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Part I
Introduction
When describing a many body system forming a condensate a product state is usually assumed
which reveals all atoms described by the same single particle wavefunction [1, 2, 3, 4]. The
fraction of non-condensed atoms is, however, always present [5]. It can be due to a nonzero tem-
perature of the sample, but also at zero temperature interparticle interactions can be responsible
for it. We will study only quantum �uctuations neglecting all thermal e�ects.

All chapters except for the �rst one discuss systems where quantum �uctuations are included
in the many body description, and in fact are pronounced. Those systems are �rst of all two
component condensates where the interplay between the interactions results in reach behaviour
[6]. Quantum �uctuations occur close to a quantum phase transition [7, 8]. A critical point
marking occurrence of mean �eld solutions that break symmetry of a trap will be investigated
for a condensate with attractive interactions trapped in a one-dimensional symmetric double
well potential [9]. Phase transition of a similar origin will be discussed for a condensate in a
three dimensional homogeneous case [10] and for a two component system in the double well.
In the last chapter self-localized states of impurity atoms immersed in a large condensate are
investigated. Only the �rst chapter is based purely upon the mean �eld approximation, and deals
with a Feshbach resonant molecule production [11], ground state properties and their dynamical
production.

Each of the chapters begins with an introduction that presents the state of research in the
system under study, motivations and main goals. Conclusions from all the chapters are gathered
together at the end of the thesis.
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Part II
Atomic - molecular solitons in the vicinity
of a Feshbach resonance
A set of quantum numbers de�ning an internal state of two scattering atoms de�nes a scattering
channel. If a dissociation threshold of an interatomic interaction potential is at lower energy than
the energy of two scattering atoms, the atoms are in an open scattering channel. A Feshbach
resonance occurs when the energy of a bound state in a closed channel approaches the energy
of the scattering atoms. Due to a coupling between the two channels a resonant formation
of the bound state takes place [12, 13]. The coupling can be realized by means of optical
transitions (optical Feshbach resonances [14]) or by atomic hyper�ne interactions (magnetically
tunable Feshbach resonances, see [15]). In the latter, interaction potentials associated with
di�erent scattering channels can be shifted with respect to one another by means of an external
homogeneous magnetic �eld, due to the Zeeman e�ect [16]. It requires a di�erence in magnetic
moments of a bound state and a pair of free atoms.

A signature of resonant pair formation is divergent behaviour of the scattering length which
is a relevant parameter of interactions in cold atom collisions

a(B) = abg

(
1− ∆B

B −Br

)
, (1)

where abg is an o�-resonant value of the scattering length and ∆B is the resonance width.
Note that usually the magnetic �eld value where the scattering length has singularity Br is
di�erent than B0, magnetic �eld for which the scattering energy is degenerate with an energy
of the bound state [16]. The bound state exists for positive values of the scattering length.
In experiments Feshbach resonance position is determined from enhanced atom losses, due to
bound state formation and inelastic collisions maximal for the divergent scattering length [17]
or from the size variation of the trapped cloud [18].

In some cases tuning of the scattering length is necessary either to produce large condensates
or to achieve BEC at all [18, 19, 20]. Feshbach resonance techniques are now widely used as a
tool to tune interatomic interactions, from an ideal gas [19] to strongly interacting systems with
even an attractive nonlinearity leading to a condensate collapse [21, 22]. Control over interaction
strengths made it possible to observe long lived Bloch oscillations in an optical lattice potential
[23, 24]. Feshbach resonances in ultracold Fermi gases [25] led to observations of BEC of molecules
that are remarkably stable against three body decay [26, 27]. In two component Fermi gases
a transition region from fermionic super�uidity a < 0 to a molecular condensate a > 0 can be
studied, and in the so-called BEC-BCS crossover the gas is strongly interacting [28].

In bosonic species coherent oscillations between atom pairs and Feshbach molecules were �rst
observed in a BEC of 85Rb atoms [29]. Molecules were more directly observed in experiments
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using magnetic �eld ramps towards a resonance [30] together with, however, signi�cant inelastic
losses [31].

Based upon the mean �eld description of a Bose Einstein condensate many nonlinear phe-
nomena can be investigated in BEC, for instance vortices [32, 33, 34], four-wave mixing [35, 36],
Josephson-like oscillations [37, 38] or solitons. The latter have been realized experimentally
in a quasi one-dimensional condensate with e�ectively attractive interactions (bright solitons)
[39, 40] and with repulsive interactions (dark solitons) [41, 42]. There are studies of solitons in
BEC with a time-dependent scattering length [43, 44], in condensates con�ned in an e�ectively
two- or three-dimensional trap [45, 46] or in Bose Fermi mixtures [47]. In periodic optical lattice
potentials gap solitons were prepared [48].

In the context of nonlinear optics there exists another type of solitonic solutions. It is a
parametric soliton which is formed due to a coupling between electromagnetic �elds propagating
in a nonlinear medium [49] so that the �elds propagate as solitons. In the present chapter we will
consider parametric solitons occurring as a result of the coupling between atoms and molecules
close to a Feshbach resonance.

Analytical solitonic solutions exist in a free one dimensional Feshbach resonance system of
noninteracting atoms. We will show that bright, as well as dark soliton solutions can be found
numerically in a quasi-1D trapped interacting system. We will simulate production of soliton-like
states in a magnetic �eld ramp experiment and discuss their subsequent detection [11]. We will
qualitatively discuss the problem of atom losses close to the Feshbach resonance.

1 Model
We will use a model commonly applied to the association of atoms into molecules in Bose
Einstein condensates, and based upon a description of atoms and molecules in terms of two
separate quantum �elds [16, 50], ψ̂a and ψ̂m, respectively,

Ĥ =
∫

d3r

(
ψ̂†a

[
− h̄2

2m
∇2 + Ua(~r) +

λa

2
ψ̂†aψ̂a

]
ψ̂a + ψ̂†m

[
− h̄2

4m
∇2 + Um(~r) + E +

λm

2
ψ̂†mψ̂m

]
ψ̂m

+ λamψ̂†aψ̂aψ̂
†
mψ̂m +

α√
2

[
ψ̂†mψ̂aψ̂a + ψ̂mψ̂†aψ̂

†
a

])
. (2)

In ultra-cold collisions real interatomic potentials that are often unknown precisely can be re-
placed by a model potential correctly reproducing their crucial properties. We will use a contact
pseudopotential parameterized only by the scattering length [51]. Consequently the strength
of the atomic, molecular and atomic-molecular interaction is given by the coupling constants
proportional to respective scattering lengths

λa = 4πh̄2a/m, λm = 2πh̄2am/m, λam = 4πh̄2aam/mr. (3)

Here m and mr stand for the atomic and reduced mass, respectively. The scattering lengths a, am,
aam refer to so-called background scattering lengths, i.e. scattering lengths in an open channel



1 MODEL 8

far from resonances [16]. Since precise values of the molecular and atomic - molecular scattering
lengths are known only for very few resonances, we will assume λm = λam = λa. The trapping
potentials for atoms and molecules are Ua(~r) and Um(~r), respectively. The Hamiltonian (2)
contains also a term describing the association and decay of molecules, whose strength depends
on the resonance width ∆B, di�erence between molecular and atomic magnetic moments, ∆µ̃ =
µ̃m − 2µ̃a and the background scattering length a,

α =

√
4πh̄2a∆µ̃∆B

m
. (4)

In case of a magnetically tunable Feshbach resonance, the magnetic �eld dependence of the
Hamiltonian comes only from the detuning E , the di�erence between a bound state energy and
the energy of a free atom pair. Note that the magnetic �eld B0 corresponding to ε = 0 is in
general shifted with respect to the magnetic �eld Br which reveals the divergent value of the
scattering length [16].

In the following we will focus on a Feshbach resonance observed in a 87Rb condensate at the
magnetic �eld Br = 685.43 G. The resonance width is ∆B = 0.017 G, the background scattering
length a = 5.7 nm and ∆µ̃ = 1.4µB [52], where µB is the Bohr magneton. Atoms are prepared
in an |f,mf〉 = |1, 1〉 entrance channel which is the hyper�ne ground state of 87Rb.

We assume a quasi one-dimensional trap, i.e. the transverse con�nement so strong that
transverse dynamics is reduced to the lowest state in the trap. We take harmonic trapping
potentials with frequencies ωm,⊥ = ωa,⊥ = 2π × 1500 Hz and ωm,x = ωa,x = 2π × 10 Hz 1.

With the chosen trap parameters the system is e�ectively one-dimensional. Throughout
the chapter we will apply the mean �eld approximation replacing the quantum �elds in their
equations of motion by their expectation values φa =

〈
ψ̂a

〉
, φm =

〈
ψ̂m

〉
. In the units

E0 = h̄ωa,x, x0 =
√

h̄/mωa,x, τ0 = 1/ωa,x, (5)

the dimensionless stationary mean �eld equations are the following

µφa =

[
−1

2

∂2

∂x2
+

1

2
x2 + λaNφ2

a + λamNφ2
m

]
φa + α

√
2Nφmφa

2µφm =

[
−1

4

∂2

∂x2
+ x2 + ε + λmNφ2

m + λamNφ2
a

]
φm + α

√
N

2
φ2

a, (6)

where µ is the chemical potential of the system that stems from the conservation of the total
number of atoms N in the system. Searching only for ground states we have restricted to real

1The same trap frequencies for atoms and molecules are chosen for simplicity. Di�erent frequencies in the
transverse directions would lead only to modi�cation of the e�ective coupling constants in the 1D equations (6).
We will see that di�erent frequencies in the longitudinal direction do not introduce any noticeable changes in
shapes of solitons as long as the widths of the soliton wavepackets are much smaller than the characteristic length
of the traps.
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wavefunctions. The magnetic �eld detuning in the one-dimensional situation is modi�ed by the
trap frequencies ε = E + (ωa,⊥ − 2ωm,⊥)/ωa,x = E − 150. The wave-functions φa(x) and φm(x)
are normalized so that

∫
dx

(
|φa(x)|2 + 2|φm(x)|2

)
= 1. (7)

Equations (6) constitute a Feshbach resonance version of the Gross�Pitaevskii equation [1, 2, 3,
4], commonly used for describing almost perfect condensates, i.e. condensates with negligible
depletion e�ects [5]. The model (6) neglects also e�ects of particle losses due inelastic collisions.
They could be introduced via imaginary loss coe�cients [53], provided there is an experimental
analysis of losses in the vicinity of the Feshbach resonance of interest. The dimensionless 1D cou-
pling constants can be calculated integrating out transverse wavefunctions which were assumed
to be ground states of the trapping potentials. For the present choice of the system parameters
they have the values

λa = λm = λam ≈ 0.505, α ≈ 41.0. (8)

The dynamics of the system we will study using time dependent mean �eld equations

i
∂φa

∂t
=

[
−1

2

∂2

∂x2
+

1

2
x2 + λaN |φa|2 + λamN |φm|2

]
φa + α

√
2Nφmφ∗a

i
∂φm

∂t
=

[
−1

4

∂2

∂x2
+ x2 + ε + λmN |φm|2 + λamN |φa|2

]
φm + α

√
N

2
φ2

a. (9)

2 Soliton-like solutions
A soliton is a special solution to a nonlinear equation, which preserves its shape during time
evolution and reveals elastic scattering from another function of its type. Analytic solitonic
solutions can be found only for a special choice of the system parameters. Wavefunctions found
in other cases numerically, that do not spread in time evolution, we will call soliton-like solutions.
We will not study soliton collisions. One can expect that their scattering properties will depend
on an amount of the energy involved in a collision, i.e. whether it is high enough to produce also
transverse excitations.

2.1 Bright soliton solutions
In the absence of trapping potentials and elastic interparticle interactions the set of equations
(6) has an analytical solitonic solution

φa(x) = ± A

cosh2
(

x
l

) , φm(x) = − A

cosh2
(

x
l

) , (10)
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Figure 1: Ground states of the coupled system for N = 100 (a) and N = 1000 (b). In both
panels φa are marked in black and φm in red. Ground states of the system (6) found numerically
for ε = −900.53 (a) and ε = −1505.25 (b) are drawn with solid lines. Analytic solutions (10) are
marked with dashed and variational functions (13) with dotted lines. For N = 100 the gaussian
approximation is indistinguishable from the exact eigenstate.

where

A =
3√

2Nαl2
, l =

(
18

α2N

)1/3

, (11)

and the chemical potential µ = −2/l2. It reveals an equal number of atoms and molecules in the
system and is valid for ε = −6/l2. Solitons (10) have been investigated in nonlinear optics [54]
where a classi�cation of solitonic solutions to a set of equations describing a parametric waveguide
was provided [55], and it was shown that the same model can describe coupled atomic-molecular
condensates [56]. Solutions (10) exist also for a problem of an impurity self-localization in a
BEC [57].

Time propagating parametric solitons of width l are given by a solution to the time dependent
equations (9)

φa(x, t) = ±Aeivxe−i(v2+µ)t

cosh2
(

x−vt
l

) , φm(x, t) = −Ae2ivxe−2i(v2+µ)t

cosh2
(

x−vt
l

) , (12)

where v is a propagation velocity.
We have solved the set of equations (6) and (9) numerically and found soliton-like solutions

for a broad range of detuning values ε, in general having unequal atom and molecule numbers.
Moreover, soliton-like solutions exist also in an interacting system in a trap. The repulsive
interactions given by positive values of λa, λm and λam compete with the e�ectively attracting
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transfer term. For small particle numbers N = 100, 1000 the ground states are hardly in�uenced
by the trap. For particle numbers of the order of N = 10000 and higher the shape of a ground
state is determined mainly by the interplay between the repulsive interactions and the trapping
potential, and is modi�ed by the transfer term. Neglecting the kinetic energy would correspond
to the Thomas-Fermi approximation [4].

We have also performed a Gaussian variational analysis [45] taking into account the values
(8) and minimizing the system energy for states of the form

φa(x) = Ãe−ãx2

, φm(x) = M̃e−m̃x2

. (13)

Requiring the same fraction of atoms and molecules, for N = 100 (N = 1000), we obtain
Ã = 1.77, ã = 139.54, M̃ = 1.70, m̃ = 117.43, ε = −900 (Ã = 1.08, ã = 19.58, M̃ = 0.97,
m̃ = 12.47, ε = −1429).

In Fig. 1 we compare exact ground states of the equations (6) found for coupling constants
(8) with the solitonic solutions (10) and the variational functions (13). We can see that for a
small particle number (N = 100) it is the attractive transfer term that dominates, for moderate
N = 1000 the solitonic approximation is too crude, but the gaussian functions work reasonably
well in both cases. Note that the widths of the states are much smaller than the harmonic
oscillator ground state width, which indicates that even for a very small particle number the
nonlinearities in Eqs. (6) determine the shapes of the states. We have veri�ed the solitonic
character of exact solutions performing time evolution in the presence of the transversal trap
and with the axial one turned o�.

We have taken λm = λa = λam for simplicity. The studies of an optical resonance in 87Rb
atoms [58] indicate that the atomic-molecular elastic interactions strongly depend on the internal
state of a molecule and can even be attractive (λam < 0). Negativity of the latter coupling
constant should in fact make the solitonic behaviour even more pronounced. Gaussian variational
calculation based upon (13) con�rms the existence of soliton-like states for λm ∈ (0, 2λa) and
λam ∈ (−2λa, 2λa) (for N = 1000), which shows that the choice of equal coupling constants is
not essential in order to deal with soliton-like solutions.

All stationary states of the Gross-Pitaevskii equations (6) have been obtained numerically by
means of the imaginary time evolution method, which implies that the obtained ground states
are dynamically stable.

2.2 Two bright solitons and dark soliton solutions
In the absence of trapping potentials and interparticle interactions an asymptotic double soliton
solution can be found

φa(x) =
A

cosh2
(

x−q
l

) ± A

cosh2
(

x+q
l

)

φm(x) = − A

cosh2
(

x−q
l

) − A

cosh2
(

x+q
l

) , (14)
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Figure 2: Double bright soliton solutions in a trapped interacting system for N = 100 (a) and
N = 1000 (b), ε = 0. In both panels φa are represented by black solid lines and φm by red
dashed ones.

valid for q À l, where

l =
(

36

α2N

)1/3

, A =
3√

2Nαl2
, (15)

and µ = −2/l2, ε = −6/l2. Due to symmetry of Eqs. (6) the atomic wavefunctions can be even
or odd, whereas the molecular ones must be even (because of the φ2

a term).
Using the �rst excited state of the harmonic potential as an initial state for imaginary time

evolution makes it possible to numerically �nd stationary states of the form (14). We have found
double solitonic states also in the interacting system (8) in the trap, and for unequal atom and
molecule numbers, see Fig. 2. Note that the widths of the states in panel (a) are much smaller
than the �rst excited state width of the harmonic oscillator, which indicates that also here it is
the nonlinearities that determine the shapes of the states.

With an increasing number of particles the healing length de�ned as

ξ =
1√

λaN (|φa|2 + |φm|2)
, (16)

becomes much smaller than the spatial extent of the two-solitonic state. This, in addition to the
phase �ip along the atomic wavefunction makes density pro�les resemble those of dark solitons
known for condensates with repulsive interactions [41, 42]. Applying in (6) the Thomas Fermi
approximation and using dark soliton pro�les, an exact eigenstate can be approximated by the
wavefunctions

φa(x) ≈ φTF
a (x) tanh

(
x

ξ

)
,
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Figure 3: Dark soliton approximation (dashed lines) to eigenstates of (6) (solid lines) for N = 105.
Panel (a) shows the atomic whereas panel (b) the molecular wavefunctions. The insets show a
central region of the order of the healing length.

φm(x) ≈ φTF
m (x)

∣∣∣∣∣tanh

(
x

ξ

)∣∣∣∣∣ , (17)

where

φTF
m (x) =

γ

2
−

√
γ2

4
+

2µ− x2

6λaN
,

φTF
a (x) =

√√√√2µ− x2

2λaN
−

√
2α

λa

√
N

φTF
m (x)− [φTF

m (x)]2,

γ =

√
2

3α
√

N

(
x2 − 2µ

2
− α2

λa

)
. (18)

The corresponding chemical potential can be found from the normalization condition (7) (see
Figure 3).

2.3 Center of mass oscillations in a trap
In the case of a harmonic trap (with equal trapping frequencies for atoms and molecules), having
any solutions φa0(x) and φm0(x) of the time-independent problem (6), corresponding to the
chemical potential µ, one can �nd harmonic oscillations of the center of mass of the particle
cloud described by translated functions φa0(x− q) and φm0(x− q). The time evolution is given
by

φa(x, t) = φa0(x− q)e−iµtei[q̇x−S(q)],
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φm(x, t) = φm0(x− q)e−i2µte2i[q̇x−S(q)], (19)

where

S(q) =
1

2

∫ t

t0
dt′

[
q̇2(t′)− q2(t′)

]
, (20)

and

d2q

dt2
+ q = 0. (21)

The proof can be done by direct substitution of (19) into (9).
This indicates that, similarly as in the case of the Gross-Pitaevskii equation for a single

condensate in a harmonic trap, time evolution of the translated stationary solutions reveals
harmonic oscillations of the center of mass of the particle cloud.

3 Simulations of an experimental production
Molecule observation in magnetically tunable Feshbach resonances can be achieved using two
experimental schemes. If we start with a pure atomic condensate, a rapid change of the magnetic
�eld towards its resonant value and back produces a quantum superposition state of atoms and
molecules, i.e. an atom - molecule coherent state. Consequently a number of atoms in the atomic
fraction oscillates with a frequency corresponding to the molecular binding energy [29, 50, 59]. In
the other technique the magnetic �eld is slowly varied in the direction from negative to positive
scattering lengths so that an initial state adiabatically follows ground states close to a resonance
[30, 31, 50, 60]. For the Feshbach resonance under study this requires a magnetic �eld to be
rapidly changed to an above resonance value (where a < 0) before an actual molecule production.

3.1 Production of soliton-like ground states
We assume that the condensate has already been prepared in its ground state far above the
resonance, i.e. B À B0, where the amount of molecules is very small. The timescale of a molecule
production has to be carefully chosen. It should be long enough to preserve the adiabaticity so
that we would end up in a solitonic ground state, but also short enough in order not to make
loss processes dominant.

We consider a 87Rb condensate around the Feshbach resonance at Br = 685.43 G and of
the width ∆B = 0.017 G. We have studied production of soliton-like states for N in the range
between 100 and 10000. As initial states we took ground states of the model (6) for ε = 3331 and
performed time integration of equations (9) assuming di�erent ramp speeds of linear magnetic
�eld changes. The �nal detuning value was εend = 0 (so the total change in the magnetic �eld
value was B = ∆B = 0.017 G), which was motivated by smaller expected losses for the magnetic
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Figure 4: Density pro�les of solitons produced after 95.5 ms of the magnetic �eld sweeping for
N = 100 (a) and after 93.8 ms for N = 1000 (b) � solid lines. Dashed lines show exact ground
states corresponding to the magnetic �eld at the end of the sweeping. In each panel, the black
curves represent atoms and the red ones molecules. The norm in the time evolution is preserved
on the level of 10−5. The simulated state contains tiny excitations outside the center, not shown
in the Figure.

�eld o� the resonance center (i.e. Bfinal > Br) and the fact that ground states for ε = 0 already
reveal soliton-like behaviour. The fraction of atoms in the initial states, ∫ |φa|2, was 99% and
93% for N = 100 and N = 10000, respectively.

The square overlap between �nal states from the time evolution and the corresponding
ground states in the trap depends nonlinearly on the evolution time. We have found that it
approaches unity for evolution times longer than 90 ms, which should be an experimentally ac-
cessible timescale [31]. Figure 4 shows simulated soliton-like states that reveal square overlaps
0.94 and 0.92 with exact ground states for the �nal detuning value, for N = 100, tevol = 95.5 ms
and N = 1000, tevol = 93.8 ms, respectively. For N = 10000 the shortest evolution time that
results in a reasonably high squared overlap (i.e. 0.83) is 90.7 ms.

Evolution times shorter than the ones mentioned above might also prove useful. Final states
after such nonadiabatic evolution reveal a soliton train structure similar to soliton trains observed
in an attractive 7Li [40]. Figure 5 shows a state produced during 25.5 ms in a system of N = 1000
atoms. Actually stationary multi-peak soliton solutions should exist for an arbitrary number of
peaks. Unfortunately it is not possible to obtain them by means of the imaginary time evolution
method. The symmetry properties of the set (6) make an initial state collapse to the ground or
the �rst excited state having the number of peaks equal to 1 and 2, respectively. The state in
Fig. 5 contains one or several excited soliton-like states in the 1D trapping potential.

Solitons created in a quasi-1D trap can be experimentally veri�ed when an axial trap is turned
o� and the measured wavepackets propagate without spreading [39, 40]. We have con�rmed that
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Figure 5: Soliton train obtained for N = 1000 after 25.5 ms magnetic �eld sweeping. Solid black
line represents the atomic while the dashed red one the molecular density.

soliton-like states produced in the simulations (such as those presented in Fig. 4) preserve their
shapes without axial trapping within the time 100 ms that was chosen in the simulations.

3.2 Atom losses
One of the signatures of a Feshbach resonance is an enhanced loss rate of atoms when approaching
a resonance value [17]. Atom loss processes can be due to two or three body collisions. Two
body inelastic collisions which are signi�cant in a 85Rb Feshbach resonance [61] are absent in
Feshbach resonances of 87Rb atoms in the |1, 1〉 ground state, which is the case here. Three
atoms can scatter to form a molecule and an atom carrying away the excess energy. Both can
escape from the trap if their kinetic energy is high enough [62]. Molecules produced by means
of a Feshbach resonance are often produced in high vibrational states, which makes them prone
to deexcitation or dissociation to noncondensed atoms and possibly a trap escape [63, 64].

Experimental analysis of atom losses is often not straightforward since usually only atoms can
be detected. Conversion of atoms into molecules at the broadest resonance in 87Rb, subsequent
separation of the two species by means of a Stern-Gerlach �eld (i.e. a magnetic �eld gradient)
and conversion back, reveals a 63% atom loss due to inelastic collisions [31]. In the systematic
studies [52] the fraction of atoms lost during a 50 ms hold time at the center of Br = 685.43 G
resonance is 78%. There, however, the detection scheme is di�erent. After the 50 ms hold time
the magnetic �eld is rapidly switched o�, the condensate is released from a trap and after another
14 ms the atomic fraction is detected. Most probably not all molecules formed in the experiment
are dissociated back to atoms, therefore the estimated loss rate is an upper limit to an actual
inelastic loss rate. We estimate central densities of particles at resonance in [52] and in our
simulations to be of the same order of magnitude, 1015 cm−3. This is because on one hand we
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have taken much smaller particle numbers (maximum of 104 compared to N = 4× 106 in [52]),
but the strong transverse con�nement necessary to achieve solitons increases the density with
respect to the 3D situation in [52]. A possible way to reduce the peak density could be to reduce
the transverse con�nement as much as possible. We have checked that even in a transverse trap
with a frequency 2π× 200 Hz the condition for a quasi-1D con�guration is ful�lled. The crucial
idea of how to reduce the losses is to �nish the time evolution o�-resonance, at a magnetic �eld
already supporting soliton-like states.

Actually, if atoms escaping from a trap do not excite the trapped mixture, solitons can exist
even in the presence of losses. This is because the attractive �solitonic� coupling comes from the
transfer term scaling as

√
N whereas interactions scale as N with the total particle number. The

focusing e�ect of the former should in fact be enhanced by losses.
In conclusion to this section, inelastic losses although signi�cant close to the Feshbach res-

onance that we are studying, should not prohibit the opportunity of observing atom-molecule
solitons. More experimental data and precise theoretical models would be necessary to study
the losses near the Feshbach resonance that we have chosen.

4 Time evolution in an inhomogeneous magnetic �eld
As already mentioned in the previous section, a magnetic �eld gradient is often used to separate
atoms and molecules, such as it was done in a 3D setup [31]. We will show that the separation
e�ect resulting from di�erent magnetic moment values can be suppressed by the strong coupling
in (6) that is responsible for the solitonic states. In the present section we will assume a more
general version of the time evolution equations (9). The magnetic �eld is now given by two
parameters, B, that tells us how far from the resonance we are, and Bgrad which is responsible
for the magnetic �eld gradient. Using the units (5) we have

i
∂φa

∂t
=

[
−1

2

∂2

∂x2
+

1

2
x2 +

µ̃a

E0

(Bgradx0x + B) + λaN |φa|2 + λamN |φm|2
]
φa + α

√
2Nφmφ∗a

i
∂φm

∂t
=

[
−1

4

∂2

∂x2
+ x2 +

µ̃m

E0

(Bgradx0x + B) + λmN |φm|2 + λamN |φa|2
]
φm + α

√
N

2
φ2

a. (22)

Note that equations (9) correspond to the situation where Bgrad = 0. It is possible to transform
these equations so that the magnetic �eld is present only in one of them. First, a coordinate
transformation x → x + βa can be applied. Then, phases of the wavefunctions are adjusted
according to

φa → φa exp
(

i

2

(
β2

a −
µ̃aB

E0

)
t
)

, φm → φm exp
(
i
(
β2

a −
µ̃aB

E0

)
t
)

, (23)

where βa = x0µ̃aBgrad/E0, and the equations (22) take �nally the form

i
∂φa

∂t
=

[
−1

2

∂2

∂x2
+

1

2
x2 + λaN |φa|2 + λamN |φm|2

]
φa + α

√
2Nφmφ∗a
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Figure 6: Time evolution of an initial soliton-like state for N = 100 in a magnetic �eld gradient
Bgrad = 1 G/cm, for the detuning εgrad = 2216 (Eq. (26)). Panel (a) shows the atomic wave-
packet, whereas panel (b) the molecular one. The time t = 1 corresponds to 15.9 ms.

i
∂φm

∂t
=

[
−1

4

∂2

∂x2
+ x2 + βx + εgrad + λmN |φm|2 + λamN |φa|2

]
φm + α

√
N

2
φ2

a, (24)

where

β =
x0∆µ̃

E0

Bgrad, (25)

and the parameter

εgrad = ε−
(

x0

E0

Bgrad

)2

µ̃a∆µ̃, (26)

can be regarded as an e�ective detuning, modi�ed with respect to the case without gradient
(given by ε). As initial states for the time evolution without the axial trapping but with the
transverse traps present we have taken ground states of the system (6) for ε = 0 and particle
numbers N = 100 and N = 1000. As we can see from (26) a sudden turn-on of a 1 G/cm magnetic
�eld gradient modi�es the detuning to εgrad = 2216. We have studied the time evolution with
that value, but checked also what happens for a magnetic �eld such that εgrad = 0.

In the former case molecules are generally converted back to atoms, see Fig. 6 and 7, which is
not surprising because of the positive value of the e�ective detuning. On the evolution timescale
tevol = 15.9 ms, almost all of the initial N = 100 particles end up as individual atoms, the
attractive coupling provided by the atom-molecule transfer term practically disappears, and
consequently the atomic wavefunction φa begins to spread. For N = 1000 during the same
evolution time the coupling term is e�ectively stronger and its competition against the gradient
results in the wavefunction splitting and soliton train production (see Fig. 7). Similar splitting
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Figure 7: Time evolution of an initial soliton-like state for N = 1000 in an inhomogeneous
magnetic �eld Bgrad = 1 G/cm, for the detuning εgrad = 2216 (see Eq. (26)). Panel (a) shows
the atomic wave-packet, whereas panel (b) the molecular one. The time t = 1 corresponds to
15.9 ms.
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Figure 8: Time evolution of an initial soliton-like state for N = 1000 in a magnetic �eld gradient
Bgrad = 1 G/cm, for the detuning εgrad = 0 (see Eq. (26)). Panel (a) shows the atomic wave-
packet, whereas panel (b) the molecular one. The time t = 1 corresponds to 15.9 ms.
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of solitonic wavepackets has been analyzed in the case of a single component BEC in the presence
of the gravitational �eld [65].

In the case with εgrad = 0 we are e�ectively on the molecular side of the resonance, the
transfer (coupling) term dominates over the splitting e�ect caused by the gradient, and as can
be seen in Figure 8, the soliton-like state propagates without loosing its shape or splitting to
smaller wavepackets. A closer look on the Figure 8 reveals a slow conversion of atoms into
molecules.

For a higher �eld gradient than the value chosen in the simulations shown in �gures 6-8 or
for slightly di�erent values of the elastic interaction coupling constants λa, λm, λam, we have
observed qualitatively similar behaviour, i.e. no separation to atomic and molecular clouds, as
well as the relevance of the εgrad value. We attribute this behaviour to the strongly con�ned
quasi-1D geometry.
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Part III
Density �uctuations and phase separation
in a two component BEC
Soon after �rst experiments that produced a Bose Einstein condensate [66, 67, 68] atoms in two
di�erent hyper�ne states were simultaneously trapped in a magnetooptical trap and subsequent
cooling produced a double condensate [69]. Application of optical traps made it possible to
investigate spinor condensates where spin changing collisions do not lead to atom escape from
a trap [70]. With the additional degree of freedom spin domains could be observed [70, 71] and
various magnetic phases in optical lattice potentials were studied theoretically [72]. Collective
oscillatory modes were studied in a condensate composed of two di�erent atomic species produced
by means of sympathetic cooling [73]. Quantum phase transitions in Bose-Fermi mixtures were
observed [74, 75].

In a double condensate system atom interferometry experiments were performed [76] where
dynamics of the relative phase was investigated [76, 77]. It was shown that two condensates can
repel each other and spatially separate, one forming a shell around the other [78]. The binary
atomic condensate systems and phase separation were discussed within the mean �eld theory
[79, 80, 81] and dynamical instabilities leading to phase separation were identi�ed from linearized
equations of motion [82]. Phase separated con�gurations breaking the symmetry of a trap were
also found [83, 84, 85, 86].

Ideal condensates are su�ciently well described within the mean �eld theory and a corre-
sponding Gross-Pitaevskii equation [4]. The Bogoliubov theory [87] is usually applied (i) to test
for the dynamical stability of mean �eld solutions; (ii) to �nd collective excitations such as dipole
oscillations in a trap [4]; (iii) to study a quasiparticle excitation spectrum; (iv) and �nally to
check the initial assumption of all particles occupying the same single particle mode.

In the Bogoliubov theory small quantum corrections to a mean �eld solution are introduced.
A key idea of the original Bogoliubov theory [87] is a U(1) symmetry breaking assumption that
an atomic �eld operator has a nonzero expectation value. Such a coherent state involves super-
position of states with di�erent numbers of atoms, which is in principle far from the experimental
reality. Moreover, a careful analysis shows that it involves an eigenvalue problem of an operator
which is not diagonalizable. Consequently the theory must break down in �nite time [51, 88].

A number conserving version of the Bogoliubov theory overcomes the above problems [89,
90, 91]. It should give the same results for large particle numbers. There are, however, examples
where the N -conserving theory works in a regime of the standard approach breakdown [92].

Generalization of the Bogoliubov theory to homogeneous double condensate systems was
done in [93, 94] and for the number conserving version in [95].

In the present chapter we will study a homogeneous two component condensate using the
number conserving Bogoliubov theory. We will derive the system ground state in the particle
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representation in the presence of intra- and intercomponent interactions. Based upon the Bo-
goliubov vacuum state we will show that in a �nite system the phase separation is followed by
signi�cant long wavelength density �uctuations.

5 Two component Bose Einstein condensate
We consider a two component Bose-Einstein condensate formed by a mixture of two kinds of
atoms (or the same atoms in two di�erent internal states), i.e. Na atoms of type a and Nb atoms
of type b [96]. The Hamiltonian of the system reads

Ĥ =
∫

d3r

(
ψ̂†a

[
− h̄2

2ma

∇2 + Va(~r) +
ga

2
ψ̂†aψ̂a

]
ψ̂a

+ψ̂†b

[
− h̄2

2mb

∇2 + Vb(~r) +
gb

2
ψ̂†bψ̂b

]
ψ̂b

+gψ̂†aψ̂
†
bψ̂aψ̂b

)
, (27)

where ma, mb are the particle masses, Va(~r), Vb(~r) stand for trapping potentials and

ga =
4πh̄2aa

ma

, gb =
4πh̄2ab

mb

, g = 2πh̄2aab

(
1

ma

+
1

mb

)
, (28)

where aa, ab, aab are the scattering lengths. Similarly as in the previous chapter we assume that
interparticle interactions are given by the contact potential [51].

The number conserving Bogoliubov theory [51, 89, 95] assumes the following decomposition
of the bosonic �eld operators

ψ̂a(~r) = φa0(~r)â0 + δψ̂a(~r), ψ̂b(~r) = φb0(~r)b̂0 + δψ̂b(~r), (29)

where we separate the operators â0 and b̂0 that annihilate atoms in modes φa0 and φb0, respec-
tively, from quantum corrections δψ̂a(~r), δψ̂b(~r) that are assumed small. Consequently the modes
φa0 and φb0 are macroscopically occupied by atoms

〈â†0â0〉 ≈ Na, 〈b̂†0b̂0〉 ≈ Nb. (30)

The perturbation expansion of the Hamiltonian in powers of δψ̂a and δψ̂b [95] leads to the
following results. Minimizing the system energy in the zero order we obtain coupled Gross-
Pitaevskii equations [96]

Ha
GP φa0 = 0, Hb

GP φb0 = 0, (31)

where

Ha
GP = − h̄2

2ma

∇2 + Va + gaNa|φa0|2 + gNb|φb0|2 − µa,
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Hb
GP = − h̄2

2mb

∇2 + Vb + gbNb|φb0|2 + gNb|φb0|2 − µb. (32)

It is possible then to �nd the single particle modes macroscopically occupied by atoms together
with the corresponding chemical potentials µa and µb. The �rst order terms disappear and the
second order terms of the expansion, the actual Bogoliubov theory, will be discussed in the
following section.

5.1 Number conserving Bogoliubov theory
Following [89, 95] we can write an e�ective second order Hamiltonian as

Ĥeff ≈ 1

2

∫
d3r

(
Λ̂†a,−Λ̂a, Λ̂

†
b,−Λ̂b

)
L




Λ̂a

Λ̂†a
Λ̂b

Λ̂†b




, (33)

where

L =




Ha
GP + gaNaQ̂a|φa0|2Q̂a gaNaQ̂aφ2

a0Q̂∗a g
√

NaNbQaφa0φ∗b0Qb g
√

NaNbQaφa0φb0Q∗b
−gaNaQ̂∗aφ∗2a0Q̂a −Ha

GP − gaNaQ̂∗a|φa0|2Q̂∗a −g
√

NaNbQ
∗
aφ∗a0φ∗b0Qb −g

√
NaNbQ

∗
aφ∗a0φb0Q∗b

g
√

NaNbQbφ
∗
a0φb0Qa g

√
NaNbQbφa0φb0Q∗a Hb

GP + gbNbQ̂b|φb0|2Q̂b gbNbQ̂bφ
2
b0Q̂∗b

−g
√

NaNbQ
∗
bφ∗a0φ∗b0Qa −g

√
NaNbQ

∗
bφa0φ∗b0Q∗a −gbNbQ̂

∗
bφ∗2b0 Q̂b −Hb

GP − gbNbQ̂
∗
b |φb0|2Q̂∗b


 , (34)

and

Q̂a = 1− |φa0〉〈φa0|, Q̂b = 1− |φb0〉〈φb0| (35)

are projection operators to �non-condensate� subspaces. Diagonalization of the e�ective Hamil-
tonian (33) amounts to solving an eigenproblem of the non-hermitian operator L, so-called
Bogoliubov-de Gennes equations [51]. The single particle excitation operators creating an atom
out of a condensate mode are given by

Λ̂†a(~r) =
â0√
Na

δψ̂†a(~r), Λ̂†b(~r) =
b̂0√
Nb

δψ̂†b(~r), (36)

and ful�l the following commutation relations

[Λ̂a(~r), Λ̂
†
a(~r

′)] ≈ 〈~r|Q̂a|~r ′〉, [Λ̂b(~r), Λ̂
†
b(~r

′)] ≈ 〈~r|Q̂b|~r ′〉. (37)

In order to de�ne the Bogoliubov transformation we will take advantage of two symmetry
properties of the operator L, analogous to a single condensate case [51, 89]

u1Lu1 = −L∗, u3Lu3 = L†, (38)
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where

u1 =

(
σ1 0
0 σ1

)
, u3 =

(
σ3 0
0 σ3

)
, (39)

and

σ1 =

(
0 1
1 0

)
, σ3 =

(
1 0
0 −1

)
, (40)

are the Pauli matrices. Now suppose that all eigenvalues of the L operator are real. This is
in fact an important assumption of dynamical stability [51] that should be veri�ed for a given
system. The symmetries (38) imply that if

|ΨR
n 〉 =




|ua
n〉

|va
n〉

|ub
n〉

|vb
n〉


 , (41)

is a right eigenvector of L to an eigenvalue En, then |ΨL
n〉 = u3|ΨR

n 〉 is a left eigenvector to the
same eigenvalue En. Simultaneously u1|ΨR∗

n 〉 is a right eigenvector to an eigenvalue −En.
There are four eigenvectors of L corresponding to a zero eigenvalue,




|φa〉
0
0
0


 ,




0
|φ∗a〉
0
0


 ,




0
0
|φb〉
0


 ,




0
0
0
|φ∗b〉


 . (42)

The other eigenstates of L can be divided into two families "+" and "−", according to the sign
of a norm de�ned as

〈ΨR
n |u3|ΨR

n′〉 = ±δn,n′ . (43)

Having a complete set of eigenvectors of L we obtain an important completeness relation

1̂ =
∑

n∈”+”




|ua
n〉

|va
n〉

|ub
n〉

|vb
n〉




(
〈ua

n|,−〈va
n|, 〈ub

n|,−〈vb
n|

)
+

∑

n∈”+”




|va∗
n 〉

|ua∗
n 〉

|vb∗
n 〉

|ub∗
n 〉




(
−〈va∗

n |, 〈ua∗
n |,−〈vb∗

n |, 〈ub∗
n |

)

+




|φa0〉〈φa0| 0 0 0
0 |φ∗a0〉〈φ∗a0| 0 0
0 0 |φb0〉〈φb0| 0
0 0 0 |φ∗b0〉〈φ∗b0|


 . (44)
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The eigenvectors of the L operator de�ne the Bogoliubov transformation



Λ̂a

Λ̂†a
Λ̂b

Λ̂†b




=
∑

n∈”+”




ua
n

va
n

ub
n

vb
n


 ĉn +

∑

n∈”+”




va∗
n

ua∗
n

vb∗
n

ub∗
n


 ĉ†n, (45)

where quasi-particle excitations are described by operators that approximately ful�ll the bosonic
commutation relation [ĉn, ĉ†n′ ] ≈ δn,n′ . Employing the Bogoliubov transformation (45) we can
diagonalize the e�ective Hamiltonian (33) to a simple form

Ĥeff ≈
∑

n∈”+”

Enĉ†nĉn, (46)

where En are energies of the "+" family solutions to the Bogoliubov-de Gennes equations,
{ua

n, va
n, u

b
n, v

b
n}. The quasi-particle excitation operators can be written as

ĉ†n = 〈ua
n|Λ̂†a〉 − 〈va

n|Λ̂a〉+ 〈ub
n|Λ̂†b〉 − 〈vb

n|Λ̂b〉, (47)

and their application, due to (36), does not change the particle number, contrary to the standard
Bogoliubov theory.

5.2 Bogoliubov ground state in a particle representation
Ground state of the Hamiltonian up to the second order of the perturbative expansion (46)
reveals no quasi-particle excitations

ĉn|0B〉 = 0, (48)

for all n ∈ ” + ”. Excited states can be generated acting with quasi-particle creation operators
ĉ†n on the Bogoliubov vacuum state |0B〉. The quasi-particle representation (46) is natural to
represent system eigenstates within the Bogoliubov theory. It is also suitable to �nd low order
correlation functions. The original particle representation is, however, much more convenient if
we need predictions for density measurements. Simulations of atomic positions in a cloud can
provide us with information about possible density �uctuations.

The Bogoliubov ground state is a certain particle state so we assume that it can be obtained
acting with some particle creation operators d̂†a and d̂†b on the particle vacuum

|0B〉 ∼
(
d̂†a

)Ma
(
d̂†b

)Mb |0〉. (49)

If we require that d̂†a and d̂†b commute with all quasi-particle annihilation operators [92],

[ĉn, d̂
†
a] = 0, [ĉn, d̂†b] = 0, (50)
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then the Bogoliubov ground state is indeed annihilated by all quasi-particle annihilation opera-
tors,

ĉn

(
d̂†a

)Ma
(
d̂†b

)Mb |0〉 =
(
d̂†a

)Ma
(
d̂†b

)Mb
ĉn|0〉 = 0. (51)

In the following we will show that the set of equations (50) is solved by particle creation operators
of the form

d̂†a = â†0â
†
0 +

∞∑

α,β=1

Za
αβâ†αâ†β, d̂†b = b̂†0b̂

†
0 +

∞∑

α,β=1

Zb
αβ b̂†αb̂†β, (52)

where â†α (b̂†α) are bosonic particle creation operators that create atoms in modes φaα (φbα)
orthogonal to the condensate wavefunction φa0 (φb0). Za

αβ and Zb
αβ are symmetric matrices to

be found.
The operator d̂†a that accounts for creating pairs of atoms in the Bogoliubov vacuum was

introduced in a single condensate case in a variational approximation [96]. Later it was proved
to produce an exact Bogoliubov vacuum both in homogeneous and inhomogeneous condensates
[92, 97]. In a two component condensate the Bogoliubov state (49) was used in a system of two
independent (i.e. noninteracting) condensates [98]. We will show that it can be applied also to
a system with nonzero intercomponent interactions.

Substituting the ansatz (52) into (50) we obtain equations (see also (47))

〈va
n|φ∗aα〉 =

∞∑

β=1

〈ua
n|φaβ〉Za

βα, 〈vb
n|φ∗bα〉 =

∞∑

β=1

〈ub
n|φbβ〉Zb

βα, (53)

which, when multiplied by 〈φaγ|ua
n〉 and 〈φbγ|ub

n〉, respectively, and summed over n, are trans-
formed to

〈φaγ|Γ̂a|φ∗aα〉 =
∞∑

β=1

〈φaγ|Ûa|φaβ〉Za
βα

〈φbγ|Γ̂b|φ∗bα〉 =
∞∑

β=1

〈φbγ|Ûb|φbβ〉Zb
βα, (54)

where Γ̂a, Γ̂b, Ûa and Ûb are built with quasiparticle modes

Γ̂a =
∑

n∈”+”

|ua
n〉〈va

n|, Γ̂b =
∑

n∈”+”

|ub
n〉〈vb

n|,

Ûa =
∑

n∈”+”

|ua
n〉〈ua

n|, Ûb =
∑

n∈”+”

|ub
n〉〈ub

n|. (55)

The completeness relation (44) implies that the Γ̂a and Γ̂b operators are symmetric and that

Ûa =
∑

n∈”+”

|va∗
n 〉〈va∗

n |+ 1̂a
⊥, Ûb =

∑

n∈”+”

|vb∗
n 〉〈vb∗

n |+ 1̂b
⊥, (56)
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where 1̂a
⊥ and 1̂b

⊥ are identity operators in subspaces orthogonal to condensate wavefunctions φa0

and φb0, respectively. We can write a reduced single particle density matrix for the component
a (and b analogously)

〈0B|ψ̂†a(~r)ψ̂a(~r
′)|0B〉 = Naφ

∗
a0(~r)φa0(~r

′) +
∑

n∈”+”

va
n(~r)va∗

n (~r ′). (57)

Comparing the �rst of the equations (56) with (57) we can see that Ûa is diagonal in a basis of
single particle density matrix eigenstates φaα. Similarly Ûb in a basis built with φbα. Then one
immediately obtains solutions for the Za,b

αβ matrices

Za
αβ =

〈φaα|Γ̂a|φ∗aβ〉
dNa

α + 1
, Zb

αβ =
〈φbα|Γ̂b|φ∗bβ〉

dN b
α + 1

, (58)

where dNa,b
α are eigenvalues of the single particle density matrices, that is numbers of atoms

depleted from the condensate wavefunctions. For the component a we have

〈0B|ψ̂†a(~r)ψ̂a(~r
′)|0B〉 ≈ Naφ

∗
a0(~r)φa0(~r

′) +
∞∑

α=1

dNa
αφ∗aα(~r)φaα(~r ′). (59)

Note that the matrices Za
αβ, Zb

αβ, 〈φaα|Γ̂a|φ∗aβ〉 and 〈φbα|Γ̂b|φ∗bβ〉 are symmetric. The ansatz (52) is
therefore self-consistent if the operators Γ̂a,b are also diagonal in a basis built with single particle
density matrix eigenvectors. We have proved analytically that this is the case in a homogeneous
system, as well as for a two component BEC in a double well trapping potential. We have also
con�rmed that numerically for a system trapped in a spherically symmetric trap.

The �nal form of the solution for the Bogoliubov vacuum state in the particle representation
is

|0B〉 ∼
[(

â†0
)2

+
∞∑

α=1

λa
α

(
â†α

)2
]Na/2

×
[(

b̂†0
)2

+
∞∑

α=1

λb
α

(
b̂†α

)2
]Nb/2

|0〉 (60)

where

λa
α =

〈φaα|Γ̂a|φ∗aα〉
dNa

α + 1
, λb

α =
〈φbα|Γ̂b|φ∗bα〉

dN b
α + 1

. (61)

6 Density �uctuations close to a phase separation transition
6.1 Density measurement
A single particle density (i.e. the �rst order correlation function) can give quite unexpected
results if we ask about an atomic density measured in an experiment. In a numerical simulation
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[99] it was shown that two condensates prepared in an initial Fock state acquire a relative phase
during a density measurement process. A single experiment reveals interference fringes located at
random positions, whereas the single particle density being an average over many measurements,
remains �at. This Fock state interference has been proved experimentally [100, 101] showing
interference fringes between independent condensates. In a theoretical analysis the build-up of
a relative phase was studied [102] and in an exact analytical work interference e�ects in second-
and higher-order correlation functions were con�rmed [103]. Situations when a single photo of
a system may be signi�cantly di�erent from the averaged picture involve also collisions of two
non-ideal condensates [104] a and condensate with a dark soliton [97, 105].

In order to perform a simulation of the density measurement we generally need the full many
body probability density. As the number of particles grows, however, using that function to �nd
atomic positions quickly becomes a very formidable task. Instead one could use a sequential
method from [99]. Having found successive atoms at certain positions one builds there a condi-
tional probability density for �nding an additional one. Using this method within the Bogoliubov
theory is however not so straightforward, since it would require inversion of the nonlinear trans-
formation (47), unless we have written the Bogoliubov vacuum in the particle representation.
We will however apply yet another method, which will clearly show us how density pro�les are
acquired as we perform the measurement on the Bogoliubov vacuum state. The approximate
method was introduced for a single condensate [97] but since the two component ground state
has a similar structure, we can use it also in the present case.

First, we can adjust phases of the eigenmodes of the single particle density matrices (see (59)
and (61))

ϕaα(~r) = φaα(~r) e−iArg(λa
α)/2, ϕbα(~r) = φbα(~r) e−iArg(λb

α)/2, (62)

sa that the coe�cients λa,b are real and positive. Then, we can restrict to only those modes that
have the largest values of the Bogoliubov vacuum coe�cients (61)

Λa,b
α ≡ λa,b

α

1− λa,b
α

À 1. (63)

The above adjustment of the phases makes it possible to rewrite the Bogoliubov vacuum state
as a gaussian superposition over perfect condensate states [97]

|0b〉 ∼
∫

dqadqb exp

(
−

Ma∑

α=1

q2
aα

2Λa
α

)
exp


−

Mb∑

α=1

q2
bα

2Λb
α


 |Na : φqa〉|Nb : φqb〉, (64)

where |Na : φqa〉 and |Nb : φqb〉 are many body states where, respectively, Na and Nb atoms
occupy single particle wavefunctions

φqa(~r) =
φ0a(~r) + 1√

Na

∑Ma
α=1 qaαϕaα(~r)

√
1 + 1√

Na

∑Ma
α=1 qaα

, φqb(~r) =
φ0b(~r) + 1√

Nb

∑Mb
α=1 qbαϕbα(~r)

√
1 + 1√

Nb

∑Mb
α=1 qbα

. (65)



6 DENSITY FLUCTUATIONS CLOSE TO A PHASE SEPARATION TRANSITION 29

Consequently, results of a single measurement to a system in the state (60) can be approximated
by the densities

σa(~r) ∼
∣∣∣∣∣φa0(~r) +

1√
Na

Ma∑

α=1

qaα ϕaα(~r)

∣∣∣∣∣

2

,

σb(~r) ∼
∣∣∣∣∣∣
φb0(~r) +

1√
Nb

Mb∑

α=1

qbα ϕbα(~r)

∣∣∣∣∣∣

2

, (66)

where real parameters qaα and qbα have to be chosen randomly, for each experimental realization,
from the Gaussian probability density

P (qa, qb) ∼
Ma∏

α=1

exp

(
−q2

aα

Λa
α

)
Mb∏

β=1

exp

(
−q2

bβ

Λb
β

)
. (67)

6.2 Density �uctuations in a �nite box
A two component homogeneous condensate is an example of a Bose system where the Bogoliubov
theory gives analytical results even in the presence of a process which transfers atoms between
the two components. For such a Josephson-like coupled system a linear stability analysis was
performed to study the dispersion relation for the excitation spectra [106, 107], and a Bogoliubov
transformation was derived with subsequent stability analysis with respect to �uctuations of the
relative number of atoms [108]. In the system preserving numbers of atoms in its components a
dynamical instability leading to a phase separation was inferred from the quasi-particle excitation
spectrum [106, 107, 109]. In the phase-segregated regime, the linearization of Gross-Pitaevskii
equations revealed no quasi-particle excitations localized near the phase boundary [110].

In the following we will study the Bogoliubov vacuum state in the particle representation for
a system approaching the phase separation transition. We will assume �xed particle numbers in
both components and repulsive interactions, i.e. ga, gb, g > 0. The condensates are con�ned in
a box of L × L × L size with periodic boundary conditions. The ground state solution of the
Gross-Pitaevskii equations (31) is

φa0 =
1√
L3

, φb0 =
1√
L3

, (68)

and the chemical potentials

µa = gaρa + gρb, µb = gbρb + gρa, (69)

where ρa,b = Na,b/L
3 are densities of the a and b components. In a homogeneous system it is

convenient to switch to the momentum space and look for solutions of the Bogoliubov-de Gennes
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equations of the form



ua
k

va
k

ub
k

vb
k




ei~k·~r
√

L3
. (70)

We obtain two quasi-particle excitation branches [109]

Ek,± =



ω2

ak + ω2
bk

2
±

√√√√(ω2
ak − ω2

bk)
2

4
+

h̄2k4

mamb

g2ρaρb




1/2

, (71)

where

ω2
ak =

h̄2k2

2ma

(
h̄2k2

2ma

+ 2gaρa

)
,

ω2
bk =

h̄2k2

2mb

(
h̄2k2

2mb

+ 2gbρb

)
. (72)

are the usual single condensate Bogoliubov dispersions. In the long wavelength limit k → 0 we
have ωi,k ≈ h̄cik where ci =

√
giρi is the sound velocity of the i = a, b condensate. The double

condensate dispersions are phonon-like in this limit,

Ek,± ≈ h̄c±k, (73)

with sound velocities

c2
± =

1

2

(
c2
a + c2

b ±
√

(c2
a − c2

b)
2
+ 4

g2

gagb

c2
ac

2
b

)
. (74)

The quasiparticle modes (solutions to the Bogoliubov-de Gennes equations) are given by



ua
k,±

va
k,±

ub
k,±

vb
k,±


 =




2gEkb (Eka + Ek,±)
√

ρaρb

2gEkb (Eka − Ek,±)
√

ρaρb(
E2

k,± − ω2
ak

)
(Ekb + Ek,±)(

E2
k,± − ω2

ak

)
(Ekb − Ek,±)




χ±, (75)

where

Eka =
h̄2k2

2ma

, Ekb =
h̄2k2

2mb

, (76)

and the normalization factor

χ± =
{
4Ekb

[
4EkaEkbg

2ρaρb +
(
E2

k,± − ω2
ak

)2
]
Ek,±

}−1/2

.
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(77)

The reduced single particle density matrices (57) are diagonal in the ei~k·~r/
√

L3 basis. However,
in order to have the Γ̂a,b operators (55) also diagonal we have to switch to the basis

φa~ks = φb~ks =

√
2

L3
sin

(
~k · ~r

)
, φa~kc = φb~kc =

√
2

L3
cos

(
~k · ~r

)
. (78)

The Bogoliubov vacuum state in the particle representation reads then

|0B〉 ∼

â†0â

†
0 +

∑

~k

λa
k

(
â†~ks

â†~ks
+ â†~kc

â†~kc

)



Na/2

×

b̂†0b̂

†
0 +

∑

~k

λb
k

(
b̂†~ks

b̂†~ks
+ b̂†~kc

b̂†~kc

)



Nb/2

|0〉, (79)

where

λa
k =

ua
k,+va

k,+ + ua
k,−va

k,−(
va

k,+

)2
+

(
va

k,−
)2

+ 1
, λb

k =
ub

k,+vb
k,+ + ub

k,−vb
k,−(

vb
k,+

)2
+

(
vb

k,−
)2

+ 1
, (80)

and the operators â†~ks
, â†~kc

b̂†~ks
and b̂†~kc

create atoms in the modes (78).
If the intercomponent interactions g are strong enough it is no longer energetically favorable

to mix the condensates, the uniform solutions (68) to the Gross-Pitaevskii equations become
unstable, and the two components spatially separate. In an in�nite box (L →∞ and Na,b →∞
but ρa,b = const) an imaginary eigenvalue in the Bogoliubov spectrum (71) appears for

g2 > gagb. (81)

In a �nite box with periodic boundary conditions, however, the momentum of a quasiparticle
can have only discrete values

~k =
2π

L
(nx~ex + ny~ey + nz~ez) , (82)

where nx, ny, nz are non-zero integers. The minimal momentum value of a quasiparticle is 2π/L
and consequently the phase separation condition is modi�ed

g2 >

(
h̄2π2

maL2

1

ρa

+ ga

) (
h̄2π2

mbL2

1

ρb

+ gb

)
. (83)

This shows that for the �nite system the minimal value of the interactions g leading to the
phase separation has to be higher than the corresponding value for L →∞. We will show that
approaching the condition (83) one can observe density �uctuations on a scale of the order of L.

We consider a two component condensate of 87Rb atoms in two di�erent internal states.
We have taken Na = 5000 and Nb = 20000 atoms, the intra-component scattering lengths
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Figure 9: Condensate depletion far (panel (a)) and close (panel (b)) to the phase separation
transition point. Panels (c) and (d) show corresponding coe�cients λa,b

k of the Bogoliubov
vacuum state (60). Red circles represent modes of the smaller condensate (Na = 5000) whereas
black circles of the larger one (Nb = 20000). The far-from phase separation scattering length is
aab = 10.0a0 and close to the transition it is equal to aab = 193.9a0.
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Figure 10: Density measurement simulations for the component a � densities integrated over
y and z directions, i.e. L

∫
σa(~r) dydz, are shown. Red lines correspond to densities found in

a single measurement whereas the black solid line is the reduced single particle density matrix
prediction, i.e. density averaged over many experimental runs. Dashed lines indicate the average
density plus/minus the standard deviation equal to 2

√
Λa

k/Na ≈ 0.1.

aa = 108.8a0, ab = 109.1a0 (a0 is the Bohr radius) [80] and the intercomponent scattering length
aab varied e.g. by means of a Feshbach resonance. The box size is L = 50 µm.

In Fig. 9 we show average numbers of atoms depleted to the modes (78) as well as the
corresponding λa,b

k values for the Bogoliubov ground state. Far from the phase separation we
have taken aab = 10a0, and for aab = 193.9a0 we are very close to the condition (83).

In order to obtain predictions for density measurements one has to change phases of the
modes, see (62), which far from the phase separation (all λa,b

k are then negative) leads to

ϕa~ks = φa~kse
−iArg(λa

α)/2 = iφa~ks, ϕb~ks = φb~kse
−iArg(λb

α)/2 = iφb~ks, (84)

and similarly for ϕa~kc and ϕb~kc. Since φa0 and φb0 are real and all the ϕ modes are purely
imaginary we obtain, see (66),

σa(~r) ∼ φ2
a0(~r) +

1

Na

∣∣∣∣∣
Ma∑

α=1

qaα ϕaα(~r)

∣∣∣∣∣

2

, σb(~r) ∼ φ2
b0(~r) +

1

Nb

∣∣∣∣∣∣

Mb∑

α=1

qbα ϕbα(~r)

∣∣∣∣∣∣

2

. (85)

Because q2
aα ∼ Λa

α/2, q2
bα ∼ Λb

α/2 and Λa,b
α ¿ Na,b the density �uctuations turn out to be

negligible and the density remains almost perfectly �at.
We can see in panels (b) and (d) of Fig. 9 that the numbers of depleted atoms are not

dramatically higher close to phase separation but the lowest quasiparticle modes acquire positive
λa,b

k values. The latter has dramatic consequences for density �uctuations because modes ϕ
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corresponding to the positive λa,b
k are real and their contributions to the atomic density are

of the order of
√

Λa,b
α /Na,b. Neglecting contributions of the order of Λa,b

α /Na,b we can make
predictions for atomic density measurements based upon

σa(~r) ∼ φ2
a0(~r) +

2φa0(~r)√
Na

∑

~k

′ [
qa~ksϕa~ks(~r) + qa~kcϕa~kc(~r)

]
,

σb(~r) ∼ φ2
b0(~r) +

2φb0(~r)√
Nb

∑

~k

′ [
qb~ksϕb~ks(~r) + qb~kcϕb~kc(~r)

]
, (86)

where ∑
~k
′ runs over modes corresponding to positive λa,b

k only. In a single realization of the den-
sity measurement one has to choose qa~ks, qa~kc, qb~ks and qb~kc randomly according to the probability
density (67).

In Fig. 10 we show densities simulated close to the phase separation, aab = 193.9a0. �Single
shot� results (red lines) reveal density �uctuations on the length scale of L, whereas density
obtained from the single particle density matrix remains �at. Despite the small number of
atoms depleted to the lowest momentum mode (∼ 0.3%) the density changes by 10% from shot
to shot. The standard deviation of the �uctuations behaves as

√√√√ Λa,b
k

Na,b

∼ 1

(ac
ab − aab)

1/4
. (87)

Note that the largest density �uctuations correspond to quasi-particles with the momentum
k = 2π/L so in a real experiment one may use low resolution so that shot noise �uctuations
should be practically eliminated.

In the example considered, the range of aab where one deals with positive λa,b
k is about

10×Bohr radius, which should be wide enough with present possibilities of the scattering length
tuning.

7 Bogoliubov vacuum state in a trapped system
Present section is intended to be a complementary to the derivation of the Bogoliubov vacuum
in the particle representation. The Bogoliubov vacuum (60) can be used if operators Γ̂a, Γ̂b

(55) are diagonal in a basis built with single particle density matrix eigenvectors. This can be
shown analytically for a homogeneous condensate and for a condensate in a double well potential
(see chapter VI). Now we will consider a two component condensate trapped in a spherically
symmetric harmonic trap and perform a numerical test of the state (60). We assume in (27) the
following trapping potentials

Va(~r) =
1

2
mω2

a(x
2 + y2 + z2), Vb(~r) =

1

2
mω2

b (x
2 + y2 + z2). (88)
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First, we will solve the Gross-Pitaevskii equations written in the spherical coordinates, assuming
the following form of solutions

φa0(~r) = R(a)(r)Yl,m(θ, ϕ), φb0(~r) = R(b)(r)Yl,m(θ, ϕ), (89)

where Yl,m(θ, ϕ) are spherical harmonic functions. Upon de�ning R(i) = ψi(~r)/r and using√
h̄/mbωb and h̄ωb as the length and energy units, respectively, we end up with stationary mean

�eld equations that depend only on the radial variable. For a ground state we can take the
angular momentum l = 0,

µaψa(r) =

(
−1

2

d2

dr2
+

1

2

ω2
a

ω2
b

r2 + 4πNaaa
ψ2

a(r)

r2
+ 4πNaaab

ψ2
b (r)

r2

)
ψa(r)

µbψb(r) =

(
−1

2

d2

dr2
+

1

2
r2 + 4πNbab

ψ2
b (r)

r2
+ 4πNbaab

ψ2
a(r)

r2

)
ψb(r), (90)

where aa, ab, aab are the scattering lengths. If the scattering lengths ful�ll a2
ab > aaab, we have

the phase separation. With the assumption of the spherical symmetry this means that one of
the condensates will occupy the center of the trap, and the other one will form a shell around.
In the following we assumed a double 87Rb condensate with the scattering lengths aa = 108.8a0

and ab = 109.1a0 (a0 is the Bohr length), and particle numbers Na = Nb = 106. Figure 11 shows
radial densities found in the mean �eld ground states on both sides of the phase separation
condition. In the phase segregated case we had to increase the trapping frequency of one of the
condensates because otherwise a quasi-particle mode for l = 1 would be unstable.

The matrix L factorizes into blocks of di�erent angular momenta which can be diagonalized
separately. We have found the quasi-particle excitation spectra corresponding to the mean �eld
states shown in Fig. 11. Taking the quasiparticle functions, eigenstates of L, for both components
we have built the operators (55) and density matrices (see (57)). Having diagonalized the density
matrices we have checked whether the operators Γ̂a and Γ̂b are diagonal in a basis built with
their respective eigenvectors. In order to do that, in each of the density matrix eigenmodes we
have calculated the variance

var(Γ̂a) = 〈Γ̂2
a〉a − 〈Γ̂a〉2a, var(Γ̂b) = 〈Γ̂2

b〉b − 〈Γ̂b〉2b . (91)

The results are summarized in Fig. 12 which plots the values of
√

var(Γ̂)/〈Γ̂〉 for both
condensates, calculated in the bases of the respective density matrices. In the miscible regime
the above quantity is below 1% whereas in the case of the phase separation it approaches 25%.
These are the estimates of whether the assumption about the form of the Bogoliubov state
in the particle representation is correct. The latter case suggests that strong intercomponent
interactions have signi�cant impact and in general the state (60) might not be valid.
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Figure 11: Radial pro�les of the mean �eld ground states of the two component trapped conden-
sate for aab = 100a0 (panel (a)) and aab = 200a0 (panel (b)). Black lines represent the condensate
(a). The scattering lengths aa = 108.8a0, ab = 109.1a0. The trapping potentials are (ωa

ωb
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in panel (a) (ωa
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Figure 12: Standard deviation divided by respective mean values of the operators Γ̂a (black
circles) and Γ̂b (red) in subsequent eigenmodes of the a and b density matrices, for Bogoliubov
ground states built upon the mean �eld solutions shown in Figure 11. The modes are ordered
according to a decreasing depletion. Plotted are only those whose depletion is higher than 0.013
(panel (a) and the inner condensate in panel (b)) or 0.04 in the case of the outer condensate in
panel (b). The scattering lengths and trapping potentials are aab = 100, (ωa

ωb
)2 = 1 (panel (a))

and aab = 200, (ωa

ωb
)2 = 5 (panel (b)).
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Part IV
Critical �uctuations of an attractive Bose
gas in a double-well potential
Bose Einstein condensates prepared in an e�ectively one-dimensional symmetric double well
potential o�er an opportunity of a remarkable simpli�cation of the theoretical description [111].
Due to properties of the energy spectrum the Hilbert space can be reduced to two modes.
The resulting two mode model provides description of a bosonic Josephson junction where two
localized matter wave packets in the two wells are weakly coupled via tunnelling of particles
through the potential barrier. The dynamics of oscillations between the wells was described by
means of the mean �eld theory [112, 113] and a quantum model adopting the Matthieu equation
[114].

As it was shown in a numerical simulation, a condensate prepared in a Fock state reveals
interference fringes due to the build-up of a relative phase during a measurement process [99].
Interference between two initially separated condensates was indeed measured experimentally
[100, 115].

For a repulsive BEC with a growing barrier height or interactions there is a transition from a
coherent regime where a constant relative phase can be de�ned to a fragmented condensate where
the position of the interference fringes will vary randomly from one run to another [99, 116]. The
coherence of the system was discussed in terms of the visibility of interference fringes. A relative
importance of the quantum and the thermal �uctuations in driving the transition between the
coherent and the incoherent regimes was studied [117]. Thermal �uctuations of the relative
phase arising from the interaction of the BEC with its thermal environment were investigated
experimentally [118] and proved dominant even at very low temperatures.

Atom interferometry measurements were performed to probe atom number statistics in the
transition from coherent to number squeezed states [119]. With increasing interactions or bar-
rier the atom number �uctuations turn from poissonian to sub-poissonian [120]. Experiments
applying an adiabatic splitting of a condensate revealed enhanced coherence times [121, 122].

Both for repulsive and attractive condensates when the interactions exceed a critical value, the
nonlinearity in the mean �eld theory produces self-trapped states with asymmetric distributions
of atoms over the two wells [113]. Coherent oscillations due to tunneling are then suppressed
[123]. Such symmetry breaking states were found analytically for a double square well potential
[124, 125]. In the case of attractive interactions it is the mean �eld ground states that break
the symmetry beyond the bifurcation [126]. Since the full many body state must preserve the
symmetry of the potential, real eigenstates are macroscopic quantum superposition states [124].
In a two mode model with a Josephson-like laser coupling the ground state becomes a Schrödinger
cat and the system can be prepared in such a state by adiabatically changing the strength of the
coupling [127]. The macroscopic superposition can be produced also by the dynamic evolution of
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the system due to the Josephson coupling on/o� switching [128]. Detection, or loss, of one atom
would be, however, enough to destroy the superposition, since such a detection would allow us
to distinguish between the two macroscopic states that were populated before the measurement.
A decoherence rate for the Schrödinger cat was calculated and shown to be indeed a signi�cant
threat [129].

We will study the vicinity of the bifurcation in the case of an attractive BEC in the double well
potential [9]. The main purpose of the analysis is to show that the bifurcation is in fact a critical
point known from the Landau-Ginzburg theory of the second-order phase transitions. The mean
�eld approach has made it possible to identify the symmetry breaking states and de�ne the order
parameter. We have found breakdown of the Bogoliubov theory very close to the critical point.
In a region where it works reasonably well we have estimated density �uctuations of symmetric
ground states.

An introduced continuum model based upon quantization of the mean �eld Hamiltonian has
been veri�ed by an exact solution of the two mode model. Fluctuations of the order parameter
are maximal at the critical point.

8 Two mode model and mean �eld results
We consider N atoms trapped in a double well potential and assume that one may restrict the
single-particle Hilbert space to two modes only [96, 111, 120, 130]. Choosing states ψ1,2, localized
in each of the potential wells as these modes, we obtain the Hamiltonian

Ĥ = −J

2

(
â†1â2 + â†2â1

)
+

U

2

(
â†1â

†
1â1â1 + â†2â

†
2â2â2

)
, (92)

where the â1 (â2) operator annihilates an atom in the left (right) well, J stands for the tunneling
rate between the wells and U is the on-site interaction strength (here we consider attractive
interactions so U is negative). Note that the total number of particles N remains a conserved
quantity, hence we can extract a constant part from the Hamiltonian (92)

Ĥ = −J

2

(
â†1â2 + â†2â1

)
+

U

4

(
â†1â1 − â†2â2

)2
+

U

4

(
N̂2 − 2N̂

)
, (93)

which will be neglected in the further considerations.
A foundation of the mean �eld approach is an assumption that all the atoms are in the same

quantum state. The most general form of such a state is

1√
N !




√
1 + z

2
eiϕ/2â†1 +

√
1− z

2
e−iϕ/2â†2




N

|vac〉. (94)

Here, z is the relative population di�erence between the wells, ϕ is the relative phase and |vac〉
denotes the vacuum state. Within the mean-�eld method we can calculate an expectation value
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of the Hamiltonian (93) in the state (94). It reads

〈Ĥ〉 =
JN

2

(
γ

2
z2 −

√
1− z2 cos ϕ

)
, (95)

where the dimensionless parameter

γ =
UN

J
, (96)

is a ratio of the on-site interaction to the tunneling rate2. Note that the minimum of the
expectation value (95) occurs for ϕ = 0. In case of γ ≥ −1 the minimum appears for z = 0 and
for γ < −1 it is shifted to the point ±z0, where

z0 =

√
1− 1

γ2
. (97)

The non-zero value of z0 indicates, that the solution of the mean �eld approximation breaks
the symmetry of the trapping potential. We can introduce an order parameter which measures
the population imbalance between the wells. If we choose N |z| we can use it to distinguish two
"phases"; symmetric with the wavefunction

φ0 =
1√
2

(ψ1 + ψ2) , (98)

and an asymmetric one

φ0,± =

√
1± z0

2
ψ1 +

√
1∓ z0

2
ψ2. (99)

In order to associate the bifurcation mentioned above with the phenomenon of the phase tran-
sition we have to introduce the thermodynamic limit. In our case it will be N → ∞ with γ
remaining constant. With this limit in mind we can see that the mean �eld approximation
predicts a second order phase transition in our system.

9 Number conserving Bogoliubov theory
Similarly as in the previous chapter we will write a Bogoliubov ground state of the system in
the particle representation and use it to estimate density �uctuations as we approach the critical
point. In the case of repulsive condensates in a double well potential the Bogoliubov vacuum
state provides a perfect approximation to an exact ground state for arbitrary interactions and

2Strictly speaking, the term z2γ/2 should be multiplied by (N − 1)/N . However, as we are in the large-N
limit, we set this prefactor to unity.
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tunnelling [92]. We will show that here the Bogoliubov approximation works very well except
for a close vicinity of the critical point. Density �uctuations are enhanced near the critical point
but quantitative predictions based upon the Bogoliubov theory should be treated carefully.

In the two-mode model (92) there is only one mode orthogonal to a condensate wavefunction.
The many body ground state in the N -conserving Bogoliubov theory can be written in the
following form [92, 96]

|0b〉 ∼
(
ĉ†0ĉ

†
0 + λĉ†1ĉ

†
1

)N/2 |0〉 , (100)

where the operators ĉ†0 and ĉ†1 create atoms in the condensate φ0 and in a mode φ1 orthogonal
to φ0, respectively. The coe�cient λ is given by

λ =
〈φ1|Γ̂|φ∗1〉
dN + 1

, (101)

where the operator Γ̂ = |u〉〈v| is built with modes u and v that are solutions to the Bogoliubov-
de Gennes equations [51, 92]. Quantum depletion (average number of particles occupying the
mode orthogonal to the condensate wavefunction) is equal to dN = 〈v|v〉.

9.1 Bogoliubov vacuum for symmetric mean �eld solutions
For γ > −1 we have ĉ†0 = (â†1 + â†2)/

√
2, so ĉ†0 creates atoms in a symmetric superposition over

the two wells. The non-condensate mode is given by ĉ†1 = (â†1 − â†2)/
√

2. The quasi-particle
excitation energy is E = J

√
γ + 1 and the corresponding quasi-particle modes are

(
u
v

)
=

(
1 +

√
γ + 1

1−√γ + 1

)
φ1

2(γ + 1)1/4
, (102)

where φ1 = (ψ1 − ψ2)/
√

2. Depletion of atoms from the condensate is

dN =
(1−√γ + 1)2

4
√

γ + 1
, (103)

and the coe�cient λ of the particle representation of the Bogoliubov vacuum (100) reads

λ =
1−√1 + γ

1 +
√

1 + γ
. (104)

Note that at the critical point (γ = −1) depletion estimated by means of equation (103) diverges.
This suggests that the Bogoliubov vacuum for γ = −1 is far from an exact ground state of the
system.
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Figure 13: Depletion from the condensate for N = 200. Black line corresponds to exact results,
blue line to depletion calculated from eqs. (103), (109), and the red one to depletion found in the
superposition state (107). The formula (109) is not su�cient because for large negative values of
γ the system reveals fragmentation, i.e. the single particle density matrix has two macroscopic
eigenvalues, we have dN → N/2 for γ → −∞.

9.2 Bogoliubov vacuum for asymmetric states
For γ < −1 the condensate mode corresponds to one of the stationary points (z = ±z0, ϕ = 0),
where z0 is given in (97), and describes an unequal population of atoms in the wells, see (99).
Consequently one can build Bogoliubov vacuum states around either of the �xed points, z = +z0

or z = −z0. The two states are degenerate and a proper ground state of the system (which for
the symmetric double well potential must be parity symmetric) is a symmetric superposition of
the two Bogoliubov vacuum states.

The non-condensate mode is now

φ1,± =

√
1∓ z0

2
ψ1 −

√
1± z0

2
ψ2. (105)

so operators ĉ†0,± and ĉ†1,± create atoms in the modes (99) and (105), respectively. The Bogoliubov
quasi-partice modes

(
u
v

)
=

(
1 + z0

1− z0

)
φ1,±
2
√

z0

. (106)

The ground state in the Bogoliubov approximation is now

|Ψ〉 = |0b〉+ + |0b〉−, (107)
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Figure 14: Amplitudes ψn of ground states of the double well system in the basis of Fock states
|N −n, n〉, where n denotes the number of particles in the right well. The total number of atoms
N = 200 and γ = −0.8 (a), γ = −0.99 (b), γ = −1 (c) and γ = −2 (d). Black lines correspond
to exact results while the red ones to the Bogoliubov predictions.
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Figure 15: Squared overlap between an exact ground state and the Bogoliubov prediction. Black
lines correspond to N = 100 whereas the red ones to N = 200. The inset shows the enlarged
region around γ = −1.

where

|0b〉± ∼
[(

ĉ†0,±
)2

+ λ
(
ĉ†1,±

)2
]N/2

|0〉, (108)

are the Bogoliubov vacuum states built upon the condensate wavefunctions φ0,+ and φ0,−.
For either choice of ±z0 the quasi-particle excitation energy is E = J

√
γ2 − 1, depletion dN±

and the coe�cient λ are, respectively

dN± =
(1− z0)

2

4z0

, λ =
1

γ2 (1 + z0)
2 . (109)

As we can see in Figure 13, the above formula is not su�cient to �nd the number of non-
condensed particles. In order to �nd the depletion, we need to perform the expansion in the
superposition state (107).

The Bogoliubov ground states of the double well system can be compared with corresponding
exact ground states found numerically. In Fig. 14 we show exact ground states for N = 200
and di�erent values of γ. Figure 15 presents squared overlap between the Bogoliubov and exact
states for N = 100 and N = 200. We can see that as long as γ is su�ciently far from −1
the agreement is very good and at the critical point, i.e. γ = −1, the Bogoliubov theory is
not able to describe the system. The reason for that is that for the critical point γ = −1 the
second order terms in the Hamiltonian disappear while the Bogoliubov theory truncates the
perturbative expansion in terms of quantum corrections precisely at the second order. In the
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next section we will present a theory that includes higher order contributions. Apart from the
drop at γ = −1 we can see a local minimum in the overlap slightly below the critical point. It is
a region where the Bogoliubov wavefunction splits into two maxima faster than an exact state.
As the total particle number N grows, the range of γ where there is discrepancy between the
Bogoliubov predictions and the exact results is smaller.

Note that for γ → −∞ the Bogoliubov prediction (107) tends to

|Ψ〉 ∼
(
â†1

)N |0〉+
(
â†2

)N |0〉, (110)

which corresponds to an exact ground state of the system, a Schrödinger cat -like superposition
of all atoms over the two wells.

10 Continuous description
The vicinity of the critical point is correctly described within a continuous description introduced
by Paweª Zi« [9], see also [116, 120]. The Schrödinger equation obtained from the Hamiltonian
(92) reduces to a one-dimensional Schrödinger-like equation of a �ctitious particle in an e�ective
potential. In the evolution of the shape of this potential from a parabolic, through quartic, to
double well as we vary the interaction strength, one can recognize a second order phase transition.
It also shows a clear picture of the increase of �uctuations in the vicinity of the critical point.
We will outline derivation and the main results of the model, for details see [9].

Making a substitution

â1 →
√

N

√
1 + z

2
eiϕ1 , â2 →

√
N

√
1− z

2
eiϕ2 . (111)

one can write the mean �eld Hamiltonian in an alternative form (up to a constant term propor-
tional to N2)

H =
JN

2

(
1

2

√
1− z2(1− cos ϕ) +

1

2
(1− cos ϕ)

√
1− z2 + V (z)

)
, (112)

where ϕ = ϕ1 − ϕ2 and the e�ective potential

V (z) = −
√

1− z2 +
γ

2
z2. (113)

Now we can perform quantization by replacing the conjugate variables z and ϕ with operators
ẑ and ϕ̂ obeying the commutation relation [ϕ̂, ẑ] = 2i

N
[96, 117].

- In the case of repulsive interactions, the phase �uctuations are dominant over �uctuations of
the population imbalance z. In that case it is convenient to choose the phase representation,
i.e. replace ẑ with 2i

N
d
dϕ

[117].
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Figure 16: E�ective potential (113) for di�erent values of γ.

- On the other hand, in the case of attractive interactions the phase �uctuations are small,
cos ϕ̂ ≈ 1− 1

2
ϕ̂2, and it is more convenient to choose the z representation; ϕ̂ = 2i

N
d
dz

.

In the case of attractive interactions, we obtain

Ĥ =
JN

2

(
− 1

N2

√
1− z2

d2

dz2
− 1

N2

d2

dz2

√
1− z2 + V (z)

)
. (114)

The e�ective one-dimensional Schrödinger equation takes the form

− 1

N2

(√
1− z2

d2

dz2
+

d2

dz2

√
1− z2

)
ψ(z) + V (z)ψ(z) =

2E

NJ
ψ(z). (115)

Note that the coe�cient 2/N plays the role of h̄. Looking at the shape of the e�ective potential
V (z) (see Figure 16) we can see in which regions of our space the wavefunction should localize.

Equation (115) generates accurate results even for a relatively low number of atoms. In order
to evaluate the quality of the continuum approximation, we have diagonalized the Hamiltonian
(92) numerically and compared the eigenstates (Fig. 17) as well as the energy spectrum (Fig. 18)
with those obtained from (115). Already at the level of a few hundred particles (N = 200 in the
calculations), the results obtained within the continuum approximation seem to be indiscernible
from the exact ones. It is worth noticing that a similar e�ective one-dimensional Schrödinger
equation was derived in [131] but a continuous variable used there does not possess a clear
interpretation of the relative population di�erence.

Note that the continuum approximation makes it possible to predict properties of a system
simply by analyzing a form of the e�ective potential. Figure 16 presents the shape of the
potential for the three relevant regions: before (γ > −1), at (γ = −1), and beyond (γ < −1) the
critical point. In the �rst region the potential has typically a quadratic form, while at γ = −1
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Figure 17: Comparison of the probability density |ψ(zn)|2 obtained by diagonalization of the
exact Hamiltonian (93) (solid black lines) and by solution of Eq.(115) (dashed red lines) at the
critical point, i.e. for γ = −1. Panels (a) and (b) correspond to ground states while (c) and (d)
to the ninth excited states. Results for N = 200 are presented in (a) and (c) and for N = 104 in
(b) and (d).
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Figure 18: Energy levels (i.e. 2(E − E0)/J where E0 is the ground state energy) obtained by
diagonalization of the exact Hamiltonian (93) (solid black lines) and by solution of Eq.(115)
(dashed red lines) versus γ for N = 200 (a) and N = 104 (b).

it broadens substantially and becomes quartic. In the last region it has a form of a double well
with the minima at z = ±z0. This analysis paints a picture of the second-order quantum phase
transition, with the critical point at γ = −1.

We have chosen the order parameter to be N |z| already upon discussing the mean �eld
approximation. Within the mean �eld approach we are dealing with the average value of N |z|.
The same variable can be de�ned in the quantum model (93). The order parameter can be
expressed in terms of creation and annihilation operators

B̂ =
∣∣∣â†1â1 − â†2â2

∣∣∣ . (116)

With an increasing N the quantum average 〈B̂〉/N tends towards the mean �eld value of
|z|, which can be seen in Figure 19. The Bogoliubov prediction follows the exact result for
γ > −1 and the mean �eld theory for γ < −1. The shape of the potential determines the shape
of the ground state wave-function, which is always symmetric. For γ ≥ −1 it is bell shaped
and centered around z = 0, and when γ < −1 the wave-function has a double hump structure,
centered around ±z0. Since the e�ective h̄ is 2/N , the width of the wave-function decreases
with an increasing N . The wave-function will be centered around the minima of the potential
V (z), which, as we mentioned above, is given by the mean �eld approximation. This shows that
the mean value of 〈B̂〉/N indeed will approach the mean �eld value. This fact was noticed in
Ref. [132].

Employing the modulus in the mean �eld approach makes the order parameter the same
regardless of whether we choose a solution at the �xed point z = z0 or z = −z0. In the
quantum case the ground state is a superposition of wave-packets localized in the two wells of the
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Figure 19: The order parameter, i.e. average value of the operator B̂ (116), obtained from an
exact diagonalization of the Hamiltonian (92) (black lines), from the continuum model (115)
(red lines), compared to the Bogoliubov theory (100), (107) (green lines) and mean �eld results
(blue dotted lines), for N = 200 (a) and N = 104 (b). The Bogoliubov prediction is plotted only
in panel (a).

potential V (z). Here the order parameter with the modulus is insensitive to the superposition
and examines only the width of the wave-function. This motivates our choice of the order
parameter.

In the remainder of this chapter we will discuss density and particle number �uctuations
near the critical point. An extension of the continuum model to an e�ectively two-dimensional
system will be discussed in the next chapter.

11 Critical �uctuations
In Bose-Einstein condensate systems quantum density �uctuations (i.e. the �uctuations not
induced by thermal e�ects) are usually negligible. When the parameter γ approaches the critical
point, however, we may expect an increase in the density �uctuations [6]. For γ < −1 the
�uctuations will grow even more, due to condensate fragmentation, as can be seen in Fig. 13.
In the �rst part of this section we will show that although the number of depleted atoms on
the �symmetric side� of the critical point remains negligible, the density �uctuations are of the
order of a few percent of the total density, for γ close to −1. In the last part critical �uctuations
of the order parameter will be distinguished from the �uctuations resulting from the quantum
superposition.
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Figure 20: Standard deviation of the density �uctuations divided by the average density for
N = 1000 (a) and N = 10000 (b). Solid lines correspond to results for γ = −0.995 (black lines -
exact; red lines - Bogoliubov estimates (122)). Dashed blue lines depict exact results for γ = −1.

11.1 Density �uctuations
To estimate quantum density �uctuations for γ > −1 we can rewrite the Bogoliubov vacuum
state as a gaussian superposition over perfect condensate states [92]

|0b〉 ∼
∫

dq exp

(
− q2

2Λ

)
|N : φq〉, (117)

where |N : φq〉 is an N -body state where all N particles occupy a single particle wavefunction

φq =
φ0 + q√

N
φ1√

1 + q
N

, (118)

and

Λ =
λ

1− λ
. (119)

The parameter λ and the modes φ0 and φ1 were de�ned in sections 8 and 9.1 (see Eqs. (98),
(102)). Results of single measurements of the system density can be simulated using an approx-
imate density [92], see also chapter III,

ρq = |φq|2 ∼ φ2
0 + 2

q√
N

φ0φ1 +
q2

N
φ2

1, (120)
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where, for each experimental realization, the real parameter q has to be chosen randomly from
the gaussian probability density [97]

P (q) ∼ exp

(
−q2

Λ

)
. (121)

The last term in Eq. (120) can be skipped because for small depletion we have q2/N ∼ Λ/N ≈
dN/N . The middle term q/

√
N is, however, of the order of

√
dN/N and for a moderate particle

number may lead to noticeable density �uctuations. The estimated variance of the density
�uctuations reads

var(ρq) =
1−√1 + γ

N
√

1 + γ
φ2

0φ
2
1. (122)

In order to compare these predictions with exact results we have chosen the localized modes as

ψ1,2(x) =
(

2

π

)1/4

exp
[
−(x± 2)2

]
. (123)

The standard deviation of the �uctuations divided by the average density, i.e.
√

var(ρq)/〈ρq〉 is
plotted in Fig. (20). If we set the critical parameter e.g. to γ = −0.995, we can see that for
N = 1000 we have density �uctuations of the order of 10%, but the Bogoliubov approximation
is biased with a signi�cant error and overestimates the e�ect. For larger particle numbers,
such as N = 104, the agreement between the Bogoliubov and the exact result is perfect, but
the �uctuations drop to below 4% of the density. To realize the magnitude of �uctuations for
di�erent particle numbers see the exact results for γ = −1.

11.2 Fluctuations of the order parameter
As already mentioned, for γ < −1 and decreasing, the condensate fragmentation induces growing
density �uctuations. Intuitively one can see that realizing the growing distance between the
two peaks in the ground state, see Fig. 14 (d). These �uctuations are extremely sensitive to
experimental imperfections and consequently are di�cult to test.

On the other hand, since the potential is of the Landau-Ginzburg type, it is clear that the
�uctuations of the order parameter will be maximal at the critical point. The quantitative anal-
ysis of this issue can be made using the continuum approximation and the exact diagonalization
of the quantum model. The variance of B̂ in the ground state of the double well system versus γ
is shown in Fig. 21 for two di�erent numbers of particles. Indeed, the �uctuations are maximal
around the critical point. With the increasing value of N the width of the peak of the variance
decreases and its position tends to γ = −1.
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Figure 21: Variance of the B̂ operator, Eq.(116), in a ground state obtained from exact diag-
onalization of the Hamiltonian (93) (black lines), by solving Eq.(115) (red lines) and from the
Bogoliubov theory (green lines) for N = 200 (a) and N = 104 (b).
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Part V
Second order quantum phase transition of
a homogeneous Bose gas with attractive
interactions
Motivated by the studies of a homogeneous two component condensate close to the phase sepa-
ration transition (see chapter III) we will consider a single attractive condensate trapped in an
elongated 3D box with periodic boundary conditions. We expect that similarly as in the former
case there is a range of interaction values for which the �nite size of the system ensures the
stability. We will focus our attention on quantum �uctuations close to the instability point.

An attractive homogeneous Bose gas in a large volume (V → ∞) reveals no condensation
[133, 134]. A hand-waving argument based upon the uncertainty principle is that particles
attracting one another in the position space will act repulsively in the momentum space. The
energy is therefore minimized when many plane wave states are occupied. Indeed, a many
body ground state of such system is a fragmented condensate, i.e. there are many macroscopic
eigenvalues of the single particle density matrix.

For a �nite one-dimensional system the mean �eld theory (Gross-Pitaevskii equation [1, 2,
3]) predicts a spontaneous symmetry breaking, i.e. breaking of the translational invariance
[135]. When the strength of the attractive interaction reaches a critical value a solution becomes
localized. On the other hand the one-particle density has to be uniform in a ground state of the
full quantum Hamiltonian, due to the translational invariance of the system. The connection
between the mean �eld spontaneous symmetry breaking, Bogoliubov, and the full quantum
many body theory symmetry restoring was analyzed by a few authors [137]. It was shown that
for a 1D Bose gas in a box, when the interaction strength exceeds a critical value, even weak
external symmetry breaking perturbation leads to a localized state. A translation of the soliton
costs no energy (this is a zero-mode of the Bogoliubov theory) and the corresponding quantum
�uctuations (in the position and momentum) of the center of mass of the soliton were analyzed
[138].

We will show that in the vicinity of the critical point the Hilbert space can be divided into
a subspace, which can be described by the Bogoliubov theory, and a subspace where two modes
unstable in the Bogoliubov description can be conveniently treated with the aid of a continuous
description. Only the latter contains relevant information about critical behaviour of the system.
We obtain a Schrödinger equation of a �ctitious particle moving in an e�ective two-dimensional
potential and a transition of the potential from a parabolic to a Mexican hat shape re�ects
the second order quantum phase transition. In the e�ective Hilbert space numerical studies of
�uctuations in the vicinity of the critical point have become possible.
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12 Bogoliubov theory
We consider a gas of Bose particles with contact attractive interaction in a 3D box with periodic
boundary conditions. The Hamiltonian of the system reads

Ĥ =
∫

d3rψ̂†(r)

[
− h̄2

2m
∇2 +

g

2
ψ̂†(r)ψ̂(r)

]
ψ̂(r), (124)

where ψ̂(r) is the bosonic �eld operator, and g = 4πh̄2a/m, is the coupling constant that
characterizes the particle interaction (a is the s-wave scattering length which for the attractive
interaction is negative). In the case of a homogeneous system it is convenient to switch to a
momentum basis,

ψ̂(r) =
∑

k

eik·r
√

V
âk, (125)

where V = LxLyLz is the volume of the box and the sum runs over discrete momenta,

k = 2π

(
nx

Lx

,
ny

Ly

,
nz

Lz

)
, (126)

with integer nx, ny, nz. Then, the Hamiltonian reads

Ĥ =
∑

k

h̄2k2

2m
â†kâk +

g

2V

∑

k,k′,q
â†k+k′−qâ

†
qâk′ âk. (127)

Exact diagonalization is impossible because of an enormous size of the Hilbert space of the
system. However, we are interested in a ground state of the system in the case of weak particle
interactions. Then, one can expect that only one mode macroscopically occupied by atoms and,
in the �rst approximation, we may use a mean �eld approach which relies on substitution of
the bosonic operator ψ̂(r) with a classical �eld φ0(r). This assumption is valid only for a �nite
and small system. As it was shown in [133, 134] attractive bosons con�ned in a large volume
reveal fragmentation, i.e. the energy is minimized by a con�guration where many momentum
modes are macroscopically occupied. The resulting in our case Gross-Pitaevskii equation reveals
a homogeneous stationary solution (i.e. the condensate wavefunction)

φ0(r) =
1√
V

, (128)

and a chemical potential µ = gN/V . Quantum �uctuations around the mean �eld solution
can be described within the Bogoliubov theory [87]. We employ its number conserving version
[89, 90, 91] where a part of the Hamiltonian (127), minus a constant term µN̂ , with contributions
of the second order in âk (where k 6= 0),

ĤB =
∑

k6=0

[(
h̄2k2

2m
+

2g

V
â†0â0 − gN

V

)
â†kâk +

g

2V

(
â†0â

†
0â−kâk + â0â0â

†
−kâ

†
k

)]
, (129)
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is substituted with

ĤB =
∑

k6=0

[(
h̄2k2

2m
+

gN

V

)
Λ̂†kΛ̂k +

gN

2V

(
Λ̂†kΛ̂

†
−k + Λ̂kΛ̂−k

)]
, (130)

where

Λ̂k =
â†0√
N

âk. (131)

The Bogoliubov transformation b̂k = 〈uk|Λ̂k〉 − 〈vk|Λ̂†−k〉, with

uk + vk =




h̄2k2

2m
h̄2k2

2m
+ 2gN

V




1/4

, uk − vk = (uk + vk)
−1 , (132)

allows one to write the Hamiltonian (130) in a diagonal form, ĤB =
∑

k6=0 Ekb̂
†
kb̂k, where the

Bogoliubov spectrum reads

Ek =

√√√√ h̄2k2

2m

(
h̄2k2

2m
+

2gN

V

)
. (133)

Within the N -conserving Bogoliubov theory we can obtain an N -body ground state in the
particle representation in a simple form [92, 96, 97], see also chapter III,

|0b〉 ∼

â†0â

†
0 +

∑

k6=0

λk

(
â†c,kâ

†
c,k + â†s,kâ

†
s,k

)



N/2

|0〉, (134)

where

âc,k =
âk + â−k√

2
, âs,k =

âk − â−k

i
√

2
, (135)

and

λk =

√
dNk

1 + dNk

. (136)

Here

dNk = 〈vk|vk〉, (137)

are eigenvalues of the reduced single particle density matrix. The total number of atoms depleted
from the condensate mode reads

dN =
∑

k6=0

dNk. (138)
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Figure 22: Panel (a) shows depletion to non-condensate modes (in the direction of the lowest
excitation) calculated for three di�erent values of the parameter α within the Bogoliubov theory.
Black circles correspond to α = −0.9, red circles to α = −0.95 and the green ones to α = −0.995.
Here we have taken Lz = 100 µm, Lx = Ly = 40 µm, so for N = 500 the scattering length is
within the range between a = −1450aB and a = −1603aB whereas for N = 105 it is between
a = −7.25aB and a = −8.02aB (aB is the Bohr length), see (140). Panel (b) shows the coe�cients
λk from the Bogoliubov vacuum state (134). The lines are guides to eyes.

In the following we will consider the system in a box where Lx, Ly ≤ Lz/2. Then, the lowest
Bogoliubov excitation energy corresponds to momenta

k± = ±2π

Lz

(0, 0, 1) , (139)

and it is real provided a parameter3

α =
2gN

ε0V
=

4NaLz

LxLy

, (140)

where

ε0 =
h̄2

2m

(
2π

Lz

)2

, (141)

is greater than −1. For α = −1 the energy gap between the ground state and the �rst excited
state disappears, the homogeneous mean �eld solution (128) looses its stability and the quantum
depletion dN diverges because dNk± diverge. More precisely, for α < −1 the mean �eld solution

3Note that for a given box geometry and particle number we can always adjust the scattering length a so that
values of α are close to −1.
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spontaneously breaks the translational symmetry of the system. In the next section we show
that this point can be regarded as a critical point.

We conclude that the Bogoliubov approximation breaks down at the critical point. As can
be seen in Fig. 22 the population of k± grows signi�cantly as we approach the instability,
but populations of higher momentum modes are within this approximation still negligible. The
average number of particles in these modes for α around −1 can be estimated as follows:

∑

k6=0,k±

dNk =
∑

k6=0,k±

〈vk|vk〉 ≈ V

2π2

∫ ∞

4π/Lz

dk k2 〈vk|vk〉, (142)

and it is not greater than 0.2 in a vicinity of the critical point for our box geometry. Note that
the coe�cients in the Bogoliubov vacuum state (134) depicted in panel (b) of Fig. 22 for a few
lowest momentum modes are all positive. In the case of the two-component homogeneous BEC
an occurrence of a mode with the positive λk was a signature that we have entered a regime where
an in�nite system would be unstable while a �nite one was still stable against phase separation.
Here, as soon as the interactions become attractive, an in�nite system loses its stability against
fragmentation, and consequently for all modes we have λk > 0. Density �uctuations should be
signi�cant as we approach the instability and can be estimated in a completely analogous way
as those in a two-component condensate.

13 E�ective Hamiltonian in a continuous description
The Bogoliubov theory provides us with information about the modes requiring a special treat-
ment. In the present section we will present derivation of a model introduced by P. Zi« [10] and
describing the critical point in terms of the most populated modes only. Then we will use the
model to analyze the vicinity of the critical point. The Hamiltonian restricted to the condensate
and k± modes reads

Ĥ ≈ ε0

(
â†+â+ + â†−â−

)
+

g

V

(
â†0â

†
0â+â− + â†+â†−â0â0

)

+
g

2V

(
â†0â

†
0â0â0 + â†+â†+â+â+ + â†−â†−â−â−

)

+
2g

V

(
â†0â0

(
â†+â+ + â†−â−

)
+ â†+â+â†−â−

)
, (143)

where we introduced the notation âk± ≡ â±. Since the total number of particles is conserved
and equal to N we can eliminate one of the modes from the above Hamiltonian. Here we choose
to eliminate the k = 0 mode. In order to do so we substitute operators â0 and â†0 by an operator√

N −
(
â†+â+ + â†−â−

)
(see [139]). Now our Hamiltonian can be written as

Ĥ =
g

2V
(N2 −N) + Ĥ ′, (144)



13 EFFECTIVE HAMILTONIAN IN A CONTINUOUS DESCRIPTION 57

where

Ĥ ′ = (ε0 + gn)
(
â†+â+ + â†−â−

)
+ gn

(
â+â− + â†+â†−

)

− g

V

(
â†+â+â†+â+ + â†−â−â†−â− + â†+â+â†−â−

)

− g

V

((
â†+â+ + â†−â−

)
â+â− + â†+â†−

(
â†+â+ + â†−â−

))
. (145)

Note, that the above Hamiltonian commutes with the total momentum operator which in this
case is equal to

P̂ =
2πh̄

Lz

(
â†+â+ − â†−â−

)
. (146)

Next we introduce symmetric and antisymmetric combinations of â±, see Eq. (135), and describe
dynamics of these modes using the position-momentum representation

âc =
x̂c + ip̂c√

2
, âs =

x̂s + ip̂s√
2

. (147)

In this representation the Hamiltonian Ĥ ′ can be split into several parts

Ĥ ′

ε0

= −1− α

2
− 3α

8N
+

ĤF

ε0

+
δĤ

ε0

, (148)

where
ĤF

ε0

=
1

2

(
p̂2

c + p̂2
s

)
+

1 + α

2

(
x̂2

c + x̂2
s

)
− 7α

32N

(
x̂2

c + x̂2
s

)2 (149)

and
δĤ

ε0

= − α

8N

(
p̂2

c + p̂2
s

)
+

7α

8N

(
x̂2

c + x̂2
s

)
− 3α

32N

(
(p̂2

c + p̂2
s)(x̂

2
c + x̂2

s) + (x̂2
c + x̂2

s)(p̂
2
c + p̂2

s)
)

− α

32N

(
4 (p̂cx̂s − p̂sx̂c)

2 −
(
p̂2

c + p̂2
s

)2
)

. (150)

The total momentum operator (146) is in this representation proportional to p̂cx̂s − p̂sx̂c and it
commutes both with ĤF and δĤ. Hence any excitation caused by the latter can not change the
value of the total momentum, which is equal to zero in the ground state.

Up to now we have divided our Hamiltonian into two parts and in what follows we will show
that for large N (strictly speaking in the limit of N tending to in�nity while α is kept constant)
the dominating contribution arises from the e�ective Hamiltonian ĤF . This is a Hamiltonian
of a �ctitious particle moving in a two-dimensional e�ective potential. Indeed, upon de�ning
r̂2 = x̂2

c + x̂2
s we can derive a Schrödinger equation

Eψ(r) = −1

2
4ψ(r) + Veff (r)ψ(r), (151)
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where the 2D e�ective potential is equal to

Veff (r) =
1 + α

2
r2 − 7α

32N
r4. (152)

This potential evolves, when we pass through the critical point, from a parabolic (α > −1),
through quartic well (α = −1) to a Mexican hat shape (α < −1), which is a signature of the
second order quantum phase transition.
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Figure 23: Energy levels with respect to the ground state energy of the Hamiltonian H ′ (black
lines) and HF (red lines). Panel (a) shows results for N = 500 while panel (b) for N = 105.

In [10] there are P. Zi«'s analytic approximations to the solution of this Schrödinger equation
as well as estimates of the contribution from the Hamiltonian δĤ in all the three regions men-
tioned above. In the most interesting situation, α = −1, the Schrödinger equation (151) takes
the form

−1

2
4ψ(r) +

7

32N
r4ψ(r) = Eψ(r). (153)

We can switch to a new variable r̃ = r/N1/6 and obtain

−1

2
4ψ(r̃) +

7

32
r̃4ψ(r̃) = N1/3Eψ(r̃). (154)

From dimensional analysis we estimate ∆E, the energy di�erence between the ground and the
�rst excited state with the total momentum equal to zero, to be of the order of N−1/3. On the
other hand the dominant contribution to the Hamiltonian δĤ comes from the terms x̂2/N and
is of the order of N−2/3. So in the limit of a large N it can be neglected. Notice that as we
mentioned above the total momentum operator (146) commutes with both ĤF and δĤ. Hence,
any excitation caused by the latter can not change the value of the total momentum, which is
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equal to zero in the ground state. If we use the continuous description and express the total
momentum operator in the polar coordinates, it turns out that it is proportional to ∂/∂φ. Hence
any state with the total momentum equal to zero does not depend on φ. This is why estimating
∆E we have neglected the φ dependence.

To prove that the contribution from δĤ is indeed negligible we have diagonalized the Hamil-
tonian Ĥ ′ and ĤF numerically. In Fig. 23 we show energy levels obtained in each case. One can
see that already for a moderate particle number (N = 500) the low-lying energy levels of the
two sets coincide and for the greater N (N = 105) even the higher excited states are properly
reproduced. In conclusion even for a moderate number of particles the Hamiltonian ĤF is a very
good approximation to Ĥ ′ apart from the constant term −1− α

2
− 3α

8N
.
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Figure 24: Mean depletion from the condensate as a function of α for N = 500 (a) and N = 105

(b). Black solid lines correspond to the Hamiltonian Ĥ ′ while red dashed lines to ĤF .

14 Critical �uctuations
When we use the concept of the e�ective potential (152), description of an attractive homo-
geneous Bose gas around the critical point becomes particularly simple. One could study the
dynamical transition of the system when the scattering length is changed in time, especially for
a system entering the critical region. Here, however, we restrict our considerations to the static
(ground state) properties of the system around the critical point. Since the e�ective potential
undergoes the transition from quadratic through quartic to a Mexican hat shape, which is a
typical signature of the second order phase transition, we expect critical �uctuations to show
up. Hence we search for an observable that will show clear evidence of the critical behaviour
(will have maximal �uctuations at the critical point). Analogously as in the double well case,
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we have to distinguish the critical �uctuations from �uctuations occurring due to superpositions
of symmetry breaking states, studied in [138].
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Figure 25: Fluctuations of the condensate depletion (157) for N = 500 (a) and N = 105 (b) as
a function of α. Black solid lines correspond to the Hamiltonian Ĥ ′ and red dashed lines to ĤF .

Let us consider the operator dN̂ representing the number of atoms depleted from a conden-
sate. The contribution (142) from the modes described by the Bogoliubov Hamiltonian is very
small and can be neglected, therefore

dN̂ ≈ n̂c + n̂s, (155)

where

n̂c =
1

2

(
p̂2

c + x̂2
c − 1

)
, n̂s =

1

2

(
p̂2

s + x̂2
s − 1

)
. (156)

The depletion, dN = 〈dN̂〉, increases as we approach and pass through the critical point, see
Fig. 24. We compare in that �gure the mean value of atoms depleted from the condensate as a
function of the parameter α for two di�erent total number of atoms. Each panel represents two
curves that practically sit on top of each other; one obtained from the Hamiltonian Ĥ ′ and the
other from ĤF . The linear behaviour for α < −1 is due to the linear dependence of the square of
the position of the minimum in the Mexican hat � r2

0 on the interaction strength α. For large
N we can estimate that 〈n̂c + n̂s〉 ' 〈x̂2

c + x̂2
s〉/2 ' r2

0/2 = N 4(α+1)
7α

.
The variance of dN̂ increases as we cross the critical point but if we calculate the variance

relative to the average depletion it turns out that the critical point region is clearly indicated by
the maximum of such �uctuations. In Fig. 24 we present the variable

∆N =
〈(dN̂ − 〈dN̂〉)2〉

〈dN̂〉 , (157)
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Figure 26: Variance of the operator dN̂ found from the Hamiltonian Ĥ ′ (black solid lines) and
from ĤF (red dashed lines) compared to the variance of depletion to the single non-condensate
mode (var(n̂c) found from Ĥ ′) � green lines. Panel (a) shows results for N = 500 whereas panel
(b) for N = 105.

as a function of α around the critical point. We compare again two curves obtained using
Hamiltonians Ĥ ′ and ĤF for two di�erent numbers of particles. The agreement is already
satisfactory for 500 particles and it is excellent in the case of 105 particles. We observe that
the maximum is shifted from the point α = −1 and this shift tends to zero with the increasing
number of particles.

It is interesting to note that for α < −1 the �uctuations of dN̂ are much smaller than the
�uctuations of n̂c and n̂s separately, see Fig. 26. Indeed, for α < −1, the ground state solution
corresponds to the wavefunction concentrated around a circle with a radius r0, and because dN̂
is a function of the distance from the origin its �uctuations are small. The operators n̂c and n̂s

are related to distances from the axes, and their �uctuations are larger than the �uctuations of
dN̂ if the wavefunction is localized around the circle. While the number of depleted atoms is
expected to be roughly the same in each experiment, these atoms may di�erently occupy the two
orthogonal modes (139) or any other orthogonal combination of them. This is the origin of the
spontaneous symmetry breaking predicted by the mean �eld theory, or condensate fragmentation
predicted by the many body theory. Atoms depleted from a condensate in di�erent experiments
may di�erently occupy the modes (139) and resulting density pro�les of atomic clouds reveal
bright solitons localized at di�erent positions.



62

Part VI
Phase separation in a two-component
condensate in a double well potential
As already discussed, a system of two condensates made of di�erent atomic species or atoms
of the same specie in di�erent hyper�ne states can reveal phase separation. With varying in-
terspecies interactions we pass a critical point beyond which mean �eld ground states break
symmetry of a Hamiltonian. We will study a two component condensate trapped in the double
well potential. In such a system solution for the two-component Bogoliubov vacuum state in the
particle representation is available by analytical means. Exact diagonalization of the two mode
Hamiltonian is possible for a moderate particle number in each of the components. Preliminary
results that we have obtained for the system suggest that for weak intercomponent interactions
the phase separation transition has the same origins as the transitions in single attractive con-
densates. Experimental observation of critical �uctuations should be easier than in the latter
system.

Previous studies of two component condensates in the double well potential have concentrated
on intercomponent correlations. It was predicted that atoms of two condensates that were
initially prepared in di�erent wells can tunnel as pairs through the potential barrier in opposite
directions [140]. Such a correlated motion of tunneling atoms leads to the generation of quantum
entanglement between the two macroscopically coherent systems [141]. A substantial increase
of entanglement can be achieved for tunnelling rates and interactions in the vicinity of the
stability limit [142], as well as large interaction values with respect to tunnelling [143]. The
initial state in the above dynamical simulations was a ground state of the two specie system
without interactions.

The aim of the present chapter is to �nd ground states of the two component condensate in the
vicinity of the critical point and study its signatures such as critical �uctuations. Applicability
of the Bogoliubov theory will be veri�ed, since it predicts quite a drastic reduction of possible
correlations. Indeed, especially a strongly interacting limit reveals signi�cant entanglement and
breakdown of the mean �eld theory.

15 Phase transition in a mixture of two condensates
15.1 Mean �eld critical parameter
We will study a two component Bose-Einstein condensate in the double well potential treated
within the two mode approximation. If we choose ψ1, ψ2 as the two states localized in the wells
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of the potential, then the Hamiltonian reads:

Ĥ = −J

2

(
â†1â2 + â†2â1 + b̂†1b̂2 + b̂†2b̂1

)
+

U

2

(
â†1â

†
1â1â1 + â†2â

†
2â2â2 + b̂†1b̂

†
1b̂1b̂1 + b̂†2b̂

†
2b̂2b̂2

)

+ Uab

(
â†1â1b̂

†
1b̂1 + â†2â2b̂

†
2b̂2

)
, (158)

where â1 (b̂1) annihilates an atom belonging to the component a (b) in the �rst well and â2 (b̂2)
annihilates an atom of the a (b) component in the other well. The parameter J stands for the
tunnelling frequency of atoms between the two wells and U and Uab describe intra- and inter-
condensate interactions. For simplicity we have assumed equal intra-component interactions and
particle numbers for both components (U ≡ Ua = Ub and N ≡ Na = Nb). Such condition is a
good approximation to 87Rb condensate of atoms in hyper�ne spin states |F = 2,mf = 1〉 and
|F = 1,mf = −1〉 [78]. The following calculations can be performed in a general case as well.

We will study ground states of the system for varying values of a parameter

γ =
N(Uab − U)

J
. (159)

The mean �eld theory predicts that if γ < 1 the ground state of both condensates is a symmetric
superposition over the two wells

φa0 = φb0 =
1√
2

(ψ1 + ψ2) , (160)

For a critical value γc = 1 the above solution is unstable and for γ > 1 we have symmetry
breaking mean �eld solutions

φa0,± =

√
1± z0

2
ψ1 +

√
1∓ z0

2
ψ2, φb0,± =

√
1∓ z0

2
ψ1 +

√
1± z0

2
ψ2 (161)

where z0 is now de�ned as

z0 =

√
1− 1

γ2
. (162)

Note that the form of the solutions (161) is the same as in the single condensate case (99), except
for the di�erent de�nition of the critical parameter (159).

15.2 Bogoliubov ground state for symmetric solutions
Solution of the Bogoliubov-de Gennes equations reveals two quasi-particles corresponding to
excitation energies:

E± =
√

J (J + NU ±NUab), (163)
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and modes:



ua
±

va
±

ub
±

vb
±


 =




(J + 2E±)φa1

(2E± − J)φa1

(J + 2E±)φb1

(2E± − J)φb1


 χ±, (164)

where

φa1 = φb1 =
1√
2

(ψ1 − ψ2) (165)

is the non-condensate mode and

χ± =
1

4
√

JE±
, (166)

is the normalization factor.
The Bogoliubov vacuum state can be written in the particle representation as

|0B〉 ∼
(
ĉ†a0ĉ

†
a0 + λaĉ

†
a1ĉ

†
a1

)N/2 ×
(
ĉ†b0ĉ

†
b0 + λbĉ

†
b1ĉ

†
b1

)N/2 |0〉, (167)

where the operators ĉ†a0 (ĉ†b0) create atoms of the a (b) component in the condensate mode (160)
and ĉ†a1 (ĉ†b1) create respective atoms in the non-condensate mode (165). The coe�cients

λa = λb =

(
4E2

+ − J2
)
χ2

+ +
(
4E2

− − J2
)
χ2
−

1 + (2E+ − J)2χ2
+ + (2E− − J)2χ2−

. (168)

15.3 Bogoliubov vacuum for phase separated condensates
For γ > 1 the condensate wavefunctions are given by (161), now the quasi-particle excitation
energies are

E± =

√√√√J

(
Jγ2 +

2(U ± Uab)

γ

)
(169)

and the quasi-particle functions are proportional to non-condensate modes

φa1,± =

√
1∓ z0

2
ψ1 −

√
1± z0

2
ψ2, φb1,± =

√
1± z0

2
ψ1 −

√
1∓ z0

2
ψ2. (170)

Similarly as in the case of an attractive condensate in the double well we can use the Bogoliubov
vacuum state to recover the symmetry of the system (see (107)). The ground state in that
approximation is

|Ψ〉 = |0b〉+ + |0b〉−, (171)
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Figure 27: Squared overlap between an exact ground state and the Bogoliubov prediction for
J = 1, N = 100 (black lines) and N = 50 (red lines) in each of the condensates. Solid lines
correspond to the weakly interacting regime, i.e. the interaction is equal to U = 0.001 for
N = 100 and U = 0.002 for N = 50. Dashed lines present results for U = 0.1 (N = 100) and
U = 0.2 (N = 50). The parameter γ is varied by means of Uab changes (see (159)).

where

|0b〉± ∼
((

ĉ†a0,±
)2

+ λ
(
ĉ†a1,±

)2
)N/2 ((

ĉ†b0,±
)2

+ λ
(
ĉ†b1,±

)2
)N/2

|0〉, (172)

is the Bogoliubov vacuum states built upon the condensate wavefunctions φa0,± and φb0,±.
The state (172) is a good approximation for the ground state of the system provided the

states |0b〉+ and |0b〉− are orthogonal. As γ is increased with the �xed N their overlap falls to
zero the faster, the higher N we choose. Note that even in the regime of these states being
orthogonal, the corresponding single particle states φa0,+ and φa0,− need not be orthogonal. If
we are, however, far from the critical point, also the Gross-Pitaevskii solutions have zero overlap,
i.e. 〈φa0,+|φa0,−〉 ≈ 0. For γ →∞ the state (171) is a a Schrödinger cat state.

15.4 Exact diagonalization of the two mode model
In order to verify the Bogoliubov prediction and study the critical point we have diagonalized
the Hamiltonian (158) numerically. Most of the calculations were done for J = 1, N = 100
in each of the two condensates and the interaction U set in the range between U = 0.001 and
U = 1000. The mean �eld parameter was varied in each case in the vicinity of the critical point,
γ = 0 . . . 2, by means of the interaction Uab variations (see (159)).

Apart from the known fact about the Bogoliubov theory breakdown for γ = γc we can
distinguish three regimes with respect to the interaction strength relative to the tunnelling (see
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Figure 28: Energy levels of the Hamiltonian (158) found from the exact diagonalization for
U = 0.001 (panel (a)) and U = 1000 (panel (b)). The number of particles is N = 100 for each
component and J = 1. The parameter γ is varied by means of Uab changes (see (159)).

Figs. 27 and 28)

• NU
J
¿ 1: the square overlap between the Bogoliubov vacuum is close to 1 in a wide range

except for a close vicinity of the critical point. As we will show in the next sections estimates
of critical �uctuations (density and number �uctuations) based upon the Bogoliubov theory
can be made in this regime.

• NU
J

≈ 1: there appear signi�cant deviations of the Bogoliubov predictions from exact
results. The square overlap (Fig. 27) e.g. for γ = 0.5 is equal to 0.8 whereas in the
previous case it approaches 1.

• NU
J
À 1: a new analytical approximation is required to describe a shift of the critical point

to lower values of γ. As can be seen in Fig. 28, for N = 100, J = 1 and U = 1000, the
phase separation occurs at γc = 0.1 (so U

(c)
ab = 1000.001 instead of 1000.01 which would be

the case if the mean �eld result γc = 1 were correct).

16 Critical �uctuations
16.1 Density �uctuations in the weakly interacting regime
Approaching the critical point we can expect growing density �uctuations of the condensate
mixture. To estimate them we will use the method introduced in section 6.1. First, for γ → 1−
we can write the Bogoliubov vacuum state as a gaussian superposition over perfect condensate
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Figure 29: Standard deviation of the density �uctuations of one of the condensates divided by
the average density for N = 100, U = 0.001 (a) and U = 0.1 (b). Solid lines correspond to
results for γ = 0.99 (black lines - exact; red lines - Bogoliubov estimates based upon (176)).
Dashed blue lines depict exact results for γ = 1.

states

|0b〉 ∼
∫

dqadqb exp

(
− q2

a

2Λa

)
exp

(
− q2

b

2Λb

)
|N : φ(a)

q 〉|N : φ(b)
q 〉, (173)

where |N : φ(a)
q 〉 and |N : φ(b)

q 〉 are N -body states where N particles occupy single particle
wavefunctions

φ(a)
q =

φa0 + qa√
N

φa1√
1 + qa

N

, φ(b)
q =

φb0 + qb√
N

φb1√
1 + qb

N

, (174)

and

Λb = Λa =
λa

1− λa

. (175)

Note that λa = λb for our choice of the system parameters. Density pro�les as we approach the
critical point from the �symmetric� side (γ → 1−) can be estimated from the densities

σa(x) ∼ φ2
a0(x) + 2

qa√
N

φa0(x)φa1(x),

σb(x) ∼ φ2
b0(x) + 2

qb√
N

φb0(x)φb1(x),

(176)
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In Fig. 29 we show standard deviation of the density �uctuations divided by the average density,
i.e. the quantity

√
var(ρ

(a)
q )/〈ρ(a)

q 〉 corresponding to the condensate a, where

var(ρ(a)
q ) =

2Λa

N
φ2

a0φ
2
a1. (177)

and for the calculation we have taken the localized modes as

ψ1,2(x) =
(

2

π

)1/4

exp
[
−(x± 2)2

]
. (178)

We can see that the Bogoliubov theory can provide us with reliable results only if we stay in the
weakly interacting regime, NU

J
¿ 1, which is the case for N = 100, J = 1 and U = 0.001.

The standard deviation of the �uctuations scales as
√

Λa

N
∼ 1

(γc − γ)1/4
. (179)

On the other side of the critical point the density �uctuations will be also present. For a
superposition of the Bogoliubov vacuum states (171) we cannot simulate density measurements
with the aid of the above method.

16.2 Order parameter and number �uctuations
Knowing the order parameter for an attractive condensate in the double well we can de�ne it
for the two component condensate in a completely analogous way. For the condensate a it is

B̂ =
∣∣∣â†1â1 − â†2â2

∣∣∣ . (180)

Fig. 30 shows the order parameter at di�erent interaction regimes. We can see the critical
point shift as we increase the intra-component interactions. Fluctuations of the order parameter
(var(B̂)) are maximal at the critical point, which can be seen in Fig. 31. The Bogoliubov
predictions were obtained on the basis of the particle representation of the Bogoliubov vacuum
state, Eqs. (167) and (171).

17 Entanglement in the double well system
The degree of entanglement between the two species is measured by the entropy of entanglement
calculated as the von Neumann entropy of one of the reduced states

S = −Tr(ρa ln ρa) = −Tr(ρb ln ρb), (181)

where ρa and ρb are reduced density matrices of the respective subsystems, i.e., ρa = Trbρab and
ρb = Traρab with ρab = |Ψ〉〈Ψ| being the density matrix of the whole system. Its value for the
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Figure 30: The order parameter, i.e. average value of the operator B̂ (180) for a two component
condensate with N = 100 in each component in the weak interacting, U = 0.001, (panel (a))
and strong interacting regime, U = 1000 (panel (b)). Black lines show results of the exact diag-
onalization. The red line in panel (a) corresponds to the Bogoliubov prediction. The parameter
γ is varied by means of Uab changes (see (159)). Here J = 1.
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Figure 31: Variance of the B̂ operator, (180) for a two component condensate with N = 100 in
each component in the weak interacting, U = 0.001, (panel (a)) and strong interacting regime,
U = 1000 (panel (b)). Black lines show results of the exact diagonalization. The red line in
panel (a) corresponds to the Bogoliubov prediction. The parameter γ is varied by means of Uab

changes (see (159)). Here J = 1.
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Figure 32: Entropy of entanglement for a two component condensate with N = 100 in each
component in the weak interacting, U = 0.001, (panel (a)) and strong interacting regime, U =
1000 (panel (b)). The red line in panel (a) corresponds to the Bogoliubov prediction. The
parameter γ is varied by means of Uab changes (see (159)). Here J = 1.

double condensate under consideration is within the range between S = 0 for a separable and
S = ln N for a maximally entangled system.

The Bogoliubov theory (167) predicts the decomposition of the ground state into two parts,
responsible for condensates a and b, respectively. The entanglement entropy of its ground state
is therefore (except for a very narrow transition region) equal to S = 0 (for γ < 1) and S = ln 2
(for γ > 1), regardless of the regime of interactions we are in. Already in the weak interaction
regime this prediction shows signi�cant discrepancies from the exact result (see Fig. 32) In
fact the entropy of entanglement has a maximum at the critical point and could be another
signature of the phase transition. There is a signi�cant entanglement of particles already in the
miscible phase of the two condensates. Far away from the critical point the Bogoliubov results
approach, however, the exact ones. When we switch to the strong interaction regime, the entropy
of entanglement approaches the maximum entanglement value S = ln N at the critical point.
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Part VII
Self-localization of impurity atoms in a
trapped condensate
An impurity atom immersed in a condensate can have a bound state where it is self-localized
[144]. It can distort the density of the surrounding BEC creating an e�ective trapping poten-
tial, both for repulsive and attractive interactions. This localizing potential was derived for an
impurity interacting with a homogeneous as well harmonically trapped condensate in a strong
coupling approach that assumes a product state of the condensate-impurity system [144]. In
case of attractive boson-impurity interactions two critical values of the interaction were found.
The �rst marks the onset of localization, and the higher one signals a transition to a short range
physics regime where the mean �eld theory predicts collapse of the condensate cloud [145]. It
was found however that the strong coupling approximation underestimates the latter critical
value [146]. In addition, a high peak density of the BEC near the impurity can enhance inelastic
collisions that lead to two- and three-body losses of the condensate atoms.

An impurity in a homogeneous condensate exhibits a parametric soliton behavior [57]. Quan-
tum �uctuations around the product state that describe entanglement of the impurity and boson
degrees of freedom were studied in such system. The quasiparticle excitation spectrum reveals
two clear branches. Each excitation of the lower branch, except for the very lowest level, delo-
calizes an impurity atom, while the upper energy branch is nearly identical to the Hartree-Fock
BEC spectrum in the absence of impurities [57].

An analysis of N impurity �elds immersed in a condensate reveals an attractive condensate-
mediated interaction between two impurities. Di�erent localized phases can occur within various
parameter regimes, including a crystal of impurity �elds that can form spontaneously in the con-
densate. The super�uid system that simultaneously breaks the translational symmetry exhibits
a supersolid behaviour [147].

An experimental signature of a self-localized state could be the modi�ed condensate density
due to the impurity presence. One needs, however, a signi�cant number of impurity atoms
in order to make the e�ect observable in an experiment. A kinetic energy accumulated in an
impurity self-localized in the center of a condensate trapped in a 3D harmonic trap and then
released should be manifest by a halo of impurity particles expanding much faster than the
condensate cloud.

We will consider a subsystem of bosonic impurities that can form a small condensate immersed
in a larger one. In a condensate trapped by a spherically symmetric trap the impurities can self-
localize in the center without an impurity trapping potential. If we study the dynamical stability
of such a con�guration, it turns out that an unstable mode with the angular momentum l = 1
will cause an exponential escape from the symmetric state. We introduce therefore a potential
that traps the impurity subsystem, such that its pro�le does not change much with respect to
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the former case, but the spherically symmetric solution is now stable.
Symmetry breaking mean �eld solutions were found in a two component trapped condensate

[148]. It was shown that the combined density pro�le of the two species looks very much like a
single-species condensate, even though the individual density pro�les of each species are greatly
modi�ed [84, 149]. Imaginary quasiparticle excitation energies leading to such a transition were
identi�ed within the Thomas-Fermi approximation [86].

We will investigate the condensate - impurity system using the number conserving Bogoliubov
theory (see chapter III). We will study properties of the Bogoliubov quasiparticle spectrum and
excitations and search for localized excitations of the impurity subsystem. In the end we will
simulate the above mentioned experimental scenario of detecting the self-localized state.

Production of a self-localized state requires a very strong condensate-impurity interaction.
This can in principle be achieved by means of a Feshbach resonance.

18 Bosonic impurities in a trapped condensate
18.1 Phase separation and self-localization of impurity atoms
We will describe the impurity - condensate system assuming that the impurity atoms form a
small condensate immersed in the larger one. We will use a familiar model of a two component
condensate with NI = 100 impurity atoms and NB = 104 atoms belonging to the large condensate
[96]

Ĥ =
∫

d3r

(
ψ̂†I

[
− h̄2

2m
∇2 + VI(~r) +

gI

2
ψ̂†Iψ̂I

]
ψ̂I

+ψ̂†B

[
− h̄2

2m
∇2 + VB(~r) +

gB

2
ψ̂†Bψ̂B

]
ψ̂B + gIBψ̂†Iψ̂

†
Bψ̂Iψ̂B

)
, (182)

where we have assumed equal masses of both species. The spherically symmetric trapping
potentials are

VI(~r) =
1

2
mω2

I (x
2 + y2 + z2), VB(~r) =

1

2
mω2

B(x2 + y2 + z2), (183)

and the interactions are given by

gI =
4πh̄2aI

m
, gB =

4πh̄2aB

m
, gIB =

2πh̄2aIB

m
, (184)

where aI , aB and aIB are, respectively, scattering lengths of the impurity, condensate and
condensate-impurity interactions. First, we will solve the Gross-Pitaevskii equations written
in the spherical coordinates, assuming the following form of solutions

φI(~r) = R(I)(r)Yl,m(θ, ϕ), φB(~r) = R(B)(r)Yl,m(θ, ϕ), (185)
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Figure 33: Stationary solutions to Eqs. (186), i.e. radial amplitudes ψI/r (black lines) and ψB/r
(red lines). The scattering lengths are aI = 108.8a0, aB = 109.1a0 and aIB = 5000a0. Panel
(a) shows a self-localized impurity for ωs = 5 (solid lines), ωs = 1 (dashed lines) and for ωs = 0
(dotted lines). The insets show a magni�ed region near r = 0 and a region of the overlapping
condensates. The functions are practically the same in all the three cases. Panel (b) shows a
ground state of the system for ωs = 1.

where Yl,m(θ, ϕ) are spherical harmonic functions. Upon de�ning R(i) = ψi(~r)/r and using√
h̄/mωB and h̄ωB as the length and energy units, respectively, we end up with stationary mean

�eld equations that depend only on the radial variable. For a ground state we can take the
angular momentum l = 0,

µIψI(r) =

(
−1

2

d2

dr2
+

1

2
ωsr

2 + 4πNIaI
ψ2

I (r)

r2
+ 4πNBaIB

ψ2
B(r)

r2

)
ψI(r)

µBψB(r) =

(
−1

2

d2

dr2
+

1

2
r2 + 4πNBaB

ψ2
B(r)

r2
+ 4πNBaIB

ψ2
I (r)

r2

)
ψB(r), (186)

where we have de�ned

ωs =
ω2

I

ω2
B

. (187)

In the following we will consider a 87Rb system with |2, 1〉 impurities immersed in a |1,−1〉
condensate. The scattering lengths are, respectively, aI = 108.8a0 and aB = 109.1a0 (a0 is the
Bohr length) [78]. The trapping frequency in the calculations is ωB = 2π × 100 Hz.

We have studied self-localized states obtained with the scattering length set in the range
between aIB = 4000a0 and aIB = 30000a0. We can speak about a self-localized state if an
impurity is focused in the center only by means of the interactions, i.e. ωs = 0. We have studied,
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however, also situations where the impurity trapping is present, looking for con�gurations where
the densities are not modi�ed in a signi�cant way with respect to the former case. Such states we
will also call self-localized. For given interactions aIB the trapping potential was varied between
ωs = 0 and ωs = 100.

The equations (186) were solved by means of the method of the imaginary time relaxation to
a ground state. Note that if an initial state in that method has a zero overlap with the ground
state, we converge to one of excited states of our system. Starting with di�erent initial states
we were able to obtain stationary states plotted in Fig. 33.

As expected, self-localized states occurred at very strong repulsive interactions between the
impurity and condensate atoms. In the case where the impurity trapping is absent (ωs = 0) we
have found such states for aIB ≥ 4000a0, a value much higher than the one needed for phase
separation (ac

IB ≈ 108.95a0). Panel (a) in Fig. 33 shows stationary solutions to Eqs. (186) for
ωs = 0, ωs = 1 and ωs = 5. They almost fully overlap but as we will argue in the next section,
their stability properties are di�erent. The state with impurity atoms located in the center is a
ground state in a steep impurity trap, ωs = 5, whereas (if we restrict to the spherical symmetry)
for a weaker trapping it is an excited state, with a ground state e.g. at ωs = 1 revealing impurity
atoms being outside, see Fig. 33. In fact, at ωs < 5 we need to look for ground states relaxing
the assumption of their spherical symmetry [84, 149].

18.2 Bogoliubov quasiparticle excitations
We have applied the number conserving Bogoliubov theory to test the stability of mean �eld
ground states and study the character of quasi-particle excitations. Investigating the self-
localized states we are very far from the critical point for the phase separation so we can expect
that the Bogoliubov approach should give reliable results. The ground state wavefunctions in
the perturbative expansion used in the method are spherically symmetric. The matrix L (34)
factorizes into blocks with di�erent angular momenta l that can be diagonalized separately. We
can assume the variable separation in the quasi-particle functions (eigenmodes of L)

UI(~r) =
uI(r)

r
Yl,m(θ, ϕ), UB(~r) =

uB(r)

r
Yl,m(θ, ϕ),

VI(~r) =
vI(r)

r
Yl,m(θ, ϕ), VB(~r) =

vB(r)

r
Yl,m(θ, ϕ), (188)

so the diagonalization of L amounts to diagonalizing blocks corresponding to di�erent angular
momenta and depending only on the radial variable r. Hence in the following we will plot only
the radial functions uI(r), vI(r), uB(r), vB(r).

The quasi-particle excitation spectrum (eigenvalues of L) provides us with information about
stability properties of a mean �eld stationary state. An imaginary eigenvalue is a signature that
the system is unstable and under a weak perturbation will evolve to a new stable con�guration.
Negative eigenvalues imply an excited state, which is dynamically stable and can persist in a
time evolution. Such a state is, however, thermodynamically unstable.
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Figure 34: Quasiparticle excitation branch of the impurity (panel (a)) and of the large condensate
(panel (b)). See the text for the method of distinguishing the branches. The angular momenta
are l = 0 (black) and l = 1 (red circles). The arrows in panel (a) mark localized quasi-particle
excitations of the impurity (with excitation energies E = 125.9 for l = 0 and E = 149.7 for
l = 1), whereas in panel (b) the lowest condensate excitations higher than the above mentioned
localized ones, i.e. corresponding to the energies E = 126.8 for l = 0 and E = 151.2 for l = 1.
The scattering lengths are aI = 108.8a0, aB = 109.1a0 and aIB = 5000a0 and the trapping
ωs = 5.
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Figure 35: Three lowest excitations from the impurity branch (l = 0) � the left column, and
from the condensate branch corresponding to l = 0 (the middle column) and to l = 1 (the right
column), with ωs = 5. The scattering lengths are aI = 108.8a0, aB = 109.1a0 and aIB = 5000a0.
The impurity functions are uI (black), vI (red), and the large condensate quasi-particle functions
are uB (green) and vB (blue). In the left column only uI is di�erent than zero.
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Figure 36: Localized quasiparticle excitations of the impurity (see Fig. 34 panel (a)) in the
trapped system (ωs = 5) for the angular momentum l = 0 (panel (a)) and l = 1 (panel (b)). The
scattering lengths are aI = 108.8a0, aB = 109.1a0 and aIB = 5000a0. The impurity functions
are uI (black), vI (red), and the large condensate quasi-particle functions are uB (green) and vB

(blue). The excitation energies are 125.86 and 149.7.
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Figure 37: Three quasiparticle excitations from the condensate branch that precede the localized
excitation in the impurity branch (see spectra in Fig. 34). The left column corresponds to
l = 0 and the right one to l = 1. The system is trapped, ωs = 5. The scattering lengths are
aI = 108.8a0, aB = 109.1a0 and aIB = 5000a0. The impurity functions are uI (black), vI (red),
and the large condensate quasi-particle functions are uB (green) and vB (blue).
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Figure 38: Density of depleted atoms of the impurity (black) and the condensate (red lines) for
l = 0 (panel (a)) and l = 1 (panel (b)). The scattering lengths are aI = 108.8a0, aB = 109.1a0

and aIB = 5000a0. The impurity trapping is such that ωs = 5.
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We have studied the quasi-particle spectra for mean �eld stationary states found for all
mentioned above interaction values and trapping potentials. In the following we will concentrate
on the case with aIB = 5000a0. If we trap only the larger condensate, and the impurity is focused
in the middle only by the interactions (ωs = 0), there are many negative quasi-particle energies,
both for l = 0 and higher. The corresponding excitations would delocalize the impurity. A self-
localized state obtained at ωs < 5 has an unstable l = 1 mode that has an imaginary frequency,
which is a signature of the trap symmetry breaking of the mean �eld ground state.

Results for ωs = 5 are shown in Figs. 34 - 38. We have split the quasi-particle spectrum into
an impurity and a condensate excitation branch using the criterion whether the norm ∫

dr|uI(r)|2
is higher than ∫

dr|uB(r)|2 or not. This follows from the fact that if we excite a quasi-particle,
a subsystem which has a higher value of 〈ui|ui〉 will get more excited. The situation where the
above norms are comparable and both subsystems can acquire a similar excitation happens only
for a few points in the spectra in Fig. 34. Note that all energies are positive, which implies that
we have found the ground state. If we increase the angular momentum, subsequent spectra are
except for the case l = 1 shifted upwards.

Subsequent quasi-particle excitations of the impurity are localized in the trap but outside
of the large condensate (see Fig. 35). The impurity functions uI reveal an increasing number
of nodes with the growing quasi-particle number, and for most of them |uB(r)|2 = 0. The
excitation branch of the larger condensate is linear for low lying quasi-particles. The lowest
excitations from that branch are plotted in the middle and right column of Fig. 35. If we look
at the quasi-particles for l = 1, we notice that they acquire high amplitudes at the impurity
- condensate boundary. The density of depletion becomes high in that region. In fact, we are
close to the l = 1 instability, which would occur for a self-localized state trapped by ωs < 5.

Note that the impurity excitation branch in Fig. 34 reveals several �jumps� where one of the
lines gets shifted with respect to the other one. At those points there occurs a special kind of an
excitation, the impurity subsystem remaining localized in the trap center (see Fig. 36). A closer
look at modes corresponding to the branch of the large condensate excitations reveals that each
of such localized states is preceded by a series of quasi-particles whose norms of uI(r) and uB(r)
are comparable, and 〈uI |uI〉 < 〈uB|uB〉, see Fig. 37.

The density of depletion, plotted in Fig. 38, is the highest at the boundary of the two
condensates. The remarkable grow for l = 1 is due to the fact that we are close to the symmetry
breaking instability.

19 Signatures of self-localization
In addition to the high impurity density, another experimental signature of a self-localized state
could be its time evolution after release from the trap. We have taken the self-localized ground
state found for aIB = 5000a0 and ωs = 5 and simulated its evolution with the traps turned o�
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Figure 39: Time evolution (measured in units of 1/ωB) of the self-localized ground state after
releasing both condensates from the trap. The mean radial position < r > of the impurity
cloud is marked with black and of the larger condensate with red. Panel (a) corresponds to
aIB = 5000a0 during the time evolution while the scattering length was set to aIB = 0 in panel
(b). The intra-condensate interactions are aI = 108.8a0 and aB = 109.1a0.

integrating the mean �eld equations

i
∂ψI(r)

∂t
=

(
−1

2

∂2

∂r2
+ 4πNIaI

|ψI(r)|2
r2

+ 4πNBaIB
|ψB(r)|2

r2

)
ψI(r)

i
∂ψB(r)

∂t
=

(
−1

2

∂2

∂r2
+ 4πNBaB

|ψB(r)|2
r2

+ 4πNBaIB
|ψI(r)|2

r2

)
ψB(r). (189)

The results are summarized in Fig. 39. We can see that in order to observe the halo of impurity
particles surrounding the larger condensate one needs to tune the intercomponent scattering
length to zero before the particle release. Otherwise the strong repulsive interactions prohibit
the impurities to escape.
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Part VIII
Conclusions
Let us now brie�y review the main results of the thesis.

Soliton-like states that are supported by a strong coupling between an atomic and molecular
condensate close to a Feshbach resonance were found. Nonlinearities that occur due to elastic
scattering were included in the mean �eld model and their relative role was investigated. The
soliton states are supported by a strong quasi-one-dimensional trapping. Simulations of an
experimental production of the molecular condensate were performed. For optimized evolution
time we obtained the solitonic ground states, whereas for shorter timescales trains of solitons.
Behaviour of solitonic states in a magnetic �eld gradient was tested. It turns out that the atom-
molecule coupling can prohibit the states from spreading, also splitting of an initial solitonic
state to a soliton train is possible.

A more quantitative analysis of atom losses can be done in future, provided more experimental
data on the Feshbach resonance under study is available. Bogoliubov theory of the coupled atom-
molecule condensate can be developed to �nd whether the assumption of the two condensates is
a�ected by the presence of non-condensed atoms.

The Bogoliubov vacuum state in the particle representation was derived for a two component
condensate. Its form was proved analytically for a condensate in a homogeneous system and
in the double well trapping potential. Density �uctuations corresponding to a long wavelength
quasiparticle excitation were studied in a �nite system with interactions approaching a phase
separation condition. Even for a small number of depleted atoms they can be remarkable, and
are especially pronounced if the total number of atoms is not too high.

A critical point against formation of a symmetry breaking, localized mean �eld solution
was studied for a condensate with attractive interactions. The quantum phase transition was
studied within a continuous model that reveals an e�ective potential resembling the one from the
Landau Ginzburg theory. An order parameter was de�ned both for the double well case and for
a condensate trapped in a �nite box. In the former case it is related to the population di�erence
between the two potential minima. In the latter it corresponds to a number of atoms depleted to
two modes unstable in the Bogoliubov theory. Fluctuations of the order parameter are maximal
at the critical point. For the double well system the above predictions were compared to exact
results obtained by means of diagonalization of the two mode Hamiltonian. In addition, in the
region of applicability of the Bogoliubov theory density �uctuations were shown for interactions
approaching a critical value.

A quantum phase transition involving the symmetry breaking on the mean �eld level was
investigated also for the double well trapped two component condensate. Here, the critical
point marks the onset of the phase separation. Currently only numerical results of the exact
diagonalization are available. The system behaviour is much richer than for the attractive
single condensate because the intercomponent interaction provides an additional parameter.
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Consequently the critical point can be achieved both at weak and strong interactions with
respect to the tunnelling. The mean �eld critical parameter can be used only in the former
case since at strong interactions the instability is shifted towards lower values than the mean
�eld would suggest. Critical �uctuations of an order parameter de�ned in an analogous way
as for the single component system are in both regimes maximal at the critical point. The
Bogoliubov approximation was tested. It provided estimates of the density �uctuations.

Current and future research will be concentrated on a new analytical model describing the
phase transition for the above mentioned various parameter regimes.

Impurity atoms immersed in a trapped condensate were studied on the basis of the Bogoli-
ubov theory. Strong repulsive interactions between the impurity �eld and the condensate are
responsible for the existence of self-localized states. Dynamical stability properties as well as
the character of quasiparticle excitations were investigated. Possibility of observing the self-
localization in an experiment was discussed. The main line of future research on this project
would be to investigate time evolution of quasiparticles. We could obtain in that way information
about behaviour of the particle depletion, which would make the analysis of the time evolution
complete. Also trap symmetry breaking states can be studied. This would require a simulation
of the system without the assumption about the spherical symmetry.
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