energy contribution up to the ninth order. The zero-point motion energy
is assessed to be „ 1% of the molecular binding energy, as is observed experimentally. We
also create the �rst model of molecular crystal - a one-dimensional molecular chain in the
extended Hubbard model with long-range interactions and periodic boundary conditions.
We �nd that, when nonzero force is applied, there exist two phases - one of the molecular
and one of the quasiatomic nature, leading, at some point, to the molecular�quasiatomic
transition. The relation of this transition to the Mott-Hubbard insulator�metal transition
is proposed. We also test the software and proposed computational solutions used to obtain
the results presented in this Thesis.

This Thesis is supplemented with the computer animation on CD of the molecular� to
quasiatomic-hydrogen transition, carried out on the example of linear chain (cf. http://

th-www.if.uj.edu.pl/ztms/download/supplementary_material/molecular_to_quasiatomic_

transition-hydrogen_chain.avi). Additionally, both the cited and the original works have
been linked to the original sources of the publications.
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Streszczenie

W rozprawie zaprezentowano w peªni mikroskopowe podej±cie z pierwszych zasad do opisu
ukªadów molekularnego i atomowego wodoru. Zastosowano metod¦ EDABI (ang. Exact
Diagonalization Ab Initio approach) do modelowania ukªadów opisywanych rozszerzonym
modelem Hubbarda, stosuj¡c zarówno dokªadne procedury diagonalizacji hamiltonianu,
jak i tak zwane statystycznie konsystentne przybli»enie Gutzwillera (ang. Statistically-

Consistent Gutzwiller Approximation - SGA). W rozwa»anych ukªadach wodorowych, przy
uwzgl¦dnieniu wysokich ci±nie«, obserwowano przej±cie izolator�metal typu Motta-Hubbarda
i przej±cie z ukªadu molekularnego do atomowego. Oszacowano równie» energi¦ drga«
punktu zerowego, jak i staªe sprz¦»enia elektron�sie¢. S¡ to niezb¦dne komponenty spójnego
opisu nadprzewodnictwa takich ukªadach, uwzgl¦dniaj¡c zarówno korelacje mi¦dzyelektronowe,
jak i oddziaªywanie elektron-sie¢. Ta rozprawa jest pierwszym krokiem do osi¡gni¦cia tego
celu.

Metoda EDABI zapewnia realistyczny opis stanów wieloelektronowych, wychodz¡c z
renormalizacji bazy jednocz¡stkowych funkcji falowych, co pozwala na otrzymanie dobrych
jako±ciowo wyników przy dosy¢ maªej liczbie funkcji bazowych. Dzi¦ki temu mo»emy
scharakteryzowa¢ wªa±ciwo±ci wielocz¡stkowej funkcji falowej w stanie skorelowanym.

Przebadano metalizacj¦ staªego, atomowego wodoru, stosuj¡c metod¦ EDABI jednocze±nie
z SGA do opisu sieci prostej kubicznej z w poªowie wypeªnionymi orbitalami Slatera 1s.
Doprowadziªo to do modelu przej±cia pierwszego rodzaju z fazy izolatora to fazy metalicznej
przy ci±nieniu zewn¦trznym„ 100GPa. Przeanalizowano te» wpªyw pola magnetycznego na
stan podstawowy ukªadu i przedstawiono skalowanie krytyczne energii stanu podstawowego
i odwrotno±ci rozmiaru funkcji falowej (jednego z parametrów wariacyjnych w metodzie
EDABI). Wyprowadzono te» pierwsze przybli»enie na energi¦ drga« punktu zerowego.

Nast¦pnym krokiem byªo uwzgl¦dnienie szerokiego spektrum molekularnych faz staªego
wodoru. W tym celu opracowano kompleksowy opis molekuªy H2 jak ukªadu dwuw¦zªowego
z uwzgl¦dnieniem wszystkich oddziaªywa« mi¦dzyelektronowych i sprz¦»enia elektron�proton.
Wyliczono energi¦ drga« punktu zerowego z uwzgl¦dnieniem wkªadu energii stanu podstawowego
do wyrazów stopnia dziewi¡tego i stanowi ona „ 1% energii wi¡zania cz¡steczki H2, co
jest w peªnej zgodno±ci z eksperymentem. Stworzono te» pierwszy model molekularnego
krysztaªu - jednowymiarowy ªa«cuch molekuª H2 opisany rozszerzonym modelem Hubbarda
z periodycznymi warunkami brzegowymi z uwzgl¦dnieniem oddziaªywa« dªugozasi¦gowych.
Pokazano, »e przy niezerowej sile zewn¦trznej dziaªaj¡cej na ªa«cuch ukªad ma dwie fazy -
molekularn¡ i kwaziatomow¡, co prowadzi do przej±cia od fazy molekularnej do kwaziatomowej
dla dostatecznie wysokiej warto±ci zewn¦trznej siªy. Zaproponowano odniesienie pomi¦dzy
t¡ przemian¡, a przej±ciem izolator�metal typu Motta-Hubbarda. Przeanalizowano i przetestowano
oprogramowanie i metody obliczeniowe u»yte do otrzymania wyników prezentowanych w
pracy.

Do ninejszej rozprawy doª¡czono dysk CD z animacj¡ komputerow¡ przej±cia staªego
wodoru molekularnego do fazy kwaziatomowej, zamodelowan¡ na przykªadzie takiego przej±cia
dla ªa«cucha liniowego (zobacz http://th-www.if.uj.edu.pl/ztms/download/supplementary_
material/molecular_to_quasiatomic_transition-hydrogen_chain.avi). Dodatkowo doª¡czono
linki do cytowanych oraz oryginalnych prac wchodz¡cych w skªad pracy.
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Chapter 1

Introduction and Motivation

In this Chapter we introduce a general notion of fermionic localization as induced by the
repulsive interactions among particles, here shown on the example of the Coulomb interac-
tions among electrons. In particular, we discuss how the competition between the kinetic
(band) and the Coulomb energies leads to the metal�insulator transition which at temper-
ature T “ 0 represents a quantum phase transition.

1.1 Mott-Hubbard Systems and their Phase Transitions

De�ning an insulator as a material with a vanishing electrical conductivity at T “ 0 in the
electrical �eld is not precise. If investigated carefully, the microscopic behavior of electrons
in the ionic lattice, brings several mechanisms of the evanescence of the metallicity. Namely,
the Coulomb interaction between system elements will contribute to its macroscopic behav-
ior in a di�erent way. We can separate insulators into two groups [1], in which the leading
role will be played by

1. electron�ion interactions,

2. electron�electron interactions.

Within the �rst group we can distinguish: the band insulator [2�4] (also called the Bloch-
Wilson insulator), where the conductance is suppressed by interaction between electrons
and the lattice periodic potential, the Peierls insulator [5, 6], with the interaction between
electron and static lattice deformation, and the Anderson insulator [7], were the main
contribution comes from electron�impurity interaction. A new kind of physics emerge from
collective electron behavior in 2 � the Mott insulator [8�12]. This phenomenon can be
observed in a variety of system, including perovskites [13�17], NiS2´xSex [18�21], as well
as V O2 and V2O3 [22�25].
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1.1.1 Mott-Hubbard Criterion of Metal�Insulator Transition

One can consider a Mott insulator as a system, where an intriguing competition takes place:
the kinetic (band) energy of the electrons in the lattice (much alike in the free-electron case),
experience mutual repulsive Coulomb interactions. Even a rather crude approximation of
locality of the electronic interaction allows us to model a system with metallic or insulating
features. Namely, to asses the interaction, we take the so-called Hubbard U

U ” Ep´q ` EpÖ́q ´ pEpÒ́q ` Ep Ó́qq , (1.1)

where Ep´q, EpÒ́q, Ep Ó́q, and EpÖ́q are energies of one-site with zero, one, and two electron
respectively. From the other side, we take the bandwidth W related to the dispersion
relation εpkq

W ” maxpεpkqq ´minpεpkqq. (1.2)

As both these quantities depend on the system topology, we list some examples in Tab. 1.1.

Table 1.1: Dispersion relation in the tight-binding approximation [26] and the corresponding
bandwidth for several exemplary systems with intersite distance a and nearest-neighbor
hopping t.

lattice type dispersion relation εpkq bandwidth W

chain 2t cospkxaq 4|t|

simple quadratic 2trcospkxaq ` cospkyaqs 8|t|

simple cubic 2trcospkxaq ` cospkyaq ` cospkzaqs 16|t|

hypercubic (d dimensions) 2t
řd
i“1 cospkiaq 4d|t|

triangular 2trcospkxaq ` 2 cosp1
2kxaq cosp

?
3

2 kyaqs 9|t|

honeycomb ˘t

b

3` 2 cosp
?

3kxaq ` 4 cosp3
2kyaq cosp

?
3

2 kxaq 3|t|

face-centered cubic 4trcosp1
2kxaq cosp1

2kyaq ` cosp1
2kyaq cosp1

2kzaq 16|t|
` cosp1

2kzaq cosp1
2kxaqs

body-centered cubic 8t cosp1
2kxaq cosp1

2kyaq cosp1
2kzaq 16|t|

Let us construct a criterion for metallicity. We take the half-�lled (the number of
electrons Ne equal to the number of sites Λ) lattice and de�ne gap as

∆ “ µ` ´ µ´, (1.3)

where µ˘ is the energy required to add/remove one electron to the system

µ` “ EGpNe ` 1q ´ EGpNeq, (1.4a)

µ´ “ EGpNeq ´ EGpNe ´ 1q, (1.4b)

2



Figure 1.1: Schematic representation of repulsive interaction U splitting the single band
into the two Hubbard bands (1.5). Visualization taken from Spaªek [27]

where EG is the ground-state energy. We can rewrite (1.4) in terms of U and bandwidth

µ` “ U ´
Wu

2
, (1.5a)

µ´ “
Wd

2
, (1.5b)

where Wu is so-called upper Hubbard band and Wd is so-called lower Hubbard band (cf.
Fig. 1.1). Wu corresponds to the charge excitation in the system, whereas Wd with its
charge removal. Combining (1.5) and (1.3) we get

∆ “ µ` ´ µ´ “ U ´
Wu `Wd

2
« U ´W. (1.6)

It is rather straightforward that for W ! U the system is insulating as the Hubbard
interaction U ą 0. Also, for W " U the system is metallic as the system can be treated
with the free-electron model (and the interaction consecutively included as perturbation).
From the modeling point of view, the interesting physics happens when W « U and the
system approaches the metal�insulator transition (MIT) in the half-�lled band case.

1.1.2 Original Mott Localization�Delocalization Criterion

One can look at the localization�delocalization phenomenon in a more general manner [27],
as the competition between the kinetic energy of the electrons, dominating for the delocal-
ized (metallic) state, and the electronic Coulomb repulsion, connected with the localized

3



(insulating) state. Let us consider a 3-dimensional, simple-cubic lattice. Average kinetic
energy in such a system will be

Ēk “
3

5
εF , (1.7)

where εF is Fermi energy de�ned via dispersion relation

εk ”
~2k2

2m
, (1.8)

and Fermi momentum

kF ”

˜

23π
3
2 Γ

`

5
2

˘

2S ` 1
ρ

¸

1
3

. (1.9)

S “ 1{2 is the electron spin, Γpxq is the Euler Gamma function, and ρ is the particle
density. Inserting (1.8) and (1.9) into (1.7) we have

Ēk “
3

5

~2

2m

`

3π2ρ
˘

2
3 . (1.10)

On the other hand, the Coulomb repulsion will take form

Ee´e «
e2

2εr̄
, (1.11)

where e is the electron charge, ε is the absolute permittivity, and r̄ ” ρ´1{3 is the average
interelectronic distance.

We can now compare (1.10) with (1.11)

Ēk
Ee´e

“

3
5

~2
2m

`

3π2
˘

2
3 ρ

2
3

e2

2ερ
1
3

“
3

5

`

3π2
˘

2
3
~2ε

me2
ρ

1
3 . (1.12)

Both energies are comparable when (1.12) is equal to unity. Taking Bohr radius aB ”

~2ε{me2 we obtain the so-called Mott (or Mott-Wigner) criterion for critical particle density
ρC

aBρ
1
3
C “

5

3

`

3π2
˘´ 2

3 “ 0.174 « 0.2. (1.13)

One sees clearly that for ρ ă ρC the interaction energy is dominant, whereas for ρ ą ρC
the kinetic energy is. In other words, for the low-density (ρ ă ρC) the potential energy
freezes the electrons in the hydrogenic-like orbits with the Bohr radius aB, whereas for
ρ " ρC the particles are almost free, i.e. the metallic state is stable. Thus the Mott

4



criterion (1.13) de�nes in rough terms the limiting concentration on free-electron concept
applicability to the description of metallic state.

At this point, one should mention that there exist other related criteria of metallicity
(cf. Mott [10]); here we should mention only the original Mott criterion. This criterion
addressed the discontinuous transition to the metallic phase in ed magnetic oxides. Namely,
Mott argued that the transition from the (magnetic) insulating system to the metallic state
as a function of e.g. pressure, should be discontinuous. This is because a small number of
conduction electrons in the conduction band would increase largely the Coulomb repulsive
energy (lack of mutual screening). Hence their number must be substantial so the emerging
band energy overcomes the repulsive interaction. A reasoning of that kind leads to the
criterion (1.13) which expresses the instability of the atomic bound state with respect to
the free-particle (electron-gas) state.

1.2 Hydrogen systems: Principal Qualitative Features

The atomic hydrogen solid would present itself as an ideal system to model band-electron
physics and the Mott-Hubbard type of metal�insulator transitions. This is because such
system has only one valence electron, originally on 1s-type orbital, as the distance of the
�rst excited (2s, 2p) state is located 3{4Ry « 10eV higher. So its admixture to the 1s-type
Wannier state should be rather small, particularly neat the metal-insulator transition, where
according to (1.13) we have that the intersite distance a „ p4˜5qaB. It is quite amazing that
studies of such hydrogenic-like solids has started only recently by incorporating the Mott-
Hubbard physics into the �rst-principle electronic structure modeling [28�32]. These studies
brought even some estimates for the critical pressure p „ 102GPa for the atomic hydrogen
metallization, as well as pointed out to the possibility of quantum critical behavior of the
atomic orbit size at the metallization threshold. The zero point motion of the lightest ions
(protons) in this case has been estimated and shown to be sizable, but without destroying
the ionic lattice, what would amount to the transition from an atomic Mott insulating solid
to the electron-proton plasma.

Having said that, one has to note one principal feature complicating any such atomic-
hydrogen modeling. Namely, hydrogen as such is stable in the molecular state H2 at
ambient pressure and likewise, it forms a variety of molecular crystal structures at ambient
and applied pressures [33, 34]. There are at least three known solid phases [33, 35�37], often
referred to as phases I, II and III (cf. Fig. 1.2). Appearing for relatively small pressures
closed-packed (hexagonal) molecular crystal (P63{m) constitutes what is known as phase I
(cf. Fig 1.3.a). Phases II and III are not well recognized experimentally; nevertheless, there
are DFT structural calculations [38, 39] recognizing phase II as monoclinic C2{c molecu-
lar crystal (cf. Fig 1.3.b), and phase III as monoclinic Cmca ´ 12 molecular crystal (cf.
Fig 1.3.c). Whether or not the phase III is metallic, was carefully examined experimentally
by Zha et al. [37] in the broad range of temperature and pressure (up to 300GPa), but no
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Figure 1.2: Phase diagram of hydrogen under pressure from Mazzola et al. [33]. Boundaries
of hexagonal molecular crystal (P63{m � phase I), monoclinic C2{cmolecular crystal (phase
II), monoclinic Cmca ´ 12 molecular crystal (phase III), and new phase IV with not yet
determined structure are presented with the molecular and atomic liquids regimes marked.
The points refer to di�erent computational approaches to describe the system (cf. [33]).

metallic behavior had been observed. In 2011 a new phase IV was reported by Eremets and
Troyan [40], claimed to be an atomic �uid. Both its atomic character and metallic proper-
ties were subsequently questioned [41�43]. The ab initio Molecular Dynamic approach by
Goncharov et al. [41] suggests that phase IV could be a mixture of molecular liquid and the
atomic, graphene-like two-dimensional layers. Additionally, Howie et al. [36] reported in an
experiment (Raman spectroscopy under high pressure) a new phase transition at 255GPa
and 480K, which can be understood as a melting transition at surprisingly low temperature
(given the magnitude of the pressure).

We can say that the natural starting situation is a dimerized hydrogen quantum solid
which may metallize under applied pressure. The modeling of molecular phases at ambient
and external pressures is one of the main purposes of the Thesis. To this aim, a speci�c
combination of exact diagonalization and ab initio approach has been developed by us in
recent years [44]. The method of approach is discussed in detail in the next Chapter. First,
we characterized the aim and scope of the Thesis in general terms.

It is essential to say few words about the importance of hydrogen metallization. First,
it is a model system for the correlated systems, albeit with the complications introduced
by the molecular binding. Second, and most important, metallized by pressure hydrogen is
regarded as a prospective room-temperature superconductor [45]. For that purpose, both
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Figure 1.3: First three phases of solid molecular hydrogen. Hexagonal P63{m phase I (a),
monoclinic C2{c phase II (b), and monoclinic Cmca´12 phase III (c). Visualization taken
from Azadi and Foulkes [38].

the correlation e�ects and the local electron�lattice coupling constants must be considered
concomitantly. The second task has been achieved already [46]. As for the �rst, there is
still a road ahead, as we point it out explicitly in the Summary and Outlook section.

1.3 Aim and the Scope of the Thesis

As already said, the principal aim of this Thesis is to develop and implement a reliable
method of calculating hydrogen or hydrogenic-like systems up to the metallization and
characterization of resultant metallic state. In this Thesis we start from a precise approach
to molecular systems regarded as the principal and necessary �rst step in that direction.
We supplement the molecular considerations (cf. paper A-3) with rigorous treatment of
molecular hydrogen chains (cf. papers A-4 and A-5).

One has to note that this is not a simple task as for example single-particle DFT
calculations [39, 47�49] provide con�icting results [38]. Previously, promising results in
this direction have been obtained within the Monte Carlo [33, 50�52], and other [53�56]
techniques. In this respect, our approach may be regarded as systematic. This is because of
few reasons. First of them, unlike the other approaches including the electronic correlations
(LDA+U [57, 58], LDA+DMFT [59�63]) our approach does not have their drawback of
counting twice the repulsive Coulomb interaction among the particles. Second, the method
allows for determination of single-particle Wannier wave functions in the correlated state.
Third, the microscopic parameters such as the intersite hopping integrals (tij) or magnitude
of the Hubbard interaction (U) are evaluated also in the correlated state. In that manner,
one can relate explicitly the ab initio electronic structure to the Mott-Hubbard criteria of
localization.

As to the scope of the Thesis apart from two methodological papers setting the method
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correctly both from the molecular [46] and the computational [64] sides, we have also demon-
strated its e�ectiveness already on the nanoscopic (multi-molecular) level [65]. For in�nite
system, so far only the so-called statistically consistent Gutzwiller approximation (SGA)
has been formulated [32]. The zero point motion problem has been tackled also successfully
[46, 66]. In the near future, an extension of our results to the so-called diagrammatic expan-
sion for the Gutzwiller wave function (DE-GWF), formulated in our group and successfully
applied to a number of problems [67�72], is planned. The formal approach developed for the
present problem of hydrogen metallization, allows utilizing both exact and approximated
methods of diagonalization of the second-quantized Hamiltonians. Within this perspective,
our results represent a �rst step towards the problem solution.

In general, the method is applicable to atoms, molecules, and correlated solids. Some
of the examples of application to each type of the above systems are provided in the next
Chapter.
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Chapter 2

Methods of approach

In this Chapter we characterize in detail the methods used throughout the Thesis. Namely,
the Exact Diagonalization � Ab Initio Approach (EDABI) and the Statistically-Consistent
Gutzwiller Approximation (SGA). Both of these methods have been developed and used
in our group in the context of electron localization in the correlated systems (EDABI) and
in the context of unconventional superconductivity (SGA).

2.1 First-Principle Quantum-Mechanical Description
of Matter

The starting many-electron Hamiltonian for calculating the stationary states has the fol-
lowing form within the �rst quantization scheme

H “ ´
ÿ

i

∇2
i ´

ÿ

ij

2Zj
|ri ´Rj |

looooooomooooooon

electron�ion attraction

`

electron�electron repulsion
hkkkkkkkikkkkkkkj

1

2

ÿ

i‰j

2

|ri ´ rj |
`

1

2

ÿ

i‰j

2ZiZj
|Ri ´Rj |

loooooooomoooooooon

ion�ion repulsion

, (2.1)

where electronic coordinates are denoted by ri, whereas ions are statically at positions
Ri. The consecutive terms are represented schematically in Fig. 2.1. We utilize the Born-
Oppenheimer approximation [73] and regard the ionic coordinates tRiu as �xed and deter-
mine the ground-state energy EG via the corresponding N -particle Schrödinger equation
for the electronic part

HΨpr1, r2, r3, . . . rN q “ EGΨpr1, r2, r3, . . . rN q. (2.2)

We call a method allowing to solve (2.2) the �rst-principle (of Quantum Mechanics) or
ab initio method. It is today almost synonymic with use of modern-day Density Functional
Theorem [74, 75] and its many variations (e.g., LDA+U [57, 58], LDA+DMFT [59�63]),
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Figure 2.1: A schematic representation of system in a metallic state close to the �rst-order
metal�insulator transition, as composed of frozen ions (in Born-Oppenheimer approxima-
tion), electron�ion (B), electron�electron (C), and Coulomb ion�ion (D) interactions.

which are not exact by any precise means. There is a vast number of tools in the �rst-
quantization language dealing with Hamiltonian (2.1), worth mentioning is the Hartree-Fock
method [76�78] and its many derivatives [79, 80], as well as the Møller�Plesset method [81],
and the Con�guration-Interaction methods [82]. In the next Section we present an original
method, called Exact Diagonalization Ab Initio approach (EDABI), which allows for �rst-
principle description of the system, while employing both the second-quantization language
and the renormalization of single-particle basis of wave functions. Instead of working with
(2.1), we describe next our system in terms of second-quantized Hamiltonian.

2.2 Exact Diagonalization ab Initio Approach

As a method to tackle hydrogen systems we have selected the so-calledExactDiagonalization
Ab Initio approach (EDABI) [83�85], proved to be e�cient to describe hydrogen systems
both asymptotically (ionization energy of a free atom di�ers ă 0.1% from experimental
value, binding energy of a H2 molecule is calculated with the accuracy of 2% [46, 83])
and as an atomic solid [30�32]. The method successfully combines �rst� and second-
quantization pictures, and allows for employment vast number of algorithms of diagonalizing
the parametrized Hamiltonian in its second-quantization form..

2.2.1 Principal points of Exact Diagonalization - Ab Initio Approach
(EDABI)

To understand the method we start from the �eld operators in the form

Ψ̂σprq “
ÿ

iν

wνi prqχσ ĉiνσ, (2.3)
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where wνi prq is the set of single-particle ν-th band orthogonal and normalized wavefunctions
centered on the lattice site i, ĉiνσ is the corresponding annihilation operator, and χσ is the
spin wavefunction (σ “ ˘1) with the single (global) spin quantization axis (z-axis). Band
index ν can be dropped for clarity of formulas, and from now on we treat i as an arbitrary
index (not necessarily connected only with the lattice site).

We can rewrite our many-particle Hamiltonian (2.1) in the second-quantized form

Ĥ “
ÿ

σ

ż

d3rΨ̂:σprq

˜

´∇2 ´
ÿ

i

2Zi
|r´Ri|

¸

Ψ̂σprq (2.4)

`
1

2

ÿ

σσ1

ĳ

d3rd3r1Ψ̂:σprqΨ̂
:

σ1pr
1q

2

|r´ r1|
Ψ̂σ1pr

1qΨ̂σprq `
1

2

ÿ

i‰j

2ZiZj
|Ri ´Rj |

.

All terms are expressed in the atomic units (~ “ e2{2 “ 2me “ 1, where e is the charge
of electron and me is its mass). The last term 1{2

ř

i‰j 2ZiZj{|Ri ´Rj | is the classical
Coulomb repulsion between ions located respectively at the positions Ri{j , and with the
atomic numbers Zi{j . Note that we assumed the classical behavior of the ions, i.e., the
electrons interact with frozen ionic centers. If we proceed with including (2.3) into (2.4),
we obtain the explicit second-quantized form of the Hamiltonian [86, 87] i.e.,

H “
ÿ

ij

ÿ

σ

tij ĉ
:

iσ ĉjσ `
ÿ

ijkl

ÿ

σ,σ1

Vijklĉ
:

iσ ĉ
:

jσ1 ĉlσ1 ĉkσ, (2.5)

where tij and Vijkl are microscopic parameters represented by integrals

tij ”

C

wiprq

ˇ

ˇ

ˇ

ˇ

ˇ

˜

´∇2 ´
ÿ

i

2Zi
|r´Ri|

¸ ˇ

ˇ

ˇ

ˇ

ˇ

wjprq

G

(2.6a)

”

ż

d3r w˚i prq

˜

´∇2 ´
ÿ

i

2Zi
|r´Ri|

¸

wjprq,

Vijkl ”

B

wiprqwjpr
1q

ˇ

ˇ

ˇ

ˇ

2

|r´ r1|

ˇ

ˇ

ˇ

ˇ

wkprqwlpr
1q

F

(2.6b)

”

ĳ

d3rd3r1 w˚i prqw
˚
j pr

1q
2

|r´ r1|
wkprqwlpr

1q.

Up to this point the discussion is general as long as the single-particle basis twiprqu is
complete, i.e.,

ÿ

i

w˚i prqwipr
1q “ δpr´ r1q. (2.7)

As the basis is in�nite, it is not possible to diagonalize (2.5) exactly. To do so, one must
select rich enough �nite basis to describe given system, which introduces an unknown error
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to the calculations. The EDABI method o�ers a workaround to this problem: One assumes
�nite basis with a set of adjustable parameters tαiu and minimizes the system energy to �nd
the optimal values of these parameters. As we usually start from the single-particle basis
being a solution of the one-electron situation, this approach allows us to obtain realistic
results with relatively small bases. Please refer to Fig. 2.2 for the step-by-step essentials
about the EDABI.

2.2.2 Many-particle wavefunction and the particle-density pro�le

In EDABI method we diagonalize the Hamiltonian (2.5) in the Fock space, obtaining the
ground state de�ned as

|Φ0y “
ÿ

i1,...,iN

Ci1,...,iN ĉ
:

i1
. . . ĉ:iN |0y . (2.8)

We can reverse the procedure, and retrieve the �rst-quantization picture of resultant, physi-
cal state by employing �eld operators (2.3). The exact N -body wavefunction can be written
in the following form

Ψpr1, . . . , rN q ”
1
?
N !

ÿ

i1,...,iN

@

0
ˇ

ˇ ĉiN . . . ĉi1
ˇ

ˇΦ0

D

wi1pr1q . . . wiN prNq. (2.9)

Out of all features of many-body picture, the possibility of obtaining the particle density
pro�les is of particular signi�cance. Namely, we can introduce the particle density operator

n̂prq ”
ÿ

σ

Ψ̂:σprqΨ̂σprq, (2.10)

where Ψ̂σprq is the �eld operator (2.3). (2.10) reduces to the particle density function

nprq ”

C

Φ0

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

σ

Ψ̂:σprqΨ̂σprq

ˇ

ˇ

ˇ

ˇ

ˇ

Φ0

G

“ N

ż

d3r1 . . . d
3rN´1 |Ψpr1, . . . , rN´1, rq|

2 . (2.11)

By knowing the optimized basis twiprqu and correlation functions
A

ĉ:iÒĉjÒ

E

, one can draw
the particle density pro�les for the system at hand.

2.2.3 Testing case: Description of light atoms

The natural language to describe electrons in atoms is provided by the Slater-type orbitals
(STO) [88], hence the choice of them as our basis. This causes an issue, as Slater functions

ψnlmprq ”

d

p2αnlmq2n`1

p2nq!
rn´1e´αnlmrY m

l prq, (2.12)
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Figure 2.2: Flowchart of the EDABI method. The essence of the method is as follows: We
start with setting the rules of the basis composition. This includes geometry of considered
system and the single-particle wave-function renormalization parameters tαiu. We set the
parameters, construct the basis with given rules (this usually consists of basis orthogonal-
ization), then we calculate Hamiltonian parameters tij and Vijkl. This is the most time-
consuming part and usually requires some computational treatment (cf. paper A-4). Next,
we must diagonalize the parametrized Hamiltonian (standard approach will include exact
diagonalization, Lanczos algorithm, or statistically-consistent Gutzwiller approximation).
Finally, the essential step in EDABI is invoked - basis is renormalized via (non-gradient)
optimization scheme to obtain the physical ground-state energy EG.
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where n “ 1, 2, 3, . . . , l “ 0, 1, . . . , n ´ 1, m “ ´l, . . . ,´1, 0, 1, . . . , l are quantum numbers
and Y m

l prq are spherical harmonics (for simplicity, we select the real spherical harmonics),
are non always orthogonal (in fact when we consider more than one atom in the system they
are almost always non-orthogonal). This can be �xed by employing the so-called linear-
combination atomic orbitals (LCAO) [89] and orthogonalized via selected method: either
the Löwdin symmetrical orthogonalization [90] or the bilinear forms method - see paper
A-4.

The other necessity of the EDABI is to select a number of parameters tαiu, renormalizing
basis' single-particle wavefunctions. It can obviously be done in several ways, but we
chose the natural coe�cients - the inverse wave-function size αnlm embedded in Slater-type
orbitals. For clarity we will use only n explicitly, l we will traditionally refer to as s (0),
p (1), d (2), etc. and instead of m we will write main symmetry axes (i.e., α210 becomes
α2pz). See Fig. 2.3 for examples of Slate-type orbitals for di�erent α coe�cients.

Gaussian contraction of Slater-type orbitals

As the calculation of integrals (2.6) for the Slater-type orbitals based single-particle basis
is problematic in general case (especially when it comes to three� and four�site terms)
it is convenient to use approximated and integrable representation of STO in terms of
Gaussian orbitals (the so called STO-pG basis, where p is the number of Gaussian function
approximating a single Slater-type orbital)

ψiprq « ψGi prq “ α
3
2

p
ÿ

q“1

Bq

˜

2Γ2
q

π

¸
3
4

e´α
2Γ2
q |r´Ri|

2
, (2.13)

where Ri denotes ionic coordinates, α is the STO inverse wave-function size, and Bq are
the contraction coe�cients and Γq are the inverse Gaussian sizes, both obtain by a proper
minimization procedure of the error function

E ”
ż

d3rpψiprq ´ ψ
G
i prqq

2. (2.14)

Results

Employing the EDABI approach with concomitant optimization of all the Slater-type or-
bitals (represented as p “ 5 Gaussians (1s,2s) and p “ 10 Gaussians (2p) contractions
each) we are able to reproduce many-electron states of atoms of the �rst two periods of the
Mendeleev periodic table with all ionization energies for the full Hamiltonian in the form

H “
ÿ

ij

ÿ

σ

tij ĉ
:

iσ ĉjσ `
ÿ

ijkl

ÿ

σ,σ1

Vijklĉ
:

iσ ĉ
:

jσ1 ĉlσ1 ĉkσ. (2.15)
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Figure 2.3: Slater functions ψ1sprq and ψ2pxprq on the xy-plane for di�erent values of inverse
wave-function size α1s and α2px respectively.
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Table 2.1: Ground-state energy EG and ionization energies Eion
i for selected light atoms in

Rydbergs (Ry). Optimiziation of 1s, 2s, 2px, 2py, and 2pz real Slater-type orbitals. Note
that systems with more-than-half-�lling (number of electrons ą 5, marked with red color)
have their values di�er from the results presented in literature [91] (cf. Table 2.2). This is
due to the fact, that the single-particle basis is no longer rich enough for the purpose of ab
initio description.

EG E1

H -0.999878 1.000 E2

He -5.77524 1.776 4.000 E3

Li -14.7287 0.245 5.484 8.999 E4

Be -29.165 0.6183 1.3134 11.2352 15.9981 E5

B -48.928 0.558 1.652 2.740 18.981 24.997 E6

C -74.9426 0.590 1.702 3.314 4.568 28.773 35.996 E7

N -107.852 0.723 1.868 3.342 5.426 7.022 40.477 48.994 E8

O -147.863 0.414 2.159 3.644 5.473 8.033 9.923 54.225 63.992 E9

F -195.917 0.511 1.898 4.093 5.913 7.905 11.319 13.316 69.972 80.990 E10

Ne -252.657 0.603 2.154 3.880 6.520 8.672 11.199 14.677 17.245 87.719 99.988

Table 2.2: Ground-state EG and ionization Ei energies from Lide [91] for comparison with
results presented in Table 2.1. Please note that for system not di�ering much from half-
�lling the results are similar.

EG E1

H -0.999 0.999 E2

He -5.807 1.807 4.000 E3

Li -14.956 0.396 5.559 9.000 E4

Be -29.337 0.685 1.338 11.311 16.002 E5

B -49.316 0.610 1.849 2.788 19.064 25.006 E6

C -75.711 0.828 1.792 3.520 4.740 28.818 36.014 E7

N -109.224 1.068 2.176 3.487 5.694 7.195 40.577 49.027 E8

O -150.217 1.001 2.581 4.038 5.690 8.371 10.152 54.337 64.047 E9

F -199.612 1.281 2.570 4.609 6.405 8.397 11.551 13.611 70.111 81.078 E10

Ne -258.101 1.585 3.011 4.663 7.138 9.276 11.608 15.234 17.573 87.892 100.120
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Table 2.3: Hydrogeniclike atoms in the EDABI approach (optimiziation of 1s, 2s, 2px, 2py,
and 2pz real Slater-type orbitals). Note that the exact solution of Schrödinger equation
provides α1s “ Zpa0q, EHL “ ´Z2pRyq.

Z α1s pa
´1
0 q EHL pRyq

H 1 1.00802 -0.999878
He1` 2 1.99596 -3.9995
Li2` 3 3.02355 -8.9989
Be3` 4 4.0038 -15.9981
B4` 5 5.04009 -24.997
C5` 6 6.0057 -35.9957
N6` 7 7.00665 -48.9941
O7` 8 8.0076 -63.9923
F8` 9 9.00855 -80.9903
Ne9` 10 10.0095 -99.988

The results are listed in Table 2.1. As a test of the method, one may also compare results for
the Hydrogeniclike atoms obtained by the solving the single-electron Schrödinger equation
with the results obtained from EDABI method (listed in Table 2.3).

2.3 Gutzwiller (GA) and Statistically consistent Gutzwiller
Approximations (SGA)

When we consider a system with the strong electronic correlations, the perturbation theory
is no longer a e�ective approach, opening the doors to the variational treatment with the
trial wave functions. Such an approach was devised by Gutzwiller [92�94] and generalized
over the years to ful�ll requirements of di�erent models, e.g., multiband [95, 96], time-
dependent case [97], as well as t-J, t-J-U [98�101], and periodic Anderson model [102�105].

2.3.1 Gutzwiller wave function method

Let us take the Hubbard Hamiltonian

H “
ÿ

ijσ

tij ĉ
:

iσ ĉjσ ` U
ÿ

i

n̂iÒn̂iÓ, (2.16)

where ĉ:iσ and ĉiσ are the fermionic creation and annihilation operators, n̂iσ ” ĉ:iσ ĉiσ is the
fermionic particle number operator, tij is the hopping amplitude, and U is the Hubbard
on-site repulsion term. Its expectation value is calculated with respect to the Gutzwiller
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trial wave function

|ψGy ” P |ψ0y ”
ź

i

Pi |ψ0y , (2.17)

where |ψ0y is the uncorrelated single-particle product state (Slater determinant) - to be
determined explicitly later, and Pi is the local Gutzwiller correlator de�ned for the single-
band case in the form

Pi ”
`

1´ p1´ gqn̂iÒn̂iÓ
˘

, (2.18)

where g is the variational parameter. The case g “ 0 refers to the situation with no double

occupancy, as all these terms are projected out from the wave function |ψ0y. Following
Bünemann et al. [96], we can rede�ne the local Gutzwiller correlator according to

Pi ”
ÿ

Γ

λiΓ |Γy ii xΓ| , (2.19)

where λiΓ are the variational parameters describing the occupation probabilities of possible
local states |Γy i (|Γy i P t|´y i, |Ò́y i, | Ó́y i, |Ö́y iu for one-band case), where |´y i is the empty-
site i con�guration, | σ́y i is that with the single occupation with spin σ “Ò or Ó, and |Ö́y i
is the site occupied by an electron pair.

2.3.2 Gutzwiller approximation: Ground-state energy

For given (2.17) trial wave function we can calculate the ground-state energy EG per site
in the so-called Gutzwiller approximation (GA) and obtain

EG
Λ
“
xψG|H |ψGy
xψG| ψGy

”
xψ0|PHP |ψ0y
@

ψ0

ˇ

ˇP2
ˇ

ˇψ0

D « qÒεÒ ` qÓεÓ ` Ud
2, (2.20)

where Λ is the number of sites, d2 is the average number of double occupancies,

εσ ”
1

Λ

C

ψ0

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

ij

tij ĉ
:

iσ ĉiσ

ˇ

ˇ

ˇ

ˇ

ˇ

ψ0

G

“
1

Λ

ÿ

k

εk (2.21)

is the average bare band energy per site for particles of spin σ, and the band narrowing
factor is

qσ ” qσpd, nσ, nσ̄q “

´

a

pnσ ´ d2qp1´ nσ ´ nσ̄ ` d2q ` d
?
nσ̄ ´ d2

¯2

nσp1´ nσq
, (2.22)

where nσ is the average number of particles with spin σ, and d2 “

A

n̂iÒn̂iÓ

E

. We see
that the bare band energies are renormalized by the factor qσ. Additionally, an essential
new feature appears, namely the two-particle correlation function d2. It is the variational
parameter for given ratio U{W (W is the bare bandwidth) and the band �lling n.
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2.3.3 E�ective Hamiltonian in GA

It more convenient to formulate the problem in a di�erent manner. Namely, we assume
that there exists an e�ective, single-particle Hamiltonian HGA, with its expectation value
equal to the (2.20), but now calculated with respect to the uncorrelated wave function |ψ0y.
Thus, instead of the diagonalizing the Hamiltonian (2.16), we minimize the eigenvalue of
the e�ective Hamiltonian

HGA “
ÿ

ijσ

qσpd, n,mqtij ĉ
:

iσ ĉjσ ´
ÿ

iσ

σhĉ:iσ ĉiσ ` ΛUd2 (2.23)

“
ÿ

kσ

pqσpd, n,mqεk ´ σhq ĉ
:

kĉk ` ΛUd2,

where εk is the dispersion relation and depends on the lattice geometry (examples are
listed in Table 1.1),

ř

iσ σhĉ
:

iσ ĉiσ is the Zeeman term with the reduced magnetic �eld
h “ 1{2gµBHa (that we can take into account without complicating our case), whereas
n ” nÒ ` nÓ and m “ nÒ ´ nÓ are the more convenient variational parameters, satisfying

$

&

%

n ” 1
Λ

ř

kσ

A

ĉ:kĉk

E

,

m ” 1
Λ

ř

kσ σ
A

ĉ:kĉk

E

.
(2.24a)

The two above quantities represent, respectively, the band �lling (average number of par-
ticles per site) and the magnetic moment (spin polarization) per site.

2.3.4 GA: Grand Canonical Ensemble Approach

We describe the system at nonzero temperature by constructing the grand potential func-
tional

FGA “ ´
1

β
logZ, (2.25)

where β “ 1{kBT , kB is the Boltzmann constant, and the grand partition function Z

Z ” Tr
´

e´βpHGA´µn̂q
¯

, (2.26)

where µ is the system chemical potential. Using (2.23) we can write that

Z “
ź

kσ

Z1 “
ź

kσ

1
ÿ

ni“0

e´βniE
GA
kσ e´βUd

2
“ e´βΛUd2

ź

kσ

´

1` e´βE
GA
kσ

¯

, (2.27)

with the quasiparticle energy de�ned by

EGAkσ ” qσεk ´ σh´ µ. (2.28)
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We can insert (2.27) to (2.25) and obtain

FGA “ ´
1

β

ÿ

kσ

log
´

1` e´βE
GA
kσ

¯

` λUd2, (2.29)

related to the free energy functional via a simple rede�nition

FGA “ FGA ` Λµn. (2.30)

In the next Section we describe in detail the minimization procedure of this e�ective
Landau functional for our fermionic system.

2.3.5 Statistical consistency for the Gutzwiller approximation (SGA)

To �nd the ground-state energy of Hamiltonian (2.16) we minimize the potential (2.29)
with respect to quantities d, n and m. This leads to the set of equations

$

’

&

’

%

ř

kσ
Bqσ
Bd fpE

GA
kσ qεk “ ´2ΛUd,

ř

kσ
Bqσ
Bn fpE

GA
kσ qεk “ 0,

ř

kσ
Bqσ
Bm fpE

GA
kσ qεk “ 0,

(2.31a)

where fpEq ” 1{p1`eβEq is the Fermi-Dirac distribution. On the other hand, we also have,
directly from their de�nition (2.24), the self-consistent equations for n and m

#

Λn “
ř

kσ fpE
GA
kσ q,

Λm “
ř

kσ σfpE
GA
kσ q,

(2.31b)

that produce constrains on the average value of the particle number and the magnetization
operator per site, n̂ and m̂, respectively. At this point, it is essential to include in the
minimization procedure the statistical consistency conditions of the solution. To do so,
following J¦drak et al. [106], we employ the Lagrange multiplier method and de�ne the new
e�ective Hamiltonian

HSGA “ HGA ´ λnpn̂´ nq ´ λmpm̂´mq, (2.32)

where Lagrange multipliers λn and λm are the molecular �elds, coupled respectively to the
total charge and the spin polarization. In e�ect, we de�ne the Landau grand potential
functional in the form

FSGA “ ´
1

β

ÿ

kσ

log
´

1` e´βE
SGA
kσ

¯

` λ
`

Ud2 ` λnn` λmm
˘

, (2.33)

where the quasiparticle energy is now

ESGAkσ ” qσεk ´ σph` λmq ´ pµ` λnq. (2.34)
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To minimize (2.33) we need now to solve the modi�ed set of self-consistent equations,
namely

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

ř

kσ
Bqσ
Bd fpE

SGA
kσ qεk “ ´2ΛUd,

ř

kσ
Bqσ
Bn fpE

SGA
kσ qεk “ ´Λλn,

ř

kσ
Bqσ
Bm fpE

SGA
kσ qεk “ ´Λλm,

ř

kσ fpE
SGA
kσ q “ Λn,

ř

kσ σfpE
SGA
kσ q “ Λm,

(2.35a)

where the k summation goes over the �rst Brillouin zone. Note that by enabling the
Lagrange multipliers, we ensure the statistical consistency of the system. This is not the
case for the standard set of equations (2.31). The consistency amounts to forcing the
condition that the averages calculated with the help of the self-consistent equations (2.35)
coincide with those obtained from a direct minimization of the Landau functional (2.33).
This feature is a fundamental correction to GA and has been elaborated earlier in our
group [106]. Here it will be applied to the interesting problem of Mott localization in
hydrogeniclike systems. Parenthetically, only after including the statistical consistency
conditions, our SGA results coincide with those obtained within the slave-boson approach
in the saddle-point approximation.
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Chapter 3

Published Papers with their

summaries

In this chapter we present the published papers, constituting this Thesis, together with its
brief summaries. The papers are in the chronological order.

3.1 Paper A-1 � Extended Hubbard model with renormal-
ized Wannier wave functions in the correlated state III:
Statistically consistent Gutzwiller approximation and the
metallization of atomic solid hydrogen

In this paper we consider a 3-dimensional, atomic model of hydrogen. This is a semi-realistic
approach to the problem of metallization, in the regime of atomic crystal, as we do not know
the predictions of the atomic phase structure. Hence, we start our discussion with a model
case of simple cubic (sc) lattice. For the �rst-principle system description, we employ the
Exact Diagonalization � Ab Initio Approach (EDABI) with the Statistically-Consistent
GutzwillerApproximation (SGA) as the parametrized Hamiltonian diagonalization scheme.
This is no longer an exact approach, nevertheless, it provides useful information about an
in�nite system. We describe the model with the so-called extended Hubbard model with
the single-particle energy εa, the nearest neighbor hopping term t, the on-site Hubbard
interaction U and the intersite Coulomb repulsion Kij , where the microscopic parameters
are obtained by integrating either single-particle Hamiltonian (for one-body parameters εa
and t) or Coulomb potential (for two-body parameters U and Kij), both with properly
prepared single-particle basis wave functions. This is a problematic case to be treated by
means of SGA, therefore we make two more approximations. First, we only consider the
basis functions as linear combinations of atomic orbitals (LCAO [89]) up to the certain limit,
that is we require the hopping terms to be only between orthogonal functions. Secondly, we
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rearrange the Hamiltonian in a way, that intersite Coulomb interaction parameters Kij and
ion�ion repulsion renormalize the single-particle energy εa, leaving the remaining terms to be
of negligible in�uence, when the ground-state energy is calculated, taking advantage of the
one-electron-per-lattice-site scenario. Hamiltonian prepared in that way is now tractable
with the SGA, thus exchanging the problem of diagonalization the Hamiltonian to the
minimization of corresponding Landau functional.

We calculated the ground-state and all its components for varying lattice parameter
(interatomic distance) R P r3.25, 8s and magnetic �eld Ha, and observed the �rst order

transition at RC “ 4.1a0 (Fig. 1), where the average double occupancy d2 “

A

n̂iÒn̂iÓ

E

drops discontinuously to zero with the increasing lattice parameter R (Fig. 2) indicating a
metal �insulator transition. This claim can be backed up by the divergence of magnetic
susceptibility (Fig. 5) and the disappearance of Hubbard gap Egap “ U´W (Fig. 11), where
U is the Hubbard repulsion and W “ 12|t| is the bandwidth. We obtain the microscopic
parameters of the Hamiltonian (Fig. 3) in the correlated state (cf. the renormalized inverse
wave-function size α (Fig. 9)), as well as the Landau functional minimization parameters,
the most interesting being magnetization m (Fig. 6) and the molecular �eld λm coupled
with m (Fig. 4). For the sake of completeness we supply critical scaling of the ground-state
energy (Fig. 7) and of the inverse wave-function size (Fig. 8).

As an extra result, we assessed the critical pressure to stabilize metallic phase and have
found it to be „ 100GPa (Fig. 12). As we disregarded the molecular phases, this paper can
be treated only as an �rst estimate, as there can still be a stable, lower-energy molecular
structure. Nevertheless, even in the model case of simple cubic lattice, the metallization
under pressure can be obtained.

The paper was published in European Physical Journal B (Eur. Phys. J. B 86, 252
(2013)), pp. 1�9.
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Abstract. We extend our previous approach [J. Kurzyk, W. Wójcik, J. Spalek, Eur. Phys. J. B 66, 385
(2008); J. Spałek, J. Kurzyk, R. Podsiadły, W. Wójcik, Eur. Phys. J. B 74, 63 (2010)] to modeling corre-
lated electronic states and the metal-insulator transition by applying the so-called statistically consistent
Gutzwiller approximation (SGA) to carry out self-consistent calculations of the renormalized single-particle
Wannier functions in the correlated state. The transition to the Mott-Hubbard insulating state at tempera-
ture T = 0 is of weak first order even if antiferromagnetism is disregarded. The magnitude of the introduced
self-consistent magnetic correlation field is calculated and shown to lead to a small magnetic moment in
the magnetically uniform state. Realistic value of the applied magnetic field has a minor influence on the
metallic-state characteristics near the Mott-Hubbard localization threshold. The whole analysis has been
carried out for an extended Hubbard model on a simple cubic (SC) lattice and the evolution of physical
properties is analyzed as a function of the lattice parameter for the renormalized 1s-type Wannier functions.
Quantum critical scaling of the selected physical properties is analyzed as a function of the lattice constant
R → Rc = 4.1a0, where Rc is the critical value for metal-insulator transition and a0 = 0.53 Å is the Bohr
radius. A critical pressure for metallization of solid atomic hydrogen is estimated and is ∼102 GPa.

1 Motivation

One of the important quantum-mechanical problems in
both the solid-state [1–4] and the optical-lattice [5] sys-
tems is the localization-delocalization transitions of fer-
mionic states which is called the Mott or Mott-Hubbard
transition. In electron systems it corresponds to the de-
localization of atomic states (usually of 3d or 4f type)
and the formation of a Fermi liquid of heavy quasipar-
ticles composed mainly of the transforming electrons,
irrespectively of the fact that there may be other va-
lence electrons present also there [4]. In the extreme
version, the transition is driven solely by the interpar-
ticle interaction, in which the presence of lattice plays
only a secondary role. In that situation, the localization-
delocalization transition is called the Wigner transi-
tion [6,7]. The description of these two transitions min-
imally provides a bridge between the atomic physics with
the localized single-particle electron states and the theory
of fermionic quantum liquids with delocalized states, for

a e-mail: ufspalek@if.uj.edu.pl

which (quasi)momentum p = �k characterizes quasiparti-
cle states. A principal dynamic quantity driving the tran-
sition is the particle density (or interatomic distance for
fixed number of particles, as is the case here).

A second impetus to the physics of these phenomena
has been provided by the introduction by Anderson [8,9]
and Hubbard [10] of second-quantization or quantum-
particle language, with the help of which the revised
Mott-Hubbard transition can be analyzed in terms of mi-
croscopic parameters. In the simplest, half-filled single-
band model the relevant microscopic parameter is the ra-
tio U/W , where U is the magnitude of the intraatomic
(Hubbard) interaction and W = 2z|t| is the bare band-
width (i.e., that for the uncorrelated particles), with z
being the coordination number (i.e., the number of near-
est neighbors) and |t| is the magnitude of intersite transfer
(hopping) of individual fermions. It is amazing that a sim-
ilar type of approach can be formulated for both fermions
and the bosons, in the latter situation in the optical-lattice
situation [2,3].
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The principal question is how to combine the Mott [1]
and the Hubbard [11] aspects of this quantum phase
transition in a purely electronic system. Once achieved,
the whole description can be analyzed as a function of
the lattice parameter (or interatomic distance, R). In the
series of papers [12,13] we have formulated such an ap-
proach starting from the Gutzwiller-ansatz approximation
(GA) for the extended Hubbard model, with a simultane-
ous readjustment of the single-particle Wannier functions
in the correlated state. The method provides, among oth-
ers, a direct connection of the Mott criterion for localiza-

tion/delocalization (n
1/3
C aB ≈ 0.2) with that of Hubbard

(U ≈ W ). As an extra bonus coming from such a formu-
lation we obtain the quantum-critical behavior of single-
particle wave function size α−1 [13], as well as the detailed
evolution of the correlated metallic state into the Mott-
Hubbard insulator. One principal methodological advan-
tage of the present formulation is that, in distinction to
the LDA+ U [14,15] or LDA+ DMFT [16,17] approaches
our formulation avoids the problem of double counting
of electron-electron interaction. However, unlike LDA+ U
or LDA+DMFT methods, the present approach is still
on the stage of modeling only the simplest (one-band)
systems. Nonetheless, it may provide a formally proper
starting point for more complex situations such as many-
band systems. Our formulations can certainly be also re-
formulated for Bose-Hubbard optical-lattice systems. It is
unique in the sense of discussing of quantum critical be-
havior of single-particle wave function characteristics such
as the inverse wave function size (the inverse effective Bohr
radius).

As a concrete application of our results we calculate
the critical pressure for the metallization of solid atomic
hydrogen with the electronic correlations included within
our renormalized mean-field theory.

The structure of the paper is as follows. In Section 2 we
characterize briefly the method used in the paper and the
modification of our previous approach [12,13]. In Section 3
we analyze in detail the numerical results obtained with
the help of the so-called Statistically Consistent Gutzwiller
Approximation (SGA). As a physical application, we also
provide there the estimate of the critical pressure for the
solid atomic hydrogen metallization. Section 4 contains an
outlook with summary of main results and a brief discus-
sion of possible extensions.

2 Model and method applied

2.1 Starting Hamiltonian

We start with the Extended Hubbard Hamiltonian for 1s
hydrogenic-like system

H = εa

∑

i

ni +
∑

i�=j,σ

tija
†
iσajσ + U

∑

i

ni↑ni↓

+
∑

i<j

Kijninj +
∑

i<j

Vion-ion (rj − ri) , (1)

where tij is the hopping integral, U the intraatomic in-
teraction magnitude, εa the atomic energy per site, and
Vion-ion corresponds to classical Coulomb interaction be-
tween two H+ ions, equal (in atomic units) to

Vion-ion (rj − ri) =
2

|rj − ri|
. (2)

By following [18], we introduce Ne =
∑

i ni – the total
number of electrons, and δni = ni − 1 as the deviation
from neutral-atom configuration. We can now rearrange
the interatomic interaction in the following manner:

∑

i<j

Kijninj =
∑

i<j

Kij(ni − 1)(nj − 1)

−
∑

i<j

Kij + 2Ne
1

N

∑

i<j

Kij

=
∑

i<j

Kijδniδnj + Ne
1

N

∑

i<j

Kij

+ (Ne − N)
1

N

∑

i<j

Kij . (3)

By introducing now effective atomic energy per site, i.e.,
containing both the atomic binding part εa and the ion-ion
repulsion, we can write it down in the form

εeffa = εa +
1

N

∑

i<j

(
Kij +

2

Rij

)
, (4)

where Rij ≡ |rj − ri|. In effect, we can rewrite
Hamiltonian (1) in the following manner:

H = εeffa

∑

i

ni +
∑

i�=j,σ

tija
†
iσajσ + U

∑

i

ni↑ni↓

+
1

2

∑

i�=j

Kijδniδnj . (5)

We also add (− ∑
i,σ σ 1

2gμBHaniσ) – a simple magnetic
Zeeman term, where g is the Landé factor, μB the Bohr
magneton and Ha the external magnetic field. By intro-
ducing the reduced magnetic field h ≡ 1

2gμBHa, we obtain
our starting Hamiltonian

H = εeffa

∑

i

ni +
∑

i�=j,σ

tija
†
iσajσ + U

∑

i

ni↑ni↓

+
1

2

∑

i�=j

Kijδniδnj − h
∑

i,σ

σniσ. (6)

This lattice Hamiltonian describing the system of 1s-type
states in a solid contains the following microscopic pa-
rameters: tij , U , Kij and the band filling n. Additionally,
close to the metal-insulator boundary we can assume that
〈δniδnj〉 � 0.

25



Eur. Phys. J. B (2013) 86: 252 Page 3 of 9

2.2 Incorporation of single-particle wave function
optimization

The microscopic parameters of (6) can be expressed via
the single-particle Wannier functions in the following
manner:

tij = 〈wi| H1 |wj〉 ,

U =

〈
wiwi

∣∣∣∣
e2

|r1 − r2|

∣∣∣∣wiwi

〉
,

Kij =

〈
wiwj

∣∣∣∣
e2

|r1 − r2|

∣∣∣∣wiwj

〉
,

εa = 〈wi| H1 |wi〉 , (7)

where H1 is the Hamiltonian for a single particle in the
system, and e2/|r1 − r2| is interparticle interaction. The
numerical value is obtained by approximating first the
Wannier functions wi ≡ wi (r) = wi (r − Ri) by 1s Slater
orbitals and those, in turn, by series of the Gaussian func-
tions, i.e.,

wi (r) = βΨi (r) − γ

z∑

j=1

Ψj (r) ,

Ψi (r) =

√
α3

π
e−α|r−Ri|

≈ α
3
2

p∑

a=1

Ba

(
2Γ 2

a

π

) 3
4

e−Γ 2
a |r−Ri|2 , (8)

where the parameters β and γ are defined through equa-
tions (24) and (25) in part I [12] to make the basis normal-
ized and orthogonal, i.e.,

〈
wi

∣∣ wj(i)

〉
= 0. Parameters Ba

and Γa are derived by minimizing energy of single atom

(Hamiltonian H a.u.
= − �2 −2|r − Ri|−1

). p is the number
of Gaussian functions used. Parameter α is found by min-
imizing the system energy of the trial correlated state (see
below). The difference with our previous approach [13] is
that we include the statistical consistency conditions, as
discussed next.

2.3 Statistically-consistent Gutzwiller approximation
(SGA)

To obtain optimal value of the inverse size α given in-
traatomic distance R we have to obtain the system en-
ergy. It was shown [19] that the Gutzwiller approximation
(GA) does not always provide the variational results con-
sistent with those obtained from the corresponding self-
consistent equations. To assure this consistency we mini-
mize the GA free-energy functional F supplemented with
two additional molecular fields λm and λn, coupled with m
and n, respectively:

F (SGA) = − 1

β

∑

kσ

log
(
1 + e−βE

(SGA)
kσ

)

+ Λ
(
λnn + λmm + Ud2 + μn

)
, (9)

where the trial eigenvalues E
(SGA)
kσ are:

E
(SGA)
kσ ≡ Ekσ − σλm − λn

= qσεk − σ (h + λm) − (μ + λn) , (10)

where d2 = 〈ni↑ni↓〉 , and

qσ =
(√

(nσ − d2) (1 − nσ − nσ + d2)

+ d
√

nσ − d2
)2

/nσ (1 − nσ) (11)

is the band narrowing renormalization factor and εk is dis-
persion relation for bare particles (here taken for simple
cubic structure, εk = 2t (cos kx + cos ky + cos kz)). The
eigenvalues Ekσ are obtained by Fourier transform of the
effective GA Hamiltonian

H = εeffa

∑

iσ

niσ +
∑

ijσ

tijqσa†
iσajσ

+ ΛUd2 − μ
∑

iσ

niσ, (12)

additionally supplemented with the Lagrange-multiplier
constrains

−λm

∑

i

(mi − m) − λn

∑

i

(ni − n) , (13)

where mi ≡ ni↑ − ni↓, m ≡ 〈mi〉, ni ≡ ni↑ + ni↓, and
n ≡ 〈ni〉.

The operator K ≡ H − ∑
i(λmmi + λnni) + Λ(λmm +

λnn) plays the role of the effective Hamiltonian, in which
the mean fields (m, d2) and the Lagrange multipliers
(λm, λn), as well as μ, are all determined variationally,
in addition to the wave function parameter α. In the next
section we analyze in detail the physical results obtained
by minimizing though that procedure the functional (9).

2.4 Overview of numerical methods

Numerical analysis was carried out with the help of
method different from that used in references [12,13] by
introducing the lower-level minimization for each single-
particle basis optimization step. In other words – for each
and every step of minimizing energy with respect to the
reverse function size α, where Golden Section Search [20]
was empirically proven to be the most efficient, there is
introduced a new minimization of functional F (SGA) with
respect to the double occupancy d, the magnetization m,
the chemical potential μ and the molecular fields λm and
λn. The latter procedure was carried using GSL - GNU
Scientific Library1, with the order of magnitude of zero-
precision 10−8 and all the following up calculations with
the double precision.

Due to new minimization step and new parameter (ex-
ternal magnetic field Ha), the numerical complexity in-
creases by two orders of magnitude, and it enforces new

1 http://www.gnu.org/software/gsl/
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Fig. 1. Ground state energy (per atom) of the metallic state
(PM, ×) for R < Rc and the insulating (PI,+) for R � Rc,
as a function of interatomic distance R (in units of Bohr
radius a0). Inset: detailed representation of the first-order
PM → PI transition near R = Rc ≈ 4.1a0. The upper curve
for R < Rc represents the energy of the unstable PI state. Note
that as EG > −1 Ry, the lattice can only be stabilized by the
external pressure (see Sect. 3.3).

optimization. To decrease the computing time we chose
the basis of three Gaussians (p = 3 in (8)) instead of seven
(as in Refs. [12,13]). After comparing the results for con-
stant external magnetic field Ha for p = 3 and p = 7 we
observe no qualitative change of behavior. Below we dis-
cuss the basic physical properties obtained within SGA
and just discussed numerical procedure, as well as com-
pare them with those obtained previously without the sta-
tistical consistency [12,13].

3 Results and discussion

3.1 Ground-state properties

The calculated ground state energy EG as a function
of interatomic distance R (lattice parameter) is shown
in Figure 1. In the inset a detailed dependence of EG

in the transition regime R ≈ Rc = 4.1a0 is displayed.
For the sake of comparison, the energy of PI state (for
Ha = 0) has been also shown for R < Rc, where this
phase is not stable. The principal difference with our
previous Gutzwiller ansatz (GA) results is that in the
present (SGA) approach the transition is weakly discon-
tinuous, as one can see explicitly from the circumstance
that dEG/dR, which is proportional to the internal pres-
sure, is discontinuous.

In Figure 2 we plot the double occupancy probability
d2 = 〈ni↑ni↓〉 versus R and again see a weak discontinuity
at R = Rc. The present SGA results are compared with
the previous GA results of Spałek et al. [13].

The R-dependent evolution of the microscopic param-
eters are shown in Figures 3 and 4. In Figure 3 we plot
the values of U and the nearest-neighbor hopping mag-
nitude |t|, whereas in the inset the U/W ratio, with
W = 2z|t| being the bare bandwidth, is shown in the
regime R ≈ Rc. Note that at Rc = 4.1a0 the U/W is
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Fig. 2. Double occupancy probability d2 = 〈ni↑ni↓〉 versus R.
Note a weak discontinuous jump to zero at R = Rc ≈ 4.1a0,
as compared to the continuous evolution for PM → PI of the
Gutzwiller approximation obtained previously [12,13].
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ated with localization of the itinerant electrons when R → Rc.
Overall χ behavior in the metallic state does not depend much
on the value of Ha. Inset: double logarithmic plot χ(R) showing
absence of any simple exponential type of scaling.

of the order of unity, in accordance with the results ob-
tained when U/W is treated as a free parameter [11]. The
atomic limit is reached effectively when |t| ≈ 0, i.e. for
R ∼ 6.5a0. The value of U in that limit is U = (5/4) Ry.
Amazingly, one should also note that at the transition

R−1
c α−1 = n

1/3
c aB ∼ 0.25, in accordance with the orig-

inal criterion due to Mott [2,3] for the Mott localiza-
tion (nC = 1/R3

c is the particle density at R = Rc and
aB = α−1 in the effective Bohr radius at that point).
This approach does allow to relate directly the Mott and
the Hubbard criteria for localization of fermions. This was
achieved by readjusting the Wannier functions, determin-
ing t and U parameters in the correlated state.

In Figure 4 we exhibit the evolution of the consistency
field λm, which plays the role of the self-consistent (cor-
relation) field, also for selected nonzero applied magnetic
field. One should note that the lowermost curve corre-
sponds to the case with Ha = 0. The nonzero value of the
effective field in the metallic phase will introduce a small
but nonzero value of the spin magnetic moment in the
uniform (weakly magnetic) phase as discussed below. The
situation is highlighted in the inset to this figure. How-
ever, one should emphasize that the field λm is dependent
on the phase discussed and in the antiferromagnetic state
it takes the form of a staggered field [21]. The latter phase
will not be analyzed in detail here, as the first and the
foremost aim of this paper is to underline the first-order
nature of the M → I transition if the statistical consis-
tency conditions are properly taken into account, as well
as the quantum scaling of the single-particle atomic wave
function inverse size α−1. The corresponding behavior of
the renormalized but less pronounced (cf. [13]), so we will
not discuss it in detail here.

To visualize directly the type of magnetism accom-
panying the metal-insulator transition (MIT), we have
plotted in Figure 5 the zero-field magnetic susceptibil-
ity versus R (the inset illustrates an overall behavior).
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state vs. R near Rc, induced by the correlation field when it is
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The principal feature of χ quasi-divergence for R → Rc is
roughly independent of the applied field magnitude spec-
ified. It does not follow exactly the Brinkman-Rice de-
pendence [22] as here the unrenormalized (χ0) value is
strongly R dependent as well, so χ cannot be parametrized
by U/W ratio only. For the sake of completeness we plot
in Figure 6 the magnetization curve at the localization
threshold. The dependence roughly emulates the Brillouin
curve for the localized particles of spin 1/2. However, one
has to take into account a nonlinear increase of the molec-
ular field for nonzero Ha value. (cf. Fig. 4). In the inset to
this figure we provide the uniform magnetic-moment mag-
nitude as a function of R if a uniform λm 
= 0 is assumed.
In the metallic state the spontaneous value of spin polar-
ization is very small and practically field independent.

For the sake of completeness, we also provide in Table 1
the numerical values of the selected quantities vs. R. Note
that we compared the values of EG in SGA and GA. The
slightly higher values of EG obtained in the present (SGA)
case should not be surprising for R away from Rc. It is re-
warding that they are lower as Rc is approaching, since
then the results are more realistic, i.e. the tight-binding
approximation works better. The last column describes
the effective mass enhancement (q−1

σ = m∗
mB

) due to the
interparticle correlations. One should note that the bare
band value mB is also dependent on R. Additionally, for
the half-filled band case (and only then) the mass enhance-
ment is not explicitly spin-direction (σ = ±1) dependent.
The scaling with R of the selected just discussed quantities
is carried out next.

3.2 Scaling laws of physical parameters

The question arises whether the scaling properties pro-
posed earlier [13] of selected physical quantities near the
quantum critical point (located at R = Rc), where χ
is divergent, take place also within the present SGA
approach. To address this question, we have plotted
in Figure 7 the relative ground state energy per site
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Table 1. Computed quantities in SGA (except additional results for ground-state energy added, calculated in GA), all as a
function of the lattice parameter, for the simple cubic structure. For their definition, see main text. The values, if not specified
explicitly, are in rydbergs (Ry). The χ(0) value for R � Rc is infinite.

R(a0) ESGA
G EGA

G t U α−1(a0) d2 λm χ (Ry−1) q−1

3.25 −0.8640 −0.8644 −0.2409 1.4996 0.9474 0.152774 0.015884 0.1809 1.17728
3.50 −0.8814 −0.8816 −0.1773 1.4749 0.9220 0.120128 0.012641 2.0598 1.36818
4.00 −0.9136 −0.9136 −0.1098 1.4152 0.9200 0.048886 0.006084 22.6577 2.82781
4.05 −0.9171 −0.9171 −0.1046 1.4139 0.9175 0.038973 0.004256 47.3562 3.47235
4.09 −0.9200 −0.1005 1.4140 0.9147 0.030193 0.027281 253.7567 4.40375
4.10 −0.9209 −0.9207 −0.0995 1.4143 0.9138 0.000000 0.000000 ∞ ∞
4.20 −0.9315 −0.9288 −0.0896 1.4217 0.9021 0.000000 0.000000
4.50 −0.9544 −0.9517 −0.0705 1.3742 0.9263 0.000000 0.000000
5.00 −0.9760 −0.9732 −0.0471 1.3200 0.9556 0.000000 0.000000
7.00 −0.9939 −0.0082 1.2504 0.9972 0.000000 0.000000
∞ −1.0000 −1.0000 0.0000 1.2500 1.0000 0.000000 0.000000
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Fig. 7. Scaling of the relative ground state energy near R =
Rc. For detailed explanation see main text.

|(EG(R)−EG(Rc))/EG(Rc)| ≡ |(E−EC)/EC | vs. relative
interatomic distance (Rc − R)/Rc for R → Rc − 0. As be-
fore, we observe an almost linear scaling |(E−EC)/EC | =
A((Rc − R)/Rc)

γ , since γ = 1.035 ± 0.009 and addition-
ally, A = 0.66 ± 0.04. One should note that this type
of scaling for the ground state energy near QCP is very
different from the corresponding behavior in the atomic
limit R � Rc, where the corresponding energy per site
is roughly dominated by the Coulomb contribution, so
EG ∼ R−1. This type of scaling means that the first
derivative is nonzero and constant for R → Rc. This fea-
ture will be taken upon and interpreted in Section 3.3.

In Figure 8 we plot the relative inverse renormalized
atomic-orbital size |(α(R) − α(Rc))/α(Rc)| ≡ |(α − αc)/-
αc| vs. (Rc −R)/Rc. Again, we have an almost linear scal-
ing, though the behavior is not as regular as before [13].
It is thus more legible to display the actual behavior of
the renormalized orbital size α(R) vs. R, as shown in
Figure 9. The quantum critical behavior corresponds to
the cusp-like feature around Rc, where we observe a clear
discontinuity of dα/dR at R = Rc. The most important
feature of this figure is the fact that we observe this type of
quantum critical behavior for the renormalized inverse size
of the single-particle wave function. We are not aware of
any other result of that type appearing in the literature,
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Fig. 8. Scaling of the inverse orbital size α near R = Rc. For
detailed explanation see main text.

apart from the analogical result obtained by us earlier
within the GA [13]. Note also, as already said earlier,
this type of critical behavior will translate into the same
type of behavior for the renormalized Wannier functions.
It is important to emphasize that this quantum critical
behavior of the principal characteristic (α) of the renor-
malized wave function is independent of the fact whether
the actual two-particle characteristic – d2 vanishes con-
tinuously (as in GA) or discontinuously (as in SGA), as
well as whether the states are paramagnetic (PM , PI)
or have a small “parasitic” magnetic moment. This anal-
ysis should certainly be extended and carried out for the
antiferromagnetic (AFM , AFI) cases, but that requires a
separate treatment, as it will certain a large number of ad-
ditional variational parameters. This is certainly planned
as the next stage of work.

Finally, we would like to discuss at this point two
important physical characteristics of our correlated sin-
gle narrow-band system. First of them is exhibited in
Figure 10 and shows the effective mass enhancement q−1

σ
vs. Ha for selected values of R close to Rc, but on
the metallic side. We observe the two important fea-
tures. First, the quasiparticle mass is spin-independent
in this half-filled band case, unlike in the non-half-filled
case [23,24]. Also, the mass enhancement due to the
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correlations increases in SGA relatively slowly compared
to that in the parametrized GA approach [25] as R →
Rc − 0. Second, this slow increase of q−1 when confronted
with the rather fast dependence of the susceptibility (cf.
Fig. 5, Tab. 1) means that the magnetic contribution
to the renormalized susceptibility (corresponding to the
“renormalized Stoner part”, cf. [22,25]) has an essential
contribution to the susceptibility. Also, as mentioned ear-
lier, there may be an essential contribution due to the
bare bandwidth W narrowing with the increasing R. In ef-
fect, the resultant behavior of quantities such as χ or the
linear specific-heat coefficient γ = γ0q

−1 in the strong-
correlation limit (here U ≈ W ) is much more subtle
than it was discussed within the pure parametrized model
(GA) picture, where the renormalization of the Wannier
functions, as well as the correlation fields λm and λn,
are absent. Simply put, our approach goes beyond the
parametrized-model approach as it provides the correlated
system evolution as a function of experimentally accessible
parameter – the lattice parameter.
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Fig. 11. Hubbard gap evolution Egap = U − W as a func-
tion of interatomic distance. Note a continuous dependence
near Rc even though the transition is weakly discontinuous
(cf. Figs. 1, 2). As the gap is increasing rapidly with increas-
ing R (R > Rc), the Mott insulators for R > 4.5a0 cannot be
regarded as wide-gap semiconductors.

Finally, in Figure 11 we plot the value of the Mott-
Hubbard gap Egap = U − W versus R. Obviously, in the
metallic phase it does not appear (for the sake of complete-
ness, we show it as having a negative value). Above the
transition it reaches relatively fast with increasing R > Rc

the asymptotic value Egap ∼ U . A weak cusp-like behav-
ior should be noted just above R = Rc. This feature is
reminiscent of the cusp-like behavior of the renormalized
Wannier functions. It would be interesting to study the
pressure dependence of the gap for the Mott insulator lo-
cated just above the transition point and determine its
scaling with (R−Rc)/Rc. It does not scale linearly, as the
quantities earlier.

3.3 Supplement: Application to solid atomic hydrogen:
estimate of the critical pressure for metallization

Our formulation represents a fully microscopic model of
the solid atomic hydrogen undergoing a Mott insulator-
metal transition. This model differs from the standard
treatment [26], in which the phase diagram is treated as
a function of microscopic parameter U/W , since we in-
clude here a fully self-consistent procedure of evaluating
the renormalized-by-correlations wave functions. In effect,
we can calculate explicitly the critical pressure for metal-
lization. In this approach the external pressure is the fac-
tor stabilizing the system in a particular phase (M or I).
This task can be carried out by using the classical defi-
nition of pressure p as the force F , applied to make the
present atomic solid stable, over the area A. This force
is obtained by differentiating F = |−∇REG|. The corre-
sponding external pressure we have to exert on the system
in order to stabilize the crystal as a function of interatomic
distance (with energy EG per site and the elementary cell
area A/N = R2) is plotted in Figure 12. Note that the
physical meaning has the critical pressure for metalliza-
tion as the point R = Rc is the terminal point of stability
of the almost localized Fermi liquid. It differs from other re-
sults [27] as those results concern a molecular (H2) solid;
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for detailed comment see e.g. [28]. Note that the pres-
sure behavior p(R) for R → Rc traces the difference on
the slopes dE/dR for metallic (R < Rc) and insulating
(R > Rc) regimes. Roughly, it shows a critical (divergent)
behavior at Rc. To determine that more accurately we re-
quire a refined numerical analysis. Nonetheless, the trend
is clear and provides a promising starting point for a fur-
ther analysis.

One must emphasize that this discussion is based on
an implicit assumption that the positive ions (protons in
this case) form a lattice in both the metallic (M) and
insulating (I) states. This may turn only a rather crude
approximation on the possible role of their zero-point mo-
tion in increasing the value of the critical pressure. Addi-
tionally, a possible transition to solid-liquid plasma as an
alternative scenario, should certainly not be ruled out (for
the relevant discussion of that point e.g. [29,30]).

4 Outlook

We have provided ground-state principal characteristics
of the correlated narrow-band system involving first-
principle variational calculations of the renormalized
Wannier functions of 1s-type in the correlated state de-
scribed by the statistically consistent Gutzwiller approx-
imation (SGA). Our model is fully microscopic as it con-
tains an explicit calculations of microscopic parameters
of the extended Hubbard model. In this manner, we can
track the correlated Fermi-liquid evolution with the in-
creasing lattice parameter R into the Mott-Hubbard in-
sulator. As an extra bonus, we obtain an estimate of the
critical pressure for the metallization of solid atomic hy-
drogen which is roughly equal to 100 GPa. Obviously, the
solid atomic hydrogen is a molecular crystal up to much
higher pressures [26,27], but it may be possible that the
states of this type can be synthesized in the optical-lattice
experiments.

We would like to emphasize that our model calcu-
lations contain two attractive features from a general

methodological point of view of the computational solid
state physics. First, they do not include twice the Coulomb
interactions among electrons, as it is the case for LDA+U
or LDA+DMFT methods. Those latter methods have
their own merits as they can be (and are) applied to com-
plex real materials. But the correctness of the present ap-
proach is still worth mentioning, even when applied so far
to the mode system only. Second, within the present ap-
proach the calculation of the renormalized characteristics
of the single-particle wave function and of the interelec-
tronic correlations, are both treated on the same footing.
This is the crucial feature of the Mott-Hubbard systems,
for which the single-particle energy (e.g. the renormalized
band energy) is of the same magnitude as the interparticle
(Coulomb in this case) interaction. The approach of the
present type should be extended to the multiband situa-
tion to discuss the realistic strongly correlated materials
(the magnetic oxides such as V2O3) evolving, when vary-
ing the lattice parameter (i.e., applying the pressure), and
not only as a function of the microscopic parameters such
as U/W , as they vary very rapidly in the vicinity of the
Mott-Hubbard transition. However, this program execu-
tion may represent a long road ahead.

One has to mention that the present approach requires
some other basic extensions. First of all, as any Gutzwiller-
type approach, it does not include explicitly the intersite
kinetic exchange appearing deeply in the Mott insulat-
ing state (for R substantially larger than Rc). The trace
of this interaction is coded in the correlation fields λm,
as has been shown in a related context before [21]. Sec-
ond, the case with partial band filling (n < 1) should be
also treated. Third and most importantly, the antiferro-
magnetic state should be included in the analysis. This
is our plan for the near future. However, we believe that
this simple analysis shows up in a clear manner the quan-
tum critical behavior of the renormalized-by-correlations
single-particle wave function, not obscured by the compli-
cated magnetic structure (i.e., that with a staggered mag-
netic moment). Fourth and finally, the approach, even in
the present single-band case, should be extended to the
close packed lattices such as fcc and hcp, as this are the
typical structures for metals. But then, one has to include
at least first two hopping integrals (between the nearest
and the next-nearest neighbors). Such treatment is cer-
tainly tractable. Nonetheless, we believe that our first es-
timate of the critical pressure for the metallization of solid
atomic hydrogen, carried out for the sc structure, provides
a promising starting point.

Finally, one can extend our analysis to nonzero tem-
peratures in a straightforward manner, starting from the
free-energy functional (9). This should be carried out
separately and the results can be compared with GA
results providing the first-order line ending in a clas-
sical critical point, as well as the reentrant metallic
behavior [23,24,31,32].
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3.2 Paper A-2 � Metallization of Atomic Solid Hydrogen within
the Extended Hubbard Model with Renormalized Wan-
nier Wavefunctions

This is a follow-up paper to paper A-1. In this contribution to the XVI National Conference
on Superconductivity in which we expand the discussion of the most important outcome of
that previous work, namely, the critical pressure of metallization of solid atomic hydrogen
crystal. Using the extended Hubbard model, with the single-particle energy εa, the nearest-
neighbor hopping term t, the on-site Hubbard interaction U , and the intersite Coulomb
repulsion Kij , we model the metal�insulator transition using better approximation for the
single-particle basis states with p “ 9 instead of p “ 3 Gaussians per wave function. This is
discussed brie�y with Gaussian �t results presented in Table 1 and the basis wave-functions
pro�les displayed in Fig. 1. We show that although the results change slightly quantitatively,
they do not change qualitatively the previous results (cf. the ground-state energy EG in
Fig. 2 and microscopic parameters t, U and K ” Ki,zpiq, where zpiq is the nearest neighbor
of site i).

We also discuss a �ne outcome of our approach - the possibility of comparing both Mott
and Mott-Hubbard criteria. The �rst being n1{3

c aB « 0.2, where for critical concentration
nc we have nc ” R´3

C , and e�ective Bohr radius aB “ α´1
C , where RC is the critical value of

lattice parameter R, and αC is the critical value of the inverse wave-function size. This lead
the Mott criterion to be n1{3

c aB “ R´1
C α´1

C « 0.22, close to the expected value. Similarly,
we obtain the Mott-Hubbard ratio U{W « 1.18, close to the critical value of unity.

Finally, we assessed the zero-point motion energy EZPM of the interacting ions in the
simple cubic lattice. The zero-point motion represents the primary e�ect of non-classical
character of the H` ions (protons). As a starting point, we assume a small ion displacement
δR, so that only the nearest neighbor contribution to the total energy will change signi�-
cantly. Then, we derive the formula for the total energy for such displacement, including es-
timation of the kinetic energy of an ion through the uncertainty principle δP2δR2 ě 3~2{4.
This allowed us to �nd all modes, the one with smallest energy being diagonal. We display
the value of EZPM , as well as its ratio to the ground-state energy in Fig. 5.

The paper was published in Acta Physica Polonica A (Acta Phys. Polon. A 126, 4A
(2014)), pp. A58-A62.
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1. Motivation

This year we are celebrating the 50th anniversary of
the Hubbard model, a second-quantization language to
describe strongly correlated systems provided indepen-
dently by Hubbard [1], Gutzwiller [2, 3] and Kanamori
[4]. This description shed some light on many-body
quantum systems, in particular on the localization�
delocalization transitions of fermions states in the solid-
state [5�8], and optical-lattice [9] systems. This transi-
tion is called the Mott or Mott�Hubbard transition.
In the series of papers [10�12], we have conducted

model calculations combining both the Mott [5] and
the Hubbard [13] aspects of the phase transition, within
the extended Hubbard model, with a simultaneous renor-
malization of the single-particle Wannier basis, connect-
ing �rst- and second-quantization approach. In [12]
we obtained, using proposed model, the critical met-
allization pressure pC = 97.7 GPa required to stabi-
lize the atomic-hydrogen-like crystal, while having both

the Mott (n
1/3
C aB ≈ 0.2) and the Hubbard (U ≈W ) cri-

teria satis�ed at the same time. Thus, those two criteria
represent two sides of the same coin.
Ever since Ashcroft proposed an explanation for

greater-than-expected magnetic �eld of Jovian planets
[14] by applying the BCS theory to the metallic hydro-
gen, the pursuit of the metallization of this element be-
gan. Predicted by Wigner and Huntington in 1935 [15]
the conducting phase of hydrogen is claimed to have var-
ious properties, including hypothesis of being supercon-
ducting up to the room temperature [14].
In this paper we brie�y describe the model in Sect. 2.

Then in Sect. 3 we review the validity of approxima-
tions made in [12] and show that they were in fact su�-
cient (explicitly redoing all calculations and showing no

*e-mail: kadzielawa@th.if.uj.edu.pl

qualitative changes). We also show that both Mott and
Hubbard criteria of localization-delocalization transition
are satis�ed. In Sect. 4 we estimate the magnitude of
zero-point motion energy, omitted in our calculations to
test the strength of our results, keeping in mind the pos-
sibility of quantum melting of hydrogen.

2. Model

We start with the extended Hubbard Hamiltonian de-
scribing a single-band hydrogen system [10�12]:

H = εa
∑

i

ni +
∑

i 6=j,σ
tija
†
iσajσ + U

∑

i

ni↑ni↓

+
∑

i<j

Kijninj +
∑

i<j

2

Rij
, (1)

where tij is the hopping integral, U � the intraatomic
interaction magnitude, εa � the atomic energy per site,
and 2/Rij = 2|Rj −Ri|−1

� ion�ion interaction corre-
sponding to the classical Coulomb repulsion (in atomic
units).
We have the total number of electronsNe =

∑
i ni, and

de�ne the deviation from one-electron-per-atom con�gu-
ration δni = ni − 1. We rearrange [16]:
∑

i<j

Kijninj =
∑

i<j

Kijδniδnj +Ne
1

N

∑

i<j

Kij

+(Ne −N)
1

N

∑

i<j

Kij . (2)

For half band-�lling n = Ne/N = 1 the latter part dis-
appears, and we can write

∑
i<j Kij ≈

∑
i<j Kijninj ,

thus introducing the e�ective atomic energy per site

εeff
a = εa + 1

N

∑
i<j

(
Kij + 2

Rij

)
. Let us rewrite the Hamil-

tonian 1 in a following manner:

H = εeff
a

∑

i

ni +
∑

i 6=j,σ
tija
†
iσajσ + U

∑

i

ni↑ni↓

+
1

2

∑

i 6=j
Kijδniδnj . (3)

Since we are interested in calculating explicitly the aver-

(A-58)
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age value 〈H〉, we note that close to the metal�insulator
boundary 〈δniδnj〉 ≈ 0, hence we disregard this term in
the calculation of energy.

2.1. Wave-function optimization

To calculate the microscopic parameters εa, tij ,
Kij , U of the Hamiltonian (3) we choose the basis
of the orthogonalized-to-the-nearest-neighbors Wannier
wi functions constructed from 1s Slater-type orbitals
(STO) Ψi:

wi (r) = βΨi (r)− γ
z∑

j=1

Ψj (r) , (4)

where β and γ (see [10] Eqs. (24) and (25)) are mixing
parameters speci�ed for the topology of the crystal, and
depending explicitly on the overlap integrals of the single-
-particle functions. z is the number of nearest neighbors.
Obtaining the microscopic parameters from the �rst

principles requires several integrations, since

εa = 〈wi |H1|wi〉 , tij = 〈wi |H1|wj〉 ,

U =
〈
wiwi

∣∣∣2|r1 − r2|−1
∣∣∣wiwi

〉
,

Kij =
〈
wiwj

∣∣∣2|r1 − r2|−1
∣∣∣wiwj

〉
, (5)

where H1 is the Hamiltonian for a single particle in
the system, and 2|r1 − r2|−1

interparticle interaction in
atomic units. Calculating (5) with basis as given in (4)
requires solving very complicated series of integrals and
can be simpli�ed by approximating STO with a series of
Gaussian functions

Ψi (r) =

√
α3

π
e−α|r−Ri| ≈

α
3
2

p∑

a=1

Ba

(
2Γ 2

a

π

) 3
4

e−α
2Γ2

a |r−Ri|2 , (6)

where Ba and Γa are parameters found by minimizing en-

ergy of the single atom (H1
a.u.
= −52−2|r −Ri|−1

). p is
a number of Gaussian functions used for the approxima-
tion. α is the inverse function size and will remain a vari-
ational parameter, allowing us to renormalize the ground
state function to �nd the minimal energy for given lattice
parameter R. For the sake of completeness we explicitly
illustrate the quality of the approximation (Fig. 1) and
the coe�cient for di�erent STO-pG basis (Table I).

TABLE I

Ba and Γa coe�cient obtained by minimizing the single-particle energy with wave functions given by (6).

STO-3G STO-5G STO-7G STO-9G
aBa Γ 2

a Ba Γ 2
a Ba Γ 2

a Ba Γ 2
a

0.7079069 0.4037496 0.4862397 0.3428813 0.3347926 0.3073439 0.2333815 0.2832535 1

0.3460096 0.897739 0.4687430 0.6489746 0.4947580 0.5341995 0.4735227 0.4656983 2

0.0691531 1.9705714 0.1446282 1.2283203 0.2218991 0.9285009 0.2825582 0.7656564 3

0.0307340 2.3248533 0.0674427 1.6138428 0.1065788 1.2588187 4

0.0093803 4.4002717 0.0188009 2.8050467 0.0341750 2.0696289 5

0.0038829 4.8754978 0.0099417 3.4026852 6

0.0018480 8.4741829 0.0032307 5.5943683 7

0.0006094 9.1977233 8

0.0004466 15.1220138 9

2.2. Ground-state energy

As stated earlier we would like to determine the inverse
wave function size α minimizing the ground-state energy.
To obtain the values for given α and the �xed lattice
parameter R we use statistically-consistent Gutzwiller
approximation (SGA) [17]. We extend the Gutzwiller
approximation Hamiltonian

HGA = εeff
a

∑

iσ

niσ +
∑

ijσ

tijqσa
†
iσajσ +NUd2, (7)

where the double occupancy number d2 = 〈ni↑ni↓〉 and
qσ = 2

(
d
√

1− 2d2 −m+
√
d2 (1− 2d2 +m)

)2

/(1−m2)

for n = 1, by introducing the Lagrange-multiplier
constraints

Cλ = −λm
∑

i

(mi −m)− λn
∑

i

(ni − n) , (8)

where mi ≡ ni↑ − ni↓, m ≡ 〈mi〉, ni ≡ ni↑ + ni↓, and
n ≡ 〈ni〉.
Finally, we use the operator K = HGA + Cλ as our

e�ective Hamiltonian. Mean �elds d2 and m, as well as
the Lagrange multipliers λm and λn, and the chemical
potential µ are all determined variationally.
Once the ground-state energy is found as a minimal

value for some αmin, we get the set of values � the micro-
scopic parameters (5) in the ground state. Below we dis-
cuss the properties of our results in comparison to those
obtained earlier [12].
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Fig. 1. Approximations of Slater 1s function centered
on-site with di�erent Gaussian resolution p (see (6) and
Table I) for α = 1.2 with respect to distance r from
the ion. Inset: details for small distances. Note that
the biggest contribution to the error is given by the part
close to the node, hence small total error after integrat-
ing over whole space. As expected the 9 Gaussian basis
(STO-9G) is far the best approximation.

3. Gaussian basis resolution

In our previous approach [12] we favored the Gaussian
basis consisting of 3 functions. We argued that the qual-
ity of such an approximation is su�cient, and that the nu-
merical e�ort to obtain results in higher Gaussian reso-
lutions (p > 3) is unnecessary. The computational com-
plexity scales

εa, t ∝ p2,

U,Kij ∝ p4, (9)

where p is the resolution. Hence the time of calculating
the full set of data points is increased by a factor of 200
when replacing STO-3G to STO-9G basis.

3.1. STO-3G versus STO-9G

For our ab initio calculations we have selected STO-9G
basis. It is much better (cf. Fig. 1) than STO-3G, while
time of the calculation is still acceptable.
The dependence of the ground-state energy EG with

respect to the lattice parameter R (Fig. 2) is the main
outcome. Similarly to the previous case [12], there are
two local minima � one associated with the metallic
phase (d2 6= 0), and one with the Mott insulating phase
(d2 = 0). The transition occurs at R = RC = 4.12a0

(compared to Rold
C = 4.1a0), but its nature is not

changed, as it still is a weakly discontinuous transition
(observe the obvious discontinuity of double occupancy
number, cf. inset in Fig. 2).
In Fig. 3 we plot the values of the nearest-neighbor

hopping (−t), on-site repulsion U , and the nearest-
-neighbor intersite repulsion K. Even though there are
no qualitative changes in the values in comparison with
[12] we present this for the sake of completeness.

Fig. 2. Ground-state energy versus lattice parameter
R for di�erent STO-pG basis. Note more realistic be-
havior in the metallic (R < RC = 4.12a0) regime with
non-trivial R dependence. Inset: double occupancy
mean �eld versus lattice parameter R for di�erent STO-
pG basis. Note no qualitative changes of behavior.

Fig. 3. The microscopic parameters t, U and K versus
lattice parameter R. Inset: U/W ratio with bandwidth
W = 2z|t| and on-site repulsion U .

In Ref. [12] we have shown that our transition satis-
�es both the Mott and the Hubbard criteria for metal�
insulator transition. Below we refer to them while dis-
cussing the new results.

3.2. The Mott and the Hubbard criteria

The original Mott criterion [5,6] n
1/3
C aB ≈ 0.2 can be

rewritten by substituting α−1 for the e�ective Bohr ra-
dius aB and de�ning the particle density as nC = R−3

C .

We get n
1/3
C aB = R−1

C α−1 ≈ 0.22, a slightly better out-
come than in [12] (as it is predicted with a better accu-
racy).
As shown in inset to Fig. 3, the ratio (U/W ) for crit-

ical lattice parameter RC = 4.12a0 is equal to 1.18 in
consistence with [13].

36



Metallization of Atomic Solid Hydrogen within the Extended Hubbard Model. . . A-61

3.3. Metallization pressure

Our model represents a 3-dimensional simple-cubic
crystal of the atomic hydrogen (one electron per ion, 1s
orbitals) undergoing the Mott�Hubbard transition. It is
clear that the minimal value of energy (cf. Fig. 2) of
such a crystal is reached for lattice parameter R → ∞.
Thus one require external pressure p for its stabiliza-
tion, that can be obtained classically as the force per cell
F = |−∇REG| over the elementary cell area A/N = R2.
In Fig. 4 we plot such pressure versus lattice parame-
ter R and provide a comparison between the previously
obtained (STO-3G [12]) results and the new ones.

Fig. 4. Stabilizing pressure for a simple-cubic atomic
solid hydrogen crystal versus lattice parameter R for
di�erent STO-nG basis. Note only a slight change
in obtained critical pressure pC = 102 GPa for sig-
ni�cantly larger STO-9G basis. The qualitatively dif-
ferent behavior of stabilizing pressure in the metallic
(R < RC = 4.12a0) regime is caused by non-trivial be-
havior of energy in this regime (see Fig. 2 for details).

We have calculated the metallizing pressure pC = 102
GPa assuming that our model is static � this assump-
tion is not quite correct within the quantum-mechanical
world, where there is always a non-zero energy of zero-
point oscillations. In the next section we deal with this
problem by estimating the contribution of zero-point mo-
tion to the total energy.

4. Zero-point motion energy

We introduce (following approach similar to [18])
the uncertainties of the momentum δP and position δR.
The energy of a distortion per ion is

∆E =
δP 2

2MH+

+
1

2

∑

i ∈ {x, y, z}

(
e2

R+ δRi
+

e2

R− δRi

)
. (10)

By applying the uncertainty relation δP 2 · δR2 ≥ 3~2/4
and minimizing 10 with respect to Ri's we get a set of
local extrema, from which the global minimum is

∆E0 = 3
e2

R
+

~
(

4
√

6eMR+
√
M
√
R~
)

8M3/2R5/2
, (11)

|δR0| =
√

3R2

2
√

6 e~
√
M
√
R+ 1

, (12)

where R is the lattice parameter. The �rst term of (11)
is related to the Coulomb repulsion of ions and the sec-
ond EZPM ≡ ∆E0 − 3e2R−1 is the zero-point oscillation
energy.

Fig. 5. The relative magnitude of estimated zero-point
motion energy with respect to ground-state energy at
given lattice parameter R. Note that result below 0.5 at
the metal�insulator transition shows that the correction
from ZPM to the critical pressure can be disregarded.
Inset: explicit value of estimated zero-point motion en-
ergy.

In Fig. 5 we show the ratio of |EZPM| to the ground-
state energy |EG|. Since it is slowly-changing and is
about two orders of magnitude smaller than the ground-
state energy, our approach of omitting it in the calcula-
tion of metallization pressure holds.

5. Conclusions

In this paper we established that the choice of
the STO-3G basis in [12] was not in�uencing results qual-
itatively, and that the computational simplicity and to-
tal CPU time conservation are allowing us to examine
also a full picture with an external magnetic �eld, pre-
serving main properties of the system. Better accuracy
(Sect. 2.1) increases the quality of the results (cf. Fig. 2),
but does not change our understanding of the metal�
insulator transition in this model.
The analysis of zero-point motion carried out in Sect. 4

reinforces our previous results and suggests that the en-
ergy of oscillations does not increase the stabilization
pressure signi�cantly.
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3.3 Paper A-3 � H2 and pH2q2 molecules with an ab initio op-
timization of wavefunctions in correlated state: electron�
proton couplings and intermolecular microscopic param-
eters

In this paper we utilize the Exact Diagonalization � Ab Initio Approach (EDABI) to
describe theH2 molecule with more precise approach (in comparison to that in paper A-2) to
assess the zero-point motion amplitude and corresponding energy, taking the contributions
up to the ninth order. We also provide a full microscopic picture of van der Waals-like
attraction between two H2 molecules, that eventually led to the one-dimensional molecular
chain discussed in the papers A-4 and A-5. We also present the methodology of including
higher (than 1s) orbitals into the model, thus opening the door for description of di�erent
atoms that is planned for the near future.

We start from the full two-site Hamiltonian (2.5), with explicit expressions for all six
microscopic parameters: the single-particle energy ε, the hopping term t, the on-site Hub-
bard interaction U and the intersite Coulomb repulsion K, the exchange integral J and
the so-called correlated hopping V . As we have real-valued single-particle basis wave func-
tions, the so-called pair hopping-term amplitude is equal to the exchange integral. We
calculate explicitly the form of these parameters as a function of inverse wave-function
size α and the intersite distance R, for the single-particle-basis wave functions, composed
of 1s Slater-type orbitals (all formulas can be found in Appendix A). Then, for given R,
we minimize the system ground-state energy EG “ E´ ` 2{R with respect to the inverse
wave-function size α, where E´ is the exact eigenvalue for the Hamiltonian and 2{R is
classical Coulomb repulsion of the ions. Within this simple model, we �nd the minimum
of EG for RB “ 1.43042a0 and EB “ ´2.29587Ry, „ 2% from the almost exact result
RK´W “ 1.3984a0, EK´W “ ´2.349Ry of Koªos and Wolniewicz [107]. The results are
presented in Figs. 1�5. The next step is to estimate the zero-point motion amplitude and
energy. For this purpose we consider the oscillations of interionic distance R “ RB ` δR,
and: (i) we expand the system energy around minimum, in terms of δR up to the ninth
order; (ii) calculate the additional term δH of Hamiltonian, that covers the change of en-
ergy caused by the change δΞ of the microscopic parameters, here labeled generically via
Ξ; these are calculated explicitly (the corresponding formulas can be found in Appendix
B) and presented in Figs. 7�8; (iii) obtain explicitly the averages of the operator part of
Hamiltonian in the ground-state (cf. Fig. 6); (iv) estimate the kinetic energy of the ions
and the change of the interionic Coulomb repulsion. We combine steps (i)�(iv) and mini-
mize the expression for the total energy of the system with respect to the δR. The result
is the zero-point motion amplitude δR0 “ 0.189a0 and the energy EZPM “ 0.0241Ry.

We supplement the results with the solution of the pH2q2 system with all two-site param-
eters of interaction (three� and four-site terms are of negligible magnitude) and present the
results in Figs. 10�14. We observe the van der Waals-like behavior of the energy di�erence
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per molecule ∆EH2paq “ EpH2q2{2 ´ EB, with a shallow minimum for the intermolecu-
lar distance a “ 4.5a0. In Appendix D, we sketch how to incorporate higher orbitals to
the model on the example of one-body microscopic parameters for 1s and 2s Slater-type
orbitals.

The paper was published in New Journal of Physics (New J. Phys 16, 123022 (2014)),
pp. 1�26. It has also been selected by the Institute of Physics Publishing as one of the
papers of the year 2014 (the so-called IOPSelect).
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Abstract
The hydrogen molecules H2 and ( )H2 2

are analyzed with electronic correlations
taken into account between the s1 electrons in an exact manner. The optimal
single-particle Slater orbitals are evaluated in the correlated state of H2 by
combining their variational determination with the diagonalization of the full
Hamiltonian in the second-quantization language. All electron–ion coupling
constants are determined explicitly and their relative importance is discussed.
Sizable zero-point motion amplitude and the corresponding energy are then
evaluated by taking into account the anharmonic contributions up to the ninth
order in the relative displacement of the ions from their static equilibrium value.
The applicability of the model to solid molecular hydrogen is briefly analyzed by
calculating intermolecular microscopic parameters for the × H2 2 rectangular
configuration, as well its ground state energy.
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1. Motivation

The few-site models of correlated fermions play an important role in singling out, in an exact
manner, the role of various local intra- and inter-site interactions against hopping (i.e.,
containing both covalent and the ionic factors) and thus, in establishing the optimal correlated
state of fermions [1–8] on a local (nanoscopic) scale. The model has also been used to obtain a
realistic analytic estimate of the hydrogen-molecule energies of the ground and the excited
states in the correlated state [9]. For this purpose, we have developed the so-called EDABI
method, which combines Exact Diagonalization in the Fock space with a concomitant Ab Initio
determination of the single-particle basis in the Hilbert space. So far, the method has been
implemented by taking only s1 Slater orbitals, one per site [10]. The method contains no
parameters; the only approximation made is taking a truncated single-particle basis (i.e., one
Slater orbital per site) when constructing the field operator, that in turn is used to derive the
starting Hamiltonian in the second-quantization representation. This Hamiltonian represents an
extended Hubbard Hamiltonian, with all two-site interactions taken into account and the
solution comprises not only the exact eigenvalues of the few-site Hamiltonian, but also at the
same time an evaluation of the adjustable single-particle wave functions in the correlated state.
Also, the calculated thermodynamic properties rigorously exemplify [12, 11] the low- and high-
energy scales, corresponding to spin and local charge fluctuations, respectively. The former
represents the precursory magnetic-ordering effect whereas the latter represents local effects
accompanying the Mott–Hubbard transition. In general, our approach follows the tradition of
accounting for interelectronic correlations via the second-quantization procedure, with the
adjustment of single-particle wave functions, contained in microscopic parameters of the
starting model, in the correlated state.

The first aim of this paper is to extend a previously established fully microscopic approach
[9, 10] and calculate all six possible electron–ion coupling constants for H2 as a function of the
bond length. As a byproduct, we obtain an accurate estimate of the zero-point-motion amplitude
and its energy to a high (ninth) order in the relative displacement of the ions. This evaluation
shows explicitly the dominant contributions to the vibronic spectra of the molecule. In effect,
the work formulates a complete two-site model of correlated states with all the coupling
parameters calculated from an ab initio procedure. It also forms a starting point to full scale
dynamic calculations involving a richer basis in the Hilbert space, at least in the adiabatic limit.
So, although the importance of the present results to the discussion of the exact evaluation of
the ground-state energy of the H2 molecule is limited, the approach may be extended to treat
molecular solid hydrogen with the inclusion of interelectronic correlations. Explicitly, as a
starting point we calculate the intermolecular hopping integrals and the principal electron–
electron interaction microscopic parameters as a function of intermolecular distance.

A methodological remark is in place here. As we determine the local ion–electron and
electron–electron coupling parameters, they can be regarded as a starting estimate of those for
the bulk solid molecular hydrogen, as we have recently studied a critical pressure of
metallization of the atomic solid (Mott insulating) state [13]. The obtained pressure of atomic-
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hydrogen metallization is about GPa100 , a value which squares well with that observed for the
case of fluid molecular hydrogen ( GPa140 )[14], although the recent simulations provide quite
different values for fluid hydrogen analyzed at high temperature [15]. Obviously, our previous
work is not related directly to the molecular-hydrogen metallization in the solid state [16–19].
So far, we have discussed rigid-lattice properties. We believe that the present results form the
first step in incorporating the vibrational spectrum and correlations to extended systems.

The structure of the paper is as follows. Even though the main purpose of the paper is to
calculate the local electron–proton and electron–electron coupling constants, for the sake of the
completeness, in sections 2 and 3 we reproduce some of the results of [9] and correct some
minor errors (see also appendix A). In section 4 we define the method of calculation of both the
electron–ion (proton) coupling constants (see also appendix B), as well as estimate the zero-
point motion to the ninth order versus the interionic distance. In section 5 we extend the single-
molecule treatment and provide the intermolecular hopping amplitudes and the electron–
electron microscopic parameters which may serve for analysis of the solid molecular hydrogen.
Section 6 contains physical discussion and a brief outlook, where we also refer to the finite-size
quantum Monte Carlo results. In the series of appendices we provide some analytical details, as
they may form an analytical basis for the electron–lattice coupling supplementing the classic
Slater results for the electronic part of H2 molecule [20].

2. Model and summary of purely electronic properties

2.1. Wannier basis

To describe the behavior of an electron in the system of two ions we start from s1 Slater–type
orbitals

Ψ α
π

= α− −er( ) , (1)i
r R

3
i

where α is the inverse size of the orbital. To ensure orthogonality we use Wannier functions,
which in this case reduce the superposition of the atomic states, i.e.,

β Ψ γΨ= −⎡⎣ ⎤⎦w r r r( ) ( ) ( ) , (2)i i j

with the mixing parameters

β

γ

= + −
−

=
+ −

⎧

⎨
⎪⎪

⎩
⎪
⎪

S

S
S

S

1

2

1 1

1

1 1

(3)

2

2

2

where α Ψ Ψ= ≡ 〈 〉S S R( , ) |1 2 is the atomic functions’ overlap.
Equations (3) ensure both the orthogonality and proper behavior in the atomic limit i.e.,

β =→∞lim 1R , where R is the average interatomic distance. γ =→∞lim 0R .

3

New J. Phys. 16 (2014) 123022 A P Kądzielawa et al

43



2.2. Second-quantization picture

The two-site Hamiltonian with one orbital per site has the general form

∑

∑

ϵ= + + +

+ + −

+ − + +

+ + +

σ
σ σ σ σ

σ
σ σ σ σ σ σ

↑ ↓ ↑ ↓

↑ ↓ ↓ ↑



⎜ ⎟
⎛
⎝

⎞
⎠

⎡⎣ ⎤⎦

( )

( )
( )

( )

( )

( )n n t a a a a

U n n n n J

K
J

n n J a a a a h c

V n n a a a a

S S

ˆ ˆ ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ 2

2
ˆ ˆ ˆ ˆ ˆ ˆ . .

ˆ ˆ ˆ ˆ ˆ ˆ , (4)

1 2 1
†

2 2
†

1

1 1 2 2 1 2

1 2 1
†

1
†

2 2

1 2 1 ¯
†

2 ¯ 2 ¯
†

1 ¯

where σâi and σâi
† are the fermionic operators of annihilation and creation of the electron with

spin σ on the s1 orbital of hydrogen atom ∈i {1, 2}.
The microscopic parameters ϵ = T11, =t T12, =U V1111, =J V1122, =K V1212 and =V V1112

correspond to one–and two-particle interactions [9]

= T w w a, (5 )ij i j

= V w w w w b, (5 )ijkl i j k l

where in atomic units = −▽ − − r R2 | |2 , and = − ′ r r2 | |. In appendix A we provide
explicitly the form of microscopic parameters as a function of both intersite static distance R
and the inverse wave-function size α. In what follows we first diagonalize (4), and subsequently
optimize the wave functions contained in the microscopic parameters of (4). This program will
be carried out systematically in what follows.

2.3. Exact solution

The system described by the Hamiltonian (4) has an exact solution previously studied in detail
in [9]. For the two-electron system ( + =n n 21 2 ), i.e. with one particle per site, the starting
basis is

= ↑ ↑a a a1 ˆ ˆ 0 , (6 )1
†

2
†

= ↓ ↓a a b2 ˆ ˆ 0 , (6 )1
†

2
†

= +↑ ↓ ↓ ↑( )a a a a c3
1

2
ˆ ˆ ˆ ˆ 0 , (6 )1

†
2
†

1
†

2
†

representing the intersite spin-triplet states with eigenvalues ϵ= = = + −E E E K J21 2 3 , and

= −↑ ↓ ↓ ↑( )a a a a d4
1

2
ˆ ˆ ˆ ˆ 0 , (6 )1

†
2
†

1
†

2
†

= +↑ ↓ ↑ ↓( )a a a a e5
1

2
ˆ ˆ ˆ ˆ 0 , (6 )1

†
1
†

2
†

2
†
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= −↑ ↓ ↑ ↓( )a a a a f6
1

2
ˆ ˆ ˆ ˆ 0 , (6 )1

†
1
†

2
†

2
†

representing the spin-singlet states, with the corresponding Hamiltonian matrix involving the
matrix elements 〈 〉 ≡ ( )i j ij :

ϵ
ϵ

ϵ
=

+ + +
+ + +

+ −


⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟( )

K J t V
t V U J

U J

2 2( ) 0
2( ) 2 0

0 0 2

. (7)ij

The state (6f) is an eigenvector of (7) with eigenvalue ϵ= + −E U J26 . The
diagonalization supplies us with the two other eigenvectors [1]

± = ∓ ±
∓ ∓ ± + +

− 


U K

U K t V

[2 ( )]

[ ( ) 4 4 5 ], (8)

1
2

with eigenvalues

ϵ= + + + ±± E
U K

J2
2

1
2

, (9)

where = − + + U K t V( ) 16( )2 2 . The state −〉| from (8) is the lowest-energy spin-
singlet eigenstate. It is this state for which we determine explicitly the single-particle wave
function and subsequently determine the microscopic parameters ϵ, t, U, J, K, and V explicitly,
all as a function of interionic distance R.

2.4. Optimization of the atomic basis

The ground-state energy is the energy −E of (9), supplemented with the ion–ion repulsion, i.e.
by

= +−E E
R

2
, (10)G

where R(2 ) is also represented in atomic units. As all the microscopic parameters are only a
function of the distance R and the inverse wave-function size α, we have α=E E R( , )G G . For
each distance R, we minimize EG with respect to α, thus closing the solution. Finally, we select

=R RB as the equilibrium solution, for which the zero-point motion still has to be taken into
account.

3. The stationary state for the H2 molecule

In figure 1 we plot the energy of H2 (dimer) versus the distance R. It is crucial that we obtain a
local (and global) minimum at = ≡ ÅR R 0.757B . This simple result obtained in [9] differs
with respect to the virtually exact solution by Kołos and Wolniewicz [21, 22], = Å−R 0.74K W

by 2.5% only.
In figure 2 we plot the sequence of the spin-singlets and the spin-triplet states.

Parenthetically, the start from second-quantization language allows for evaluation of the
ground-state and the lowest excited states, on an equal footing. This feature provides the
difference with purely variational calculations in the first-quantization language. Namely,

5
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within this basis the spin-singlet state is stable at arbitrary interionic distance R. In figures 3–5
the inverse wave function size α, as well as all the microscopic parameters, are displayed as a
function of the bond length R. One can see that with increasing R, the values tend to the proper
free-atom limits. Those quantities form an input for the subsequent evaluation of electron–
proton coupling constants discussed next.

4. Adiabatic approximation for the electron–ion coupling

Our principal aim here is to extend our previous model [9, 10] by allowing the ions to oscillate
around the equilibrium positions. Thus the interionic distance R is taken now in the form

δ= +R R R, (11)B

where δR is responsible for the zero-point motion. The electronic part of the ground-state
energy is expanded next on δR in terms of a Taylor series, which to the ninth order reads

Figure 1. Ground-state energy—as defined by (10)—versus interionic static distance R.
Note that the minimum value is = −E Ry2.295 87B (marked by the vertical line here
and below) at =R a1.430 42B 0.

Figure 2. Solutions for the states: the spin-triplets ( = =E E E1 2 3) and the spin-singlets
( ±E , E6) versus the interionic distance R. The spin-singlet state −〉| is the equilibrium
state.
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Figure 3. The optimal inverse wave-function size α versus the proton–proton average
distance R. Note that α = −a1.193 78B 0

1.

Figure 4. Microscopic parameters ϵ, t, U, and K versus average interionic distance R.
Note the convergence of the intersite Coulomb repulsion K to the classical value R2
(dashed line) at → ∞R . The on-site repulsion U also reaches its atomic limit

=U Ry1.25at , whereas the hopping parameter →t 0.

Figure 5. Microscopic parameters J and V versus R. Note that the exchange integral is
always ferromagnetic, and the so-called correlated hopping parameter is <V 0.

7
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∑ δ δ= + +δ
=

 ( )E
i

E R O R
1
!

, (12)R B

i
B
i i

2

9
( ) 10

where = ∂
∂

EB
i E

R R

( ) i
B

i

B

and =E 0B
(1) , whereas all the remaining terms but for the energy EB

describe the oscillations (see table 2 for numerical values). We have modified the Hamiltonian
(4) accordingly by taking into account δR, i.e.,

δ→ +  , (13)

where δ is the additional term. Also,  simplifies to the form

∑Ξ= Ô , (14)
i

i i

where Ξ ϵ= t U J K V{ , , , , , } and Ôi are the corresponding operator parts of Hamiltonian: the
two- and four-operator terms of (4) standing next to the respective microscopic parameter (for
example = +ϵO n nˆ ˆ ˆ1 2). With the Hamiltonian in this form we now have the energy change due
to the change of the microscopic parameters

∑ ∑δ δΞ ξ δ= = O R Oˆ ˆ , (15)
i

i i

i

i i

where ξ ≡ δΞ
δi R

i . Since δ ∝ +R b b( )i i
† , where bi

†, bi are bosonic creation and annihilation
operators of the system deformation and the set ξ{ }i defines a new set of microscopic
parameters—the electron–ion coupling constants. They can be derived by differentiation in a
way similar to that of [23, 24] (see appendix B for details).

The shift of the ions changes the system properties in the following manner

∑δ ξ δ= O Rˆ , (16)
i

i i
0

where the average 〈 〉 = 〈− −〉O Oˆ ˆ
i i0 is taken with respect to the ground state. In effect, we

obtain

=ϵO aˆ 2, (17 )
0

= +
O

t V
bˆ 8

, (17 )t
0

= +
+ − O
t V

U K
cˆ 16( )

2 ( )
, (17 )U

0

2

=O dˆ 1, (17 )J
0

= + −
O
U K

eˆ
2

, (17 )K
0

= +
O

t V
fˆ 8

. (17 )V
0

The R dependence of the parameters 〈 〉Ôi given by (17) is displayed in figure 6. As they
are of the order of unity, the principal factor determining the relative strength of the coupling

8

New J. Phys. 16 (2014) 123022 A P Kądzielawa et al

48



Figure 6. Averages (17) calculated in the ground-state versus distance R. They are of
the order of unity.

Figure 7. Coupling constants ξϵ and ξt versus intersite distance R.

Figure 8. Coupling constants ξU , ξK , ξJ and ξV versus intersite distance R

9
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constants is provided by the parameters ξ{ }i displayed in figures 7 and 8. At the equilibrium
bond distance marked by the vertical line, the largest values are (on the absolute scale) those
coming from modulation of the hopping parameter (ξt) and the change of intersite Coulomb
interaction (ξK). The first of the two has been included in the Su, Schrieffer and Heeger model
[25]. The second may play an important role in the high-TC superconductivity [24]. Also, we
see that the so-called Holstein coupling [26] is not important if calculated near the hydrogen-
molecule equilibrium state.

We determine the value of δR by minimizing the total energy of the system:

δ≡ + +  E . (18)total ion

where

δ
δ

= +
+

 P

M R R
2

2
2

. (19)ion

2

where the ionic momentum δP is evaluated via the Heisenberg principle and
≈M 1836.152 67

a u. .
is the mass of the proton.

5. Evaluation of the microscopic parameters for the two-molecule system

We extend our approach by considering a system of two H2 dimers at a relative distance a from
each other (see figure 9). We calculate the respective hopping integrals, where t12 should
approach t defined in (A.1b) for large a, and the new single-particle energy ϵ should again
converge to previously obtained value (A.1a). We determine all the two-particle interaction
integrals, thus going beyond the Hubbard model solved in [5]. Additionally, in table 1 we list
the numerical values of the most relevant microscopic parameters.

The results are presented in figures 10–13. Note that all the results converge to the free-
molecule ( → ∞a ) values. The calculated hopping values of t13 and t14 may serve as input
parameters for H2 molecular crystal.

Explicitly, in figure 10 we display the intermolecular dependence of single-particle
parameters. For the distances ≳a a2 0 the hoppings t13 and t14 can be regarded as small on the
scale =t t12 . Hence, the system in a solid will preserve its molecular character, with no
magnetism involved even though we have nominally one electron per atom. In other words, the
lowest band will be full and no simple-minded Hubbard subband (HOMO-LUMO) picture in
the ground state appears. In figure 11 we compare the relative values of intramolecular (U,

Figure 9. The system of two H2 molecules at the relative distance a. The hopping
integrals ti are marked next to the respective dashed lines. Note that the
orthogonalization procedure for four sites produces a different basis than that obtained
in (3).
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Table 1. Numerical values of single-particle energy (ϵ), the hopping integrals ( αβt ), the on-site Coulomb repulsion U and the
intramolecular Coulomb interaction K12 for the two-molecule system; values refer to the points marked in the figure 13.

R a( )0 a a( )0 ϵ Ry( ) t Ry( )12 t Ry( )13 t Ry( )14 U Ry( ) K Ry( )12 K Ry( )13 K Ry( )14

0.715 1.43 −3.4265 −1.5534 −0.9320 0.2799 1.9210 1.2082 1.0480 0.8405
0.715 2.86 −2.9068 −1.3948 −0.2349 0.0993 1.7875 1.1386 0.6790 0.5976
0.715 4.29 −2.5229 −1.3671 −0.0499 0.0339 1.7557 1.1233 0.4674 0.4369
1.43 1.43 −3.4500 −0.8030 −0.8030 0.1023 1.8143 1.0127 1.0127 0.7514
1.43 2.86 −3.0007 −0.7504 −0.2232 0.0279 1.6903 0.9699 0.6732 0.5655
1.43 4.29 −2.6483 −0.7380 −0.0535 0.0096 1.6585 0.9587 0.4666 0.4245
2.145 1.43 −3.2344 −0.4278 −0.7651 0.0500 1.7359 0.8269 0.9858 0.6552
2.145 2.86 −2.8805 −0.4211 −0.2294 0.0013 1.6162 0.8047 0.6674 0.5223
2.145 4.29 −2.5668 −0.4185 −0.0610 −0.0019 1.5839 0.7977 0.4655 0.4056
2.86 1.43 −3.0007 −0.2232 −0.7504 0.0279 1.6903 0.6732 0.9699 0.5655
2.86 2.86 −2.7193 −0.2354 −0.2354 −0.0075 1.5712 0.6631 0.6631 0.4739
2.86 4.29 −2.4410 −0.2385 −0.0670 −0.0066 1.5383 0.6593 0.4646 0.3816
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=K K12 ) versus intermolecular (K13, K14) Coulomb interactions. Again, intramolecular
interactions dominate for ≳a a2 0. From figures 10 and 11 it follows then that in the insulating
(molecular-crystal) state, virtual hopping processes will contribute and renormalize the gap
between the full-band (valence) and the conduction-band (excited single electron) states in a
similar manner to the kinetic exchange. This gap will have the form of the Hubbard gap, as the
value of U, corresponding to the transition → +− +H H H2 2 2 2 will have the value

Figure 10. The one-particle microscopic parameters for two H2 molecules system
versus intermolecular distance a. The red dashed line marks the effective (renormalized
by ion–ion repulsion) single-particle energy per site ϵ ϵ= + ∑N R1 2i ieff . Note the
convergence of →t t12 , and →t t, 013 14 with → ∞a . The equality of t12 and t13 at

= =a R a1.430 42B 0 should be observed as well.

Table 2. The numerical values of coefficients in Taylor series of ground-state energy.
Up to the term EB

(6) all of the derivatives are calculated analytically from equation (10).
Orders seventh–ninth (marked by an asterisk) were calculated numerically due to
complicated analytical expression for ground-state energy.

( )EB
Ry

a
(1)

0

0.0

( )EB
Ry

a

1

2 !
(2)

0
2

0.430 045

( )EB
Ry

a

1

3 !
(3)

0
3

−0.464 021

( )EB
Ry

a

1

4 !
(4)

0
4

0.354 584

( )EB
Ry

a

1

5 !
(5)

0
5

−0.253 393

( )EB
Ry

a

1

6 !
(6)

0
6

0.174 863

( )E
*

B
Ry

a

1

7 !
(7)

0
7

−0.119 178

( )E
*

B
Ry

a

1

8 !
(8)

0
8

0.081 758 6

( )E
*

B
Ry

a

1

9 !
(9)

0
9

−0.056 383 7
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− ≈U K Ry0.612 , by far the largest energy in the insulating state. For the sake of
completeness, we have plotted in figure 12 the remaining interaction parameters: the exchange
integrals, intra- (J12) and inter-molecular (J13 and J14), as well as the correlated hopping
amplitudes: V12 and (V13 and V14), respectively.

In figure 14 we show the difference between the energies of the ( )H2 2
system and that of

the free molecules (per molecule):

Δ = −E
E

E
2

, (20)H

H

B
( )

2

2 2

where E ( )H2 2
is the energy of the ( )H2 2

system and = −E Ry2.295 87B is the energy of single

molecule. The equilibrium parameters are Δ = −E Ry0.011 29H2 and =a a4.5 0. Those results
are in agreement with the earlier estimates [28]. The stability of hydrogen molecular clusters
were also studied in [29, 30]; our approach coherently incorporates electronic correlations (a

Figure 11. Coulomb-interaction microscopic parameters: the on-site part (U),
intramolecular (K12), and intermolecular K13 and K14 for two H2-molecule system
versus intermolecular distance a.

Figure 12. Two-particle microscopic parameters: intramolecular spin-exchange J12 and
correlated hopping V12, as well as the intermolecular parameters J13, J14, V13 and V14 for
two H2 molecules system versus intermolecular distance a. Note that all the
intermolecular parameters converge to zero quickly.
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necessity in describing the non-polar systems) into the molecular picture, which plays an
important role in view of the existence of the minima of the ΔE a( )H2 curve [28, 29].

Figure 13. The one-particle microscopic parameters (in Ry) for the two H2 molecule
system versus intermolecular distance a and interionic distance R. Note the symmetry of
ϵ and t14. As expected for relatively small distances, values of t12 and t13 are negative
whereas t14 is positive. When approaching point (0, 0) all parameters diverge to
negative (t12 and t13) or positive (ϵ and t14) infinity. The explicit values of the marked
points are given in table 1

Figure 14. Difference between the energies of the ( )H2 2
system and that of the free

molecules (per molecule) versus intermolecular distance a. Note the van der Waals-like
behavior with the shallow minimum at =a a4.5 0. Inset: inverse atomic wave-function
size α versus a. For → ∞a , it approaches the value α = −a1.193 78B 0

1. The behavior is
similar to the one in [27].

14

New J. Phys. 16 (2014) 123022 A P Kądzielawa et al

54



6. Discussion of results and outlook

The evaluation of the global parameters of the system can be summarized as follows:

1. The H2 binding energy is = −E Ry2.295 87B . This value can be compared to the Kołos-
Wolniewicz value [21]: = −−E Ry2.349K W , which is about 2.26% lower than the value
obtained here.

2. The increase of the binding energy here is due to the zero-point motion, which is

=E Ry0.024 072 , (21)ZPM

and is of the order 1.0485% of the binding energy.

3. Whereas the bond length is here =R a1.430 42B 0 (as compared to =−R a1.3984K W 0,
which is 2.29% lower), the zero-point motion amplitude is δ = aR 0.189 028 0, a rather
large value. Note that the optimal size of the inverse orbit of the s1 component hydrogen
orbital is α = −a1.193 78B 0

1, so that the effective Bohr orbit is α≡ =−a a0.83771
0. The

Bohr orbit decrease is due to the increased binding of electron in the molecule ∼ Ry0.2932
with respect to that in the hydrogen atom. The size a is substantially smaller than that of s1
orbit ( Å1.06 ) in H atom [9].

4. The ion–electron coupling constants versus R are shown in figures 7 and 8, whereas their
values for =R RB are listed in table 3. We also provide the second-order coupling
constants values at the hydrogen-molecule equilibrium in table 4. Our first-principle
calculations allow us to claim that the coupling constant appearing in the Holstein model
[26] (ξϵ) is decisively smaller than those of the Su, Schrieffer and Heeger model [25] (ξt) as
well as of those coming from the intersite direct Coulomb interaction (ξK). This should not
be surprising, as the dominant coupling parameters represent interatomic-vibration
contributions. A separate branch is represented by phonon excitations, but their analysis
requires a construction of a spatially extended system of the molecules.

The question is to what extent the calculated local characteristics will represent their local
counterparts in the molecular-solid phase. Certainly, the phonons and the molecule-rotational
degrees of freedom will represent low-energy excitations. But the zero-point motion energy of

Table 3. The values (in atomic units) of the microscopic parameters of Hamiltonian (4)
and the electron–ion coupling constants from (15) at the hydrogen-molecule equilibrium
( =R RB and α α= B).

microscopic
paramters (Ry)

coupling constants
(Ry/a0)

ϵ −1.750 79 ξϵ
0.006 161 65

t −0.727 647 ξt
0.598 662

U 1.653 21 ξU
−0.124 934

K 0.956 691 ξK
−0.234 075

J 0.021 9085 ξJ
−0.007 463 03

V −0.011 7991 ξV
−0.000 426 452
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the whole molecule should have to be added. Will this provide a reliable description of the
molecular or atomic hydrogen even though our accuracy in determining the individual-molecule
energy is about 2% higher than the virtually exact value of Kołos and Wolniewicz [21]? One
has to check and this task is under consideration in our group. Such consideration must include
the inter-molecular hopping integrals t13 and t14. One should also note that the proper method of
treating the few-site H2-molecule system is the quantum-Monte-Carlo-method [31–33].
Nonetheless, our method evaluates both the system energetics and the wave-function
renormalization at the same time in the correlated state.

One can also extend the present model of the molecular binding by also including s2 and
p2 adjustable hydrogen orbitals in the Hilbert space of the single-particle states via the
corresponding Gaussian representation. The first estimate of the s2 -orbital contribution to
selected microscopic parameters is briefly discussed in appendix D. Their numerical values are
provided in 6. One can see that the basis extension leads to the numerically relevant corrections.
This is an additional route to follow, but only after the first-principle calculations of the solid
phase along the lines discussed here is undertaken and tested.

Very recently [34], the dynamical mean field theory (DMFT) has been applied to the H2

molecule and its accuracy tested. Our approach in this respect is much simpler, but still provides
comparable accuracy. Also, we have calculated the vibronic coupling constants, which have
been determined accurately recently [35]. Those results compare well with our estimates. This
circumstance shows again that our method forms a proper starting point for treatment of solid
molecular hydrogen, as a correlated state, at least in the insulating phase.
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Table 4. The values (in atomic units) of the second-order electron–ion coupling con-
stants ξ δ Ξ δ= Ri

2 2 2 at the hydrogen-molecule equilibrium ( =R RB and α α= B).

coupling constants
(Ry a0

2)

ξϵ
2 0.327 335

ξt
2 −0.560 426

ξU
2 0.050 4027

ξK
2 0.013 028

ξJ
2 −0.006 715 66

ξV
2 −0.010 5204
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Appendix A. Exact solution without the zero-point motion

For the sake of completeness we express the microscopic parameters defined in (5) in terms of
single-particle parameters via (2)

ϵ β γ ϵ β γ= + ′ − ′( ) t a1 2 , (A.1 )2 2 2

β γ β γϵ= + ′ − ′( )t t b1 2 , (A.1 )2 2 2

β γ γ

γ γ γ

= + ′ + ′

− + ′ + ′

⎡⎣
⎤⎦

( )
( )

U U K

V J c

1 2

4 1 4 , (A.1 )

4 4 2

2 2

β γ γ

γ γ γ

= ′ + + ′

− + ′ + ′

⎡⎣
⎤⎦

( )
( )

K U K

V J d

2 1

4 1 4 , (A.1 )

4 2 4

2 2

β γ γ

γ γ γ

= ′ + ′

− + ′ + + ′

⎡⎣
⎤
⎦⎥( ) ( )

J U K

V J e

2 2

4 1 1 , (A.1 )

4 2 2

2 2 2

β γ γ γ γ

γ γ γ γ

= − + ′ − + ′

+ + + ′ − + ′

⎡⎣
⎤⎦

( ) ( )
( ) ( )

V U K

V J f

1 1

1 6 2 1 , (A.1 )

4 2 2

2 4 2

where Ξ′ parameters are

Ψ Ψ′ = T a, (A.2 )ij i j

Ψ Ψ Ψ Ψ′ = V b, (A.2 )ijkl i j k l12

with = −▽ − − r R2 | |2 , and = − ′ r r2 | |. The single-particle parameters read

ϵ α α α′ = − − + + α−⎜ ⎟⎛
⎝

⎞
⎠R R

e a2
2

2
1

, (A.3 )R2 2

α α α

α α

′ = + −

− +

α

α

−

−

⎜ ⎟⎛
⎝

⎞
⎠t e R R

e R b

1
1
3

4 (1 ), (A.3 )

R

R

2 2 2

α′ =U c
5
4

, (A.3 )

α
α

α α′ = − + + +α− ⎜ ⎟⎛
⎝

⎞
⎠K

R
e

R
R R d

2 2 3
2

1
3

11
4

, (A.3 )R2 2 2
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α α
α

α
α

′ = + +

− +

α
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⎠

⎛
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⎠

V e R
R

e
R

e

2
1
4

5
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1
4

1
5

2
, (A.3 )

R

R3

α α α α

α α

α

′ = − − −

+ + − −

+ −

α− ⎜ ⎟⎛
⎝

⎞
⎠

)
( ( )

( )

J e R R R

R
S C S R SS R

S R f

5
4

23
10

6
5

2
15

12
5

log ( ) 2 ¯Ei 2

¯ Ei 4 , (A.3 )

R

E

2 2 2 3 3

2 2

2

where the overlaps are given by

α α= + +α− ⎜ ⎟⎛
⎝

⎞
⎠S e R R1

1
3

, (A.4)R 2 2

α α= − +α ⎜ ⎟⎛
⎝

⎞
⎠S e R R¯ 1

1
3

. (A.5)R 2 2

CE is so-called Euler constant

∑= − ≈
→∞ =

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟C

k
nlim

1
log ( ) 0.5772, (A.6)

n
k

n

E

1

and Ei(x) is the exponential integral.

∫= −
−

∞
− −Ei x e t t( ) d . (A.7)

x

t 1

Appendix B. Adiabatic-approximation details

For the sake of completeness, we also provide the explicit form of the coupling constants
ξ Ξ≡ Rd di i . For editorial purposes we calculate first the single-particle coupling constants
from (A.3a). They are

δϵ α α′ = − − +α α− − ⎡⎣ ⎤⎦( )R e e R R a2 1 2 1 , (B.1 )R R2 2 2

δ α α α′ = + − +α−t e R R b
1
3

[12 ( 5 )], (B.1 )R 3

δ ′ =U c0. (B.1 )

The corresponding derivatives of the two-particle parameters are

δ α α α α′ = − + + + +α α− − ⎡⎣ ⎤⎦K R e e R R R R d
1
3

6 6 (2 )(6 (3 2 )) (B.1 )R R2 2 2
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δ α α α α α′ = + + − + − +α α− − −⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦( )V R e R R e R R R e
1
8

5 15 6 5 5 14 16 (B.1 )R R2 3 2 2 2 2 3 3
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α α α α
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with basis mixing-parameters β and γ (see (3)) changes

δβ
β

δ=
− −

+
−

⎛

⎝
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⎞

⎠
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S S S
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4 1

1

1

1

2 1
, (B.2)
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δγ δ=
− + −S S

S
1

1 1
, (B.3)

2 2

where S is the overlap (A.4) and δS reads

δ α α= − +α− ⎜ ⎟⎛
⎝

⎞
⎠S e R R

1
3

1 . (B.4)R 2

Our final results are

ξ δβ
β

ϵ β γ δϵ γδ

β δγ γϵ

= + + ′ − ′

+ ′ − ′

ϵ
⎡⎣ ⎤⎦( ) t

t a

2 1 2

2 [ ], (B.5 )
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These parameters are displayed versus R in figures 7 and 8.

Appendix C. Zero-point motion with classical electronic interaction

We ask the question of how important it is to include the quantum nature of the electronic
interaction in our evaluation of zero-point motion energy. Let us consider, following [9], the
energy of the ions as

δ
δ

= +
+

E
P

M

e

R R2
, (C.1)ion

2 2

where δP and δR are the momentum and position uncertainties, M is ion mass and e its charge.
By expressing δP by δR via the uncertainty relation δ δ ⩾ P R2 2 3

4
2 we obtain

δ δ
= +

+


E

M R

e

R R2
, (C.2)ion

3

4
2

2

2
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which we can minimize with respect to δR. We calculate

δ = − + −⎛
⎝⎜

⎞
⎠⎟R

M
a

MR

a

1

4 2
1

1 8 2
, (C.3)

a u
0

. .

where

= − + −

+ − +

⎡⎣
⎤
⎦⎥

( )

( )

a MR MR

M R MR

1 12 2 4

2 1 9 2 . (C.4)

a u. .

15 4 3 3
1 3

We take the mass of the ion ≈M 1836.15267
a u. .

m0 and the interionic distance
= =R R a1.430 17B 0. The results are presented in the table C.1.

Appendix D. Inclusion of 2s orbitals

We would like to estimate the role of higher orbitals both for more realistic description of H2

systems and future consideration of other elements. We start by taking the s2 Slater-type orbital

Ψ
α

π
≡ α−er r( )

3
, (D.1)s s r2 2

5
s2

where α s2 is the inverse wave function size. It is obviously non-orthogonal with the s1 orbital
(1) as we have that

Ψ Ψ
α α

α α
≡ =

+
α αS

8 3

( )
. (D.2)on

s s s

s

, 1 2
3 2

2
5 2

2
4

s2

D.1. On-site orthogonalization

We perform the orthogonalization by introducing realistic orbital functions [36]

χ Ψ α=r r( ) ( , ), (D.3)s s1 1

χ Ψ α Ψ α= +A Br r r( ) ( , ) ( , ), (D.4)s s
s

s
s

2 1
2

2
2

where A and B are mixing parameters obtained via orthonormality conditions

χ χ

χ χ

=

=

0,

1. (D.5)

s s

s s

1 2

2 2

Table C.1 The values (in atomic units) of the zero-point motion energy and amplitude.
The classical electron interaction approximation versus adiabatic approximation.

δR| |0 (a0) EZPM (Ry)

classical interaction 0.0901816 0.14434
quantum interaction 0.189028 0.024072
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We can solve problem (D.5) analytically and obtain

= −
− +

=
− +

α α

α α α α α α α α α α

α α

α α α α α α α α α α
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where Son is given by (D.6) and
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+
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. (D.7)s
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s
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, 1 1 2
3 2

2
3
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D.2. Intersite orthogonalization

As χ σ s are orthogonal on-site, one can also introduce intersite orthogonalization. We introduce
the following mixing coefficients (2)

β χ γ χ= −σ σ σ σ( )w r r r( ) ( ) ( ) , (D.8)i i j

where βσ and γσ depend only on the overlap integral χ χ≡ 〈 〉σ σ σS |1 2 :

β =
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γ =
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S1 1
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2

We already have overlap S s1 (A.4).
Overlap S s2 is only a little bit more complicated

χ χ Ψ Ψ Ψ Ψ

Ψ Ψ Ψ Ψ Ψ Ψ
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D.3. Single-particle microscopic parameters

Introducing s2 orbitals provides us with four new single-particle microscopic parameters

ϵ = w w ar r( ) ( ) , (D.14 )s i
s

i
s

2
2

1
2

= t w w br r( ) ( ) , (D.14 )s i
s

i
s

2
2

1 ¯
2

= V w w cr r( ) ( ) , (D.14 )on i
s

i
s1

1
2

= V w w dr r( ) ( ) , (D.14 )inter i
s

i
s1

1 ¯
2

where ϵ s2 is single-particle energy on the s2 orbital, t s2 the hopping between s2 sites, and Von

and Vinter are hybridizations on- and inter-site respectively.
Similarly to sections appendix A and B, the exact solution is a function of Slater

microscopic parameters
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where A and B are found via (D.5), while βσ and γσ via (D.9). The Slater microscopic
parameters can be explicitly written in a form

ϵ α α α′ = + − − +α α− ( (( ) ) )
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e R e R
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3

One can obtain the exact values for the optimal inter-ionic distance = =R R 1.430 42B

and α α= = 1.193 78B . The results, together with comparison to the one-orbital case, are listed
in table D.1. Note that the new estimates are carried out for the optimal bond length and the
inverse wave-functions size for the case of s1 functions only ( = =R R 1.430 42B and
α α= = 1.193 78B , respectively).
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3.4 Paper A-4 � Combined shared and distributed memory
ab-initio computations of molecular-hydrogen systems in
the correlated state: process pool solution and two-level
parallelism

In this paper we present the computational scheme of the Exact Diagonalization � Ab

Initio Approach (EDABI) when applied to realistic hydrogen systems. In particular, we
focus on the two-level parallelization of the problem of parameterizing the Hamiltonian,
employing both shared (by means of Open Multi-Processing - OMP) and distributed (by
the Message Passing Interface - MPI) memory models. We also review why such elaborated
scheme is required by comparing the results forH2 chain with periodic boundary conditions,
both for di�erent Slater-type orbital Gaussian representation (STO-NGG) resolution NG,
with the so-called background �eld size M (the neighborhood of the site, where electronic
Coulomb repulsion, ion�ion interaction and electron�ion attraction are taken into account).

Firstly, we describe the Exact Diagonalization � Ab Initio Approach (EDABI) for a
general case, as well as present the procedure of orthogonalization of the single-particle
basis via the corresponding bilinear form problem. This approach allows for error control
for the case of in�nite systems. Then we explain in detail the computational scheme,
recognizing the calculation of microscopic parameters as the bottleneck of the problem
solution and employing the two-level parallelism: (i) the process�pool or the root�worker

solution, where the root process distributes the workload between the workers; this on the
other hand allows, (ii) the second level parallelization of the integral calculations at each
process (cf. Fig. 1 for the �owchart of the solution).

As a next step, we provide an exemplary physical system and analyze validity of the pro-
posed numerical solution. We consider the pH2q3 chain with periodic boundary conditions
within the extended Hubbard model, with the three nearest neighbor hoppings ti (Fig. 2)
and the intersite electron�electron Coulomb interaction Kij included up to the interionic
distance cut-o� rcut´off “ Ma, where M is a parameter (the so-called background �eld
size) and a is the intermolecular distance. We �nd the global minimum for a “ 4.12a0

and constant molecular bond length R “ Rfree “ 1.43042a0 (Figs. 3�5). The discussion of
the system with optimized molecular size R is the subject of paper A-5. Here, we study
the dependence of the global energy minimum on the background �eld size M (Fig. 6) and
Gaussian basis resolution NG (Fig. 7), as well as perform �nite-size scaling to determine
the e�ective values. We also perform the analysis of the proposed two-level parallelism
by calculating the so-called speed-up (SU) as a function of the number of nodes P and
compare it to the Amdahl law (Figs. 8�9). As we exchange only a small amount of data
(the values of microscopic parameters) through the Message Passing Interface, we have an
almost perfect scaling of speed-up with the increasing number of nodes and with 96.97% of
the time spent in the parallelized part of the computations, allowing utilization of the vast
amount of computational power on the TERA�ACMIN supercomputer.

As of August 3, 2015 the paper was accepted for publication in Computer Physics
Communication and is in press.
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An efficient computational scheme devised for investigations of ground state properties of the
electronically correlated systems is presented. As an example, (H2)n chain is considered with the
long-range electron-electron interactions taken into account. The implemented procedure covers:
(i) single-particle Wannier wave-function basis construction in the correlated state, (ii) microscopic
parameters calculation, and (iii) ground state energy optimization. The optimization loop is based
on highly effective process-pool solution – specific root–workers approach. The hierarchical, two-level
parallelism was applied: both shared (by use of Open Multi-Processing) and distributed (by use of
Message Passing Interface) memory models were utilized. We discuss in detail the feature that such
approach results in a substantial increase of the calculation speed reaching factor of 300 for the
fully parallelized solution. The elaborated in detail scheme reflects the situation in which the most
demanding task is the single-particle basis optimization.

PACS numbers: 31.15.A-, 03.67.Lx, 71.27.+a
Keywords: ab initio calculations, electronic correlations , quantum chemistry methods, parallelism

I. PHYSICAL MOTIVATION: EXACT
DIAGONALIZATION + AB INITIO METHOD

Electronically correlated systems are important both
from the point of view of their unique physical properties
and from nontrivial computational methods developed
to determine them. The latter cover methods based on
the Density Functional Theory (DFT) with the energy
functional enriched by the correlation terms – the on-site
repulsion U in the Hubbard model [1] and the Hund’s
rule term in the case of orbital degeneracy. Often, they
are incorporated into either DFT or the Dynamic Mean
Field Theory (DMFT) approach supplemented with the
LDA-type calculations (see e.g. [2]). On the other hand,
the Configuration-Interaction (CI) method does not suf-
fer from the well–known double counting problem[1, 2],
inherent in the DFT+U or LDA+DMFT methods. An-
other approach, similar in its spirit to the CI method, for-
mulated as a combination of the first- and second quanti-
zation (FQ, SQ respectively) formalisms was elaborated
in our group in the last decade and termed the Exact
Diagonalization Ab Intito (EDABI) approach [3, 4].
This method allows for a natural incorporation of the
correlation effects consistently by the advantages of us-
ing the SQ language so that the double-counting problem
does not arise at all. Also, by construction, it includes
the Pauli principle for the fermionic systems. In con-
trast to CI the EDABI approach avoids any direct dealing

∗ andrzej.biborski@agh.edu.pl
† kadzielawa@th.if.uj.edu.pl
‡ ufspalek@if.uj.edu.pl

with the many–body wave function expressed via a linear
combination of the Slater determinants [5]. Instead, it is
based on the many–particle quantum states constructed
in the occupation number representation [5] – standard
procedure for the SQ formulated problems.

The application of EDABI was found promising in
view of research devoted to the hydrogen molecular sys-
tems with inclusion of interelectronic correlations [6],
nano-clusters [7], and to atomic hydrogen metallization
[8]. As the many–particle state is explicitly written in
the occupation-number representation (Fock space), the
starting Hamiltonian is formulated in the SQ language.
Electronic correlations are then automatically included
in the modeled system. However, in the Hubbard–like
starting Hamiltonians [9–12] the knowledge of micro-
scopic parameters, such as the on-site energy, the inter-
site hoppings, and the Coulomb repulsion magnitudes are
regarded as input information. These parameters are of-
ten estimated indirectly. With this limitation, specific
phase-diagrams are constructed and the phase bound-
aries of interest are determined as a function of those mi-
croscopic parameters which are not directly measurable
(cf. e.g. [13–15]). In EDABI we take a different route:
relatively simple and small systems are to be described
consistently in the sense that the microscopic parameters
are obtained explicitly as an output of an appropriate
ab-initio variational procedure. Therefore, the EDABI
approach should be regarded as an ab–initio method but
with the single-particle wave functions being determined
self-consistently in the correlated state. In this manner,
the problem solution is reversed with respect to that in
either LDA+U or LDA+DMFT. Namely, we first formu-
late the Hamiltonian and diagonalize it in SQ formalism
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and determine the single-particle wave function only as
a second step. However realistic, such an approach to
the electronically correlated systems implies a substan-
tially greater computational complexity, since the varia-
tional optimization consists of (i) microscopic parameters
calculation and (ii) concomitant Hamiltonian-matrix di-
agonalization. We address here the issue (i) presenting
how the modern High Performance Computing (HPC)
cluster architecture can be utilized in the context, where
the number of microscopic parameters is substantial if
not large, and their calculation is one of the potential
bottlenecks in the whole computational procedure. We
also provide an example how a many-body problem at
hand may be supplemented with the two-level parallelism
in an intuitive manner. We do not discuss either the
methodology related to the point (ii) or to its algorith-
mic aspect or else, to technical opportunities provided by
e.g. recent fast development of Graphic Processing Units
(GPU) computational techniques that are also in the area
of interest [16, 17]. Nonetheless, as it becomes clear be-
low, heterogeneous solutions are also easily applicable in
our scheme.

The structure of the paper is as follows. In Sec. II we
describe briefly the EDABI method (cf. Appendix A for
details) and emphasize the computational complexity as-
pects. Next, in Sec. III, we show how the process–pool
concept enhanced by the two-level parallelism forms a
natural solution. In Sec. IV we present the outcome of
its implementation: results of calculations carried out for
(H2)n exemplary system and discuss the achieved speed–
up when compared to the reference single CPU computa-
tions. In Appendix B we discuss the convergence of our
model for the case of infinite systems.

II. COMPUTATIONAL METHOD - EDABI

As stated in the foregoing Section, the computational
method considered here is based on the EDABI method,
comprehensive description of which can be found e.g. in
[3]. It allows for consideration of realistic, electronically–
correlated nanosystems within the framework of the com-
bined first– and second-quantization formalisms. Below
we sketch this method (for details see Appendix A).

A. Second-quantization aspect

For the purpose of calculating the ground-state energy
of given system we start with the second-quantization
language [5, 18–20]. We introduce the fermonic anihila-
tor(creator) ĉ(†)iσ algebra by imposing the anticommuta-
tion relations among them, namely

{ĉ†iσ, ĉ†jσ′} ≡ {ĉiσ, ĉjσ′} ≡ 0 and {ĉ†iσ, ĉjσ′} ≡ δijδσσ′ ,

(1)

where i and j denote sites (nodes) of a fixed lattice,
σ, σ′ = ±1 are the spin quantum number, and the anti-
commutator is {A,B} ≡ AB +BA.

We represent the many-particle basis states {|Φk〉} on
the lattice of Λ sites in the Fock space [19] in the following
manner

|Φk〉 =
∏

i∈Ω↑k

ĉ†i↑
∏

j∈Ω↓k

ĉ†j↑ |0〉 , (2)

where Ω↑k and Ω↓k are the subsets of sites occupied by
fermions with Λ↑ and Λ↓ particles respectively, and |0〉
is the vacuum state (with no particles), with 〈0| 0〉 ≡ 1.
Explicitly,

|Φ〉 = |0, 1, . . . , 1〉︸ ︷︷ ︸
spin ↑

⊗ |1, 0, . . . , 1〉︸ ︷︷ ︸
spin ↓

= (3)

=ĉ†2↑ · · · ĉ
†
Λ↑ĉ
†
1↓ · · · ĉ

†
Λ↓ |0〉 .

With this concrete (occupation-number) representation
of an abstract Fock space we define next the microscopic
Hamiltonian of our interacting system of fermions.

B. Definition of the physical problem

We take the real-space representation with the starting
field operators in the form

Ψ̂σ(r) =
∑

i

wi(r)χσ ĉiσ, (4)

where wi(r) is the single-particle wave function for
fermion (e.g. electron) located on i-th site, χσ is the spin
wave function (σ = ±1) with global spin quantization
axis (z-axis). In general, the many-particle Hamiltonian
is defined in the form

Ĥ =
∑

σ

∫
d3rΨ̂†σ(r)Ĥ1(r)Ψ̂σ(r) (5)

+
1

2

∑

σσ′

∫∫
d3rd3r′Ψ̂†σ(r)Ψ̂†σ′(r

′)V̂ (r− r′)Ψ̂σ′(r
′)Ψ̂σ(r),

where Ĥ1 is the (spin-independent) Hamiltonian for a
single particle in the milieu of all other particles and
V̂ (r − r′) is the interaction energy for a single pair. For
the modeling purposes we assume that Ĥ1 is expressed
in the atomic units (~ = e2/2 = 2me = 1, where e is the
charge of an electron and me is its mass) and expresses
the particle kinetic energy and the attractive interaction
with the protons located at {Ri}, i.e.,

Ĥ1(r)
a.u.
= −∇2 −

NS∑

i=1

2

|Ri − r| , (6)

where NS is the number of sites, whereas

V̂ (r− r′)
a.u.
=

2

|r− r′| , (7)
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represents the Coulomb repulsive interaction between
them. Substituting (4) into (5) we obtain the explicit
second-quantized form of the Hamiltonian [5, 20] i.e.,

H =
∑

ij

∑

σ

tij ĉ
†
iσ ĉjσ +

∑

ijkl

∑

σ,σ′

Vijklĉ
†
iσ ĉ
†
jσ′ ĉlσ′ ĉkσ, (8)

where tij and Vijkl are integrals associated with the one-
and two-body operators respectively

tij ≡
〈
wi(r)

∣∣∣ Ĥ1

∣∣∣wj(r)
〉

(9a)

=

∫
d3r w∗i (r)Ĥ1(r)wj(r),

Vijkl ≡
〈
wi(r)wj(r

′)
∣∣∣ V̂
∣∣∣wk(r)wl(r

′)
〉

(9b)

=

∫∫
d3rd3r′ w∗i (r)w∗j (r′)V̂ (r− r′)wk(r)wl(r

′).

The first term contains the single-particle part composed
of the atomic energy εi ≡ tii, as well as expresses the
kinetic (hopping) part with tij (i 6= j) being the so-
called hopping integral. The second expression contains
intraatomic (intrasite) part of the interaction between the
particles (Ui ≡ Viiii – the so-called Hubbard interaction),
and the intersite (interatomic) interaction (Kij ≡ Vijij –
the last important term for the purposes here). A remark
is in place here: when the single-particle basis {wi} is as-
sumed as real, the last two two-body interaction terms
are the exchange-correlation energy (Jij ≡ Vijji) and the
so-called correlated hopping (Vij ≡ Vijjj).

The Hamiltonian (5), with inclusion of all the two-
site terms only, can be rewritten in the following form,
with the microscopic parameters contained in an explicit
manner, i.e.,

Ĥ =
∑

i,σ

εin̂iσ +
1

2

∑

σ,i 6=j
tij ĉ
†
iσ ĉjσ +

1

2

∑

i,σ

Uin̂iσn̂iσ̄ (10)

−
∑

i 6=j
JijSi·Sj +

1

2

∑

i6=j

(
Kij −

Jij
2

)
n̂in̂j

+
∑

i 6=j
Jij ĉ

†
i↑ĉ
†
i↓ĉj↓ĉj↑ +

∑

σ,i 6=j
Vij n̂iσ

(
ĉ†iσ̄ ĉjσ̄ + ĉ†jσ̄ ĉiσ̄

)
.

The basis
{
wi(r)

}
α
in (4) needs to be orthonormal, i.e.

orthogonal and normalized to unity. In the next Section,
we describe how to construct the basis satisfying this con-
dition. In summary, by solving (diagonalizing) Ĥ we un-
derstand finding the optimal many-particle configuration
with a simultaneous single-particle basis {wi(r)} deter-
mination. Typically [13–15, 21], the parameters εi = ε,
tij , U , Kij are regarded as extra parameters. Here we
calculate them explicitly along with the diagonalization
in the Fock space at the same time.

C. Basis orthogonalization as a bilinear problem

We require the orthonormality of the set of the single–
particle wave functions {wi(r, α)}, i.e., set the conditions

〈wi(r)| wj(r)〉 ≡ (11)∫

R3

d3r w(r−Ri)w(r−Rj) = δij ,

where δij is the Kronecker delta. Note that α will play a
role of variational parameter specifying the way of con-
structing the basis (cf. Sec. IID). Namely, the single–
particle wave functions (Wannier functions) are approx-
imated by a finite linear combination in a selected set.
These wave functions describe the single-electron states
centered on every atomic/ionic site, i.e., at positions{
Ri

}
. Such approach is related to the tight-binding ap-

proximation (TBA [22]), where the atomic orbitals com-
posing wi are represented by e.g. the Slater-type orbitals
(STO). For the purpose of the present model analysis,
only the 1s Slater functions are taken into account, i.e.,

ψi (r) ≡
√
α3

π
e−α|r−Ri|, (12)

where α is the inverse wave-function size. Similarly to
[23], for each position i we construct linear combination

wi (r) =
L∑

j=0

βjψ̃πi(j) (r) , (13)

where {βj} compose a set of (L+ 1) mixing coefficients,
and πi : {0, . . . , L} → Ni, is the function mapping in-
dexes to the neighborhood Ni of the site (node) i located
at Ri.

Note that in general ψ̃πi(j) may be a sum over Slater
functions in the neighborhood, which varies the number
of β coefficients and the number of nodes in the neigh-
borhood Ni. This circumstance does not influence the
discussion, but is of crucial importance when the scheme
is implemented numerically. Also, the new basis {wi(r)}
is orthogonal in the neighborhood Ni.

We are looking for the set of {βj}, orthonormaliz-
ing the basis {wi(r)} for given geometry (effectively de-
scribed by set of ionic coordinates Ri) and for the arbi-
trary inverse wave-function size α. In order to achieve
this we replace the original problem ∀j ∈

{
πi(k)

∣∣k ∈
{0, 1, . . . , L}

}

∫

R3

d3r wi (r)wj (r) = δij (14)

with the equivalent set of bilinear equations

βT
i
Sijβj = δij , (15)
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where

β
i
≡




βπi(0)

βπi(1)

...
βπi(L)


 , (16)

and the overlap integrals are

(Sij)lm ≡
∫

R3

d3r ψ̃πi(l) (r) ψ̃πj(m) (r) , (17)

with (Sii)ll = 1. For given geometry and the inverse
wave-function size α we solve the system (15) numeri-
cally.

The computation of the two-body integrals (cf.
Eq. (9b) ) must be performed in a general case numeri-
cally (see e.g. [7] and citations therein). Therefore, STO
are usually approximated by their expansion in the so-
called Gaussian basis, namely

ψi (r) ≈ α3/2
NG∑

a=1

(2α2Γ2
a

π

)3/4

e−α
2Γ2

a|Ri−a|2 , (18)

withNG being the parameter describing number of Gaus-
sian functions taken into account and the adjustable set{

Γa
}
is obtained through a separate procedure [7]. Exact

or approximate ground state properties (i.e. ground state
energy, structural properties, electronic density, etc.) are
obtained when the eigenstate corresponding to the lowest
many-particle eigenvalue is determined with the diago-
nalization performed in the Fock space. In the context
of EDABI, exact methods were successfully applied, e.g.,
the Lanczos [16] algorithm for the matrix diagonalization,
executable for nanosystems [4, 6, 7].

Although originally EDABI was formulated for finite-
size systems, the scheme can be regarded as a general
variational procedure. According to its generic charac-
ter, it is applicable in combination with another corre-
lation oriented approach, dedicated to the approximate
Hamiltonian diagonalization. As an example, the bulk
systems with proper translational symmetries were ana-
lyzed [8, 24], based on the modified Gutzwiller Approx-
imation (SGA). One may incorporate other diagonaliza-
tion schemes applicable to the EDABI method. Here we
consider only the scenario, according to which diagonal-
ization in the Fock space is performed exactly – i.e., the
Hamiltonian matrix is generated with the help of basis
(2) and diagonalized in terms of iterative (e.g. Lanczos)
numerical algorithm.

D. Optimization procedure and computational
complexity

The set {wi(r, α)} describes the system in question:
the interaction parameters {Vijkl} and intersite hoppings
{tij}. On the other hand, there are independent pa-
rameters

{
α,
{
Ri

}}
, where

{
Ri

}
together with α form

the multidimensional optimization space. The EDABI
method is based on the variational principle within which
the single-particle wave functions at given atomic con-
figuration

{
Ri

}
are optimized to determine the ground-

state energy of the correlated system. From the computa-
tional point of view, four main tasks are to be performed
in a single iteration, i.e., for a given trial value of α:

1. Single particle basis ortonormalization - solution of
L+ 1 dimensional bilinear set of equations.

2. Computation of the one-body microscopic param-
eters - scaling as O

(
L2N2

GNS
)
.

3. Computation of the two-body microscopic param-
eters - scaling as O

(
L4N4

G

)
.

4. Hamiltonian diagonalization - dependent on the se-
lected approach (exact, mean-field, Gutzwiller Ap-
proximation, etc.).

The tasks corresponding to 2 and 3 are central to the
subsequent considerations. While for relatively simple
models, such as one band Hubbard model, there are
only three integrals to compute (the nearest-neighbor
hopping, the atomic reference site energy, and the on-
site electrostatic repulsion), this is not the case in the
situation, in which a more complicated Hamiltonian de-
scribes our system. The extended Hubbard model (see
Sec. IV), where the non-local electron-electron interac-
tions are taken up to some cut-off distance, is associated
with the increasing number of the two–body integrals to
be computed. However, also for the multiband Hubbard
model case, the number of hopping integrals increases as
O(N2

b ), where Nb is the number of bands. Therefore, an
effective scheme allowing to obtain – possibly quite large
– set of microscopic parameters in a run–time, is desired.
In the following Section we propose an explicit solution
of this last issue.

III. PROCESS-POOL SOLUTION AND
TWO-LEVEL PARALLELISM

As we said above, the standard task is to diagonalize
Hamiltonian (5) defined in the Fock space (occupation-
number representation). This means, to determine the
ground-state energy for given values of the microscopic
parameters: εi, tij , Ui, and Kij (in general, Jij and Vij
as well). The principal work we would like to under-
take here is to determine the renormalized wave functions
{wi(r)}i=1,...,N in the resultant (correlated) ground state.
The first aspect of the whole problem presents itself as
an equally important part, as only then the ground state
configuration of our system can be defined physically, i.e.,
as a (periodic) system with known lattice parameter (in-
terionic distance). In the remaining part both aspects of
the optimization problem are elaborated together with
concomitant technical details provided.
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A. Optimization loop

We focus our analysis according to the scenario that
the computational time spent on the diagonalization in
the Fock space is negligible when compared to the calcu-
lation of the two-body integrals appearing in the calcu-
lation of microscopic parameters. For the sake of clarity,
let us rewrite Hamiltonian (8) in more compact form

H =
∑

m

∑

ij

Ξm;ijÔm;ij , (19)

where Ξm;ij ∈ {εi, tij , Ui,Kij , Vij , Jij} and Ôm;ij sym-
bolizes the operator part, e.g., Ôt;ij =

∑
σ ĉ
†
iσ ĉjσ. One

should note that the parameter set Ξm;ij must be cal-
culated in each iteration step during the optimization
procedure. Computation of the microscopic parameters
can be performed independently which in turn provides
an opportunity for its acceleration by means of the par-
allelism application.

Let us consider some generic optimization procedure
OP (

{
Ri

}
) returning the minimal energy at given accu-

racy, as a function of structural parameters. In OP the
system energy is sampled as a function of α so we denote
it as EG(α). Taking into account that ∇αEG(α) is not
obtainable in general case, the optimization scheme en-
coded in OP relates to a non-gradient method, e.g., the
golden–search for the one-dimensional case. The com-
putation of EG(α) (sampled by OP ) consists of calcula-
tion of {Ξm;ij} combined with the Hamiltonian matrix
diagonalization. Within our approach, the computation
speed–up is achieved by implementing the process-pool
or the root–worker processes. This solution might be re-
garded as a thread–pool pattern, but constructed within
the framework of the distributed memory model. Work-
ing threads are replaced by the processes – let us call
them workers – which may communicate by the utiliz-
ing the Message Passing Interface (MPI) – as it is done
in our implementation. Workers remain in the infinite
loop, monitoring signal from the root process which in
turn is responsible for the job triggering and synchro-
nization. It can also participate in the calculations – in
our case it performs matrix diagonalization. Depending
on what kind of signal is sent (in certain protocol es-
tablished for the communication purposes between work-
ers and root) workers: (i) wait, (ii) start to compute,
(iii) break and exit from the loop. Since (ii) might be
considered as a generic task, one can see that proposed
approach is extendable to include diagonalization – e.g.,
if one deals with the big block–diagonal matrices, each
block could be diagonalized independently by the worker
processes. Process–pool is supposed to be efficient as-

suming that the following principal condition is fulfilled:
the task performed by each of the worker processes (or
at least by most of them) is computationally the most
expensive part, particularly if it shadows the communi-
cation latency.

Each process in the process-pool may utilize – if there
are available resources – shared memory model. Thus
the solution benefits from two-level parallelism, where
worker–process parent thread forks into working threads,
allowing in turn to perform each task faster (integral
computation in this context). In our case the elements
from the set {Ξm;ij} are distributed into the sub-sets
Ip = {Ξm;ij}p where p denotes the processor id. The
Ip relate to task stack assigned to p-th process. The
sub-sets construction should be performed carefully to
keep well-balanced workload on processor, e.g. providing
equal distribution of the integrals calculation among Ip.
The process-pool consists of P + 1 processes, P of them
are workers and one – as mentioned – is a root. As follows
from the scheme (cf. Fig. 1), process-pool is applied to
the EDABI optimization loop. The OP procedure per-
forms α space sampling along non-gradient optimization
scheme. Each trial–EG computation demands parame-
ters update and integrals calculations. The latter one
exploits parallelism at two levels. Each of P processes
computes integrals grouped in its assigned Ip subset and
each of the two–body integral is calculated in the nested
(fourth times) loops which are collapsed in terms of the
utilization of the openMP framework. The whole com-
putation originates from the need to determine the two-
body integrals (9b) which are expressed as

Vijkl = 〈wiwj |V|wkwl〉 = (20)

=
∑

pqrs

βpβqβrβs〈ψ̃πi(p)ψ̃πj(q)|V|ψ̃πk(r)ψ̃πl(s)〉 =

=
∑

pqrs

V pqrsijkl ,

where ψ̃ represents the Gaussian contraction. Ele-
ments V pqrsijkl are computable independently; therefore
Vijkl is obtained with the help of openMP reduction
clause. Computed integrals are gathered in a single ar-
ray in terms of MPI_Gather function or optionaly of
MPI_Allgather if necessary (which potentially may in-
crease communication latency). Then, Hamiltonian ma-
trix is updated with the proper values and the diago-
nalization step starts. As an output of diagonalization,
the trial EG is computed and processed in OP . Our
implementation bases on MPI and openMP, though its
scheme is generic and might be implemented by means of
any of known technologies or self–made implementations
as well.
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FIG. 1. Process-pool solution applied for the optimization procedure (OP ) in the context EDABI method.

FIG. 2. (H2)n molecular chain, its parametrization with
possible hoppings from/to central (blue) molecule. Green
molecules are included as the background field related to the
system by the periodic boundary conditions.

IV. EXEMPLARY SOLUTION: MODEL OF (H2)n
CHAIN

We test our solution by means of analysis performed
for the chain consisting of n = 3 hydrogen molecules
stacked at intermolecular distance a, with the molecule
bond-length R, and the tilt angle θ. We regard this
configuration as a part of periodic system (cf. Fig. 2).
Hydrogen molecular chains are interesting in view of the
crucial role of electronic correlations in the molecules and
related low-dimension systems [3, 6, 7]. The stability of
the hydrogen molecular system was studied by means
of variety of methods, e.g. DFT [25] or Self-Consistent
Field (SCF) [26, 27], also in the context of the existence
of superfluidity [28].

We discuss the molecular hydrogen chain within the
so-called extended Hubbard model. This means that the
interactions associated with the different atomic centers
(Kij) are taken into account. Eventually, the electronic
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FIG. 3. Ground state energy (per atom) for (H2)3 molecular
chain as a function of the intermolecular distance a. Note
the convergence to analytical solution [6] for the separate free
molecule limit when a→∞.

part of Hamiltonian, with the ion-ion interaction explic-
itly included, can be rewritten then as composed of the
three parts:

HHubb =
∑

i

εin̂i +
∑

ijσ

tijc
†
iσcjσ + U

∑

i

n̂i↑n̂i↓, (21a)

Hext = HHubb +
1

2

∑

ij

Kij n̂in̂j , (21b)

Htot = Hext +
1

2

∑

ij

2

|Ri −Rj|
= Hext + Vi−i, (21c)
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FIG. 4. Inverse atomic orbital size α versus the intermolecular
distance a. Note the convergence to the analytical solution
[6] for the separate free molecule limit when a→∞.

where the first two terms in (21a) represent the single-
particle energy with all possible hoppings tij (to the
fourth nearest neighbor, see Fig. 2) and are calculated
with respect to the background field (see Sec. IVA for
details), U is on-site Coulomb repulsion (Hubbard term),
Kij are intersite Coulomb repulsive interactions between

supercell and the background sites (see [7] and Ap-
pendix B for details), Vi−i is the proton–proton repul-
sive interaction. Despite its relative simplicity, the sys-
tem exhibits non–trivial properties. However, as we fo-
cus mainly on the computational aspects, we present here
only the basic physical properties. Computational per-
formance tests of our solution are undertaken for arbi-
trarily chosen molecular bond–length R = 1.43042(a0),
corresponding to the equilibrium value obtained by us
previously for a single H2 molecule [6]; also θ = π/2. The
total number of electrons is equal to the number of atomic
centres (6 for n = 3). We test EG against the varying
intermolecular distance a (as shown in Fig. 3) obtaining
the van der Waals-like behavior of the total energy, as
expected [3, 7, 26, 27]. The single (spatially separated)
H2-molecule ground-state energy is reproduced asymp-
totically for a → ∞, as marked in Fig. 3. For the sake
of completeness, we present in Fig. 4 the inverse atomic
orbital size α. In Fig. 5 we plot the contours of the elec-
tronic density n(r) as the cross–section on the X − Y
plane close to the configuration related to the minimal
value of EG. A very important feature of this solution
worth mentioning is that as a diminishes and approaches
R we observe a discontinuous phase transition from the
molecular to the atomic states, but this feature of the
results are discussed elsewhere [29]. Also, the minimum
energy provides a stable configuration against the disso-
ciation into separate molecules (cf. Fig. 3).

R= 1.43042 (a0) a= 4.1 (a0) θ= π/2
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0
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 0.2
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 0.4

 0.5

n
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)

FIG. 5. Electronic density n(r) projected on X − Y plane
of the aligned H2 molecules for the intermolecular distance
close to the equilibrium value (marked by the vertical dashed
line in Fig. 3). The values of the structure parameters are
specified.

A. Convergence study

We have performed the convergence study to obtain
parameters suitable for the speed–up analysis of the im-
plemented approach. There are two most important com-

ponents playing crucial role: number of Gaussian func-
tions NG taken in contraction (18) and the size of peri-
odic background–field of the super-cell. The former does
not require additional comment; it is not the case for
the latter. With the periodic boundary conditions being
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imposed, a proper cut–off distance for the interactions
must be also established. The atomic energy ε0 becomes
in general lower when a larger number of ionic centers are
taken into account (i.e., the larger cut–off distance), then
the contribution from the electron–ion becomes stronger.
On the other hand, analogical in nature but opposite in
sign effects originate from the Coulomb ion–ion and the
electron–electron repulsions. In the limit rcutoff → ∞
both contributions cancel each other, as discussed in the
context of EDABI in [30] and, for the sake of complete-
ness, in Appendix B. One may note that the just de-
scribed behavior is similar to the cancellation effect ob-
served in the jellium model [31]. We define M as cut–off
parameter, describing the size of background field as:

M =
rcutoff
a

(22)

In Fig. 6 we plot the system total energy as a function
of intermolecular distance, close to the energy-minimum
configuration. It is clear that if smaller cut–off distance
is selected, the energy is underestimated. If cut–off was
chosen to be ≥ 150a, the consecutive energies differ by
less than the assumed numerical error in Lanczos ma-
trix diagonalization procedure (i.e. 10−4Ry ∼ 1meV ).
Therefore, further calculations were carried out for M =
250, what results in 510 integrals to be calculated after
reductions caused by the system symmetries. As it fol-
lows from Fig. 7, NG = 9 is the number of Gaussians,
when the energy becomes convergent, therefore the sub-
sequent analysis corresponds to NG = 9 and M = 250.

B. Strong scaling for MPI+openMP solution

Taking into account that we have one electron per
atomic center in a two band system (molecule consists of
two hydrogen atoms), construction of the basis for three
molecules leads to 924 basis states. The diagonalization
in terms of the iterative algorithm – in this case Lanczos
– is not a challenge, especially if only the lowest eigen-
value is desired. A remark is necessary here: system de-
scribed by substantially larger Hamiltonian matrices can
also be treated efficiently in the framework of the elab-
orated scheme. However, more sophisticated approaches
(cf. Sec. IIIA) or approximate methods are then indis-
pensable. Therefore, the example we provide, fulfills the
requirement concerning the ratio of diagonalization to in-
tegration time. The latter is supposed to be the bottle-
neck during the execution of the optimization procedure.
We investigate the speed-up (SU) defined as

SU(P,X, Y ) =
TY (P = 1)

TX(P )
, (23)

with T denotes time spent on the computation and

X,Y ∈ {I, II,∅}, (24)

where first two symbols correspond to parallelism based
on the application of openMP and openMP+MPI respec-
tively and ∅ is associated with sequential solution. The
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FIG. 6. Convergence study: a) ground-state energy EG ver-
sus intermolecular parameter a close to the minimum for the
different background field sizeM ; b) limit of EG forM →∞;
c) limit of the optimal intermolecular parameter aB (mini-
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finite-size scaling analysis.
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calculations were performed for the energy optimization
at given ion configuration, close to the energy minimum,
allowing to collect CPU time consumed by OP . The
measurement were covered on HP server consisting of
96 computational nodes each supplied with the two 8–
cored Intel Xeon e5-2670 2.60GHz processors. The main
board supported SMP exposing one logical 16–core pro-
cessor per node thus P refers to the number of SMP
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nodes. Physically, the communication among nodes was
provided by the InfiniBand 4X QDR interface. The
SU(P, II, I) (Fig. 8) exhibits Amdahl law–like behaviour
[32]. This law states that speed–up limit in the strong–
scaling regime can be described in terms of the following
formula

SU(P ) =
1

1− f + f
P

, (25)

where f is the part of the program susceptible for the
parallelization. The value of f was found by means of
fit the Amdahl’s law to the obtained data. Approximate
value of f comes directly from the fit (see Fig. 8 for de-
tails) and maximal SU can also be estimated by

SUmax ≈ lim
P→∞

SU(P ). (26)

We found f ≈ 0.97 and SUmax ≈ 33, which confirms
suitability of the application of our scheme. However,
for the sake of completeness, we investigated the Gaus-
sian number threshold associated with the process–pool
solution efficiency.

C. Number of Gaussians and Efficiency Threshold

As mentioned above, the efficiency of the process-pool
solution depends on the workload assigned to each of the
process in the pool. Notably, NG and the total number
of integrals (associated with M (22)) are the most im-
portant factors, influencing robustness of the proposed
approach.

We have performed measurements of computation time
as a function of NG for a different number of P (see
Fig. 10). For large number of Gaussians the optimiza-
tion time has a universal scaling T ∼ Np

G, with p ≈ 4,
meaning that the two-particle integrals (20) are the most
computationally expensive, as expected.

Following [33] we introduce the extended-Amdahl law
to include potential communication overhead. In our
case, the potentially most time-consuming (among MPI
communication routines used) MPI_Gather routine
scales lineraly with P . Taking this into account the
speed–up can be approximated by the following formula

SUcomm(P, Y,X) =
1

1− f − δ + f
P + δP

, (27)

where δ is constant to be determined. We performed fit
of (27) to the speed–up as a function of P for NG ∈
{3, 5, 7} as we show in Fig. 9. As expected f decreases
with decreasing NG, but δ < 10−4 even for NG = 3.
This value is negligible for the reasonable P (the number
of integrals is the upper bound) for any f . The lack
of the communication overhead originates not only from
the utilization of InfiniBand interface and linear scaling
of the communication routine, but also from the small
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amount of data sent by each process to the root (e.g.
∼ 80B for P = 50). Hence the deviation from linearity
for higher values of P (see Fig. 10) comes from breaking
the principal assumption:
For the lower numbers of Gaussians, the time of diagonal-
ization (performed sequentially) becomes comparable or
greater to that consumed by the integrals computations.

The analysis performed above allows to describe the
boundaries where the proposed solution is effective. How-
ever, from the users perspective the most compelling
feature is the absolute speed-up SU(P, II,∅), as it is
the metric for the time save. In the next paragraph we
present this result.
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ideal case p = 4, where whole time is spent on calculating
two-body integrals (20). As one-body integrals have p = 2,
values tend to drift from 4.

D. Absolute Speed-up

Whilst analysis of the speed–up in strong scaling
regime allowed us to investigate the efficiency gain in
terms of a number of processes engaged in computation
it is interesting and important to answer what is the abso-
lute acceleration SU(P, II,∅). Obviously, this quantity
still depends on P . In Tab. I we show the values of the
speed-up (23) for different number of nodes P . The ex-
tremal case (P = 56 with both levels of parallelization)
the speed-up

SU (56, II,∅) = 303.418. (28)

However, even for the lower number of SMP nodes (P )
the absolute speed–up is excellent. For the sake of com-
pleteness, we retrieved the acceleration associated with
openMP utilization (fourth column in Tab. I). As each
SMP node consisted of 16 cores the number of active
threads was the same. We obtained SU(P, II, I) by
means of the identity

SU (P, II, I) =
SU (P, II,∅)

SU (P, I,∅)
. (29)

We found good speed–up ratio ∼ 13 (while the upper
bound is 16) coming from collapsing of nested loops (20).

V. CONCLUSIONS

We have presented an effective computational ap-
proach related to the EDABI method - quantum–

TABLE I. Values of the speed-up (SU) for one– and two-level
parallelism for the different number of nodes P.

P SU(P,I,∅) SU(P,II,∅) SU(P,II,I)
2 1.866 25.304 13.561
6 4.969 67.382 13.561

12 8.288 112.391 13.561
18 11.479 155.656 13.561
24 14.174 192.207 13.561
30 16.870 228.763 13.561
36 16.779 227.531 13.561
42 19.026 258.007 13.561
48 19.085 258.811 13.561
56 22.375 303.418 13.561

mechanical approach allowing to treat the electronic cor-
relations in a consistent manner. This means that we
combine the second-quantization aspect (evaluation of
energies for different many-particle configurations) with
an explicit evaluation of the renormalized wave func-
tions (first-quantization aspect) in the resultant corre-
lated many-particle state. The number of microscopic
parameters that are necessary for description of the phys-
ical system can be meaningful in many cases. Hence,
their computations become challenging as an effect of
numerical complexity caused by the vast number of in-
tegrations to be performed (9). Here we have addressed
in detail the part of the whole problem that is associ-
ated with the single-particle basis optimization. We have
proposed the scheme based on the process–pool concept
enhanced by the two–level parallelism, and test it uti-
lizing self–made generic implementation [34] configured
for the specific computational problem – (H2)n chain.
The proposed approach is intuitive and has allowed us
to speed up the calculations significantly (of the order of
102) while preserving its generic character. Employing
process–pool solution to other systems is then straight-
forward.

Since the considered physical example serves as an il-
lustration of the elaborated scheme capability, one may
consider engaging it to a wide class of computationally
advanced physical problems tractable within the frame-
work of EDABI or similar methods. Such problems cover:

• lattice vibration (phonon) spectrum via the
so-called direct method (where all but few symme-
tries are lost, increasing the number of integrals
dramatically – from 510 to over 10 000 for (H2)n
chain);

• calculation of the electron–lattice coupling pa-
rameters in direct space;

• electronic structure calculations of the realistic
two– and three-dimensional atomic and molec-
ular crystals (e.g. hydrogen, lithium hydride),
where both the number of atomic orbitals and the
background field increase essentially.
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Neither form of the starting Hamiltonian nor the diag-
onalization scheme choice is essential for the applicabil-
ity of the method, allowing us to incorporate other ap-
proaches such as the Gutzwiller approximation [8, 15, 21]
or Gutzwiller Wave Function - Diagramatic Expansion
[35] to study molecular and extended spatially systems.
In this manner, one can address e.g. the fundamental
question of metallization in correlated systems [36, 37]
with the explicit evaluation of an model parameters. So
far we have been able to solve exactly the chain with
N = 3, 4, 5, and 6 molecules and the results are of simi-
lar type [29]. The finite-size type of scaling on the basis
of these results requires additional analysis.
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Appendix A: EDABI method: A brief overview

The Exact Diagonalization Ab Initio (EDABI) ap-
proach combines first- and second-quantization aspects
when solving the many-particle problem as expressed for-
mally by its Hamiltonian.

The starting Hamiltonian (8) contains all possible dy-
namical processes starting from two-body interaction
V (r− r′) in the coordinate (Schrödinger) representation.
Its version (10) is already truncated and limited to two-
state (here two-site) terms, i.e., the three- and four-site
terms have been neglected. The rationale behind this
omission is that, as shown elsewhere [3, 4], already the
two-site terms (matrix elements) ∼ Jij and Vij are much
smaller than those ∼ U and Kij . Parenthetically, all the
terms are taken into account in the starting atomic basis
composing the Wannier function. Nonetheless, there is
no principal obstacle in including all those terms in the
case of the small systems considered here.

The second characteristic feature of EDABI is the
single-particle basis optimization which composes the
main topic of this paper. If the basis defining the start-
ing Wannier-function basis were complete (i.e., L → ∞
in Eq. (13)), then no basis optimization is required and
an exact solution is achieved. However, as our basis {wi}
is incomplete one, in our view, we are forced to readjust
the basis so that the system dynamics (correlations) are
properly accounted for. This introduces a variational as-
pect to our solution, since we introduce a variable wave
function size, adjustable in the interacting (correlated)
state. This very feature represents one of the factors
defining the method. Such adjustment is also reasonable

from a physical point of view, as the single-particle or-
bital adapts then itself to the presence of other particles
(electrons). In other words, the correlations induced by
the predominant interaction terms (∼ U and Kij) influ-
ence the size and shape of the states {wi(r)}. This means
that the orbitals get renormalized in the process of the
correlated state formation. Nonetheless, it is not a priori
determined that negligence of the higher virtually excited
states in the expansion (13) is minimized is such a man-
ner. This should be tested and is one of the subjects of
our current research. This is not the primary topic of
this paper so we shall not dwell upon it any further here.

Note also that by selecting the diagonalization of
many-particle Hamiltonian in the second-quantized form,
one avoids writing the many-determinantal expansion of
the multiparticle wave function, as is the case in the
CI methods. However, out of our formulation one can
obtain the function Ψ(r1, . . . , rN ) and in particular, de-
fine many-particle covalency [4]. This transition from the
Fock space back to the Hilbert space is possible as the
two languages of description are equivalent in the non-
relativistic situation (for a lucid and didactic exposition
of the first- and second-quantization schemes and their
equivalence see e.g. [38]). The principal limitation of
our method is the circumstance that it can be applied
directly only to relatively small systems when the exact
diagonalization is utilized.

Appendix B: Convergence of the single-particle
energy for infinite system

In (21a) we have the microscopic parameter contained
in the single-particle energy expression, namely

εi =

〈
ψi

∣∣∣∣∣∣


−52 −

∑

j

2

|r−Rj |



∣∣∣∣∣∣
ψi

〉
, (B1)

where i labels lattice site (node) at which we calculate
this single-particle energy, and j goes over the whole sys-
tem. Also, ψi is the 1s Slater-type orbital centered on
that site. For the sake of clarity, we disregard the or-
thogonalization procedure, as the one-body parameters
contain, strictly speaking, a linear combination of inte-
grals in STO basis.

For an infinite system, the sum
∑
j constitutes a series

of the form [39]

εi =−
〈
ψi
∣∣52

∣∣ψi
〉
−
∑

j

〈
ψi

∣∣∣∣
2

|r−Rj |

∣∣∣∣ψi
〉

(B2)

=α2 − 2α−
∑

j

2

|Rij |
+ 2

(
α+

1

|Rij |

)
e−2α|Rij |,

which diverges to −∞. In this Appendix we show that
there is an effective single-particle energy with no diver-
gence for the infinite systems (case more general than
those discussed in [7, 30]).

78



12

We start from Hamiltonian (21c)

Htot = Hext + Vi−i, (B3)

where ion–ion interaction is defined in the classical limit,
i.e.,

Vi−i ≡
1

2

∑

i 6=j

2

|Rij |
, (B4)

and |Rij | is the distance between sites i and j. We ana-
lyze next the remaining contributions, term by term.

1. Intersite Coulomb term

The intersite Coulomb term from (21b) cab be rewrit-
ten in the form

1

2

∑

ij

Kij n̂in̂j =

K(0)

︷ ︸︸ ︷
1

2

∑

i 6=j
Kijδn̂iδn̂j +

K(1)︷ ︸︸ ︷
1

2

∑

i

∑

j

(1− δij)Kij n̂i

+

K(2)

︷ ︸︸ ︷
1

2

∑

i

∑

j

(1− δij)Kij n̂j −

K(3)

︷ ︸︸ ︷
1

2

∑

i 6=j
Kij ,

(B5)

where δn̂i ≡ (n̂i − 1) and δij is Kronecker’s delta.
We observe that when all sites are taken into account,

the terms K(1) and K(2) are equivalent. We can rewrite
them as follows

HK =K(0) −K(3) + 2
1

2

∑

i

∑

j

(1− δij)Kij n̂i = (B6)

≈K(0) −K(3) + 2
1

2

∑

i

n̂i
∑

j(i)

Kij ,

where j(i) denotes the neighborhood of site i. Likewise,

K(3) =
1

2

∑

i 6=j
Kij =

1

2

∑

i

∑

j(i)

Kij . (B7)

We can write finally that

HK =K(0) +
1

2

∑

i

n̂i
∑

j(i)

Kij (B8)

+
1

2

∑

i

δn̂i
∑

j(i)

Kij .

Note that for half-filling 〈n̂i〉 = 1 and the last part and〈
K(0)

〉
disappears.

2. Ion-ion repulsion

Similarly, we can rewrite (B4) to the form

Vi−i =
1

2

∑

i6=j

2

|Rij |
≈ 1

2

∑

i

∑

j(i)

2

|Rij |
=

1

2
N
∑

j(i0)

2

|Ri0j |

=
1

2

∑

i

n̂i
∑

j(i)

2

|Rij |
− 1

2

∑

i

δn̂i
∑

j(i)

2

|Rij |
. (B9)

Again, the average of the latter term disappears for one
particle per site.

3. Total Hamiltonian

We rearrange (21c) obtaining so that the new form of
Hamiltonian is

HN = Hεeff +HHubbard +Hδn. (B10)

The new terms are

Hεeff =
∑

i

εeffi n̂i, (B11)

with εeffi = εi + 1/2
∑
j(i) (2/|Rij |+Kij),

HHubbard =
∑

ij

∑

σ

tijc
†
iσcjσ + U

∑

i

n̂i↑n̂i↓, (B12)

Hδn =
1

2

∑

i6=j
Kijδn̂iδn̂j+ (B13)

+
1

2

∑

i

δn̂i
∑

j(i)

(
Kij −

2

|Rij |

)
.

The last question is whether the effective single-particle
energy is now convergent.
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4. Convergence of the single-particle energy

We can take εeffi from eqs. (B2) and (B11) and rear-
range it in a following manner

εeffi =εi +
1

2

∑

j

(
2

|Rij |
+Kij

)
(B14)

=α2 − 2α+
∑

j

− 2

|Rij |
+ 2

(
α+

1

|Rij |

)
e−2α|Rij |

+
1

2

∑

j

(
2

|Rij |
+Kij

)

=α2 − 2α+
∑

j

2

(
α+

1

|Rij |

)
e−2α|Rij |

+
∑

j

(
1

|Rij |
+

1

2
Kij −

2

|Rij |

)
.

The latter part disappears in the classical limit |Rij | �
α−1, where

Kij →
2

|Rij |
, (B15)

and the remaining part
∑
j 2
(
α+ |Rij |−1

)
e−2α|Rij | is

convergent.
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3.5 Paper A-5 � Discontinuous transition of molecular-hydrogen
chain to the quasi-atomic state: Exact diagonalization �
ab initio approach

This paper represents the �rst implementation of the methods developed for the purpose
of this Thesis, to the solid molecular hydrogen metallization. Namely, we apply the Exact
Diagonalization � Ab Initio Approach (EDABI) to the case of one-dimensional H2 chain
under external pressure (applied force). We optimize not only the single-particle basis wave
functions, but also the molecular size (H2 bond length) R. We start with the extended
Hubbard model with the single-particle energy ε, the hopping integrals ti (up to the third-
nearest neighbor), the Hubbard interaction U , and the intersite electron�electron Coulomb
interactionKij included up to the distance of rcut´off “ 250a, where a is the intermolecular
distance (selected based on the analysis performed in paper A-4).

We �nd, that although there is only one minimum in the thermodynamic potential, con-
nected to the molecular chain, when no force is applied, there are two minima in enthalpy
when a su�ciently large force („ 5nN) is applied to the molecules which stabilizes the
system. Additional stable phase appearing under pressure has a quasiatomic structure (a
comparison of electronic densities is available in Fig. 3). Evolution of enthalpy of both min-
ima is presented in Fig. 2, meaning in the regime of low applied force the molecular phase
is stable, whereas for large forces quasiatomic chain has the lowest enthalpy. The transition
comes with discontinuous change of lattice parameters, including intermolecular distance a
(whole evolution is showed in Fig. 4) and e�ective (optimized) molecular size Reff (inset in
Fig. 2). As of the nature of transition, we calculated the Hubbard ratio U{W (inset in Fig. 3)
that discontinuously drops below 1 at the transition, as well as the averages C0 and C1 con-
nected respectively with intramolecular and intermolecular hopping. These averages exhibit
an interesting property: they change from the molecular phase case C0 « 1 and C1 « 0
to C1 « C0 in the quasiatomic phase. The principal conclusion of the paper is that the
molecular�atomic-solid transition is concomitant with the Mott-Hubbard transition. The
evolution from the molecular to the quasiatomic phase has also been illustrated on the com-
puter animation enclosed to the Thesis (cf. http://th-www.if.uj.edu.pl/ztms/download/

supplementary_material/molecular_to_quasiatomic_transition-hydrogen_chain.avi)
The paper has been submitted to the Physical Review B.
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Discontinuous transition of molecular-hydrogen chain to the quasi-atomic state:
Exact diagonalization – ab initio approach

Andrzej P. Kądzielawa,1, ∗ Andrzej Biborski,2, † and Józef Spałek1, 2, ‡
1Marian Smoluchowski Institute of Physics, Jagiellonian University,

ulica Łojasiewicza 11, PL-30-348 Kraków, Poland
2Academic Centre for Materials and Nanotechnology,

AGH University of Science and Technology, al. Mickiewicza 30, PL-30-059 Kraków, Poland
(Dated: June 11, 2015)

We obtain in a direct and rigorous manner a transition from a stable molecular hydrogen nH2

single chain to the quasiatomic two-chain 2nH state. We devise an original method composed of an
exact diagonalization in the Fock space combined with an ab initio adjustment of the single-particle
wave function in the correlated state. In this approach the well-known problem of double-counting
the interparticle interaction does not arise at all. The transition is strongly discontinuous, and
appears even for relatively short chains possible to tackle, n = 3÷6. The signature of the transition
as a function of applied force is a discontinuous change of the equilibrium intramolecular distance.
The corresponding change of the Hubbard ratio U/W reflects the Mott–Hubbard-transition aspect of
the atomization. Universal feature of the transition relation to the Mott criterion for the insulator–
metal transition is also noted. The role of the electron correlations is thus shown to be of fundamental
significance.

PACS numbers: 31.15.A-, 71.27.+a, 67.80.F-, 67.63.Gh

1. Motivation The metallization of solid hydrogen is
one of the central problems in physics [1–4], as well as
in astrophysics of Jupiter, Saturn and exoplanets [5].
The building block, the H2 molecule, is relatively sim-
ple, since the electrons are in the spin-singlet state in
the ground state composed mainly of 1s states of atoms.
Those molecular states with the experimental value of
bond length R ≈ 1.401a0 [6] form at ambient pressure a
molecular crystal with the lattice constant a ∼ 7a0 � R
[7]. Thus, to achieve atomic structure and metallicity
one has to break the molecular bond, e.g., by achieving
a more typical atomic solid configuration with a ∼ R,
what amounts in practice to applying an enormous pres-
sure, as demonstrated repeatedly over the decades [2, 8].
But even then one may not achieve metallicity, as due
to the relatively large atomic separation the system may
compose a Mott (or Mott-Hubbard) insulator [9, 10], as
the original interelectronic correlation effects may still be
sufficiently strong. The fundamental aspect of this paper
is to address this issue in a rigorous manner, albeit still
in model situation, as detailed below.

The related and probably more intriguing question re-
lated to the hydrogen metallization is the conjecture that
the system may exhibit a room-temperature supercon-
ductivity. The line of reasoning [11, 12] is based on the
Bardeen-Cooper-Schrieffer (BCS) theory that as the crit-
ical temperature Ts is proportional to M−1/2, where M
is the ionic mass, then the hydrogen metal should have
Ts at least one order of magnitude higher than that of
a typical metal. However, here again the correlation ef-

∗ kadzielawa@th.if.uj.edu.pl
† andrzej.biborski@agh.edu.pl
‡ ufspalek@if.uj.edu.pl

fects must be carefully taken into account as they should
not be too strong to destroy the metallicity, but essen-
tial, as they can lead by themselves also to the high-
temperature superconductivity when the starting point
is the atomic solid with half-filled Mott-Hubbard metal
[13]. A marriage of strong electron–lattice and correla-
tion effects should be possible to be accounted for at the
starting stage. In this respect, here we determine rig-
orously the magnitude of the local correlation effects as
described by the effective extended Hubbard model at
the molecular → quasiatomic solid transition.

Recently, the molecular–atomic hydrogen transition
has been discussed by a number of methods [14–17]. In
this respect, the present results can be regarded as a
basis for testing the approximate methods applicable to
realistic calculations (see also discussion below).

2. Model and method We start with the extended Hub-
bard model with additional term Vion–ion expressing ion–
ion repulsion namely,

Ĥ =
∑

i

εin̂i +
∑

σ,i 6=j
tij ĉ
†
iσ ĉjσ + U

∑

i

n̂i↑n̂i↓ (1)

+
1

2

∑

i 6=j
Kij n̂in̂j + Vion–ion,

where εi is the single-particle energy, tij are the so-called
hopping integrals (all of them: t0 (intramolecular) and t1,
t2, and t3 (intermolecular) have been marked explicitly in
Fig. 1), U is the on-site Coulomb repulsion, andKij is the
amplitude of intersite Coulomb repulsion, here taken into
account for the interaction radius up to 250a in the start-
ing atomic representation, where a is the intermolecular
distance (see [18] for details). The configuration of the
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2

FIG. 1. Schematic representation of H2 molecular chain with
possible nearest-neighbor and next nearest neighbor hoppings
{ti}i=0,1,2,3 marked. The labeling of the sites i = 1, 2, 3, . . . is
specified, as well as the bond length R at intermolecular dis-
tance a. The radius of included intersite Coulomb interaction
is equal to 250a in the atomic representation.

molecules and related microscopic parameters are shown
in Fig. 1.

Explicitly, those parameters can be defined in the fol-
lowing manner

〈wi|H1 |wj〉 ≡
∫
d3r w∗i (r)H1(r)wj(r)

≡ εiδij + tij(1− δij , ) (2)

〈wiwj |V12 |wiwj〉 ≡
∫
d3rd3r′ |wi(r)|2V12(r− r′)|wj(r′)|2

≡ Uδij +Kij(1− δij), (3)

where H1 is the Hamiltonian of single electron in the
medium and V12 is the Coulomb repulsive interaction for
a single pair of them. Furthermore, the Wannier func-
tions are defined in terms of atomic (Slater) functions,
i.e.,

wi(r) =
∑

j

βijψj(r), (4)

where the 1s-type Slater function in defined as ψi(r) ≡
ψ(r − Ri) = (α3/π)1/2 exp(−α|r −Ri|), with α being
its inverse size in the medium, here taken as a variational
parameter for given intermolecular distance a and deter-
mined in the correlated state (i ≡ Ri is the i-th proton
position). Each Slater function is approximated by its
expansion in the Gaussian basis

ψi(r) ≈ α 3
2

p∑

q=1

(
2α2Γ2

q

π

) 3
4

e−α
2Γ2

q|r−Ri|2 , (5)

with p being the number of Gaussian functions taken
into account to express accurately the functions {ψi(r)}
and {Γq} is the set of adjustable parameters obtained
from a separate procedure (for details see [19]). In effect,
all the parameters: εi, tij , U , Kij can be expressed in
terms of α and are determined in the correlated state

(after the exact diagonalization in the Fock space has
also been carried out simultaneously). Strictly speaking,
to obtain proper atomic limit we have to take: εi →
εeffi = εi + (1/2)

∑
j(2/Rij +Kij) [18].

First, we determine values of hopping integrals t0, t1,
t2 and t3, Hubbard (intraatomic) and intersite interac-
tions U and Kij , by determining the Wannier functions
defining them. The Wannier functions are expressed in
terms of (atomic) Slater functions of adjustable size α−1,
each of which is expressed in turn via p = 9 Gaussian
functions [18]. In the next step, we determine the lowest
eigenvalue of the Hamiltonian (1) with periodic bound-
ary conditions, by diagonalizing it by means of Lanczos
algorithm. By finding the ground state energy in the
Fock space and subsequently, by optimizing the energy
also with respect to the size α−1, we obtain a true phys-
ical ground state energy in the correlated state for given
intermolecular distance a. Such extended calculations
make the results not limited to the parametrized-model
considerations, as U , tij , and Kij are evaluated explic-
itly, as is also the ground state energy, for fixed a. One
should note that in the procedure the bond length is also
optimized (R→ Reff ). All this is carried out first for the
zero-applied force to obtain the system equilibrium con-
figuration, i.e., the energy and the effective bond length
Reff in the multimolecular configuration. In the second
step, we apply the external compressing force f to the
end molecules and determine the enthalpy minimum to
trace the system evolution as a function of a. The part
of the procedure connected with the optimization of the
single-particle wave functions has been discussed in de-
tail elsewhere [18]. The code used for the computation is
also available [20].

Typical numerical procedure starts with fixing a and
R, and selecting input value for the variational parame-
ter α. Next, we vary the inverse wave function size α to
find the physical ground-state energy employing, at every
step, the so-called process–pool solution for the computa-
tionally expensive problem of obtaining the microscopic
parameters. We include all the intersite interactions for
the sites with a relative distance smaller than 250a. The
accuracy of the numerical results is set to be of the order
of 10−4Ry. Impact of these parameters was examined
carefully in [18] and achieving the values above proved
to be sufficient. The long range of the interactions in the
atomic representation is expected to emulate correctly a
longer-chain behavior.

3. Results In Fig. 2 we display the system enthalpy as a
function of force f exerted on the edge molecules. Typ-
ically, two solutions appear which we call respectively
as the molecular and the quasi-atomic, each of which is
characterized below. The solid points mark the transi-
tion points for 4H2 (left) and 3H2 (right). In the Inset
we show the effective bond length Reff vs a. Note two
specific features. First, the lattice contracts in a discon-
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FIG. 3. Electron density projected onto the plane of H2

molecules near the molecular → atomic transition: a) for
the molecular state; b) for the quasiatomic state. In case
a) the density is very small in the space in between molecules
(vertical line joining the atoms). The critical intermolecular
distance a and the effective bond length Reff are also speci-
fied in each of the states. The corresponding critical force is
fC = 25.705nN for 3H2 system.

tinuous manner at the transition and second, the bond
length jumps then from an almost single-molecule value
Reff � a to the limit Reff ∼ a signaling their separa-
tion into a quasi-atomic configuration. The last feature
of the transition is explicitly illustrated in Fig. 3, where
the projected electron density onto the plane composed
of molecules is shown both on the molecular (top) and
the quasi-atomic (bottom) sides of transition. The pa-
rameters a and Reff are listed also in each case. As said
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correlated metallic state.

above, due to the supercell (nH2) construction and the
use of periodic boundary conditions, the system emulates
an extended-system behavior.

In Fig. 4 the interdependence of the intermolecular dis-
tance versus force is provided. As shown also in the
inset to Fig. 2, this figure demonstrates the first-order
transition, since the cell volume a changes discontinu-
ously at this mol. → quasiat. transition from 1.869a0 to
1.647a0. In the inset to Fig. 4 we provide the ratio of
the Hubbard interaction U to the bandwidth defined (for
perpendicular orientation of molecules, when t2 ≡ t3) as
W = −4t1+|t0 + 2t2|−|t0 − 2t2|, as a function of f . Note
the fundamental characteristic: this ratio jumps from the
value U/W ∼ 1.49 to 0.8. So, the system is indeed
strongly correlated at the transition with the effective
gap near the transition from the molecular side estimated
as εg/W = U/W − 1 ≈ 0.49. Furthermore, the value
U/W ∼ 1 is the typical value for the Mott-Hubbard tran-
sition, weakly dependent on the system structure [21]. It
is also interesting to note that here the Mott-Hubbard
transition takes place from a non-magnetic (spin-singlet)
molecular configuration to a correlated atomic solid, with
strong suggestion for metallicity of such system with one
electron per atom in predominantly 1s state. The possi-
bility of magnetic (antiferromagnetic) and/or supercon-
ducting quasiatomic state should be analyzed separately.

In Fig. 5 we present a dependence of the intramolecu-
lar (t0) and intermolecular (t1) hopping parameters. At
the transition the parameters t0 and t1 roughly equal-
ize showing again that the solid at small a is of quasi-
atomic nature. In the inset we present the intramolecu-
lar (C0 ≡

〈
ĉ†1σ ĉ2σ

〉
) and intermolecular (C1 ≡

〈
ĉ†1σ ĉ3σ

〉
)

hopping probabilities. In the molecular state C0 ≈ 1 and
C1 ≈ 0 (a strong molecular bond is formed), whereas
in the quasiatomic state C0 ∼ C1. These two quan-
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TABLE I. Microscopic parameters at the molecular → quasiatomic transition. The values are in eV if not specified otherwise.
a (a0) R (a0) W t0 t1 t2 U K0 K1 K2 α(a−1

0 )

molecular 1.869 1.164 17.881 −15.487 −6.161 1.691 26.472 15.238 13.516 10.551 1.194
quasiatomic 1.647 2.386 33.124 −5.270 −8.445 0.164 26.404 10.825 14.701 8.976 1.251
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tities illustrate thus in a direct manner the nature of
the states and in particular, the metallic type of the
bonding in the quasiatomic solid state. For the sake of
completeness, in Table I we list all the principal micro-
scopic parameters in the correlated state for intermolec-
ular distances at transition. The values of Kij converge
towards the asymptotic value Kij → 0 slowly. Such be-
havior is in accordance with the view [22] that the long-
range part of the Coulomb interaction is not screened
efficiently in low-dimensional systems. This is the reason
why we have taken their long-range character, at least
in the atomic representation. Parenthetically, note that
we have neglected the direct exchange interaction and
the so-called correlated-hopping terms [23], as they are
of much smaller amplitude at these distances. Note also
that the Mott criterion at the transition [24, 25] takes in
the present situation the form aBn

1/d
C ≡ (αa)−1 ≈ 0.45

at the transition, not too far from the value 0.25 for 3-
dimensional (d = 3) systems.

4. Outlook We have described in a direct and rigor-
ous manner the behavior of electrons in the short H2

chains by a proper choice of the supercell and includ-
ing the long-range Coulomb interactions, as well as uti-
lizing the periodic boundary conditions, emulating to-
gether an extended-chain behavior. Amazingly, the re-

sults obtained meet some of the features one can expect
for a three-dimensional hydrogen molecular → quasi-
atomic transformation. Obviously, no detailed realistic
phase diagram can be obtained, as both the structural
details and the effect of zero-point motion are still miss-
ing. However, a unique character of the Mott-Hubbard
transition is already established. The model formulated
here may form a basis for quantitative approach to solid
hydrogen with a proper account of electronic correla-
tions. In such approach a three-dimensional realistic
model must be constructed. We think that tackling of
this problem is possible on a small scale within our Exact
Diagonalization Ab Initio (EDABI) approach employed
here and to other problems [26] involving electronic cor-
relations as an essential aspect of their physical proper-
ties. For 3d system, approximate second-quantization di-
agonalization schemes such as the statistically-consistent
Gutzwiller approximation may be used with concomitant
single-particle wave-function optimization [25]. These
methods can be tested in the present exact limit.

One should also note that the principal assumption
made at this point is that the protons form a lattice even
in the metallic phase, not a proton-electron quantum-
liquid plasma [15, 27–29]. Such problem is possible to
tackle within the present model by assessing the optimal
ground-state energy for a random choice of the proton
positions. But first, an accurate estimate of the zero-
point motion amplitude and the corresponding energy
[30] must be carried out for an extended system with
correlations [31]. Finally, the estimate of the supercon-
ducting gap magnitude by incorporating correlations for
the extended Hubbard model [13] and realistic values of
the local electron-proton coupling [30] may be possible in
not too distant future.
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Chapter 4

Summary and Conclusions

The principal aim of this Thesis is to develop and implement a reliable method of calculat-
ing the physical properties of solid hydrogen system, both in terms of its insulator-to-metal
and molecular-to-atomic transition. In order to do so we have successfully employed the
Exact Diagonalization � Ab Initio Approach (EDABI), both in its original exact-method-

of-diagonalization based version and the modi�ed, using the so-called the Statistically-
Consistent Gutzwiller Approximation (SGA). We have also created the open access, com-
putational C++-based library: Quantum Metallization Tools (QMT [44]), that provides a
generic description of quantum-mechanical system in terms of EDABI method.

We have used EDABI in combination with SGA to model the metallization of atomic
hydrogen (cf. papers A-1 and A-2). Rather than including the electron�electron Coulomb
interaction explicitly, we have used an e�ective approximation, working only close to the
half-�lling. As a �nal result, we obtained the metallization pressure „ 100GPa. This is
still a rather simplistic model and it requires a more involved approach to make realistic
estimate of the critical pressure. This means explicitly to (i) describe the hydrogen as a
molecular crystal (in all of phases I, II, III and IV discussed in the introductory Chapters),
modify EDABI with a Hamiltonian diagonalization scheme that include (ii) long-range
(Coulomb) interactions and (iii) a multi-orbital picture, (iv) �nd the proper thermodynamic
potential to describe the system under high pressure, (v) assess the zero-point motion energy
and calculate the electron�lattice coupling, and �nally (vi) use the outcome of steps (i)�
(v) to study whether, and under which conditions, the system manifests superconducting
properties. This path led us to the creation of QMT and results presented in papers A-3,
A-4, and A-5.

We started (i) with the simplest building-block of three-dimensional molecular crystals
- a H2 molecule (cf. paper A-3). This case was already well described in a static situa-
tion [107], which gave us a point of reference for further development. We used the full
Hamiltonian with all two-site interaction terms, which in turn led to the results di�ering by
„ 2%, even when omitting in the single-particle basis wave functions di�erent from 1s. For
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the purpose of (v), we devised an approach to asses the zero-point motion amplitude and
energy, as well as electron�proton couplings, resulting in the value close to that observed
experimentally. We expanded (i) and tested our computational approach in paper A-4,
where we also made �rst attempts to deal with the problem (ii). This requires a separate
study, as the standard Gutzwiller approximation increases the numerical complexity expo-
nentially when the intersite interactions are included. For this purpose, we plan to employ
modi�ed SGA or the so-called diagrammatic expansion for the Gutzwiller wave function
(DE-GWF) [68]. When the long-range interactions are included, the most time-consuming
element of EDABI is the Hamiltonian parametrization, the part of the problem that can
be e�ciently parallelized, thus allowing to use the modern supercomputer infrastructure.
We proceeded with (i) by modeling the one-dimensional H2 crystal (cf. papers A-4 and
A-5). It has been completed with semi-realistic description of H2 chain including opti-
mization of molecular size and renormalization of the single-particle basis. Treating (iv),
we chose enthalpy, a thermodynamic potential allowing for description with pressure as a
proper variable to analyze the system behavior. We have found two classes of enthalpy
minima � one connected to the H2 molecular crystal and one connected to 2H quasiatomic
phase. Moreover, we determine a critical applied force causing the system transition from
molecular to quasiatomic structure in a discontinuous (�rst-order) manner. This is what
we expect to happen when describing the hydrogenic systems. Up to this moment, we used
Lanczos algorithm for the diagonalization of parameterized Hamiltonian in the Fock space.
The next step will be to use modi�ed SGA in a way that it includes: (ii) long-range both
Coulomb and exchange interaction. As of (iii), we have prepared computational methods
for incorporating higher s� and p�type orbitals. This is not included in any of the papers
here, but the reader may refer to Sec. 2.2.3 with the results concerning the ground-state
and the ionization energies of �rst ten elements of the Periodic Table.

Only when steps (i)�(v) are completed, we can approach the superconducting state of
these systems. This topic is the �nal goal of the whole project on the metal hydrogen. It
is still a long way to go. Nonetheless, few decisive results towards this �nal goal have been
accomplished. First of all, that the metallization can be understood in the terms of Mott-
Hubbard localization. In this respect, a successful model has been formulated. Second, the
zero-point motion energy has been estimated in realistic terms. Third, local electron�lattice
interaction coe�cients have been evaluated. The knowledge of these parameters is indis-
pensable to estimate the value of the superconducting transition temperature. However, a
simple BCS-like estimate will not work, as we have shown that even in the metallic state
the electrons are moderately to strongly correlated (U{W À 1), so there may appear an
essential contribution to the pairing coming from the correlations. It would be very inter-
esting to see if the electron�phonon interaction alone can account for the superconductivity
with such a high transition temperature. The future will tell.
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