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Chapter 1

Introduction

1.1 Models with spin and orbital degrees of freedom

The wave function of an electron takes various shapes when bound to an atomic nucleus by

Coulomb force. Consider a transition-metal atom in a crystal with perovskite structure. It

is surrounded by six oxygen ions, which give rise to the crystal �eld potential which lowers

the rotational symmetry of the system and quenches the orbital angular momentum by

introducing the crystal �eld splitting of the d orbitals. Wave functions pointing towards O2−

ions have higher energy in comparison with those pointing between them. The former wave

functions are called eg orbitals (x
2−y2 and 3z2−r2), whereas the latter ones are the t2g orbitals

(xy, yz and zx)� see Fig. 1.1. When electrons are put into these wave functions, the ground

state is determined by the Hund's exchange interaction which stabilizes the con�guration

Figure 1.1: View of the �ve d orbitals. In the cubic crystal �eld the �vefold degeneracy,
occurring for a single atom, is lifted to two eg orbitals and three t2g orbitals.
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with all spins being parallel, if the d electrons number is n ≤ 5 (otherwise the same applies

to the hole spins). For example in LaMnO3, where Mn3+ is in a d4 con�guration, three

electrons are put to t2g orbitals and one occupies an eg orbital and their spins are aligned

parallel leading to total spin S = 2 . The relativistic correction gives rise to the spin-orbit

interaction Hspin−orb. = λLS , where L and S are the orbital and spin angular momenta. This

interaction plays an important role in some cases, especially when t2g states are partialy �lled

by electrons. However, the coupling between spin and orbital degrees of freedom described

below is not due to this relativistic spin-orbit coupling.

Up to now, we have considered only one transition-metal ion. However, in solids, there

are periodic arrays of ions. There are two important aspects caused by this: one is the

magnetic interactions, i.e., exchange interactions, between the spins and the other is the

possible band formation and metallic conduction of the electrons. Before explaining these

two, let us introduce the Mott insulating state. Band theory predicts an insulating state

when all bands are either fully occupied or empty, whereas a metallic state occurs under

di�erent conditions. However, it is also possible that the system is insulating because of

the Coulomb interaction when the electron number is an integer per atom, even if the band

theory without the period doubling predicts a metallic state. This occurs when the kinetic

energy gain is relatively small and blocked by the strong Coulomb repulsion energy U , and the

electron cannot hop to the other atom. This insulator is called a correlated or Mott insulator.

The most important di�erence from the usual band insulator is that the internal degrees of

freedom, spin and orbital, still survive in the Mott insulator. LaMnO3 is a Mott insulator

with spin S = 2 and the orbital degrees of freedom. The spin S = 2 is here represented by

the t2g spin 3/2 strongly coupled to the eg spin 1/2 by ferromagnetic JH (Hund's coupling).

The two possible choices of an occupied eg orbital are represented by the pseudospin T in

the way that T z = 1/2 when orbital dx2−y2 is occupied and T z = −1/2 when orbital d3z2−r2

is occupied. Due to the anticommutation rules for electrons three components of T satisfy

similar commutation relation as the spin operator.

As the exchange interactions arise from virtual excitations of electrons which carry both

spin and orbital �avor, there is a strong coupling between the spin S and pseudospin T

on di�erent ions. As a result the exchange interaction is represented by the generalized

Heisenberg Hamiltonian [1] of the form:

Hsup−ex =
∑
〈i,j〉

{Ji,j (Ti,Tj) SiSj +Ki,j (Ti,Tj)} . (1.1)
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The exchange interactions Ji,j and Ki,j originate from the quantum mechanical process with

intermediate virtual states on oxygen ion lying between two transition metal ions at neigh-

boring sites i and j called superexchange. This is a direct generalization of the superexchange

for nondegenerate states [2, 3] to the case of orbital degeneracy and thus provides an immedi-

ate link between magnetism and orbital ordering� see [4, 5] for reviews on this subject. The

rotational symmetry in the spin space leads to the SU(2) invariant form of the interaction

but the orbital degrees of freedom usually lead to anisotropy. In general, the transfer integral

ti,j depends on the direction of the bond 〈i, j〉 and also on the pair of the two coupled orbitals

from the set {x2 − y2, 3z2 − r2}. This gives rise to the anisotropy of the Hamiltonian in the

pseudospin space as well as in the real space. For example, the transfer integral between

the two neighboring Mn atoms in the crystal lattice is determined by the overlaps of the

d orbitals with the p orbital of the oxygen atom between them. The overlap between the

x2−y2 and pz orbitals is zero for the symmetry reasons. Therefore, the electron in the dx2−y2

orbital cannot hop along the z axis. This fact will be important later in our discussion.

One can consider the long-range ordered state of the orbital pseudospin T as well as the

spin S. In many respects there are analogies between spin and orbital orders in spite of the

anisotropy in the pseudospin space. However, there is one more aspect that is special to

T �Jahn-Teller (JT) coupling [6, 7]. Because each orbital has di�erent anisotropy of the

wave function, it is coupled to certain displacements of the oxygen atoms surrounding the

transition-metal ion. For example, when the two apical O atoms move toward the ion, the

energy of 3z2 − r2 electron becomes higher than the one of x2 − y2 and the degeneracy is

lifted. This is called the JT e�ect [6] and is represented by the following Hamiltonian for a

single octahedron:

HJT = −g (T xQ2 + T zQ3) , (1.2)

where (Q2, Q3) are the coordinates for the displacements of oxygen atoms surrounding the

transition-metal atom and g is the coupling constant. When the crystal is considered,

{Q2, Q3} should be generalized to {Qi,2, Qi,3}, which is represented as the sum of the phonon

coordinates and the uniform component (u2, u3). Here, (u2, u3) describes the crystal distor-

tion as a whole. When the long-range orbital order exists, i.e., 〈T zi 〉 6= 0 or 〈T xi 〉 6= 0, the JT

distortion is always present.

The orbital-only models neglecting spin degrees of freedom (e.g. in a ferromagnet) are

already interesting subject to study, as the full many-body problem with active orbital, spin,
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lattice and charge degrees of freedom is far from being understood. Thus one can concentrate

on a single aspect and investigate orbital degrees of freedom in detail [8]. These models are

non-trivial and interesting in themselves as the symmetry of real space, the point group

symmetry of the lattice, is re�ected in orbital models leading to anisotropy and intrinsic

frustration. Spins, in contrast, are essentially decoupled from the lattice as long as relativistic

spin�orbit coupling is small, so that general spin Hamiltonians are Heisenberg-like and exhibit

continuous spin rotation SU(2) symmetry. In any realistic orbital Hamiltonian, continuous

orbital rotation symmetry is manifestly broken. Finally, in many compounds, the orbital

ordering temperature is higher than the magnetic ordering temperature. For example, in

LaMnO3 the Nèel temperature is TN ' 146K [9], while orbital ordering occurs already below

TOO ≈ 780K. This implies that there is a large temperature range in which the system is

orbital-ordered while the spins are still disordered. This justi�es a description of the systems

in terms of orbital-only Hamiltonians such as the so-called 120◦ model, in classical [10] or

quantum version [11], for eg orbitals doublet and classical [12] or quantum compass [5] model

for t2g orbital triplet.

Now, going beyond the Mott insulating state, let us consider the doped carriers into a Mott

insulator. High-Tc superconducting cuprates, e.g., La2−xSrxCuO4, o�er the most dramatic

example of such a carrier doping. However, the two-dimensional (2D) nature of the lattice,

as well as the larger coherent JT distortion for the Cu2O sheet, gives a large energy splitting

between x2−y2 or 3z2−r2 orbitals, and only x2−y2 is relevant. In the case of La1−xSrxMnO3,

known for the colossal magnetoresistance e�ect [4], Mn4+ or holes with concentration x are

doped, and still, the orbital degrees of freedom are active at undoped Mn3+ ions. The most

important and fundamental interaction in the doped case is the double exchange interaction

[13�15], when eg electrons are forced to be parallel to the localized t2g spins by the strong

JH (we consider electron doped manganites as an example). The hopping amplitude ti,j

for a doped eg electron to hop from atom i to j depends on spin wave functions of the t2g

electrons at sites i and j, |χi〉 and |χj〉, in the way that e�ectively ti,j ' t 〈χi |χj 〉. Thus,

|ti,j| explicitly depends on the relative orientation of the two spins as: |〈χi |χj 〉| = cos (θi,j/2)

(θi,j the angle between the two spins) and it is maximized for parallel spins and is zero for

antiparallel spins. Therefore, the kinetic energy gain of the doped holes is maximized for the

ferromagnetic con�guration of the spins. Such mechanism of ferromagnetism is called double

exchange.
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Figure 1.2: Example of frustration for a classical AF Ising model on a triangle.

1.2 Frustration

Frustration in solid-state physics means that the Hamiltonian contains con�icting interactions

which energy cannot be minimized in an single con�guration. Frustration can be caused by

the form of interactions or by the geometry of the lattice. In Fig. 1.2 we show a canonical

example of a frustrated con�guration of classical Ising spins on vertices of a triangle. If the

interactions between nearest neighbors are antiferromagnetic then two spins can minimize

the energy of their interaction but the third one cannot; if it points down it will minimize

the interaction with the up spin but maximize the one with the down spin, if it points up

then situation will be opposite. Thus, the third spin can point up or down and the total

energy will be the same leading to the two-fold degeneracy of the ground-state. The situation

become more complicated in the thermodynamic limit, i.e. it turns out that a classical AF

Ising model on a triangular lattice has no magnetic order in any temperature [16] whereas

in FM version it behave similarly to the square lattice Ising model solved by Lars Onsager

(see Ref. [17] for a gentle version of the Onsager's solution). On the one hand, periodically

distributed frustrated Ising interactions do not su�ce to destroy magnetic long-range order

in a two-dimensional (2D) system, but only reduce the temperature of the magnetic phase

transition [18]. The problem of frustration becomes even more complex in case of quantum

interactions. For instance, 2D Heisenberg model on kagome and triangular lattices exhibits

spin liquid behavior with no signs of a symmetry breaking in zero temperature and S = 1/2

bosonic spinon excitations [19] whereas the 2D AF J1− J2 Heisenberg model shows the non-

9



magnetic collinear order in the intermediate coupling (0.4 . J2/J1 . 0.65) region [20] being

either a spin liquid or a valence-bond state. Despite the absence of any symmetry breaking,

the spin liquid state often exhibits a peculiar non-local order called a topological order, a

property of which one becomes aware only on crossing the entire system or on wrapping

once around it, if a system is placed on a cylinder or a torus [21]. On the other hand, when

the model is quantum, increasing frustration of exchange interactions may trigger a quantum

phase transition (QPT), as for instance in the one-dimensional (1D) compass model [22] were

the critical phase with algebraic correlations is of the measure zero in the parameter space.

Another example of frustrated magnetic system is a spin ice, being essentially classical in case

of large spins, where spins lie on the veritices of corner-sharing tetrahedra in a pyrochlore

lattice and the ground state belongs to a manifold of states satisfying the so-called ice rule

leading to a macroscopic ground-state degeneracy [23]. The excitations in such systems can

exhibit a very exotic nature involving magnetic monopoles and Dirac strings [24].

An important feature of spin-orbital (SO) superexchange, which arises in transition metal

oxides with active orbital degrees of freedom [4, 5, 25, 26], is generic frustration of the orbital

interactions. In such SO models frustration is intrinsic and follows from the directional nature

of orbital interactions [27], so it is also present on lattices without geometrical frustration,

such as the three-dimensional (3D) perovskite lattice of KCuF3 or LaMnO3. Usually such

frustration is removed either by spin order which arises due to Hund's exchange JH or by

Jahn-Teller orbital interactions, but when these terms are absent it leads to a disordered

orbital liquid ground state. Perhaps the simplest realistic example of this behavior is the

(Kugel-Khomskii) model for Cu2+ ions in the d9 electronic con�guration at JH = 0, where a

disordered ground state was found [28]. Examples of such disordered states are either various

valence-bond phases with singlet spin con�gurations on selected bonds [29], or orbital liquids

established both in t2g systems [30] and in eg systems [31] in three dimensions. Characteristic

features of SO models are enhanced quantum e�ects and entanglement [32], so their ground

states cannot be predicted using mean-�eld decoupling schemes. Also in doped systems

some unexpected features emerge for frustrated orbital superexchange interactions, and the

quasiparticle states are qualitatively di�erent from those arising in the spin t�J model [33].

A qualitatively new SO liquid phase may arise when the superexchange interactions are

also geometrically frustrated, as it happens on the triangular lattice [34] where sometimes

orbital frustration is cured by the tendency towards spin-singlets formation [35]. This means

that the two types of frustration can cancel out. The mixture of geometrical and orbital

frustration was also proposed for explaining the di�erence in magnetic phase diagrams of
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LiNiO2 and NaNiO2, which are otherwise very similar, by the resonating valence-bond ground

states with SO entanglement [36]. This however turned out to be insu�cient to explain the

absence of magnetic order and the low-temperature behaviour of the magnetic susceptibility

in LiNiO2 [37] which requires an extension of the microscopic model by a description of both

the interlayer coupling and of the coupling between orbitals and the lattice.

1.3 Considered problems

In the following parts of this dissertation we will address the problem of orbital interac-

tions using two generic models: the pseudospin model and the simplest SO model which

in general cases have no exact solutions. In Chapter 2 we consider the so-called quantum

compass model (QCM), belonging to the class of orbital-only models originating from the

superexchange for t2g triplet [8]. First, we will search for its exact, analytical solution for

a quasi-one-dimensional lattice with geometry of a ladder including its ground-state prop-

erties and possible excitations at �nite temperature. Then we will study a two-dimensional

(2D) case, on one hand focusing on its symmetries and analytical properties in the ground

state and on the other hand presenting the results of exact diagonalization obtained for �-

nite square clusters, providing information on both ground state and the structure of excited

states.

In Chapter 3 we consider a SO interplay and we present the phase diagrams of the

SO Kugel-Khomskii model [1] for a bilayer, 2D and 3D square lattices, depending on the

Hund's exchange coupling and crystal �eld splitting. The phase diagrams are obtained using

cluster mean-�eld (MF) approximation, in zero and �nite temperature, giving qualitatively

di�erent results than a standard, single-site mean-�eld method, which will be showed. The

most interesting con�gurations, including valence-bond phases and phases with entangled

SO order, will be further characterized by the behavior of order parameters, correlations

and SO covariances at the quantum and thermal phase transitions. Finally, we will explain

some exotic types of magnetic orders, encountered in the cluster MF approach, with e�ective,

perturbative spin Hamiltonians derived around di�erent states with orbital order.
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Chapter 2

Quantum Compass Model

Although orbital interactions are in reality rather complicated [8, 27, 30, 32], a generic and

simplest model of this type is the so-called quantum compass model introduced in Ref. [5],

when the coupling along a given bond is Ising-like, but di�erent spin components are active

along di�erent bond directions, for instance Jxσ
x
i σ

x
j and Jzσ

z
i σ

z
j along a and b axis in the 2D

compass model. The compass model is challenging already for the classical interactions [10].

Recent interest in this model is motivated by its interdisciplinary character as it plays a role

in the variety of phenomena beyond the correlated oxides; is is also dual to recently studied

models of p + ip superconducting arrays [38], namely Xu and Moore Hamiltonian [39], and

to the toric code model in a transverse �eld [40]. Its 2D and 3D version was studied in the

general framework of uni�ed approach to classical and quantum dualities [41] and in 2D it

was proved to be self-dual [39]. QMC was also suggested as an e�ective model for Josephson

arrays of protected qubits [42], as realized in recent experiment [43]. Finally, it could describe

polar molecules in optical lattices and systems of trapped ions [44].

QCM in two dimensions describes �rst quantum phase transition (QPT) between com-

peting types of nematic orders, favored either by x or z� part of the Hamiltonian and ac-

companied by discontinuous behavior of the nearest-neighbor (NN) spin correlations [45],

when anisotropic interactions are varied through the isotropic point Jx = Jz, as shown by

high-order perturbation theory [46], rigorous mathematical approach [47], mean-�eld theory

on the Jordan-Wigner fermions [48] and sophisticated pair-entangled product states (PEPS)

numerical studies [40]. Thus, in the thermodynamic limit the model is frustrated because the

energy of bonds in one direction is not minimized. On the contrary, these bonds give no en-

ergy contribution and are totally ignored. What more, the quantum Monte-Carlo studies of
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the isotropic QCM proved that the nematic order remains stable at �nite temperature up to

Tc = 0.055J and the phase transition to disordered phase stays in the Ising universality class

[49]. As shown by Douçot et. al. [42], the eigenstates of the QCM are twofold degenerate and

the number of low-energy excitations scales as linear size of the system. Further on, it was

proved by exact diagonalization of small systems that these excitations correspond to the spin

�ips of whole rows or columns of the 2D lattice and survive when a small admixture of the

Heisenberg interactions is included into the compass Hamiltonian [50]. The elaborated mul-

tiscale entanglement-renormalization ansatz (MERA) calculations together with high-order

spin wave expansion [51] showed that the 2D QCM undergoes a second order QPT when the

interactions become less frustrated, i.e. when they are modi�ed smoothly towards classical

Ising model. In the same paper [51] we also �nd that the isotropic QCM is not critical in the

sense that the spin waves remain gapfull in the ground state con�rming that the order of 2D

QCM is not of the magnetic type.

The 1D, generalized variant of the compass model with z-th and x-th spin component

interactions on bonds, that alternate on even/odd bonds as in the QCM, can be solved

exactly by an analytical method in two di�erent ways [22, 52]. We note that the 1D compass

model is equivalent to the 1D anisotropic XY model, solved exactly in the seventies [53].

An exact solution of the 1D compass model demonstrates that certain NN spin correlation

functions change discontinuously at the point of a QPT when both types of interactions

have the same strength, similarly to the 2D QCM. This somewhat exotic behavior is due

to the QPT occurring in this case at the multicritical point in the parameter space [54].

The entanglement measures together with so called quantum discord in the ground state,

characterizing the quantumness of the correlations, were analyzed recently [55, 56] to �nd the

location of quantum critical points and show that the correlations between two pseudospins

on even bonds are essentially classical in the 1D QCM . While small anisotropy of interactions

leads to particular short-range correlations dictated by the stronger interaction, in both 1D

and 2D compass model one �nds a QPT to a highly degenerate disordered ground state when

the competing interactions are balanced.

2.1 Quantum compass model on a ladder

Spin ladders play an important role in quantum magnetism. Interest in them is moti-

vated by their numerous experimental realizations in transition metal oxides [57] and has

increased over the last two decades. One of recently investigated realizations of spin ladders
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are Srn−1Cun+1O2n cuprates (with n = 3, 5, 7, · · · ) [58], and the simplest of them, a spin

ladder with two legs connected by rungs, occurs in Sr2Cu4O6. Excitation spectra of such

antiferromagnetic (AF) spin ladders are rich and were understood only in the last decade.

They consist of triplet excitations, bound states and two-particle continuum [59], and were

calculated in unprecedented detail for quantum AF spin S = 1/2 two-leg ladder employing

optimally chosen unitary transformation [60]. In some of spin ladder systems charge degrees

of freedom also play a role, as for instance in α′-NaV2O5, where AF order and charge order

coexist in spin ladders with two legs [61], or in the Cu�O planes of LaxSr14−xCu24O41, where

spin and charge order coexist for some values of x [62]. This advance in the theoretical

understanding of the ground states and excitation spectra of spin ladders is accompanied by

recent experimental investigations of triplon spectra by inelastic neutron scattering [63] of

almost perfect spin ladders in La4Sr10Cu24O41. Finally, spin ladders could serve in the the-

ory as a testing ground for new (ordered or disordered) phases which might arise for various

frustrated exchange interactions [64].

The purpose of this section, based on papers [65, 66], is to present an exact solution of

the compass model on a ladder, with ZZ Ising interactions between z-th spin components

along the ladder legs, and interactions on the rungs which gradually evolve from ZZ Ising

interactions to XX Ising ones. In this way the interactions interpolate between the classical

Ising spin ladder and the quantum compass ladder with frustrated interactions. The latter

case will be called compass ladder below � it stands for a generic competition between

directional orbital interactions on di�erent bonds and can serve to understand better the

physical consequences of the frustrated orbital superexchange.

This section is organized as follows. The model and its invariant dimer subspaces are

introduced in Sec. 2.1.1. Next the ground state and the lowest excited states of the model

are found in Sec. 2.1.2 by solving the model in all nonequivalent subspaces. Thereby we

discuss the role played by defects in spin con�guration and show that the ground state is

obtained by solving the 1D quantum Ising (pseudospin) model (QIM). Using a �nite system,

we provide an example of the energy spectrum, and next extrapolate the ground state energy

obtained for �nite systems to the thermodynamic limit. We also present the changes of spin

correlations at the QPT, and derive the long-range spin correlations. Next we construct

canonical ensemble for the compass ladder in Sec. 2.1.3 and present the details concerning

the calculation of energies in the Appendix A. The constructed partition function is used to

derive such thermodynamic properties of the compass ladder as the temperature variation

of spin correlations, and the average length of fragmented chains separated by kinked areas
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in Sec. 2.1.4. In Sec. 2.1.5 we present the evolution of heat capacity CV when interactions

change from the Ising to compass ladder for a small ladder of 2L = 8 spins, and next analyze

CV for a large (mesoscopic) compass ladder of 2L = 104 spins. While the characteristic

excitation energies responsible for the maxima in heat capacities can be deduced from the

energy spectrum for 2L = 8 spins, generic features of excitations follow from the form of CV

in case of the mesoscopic compass ladder. Final discussion and the summary of results are

given in Sec. 2.1.6.

2.1.1 Compass ladder Hamiltonian and invariant subspaces

We consider a spin ladder with L rungs 〈2i−1, 2i〉 labeled by i = 1, 2, · · · , L, see Fig. 2.1. The
interactions along ladder legs are Ising-like with AF coupling J between z-th spin components

(σzi σ
z
i+1), while AF interactions on the rungs interpolate between the Ising coupling of z-th

(2σzn−1σ
z
n+1) and x-th (2σxn−1σ

x
n+1) spin components by varying parameter 0 ≤ α ≤ 1,

H(α) = 2J
L∑
i=1

{
ασx2i−1σ

x
2i + (1− α)σz2i−1σ

z
2i

}
+ J

L∑
i=1

(
σz2i−1σ

z
2i+1 + σz2iσ

z
2i+2

)
. (2.1)

We assume periodic boundary conditions (PBCs) along the ladder legs, i.e., σz2L+1 ≡ σz1

and σz2L+2 ≡ σz2. The factor of two for the interactions on the rungs ∝ 2J was chosen to

guarantee the same strength of interactions on the rungs (with only one rung neighbor of

each spin) as along the ladder legs (with two leg neighbors). Increasing α gradually modi�es

the interactions on the rungs and increases frustration. For α = 0 one �nds the reference

Ising ladder, while at α = 1 the interactions describe a competition between frustrated ZZ

interactions along the ladder legs and 2XX interactions on the rungs, characteristic of the

compass ladder. A representative compass ladder with L = 4 rungs (i.e., 2L = 8 spins) is

shown in Fig. 2.1.

To solve the spin ladder given by Eq. (2.1) in the range of 0 ≤ α ≤ 1 we notice that

[H(α), σz2i−1σ
z
2i] ≡ 0. Therefore we have a set of L symmetry operators,

Ri ≡ σz2i−1σ
z
2i , (2.2)

with respective eigenvalues ri = ±1. Each state of the system can be thus written in a basis

of σzi eigenvectors |s1, s2, s3, . . . , s2L〉 �xed by strings of quantum numbers si = ±1. These

vectors can be parametrized di�erently by a new set of quantum numbers {ti} and {ri}, with
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Figure 2.1: Schematic view of the quantum compass ladder with L = 4 rungs, described by
Hamiltonian (2.1) with α = 1. Interactions along the ladder legs labeled as ZZ (black lines)
are σz2i−1σ

z
2i+1 (upper leg) and σz2iσ

z
2i+2 (lower leg). The interactions along the rungs labeled

as 2XX (red lines) are 2σx2i−1σ
x
2i (the factor of 2 simulates the PBC along the rungs). Dashed

lines indicate PBCs along the ladder legs.

i = 1, 2, · · · , L; they are related to the old ones by the formulae: ti ≡ s2i−1 and ri ≡ s2i−1s2i.

Now we introduce new notation for the basis states

|t1, t2, . . . , tL〉r1r2···rL ≡ |t1, t1r1, t2, t2r2, . . . , tL, tLrL〉 , (2.3)

where the right-hand side of Eq. (2.3) is the state |s1, s2, s3, . . . , s2L〉 written in terms of

variables {ti} and {ri}, and the left-hand side de�nes new notation. This notation highlights

the di�erent role played by ri's, which are conserved quantities, and by ti's, being new

pseudospin variables. For states like in Eq. (2.3), we de�ne new pseudospin operators τ zi and

τxi acting on {ti} quantum numbers as Pauli matrices, e.g. for i = 1:

τx1 |t1, t2, . . . , tL〉r1r2···rL = | − t1, t2, . . . , tL〉r1r2···rL ,

τ z1 |t1, t2, . . . , tL〉r1r2···rL = t1|t1, t2, . . . , tL〉r1r2···rL . (2.4)

A similar transformation was introduced for a frustrated spin-1/2 chain by Emery and

Noguera [67], who showed that it can by mapped onto an Ising model in a transverse �eld.

Recently this procedure was used to investigate quantum criticality in a two-leg strongly

correlated ladder model at quarter �lling [68].

The Hamiltonian can be now written in a common eigenbasis of Ri (2.2) operators by

means of {τxi , τ zi } operators. In a subspace labeled by a string r1, r2, · · · , rL, the reduced
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form of the Hamiltonian is

Hr1r2···rL(α) ≡ J

L∑
i=1

{
(1 + riri+1)τ zi τ

z
i+1 + 2ατxi

}
+ 2JC~r(α) , (2.5)

with a constant

C~r(α) = (1− α)
L∑
i=1

ri , (2.6)

and PBC τ zL+1 ≡ τ z1 . This leads to the exactly solvable QIM with transverse �eld [17, 69, 70],

if only ri ≡ 1 or ri ≡ −1. Otherwise there are always some τ zi τ
z
i+1 interactions missing

(defects created in the chain) and we obtain a set of disconnected quantum Ising chains with

loose ends and di�erent lengths. The bonds with no pseudospin interactions may stand next

to each other, so in an extreme case when ri+1 = −ri for all i, one �nds no Ising bonds and

no chains appear.

One may easily recognize that the ground state of the spin ladder described by Hamilto-

nian (2.1) lies in a subspace with ri ≡ −1 for α < 1. First of all, ri ≡ −1 minimizes C~r(α),

see Eq. (2.6). To understand a second reason which justi�es the above statement let us

examine a partial Hamiltonian (open chain) of the form

H(α,L1) = 2J

L1−1∑
i=1

τ zi τ
z
i+1 + 2Jα

L1∑
i=1

τxi , (2.7)

with 2 ≤ L1 ≤ L− 1. Note that it appears generically in Eq. (2.5) and consists of two terms

containing pseudospin operators {τxi } and {τ zi }. Let us call them Hx and Hz and denote

the ground state of Hx as |x〉 with energy Ex. The mean value of H(α,L1) in state |x〉 is
also Ex because every τ

z
i operator has zero expectation value in state |x〉, i.e., 〈x|τ zi |x〉 = 0.

However, we know that |x〉 is not an eigenvector of H(α,L1) which implies that H(α,L1)

must have a lower energy than Ex in the ground state. This shows that the presence of τ zi τ
z
i+1

bonds in the Hamiltonian H(α,L1) lowers the energy of bare Hx. One may also expect that

this energy decreases with increasing length L1 of the chain, and is proportional to L′ in the

thermodynamic limit. The numerical evidence for this are plots of the ground state energy

versus L1 presented in section 3. Looking at Hamiltonian (2.5) we see that the longest chains

of the type (2.7) appear in subspaces with ri ≡ −1 and ri ≡ 1, but the constant term C~r(α)

favors ri ≡ −1 if only α < 1. For α = 1 the ground state can be in both subspaces, and its

degeneracy follows, see below.
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2.1.2 Energy spectra in invariant subspaces

Quantum Ising Model

To �nd the ground state of spin ladder (2.1) we need to solve the QIM that arises from Eq.

(2.5) when ri ≡ −1. Thus we need to diagonalize the Hamiltonian of the form

HQIM(β, α) = 2J
L∑
i=1

(βτ zi τ
z
i+1 + ατxi ) , (2.8)

which is related to our original problem by the formula

H−1−1···−1 = HQIM(1, α)− 2LJ(1− α) . (2.9)

The formal parameter β is introduced for convenience and will be used to determine the

correlation functions along the ladder legs by di�erentiation, see below. The standard way

of solving HQIM starts with Jordan�Wigner (JW) transformation. This non�linear mapping

replacing spin operators by spinless fermions is of the form

τ zj = (cj + c†j)
∏
i<j

(1− 2c†ici) ,

τxj = (1− 2c†jcj) . (2.10)

The boundary condition for fermion operators {ci} after inserting them into HQIM (2.8) is

antiperiodic for even and periodic for odd number of JW quasiparticles in the chain. The

operator P of the parity of fermions,

P =
L∏
i=1

(1− 2c†ici) , (2.11)

corresponds to the operation of �ipping all spins along the z-th axis and commutes with

HQIM. Therefore, the Hamiltonian can be split into two diagonal blocks, for even (+) and

odd (−) number of JW fermions by means of projection operators 1
2
(1 ± P). Therefore we

write

HQIM =
1

2
(1 + P)H+ +

1

2
(1− P)H− , (2.12)
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where

H± = 2J
L∑
i=1

{
β(c†i − ci)(c

†
i+1 + ci+1)− 2αc†ici

}
+ 2JLα , (2.13)

with two di�erent boundary conditions: cL+1 = ∓c1 for (±) subspaces. Let us point out

that the only consequence of the non-linearity of the JW transformation is the minus sign

which appears in the �rst bracket multiplying β. This is thanks to one-dimensionality and

only NN interactions in the reduced Hamiltonian (2.5), but is not the case for the original

Hamiltonian (2.1).

Next step is the Fourier transformation,

cj =
1√
L

∑
k

eijkck , (2.14)

with quasimomenta k = ±(2l − 1)π/L [l = 1, 2, · · · , L/2] in an even subspace (+), and

k = 0, π,±2lπ/L [l = 1, 2, · · · , (L/2−1)] in an odd one (−). After transforming the operators

in Eq. (2.13) we obtain H± in a block diagonal form,

H± = 4J
∑
k

±
(β cos k − α)c†kck + 2J

∑
k

±
β(c†kc

†
−ke

ik + h.c.) + 2JLα . (2.15)

Diagonalization is completed by a Bogoliubov transformation, de�ning new fermion operators

γ†k ≡ αkc
†
k + βkc−k (for k 6= 0, π, while the operators c0 and cπ have no partner and are left

untransformed). Transformation coe�cients αk and βk are obtained from the condition[
HQIM, γ

†
k

]
= ωkγ

†
k , (2.16)

which is an eigenproblem in linear space spanned by operators c†k and c−k. We get two

eigenvectors (αk, βk), corresponding to the quasiparticle operators γ†k and γ−k, and two cor-

responding eigenvalues ωk = ±Ek, with

Ek(β, α) = 4J
{
α2 + β2 − 2αβ cos k

}1/2
. (2.17)
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Therefore, the Hamiltonian is brought to the diagonal form in both subspaces

H+ =
∑
k

+
Ek

(
γ†kγk −

1

2

)
, (2.18)

H− =
∑
k

−
Ek

(
γ†kγk −

1

2

)
+ 4J(β − α)c†0c0 − 4J(β + α)c†πcπ + 4Jα . (2.19)

We still need to transform the parity operator P . Luckily, the Fourier transformation

does not change its form, neither does the Bogoliubov transformation and to see that one

can look at the vacuum state |0〉 for quasiparticle operators γk. From the condition γk|0〉 = 0

for all k we get

|0〉 =
∏
k

(
ᾱk + β̄kc

†
−kc
†
k

)
|vac〉 , (2.20)

where |vac〉 is a true vacuum state for JW fermions or a state with all spins up. From the form

of |0〉 we see that it contains a superposition of all even numbers of quasiparticles c†k, and the

total quasiparticle number is not �xed. Acting on the vacuum with a single creation operator

γ†k we obtain a state with odd number of JW fermions, because γ†k is a linear combination

of a creation c†k and annihilation c−k operator of a single fermion. In this way one may get

convinced that the parity of quasiparticles γ†k and the original c†k operators is the same.

Ground state and the energy spectrum

From the diagonal form of the QIM Hamiltonian given by Eq. (2.18) we see that the ground

state of spin ladder (2.1) is simply |0〉 in subspace ri ≡ −1 (or ri ≡ 1 when α = 0). For the

ground state energy, one uses Eq. (2.9) to get

E−1−1···−1 = EQIM(1, α)− 2LJ(1− α) , (2.21)

with EQIM(1, α) given in the thermodynamic limit by an integral

EQIM(β, α) = − L

2π

ˆ π

0

dk Ek(β, α) . (2.22)

The ground state in the absence of transverse �eld (at α = 0) is doubly degenerate � it

is given by two possible Néel states. At �nite α > 0, this degeneracy is removed, and the

sum of the two Néel states (symmetric state), |0+〉, is the ground state, while their di�erence

(antisymmetric state) becomes the �rst excited state. This �rst excited state, |0−〉 = γ†π|0+〉,
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Figure 2.2: Eigenenergies En of the spin ladder (2.1) of Fig. 2.1 with L = 4 rungs for
increasing α, obtained by exact diagonalization. Di�erent panels show energies in invariant
subspaces of the e�ective Hamiltonian (2.5), with 1 and 1̄ standing for positive or negative
values of ri: (a) 1̄1̄1̄1̄, (b) 11̄1̄1̄, (c) 111̄1̄, (d) 11̄11̄, (e) 1111̄ and (f) 1111. While the subspaces
(a) and (f) are unique, other subspaces are equivalent by symmetry to those shown in panels
(b)�(e), resulting in total spectrum of 256 eigenstates. Quantum phase transition occurs at
α = 1, where the lowest eigenenergies in the subspaces (a) and (f) become degenerate. In the
thermodynamic limit L→∞ the spectrum changes qualitatively � the two lowest energies
in the subspaces 1̄1̄1̄1̄ and 1111 are degenerate and the ground state from the subspace (b)
(11̄1̄1̄) becomes the �rst excited state of the spin ladder.

stems from the same subspace and belongs to the spectrum of H−. The splitting of the states
|0+〉 and |0−〉 increases with α, see Fig. 2.2(a). For �nite L and α > 0 there is always �nite

energy di�erence between the energies of |0+〉 and |0−〉 = γ†π|0+〉 states. However, in the

thermodynamic limit L→∞, this energy gap vanishes for α ≤ 1.

The full spectrum for the ladder with L = 4 rungs belongs to six classes of subspaces

equivalent by symmetry � it is depicted in Fig. 2.2. With increasing α the spectrum

changes qualitatively from discrete energy levels of the classical Ising ladder at α = 0, with

the ground state energy per spin equal −2J , to a narrower and quasi�continuous spectrum

when the quantum compass ladder at α = 1 is approached, with the ground state energy

−4J/π per spin. At the α = 1 point one �nds an additional symmetry; subspaces indexed
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Figure 2.3: Nearest-neighbor correlation functions in the ground state for spin ladder (2.1) in
the thermodynamic limit L→∞. For increasing α spin correlations 〈σx2i−1σ

x
2i〉 on the rungs

decrease from zero to −2/π. At the same time, AF correlations 〈σz2i−1σ
z
2i+1〉 along the ladder

legs gradually weaken (increase from the classical value −1 at α = 0 to −2/π at α = 1),
and become degenerate with the rung 〈σx2i−1σ

x
2i〉 correlations at the quantum critical point

α = 1. Correlation function 〈σz2i−1σ
z
2i〉 on the rungs, directly related to the subspace indices

ri, remains constant (〈σz2i−1σ
z
2i〉 = −1) in the entire range of α < 1, and jumps to 0 at α = 1.

by ~r and −~r are then equivalent which makes each energy level at least doubly degenerate.

Correlation functions

All the nontrivial NN spin correlation functions in the ground state can be determined by

taking derivatives of the ground state energy EQIM(β, α) (2.22) with respect to α or β,

while the others are evident from the construction of the subspaces. In this way one �nds

〈σz2i−1σ
z
2i+1〉 correlation along the legs and 〈σx2i−1σ

x
2i〉 along the rungs, shown in Fig. 2.3.

Spin correlations 〈σz2i−1σ
z
2i+1〉 along the legs increase from the classical value −1 up to −2/π

for α = 1. By symmetry, both ladder legs are equivalent and 〈σα2i−1σ
α
2i+1〉 = 〈σα2iσα2i+2〉 for

α = x, z. At the same time spin correlations 〈σx2i−1σ
x
2i〉 along the rungs gradually develop

from 0 in the classical limit to −2/π at the quantum critical point α = 1 which indicates

increasing frustration. Both functions meet at α = 1 which indicates balanced interactions

� ZZ along the legs and 2XX along the rungs in case of the quantum compass ladder (see
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Fig. 2.1).

For the remaining correlations one �nds

〈σx2i−1σ
x
2i+1〉 = 0 , (2.23)

〈σz2i−1σ
z
2i〉 = 〈Ri〉 = ri . (2.24)

Eq. (2.23) follows from the fact that operators σx2i−1σ
x
2i+1 do not commute with the symmetry

operators Ri (2.2). In turn, averages of the symmetry operators along the rungs (2.24) are

constant and equal −1 for α < 1, but at α = 1 they change in a discontinuous way and

become zero, because at this point the degeneracy of the ground state increases to 2× 2 = 4,

and the spins on the rungs are disordered, so the ZZ correlations vanish.

Finally, one can calculate the long range correlation functions for z-th spin components,

〈σz2i+aσz2j+b〉 = ra+1
i rb+1

j 〈τ zi τ zj 〉 . (2.25)

The right�hand side of Eq. (2.25) can be obtained from the QIM by the so�called Toeplitz

determinant [17] and can be also found in Ref. [22]. All the long range XX correlation

functions are zero in the ground state as they do not commute with Ri's operators (2.2).

Note that correlations 〈τ zi τ zj 〉 vanish in any subspace when |i−j| exceeds the length of the
longest Ising chain. This is due to the fact that, as already mentioned in section 2.1.1, the

e�ective Hamiltonian in a given subspace describes a set of completely independent quantum

Ising chains. Thus, at �nite temperature, one can expect that the compass ladder will bemore

disordered than a standard, 1D QIM. The problem of chain partition at �nite temperature

will be discussed in detail below.

Energies in the subspaces with open Ising chains

As already mentioned, the general Hamiltonian of the form (2.5) is exactly solvable only in

cases when ri = ri+1 or ri = −ri+1 for all i. Therefore, one may �nd exactly the ground

state of spin ladder (2.1), see below. Otherwise, in a general case (i.e., in arbitrary subspace)

one needs to deal with a problem of the QIM on an open chain of length L1 where L1 < L,

described by Hamiltonian (2.7);

H(α,L) = 2J

L1−1∑
i=1

τ zi τ
z
i+1 + 2Jα

L1∑
i=1

τxi . (2.26)
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After applying the JW transformation (2.10), Eq. (2.26) takes the form

H(α,L1) = 2J

L1∑
i=1

{(c†i − ci)(c
†
i+1 + ci+1)− 2αc†ici}+ 2JL1α , (2.27)

with an open boundary condition c†L1+1 ≡ 0. This condition prevents us from the plane waves

expansion, but we can still use the Bogoliubov transformation. We remark that the broken

chain considered here is su�cient to get a general solution, and the sum over all subspaces

with open (broken) chains is included in the partition function Z(α), see Sec. 2.1.3.

We de�ne new fermion operators γ†i as follows

γ†i =

L1∑
j=1

(
αijc

†
j + βijcj

)
, (2.28)

for i = 1, 2, . . . , L1. Coe�cients αij and βij can be chosen in such a way that the transfor-

mation is canonical and H(α,L1) takes the diagonal form:

H(α,L1) =

L1∑
i=1

Ei(α,L1)

(
γ†i γi −

1

2

)
. (2.29)

Both excitations energies Ei and transformation coe�cients {αij, βij} can be determined from

the condition

[H(α,L1), γ†i ] = Eiγ
†
i . (2.30)

This leads to an eigenequation(
A B

−B −A

)(
~αi
~βi

)
= Ei

(
~αi
~βi

)
, (2.31)

where A and B are matrices of size L1 × L1 (A is a symmetric and B is an antisymmetric

matrix), and ~αi, ~βi are vectors of length L1. The explicit form of A and B for L1 = 4 is

A = 2J


−2α 1 0 0

1 −2α 1 0

0 1 −2α 1

0 0 1 −2α

 , B = 2J


0 1 0 0

−1 0 1 0

0 −1 0 1

0 0 −1 0

 , (2.32)
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Figure 2.4: Ground state energies per site ε(α,L1) for the QIM on open chains (2.7) as
functions of inverse chain's length 1/L1 (for 2 ≤ L1 ≤ 61) plotted for α = 1, 3/4, 1/2 and
1/4, from bottom to top. Linear �t gives the asymptotic values of energies for L1 → ∞,
indicated by crosses; these are: ε(α,L1 → ∞) = −2.55J , −2.29J , −2.13J and −2.03J for
the respective values of α.

which can be simply generalized to the case of any �nite L1. The spectrum of H(α,L1) can

be now determined by a numerical diagonalization of the 2L1 × 2L1 matrix from Eq. (2.31).

For each L1 one obtains a set of 2L1 eigenvalues symmetric around zero. Only the positive

ones are the excitation energies Ei appearing in Eq. (2.29). Therefore, the ground state

energy E0(α,L1) is obtained in absence of any excited states, so the energy per site can be

easily expressed as

ε(α,L1) =
1

L′
E0(α,L1) = − 1

2L′

L′∑
i=1

Ei(α,L1) . (2.33)

Fixing α and increasing L1 we can trace the dependence of ε(α,L1) on the system size

and make an extrapolation to an in�nite chain by considering L1 →∞. Results for ε(α,L1)

(2.33) as a function of decreasing 1/L1, obtained for α = 1, 3/4, 1/2, 1/4 and L1 changing

from 2 to 61, are shown in Fig. 2.4. The energies decrease with increasing L1 which suggests

that the ground state corresponds indeed to a closed chain without any defects, as presented

in Sec. 2.1.2.
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Figure 2.5: Coe�cients a(α) (red line) and b(α) (blue line) of the linear �t (2.34) performed
using the data for L1 = 60 and L1 = 61 for di�erent values of α. At α = 0 one recovers the
classical values of the Ising chain.

The dependence of ε(α,L1) on 1/L1 seems to be almost linear in each case. This is

almost exact for α = 1 and for α = 1/4, while it holds approximately for intermediate values

of α in the regime of su�ciently large L1. This observation can be used to derive a simple,

approximate formula for the energy ε(α,L1). One can take the values of ε(α,L1) obtained

for two largest L1 (L1 = 60, 61) with �xed α and perform a linear �t. Hence, we get

ε(α,L1) ∼= a(α)
1

L1

− b(α) , (2.34)

with coe�cients a and b depending on α. These new functions can be determined numerically

for α changing between 0 and 1 with su�ciently small step. Results obtained by a numerical

analysis are plotted in Fig. 2.5. Both a and b starts from a value 2 at α = 0, then a(α)

decreases monotonically to about 0.72 while b(α) slightly increases to 2.55 at α = 1. Eq.

(2.34) is exact for α = 0 and any L1, as well as for L1 = 60, 61 and any α. Nevertheless,

looking at Fig. 2.4, one can expect it to be a good approximation in case of su�ciently

large L1. From this formula one can read that for L1 → ∞ one gets for the total energy

E0(α,L1) = −L1b(α)+O(L0
1) which agrees with the classical intuition based on extensiveness

of the internal energy.
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Figure 2.6: Excitation energy ∆(J) as a function of α for: (i) a ladder with L = 4 rungs
(black line) and (ii) an in�nite ladder (red line). In the �rst case, as long as the QPT is
not approached, the excited state remains in the ground state subspace with ri ≡ −1 and
contains one Bogoliubov quasiparticle with k = π. The latter excited state collapses to the
ground state for L = ∞, so the �rst excitation is here di�erent than the one for in�nite L.
On the contrary, the excited state for L = ∞ contains two Bogoliubov quasiparticles with
k = 0±. This leads to the linear gap following ∆(α) = 8J(1− α).

Lowest energy excitations

As we pointed out in Sec. 2.1.2, the lowest excited state in the case of a �nite system, for

α far enough from α = 1, is simply γ†π|0+〉 and belongs to the subspace ri ≡ −1. This is a

collective excitation creating a wave of spin��ips in the ground state. Close to α = 1 one

�nds that the lowest excited state is the ground state from the subspace ri ≡ 1 which means

that the spin order along the rungs changes from AF to FM one along the z�th axis.

The lowest energy excitation changes qualitatively in the thermodynamic limit L → ∞,

where γ†π|0+〉 and |0+〉 states have the same energy and the dominating excitation is a pair of

Bogoliubov quasiparticles with k = 0± which corresponds to �ipping one spin at α = 0. The

�rst excited state remains in the ri ≡ −1 subspace for all α and the gap follows linear law

∆(α) = 8J(1−α), see Fig. 2.6. This shows that the low energy spectrum of the ladder is the

same as for ordinary QIM in the thermodynamic limit (L→∞). Note that such behavior is
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in sharp contrast with the case of �nite ladder of L = 4 rungs.

2.1.3 Canonical ensemble for the ladder

Partition function

In order to construct the partition function of spin ladder (2.1), we shall analyze its quantum

states in di�erent subspaces. Every invariant subspace introduced in Sec. 2.1.1 is labeled by

a string r1r2 · · · rL. Let us consider an exemplary string of the form

1 1 1 1̄ 1 1̄ 1 1 1̄ 1̄ 1̄ 1 1 1̄ 1 1 1 1 1̄ 1̄ 1̄ 1 , (2.35)

where 1̄ = −1, and either ri = ri+1 or ri 6= ri+1. Each time when ri = ri+1 the chain continues,

and when ri 6= ri+1 we may say that a kink occurs at site i in the chain. We introduce a

PBC, so the string is closed to a loop and rN stands next to r1. From the point of view of

the reduced Hamiltonian Hr1r2···rL , given by Eq. (2.5), it is useful to split the string {ri} into
chains and kinked areas. A chain is a maximal sequence of ri's without any kinks consisting

of at least of two sites. Kink areas are the intermediate areas separating neighboring chains.

Using these de�nitions we can divide our exemplary string (2.35) as follows

1 1 1) 1̄ 1 1̄ (1 1) (1̄ 1̄ 1̄) (1 1) 1̄ (1 1 1 1) (1̄ 1̄ 1̄) (1 , (2.36)

where we adopt the convention to denote chains as (riri+1 · · · ri+p), and kink areas as

)riri+1 · · · ri+q(. For any string of ri's containing m chains we can de�ne chain con�gura-

tion {Li} with i = 1, 2, . . . ,m, where Li's are the lengths of these chains put in descending

order. In case of our exemplary string its chain con�guration is {4, 4, 3, 3, 2, 2}- note the

PBC. Variables {Li} must satisfy three conditions: (i) Li ≥ 2 for all i, (ii)
∑m

i=1 Li ≤ L,

and (iii)
∏m

i=1(−1)Li ≡ (−1)m. The �rst two of them are obvious, while the last one is a

consequence of the PBC. Using chain parameters the e�ective Hamiltonian Hr1r2···rL can be

written as a sum of commuting operators

Hr1r2···rL(α) =
m∑
i=1

H(α,Li)− 2Jα
K∑
i=1

τxi + 2JC~r(α) , (2.37)

where K = L −
∑m

i=1 Li stands for the total size of kinked areas. This formula refers to all

subspaces excluding those with ri+1 ≡ ri, where we have already obtained exact solutions.
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The evaluation of the constant C~r(α) can be completed by considering chain and kink areas

in each subspace, see Appendix A. Having the diagonal form of H(α,L1), given by Eq.

(2.29), one can now calculate partition function for the ladder of 2L spins. It can be written

as follows

Z(α) =
∑
{Li}

∑
R{Li}

Fα[{Li}, R{Li}]e−2JC~r/TZ(α, {Li}) + Z0(α) , (2.38)

where the sum over all {~r} subspaces is replaced by sums over all chain con�gurations {Li}
and all R =

∑L
i=1 ri con�gurations possible for a given {Li}. Factor Fα[{Li}, R{Li}] is a

number of ~r subspaces for �xed chain con�guration and �xed R when α < 1, and for α = 1

it is a number of ~r subspaces when only {Li} is �xed. Partition function for any subspace

containing open QIM chains or kinked areas is given by

Z(α, {Li}) = 2L coshK
[

2J

αT

]
×

n∏
i=1

li∏
j=1

coshN(li)

[
Ej(α, li)

2T

]
, (2.39)

where {li} (i = 1, 2, . . . , n) are the di�erent lengths of the chains appearing in the chain con-

�guration {Li}, N(li) stands for the number of chains of the length li, and T is temperature

in units of kB = 1. For example, the chain con�guration {4, 4, 3, 3, 2, 2} of Eq. (2.36) has

n = 3, {li} = {4, 3, 2} and N(li) ≡ 2. The term Z0(α) is a contribution from subspaces with

ri+1 ≡ ri. Using exact solutions (2.18), available in these subspaces, one �nds that

Z0(α) = cosh

[
2J

T
L(1− α)

]
×
∑
S=±1

(
L−1∏
q=0

cosh
ES
q

T
+ S

L−1∏
q=0

sinh
ES
q

T

)
, (2.40)

where the quasiparticle energies are:

E+
q = 2J

{
1 + α2 + 2α cos

(
2q + 1

L
π

)}1/2

, (2.41)

E−q = 2J

{
1 + α2 + 2α cos

(
2q + 1

L
π +

1

L
π

)}1/2

. (2.42)

Appearance of both sine and cosine hyperbolic functions in Z0 (2.40) is due to the projection

operators P introduced in section 2.1.2.
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Combinatorial factor

To obtain numerical values of the partition function one has to get the explicit form of the

combinatorial factor Fα[{Li}, R{Li}]. This can be done in a simple way only for α = 1 when

C~r(α) = 0, see Eq. (2.6). Then we have

Fα=1[{Li}, R{Li}] ≡ F1[{Li}] , (2.43)

where F1[{Li}] is the number of di�erent ~r subspaces that can be obtained from a �xed chain

con�guration {Li}. Now we can derive a formula for this combinatorial factor.

The chains can be put into the ri string in any order and these of equal length are

indistinguishable. Apart from chains, there are also ri's belonging to the kinked areas which

determine the actual string con�guration. We have K = L −
∑m

i=1 Li of them, they are

indistinguishable and can be distributed among m kinked areas. These degrees of freedom

lead to a combinatorial factor

m!

N(l1)! . . . N(ln)!

(
K +m− 1

K

)
, (2.44)

where l1, l2, . . . , ln (n ≤ m) are the lengths of the chains without repetitions and N(li) is a

number of chains of the length li. After determining the length of the �rst chain L1 and

the size of its kink area A1, we still need to �x the position of r1. We have exactly L1 + A1

possibilities. Next, we have to sum up over all possible values of L1 (which are l1, l2, . . . , ln),

all possible sizes of the kink area A1 (which are 1, 2, . . . , K) and multiply by a combinatorial

factor (2.44) calculated for the remaining part of the string. The result is

F1[{Li}] = 2
n∑
i=1

N(li)
(m− 1)!

N(l1)! . . . N(ln)!
×

K∑
a=0

(li + a)

(
K − a+m− 2

K − a

)
, (2.45)

where the factor of 2 in front comes from the fact that r1 = ±1. This number tells us how

many times a given energy spectrum repeats itself among all subspaces when α = 1. The

binomial factor appearing in formula (2.45) needs to be generalized with Γ functions when

m = 1 which gives: (
K − a− 1

K − a

)
≡ δK,a. (2.46)
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2.1.4 Compass ladder at �nite temperature

Correlation functions and chain fragmentation

NN correlation functions can be easily derived at �nite temperature from the partition func-

tion Z(α, β, γ), if we substitute our initial Hamiltonian H(α) given by Eq. (2.1) by

H(α, β, γ) = 2J
L∑
i=1

{
γσx2i−1σ

x
2i + (1− α)σz2i−1σ

z
2i

}
+ Jβ

L∑
i=1

(
σz2i−1σ

z
2i+1 + σz2iσ

z
2i+2

)
. (2.47)

Then, after calculating the partition function, we recover spin correlations by di�erentiating

Z(α, β, γ) with respect to β and γ, and inserting γ = α and β = 1 to the obtained correlations

to derive the �nal results. Once again, this can be done in a simple way for small ladders.

Correlation functions 〈σx2i−1σ
x
2i〉 and 〈σz2i−1σ

z
2i+1〉 for spin ladder (2.1) at α = 1 (quantum

compass ladder) are shown in Fig. 2.7 for increasing temperature T . Other NN correlations

vanish at α = 1 for trivial reasons.

Fig. 2.7 shows the qualitative di�erence between correlation functions of spin ladder (2.1)

and those of periodic QIM chain (2.8) of length L, that appears in the ground subspaces

ri ≡ ri+1. When all the subspaces are considered, thermal �uctuations gradually destroy

the spin order along the legs and the 〈σz2i−1σ
z
2i+1〉 correlations weaken. On the contrary, the

〈σx2i−1σ
x
2i〉 correlations on the rungs are robust in the entire range of physically interesting

temperatures 0 < T < 2J , as the ZZ interactions destroying them are gradually suppressed

with increasing T due to the increasing size of kinked areas.

The above result is qualitatively di�erent from the QIM results shown by dashed lines

in Fig. 2.7, where thermal �uctuations initially increase intersite correlations of z�th spin

components along the ladder legs and reduce the in�uence of the transverse �eld acting on

τxi pseudospins due to spin interactions 2Jσx2i−1σ
x
2i on the rungs. In the latter case the low-

temperature thermal �uctuation can enhance local spin ZZ correlations along the ladder legs

at the cost of disorder in the direction of external �eld. This is because pseudospin interaction

involves τ zi operators, not τxi ones. Remarkably, in the full space, see solid lines in Fig. 2.7,

the spin correlations are initially the same (at low T ) as those for the QIM, but this changes

when temperature T ' 0.3J is reached and the two curves cross � then the rung correlations

start to dominate. The crossing is caused by the growth of the kinked areas, as shown in

Fig. 2.8, which are free of quantum �uctuations and therefore favor rung correlations of x�th

spin components.
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Figure 2.7: Nearest-neighbor correlation functions, 〈σx2i−1σ
x
2i〉 on the rungs (diamonds and

red lines) and 〈σz2i−1σ
z
2i+1〉 along the ladder legs (circles and blue lines), calculated for the

compass ladder (α = 1) of 2L = 8 spins for increasing temperature T , taking into account:
(i) all subspaces (solid lines) for increasing temperature T , and (ii) only the subspace which
contains the ground state ri ≡ −1 (dashed lines).

Another interesting information on excitations in the quantum compass ladder is the

evolution of the average chain con�guration with increasing temperature. As we know from

Sec. 2.1.3, every subspace can be characterized by the lengths of chains that appear in its ri

label. Chain con�gurations can in turn be characterized by: (i) the number of chains which

are separated by kinks m, and (ii) the total size of kinked areas K. Thermodynamic averages

of both quantities, 〈m〉 and 〈K〉, can be easily determined at α = 1 even for a relatively large

system using the combinatorial factor F1[{Li}] (2.45) calculated in Sec. 2.1.3. In the limit

of T →∞ one has:

〈m〉∞ =

∑
{Li} F1[{Li}]

(
L−

∑m
j=1 Lj

)
∑
{Li} F1[{Li}]

, (2.48)

〈K〉∞ =

∑
{Li} F1[{Li}]m[{Li}]∑

{Li} F1[{Li}]
, (2.49)

where m[{Li}] is the number of {Li} in the chain con�guration L1, L2, · · · , Lm.
In Fig. 2.8 we show the average quantities 〈m〉 and 〈K〉 for ladders of 2L = 8 (left) and
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Figure 2.8: Average size of the kinked areas 〈K〉 (2.49) (circles and red lines) and the average
number of chains 〈m〉 (2.48) (diamonds and blue lines) for the quantum compass ladder (2.1)
(at α = 1) consisting of: (a) 2L = 8, and (b) 2L = 104 spins. The mean size of kinked
areas 〈K〉 increases monotonically with increasing temperature T to the asymptotic value
L/4, see Eq. (2.50). The average number of chains 〈m〉 behaves di�erently, growing quickly
to a maximal value at intermediate T and then decreasing slowly when T →∞ towards: (a)
1.125, and (b) 13 + 12× 10−15.

2L = 104 spins (right). In both cases the average number of chains 〈m〉 starts from 1 and the

average size of the kinked areas 〈K〉 starts from 0, corresponding to a single chain without

kinks in the ground state at T = 0. The number of chains 〈m〉 grows to a broad maximum

in the intermediate temperature range and decreases asymptotically to a �nite value. This

non�monotonic behavior is due to the fact that the states with the highest energy, which

become accessible when T →∞, do not belong to the subspaces with large number of chains.

The mean value of kinks 〈K〉 follows 〈m〉 but increases monotonically in the entire range of

T , and for �nite T one �nds that 〈K〉 < 〈m〉. By looking at the current results one may

deduce that in case of T →∞ and for large L� 1 both quantities approach

〈m〉∞ = 〈K〉∞ =
L

4
. (2.50)

This is an interesting combinatorial feature of the chain con�gurations which is not obvious

when we look at the explicit form of the combinatorial factor F1[{Li}] (2.45). Note that

Eq. (2.50) gives an integer due to our choice of system sizes 2L considered here, being

multiplicities of 8, i.e., L is a multiplicity of 4.
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Figure 2.9: Relative density of states N(E) (a) as a function of energy ratio E/E0 and
Fourier coe�cients Z

(
2iπ n

w

)
as functions of n for 0 ≤ n ≤ 12 (b) and for 13 ≤ n ≤ 600 (c)

calculated for the ladder of 2L = 104 spins. Relative density of states reminds a gaussian
centered in zero with the width being roughly 0.15 of the spectrum width w. This follows
from the gaussian behavior of Z

(
i2π n

w

)
coe�cients for small n (panel (b)). Plot (c) reveals

peaks in Z
(
i2π n

w

)
for n = 208, 330, 533, three order of magnitude weaker than for n = 0,

corresponding with periodic condensations of the energy levels every ∆E = 1.28, 0.81, 0.50J .

Spectrum of a large system

The combinatorial factor F1[{Li}] given by Eq. (2.45) enables us to calculate the partition

function Z(1) (2.38) for a large system when α = 1. As a representative example we consider

a ladder consisting of 2L = 104 spins. Even though we can reduce Hamiltonian (2.1) to

a diagonal form when 2L = 104, as shown in previous paragraphs, it is still impossible

to generate the full energy spectrum for practical reasons � simply because the number of

eigenstates is too large. Instead, we can obtain the density of states in case of α = 1 using the

known form of the partition function (2.38) and of the combinatorial factor (2.45). Partition

function for imaginary 1/T can be written as

Z(ix) =
4L−1∑
p=0

e−ixEp =

ˆ −E0+ε

E0−ε
dEe−ixEρ(E) , (2.51)
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where

ρ(E) ≡
4L−1∑
p=0

δ(E − Ep) , (2.52)

and where sum is over all eigenenergies Ep of the ladder. Parameter E0 is the energy of the

ground state. Small and positive ε is introduced to formally include ±E0 into integration

interval. Here we used the fact that ladder's spectrum is symmetric around zero at the

compass point α = 1 (see Fig. 2.2). Function ρ(E) can be easily recognized as the density

of states.

Using x = 2πn/w in Eq. (2.51), with w = 2(|E0| + ε) standing for the length of the

integration interval and n being integer, we easily recover the density of states ρ(E) (2.52)

in a form of the Fourier cosine expansion

ρ(E) =
2

w

∞∑
n=1

Z
(

2iπ
n

w

)
cos
(

2π
n

w
E
)

+
1

w
Z(0) , (2.53)

with amplitudes given by the partition function Z(ix).

In practice we cannot execute the sum above up to in�nity. Therefore, it is convenient to

de�ne ρc(E) which is given by the same Eq. (2.53) as ρ(E) but where the sum has a cuto�

for n = c. The heights of peaks in ρc(E) are expected to grow in an unlimited way with

increasing value of c, so it is convenient to de�ne the normalized density of states N(E) as

N(E) = ρc(E)/ρc(0) . (2.54)

The results for the compass ladder (α = 1) of 2L = 104 spins are shown in Fig. 2.9.

These are relative density of states N(E) for cuto� c = 600 and Fourier coe�cients Z
(
2iπ n

w

)
for two intervals of n. Results obtained for lower cuto�s show that the overall gaussian shape

of N(E), shown in Fig. 2.9(a), does not change visibly if only c > 8. This allows us to

conclude that the spectrum of the compass ladder becomes continuous when the size of the

systems increases which is not the case for the Ising ladder (α = 0). Higher values of n are

investigated to search for more subtle e�ects than gaussian behavior of N(E). These are

found by looking at the amplitudes Z
(
2iπ n

w

)
in high n regime [Fig. 2.9(c)], as the low n

regime [Fig. 2.9(b)] encodes only the gaussian characteristic of the spectrum. One �nds three

sharp maxima of the amplitudes for n = 208, 330, 533 out of which the one with n = 330 has

about �ve times higher intensity than the rest, but it is still 103 times weaker than the peak

in n = 0. These values of n correspond with some periodic condensations of the energy levels

35



0 0.2 0.4T/J
0.0

0.5

1.0

1.5

C
V

0.0 0.5 1.0 1.5 2.0 2.5
T/J

0.0

1.0

2.0

3.0

4.0

5.0
C

V
 

0.0 0.5 1.0 1.5 2.0 2.5
T/J

0.0

1.0

2.0

3.0

C
V

0.0 0.5 1.0 1.5 2.0 2.5
T/J

0.0

0.5

1.0

1.5

2.0

C
V

(a) (b)

(c)

(d)

0 0.02 0.04T/J
0

0.1

0.2

0.3

0.4

0.5

C
V

0.0 1.0 2.0 3.0
T/J

0

10

20

30

C
V
, C

V
Is

in
g /2

CV

CV
Ising

/2

(e)

(f)

Figure 2.10: Panels (a)�(d): Evolution of heat capacity CV for spin ladder (2.1) of 2L = 8
spins, shown in Fig. 2.1, with increasing parameter α, equal to: (a) α = 0.00, 0.49, 0.69, 0.85,
(b) α = 0.87, 0.90, 0.94, 0.97, and (c) α = 0.982, 0.988, 1.000. In panels (a) and (b) lines from
right to the left (black, red, green and blue) correspond with growing α. In panels (c) and (d)
the values of CV for growing α are shown by red, black and blue lines, respectively. Panel (d)
shows the low temperature data of panel (c) with increased resolution. Panels (e)�(f): heat
capacity CV for the compass ladder of 2L = 104 spins at α = 1 as a function of temperature
T (red line). Blue line shows heat capacity of the Ising ladder (α = 0) of the same size.

with periods ∆E = 1.28, 0.81, 0.50J respectively which are visible in N(E) only in vicinity

of E = ±E0.

2.1.5 Heat capacity

From Ising to compass model

In this Section we analyze heat capacity to identify characteristic excitation energies in the

compass ladder. We begin with complete results for the ladder consisting of 2L = 8 spins

shown in Fig. 2.1, where all chain con�gurations can be written explicitly. Using Eq. (2.38)

for the partition function, one can next calculate all thermodynamic functions including

average internal energy and the heat capacity.

Results for the heat capacity CV for di�erent values of α are shown in Fig. 2.10. These

plots cover three characteristic intervals of α where the behavior of curves changes qualita-

36



tively by appearance or disappearance of certain maxima. The positions of these maxima

correspond to possible excitation energy scales of the system that change at increasing α and

their intensities re�ect the number of possible excitations in a given energy interval. In case

of α = 0� Fig. 2.10(a), we see a single maximum at ∼ 2.2J which corresponds to �ipping

spins in an Ising spin ladder (or in a two-level system). Switching on the XX interactions

and weakening the ZZ interactions on the rungs has two e�ects: (i) decreasing energy and

intensities of the high�energy maximum, and (ii) appearance of a low�energy mode in every

subspace with QIM chains which manifests itself as a peak with low intensity at low temper-

ature T , see Fig. 2.10(a). At α ' 0.85 this mode overlaps with modes of higher energies and

until α ' 0.94 there is a single peak again with a shoulder at high values of T , shown in Fig.

2.10(b). Then the excitation energies separate again and a broad peak appears for high T

accompanied by a distinct maximum at T ' 0.4J .

In Fig. 2.10 we recognize the characteristic features for the QIM chains present in most of

the subspaces which are in�uenced by the excitations mixing di�erent subspaces. If we had

only one subspace with ri ≡ −1, i.e., the one containing the ground state, then we would have

two maxima in CV for all 0 ≤ α ≤ 1 � one of low intensity in the regime of low temperature

T , and another one at high T , broad and intense. The small maximum corresponds with

low�energy mode of QIM that disappears for certain α > 1. This is not the case for other

subspaces where QIM chains are fragmented and kinked areas are formed. In case of the

11̄1̄1̄ subspace the low�energy peak in CV vanishes at α ' 0.65 and the high-energy peak

persists and moves to higher temperatures with the increase of α. The situation is similar

for the 111̄1̄ subspace but the peak disappears at α ' 0.75 and in the classical subspace 11̄11̄

we have only one maximum for any α. One can deduce now that the general rule is that the

separation of peaks in heat capacity is reduced primarily by the growth of kinked areas and

secondarily by the fragmentation of chains. This separation of energy scales is also visible

in Fig. 2.2 where the spectra in di�erent subspaces are shown; below certain α in all cases

but (d), which is the classical subspace, the energy gap between the ground state and �rst

excited state is smaller than other energy gaps appearing in the subspace.

The mixing of di�erent subspaces in the partition function makes the peaks in CV overlap

which can result in reducing their number. This happens in Fig. 2.10(b); for solid (α =

0.87) and dashed (α = 0.90) curve we have only one maximum. For higher or lower α the

energy scales remain separated which is due to fact that: (i) soft modes survive in most of

subspaces for low α, and (ii) for high α the high�energy modes become even more robust

and do not overlap with soft modes still present in subspaces with small kinked areas. The
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last phenomenon characteristic for the ladder are excitations between ri ≡ −1 and ri ≡ 1

subspace in the vicinity of the QPT. This yields to the appearance of the new energy scale

∆(α) = 4LJ(1 − α) at α ' 0.987 which manifests itself as a small peak in heat capacity in

low temperature. This maximum vanishes at α = 1, as shown in Fig. 2.10(d).

Generic features at large L

After understanding the heat capacity in a small system of L = 8 spins (Sec. 2.1.5), we

analyze a large system using the statistical analysis of Sec. 2.1.3. It is di�cult to obtain a

combinatorial factor Fα[{Li}, R{Li}] in case of α < 1 and likely even impossible in a general

way without �xing L. Hence we focus on the compass ladder (α = 1). For the compass ladder

of 2L = 104 spins considered in Sec. 2.1.4, one �nds 252 invariant subspaces. Although the

eigenvalues can be found in each subspace, it is not possible to sum up over all subspaces for

practical reasons and a statistical analysis is necessary. Therefore, the knowledge of the com-

binatorial factor F1[{Li}], see Eq. (2.45), is crucial to calculate the partition function Z(1)

(2.38). Fortunately, knowing it we only need to consider di�erent chain con�gurations which

are not very numerous � there are only 140854 of them. This means that on average each

energy spectrum of the e�ective Hamiltonian repeats itself almost 32× 109 times throughout

all subspaces.

The statistical analysis of the compass ladder consisting of 2L = 104 spins in terms of:

(i) mean values of kinked areas 〈K〉 (2.49), and (ii) the number of chains 〈m〉 (2.48), was
already presented in Fig. 2.8(b), while the energy spectrum was discussed in Sec. 2.1.4. Here

we present the heat capacity CV for the compass ladder of this size in Fig. 2.10 (e). At high

temperature one �nds a broad maximum centered at T ' 2J which originates from dense

excitation spectrum at the compass point (α = 1), cf. the spectrum of the compass ladder

with 2L = 8 spins shown in Fig. 2.2. We remark that the broad maximum of Fig. 2.10

(e) has some similarity to broad maxima found in the speci�c heat (heat capacity) of spin

glasses [71]. However, here the broad maximum in the heat capacity does not originate from

disorder but solely indicates frustration, similar as in some other models with frustrated spin

interactions [72]. We emphasize that the present results could be obtained only by developing

a combinatorial analysis of a very large number of possible con�gurations of spin ladder, and

due to the vanishing constant C~r(α = 1) = 0 (2.6) in the energy spectrum for the compass

ladder. Unfortunately, the present problem is rather complex due to the quantum nature

of spin interactions, but in case of the binomial 2D Ising spin glass an exact algorithm to
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compute the degeneracies of the excited states could be developed recently [73].

The heat capacity CV of Fig. 2.10 (f) at low temperature is qualitatively similar to the

one obtained for 2L = 8 spins, see Fig. 2.10(c), but the steep maximum at low T is here

moved to lower temperature T ' 0.2J . The main di�erence between the heat capacity of

2L = 104 spins and the case of 2L = 8 spins is a small maximum appearing at very low

T ' 0.02J , see inset. This peak originates from the low�energy modes in subspaces ri ≡ ri+1

which exist in su�ciently long chains described by the QIM. We also identi�ed an additional

(third) peak in the regime of rather low temperature T ' 0.02J (shown in the inset). This

maximum originates from the QIM (2.8) where the energies of the ground state and of the

�rst excited state approach each other for increasing L, if only α ≤ 1. Thus, this lowest peak

in the heat capacity obtained for the compass ladder of 2L = 104 spins has to be considered

as a �nite size e�ect � for increasing system size it is shifted to still lower temperature T , and

would thus disappear in the thermodynamic limit L→∞, in agreement with the qualitative

change of low energy spectrum of the QIM.

2.1.6 Summary and conclusions

We have investigated an intriguing case of increasing frustration in a spin ladder (2.1) which

interpolates between the (classical) Ising ladder and the frustrated compass ladder when

the parameter α increases from α = 0 to α = 1. The ground state of the ladder was solved

exactly in the entire parameter range by mapping to the QIM, and we veri�ed that frustrated

interactions on a spin ladder generate a QPT at α = 1, when con�icting interactions ZZ along

the ladder legs compete with 2XX ones along the rungs. At this point the spin correlations

on the rungs 〈σz2i−1σ
z
2i〉 = −1 collapses to zero and the ground state becomes disordered. We

have shown that the ground state of a �nite ladder has then degeneracy 2, while the analysis

of the energy spectra for increasing size suggests that the degeneracy increases to 4 in the

thermodynamic limit. Note that in this limit α = 1 becomes a quantum critical point for

the QIM found in the ground subspace and the character of spectrum changes from discrete

to continuous.

The present method of solving the energy spectrum in di�erent subspaces separately

elucidates the origin of the QPT found in the present spin ladder (2.1) at the point α = 1,

corresponding to the frustrated interactions in the compass ladder. We argue that this

approach could help to �nd exact solutions in a class of quasi-1D models with frustrated

spin interactions, but in some cases only the ground state and not the full spectrum can
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be rigorously determined. For instance, this applies to a spin ladder with frustrated spin

interactions between di�erent triplet components on the rungs [74], where a �rst-order QPT

with discontinuous spin correlations was found.

By performing a statistical analysis of di�erent possible con�gurations of spin ladder (2.1)

with PBCs we derived a partition function Z(α) for a mesoscopic system of 104 spins. The

calculation involves the classi�cation of ladder subspaces into classes of chain con�gurations

{Li} equivalent by symmetry operations and the determination of the combinatorial factor

Fα[{Li}, R{Li}]. We have shown that this factor can be easily determined at the compass

point (α = 1), so the heat capacity of such a mesoscopic compass ladder could be found.

Summarizing, we demonstrated that spin ladder studied in this paper exhibits a QPT

from a classical ordered to a quantum disordered ground state which occurs due to the level

crossing, and is therefore of �rst order. It leads to a discontinuous change of spin correlations

on the rungs when the interactions along the ladder legs and on the rungs become frustrated.

Fortunately, the subspaces which are relevant for the QPT in the compass ladder considered

here can be analyzed rigorously, which gives both the energy spectra and spin correlation

functions by mapping the ladder on the quantum Ising model. The partition function derived

above made it possible to identify the characteristic scales of excitation energies by evaluating

the heat capacity for a mesoscopic system.

2.2 Quantum compass model on a square lattice

In this section we will present the study on the 2D QCM model, already introduced in the

beginning of this chapter. The section is splitted into two parts: (i)� exact properties of the

2D QCM is based on Refs. [75, 76], and (ii) numerical studies of the QCM on small square

clusters, contains results presented in Refs. [76, 77] together with some new, unpublished

results. In the �rst part we will focus on special symmetries of the planar QCM, giving the

spin transformations that bring the Hamiltonian into the block-diagonal (or reduced) form

and con�rming its self-duality. Next we will derive the equivalence relations between these

diagonal blocks (or invariant subspaces) following from the translational invariance of the

original QCM Hamiltonian and show the multiplet structure of the invariant subspaces for

4 × 4, 5 × 5 and 6 × 6 lattices. The study of symmetries will end on unveiling the hidden

symmetry of the ground state of the QCM and its consequences for the four-point correlation

functions using another spin transformation. Finally we will present a non-local MF approach

to the QCM on in�nite lattice suggested by the form of the reduced Hamiltonian employing
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JW transformation, similarly as in Ref. [48]. We argue that such new approach is valuable

as it respects the special symmetries of the QCM and leads to non-trivial long-range spin

correlation functions.

In the second part of this section we will show the results of exact diagonalization (ED)

techniques applied to the QCM for lattices of the sizes up to 6× 6. Due to the complexity of

the many-body problem this can be regarded as the state�of�the�art implementation of ED.

The results include ground-state properties of the QCM such as: spin correlation functions

and covariances of the local and non-local type, evolution of the energy levels as a functions

of anisotropy, and entanglement entropy of a row in the lattice. Beyond the ground state, we

study densities of states and heat capacities of the systems of di�erent sizes in the isotropic

point.

2.2.1 Exact properties of the two-dimensional compass model

Block-diagonal Hamiltonian

We consider the anisotropic ferromagnetic QCM for pseudospins 1/2 on a �nite L×L square

lattice with PBCs:

H(α) = −J
L∑

i,j=1

{(1− α)Xi,jXi+1,j + αZi,jZi,j+1} , (2.55)

where {Xi,j, Zi,j} stand for Pauli matrices at site (i, j), i.e., Xi,j ≡ σxi,j and Zi,j ≡ σzi,j

components, interacting on vertical and horizontal bonds. The coupling constant J is positive

and the sign factor −1 is introduced to provide comparable ground state properties for odd

and even systems. In this section we set J = 1. Parameter α ∈ [0, 1] changes the anisotropy

of vertical and horizontal interactions. In case of L being even, this model is equivalent to the

antiferromagnetic QCM. We can easily construct a set of 2L operators which commute with

the Hamiltonian but anticommute with one another [42]: Pi ≡
∏L

j=1 Xi,j and Qj ≡
∏L

i=1 Zi,j.

Below we will use as symmetry operations all Ri ≡ PiPi+1 and Qj to reduce the Hilbert space;

this approach led to the exact solution of the compass ladder [65]. The QCM Eq. (1) can be
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written in common eigenbasis of {Ri, Qj} operators using spin transformations of the form:

Xi,j =
L∏
p=i

X̃p,j , X̃i,j = X ′i,j−1X
′
i,j , (2.56)

Zi,j = Z̃i−1,jZ̃i,j , Z̃i,j =
L∏
q=j

Z ′i,q , (2.57)

where Z̃0,j ≡ 1 and X ′i,0 ≡ 1. After writing the Hamiltonian H(α) of Eq. (2.55) in terms of

primed pseudospin operators one �nds that the transformed Hamiltonian,

H′(α) = −(1− α)H ′x − αH ′z, (2.58)

contains no X̃L,j and no Z ′i,L operators so the corresponding Z̃L,j and X
′
i,L can be replaced by

their eigenvalues qj and ri, respectively. The Hamiltonian H′(α) is dual to the QCM H(α)

in the thermodynamic limit; we give here an explicit form of its x-part:

H ′x =
L−1∑
i=1

{
L−2∑
j=1

X ′i,jX
′
i,j+1 +X ′i,1 + riX

′
i,L−1

}
+ P ′1 +

L−2∑
j=1

P ′jP
′
j+1 + rP ′L−1, (2.59)

and the similar form for the z-part:

H ′z =
L−1∑
j=1

{
L−2∑
i=1

Z ′i,jZ
′
i+1,j + Z ′1,j + sjZ

′
L−1,j

}
+Q′1 +

L−2∑
j=1

Q′iQ
′
i+1 + sQ′L−1, (2.60)

where sj = qjqj+1, s =
∏L−1

j=1 sj and r =
∏L−1

i=1 ri, and new nonlocal P ′j =
∏L−1

p=1 X ′p,j and

Q′i =
∏L−1

q=1 Z ′i,q operators originate from the PBCs. As we can see, the z-part H ′z (2.60)

follows fromH ′x (2.59) by the lattice transposition, replacingX
′
i,j → Z ′i,j and ri → sj = qjqj+1.

Ising variables ri and sj are the eigenvalues of the symmetry operators Ri ≡ PiPi+1 and

Sj = QjQj+1.

Instead of the initial L × L lattice of quantum spins, one �nds here (L − 1) × (L − 1)

internal quantum spins with 2(L − 1) classical boundary spins, which gives L2 − 1 degrees

of freedom. The missing spin is related to the Z2 symmetry of the QCM and makes every

energy level at least doubly degenerate. Although the form of Eqs. (2.59, 2.60) is complex,
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(b)(a)

Figure 2.11: Panel (a): Schematic view of the x-part of the e�ective compass Hamiltonian
H ′x (2.59): green circles are X

′
i,j spin operators acting along �rst and last column, blue frames

symbolize non-local P ′j spin operator products along columns and red frames are NN compass
bonds X ′i,jX

′
i,j+1. Panel (b): Schematic view of H ′z (2.60): green circles are Z

′
i,j spin operators

acting along �rst and last line, blue frames symbolize non-local Q′i spin operator products
along lines and red frames are NN compass bonds Z ′i,jZ

′
i+1,j.

the size of the Hilbert space is reduced in a dramatic way by a factor 22L−1 [66, 77] which

makes it possible to perform easily exact (Lanczos) diagonalization of 2D L× L clusters up

to L = 6.

Equivalent subspaces

The spin transformations de�ned by Eqs. (2.56) and (2.57) bring the QCM Hamiltonian

(2.55) into the block-diagonal form of Eqs. (2.59, 2.60) with invariant subspaces labeled by

the pairs of vectors (~r, ~s) with ~r = (r1, r2, . . . , rL−1) and ~s = (s1, s2, . . . , sL−1). The original

QCM of Eq. (2.55) is invariant under the transformation X ↔ Z, if one also transforms the

interactions, α ↔ (1 − α). This sets a relation between di�erent invariant subspaces (~r, ~s),

i.e. after transforming α↔ (1− α) the QCM Hamiltonian in subspaces (~r, ~s) and (~s, ~r) has

the same energy spectrum. In general, we say that the two subspaces are equivalent if the

QCM has in them the same energy spectrum. This relation becomes especially simple for

α = 1
2
when for all ri's and si's subspaces (~r, ~s) and (~s, ~r) are equivalent.

Now we will explore another important symmetry of the 2D compass model reducing the
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number of nonequivalent subspaces � the translational symmetry. We note from Eq. (2.59)

and (2.60) that the reduced Hamiltonians are not translationally invariant for any choice

of (~r, ~s) even though the original Hamiltonian is. This means that translational symmetry

must impose some equivalence conditions among subspace labels (~r, ~s). To derive them, let's

focus on translation along the rows of the lattice by one lattice constant. Such translation

does not a�ect the Pi symmetry operators, because they consist of spin operators multiplied

along the rows, but changes Qj into Qj+1 for all j < L and QL → Q1. This implies

that two subspaces (~r, q1, q2, . . . , qL) and (~r, qL, q1, q2, . . . , qL−1) are equivalent for all values

of ~r and ~q. Now this result must be translated into the language of (~r, ~s) labels, with

sj = qjqj+1 for all j < L. This is two-to-one mapping because for any ~s one has two ~q's such

that ~q+ = (1, s1, s1s2, . . . , s1s2 . . . sL−1) and ~q− = −~q+ di�er by global inversion. This sets

additional equivalence condition for subspace labels (~r, ~s): two subspaces (~r, ~u) and (~r,~v) are

equivalent if two strings (1, u1, u1u2, . . . , u1u2 . . . uL−1) and (1, v1, v1v2, . . . , v1v2 . . . vL−1) are

related by translations or by a global inversion. For convenience let us call this property of

the two vectors a TI-relation. Lattice translations along the columns set the same equivalence

condition for ~r labels. Thus full equivalence conditions for subspace labels of the QCM are:

• For α = 1
2
two subspaces (~r, ~s) and (~u,~v) are equivalent if ~r is TI-related with ~u and ~s

with ~v or if ~r is TI-related with ~v and ~s with ~u.

• For α 6= 1
2
two subspaces (~r, ~s) and (~u,~v) are equivalent if ~r is TI-related with ~u and ~s

with ~v.

We have veri�ed that no other equivalence conditions exist between the subspaces by nu-

merical Lanczos diagonalizations for lattices of sizes up to 6 × 6, so we can change all if

statements above into if and only if ones.

Multiplets of equivalent subspaces: examples

For the �nite square clusters of the sizes 4 × 4, 5 × 5 and 6 × 6 we used the reduced form

of the compass Hamiltonian to reduce the dimensionality of the Hilbert space and apply

exact diagonalization techniques to get the ground-state and thermodynamic properties of

the QCM. For this purpose we needed to create a list of inequivalent subspaces for L = 4, 5, 6

to save time and computational e�ort.

According to the previous discussion let's denote all inequivalent ~r con�gurations for our
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systems. For L = 4 these fall into four TI�equivalence classes:

{[−+ ++] , [−−++] , [−+−+] , [−−−−]}

the number of di�erent ~q labels that can be constructed out of each class is equal to the

power of the class divided by two. For 4×4 system these are {4, 2, 1, 1}. For ~p labels we have
exactly the same set of classes so the subspace structure can be characterized by following

diagrams

16 8 4 4

8 4 2 2

4 2 1 1

4 2 1 1

16 16 8 8

4 4 4

1 2

1

(2.61)

where each number symbolize an equivalence class of subspaces in anisotropic (left) and

isotropic (right) cases. The numbers are equal to the power of each class divided by two.

As we see, the right diagram can be obtained from the left by leaving diagonal numbers

untouched, erasing subdiagonal numbers and doubling the upper part.

For 5× 5 we have again four TI�equivalence classes:

{[−+ + + +] , [−−+ + +] , [−+−+ +] , [−−−−−]}

with half�powers {5, 5, 5, 1}. This yields to the subspace diagrams:

25 25 25 5

25 25 25 5

25 25 25 5

5 5 5 1

25 50 50 10

25 50 10

25 10

1

(2.62)

Finally, for our largest system the TI�equivalence classes read:

{[−+ + + ++] , [−−+ + ++] , [−+−+ ++] ,

[−−+ +−+] , [−−−+ ++] , [−+ +−++] ,

[+−+−+−] , [−−−−−−]}
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with half�powers {6, 6, 6, 6, 3, 3, 1, 1}, yielding to following anisotropic diagram:

36 36 36 36 18 18 6 6

36 36 36 36 18 18 6 6

36 36 36 36 18 18 6 6

36 36 36 36 18 18 6 6

18 18 18 18 9 9 3 3

18 18 18 18 9 9 3 3

6 6 6 6 3 3 1 1

6 6 6 6 3 3 1 1

The isotropic diagram can be obtained using the known procedure. These examples show

that the number of inequivalent subspaces N stays the same for the systems of sizes L = 2l

and L = 2l+1 (with l = 1, 2, 3, . . . ) and is directly related to the number n of TI�equivalence

classes of the binary string of the length L. We have:

N =

n2 for α 6= 1
2
,

1
2
n(n+ 1) for α = 1

2
.

(2.63)

The most numerous TI�equivalence class for the L × L system consists of the binary

strings which transform into themselves after L translations, so carrying highest number of

possible pseudomomenta. This implies that largest subspace equivalence class contains 2L2

subspaces in anisotropic and 4L2 subspaces in isotropic case. Knowing that the total number

of subspaces is 2×22(L−1) one can estimate that N > 22(L−1)/L2 for α 6= 1
2
and N > 22L−3/L2

for α = 1
2
.

Hidden order

Due to the symmetries of the QCM Eq. (2.55) only 〈Zi,jZi,j+d〉 and 〈Xi,jXi+d,j〉 spin corre-

lations are �nite (d ≥ 1). This suggests that the entire spin order concerns pairs of spins

from one row (column) which could be characterized by four�point correlation functions of

the dimer-dimer type. Indeed, examining such quantities for �nite QCM clusters via Lanc-

zos diagonalization we observed certain surprising symmetry: for any α two dimer-dimer

〈XXXX〉 correlators are equal, no matter whether we place them either along one row or

one column, as long as the distance between them is the same (see left panel of Fig. 2.12).

This property turns out to be a special case of a more general relation between correlation
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Figure 2.12: Example of application of the proved identities in two cases: panel (a) � Eq.
(2.70) long range correlation function 〈Xi,jXi+d+1,j〉 along the column (circles) is equal to the
2d�point 〈XX . . .X〉 correlation function along the row (red frame of length d), panel (b) �
Eq. (2.69) for two chosen dimers at (i, j) and (k, l) (solid frames), correlations between them
are the same as between dimers at (i, j) and (k− δ, l+ δ) (dashed frame). Green dashed line
marks the plane of the mirror re�ection transforming site (k, l) into (k − δ, l + δ) .

functions of the QCM which we prove below.

We will prove that in the ground state of the QCM for any two sites (i, j) and (k, l) and

for any 0 < α < 1:

〈Xi,jXi+1,jXk,lXk+1,l〉 ≡ 〈Xi,jXi+1,jXl−δ,k+δXl−δ+1,k+δ〉, (2.64)

where δ = j − i. To prove Eq. (2.64) let us transform again the e�ective Hamiltonian (2.59)

in the ground-state subspace (ri ≡ si ≡ 1) introducing new spin operators

Z ′i,j = Z̃i,jZ̃i,j+1, X ′i,j =

j∏
r=1

X̃i,r, (2.65)

with i, j = 1, . . . , L− 1 and Z̃i,L ≡ 1. This yields

H̃x =
L−1∑
i=1

L−1∑
j=1

X̃i,j +
L−1∏
i=1

L−1∏
j=1

X̃i,j +
L−1∑
i=1

L−1∏
j=1

X̃i,j +
L−1∑
i=1

L−1∏
j=1

X̃j,i, (2.66)
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(k,l)

(a) (b)

(i,i)

(l,k)

Figure 2.13: Panel (a): Schematic view of the x-part of the reduced ground-state subspace
Hamiltonian H̃x (2.66): green circles are X̃i,j spin operators acting on every site, blue frame
symbolize non-local product of all X̃i,j operators products and red frames are products of
X̃i,j along all lines and columns. Panel (b): Schematic view of H̃z (2.67): green circles in
the corners stand for Z̃i,j spin operators related to the site (i, j), red frames are Z̃Z̃ operator
products acting on the boundaries of the lattice, and blue square stands for one of the
plaquette Z̃Z̃Z̃Z̃ spin operators. The exemplary three sites in the identity (2.69) are: (i, i),
(k, l) and (l, k).

and

H̃z =
∑
a

{∑
b

Z̃a,b +
L−2∑
i=1

(
Z̃a,iZ̃a,i+1 + Z̃i,aZ̃i+1,a

)}
+

L−2∑
i=1

L−2∑
j=1

Z̃i,jZ̃i,j+1Z̃i+1,jZ̃i+1,j+1,

(2.67)

where a = 1, L − 1 and b = 1, L − 1. Due to the spin transformations (2.56,2.57,2.65), X̃i,j

operators are related to the original bond operators by Xi,jXi+1,j = X̃i,j, which implies that

〈Xi,jXi+1,jXk,lXk+1,l〉 = 〈X̃i,jX̃k,l〉. (2.68)

Because of the PBC, all original Xi,j spins are equivalent, so we choose i = j. The x-part

(2.66) of the Hamiltonian is completely isotropic. Note that the z-part (2.67) would also

be isotropic without the boundary terms (see Fig. 2.13); the e�ective Hamiltonian in the

ground subspace has the symmetry of a square. Knowing that in the ground state we have
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Figure 2.14: Dimer-dimer correlations〈X1,1X2,1Xk,lXk+1,l〉 for L = 6 and 0.2 < α < 0.8:
(k, l) = (1, 2), (1, 3) and (1, 4) are shown by solid, dashed and dotted line.

only Z2 degeneracy, one �nds

〈X̃i,iX̃k,l〉 ≡ 〈X̃i,iX̃l,k〉, (2.69)

for any i and (k, l). This proves the identity (2.64) for δ = 0; δ 6= 0 case follows from lattice

translations along rows.

The nontrivial consequences of Eq. (2.69) are: (i) hidden dimer order in the ground

state of the QCM � dimer correlation functions in two a priori nonequivalent directions

in the QCM are robust for X-components for α < 1
2
(Fig. 2.14) and for Z-components for

α > 1
2
(not shown), and (ii) long range two-site 〈Xi,jXi+d+1,j〉 correlations along the columns

which are equal to the multi-site 〈XX . . .X〉 correlations involving two neighboring rows,

see right panel of Fig. 2.12. The latter comes from symmetry properties of the transformed

Hamiltonian (2.66,2.67) applied to the multi-site correlations:

〈X̃i,iX̃i,i+1 . . . X̃i,i+d〉 = 〈X̃i,iX̃i+1,i . . . X̃i+d,i〉. (2.70)
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Non-local mean �eld approach

The x-part of the Hamiltonian obtained from Eq. (2.59) in case of open boundaries reads:

H ′x =
L−1∑
i=1

{
L−2∑
j=1

X ′i,jX
′
i,j+1 +X ′i,1 + riX

′
i,L−1

}
, (2.71)

and similarly for the z-part. In the ground-state subspace (ri ≡ 1) this resembles the original

QCM Eq. (2.55) but with linear boundary terms, which should not a�ect the ground state

properties in the thermodynamic limit and can be regarded as symmetry breaking �elds,

resulting in �nite values of 〈X ′i,j〉 and 〈Z ′i,j〉. Omitting the boundary terms in H ′x and H
′
z and

putting in�nite L we recover the 2D QCM written in nonlocal primed spin operators. Now

we can construct a MF splitting of the 2D lattice taking 〈Z ′〉 ≡ 〈Z ′i,j〉 as a Weiss �eld into

(ferromagnetic) Ising chains in transverse �eld representing each row i:

H′i(α) = −
∑
j

{
(1− α)X ′i,jX

′
i,j+1 + 2α〈Z ′〉Z ′i,j

}
. (2.72)

In analogy to the compass ladder [65], a simple chain Hamiltonian can be solved by Jordan-

Wigner transformation for each i:

Z ′i,j = 1− 2c†i,jci,j, (2.73)

X ′i,j =
(
c†i,je

−iπ
4 + ci,je

iπ
4

)∏
r<j

(1− 2c†i,rci,r), (2.74)

introducing fermion operators {c†i,j}. The diagonalization of the free fermion Hamiltonian

can be completed by performing �rst a Fourier transformation (from {j} to {k}) and next a

Bogoliubov transformation (for k > 0):

γ†k = α+
k c
†
k + β+

k c−k, γ†−k = α−k c
†
k + β−k c−k, (2.75)

where {α±k , β
±
k } are eigenmodes of the Bogoliubov-de Gennes equation for the eigenvalues

±Ek (with Ek > 0). The resulting ground state is a vacuum of γ†k fermion operators: |Φ0〉 =∏
k>0(α+

k + β+
k c
†
−kc
†
k)|0〉, which can serve to calculate correlations and the order parameter

of the QCM in the MF approach. In agreement with numerical results (not shown), the only

nonzero long range two-site spin correlation functions are: 〈Xi,jXi+d,j〉 and 〈Zi,jZi,j+d〉. For
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Figure 2.15: Long range spin correlations of the 2D QCM Eq. (2.55) obtained in the MF
approach for α ≥ 1

2
. Lines starting from 1 at α = 1 are the 〈Zi,jZi,j+d〉 correlations (2.77) for

d = 1, 2, 3, 4, 5, 10, 20, 80, while lines starting from 0 at α = 1 are the 〈Xi,jXi+d,j〉 correlations
(2.76) with d = 1, 2, 3; both in descending order.

d > 1 they can be represented as follows:

〈Xi,jXi+d,j〉 = 〈X ′i,jX ′i,j+1〉d, (2.76)

〈Zi,jZi,j+d〉 = 〈Z ′i,jZ ′i,j+1 . . . Z
′
i,j+d−1〉2. (2.77)

Having solved the self-consistency equation for 〈Z ′〉 = (1− 2〈n〉), with

〈n〉 =
1

L

∑
k>0

{(
α−k
)2

+
(
β+
k

)2
}
, (2.78)

one can easily obtain 〈X ′i,jX ′i,j+1〉 (2.76) for increasing α:

〈X ′i,jX ′i,j+1〉 =
2

L

∑
k>0

{
cos k

[(
α−k
)2

+
(
β+
k

)2
]

+ sin k (α−k β
−
k − α

+
k β

+
k )
}
. (2.79)

The nonlocal 〈Z ′i,jZ ′ . . . Z ′i,j+d−1〉 correlations (2.77) are more di�cult to �nd but they can
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be approximated by

〈Z ′i,jZ ′i,j+1 . . . Z
′
i,j+d−1〉 =

∏
k>0

{(
α+
k

)2
(

1− 2
d

L

)2

+
(
β+
k

)2

}
, (2.80)

where L→∞ and k = (2l− 1) π
L
with l = 1, 2, . . . , L

2
. This approximation is valid as long as

d � L. One �nds that the long range 〈Zi,jZi,j+d〉 correlations in Z-ordered phase at α ≥ 1
2

show the absence of the Ising-like long range order for α < 1 (Fig. 2.15) � they decrease

slowly with growing distance d or decreasing α. In contrast, the 〈Xi,jXi+d,j〉 correlations are
signi�cant only for nearest neighbors (d = 1) and close to α = 1

2
.

The advantage of this nonlocal MF approach for the QCM Eq. (1) over the standard one,

which takes 〈Z〉 as a Weiss �eld, is that we do not break the {Pi, Qj} and Z2 symmetries

of the model. What more, thanks to numerical and analytical results we know that order

parameter of the QCM is given by 〈Hz〉 [46] � the quantity behaving more like 〈Z ′〉 rather
than 〈Z〉 (having 〈Z〉 > 0 would mean long range magnetic order !). Another interesting

feature of the Hamiltonian (2.55) is that it describes all nonlocal compass excitations over the

ground state, while the local ones manifest themselves by directions of symmetry breaking

�elds. These nonlocal column (row) �ips are especially interesting from the point of view

of topological quantum computing [42] because they guarantee that the system is protected

against local perturbations.

2.2.2 Numerical studies of compass model on �nite square clusters

There is no exact solution for the 2D compass model but the latest Monte Carlo data [49]

prove that the model exhibits a phase transition at �nite temperature both in quantum

and classical version with symmetry breaking between x and z part of the Hamiltonian. In

this section we suggests a scenario for a phase transition with increasing cluster size by the

behavior of spin-spin correlation functions and von Neumann entropy of a single column in

the ground state obtained via Lanczos algorithm and speci�c heat calculated using Kernel

Polynomial Method (KPM) [78].

The Hamiltonian of the quantum compass model on a square L × L lattice is given by

Eq. (2.55). Ground-state energies and energy gap of the model given by (2.55) has been

already calculated for di�erent values of α and for L ∈ [2, 5] using ED and for higher L using

Green's function Monte Carlo method [46]. Our approach will be based on Lanczos algorithm

and KPM [78] which will let us calculate the densities of states and the partition functions
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for square lattices of the sizes up to L = 6. We start by applying Lanczos algorithm to

determine spectrum width which is needed for KPM calculations. The resulting few lowest

energies that we get from the Lanczos recursion can be compared with the density of states

to check if the KPM results are correct. One should be aware that the spectra of odd

systems are qualitatively di�erent from those of even ones. For the even systems operator

S de�ned as S =
∏L

i,j=1
1
2
{1 − (−1)i+j}σyi,j, anticommutes with the Hamiltonian (2.55).

This means that for every eigenvector |v〉 satisfying H(α)|v〉 = E(α)|v〉 we have another

eigenvector |w〉 = S|v〉 that satis�es H(α)|w〉 = −E(α)|w〉. This proves that even values of

L spectrum of H(α) is symmetric around zero but for odd L's this does not hold; S no longer

anticommutes with the Hamiltonian. To obtain a symmetric spectrum in this case we would

have to impose open boundary conditions. We would like to emphasize that both Lanczos

and KPM calculation for 6× 6 lattice (236 - dimensional Hilbert space) would be impossible

without using the symmetry operators and reduced Hamiltonians given by Eqs. (2.59) and

(2.60) in the subsection (2.2.1).

Ground-state properties and energy levels structure

In Fig. 2.16(a) we compare NN correlations 〈Xi,jXi+1,j〉as functions of α obtained via Lanczos

algorithm for clusters of the sizes L = 3, 4, 5, 6. Curves for �nite clusters converge to certain

�nal functions with in�nite slope at α = 1/2 but not a step function which would mean

completely classical behavior. This result shows that even in large L limit the 2D compass

model preserves quantum correction even though it chooses ordering in one direction [49].

Looking at the inset of Fig. 2.16(a) we can see longer�range correlations of the form Cr(α) ≡
〈Xi,jXi+r,j〉(for the symmetry reasons any other two�point correlation functions involving

Xi,j operators must be zero in the ground state) for the L = 6 system and r = 1, 2, 3. Their

behavior is very similar to the NN correlations in the sector of α ≤ 1/2 but for α > 1/2 they

are strongly suppresed and e�ectively behave more classically.

In Fig. 2.16(b) we show gound�state covariances of the bond operators bxi,j ≡ Xi,jXi+1,j

and bzi,j ≡ Zi,jZi,j+1 outgoing from one site and covariances of whole x and z−part of the
Hamiltonian:

Hx =
L∑

i,j=1

Xi,jXi+1,j, Hz =
L∑

i,j=1

Zi,jZi,j+1, (2.81)

normalized by total number of terms in HxHz i.e., L4. All covariances are of maximal

53



magnitude at α = 1/2 and get suppressed when system size increases. In case of bond

covariances supression is not total and we have some �nite covariance in whole range of α

with cusp at α = 1/2 indicating singular behavior at this point. This means that locally

vertical and horizontal bonds cannot be factorized despite the fact that the system chooses

only one direction of ordering. On the other hand, the normalized non�local covariance of Hx

and Hz tends to vanish for all α in the thermodynamic limit meaning that in the long�range

vertical and horizontal bonds behave as independent. We believe that this allows the system

to have directionally ordered phase for L→∞.

Fig. 2.16(c) shows the results of full, brute-force, diagonalization of the 4 × 4 system

(impossible without using symmetries); all negative-energy levels for 0 ≤ α ≤ 1/2. Full

spectrum for can be constructed from the plot 2.16(c) by the mirror re�ections with respect

to α = 1/2 and En = 0 axes. The structure of energy levels undergoes the evolution from

the ladder-like classical excitation spectrum at α = 0 to the discrete-continuum structure at

α = 1/2. Excited states at α = 0, being defected classical AF chains with energy determined

by the number of defects, stay rigid until α ≈ 0.2 in the sense that states with less defects

always lie below the states with more defects. Lowest lying states are less susceptible to this

mixing, caused by ransverse terms in Hz, and remain separate utnil α = 1/2. Even at this

point the mixing involves only singly and doubly defected states. From the form of compass

Hamiltonian (2.55) one can easily infer the relation between the slope of the energy level En

and preferred ordering direction in the state |Ψn〉:

1

J

d

dα
En(α) = 〈Ψn(α)|Hx −Hz |Ψn(α)〉 , (2.82)

which means that states ordered by Hx are related with energy levels with positive slope and

the others are related with energy levels with negative slope. Zero slope indicates that the

state has no preferred ordering direction; this happens to the ground state at α = 1/2 and

the anticipated symmetry breaking between Hx and Hz implies that in the thermodynamic

limit the lowest energy level will have a cusp at this point because any in�nitesimal deviation

from α = 1/2 must lead to strictly positive or negative slope of E0 (α = 1/2± ε).
Another interesting quantity that can be calculated in the ground state is the von Neu-

mann entropy of a chosen subsystem. This entropy tells us to what extent the full wave

function of the system cannot be factorized as the wave function of the subsystem times the

wave function of the rest. In case of QCM on square lattice the most promising choice of

a subsystem would be a single column or a line of the lattice. To calculate von Neumann
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Figure 2.16: Panel (a): spin�spin correlations 〈Xi,jXi+1,j〉 for nearest neighbors with L =
3, 4, 5, 6 showed with black, red, green and blue lines respectively and long range correlations
(inset) Cr(α) ≡ 〈Xi,jXi+r,j〉 for L = 6 with r = 1, 2, 3 showed with red, blue and red
lines. Panel (b): non�local ground�state covariances of the x and z−part of the compass
Hamiltonian cov(Hx, Hz)/L

4 (dashed lines) and local ground�state covariances cov(bxi,j, b
z
i,j)

of the bond operators bxi,j ≡ Xi,jXi+1,j and b
z
i,j ≡ Zi,jZi,j+1 (solid lines) for di�erent cluster

sizes L. Panel (c): Full energy spectrum for the L = 4 system in the region of α < 1/2 and
En < 0.

entropy of a column we need to use its reduced density matrix ρL, de�ned as a partial trace

of a full density matrix:

ρ = |Ψ0〉 〈Ψ0| , (2.83)

taken over the spins outside the column. This de�nition, however true, is not very practical.

For spin s = 1/2 systems one can derive a simpler formula [54]:

ρL =
1

2L

∑
µ1,..,µL

〈σµ1

1 ...σµLL 〉σ
µ1

1 ...σµLL , (2.84)

where µi = 0, x, y, z, σ0
i = 1 and σµii are the spins taken from one column of a square cluster.

After diagonalizing ρL, which is of the size 2L × 2L, one can easily calculate von Neumann

entropy as:

SL = −TrρL log2 ρL. (2.85)

For the symmetry reasons, described in details in previous section, Eq. (2.84) simpli�es

greatly as only the x�component spin operators multiplied along the columns can give non-

zero ground-state average and their number must be even. Thus, for L ≤ 6 systems, the
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Figure 2.17: Panel (a): von Neumann entropy S(L, α) of a column in the lattice of the size
L = 3, 4, 5, 6 as a function of α. Panel (b): derivative of S(L, α) with respect to α normalized
by L.

ρL matrix can be constructed with two�point, four�point and single six�point correlation

functions at most. Again, the reduced form of the compass Hamiltonian simpli�es getting

the ground state but we have to remember that ρL is expressed in terms of original spins.

The results of von Neumann entropy calculations for a column of the length L belonging

to the cluster of the size L × L is given in Fig. 2.17(a). We can see that for α = 0 the

entropy SL(α) is �nite as we expect from the product state. On the other hand, the system

at α = 0 is purely classical and the Hamiltonian (2.55) describes a set of non�interacting

Ising columns. Why is the ground state not a product of columnar states? This result follows

from the choice of basis based on the reduced form of the compass Hamiltonian given by Eqs.

(2.59) and (2.60). Because of the spin transformations (2.56) and (2.57) the ground state

from the subspace ri ≡ si ≡ 1 found here is a superposition of two column-product states

with equal weights and gives SL(0) = 1. This stays in agreement with the known fact that

the von Neumann entropy depends on the choice of basis and this dependence comes precisely

from the partial trace of the density matrix ρ. For that reason we should always think of the

most natural basis for a given problem.

For 0 < α < 1 the subspace ri ≡ si ≡ 1 is the most natural one because it is the

only subspace with a ground state (up to global two�fold degeneracy). For α = 0 or 1 the

choice of the eigenbasis of σxi or σzi operators seems to be much more natural which implies

SL(0) = SL(1) = 0 so the plot in the Fig. 2.17(a) is valid only away from these points.
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The upper limit for SL(α) is always L which can be easily proved by taking a state with all

components equal. As we can see in Fig. 2.17(a) this limit is reached for α → 1 and before

we have a region of abrupt change in SL(α) with slope growing with increasing L. This

brings us to the Fig. 2.17(b) where we show the behavior of derivative of SL(α) with respect

to α normalized by L. Because of the normalization the area under the plot is constant and

equal to 1. As we can see the curve tends to a delta function centered around α = 1/2 for

a growing system size. This proves that there is a quantum phase transition of the second

order at α = 1/2 in the thermodynamic limit because second derivative of von Neumann

entropy is discontinuous there, which stays in analogy to the classical entropy and classical

phase transition.

Speci�c heat and density of states

The main bene�t for us is that after the transformation the Hamiltonian of L × L compass

model (α = 1/2) turns into 22L−1 spin models, each one on (L− 1)× (L− 1) lattice. In fact,

the number of di�erent models is much lower than 22L−1; most of resulting Hamiltonians

di�er only by a similarity transformation as showed in the previous section (2.2.1). For

example, in case of the 5 × 5 system we �nd out that only 10 out of 512 Hamiltonians are

di�erent; their two lowest energies, obtained using Lanczos algorithm, and degeneracies are

given in Table 2.1. In fact, these energies are known with much higher precision (10−6) than

that given in Table 2.1, and we also get quite good estimation for the highest energies. This

gives us a starting point for KPM calculations.

Kernel Polynomial Method is based on the expansion into the series of Chebyshev poly-

nomials [78]. Chebyshev polynomial of the n-th degree is de�ned as Tn(x) = cos[n arccosx]

where x ∈ [−1, 1] and n is integer. Further on we are going to calculate Tn of the Hamiltonian

so �rst we need to renormalize it so that its spectrum �ts the interval [−1, 1]. This can be

done easily if we know the width of the spectrum. Our aim is to calculate the renormal-

Table 2.1: Ground state energy E0 and �rst excited state energy E1 (in the units of J) and
their degeneracies d for 10 nonequivalent subspaces of the 5 × 5 compass model (2.55) at
α = 1/2.

n 1 2 3 4 5 6 7 8 9 10
E0 −14.54 −14.31 −14.30 −14.22 −13.75 −13.67 −13.52 −13.45 −13.22 −12.79
E −13.80 −13.15 −12.91 −12.50 −12.86 −12.99 −13.26 −12.67 −12.88 −12.30
d 2 20 20 20 50 100 50 100 100 50
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Figure 2.18: Panel (a): density of states for the 6 × 6 compass cluster at α = 1/2 in the
low energy region� lowest lying peaks agree with results of Lanczos recursion, excitation
spectrum is discrete. Panel (b): full density of states for the same system in the logarith-
mic scale� parabolic behavior indicates dense gaussian spectrum of high�energy excitation.
Panel (c): speci�c heats CV /L

2 as functions of temperature T/J for α = 1/2 for the compass
clusters of the sizes L = 2, 3, 4, 5, 6 shown as: black, red, green, blue and violet lines.

ized density of states ρ̃(E) given by ρ̃(E) = (1/D)
∑D−1

n=0 δ(E − Ẽn), where the sum is over

eigenstates of H(α) and D is the dimension of the Hilbert space. The moments µn of the

expansion of ρ̃(E) in basis of Chebyshev polynomials can be expressed by

µn =

ˆ 1

−1

Tn(E)ρ̃(E)dE =
1

D
Tr{Tn(H̃)} . (2.86)

Trace can be e�ciently estimated using stochastic approximation:

Tr {Tn(H̃)} ≈ 1

R

R∑
r=1

〈r|Tn(H̃)|r〉 , (2.87)

where |r〉 (r = 1, 2, . . . , R) are randomly picked complex vectors with components χr,k

(k = 1, 2, . . . , D) satisfying 〈χr,k〉 = 0, 〈χr,kχr′,l〉 = 0, 〈χ̄r,kχr′,l〉 = δr,r′δk,l (average is taken

over the probability distribution). This approximation converges very rapidly to the true

value of the trace, especially for large D. Action of the Tn(H̃) operator on a vector |r〉
can be determined recursively using the following relation between Chebyshev polynomi-

als: Tn(H̃)|r〉 = {2H̃ Tn−1(H̃) − Tn−2(H̃)}|r〉. We can also use the relation 2Tm(x)Tn(x) =

Tm+n(x) + Tm−n(x) to get moments µ2n from the polynomials of the degree n. Finally the
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required function,

ρ̃(E) ≈ 1

π
√

1− E2

{
g0µ0 + 2

N−1∑
n=1

gnµnTn(E)

}
, (2.88)

can be reconstructed from theN known moments, where gn coe�cients come from the integral

kernel we use for better convergence. Here we use Jackson kernel. Choosing the arguments

of ρ̃(E) as being equal to Ek = cos[(2k − 1)π/2N ′] (k = 1, 2, . . . , N ′) we can change the

last formula into a cosine Fourier series and use Fast Fourier Transform algorithms to obtain

rapidly ρ̃(Ek). This point is crucial when N and N ′ are large, which is the case here; our

choice will be N = 20000 and N ′ = 2N . Using this procedure we can get the density of states

for 4×4, 5×5 and 6×6 systems. For L = 5 we obtain 10 energy spectra for 10 nonequivalent

subspaces � these can be summed up with proper degeneracy factors (see Sec. 2.2.1 and

Table 2.1) to get the �nal density of states ρ̃(E) and next the partition function via rescaling

and numerical integration. For L = 6 the number of nonequivalent subspaces is 36 and so is

the number of energy spectra.

In Fig. 2.18(a) and 2.18(b) we can see the density of states ρ(E) (without normalization)

for L = 6 system. Achieved resolution is such that one can distinguish single low�lying energy

states and the positions of peaks agree with the results of Lanczos algorithm (see panel (a)).

In addition we get information about degeneracy of the energy levels encoded in the area

below the peaks. This required very time�consuming calculations as the size of Hilert space

was above 30 million. In Fig. 2.18(b) we present an overall view of full density of states

in the logarithmic scale exhibiting gaussian behavior. Note di�erent orders of magnitude in

Figs. 2.18(a) and 2.18(b). Both plots show that the spectrum of the compass model in the

thermodynamic limit can be discrete in the lowest and highest�energy region and continuous

in the center which agrees with the existence of ordered phase above T = 0 [49].

In the panel (c) of Fig. 2.18 we show the speci�c heats CV /L
2 for the compass L × L

clusters calculated from the densities of states ρ(E). The curves exhibit two�peak structure

similar to the one observed for a compass ladder (see Fig. 2.10) but in contrary to the ladder

case, the low�temperature peak seems to vanish when L→∞ and speci�c heat develops a gap

before the high�temperature peak. E�ectively, the speci�c heat curve in the thermodynamic

limit would be rather the one of classical Ising ladder with a single, broad peak in high

temperature and zero speci�c heat until certain T0 (see Fig. 2.10 (e)) than the one for a

compass ladder with robust low�energy excitations. This means that the thermal behavior
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of the 2D QCM is mostly classical and once more agrees with the presence of ordered phase

for �nite T in the thermodynamic limit.

2.2.3 Summary and conclusions

On the example of the QCM, we argue that for certain class of the pseudospin models, which

are not SU(2) symmetric, the properties can be uniquely determined by discrete symmetries

like parity. In this case conservation of spin parities in rows and columns, for x and z-

components of spins, makes the system in the ground state behave according to a nonlocal

Hamiltonian (2.59,2.60). In the ground state most of the two-site spin correlations vanish

and the two-dimer correlations exhibit the nontrivial hidden order. For a �nite system, the

low-energy excitations are the ground states of the QCM Hamiltonians in di�erent invariant

subspaces which, as we argue, become degenerate with the ground state in the thermodynamic

limit, leading to degeneracy d being exponential in the linear system size L (d = 22L−1). The

invariant subspaces can be classi�ed by lattice translations � the reduction of the Hilbert

space achieved in this way is important for future numerical studies of the QCM and will play

a role for spin models with similar symmetries. Finally, the nonlocal Hamiltonian containing

symmetry breaking terms suggests the MF splitting respecting conservation of parity and

leading to the known physics of one-dimensional quantum Ising model describing correlation

functions and the order parameter of the QCM.

The reduced QCM Hamiltonian turned out to be very useful for the state-of-the-art im-

plementations of the ED techniques and gives the access to the system sizes unavailable

otherwise. In contrast to the point-group or translational symmetries often explored for such

models, spin transformations lead to spin Hamiltonian again which makes it particularly

easy to implement. Although QCM has no sign problem and can be treated with powerful

quantum Monte Carlo methods, ED gives most complete solution: the ground-state wave

function giving the access to all possible correlators and measures of entanglement. Using

Lanczos and full diagonalization techniques we showed the behavior of all two-point corre-

lation functions for di�erent system sizes and full structure of energy levels as functions of

anizotropy parameter α, indication discrete-continuum nature of the spectrum of the QCM.

By calculating derivative with respect to α of the von Neumann entropy of a single column

of a square lattice, being the characteristic, classical subsystem of the model, we proved that

there is a second order quantum phase transition in the isotropic point α = 1/2 separat-

ing two perpendicular, nematically ordered phases. The continuous, rather than �rst order,
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character of the phase transition is con�rmed by the behavior of NN spin correlation func-

tions, proportional to the nematic order parameter, which remain continuous up to L = 6.

This stays in odds with early conclusions about the phase transition in 2D QCM [45]. Using

Kernel Polynomial Method we gained the access to the full density of state function ρ(E)

for system sizes excluding full diagonalization, i.e., for L = 5, 6. The behavior of ρ(E) for

L = 6 con�rms discrete-continuum nature of the spectrum observed for smaller system size

and remains in agreement with the existence of ordered phase in �nite temperature. Speci�c

heat of the system calculated from the ρ(E) for growing L evolves to the curve characteristic

for a classical Ising ladder with a single, broad peak in high and a gap in low temperature.

We argue that this behavior exhibits a classical behavior of the QCM at �nite temperature

and con�rms the existence of the ordered phase.
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Chapter 3

Kugel�Khomskii model

Recent interest and progress in the theory of SO superexchange models was triggered by the

observation that orbital degeneracy drastically increases quantum �uctuations which may

suppress long-range order in the regime of strong competition between di�erent types of or-

dered states near the quantum critical point [27]. The simplest model of this type is the

Kugel-Khomskii (KK) model introduced long ago [5] for KCuF3, a strongly correlated sys-

tem with a single hole within degenerate eg orbitals at each Cu2+ ion. Kugel and Khomskii

showed that many-body e�ects could then give rise to orbital order stabilized by a purely

electronic superexchange mechanism. A similar situation occurs in a number of compounds

with active orbital degrees of freedom, where strong on-site Coulomb interactions localize

electrons (or holes) and give rise to SO superexchange [4, 25, 26]. The orbital superex-

change may stabilize the orbital order by itself, but in eg systems it is usually helped by the

orbital interactions which follow from the Jahn-Teller distortions of the lattice [5, 79�81].

For instance, in LaMnO3 these contributions are of equal importance and both of them are

necessary to explain the observed high temperature of the structural transition [80]. Also

in KCuF3 the lattice distortions play an important role and explain its strongly anisotropic

magnetic and optical properties [81�84]. The latest theoretical and experimental results for

this compound show that another types of interactions, like direct orbital exchange driven

by a combination of electron�electron interactions and ligand distortions [85] or dynamical

Dzyaloshinsky-Moriya interaction [86], are necessary to explain structural phase transition in

KCuF3 at TJT ' 800K and peculiarities in spin dynamics [87]. The compound is believed to

the best realization of 1D Heisenberg model above the Nèel temperature TN = 39K [85, 88]

characterized by spinon excitations [89].
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While the coexisting A-type AF (A-AF) order and the orbital order is well established in

KCuF3 below TN [90] and this phase is reproduced by the SO d9 superexchange model [91],

the model poses an interesting question by itself. Which types of coexisting spin and orbital

order (or disorder) are possible when its microscopic parameters are varied? So far, it was only

established that the long-range AF order is destroyed by strong quantum �uctuations [28, 91]

and it has been shown that instead certain spin disordered phases with valence-bond (VB)

correlations stabilized by local orbital correlations are favored [25, 27]. However, the phase

diagram of the Kugel-Khomskii d9 model is unknown � it was not studied systematically

beyond the MF approximation and certain simple variational wave functions and it remains

an outstanding problem in the theory [27].

To establish reliable results concerning short-range order in the crossover regime between

phases with long-range AF or FM order, we developed a cluster MF approach which goes be-

yond the single site mean �eld in the SO system [92] and is based on an exact diagonalization

of a cluster coupled to its neighbors by MF terms. The cluster is chosen to be su�cient for

investigating both AF phases with four sublattices and VB states, with spin singlets either

along the c axis or within the ab planes. This theoretical method is motivated by possible

SO entanglement [32] which is particularly pronounced in the 1D SU(4) [or SU(2)⊗SU(2)]
SO models [93] and occurs also in the models for perovskites with AF spin correlations on

the bonds, where in some cases the Goodenough-Kanamori rules are violated [3]. In the

perovskite vanadates such entangled states play an important role in their optical properties

[94], in the phase diagram [95] and in the dimerization of FM interactions along the c axis

in the C-AF phase of YVO3 [96, 97]. Below we shall investigate whether entangled states

could play a role in the present Kugel-Khomskii model for a bilayer, 2D and 3D lattices with

nearly degenerate eg orbitals. Thereby we establish exotic type of SO mean �eld to capture

joint quantum SO �uctuations, and investigate signatures of entangled states in this phase.

3.1 Derivation of the Kugel�Khomskii model

For realistic parameters the late transition metal oxides or �uorides are strongly correlated

and electrons localize in the 3d orbitals [98, 99], leading to Cu2+ ions with spin S = 1/2 in

d9 con�guration. The examples of such systems are: KCuF3 with 3D cubic lattice, K3Cu2F7

representing bilayer compounds and K2CuF4 and also La2CuO4with 2D square lattice. The

virtual charge excitations lead then to superexchange which involves also orbital degrees of

freedom in systems with partly �lled degenerate orbitals. We consider here a model with two
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active and nearly degenerate eg orbitals,

|x〉 ≡ (x2 − y2)/
√

2, |z〉 ≡ (3z2 − r2)/
√

6 , (3.1)

while t2g orbitals do not contribute and are �lled with electrons. They do not couple to eg's

by hopping through �uorine and hence can be neglected. In what follows we investigate an

electronic model and neglect coupling to the lattice distortions arising due to Jahn-Teller

e�ect.

The Hamiltonian for d9 systems contains: holes' kinetic energyHt with hopping amplitude

t, electron-electron interactions Hint, with on-site Hubbard U and Hund's exchange coupling

JH , as well as crystal-�eld splitting term Hz playing a role of external orbital �eld Ez acting

on eg orbitals:

Heg = Ht +Hint +Hz. (3.2)

Because of the shape of the two eg orbitals Eq. (3.1), the e�ective hopping elements are

direction dependent and change depending on the direction of the bond 〈ij〉. The only non-

vanishing (ddσ) hopping element in the c direction connects two |z〉 orbitals [79], while the
elements in the ab planes satisfy Slater-Koster relations. Taking the e�ective (ddσ) hopping

element t for two z orbitals on a bond along the c axis as a unit, Ht is given by

Ht =
t

4

∑
〈ij〉‖ab

{
3d†ixσdjxσ + d†ixσdjzσ ±

√
3(d†izσdjxσ + d†ixσdjzσ) + H.c.

}
+ t

∑
〈ij〉‖c

(d†izσdjzσ + H.c.), (3.3)

where d†ixσ and d
†
izσ are creation operators for a hole in x and z orbital with spin σ =↑, ↓, and

the in-plane x�z hopping depends on the phase of |x〉 orbital involved in the hopping process

along the bond 〈ij〉 and is included in the alternating sign of the terms ∝
√

3 between a and

b cubic axes. The bonds along c direction are absent in case of a 2D system. The on-site

electron-electron interactions are described by [100]:

Hint = U
∑
iα

niα↑niα↓ + (U − 3JH)
∑
iσ

nixσnizσ + (U − 2JH)
∑
iσ

nixσnizσ̄

− JH
∑
iσ

d†ixσdixσ̄d
†
izσ̄dizσ + JH

∑
i

(d†ix↑d
†
ix↓diz↓diz↑ +H.c.). (3.4)
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Here niασ stands for the hole density operator in orbital α = x, z with spin σ, and σ̄ = −σ.
This Hamiltonian is rotationally invariant in the orbital space and describes the multiplet

structure of dn+1or dn−1 ions in charge excitations dni d
n
j � dn−1

i dn+1
j . Here we use it for d8

ions excited in a Mott insulator with d9 ionic con�guration (n = 9). We assumed the wave

function to be real which gives the same amplitude JH for Hund's exchange interaction and

for pair hopping term between |x〉 and |z〉 orbitals.
The last term of the Heg Hamiltonian lifts the degeneracy of the two eg orbitals

Hz = −1

2
Ez
∑
iσ

(nixσ − nizσ), (3.5)

and favors hole occupancy of x (z) orbitals when Ez > 0 (Ez < 0). It can be associated with

a uniaxial pressure along the c axis or a crystal �eld splitting induced by a static Jahn-Teller

e�ect.

The typical energies for the Coulomb U and Hund's exchange JH elements can be deduced

from the atomic spectra or found using density functional theory with constrained electron

densities. Earlier studies performed within the local density approximation (LDA) gave

rather large values of the interaction parameters [99]: U = 8.96 eV and JH = 1.19 eV. More

recent studies used the LDA with on-site Coulomb interaction treated within the LDA+U

scheme and gave somewhat reduced values [101]: U = 7.5 eV and JH = 0.9 eV. However,

both parameter sets give rather similar values of Hund's exchange parameter,

η =
JH
U
, (3.6)

being close to 0.13 or 0.12, i.e., within the expected range 0.1 < η < 0.2 for strongly correlated

late transition metal oxides. Note that the physically acceptable range which follows from

Eq. (3.4) is much broader, i.e., 0 < η < 1/3. The upper limit follows from the condition

(U − 3JH) > 0 for the energy of the high-spin excitations.

The value of e�ective intersite (ddσ) hopping element t is more di�cult to estimate. It

follows from the usual e�ective process via the oxygen orbitals described by a tpd hopping,

and the energy di�erence between the 3d and 2p orbitals involved in the hopping process,

so-called charge-transfer energy [79]. A representative value of t ' 0.65 eV may be derived

from the realistic parameters [99] of CuO2 planes in La2CuO4. Taking in addition U = 7.5

eV, one �nds the superexchange constant between hole S = 1/2 spins within |x〉 orbitals in
a single CuO2 plane, Jx = (9/4)t2/U ' 0.127 eV, which reproduces well the experimental
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value in La2CuO4, as discussed in Ref. [91].

Thanks to t � U we can safely assume that the ground state is insulating at the �lling

of one hole localized at each Cu2+ ion. In the atomic limit (t = 0 and Ez = 0) we have large

4N -fold degeneracy as the hole can occupy either x or z orbital and have up or down spin.

This high degeneracy is lifted due to e�ective superexchange interactions between spins and

orbitals at NN Cu ions i and j which act along the bond 〈ij〉. They originate from the virtual

transitions to the excited states, i.e., d9
i d

9
j 
 d10

i d
8
j , and are generated by the hopping term

Eq. (3.3). Hence, the e�ective SO model can be derived from the atomic limit Hamiltonian

containing interaction Eq. (3.4) and the crystal-�eld term Eq. (3.5), treating the kinetic

term Eq. (3.3) as a perturbation. Taking into account the full multiplet structure of the

excited states for the d8 con�guration [91], one gets the corrections of the order of JH to the

Hamiltonian which results for the degenerate excited states (at JH = 0). Calculating the

energies of the excited d8 states we neglected their dependence on the crystal-�eld splitting

Ez. This assumption is well justi�ed as the deviation from the equidistant spectrum at Ez = 0

become signi�cant only for |Ez|/JH > 1 and in case of La2CuO4 one �nds |Ez|/JH ≈ 0.27.

For systems close to orbital degeneracy, which we are interested in, this ratio is even smaller.

The derivation which follows Ref. [91] leads to the SO model, with the Heisenberg Hamil-

tonian for the spins coupled to the orbital problem, as follows:

H = −1

2
J
∑
〈ij〉||γ

{
(r1 Π

(ij)
t + r2 Π(ij)

s )

(
1

4
− τ γi τ

γ
j

)
+ (r2 + r4) Π(ij)

s

(
1

2
− τ γi

)(
1

2
− τ γj

)}
− Ez

∑
i

τ ci . (3.7)

Here γ = a, b, c labels the direction of a bond 〈ij〉 in the bilayer or 3D system, while γ = a, b for

a monolayer (2D lattice). The energy scale is given by the superexchange constant, J = 4t2

U
,

and the orbital operators at site i are given by ~τi = {τai , τ bi , τ ci }. The terms proportional to

the coe�cients {r1, r2, r4} refer to the charge excitations to the upper Hubbard band [91]

which occur in the d9
i d

9
j 
 d9

i d
10
j processes and depend on Hund's exchange parameter η Eq.

(3.6) via the coe�cients:

r1 =
1

1− 3η
, r2 =

1

1− η
, r4 =

1

1 + η
. (3.8)

The model Eq. (3.7) depends thus on two parameters: (i) Hund's exchange coupling η Eq.

(3.6), and (ii) the crystal-�eld splitting Ez/J , see Eq. (3.5). The operators Πs
ij and Πt

ij
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stand for projections of spin states on the bond 〈ij〉 on a singlet (Πs
ij) and triplet (Πt

ij)

con�guration, respectively,

Π(ij)
s =

(
1

4
− Si · Sj

)
, Π

(ij)
t =

(
3

4
+ Si · Sj

)
, (3.9)

for spins S = 1/2 at both sites i and j, and τ γi (with γ = a, b, c standing for a direction in

the real space) represent eg orbital degrees of freedom and can be expressed in terms of Pauli

matrices {σxi , σ
y
i , σ

z
i } in the following way:

τa,bi ≡
1

4
(−σzi ±

√
3σxi ), τ ci ≡

1

2
σzi . (3.10)

The matrices {σγi } act in the orbital space (and have nothing to do with the physical spin Si

present in this problem). Note that {τ γi } operators are not independent because they satisfy

the local constraint,
∑

γ τ
γ
i ≡ 0.

In Fig. 3.1 (a)-(d) we present typical orbitals con�gurations with ferro-orbital (FO) order

and alternating orbital (AO) order considered in the eg orbital models [11, 27]. In the next

sections we shall analyze their possible coexistence with spin order in the bilayer d9 SO model

Eq. (3.7). As we can see, the maximal (minimal) value of the orbital operators τ γi is related

with orbital taking shape of a clover (cigar) with symmetry axis pointing along the direction

γ.

3.2 Bilayer Kugel�Khomskii model

In analogy to the models introduced for bilayer manganite La2−xSrxMn2O7 [102, 103], we

consider here a model for K3Cu2F7 bilayer compound. The bilayer K3Cu2F7 system is known

since twenty years [104], but its magnetic properties were reported only recently [105]. We

shall address the orbital order and magnetic correlations realized in this system below. The

purpose of this section is to analyze a spin-orbital KK model for a bilayer, consisting of two

ab layers connected by interlayer bonds along the c axis. This choice is motivated by an

expected competition of the long-range AF order with VB-like states. One of them, a VB

phase with spin singlets on the interlayer bonds (VBz phase), is stabilized by large crystal

�eld Ez which favors occupied 3z2 − r2 orbitals (by holes). We shall investigate the range

of stability of this and other phases, including the A-AF phase similar to the one found in

KCuF3.
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The section is organized as follows. In Sec. 3.2.1 we present phase diagram of the bilayer

KK model obtained in a single-site MF approximation. Next we argue that quantum �uctua-

tions and intrinsic frustration of the superexchange near the orbital degeneracy motivate the

solution of this model in a better MF approximation based on an embedded cubic cluster,

which we introduce in Sec. 3.2.2. It leads to MF equations which were solved self-consistently

in an iterative way, as described in Sec. 3.2.3. In the next subsections we present two phase

diagrams obtained from the MF analysis using Bethe-Peierls-Weiss cluster method: (i) the

phase diagram which follows from factorization of spin and orbital degrees of freedom in Sec.

3.2.4, and (ii) the one obtained when also on-site joint SO order parameter is introduced, see

Sec. 3.2.5. The latter approach gives nine di�erent phases, and we describe characteristic

features of their order parameters in Sec. 3.2.6. We introduce bond correlation functions in

Sec. 3.2.7, and concentrate their analysis on the regime of almost degenerate eg orbitals, fo-

cusing on the proximity of the plaquette VB (PVB) and entangled SO (ESO) phases. Finally,

we quantify the SO entanglement using on-site and bond correlations, see Sec. 3.2.8, which

modi�es signi�cantly the phase diagram of the model with respect to the one obtained when

spin and orbital operators are disentangled. General discussion and summary are presented

in Sec. 3.2.9.

3.2.1 Single�site mean��eld approach

The bilayer SO d9 model Eq. (3.7) poses a di�cult many-body problem which cannot be

solved exactly. The only simple limits are either |Ez| → ∞ or η → (1/3)− which we discuss

below. In the �rst case the dominant term is the crystal �eld ∝ Ez and, depending on its

sign, we get uniform orbital con�guration τ ci ≡ ±1/2 and τa,bi ≡ ∓1/4. After inserting these

classical expectation values into the Hamiltonian Eq. (3.7) we are left with the spin part

which has purely Heisenberg form.

We will show below that in the bilayer geometry of the lattice the single-site MF ap-

proximation predicts long-range ordered G-AF phases at η = 0 known from the 3D SO d9

model [27], see Fig. 3.1(d). For negative Ez → −∞ and FO order of z orbitals shown in Fig.

3.1(c), we get an AF coupling in the c direction and a weaker AF coupling in the ab planar

directions (in the regime of small η). For positive Ez → ∞ one �nds instead the FO order

of x orbitals shown in Fig. 3.1(d), and two ab planes decouple, so we are left with the AF

Heisenberg model on two independent 2D square lattices. In this case and the spins exhibit

either G-AF, see Fig. 3.1(d) or C-AF order (not shown). Ferromagnetism is obtained in the
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(iv)

(i) (ii)

(iii)

Figure 3.1: Left panel: schematic view of four representative orbital con�gurations of a
bilayer lattice shown on a cubic cluster: (a) AO order with 〈τa(b)

i 〉 = 1/2 changing from site

to site and 〈τ ci 〉 = −1/4, obtained for Ez < 0, (b) AO order with 〈τa(b)
i 〉 = −1/2 changing

from site to site and 〈τ ci 〉 = −1/4, obtained for Ez > 0, (c) FO order with occupied z orbitals
and 〈τ ci 〉 = −1/2 (cigar-shaped orbitals), and (d) FO order with occupied x orbitals and
〈τ ci 〉 = 1/2 (clover-shaped orbitals). Right panel: schematic view of four representative spin
con�gurations of a bilayer lattice showed on a cubic cluster: (i) A-AF con�guration, (ii)
C-AF con�guration, (iii) FM con�guration and (iv) G-AF con�guration. Arrows stand for
up or down spins.

present model for any Ez if η is su�ciently large, i.e., when the superexchange is dominated

by terms proportional to r1 which favor formation of spin triplets on the bonds accompanied

by AO order depicted in Figs. 3.1(a) and 3.1(b).

In what follows we will show the simplest, single-site MF approximation of the Hamilto-

nian Eq. (3.7) and the resulting phase diagram. After averaging over spins, the Hamiltonian,

originally expressed in terms of bond operators, can be then written in a form of the orbital

problem given below:

HMF =
1

2
J
∑
i,γ

{
τ γi τ

γ
i+γ(χ

γ − ξγ) + τ γi ξ
γ − 1

4
(χγ + ξγ)

}
− Ez

∑
i

τ ci , (3.11)

with sum running over all sites and cubic axes γ = a, b, c. Here we adopted a shorthand

notation in τ γi+γwith i+ γ meaning the nearest neighbor of site i in the direction γ.

The quantities

χγ =

{
r1Πγ

t + r2Πγ
s if γ = a, b

1
2
(r1Πγ

t + r2Πγ
s ) if γ = c

}
, ξγ =

{
(r2 + r4)Πγ

s if γ = a, b
1
2
(r2 + r4)Πγ

s if γ = c

}
(3.12)
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are the parameters obtained by averaging over spin operators. The coe�cients 1/2 in the χγ

and ξγ terms along the c axis follow from the bilayer geometry of the lattice. We assumed

that the spin order, determining χγ and ξγ, depends only on the direction γ and not on site

i. This is su�cient to investigate the phases with either AF or FM long-range order. More

precisely, these are spin-singlet and spin-triplet projectors Πγ
s(t) ≡ Π

s(t)
i,i+γ Eqs. (3.9) that are

independent of i. As far as only a single site is concerned the spins cannot �uctuate at zero

temperature and the projectors can be replaced by their average values:

Πγ
s =

1

4
− 〈Si · Si+γ〉, Πγ

t =
3

4
+ 〈Si · Si+γ〉. (3.13)

The values of the projectors depend on the assumed spin order. Here we consider four

di�erent spin con�gurations: (i) G-AF - antiferromagnet in all three directions shown in Fig.

3.1(d), (ii) C-AF - antiferromagnet in the ab planes with FM correlations in the c direction

(not shown), (iii) A-AF - AF phase with FM order in the ab planes and AF correlations in

the c direction depicted in Fig. 3.1(a), (iv) FM phase (not shown). The numerical values of

the spin projection operators in these phases are listed in Table 3.1.

After �xing spins, the MF approximation involves the well-know decoupling for the orbital

operators:

τ γi τ
γ
i+γ ' 〈τ

γ
i 〉τ

γ
i+γ + τ γi 〈τ

γ
i+γ〉 − 〈τ

γ
i 〉〈τ

γ
i+γ〉. (3.14)

The last step is to de�ne sublattices for the orbitals. The most reasonable choice would be

to assume AO order meaning that neighboring orbitals are always rotated by π/2 in the ab

plane with respect to each other. To implement this structure into the MF Hamiltonian we

de�ne new direction γ̄ as follows: γ̄ = b, a for γ = a, b and γ̄ = c for γ = c. Using γ̄ we can

Table 3.1: Mean values of triplet Πγ
t and singlet Πγ

s projection operators Eqs. (3.13) for a
bond 〈ij〉 along the axis γ in di�erent phases with long-range magnetic order which occur in
the MF phase diagram, see Fig. 3.1.

phase Π
a(b)
t Πc

t Π
a(b)
s Πc

s

G-AF 1/2 1/2 1/2 1/2
C-AF 1/2 1 1/2 0
A-AF 1 1/2 0 1/2
FM 1 1 0 0
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Figure 3.2: Phase diagram of the bilayer KK model obtained in the single-site MF approxima-
tion. In this approach the G-AFx and C-AFx phases have exactly the same energy. Shaded
green area indicates phases with AO order while the remaining phases are accompanied by
FO order with fully polarized x or z orbitals. The magni�ed area around the multicritical
point at Ez = −0.25J and η = 0 is shown in the inset.

now easily de�ne staggered orbital order parameter of C-type, i.e. C-AO order:

tγi ≡ 〈τ
γ
i 〉 = 〈τ γ̄i±γ〉. (3.15)

The �nal single-site MF Hamiltonian can be written in the same form for any site so in what

follows we will not use site index i anymore. The desired formula is:

H(0)
MF =

∑
γ

Θγτ γ + f(ta, tc) = ασz + βσx + f(ta, tc), (3.16)

with

Θγ =
1

2
ξγ + tγ̄(χγ − ξγ)− Ezδγc, (3.17)

and

f(ta, tc) = −1

8

∑
γ

{(χγ + ξγ) + 4tγtγ̄(χγ − ξγ)} . (3.18)
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For convenience we set J = 1 in the above de�nitions; note that the energy scale can easily

be recovered by replacing Ez by Ez/J . As we can see the MF Hamiltonian is very simple

and can be written in terms of two Pauli matrices {σx, σz} with

α =
1

2

(
Θc − 1

2
Θa − 1

2
Θb

)
, β =

√
3

4

(
Θa −Θb

)
. (3.19)

Solving the 2× 2 eigenproblem we obtain self-consistency equations for the order parameters

ta and tc:

ta =
1

4∆

(
α−
√

3β
)
, tc = − 1

2∆
α, (3.20)

where ∆ =
√
α2 + β2 and the ground state energy given by:

E0 = −∆ + f(ta, tc). (3.21)

The solution of self-consistency equations is very elegant and entertaining so we are not

going to present it here (the results are given in the Appendix B). It turns out that all four

phases considered here can appear as orbitally uniform, i.e., having FO order with orbitals

being either perfect clovers or perfect cigars everywhere, or as phases with AO order between

two sublattices. The phase diagram presented in Fig. 3.1 was obtained by purely energetic

consideration and shows the boarder lines between phases with the lowest energies for given

η and Ez. This diagram is surprisingly complex taking into account the simplicity of the

single-site approach; it reveals seven di�erent phases. For η = 0 we have only two AF phases:

(i) G-AFz for Ez < −1/4J and (ii) G-AF for Ez > −1/4J , with a di�erent but uniform

orbital con�guration (FO order) which involves either cigar-shaped z orbitals in the G-AFz

phase, see Fig. 3.1(c), or clover-shaped x orbitals in the G-AF, see Fig. 3.1(d). Because of

the planar orbital con�guration in the latter G-AF phase one �nds no interplane exchange

coupling and thus the spin order along the c axis is undetermined and this phase is degenerate

with the C-AF one.

For higher η the number of phases increases abruptly by three phases with AO con�gura-

tions, as shown in Figs. 3.1(ii) and 3.1(iv): the A-AF, C-AF and G-AF phase respectively.

Surprisingly, the AO version of the G-AF phase is connected neither to z nor to x FO or-

der in an antiferromagnet, excluding the multicritical point at (Ez/J, η) = (−0.25, 0), and

disappears completely for η ≈ 0.118. The C-AF phase stays on top of uniform G(C)-AF
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phase, lifting the degeneracy of the above phases at relatively large η and then gets replaced

by the FM phase which always coexists with AO order. One can therefore conclude that the

G(C)-AF degeneracy is most easily lifted by turning on the orbital alternation.

On the opposite side of the diagram the G-AFz phase is completely surrounded by A-AF

phases: for η > (2/
√

3 − 1) the G-AFz phase turns into orbitally uniform A-AFz indepen-

dently of the value of Ez (interorbital triplet excitations dominate then on the bonds in the

ab planes), and for smaller η into the A-AF phase with AO order. In the A-AF phase the

AF correlations in the c direction survive despite the overall FM tendency when η grows.

This follows from the orbitals' elongation in the c direction present for Ez < 0, which would

cause interplane singlet formation if we were not working in single-site MF approximation,

see Sec. III. In the present case it favors either the G-AFz or A-AF(z) con�guration with

uniform or alternating orbitals depending on the values of Ez/J and η. Finally, the FM

phase is favorable for any Ez if only η is su�ciently close to 1/3 which only con�rms that

the single-site MF approximation is sound and realistic with this respect.

The central part of the presented diagram is the most frustrated one judging by the

number of competing phases with long-range spin order. This behavior is consistent with

that found in the 3D SO d9 model in the regime of Ez ' 0 and �nite η [27]. Four of these

phases could be expected by looking at the phase diagram of the 3D model: two G-AF

phases, the A-AF phase and the FM phase [27]. Note, however, that in the phases stable

in the central part of the phase diagram, namely in the A-AF, C-AF and FM phase, the

occupied orbitals alternate. While the FM phase is not surprising in this respect and obeys

the Goodenough-Kanamori rule of having FM spin order accompanied by the AO order, in

the A-AF one �nds an example that both spin and orbital order could in principle alternate

between the two ab planes. This �nding suggests that in this central part of the phase

diagram one may expect either other VB-type phases or even states with more complex SO

disorder. Such ordered or disordered phases require a more sophisticated approach that treats

explicitly quantum �uctuations on the bonds, either variational wave functions [27, 34], or

the embedded cluster approach which we explain below in Sec. 3.2.2.

3.2.2 Cluster mean��eld Hamiltonian

Now we introduce a more sophisticated approach which goes beyond the single-site MF

approximation of Sec. 3.2.1. In what follows we use a cluster MF approach with a cube

depicted in Fig. 3.3. It contains eight sites coupled to its neighbors along the bonds in ab
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planes by the MF terms. This choice is motivated by the form of the Hamiltonian with

di�erent interactions along the bonds in three di�erent directions � the cube is the smallest

cluster which does not break the symmetry between the a and b axes and contains equal

numbers of a, b and c bonds. After dividing the entire bilayer square lattice into identical

cubes which cover the lattice, the Hamiltonian (3.7) can be written in a cluster MF form as

follows,

HMF =
∑
Cm∈C

(Hint
m +Hext

m ) , (3.22)

where the sum runs over the set of cubes C, with individual cube labeled by Cm ∈ C. Here
Hint
m contains all bonds fromHm belonging to the cube Cm and the crystal �eld terms ∝ Ez on

the cube's sites, i.e., it depends only on the operators on the sites inside the cube, while Hext
m

contains all bonds outgoing from the cube m and connecting neighboring clusters, making

them correlated.

The basic idea of the cluster MF approach is to approximate Hext
m by H̃ext

m containing only

operators from the cube m. This can be accomplished in many di�erent ways depending on

which phase we wish to investigate. Our choice will be to take H̃ext
m of the following form,

H̃ext
m =

1

2

∑
γ=a,b
i∈Cm

{Szi a
γ
i + Szi τ

γ
i b

γ
i + τ γi c

γ
i + dγi } , (3.23)

containing spin �eld Szi breaking SU(2) symmetry, orbital �eld τ γi , and SO �eld Szi τ
γ
i . Co-

e�cients {aγj , b
γ
j , c

γ
j , d

γ
j } are the Weiss �elds and should be �xed self�consistently depending

on Ez and η. Our motivation for such expression is simple: if orbital degrees of freedom are

�xed then the problem reduces to the Heisenberg model which has long�range ordered AF

phase � that is why we take Szi �eld, the orbitals are present in the Hamiltonian so taking

τ γi is the simplest way of treating them on equal footing to describe possible orbital order.

Finally, we introduce also SO �eld Szj τ
γ
j because we believe that in some phases spins and

orbitals alone do not su�ce to describe the symmetry breaking and these operators can act

together.

The standard way to seek for a solution is to write self-consistency equations for the Weiss

�elds. This can be done in a straightforward fashion: we take the operator products from

Hext
m and divide them into a part depending only on Oi operators from the cube m, and on

Oj ones � from a neighboring cube n. Then we use the well known MF decoupling for such
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Figure 3.3: Schematic view of the cubic cluster (solid lines) used in the cluster mean-�eld
approach of Sec. 3.2.2, with vertices labeled i = 1, · · · , 8 and bond directions γ = a, b, c.
Dashed lines stand for the outgoing MF terms in the a and b direction which act on the
cluster.

operator products,

OiOj = 〈Oi〉Oj +Oi〈Oj〉 − 〈Oi〉〈Oj〉 = Oi〈Oj〉 −
1

2
〈Oi〉〈Oj〉+Oj〈Oi〉 −

1

2
〈Oi〉〈Oj〉, (3.24)

and write it in a symmetric way. Now the �rst two terms can be included into H̃ext
m and the

last two into H̃ext
n . This procedure can be applied to all operator products in Hext

m and full

H̃ext
m can be recovered in the form given by Eq. (3.23). Repeating this for all clusters leads

to a Hamiltonian describing a set of commuting cubes interacting in a self�consistent way.

After using Eq. (3.24) on the Hamiltonian Eq. (3.7) we obtain the formulas for the Weiss

�elds:

aγi =
1

2
(r2 + r4)uγi +

1

4
(r2 − r1)sγi , (3.25)

bγi = −(r4 + r1)uγi −
1

2
(r2 − r1)sγi , (3.26)

cγi =
1

4
(3r1 − r4)tγi +

1

8
(r2 + r4), (3.27)

dγi = −1

2
(r1 + r4)uγi u

γ
m,i −

1

4
(r2 − r1)(siu

γ
i + sγi u

γ
m,i)

− 1

16
(r2 + r4)(tγm,i − t

γ
i ) +

1

8
(r4 − 3r1)tγi t

γ
m,i −

1

32
(3r1 + 2r2 + r4), (3.28)

75



where the order parameters at site i are:

si ≡ 〈Szi 〉 , tγm,i ≡ 〈τ
γ
i 〉 , uγm,i ≡

〈
Szi

(
1

2
− τ γi

)〉
. (3.29)

Note that {si, tγm,i, u
γ
m,i} are the mean values of operators at site i belonging to the cluster

m, and {sγi , t
γ
i , u

γ
i } are the mean values of the same operators at sites neighboring with i in

the direction γ. The geometry of a bilayer implies that each site i has one neighbor along

the axis a and another one along the axis b, and these sites belong to di�erent cubes.

The next crucial step is to impose a condition that {sγi , t
γ
i , u

γ
i } are related to the order

parameters obtained on the internal sites of the considered cluster. The simplest solution is

to assume that all clusters have identical orbital con�guration; tγi = tγm,i, spin con�guration

is in agreement with a type of global magnetic order we want to impose; sγi = ±si and
spin orbital con�guration is as if spin and orbitals were factorized, i.e., uγi = ±uγm,i. This

solution has one disadvantage: if a or b direction is favored in the orbital con�guration of the

cube then this broken symmetry will imply a global symmetry breaking in the lattice which

is not expected for the form of the Hamiltonian Eq. (3.7). Therefore, a state with lower

energy is expected when two neighboring cubes di�er in orbital (and SO) con�guration by

the interchange of a and b direction, i.e.,

sγi = ±si, tγi = tγ̄m,i, uγi = ±uγ̄m,i (3.30)

with γ̄ being the complementary direction in the ab plane to γ, i.e., (γ, γ̄) = (a, b), (b, a). This

relation gives the same results as the previous one in case when the (a, b) symmetry in the

cube is not broken, but keeps the whole system (a, b) symmetric in the other case. Here we

again treat the SO �eld as factorized but surprisingly it turns out that this does not prevent

SO entanglement to occur, see below. We have also tried to impose relations between uγi and

uγm,i which have nothing to do with spin and orbital sectors alone but this only resulted in

the lack of convergence of self�consistency iterations.

3.2.3 Self�consistent iterative procedure

The self�consistency equations cannot be solved exactly because the e�ective cluster Hilbert

space is too large even if we use total Sz conservation in the considered cluster m (then the

largest subspace dimension is d = 17920) and because of their non�linearity. The way out

is to use Bethe�Peierls�Weiss method, i.e., set certain initial values for the order parameters
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{si, tγm,i, u
γ
m,i} and next employ Lanczos algorithm to diagonalize HMF Eq. (3.22). Below

we present results obtained by self-consistent calculations of phases with broken symmetry

or with spin disorder. In order to determine the ground state one recalculates mean values

of spin, orbital and SO �elds given by Eqs. (3.29) and determines new order parameters.

This procedure is continued until convergence (of energy and order parameters) is reached.

The iteration process can be very slow due to the number of order parameters which is

24 (three per site) for the cube but we have overcome this problem by imposing certain

symmetry breaking on the cluster. We implement it in the following way: after each iteration

we calculate {si, tγm,i, u
γ
m,i} only for one site i = 1 and the remaining coe�cients are �xed

assuming certain symmetries of the phase we are searching for.

For simplicity let us enumerate the vertices i = 1, · · · , 8 in the cubic cluster as shown in

Fig. 3.3. To obtain G-AF phases we assume that

si =

{
s1 if i ∈ A
−s1 if i ∈ B

}
, (3.31)

for a two-sublattice structure, where A = {1, 4, 5, 8} and B = {2, 3, 6, 7} see Fig. 3.3. In

the FM case it is enough to put si ≡ s1 and in case of FM order within the planes and AF

between them (in the A-AF phase) we use instead: si = (−1)i−1s1. In the orbital sector we

can impose a completely uniform con�guration with tγm,i ≡ tγm,1, which can however lead to

non�uniform con�guration of the whole system because neighboring clusters are rotated by

π/2 with respect to each other, or we can produce a phase with AO order taking

tγm,i =

{
tγm,1 if i ∈ A
tγ̄m,1 if i ∈ B

}
, (3.32)

with (γ, γ̄) = (a, b), (b, a). Other choices would be to take the above equation either with

A = {1, 2, 5, 6} and B = {3, 4, 7, 8} or with A = {1, 3, 5, 7} and B = {2, 4, 6, 8}. More

generally speaking, every choice of orbital sublattices is good as long as the total MF wave

function does not violate the symmetry between directions a and b. The sublattices for SO

�eld are constructed as if uγm,1 could be expressed as uγm,i = si(
1
2
− tγm,i).
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3.2.4 Phase diagram with disentangled spin and orbital operators

The zero�temperature phase diagram of the present bilayer d9 SO model Eq. (3.7) depends

on parameters (Ez, η), and was obtained by comparing ground state energies for di�erent

sublattices formed by {si, tγm,i, u
γ
m,i} mean �elds. In this way we determined the ground state

with the lowest energy and its order parameters. We begin with the phase diagram of Fig.

3.4 obtained by assuming that SO operators may be factorized into spin and orbital parts,

i.e., uγm,i ≡ si(1/2− tγm,i) or:
〈Szi τ

γ
i 〉 ≡ 〈Szi 〉〈τ

γ
i 〉. (3.33)

Next we report the phase diagram (in Sec. 3.2.5), where we include uγm,i calculated following

the de�nition in Eq. (3.29). Comparing these two schemes allows us to determine which

phases cannot exist without SO entanglement.

The low�η part of the diagram in Fig. 3.4 is dominated by three phases: VBz for

negative Ez, PVB for Ez close to zero and G-AF for positive Ez. The VBz phase with

ordered interlayer valence bonds for occupied z orbitals and spin singlets, see Fig. 3.4(c), has

replaced the G-AFz phase obtained before in Sec. 3.2.1. Both phases exhibit uniform FO

order, i.e., tcm,i is close to −1/2 for all i which means that orbitals take the shape of cigars

aligned along the c bonds, see Fig. 3.1(c). One �nds that quantum �uctuations which could

be included within the present approach select the VBz phase and magnetization vanishes

due to the singlets formation. For higher values of Ez ' 0 also a di�erent phase is found:

the plaquette VB (PVB) phase with singlets formed on the bonds in a or b direction of the

cluster, see Fig. 3.4(b). This phase breaks the a�b symmetry of the model locally but the

global symmetry is preserved thanks to the π/2 rotation of neighboring clusters, see Eq.

(3.30). The orbitals are again uniform within the cluster with tam,i or t
b
m,i close to −1/2,

meaning that they take the shape of cigars pointing in the direction of the singlets. For high

positive values of Ez the ground state is the G-AF phase with long�range AF order and FO

order of x occupied orbitals, i.e., tcm,i close to 1/2, see Fig. 3.1(d). This means that orbitals

are indeed of the x type and take the shape of four�leaf clovers in the ab plane with lobes

pointing along a and b directions which makes the two planes very weakly coupled.

The FO order in the VBz and G-AF phases agrees with the limiting con�gurations for

Ez → ±∞ described earlier. The �rst of them is a quantum phase with local singlets, in

contrast to the G-AFz one found already in Sec. 3.2.1 and in the 3D SO d9 model [27].

If we consider now the VBz phase and increase η, we pass through the VBm phase (where

"m" stands for mixed orbital con�guration) and reach the A-AF phase with non�zero global
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Figure 3.4: Panel (a): phase diagram of the bilayer KK model Eq. (3.22) obtained using
cluster MF method with factorized SO operators. Valence-bond phases with spin disorder
are stable in the yellow area. Panels (b), (c): schematic view of the two singlet phases on a
cube realized in the KK model: (a) plaquette valence bond (PVB) con�guration with singlets
in ab planes and (b) VBz phase with singlets along the c axis.

magnetization such that spins order ferromagnetically in the ab planes and antiferromag-

netically between them (along c axis), see Fig. 3.1(i). We believe that this regime of the

phase diagram is of relevance for the spin and orbital correlations in K3Cu2F7 and discuss

it also in Sec. 3.2.9. The orbital order is of the AO type with tcm,i close to zero, positive

or negative depending on the value of Ez, see Figs. 3.1 (a) and 3.1 (b). The VBm phase

occurs when the orbitals in the VBz phase start to deviate from the uniform con�guration

and ends when the global magnetization appears, accompanied by the change of the orbital

order. The �rst transition is of second order, being the only second order phase transition in

the phase diagram of Fig. 3.4 (a).

The presence of both A-AF phases on top of the VBz can be understood qualitatively

as follows: in the VBz phase AF spin coupling is strong only within the singlets, so if η is

increased the weak in-plane spin correlations can easily switch to FM ones, while AF corre-

lations will still survive between the planes. The last phase of the diagram is the FM phase

with AO order, similar to the AO order in the A-AF phase. Due to the absence of thermal

and quantum �uctuations the magnetization in this phase is constant and maximal. The

FM phase appears for any Ez, if only η is su�ciently close to 1/3, which agrees qualitatively
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with the previous discussion of the exact limiting con�gurations and with the phase diagram

found before in the single-site MF approach, see Fig. 3.2. This demonstrates that this phase

is insensitive to quantum �uctuations on the bonds in the considered cubic cluster.

Comparing Fig. 3.4 (a) to the MF phase diagram of Fig. 3.2 we can immediately recognize

the main di�erence: the existence of the VBz and PVB phases. These phases contain spin

singlets on the bonds and do not follow from the single-site MF approach. Another di�erence

is the lack of sharp transitions between AO and FO order within one phase; these transitions

are smoothened by spin �uctuations absent in the single-site mean �eld and perfect FO

con�gurations are now available only for extremely high values of |Ez|.

3.2.5 Phase diagram with spin-orbital �eld

When the SO mean �eld is not factorized but calculated according to its de�nition given in

Eq. (3.29), one �nds the modi�ed phase diagram displayed in Fig. 3.5. We would like to

emphasize that this non-factorizability cannot be included within the single-site MF approach

because there all spin �uctuations are absent. Of course, one can imagine that we take the

Szi 〈Szi+γ〉 decoupling in the pure-spin sector and Sxi 〈Sxi+γ〉 decoupling in the SO sector of

the Hamiltonian Eq. (3.7) leading to the �uctuating spins but this would break both the

magnetization conservation and homogeneity of the spin-spin interactions included into the

Kugel-Khomskii model.

In addition to the phases obtained in the phase diagram of Fig. 3.4, we get here also the

following phases: ESO, EPVB and PVB-AF (the VBm phase is still stable between the VBz

and A-AF ones but within a much smaller area). The �rst two above phases are formed in

the highly frustrated region of the phase diagram where both Ez and η are moderate. ESO

stands for entangled SO phase and is characterized by relatively high values of SO order

parameters, especially for high η values when other order parameters are close to zero. This

phase contains singlets along the bonds parallel to the c axis, its magnetization vanishes

and the orbital con�guration is uniform. One can say that this is the VBz phase with

weakened orbital order transformed into uniform SO order for the same spin and orbital

sublattices. EPVB stands for entangled PVB phase and resembles it, but has in addition

�nite non�uniform SO �elds, and weak global AF order. A di�erent type of phase with SO

entanglement is the PVB-AF phase connecting PVB and G-AF in a smooth (as it will be

shown below) way but only if η is large enough. In contrast to the direct PVB-to-G-AF

transition, passing through the PVB-AF involves second order phase transitions and the
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Figure 3.5: The phase diagram of the cluster MF Hamiltonian Eq. (3.22) of the KK model
for a bilayer, with independent spin, orbital and SO mean �elds. Valence-bond phases with
spin disorder are stable in the yellow area, and phases with SO entanglement are indicated
by orange shading.

same happens in case of the EPVB connecting the ESO and PVB phases. Similarly to the

previous diagram, the transition from the VBz to VBm phase is of the second order while the

other transitions produce discontinuities in order parameters (see Sec. 3.2.6) and correlation

functions (see Sec. 2.1.2).

Finally, we should also point out that the G-AF/C-AF degeneracy found in Fig. 3.2 is

lifted in the cluster approach and the C-AF phase does not appear in any of the two phase

diagrams presented in Figs. 3.4 and 3.5. Another interesting feature of the phase diagrams are

points of high degeneracy where di�erent phases have the same ground-state energies. In case

of the single-site MF diagram this quantum critical point is found at (Ez = −1/4J, η = 0),

where six phases meet. The use of cluster MF method which includes singlet phases lifts

this point upwards along the border line between VBz and PVB to (Ez, η) ≈ (−0.3J, 0.11)

in case of Fig. 3.5. This means that singlet formation acts against interaction frustration

caused by Hund's exchange coupling and moves the most frustrated region of phase diagram

to �nite-η regime. This shows once again that the simple single-site approach is not su�cient

to describe correctly the properties of the bilayer d9 SO model.
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Figure 3.6: Panel (a): order parameters {s, ta,b, va,b} for η = 0.05 and −0.4 < Ez/J < 0.3 in
the VBz, PVB and G-AF phase, from left to right. Panel (b): order parameters {s, ta,b, va,b}
for η = 0.15 and 0.3 < Ez/J < 0.5 in the PVB, PVB-AF and G-AF phase, from left to right.

3.2.6 Order parameters

The ground state is characterized by order parameters obtained directly during the self�

consistency iterations in each phase: spin, orbital and SO order parameters, {s1, t
a,b
m,1, u

a,b
m,1}.

We focus here on orbital and spin order in the con�gurations showed in the phase diagram

of Fig. 3.5 (for study of the SO order parameters see Ref. [106]). One can investigate

the behavior of order parameters along di�erent cuts of the phase diagram of Fig. 3.5 and

determine from it types of phase transitions. Below we present a few representative results.

For this purpose we �rst choose η = 0.05 and start within the VBz phase, where by increasing

Ez one gets �rst into the PVB and next to G-AF phase, see Fig. 3.6(a). For η = 0.15 there are

even more phases and one passes through the A-AF, ESO, EPVB, PVB, and AF-PVB phases,

before reaching �nally the G-AF phase, see Figs. 3.6(b) and 3.7(a). We also investigated

the dependence of order parameters on Hund's exchange coupling � we �xed Ez = −0.72J ,

started in the VBz phase and increased η to get to the VBm and A-AF phases � these

results are shown in Figs. 3.7(b).

In what follows we use shorthand notation for the order parameters,

{s, ta,b, va,b} ≡ {s1, t
a,b
m,1, v

a,b
m,1}. (3.34)

In Fig. 3.6(a) we displayed the order parameters for increasing Ez in phases VBz, PVB and

G-AF (separated by dotted lines in the plot). The sublattice magnetization s is non�zero
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only in the G-AF phase because the remaining phases are of the VB crystal type, with spin

singlets oriented either along the c direction or in the ab planes. In the G-AF phase the

spin order grows stronger for increasing Ez when the orbital �uctuations weaken and spin

�uctuations present in the G-AF phase reduce s from the classical value of 1/2.

Consider now decreasing values of Ez in Fig. 3.6. Both orbital order parameters remain

equal and close to −1/4 in the G-AF phase until the (�rst order) transition to the PVB

phase occurs, where orbital con�guration changes abruptly and becomes anisotropic. In this

case the a�b symmetry was broken in such a way that that spin singlets point in the PVB

phase in b direction, in agreement with the directional orbitals (cigars). This explains the

robust orbital order with tb being close to −1/2 in most of the PVB phase. The global

symmetry is not broken as the VB singlets form here a checkerboard pattern in the ab plane,

with AO order of directional orbitals along the a and b axis in the neighboring plaquettes.

The transition to the VBz phase is discontinuous (�rst order) in the orbital sector too: ta

grows constantly while decreasing Ez down to 0.4J , drops slightly close to the transition

point and jumps to 1/4 in the VBz phase, tb grows quickly to tb ≈ 0.125 while approaching

the transition and then jumps to the value of ta. Qualitatively this means that close to the

above transition the orbital cigars pointing along the b axis change gradually into a shape

very similar to clover orbitals lying in the bc plane and then suddenly the lobes along the b

direction disappear and we are left with the pure VBz phase.

Figure 3.6(b) shows that the transition between the PVB and G-AF phases can have

a completely di�erent character than described above. The di�erence comes from a higher

value of η which is now equal to 0.15, enhancing the FM channel of superexchange and

leading to the intermediate PVB-AF phase and eventually to a smooth transition from the

PVB to G-AF phase. In the PVB-AF phase staggered magnetization s grows continuously

from zero (in the PVB) to a �nite value in the G-AF phase and remains saturated there.

This means that planar singlets in the PVB phase decay gradually and spins get partially

"synchronized" with orbitals, moving toward uniform con�guration. This mechanism of the

PVB-to-G-AF transition is absent for low values of η � we anticipate that the enhanced FM

component of interactions reduces spin �uctuations which makes the correlations between

spins and orbitals possible.

In Fig. 3.7(a) we focus on the complementary regime of the phase diagram, η = 0.15

and negative Ez. In this regime we describe three di�erent consecutive phase transitions

between the phases: ESO, EPVB and PVB. Note that the ESO phase has predominantly

z orbitals accompanied by �uctuations, i.e., tc ' −0.4 and ta = tb, and may be seen as an
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Figure 3.7: Panel (a): order parameters {s, ta,b, va,b} for η = 0.15 and −0.39 < Ez/J <
−0.1 in the ESO, EPVB and PVB phases, from left to right. Panel (b): order parameters
{s, ta,b, va,b} for Ez = −0.72J and 0.15 < Ez/J < 0.25 in the VBz, VBm and A-AF phases,
from left to right.

extension of the VBz phase. On the contrary, the second quantum EPVB phase which occurs

in the phase diagram of Fig. 3.5 may be seen as a precursor of the PVB phase characterized

by �nite staggered magnetization s which grows smoothly from the zero values at the phase

borders meaning that we have a wedge of antiferromagnetism between two VB con�gurations.

The EPVB phase seems to be similar to PVB-AF in a sense that non-uniform orbital order

accompanies �nite AF magnetization.

Next Fig. 3.7(b) shows the behavior of order parameters for Ez = −0.72J and η changing

in an interval allowing us to study the transitions from the VBz to VBm phase, and between

the VBm and A-AF phase. In this case all the phases can be described by the same spin

and orbital sublattices because VBz is uniform in the orbital sector and has no long�range

magnetic order so it can be described both in terms of the PVB and A-AF type of ordering.

Global magnetization appears only in the A-AF phase jumping from the zero value in the

VBm and growing with increasing η. Transition from the VBz to VBm phase is continuous

in both spin and orbital sectors.

The orbital order parameters ta,b bifurcate in Fig. 3.7(b) at η ' 0.169 from the isotropic

value ta = tb ' 1/4 and the orbital anisotropy grows in the VBm phase to give AO order

in the A-AF phase, and next shows a discontinuity at the second transition. The �nal AO

order can be described by clover orbitals with symmetry axes alternating between a and b

directions from site to site. Relatively big, negative value of ta means that the clovers' lobes
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are elongated in the a or b direction, perpendicular to their axes. The elongation depends

also on the value of Ez: the Ez → −∞ limit corresponds to pure cigars, while for Ez → ∞
one gets pure clover-like orbitals. This tendency is especially visible in the FM phase which

is not limited in horizontal direction of the phase diagram. Consequently, the VBm phase

can be regarded as a crossover regime between orbitally uniform VBz and alternating A-AF

phases. This resembles to some extent the PVB-AF phase described earlier but we want to

emphasize the main di�erence between these phases: the VBm phase does not need non�

factorizable SO mean �eld to appear while the PVB-AF one needs it (compare Figs. 3.4 and

3.5). The question of SO non�factorizability will be addressed in more details below, see Sec.

3.2.8.

3.2.7 Nearest-neighbor correlations

Studying order parameters in di�erent phases we get complete information about symmetry

broken or disordered phases of the system, but this alone does not justify the use of the

cluster MF method as order parameters can in principle be obtained using standard single-

site MF approximation, see Sec. 3.2.1. The advantage of the cluster method becomes evident

when we investigate correlation functions on the bonds belonging to the considered cube.

The most obvious ones are the spin�spin correlations 〈Si · Sj〉 or orbital�orbital correlations
〈τ γi τ

γ
j 〉. Although one could in principle invent several other bond correlation functions, the

above ones have the most transparent physical meaning because they enter the Hamiltonian

(together with correlations of the SO type, not shown here� see Ref. [106]). For the same

reason we will only consider orbital correlation functions for di�erent bond direction γ =

a, b, c. For symmetry reasons it is enough to consider only one chosen vertex, e.g. vertex

number 1 in Fig. 3.3. For convenience we will use the following notation:

Cγ
s ≡ 〈S1 · Si〉, Cγ

t ≡ 〈τ
γ
1 τ

γ
i 〉 (3.35)

where the bond 〈1i〉||γ and i ∈ {2, 3, 7} which gives all nonequivalent NN correlations along

γ = a, b, c (see Fig. 3.3).

In what follows we will present the numerical results for bond correlations {Cγ
s , C

γ
t } along

di�erent cuts of the phase diagram of Fig. 3.5. For all two�panel plots each panel describes

correlation of one type: upper panel � spin correlations, bottom one � orbital correlations.

For each panel di�erent line characters and colors indicate di�erent direction γ: solid red

line stands for γ = c, dashed green line for γ = a and dashed�dotted blue line for γ = b. In
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Figure 3.8: Panels (a)�(b): NN correlations for η = 0.05 and −0.4 < Ez/J < 0.3 in the
VBz, PVB and G-AF phases. (a) Spin correlations: solid red line � Cc

s , dashed green line
� Ca

s and dashed�dotted blue line � Cb
s . (b) Orbital correlations: solid red line � Cc

t ,
dashed green line � Ca

t and dashed�dotted blue line � Cb
t . Panels (c)�(d): NN correlations

for η = 0.15 and 0.3 < Ez/J < 0.5 in the PVB, PVB-AF and G-AF phases. (c) Spin
correlations: solid red line � Cc

s , dashed green line � Ca
s and dashed�dotted blue line �

Cb
s . (d) Orbital correlations: solid red line � Cc

t , dashed green line � Ca
t and dashed�dotted

blue line � Cb
t .

order to investigate the e�ects of quantum �uctuations we focus the discussion on two types

of quantum phases: (i) singlet phases (PVB and VBz phase), and (ii) entangled SO phases

(ESO and EPVB phase).

Singlet phases

We begin with bond correlation functions for η = 0.05 and −0.4 < Ez/J < 0.3 in the VBz,

PVB and G-AF phase. The Cc
s function stays close to −3/4 in the VBz phase while the other

spin correlations are almost zero as one can expect in the interlayer singlet phase, see Fig.

3.8(a). After the �rst transition at Ez ' −0.26J the situation changes � now the singlets

are in b direction and Cb
s gets close to −3/4 when Ez increases. After the second transition

at Ez ' 0.14J all the spin correlations take �nite negative values with Cc
s relatively weakest,

keeping the symmetry between a and b direction. This is in agreement with the spin order

in the G-AF phase discussed in Sec. 3.2.6.
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The orbital correlation functions in the VBz and G-AF phases behave as if the orbitals

were frozen in a uniform con�guration with tc = ±1/2 and ta,b = ∓1/4 whereas in the PVB

phase their behavior is more nontrivial; the dominant Cb
t is quite distant from its maximal

value 1/4 and the di�erence between Ca
t and Cc

t is also visible, especially close to the G-AF

phase, see Fig. 3.8(b). This result is due to quantum �uctuations: perfect VBz and G-AF

con�gurations are the exact eigenstates of the Hamiltonian, at least in the limit of large |Ez|,
while perfect PVB state cannot be obtained exactly in any limit and gets easily destabilized

by varying Ez. It is peculiar that the spin con�guration is almost nonsensitive to the orbital

splitting Ez and the singlets stay rigid in the regime of spin disordered phases, i.e., below

the transition to the G-AF phase.

Figures 3.8(c)�3.8(d) present the bond correlations for a gradual transition between the

PVB and G-AF phases, with an intermediate PVB-AF phase for η = 0.15 and 0.3 < Ez/J <

0.5. By decreasing Ez, i.e., looking from right to left, we can see the in�plane spin correlation

bifurcating smoothly at the transition to the PVB-AF phase and evolving monotonically to

the values characteristic of the PVB phase, see Fig. 3.8 (c). The interplane spin correlations

Cc
s stay relatively weak everywhere which is obvious in both PVB and G-AF phase and hence

not so surprising in the intermediate PVB-AF phase.

In the orbital sector we can see here very similar behavior to the one observed in Fig.

3.8(b)� again the order is far from the perfect PVB phase but Cc
t is close to the classical

value of 1/16 obtained for the plane perpendicular to two directional orbitals along the b axis,

while Ca
t is almost exactly opposite and Cb

t stays below 1/4, see Fig. 3.8(d). This shows some

kind of universality at the transition from the PVB to G-AF phase which is independent of

the intermediate phase.

Phases with entangled spin-orbital order

Consider now negative values of Ez and intermediate η, where unexpected and qualitatively

new entangled phases occur in the phase diagram of Fig. 3.5. We display bond correlation

functions in Fig. 3.9(a)�3.9(b) in two neighboring highly frustrated and entangled phases,

the ESO and EPVB phase � the latter one turns into the PVB phase when Ez is increased.

The relevant parameter range for η = 0.15 is −0.45 < Ez/J < −0.1. On the �rst glance this

plot shows that the transitions between the ESO and EPVB as well as between the EPVB

and PVB phases are of the second order. In the spin sector one observes weakening singlet

order in the ESO phase with Cc
s getting far from −3/4 and practically vanishing in-plane
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Figure 3.9: Panels (a)�(b): NN correlations for η = 0.15 and −0.45 < Ez/J < −0.1 in the
ESO, EPVB and PVB phases. (a) Spin correlations: solid red line � Cc

s , dashed green line
� Ca

s and dashed�dotted blue line � Cb
s . (b) Orbital correlations: solid red line � Cc

t ,
dashed green line � Ca

t and dashed�dotted blue line � Cb
t . Panel (c): NN correlations for

Ez = −0.72J and 0.10 < η < 0.25 in the VBz, VBm and A-AF phases. Correlations along
the c axis: solid red line � Cc

s , dashed red line � Cc
t . Correlations within ab plane: blue

solid line � Ca
s , blue dashed line � Ca

t .

correlations Ca,b
s , see Fig. 3.9(a). After the �rst transition (at Ez ' −0.36J) Cb

s grows

rapidly toward negative values while Cc
s goes to zero much more gently and Ca

s stays close

to zero. This means that in the EPVB phase we have relatively strong AF order in the bc

plane inside the cluster, turning into the ac plane order on neighboring cubes. This gives

�nite magnetization s shown in Fig. 3.7(a). When approaching the second transition (at

Ez ' −0.22J) Cc
s weakens and C

b
s gets closer to −3/4 and this is continued within the PVB

phase.

In the orbital sector we can �nd other di�erences between entangled and disentangled

phases, see Fig. 3.9(b). In the ESO phase the Cc
t drops considerably when approaching the

�rst transition; this is in contrast with the VBz phase where Cc
t stays almost constant until

the transition occurs. The behavior of in-plane correlation functions Ca,b
t becomes somewhat

puzzling within the EPVB phase: after bifurcation at the transition point Cb
t drops to zero

and slowly recovers to become dominant in the PVB phase, while Ca
t stays dominant in

certain region of the EPVB phase even though the spin correlations in thea direction vanish.
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Only Cc
t gradually drops to zero throughout all three phases.

In the last �gure, Fig. 3.9(c), we display bond correlation functions in the VBz, VBm

and A-AF phases for Ez = −0.72J and 0.10 < η < 0.25. All three phases exhibit a tendency

towards AO order with two sublattices which does not violate the a�b symmetry inside the

cube; for this reason we show only correlations along the c and a direction. The plots prove

that the transition from the VBz to VBm phase is of the second order while the transition

from the VBm to A-AF phase produces no discontinuities in correlations either, but the

behavior of order parameters (see Fig. 3.7(b)) is here slightly discontinuous. In the spin

sector we observe �rst (at η < 0.17) that robust singlets along the c axis with Cc
s ' −0.7

are gradually weakened under increasing η and weak FM correlations occur in the VBz

phase close to the �rst phase transition to the VBm order. We suggest that this regime of

parameters could correspond to K3Cu2F7, where the magnetic properties indicate interplanar

singlets are formed in the VBz and VBm phases, accompanied by weak FM correlations in

the ab planes [105].

Note that the changes in spin correlations with increasing η become fast only after leaving

the VBm phase. In the orbital sector perfect VBz order dies out quickly already in the VBm

regime, both on the bonds along the c and a axes. After entering the A-AF phase, Cc
t vanishes

exponentially while Ca
t crosses zero and gradually falls to negative values. This behavior is

in agreement with that shown in Fig. 3.7(b) saying that tc remains close to zero in the A-AF

phase and the negative Ca
t con�rms AO order in ab planes.

3.2.8 Spin�orbital entanglement

The essence of spin-orbital entanglement observed in the cluster MF approach is SO non-

factorizability. This feature can have either on-site or bond character, the latter was intro-

duced in Ref. [32]. We emphasize that on-site entanglement which occurs when spin-orbit

coupling is �nite [107], occurs also in the present superexchange model as shown below. We

de�ne the on-site entanglement as non-separability of the order parameters, i.e., spin and

orbital operators are entangled when vγ 6= stγ, while the entanglement is being of bond type

when Cγ
st 6= Cγ

sC
γ
t , with:

vγ ≡ 〈Sz1τ
γ
1 〉 , Cγ

st ≡ 〈(S1 · Si)τ γ1 τ
γ
i 〉. (3.36)

The �rst quantity can be easily calculated out of the SO mean �eld as vγ = 1
2
s1 − uγm,1.

Therefore we analyze in this Section the numerical results for the covariances motivated by
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the above discussion which are de�ned as follows:

rγ = vγ − stγ, Rγ = Cγ
st − Cγ

sC
γ
t . (3.37)

In case of rγ we consider only γ = a, b as the on-site covariance satisfy the local constraint,

rc = −ra − rb, (3.38)

while for Rγ we shall present the data for γ = a, b, c. In order to quantify the above non-

factorizability and to recognize whether it is strong or weak in a given phase, it is necessary to

establish �rst the minimal and maximal values of Rγ and rγ. Simple algebraic considerations

give the following inequalities: the bond covariances |Rγ| < 0.25 in singlet phases, |Rγ| <
0.125 in phases with magnetic order, and the on-site covariances |rγ| < 0.25 everywhere.

First of all, the numerical results show that both bond and on-site SO entanglement

quanti�ed by Eqs. (3.37) is small in the regime of weak Hund's exchange coupling. This

feature is illustrated in Fig. 3.10(a) for the VBz, PVB and G-AF phases at η = 0.05 and

−0.4 < Ez/J < 0.3. The ra = rb curves show no on-site SO entanglement (rγ = 0) in both

VBz and PVB phases, while it is �nite in the G-AF phase (ra = rb < 0) and gradually

approaches zero with increasing Ez. We emphasize that this on-site non-factorizability is

minute, being one order of magnitude smaller than its maximal value, and does not play any

important role for the stability of the G-AF ground state. This is con�rmed by the fact that

G-AF phase exists in the same region of parameters in both phase diagrams: factorizable (Fig.

3.4) and non-factorizable one (Fig. 3.5), and occurs even in the single-site MF approximation

(Fig. 3.2). It is interesting to note that the in-plane bond entanglement Ra,b takes relatively

high values in the G-AF phase. This is clearly an e�ect of quantum �uctuations; the perfect

(classical) G-AF phase of Fig. 3.2 has a uniform frozen x orbital con�guration with tc = 1/2

which suppresses any non-factorizability. As the on-site entanglement, also the bond SO

entanglement vanishes gradually for high values of Ez →∞.

At the border line between the VBz and PVB phases we noticed a considerable increase

of Rc and less pronounced growth of Rb which seem to be induced by the transition as Rb,c

drop quickly for higher values of Ez. In the VBz phase we expect all the SO covariances to

be zero for the same reasons as in the G-AF phase and this also applies to the perfect PVB

phase. In Fig. 3.10(a), however, the VBz and PVB phases are dominated by the critical

behavior which distorts perfect orderings.

Also in the regime of higher Hund's exchange interaction η = 0.15 the SO covariances in
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Figure 3.10: Evolution of on-site rγ and bond Rγ entanglement parameters with increasing
Ez for: (a) η = 0.05 and −0.4 < Ez < 0.3 in the VBz, PVB and G-AF phases; (b) η = 0.15
and 0.3 < Ez/J < 0.5 in the PVB, PVB-AF and G-AF phases.

the PVB, PVB-AF and G-AF phases are small in the range of their stability, see Fig. 3.10(b)

for 0.3 < Ez/J < 0.5. In the PVB phase all the covariances take small values showing that

the PVB type of order has no serious quantum �uctuations in this parameter range. The

on-site covariances {ra, rb} bifurcate from the zero value at the �rst transition and this

emergence of non-factorizability stabilizes here the intermediate PVB-AF phase (compare

Figs. 3.4 and 3.5) and persists in the G-AF phase where they overlap again (ra = rb). In the

regime of PVB-AF phase we observe also almost linear decrease of the in-plane Ra,b staying

close to each other and a smaller drop of Rc. Although these quantities are all small, the

order parameters (see Fig. 3.6(b)) are small too, so we conclude that SO entanglement is

qualitatively important here. The minimum of all Rγ is located at the second transition

indicating that highly entangled states play a role also at the onset of the G-AF phase.

Figure 3.11(a) shows SO entanglement in the most exotic part of the phase diagram where

the ESO, EPVB and PVB phases compete, i.e., for η = 0.15 and −0.45 < Ez/J < −0.1. The

on-site SO covariances {ra, rb} take high, opposite values in both the ESO and EPVB phase,

with maximum (minimum) at the transition line between them. Comparing to other phases

ra,b values are highest in the ESO and EPVB phases, and comparing the two phase diagrams

shown in Figs. 3.4 and 3.5, we recognize that SO entanglement is a constitutive feature

of both ESO and EPVB states. We emphasize that the on-site SO entanglement is strong

and complementary in the ESO phase on the bonds along the a and b direction (ra = −rb),
while it vanishes between the ab planes (rc = 0). These results indicate SO �uctuations in
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Figure 3.11: On-site rγ and bond Rγ entanglement parameters for: (a) η = 0.15 and −0.45 <
Ez/J < −0.1 in the ESO, EPVB and PVB phases; (b): Ez = −0.72J and 0.15 < η < 0.25
in the VBz, VBm and A-AF phases.

the ab planes, with 〈Szσx〉 6= 0 and no �uctuations along the c axis, where rc follows from

〈Szσz〉 = 0. In contrast, in the EPVB phase there is also �nite on-site entanglement for the

interlayer order parameters, rc 6= 0.

Looking at the bond parameters Rγ we see that the dominant one is Rc falling gradually

in the ESO down to the minimum at the ESO-EPVB transition. At the same point Rb drops

from zero value in the ESO phase and takes maximally negative value inside the EPVB

regime. In contrast, Ra remains close to zero in the entire regime of parameters and in the

PVB all the covariances go to zero showing that the order within the PVB phase is practically

disentangled. The dominant role of Rc comes from the c�axial symmetry of the ESO phase

and increased quantum �uctuations on the ESO-EPVB border while the non-zero value of

Rb in the EPVB phase follows from the magnetic and orbital order on the cube in the bc

plane mentioned in the previous section.

Finally, we focus on the range of large negative crystal �eld splitting Ez = −0.72J

and display the SO covariances in the VBz, VBm and A-AF phases for increasing Hund's

exchange 0.15 < η < 0.25, see Fig. 3.11(b). On the one hand, looking at the VBm region of

the plot we can understand why this phase can exist when factorized SO mean �eld is applied

(again, compare Figs. 3.4 and 3.5); the on-site covariances {ra, rb} vanish here and within

the VBz phase. On the other hand, one �nds certain on-site entanglement in the A-AF

phase, especially close to the transition line � this shows why the A-AF area is expanded in

Fig. 3.5 as compared with the non-factorized phase diagram of Fig. 3.4. Concerning bond
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entanglement, it is signi�cant (�nite Rc < 0) only along the interlayer c bonds in all these

three phases, taking maximal values of |Rc| in the A-AF phase. One can understand this

as follows: in the VBz phase the orbital order is almost perfect and orbitals stay frozen �

therefore SO factorization is here almost exact as indicated by a low value of Rc. This is not

the case in the A-AF phase where orbitals �uctuate, especially close to the transition line to

the VBm phase. The Ra,b bond parameters are small due to the imposed FM order within

the ab planes which decouples the spin from orbital �uctuations on the bonds along the a

and b directions.

3.2.9 Summary and conclusions

The numerical results presented in the last sections, obtained using the sophisticated mean-

�eld approach empoying an embedded cubic cluster, provide a transparent and rather com-

plete picture of possible ordered and disordered phases in the bilayer SO d9 model. This

approach is well designed to determine the character of spin, orbital and SO order and cor-

relations in all the discussed phases as it includes the most important quantum �uctuations

on the bonds and captures the essential features of SO entanglement. By analyzing order

parameters we also presented evidence which allowed us to identify essential features of dif-

ferent phases and to distinguish between �rst and second order phase transitions. This is

especially important in cases when two phases are separated by an intermediate con�gura-

tion, such as the PVB-AF or VBm phase, where one �nds a gradual evolution from singlet to

AF correlations, supported (or not) by non-factorizable SO order parameter. We believe that

the cluster mean-�eld approach presented here and including the joint SO order parameter is

more realistic because there is no physical reason, apart from the form of the d9 Hamiltonian,

to treat spin and orbital operators as the only fundamental symmetry-breaking degrees of

freedom in any phase.

Interestingly, the results show that the bottom part of the phase diagram of the d9 SO

model does not exhibit any frustration or SO entanglement up to η ' 0.07 and the type

of spin and orbital order are chosen there predominantly by the crystal �eld term ∝ Ez.

Quantum �uctuations dominate at Ez ' 0 and for Ez < 0, where they stabilize either in-

plane or interplanar spin singlets accompanied by directional orbitals which stabilize them.

Here the VBz phase extends down to large values of Ez, where instead the long-range order

in the G-AFz phase was found in the 3D model. This demonstrates that interlayer quantum

�uctuations are particularly strong in the present bilayer case. On the contrary, at Ez > 0
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one �nds the G-AF spin order which coexists with FO order of x orbitals. It is clear that both

the VBz and G-AF phase are favored by the interplay of lattice geometry and by the shape

of occupied orbitals for Ez → ±∞. In this low-η regime of the diagram the area occupied

by the PVB phase is narrow and especially orbital order is a�ected by the quantum critical

�uctuations. The planar singlets are formed shortly after leaving the VBz phase and remain

stable afterwards. Spin-orbital non-factorizability seems to be marginal in the entire VBz

phase but plays certain role when switching to the planar singlet phase, especially visible for

the interplane bond covariance Rc.

On the contrary, in the PVB phase away from the critical regime SO non-factorizability

vanishes and suddenly reappears in the G-AF phase, not as a transition e�ect but rather

as a robust feature vanishing only for high values of Ez. We argue that this is related

with surprisingly rigid interplane spin-spin correlations which should, if we assume that SO

correlations factorize, decay quickly as tc approaches 1/2. Following this factorized picture we

could also expect stability of the C-AF phase for higher values of η, above the G-AF phase.

These e�ects are absent in our results, showing that intuition suggesting SO factorization

can be misleading even when considering such a simple isotropic orbital con�guration.

For higher values of Hund's exchange η frustration increases when AF exchange inter-

actions compete with FM ones, and as a result the most exotic phases with explicit on-site

SO entanglement arise; two of them, the ESO and EPVB phase are neighboring and placed

in between the VBz and PVB ones, and they become degenerate with both of them at the

multicritical point where four phases meet (see Fig. 3.5). This situation follows from the

fact that singlet phases are more susceptible to ferromagnetism favored by high η than the

G-AF phase is, which turned out to be surprisingly robust. Further increase of η always

leads to the A-AF phase throughout a discontinuous transition. Above η ' 0.2 the ESO

phase is completely immersed in the A-AF one and ends up with a single bicritical point. If

we come back below η ≈ 0.2 then the ESO changes smoothly into the EPVB phase, being

an entangled precursor of the PVB order, meaning that the non-uniform orbital order and

in-plane singlets are formed and SO entanglement is removed as the orbitals are oriented

along the singlet bond. On the other hand, this phase can be also seen as an extension of the

A-AF into fully AF sector because the EPVB phase has long-range magnetic order, being

however strongly non-uniform (see Fig. 3.9(a)).

The present K3Cu2F7 bilayer system is somewhat similar to La2−2xSr1+2xMn2O7 bilayer

manganites with very rich phase diagrams and competition between phases with di�erent

types of long-range order in doped systems [108, 109]. Such phases are generic in transition
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metal oxides and were also reproduced in models of bilayer manganites which have to include

in addition superexchange interaction between core t2g spins [102, 103] that suppresses SO

�uctuations and entanglement in the eg subsystem. In contrast, K3Cu2F7 bilayer is rather

unique as the only electronic interactions arise here due to entangled SO superexchange.

They explain the origin of the VBz phase observed [105] in K3Cu2F7 but not found in bilayer

manganites, and provide an experimental challenge of investigating whether signatures of SO

entanglement could be identi�ed in future experiments.

3.3 Two�dimensional Kugel�Khomskii model

The Kugel-Khomskii model for two dimensional lattice is given by the similar Hamiltonian

as for the bilayer case 3.7,

H = −1

2
J
∑
〈ij〉||γ

{
(r1 Π

(ij)
t + r2 Π(ij)

s )

(
1

4
− τ γi τ

γ
j

)
+ (r2 + r4) Π(ij)

s

(
1

2
− τ γi

)(
1

2
− τ γj

)}
− Ez

∑
i

τ ci , (3.39)

but here the sums go over the bonds 〈i, j〉 of a square lattice and γ = a, b. This model is

designed for K2CuF4, if we neglect the Jahn-Teller distortions, and can explain the pressure

induced phase transition from AO FM phase to FO AFx phase [110], as we will show using

MF methods. In the following sections we will present: the single-site phase diagram of

the model including basic AF and FM magnetic con�guration in Sec. 3.3.1 and cluster

MF approach in Sec. 3.3.2. Then, in Sec. 3.3.3 will show the cluster MF phase diagrams

with more exotic valence-bond and double-AF states and their thermal evolution for chosen

temperatures. The thermal decay of the double-AF phase will be discussed in more details

in Sec. 3.3.4. Finally, we will explain double-AF spin order in terms of an e�ective spin-only

perturbative Hamiltonian in Sec. 3.3.5, derived in the similar way as the t − J model is

derived out of 2D Hubbard model [111]. Final conclusions and summary will be given in Sec.

3.3.6.
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3.3.1 Single-site mean �eld

Using the same reasoning and formulas as in Section 3.2.1 we can easily obtain single-site

MF phase diagram for a 2D model. The starting point is the e�ective orbital Hamiltonian

obtained from the 2D KK model,

HMF =
1

2
J
∑
i,γ

{
τ γi τ

γ
i+γ(χ

γ − ξγ) + τ γi ξ
γ − 1

4
(χγ + ξγ)

}
− Ez

∑
i

τ ci , (3.40)

where sums go over the sites of a square lattice, γ = a, b and i+ γ is the nearest neighbor of

site i in the direction γ. The quantities:

χγ = r1Πγ
t + r2Πγ

s ,

ξγ = (r2 + r4)Πγ
s ,

(3.41)

are the parameters obtained by averaging over spin operators with assumption that the spin

order, determining χγ and ξγ, depends only on the direction γ and not on site i. It is su�cient

to investigate the phases with either G-AF or FM long-range order and these are the only

two types of broken symmetry states we will take into account. Following Table 3.1 we put

Πγ
t = 1 and Πγ

s = 0 in FM phase and Πγ
t = Πγ

s = 1/2 in G-AF phase. The MF decoupling

and solution of self-consistency equation is given in Sec. 3.2.1 can be easily adopted to the

single-layer system.

The resulting phase diagram is shown in Fig. 3.12. The diagram is similar to the one

obtained for the bilayer system (see Fig. 3.2) but the number of phases is here smaller due

to the simpler geometry of the lattice (no C-AF or A-AF con�guration possible). As before,

we can distinguish between two classes of solutions of self-consistency equations: (i) AO

solutions (green area) and (ii) FO solutions with fully polarized orbitals being either x or z

(white area). The FO phases are either AF or FM in negative Ez sector (G-AFz and FMz

phases) while for positive Ez we have found that only the G-AFx con�guration is stable. The

AO part of the diagram lies between x and z phases and is dominated by ferromagnetism

(FM phase). The antiferromagnetism with AO order is limited to a narrow area in the

crossover regime between G-AFx and FM phases, only for su�ciently small Hund's rule

coupling (η . 0.2). The multicritical point is located at Ez = −0.5J and η = 0 meaning

that the area of the G-AFz phase for small η shrinks here with respect to the one found for a

bilayer. This can be understood in such a way: z orbitals are elongated in the c direction and

96



-3 -2 -1 0 1 2 3
E
z
/J

0.00

0.05

0.10

0.15

0.20

0.25

0.30

η

FM

FMz

G-AFz
G-AFx

G-AF

Figure 3.12: Phase diagram of the 2D KK model obtained in the single-site MF approxi-
mation. Shaded green area indicates phases with AO order while the remaining phases are
accompanied by FO order with fully polarized x or z orbitals.

favor strong antiferromagnetism in this direction� increasing number of ab planes makes the

G-AF con�guration more stable. This is con�rmed in case of a fully 3D system studied in

Sec. 3.4.

3.3.2 Cluster mean �eld at zero and �nite temperature

Following the ideas from Secs. 3.2.2 and 3.2.3, to obtain more general approximation than a

single-site mean �eld and �nite-temperature description of the system, we divide the lattice

into square clusters showed in the Fig. 3.13. The bonds corresponding to the solid lines in

the �gure are left unchanged with respect to the KK Hamiltonian (3.39) while the bonds

depicted with dashed lines are decoupled using the approximate identity:

OiOj ≈ Oi〈Oj〉T −
1

2
〈Oi〉T 〈Oj〉T +Oj〈Oi〉T −

1

2
〈Oi〉T 〈Oj〉T , (3.42)

with 〈. . . 〉T being a thermal average in a canonical ensemble with Boltzmann constant �xed as

kB = 1. Now we assume that site i belongs to our chosen cluster (Fig. 3.13) and j belongs to
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Figure 3.13: Schematic view of the square cluster (plaquette) used in the cluster MF approach
to the 2D KK model. Vertices i = 1, 2, 3, 4 and directions γ = a, b are marked in the �gure,
and dashed lines stand for the outgoing MF interactions in the a and b direction.

a neighboring one and the bond is splitted into two halves� �rst is added to the Hamiltonian

of cluster i and the other to j. In this way an original KK Hamiltonian transforms into the

sum of commuting cluster Hamiltonians interacting via mean �elds. The mean �elds follow

from Eq. (3.42) applied to all the two-site operator products encountered in the Hamiltonian

(3.39) and are de�ned as:

sαi ≡ 〈Sαi 〉T , tγi ≡ 〈τ
γ
i 〉T , vα,γi ≡ 〈Sαi τ

γ
i 〉T , (3.43)

with α = x, z, γ = a, b and i = 1, 2, 3, 4. Note that, in contrast to the bilayer case, we do not

assume that the SU(2) symmetry of the spin sector can be broken only in the z spin direction

(α = z) but we also allow α = x to capture more exotic types of magnetic order suggested

by the perturbative expansions from Sec. 3.3.5. We do not consider α = y as the two spin

components are su�cient to capture all interesting features and we prefer to keep the cluster

Hamiltonian strictly real. Unlike in the bilayer case we do not assume anything about the

order inside the cluster because the considered plaquette is small enough to keep all the

order parameters as independent from one another and as the quantities to be determined.

Nevertheless, we still have to relate di�erent clusters to make the problem solvable. The

simplest solution is to assume that all the clusters are in the same state and the values of

order parameters do not vary from cluster to cluster. More general solution is to allow the

neighboring clusters to be rotated by π/2 with respect to each other. This means orbital

order parameters can alternate from cluster to cluster and produce e.g. PVB con�guration.
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The self�consistency equations still cannot be solved exactly because the e�ective cluster

Hilbert space is of the size d = 28 which is too large for analytical methods. The way out

is to use Bethe�Peierls�Weiss method, i.e., set certain initial values for the order parameters

{sαi , t
γ
i , v

α,γ
i } and next employ numerical diagonalization algorithm to diagonalize the cluster

Hamiltonian. Then we recalculate {sαi , t
γ
i , v

α,γ
i } according to their de�nitions given by Eqs.

(3.43) using, in general, the partition function known from the diagonalization and all the

eigenstates. The procedure is repeated until the convergence conditions for energy and order

parameters are satis�ed.

3.3.3 Zero- and �nite-temperature phase diagrams

Phase diagrams can be determined by �nding the con�gurations with lowest free energies

for given temperature T and parameters Ez and η being the solutions of the self-consistency

equations, which means that they reached the demanded convergence condition. To include

all possible con�gurations we �rst initiate the MF iterations by random values of order

parameters {sαi , t
γ
i , v

α,γ
i }. After determining which phases appear in the phase diagram the

phase boundaries are calculated by comparing the energies starting from typical values of

order parameters {sαi , t
γ
i , v

α,γ
i } in considered phases.

In Fig. 3.14(a) we showed the zero-temperature phase diagram of the 2D KK model. The

diagram includes two G-AF phases with FO order for negative and positive values of Ez. In

contrast to the single-site approach, the orbitals are not fully polarized but the dominant

orbital component is still z for Ez < 0 and x for Ez > 0. Similarly to the bilayer phase

diagram (Fig. 3.5), the right G-AF phase borders with a PVB phase from the left-hand

side (yellow area) and with FM phase from the top. The left G-AF phase was absent in

the bilayer case because the lattice geometry favored interlayer singlets which is not the

case for a single layer. Away from the central part of the diagram, dominated by the PVB

con�guration, the left G-AF phase exhibits interesting instability at the AF-FM transition;

a new, intermediate phase appears called double-AF phase (orange area). This new state is

characterized by an exotic magnetic order shown in Fig. 3.15, with neighboring spins being

perpendicular and next nearest neighbors being AF, coexisting with a simple FO order. it

will be shown later on (see Sec. 3.3.5), this strange behavior can be understood in terms of a

perturbation expansion around the fully polarized FO con�guration by deriving an e�ective

spin-only model. Returning to our diagram, we can see the two FM phases di�ering by the

orbital con�guration; the pure FM phase is accompanied by AO order and the other one
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Figure 3.14: Phase diagrams of the 2D KK model in the cluster MF approximation, obtained
at: (a) T = 0 and (b) T = 0.05J . In between the G-AF and FM phases on �nds: plaquette
valence-bond phase (PVB) with alternating spin singlets (shaded in yellow), and entangled,
double-AF phase (orange). At temperature T = 0.05J a new, FO paramagnetic phase
appears� PM (violet area) replacing double-AF order. For high-temperature diagrams see
Fig. 3.16.

has FO order. The transition between these two orders is smooth in contrast to all other

transitions found at T = 0, including transitions to double-AF phase. The presence of FO

order in the negative-Ez part of the phase diagram is a new e�ect comparing to the bilayer

case, where this parameter region was dominated by the A-AF phase.

The low-temperature phase diagram is showed in Fig. 3.14(b). At the temperature

T = 0.05J the double-AF phase is already destroyed and replaced by a paramagnetic phase

(PM, violet area) with no long-range spin order and FO order induced by the crystal �eld

Ez. Also the upper part of the left G-AF phase and the bottom part of the FM phase in

the negative-Ez region get unstable and are replaced by the PM phase. The positive-Ez

part of the phase diagram and the major part of the PVB phase are not in�uenced by weak

thermal �uctuations. The high fragility of the PM area under the thermal �uctuations can be

understood by realizing the two facts: (i) the strong z orbital component present for Ez < 0

is not compatible with the planar geometry of the lattice (see Figs. 3.1(a) and 3.1(c))� the

orbitals point out of the plane and (ii) the Heisenberg interactions between the spins are

weak due to the sing change at the AF-FM transition. All transitions from AF or FM phases

to a paramagnet are smooth.
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a

b

Figure 3.15: Artist's view of the double-AF spin order realized by the 2D KK model. Four
colors of the arrows correspond to four spin sublattices. Up (down) arrows stand for 〈Szi 〉 =
±1/2, right (left) arrows stand for 〈Sxi 〉 = ±1/2. The embedded cluster is marked with a
blue frame.

In Figs. 3.16(a) and 3.16(b) we show high-temperature phase diagrams for T = 0.2J and

T = 0.34J respectively. Already for the lower temperature T = 0.2J the left G-AF phase

is completely melted to the paramagnet together with the FO-FM phase. The lowest part

of the FM phase loses magnetization and becomes paramagnetic with alternating orbitals

(blue area). The PVB phase shrinks slightly from the left but the right part of the phase

diagram is still intact. At higher temperature T = 0.34J the PVB phase no longer exists

for η = 0 and melts to the PM phase from the left and to G-AF one from the right which

is somewhat peculiar meaning that thermal �uctuation destroy alternating pairs of singlets

and restore global AF magnetization. On the other hand, the orbital order is lowered to

the FO one stabilized by the crystal �eld Ez so we can argue that overall spin and orbital

order is lowered by the thermal �uctuations. In the FM region the AO-PM phase expands

to the positive-Ez part of the diagram replacing the FM phase and gets melted itself from

the bottom becoming FO. One can expect that for higher temperatures the PVB phase

will disappear completely and the right G-AF will �nally melt down to a paramagnet. The

AO-PM and FM phases will be present in any temperature because they are favored by r1
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Figure 3.16: Phase diagrams of the 2D KK model in the cluster MF approximation at �nite
temperature: (a) T = 0.2J , and (b) T = 0.34J . PM phase (pink area) completely suppresses
G-AF phase in the negative�Ez region, part of the FM phase becomes paramagnetic but
preserves orbital alternation (blue area).

coe�cient which can be arbitrary large but we should keep in mind that physical values of η

never exceed η = 0.25.

3.3.4 Thermal decay of the double-AF phase

As we can see in Figs. 3.14(a) and 3.14(b) the double-AF phase melts down to a paramagnet

in relatively low temperature. This not surprising because, as we will show in the next

subsection, the exotic spin order in double-AF phase is stabilized by interactions of the second

and third order in the perturbative expansion, around fully polarized FOz con�guration,

with energy scales being lower than in case of standard magnetic ordering. Therefore it is

interesting to look more carefully at the thermal evolution of spin, orbital and SO order in

the double-AF phase.

In Fig.3.17 (a) we can see the spin sx,z ≡ sx,z1 and orbital ta,b ≡ ta,b1 order parameters in

the double-AF (Ez = −2J , η = 0.15) phase as functions of temperature together with total

AF magnetization de�ned as s ≡
√

(sx)2 + (sz)2. Due to the symmetry of the phase shown

in Fig. 3.15 it is su�cient to look at order parameters at a chosen site i, here i = 1. As we

can see, the orbital order in the double-AF phase is FO, due to large negative crystal �eld

Ez, and as such is very resistant to thermal �uctuations. Thus ta,b(T ) behaves as a constant
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function. This is not the case for the magnetic order; the sx,z curves tend smoothly to zero at

the transition to the PM phase whereas for T = 0 the total AF magnetization s stays close

to the classical value of s = 0.5. Due to the symmetry of the rotation around the y axis in

the spin space the proportion between sx and sz is not �xed and in this case they originate

from the random con�guration chosen as a starting point at T = 0. In contrast to that, the

total s is unambiguously determined by the minimum of the free energy.

To quantify the e�ects of SO entanglement in the double-AF phase we de�ne the on-site

rγα an bond Rγ SO covariances in analogy with the bilayer system considered in Sec. 3.2.8:

rγα = vα,γ1 − sα1 t
γ
1 , Rγ =

〈
(S1 · S1+γ)τ

γ
1 τ

γ
1+γ

〉
− 〈S1 · S1+γ〉

〈
τ γ1 τ

γ
1+γ

〉
. (3.44)

At T = 0 such quantities show how the spin and orbital degrees of freedom mix in the wave

function of the cluster but it should not be treated as a rigorous measure of entanglement,

such as for example von Neumann entropy de�ned in the Sec. 2.2.2. For T > 0 it is not

clear how much of the SO mixing is thermal and how much is quantum so we cannot talk

about the entanglement anymore. In Fig. 3.17(b) we can see the thermal evolution of rγα and

Rγin the double-AF and PM phases in the same parameter range as before. The behavior

of the on-site covariances rγα is similar to the behavior of magnetic order parameters and the

non-zero values at T = 0 indicate SO entangled ground-state. Surprisingly, despite the FO

con�guration of the double-AF phase the rγα functions depend on γ in a non-trivial way. This

requires an explanations; it turns out that the SO order exhibits an alternating nature of the

AO order, i.e.:

vα,γ1 = −vα,γ3 , vα,γ2 = −vα,γ4 , (3.45)

but:

vz,a2 = −vx,b1 , vz,b2 = −vx,a1 , (3.46)

vx,a2 = vz,b1 , vx,b2 = vz,a1 . (3.47)

This means that we need to know four SO mean �elds to determine the SO order that gives

four di�erent SO covariances rγα. The bond SO covariances Rγ behave in a simpler way; as

we could expect the dependence on γ is trivial. Rγ take non-zero values in whole range of

temperature with intriguing zero-point before the transition line. The reason for this sign
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Figure 3.17: Thermal evolution of the order parameters and SO covariances in the double-AF
and PM phase for 0 < T < 0.02J and Ez = −2J , η = 0.15: (a) order parameters� orbital ta,b

(green line) and spin sx,z (orange and black lines) mean �elds and total AF magnetization
s (red line); (b) covariances� on-site rγα (green and blue lines) and bond Rγ (red line) SO
covariances for γ = a, b and α = x, z.

change is unknown; our hypothesis is that this is quantum covariance from the low-T region

that changes into the thermal one remaining in the PM phase.

The spin and orbital NN correlation functions not showed here behave in a very pre-

dictable way; the spin correlations are close to zero at T = 0 and above, which agrees with

Fig. 3.15 and analytical considerations in the following subsection, and the orbital ones stay

close to (ta)2.

3.3.5 E�ective spin model in the double-AF phase

To explain the exotic magnetic order found in the double-AF phase and shown in Fig. 3.15

we will derive an e�ective spin model for this phase. The idea is to use the standard quantum

perturbation theory with degeneracy for the orbital sector of the KK model. We can divide

the Hamiltonian given by Eq. (3.39) into the unperturbed part H0 and perturbation V in

the following way:

H0 =−Ez
∑
i

τ ci , (3.48)

V =−1

2

∑
〈ij〉||γ

{
(r1 Π

(ij)
t + r2 Π(ij)

s )

(
1

4
− τ γi τ

γ
j

)
+(r2 + r4) Π(ij)

s

(
1

2
− τ γi

)(
1

2
− τ γj

)}
, (3.49)
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where for simplicity we put J = 1. This can serve as a starting point for the perturbative

treatment for large |Ez| > J . For negative Ez (from now on in units of J) the ground state

|0〉 of H0 is the state with all orbitals being the z orbitals, i.e.,

∀i : τ ci |0〉 = −1

2
|0〉 , (3.50)

with energy E0 = 1
2
EzL

2 (where L is the linear size of the system). Following the quantum

perturbation theory we can construct the e�ective spin Hamiltonian Hs using the expansion

in powers of E−1
z :

Hs = E0 + 〈0|V |0〉+
∑
n6=0

1

En − E0

〈n|V |0〉2 +O
(
E−2
z

)
, (3.51)

where all the overlaps are taken between the orbital states leaving the spin operators alone.

Knowing the de�nition of the orbital operators τ γi :

τa,bi ≡
1

4
(−σzi ±

√
3σxi ), τ ci ≡

1

2
σzi . (3.52)

we can easily calculate the desired orbital overlaps. Zero and �rst order give:

H(0)
s +H(1)

s =
1

2
EzL

2 +
∑
i

∑
γ=a,b

1

2

{
(Si · Si+γ)

−3r1 + 4r2 + r4

16
− 9r1 + 4r2 + r4

64

}
. (3.53)

In the second order the sum runs over all excited orbital states but looking at Eqs. (3.49)

and (3.52) one can see that V has non-zero overlap only with states with one orbital excited

or with two orbitals excited being nearest neighbors. This brings us to the second order

correction of the form:

H(2)
s =

1

Ez

3

210

∑
i0


∑
γ=±a,
±b

sγ (Si0 · Si0+γ) (r1+ 2r2+ 3r4)


2

+
1

2Ez

9

210

∑
i0

∑
γ=a,b

{
(Si0 · Si0+γ) (r1 +r4)+

3r1− r4

4

}2

, (3.54)
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Figure 3.18: Schematic views of second order corrections in e�ective spin Hamiltonian: (a)
e�ective second-NN interactions; (b) e�ective third-NN interaction. Red frames stand for
Heisenberg bond with ± sign depending on the bond's direction and magenta dots are the
single-site orbital excitations in the ground state.

where sγ is a sign factor depending on bond's direction γ originating from the de�nition of

operators τa,bi , i.e.,

sγ =

{
1 if γ = ±a
−1 if γ = ±b

}
. (3.55)

Second powers in H
(2)
s produce spin products of the two forms which can be simpli�ed using

elementary algebra:

(Si0+γ · Si0) (Si0 · Si0+γ′) =
1

4
(Si0+γ · Si0+γ′) + i

1

2
Si0+γ · (Si0 × Si0+γ′) , (3.56)

(Si0 · Si0+γ)
2 = −1

2
(Si0 · Si0+γ) +

3

16
. (3.57)

The second identity together with linear terms in Si0 · Si0+γ give E−1
z correction to the

Heisenberg interactions in H
(1)
s while the �rst one leads to new type of physics. At the AF-

FM phase transition the NN Heisenberg interactions change sing meaning that the �rst order

Hamiltonian H
(1)
s can be arbitrarily small; then the second order e�ects governed by Eqs.

(3.54) and (3.56) become important. Looking at Eq. (3.56) we can see that the imaginary

term is antihermitian and must cancel out with other terms in H
(2)
s . Thus, in H

(2)
s , we are

left with pure Heisenberg term Si0+γ · Si0+γ′ connecting sites i0 + γ and i0 + γ′, being either

second or third nearest neighbors, presented in Fig. 3.18(a) and 3.18(b), with sign given by
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sγsγ′ . Finally, the e�ective spin Hamiltonian up to second order can be written as:

Hs =
∑
〈i,j〉

(Si · Sj)
{
−3r1 + 4r2 + r4

32
+O

(
E−1
z

)}
− 1

Ez

3

210

∑
〈〈i,j〉〉

(Si · Sj) (r1+ 2r2+ 3r4) 2

+
1

Ez

3

211

∑
〈〈〈i,j〉〉〉

(Si · Sj) (r1+ 2r2+ 3r4) 2 +O
(
E−2
z

)
, (3.58)

with 〈〈i, j〉〉 and 〈〈〈i, j〉〉〉 denoting second and third nearest neighbors i and j. In the limit

of Ez → −∞ the NN interactions vanish at η = η0 ≈ 0.1547 and we are left with next-

NN (NNN) AF interactions and twice weaker third-NN FM interactions. The origin of this

factor 2 lies in the double counting of the NNN interactions. One can easily guess that

the ground state of such Hamiltonian consists of two, weakly �uctuating antiferromagnets

on two interpenetrating sublattices of the square lattice and the angle ϕ between them is

undetermined, as shown in Fig. 3.19(a). Such ground state is similar to the double-AF phase

(Fig. 3.15) and η0 nicely falls into the area of double-AF in the phase diagram of Fig. 3.13(a)

but we still have to �nd the reason why the two aniferromagnets prefer to be perpendicular.

To answer this question we have to go to the third order of perturbation expansion given by

the formula:

H(3)
s =

∑
n6=0

∑
m 6=0

1

En − E0

1

Em − E0

〈0|V |n〉 〈n|V |m〉 〈m|V |0〉 . (3.59)

This produces many contributions to the spin Hamiltonian but we are interested only

in terms with new structure comparing to the lower orders because the other will be the

E−2
z corrections to the interactions we already have. The terms bringing potentially new

physics are the ones with three di�erent Heisenberg bonds multiplied one after another.

Such contribution is depicted in Fig. 3.19(b) for sites i = 1, 2, 3, 4 and can be transformed

as:

(S1 · S2) (S2 · S3) (S3 · S4) =
1

16
S1 · S4 +

1

4
(S1 · S4) (S2 · S3)− 1

4
(S1 · S3) (S2 · S4)

+ i
1

8
S1 · (S3 × S4) + i

1

8
S1 · (S4 × S2) , (3.60)

where imaginary terms are antihermitian and must cancel out with other terms of the same
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Figure 3.19: Panel (a): two independent AF orders realized by e�ective spin Hamiltonian Hs

up to second order. Angle ϕ between the two neighboring spins is undetermined. Panel (b):
exemplary third order correction to Hs �xing the angle ϕ as ϕ = π/2. Red frames stand for
Heisenberg bond with ± sign depending on the bond's direction and magenta dots indicate
the single-site orbital excitations in the ground state.

structure in H
(3)
s . To analyze the other terms in Eq. (3.60) we have to use the fact that

order on sublattices is almost classical AF: (i) �rst terms is an AF interaction between the

sublattices which is not compatible with antiferromagnetism on sublattices being of the order

of Ez stronger, (ii) second term favors perpendicularity of the two AF sublattices which is

compatible with the order on sublattices, and (iii) third term brings no new information about

the order. Taking into account all three arguments we argue that third order perturbative

contributions of form given by Eq. (3.60) favor perpendicularity of the two AF orders. Now

we have to extract all such contributions from Eq. (3.59) and check if the total sign is indeed

positive because otherwise our arguments would be incomplete. After long but elementary

calculation we obtain the total sublattice-interaction Hamiltonian as:

H
(3)
int =

33

217E2
z

(r1 +r4) (r1+ 2r2+ 3r4)2
∑
i0

∑
γ=a,b

(Si0 · Si0+γ)
∑
γ′ 6=γ
γ′′ 6=−γ

sγ′sγ′′ (Si0+γ′ · Si0+γ+γ′′) ,

(3.61)

which in classical limit takes the following form:

H
(3)
int ≈

35

217E2
z

(r1 +r4) (r1+ 2r2+ 3r4)2
∑
i0

1

16
cos2 ϕ. (3.62)

We easily �nd ϕ minimizing energy at ϕ = π/2. This �nally explains the exotic magnetic
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order encountered in the double-AF phase as a third order perturbative e�ect of orbital

�uctuations. We have checked by the cluster MF method that the tendency towards two

perpendicular AF orders is strongly suppressed for extremely low Ez and then the algorithm

can converge for any random value of ϕ, but still the AF order on sublattices is rigid. These

observations are consistent with the analytical results presented above.

3.3.6 Summary and conclusions

Summarizing, we have constructed the cluster MF approximation for the 2D KK model and

obtained a phase diagram with AF and FM long range orders together with a valence-bond

phase and exotic double-AF phase. The last one is a consequence of AF-FM transition, where

the NN Heisenberg interactions, from the �rst order of the perturbation expansion around

the FO con�guration, change sign passing through zero. It was proved that at this point the

second and third NN Heisenberg interactions become important and the lattice splits into

two sublattices which do not interact up to the third order of perturbative expansion. Then,

in the third order, the e�ective interactions lose their Heisenberg character and become more

classical favoring the perpendicular orientation of the two sublattices. This perturbative

reasoning involving relatively high orders of the orbital �uctuations con�rms the fact that

double-AF phase is stabilized by the SO entanglement which manifests itself in high values of

the on-site SO covariances. Thus, the double-AF phase cannot be observed in the approach

assuming factorizable spin and orbital mean �elds, as the single-site MF approximation. We

also argue that the double-AF phase can be observed in the positive Ez region, connecting

right G-AF phase with the FM one, because the same expansion as performed for FOz

con�guration can be performed for the FOx one. The only di�erence is that it will be stable

for much higher values of η, close to η = 0.29, and thus for much higher Ez than shown in

the phase diagram of Fig. 3.14(a).

We note that the phase transition from the FM to the right G-AF phase, present in

the cluster MF phase diagram above η ' 0.22, for increasing Ez, agrees qualitatively with

the pressure induced phase transition observed in K2CuF4 [110]. Also the fact that the FM

phase is accompanied by the AO order and AF phase by the FO one stays in agreement with

experiments done for K2CuF4 and with Goodenough-Kanamori rules [3].

The overall thermal evolution of the phase diagram shows that this new type of magnetic

order is very subtle and susceptible to thermal �uctuations and melts down directly to a

paramagnet at very low T ' 0.012J . Such high susceptibility is also a feature of the G-AF
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with FOz order where spin interactions in the plane are weak due to the small overlap of

the z orbitals. The FM and PVB phases are more resistant to heat and both high-η PVB

and FM �rst melt to an AO paramagnet and only at higher temperature to an ordinary

PM. This is because the orbital order is more like a classical Ising order here, which is an

exact statement for the QCM, as explained in [49], being essentially an orbital model with

maximally frustrated interactions [51]. As a matter of fact, in a pure 2D system no magnetic

order should be present above T = 0 as it was proved in the famous paper by Mermin and

Wagner [112]. Nevertheless, the Mermin-Wagner theorem concerns the spontaneous breaking

of continuous symmetries and does not apply to the orbital model or to orbital interactions

in a spin-orbital model. Moreover, considering magnetic ordering of K2CuF4 makes sense

because this compound consists of weakly interacting planes and can be regarded as a 2D

system but still some weak interplane interactions are present and can stabilize magnetic

order.

We argue that the cluster MF method presented in this section is more general that the

one used for the bilayer system, as it involves more components of spin, and thus reveals more

of the essential physics of the model in 2D. This statement is con�rmed by the perturbative

expansion in the double-AF phase showing that additional spin component is necessary to

describe exotic magnetic order. Therefore we will use this generalized MF method to study

the KK model on a 3D cubic lattice in the following section.

3.4 Three-dimensional Kugel�Khomskii model

The major part of the introduction and motivation for the 3D KK model was given at the

beginning of this chapter. The Hamiltonian we would like to focus on has the same form as

before:

H = −1

2
J
∑
〈ij〉||γ

{
(r1 Π

(ij)
t + r2 Π(ij)

s )

(
1

4
− τ γi τ

γ
j

)
+ (r2 + r4) Π(ij)

s

(
1

2
− τ γi

)(
1

2
− τ γj

)}
− Ez

∑
i

τ ci , (3.63)

with γ = a, b, c and sums taken over all bonds and sites of the 3D cubic lattice. The section is

organized in a similar way as before: in Sec. 3.4.1 we present a single-site MF phase diagram

of the model containing the same con�guration as in the bilayer case, then in Sec. 3.4.2 we
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introduce cluster MF method for the 3D system with two di�erent topologies of cluster and

show the resulting phase diagram. The diagram contains three phases with exotic magnetic

order: the already known double-AF phase being AF in the c direction, canted-A-AF phase�

the 1D version of the latter one and striped-AF phase with anisotropic AF order in the ab

planes.

In the following subsections we show the behavior of the order parameters, spin angles,

total magnetization, correlations and SO covariances for two paths in the phase diagram:

from A-AF through canted-A-AF to FM phase (Sec. 3.4.3) and from striped-AF to G-AF

phase (Sec. 3.4.4). Then we give a heuristic arguments for stability of the striped-AF phase

in Sec. 3.4.5 and derive e�ective, perturbative spin Hamiltonians for canted-A-AF phase

(Sec. 3.4.6) in the spirit of the derivation done for the 2D double-AF phase in Sec. 3.3.5.

Further on, in Sec 3.4.7, we explain the absence of the C-AF phase in the cluster phase

diagram of the 3D KK using similar method of perturbative expansion in the orbital sector.

This explanation is also valid for the bilayer KK model. Finally, we describe brie�y thermal

evolution of canted-A-AF and striped-AF phases in Sec. 3.4.8 presenting the behavior of spin

and orbital order parameters. The �nal summary and conclusions for the 3D KK model are

given in Sec. 3.4.9 being the summary of the whole study on KK model presented here.

3.4.1 Single-site mean �eld

Repeating the reasoning and formulas from Sections 3.2.1 and 3.3.1 we can easily obtain

single-site MF phase diagram for a 3D model. Like before, the starting point is an e�ective

orbital Hamiltonian of the form

HMF =
1

2
J
∑
i,γ

{
τ γi τ

γ
i+γ(χ

γ − ξγ) + τ γi ξ
γ − 1

4
(χγ + ξγ)

}
− Ez

∑
i

τ ci , (3.64)

where sums go over the sites of a square lattice, γ = a, b, c and i+ γ is the nearest neighbor

of site i in the direction γ. The coe�cients,

χγ = r1Πγ
t + r2Πγ

s , ξγ = (r2 + r4)Πγ
s , (3.65)
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are the parameters obtained by averaging over spin operators with assumption that the spin

order, determining χγ and ξγ, depends only on the direction γ and not on site i. Like in the

bilayer case described in the Sec. 3.2.1 we will investigate phases with di�erent long-range

magnetic orders with appropriate mean values of singlet and triplet projectors Πγ
s,t given in

Table 3.1. Apart from fully AF and FM phase we include also A-AF and C-AF con�gurations

with spin correlations being AF in the c direction or in the ab planes, respectively, and FM

otherwise. Solutions of the self-consistency equations and ground-state energies in di�erent

phases are obtained in the same way as described in previous sections.

The resulting phase diagram is shown in Fig. 3.20, area with AO phases is shaded in

green. Remarkably, the diagram is almost the same as the one obtained for the bilayer

system (see Fig. 3.2) and the major di�erence is the location of the multicritical point being

now at Ez = 0 and η = 0 whereas for a bilayer it was Ez = −0.25J and η = 0 (and for

a single layer� Ez = −0.5J , η = 0). In the 3D case the cubic symmetry is obeyed by the

model (3.63) at Ez = 0, while due to the shape of the z orbitals which are occupied in G-AFz

phase and favor antiferromagnetism in the c direction the phase isless stable in the bilayer

geometry, as explained said in Sec. 3.3.1. The C-AF with alternating orbitals also gets larger

in 3D system but again, this phase will be completely absent in the cluster approach.

3.4.2 Cluster mean �eld

The cluster MF approach to the 3D KK model employs the same ideas and mathematical

structures as in the 2D case (see Sec. 3.4.2), and we treat the 3D model as a generalization

of the 2D one. The most natural choice of the cluster would be a cube with 8 sites as it was

done in the bilayer case (see Fig. 3.3) but, since we want to keep two components of the spin

order parameter and to study the thermal evolution of the model, we adopted here a simpler

and less time-consuming approach and we consider 4-site clusters. The geometry of the

clusters will depend on the direction in which we expect to have more quantum �uctuations.

For example, if we want to study the transition between G-AF an A-AF phases then the

reasonable cluster topology is a square in the ab plane, shown in Fig. 3.21(a), because during

the transition the order along the c direction does not change. On the other hand, if we

are interested in a transition between A-AF and FM phase where the order in the ab planes

remain constant then the better choice is a chain along the c direction� see Fig. 3.21(b).

As usually, the dashed lines outgoing from the vertices of the clusters shown in Fig. 3.21 are

the MF interactions; to simulate in�nite 3D lattice we need them in all three directions. In
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Figure 3.20: Phase diagram of the 3D KK model obtained in the single-site MF approxi-
mation. In this approach the FO AFx and C-AFx phases have exactly the same energy.
Shaded green area indicates phases with AO order while the remaining magnetic phases are
accompanied by FO order with fully polarized x or z orbitals.

the case of a square cluster we assume that the neighboring clusters in the c direction can

have either the same spin con�guration (gives FM bonds along the c axis) or inverted spin

con�guration (gives AF bonds along c). Furthermore, we assume that the neighbors in the

ab plane can have either the same orbital con�guration (gives AO and FO orders in the ab

planes) or the orbital con�guration is rotated by π/2 in the ab plane (gives PVB phase).

Similarly, we assume that the chain clusters are copied without any change in the c direction

and the neighboring chains in the ab planes have: (i) orbital con�guration rotated by π/2 and

(ii) spin con�guration either inverted (gives planar AF) or left unchanged (gives planar FM).

All these assumptions are necessary to solve the self-consistency problem and are motivated

by the phase diagrams of 2D and bilayer systems (see Secs. 3.4.2 and 3.2.5).

The resulting phase diagram is shown in the Fig. 3.22. The yellow shading marks the

PVB phase and the orange one indicates exotic magnetic orders. The orange phases are:

double-AF phase already encountered in the 2D system, canted-A-AF phase and striped-

AF phase. In the double-AF phase the order in the ab planes is such as depicted in Fig.

3.15 and this con�guration repeats in the neighboring planes with a spin inversion meaning

113



(a)

3

2

4
a

b

1

c

(b)

1

2

3

4
c

b
a

Figure 3.21: Schematic view of the clusters (solid lines) used in the cluster mean-�eld ap-
proach of Sec. 3.4.2 to the 3D KK model: (a) a plaquette in the ab plane, and (b) a chain in
the c direction. Vertices i = 1, 2, 3, 4 and directions γ = a, b, c are marked and dashed lines
stand for the outgoing MF interactions with neighboring sites.

antiferromagnetism in the c direction. Note that this phase separates phases with in-plane

antiferromagnetism (G-AF) and ferromagnetism (A-AF) which is the same as in the 2D

case (see Fig. 3.14(a)). The interaction in the c direction are compatible with the in-plane

magnetic order and even stabilize it as evidenced by the fact that the double-AF phase

appears here for lower Ez than in the 2D phase. The double-AF phase with interplanar

antiferromagnetism plays a role of the resonating valence-bond (RVB) phase found in the

3D KK model [27] where it was proposed as an intermediate phase between the G-AF and

A-AF phases. We believe that the present result is more realistic than an RVB phase with

1D Heisenberg chains along c direction [27] would be in�nitely susceptible to any in-plane

magnetism because the 1D Heisenberg antiferromagnet is critical and thus unstable. We

argue that the double-AF phase is well justi�ed by the e�ective perturbative spin model

derived in Sec. 3.3.5.

If we increase η in the A-AF phase we will encounter another magnetic transition, with

spin correlations along c direction changing the sign. This is where the canted-AF phase

appears as an intermediate phase connecting smoothly (in contrast to double-AF) the A-AF

phase with FM one. In the canted-AF con�guration the spins are FM in the ab planes and
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Figure 3.22: Phase diagram of the 3D KK model in the cluster MF approximation. Plaquette
valence-bond phase with alternating spin singlets in the ab planes is highlighted in yellow.
Phases with exotic magnetic order are shaded in orange.

the order along direction c changes gradually from AF to FM with interplane spin angle φ,

being the canting angle, taking values between φ = 0 and φ = π� see Fig. 3.23(b). On the

other side of the phase diagram, for similar η, we �nd the striped-AF phase characterized by

breaking of the symmetry between a and b directions in the orbital and spin sectors. The

magnetic order in striped-AF phase is AF with anisotropy; along one direction in the ab plane

the order is purely AF and in the perpendicular direction the angle between neighboring spins

is close to π but not exactly π as shown in Fig. 3.23(a). The orbital con�guration is FO with

one preferred direction, i.e. ta 6= tb. Striped-AF phase connects with left G-AF phase by a

smooth phase transition. Further on we will present some analytical arguments explaining

both canted-AF (perturbative expansion) and striped-AF phase (heuresis).

The remaining part of the phase diagram, which is not shaded, contains well known

magnetic phases including G-AF, A-AF and FM con�gurations placed similarly as in the

single-site MF phase diagram of Fig. 3.20. The degeneracy between left G-AF and C-AF

phase is removed again, as in the bilayer case (see Fig. 3.5), and this time we will provide a

perturbative explanation of this fact. Similarly to the bilayer phase diagram, the PVB phase

connects with the left G-AF phase by the intermediate PVB-AF con�guration but due to

115



(a)
a

b

c 

(b)
a

b

c

Figure 3.23: Schematic views of the two exotic spin orders realized by the 3D KK model: (a)
striped magnetic order in the ab plane present in the striped-AF phase, with AF order in the
c direction; (b) spin order realized in the canted-A-AF phase, see also Fig. 3.22.

the presence of the right G-AF phase we have also right PVB-AF phase. One can summarize

that the whole bottom part of the phase diagram up to η ≈ 0.085 contains only smooth

phase transitions.

Before deriving the e�ective spin models for the new magnetic con�guration found in the

3D KK model we will look more closely at the phase transitions connecting the A-AF and

FM phases through the canted-A-AF con�guration and striped-AF with the G-AF phase.

3.4.3 From A-AF to FM phase

In Figs. 3.24(a) and 3.24(b) we show the cosine of the spin canting angle φ in the c direction

and the total magnetization |s| de�ned in the following way:

cosφ =
1

s2
(sx1s

x
2 + sz1s

z
2) , |s| ≡

√
(sx)2 + (sz)2, (3.66)

as functions of η in the A-AF, canted-A-AF and FM phases for Ez = −0.5J . For the AF

con�guration along c angle φ takes value φ = π and cosφ = −1, for FM order along c we

have φ = 0 and cosφ = 1. In the canted-A-AF phase cosφ interpolates smoothly between

these two values and remains constant in the A-AF and FM phases. Fig. 3.24(b) shows that
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Figure 3.24: Evolution of the magnetic order for increasing η at Ez = −0.5J : (a) cosine of
the canting angle φ, and (b) total magnetization |s| both in the A-AF, canted-A-AF and FM
phases from left to right.

the spin order in the considered range of η is almost classical with |s| being close to 0.5, but

quantum �uctuations arise when the spin order evolves away from the FM phase. In the

canted-A-AF phase the slope of |s| is the biggest and the quantum �uctuations drop rapidly

with increasing η.

In Fig. 3.25(a) we show the behavior of the spin correlation functions Cc
s(d) along the c

direction for �rst, second and third NN neighbors (d = 1, 2, 3) in the chain cluster (see Fig.

3.21 (b)) for the same path in the phase diagram as before. First and third NN correlations

con�rm that the order along the c direction changes from AF to FM in a continuous way, with

correlations passing through zero. The second NN correlation stays FM and almost constant

in the whole range of η. This peculiar behavior will be explained by an e�ective perturbative

spin Hamiltonian in Sec. 3.4.6. Fig. 3.25(b) presents the SO covariances; on-site ra,band

bond Rc(d) in the c direction for the range d. The on-site ra,b were already de�ned in the

case of 2D system (see Sec. 3.3.4) and the d-range covariances are de�ned analogically to the

NN ones as:

Rc (d) =
〈
(S1 · S1+dc)τ

c
1τ

c
1+dc

〉
− 〈S1 · S1+dc〉

〈
τ c1τ

c
1+dc

〉
. (3.67)

As we could expect, in the FM phases all the covariances vanish and in the canted-A-AF phase

their slope is the biggest. The Rc(1) function is the one of the largest magnitude meaning that

the con�gurations are highly bond-entangled on the short distance. In contrast to that, the

longer range covariances Rc(d) for d > 1 are close to zero but Rc(3) as the only one becomes

more signi�cant in the canted-A-AF phase showing that this phase can be governed by higher
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Figure 3.25: Evolution of spin and orbital correlations with increasing η for Ez = −0.5J :
(a) spin correlation functions Cc

s(d) in the c direction for distance d, and (b) on-site SO
covariances ra,b and bond SO covariances Rc(d) in the c direction for distance d in the A-AF,
canted-A-AF and FM phases.

range spin interactions accompanied by large orbital �uctuations. The on-site covariances

behave monotonically and take relatively small absolute values meaning that they are not of

the prime importance in the considered phases.

3.4.4 From striped-AF to G-AF phase

Another new and exotic magnetic order of the 3D KK model is the striped-AF phase. This

con�guration can evolve smoothly towards the ordinary G-AF order when we increase Ez. In

Fig. 3.26(a) we can see how the order parameters change when we go through this transition

at η = 0.22. The orbital order parameters ta,b con�rm breaking of the a-b symmetry in

the striped-AF phase where they take slightly di�erent values, the di�erence vanishes at the

phase transition. In the magnetic sector we can distinguish four spin sublattices� see Fig.

3.23(a), two of which are not related by a spin inversion. To show the full complexity of

the spin order we show spin averages on sites i = 1, 3 and both components α = x, z. The

behavior of curves con�rms the striped character of the magnetic order in striped-AF phase

vanishing at the transition point. In Fig. 3.26(b) we can see quantities derived out of the

original order parameters being the cosines of the angle between the neighboring spins in a

and b direction, φa,b, and the total magnetization |s|, both de�ned as in Eq. (3.66). The

behavior of cosφb con�rms the AF order along the b direction independent of Ez while in

the b direction the angle φa changes from around 2π/3 to π at the phase transition. After
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Figure 3.26: Evolution from the stripes-AF to G-AF phase at η = 0.22: (a) orbital ta,b and
magnetic sx,z1,3 order parameters, and (b) total magnetization |s| and cosines of spin angles φa

and φb.

the transition the cosines remaining equal as expected in the isotropic AF phase. The total

magnetization |s| is almost constant, increasing monotonically when Ez grows, showing that

the essential physics of the striped-AF phase lies in the spin angles, although its relatively low

starting value means that striped-AF phase is a�ected by strong spin quantum �uctuation

that weaken AF order.

In Figs. 3.26(a) and 3.26(b) we presented the on-site and bond SO covariances for the

same parameter range as before. As we can see, the striped-AF phase exhibits relatively large

on-site entanglement in x component of spin vanishing in the G-AF phase (see Fig. 3.26(a))

together with the entanglement in z component of spin that remains in the G-AF phase (see

Fig. 3.26(b)). For the x component the dominating covariances are the ones in b direction

and for the z component those in a direction. The fact that the z covariances remain in the

G-AF is somewhat surprising as one could expect that this phase with no frustration and

almost fully polarized FO con�guration can be trivially factorized into spin and orbital wave

functions. This turns out to be wrong and in Sec. 3.4.7 we will show that high order orbital

�uctuation are essential for stabilizing AF order along the c direction in this phase.

3.4.5 Heuresis of the striped-AF phase

Striped-AF is the only phase of the 3D KK model that breaks the symmetry between a

and b direction in the lattice. One can ask if there are any term in the Hamiltonian of Eq.
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Figure 3.27: Evolution of covariances from the striped-AF to G-AF phase at η = 0.22 under
increasing Ez/J : (a) on-site SO covariances rx,a1,3 , r

x,b
1,3, and (b) rz,a1,3 , r

z,b
1,3 together with bond

SO covariances Ra,b.

(3.63) favoring such symmetry breaking. The answer is positive: the interaction between the

orbitals is given by τ γi τ
γ
j terms that can be written as follows,

τ γi τ
γ
j =

1

16

(
σzi σ

z
j − sγ

√
3σzi σ

x
j − sγ

√
3σxi σ

z
j + 3σxi σ

x
j

)
, (3.68)

with sites i and j being nearest neighbors, and sγ = ±1. According to Ref. [51], the

Hamiltonian containing only these interactions alone with negative sing favors classical FM

con�gurations in the σxi components of the pseudospin. Such symmetry breaking is equivalent

to the one observed in the striped-AF phase because:

〈
τai − τ bj

〉
=

√
3

2
〈σxi 〉 . (3.69)

In the full KK model the orbital interactions come together with spins as the terms:

τ γi τ
γ
j

{
(Si · Sj) (r1 + r4) +

3r1 − r4

4

}
= Aijτ

γ
i τ

γ
j , (3.70)

may be represented by an e�ective orbital coupling Aij� assuming that SO entanglement

is low we can treat Aij as numbers determined by the average spin-spin correlations. To

stabilize the striped-AF phase we need all Aij to be negative. This imposes a condition on

the spin order, i.e.,
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Figure 3.28: Plot of the function f(η) (3.71) in the physical range of η ∈ [0, 1/3). To stabilize
striped-AF phase, the NN spin correlations should lie below the curve.

Aij < 0⇐⇒ 〈(Si · Sj)〉 <
1

4
− 1

2

1 + η

1− η
= f(η). (3.71)

The f(η) function is presented in Fig. 3.28. We can see that the condition (3.71) is possible

to satisfy in the full physical range of η (meaning f(η) > −3/4) provided that quantum

�uctuations in the spin sector are strong enough. This stays in odds with the fact that NN

spin correlations are rather weak in the striped-AF phase but we have to remember that

the explanation of the striped order given here lacks many details of the KK model with

SO entanglement being the most notable. Nevertheless we argue that it captures the most

important aspect of striped-AF phase which is the a-b symmetry breaking.

3.4.6 E�ective spin model in the canted-A-AF phase

To explain the exotic magnetic order found in the canted-A-AF phase, displayed in Fig.

3.23(b) and described in Sec. 3.4.3, we derive an e�ective spin model for this phase at orbital

degeneracy (Ez = 0). The idea is, as before, to use the standard quantum perturbation theory

with degeneracy for the orbital sector of the KK model. We can divide the Hamiltonian given

by Eq. (3.63) into the unperturbed part H0 and perturbation V in the following way:

H0 =
∑
〈i,j〉‖
γ=a,b

3

128
(3r1+r4)σxi σ

x
j − 3L3 3r1+2r2 + r4

32
, V = H −H0. (3.72)
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In contrast to the previous calculations, done for the double-AF phase of the 2D system (see

Sec. 3.3.5), the ground state |0〉 of H0 is not a FO state but exhibits an AO order. This

is because H0 is a classical Ising model with AF interactions implying that 〈σxi 〉 = −
〈
σxi+γ

〉
or
〈
τa,bi

〉
=
〈
τ b,ai+γ

〉
. Such choice of the unperturbed Hamiltonian is dictated by the results

of cluster MF approach showing that canted-A-AF is an AO phase, just like A-AF and FM

phases, so by taking FO ground-state we would miss the essential physics. Following the

quantum perturbation theory we can construct the e�ective spin Hamiltonian Hs using the

following expansion in powers of V ,

Hs = E0 + 〈0|V |0〉+
∑
n6=0

1

En − E0

〈n|V |0〉2 +O
(
V 3
)
, (3.73)

where the sums are over the excited states of H0. In the zeroth order we get E0, being the

ground-state energy of the Hamiltonian H0, and in the �rst order:

H(1)
s =

∑
〈i,j〉‖
γ=a,b

(Si · Sj)
7

32
(8r2−7r1 + r4) +

∑
i

(Si · Si+c)
1

8
(2r2−r1 + r4). (3.74)

The NN interactions in the c direction vanish at η = η0 ' 0.236 while the NN interactions

in the ab planes are already FM in this region. The numerical results show that the in-plane

ferromagnetism is very weakly �uctuating. For this reason we will assume that SiSi+γ = 1/4

for γ = a, b and focus on the interactions in the c direction. In the second order V can

produce two types of excited states: (i) with a single orbital rotated by π/2 in the ab plane,

or (ii) with a rotated pair of neighboring orbitals. This leads to two type of terms in the

interplanar Hamiltonian H
(2)
s,c :

H(2)
s,c = − 32

3 (3r1+r4)

∑
i

(Si · Si+c)
{

1

320

(
r2

1 − r2
4

)
− 1

6
(r2 + r4)

(
−1

2
Ez +

3

32
(r2 + r4)

)}
− 32

9 (3r1+r4)

∑
i

(Si−c · Si+c)
1

128
(r2+r4)2 . (3.75)

The Heisenberg NN interactions pass through zero at the transition from the A-AF to FM

phase; then the second NN interaction become important. According to the second line of Eq.
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(3.75), these interactions are non-vanishing and favor ferromagnetism which agrees with the

numerical result shown in Fig. 3.25(a). Now the remaining question concerns the physical

mechanism for the non-trivial canting angle, interpolating between φ = π and φ = 0 when

passing from the A-AF to FM phase. The answer is found by considering the third order of

the perturbative expansion given by:

H(3)
s =

∑
n6=0

∑
m 6=0

1

En − E0

1

Em − E0

〈0|V |n〉 〈n|V |m〉 〈m|V |0〉 , (3.76)

and the terms with three Heisenberg bonds multiplied by each other along the c direction.

Such terms lead to the correction H
(3)
s,c of the form:

H(3)
s,c =

22

5× 34

(r2 + r4)2 (r4 + r1)

(3r1+r4)2

∑
i

{
1

8
(Si+c · Si−2c) +

1

2
(Si+c · Si−2c) (Si · Si−c)

}
, (3.77)

where we used identity of Eq. (3.60) to simplify the product. Now, according to Fig. 3.23(b),

if we use the classical expressions for the spin scalar product using the canting angle φ for

the odd neighbors and the FM order for the even neighbors, i.e.,

Si · Si+(2n−1)c =
1

4
cosφ, Si · Si+2nc =

1

4
, (3.78)

with n = 1, 2, 3, . . . , then we get the classical expression for the ground-state energy E0(φ):

E0(φ) =
cosφ

4

{
2r2−r1 + r4

8
−O

(
32

9 (3r1+r4)

)}
+

cos2 φ

32

22

5× 34

(r2 + r4)2 (r4 + r1)

(3r1+r4)2

= cosφA(η) + cos2 φB(η). (3.79)

Such function has a non-trivial minimum at φ0 as long as B(η) > 0 (which is the case here)

given by the equation:

cosφ0 =


−1 for A(η) < −B(η)/2

−2A(η)
B(η)

for |A(η)| < B(η)/2

1 for A(η) > B(η)/2,

(3.80)
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with functions A(η) and B(η) de�ned by Eq. (3.79). This reproduces well the behavior of

cosφ obtained via cluster MF method.

3.4.7 E�ective model in the G-AF phase: G-AF versus C-AF order

In this subsection we will derive an e�ective spin Hamiltonian around the FO ordered state

with x orbitals occupied to explain the energy di�erence between the G-AF and C-AF phase,

favoring the G-AF order in the cluster MF approach (see Fig. 3.22). As in Sec. 3.3.5 we can

divide the Hamiltonian given by Eq. (3.63) into the unperturbed part H0 and perturbation

V in the following way:

H0 = −Ez
∑
i

τ ci , (3.81)

V = Vab + Vc, (3.82)

with perturbation splitted into planar Vab and interplanar Vc part given by:

Vab =−1

2

∑
〈i,j〉‖
a,b

{
(r1 Π

(ij)
t + r2 Π(ij)

s )

(
1

4
− τ γi τ

γ
j

)
+ (r2 + r4) Π(ij)

s

(
1

2
− τ γi

)(
1

2
− τ γj

)}
, (3.83)

Vc =−1

2

∑
〈ij〉||c

{
(r1 Π

(ij)
t + r2 Π(ij)

s )

(
1

4
− τ ci τ cj

)
+ (r2 + r4) Π(ij)

s

(
1

2
− τ ci

)(
1

2
− τ cj

)}
,(3.84)

where for simplicity we take the units of J = 1. For positive Ez the ground state |0〉 of H0

is the state with all orbitals being the x orbitals, i.e.,

∀i : τ ci |0〉 =
1

2
|0〉 (3.85)

with energy E0 = −1
2
EzL

3. Using Eq. (3.73) we can construct the e�ective spin Hamiltonian

Hs as a power expansion in V . Note that the ground state |0〉 is an eigenstate of Vc to zero

eigenvalue; for this reason Vc gives no contribution to Hs up to second order in V and the

interplane interactions appear as E−2
z terms. The e�ective spin Hamiltonian Hs up to second

order in V can be calculated in the same way as in Sec. 3.3.5 and contains the same spin

interactions:
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Hs =
∑
〈i,j〉

(Si · Sj)
{

3
4r2−r1 + 3r4

32
+O

(
E−1
z

)}
+

1

Ez

∑
〈〈i,j〉〉

3

210
(Si · Sj) (2r2+ r4 −r1) 2

− 1

Ez

∑
〈〈〈i,j〉〉〉

3

211
(Si · Sj) (2r2+ r4 −r1) 2 +O

(
E−2
z

)
, (3.86)

where all bonds are in the ab planes. Again, one can think of a double-AF phase similar to

the one obtained in the limit of Ez → −∞ for η close to η0 where the NN interactions vanish

(in this case η0 ' 0.2915) but this is not our aim in this subsection� we search for an e�ective

description of the interplane interactions. Looking at the third order correction to Hs given

in Eq. (3.76) and at the form of Vc we can see that the interplane part of the third order

correction H
(3)
s,c has the following structure:

H(3)
s,c =

∑
n6=0

1

(En − E0)2 〈0|Vab |n〉 〈n|Vc |n〉 〈n|Vab |0〉 . (3.87)

This can be greatly simpli�ed if we take into account two facts: (i) Vab can excite only single

orbitals or pair of neighboring orbitals so the sum over n turns into the sum over excited

sites i and (ii) Vc is non-zero only around the excited orbitals. After the simpli�cation we

get,

H(3)
s,c = − 3

E2
z

r1 − r2

211
(2r2+ r4 −r1)2

∑
i

∑
γ=±a,
±b

∑
γ′=±a,
±b

sγsγ′ (Si · Si+γ) (Si · Si+c) (Si · Si+γ′)

− 9

4E2
z

r1 − r2

211

∑
i

∑
γ=±a,
±b

[
(Si · Si+γ) (r1+r4)+

3r1−r4

4

]
(Si · Si+c)∗

∗
[
(Si · Si+γ) (r1+r4)+

3r1−r4

4

]
, (3.88)

where the �rst line originates from the single-orbital excitations and the second from orbital-

pairs excitations. The interplane interactions are typically sandwiched between two in-plane

bonds; this can be treated with the following spin identity:
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Figure 3.29: Schematic view of the G-AF spin order on the two planes of 3D cubic lattice
stabilized by the third-order NNN Heisenberg interactions (green dashed lines) between sites
i0 + γ and i0 + c being FM (see Eq. (3.90)). The NN FM interactions between i0 and i0 + c
(red line) are incompatible with G-AF order but they are four times less numerous.

(Si · Si+γ) (Si · Si+c) (Si · Si+γ′) =
1

4
(Si+c · Si+γ) (Si · Si+γ′)−

1

4
(Si+γ′ · Si+γ) (Si · Si+c)

+
1

4
(Si · Si+γ) (Si+c · Si+γ′) + i

1

8
Si+γ · (Si+c × Si+γ′) .

(3.89)

After using this and the identity of Eq. (3.56), theH
(3)
s,c correction is ready for �nal approximation�

we assume that the spins form classical AF state in the ab planes, i.e., (Si · Si+γ) ≡ −1
4
for

γ = a, b. Of course, this is not completely true because we neglect quantum �uctuations

but these should be small in the 3D long-range ordered magnetic con�guration being either

G-AF or C-AF. The �nal formula for interplane interactions is:

H(3)
s,c = − 9

4E2
z

r1−r2

210

∑
i

(Si · Si+c) r1 (r1−r4)+
∑
γ=±a,
±b

(Si+c · Si+γ) (r1+r4)
3r1−r4

4

 ,
(3.90)

containing NN and NNN Heisenberg bonds both favoring ferromagnetism. This could lead

to frustration as the NN bonds favor C-AF state while the NNN bonds prefer G-AF but one

can easily check that the number of NNN bonds per site is four times larger than that of

NN bonds (see Fig. 3.29). If we take into account this factor of 4 comparing the coupling
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Figure 3.30: Thermal evolution of the orbital and magnetic order in the canted-A-AF, A-AF,
AO-PM and PM phases for Ez = −0.5J , η = 0.253 and increasing T : (a) orbital ta,b mean
�elds for 0 < T < 2.5J ; (b) cosine of the canting angle φ and total magnetization |s| for
0 < T < 1.5J .

constants JNNN and JNN of the NN and NNN interactions we obtain:

4JNNN − JNN = (r1+r4) (3r1−r4)− r1 (r1−r4) = 4
1 + η (1− 4η)

(3η2 + 2η − 1)2 > 0 (3.91)

in the physical range of η, η ∈ [0, 1/3). This �nally shows why the G-AF phase is favored

over the C-AF phase both in the 3D and bilayer case, as long as we go beyond the single-site

MF approximation which cannot capture the subtle third-order orbital �uctuations (compare

Figs. 3.2 with 3.5 and 3.20 with 3.22).

3.4.8 Thermal decay of the canted-A-AF and striped-AF orders

Finally, after determining the most important properties of the 3D KK model in zero tem-

perature, we can study the e�ects of thermal �uctuations in the exotic magnetic phases.

For double-AF phase we have checked that the thermal evolution does not lead to any new

con�gurations comparing to the double-AF phase in the 2D model (see Sec. 3.3.4) so we will

focus on canted-A-AF and striped-AF phases only.

In Figs. 3.30(a) and 3.30(b) we show thermal evolution of orbital and magnetic order in

the canted-A-AF phase for Ez = −0.5J and η = 0.253.We argue that these values of Ez and

η are representative for the whole canted-A-AF phase, at least away from the transitions to
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Figure 3.31: .Thermal evolution of the orbital and magnetic order in the striped-AF, A-AF,
AO-PM and PM phases for Ez = 1.07, η = 0.22 and increasing T : (a) orbital ta,b mean
�elds for 0 < T < 1.3J ; (b) cosines of the canting angles φa,b and total magnetization |s| for
0 < T < 0.5J .

neighboring phases. As we can see in Fig. 3.30(a) the AO order persists up to relatively high

temperature of T ≈ 2J where it changes into FOz one which is induced here by the crystal

�eld Ez. Due to the cluster geometry, which is a chain, the external sites i = 1, 4 feel di�erent

interactions than the internal ones (see Fig. 3.21(b)). For this reason it is possible that the

orbital mean �elds for external sites are already as in the FO phase while the internal ones

are still alternating. This happens at T ≈ 1.8J and causes the characteristic bends of the

ta,b curves which are already averaged over all cluster sites. On the way from canted-AF to

PM phase not much happens in the orbital sector but as we see in Fig. 3.30(b) there are two

magnetic phase transitions. At the �rst one the canting angle φ becomes trivial and canted-

A-AF becomes ordinary A-AF. The total magnetization |s| does not feel this transition and

remains �nite until the second one at T ≈ 1.1J where the A-AF collapses to the AO-PM

phase with no magnetic order. One can expect that for higher η the thermal evolution would

involve the FM instead of A-AF phase as the �rst e�ect of thermal �uctuation is destroying

the non-trivial canting angle.

Figs. 3.31(a) and 3.31(b) show thermal evolution of orbital and magnetic order in the

striped-AF phase for Ez = 1.07 and η = 0.22. Looking at Fig. 3.30(a) we see that the

orbital order favoring one direction in the ab plane persists up to relatively low temperature

of T ≈ 0.2J and gets replaced by the AO order which remains until T ≈ 1J and then melts

down to FO order. The transition between striped-AF and A-AF phases is discontinuous and

involves the change in the symmetry of orbital con�guration thus the ta,b parameters in the
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striped-AF phase have di�erent meaning than ta,b in the A-AF phase. The indication of this

�rst order phase transition is the crossing of free energy levels. In Fig. 3.31(b) we can see

the magnetic part of the thermal evolution; striped-AF order remains almost constant until

the free energy crossing and then the cosines jump to a single value of cosφa,b = 1 meaning

full ferromagnetism in the ab planes. The interplane spin correlation remain negative and

thus we are in the A-AF phase. At the same total magnetization |s| remains continuous and

starts to drop gradually towards zero at the transition to the AO-PM phase which is of the

second order. The constancy of |s| at the point of �rst transition means that the free energy

depends strongly on total magnetization and not on angles {φa, φb}.

3.4.9 Summary and conclusions

Summarizing, we have presented rather complete description of the 3D KK model in the

framework of the cluster MF theory and e�ective perturbative models. We argue that the

striped-AF phase, representing new type of symmetry breaking in the whole class of KK

models considered here, still requires more advanced approach than the one that was imple-

mented here. This heuristic approach explains the a-b symmetry breaking as the breaking of

the Z2 symmetry in the space of orbital pseudospins but leaves some questions unanswered.

Firstly, we cannot derive any e�ective, perturbative Hamiltonian for this phase as it appears

in the intermediate coupling regime and it is not clear what the reference con�guration should

look like. On the �rst glance, one could propose the FOx ordered state but this will lead to

an e�ective Hamiltonian favoring double-AF state which is not what we wish for. Secondly,

it is hard to claim that the striped-AF phase is a consequence of proximity of the FM phase,

as there is no smooth phase transition from striped-AF to FM phase. And �nally, it is not

clear why this phase appears only in the 3D case; we have checked that it converges to a

stable solution in the 2D case but with energy being always higher than that of either the

G-AF or FM phase.

On the contrary, we managed to obtain a very clear picture in the left part of the phase

diagram, with a sequence of phase transitions, occurring for increasing η, involving inter-

mediate phases with exotic magnetic orders. This sequence is caused by the �rst order NN

Heisenberg interactions changing their sign �rst in the ab planes, which stabilizes double-AF

phase, and then along the c direction, which leads to a canted-A-AF con�guration. In both

cases we found perturbative expansions around certain orbital con�gurations explaining these

new magnetic orders. In case of the double-AF phase the e�ective Hamiltonian is the same as
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for the 2D KK model with additional AF interactions in the c direction. In the other case the

intermediate con�guration turned out to be essentially classical, with FM planes dumping

any quantum �uctuations, and we used this fact to construct the e�ective spin model around

the AO con�guration to explain canted-A-AF ordering.

To supplement these analytical consideration we presented the plots of order parameters,

correlations and SO covariances for the two cuts in the phase diagram, passing through

canted-A-AF and striped-AF phases. They show that both phases involve SO entanglement

and the plots for the canted-A-AF phase are supported by the e�ective spin Hamiltonian

derived for this phase. The plots for double-AF phase were already given in the 2D case and

its properties for the 3D lattice are very similar.

As the last analytical result we showed the derivation of the e�ective spin Hamiltonian

for the FOx con�guration which explains why the G-AF phase always wins with the C-

AF con�guration for 3D and bilayer systems although these two phases are degenerate in

the single-site MF approach. The answer was found in the third order of the perturbation

expansion and it was showed that the AF order in the c direction is induced by the two

e�ects: (i) AF order in the ab planes, and (ii) NNN interaction between the planes being

FM. This demonstrates that the right G-AF phase is highly SO entangled, because we need

third order orbital �uctuations to stabilize the spin order, and agrees with the plots of SO

covariances presented for the bilayer KK model.

The results at �nite temperature obtained in the canted-A-AF and striped-AF phases

indicate that the striped order is easily destroyed by thermal �uctuations whereas the canted-

A-AF phase is more robust and a non-trivial canting angle can be found up to relatively

high temperatures. This can be easily understood if we think of canted-A-AF phase as a

classical con�guration while the striped-AF phase is a�ected by strong quantum �uctuations;

the energy scales for magnetic excitations must be much higher in the canted-A-AF phase.

Again, the orbital order turned out to be more stable than the magnetic order.

Although the phase diagram obtained for the 3D KK model is similar to the one presented

in Ref. [27], there is one major di�erence. The intermediate phase between the G-AF and

A-AF phases on the left, here being the double-AF phase, was claimed to be a valence

bond phase with resonating singlets in the c direction [27]. Our results do not support

such con�guration and the e�ective spin Hamiltonian we derived cannot reproduce such a

result. This means that the 3D KK model in our approach excludes any signatures of the 1D

Heisenberg physics reported for KCuF3 [88] which suggests that the KK model is not enough

to correctly describe KCuF3 and should be supplemented by other terms. This seems to
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be con�rmed by the latest papers on KCuF3 where authors supplement the KK model with

additional spin interaction [86] or additional degrees of freedom [85] to explain the properties

of this compound. We believe that only the second option is true.

3.5 Final remarks on the Kugel�Khomskii model

Finally, we would like to remark that experimental phase diagrams of strongly correlated

transition metal oxides are one of the challenging directions of current research. Systematic

trends observed for the onset of the magnetic and orbital order in the RVO3 perovskites

(where R=La, . . . ) have been successfully explained by the competing interactions in presence

of SO entanglement [95]. In contrast, the theory could not explain exceptionally detailed

information on the phase diagram of the RMnO3 manganites which accumulated due to

impressive experimental work [113].

Summarizing, the presented analysis demonstrates that SO entanglement plays a crucial

role in complete understanding of the phase diagram of the bilayer, 2D and 3D KK model.

By introducing additional SO order parameter for a bilayer, independent of spin and orbital

mean �elds we obtained new phases in highly frustrated regime of parameters. By including

additional component of spin as an order parameter we managed to capture the most impor-

tant features of the AF-FM phase transitions for 2D and 3D system both in ab planes and c

direction which are the intermediate phases with exotic spin order. What more, we managed

to support and interpret our numerical results with the help of an analytical approach based

on the perturbation expansion in the orbital sector leading to e�ective spin Hamiltonians.

We argue that the cluster method we used here is su�ciently realistic to investigate the

phase diagrams of the KK models on various lattices, and could be applied to other SO

superexchange models adequate for undoped transition metal oxides.
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Chapter 4

Final summary and conclusions:

frustration and entanglement

Thus, by joint analytical and numerical e�ort we managed to extract some interesting prop-

erties out of the Hamiltonians of quantum compass and Kugel-Khomskii models which are

indeed simple to write but rather non-trivial to solve. The solvability is unquestionable only

in case of a ladder compass model which can be mapped to the quantum Ising model thanks

to the special symmetries of the QCM. In a 2D QCM these symmetries do not lead to the

solution but reduce considerably the number of degrees of freedom. This is useful only in

case of small lattices as the reduction is of the order of linear size of the system. On the

other hand, this has a consequence in self-duality of the 2D QCM in the thermodynamic

limit, which is not the case for the ladder, where XX and ZZ interactions act in inequiva-

lent directions. As a result the quantum phase transitions for 2D and ladder QCM are of

di�erent types; for a ladder the energy spectrum becomes quasi-continuous at the critical

point as it happens in the QIM, whereas for a 2D system the spectrum remains discrete in its

low-energy part and only the ground-state degeneracy becomes exponential in the linear size

of the system. The behavior of the von Neumann entropy of the subsystem being a single

line in a 6×6 lattice con�rms that the QPT found in the 2D QMC at the isotropic point is of

the second order which stays in agreement with the NN spin correlation functions exhibiting

no discontinuity. The heat capacity obtained both for ladder and planar QCM indicates the

existence of two energy scales in �nite systems. The larger one can be associated with classi-

cal Ising exicitations, being the single spin �ips, whereas the other one can be related to the

Bogoliubov quasiparticles in case of a ladder system. These quasiparticles become gapless in

132



the thermodynamic limit and form a quasi-continuum thus the low-temperature peak in the

heat capacity remains for an in�nte ladder. In contrast to that, the heat capacities obtained

for 2D QCM for increasing system sizes L show that the low-temperature peak vanishes for

L → ∞, so we can argue that the quasiparticles (e.g. the ones de�ned in a non-local MF

approach of Sec. 2.2.1) remain gapped in the 2D case. This is coherent with the existence of

an ordered phase in 2D QCM found above Tc = 0.055J [49].

In the case of the KK model the question of solvability is trivial. The model is inherently

unsolvable. Already the Heisenberg model in more than one dimension has no exact solu-

tions and here it is coupled to a frustrated orbital problem. For this reason the approximate

approaches are fully justi�ed, including single-site and cluster mean-�eld approximations

together with various perturbative expansions. The �rst two methods have one unquestion-

able advantage� we do not have to assume anything about spin and orbital con�guration

of the model for a given values of the parameters Ez and η. This is especially true for a

single-site MF approach in which we obtained the phase diagrams of the KK model in all

three cases of a 2D, bilayer, and 3D lattice. Already in this simple framework the results

are non-trivial, revealing a multicirtical point at Hund's exchange η = 0 and crystal-�eld

splitting Ez = −1/2,−1/4, 0 for a 2D, bilayer, and 3D lattice respectively. At this special

points the phases with FOz, FOx and AO orders become degenerate and di�erent magnetic

orders cross, including fully AF and FM phases for a 2D system or fully AF and planarly

FM phases both for 3D and bilayer systems. From the point of view of number and types

of di�erent con�gurations the 3D and bilayer systems are almost the same� the di�erence

is only visible in a cluster approach when the bilayer geometry can favor interlayer singlets.

Once more we emphasize that the G-AF phase with FOx order in a single-site MF approach

is always degenerate with the C-AFx phase for a 3D and bilayer lattices and this degeneracy

is lifted in a cluster approach. Another special feature of the single-site MF phase diagrams

is the existence of the two classes of orbital orders, never connected in a smooth way, one

when the orbitals are frozen in classical FOx or FOz con�gurations and the other when the

orbitals alternate (AO order). Such fully classical orbital orderings are unstable in a cluster

approach, away from the limit of |Ez| → ∞, when they are subject to quantum �uctuations

and depend strongly on values of Ez and η.

The applitaction of the cluster MF method to the KK model provided remarkably good

results. First of all, the considerable number of phase transitions became smooth and the

new phases occured. The area in between the two G-AF phases with FOz and FOx orders,

previously dominated by the multicritical point, now became a part of a PVB phase for
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all three lattice geometries (see Secs. 3.2.5, 3.3.3 and 3.4.2). Therefore, the multicritical

point was moved to the higher values of η meaning that the most frustrated part of the phase

diagram is in fact at a �nite Hund's exchange. In case of a bilayer lattice the cluster approach

additionally stabilizes the inerlayer-singlet phases (VBz and VBm) which substitute the G-

AF phase in the regime of negative Ez and agree with the observed properties of K3Cu2F7

[105]. What more, by taking the non-factorized SO mean �elds we managed to capture the

e�ects of SO entanglement resulting in stable ESO and EPVB phases for a bilayer system and

intermediate PVB-AF phases both in a bilayer and 3D systems. Additionally, by including

more than one component of a spin mean �eld into the cluster MF Hamiltonian we obtained

another new con�gurations with exotic spin order namely; double-AF phase for 2D and 3D

lattices and canted-A-AF together with striped-AF phases for a 3D lattice. These phases

turned out to be an e�ect of the AF-FM transitions, driven by the increasing Hund's exchange

η, taking place either in the ab plane(s) (this stabilizes the double-AF phase) or along the

c axis (this stabilizes the canted-A-AF phase) and this statement was proved rigorously by

perturbative expansions in the orbital sectors of the KK model. In case of the striped-AF

phase no such proof was given but a heuristic reasoning shows that this phase, characterized

by a symmetry breaking between a and b directions in the lattice, can be stable as long as the

AF exchange is strong enough despite the increasing η. In that sense the striped-AF phase

can be treated as another intermediate con�guration in the area of the AF-FM transition

with strong on-site SO entanglement (see Sec. 3.4.4). Finally, the cluster MF approach

showed that the degeneracy between C-AF and G-AF found in the single-site approximation

is arti�cial and the C-AF phase is absent in the realistic system described by the KK model,

both for a 3D and a bilayer lattice. Again, this was also rigorously proved by a perturbative

expansion in the orbital sector.

At �nite temperature the cluster MF method provided another non-trivial results. Both

for 2D and 3D lattices it con�rmed the general obeservation, valid e.g. for LaMnO3 [9],

that the orbital ordering occurs at much higher temperature than the magnetic one. This

is because the orbital part of the KK Hamiltonian can be regarded as more classical, due

to the form of interactions that resemble classical Ising bonds, and the energy scales for

excitations in the orbital sector are higher than in the spin sector. On the other hand,

when the exotic magnetic order occurs and the temperature is increased, it can either �rst

decay to an ordinary one, as it happens in the canted-A-AF and striped-AF phases (see

Secs. 3.4.8), or decay directly to a paramagnet, like the double-AF phase (see Sec. 3.3.4).

Finite-temperature phase diagrams of the 2D KK model show that the orbital order can
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greatly support the magnetic one against thermal �uctuation. This happens to the G-AF

phase in the regime of positive Ez when antiferromagnetism remains stable up to relatively

high temperature of T = 0.34J whereas the spin order in the negative-Ez area is already

gone. Similarly, the singlet PVB phase is also stable at this temperature as the valence-bond

con�guration is accompanied by the orbital order with cigar-shaped orbitals pointing at each

other along the singlet bonds. On contrary to that the FM phase can become paramagnetic

without losing AO order and this gives AO-PM phase. In general, any on-site or bond SO

entanglement is expected to be suppressed at �nite temperature as it happens in the double-

AF phase, at least in terms of the introduced SO covariances and we argue that the pure

quantum entanglement cannot be distinguished from the thermal mixing in such case.

We suggest that the models we considered are frustrated only for some special choice of

parameters. As a matter of fact this question is clear only in case of classical Hamiltonians

where interaction terms commute with each other. For example, in the ground state of �nite

size ladder or 2D lattice QCM both x and z- part of the Hamiltonian give a negative contri-

bution to the total ground-state energy meaning that they are not frustrated. The situation

changes in the thermodynamic limit of the 2D QCM when the system orders according to

the dominating interaction and the other one is ignored or, in the isotropic QCM, the spon-

taneous symmetry breaking occurs and one of the interactions becomes favored. Is such case

we may say that the disfavored interaction is marginally frustrated, in the sense that it gives

zero (or rather 0+) contribution to the total energy in the limit of L → ∞. As we see, the

question of frustration of the 2D QCM is never as transparent as in the canonical case of

a triangle of Fig. 1.2. On the other hand, the ladder QCM seems to be not frustrated for

any system size and the in�nite degeneracy of the ground state in the thermodynamic limit

should be attributed to quantum criticality.

A di�erent, and maybe more practical approach to the problem of frustration can be

formulated in the quantum Monte Carlo (QMC) framework. We can argue that a spin (or

pseudospin) system is frustrated if we encounter the so-called sing problem, meaning that

we cannot de�ne transition probabilities from one state of the system to another in order to

calculate the partition function with classical action. This criterion is good because it uses

classical version of a Hamiltonian and brings us back to the triangle showed in Fig. 1.2. The

drawback of such de�nition is that it is not always obvious if a Hamiltonian has the sign

problem; sometimes it can be cured by a change of representation. It is clear that if go to

the eigenbasis of the Hamiltonian then the transition probabilities will be easy to de�ne in

any case� this is of course completely impossible in practice but shows that the sign problem
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depends on the basis. Nevertheless the de�nition of frustration based on QMC approach

has its sense even if we have no idea about these subtleties; we can say that the model is

frustrated if no QMC results for such model appear in the literature in a reasonable time.

Using this criterion and looking into Ref. [49] we argue that indeed, QMC in two dimensions

is not frustrated, at least not for �nite system sizes.

The same reasoning as above brings us to the conclusion that the KK model is frustrated

because no QMC results for this model have appeared since 1972, when the model was in-

vented. This can be found surprising, as the KK model is nothing more than a Heisenberg

model coupled to an orbital model on a square lattice. Inserting FO con�guration in the

orbital sector, which is justi�ed for large |Ez|, leaves us with pure Heisenberg model with

no frustration. This is however not the whole truth. As we could see in the previous chap-

ter, the fact that FO con�guration is not an eigenstate of the orbital Hamiltonian has its

consequences, one of which is the energy gap between C-AF and G-AF con�gurations in

3D KK model caused by the third order orbital �uctuations. In general, it is the orbital

sector that is responsible for the frustration in the KK model [27] while the spin interactions

often remain not frustrated. The most notable example of such behavior is the double-AF

phase, found both in the 2D and 3D KK model, stabilized by the second and third order

orbital �uctuations around the FOz con�guration, where the e�ective Hamiltonian describes

two independent J1 − J2 models on two sublattices. Thereby the J1 − J2 model is one of

the canonical examples of geometrical frustration when both J1 > 0 and J2 > 0 but this

time we get J1 > 0 and J2 < 0 resulting in absolutely no frustration in the spin sector. A

similar situation happens in the 1D counterpart of the double-AF phase found in the 3D KK

model being canted-A-AF phase. This means that spin frustration in the KK model is rather

rare because phases with well established long-range magnetic order give no chance for spin

frustration either.

Does it mean that frustration is purely orbital in the KK model? This we cannot say.

First of all there is still a PVB phase present for all KK models considered here. This

con�guration is a good candidate for a spin-frustrated phase because it has no long-range

spin order and is stable in the intermediate coupling area of the phase diagrams. One can

argue that beyond cluster MF approach PVB could become a spin liquid and spin liquids,

at least at higher dimension, often arise from frustrated interactions. Secondly, we have

rather mysterious striped-AF phase found for 3D system which physics still remains mostly

unexplained. It is possible that this phase is frustrated both in orbital and spin sector and

as a result we get the a-b symmetry breaking.
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Appendix A

Evaluation of the energy origin C~r(α) in invariant

subspaces

We need to express
∑N

i=1 ri, which appears in C~r(α), see Eq. (2.6), in terms of chain con�g-

urations {Li}. This task may be accomplished by the following construction. Let us imagine

certain string of ri's written in terms of chains {Li} and kink areas {Ai}:

A1(L1)A2(L2)A3(L3) · · ·Ak(Lk) .

First, we want to calculate the sum of ri's included in chains. We choose any ri from the

chain L1 and �x its sign as rin. Now this chain gives rinL1 contribution to the total sum of

ri's. To get to the second chain we have to pass through the �rst kink area A1. If the number

of kinks in A1 is even, then the next chain will give the contribution rinL2, and if not, then

it will give the opposite number. Therefore, after passing through the whole system we will

get the term

rin(L1 + p2L2 + p2p3L3 + · · ·+ p2p3 . . . pkLk) , (A.1)

where pi = (−1)Ki , and Ki is a number of kinks in kink area i. It is clear that the parameters

{pi} satisfy
∏k

i=1 pi ≡ 1. Now we need to calculate the sum of ri's placed in kink areas. The

sign of the �rst chain is already chosen as rin so we pass to A2. For even number of kinks in

A2 the contribution is zero. If the number is odd, then we get the sum equal −rin. Passing

to the next kink area we follow the same rules but we have to change rin into p2rin. The total
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contribution from the kink areas is then equal to

−p1rin

{
1 + p1

2
+

k∑
i=2

p1p2 . . . pi−1
1 + pi

2

}
. (A.2)

Using the results given in Eqs. (A.1) and (A.2) we obtain �nally

N∑
i=1

ri = rin

{
L1 − 1 +

k∑
i=2

p2p3 . . . pi(Li − 1)

}
. (A.3)

Thanks to this result, we can write the energy given by Eq. (2.37) in terms of new variables

{Li, pi} instead of {ri} which are de�nitely more natural for the present problem.

138



Appendix B

Solution of the mean-�eld equations

Here we present brie�y the solution of the self-consistency Eqs. (3.20) obtained in the single-

site MF approximation. It is obtained as follows: assuming a�b symmetry of the system, i.e.,

putting χa = χb and ξa = ξb, we derive ta and tc from Eq. (3.19) as functions of α and β,

tc = 4gα + 2gEz + g1, (B.1)

ta = −2gα− 2β√
3
g2 −

1

2
(2gEz + g1), (B.2)

with

g = (χa − ξa + 2χc − 2ξc)−1, (B.3)

g1 = g(ξa − ξc), (B.4)

g2 = (χa − ξa)−1. (B.5)

Now we introduce a parametrization

α = ∆ sinφ, β = ∆ cosφ, (B.6)

and use the self-consistency Eqs. (3.20). From tc one �nds immediately sinφ depending on

∆,

sinφ = −2
2gEz + g1

8g∆ + 1
. (B.7)
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Comparing Eq.(3.20) for ta one gets:

− sinφ−
√

3 cosφ = 4

(
2g∆ sinφ+

2√
3
g2∆ cosφ+ gEz +

1

2
g1

)
. (B.8)

After inserting sinφ into Eq. (B.8) we obtain a surprisingly simple result for cosφ:

cosφ

(
∆− 3

8g2

)
= 0. (B.9)

This leads to two classes of solutions of self-consistency Eqs. (3.20): (i) either cosφ = 0, or

(ii) ∆ = 3/8g2 and cosφ 6= 0. The �rst option implies sinφ = ±1 and leads to two uniform

orbital con�gurations with tc = ∓1
2
and ta = tb = −tc/2. Furthermore, using Eq. (B.7) we

can calculate ∆ and �nd the borders of these uniform phases demanding ∆ ≥ 0.

The second option, i.e., cosφ 6= 0, implies AO-type of order with:

tc =
2gEz + g1

3g/g2 + 1
, (B.10)

ta = −1

2

2gEz + g1

3g/g2 + 1
∓
√

3

2

√
1

4
−
(

2gEz + g1

3g/g2 + 1

)2

, (B.11)

and with phase borders de�ned by the condition: 2|tc| ≤ 1. The phase borders given here

set the maximal range of the phase under consideration and cannot be treated as the lines of

phase transitions shown in the phase diagram; the latter lines are determined by comparing

the ground state energies E0 calculated form Eq. (3.21).
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