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Abstract

In this Thesis we model theoretically selected physical properties of strongly correlated
materials. The particular emphasis is put on the heavy fermion systems revealing uncon-
ventional superconductivity and other interesting properties such as: (i) very large (and
spin-direction-dependent) effective mass of the quasiparticles, (ii) itinerant magnetism
connected with the unconventional superconductivity of the same electrons, (iii) classical
and quantum criticalities, to name just a few examples. Wherever possible, we compare
our theoretical results with experiment, either qualitatively or (semi)quantitatively. As
an additional project, we also include other works connected with the analysis of ther-
moelectric transport in hybrid superconductor - normal metal junctions.

Our approach to correlated systems is based on the variational Gutzwiller wave func-
tion method, here applied to Hubbard (HM) and Anderson-lattice (ALM) models. We
start with the analysis within the so-called statistically consistent Gutzwiller approxima-
tion (SGA) developed in our group in the last five years. Within this approach, here
regarded as the zeroth-order approximation of the full Gutzwiller wave function solution,
first we analyze three-dimensional HM on fcc lattice. On this basis we investigate gen-
eral properties of neutral fermions in the applied magnetic field such as dependency of
magnetization, specific heat, and spin-direction-dependent effective quasiparticle masses.
Additionally, the critical comparison to the normal liquid 3He is drawn. Within the same
approach applied to ALM, we analyze in quantitative terms the magnetic properties of
a moderate heavy fermion and ferromagnetic system UGe2. The emphasis is put on
classical and quantum criticalities and related two magnetic phase transitions, at tem-
perature T = 0 and T > 0, respectively. Our work represents the first such complete
analysis for UGe2 within a microscopic model. We turn next to a systematic diagram-
matic expansion for the Gutzwiller wave function (DE-GWF), developed earlier for the
Hubbard and t-J models. Here we develop the method for ALM and show explicitly
that unconventional d-wave superconductivity appears in the system induced solely by
electronic correlations when we go beyond the zeroth-order. This result is the first of its
kind.

Our additional project involves analysis of thermoelectrical transport through the
junction consisting of superconductor and normal metal. We extend the so-called Blonder-
Tinkham-Klapwijk formalism to incorporate an explicit energy dependence of the den-
sity of states around the Fermi level, resulting in nonzero thermopower across the hybrid
normal metal - insulator - superconductor NIS junction. Our approach is used to ana-
lyze among others, the Seebeck effect in the graphene-based conductor - superconductor
junction.

Keywords: strongly correlated systems, superconductivity, magnetism, ferromag-
netism, heavy fermion systems, real-space pairing, Anderson lattice model, Hubbard
model, Gutzwiller approximation, diagrammatic expansion for Gutzwiller wave function,
variational approach, Ce-based systems, UGe2, quantum critical points, classical crit-
ical points, normal liquid 3He, spin-direction dependent quasiparticle effective masses,
f -electron systems, f electron direct itineracy.
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Streszczenie

Niniejsza rozprawa dotyczy opisu teoretycznego wybranych w lasności fizycznych dla
uk ladów silnie skorelowanych fermionów. Szczególna uwaga jest poświȩcona zwia̧zkom
ciȩżko-fermionowym przejawiaja̧cym m.in.niekonwencjonalne nadprzewodnictwo, jak i
inne interesuja̧ce zjawiska takie jak: (i) bardzo duże (zależne od kierunku spinu) kwaz-
icza̧stkowe masy efektywne, (ii) magnetyzm pasmowy powia̧zany z nadprzewodnictwem
tych samych elektronów, (iii) klasyczne i kwantowe punkty krytyczne. W wiȩkszości
wypadków znajdujemy jakościowe a w niektórych wypadkach ilościowe potwierdzenie
naszych przewidywań teoretycznych z danymi eksperymentalnymi dotycza̧cych ciek lego
3He w stanie normalnym a także ciȩżkofermionowego nadprzewodnika UGe2. Jako do-
datkowy projekt do la̧czono do niniejszej rozprawy analizȩ transportu termoelektrycznego
w hybrydowych nadprzewodza̧cych z la̧czach tunelowych metal-izolator-nadprzewodnik.

Metoda̧ opisu w lasności silnie skorelowanych uk ladów w pracach stanowia̧cych tȩ
rozprawȩ jest wariacyjna metoda bazuja̧ca na funkcji falowej Gutzwillera (GWF), za-
stosowana do modeli Hubbarda i sieci Andersona. Metoda przybliżonego rozwia̧zania,
stanowia̧ca zerowy rza̧d rozwiniȩcia diagramatycznego dla GWF, tzw. statystycznie kon-
systentne przybliżenie Gutzwillera (SGA) zosta la zastosowana do opisu w lasności magne-
tycznych skorelowanych fermionów takich jak, magnetyzacja, ciep lo w laściwe i zależne od
kierunku spinu kwazicza̧stkowe masy efektywne w ramach modelu Hubbarda na sieci fcc.
Przewidywania zosta ly porównane z danymi eksperymentalnymi dotycza̧cymi ciek lego
3He w fazie normalnej. W ramach tej samej metody, zastosowanej do modelu sieci An-
dersona, przeanalizowane zosta ly magnetyczne w laściwości ferromagnetycznego nadprze-
wodnika ciȩżkofermionowego UGe2. Na tej podstawie skonstruowana zosta la pierwsza
mikroskopowa teoria wyjaśniaja̧ca powstawanie magnetyzmu w tym zwia̧zku t lumacza̧ca
g lówne eksperymentalne pomiary, w szczególności obserwowane klasyczne i kwantowe
punkty krytyczne. Dok ladniejsza, w porównaniu do SGA, metoda diagramatycznego
rozwiniȩcia dla funkcji falowej Gutzwillera, zosta la z kolei sformu lowana i zastosowana do
modelu sieci Andersona i użyta do przewidzenia w laściwości zhybrydyzowanych uk ladów
w stanach paramagnetycznym i nadprzewodza̧cym. Otrzymane niekonwencjonalne nad-
przewodnictwo o symetrii d-wave parametru porza̧dku dla modelu sieci Andersona jest
jedynym takim rezultatem w literaturze światowej.

Dodatkowy projekt dotyczy analizy transportu termoelektrycznego poprzez z la̧cza
hybrydowe metal - izolator - nadprzewodnik. Formalizm Blondera-Tinkhama-Kalpwijka
zosta l rozszerzony o efekt zależnej od energii gȩstości stanów w pobliżu poziomu Fer-
miego, którego uwzglȩdnienie prowadzi do skończonego sygna lu Seebecka w rozważanej
klasie uk ladów tunelowych. Opracowany rozszerzony formalizm użyty zosta l także do
obliczenia si ly termoelektrycznej w nadprzewodza̧cym z la̧czu hybrydowym na bazie gra-
fenu.

S lowa kluczowe: silnie skorelowane uk lady, nadprzewodnictwo, magnetyzm, ferro-
magnetyzm, uk lady ciȩżko-fermionowe, uk lady f elektronów, parowanie w przestrzeni
rzeczywistej, model sieci Andersona, model Hubbarda, przybliżenie Gutzwillera, dia-
gramatyczne rozwiniȩcie dla funkcji falowej Gutzwillera, podej́scie wariacyjne, uk lady
na bazie ceru, UGe2, kwantowe punkty krytyczne, klasyczne punkty krytyczne, ciek ly
3He w fazie normalnej, spinowo-zależne kwazicza̧stkowe masy efektywne, bezpośrednia
wȩdrowność f elektronów.
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Chapter 1

Introduction and Motivation

1.1 Superconductivity

Over 100 years ago Heike Kamerlingh-Onnes observed1 a complete loss of electrical
resistance in solidified mercury after colling it down to the temperature TS = 2.17K.
This phenomenon called the superconductivity, subsequently turned out to occur in
different metallic elements. Despite the engagement of the greatest minds of the first
half of the twentieth century, such as Albert Einstein and Richard Feynman2, for an
almost fifty years the microscopic mechanism of superconductivity remained elusive.

Nevertheless, the understanding of the superconductivity was enlarged due to the
phenomenological approaches, mainly by that by Vitaly Ginzburg and Lew Landau [1].
Their ϕ4 theory with the genuine assumption of the global wave function being order
parameter provided a successful explanation of many effects associated with supercon-
ductivity. For instance, on the basis of this approach Alexei Abrikosov provided the
explanation of formation of hexagonal lattice of quantized vortices when a strong mag-
netic field is applied to the thin film of type II superconductor [2].

In 1957 the microscopic description of the superconductivity was formulated, the so-
called BCS theory (from first letters of authors names: Bardeen, Cooper, Schriefer) [3].
It was explained that the phenomenon appears due to the phonon mediated attractive
interaction between electrons. BCS theory being mean-field self-consistent approach
turned out to accurately describe the thermodynamic and electromagnetic properties of
the so-called conventional (type I) superconductors [4]. BCS theory was immediately
explored and reformulated to the forms proved to be crucially important in the later
developments. The extension to the spatial dependence of the superconducting order
parameter was provided by Nikolaj Bogoliubov [5] and Pierre Giles de Gennes[4]: see
also Valatin [6]. The derivation of the phenomenological Ginzburg-Landau approach
from BCS theory was provided by Lew Gor’kov [7] using the Green’s function approach.
Adopting methodology of Lew Gor’kov, Gerasim Eliashberg formulated the microscopic
theory of the superconductivity in the strong electron-phonon interaction limit [8].

When conventional superconductivity was claimed to be understood, new experi-

1To be precise, his technician did, but no information concerning his personal data are known.
2Einstein has claimed that superconductivity emerges due to the closed rings of electrons formation

and supercurrent is flowing due to the cyclic shifts of charges. Before publishing his work, the experiment
known today as Josephson effect was carried out and rebutted his theory. Feynman worked on the topic
for several years using mainly perturbation theory with no success at all.
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Figure 1.1: Left panel: Growth of the number of known heavy fermion superconductors
with time up to 2009 (after Ref. [9]). Right panel: Superconducting critical tem-
perature for selected materials with time up to 2010. Blue circles denote - conven-
tional BCS systems, black squares - heavy fermion superconductors, red diamonds -
high temperature cuprate superconductors, magenta triangles - organic superconduc-
tors, and sea green pentagons - iron-based high temperature superconductors (from
http : //dpmc.unige.ch/gr gaps/index.html). Not shown is the recently discovered
(2014) sulfur hydride H2S under pressure showing superconductivity at up to 203K [10].

mental discoveries have resulted in new issues that are still lacking a widely accepted
theoretical interpretation. The first discovery was the transition to the superconducting
phase below 1 K observed for the heavy fermion compound CeCu2Si2 in 1979 by Frank
Steglich et al. [11] and second, the observation of the superconducting transition at
unprecendentedly high critical temperature of about 30 K in LaBaCuO in 1986 by Jo-
hannes G. Bednorz and Karl A. Müller [12]. In both of these materials, due to the strong
Coulomb interaction, the phonon mediated mechanism of pairing seems highly unlikely.
In view of this fact, the conventional BCS theory has no application to this class of
systems. Thus, the discoveries of the unconventional superconducting systems call for
a new theory comprising the strong interactions (correlations) between electrons. The
family of non-BCS systems, as termed unconventional superconductors, including both
the superconducting heavy fermion systems and the high temperature superconductors,
over time was enlarged with plenty of new members (cf. Fig.1.1). In this family also the
organic [13] and iron-based [14] superconductors are included.

The ubiquity of the paired states in various compounds suggests that, in principle,
superconductivity is rather a rule than exception. In fact, it is believed nowadays that
the superconductivity is one of the few emergent phenomena that can be realized on
all energy scales (cf. Fig. 1.2). What changes is the kind of particles and the origin
of interaction that couples them. In the systems such as cuprates and heavy fermion
systems the electrons are forming pairs with the nature of attraction between them is
still not completely clear.

The novelty of the unconventional superconductivity is that, contrary to the conven-
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Figure 1.2: Schematic representation of the fundamental fact that superconductivity
(superfluidity) is realized on all energy scales. (From [15])

tional BCS type, it appears in the systems with strong Coulomb interactions that for
the conventional BCS theory is suggested to compete with the phonon-mediated attrac-
tive force [3, 16]. Also unconventional SC often happens to appear concomitantly with
magnetism, either antiferro- or ferro-magnetism [9], either cooperating or competing.
As a concrete example, the first observed coexistence of weak itinerant ferromagnetism
and unconventional superconductivity in Y9Co7 by A. Ko lodziejczyk, et al. [17, 18, 19]
has the nature that points out to the mutual competition between those phases. On
the other hand, twenty years later such exotic coexistence was discovered in the UGe2

[20] and subsequently in URhGe [21] and UCoGe [22]. In these cases though, various
experiments [9, 23, 24, 25] undoubtedly have indicated that both phases are strongly
intertwined. It must be emphasized that by coexistence or competition between phases
we mean here the states involving the same electrons.

However, what is certain and indisputable is that any theory pretending to resolve
the issue of superconductivity mechanism particularly in the high temperature supercon-
ductors or heavy fermion systems, must account for the strong correlations between the
relevant electrons. Moreover, as the Coulomb interaction represents the largest energy
scale in those systems the repulsive interaction by itself can lead to the effective pairing.
It naturally leads to the idea of real-space pairing, description of which on the example
of the heavy fermion systems, is one of the aims of this Thesis.
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Figure 1.3: Schematic representation of a metallic (left) and the Mott-insulating (right)
states on example of artificial hydrogen lattice containing only one valence electrons per
atomic site (red points). (after Ref. [28])

1.2 Strongly Correlated Systems

In quantum mechanics only a limited number of problems can be solved exactly [26, 27].
However, one could systematically explore many problems in the approximate manner,
among them by means of the perturbation theory. In general, this theory is useful when
the Hamiltonian describing quantum system at hand can be divided into a solvable part
and a significantly smaller perturbation.

Perturbation theory naturally is not applicable when the interaction is not small
but comparable to the solvable part of the Hamiltonian. Such situation appears when
one describes the class of systems called strongly correlated3, i.e., when the interac-
tion between particles is at least comparable to their kinetic (band) energy. From the
competition of those two factors many nontrivial effects appear, some of which will be
described on a selective basis in the following.

The archetypal system revealing sizable interactions is normal liquid 3He with the
total atomic spin 1

2 , thus can be treated as a quantum liquid of fermions. At low
temperatures, T ≤ 4K, the length of the thermal de Broglie wave of 3He atoms in
liquid state is of the same order as an average spacing between them. This was the
first clue that normal liquid 3He has quantum nature [29]. In fact, several non-trivial
observations having their origin in the sizable van der Waals repulsive forces between
atoms were made. One of them is the significant enhancement of the effective mass of
the atoms roughly by factor of 3 at the ambient pressure, visible among others in their
Fermi distribution from neutron scattering data [30] and the value of the linear specific
heat coefficient [31, 32].

The first theory accounting for the sizable correlations and successfully provide semi-
complete explanation of this quantum liquid (e.g. effective mass enhancement, second
sound) was the seminal Landau’s Fermi-liquid phenomenological theory [33]. Latter, a

3 Strongly interacting systems would be more precise description. However, historically such term was
already reserved for the high energy physics, therefore term strongly correlated was introduced instead.
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microscopic model4 was derived by John Hubbard [34, 35, 36, 37],

ĤHM =
∑

i,j,σ

tijĉ
†
iσ ĉjσ + U

∑

i

n̂i↑n̂i↓, (1.1)

and turned out to be one of the cornerstones in the physics of strongly correlated systems.
The model comprises only the two parts: single particle (kinetic) energy of fermions on
the lattice and the two-body intrasite Coulomb interaction. Hubbard model was treated
by the approximate methods e.g. variational Gutzwiller approach [36, 38] and slave-
boson method [39, 40], what has given enormous insight into the phenomena concerning
physics of the strongly correlated systems.

One of the earliest concepts, first insightfully proposed by Nevill Mott [41] was the
metal-to-insulator transition [42, 43, 44]. Configuration of the free electron gas on the
lattice (assuming one electron per site) is limited only by the Pauli exclusion princi-
ple. By means of Bloch theorem one can make transformation to the momentum space
providing appropriate set of the quantum numbers and consider system as a set of de-
localized particles composing the metallic Fermi sea (cf. Fig. 1.3, left panel). If the
Coulomb repulsive force between electrons is switched on adiabatically5, the system for
the critical interaction undergoes a phase transition to the insulating state, where all
particles are localized (cf. Fig. 1.3, right panel). Roughly speaking, this transition can
be understood as a blocking of electron mobility due to negative difference balance the
gain from their kinetic energy and the cost of the Coulomb energy, when particles come
close. The system believed originally to exhibit such physics was the normal liquid 3He
considered as an almost localized Fermi liquid [48]. Though, on the basis of comparing
magnetization curve with the experimental measurements [49] such understanding may
not to be fully justified [38].

In terms of Mott systems in solids, there exist materials that exhibit intermedi-
ate properties between ordinary metals and magnetic Mott insulators, such as V2O3,
La2−xSrxCuO4, NiS2−xSex, and SmS, where the transition from one state to the other
can be triggered by temperature, pressure or alloy composition. Metals are well de-
scribed by the Bloch theory, whereas 3d and 4f states in magnetic insulators by the
atomic approaches based solely on the Heisenberg exchange interactions. Development
of the approach bridging those states in a systematical manner was a challenging task.
For instance, the phase diagram of the alloyed canonical system of (V1−xCrx)2O3 was
rationalized on the basis of Hubbard model with an inclusion of the antiferromagnetic
exchange interactions [50, 51].

In parallel to the investigations of the Mott metal-to-insulator transition, Hubbard
model was studied in terms of the ferromagnetic and antiferromagnetic instabilities. In
the former case, one can derive the Stoner criterion for ferromagnetism appearance for
itinerant electrons. On the other hand, for nearly half-filled band, an onset of antiferro-
magnetism turns to be energetically favorable against the paramagnetism.

Real interest in the problem of strongly correlated systems intensified after the dis-
covery of unconventional superconductivity in the cuprates [12], where the onset of super-

4Here we provide only the simplest version of the Hamiltonian; a detailed discussion is given in the
Sec. 1.5.

5The condition for the adiabatic change is necessary in order to ensure the ground state would be
constantly in the equilibrium. The situation when the interaction is increased on the relevantly faster
time scale is under the present study of the physics of the so-called quantum quenches in strongly
correlated fermion systems [45, 46, 47].
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Figure 1.4: Schematic phase diagram on the hole doping - temperature plane for the
high temperature superconductor La2−xSrxCuO4. The characteristic temperatures are:
Néel temperature, TN , superconducting critical temperature, TS , and the temperature
for the onset of the pseudogap, TP . (From [28])

conductivity is in the vicinity of the Mott transition (cf. phase diagram of La2−xSrxCuO4

- Fig. 1.4). The repulsive interactions are here the largest energy scale in the system and
are responsible for the superconducting instability. Despite intensive studies and under-
standing of several issues concerning high temperature superconductors [52, 53, 54], the
nature of this unconventional paired phase itself and the mechanism responsible for its
emergence is still not completely understood. Here we take the view that all discussed
phenomena are induced by the strong correlations as the sole cause.

Main microscopic models believed to properly described phenomenon of high temper-
ature superconductivity is the already mentioned Hubbard model [55] and its derivative
[56, 57, 58], t-J model [59, 60].

In terms of a two dimensional Hubbard model, there are limited number of techniques
that are able to properly treat superconducting correlations. These are: Variational
Monte Carlo (VMC) [61], Dynamical Mean-Field Theory (DMFT) [62, 63], Dynamical
Cluster Approximation (DCA) [64] and recently proposed Diagrammatic Expansion for
the Gutzwiller Wave Function (DE-GWF) [55]. The t-J model is well suited for studying
the superconductivity, as already on the level of the Hartree-Fock-type of approxima-
tion it reduces to the effective BCS-like Hamiltonian. Moreover, this model treated by
so-called Renormalized Mean-Field Theory (RMFT) provides reasonable description of
principal physical properties of high temperature superconductors [60]. Quite often, for
a more realistic description of cuprates the extended version, the t-J-U model is con-

16



sidered [65]. In this case, the additional repulsive Hubbard term, in addition to the
exchange interaction with exchange integral value J taken into account.

1.3 Heavy Fermion Materials

Heavy fermion (HF) materials are one of the principal classes of strongly correlated
systems and are usually referred to as f electron systems. All those compounds belong to
this group contain elements with partially filled 4f or 5f valence shell. The origin of the
name heavy fermions has its origin in the unusually large enhancement of the electrons
effective mass up to 1000 times as compared to that for free electron gas. Such behavior
was first observed in CeAl3 in 1975 [66] on the basis of strong renormalization of the linear
specific heat coefficient. Apart from that, this type of result revealing the heavy fermion
behavior appears also in the magnetic susceptibility, the electrical resistivity [67], and the
de Haas-van Alphen oscillation [68] measurements. At the beginning, the strong mass
renormalization was regarded as mere curiosity until the discovery of superconductivity
in CeCu2Si2 which started an enormous interest in this class of materials. Heavy fermion
systems were the first electron materials exhibiting non-BCS pairing,6 and after this
discovery a new era of unconventional superconductivity begun.

With the increasing number of the heavy fermion compounds unique scaling prop-
erties have been were observed. First of them was the Kadowaki-Woods scaling [70]
(cf. Fig. 1.5, left panel) consisting of the linear relation between the linear-specific-heat
coefficient, γ and the coefficient A for T 2 law for the resistivity, known earlier to hold
for the transition metals [71]. Moreover, f -electron systems also follow a linear scaling
of γ against the Pauli susceptibility χ(0), as predicted for the ideal electron gas - called
the Wilson scaling (see e.g. [72]) (cf. Fig. 1.5, right panel).

Based on these scaling phenomena one can infer that apart from the mass renormal-
ization the heavy fermions exhibit the behavior much alike the simplest ideal electron
gas. However, they exhibit also highly non-trivial effects originating from an almost
localized nature of electrons originating from the f shell. The most spectacular was al-
ready mentioned unconventional superconductivity, for discussion of which we devote the
next section. The other phenomenon that attracted lots of attention in heavy fermions is
the persistence of some features associated with the impurity, as e.g. Kondo effect [73].
Originally, it was studied as a way to understand anomalies of the increasing resistivity
below the Kondo-temperature, TK in the simple metallic materials containing a small
amount of magnetic impurities. It was explained on the basis of coherent interaction
of a single localized 1

2 spin of the magnetic impurity with the spins of the Fermi sea of
conduction electrons. In effect below TK the groundstate of the system is the total spin
singlet of the combined local system composed of magnetic moment and the spins from
the conduction band, sometimes referred to as creation of the compensation cloud (cf.
Fig. 1.6, left panel, A and B). The increase of the resistivity below TK is due to the
spin-flip scattering of carriers on the localized spin.

In the case of heavy fermions, the Kondo-like effect are much more complicated.
Here the f electrons compose a periodically arranged lattice of magnetic impurities.
Such system is frequently described by the Kondo lattice model (KLM) comprising of

6Precisely, the first unconventional superconductor was 3He where superfluidity between neutral
atoms emerges without the ionic lattice and is mediated by the spin-fluctuation exchange [69].
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the selected heavy fermion compounds. Both plots illustrate in a clean manner the
Fermi-liquid properties for these systems with an extremely high effective masses of
quasiparticles. (From [28], after [72])

the lattice of the localized f spins coupled by the effective antiferromagnetic (Kondo)
exchange interaction with the conduction band7, i.e.,

Ĥ ≡ ĤKLM =
∑

i,j,σ

tijĉ
†
iσ ĉiσ − JK

∑

i

Ŝi · ŝi, (1.2)

where JK is the value of the corresponding exchange integral8. This model leads, among
others, to understanding of the heavy-Fermi-liquid behavior observed in HF systems. It
turns out that by means of the Schrieffer-Wolff transformation [85] the above model can
be derived from the more universal Anderson lattice model (ALM), which is defined and
explained in detail in the following Sec. 1.5.

It is worth mentioning that although the Kondo-like effects within the class of
strongly correlated systems is connected to the heavy fermion materials, indirectly have
led to the better understanding of the whole range of systems with the strong interac-
tions as such. It is due to the single Anderson impurity problem being at the heart of the
dynamical mean field theory (DMFT) - one of the most successful approaches, among
those not requiring large computing power, to treat the electronic strong correlations
[86, 87, 88, 89, 90].

7 In the following operators ĉ(†) are responsible for creation (annihilation) of the electrons from
conduction band, ŝ is the spin operator for those electrons and Ŝ is the spin operator for f electrons.

8Such exchange apart from KLM explicitly appears in the context of other models, such as Anderson-
Kondo and Kondo-Heisenberg lattice models, where it is frequently considered as a source of the super-
conducting pairing in HF materials [77, 78, 79, 80, 81, 82, 83, 84].
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Figure 1.6: (Left panel) Simplistic visualization of the heavy Fermi liquid state due to
Kondo interaction in the heavy fermion compounds (A) with resulting large Fermi surface
(B) and antiferromagnetism due to the RKKY interaction (C) with resulting small Fermi
surface (D) (after Ref. [74]). (Right panel) Schematic phase diagram proposed by
Doniach [75] (after Ref. [76]). Antiferromagnetism is terminated for critical JC and
subsequently heavy Fermi liquid arises at T < TK . This interpretation of the Kondo
compensation can be regarded only as an illustration as it is based on the assumption
of f -electron localization, which is not completely true in the heavy fermion case.

Apart from the Kondo interaction, also the so-called RKKY9 interaction [91, 92, 93]
can be crucially important in heavy fermion materials in which the spins are practically
localized. On the basis of the fourth-order perturbation theory within ALM it can be
shown that the f -electron magnetic moments couple with each other with the interaction
mediated by the conduction electrons. The effective exchange integral oscillates with a
distance, and in some cases it can lead to the antiferromagnetic interaction (cf. Fig.
1.6, left panel, C and D). As proposed by Doniach the comparison of the characteristic
temperatures for the RKKY interaction and Kondo effect leads to a semi-universal phase
transition in f electron systems between antiferromagnetism and the heavy-Fermi-liquid
(cf. Fig. 1.6, right panel). However, the phase diagrams for heavy fermion systems
are usually much more complicated than that proposed by Doniach. This is because in
the Doniach model we assume explicitly that the f -spins are localized. This is not true
in general [82, 94, 95, 96]. Furthermore, there are still many unresolved issues such as
properties of the system due to the presence of quantum ciritical point and the origin
of the unconventional superconductivity. The next section is devoted to a brief and
selective overview of the experimental properties related to the latter issue.

1.4 Heavy Fermion Superconductors

Superconductivity in heavy fermion systems is unconventional due to the fact that (con-
ventional) BCS theory based on the electron-phonon coupling has failed to describe

9After the first letters of the names: M.A. Ruderman, C. Kittel, T. Kasuya and K. Yosida.

19



Figure 1.7: Phase diagram of the CeCu2(Si1−xGex)2 revealing two distinct supercon-
ducting domes (after Ref. [97]).

its properties in this case. Within the group of the so-called BCS superconductors
magnetism plays a destructive role for the pairing. On the other hand, in the case of
unconventional heavy-fermion superconductors the magnetism (frequently antiferro- or
ferro-magnetism) is intrinsically intertwined with the appearance of the paired states.
Consequently, the Cooper pairs are usually the d-wave spin singlets in an antiferro-
magnetic materials and the spin triplets in ferromagnetic case. This constitutes the
reason of the division of the following into two subsections. In the first, the features
for the phase diagrams would be sketched of the selected Ce-based superconductors at
the border of antiferromagnetism, namely the families of CeM2X2 (Ce-122 series, here
with M=Cu,Pd,Ni and X=Si,Ge) and CeMIn5 (Ce-115 series, with M=Co,Ir,Rh). In
the second,we describe the uranium-based superconducting ferromagnets.

1.4.1 Superconductivity at Border of Antiferromagnetism

The archetypal member in the Ce-122 series is the first discovered unconventional heavy
fermion superconductor CeCu2Si2 [11]. The paired phase appears there at the border
of antiferromagnetism [9, 103]. As the superconducting dome spreads to the both sides
around the Néel critical temperature line designating second order phase transition, it is
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Figure 1.8: The combined phase diagram of the CePd2Si2 and CeNi2Ge2 heavy fermion
superconductors (after Ref. [98])

Figure 1.9: Left panel: Phase diagram of the heavy fermion family CeMIn5, with M=Co,
Rh or Ir, obtained by substitution of M elements (after Ref.[99]). Right panel: Measured
with the help of the Bogoliubov quasiparticle spectroscopy superconducting gap nodal
structure of the CeCoIn5 - first experimental proof [100, 101, 102] for d-wave symmetry
of SC order parameter among all HF superconductors (after Ref. [102]).
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commonly believed that the origin of the pairing mechanism is the presence of a hidden
antiferromagnetic quantum critical point. However, the specific shape of the SC dome
divided into the two parts suggests two different pairing mechanisms. It was revealed
by the experiments with CeCu2(Si1−xGex)2 that this is indeed the case, as alloying with
germanium introduces pair breaking defects and thus splits the superconducting dome
into two parts [104, 105] (cf. Fig. 1.7). Although, the common understanding of the ori-
gin of the second dome, far apart from antiferromagnetic quantum critical point is based
on the valence-fluctuation mechanism [106, 105, 107] the recent experimental studies has
questioned such description [108]. For that reason the question of underlying microscopic
mechanism of pairing in this material remains still open. Quite similar behavior is ob-
served on the phase diagram of the isostructural and isoelectronic compounds CePd2Si2
and CeNi2Ge2 [98] (cf. Fig. 1.8).

Another class of heavy fermions with superconductivity at the border of antiferro-
magnetism is the Ce-115 series, namely CeMIn5, with M=Co, Rh or Ir. The phase
diagram resulting from isovalent chemical substitution between M elements is presented
in Fig. 1.9, left panel. The series member, CeCoIn5, reflects the highest superconducting
critical temperature of TS = 2.3 K, among all known Ce-based compounds [109]. As
cobalt is replaced by rhodium and subsequently rhodium by iridium, the unit cell volume
increases but c/a ratio of the lattice constants decreases, tuning the system from the high
TS superconducting state through the antiferromagnetic to the low TS superconducting
phase. Conveniently, the alloying seems to be a good tuning parameter as it does not
introduce substantial disorder to the system.

In terms of superconducting phase itself, the undoped CeCoIn5 is the most promising
material for theoretical studies. Due to recent advances in experimental techniques,
particularly within the Bogoliubov quasiparticle interference spectroscopy, the symmetry
of the order parameter, unprecedentedly among remaining Ce-based heavy fermions, is
confirmed to be of mainly dx2−y2 character [102, 100, 101] (cf. Fig. 1.9, right panel).
Apart from the symmetry, the same experimental studies points to the emergence of
superconductivity in more than one band.

1.4.2 Coexistence of Superconductivity with Itinerant Ferromagnetism

The coexistence of superconductivity with weak itinerant ferromagnetism was first dis-
covered by A. Ko lodziejczyk er al., in 1980, in the compound Y9Co7 [17, 18, 19]. Nonethe-
less, since the pairing in this compound is of the spin-singlet type, both orders are com-
peting with each other. In UGe2, 20 years later [20], the coexistence of superconductivity
with the strong ferromagnetism (∼ 1.48µB per U atom) has been observed at high pres-
sure. Observed high critical field has given strong argument for its spin-triplet type, as
in this regime only the orbital effects should contribute to the Cooper-pair breaking [24].

Although, similar nature of the superconductivity has been subsequently discovered
in ferromagnets with lower magnetization, in URhGe (∼ 0.4µB per U atom) [21] and
UCoGe (∼ 0.07µB per U atom) [22], the coexistence in UGe2 is regarded as unique
and intriguing for several reasons. First, the superconductivity in UGe2 for T → 0
vanishes at the same critical pressure as ferromagnetism [20] (cf. Fig. 1.10). Second, the
ferromagnetism is divided at low temperature into two phases, separated by first order
transition, and the maximum of the superconducting dome coincides with this line [110]
(cf. Fig. 1.10). Third, the abundance of the classical and quantum critical points on
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Figure 1.10: From top to bottom: Phase diagram of UGe2 on temperature-pressure
plane, magnetization curve as this compound is driven by the applied pressure undergoes
two phase transition at low temperature, and its phase diagram on the magnetic field -
pressure plane (after Ref. [110]).

the magnetic phase diagram [111, 112] (cf. Fig. 1.11) raise the question of a possible
quantum critical behavior responsible for the superconductivity origin.

In spite of multiple attempts to understand the mechanism for the spin-triplet super-
conductivity, the origin of the phenomenon in U-based ferromagnets still remains open.
In the case of UGe2, the mentioned experimental findings strongly suggest that both
magnetism and superconductivity are intertwined, and should be treated on an equal
footing. Therefore, it seems that the origin of ferromagnetism itself with all the detailed
features should be addressed first as its understanding should give strong evidence which
processes are important in UGe2 and where to search for the pairing mechanism. This
is one of the main aims of th Thesis (cf. Ref. [113, 114] - articles A.2 and A.3).

1.5 Model Hamiltonians

A number of theoretical models are used to understand strongly correlated systems.
Here we only refer to the most important ones which were of interest to us, namely the
Hubbard (HM) and Anderson lattice (ALM) models (the latter also usually referred to as
periodic Anderson model). The Hubbard model [34, 35, 36, 37] represents a microscopic
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Figure 1.11: Tricritical wing structure of the phase boundaries in UGe2 (after Ref.
[111]).

playground for studies of the emergent phenomena due to strong electronic correlations.
This simple microscopic model has been applied among others to the description of the
mechanisms behind the Mott localization, band ferromagnetism, antiferromagnetism and
eventually the high temperature superconductivity (cf. Sec. 1.2). On the other hand,
ALM turned out to successfully incorporate the universal features of heavy fermion
systems such as the large effective masses, the Kondo-type effects, and unconventional
magnetism.

Formally, HM describes the itinerant electrons interacting with each other by means
of the Coulomb repulsive interaction whenever two of them with opposite spins10 are on
the single site (cf. Fig. 1.12, left panel). Description of the materials in terms of the
Anderson lattice model is more involved and the model provides a basic understanding
of many features exhibited by the heavy fermion materials. In particular, it accounts for
both localized and uncorrelated itinerant particles. Even though only localized electrons
strongly interact with each other it is the hybridization which couples both subsystems
leading to competition between localized and conduction electrons within an effective
quasiparticle picture (cf. Fig. 1.12, right panel).

Specifically, the single-band Hubbard model (HM) reads

ĤHM =
∑

i,j,σ

tijĉ
†
iσ ĉjσ + U

∑

i

n̂i↑n̂i↓ − σh
∑

i,σ

n̂iσ, (1.3)

and the two-orbital Anderson lattice model,

ĤALM =
∑

i,j,σ

tijĉ
†
iσ ĉjσ −

∑

i,σ

σh n̂ciσ +
∑

i,σ

(εf −
gf
g
σh)n̂fiσ + U

∑

i

n̂fi↑n̂
f
i↓

+
∑

i,j,σ

Vij(f̂
†
iσ ĉjσ + ĉ†iσf̂jσ),

(1.4)

10The Pauli principle forbids configuration with two equal spin electrons on the same site (in the same
Wannier state).
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Figure 1.12: Schematic visualization of particles on lattice described by single-band
Hubbard model (left panel) and those within a two-orbital Anderson lattice model (right
panel). In the first case intersite hopping and f -c hybridization lead to a correlated state
of fermions.

where in both models we include the Zeeman term in an applied magnetic fieldh ≡
1
2gµ0µBHa. Both models are considered for a translationally invariant systems. We
introduce the standard notation, for the spin quantum number σ = ±1 and {i, j} being
lattice position indices. The conduction band is described by the creation and annihila-
tion operators, ĉ†iσ and ĉjσ, respectively, and the and the hopping integral between the
lattice sites, tij. In HM, the repulsive on-site interaction exists between all electrons
in the band, with the amplitude U . In case of ALM, the repulsive interaction is ac-
counted for the f orbital, with initially localized f states placed at εf and coupled to
the conduction band electrons by means of hybridization of amplitude Vij. The possible
difference of the Landé factor for f -electrons, gf different from the free electron value
g = 2 is also taken into account. We have also defined the particle number operators for
the respective orbitals, n̂ciσ ≡ n̂iσ ≡ ĉ†iσ ĉiσ and n̂fiσ ≡ f̂ †iσf̂iσ. Those two models model
respectively the correlated state in a representative band and in the hybridized system
described by a two-orbital periodic system with correlations appearing originally only in
one of them.

Hubbard model is generally used to describe strongly correlated systems comprising
Mott insulating state. It is in particular the case among others for, in the mentioned
in Sec.1.2, (V1−xCrx)2O3 [50, 51] and cuprates, e.g. La2−xSrxCuO4 [53]. Applicability
of this model was also suggested to the normal liquid 3He [48] as the almost localized
(crystallized) system.

Anderson lattice model is suitable for the description of the hybridized systems. Usu-
ally it concerns systems with the partially filled f -shell called heavy fermion systems.
The crucial property of ALM model is the microscopic description of the delocaliza-
tion of the initially at atomic states f -electrons by means of the hybridization to the
conduction band with additional accounting for the strong Coulomb repulsion within
f -orbital. Such picture leads to many nontrivial physical consequences as among others,
itinerant magnetism, effective Kondo-type coupling and as derived within this Thesis
unconventional superconductivity.
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1.6 Aim and Scope of the Thesis

The general aim of this Thesis is to describe the selected physical properties of strongly
correlated systems, i.e., those exhibiting strong electronic correlations, within theoreti-
cal models tackled with the variational Gutzwiller wave function approaches. We study
mainly the hybridized systems, described by the Anderson lattice model (ALM) con-
sidered to capture most important features of the heavy fermion materials (HFS). We
primary focus on the description of unconventional, heavy fermion superconductivity
and related magnetism.

To achieve the original goal of this Thesis, which was the formulation of the theo-
retical framework with the correlation-induced superconductivity in ALM, we develop
and implement a special variational method, namely the diagrammatic expansion for
Gutzwiller wave function (DE-GWF) [55, 59, 115, 116, 117] for this model [118]. It is
in particular important as, to the best knowledge of the author, up to now only one
method for strongly correlated systems has enabled to analyze the microscopic mecha-
nism of unconventional superconductivity in ALM [119]. Our framework of DE-GWF
method within which we study d-wave symmetry of the order parameter in this light is
the first investigation of its kind, and complete the picture of ALM describing principal
properties of the heavy fermion systems.

The detailed problems addressed in the published articles as well as in those under the
reviewing process constituting this Thesis, can be summarized in the following points:

• The behavior of the neutral fermions within the three dimensional Hubbard model
on fcc lattice in the applied magnetic field: magnetization, specific heat, spin-
direction dependent quasiparticle masses and their relevance for the canonical cor-
related system - normal liquid 3He [38] - cf. Article A.1.

• Description of the magnetism of the ferromagnetic superconductor UGe2 within
two dimensional ALM for T → 0 [113] - cf. Article A.2.

• Description of all the critical points, both classical and quantum which appear
in UGe2 and their possible relation to the onset of superconductivity [114] - cf.
Article A.3.

• Studies on the accuracy of the quantitative fit of the 2nd order phase transition line
joining tricritical point and quantum critical ending point in UGe2 with respect to
chosen total band filling and f -electron Landé factor [120] - cf. Article A.4..

• Derivation and implementation of the DE-GWF method to ALM: paramagnetic
phase consideration including analysis of the specific features of emerging quasi-
particle density of states [118] - cf. preprint of Article A.5.

• Extension of the DE-GWF method for the d-wave superconductivity description
in ALM: determination of the general phase diagram [121] - cf. preprint of Article
A.6.

As a additional project included in this Thesis, some additional problems concerning
unconventional superconductivity11 as such are studied, namely:

11Unconventional character is due to the fact that considered superconductivity is induced in the
graphene layer by means of the proximity effect. Therefore, although the symmetry is conventional
s-wave the paired phase is described by means of non-standard Dirac-Bogoliubov-De Gennes equations.
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• Derivation of the extended Blonder-Tinkham-Klapwijk formula for the thermo-
electrical transport through the superconducting hybrid junction (NIS - Normal
conductor, Insulator, Superconductor) [122] - cf. Article B.1.

• Application of obtained theory for the case of the graphene based junction (NS)
[123] - cf. Article B.2.

• Investigations of the impact of temperature on the conductance oscillations in the
graphene based NIS junction [124] - cf. Article B.3.

The content of the Thesis is as follows. In Chapter 2 we have described in detail
used variational methods based on the Gutzwiller wave function, including the imple-
mentation of SGA approach to Hubbard and Anderson lattice models, and DE-GWF
technique as applied to Anderson lattice model, specifically for description of paramag-
netic and the superconducting states. In Chapter 3 we describe the articles constituting
the main part of this Thesis. In Chapter 3.8 we have additionally briefly refer to the
additional project concerning thermoelectrical transport through superconducting hy-
brid junctions. Chapter 4 contains the Thesis summary and conclusions. The original
articles are reproduced in Chapter 3. At the end, we list the bibliographical references
quoted in the foregoing chapters.
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Chapter 2

Gutzwiller Wave Function
Variational Approaches

In the Hubbard Model considered for the translationally invariant lattice, one can nar-
row down the Fock space to four different local (on the site i) spin configurations,
| Γ〉i ∈ {| 0〉i, |↑〉i, |↓〉i, |↑↓〉i}. In the case of the absence of the correlations all of those
configuration are equally probable and the ground state is assumed as the Slater de-
terminant, |ψ0〉. In 1963 Gutzwiller [36] proposed the variational wave function which
can accurately approximate true ground state when the interactions are significant by
optimizing the probability of the onsite double (opposite) spin occupancy, |↑↓〉i. In
the standard formulation Gutzwiller Wave Function (GWF), |ψG〉, is constructed in a
following manner:

|ψG〉 = P̂G|ψ0〉 ≡
∏

i

P̂G;i|ψ0〉 ≡
∏

i

(
1− (1− g)n̂i↑n̂i↓

)
|ψ0〉, (2.1)

where g is a variational parameter, and P̂G = P̂†G is the so-called Gutzwiller projection
operator. For g = 1 one recovers an uncorrelated ground state whereas the g = 0 case
determines fully projected state with no double occupancies. Therefore, GWF enables to
investigate both limits, as well as the intermediate regime within this single framework.
In order to proceed with the variational treatment, one needs to calculate expectation
value of the Hamiltonian with the GWF,

〈Ĥ〉G ≡
〈ψG | Ĥ | ψG〉
〈ψG | ψG〉

=
〈ψ0 | P̂GĤP̂G | ψ0〉
〈ψ0 | P̂2

G | ψ0〉
. (2.2)

Despite of an apparently simple form of (2.2), its evaluation specifically for both the
Hubbard and the Anderson lattice models is impossible for realistic two and three di-
mensional infinite lattices and arbitrary parameters1. Therefore, one needs to make some
assumptions to circumvent this difficulty. Two approximate methods: the generalized
GA in the statistically consistent form (called SGA) and Diagrammatic Expansion for
the Gutzwiller Wave Function (DE-GWF) are addressed in this chapter. These methods
are described in detail for the particular cases considered in the following chapter 3 -
Results.

1Note, that there exists exact solutions for very specific situations [125, 126, 127, 128]
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Despite some inaccuracies generated by various approximations generally GWF stands
out with the physically transparent form and large flexibility which is reflected in a possi-
ble formulation for a range of different models and cases, e.g. [48, 129, 82, 130, 131, 132],
and even enables for studying phenomena far from equilibrium [47].

2.1 Statistically-Consistent Gutzwiller Approximation (SGA)

One of the earliest, and still in use today, attempts to approach the hard task of calculat-
ing average values of the Hamiltonian with GWF is the so-called Gutzwiller Approxima-
tion (GA) which takes only leading, local projections into account. Namely, any product
operator, Ôi(j) acting on the site i (and j) from considered Hamiltonian is projected only
locally,

P̂G
∑

i(j)

Ôi(j)P̂G ≈
∑

i(j)

P̂G;i(P̂G;j)Ôi(j)(P̂G;j)P̂G;i. (2.3)

Such approximation becomes the exact variational solution in infinite dimensions, but
it is also believed to capture most important physics of the two- and three- dimensional
systems as well.

2.1.1 Hubbard Model in Applied Magnetic Field

In this Section we formulate the SGA method for the single-band Hubbard Hamiltonian
in its translationally-invariant form and the grand canonical ensemble forms. We also
add the applied magnetic field Ha introduced via the Zeeman term. In effect,

ĤHM =
∑

<ij>,σ

tij ĉ
†
iσ ĉjσ + U

∑

i

n̂i↑n̂i↓ − σh
∑

i,σ

n̂iσ − µ
∑

i,σ

n̂iσ, (2.4)

where h ≡ 1
2gµ0µBHa and µ is the system chemical potential (Fermi energy at T = 0).

We use standard notation introduced earlier (cf. Sec. 1.5). The role of the chemical
potential is important as it should be adjusted to preserve the number of fermions while
evolving system, e.g. in the magnetic field or by undergoing transition to another phase.

The effect of the local Gutzwiller projection on the model (2.4) results in the following
renormalized effective single particle Hamiltonian in the momentum space representation
(cf. e.g., Refs. [50, 48, 38]),

ĤGA =
∑

kσ

(qσ(d, n,m)εk − σh)ĉ†kσ ĉkσ + LUd2, (2.5)

where εk is the uncorrelated tight-binding single-particle dispersion relation and L - the
number of lattice sites. Under projection, the interaction term can be evaluated by the
average potential energy per lattice site in the system and is equal to Ud2, where d2 is the
probability of having a doubly occupied site. On the other hand, the band resulting from
tight-binding approach is significantly renormalized. The narrowing factor qσ appears
and can be evaluated on the basis of the combinatoric considerations (see e.g. Ref. [48])
which depends on the parameter d, total fermion band filling n = ni↑ + ni↓, and in
the case of spin-imbalance irrelevant if of the intrinsic or field-driven origin, on the spin
magnetization m = ni↑ − ni↓. The final result is:

qσ =
2
[√

(n+ σm− 2d2)(1− n+ d2) +
√

(n− σm− 2d2)d2
]2

(n+ σm)(2− n− σm)
. (2.6)
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The Zeeman term and coupling to the external reservoir remains unchanged under the
Gutzwiller local projection since P̂G;in̂iσP̂G;i = n̂iσ.

In the usual Gutzwiller Approximation the expectation value of the Hamiltonian (2.5)
is optimized with respect to variational parameter d - equivalent in terms of optimization
procedure to g (used in Def. 2.1). Additional incorporation of the thermodynamic
equations for the fixed number of particles and their magnetization leads then to the
following set of self-consistent equations,





d = − 1

2LU

∑

kσ

∂qσ
∂d

f(Ekσ)εk,

m =
1

L

∑

k,σ

σf(Ekσ),

n =
1

L

∑

k,σ

f(Ekσ),

(2.7)

with f(E) = 1
eβ(E−µ)+1

being Fermi - Dirac distribution function, Ekσ = qσεk − σh− µ,

and β = 1/kBT being the reduced inverse temperature.
However, when magnetization of the system is nonzero (m 6= 0)2, its value calculated

from (2.7) is not that in equilibrium. Explicitly, by changing the spin-resolved occu-
pancies, the ground state energy can be further minimized. This provides an explicit
evidence of the lack of the consistency [133] between solution of the self-consistent equa-
tions (2.7) and those obtained from a variational principle, ensuring that the system in
equilibrium chooses possible the lowest energy state.

On the basis of such observations, the reinforcement of the statistical consistency was
proposed [133] by means of the Lagrange multipliers added to the effective Hamiltonian
ĤGA (2.5). Within the new formulation called statistically consistent Gutzwiller approx-
imation (SGA), we ensure that both the magnetization and the particle concentration
determined self-consistently and variationally, coincide. In effect, we introduce extended
effective Hamiltonian in the following form,

ĤSGA ≡ ĤGA − λm(
∑

iσ

σn̂iσ −mL)− λn(
∑

iσ

n̂iσ − nL), (2.8)

with λm and λn being Lagrange multipliers. The set of the self-consistent equations is
then enriched by the two additional equations resulting from optimization of the ground
state energy with respect to Lagrange multipliers.

In order to account for the entropy part in the non-zero temperature considerations
we define generalized Landau grand-potential functional,

FSGA = − 1

β

∑

kσ

ln[1 + e−βE
(SGA)
kσ ] + L(λnn+ λmm+ Ud2), (2.9)

where E
(SGA)
kσ = qσεk− σ(h+ λm)−µ− λn. The new set of self-consistent equations for

the equilibrium values of the parameters merged into a vector form, ~λ ≡ (m, d, n, λn, λm)

2Either due to magnetic field or by an intrinsic mechanism such, as that on the basis of the Stoner
theory.
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and is determined from the condition of the optimal FSGA :
(
∂F
∂~λ

)
0

= 0. Explicitly,





λn = − 1

L

∑

kσ

∂qσ
∂n

f(E
(SGA)
kσ )εk,

λm = − 1

L

∑

kσ

∂qσ
∂m

f(E
(SGA)
kσ )εk,

d = − 1

2LU

∑

kσ

∂qσ
∂d

f(E
(SGA)
kσ )εk,

n =
1

L

∑

kσ

f(E
(SGA)
kσ ),

m =
1

L

∑

kσ

σf(E
(SGA)
kσ ),

(2.10)

This procedure allows for a consistent analysis of the thermodynamic properties, as
e.g. the specific heat. The grand-potential functional evaluated for the optimal values
of the components of the vector ~λ, and determined from (2.10) reduces to the physical
grand potential Ω. Once we have determined the equilibrium thermodynamic potential,
we can also determine all relevant thermodynamic quantities. For example, the entropy
is

−S =
dΩ

dT
=
(∂F
∂T

)
0

+
(∂F
∂~λ

)
0
· ∂
~λ

∂T
, (2.11)

where subscript “0” labels the equilibrium values of variational parameters. Since(
∂F
∂~λ

)
0

= 0, Eq. (2.11) simplifies to the form

S = −
(∂F
∂T

)
0

= kB
∑

kσ

[
ln(1 + e−βE

0
kσ) + βE0

kσf(E0
kσ)
]
. (2.12)

The specific heat is then defined in the usual manner

cV = T
dS

dT

∣∣∣
n,T,h,V

≡ −T ∂
2F
∂T 2

∣∣∣
0
. (2.13)

2.1.2 Anderson Lattice Model in Applied Magnetic Field

In this section the SGA method is implemented for the specific case of Anderson lattice
model3 with the magnetic field accounted by Zeeman term4 and coupled to external
reservoir with chemical potential µ,

ĤALM − µN̂ =
∑

i,j,σ

′
tijĉ
†
iσ ĉjσ −

∑

iσ

(µ+ σh)n̂ciσ +
∑

i,σ

(εf − µ− σh)n̂fiσ

+ U
∑

i

n̂fi↑n̂
f
i↓ +

∑

i,σ

Vij(f̂
†
iσ ĉiσ + ĉ†iσf̂iσ).

(2.14)

The Gutzwiller operator acts in this case only on the correlated f -orbital [129].
Therefore, the projection leads to the renormalization of the hybridization and average

3The procedure is similar to the Hubbard model case, thus part of the general discussion is skipped.
4For simplicity, here the Landé factor for f electrons is equal to the free elctron value, gf = 2.
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potential energy, the latter is identical as in the case of the Hubbard model (LUd2).

Operator n̂fiσ remains unchanged under the projection. Gutzwiller approximation to-
gether with additional terms enforcing necessary conditions leads to the following single
particle effective Hamiltonian in the momentum space representation,

ĤSGA ≡
∑

k,σ

Ψ̂†kσ

(
εck − σh− µ

√
qσV√

qσV εf − σh− µ

)
Ψ̂kσ + LUd2

− λfn
(∑

k,σ

n̂fkσ − Lnf
)
− λfm

(∑

k,σ

σn̂fkσ − Lmf

)

≡
∑

k,σ

Ψ̂†kσ

(
εck − σh− µ

√
qσV

√
qσV εf − σ(h+ λfm)− λfn − µ

)
Ψ̂kσ

+ L(Ud2 + λfnnf + λfmmf ), (2.15)

where Ψ̂†kσ ≡ (ĉ†kσ, f̂
†
kσ), and qσ is the narrowing factor in the standard form already

defined in the previous section (2.6), with the difference that instead of the average
magnetization and electron concentration for conduction electrons it is now dependent
on the f electrons correspondents, nf = nfi↑ + nfi↓ and mf = nfi↑ − n

f
i↓. It is invoked in

this manner due to the fact that only f electrons are correlated and factor qσ appears
as an effect of the Gutzwiller projection of the f -electron operators. Eigenvalues, Ek±
of the above Hamiltonian are,

E
(SGA)
kσa = ξ+

kσ + a
√

(ξ−σk)2 + qσV 2, (2.16)

where a ≡ ±1 differentiates between the two hybridized bands. For convenience, in
above we defines

ξ+
kσ ≡

εck + εfk − σ(2h+ λfm)− 2µ− λfn
2

,

ξ−kσ ≡
εck − ε

f
k + σλfm + λfn

2
.

(2.17)

Rest of the discussion is in accordance to the Hubbard model with the difference
that eventually we have to solve set of six self-consistent equations: five resulting from
the optimization of FSGA with respect to ~λ ≡ (mf , d, nf , λ

f
n, λ

f
m),





λfn = − 1

L

∑

kσa

∂E
(SGA)
kσa

∂qσ

∂qσ
∂n

f(E
(SGA)
kσa ),

λfm = − 1

L

∑

kσa

∂E
(SGA)
kσa

∂qσ

∂qσ
∂m

f(E
(SGA)
kσa ),

d = − 1

2LU

∑

kσa

∂E
(SGA)
kσa

∂qσ

∂qσ
∂d

f(E
(SGA)
kσa ),

nf = − 1

L

∑

kσa

∂E
(SGA)
kσa

∂λfn
f(E

(SGA)
kσa ),

mf = − 1

L

∑

kσa

∂E
(SGA)
kσa

∂λfm
f(E

(SGA)
kσa ),

(2.18)
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and one additional adjusting the chemical potential in order to keep total number of
particles fixed,

n =
1

L

∑

kσa

f(E
(SGA)
kσa ). (2.19)

Moreover, total magnetization of the system can be afterwards determined from,

m =
1

L

∑

kσa

σf(E
(SGA)
kσa ). (2.20)

This method will be elaborated in detail in Articles A1-A4 (cf. Chapter 3).

2.2 Diagrammatic Expansion for Gutzwiller Wave Func-
tion (DE-GWF)

2.2.1 General formulation for Anderson lattice model

In this section the DE-GWF approach is formulated in detail for the Anderson lattice
model:

ĤALM =
∑

i,j,σ

(tij − µδi,j)ĉ†iσ ĉjσ +
∑

i,σ

(εf − µ)n̂fiσ

+U
∑

i

n̂fi↑n̂
f
i↓ +

∑

i,j,σ

(Vijf̂
†
iσ ĉjσ + V ∗ij ĉ

†
iσf̂jσ),

(2.21)

where we have used the standard notation (cf. Sec. 1.5).
Aim of the present approach is to systematically extend the Gutzwiller approximation-

limit, where only local sites are projected (which is variationally exact only in infinite
dimensions) and to approach the exact evaluation, where all sites are projected. The
natural parameter to control the calculations is the number of projected sites taken into
account. In the following we provide the formal reasoning towards this goal.

The Gutzwiller operator can be defined in a general form [115, 55, 59, 116, 117] as

P̂G;i =
∑

Γ

λΓ | Γ〉i〈Γ |i, (2.22)

with variational parameters λΓ ∈ {λ0, λ↑, λ↓, λd} characterizing weights of all the oc-
cupation probabilities for the four possible local (atomic) Fock states for the f orbital

| Γ〉i ∈ {|0〉fi , |↑〉
f
i , |↓〉

f
i , |↑↓〉

f
i }. One can easily identify the explicit form of the operator

projecting on the particular state | Γ〉i〈Γ |i as

|0〉fi 〈0|
f
i = (1− n̂fi↓)(1− n̂

f
i↑),

|σ〉fi 〈σ|
f
i = (1− n̂fiσ̄)n̂fiσ,

|↑↓〉fi 〈↑↓|
f
i = n̂fi↓n̂

f
i↑.

(2.23)

The operator P̂G;i, alternative to standard GA form (but equivalent in terms of the
variational approach) is selected to satisfy the following relation [134]

P̂ 2
G;i = 1 + xd̂HFi , (2.24)
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where for the translationally invariant system we define Hartree-Fock (HF) operators

d̂HFi ≡ n̂HFi↑ n̂HFi↓ = (n̂fi↑ − n
f
0↑)(n̂

f
i↓ − n

f
0↓). (2.25)

Here the expectation values of the number of f particles are taken with respect to the
uncorrelated (U = 0) ground state (Slater determinant), to be defined later, |ψ0〉, so

that nf0σ ≡ 〈n̂fiσ〉0. Strictly speaking, although, d̂HFi has not the Hartree-Fock form of
the double occupancy operator, the HF superscript has its meaning as the property,
〈d̂HFi 〉0 ≡ 0 is preserved. Effectively, relation (2.24) leads to relation between λΓ and x,
derived by acting with operator P 2

G;i on the state |Γ〉i with the use of both definitions
(2.24) and (2.22),

λ2
0 = 1 + xnf0σ̄n

f
0σ,

λ2
σ = 1− xnf0σ(1− nf0σ̄),

λ2
d = 1 + x(1− nf0σ̄)(1− nf0σ),

(2.26)

resulting in only one independent variational parameter. The choice of the parameter
is generally arbitrary, but selecting x has its presentational strengths as it leads to an
elegant power expansion of the expectation values with respect to GWF of any product
operator with respect to GWF.

The key point of the variational procedure is the calculation of the ground state
energy of (2.21) with GWF |ψG〉, i.e.,

〈Ĥ〉G ≡
〈ψG | Ĥ | ψG〉
〈ψG | ψG〉

=
〈ψ0 | P̂GĤP̂G | ψ0〉
〈ψ0 | P̂ 2

G | ψ0〉
. (2.27)

The idea of the expansion can be visualized transparently on example of calculation
of the GWF norm

〈ψG | ψG〉 = 〈ψ0 |
∏

l

P̂ 2
G;l | ψ0〉 = (∗). (2.28)

If the product would run over two sites, l ∈ l1, l2 it could explicitly be written as

(∗) = 〈1 + x(d̂HFl1 + d̂HFl2 ) + x2(d̂HFl1 d̂HFl2 + d̂HFl2 d̂HFl1 )〉0. (2.29)

In case of three sites taken into account, l ∈ l1, l2, l3, the norm after execution of the
product is

(∗) = 〈1 + x(d̂HFl1 + d̂HFl2 + d̂HFl3 )〉0
+ 〈x2(d̂HFl1 d̂HFl2 + d̂HFl2 d̂HFl1 + d̂HFl1 d̂HFl3 + d̂HFl3 d̂HFl1 + d̂HFl3 d̂HFl2 + d̂HFl2 d̂HFl3 )〉0
+ 〈x3(d̂HFl1 d̂HFl2 d̂HFl3 + d̂HFl2 d̂HFl3 d̂HFl1 + d̂HFl3 d̂HFl1 d̂HFl2

+ d̂HFl1 d̂HFl3 d̂HFl2 + d̂HFl2 d̂HFl1 d̂HFl3 + d̂HFl3 d̂HFl2 d̂HFl1 )〉0.

(2.30)

Because operators d̂HFlk
for different k commute with each other, it is easy to write down

the general formula. namely for the case of infinite lattice the product extends to all
sites and the closed expression for the norm reads

〈ψG | ψG〉 =
∞∑

k=0

xk

k!

∑

l1,...,lk

′〈d̂HFl1,...,lk
〉0, (2.31)
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where d̂HFl1,...,lk
≡ d̂HFl1

· · · d̂HFlk
. The primed multiple summation means that lp 6= lp′ for all

p, p′. In terms of any product operator in (2.21): Ôi(j) ≡ {ĉ†iσ ĉjσ, n̂ciσ, n̂
f
iσ, n̂

f
i↑n̂

f
i↓, f̂

†
iσ ĉjσ,

ĉ†iσf̂jσ, f̂
†
iσn̂

HF
iσ̄ ĉjσ}, above expansion can be generalized in a straightforward manner to

the following form

〈ψG | Ôi(j) | ψG〉 =
〈

ˆ̃Oi(j)

∏

l6=i,j

P̂ 2
G;l

〉
0

=

∞∑

k=0

xk

k!

∑

l1,...,lk

′〈 ˆ̃Oi(j)d̂
HF
l1,...,lk

〉0, (2.32)

where ˆ̃Oi(j) ≡ P̂G;i(P̂G;j)Ôi(j)(P̂G;j)P̂G;i. Such power expansion in x enables for a system-
atic approach towards the full solution. For GA calculations of the expectation value
with GWF invoke approximation that local, i.e., the external sites, i and j from the
Hamiltonian (2.21) are correlated, while the remaining vertices are not. Here, in vari-
ance with GA, DE-GWF method additionally accounts that the processes between two
local sites (or within the single one) that are affected by the correlated environment. For
that reason the non-local, internal vertices, lk are systematically one-by-one accounted
for as correlated. It must be noted that x is not the expansion parameter but its power
(k) is, denoting the number of internal correlated vertices taken into account. As it
would be presented in the section concerning particular results, satisfactory convergence
to the full GWF solution can be obtained already by accounting for three internal (k = 3)
correlated vertices (lk) in addition to the external ones (i, j).

The expectation values with respect to the uncorrelated wave function |ψ0〉 can be
evaluated by means of the Wick’s theorem [135], here applied in its real-space version.
The respective contractions are transparently visualized by diagrams5 of lines (two op-
erator averages) connecting vertices (real space lattice sites). The choice of the studied
phase, e.g. paramagnetic, ferromagnetic, antiferromagnetic or superconducting, are de-
fined by contractions considered as nonvanishing.

By construction, in the case of the norm 〈ψG|ψG〉 we have eliminated all the diagrams

with any local loop, the so-called Hartree bubbles due to trivial identity 〈n̂fiσ−n
f
0σ〉0 = 0

for any vertex (site) i. For the purpose of ensuring the same feature for the remaining

expectation values, we rewrite the primary projected operators ( ˆ̃Oi(j)) in the following
forms,

P̂G;id̂iP̂G;i = λ2
d[n

f
0σ̄n̂

HF
iσ + nf0σn̂

HF
iσ̄ + (1− xd0)d̂HFi + d0P̂

2
G;i],

P̂G;in̂
f
iσP̂G;i = n̂HFiσ + xmσn̂

HF
iσ̄ + γσd̂

HF
i + nf0σP̂

2
G;i,

P̂G;if̂
(†)
iσ P̂G;i = ασf̂

(†)
iσ + βσf̂

(†)
iσ n̂

HF
iσ̄ ,

(2.33)

where for notation compactness we have defined the quantities

βσ ≡ λσ̄λd − λσλ0,

ασ ≡ λσλ0 + βσn
f
0σ̄,

γσ ≡ x(1− 2nf0σ),

d0 ≡ nf0σnf0σ̄,
mσ ≡ nf0σ(1− nf0σ).

(2.34)

5The diagrams are drawn for the case of paramagnetic state in the following subsection (cf. Fig. 2.2).

36



Such procedure ensures the disappearance of Hartree bubbles for any correlated vertex, as
the product of operators over the internal sites is additionally multiplied by a parameter
or operators which also cancel out the diagrams with the loop at any vertex, due to
trivial identity 〈n̂fiσ − n

f
0σ〉0 = 0.

The last analytical step that significantly simplifies the proposed diagrammatic ex-
pansion is the division of the numerator of the expectation value by the norm in (2.27).
It can be shown on example of normalized expectation value of arbitrary operator Ôi(j),
that

〈ψG | Ôi(j) | ψG〉
〈ψG | ψG〉

=

∑∞
k=0

xk

k!

∑′
l1,...,lk

〈Ôi(j)d̂
HF
l1,...,lk

〉0
∑∞

k=0
xk

k!

∑′
l1,...,lk

〈d̂HFl1,...,lk
〉0

= (∗∗). (2.35)

By means of the linked cluster theorem [135] the summation restriction can be skipped
and effectively the contribution to the norm cancels out all disconnected diagrams from
the numerator, i.e.,

(∗∗) =

∑∞
k=0

xk

k!

∑
l1,...,lk

〈Ôi(j)d̂
HF
l1,...,lk

〉0
∑∞

k=0
xk

k!

∑
l1,...,lk

〈d̂HFl1,...,lk
〉0

=
∞∑

k=0

xk

k!

∑

l1,...,lk

〈Ôi(j)d̂
HF
l1,...,lk

〉c0, (2.36)

where the superscript c (〈...〉c0) symbolically denotes that fact.
The formalism enables for a systematic expansion of the order k by taking into

account long-range correlations between k internal sites (l1, ..., lk) and the external ones
(i, j). Apart from that, the order of the expansion limitations, the real space cutoff is
necessary to set for a possible direct expectation values evaluation. We assume that on
the square lattice lines satisfying the relation |i−j|2 = (ix−jx)2+(iy−jy)2 ≤ 10 are taken
into account (cf. Fig. 2.1). For comparison, an alternative technique, variational Monte
Carlo (VMC) usually accounts for the lines corresponding to the largest hopping distance
in the starting Hamiltonian. Therefore, by the construction, our method samples a richer
variational space than VMC by including longer-range hopping components.

As the result of the described DE-GWF procedure, the expectation values of ALM
Hamiltonian (2.21) can be expressed in the closed form by the diagrammatic sums

S ∈ {T cc(1,1)
ijσ , T

fc(1,1)
ijσ , T

fc(3,1)
ijσ , I

c(2)
σ , I

f(2)
σ , If(4)}, defined as

S =
∞∑

k=0

xk

k!
S(k). (2.37)

with the k-th order contributions

T
cc(1,1)
ijσ (k) ≡

∑

l1,...,lk

〈ĉ†iσ ĉjσd̂HFl1,...,lk
〉c0, (2.38)

T
fc(1[3],1)
ijσ (k) ≡

∑

l1,...,lk

〈[n̂HFiσ̄ ]f̂ †iσ ĉjσd̂
HF
l1,...,lk

〉c0, (2.39)

Ic(2)
σ (k) ≡

∑

l1,...,lk

〈n̂ciσd̂HFl1,...,lk
〉c0, (2.40)

I(2)
σ (k) ≡

∑

l1,...,lk

〈n̂HFiσ d̂HFl1,...,lk
〉c0, (2.41)

I(4)(k) ≡
∑

l1,...,lk

〈d̂HFi d̂HFl1,...,lk
〉c0. (2.42)
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Figure 2.1: Schematic representation of the real-space cutoff on the lattice. The solid
lines denote exemplary, in terms of distance, correlation functions (referred to as lines)
taken into account between i-site (central vertex) and the j-sites (on the periphery).

The meaning of the first three consecutive terms is defined by the presence of the corre-
sponding operators: ĉ†iσ ĉjσ, f̂ †iσ ĉiσ, and n̂ciσ. The resulting full expectation value of the

Hamiltonian ĤALM with GWF can be expressed as

〈ĤALM 〉G
L

=
1

L

∑

i,j,σ

tijT
cc(1,1)
ijσ −

∑

σ

µIc(2)
σ + 2

∑

i,j,σ

Vij

(
ασT

fc(1,1)
ijσ + βσT

fc(3,1)
ijσ

)

+
∑

σ

(εf − µ)
(
nf0σ + If(2)

σ + xmσI
f(2)
σ̄ + γIf(4)

)

+ Uλ2
d

(
d0 + nf0σ̄I

f(2)
σ + nf0σI

f(2)
σ̄ + (1− xd0)If(4)

)
,

(2.43)

where the trivial sum
∑

i = L have been already executed.
The final step of the whole approach is the self-consistent determination of the ef-

fective uncorrelated Hamiltonian and uncorrelated wave function |ψ0〉. First, the expec-
tation value 〈ĤALM 〉G calculated with the diagrammatic technique is minimized with
respect to the variational parameter x. Second the original model situation 〈ĤALM 〉G
is mapped onto the uncorrelated effective one, 〈ψ0|Ĥeff |ψ0〉, with the condition that the
minima of the groundstate energies of both Hamiltonians coincide for the same equi-
librium values of lines. This allows the determination of the parameters entering Ĥeff .
The general scheme of DE-GWF method can be put into the following steps:

1. Choice of initial state |ψ0〉.

2. Diagrammatic evaluation of 〈Ĥ〉G ≡ 〈ψG|Ĥ|ψG〉〈ψG|ψG〉 for selected |ψ0〉.

3. Minimization of 〈Ĥ〉G with respect to the variational parameter (here x).
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4. Construction of the effective single particle Hamiltonian determined by δĤeff(|ψ0〉) =
δĤ(|ψ0〉).

5. Determination of |ψ′0〉 as a ground state of the effective Hamiltonian.

6. Execution of the self-consistent loop: starting again from the step 1 with |ψ′0〉 until
a satisfactory convergence, i.e., |ψ′0〉 = |ψ0〉, is reached.

The choice of |ψ0〉 and construction of Ĥeff vary for different phases. Therefore in the
next subsections we analyze explicitly the cases of paramagnetic and superconducting
phases. In each situation the notation may differ slightly and is caused to achieved a
consistency with just published (or submitted) original articles.

2.2.2 Paramagnetic Phase

In this Section we consider paramagnetic ALM with onsite hybridization. As we consider
spin isotropic phase, we set nf0σ = nf0σ̄ ≡ nf0 and subsequently all the parameters defined
in Eqs. (2.26) and (2.34) as well as evaluated order contributions to diagrammatic sums
(2.42) becomes spin-independent . Diagrammatic sums, S for this case, up to the second
order (k = 2) are depicted in Fig. 2.2, where the following spin-independent lines were
taken into account

Cij ≡ 〈ĉ†iσ ĉjσ〉0,
Wij ≡ 〈f̂ †iσ ĉjσ〉0,
Fij ≡ 〈f̂ †iσf̂jσ〉0 − δijn0f .

(2.44)

The effective uncorrelated Hamiltonian Ĥeff is constructed in a manner to obey
following relation

δ〈Ĥeff〉0(C,F,W, n0f ) = δ〈ĤALM 〉G(C,F,W, n0f )

=
∂〈ĤALM 〉G

∂C
δC +

∂〈ĤALM 〉G
∂W

δW +
∂〈ĤALM 〉G

∂F
δF +

∂〈ĤALM 〉G
∂n0f

δn0f ,
(2.45)

where for clarity we have skipped the lattice indices and the summations over them. It
leads directly to the following form of the effective single-particle two-band Hamiltonian
with non-local interband hybridization, i.e,

Ĥeff ≡
∑

i,j,σ

tcijĉ
†
iσ ĉjσ +

∑

i,j,σ

tfijf̂
†
iσf̂jσ +

∑

i,j,σ

(V fc
ij ĉ
†
iσf̂jσ + H.c.) + const, (2.46)

where the effective hopping and the hybridization parameters are derivatives with respect
to lines, i.e.,

tcij =
∂〈ĤALM 〉G

∂Cij
, tfij =

∂〈ĤALM 〉G
∂Fij

,

V fc
ij =

∂〈ĤALM 〉G
∂Wij

, tfii =
∂〈ĤALM 〉G

∂n0f
.

(2.47)

In the following we would set the constant in definition (2.46) equal zero as it is trivial
shift of the reference energy level. Note that now the f electrons acquire direct-hopping
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 I         =                    +                  +
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Figure 2.2: Diagrammatic sums up to the second order, k = 2, for the paramagnetic case
and with the onsite hybridization. c- and f - orbital sites are denoted with empty and
filled circles respectively. Solid (black), dotted (orange), and dashed (blue) connections,
represents contractions between f orbitals, c orbitals, and mixed, respectively. The
numbers (in brackets) under the diagrams stands for their multiplicity resulting from
the application of Wick’s theorem. The symbols ∅ denote the absence of contribution
in given order of expansion, due to the cancellation of the diagrams consisting of loops
at the given vertex - so-called Hartree bubbles.
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property and the hybridization also an intersite contribution. In order to obtain the
effective dispersion relations for c- and f -electrons and the k-dependent hybridization
we apply the usual lattice Fourier transform

ε
c(f)
k =

1

L

∑

i,j

ei(i−j)ktc(f)
ij ,

V cf
k =

1

L

∑

i,j

ei(i−j)kV cf
ij .

(2.48)

In this manner, we reduce the many-body interacting model to the effective two-band
Hamiltonian straightforwardly diagonalized to the effective single-quasiparticle picture.
The 2x2 -matrix representation of (2.46) in k-space representation reads,

Ĥeff =
∑

k,σ

(ĉ†kσ f̂
†
kσ)

(
εck V cf

k

V cf
k εfk

)(
ĉkσ
f̂kσ

)

=
∑

k,σ

(ĉ†kσ f̂
†
kσ)T †

(
Ek+ 0

0 Ek−

)
T
(
ĉkσ
f̂kσ

)
,

(2.49)

where the eigenvalues, Ek± of the above Hamiltonian are,

Eka = ξ+
k + a

√
(ξ−k )2 + (V cf

k )2, (2.50)

where a ≡ ±1 differentiates between the two hybridized bands. For convenience we also
define

ξ+
k ≡

εck + εfk
2

and ξ−k ≡
εck − ε

f
k

2
. (2.51)

T in (2.49) is unitary transformation matrix to the base in which the Ĥeff is diagonal,
defined as

T =

(
u+ u−
u− −u+

)
, (2.52)

where

u± =

√√√√√1

2


1± ξ−k√

(ξ−k )2 + (V cf
k )2


, (2.53)

Now, it is straightforward to determine explicitly the following correlation functions

〈ĉ†kσ ĉkσ〉0 = u2
+Θ(Ek+) + u2

−Θ(Ek−),

〈f̂ †kσ ĉkσ〉0 = u+u−
(
Θ(Ek+)−Θ(Ek−)

)
,

〈f̂ †kσf̂kσ〉0 = u2
−Θ(Ek+) + u2

+Θ(Ek−),

(2.54)

where Θ(E) denotes the Heaviside step function which plays the role of energy cutoff
for the respective quasiparticle bands energies (2.50). Using the inverse Fourier trans-

41



formation we obtain the self-consistent equations for lines and n0f :

Cij =
1

L

∑

ka

〈ĉ†kσ ĉkσ〉0 ei(i−j)k,

Wij =
1

L

∑

ka

〈f̂ †kσ ĉkσ〉0 ei(i−j)k,

Fij =
1

L

∑

ka

〈f̂ †kσf̂kσ〉0 ei(i−j)k,

n0f =
1

L

∑

ka

〈f̂ †kσf̂kσ〉0.

(2.55)

Explicit formulas read,

Cij =
1

L

∑

ka

Θ(Eka)

2


1 +

aξ−k√
(ξ−k )2 + (V cf

k )2


 ei(i−j)k, (2.56)

Wij =
1

L

∑

ka

Θ(Eka)

2

aV cf
k√

(ξ−k )2 + (V cf
k )2

ei(i−j)k, (2.57)

Fij =
1

L

∑

ka

Θ(Eka)

2


1− aξ−k√

(ξ−k )2 + (V cf
k )2


 ei(i−j)k, (2.58)

n0f =
1

L

∑

ka

Θ(Eka)

2


1− aξ−k√

(ξ−k )2 + (V cf
k )2


 . (2.59)

To determine the properties of the model, we solve the system of Eqs. (2.47) and
(2.55), together with the minimization of 〈ĤALM 〉G with respect to x. As an additional
constraint, we add the adjustment of the chemical potential in order to preserve fixed
total number of particles in the system. For that purpose we use the self-consistent loop
procedure [115, 55, 59, 116, 117] according to the general scheme pointed out in the
previous subsection.

Finally, the ground state energy EG is defined by

EG = 〈ĤALM 〉G|0 + nµ, (2.60)

where 〈ĤALM 〉G|0 denotes the expectation value (2.43) of the starting Hamiltonian for

the equilibrium values of the lines and the total number of particles n ≡ 2〈n̂fiσ + n̂ciσ〉G.

The f -orbital filling separately is defined by nf ≡ 2〈n̂fiσ〉G.

2.2.3 Superconducting Phase

In this Section we consider spin-singlet superconducting phase solution for the Anderson
lattice model (2.21) with the nearest-neighbor intersite hybridization. In this case, we
have to allow for appearance of both paramagnetic and superconducting contractions
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(lines), which we define respectively as

Pα,βl,l′ ≡ 〈α̂
†
lσβ̂l′σ〉0 − δα,fδβ,fδl,l′n0f ,

Sα,βl,l′ ≡ 〈α̂
†
lσβ̂
†
l′σ̄〉0,

(2.61)

where α, β ∈ {c, f}, and l, l′ are lattice sites. Note that although the spin indecies
are important in the case of superconducting phase the lines as well as n0f are spin-
independent. We consider general nodal d-wave symmetry of the superconducting state.
Therefore, we set to zero following superconducting contractions: Sα,β0,0 = 0, Sα,β1,1 = 0

and Sα,β2,2 = 0 where we have defined Sα,βl,l′ ≡ Sα,β|lx−l′x|,|ly−l′y | (cf. Fig. 2.1). Following the

same procedure as in the preceding Subsection, the effective single particle Hamiltonian
Ĥeff for the uncorrelated wave function |ψ0〉 is now determined from the condition

δ〈Ĥeff〉0(Pα,βl,l′ , S
α,β
l,l′ , n0f ) = δ〈ĤALM 〉G(Pα,βl,l′ , S

α,β
l,l′ , n0f )

=
∂〈ĤALM 〉G
∂Pα,βl,l′

δPα,βl,l′ +
∂〈ĤALM 〉G
∂Sα,βl,l′

δSα,βl,l′ +
∂〈ĤALM 〉G

∂n0f
δn0f .

(2.62)

Explicitly, the effective single particle Hamiltonian reads now

Ĥeff =
∑

i,j,σ

(
tccij ĉ
†
iσ ĉjσ + tffij f̂

†
iσf̂jσ + tcfij (ĉ†iσf̂jσ + h.c.)

)

+
∑

i,j,σ

∆cf
ij (ĉ†iσf̂

†
jσ̄ + h.c.) +

∑

i,j

∆ff
ij (f̂ †i↑f̂

†
j↓ + h.c.) + const.,

(2.63)

with effective microscopic parameters defined as

tαβij =
∂〈HALM 〉G
∂Pα,βi,j

, ∆αβ
ij =

∂〈HALM 〉G
∂Sα,βi,j

, tffii =
∂〈HALM 〉G

∂n0f
. (2.64)

In (2.63) constant is set to zero as it causes only the trivial shift of the energy reference
level. There is no effective pairing between the c-electrons due to the lack of lines Sc,ci,j

in any of the diagrams visualizing the Wick’s contractions. By means of the Fourier
transformation to the momentum space the effective Hamiltonian is brought to the
Bogoliubov - de Gennes - Nambu form [4],

Ĥeff =
∑

k

Ψ†k




εcck 0 εfck ∆fc
k

0 −εcck ∆fc
k −εfck

εfck ∆fc
k εffk ∆ff

k

∆fc
k −εfck ∆ff

k −εffk


Ψk, (2.65)

where we have defined Ψ† ≡ (ĉ†k↑, ĉ−k↓, f̂
†
k↑, f̂−k↓) and

εαβk =
1

L

∑

ij

tαβij e
i(i−j)k,

∆αβ
k =

1

L

∑

ij

∆αβ
ij e

i(i−j)k.
(2.66)
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By L we again denote number of the lattice sites. The system posses now two gaps and
therefore the formalism contains 4x4 matrices. Parenthetically, the same type of formal
expressions will appear for a two-band superconductor.

Hamiltonian (2.65) can be easily transformed into the diagonal form by unitary
transformation T composed of its normalized eigenvectors. The respective averages of
components of Ψ and Ψ† can be expressed as

〈Ψ†nΨm〉 =
∑

j

TjnTjmΘ(Ej), (2.67)

where Ej is j-th eigenvalue to the eigenvector φj = (Tj1 Tj2 Tj3 Tj4) of the Hamiltonian
(2.65). By the inverse Fourier transform the formulas for the new lines read

Pα,βi,j =
1

L

∑

k

〈α̂†kβ̂k〉0ei(i−j)k,

Sα,βi,j =
1

L

∑

k

〈α̂†kβ̂
†
k〉0ei(i−j)k.

(2.68)

Effectively, to determine equilibrium properties of the model the systems of Eqs. (2.64)
and (2.68) need to be solved self-consistently together with minimization of 〈ĤALM 〉G
with respect to x [115, 55, 59, 116, 117]. We also adjust chemical potential to preserve
total number of electrons in the system as we change other microscopic parameters of
the model in the new phase. Finally the physical ground state energy of the system is
obtained in the form

EG = 〈ĤALM 〉G|0 + nµ, (2.69)

where |0 denotes the equilibrium value and n ≡ 2〈n̂fiσ + n̂ciσ〉G is the total electron
concentration.

The presented variational scheme determines thus both Ĥeff and |ψ0〉. The latter, in
turn, allows for computing the superconducting correlation functions, i.e.,

∆αβ
G;ix−jx,iy−jy ≡ 〈α̂

†
i β̂
†
j 〉G = 〈α̂iβ̂j〉G. (2.70)

Interestingly, although there is no pairing term between c electrons in the effective Hamil-
tonian (2.63), ∆cc

k ≡ 〈ĉ
†
kĉ
†
k〉0 = 〈ĉkĉk〉0, the corresponding superconducting correlation

functions 〈ĉ†i ĉ
†
j 〉G = 〈ĉiĉj〉G are finite. This means that the correlations induce also the

pairing in the effective conduction band.

2.3 Appendix: Equivalence of zeroth order of DE-GWF
with GA: Paramagnetic case

Here we show the equivalence of the zeroth order DE-GWF and the standard Gutzwiller
approximation (GA) on the example of paramgnetic ALM. In both methods, DE-GWF
in the zeroth order of expansion (k = 0) and GA the effect of the projection can be
summarized by the expressions for evaluating following expectation values: 〈n̂i↑n̂i↓〉G and

〈f̂ †iσ ĉiσ + H.c.〉G. The remaining averages in ALM are unchanged under the projection.
Explicitly, in the DE-GWF for k = 0 the resulting averages are expressed as follows

〈n̂i↑n̂i↓〉(k=0)
G = λ2

dn
2
0f (2.71a)
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〈f̂ †iσ ĉiσ + H.c.〉(k=0)
G = α〈f̂ †iσ ĉiσ + H.c.〉0, (2.71b)

where parameter α is defined as

α ≡ (1− n0f )λ0λs + n0fλdλs. (2.72)

On the other hand, in GA the resulting averages are expressed as[129]

〈n̂i↑n̂i↓〉(GA)
G = 〈nfi↑n̂

f
i↓〉0 ≡ d2, (2.73a)

〈f̂ †iσ ĉiσ + H.c.〉(GA)
G =

√
qσ〈f̂ †iσ ĉiσ + H.c.〉0, (2.73b)

where the parameter d2 is the double occupancy probability, and qσ is the so-called
Gutzwiller factor reducing the hybridization amplitude, which for the equal number of
particles for each spin is defined as

√
q =

√
(n0f − d2)(1− 2n0f + d2) +

√
(n0f − d2)d2

√
n0f (1− n0f )

. (2.74)

If we identify double occupancy probabilities expressed by both methods in (2.73a)
and (2.71a) to be equal: d2 = λ2

dn
2
0f , then parameter α (2.72) exactly reduces to the

parameter
√
q (2.74).

GA procedure in the SGA formulation effectively, results in the effective single-
particle Hamiltonian of the form

ĤGA ≡
∑

k,σ

Ψ̂†kσ

(
εck − µ

√
qσV√

qσV εf − µ

)
Ψ̂kσ + LUd2

−λfn
(∑

kσ

n̂fkσ − Ln0f

)
− λfm

(∑

kσ

σn̂fkσ − Lmf

)
.

(2.75)

In the above expressions the constraints for f -electron concentration and their magne-
tization are necessarily added in order to satisfy the consistency of the whole procedure
[133, 129]. In effect, the whole variational problem is reduced to optimization of the
Landau grand potential functional with respect to d2, n0f , mf , and of the Lagrange

multipliers λfn and λfm, playing the role of the effective molecular fields [133].
However, the effect of the constraint for f -electron magnetization is crucial in the

case of magnetism consideration, either as intrinsic[113, 114] or induced by the applied

magnetic field [38]. Here we discuss nonmagnetic state only and thus simply mf = λfm =

λfn = 0.
DE-GWF method guarantees by construction that the variationally obtained f -

electron occupancy nf coincides with that obtained self-consistently [116]. We have
thus provided an analytical argument for the equivalence of DE-GWF method for k = 0
and the standard GA procedure. Also, by an independent numerical crosscheck we have
seen that all the observables calculated within both methods indeed coincide in that
situation.
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Chapter 3

Articles Composing the Thesis
with Summaries

3.1 A brief overview of the main results

During the four-year doctoral studies several problems concerning strongly correlated
systems, mainly heavy-fermion compounds and unconventional superconductivity, have
been tackled.

The first addressed problem was the metamagnetism and spin-dependent effective
masses triggered by the applied magnetic field. We have analyzed it within the Hubbard
model by using the statistically-consistent Gutzwiller approximation [38]. Although the
motivation was to study the canonical correlated system, normal liquid 3He without
hybridized states as such it turned out that the predictions are quite universal and
similar metamagnetic behavior afterwards was found in heavy fermion compound UPt3

[136, 137].
The work on the Hubbard model was also the prelude to the investigations of the more

complex hybridized two-orbital systems described within the Anderson lattice model,
treated also by the SGA method. Specifically the magnetic phase diagram on the pres-
sure - magnetic field - temperature planes of the spin-triplet superconductor UGe2 was
addressed [113, 114, 120]. We have provided a microscopic interpretation of the origin
of two distinct ferromagnetic phases changing with the Fermi surface topology, and trig-
gered by mutual competition of the Coulomb interaction and the hybridization. Our
model not only has provided excellent quantitative agreement with the experimental
data concerning emergence of the all observed critical points, both classical and quan-
tum, but also predicted a new Lifshitz-type quantum critical point (QCP) in the close
vicinity of the superconducting dome, that can be thus related to the pairing.

Nonetheless, the renormalized mean-field approach, SGA, fails to describe the heavy
fermion superconductivity in the Anderson lattice model. For that reason we have
applied to this model the recently proposed [115, 55, 59, 116, 117] variational technique,
diagrammatic expansion for Gutzwiller wave function (DE-GWF) enabling us to carry
out the systematic analysis approaching the full Gutzwiller-wave-function solution. By
accounting for the correlations beyond the local sites, this technique indeed provides a
stable superconducting solution.

As a starting point to the superconductivity investigations, we have first studied
thoroughly the paramagnetic phase of the Anderson lattice model within DE-GWF [118].
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In this case, with the inclusion of the higher orders of the expansion we have obtained
enormous effective mass enhancement by determining the density of states at the Fermi
level, as well as shown a formation of the f band out of initially localized atomic f
states. The latter property leads to the proof of existence of the three universal disjoint
heavy fermion regimes within a single framework. These are the mixed-valence regime,
the almost-Kondo/Kondo insulator regime, and the Kondo-lattice regime.

On that basis we have finally addressed the issue of the correlation-driven micro-
scopic mechanism of superconductivity [121]. Namely, we have enriched our previous
considerations of the paramagnetism by the superconducting correlations, and obtained
its stability in a wide range of the hybridization strength and total fillings. Deter-
mined paired phase reflects several features observed experimentally e.g. for CeCoIn5

[102, 100, 101] such as mainly dx2−y2-wave symmetry of the order parameter, two-gaped
structure, and a reasonable value of the pairing condensation energy, together with its
non-BCS features.

3.2 Article A.1, Properties of an almost localized Fermi
liquid in an applied magnetic field revisited: a statis-
tically consistent Gutzwiller approach

In this work we have studied the system of the neutral spin-1
2 fermions in the regime of

the total number of particles close to the half filling. The motivation for this work was the
attempt to reproduce within the Hubbard model the normal liquid 3He magnetization
measurements in high magnetic fields [49]. The previous theory of the the normal liquid
3He as an almost localized system based on the standard Gutzwiller approach (GA) failed
to do so as it predicts spectacular metamagnetic transition [48] which is not observed in
experiment [49]. In our group, the statistical inconsistencies in GA were corrected when
the magnetic field or spontaneous magnetization is accounted for [133]. The generalized
approach, SGA (cf. Sec. 2.1) was implemented to the almost half-filled Hubbard model
on the closed packed fcc three-dimensional lattice. The model was thoroughly studied
in terms of the correlation induced features, specifically (i) spin dependent masses in
the high magnetic fields universally observed in the heavy fermion systems [138, 139],
and (ii) signs of a metamagnetic-like features determined from the magnetization and
specific heat curves - recently similar behavior was observed in the case of UPt3 [136, 137].
(iii) The critical discussion of our predictions when compared to the normal liquid 3He
case, has also been done. We have pointed out the problem that the good quantitative
fit to the experimental data is performed at the cost of disagreement for the effective
masses enhancement. This disagreement may meen that a careful analysis of higher
order (beyond SGA) contributions should be carried out. The results are described in
detail in article A.1.

The preliminary results of this work specifically concerning normal liquid 3He were
published in the Salerno Workshop Proceedings [140] and included in the authors Master
Thesis 2011 [141].
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Abstract
We discuss the Hubbard model in an applied magnetic field and analyze the properties of
neutral spin- 1

2 fermions within the so-called statistically consistent Gutzwiller approximation.
The magnetization curve reproduces in a semiquantitative manner the experimental data for
liquid 3He in the regime of moderate correlations and in the presence of a small number of
vacant cells, modeled by a non-half-filled band situation, when a small number of vacancies
(∼5%) is introduced in the virtual fcc lattice. We also present the results for the magnetic
susceptibility and the specific heat, in which a metamagnetic-like behavior is also singled out
in a non-half-filled band case.

Keywords: correlated fermions, statistically consistent Gutzwiller approach, liquid helium 3,
almost-localized Fermi liquid, magnetic properties of Fermi liquid

(Some figures may appear in colour only in the online journal)

1. Introduction

In condensed matter physics, systems with moderate to strong
local correlations, such as almost-localized electron systems,
heavy-fermion metals, liquid 3He, and selected cold atomic
systems in optical lattices, have been extensively studied
during the past decades. On the other hand, starting from
the seminal Landau papers on the theory of Fermi liquids [1,
2] as a direct generalization of the concept of an electron
gas, it became unquestionable that the interactions between
fermions are the source of their non-trivial physical properties
even before the Mott transition to the localized state takes
place for either sufficiently strong interactions or low density.
The original Landau formulation [1], despite being in essence
phenomenological, provides a good qualitative rationalization

of the observed effective mass enhancement of 3He atoms in
the liquid state [3–6] and that of electrons in metals. However,
the Landau Fermi liquid theory turned out to be insufficient
to account for specific, more sophisticated effects of the
correlations, such as Mott (Mott–Hubbard) localization [7],
the appearance of spin-dependent effective masses of quasi-
particles [8], or the observation of metamagnetism of itinerant
almost-localized and correlated fermions [9]. Note that by
correlated fermions or a correlated Fermi liquid we understand
a system for which the kinetic or Fermi energy (per particle)
is comparable to or even smaller than the interaction energy
per particle. Therefore, strictly speaking, one should term those
systems strongly interacting; however, that particular phrase is
reserved for high-energy interactions of elementary particles.
Similar correlated states appear also there, such as, for exam-
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Figure 1. Schematic visualization of the division of a
quantum-liquid state into an effective lattice system composed of
cells (modeled by potential valleys with spin 1

2 fermions). Every cell
can contain up to two fermions with opposite spins, at the price of
energy loss U. The number of fermions Ne is assumed in general to
differ from the number of all sites NL, i.e., Ne < NL. Consequently,
in the applied field the effective masses of the minority spin
fermions are enhanced when compared to those of the spin-majority
fermions, as discussed in the main text.

ple, the deconfinement transition of condensed hadron matter
into the quark–gluon plasma contains the principal features of
the Mott localization–delocalization transition [10, 11]. Hence
the concept of an almost-localized Fermi liquid seems to have
a universal meaning in condensed matter physics.

One of the basic microscopic models of correlated
fermions for lattice systems is the Hubbard model, accounting
for a balance between the kinetic energy of moving fermions
(hopping energy) and the effective local repulsive interaction
U, whenever two fermions with opposite spins (or other inter-
nal quantum number) occupy the same site (cell) and the same
orbital (Wannier) state (see figure 1 for visualization of such
state). Within this model, not only the principal predictions
of the Landau Fermi liquid theory have been derived [9,
12], but also a unique explanation of the correlation-driven
Mott metal–insulator transition [7] and the emergence of
d-wave pairing have been discussed [13]. The importance
of the Hubbard model manifests itself also as the basis of
the derivation of the so-called t–J model, which turned out
to be very successful in a description of the high-temperature
superconductivity in the cuprates (see, for example, [14]).

An important approach to solving the Hubbard model is
the variational Gutzwiller wave function (GWF) [15, 16] and
its simplified version—the Gutzwiller approximation (GA) [7,
17]. Those methods are based on the paradigm of optimizing
the number of doubly occupied sites (cells) which appear in
both the local repulsive energy and the renormalized band
energy. In effect, the simpler GA approach leads among others
to a renormalized mass of the quasiparticles in a direct man-
ner which becomes divergent at the point of Mott–Hubbard
localization [18, 19], as well as leading concomitantly to the
infinite zero-field magnetic susceptibility in the paramagnetic
state [20]. Although the GA is, strictly speaking, exact only
for a lattice of infinite dimensionality [7], it may provide
a good description of almost-localized systems above the

so-called upper critical dimensionality (as yet not determined)
for fermions. Minimally, it plays the role of a mean-field
theory. Among other techniques frequently applied to the
Hubbard model are dynamical mean-field theory (DMFT) [21]
and the quantum Monte Carlo (QMC) [22] method.

Recently, we have discovered statistical inconsistencies
in the GA when one includes the magnetic field via the
Zeeman term, and have provided the necessary correction
to the GA approach. The extended approach, called the
statistically consistent Gutzwiller approximation (SGA), was
successfully applied also to the t–J [14, 23, 24], t–J-U [25] and
periodic Anderson models [26] to describe both magnetism
and superconductivity. The SGA is of the same class approach
as the GA (exact in the infinite-dimension limit [7]), but is
furthermore consistent from the statistical physics point of
view, as explained in detail below (cf. appendix A).

The SGA method we are going to discuss here has its
own merits. First, it is analytic and therefore can be applied to
infinite-size systems. This means that it can also be compared
directly with more numerically oriented approaches, where
the lattice size is usually limited. Second, it generalizes the
Landau concept of a quasiparticle, as well as providing the
corresponding effective single-particle Hamiltonian. Third, it
corrects the principal inconsistency of the GA while retaining
its attractive qualitative features by providing a testable ap-
proach in the vicinity of the border between the moderate and
the strong correlation limits. This is the most difficult regime,
as here the kinetic and interaction energies are of comparable
amplitudes.

In the present paper we have applied the SGA method
to the almost-half-filled band situation, where the physics
turns out to be non-trivially different from the half-filled case
but where the almost-localized character of the system [27–
30] is still seen, as discussed below. Such a situation with
Ne < NL (there are fewer fermions than cells) is physically
feasible for neutral fermions, whereas for charged fermions
(e.g., electrons) a consideration of the non-half-filled band
situation requires an additional justification of preserving the
charge neutrality of the whole system unless a compensating
charge reservoir is assumed. We discuss results concerning
magnetization, magnetic susceptibility, and specific heat, as
well as the spin-direction dependent effective masses of
quasiparticles, in addition to metamagnetism. As an example
of its concrete application we have also compared results
from our approach for magnetization with the experimentally
obtained magnetization curve [31] for liquid 3He and found
a good semiquantitative agreement. The fitting parameter
U places this system in the moderate correlation regime at
ambient pressure.

The structure of the paper is as follows. In section 2 we
discuss the Hubbard model solution within the statistically
consistent Gutzwiller approach (SGA). In section 3 we provide
the main results concerning the dependence of the system
properties on the applied magnetic field. Section 4 contains
conclusions and a brief overview. Appendix A provides some
details of the SGA.
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A brief methodological remark is in place here. The
description is applicable, strictly speaking, to neutral fermions,
as we include the applied magnetic field only via the Zeeman
term and ignore the Landau-level structure appearing for
charged quantum particles. This approach may then be applied
to the discussion of both liquid 3He and to the neutral
cold-atom systems of spin 1

2 in optical lattice systems.

2. Modeling: statistically consistent Gutzwiller
approach (SGA)

Our starting point is the single-band Hubbard Hamiltonian in
its translationally invariant form and in an applied magnetic
field Ha

H =
∑

〈i j〉,σ

ti j ĉ
†
iσ ĉ jσ + U

∑

i

n̂i↑n̂i↓ − σh
∑

i,σ

n̂iσ , (1)

where the first term expresses single-particle hopping between
sites i and j (with the hopping amplitude ti j < 0) and the second
describes the intra-atomic repulsive interaction characterized
by the Hubbard parameter U > 0. The applied magnetic
field is introduced via the Zeeman splitting (last term), with
h ≡ 1

2 gµB Ha, and for spin 1
2 we have that σ = ±1. In the

case of neutral fermions (atoms in either liquid 3He or in an
optical lattice) the magnetic field enters the Hamiltonian only
via this term. Applying the variational GA procedure [23] we
obtain the effective one-particle renormalized Hamiltonian in
the form:

HGA =
∑

kσ

(qσ (d, n, m)ǫ(k) − σh)ĉ†
kσ ĉkσ + LUd2 (2)

where ǫ(k) is the single-particle dispersion relation, L ≡ NL
is the number of lattice sites, d2 is the probability of having
a doubly occupied site, n = nσ + nσ̄ is the band filling,
and m = nσ − nσ̄ is the uniform magnetic polarization per
site. The band narrowing factor qσ (d, m, n) is derived from
combinatorial calculations in the usual form (a transparent
derivation is provided in [9] and [7])

qσ =

2[
√

(n + σm − 2d2)(1 − n + d2) +
√

(n − σm − 2d2)d2]2

(n + σm)(2 − n − σm)
.

(3)

However, in an applied magnetic field the standard self-
consistent GA procedure is insufficient. To achieve statistical
consistency one needs to introduce additional constraints. The
essence of the SGA method is discussed in appendix A. In
effect, we introduce a new effective Hamiltonian in the form

HSGA ≡ HGA − λm





∑

i,σ

σ n̂i,σ − mL





− λn





∑

i,σ

n̂i,σ − nL



 , (4)

where the Lagrange multipliers λm and λn represent the
constraints imposed on m and n that their values calculated
self-consistently should coincide with those determined vari-
ationally. The diagonalization of (4) allows the calculation of

the thermodynamic potential functional

FSGA = −
1
β

∑

kσ

ln[1 + e−βE (SGA)
kσ ]

+ L(λnn + λmm + Ud2), (5)

where the eigenenergies of the quasiparticles are

E (SGA)
kσ = qσ ǫk − σ(h + λm) − µ − λn . (6)

The functional (5) represents the effective Landau functional
with order parameters and extra variables expressing the
inter-particle correlations.

In order to achieve the condition where the polariza-
tion m and the chemical potential µ determined variationally
coincide with those determined in a self-consistent manner,
we have effectively introduced corresponding effective fields
adding to both h and µ. In essence, this procedure assures the
fulfilment of the Bogoliubov theorem, discussed originally
in the Hartree–Fock approximation, stating that the intro-
duced effective single-particle approach represents the optimal
single-particle representation of the mean-field state. Note also
that the Luttinger theorem for the Hamiltonian (4) is obeyed,
so that the system is represented by a Fermi liquid, i.e., there
is a one-to-one correspondence between the bare states (of
energies ǫk) and the quasiparticle states (Ek,σ for h = 0).
However, a number of renormalizing factors (qσ , λm, λn)
appear; these are determined by the statistical consistency
(equilibrium) conditions. The presence of these three param-
eters, determined either from self-consistency conditions or
variationally, represent features which do not appear in the
original Landau theory of Fermi liquids. This is the reason
why it is termed either as a correlated or an almost-localized
Fermi liquid.

The equilibrium values of the parameters and mean field
are obtained from the following minimizing procedure of a
generalized grand-potential functional (5) with respect to the
variables assembled into a vector Eλ ≡ (m, d, n, λn, λm), repre-
senting all relevant quantities, determined from the necessary
condition for the minimum

(

∂F
∂Eλ

)

0
= 0, (7)

in combination with a comparison of F values for different
possible solutions. Explicitly, the above conditions can be
rewritten as a set of five self-consistent equations for the
corresponding quantities

λn = − 1
L

∑

kσ
∂qσ

∂n f (E (SGA)
kσ )ǫk,

λm = − 1
L

∑

kσ
∂qσ

∂m f (E (SGA)
kσ )ǫk,

d = − 1
2LU

∑

kσ
∂qσ

∂d f (E (SGA)
kσ )ǫk,

n = 1
L

∑

kσ f (E (SGA)
kσ ),

m = 1
L

∑

kσ σ f (E (SGA)
kσ ),

(8)

where f (E) is the Fermi–Dirac distribution function. Note
that the first two equations contain the derivatives of the band
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Figure 2. Spin-direction dependent effective quasiparticles masses
as a function of the applied magnetic field for an almost-half-filled
band (n = 0.97). The curves terminate when the magnetization
saturates, i.e., when in the spin-majority subband the quasiparticle
mass m↑ = mB (the solid points on the horizontal axis). The
evolution is spin asymmetric, since qσ depends on m in this fashion,
with respect to the spin direction σ = ±1.

narrowing factor with respect to the respective variables and
would be absent in the ordinary Hartree–Fock approximation.
In the case of GA, the fields λm = λn ≡ 0; this is the limit
of weak coupling and represents one of the checks on the
method’s reliability. The grand-potential functional evaluated
for the optimal values of the components of vector Eλ, and
determined from (8), reduces to the physical grand potential
�. Once we have determined the equilibrium thermodynamic
potential, we can also determine all relevant thermodynamic
quantities. For example, the entropy is

− S =
d�

dT
=

(

∂F
∂T

)

0
+

(

∂F
∂Eλ

)

0
·
∂Eλ

∂T
, (9)

where subscript ‘0’ labels the equilibrium values of the
variational parameters. Since ( ∂F

∂Eλ
)0 = 0 from equation (7),

equation (9) simplifies to the form

S = −

(

∂F
∂T

)

0

= kB
∑

kσ

[ln(1 + e−βE0
kσ ) + βE0

kσ f (E0
kσ )]. (10)

The specific heat is then defined in the usual manner by

cV = T
dS
dT

∣

∣

∣

∣

n,T,h,V
≡ −T

∂2F
∂T 2

∣

∣

∣

∣

0
. (11)

Note that the variational parameters depend on temperature
in a non-trivial manner. Therefore we have to determine the
specific heat numerically. A detailed analysis of the results
follows next.

3. Results and discussion

3.1. Principal physical properties

To obtain the equilibrium values from solutions of the set of
equations (8), we have made use of the scientific library GSL
under the GNU license [32]; the precision of the numerical
results was 10−7. In our calculations we set the energy scale
in units of the nearest-neighbor hopping |t |. We consider a
particular closed-packed structure, a three-dimensional face-
centered cubic lattice of size 200 × 200 × 200. If not otherwise
specified, we have taken into account the second-nearest-
neighbor hopping set as t ′ = 0.25, the band filling as n = 0.97,
and the reduced temperature in the system as β ≡ 1

kBT = 500,
which can be regarded practically as the T ≈ 0 limit.

Both approaches, the GA as well as the SGA, automati-
cally account for renormalization of the effective mass (m∗

σ )
with respect to the bare band mass (mB) in the form:

m∗
σ

mB
= q−1

σ ≡

(

∂ Ek

∂ǫk

)−1

, (12)

where qσ is the optimized Gutzwiller band narrowing factor
defined in (3). In the absence of an applied magnetic field,
the effective mass for larger values of the interaction is
renormalized appreciably, as detailed in figure 2. However,
in an applied magnetic field, in an almost-half-filled band we
observe strong asymmetric dependences with respect to the
spin direction. This asymmetry with respect to the value of
σ = ±1 is caused by the corresponding m dependence of qσ .
The curves terminate at the saturation point m = n, where
simultaneously m↑ = mB and the spin-minority quasiparticle
subband becomes empty. Parenthetically, the saturation point
may thus be used to determine the value of the bare band
mass, mB, as the Hubbard interaction is then switched off.
This spin-dependent mass renormalization of quasiparticles in
the strong correlation regime has been discussed extensively
in the literature [30, 33–35], and observed experimentally by
means of de Haas–van Alphen oscillations in strong magnetic
fields [36, 37]. It thus represents a crucial new concept, which
does not appear in the standard Landau Fermi liquid (LFL)
theory.

In figure 3 we show a family of magnetization curves
as a function of the reduced magnetic field (h ≡ µB Ha). In
comparison to the results obtained within the GA [9, 38] we
do not observe any spectacular metamagnetic transition for
n < 1. The magnetization curves, especially in the intermediate
interaction regime, are rather smooth and saturate gradually.
Nonetheless we observe a weak kink, which we qualify
as metamagnetic-like behavior. Indeed, this kink can be
singled out clearly on the field dependence of the magnetic
susceptibility and the specific heat curves, as shown in figures
4 and 5, respectively.

One can say that the presence of both spin-dependent
masses and the metamagnetic behavior signal the appearance
of the so-called almost-localized Fermi liquid (ALFL) state, as
such behavior is absent for the Landau Fermi liquid [38]. The
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Figure 3. Magnetization curve for selected values of the Hubbard
parameter U and fixed band filling n = 0.97. Even for very large
values of U the curves show a metamagnetic-like transition in the
form of a kink.

Figure 4. Magnetic susceptibility (χ = ∂m
∂h ) as a function of the

reduced magnetic field for selected values of the Hubbard parameter
U. In the whole range of U values we observe a discontinuity, which
we ascribe to the metamagnetic-like behavior. In the lower inset we
plot the zoomed curves for smaller values of the U parameter. In the
upper inset we present the dependence of the critical field (hcrit)
representing the metamagnetic-like point for selected values of the
parameter U.

diminution of cV with h is the sign of a combined decrease
of both the effective-mass components, as well as of the
decreasing population of the spin-minority subband.

3.2. Subsidiary quantities

The introduction of constraints results in additional self-
consistent equations to be obeyed, which in turn restricts the
parameter space to search for the true global minimum of the
free-energy functional. Furthermore, the Lagrange multipliers
λm and λn play the role of an effective field and a shift of
the chemical potential, respectively. They are induced by the
correlations in the sense that their presence is induced by
the presence of qσ and, more particularly, by its singular
dependence on both m and n in the present situation. The fields
λm and λn are determined within the variational/self-consistent
procedure and represent the third factor distinguishing an

Figure 5. Specific heat (per site) as a function of the reduced
magnetic field for selected values of U. The slope change occurs for
the same values of h as the kinks in the magnetic susceptibility
shown in figure 4. At lower fields the mass enhancements {m∗

σ } are
symmetric, so their contributions to the total density of states
average out to a value roughly independent of h. The temperature
was taken as kBT = 0.04|t |.

ALFL from a LFL. For the sake of completeness, in table 1 we
provide exemplary values of the relevant quantities. Note that
λn almost compensates µ, and in effect we obtain the effective
value of the Fermi energy for the heavy quasiparticles.

In figure 6 we plot the spin-resolved density of states for
the two values of U = 8 and 18 (in units of |t |) in an applied
field. The spin subbands are shifted by an amount h + λm
and narrowed down asymmetrically by the spin-direction
dependent factor qσ . In figures 7(a)–(c) we have plotted λm ,
λn , and µ, all as functions of h. Furthermore, the field λm as a
function of magnetization m is shown in figure 8. This effective
field is a nonlinear function of both h and m, and represents
a relatively fast growing quantity with increasing h. It is only
weakly dependent on h in the moderate interaction limit. This
means that the presence of λm will have an essential impact
on the magnetic properties, while the relative constancy of
µ and λn in the regime h < hcrit explains the flat behavior
of cV (T ) in that regime. It would be interesting to see if the
presence of the effective field λm acting on the spin degrees
of freedom only (in analogy to the Weiss molecular field) can
be detected with the same accuracy as the spin splitting of
the masses. Such a test would be a decisive step forward in
defining an almost-localized Fermi liquid as a separate state
from the Landau Fermi liquid. Note, however, that λm cannot
be, strictly speaking, considered as a molecular Weiss field,
since it is nonlinear in m.

3.3. Concrete example: liquid 2He

Liquid 3He is regarded as a canonical example of the Landau
Fermi liquid (cf. e.g. [6]). It has also been regarded as an
ALFL, as it undergoes a transition to the solid state at a
pressure p ≃ 34 bar, with the localization of the 3He atoms
regarded as a fermions of spin 1

2 [9, 12, 39]. Here we briefly
discuss its behavior in an applied magnetic field at ambient
pressure. We have compared the magnetization curve obtained
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Figure 6. Spin-resolved density of states of quasiparticle states in the applied magnetic field h = 0.5 for the selected values of U. The spin
(magnetic-moment)-minority subband is narrowed, whereas the spin-majority-spin subband is widened so that it acquires the bare
bandwidth as the saturation state is reached in the strong-field limit.

Table 1. Values of the parameters obtained for U = 12, t ′ = 0.25, n = 0.97, β = 500 (in units where |t | = 1) for four values of the reduced
magnetic field. The calculations were made for a fcc lattice of size 200 × 200 × 200.

Quantity h = 0 h = 0.2 h = 0.5 h = 1
F −6.475 2954 −6.476 5977 −6.435 4871 −6.051 8362
d 0.323 1845 0.319 33441 0.295 0449 0.237 0746
m 0 0.169 0908 0.448 3957 0.720 6020
µ 5.838 7352 5.822 7839 5.684 5669 4.981 5074
λn −5.574 7470 −5.560 1127 −5.459 9753 −5.214 1073
λm 0 0.400 7685 1.141 0240 2.180 9003
q↑ 0.725 0737 0.729 3968 0.748 2932 0.797 1271
q↓ 0.725 0737 0.723 6794 0.730 7299 0.756 9461

Figure 7. Panels (a)–(c) show the evolution of the fields λm and λn
and the chemical potential µ with respect to the applied magnetic
field. The field λm appears only in the spin polarized state, whereas
λn is almost compensated by µ.

from our model with the experimental magnetization [31]
of the liquid 3He, as shown in figure 9. We find a good

Figure 8. Effective field induced by correlations as a function of the
magnetization; this illustrates its nonlinear character and in this
manner it cannot be regarded as a Weiss molecular field.

overall agreement. Note that our results, obtained for n < 1, do
not exhibit the discontinuous metamagnetic transition which
disqualified the applicability of the standard GA to 3He with
n = 1 [9]. To avoid this discontinuity, we have introduced about
5% of vacancies in this virtual fcc lattice representing liquid
3He. This number of vacant sites provides the best fit of our
results to the experimental data. Furthermore, it is important
to note that the relatively small number of holes introduced
preserves the almost-localized nature of this quantum liquid.
This note is important also in view of the circumstance that the
detailed m(h) dependence is very sensitive to the number of
quantum vacancies. It is tempting to suggest that the effective
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Figure 9. Magnetization in dimensionless units, m ≡ n↑n↓ versus
the applied field H calculated within the SGA fitted to the
experimental data [31]. The fitting parameters are: U = 5|t |,
n = 0.95, t ′ = 0.25|t |, |t | = 62.5 K. A very weak, almost
unnoticeable metamagnetic kink is present. The reason for the small
deviation of the results from the data (for H & 125 T) is not
accounted for within the present approach.

empty-site content δ ≡ 1 − n of the order of a few percent
can be interpreted as the presence of quantum vacancies in
the liquid state, in direct analogy to the quantum Andreev
vacancies postulated and observed in solid 3He [40]. From a
detailed analysis of the fitting procedure we conclude that the
assumption of a non-half-filled lattice is necessary if either the
GA, SGA or DMFT approaches and the Hubbard model are to
emulate the magnetic behavior of liquid 3He.

One important difficulty of the just discussed results
(figure 9) should be raised at this point. Namely, a relatively
small value of U ∼ 5|t | ≪ W (where W ≡ 24|t | is the bare
band width) obtained from the m(h) best fit places the liquid
3He at ambient pressure as a moderately correlated system.
This seemingly unexpected conclusion is also in agreement
with the DMFT analysis [21]. In this way, the Hubbard model
approach also squares qualitatively with the fundamental
Fermi liquid theory assumption that the interaction between
quasiparticles can be essentially limited to the region very
close to the Fermi surface (U substantially smaller than
W). Furthermore, the method for estimating the number of
vacancies might be associated with a detailed study of the
field dependence of the specific heat to determine a possible
spin-direction dependence of the effective mass, though the
weak effect for this moderate value of U may be prove decisive.
Such an explicit spin-direction mass dependence is absent
when we have the exactly half-filled situation (i.e., one atom
per site, without any vacant cells).

Furthermore, in spite of this success in explaining m(h)

in a semiquantitative manner, there still is another problem
concerning determination with the same set of parameters of
a realistic value of the mass enhancement estimated from
the cV (T ) curves for T → 0 [3, 4]. Namely, the value of
the specific heat enhancement at h = 0 obtained for U =
5|t | ∼ W/5 is far too small to provide the corresponding
effective mass enhancement m∗ = 2.86m0 at ambient pressure,
where m0 is the free 3He atomic mass. This disagreement is

common to the present and the previous [12, 21] treatments.
A small mass enhancement within the GA, SGA or DMFT
of the mass can be interpreted in two ways. First, the spin-
fluctuation contribution can be very important [41]. In that
situation, the SGA should be considered only as a saddle-point
approximation to a more complete approach (cf. appendix B).
This question certainly requires a detailed analysis. Second,
one has to note that the m∗/m0 ratio estimate from the
experimental cV data [3, 4], based on the relations to an ideal
gas, may not be fully adequate either. Finally, our assumption
that Ne < NL and δ ≡ 1 − n, independent of h or pressure, may
be analyzed further as well.

4. Conclusions

We have carried out a systematic study of a correlated Fermi
liquid modeled by the Hubbard model on a fcc lattice, utilizing
the statistically consistent Gutzwiller approach (SGA) [42] in
an applied magnetic field and in an almost-half-filled regime.
Within this method, the field and spin-direction dependent ef-
fective masses, the magnetization curve, the magnetic suscep-
tibility, and the specific heat, were all calculated in a both self-
consistent and variationally optimal manner. We have found a
metamagnetic-like behavior, tracing the discontinuities which
would appear for the half-filled band case (one particle per
cell). In other words, we have not obtained any first-order
metamagnetic transition which limits the applicability of the
original Gutzwiller approach (GA) to real systems such as
liquid 3He (see also the discussion in [21]). Apart from that,
the GA approach is not statistically consistent, as discussed
in detail in the text. We have found a good overall agreement
of our approach with experimental data for the magnetization
of liquid 3He. However, there remains the question of putting
into mutual agreement the magnetization data and the magni-
tude of effective mass enhancement observed for that system
in zero applied field. The quantitative analysis within the
lattice-approach required the introduction of a small number
(∼5%) of vacant cells to destroy the strong metamagnetism.
A way of including the spin fluctuations is suggested (cf.
appendix B), starting from the SGA state, which should then be
regarded as a saddle-point state for a more complete analysis.
In this manner, the SGA state replaces the Hartree–Fock
state, regarded so far as a reference (saddle-point) state for
further considerations concerning spatially inhomogeneous
fluctuations [43–45], here of both spin and charge types.

In summary, our SGA approach, as well as the works
carried within DMFT [21, 34, 35] provide a convergent
quasiparticle language in the sense that the effective masses are
dependent on the spin-direction in the magnetically polarized
state. We also introduce a set of nonlinear effective fields,
determined in a self-consistent manner, which renormalize
both the chemical potential and the applied field magnitude
experienced by the quasiparticles representing the almost-
localized Fermi liquid. Our method of approach may be
regarded as equivalent to the slave-boson approach in the
saddle-point approximation [42], without involving the slave-
boson fields which introduce spurious Bose-condensation
phase transitions at nonzero temperature.
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Appendix A. Statistically consistent Gutzwiller
approximation

As pointed out in the main text, it has been noticed (see [42, 46,
47] and references therein) that the Gutzwiller approximation
which leads to the effective single-particle Hamiltonian (2)
has a principal drawback. Namely, if we try to calculate
the ground state energy from EG ≡ 〈HGA〉, we have first
to determine the average spin polarization m, the double
occupancy probability d2 and µ [48]. This can be achieved
in two ways: either by minimizing the free-energy functional
F for T ≥ 0 (defined by equation (5) for λm = λn = 0) with
respect to the variables (m, d2, n) or by writing down the
self-consistent equation of m and n and minimizing F with
respect to d2. Those two procedures should provide the same
answers if (2) properly represents the defined single-particle
Hamiltonian. In fact, the results do differ [42, 47], and this
discrepancy is caused by the fact that the single-particle
energies depend on qσ , which depends on m and n in a
non-analytic manner (see, for example, the limits n → 1 and/or
m → 1). The presence of this discrepancy means that the
GA violates the fundamental Bogoliubov theorem, stating
that the effective single-particle states represent the optimal
quasiparticle states in the variational sense, with the ordinary
self-consistent procedure preserved at the same time.

To cure this principal defect one can choose an approach
in which one imposes the constraints so that the consistency
from the point of view of statistical mechanics is preserved. To
carry through such a procedure one can utilize the maximum
entropy method to derive the correct statistical distribution
(with constraints) and then proceed further [47]. Here we have
chosen a slightly different path. Namely, we have defined the
generalized free-energy functional (5) with the constraints that
the variationally calculated quantities m and n represent correct
values. This is realized by adding two terms to HGA, as written
in equation (4). This last step amounts to introducing the
statistically consistent Gutzwiller approximation (SGA). As
a result, we have to minimize F given by (5) also with respect
to λm and λn , and the procedure introduces two physically
relevant fields (cf. (6)) which appear only in the correlated
state (qσ < 1) and vanish in the small-U limit, i.e., in the
Hartree–Fock limit (qσ → 1). The last limiting situation thus
represents a test for the correctness of our approach.

One should note that the SGA is essentially based on
the GA, but provides additional essential consistency of the
model by introducing two extra parameters into the approach.
In summary, the self-consistent equations

1
L

∑

i,σ σ 〈n̂iσ 〉 = 1
L

∑

k,σ σ 〈n̂kσ 〉 ≡ m,
1
L

∑

i,σ 〈n̂iσ 〉 = 1
L

∑

k,σ 〈n̂kσ 〉 ≡ n,

〈n̂kσ 〉 = 1
eβ(Ekσ −µ)+1

,

(A.1)

are consistent with the variational equations (7) derived within
the SGA method.

Appendix B. SGA as a saddle-point approximation

Here we would like to sketch the method of extending the SGA
approach. In this method SGA is regarded as a saddle-point
approximation to a more complete theory which includes the
quantum fluctuations.

In general, the constraints in (4) should be written in the
local form

−

{

∑

iσ

λmiσ(n̂iσ − 〈n̂iσ 〉) +
∑

iσ

λni (n̂iσ − 〈n̂iσ 〉)

}

≡ −

{

∑

iσ

(λmiδ Ŝz
i − λniδn̂i )

}

, (B.1)

with δ Ŝz
i ≡ Ŝz

i − 〈Ŝz
i 〉 and δn̂i ≡ n̂i − 〈n̂i 〉. In other words, in

the system with fluctuating local quantities, the constraints
should also be obeyed locally. Also, the charge fluctuations
are expressed via the term

U
∑

i

(n̂i↑n̂i↓ − 〈n̂i↑n̂i↓〉). (B.2)

The last term can be rewritten in the spin explicit form

n̂i↑n̂i↓ =

(

ni↑ − n̂i↓

2

)2

+
n̂2

i
4

= (δ Ŝz
i )

2 + 2〈Ŝz
i 〉δ Ŝz

i + 〈Ŝz
i 〉

2 +
n̂2

i
4

, (B.3)

where 〈Ŝz
i 〉 ≡ m and n̂i ≡ n̂i↓ + n̂i↑. In effect, we have

U
∑

i

n̂i↑n̂i↓ = U
∑

i

δ(Ŝz
i )

2 + U
∑

i

n̂2
i

4
+ const. (B.4)

One can reformulate the whole approach in the spin rotation-
ally invariant form in a straightforward manner. In effect, we
have linear and quadratic spin and charge fluctuations. We
can thus define the part of the Hamiltonian responsible for
fluctuations as

H = HSGA + Hfluct + const, (B.5)

where

Hfluct ≡ −
∑

i

[λmi
ˆδSz

i − λniδn̂i ]

+ U
∑

i

[( ˆδSz
i )

2 + 1
4 (δn̂i )

2]. (B.6)
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This expression (B.6) (or their spin-rotation invariant cor-
respondents) should be inserted into the expression for the
energy expressed in the functional-integral form over the
Fermi fields [48] and then evaluated explicitly, as it involves
cumbersome calculations. Methodologically, it is analogous
to the slave-boson approach [41]. However, the present ap-
proach involves only coherent physical Fermi {ĉiσ , ĉ†

iσ } and
Bose {λm, λn} fields, without introducing condensing ghost
slave-boson fields.

When the reference (saddle-point) system is represented
by an almost-localized Fermi liquid, both the spin and charge
fluctuations thus become relevant. This should lead to a
renormalization of the thermodynamic properties and should
be analyzed separately, as in the present paper we concentrate
on the T → 0 results. Nonetheless, inclusion of the fluctuations
should lead to a further enhancement of the specific heat, as
well as to the presence of the T 3 ln T term for h = 0 [41].
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3.3 Article A.2, Ferromagnetism in UGe2: A microscopic
model

In the work [113] we have proposed that the two dimensional Anderson lattice model
with the magnetic field accounted for by the Zeeman term is able to accurately describe
the magnetic and electronic properties of the f -electron ferromagnetic superconductor
UGe2 [20]. The proposed model correctly captures several features of this material: (i)
the considerations of the two dimensional lattice is justified by the quasi-two-dimensional
Fermi surface as determined by the band structure calculations [142]; (ii) the initially
localized in the atomic states f electrons and lack of any direct hoppings between them
considered in ALM is based on the fact that uranium atoms are distant well above the
so-called Hill limit [9]; (iii) On the other hand, due to the coupling of f electrons to
the conduction electrons via hybridization, their effective itineracy is supported by the
measured paramagnetic moment per U is different from atomic value [20, 9].

By solving the model by SGA method in the limit of low temperature (cf. Sec. 2.1)
we have obtained three competing solutions: the paramagnetic (PM) and two distinct
ferromagnetic phases, of stronger (FM2) and weaker (FM1) magnetization. The ferro-
magnetism itself arises as an effect of competition between the Coulomb interaction and
hybridization, whereas the splitting into two phases, separated by the metamagnetic
transition, has its source in the characteristic two-peaked density of states with the hy-
bridization gap with sharp borders at T = 0. Strictly speaking, both magnetic phases
have different Fermi surface topology and FM1 phase is of the half-metallic nature.

In the specific range of the total number of electrons in the system, we have shown
that with the increasing hybridization the FM2-FM1-PM sequence of the phases ap-
pears, with the transitions of the first order between them. By assuming that the main
effect of the pressure applied to the real material can be modeled by the increasing hy-
bridization amplitude we have reproduced qualitatively the characteristics of UGe2 [110]:
(i) As seen, among others in de Haas - van Alphen oscillations [143] and the resistivity
measurements [144], the crucial property of the metamagnetic phase transition (FM2→
FM1) is associated with the dramatic increase of the effective quasiparticle masses. In
our model, this transition is linked to the chemical potential crossing the hybridization
peak in the majority spin subband. The boost of the density of states at the Fermi level
directly explains observed enhancement of effective quasiparticle mass; (ii) As FM1 is
predicted by our model to be of the half-metallic type, we can rationalize the disappear-
ance of some of the majority spin frequencies and a slight evolution of the spin-minority
ones at the same metamagnetic phase transition as seen in the de Haas - van Alphen
oscillations measurements [143]; (iii) Our model, in accord with the neutron scattering
experiment [145], predicts that magnetization comes almost only from f -electrons; (iv)
We have also favorably compared our results with the experiment in magnetic field and
found that the pressure - applied field phase diagram of UGe2 can be well reproduced
by our theory. Here the most important feature is that the metamagnetic transition
occurs for the same value of the magnetization irrespectively of the applied magnetic
field strength [110] .
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The Anderson lattice model is used to explain the principal features of the heavy fermion compound UGe2

by means of the generalized Gutzwiller approach (the statistically consistent Gutzwiller approximation method).
This microscopic approach successfully reproduces the magnetic and electronic properties of this material, in
qualitative agreement with experimental findings from magnetization measurements, neutron scattering, and de
Haas–van Alphen oscillations. Most importantly, it explains the appearance, sequence, character, and evolution
in an applied magnetic field of the observed in UGe2 ferromagnetic and paramagnetic phases as an effect of a
competition between the f -f electron Coulomb interaction energy and f -conduction electron hybridization.

DOI: 10.1103/PhysRevB.90.081114 PACS number(s): 71.27.+a, 75.30.Kz, 71.10.−w

Introduction. The discovery of spin-triplet superconductiv-
ity (SC) inside the ferromagnetic (FM) phase of the heavy
fermion compound UGe2 [1] sparked an intense discussion
about the cause of such a coexistence. Although the spin-triplet
paired phase has been known to appear in condensed 3He [2]
and most likely in Sr2RuO4 [3], until its discovery in UGe2

there was no convincing example for a strongly FM material
hosting SC.

Specifically, the phase diagram for UGe2 on the
temperature-pressure (T -p) plane contains both SC and two
FM phases, with stronger and weaker magnetization [4],
usually referred to as FM2 and FM1, respectively, as well as
a paramagnetic phase (PM), with first-order phase transitions
between them at low temperature, T � 7 K [5]. The FM-SC
coexistence is strongly suggestive of a single mechanism
based on magnetic correlations which is responsible for the
appearance of both FM and SC and thus should be treated
on equal footing, as, e.g., in UGe2 both phases disappear at
the same pressure [1,4]. Another indication of the coupled
nature of both phases is that the SC dome on the T -p plane
coincides with the phase transition between FM2 and FM1 [4].
Thus, we address here in detail the question of the microscopic
origin of the observed ferromagnetism, as it should bring us
closer to determining the mechanism of superconductivity.
The question related to the inclusion of SC requires a separate
study [6,7] (see the discussion at the end).

Experimental observations suggest that the ferromagnetism
in UGe2 has an itinerant nature [1,8,9] and is mediated by
the uranium 5f electrons [1,10,11]. Delocalization of the 5f

electrons can be interpreted as resulting from the hybridization
of the original 5f atomic states with those from the conduction
band [8] derived from p states due to Ge and d-s states due to
U. This is supported by a noticeable difference in the effective
paramagnetic moment per uranium atom in this compound
with respect to the corresponding atomic value for either the
f 3 or f 2 configurations [1], as well as from a fractional
value of the magnetization relative to the atomic-moment
saturation. This means that the Hund’s rule coupling in the
atomic sense is broken, and the itineracy of the 5f electrons

*marcin.wysokinski@uj.edu.pl
†marcin.abram@uj.edu.pl
‡ufspalek@if.uj.edu.pl

is the source of the band ferromagnetism in which Hund’s
ferromagnetic interaction plays a role, in combination with a
stronger intra-atomic Coulomb interaction. Thus, f -electron
orbital degeneracy is not essential, but the role of hybridization
is.

Apart from other theories concerning the origin of FM in
the considered class of materials [12,13], there exists [14]
a phenomenological explanation of the magnetic properties
within a rigid-band Stoner approach, which requires intro-
duction of an ad hoc two-peaked structure of the density of
states (DOS) near the Fermi surface (FS). Our purpose is to
invoke a microscopic description starting from the Anderson-
lattice model (ALM) which is appropriately adapted to the
heavy fermion compound UGe2. This comprises a relatively
simple quasi-two-dimensional electronic structure [15–17].
From such a starting point an effective nonrigid two-band
description arises naturally and allows for a detailed expla-
nation of the magnetic and electronic properties, at least on a
semiquantitative level. Additionally, as the correlations among
5f electrons are sizable, an emergence of the Stoner-like
picture of FM can be accounted for only with the inclusion
of specific features coming from the electronic correlations.
Although the resulting explanation of the physical properties is
semiquantitative in nature, it provides, in our view, a coherent
picture of a number of properties [4,10,11,18,19].

Model. We base our predictions for the ALM on a
variational treatment with the Gutzwiller wave function
|ψG〉 = ∏

i P̂i|ψ0〉, where P̂i is the operator projecting out part
of the double occupancies from the uncorrelated ground state
|ψ0〉 at site i. We have extended the standard approach [20–22]
to the statistically consistent form [23] [statistically consistent
Gutzwiller approximation (SGA) method]. Explicitly, we start
with the ALM Hamiltonian, with an applied magnetic field
introduced via the Zeeman term (h ≡ 1

2gμBH ), i.e.,

Ĥ − μN̂ =
∑
i,j,σ

′
tijĉ

†
i,σ ĉj,σ −

∑
i,σ

(μ + σh)n̂c
i,σ

+
∑
i,σ

(εf − μ − σh)n̂f
i,σ + U

∑
i

n̂
f

i,↑n̂
f

i,↓

+V
∑
i,σ

(f̂ †
i,σ ĉi,σ + ĉ†

i,σ f̂i,σ ), (1)
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where the primed sum denotes summation over all lattice
sites i �= j, and f̂ and ĉ are operators related to f and c

orbitals, respectively, with spin σ = ↑,↓. We have also defined
the total number of electrons operator as N̂ , and for the
respective orbitals and spins as n̂

f
i,σ ≡ f̂

†
i,σ f̂i,σ , n̂c

i,σ ≡ ĉ
†
i,σ ĉi,σ .

In our model, we consider the finite intra-f -orbital Coulomb
interaction U , the on-site interorbital hybridization V < 0,
the hopping amplitude between the first (t) and the second
(t ′ = 0.25 |t |) nearest neighboring sites, and the atomic level
for f states placed at εf = −3|t |. In the following |t | is used
as the energy unit.

First, we would like to evaluate the ground-state energy,
EG ≡ 〈ψG | Ĥ | ψG〉/〈ψG | ψG〉. Applying the usual proce-
dure [21,22], called the Gutzwiller approximation (GA), we
simplify the projection to the local sites on which the operators
from (1) act. In that manner one obtains the effective single-
particle Hamiltonian in a momentum space with renormalized
hybridization by the Gutzwiller narrowing factor qσ [24–26],
namely,

ĤGA ≡
∑
k,σ

�†
(

εc
k − σh − μ

√
qσ V

√
qσ V εf − σh − μ

)
� + �Ud2,

(2)

where we have defined �† ≡ (ĉ†
k,σ ,f̂

†
k,σ ), and εc

k is the
starting conduction band energy, � denotes the number of
lattice sites, and d2 is the probability of a having doubly
occupied f orbital that we optimize variationally. In order
to ensure that variationally calculated polarization and the
f -level occupancy would coincide with those coming from
the self-consistent procedure [23], we modify our effective
Hamiltonian (2) by introducing additional constraints on the
polarization (mf ) and the number (nf ) of f electrons via the
Lagrange-multiplier method. The effective Hamiltonian with
the constraints now takes the form

ĤSGA

≡ ĤGA − λf
n

(∑
k,σ

n̂
f

k,σ − �nf

)
− λf

m

(∑
k,σ

σ n̂
f

k,σ − �mf

)

=
∑
k,σ

�†
(

εc
k − σh − μ

√
qσ V

√
qσV εf − σ

(
h + λ

f
m

) − λ
f
n − μ

)
�

+�
(
Ud2 + λf

n nf + λf
mmf

)
. (3)

Those constraint parameters λ
f
n and λ

f
m are also determined

variationally. They play the role of nonlinear self-consistent
fields acting on the charge and the spin degrees of freedom,
respectively. Diagonalization of (3) in this spatially homo-
geneous case leads to four branches of eigenenergies, E±

kσ

representing two spin-split hybridized bands E±. In order to
determine the equilibrium properties of the system, we need to
find the minimum of the generalized Landau grand-potential
functional F ,

F
�

= − 1

�β

∑
kσb

ln
[
1 + e−βEb

kσ

] + (
λf

n nf + λf
mmf + Ud2

)
,

(4)

where b = ±. Effectively, it leads to the set of five nonlinear
equations, ∂F/∂
λ = 0 for 
λ ≡ {d,nf ,mf ,λ

f
n ,λ

f
m}. However,

due to the fact that the total number of electrons remains
constant when pressure or the magnetic field is applied, we
need also to satisfy the equation for the chemical potential μ

via the condition

n = 1

�

∑
kbσ

f
(
Eb

kσ

)
, (5)

with f being the Fermi distribution. The equilibrium ther-
modynamic potential functional defines also the ground-state
energy EG = F |0 + �μ0n, where the subscript 0 denotes the
optimal values. After carrying out the minimization, we can
also calculate the total spin polarization from

m ≡ mc + mf = 1

�

∑
kbσ

σf
(
Eb

kσ

)
. (6)

Numerical calculations with a precision of at least 10−7

were carried out for a two-dimensional square lattice of � =
512 × 512 size, and for low temperatures β ≡ 1/kBT � 1500,
emulating the T → 0 limit.

Results. First, we analyze FM and PM solutions in the
absence of field. In Fig. 1 we draw a phase diagram on the total
filling–hybridization strength plane. For weak hybridization,
FM phases are favored due to the negative balance between
the increase of the kinetic and decrease of the Coulomb
energies, caused by a relative shift of the spin-resolved DOS.

FIG. 1. (Color online) Top: Phase diagram on the plane total
filling–hybridization strength for the zero field, containing both
FM and PM phases for U = 5. The color scale denotes total spin
polarization m. Phases are divided by the dashed and the solid
lines. Dashed lines denote the second-order transition, whereas the
solid denotes the first-order transition with the critical points, CP.
Fine dashed lines mark how the phase borders would change for
U = 8. (a)–(c) depict a schematic spin-resolved density of states
corresponding to the phase sequence appearing along the solid vertical
line (from bottom to top).
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FIG. 2. (Color online) (a) Magnetization as a function of hy-
bridization strength for the band filling n = 1.6, and the Coulomb
repulsion U = 5. Both phase transitions induced by the hybridization
change are of first order. (b) Corresponding experimental results from
Ref. [4]. (c) f -orbital filling as a function of hybridization. (d) Square
of DOS at the Fermi level vs |V | through the phase sequence. Inset:
Experimentally measured T 2-term coefficient A of the resistivity vs
pressure from Ref. [18].

This is visualized by the diminution of the spin-subband
overlap up to the FS—cf. Figs. 1(a) and 1(b). The appearance
of a spontaneous polarization, as a result of a competition
between the kinetic and the Coulomb energies, is in fact the
feature of the Stoner mechanism for the band FM onset. In
comparison to the usual single-band (e.g., Hubbard) model,
we can distinguish in a natural manner between the two FM
phases. The first (FM1) appears when the chemical potential
is placed in the hybridization gap, between the spin subbands
of the lower hybridized band, which is characterized also
by magnetization equal to m = 2 − n [cf. Fig. 1(b)]. In that
situation, only the spin-minority carriers are present at and
near the FS. The second phase (FM2) emerges when we further
lower the hybridization and thus the chemical potential enters
the majority spin-subband DOS [cf. Fig. 1(a)], giving rise to a
step (discontinuous) increase in magnetization [cf. Fig. 2(a)].
In the limit of strong hybridization, for a fixed total filling,
when the correlations weaken due to lowering of the f -orbital
average occupancy [nf � 0.85, cf. Fig. 2(c)], the kinetic
energy gain outbalances a subsequent reduction of the average
Coulomb interaction and the PM phase is energetically
favorable. A similar mechanism for the formation of FM and,

in particular, the characterization of phases, was studied before
in Refs. [24–27].

In UGe2 the spacing between Ge and U atoms decreases
with increasing pressure, resulting in an enlargement of their
orbital overlap. Even though other parameters may also be
altered (e.g., εf ), we presume that the main effect of the
pressure exerted on the material can be modeled by a generally
nonlinear concomitant strengthening of the hybridization am-
plitude. Thus, from Fig. 1 it can be seen that for the total filling
n in the range 1.55–1.75, the sequence of phases and the order
of the transitions are the same, as those found experimentally
for UGe2 by increasing the pressure [4,8]. As a representative
band filling we have selected n = 1.6, marked by the vertical
line in Fig. 1. In fact, as we compare the magnetization versus
hybridization along the traced line [cf. Fig. 2(a)] with the
corresponding experimental data [4] [cf. Fig. 2(b)], we find
a good qualitative resemblance. Moreover, the magnetization
differentiation among the orbitals [cf. Fig. 2(a)] is in agreement
with the neutron scattering data [10,11] at ambient pressure
(in our model |V | � 0.5), where it was found that, almost
exclusively, electrons from uranium atoms (f orbital) con-
tribute to the ferromagnetism. In our picture it results from
the fact that the competition between Coulomb repulsion
and hybridization-induced itineracy concerns mainly the f

electrons. Furthermore, as for low hybridization (in the FM2
phase) we obtain a small compensating polarization due to
the c electrons, we suggest that the experimentally observed
small negative magnetization between the uranium atoms at
ambient pressure [11] may come from the delocalized cloud
of conduction electrons.

Our microscopic description of the phase transitions in-
duced by the change of the FS topology also compares
favorably with the electronic-state features of UGe2 derived
from de Haas–van Alphen oscillations [18,19]. In Ref. [18] it
is suggested that the majority spin FS disappears in the FM1
phase, in complete accord with the character of DOS presented
in Fig. 1(b). We also reproduce the feature of an abrupt
change of the FS at the FM1-PM phase transition [18,19]
[cf. Fig. 2(d)]. Namely, here it corresponds to the step change
of the chemical potential position merging into both bands.
Furthermore, in the experimental data at the metamagnetic
phase transition there is an observed significant enhancement
of the quasiparticle mass renormalization [19]. As it is
proportional to the DOS at Fermi level, in Fig. 2(d) we
provide the corresponding behavior, which can be understood
within our model by the chemical potential crossing the
high hybridization peak in the majority spin subband. The
transition then leads to a step change of FS only in the
majority spin subband, while the minority subband evolves
rather continuously, which is also seen experimentally [19].

For the sake of completeness, we have shown in the inset
in Fig. 2(d) the pressure dependence of the T 2 term of
resistivity [18] as it should have roughly the same dependence
as the squared DOS at the FS, versus |V | (we assume that the
Kadowaki-Woods scaling holds). However, the jump that we
obtain at the FM1-PM transition has not been observed in the
resistivity measurements [18].

In the applied field, our model is also in good agreement
with available experimental data for UGe2. In Fig. 3(a)
we display a phase diagram on the hybridization–applied-
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FIG. 3. (Color online) (a) Phase diagram on the applied field–
hybridization strength plane for n = 1.6 and U = 5. The color scale
denotes total spin polarization. The dashed lines mark the phase stabil-
ity thresholds for U = 8. In the inset we show experimental results [4].
(b) Magnetization vs applied field for selected hybridization strengths
when the system is entering into the FM1 to FM2 phase-transition
regime. (c) Evolution of orbital-resolved magnetization with the field
for low hybridization, |V | = 0.5 (mimicking ambient pressure). Note
the very small c-electron polarization up to h � 0.1.

magnetic-field plane that corresponds to that determined
experimentally [4] [cf. the inset of Fig. 3(a)]. Similarly, as
in Ref. [4], the magnetization at the phase transition between
FM1 and FM2 triggered by the applied magnetic field starts
from the same baseline, independently of the hybridization
strength [cf. Fig. 3)]. However, one should note that, due
to the fact that pressure not only changes the hybridization
magnitude but also other microscopic parameters, we are not
able to reproduce the magnetization cascade with increasing
magnetic field when crossing the transitions.

The next feature found in UGe2 at ambient pressure is
an initial lack of measurable polarization on the germanium
atoms with increasing magnetic field, as inferred from the
neutron scattering data [10]. In our model we find a similar
trend. For low hybridization (|V | � 0.5 emulating ambient
pressure), c-electron polarization increases slowly, and even
up to h ≈ 0.1 it is negligible [cf. Fig. 3(c)].

Remarks. With the simple but powerful technique based on
the generalized Gutzwiller ansatz (SGA method), applied to
the Anderson lattice model, we have constructed a microscopic
model of FM in UGe2. Namely, we are able to reproduce
the main experimental features observed at low temperature,
by applying either pressure or magnetic field [cf. Figs. 2(a)
and 3(a)]. FM properties can be explained within the simplest
hybridized two-orbital model, without taking into account the
f -orbital degeneracy, i.e., by effectively incorporating both
the Coulomb and the Hund’s rule interaction into an effective
interaction U , as would also be the case in the Hartree-Fock
approximation [7].

To determine the stability of SC inside the FM phase,
the present approach should be extended to account for the
Hund’s rule interaction explicitly, which can be crucial for
the formation of the unconventional triplet SC [6,7,28,29]. If
this is the case, it can be triggered even by a purely repulsive
Coulomb interaction in conjunction with the residual Hund’s
rule coupling, as discussed in Refs. [28,29]. This issue requires
a separate analysis. Another path for discussing the coexistence
of SC with FM could be going beyond the Gutzwiller approxi-
mation, where we account also for the more distant correlations
when determining the effective Hamiltonian [30,31]. Here, the
central question is whether the spin-triplet pairing should be
treated on the same footing as ferromagnetism, i.e., does it
already appear in a direct space formulation [6,7,28,29] or is it
mediated by collective spin fluctuations in the ferromagnetic
phase [14,32–34] among already well defined quasiparticles.
A crossover from the latter to the former approach is expected
to take place with the increasing strength of the repulsive
Coulomb interaction U.
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J. Jędrak, and J. Spałek, Phys. Rev. B 88, 094502 (2013);
O. Howczak, J. Kaczmarczyk, and J. Spałek, Phys. Status Solidi
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W. Wójcik, Eur. Phys. J. B 86, 252 (2013); M. M. Wysokiński
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3.4 Article A.3, Criticalities in the itinerant ferromagnet
UGe2

In this work we have extended our previous modeling of UGe2 properties by the Anderson
lattice model within the SGA method to nonzero temperature. We have found that in
accord with the experimental observations [111], the first order metamagnetic phase
transition is terminated at the critical ending point (CEP) and changes its character to
the crossover behavior. This behavior is explained as follows. The thermal motion smears
out the initially sharp hybridization gap. As a result, the magnetization of the FM2 and
FM1 phases at the metamagnetic transition are bending towards each other, eventually
leading to the change of the 1st order transition into the crossover behavior at a single
point (CEP). Moreover, our model also predicts that the first-order FM to PM transition
for higher temperatures changes its character into the second-order transition line at the
tricritical point (TCP). It is explained as the effect of magnetization of the FM1 phase
bending towards zero where finally, for the specific critical temperature, vanishes and
thus the transition becomes second order. The mentioned classical critical point is of the
tricritical nature, since in the space spanned by the temperature T , hybridization |V | and
field h, tricritical wings (surfaces of the first-order transitions) emerge from this point and
terminate in a pair of quantum critical ending points (QCEP) depending on the direction
of the applied magnetic field. For the same total number of electrons, n = 1.6 as in the
previous work (Article A.2), we have found that the mutual relation between critical
temperatures of CEP and TCP agrees with that determined experimentally. By this
correspondence we have assigned physical units to the reduced microscopic parameters
used in our model. We have verified our model by comparing resulting second order
transition line connecting TCP with QCEP projected onto magnetic field - temperature
plane with the experimental data [111, 112] and found an excellent agreement. We
have also determined position of QCEP to be around 30 T, in variance with value 18 T
estimated by means of the extrapolation in the Ref. [112].

Additionally to the quantitative description of the all criticalities observed in UGe2,
our model predicts existence of a new quantum critical point (QCP) of the Lifshitz type
in the vicinity of the superconducting dome. It can be reached by evolving CEP at
the metamagnetic transition down to T = 0 by changing both electron concentration
and pressure. We have modeled the applied pressure by the increasing hybridization
strength. At this QCP the ferromagnetic quantum critical fluctuations may come as a
source of the spin-triplet pairing. however, this last point requires a separate study.
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We provide a microscopic description of the magnetic properties of UGe2 and, in particular, of its both classical
and quantum critical behavior. Namely, we account for all the critical points: the critical ending point (CEP) at
the metamagnetic phase transition, the tricritical point, and the quantum critical end point at the ferromagnetic
to paramagnetic phase transition. Their position agrees quantitatively with experiment. Additionally, we predict
that the metamagnetic CEP can be traced down to zero temperature and becomes quantum critical point by a
small decrease of both the total electron concentration and the external pressure. The system properties are then
determined by the quantum critical fluctuations appearing near the instability point of the Fermi surface topology.

DOI: 10.1103/PhysRevB.91.081108 PACS number(s): 71.27.+a, 75.30.Kz, 71.10.−w

Introduction. Attempts to determine the quantum critical
behavior and the corresponding critical points (QCPs) have
attracted much attention due to the unique phenomena with sin-
gular physical properties associated with them as temperature
T → 0 and other parameters (pressure p, applied field H , or
electron concentration n) are varied [1–3]. Additionally, in the
canonical case—the heavy fermion systems—unconventional
superconductivity often appears near those QCPs making the
quantum critical fluctuations the primary pairing inducing
factor. Also, the classical critical points (CCPs) and their
evolution towards QCP provide the testing ground for study
of detailed quantitative behavior of different systems [4,5].

UGe2, in this respect, is one of the unique materials that
exhibit all the above features. Therefore, the explanation of
the magnetic phase diagram and intimately connected critical
points within a single theoretical framework would provide a
complete understanding of this remarkable quantum material
[4,6–9]. The phase diagram on the pressure-temperature
(p-T ) plane comprises two ferromagnetic phases, of weaker
(FM1) and stronger (FM2) magnetization, paramagnetic
phase (PM), as well as the spin-triplet superconducting phase
(SC) [4,6,10]. SC disappears at the same pressure as FM [6]
and the maximum of the superconducting critical temperature
Ts coincides with the critical pressure for the FM2-FM1 phase
transition [7]. Thus, it is strongly suggestive that FM and
SC are strongly intertwined as described by some theoretical
approaches [11–15].

The p-T -H phase diagram for UGe2 comprises the char-
acteristic wing shape [8,9]. Such structure was theoretically
obtained by Belitz et al. [16] within mean-field approach for
a single-band itinerant ferromagnet. However, this approach
cannot account for the two different ferromagnetic phases
appearing in UGe2, as well as for the critical ending point
(CEP), separating the region with a discontinuous drop in
magnetization from a crossover regime [8,17].

In this work we provide a quantitative microscopic descrip-
tion of all magnetic critical properties of UGe2 within the

*marcin.wysokinski@uj.edu.pl
†marcin.abram@uj.edu.pl
‡ufspalek@if.uj.edu.pl

framework of the Anderson lattice model (ALM) treated by
a modified Gutzwiller approach [18], called the statistically
consistent Gutzwiller approximation (SGA) (for a description
of the method and a detailed comparison to the slave-boson
approach, see Ref. [19]; for its applications, see Refs. [20]).
Validity of this model in the context of UGe2 [18] is based
on earlier results: first, on band structure calculations [21,22]
and second, on experimental observations [4,6,23]. The first
feature is a quasi-two-dimensional topology of the Fermi
surface (FS) [21,22] which justifies calculations for a two-
dimensional square lattice. On the other hand, despite the
circumstance that the distance between uranium atoms is above
the Hill limit [4], the experimental value of the paramagnetic
moment per U atom is different from that for either f 3

or f 2 configurations [6,24]. This speaks for the presence
of a sizable hybridization between the initially localized f
electrons and those from the conduction band. For strong
enough hybridization, f electrons contribute essentially to the
heavy itinerant quasiparticle states and play a dominant role
in the magnetic properties [6,10,24].

We provide a coherent explanation of FM and PM phase ap-
pearances as driven by a competition between the hybridization
from one side and the f -f Coulomb local repulsive interaction
from the other [18]. Specifically, we obtain two different FM
phases [15,18,25–28] by varying the predetermined position
of the chemical potential with respect to the peaks in the
quasiparticle density of states (DOS) including the spin-split
subbands. Although, Gutzwiller ansatz in certain regimes
favors antiferromagnetism over FM [25–27,29,30], we restrict
our discussion to the latter phase, because in the considered
range of electron concentration, n � 1.6, FM phase turned out
to have the lowest energy [25,26].

In Fig. 1 we draw schematically the respective DOS for
considered phases. It can be seen clearly that the shape of the
FS (limiting the filled parts) will be vastly different in each
of the phases. Within our approach, most of the properties
of UGe2 at T = 0 can be explained [18] in agreement with
related experiments of magnetization [7], neutron scattering
[10,24], and the de Haas–van Alphen oscillations [31,32]. The
character of the FM1 phase, which we obtain as a half-metallic
type [cf. Fig. 1(b)], is also supported by the band-structure
calculations [22].

In the present work we extend our previous approach [18]
to nonzero temperature and on this basis we determine the

1098-0121/2015/91(8)/081108(5) 081108-1 ©2015 American Physical Society
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character of all phase transitions on the p-T -H diagram
of UGe2, as well as discuss the nature of all the classical
and quantum critical points. We also show that by a small
decrease of electron concentration (by ∼7%), the system
can reach another quantum criticality via a metamagnetic
transition upon changing the pressure. We also predict the
corresponding change in FS topology distinguishing the two
phases of significantly different magnetic susceptibility.

Model. We start from ALM with the Zeeman term included
(h ≡ 1

2gμ0μBH ) in the Hamiltonian

Ĥ − μN̂ =
∑
i,j,σ

′
tijĉ

†
i,σ ĉj,σ −

∑
i,σ

(μ + σh)n̂c
i,σ

+
∑
i,σ

(εf − μ − σh)n̂f
i,σ + U

∑
i

n̂
f

i,↑n̂
f

i,↓

+V
∑
i,σ

(f̂ †
i,σ ĉi,σ + ĉ†

i,σ f̂i,σ ), (1)

which comprises dispersive conduction (c) band electrons and
f electrons coming from atomic f shell located at εf < 0. In
the model we include specifically the nearest- (t < 0) and the
second-nearest- (t ′ = 0.25|t |) neighbor hopping amplitudes
between c electrons, f level at εf = −3|t |, sizable f − f

Coulomb repulsion U = 5|t |, and the c − f hybridization V

of the on-site form.
To obtain an effective single particle picture from the

many-body Hamiltonian (1) we use the extended Gutzwiller
approximation (GA) called the SGA (for details, see [19]).
The method was successfully applied to a number of problems
[20]. Formally, we add to the effective Hamiltonian obtained
in GA [33,34], ĤGA, additional constraints on the number of
f electrons and their magnetization by means of the Lagrange
multipliers. It leads to the new effective Hamiltonian ĤSGA of
the form

ĤSGA ≡ ĤGA − λf
n

(∑
k,σ

n̂
f

k,σ − �nf

)
− λf

m

(∑
k,σ

σ n̂
f

k,σ − �mf

)

≡
∑
k,σ

�̂
†
kσ

(
εc

k − σh − μ
√

qσV
√

qσV εf − σ (h + λ
f
m) − λ

f
n − μ

)
�̂kσ + �

(
Ud2 + λf

n nf + λf
mmf

)
, (2)

where �̂
†
kσ ≡ (ĉ†

k,σ ,f̂
†
k,σ ). Furthermore, qσ is the hybridization

narrowing factor in the standard form [18,20], and � is a
number of lattice sites.

At nonzero temperature, one needs to minimize the gener-
alized Landau grand-potential functional

F
�

= − 1

�β

∑
kσb

ln
[
1 + e−βEb

kσ

]
+ (

λf
n nf + λf

mmf + Ud2
)
, (3)

where Eb
kσ are four eigenvalues of the effective Hamiltonian

(2) labeled with the spin (σ ) and band (b) indices. λ
f
n and

λ
f
m are the Lagrange multipliers assuring the correct statistical

consistency of equations for nf and mf and play the role of
correlation-induced effective fields [20]. Minimization of F
is carried out with respect to the set of all parameters 
λ ≡
{d,nf ,mf ,λ

f
n ,λ

f
m}. Additionally, as the number of particles in

the system is conserved we have to determine the chemical
potential and adjust it to each of the phases according to the
condition n = 1/�

∑
kbσ f (Eb

kσ ), with f (E) being the Fermi-

FIG. 1. (Color online) Schematic characterization of phases by
their spin-resolved density of states. The arrows label the spin
subbands and the dotted line marks the position of the chemical
potential.

Dirac function. In effect, the model is described by set of six
algebraic equations which are solved with the help of the GSL
library, with typical accuracy 10−11.

The Landau grand-potential functional for the equilibrium
values of the parameters, F0, has the meaning of the physical
grand potential � which is the proper quantity for studying
the system at any temperature, F0 ≡ � ≡ U − T S − μN .
Therefore, the free energy of the system is defined by F =
F0 + μN and the ground-state energy is EG ≡ F (T = 0).

Results. We assume that the main effect of the applied
pressure is emulated by an increase of the hybridization
amplitude |V |, even though other parameters (e.g., εf ) may
also change. However, as our previous results indicate,
hybridization change is the principal factor of the pressure
dependencies observed in UGe2 [18].

In Fig. 2 we plot the phase diagram on the |V | − T plane. In
the low-T regime we are able to reproduce the correct evolution
of both metamagnetic (left) and ferromagnetic to paramagnetic
(right) phase transitions observed in experiment (cf. inset),
together with the respective critical behavior [7–9,17]. The
position of the CCPs is very sensitive to the selected total band
filling, n = nf + nc. Our fitting constraint is the ratio of the
corresponding critical temperatures, TCEP/TTCP ≈ 7 K/24 K
[8]. Consequently, for the band filling n = 1.6, selected in our
previous analysis at T = 0 [18], we obtain agreement of our
calculated ratio under the proviso that experimental values
of the critical temperatures are determined with accuracy
±0.25 K.

Our model does not account for correct curvatures of phase
transitions above CCPs (cf. Fig. 2). This discrepancy can be
attributed to the fact that also other microscopic parameters
can alter when applying pressure, e.g., εf , and to additional
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FIG. 2. (Color online) Top: Phase diagram on hybridization
strength-reduced temperature plane encompassing both FM and
PM phases for total band filling n = 1.6. The correct character of
phase transitions and positions of critical points in UGe2 [7–9,17] is
reproduced. For comparison, we present in the inset the experimental
p-T phase diagram of UGe2 (cf. [7,8]). In (a)–(d) we draw the
magnetization change with the increasing hybridization strength
when the system undergoes phase transition at points indicated

with respective encircled letters . Solid red lines denote
energetically favorable solution, whereas dashed black lines denote
the unstable solutions.

entropic factors important in the case of T > 0 Gutzwiller
projection [35,36].

In our calculations we have used reduced temperature
kBT /|t |. We rescale it to the physical units by relating it
to the experimentally measured values at CCPs [7–9,17].
Accordingly, we also rescale the reduced field 1

2gμBμ0H/|t |
to Tesla units.

At the metamagnetic (FM2-FM1) phase transition we
obtain CEP separating the discontinuous-transition line from
the crossover regime. At low T both solutions with the
weaker and the stronger magnetization coexist in the limited
range of the hybridization strength [cf. Fig. 2(a)]. As the
system approaches the transition from the FM1 side, FS
changes drastically only in one spin subband, in which the
chemical potential crosses the hybridization gap, resulting also
in a discontinuous jump of the total moment m = mf + mc.
With the increasing temperature, the edges of the gap are
gradually smeared out. This leads to a deviation from the
pure half-metallic type of the FM1 phase. The magnetization
is bending towards the trend observed in the FM2 phase,
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FIG. 3. (Color online) (a) Wing structure of the phase transition
planes derived from our model. (b) Comparison of the calculated
dependence of the temperature vs applied magnetic field at the critical
end point (CEP) with the experimental points adopted from [9]. For
comparison, we include also the prediction by Belitz et al. [16], with
the fitting parameters selected on the basis [9]: HQCEP = 18 T and
TTCP = 24 K.

and eventually at CEP it is changing to a crossover line
[cf. Fig. 2(c)].

In the case of FM to PM transition the situation is different
[cf. Figs. 2(b) and 2(d)]. At low temperature, the magnetization
of this half-metallic FM1 phase discontinuously drops to zero
[cf. Fig. 2(b)]. However, with the increasing temperature, the
ferromagnetic solution departs from a sharp half-metallic type
and slowly bends over towards the paramagnetic solution,
eventually reaching the critical point by changing the transition
character to that of second order [cf. Fig. 2(d)]. The just
described critical point is of tricritical character (TCP). This
is because its evolution can be followed by applying the
magnetic field down to T = 0, where it turns into the quantum
critical ending point (QCEP) [cf. Fig. 3(a)]. In this manner, we
have achieved a full characteristic at the wing-shapep-T -H
phase diagram [8,9]. As the detailed form of the hybridization
change with applied pressure is unknown, and in principle
nonlinear, we compare our predicted shape of wings by
tracing the evolution of CEP on the temperature-magnetic
field T h

CEP -μ0HC plane [cf. Fig. 3(b)] and comparing it to the
experimental data [9]. We obtain a satisfactory quantitative
agreement with the experimental points, as well as recover
its proper curvature. For comparison, the results from the
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FIG. 4. (Color online) Top: Evolution of CEP on the |V |-T -δ
plane down to T = 0 and QCP (see main text). Bottom: (a) Change
of magnetization and f electron number as the system undergoes
quantum critical transition. (b) Density of states at QCP. Note the
intermediate character of FS between FM2 and FM1 of the state at
QCP. Encircled letter at top diagram refers to the position of the

curves in panel (a), and respectively at panel (a) to the position
of the DOS in (b).

mean-field approach to the single-band case by Belitz et al.
[16] are also drawn, as is universal explanation of tricritical
behavior of itinerant ferromagnets. Nevertheless, as suggested
by the authors in Ref. [9], the crucial element determining
for UGe2 the correct shape of the wings is the change of FS,
present in our two-band ALM model. We also predict that the
curve of the T h

CEP vs μ0HC dependence has a longer tail than
that estimated in Ref. [9], i.e., that QCEP should be located at
fields around 30 T. Our estimate thus calls for a more precise
determination of the QCEP position.

In fitting to the data in Fig. 3 we have assumed that
the g factor for f electrons gf = 2 (the same as for c

electrons). This assumption is based on the presumption that
for itinerant electrons the crystal-field multiplet structure is
washed out. Parenthetically, taking gf significantly different
provides a worse agreement, but the curvature character
remains unchanged.

In Fig. 4 we draw the evolution of CEP at the metamagnetic
transition with the decrease of both the hybridization and the
electron concentration. The latter quantity is characterized by
the parameter δ = nx−n

n
100%, where n = 1.6 is initial and

nx is the actual concentration. On the V -T -δ phase diagram
the CEP can be followed down to zero temperature, where it
joins the second-order transition line [cf. Fig. 4(a)]. At this
second-order transition the Fermi level for the majority spin
subband is exactly at the border of the gap [cf. Fig. 4(b)].
It means that along this line quantum critical fluctuations of
FS topology are present. In other terms, we have a strong
indication that in the vicinity of the SC dome maximum this
compound exhibits a Lifshitz type of quantum critical behavior.
This quantum critical transition can be associated also with
the specific valence change [cf. Fig. 4(a)]. However, here the
average f electron number changes continuously in contrast
to the discontinuous drop originating from the f -c electron
repulsion [37]. The difference in the origin of Lifshitz type
of ferromagnetic QCP with respect to that considered before
[38,39] is that here it results from the two-band model and
separates different FM phases.

Summary. We have described the phase diagram of UGe2

at nonzero temperature and have determined the location of
the critical points, as well as proposed an additional quantum
critical point for UGe2. With the help of the Anderson lattice
model we are able to reproduce quantitatively all the principal
features of the magnetism in this compound. We also have
determined the location of experimentally observed critical
and quantum critical points, together with a correct order of
the phase transitions related to them.

Although our mean-field approach seems to capture all
the features concerning details of the p-T -H phase diagram
of UGe2, we should note that, in principle, fluctuations of
order parameters can bring quantitative changes to our results.
However, as the phase transitions are induced by the drastic
changes of the Fermi surface, the effect of the fluctuations
should be minor (except near the predicted QCP—cf. Fig. 4)
and may lead to a correction of the CEP and TCP positions.

It should be noted that we have employed an orbitally non-
degenerate ALM. Accounting for the degenerate one would
imply inclusion of the residual Hund’s rule interaction present
in the degenerate ALM model which could be important in
inducing the spin-triplet pairing [40].
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[26] R. Doradziński and J. Spałek, Phys. Rev. B 58, 3293 (1998).
[27] O. Howczak and J. Spałek, J. Phys: Condens. Matter 24, 205602

(2012).
[28] K. Kubo, Phys. Rev. B 87, 195127 (2013).
[29] G. Kotliar and A. E. Ruckenstein, Phys. Rev. Lett. 57, 1362

(1986).
[30] V. Dorin and P. Schlottmann, Phys. Rev. B 46, 10800 (1992).
[31] T. Terashima, T. Matsumoto, C. Terakura, S. Uji, N. Kimura,

M. Endo, T. Komatsubara, and H. Aoki, Phys. Rev. Lett. 87,
166401 (2001).

[32] R. Settai, M. Nakashima, S. Araki, Y. Haga, T. C. Kobayashi, N.
Tateiwa, H. Yamagami, and Y. Onuki, J. Phys: Condens. Matter
14, L29 (2002).

[33] T. M. Rice and K. Ueda, Phys. Rev. Lett. 55, 995 (1985).
[34] P. Fazekas and B. H. Brandow, Phys. Scr. 36, 809 (1987).
[35] W.-S. Wang, X.-M. He, D. Wang, Q.-H. Wang, Z. D. Wang, and

F. C. Zhang, Phys. Rev. B 82, 125105 (2010).
[36] M. Sandri, M. Capone, and M. Fabrizio, Phys. Rev. B 87, 205108

(2013).
[37] K. Miyake and S. Watanabe, J. Phys. Soc. Jpn. 83, 061006

(2014).
[38] R. Roussev and A. J. Millis, Phys. Rev. B 63, 140504 (2001).
[39] D. Fay and J. Appel, Phys. Rev. B 22, 3173 (1980).
[40] M. Zegrodnik, J. Bünemann, and J. Spałek, New J. Phys. 16,

033001 (2014); J. Spałek and M. Zegrodnik, J. Phys.: Condens.
Matter 25, 435601 (2013).

081108-5

73





3.5 Article A.4, Tricritical wings in UGe2: A microscopic
interpretation

In the work [120] we have studied the shape of the tricritical wings on the basis of the
model developed in the previous papers (Articles A.2 [113] and A.3 [114]) with respect
to the assumed change of the electron concentration and f -electron Landé factor. We
have shown that by changing total filling away from n = 1.6 both, mutual relation of
the temperatures of CEP and TCP and second order transition line joining TCP with
QCEP immediately looses its agreement with the experimental findings, pointing to the
sensitivity of obtained results. We argue that it is in fact argument that our excellent
fit discussed in Article A.3 is not fortuitous. We have also commented on the theory for
the tricriticality from Refs. [146, 147] and compared it with our mechanism.

Inspired by the experimental works on the dual nature of the 5f electrons in UGe2

[148] we have checked whether taking Landé gf factor for f electrons different from
the free electron value can provide a better agreement of the tricritical wings borders,
as it would suggest partially localized nature, in variance with the claims of their full
itinerancy [20]. We have found that g-factor for f electrons close to the free-electron
value, gf = 2, provides the best fit, suggesting that the multiplet structure is washed
out be the itineracy of f -electrons.
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In the present work we analyze the second order transition line that connects the tricritical point and the
quantum critical ending point on the temperature–magnetic-field plane in UGe2. For the microscopic
modeling we employ the Anderson lattice model recently shown to provide a fairly complete description
of the full magnetic phase diagram of UGe2 including all the criticalities. The shape of the so-called
tricritical wings, i.e. surfaces of the first-order transitions, previously reported by us to quantitatively
agree with the experimental data, is investigated here with respect to the change of the total filling and
the Landé factor for f electrons which can differ from the free electron value. The analysis of the total
filling dependence demonstrates sensitivity of our prediction when the respective positions of the critical
ending point at the metamagnetic transition and tricritical point are mismatched as compared to the
experiment.
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1. Motivation and overview

Quantum critical phenomena have captured general attention
due to their unique singular properties observed at low tem-
perature (T 0→ ) and near the quantum critical point (QCP) which
is frequently accompanied by the unconventional super-
conductivity (SC) [1]. From this perspective, f-electron compound
UGe2 is a system with phase diagram comprising coexistence of
spin-triplet SC and ferromagnetism (FM) [2–6], as well as an
abundance of critical points (CPs), either of quantum and classical
nature [7]. Experimental studies among others have revealed ex-
istence of the two characteristic classical CPs in the absence of the
field (cf. Fig. 1): (i) the critical ending point (CEP) at 7 K at the
metamagnetic transition separating strong (FM2) and weak mag-
netization (FM1) regions [8–10], and (ii) the tricritical point (TCP)
at the FM to paramagnetic (PM) phase transition located at
T¼24 K. Additionally, with the applied magnetic field the second
order transition line starting from TCP can be followed to T¼0
where it is expected to terminate in a quantum critical ending
point (QCEP) [9,10]. In effect the magnetic phase boundaries in
UGe2 reflect the so-called tricritical wing shape.

Such a complex magnetic phase diagram with all the above
criticalities, both classical and quantum, is particularly challenging

in terms of theoretical modeling. One of the first approaches,
based on the single-band model describing tricritical wings, was
the work by Belitz et al. [11]. However, the microscopic description
of the magnetic phase diagram with all the CPs including also CEP
at the metamagnetic transition, as observed in UGe2, has been
missing until our recent works [13,14].

Our analysis is based on the (two-orbital) Anderson lattice
model (ALM) [13,14], often referred to as the periodic Anderson
model. Findings for UGe2, both from first principle calculations
and experiments are the following: the quasi-two-dimensional
character of the Fermi surface [15], a uniaxial anisotropy for
magnetization [16], U–U interatomic distance above the so-called
Hill limit [1], and the paramagnetic moment per U atom different
from that expected for either f3 or f2 atomic configurations [2,17].
We show in the following that all of these findings can be co-
herently explained within our two-orbital model starting with
originally localized f-states and subsequently being strongly hy-
bridized with the conduction (c) band states on a two dimensional
lattice and with the applied magnetic field accounted for by the
Zeeman term only.

Ferromagnetic order in our model arises from effect of com-
peting hybridization and the f–f interatomic Coulomb repulsion.
The emergence of two distinct ferromagnetic phases is in our
model driven by the changing topology of the Fermi surface [18–
21] which in turn is induced by a relative motion of hybridized and
spin split subbands with the increasing f–c hybridization. The re-
sults obtained from such picture [13] qualitatively agree with the
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majority of UGe2 magnetic and electronic properties, as seen in
neutron scattering [17], de Haas–van Alphen oscillations [22,23],
and magnetization measurements [8]. Also, a semi-metallic char-
acter of the weak FM1 phase is supported by the band-structure
calculations [24]. A similar idea concerning the emergence of two
distinct FM phases in UGe2 was also obtained earlier within the
phenomenological picture based on the Stoner theory in-
corporating a two-peak structure of the density of states in a
single band [25]. In brief, our microscopic model extended to the
case of T 0> [14] describes well emergence of all CPs on the
magnetic phase diagram of UGe2 [8–10] in the semiquantitative
manner [14]. Here we compare in detail our results with the ex-
perimental data, namely predicted second order transition line
joining the TCP with the corresponding QCEP. In particular, we
determine the influence of the following factors: (i) the total band
filling n, and (ii) the value of the Landé factor gf for f states, on the
position of this second-order line. The influence of factor (i) has
the following importance. For exemplary filling n¼1.6 we have
shown [14] that the relative position of the TCP and CEP (cf. Fig. 1)
is the same as that seen in the experiments [9,10]. The important
question is whether such a mutual alignment of those two critical
points is necessary to achieve a good fit and to what extent the
proper curvature of the line joining TCP and QCEP is robust with
respect to the selected band filling. The discussion of the depen-
dence on (ii) has its justification in the not fully resolved nature of
magnetism in heavy-fermion systems in general and UGe2 in
particular. Although it is assumed and widely accepted to be fully
itinerant [2], there is evidence for a partially localized contribution
[24,26]. In such a case, the influence of the orbital effects and their
coupling to the spin should have an influence on gf value.

2. Model and approach

We begin with the orbitally nondegenerate Anderson-lattice
model (ALM) on square lattice and with applied magnetic field
accounted for via the Zeeman splitting (i.e., with the effective field
is h g HB

1
2 0μ μ≡ ), so that the starting Hamiltonian is
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where the onsite hybridization is of magnitude V 0< and the
Landé factor for f electrons is gf (the free electron value is g¼2).

The model describes a two-orbital system with the conduction c( )
band arising from the nearest (t) and the second-nearest (t′)
neighbor hoppings, and the strong f–f Coulomb interaction is of
magnitude U. If it is not stated otherwise, we set t t0.25′ = | |,
U t5= | |, t3fϵ = − | |, g g 2f = = , and n n n 1.6

c f
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We also add to the Hamiltonian (1) the usual term with the
chemical potential μ, i.e.,

n n .
2

c f

i
i i0

,

∑μ^ ≡ ^ − (^ + ^ )
( )σ

σ σ

The model is solved here by means of statistically consistent
Gutzwiller approximation (SGA) [27–29]. The method was success-
fully applied to the number of problems [30,31]. It is characterized
with the physical transparency and flexibility that it could be also
incorporated into other methods such as EDABI [32,33].

We introduce the Gutzwiller projection acting onto un-
correlated wave function 0ψ| 〉 in the following manner:
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where Gψ| 〉 is the wave function of the correlated ground state. In
effect, we map many-particle correlated Hamiltonian (1) onto an

effective single-particle Hamiltonian SGA
^ acting on uncorrelated

wave function 0ψ| 〉, that, after taking the space Fourier transform, is
as follows:
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, Λ is the number of the system sites, qσ is

the hybridization narrowing factor, and d n n
f f

i i
2

0≡ 〈^ ^ 〉↑ ↓ [31]. Neces-
sary constraints for the f electron number and their magnetic
moment [29] are incorporated by means of the Lagrange multi-
pliers λfn and λfm, respectively. Hamiltonian (4) can be straightfor-
wardly diagonalized with the resulting four eigenvalues Eb

k{ }σ

labeled with the spin ( 1σ = ± ) and hybridized-band (b 1= ± )
indices. For T 0> we construct a generalized Landau grand-
potential functional according to
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→ ≡ { }. Ad-
ditionally, we adjust self-consistently the chemical potential from
the condition of fixing the total number of electrons,
n f E1/ b

b
k kΛ= ∑ ( )σ σ , where f(E) is the Fermi–Dirac function. Finally

the ground state energy is defined by

E N, 6G 0 μ= | + ( )

where 0| means that the value of is taken at minimum for the

parameters λ
→
.

0

10

20

30

40

50

0 0.5 1 1.5 2

T 
(K

)

p (GPa)

FM2

FM1

PM

crossover

1  order

2 order

CEP

TCP

5 T
SC

Fig. 1. Schematic magnetic phase diagram of UGe2 on pressure–temperature plane
drawn on the basis of the experimental results [9].

M. Abram et al. / Journal of Magnetism and Magnetic Materials ∎ (∎∎∎∎) ∎∎∎–∎∎∎2

Please cite this article as: M. Abram, et al., Journal of Magnetism and Magnetic Materials (2015), http://dx.doi.org/10.1016/j.
jmmm.2015.07.017i

78



3. Results and discussion

We start our analysis with the discussion on the proper as-
signment of the physical units to the microscopic parameters
provided so far in dimensionless units (i.e. scaled by t| |) to make
the quantitative comparison with the observed UGe2 character-
istics. To do so, we have adjusted them [14] by matching the re-
lative positions of the two classical CPs: TCP and CEP at the fer-
romagnetic transition, as well as attributing the experimentally
measured critical temperatures. Matching the results in physical
units by fixing the position of two critical points we would call a
strong fitting, whereas by fixing the position of just a single of
them a weak fitting.

In our previous works [13,14] we have found that for the total
filling n¼1.6 we could coherently and quantitatively describe the
UGe2 phase diagram. Although, there is no direct experimental
evidence in UGe2 for choosing this particular filling, we have first
matched for chosen n TCP and CEP temperatures according to the
experiment [14] – strong fitting condition –, and second, we have
verified our prediction obtaining agreement of the second-order
transition line joining TCP with QCEP [10] with that measured.
Additionally, the comparison has provided among others the es-
timate of the QCEP appearance about 30 T, i.e., higher than that
suggested in Ref. [10] which is 18 T.

A natural question arises if this test is sensitive to the choice of
n. We show in Fig. 2 that the second-order transition line joining
TCP and QCEP determined for a slightly different total filling than
n¼1.6 deviates significantly from the trend of the experimental
data [10]. Hence indeed, the comparison is very sensitive to the
choice of n. Thus, together with equally sensitive adjustment of
TTCP and TCEP with respect to the choice of n [14], it is unlikely that
our excellent agreement for the single value of parameter n is
fortuitous.

For the sake of completeness and reference to other related
works we include in Fig. 2 the (dashed) curve predicted by the one
of the most successful approaches describing the general tricritical
behavior in itinerant magnetic systems [11,12]. In that procedure,
the necessary inputs are the positions of the two CPs, namely TCP
and QCEP, leading in fact to the strong fitting, but with different
pairs of CPs. However, such fitting can be associated with an error
as the position of the QCEP, in contrast to TCP and CEP, is not ex-
perimentally determined but only extrapolated to 18 T, following
Ref. [10]. Note that this condition in our modeling is satisfied for
the total filling around n 1.55≃ (cf. Fig. 2) if we take the extra-
polated value of the critical field. In this case, the comparison with
results for UGe2 [10] is worse than e.g. for n¼1.6 and the tem-
perature of the CEP is much lower than that determined in ex-
periments [8].

It is worth mentioning that the model employed by us belongs
to the class discussed earlier by Kirkpatrick and Belitz [12] to re-
flect the generic tricriticality in the case of metallic magnets.
Namely, systems in which the conduction electrons are not a
source of the magnetism themselves couple to the magnetically
ordered localized electrons in a second band. The origin of the
first-order transition at low temperature described within the
mean-field theory developed in the Refs. [11,12] is based on the
effect of the soft fermionic modes coupled to the magnetization
fluctuations, and thus differs from our approach. Here the me-
chanism for ferromagnetism is due to the coupling of the con-
duction electrons with localized f states by hybridizing with them
and competing with the f f– Coulomb interaction. This competi-
tion in the Stoner-like manner induces phase transitions asso-
ciated with the abrupt changes of the Fermi surface topology.

The simplest verification of our analysis can be carried out by
means of chemical alloying, i.e., by changing the electron con-
centration in the system. However, the lack of known isostructural
compounds to UGe2 may be an apparent obstacle for such test.
Though, the determination of the tail of the 2nd order line joining
TCP and QCEP for the field larger than 16 T should provide an in-
sight on the issue whether our model correctly predicts the ap-
pearance of QCEP around 30 T [14].

If our model is to be used to understand the magnetism of
other ferromagnetic superconductors: URhGe [34] and UCoGe
[35], it would provide a perfect testing ground of our model as
those compounds have been frequently studied by means of the
chemical substitution [1,3–6].

Finally, we provide a brief analysis of the impact of the Landé
factor value for f electrons, gf, i.e., in the situation when the z
component of the total spin of the system does not commute with
Hamiltonian. In Fig. 3 we present the curves for three different
values of gf. The curve for gf¼2 is plotted as the reference curve
and is based on the results of Ref. [14]. Value of gf is not known for
UGe2 and generally, for complex compounds has a tensor character
which depends on the magnitude of the spin–orbit coupling. For
that reason we restrict our discussion to the comparison when gf is
equal to the free electron value gf¼2, and subsequently when is
lower and higher (cf. Fig. 3) [36]. Specifically, the lower value of
Landé factor g 6/7f = is motivated by that for the Ce-based com-

pounds, where it can be derived for the spin S 1/2= and angular
momentum L¼3, oriented antiparallel and where, strictly speak-
ing, our model is also generally valid, as long as we do not account
for the orbital degeneracy of f states of the uranium-based mate-
rials. As presented in Fig. 3, it seems that any value of g factor for f
states which deviates considerably from the free-electron value
provides much worse agreement with experimental data [10]. In
conclusion, due to predominantly itinerant nature of f electrons in
UGe2 [26], it is very likely that any crystal-field derived multiplet
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structure is washed out and hence the value g 2f ≃ should be
regarded as realistic value. Nevertheless, the problem of double
localized-itinerant nature of f-electrons [24,26] may arise as the
system evolves with the increasing temperature, in comparison to
the pressure evolution at low temperature studied in detail here.

4. Outlook

In the present work we have employed the Anderson lattice
model [13,14] to provide a fairly complete description of the
magnetic phase diagram (p–T–h profiles) of UGe2 including all the
criticalities for this compound. In particular, we study the effect of
the choice of the total filling on the quality of the fit, based on our
model, to the experimental data [10] concerning the second-order
transition line joining the critical points TCP and QCEP. We have
found that our prediction is very sensitive to the change of n,
which leads also to a mismatch of critical temperatures of TCP and
CEP at the metamagnetic transition as compared to the experi-
ment. We infer from this result that our excellent agreement for
the single value of n is unlikely fortuitous. We have also analyzed
the effect of the Landé factor gf value for f electrons. In this case,
any sizable deviation from the free electron value gf¼2 shifts the
theoretical curves away from the experimental points. Thus
treating f electrons as truly itinerant electrons in UGe2 seems to be
fully justified.

Our final remark addresses the problem of the spin-triplet su-
perconductivity (SC) origin occurring in UGe2 [1,2]. We have pre-
dicted in our previous work [14] the appearance of QCP in the
vicinity of the SC dome. It have been proposed that CEP (cf. Fig. 1)
at the metamagnetic phase boundary can be followed down to the
T¼0 by changing both the electron concentration and the hy-
bridization magnitude V| | (cf. Fig. 4). The proposed quantum cri-
tical point is of Lifshitz type as it separates states with two distinct
Fermi-surface topologies. Quantum critical fluctuations or the re-
sidual f–f Hund's rule interaction (neglected here) can become the
possible source of the spin-triplet superconductivity [37–41]. A
detailed and quantitative discussion of the pairing requires a se-
parate analysis.
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3.6 Article A.5, Gutzwiller wave-function solution for An-
derson lattice model: Emerging universal regimes of
heavy quasiparticle states

In the work1 [118] we have developed analytic formulation of the variational technique
called the Diagrammatic Expansion for Gutzwiller Wave Function (DE-GWF) and have
applied it to the Anderson lattice model. As already discussed, the method enables for
a systematic evaluation of the expectation values with the full Gutzwiller wave function
(GWF) (cf. Sec. 2.2). We have shown that for ALM the method converges very fast and
for example the density of states converges already in the third order of the expansion.

We have focused on the principal properties of the paramagnetic state, particularly
connected with the features of the density of states. First, we have shown that by
inclusion of the higher orders of the expansion the hybridization peaks are essentially
enhanced. This has direct consequences for the effective mass renormalization which
should correspond to the density of states at the Fermi level. The spectacular enhance-
ment of this parameter has been obtained in the close vicinity of the Kondo insulating
state and the van Hove singularity, in addition to the strongly correlated regime of the
small hybridization and f -electron number close to unity.

Moreover, our method leads to the formation of the effective f band out of initially
localized states, as a combined effect of both hybridization and Coulomb interaction.
The incorporation of the effect of U in the hopping parameters in the effective Hamil-
tonian leads to the formation of the f band. Therefore, one could imply that due to
the correlations f electrons separately acquire dispersion (k-dependence). We have as-
sociated the value of the emerging f -bandwidth with a measure of direct itineracy of
f electrons. On the total number of electrons - hybridization plane, we have singled
out three distinct regions with significantly widened f band that we have identified as
corresponding to the the frequently considered regimes within separate models, namely
(i) mixed-valence regime, (ii) almost-Kondo/Kondo insulator regime, and (iii) Kondo-
lattice limit when the f -electron occupancy is very close to the f electrons half-filling,
nf → 1. In this manner we can describe all the universal heavy fermion regimes within
a single framework.

Additionally, our analysis of the effective Hamiltonian resulting from ALM provides
a direct microscopic rationalization of the narrow dispersive f -band, assumed ad-hoc
in the phenomenological picture in Refs. [149, 101, 102]. In those latter works, when
dealing with the description of normal and superconducting states in CeCoIn5, a finite
width of the f-band has been assumed. Our theory leads to the formation of this band
in a natural manner. Thus the f -electron itineracy may be necessary feature for the
unconventional superconductivity to emerge within this model.

1preprint as of August 10, 2015
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The recently proposed diagrammatic expansion (DE) technique for the full Gutzwiller wave func-
tion (GWF) is applied to the Anderson lattice model. This approach allows for a systematic
evaluation of the expectation values with full Gutzwiller wave function in the finite dimensional
systems. It introduces results extending in an essential manner those obtained by means of stan-
dard Gutzwiller approximation (GA) scheme which is variationally exact only in infinite dimensions.
Within the DE-GWF approach we discuss principal paramagnetic properties and their relevance to
the heavy fermion systems. We demonstrate the formation of an effective, narrow f -band originat-
ing from atomic f -electron states and subsequently interpret this behavior as a direct itineracy of
f -electrons; it represents a combined effect of both the hybridization and the correlations reduced
by the Coulomb repulsive interaction. Such feature is absent on the level of GA which is equivalent
to the zeroth order of our expansion. Formation of the hybridization- and electron-concentration-
dependent narrow f -band rationalizes common assumption of such dispersion of f levels in the
phenomenological modeling of the band structure of CeCoIn5. Moreover, it is shown that the
emerging f -electron direct itineracy leads in a natural manner to three physically distinct regimes
within a single model, that are frequently discussed for 4f - or 5f - electron compounds as separate
model situations. We identify these regimes as: (i) mixed-valence regime, (ii) Kondo-insulator bor-
der regime, and (iii) Kondo-lattice limit when the f -electron occupancy is very close to the f -states
half-filling, 〈n̂f 〉 → 1. The nonstandard features of emerging correlated quantum liquid state are
stressed.

PACS numbers: 71.27.+a, 71.10.-w, 71.28.+d, 71.10.Fd

I. INTRODUCTION AND MOTIVATION

Heavy fermion systems (HFS) belong to the class of
quantum materials with strongly correlated 4f or 5f
electrons. They exhibit unique properties resulting from
their universal electronic features (e.g. very high den-
sity of states at the Fermi level) almost independent
of their crystal structure. Among those unique prop-
erties are: (i) enormous effective masses in the Fermi-
liquid state, as demonstrated through the linear specific
heat coefficient1–5 and their direct spin-dependence in
the de Haas-van Alphen measurements6–8, (ii) Kondo-
type screening of localized or almost localized f -electron
magnetic moments by the conduction electrons9,10, (iii)
unconventional superconductivity, appearing frequently
at the border or coexisting with magnetism11, and (iv)
abundance of quantum critical points and associated with
them non-Fermi (non-Landau) liquid behavior12–14.

The Anderson lattice model (ALM), also frequently
referred to as periodic Anderson model, and its deriva-
tives: the Kondo15–17 and the Anderson-Kondo18,19 lat-
tice models, capture the essential physics of HFS. Al-
though, the class of exact solutions is known for this
model20–23, they are restricted in the parameter space.
Thus, for thorough investigation of the model properties
the approximate methods are needed. One of the earli-
est theoretical approaches for the models with a strong
Coulomb repulsion was the variational Gutzwiller wave

function (GWF) method24–29. However, despite its sim-
ple and physically transparent form, a direct analytic
evaluation of the expectation values with full GWF can-
not be carried out rigorously for arbitrary dimension and
spatially unbound systems.

One of the ways of overcoming this difficulty is the
so-called Gutzwiller Approximation (GA), in which only
local two-particle correlations are taken into account
when evaluating the expectation values. GA provides
already a substantial insight into the overall properties
of strongly correlated systems9,10,26,30–35. Moreover, this
approach has been reformulated recently to the so-called
statistically-consistent Gutzwiller approximation (SGA)
scheme and successfully applied to a number of problems
involving correlated electron systems19,36–43. Among
those, a concrete application has been a microscopic de-
scription of the fairly complete magnetic phase diagram
of UGe2

42,43 which provided quantitatively correct re-
sults, even without taking into account the 5f -orbital
degeneracy due to uranium atoms.

An advanced method of evaluating the expectation val-
ues for GWF is the variational Monte Carlo technique
(VMC)44–52. However, this method is computationally
expensive and suffers from the system-size limitations.
Though, one must note that the VMC method allows
for extension of GWF by including e.g. Jastrow intersite
factors53.

Here we use an alternative method of evaluating the
expectation values for GWF, namely a systematic dia-
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FIG. 1: (Color online) Upper part: Schematic representation
of the two-orbital Anderson lattice model with initially local-
ized f - and delocalized c-electrons, and hybridization between
them. Bottom part: Emerging quasiparticle states in the hy-
bridized bands of correlated particles. On the left: the shapes
of the density of states in the respective situations.

grammatic expansion for the Gutzwiller wave function
(DE-GWF)54–58. This method was formulated initially
for the Hubbard model in two dimensions in the context
of Pomeranchuk instability54, and applied subsequently
to the description of high-temperature superconductivity
for the Hubbard55,58 and the t-J56 models. In the zeroth
order of the expansion this approach straightforwardly
reduces to the GA56. For the one-dimensional Hubbard
model it converges54 to the exact GWF results. Within
DE-GWF a larger variational space can be sampled than
within the alternative VMC technique because the long-
range components of the effective Hamiltonian are ac-
counted for naturally. The DE-GWF method (truncated
to match the variational spaces) reproduces the results
of VMC with improved accuracy (as shown for the t-J56

and the Hubbard models55). Additionally, the method
works also in the thermodynamic limit. In effect, the ap-
proach is well suited to capture subtle effects, e.g. those
related to the topology of the Fermi surface in the cor-
related state54 or the investigated here formation of a
narrow f -electron band.

In this study, we extend the DE-GWF approach to dis-
cuss principal paramagnetic properties within ALM. The
emergence of the quasiparticle picture is schematically il-
lustrated in Fig.1. Explicitly, we investigate the shape of
the quasiparticle density of states (DOS, ρ(E)), evolving
with the increasing order of the expansion, k. For k > 0
the hybridization gap widens up with respect to that in

GA (k = 0 case) and DOS peaks are significantly pro-
nounced. Moreover, we investigate the DOS at the Fermi
level (ρ(EF )) evolution with the increasing the hybridiza-
tion strength |V | – total electron concentration n, plane,
as it is a direct measure of the heavy-quasiparticle effec-
tive mass. We find that this parameter is significantly
enhanced for k > 0, mainly in the low hybridization
limit and at the border of the Kondo-insulating state.
Furthermore, we trace the contribution coming from the
originally localized f -electrons (cf. Fig. 1 - upper part)
to the quasiparticle spectrum with the increasing order
of the expansion. For k > 0, f -quasiparticles effectively
acquire a nonzero bandwidth (up to 6% of the conduction
bandwidth) as a combined effect of both interelectronic
correlations and hybridization.

Assumption of a narrow f band existence has recently
been made in a phenomenological modeling of the heavy
fermion compound CeCoIn5 band structure59–61. We
show that the emergence of such a band, absent in GA
(k = 0), is an evidence of the f -electron direct itineracy
explained later. To quantify this itineracy we introduce
the parameter wf - the width of the effective, narrow f -
band. On the hybridization strength – total electron con-
centration, |V | – n plane, wf is significantly enlarged in
the three distinct regimes, which we identify respectively
as the mixed-valence, Kondo/almost Kondo insulating,
and the Kondo-lattice regimes (when f -electron concen-
tration is close to the half-filling, i.e., when 〈n̂f 〉 → 1).
These physically distinct regimes are frequently discussed
and identified in various experiments2,11,62–66 and in
theory19,33,67,68.

The structure of the paper is as follows. In Sec. II we
describe the ALM Hamiltonian and define the Gutzwiller
variational wave function in a nonstandard manner. In
Sec. III we derive the DE-GWF method for ALM and
determine the effective single-particle two-band Hamilto-
nian. In Sec. IV we present results concerning param-
agnetic properties: the quasiparticle spectrum, the resul-
tant density of states at the Fermi level, and formation
of an effective narrow f -electron band out of initially lo-
calized states. In Appendix A we discuss the equivalence
of the zeroth-order DE-GWF approach with GA. In Ap-
pendix B we present some technical details of DE-GWF
technique.

II. MODEL HAMILTONIAN AND
GUTZWILLER WAVE FUNCTION

Our starting point is the Anderson lattice model
(ALM) with the chemical potential µ and expressed
through Hamiltonian

Ĥ =
∑

i,j,σ

tijĉ
†
iσ ĉjσ −

∑

i,σ

µn̂ciσ +
∑

i,σ

(ǫf − µ)n̂fiσ

+U
∑

i

n̂fi↑n̂
f
i↓ +

∑

i,j,σ

(Vijf̂
†
iσ ĉjσ + V ∗

ij ĉ
†
iσ f̂jσ),

(1)
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where i = (ix, iy) (and similarly j) is the two-dimensional

site index, f̂iσ (f̂ †
iσ) and ĉiσ (ĉ†iσ) are the annihilation

(creation) operators related to f - and c- orbitals respec-
tively, and σ =↑, ↓ is the z-component direction of the
spin. We assume that the hopping in the conduction
band takes place only between the nearest neighboring
sites, tij ≡ tδ|i−j|,1, the hybridization has the simplest

onsite character69, Vij = V δi,j, the local Coulomb re-
pulsion on the f orbital has the amplitude U , and the
initially atomic f states are located at the energy ǫf . In
the following |t| is used as the energy unit.

Gutzwiller wave function (GWF) is constructed from
the uncorrelated Slater determinant |ψ0〉 by projecting
out fraction of the local double f -occupancies by means
of the Gutzwiller projection operator P̂G,

|ψG〉 ≡ P̂G|ψ0〉 ≡
∏

i

P̂G;i|ψ0〉. (2)

In the GA approach when only a single f orbital (in the
present case) is correlated the projection operator can be
defined by

P̂G;i ≡ 1 − (1 − g)n̂fi↑n̂
f
i↓, (3)

where g is a variational parameter. Such form allows
for interpolating between the fully correlated (g = 0)
and the uncorrelated (g = 1) limits. Equivalently one
can consider average number of doubly occupied states,

〈n̂fi↑n̂
f
i↓〉 ≡ d2 as a variational parameter.

The Gutzwiller projection operator can be selected dif-
ferently as proposed in Ref. 70, namely

P̂ †
G;iP̂G;i ≡ P̂ 2

G;i = 1 + xd̂HFi . (4)

In the above relation x is a variational parameter and for
the paramagnetic and translationally invariant system we
define Hartree-Fock (HF) operators of the form

d̂HFi ≡ n̂HFi↑ n̂HFi↓ = (n̂fi↑ − n0f )(n̂fi↓ − n0f ), (5)

where n0f denotes average occupation of a single f
state and spin σ in the uncorrelated state, |ψ0〉, i.e.,

n0f = 〈f̂ †
iσf̂iσ〉0. Hereafter the shortened notation for

the expectation values is used, i.e., 〈ψ0|...|ψ0〉 ≡ 〈...〉0.

Strictly speaking, although, d̂HFi has not the Hartree-
Fock form of the double occupancy operator, the HF su-

perscript has its meaning as the property, 〈d̂HFi 〉0 ≡ 0 is
preserved.

On the other hand, the Gutzwiller projection operator
can be defined in general form as

P̂G;i =
∑

Γ

λΓ | Γ〉i〈Γ |i, (6)

with variational parameters λΓ ∈ {λ0, λ↑, λ↓, λd}
that characterize the possible occupation probabil-
ities for the four possible atomic Fock f -states
| Γ〉i ∈ {| 0〉i, |↑〉i, |↓〉i, |↑↓〉i}.

Relation (4) couples λΓ and x, reducing the number
of independent variational parameters to one. Explicitly,
we may express the parameters λΓ by the coefficient x,

λ2
0 = 1 + xn2

0f ,

λ2
σ = λ2

σ̄ ≡ λ2
s = 1 − xn0f (1 − n0f ),

λ2
d = 1 + x(1 − n0f )2.

(7)

As the parameters λΓ and x are coupled by the condi-
tions (7), there is a freedom of choice of the variational
parameter; in this work we have selected x. The pa-
rameter x covers the same variational space as g in GA.
Additionally, the projector (4) leads to much faster con-
vergence than (3) (cf. Ref. 54). From (4) it is clear
that x = 0 corresponds to the uncorrelated limit. The
other extremity, the fully correlated state is reached for
x = max{x(λd = 0), x(λ0 = 0)}. This leads to the
bounds max{ −1

(1−n0f )2 ,
−1

(n0f )2 } ≤ x ≤ 0. The minimal

value is x = −4 for n0f = 0.5.
The method is suitable for an arbitrary filling of the

f orbital. However, due to the fact that present work is
mainly addressed to the description of the Ce-based com-
pounds, we study the regime in which the f -orbital fill-
ing either does not exceed unity or is only slightly larger.
Precisely, in the all figures presented here the f -orbital
filling is never larger than 1.05.

III. DE-GWF METHOD

A. General scheme

In this section we present general implementation of
the DE-GWF method. The procedure is composed of
the following steps:

1. Choice of initial state |ψ0〉.

2. Evaluation of 〈Ĥ〉G ≡ 〈ψG|Ĥ|ψG〉
〈ψG|ψG〉 for selected |ψ0〉 -

cf. Sec. III B.

3. Minimization of 〈Ĥ〉G with respect to the varia-
tional parameter (here x).

4. Construction of the effective single particle Hamil-
tonian determined by δĤeff(|ψ0〉) = δĤ(|ψ0〉) - cf.
Sec. III C.

5. Determination of |ψ′
0〉 as a ground state of the ef-

fective Hamiltonian - cf. Sec. III D.

6. Execution of the self-consistent loop: starting again
from the step 1 with |ψ′

0〉 until a satisfactory con-
vergence, i.e., |ψ′

0〉 = |ψ0〉, is reached.

Steps 4 and 5 ensure that the final form of |ψ0〉 rep-
resents the optimal choice which minimizes the ground
state energy 〈Ĥ〉G. The DE-GWF method with respect
to other related methods, GA and VMC, introduces a
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new technique for evaluating the expectation value of the
correlated Hamiltonian with GWF (step 2 of the above
procedure). In particular, it provides an important im-
provement as, e.g., for GA only single sites in the lattice
contain the projection whereas the remaining environ-
ment does not. GA leads e.g. to the inability of obtaining
the superconducting phase in the Hubbard model55. On
the other hand, the VMC method tackles that problem
properly, but at the price of extremely large computing
power needed. This leads to the lattice size limitations
(typically up to 20x20 sites) and a limited distance of
real space intersite correlations taken into account.

In this respect, DE-GWF introduces, in successive or-
ders of the expansion, correlations to the environment of
individual sites (beyond GA), as well as converges in a
systematic manner to the full GWF solution. Also, DE-
GWF was shown to provide results of better accuracy
than VMC56, and additionally, is free from the finite-
size limitations. It also demands definitely less computa-
tional power than VMC. Thus in general, this method is
capable of treating more complex problems with GWF.
On the other hand, DE-GWF is tailored specifically for
GWF, while VMC allows for starting from different forms
of variational wave function e.g., adding the Jastrow
factors52,53.

B. Diagrammatic expansion

The key point of the variational procedure is the cal-
culation of the expectation value of Hamiltonian (1) with
GWF |ψG〉 (point 1 from the scheme in Sec. III A), by
starting from the expression

〈Ĥ〉G ≡ 〈ψG | Ĥ | ψG〉
〈ψG | ψG〉 =

〈ψ0 | P̂GĤP̂G | ψ0〉
〈ψ0 | P̂ 2

G | ψ0〉
. (8)

We use the DE-GWF technique54–57, based on the
expansion of the expectation values appearing in Eq.
(8) in the power series in variational parameter x,
with the highest power representing number of corre-
lated vertices assumed to be correlated in the envi-
ronment - besides local ones. This method is sys-
tematic in the sense that the zeroth order corresponds
to GA47, whereas with the increasing order the full
GWF solution is approached. Explicitly, we deter-
mine expectation values with respect to GWF of any
product operator originating from the starting Hamil-

tonian (1) Ôi(j) = {ĉ†iσ ĉjσ, n̂ciσ, n̂
f
iσ, n̂

f
i↑n̂

f
i↓, f̂

†
iσ ĉjσ, ĉ

†
iσf̂jσ}.

This is executed by first accounting for the projection
part on the site i(j) - external vertices (e.g., computing

ÔG
i(j) ≡ P̂G;i(P̂G;j)Ôi(j)(P̂G;j)P̂G;i, see below) and then,

including one-by-one correlations (terms) to the other
sites l 6= i, j - internal vertices.

Formally, the procedure starts in effective power ex-

pansion in x of all relevant expectation values

〈ψG | Ôi(j) | ψG〉 =
〈
ÔG

i(j)

∏

l6=i,j

P̂ 2
G;l

〉
0

=

∞∑

k=0

xk

k!

∑

l1,...,lk

′
〈ÔG

i(j)d̂
HF
l1,...,lk〉0,

(9)

where d̂HFl1,...,lk
≡ d̂HFl1

· · · d̂HFlk
. The prime in the multiple

summation denotes restrictions: lp 6= lp′ , and lp 6= i, j for
all p, p′. k is the order of the expansion. Note that for
k = 0 we obtain 〈ψG|Ôi(j)|ψG〉 = 〈ÔG

i(j)〉0. This means

that the projection operators act only locally (i.e., only
the sites i and j are affected) and in this case we recover
the GA results (for a details discussion of the equiva-
lence see Appendix A). Expectation values in (9) can
now be calculated by means of the Wick’s theorem in
its real-space version, as they involve only products av-
eraged with |ψ0〉. Such power expansion in x allows for
taking into account long-range correlations between k in-
ternal sites (l1, ..., lk) and the external ones (i, j). It must
be noted that it is not a perturbative expansion with re-
spect to the small parameter x. Instead, the expansion
should be understood as an analytic series with the order
determined by the number of correlated internal vertices
taken in the nonlocal environment. For k = ∞, the full
GWF solution would be obtained. However, on the basis
of our results, a satisfactory results for the expansion in
ALM case are reached already starting from k = 3.

As said above, the expectation values 〈...〉0 in Eq. (9)
can be evaluated by means of the Wick’s theorem. Then,
the terms with k internal sites can be visualized as dia-
grams with k internal and 1 (or 2) external vertices. The
lines connecting those vertices are defined as,

Cij ≡ 〈ĉ†iσ ĉjσ〉0,
Wij ≡ 〈f̂ †

iσ ĉjσ〉0,
Fij ≡ 〈f̂ †

iσ f̂jσ〉0 − δijn0f .

(10)

By constructing the projector operator (4), we have
eliminated all the diagrams with the local f -orbital

contractions (〈f̂ †
iσ f̂iσ〉0), the so-called Hartree bubbles.

This procedure, as discussed explicitly in Ref. 54, leads
to significantly faster convergence than that with the
usual Gutzwiller projector, with the variational param-
eter g71. It constitutes the main reason for the effi-
ciency of the DE-GWF method. Finally, all the ex-
pectation values with respect to GWF are normal-
ized by 〈ψG|ψG〉 (cf. Eq. (8)). However, through the
linked-cluster theorem72, the terms coming from ex-
pansion of 〈ψG|ψG〉 ≡ 〈ψ0|P̂ 2

G|ψ0〉 cancel out with all
disconnected diagrams appearing in the numerator of
Eq. (8). In effect, the expectation values can be ex-
pressed in the closed form by the diagrammatic sums

S ∈ {T cc(1,1)ij , T fc(1,1), T fc(3,1), Ic(2), If(2), If(4)}, defined
in Appendix B, what leads to the following resultant ex-
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pression for the ground state energy:

〈Ĥ〉G
L

=
2

L

∑

i,j

tijT
cc(1,1)
ij − 2µIc(2)

+2(ǫf − µ)
(
n0f + (1 + xm)If(2) + γIf(4)

)

+Uλ2
d

(
d0 + 2n0fI

f(2) + (1 − xd0)If(4)
)

+4V
(
αT fc(1,1) + βT fc(3,1)

)
,

(11)

where the trivial sums
∑

σ = 2 and
∑

i = L have already
been included. Parameters {α, β, γ,m, d0} are all func-
tions of n0f and x (cf. Appendix B, Eq. (B2)). For k = 0,

only the diagrammatic sums T
cc(1,1)
ij , Ic(2) and T fc(1,1) do

not vanish and we reproduce the standard GA result; the
Coulomb energy reduces to Uλ2

dd0 and hybridization to

4V α〈f̂ †
i ĉi〉0, whereas the diagrammatic sums for c-band

only are trivial (cf. the discussion in Appendix A).

The expectation value 〈Ĥ〉G calculated diagrammat-
ically is minimized next with respct to the variational
parameter x (step 3 in the scheme in Sec. III A).

C. Effective quasiparticle Hamiltonian

The next step in our procedure (step 4 in the scheme in
Sec. III A) is the mapping of the correlations contained

in 〈ψG|Ĥ|ψG〉/〈ψG|ψG〉 onto the corresponding uncorre-

lated expectation value 〈ψ0|Ĥeff |ψ0〉. It is realized via
the condition that the minima of the expectation values
of both Hamiltonians coincide for the same equilibrium
values of lines (10) and n0f , which define |ψ0〉. Note that
the present formulation of this step of our minimization
procedure is equivalent to those previously used54–58. Ex-
plicitly,

δ〈Ĥeff〉0(C,F,W, n0f ) = δ〈Ĥ〉G(C,F,W, n0f )

=
∂〈Ĥ〉G
∂C

δC +
∂〈Ĥ〉G
∂W

δW +
∂〈Ĥ〉G
∂F

δF +
∂〈Ĥ〉G
∂n0f

δn0f ,

(12)
where skipping lattice indices for lines means that we
consider each of them separately. It leads directly to the
following form of the effective single-particle two-band
Hamiltonian with non-local interband hybridization, i.e,

Ĥeff =
∑

i,j,σ

tcijĉ
†
iσ ĉjσ +

∑

i,j,σ

tfijf̂
†
iσ f̂jσ

+
∑

i,j,σ

(V fcij ĉ
†
iσ f̂jσ + H.c.),

(13)

where the effective hopping and hybridization parameters
are derivatives with respect to lines,

tcij =
∂〈Ĥ〉G
∂Cij

, V fcij =
∂〈Ĥ〉G
∂Wij

,

tfij =
∂〈Ĥ〉G
∂Fij

, tfii =
∂〈Ĥ〉G
∂n0f

.

(14)

D. Determination of |ψ′
0〉

In this section we determine |ψ′
0〉 as a ground state of

Ĥeff (point 5 from the scheme in Sec. III A).
In order to obtain the effective dispersion relations for

c- and f -electrons and the k-dependent hybridization we
use the lattice Fourier transform

ǫ
c(f)
k =

1

L

∑

i,j

ei(i−j)kt
c(f)
ij ,

V cfk =
1

L

∑

i,j

ei(i−j)kV fcij .

(15)

In this manner, we reduce the many-body problem to
the effective single-quasiparticle picture (cf. Fig. 1) de-
scribed by the effective two-band Hamiltonian. The 2x2
-matrix representation of Eq. (13) resulting from such a
transform, has the following form

Ĥeff =
∑

k,σ

(ĉ†kσ f̂
†
kσ)

(
ǫck V cfk

V cfk ǫfk

) (
ĉkσ
f̂kσ

)

=
∑

k,σ

(ĉ†kσ f̂
†
kσ)T †

(
Ek+ 0

0 Ek−

)
T

(
ĉkσ
f̂kσ

)
,

(16)

where the eigenvalues, Ek± of the above Hamiltonian are

Eka = ξ+k + a

√
(ξ−

k )2 + (V cfk )2, (17)

where a ≡ ±1 differentiates between the two hybridized
bands. For convenience, we have defined

ξ+k ≡ ǫck + ǫfk
2

and ξ−
k ≡ ǫck − ǫfk

2
. (18)

T in Eq. (16) is the unitary transformation matrix to

the basis in which Ĥeff is diagonal, defined as

T =

(
u+ u−
u− −u+

)
, (19)

where

u± =

√√√√√1

2


1 ± ξ−

k√
(ξ−

k )2 + (V cfk )2


. (20)

It is now straightforward to obtain the principal correla-
tion functions (lines), i.e.

〈ĉ†kσ ĉkσ〉0 = u2
+Θ(Ek+) + u2

−Θ(Ek−),

〈f̂ †
kσ ĉkσ〉0 = u+u−

(
Θ(Ek+) − Θ(Ek−)

)
,

〈f̂ †
kσf̂kσ〉0 = u2

−Θ(Ek+) + u2
+Θ(Ek−),

(21)

where Θ(E) denotes the Heaviside step function and
plays the role of an energy cutoff for respective quasipar-
ticle bands energies (17). Using the reverse Fourier trans-
formation we obtain self-consistent equations for lines
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and n0f ,

Cij =
1

L

∑

ka

〈ĉ†kσ ĉkσ〉0 ei(i−j)k,

Wij =
1

L

∑

ka

〈f̂ †
kσ ĉkσ〉0 ei(i−j)k,

Fij =
1

L

∑

ka

〈f̂ †
kσf̂kσ〉0 ei(i−j)k,

n0f =
1

L

∑

ka

〈f̂ †
kσf̂kσ〉0.

(22)

To determine the properties of the model, we solve
in the self-consistent loop the system of Eqs. (14) and
(22)54–58 (point 6 from the scheme in Sec. III A)

Finally, the ground state energy EG is defined by

EG = 〈Ĥ〉G|0 + nµ, (23)

where 〈Ĥ〉G|0 denotes the expectation value (11) of the
starting Hamiltonian for the equilibrium values of the
lines and the total number of particles is defined by

n ≡ 2〈n̂fiσ + n̂ciσ〉G. The f -orbital filling separately is de-

fined by nf ≡ 2〈n̂fiσ〉G.

IV. RESULTS AND DISCUSSION

A. System description and technical remarks

In our analysis we consider a square, translationally
invariant, and infinite (L → ∞) lattice, with two orbitals
(f and c) per site. The square lattice consideration is
justified by the common quasi-two-dimensional layered
structure of f atoms in the elementary cell of many Ce-
based heavy fermion systems2,11 that our studies are rel-
evant to.

While proceeding with the diagrammatic expansion
(DE), in principle two approximations need to be made.

1

0

1

2

1 0 1 2 3

|j
y
-i

y
|

|jx-ix|

i

FIG. 2: Schematic illustration of the real-space cutoff on the
lattice. The solid lines denote exemplary, in terms of dis-
tance, correlation functions (referred to as lines) taken into
account between i-site (in the center) and the j-sites (on the
periphery). Farther connections are not considered.

First, only the lines (10) satisfying the relation |i− j|2 =
(ix−jx)2+(iy−jy)2 ≤ 10 are taken into account (i.e., we
make a real-space cutoff - cf. Fig. 2). For comparison,
in VMC only rarely lines farther than these connecting
nearest neighboring sites (more precisely, only the lines
corresponding to the hopping term range of the starting
Hamiltonian) are taken into account49,50. From our nu-
merical calculations it follows that the nearest- and the
second-nearest neighbor contractions compose the domi-
nant contributions (cf. Fig. 7b).

The second limitation in DE is the highest order of the
expansion, k, taken into account. Asymptotic behavior
starting from k = 3, of some properties such as the den-
sity of states (DOS) at the Fermi level (FL), ρ(Ef ), and
the width of the effective f band, wf (cf. Figs.4, 5c and
6), speak in favor of the calculation reliability, achieved
already in that order. Therefore, if not specified oth-
erwise, the expansion is carried out up to the third or-
der (k = 3), i.e., with the three internal vertices taken
into account. We stress again that the zeroth-order ap-
proximation (k = 0) is equivalent to the GA approach
(cf. Appendix A for details). The results of GA are
regarded here as a reference point for determining a sys-
tematic evolution, including both qualitative and quan-
titative changes, when the higher-order contributions are
implemented.

The parameters of the ALM Hamiltonian (1) are taken
in units of |t|: a strong Coulomb repulsion is taken as
U = 10, the reference energy for f -electrons, ǫf = −3,
the onsite hybridization is assumed negative and varies
in the range |V | ∈ (0.8, 2.5), and the total band filling

(n ≡ 2〈n̂fiσ + n̂ciσ〉G) is in the range allowed by the condi-

tion that the f level occupancy per site (nf ≡ 2〈n̂fiσ〉G)
roughly does not exceed unity. The reason for considera-
tion of this regime is the circumstance that for interesting
us Ce-based compounds the concentration of f electrons
per cerium should not exceed 1 (i.e., with the Ce3+ and
Ce4+ configurations only). However, from the construc-
tion of the method the regime for nf > 1 is fully accessi-
ble and physically correct. In carrying out the DE-GWF
procedure we adjust the chemical potential µ ≡ EF for
the fixed total filling n. Numerical integration of Eq.
(22) and the self-consistent loop were both performed
with precision of the order of 10−6 or better with the
help of Gnu Scientific Library (GSL) procedures73.

B. Correlated Fermi liquid

Before the detailed analysis is carried out, a method-
ological remark is in place. The effective Hamilto-
nian (13) is of single-particle form, but coupled to the
self-consistent procedure of evaluating the relevant av-
erages (22). However, this does not compose the full
picture. The physical quantities are those obtained
with a projected wave function. For example, nf ≡∑
σ〈ψG|f̂ †

iσ f̂iσ|ψG〉 =
∑

σ〈PGn̂
f
iσPG〉0, which in general
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FIG. 3: Difference between uncorrelated and correlated f -
electron number, ∆nf ≡ ∑

σ〈n̂f
iσ〉G−∑

σ〈n̂f
iσ〉0 along the line

of constant hybridization, |V | = 1.3, with respect to chang-
ing total filling. The specific character of the region IV is
explained in Sec. IV.

is slightly different from
∑

σ〈n̂fiσ〉0. The situation is il-
lustrated explicitly in Fig. 3. In effect, the quasipar-
ticle picture is amended with the nonstandard features
of this correlated (quantum) liquid (CL). Parenthetically,
the same difference will appear when considering mag-
netic and superconducting states, where the magnetic
moments, 〈Ŝzi 〉G vs. 〈Ŝzi 〉0, and the superconducting

gaps, 〈∆̂ij〉G and 〈∆̂ij〉0 will be different. So, we have a
mapping of the correlated onto quasiparticle states, but
not of the physical properties. In brief, we have to dis-
tinguish between the correlated and the uncorrelated f -
electron occupancy or other property even though, from
the way of constructing (13), the density of quasiparticle
states (coming from (13)), represents that in the corre-
lated state.

C. Quasiparticle Density of States

We start with analysis of the quasiparticle DOS emerg-
ing from the DE-GWF method in successive orders of the
expansion (cf. Fig. 4). For k > 0 and the total filling
n = 1.97 (i.e., near the half filling), the hybridization
peaks become more pronounced (cf. Fig.4-the inset Ta-
ble) and the hybridization gap increases.

For k > 0 the overall shape of DOS changes only quan-
titatively (cf. Fig. 4). However, the value of the DOS at
the Fermi level, ρ(EF ), changes remarkably (cf. the inset
to Fig. 4). Although for k = 1 it is underestimated and
for k = 2 overestimated, for k = 4 we see no significant
difference with respect to the k = 3 case. For this rea-
son, if not specified explicitly, the subsequent analysis is
proceeded in the third order, k = 3.

The value of ρ(EF ) is of crucial importance. This
parameter is a measure of the quasiparticle effective
mass, as the latter is inversely proportional to the second

0

1

2

3

4

5

6

7

8

-4 -3 -2 -1 0 1 2 3 4

(E
)

E - EF

|V|=1.5

n=1.97

k (EF) 

0 2.17
1 5.35
2 12.93
3 7.60
4 7.23

FIG. 4: (Color online) Density of states (DOS) near the half-
filling (n = 1.97) at |V | = 1.5 for selected orders of the di-
agrammatic expansion (k = 0, 3). Explicit values of ρ(EF )
are also listed in the inset Table (for 0 ≤ k ≤ 4). For k = 3
a satisfactory convergence of the expansion is reached. The
k = 1, 2, 4 plots are not included for clarity as, apart from
peak heights, they are practically the same as the plot for
k = 3. For k > 0 (beyond GA) the hybridization peaks are
more pronounced (large DOS at the Fermi level ρ(EF )), which
is related directly to the increased by correlation effective-
mass enhancement for quasiparticles.

derivative of the energy, ∇2
kEk, at the Fermi surface, and

thus is determined by ρ(EF ).
In Fig. 5a we draw the value of ρ(EF ) on the plane

hybridization – total electron number (per site), V – n.
This quantity is particularly strongly enhanced near the
half filling (n ≃ 2). In comparison to the lowest value
ρ(EF ) ≈ 0.75, the maximal enhancement is of the or-
der of 40. In Fig. 5b we present evolution of ρ(EF )
on the logarithmic scale with the decreasing total filling
and approaching n = 2 (vertical arrow in Fig. 5a marked
by the encircled letter b ). The extrapolated value of
ρ(EF ) may reach extremely high values of 1000 and even
more (dashed line in Fig. 5b) in the region IV. Such fea-
ture could explain extremely high mass renormalization
in some of HFS for large but finite value of the Coulomb
interaction U .

The region where ρ(EF ) is enhanced strongly, is that
with low hybridization |V | values and for the total filling
n ≃ 1. This region is strictly correlated with the position
of the second pronounced peak in DOS (cf. Fig. 4) which
therefore has its meaning as the Van Hove singularity.
Additionally, for nf ≃ 1, where the effects of correlations
are the strongest, we observe also a large value of ρ(EF ).
In that limit the stability of magnetic phases should be
studied separately18,19.

As marked in Fig. 5a, near the total half-filling, n ≃ 2,
we could not obtain a satisfactory convergence of our
self-consistent procedure. This is attributed to the po-
sition of the chemical potential extremely close to the
hybridization-induced peaks (significant when nf & 0.9).
Technically, this leads to extreme fluctuations (out of our
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FIG. 5: (Color online) (a) Density of states at the Fermi level
ρ(EF ) on the hybridization strength – total electron concen-
tration plane, |V | – n. Additionally (not marked), for n = 2
we obtain always the Kondo insulating state. By IV (for con-
sistency with Fig.7) we have marked a V-shaped region where
we have no numerical convergence due to the presence of sin-
gular hybridization peaks for low |V | and with n near the half
filling (see main text). (b) Evolution of ρ(EF ) in the half-
logarithmic scale near the region IV (along the vertical arrow
with the letter b). By extrapolation (dashed line in (b)), for
the almost half-filled situation, ρ(EF ) can be enhanced even
by factor of 1000 relative to its lowest values on the |V | – n
plane. (c) Evolution of ρ(EF ) with the decreasing |V | (along
the horizontal arrow with letter c), within successive orders
of the expansion (k ≤ 4). For large |V | & 1.8, GA (k = 0
order) provides already realistic values of ρ(EF ).

numerical precision) of the filling, effective hopping pa-
rameters, and the lines coming from the effective Hamil-
tonian (13), as they are sensitive to a slight change of the
chemical potential position. For n = 2 and nonzero hy-
bridization, we obtain always the Kondo insulating state.
However, strictly speaking, the true Kondo-type compen-
sated state is demonstrated explicitly only if magnetic
structure is taken into account explicitly9,10,18.

In Fig. 5c we depict the ρ(EF ) evolution with the de-
creasing hybridization amplitude |V | for k ≤ 4. Our
results show that for large |V |, GA (k = 0) already is
reasonable approximation. The situation changes as we
approach the low-|V | regime near the half-filling, where
inclusion of higher-order contributions leads to a strong
enhancement of ρ(EF ), as discussed above.

In summary, the quasiparticle mass is enhanced spec-
tacularly near n = 2 and in the regime of small hybridiza-
tion |V |. The f -state occupancy is then nf & 0.9. This
is the regime associated with the heavy-fermion and the
Kondo-insulating states. We discuss those states in detail
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FIG. 6: (Color online) f -electron density of states ρf (E)
within successive orders of expansion (k ≤ 4). For k = 1
and higher, formation of the effective f -band can be clearly
observed. For k = 3 the final shape of ρf (E) and the value of
f -band width wf stabilize.

in what follows.

D. f-electron direct itineracy

As stated already, the DE-GWF method is used here
to map the correlated (many-body) system, described
by the original Hamiltonian (1) with the help of the
Gutzwiller wave function |ψG〉, onto that described by
the effective quasiparticle Hamiltonian (13) with an un-
correlated wave function |ψ0〉. By constructing the ef-
fective Hamiltonian it is possible to extract the explicit
contribution to the quasiparticle picture as coming from
a direct hopping between the neighboring f sites. By
contrast, in GA (k = 0) case, the f electrons itineracy
is only due to the admixture of c-states when the quasi-
particle states are formed. Once we proceed with the
diagrammatic expansion to higher order (k > 0), they
start contributing to the quasiparticle spectrum in the
form of a dispersive f -band (cf. Fig. 6). The resulting
band is narrow, wf ≤ 0.5, whereas the starting conduc-
tion (c) band has the width of wc = 8. As was mentioned
in the Sec. I, we interpret the parameter wf as a measure
of emerging degree of direct itineracy, i.e., presence of a
direct hoppings between the neighboring f states in the
effective Hamiltonian.

Again, a methodological remark is in place here on the
numerical convergence of the results with respect to k.
Namely, the f -bandwidth appears already for k = 1, but
both its width and the curvature stabilizes only starting
from k = 3.

In the recent phenomenological modeling of
CeCoIn5

59–61 the band structure used is the hybridized-
two-band independent-particle model with dispersive
f -band, even though the Ce 4f states can be placed well
above the so-called Hill limit, where there should not be
any direct hopping between the original neighboring f
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FIG. 7: (Color online) (a) Effective bandwidth of f -states,
wf , on the hybridization strength |V | – electron concentra-
tion n plane. wf is regarded as a measure of direct itineracy
of f -electron states. Three separate disjoint regions (light
color) are regarded as universal and frequently discussed as
separate limits, both in theory and experiment. Namely,
the mixed valence regime (III), the Kondo/almost Kondo-
insulating regime (II), and the Kondo-lattice regime (I) with
nf → 1 − δ, δ ≪ 1. (b) Effective f -electron intersite hop-

pings tfij along the marked vertical line of the diagram for

|V | = 1.3. The energy dispersion for f quasiparticles is deter-
mined mainly by the nearest and the second nearest hoppings
tfij. Region IV, near n = 2 is marked separately due to the

lack of convergence of the numerical results (see main text).

states. The fit presented there provides wf of the same
order of magnitude as that obtained here. As those
phenomenological models do not include the Coloumb
interaction, the ground state is determined by the
uncorrelated wave function. Hence, our analysis of the
effective Hamiltonian resulting from ALM provides a di-
rect microscopic rationalization of the narrow dispersive
f -band presence assumed ad-hoc in the fitting procedure
in Ref. 59–61.

In Fig. 7a we display diagram comprising the width
of f -band wf on |V | – n plane, with contours of con-
stant values of nf . We observe the appearance of re-
gions, where the f quasiparticles have a sizable band-
width (bright color) and other, where they remain local-

ized (dark regimes). We expect that in the regions, where
f electrons are forming a band, a nontrivial unconven-
tional superconductivity and/or magnetism may appear.
These topics should be treated separately as they require
a substantial extension of the present approach (incorpo-
rating new type of lines)55–58.

With the help of the width wf we may single out
three physically distinct regimes (cf. Fig. 7a). We
identify those regions as the mixed-valence regime (III),
the Kondo/almost Kondo insulating regime (II), and the
Kondo-lattice regime (I) with nf → 1−δ, with δ ≪ 1 (cf.
Fig. 7a). These universal regions are usually discussed
independently within different specific models and meth-
ods. In regime I the role of f -c Coulomb interactions
(the Falicov-Kimball term) may be needed for complete-
ness (cf. Ref. 74), whereas in the Kondo-lattice regime
the transformation to the Anderson-Kondo model is ap-
propriate (cf. Refs. 18,19). In the extreme situation,
the heavy-fermion states are modeled by pure Kondo-
lattice model75–77. However, strictly speaking, the last
model applies only in the limit of localized f electrons
(nf = 1), since then the total numbers of f and c elec-
trons are conserved separately.

In Fig. 7b we present the effective hopping parame-
ters for f states for |V | = 1.3, i.e., along the marked
vertical line in Fig. 7a. This line crosses three singled
out regions of the itineracy. The leading contribution
to the f -electron band energy arises from the nearest-
and the second nearest-neighbor hoppings. Such circum-
stance confirms that our earlier assumption about the
real-space cutoff shown in Fig. 2 has been selected prop-
erly. Moreover, it points to the importance of including
also the components beyond those of the starting Hamil-
tonian, only rarely taken into account within the VMC
method49,50.

In Fig. 8 we show the contributions to the effective
hybridization. The initial (bare) local hybridization ac-
quires momentum dependence. Nevertheless, the local
part is still dominant since the nonlocal terms are at least
two orders of magnitude smaller.

The emerging in our model f -band introduces a new
definition of the f -electron itineracy as it is not so much
connected to the Fermi-surface size78, but with the ap-
pearance of a direct hoppings between f sites. This differ-
ence is highly nontrivial, especially in the limit nf = 1,
where we obtain the largest bandwidth wf . Such be-
havior is attributed to the specific character of our ap-
proach. Namely, we consider here the processes within
our initial Hamiltonian (1), but under the assumption
that the neighboring sites are also correlated. This, as
we have shown directly, leads also to the finite f -band
in the effective single particle Hamiltonian (13). The re-
sults thus throw a new light on the longstanding issue
of the dual localized-itinerant nature of f electrons in
HFS79,80. While the magnetism can be attributed to the
almost localized nature of f electrons, an unconventional
superconductivity requires their itineracy in an explicit
manner, as will be discussed elsewhere81
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ij to the effec-

tive hybridization normalized by the first onsite (i = j) V00

term along the marked vertical line of the diagram in Fig.7a
for |V | = 1.3. Note that due to correlation initially local, on-
site hybridization acquires effectively momentum dependence.
However, the nonlocal contributions constitute only up to 2%
of the local one.

V. SUMMARY

We have applied a recently developed diagrammatic
technique (DE-GWF) of evaluating the expectation val-
ues with the full Gutzwiller wave function for the case
of two-dimensional Anderson lattice. We have analyzed
properties of the model by discussing the most important
features of the heavy fermion systems in the paramagne-
tic state. We have also shown that by approaching in suc-
cessive orders of the expansion the full Gutzwiller-wave-
function solution, we obtain a systematic convergence.
In the zeroth order of expansion our method reduces to
the standard Gutzwiller Approximation (GA).

In difference with GA, DE-GWF does not overesti-
mate the hybridization narrowing factor. Furthermore,
our method produces unusually enhanced peaks at the
Fermi level in the density of states, particularly near the
half-filling, n → 2. This in turn, is connected to the value
of effective mass and by analyzing in detail this region we
can explain a very large mass enhancement observed in
heavy fermion systems as described by ALM with large,
but finite Coulomb-interaction value, here U = 10|t|.
The regions of sizable ρ(EF ) enhancement are also found
in the small-hybridization limit and are connected to the
presence of both the Van Hove singularity and the strong
correlations in the limit of nf → 1.

The f -electron contribution to the full quasiparticle
spectrum is analyzed in detail. For nonzero order of the
expansion (k > 0) we observe a systematic formation of
the effective f -band with the increasing k. In spite of
the fact that the bare electrons are initially localized, f
quasiparticles contribute to the total density of states as
they become itinerant. We interpret this property as the
emerging direct f -electron itineracy. As a measure of this
behavior, we introduce the the width wf of effective f -

band. Formation of such narrow f -band rationalizes e.g.
the recent phenomenological modeling of the CeCoIn5

band structure59–61.
The nonstandard character of the resultant correlated

Fermi liquid (CL) which differs from either the Landau
Fermi liquid (FL) and the spin liquid (SL), should be
stressed. FL represents a weakly correlated state (no lo-
calization) and SL represents a fully correlated state. Our
CL state in this respect has an intermediate character.
Namely, the quasiparticle states are formed (as exempli-
fied by e.g. density of states), but the physical properties

such as the occupancy nf , the magnetic moment 〈Ŝzi 〉 or

the pairing gap in real space 〈∆̂ij〉 are strongly renormal-
ized by the correlations. Such situation is often termed as
that of an almost localized Fermi-liquid state4,9,10,16,17.

By analyzing the results on the hybridization strength
|V | – total band filling n plane, we single out explicitly
three physically distinct regions, which we regard as three
separate universality limits. Namely, we have linked
those disjoint regions with the regimes frequently dis-
cussed as separate classes in the heavy fermion systems:
the mixed-valence regime, the Kondo/almost Kondo in-
sulating regime, and the Kondo-lattice regime for nf →
1. We suggest, that the regions of significant f -electron
itineracy can be connected to the unconventional heavy
fermion superconductivity which would require separate
studies.

We have also commented on the longstanding issue of a
dual localized-itinerant nature of f electrons in the heavy
fermion systems. The new definition of itineracy is in
accord with their (almost) localized nature.
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Appendix A: Equivalence of the k=0 order DE-GWF
expansion and the Gutzwiller approximation (GA)

Here we show the equivalence of the zeroth order DE-
GWF and the standard Gutzwiller approximation (GA).
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In both methods (DE-GWF in the zeroth order of expan-
sion k = 0) the effect of the projection can be summarized
by the expressions for evaluating following expectation

values: 〈n̂i↑n̂i↓〉G and 〈f̂ †
iσ ĉiσ + H.c.〉G. The remaining

averages in ALM are unchanged under the projection.
Explicitly, in the DE-GWF for k = 0 the resulting

averages are expressed as follows

〈n̂i↑n̂i↓〉(k=0)
G = λ2

dn
2
0f (A1a)

〈f̂ †
iσ ĉiσ + H.c.〉(k=0)

G = α〈f̂ †
iσ ĉiσ + H.c.〉0, (A1b)

where parameter α (see also Appendix B: Eqs. (B1) and
(B2)) is defined as

α ≡ (1 − n0f )λ0λs + n0fλdλs. (A2)

On the other hand, in GA the resulting averages are
expressed as26

〈n̂i↑n̂i↓〉(GA)
G = 〈nfi↑n̂

f
i↓〉0 ≡ d2, (A3a)

〈f̂ †
iσ ĉiσ + H.c.〉(GA)

G =
√
q〈f̂ †

iσ ĉiσ + H.c.〉0, (A3b)

where the parameter d2 is the double occupancy prob-
ability, and q is the so-called Gutzwiller factor reducing
the hybridization amplitude, which for the equal number
of particles for each spin is defined as

√
q =

√
(n0f − d2)(1 − 2n0f + d2) +

√
(n0f − d2)d2

√
n0f (1 − n0f )

.

(A4)
If we identify double occupancy probabilities expressed

by both methods in (A3a) and (A1a) to be equal, yielding
d2 = λ2

dn
2
0f , then the parameter α (A2) exactly reduces

to the parameter
√
q (A4).

GA procedure results in the effective single-particle
Hamiltonian of the form

ĤGA ≡
∑

k,σ

Ψ̂†
kσ

(
ǫck − µ

√
qσV√

qσV ǫf − µ

)
Ψ̂kσ + LUd2

−λfn
( ∑

k,σ

n̂fk,σ − Ln0f

)
− λfm

(∑

k,σ

σn̂fk,σ − Lmf

)
.

(A5)
In the above Hamiltonian it is necessary to add con-
straints for f -electron concentration and their magnetiza-
tion in order to satisfy consistency of the procedure27,82.
In effect, the whole variational problem is reduced to
minimization of the ground state energy with respect to
d2, n0f , mf , and respective Lagrange multipliers λfn and
λfm, playing the role of the effective molecular fields82.
However, the effect of constraint for f -electron magne-
tization is relevant only in the case of magnetism con-
sideration either as intrinsic42,43 or induced by applied
magnetic field41. Here, as we discuss paramagnetic state
mf = λfm = λfn = 0.

The DE-GWF method by construction guarantees that
the variationally obtained f -electron occupancy number
nf coincides with that obtained self-consistently57. We
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FIG. 9: (Color online) Diagrammatic sums to the second or-
der, k = 2. c- and f - orbital sites are denoted with empty and
filled circles respectively. Solid, dashed (blue) and dotted (or-
ange) connections represent F , W , and C lines respectively
(cf. Eq. (10)). The numbers in brackets under diagrams
stand for their multiplicity resulting from the Wick’s theo-
rem. Note that by construction of our sums we have no di-
agrams with so-called “Hartree bubbles”, namely loop-lines
within the same site and orbital.

have thus provided analytical argument for the equiva-
lence of the DE-GWF method for k = 0 and the standard
GA procedure. Also, by an independent numerical cross-
check we have verified that all the observables calculated
within both methods indeed coincide.

Appendix B: Diagrammatic sums

We start with expressions for the following projected op-
erators originating from ALM Hamiltonian (1), namely

P̂G;id̂iP̂G;i = λ2
d[2n0f n̂

HF
i + (1 − xd0)d̂HFi + d0P̂

2
G;i],

P̂G;in̂iσP̂G;i = (1 + xm)n̂HFi + γd̂HFi + n0f P̂
2
G;i,

P̂G;if̂
(†)
iσ P̂G;i = αf̂

(†)
iσ + βf̂

(†)
iσ n̂

HF
i ,

(B1)
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where additionally we have defined

n̂HFi ≡ n̂HFiσ = n̂HFiσ̄ ,

β ≡ λs(λd − λ0),

α ≡ λsλ0 + βn0f ,

γ ≡ x(1 − 2n0f),

d0 ≡ n2
0f ,

m ≡ n0f (1 − n0f ).

(B2)

As mentioned in the main text, such form of the pro-
jected operators significantly speeds up the convergence
of the numerical results54, since by construction all two-
operator averages for a single site and f -orbital, the so-
called Hartree bubbles, vanish. The above operator alge-
bra leads to the compact definition of the diagrammatic

sums: S ∈ {T cc(1,1)ij , T
fc(1,1)
ij , T

fc(3,1)
ij , Ic(2), I(2), I(4)} in

Eq. (11),

S =
∞∑

k=0

xk

k!
S(k). (B3)

with the k-th order contributions

T
cc(1,1)
ij (k) ≡

∑

l1,...,lk

〈ĉ†iσ ĉjσ d̂HFl1,...,lk〉c0,

T fc(1[3],1)(k) ≡
∑

l1,...,lk

〈[n̂HFi ]f̂ †
iσ ĉiσ d̂

HF
l1,...,lk〉c0,

Ic(2)(k) ≡
∑

l1,...,lk

〈n̂ciσ d̂HFl1,...,lk
〉c0,

I(2)(k) ≡
∑

l1,...,lk

〈n̂HFi d̂HFl1,...,lk
〉c0,

I(4)(k) ≡
∑

l1,...,lk

〈d̂HFi d̂HFl1,...,lk
〉c0.

(B4)

Superscript c in the expectation values means that only
the connected diagrams are to be included. Note that
in (B4) there are no summation restrictions, due to the
linked cluster theorem72. The resulting diagrammatic
sums for S up to second order (k = 2) are depicted in
Fig. 9.
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42 M. M. Wysokiński, M. Abram, and J. Spa lek, Phys. Rev.

B 90, 081114(R) (2014).
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3.7 Article A.6, Correlation-driven d-wave superconduc-
tivity in Anderson lattice model

The work2 [121] provides the originally planned goal, namely the appearance of an un-
conventional superconductivity as solely due to the electronic correlations. For that
purpose we have extended the DE-GWF method to incorporate the superconducting
correlations in the Anderson lattice model (cf. Sec. 2.2). We have considered d-wave
symmetry of the order parameter as such pairing symmetry is expected [100, 101, 102]
in the presence of strong electronic correlations. We have determined the regions of its
stability against paramagnetism by presenting the results on the hybridization - total
number of electrons plane. Our results reflect several features observed in heavy fermion
superconductors, especially in CeCoIn5: the dominant dx2−y2 symmetry of the order
parameter, reasonable value of the pairing condensation energy, and two different super-
conducting gaps within different bands (in our case one is due to interband component
of the SC order). As this work is first of its kind, it is planned to be elaborated in detail
in the near future.

2preprint as of August 10, 2015
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Correlation-driven d-wave superconductivity in Anderson lattice model
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We present solution of the Anderson lattice model treated by means of a systematic Diagram-
matic Expansion for the Guzwiller Wave Function which leads to the stable and correlation-driven
multiband superconducting (SC) groundstate of dominant dx2−y2-wave symmetry. Such state has
been observed in heavy fermion compound CeCoIn5, but it may also appear in other Ce-based
superconductors. We also draw some conclusions about the common features of the pairing pro-
posed here for heavy fermion systems with those for an analogous approach to high-temperature
superconductivity.

Motivation. Starting form the first observation of su-
perconductivity (SC) in the heavy fermion system(HFS)
CeCu2Si2[1, 2], there is an ongoing discussion concern-
ing the microscopic mechanism(s) of pairing in this class
of unconventional superconductors [3–6]. The first issue
here is how to incorporate essential electronic correla-
tions among f electrons, induced by the strong Coulomb
repulsion between them, into an emergent quasiparticle
picture resulting from f -c hybridization of the originally
atomic f electron states with the band (c) states. Those
quasiparticle states, when possible to form [7, 8], must
incorporate the strong f -f Coulomb interactions of mag-
nitude U which represents by far the largest energy scale
in the system and thus minimally renormalizes strongly
the hybridization leading to f -c state coherence. The sec-
ond issue is the appearance of magnetism, often concomi-
tant with localization of f electrons, that either coexist
or competes with SC.

Over thirty of HFS are known to be superconducting
[9], either magnetic or not, but all have similar prop-
erties. This circumstance justifies the assumption al-
most universally made [3, 5, 6, 10] that the pairing may
have origin in the common principal features of electronic
structure. Here we analyze the Anderson lattice model
(ALM), regarded as encompassing those principal fea-
tures for orbitally nondegenerate f states of Ce-based
compounds and show that a stable SC state of dominant
dx2−y2-wave character, can be triggered by purely repul-
sive f -f interactions in the strongly correlated state. As
a method of approach we have selected recently proposed
by us [11–15] a systematic Diagrammatic Expansion for
the Gutzwiller Wave Function (DE-GWF). It should be
noted at the start that this method reproduces in ze-
roth order the Gutzwiller approximation which nonethe-
less does not lead to a stable SC solution as it includes
only the local correlations. Therefore, the role of nonlocal
correlations, inherent in DE-GWF approach, is regarded
as the essential factor which leads to the non-BCS type
of SC state, as discussed in detail below. The method of
approach allows for a direct comparison with an analo-
gous approach to the high temperature superconductiv-

ity (HTS) [12–15] and on this basis to draw conclusions
about universal features of pairing in those two systems.

Previous considerations of pairing in HFS of
correlation-driven and of purely electronic origin involve
related models such as the Kondo lattice (KL) model
[16–19], the Anderson-Kondo lattice (AKL) model [20–
23] or ALM with the Falicov-Kimball term to discuss the
valence-fluctuation induced pairing [24]. A separate class
of models is based on the spin-fluctuation pairing among
uncorrelated electrons [5, 10, 25]. The treatments based
on the KL neglect direct f -c hybridization and therefore
can be regarded as a limit of AKL when the renormalized
hybridization is negligible and the pairing is solely due
to exchange processes. Additionally, in KL the numbers
of f and c electrons are conserved separately and the
formation of f -c pairs states comes only form treating f
electrons as fermions and decoupling properly the Kondo-
exchange term which breaks this conservation law. All
of these considerations (apart from the spin fluctuation
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mechanism) start from a real-space picture in which cor-
relations and local pairing have been introduced. Thus,
it seems natural to address the problem directly within
ALM, in which the pairing appears as a direct product
of strong correlations. This is the aim of this work.

Model and method of approach. Our starting point is
ALM

Ĥ =
∑

i,j,σ

tijĉ
†
iσ ĉjσ − µ

∑

i,σ

n̂ciσ + (ǫf − µ)
∑

i,σ

n̂fiσ

+U
∑

i

n̂fi↑n̂
f
i↓ +

∑

i,j,σ

(Vijf
†
iσ ĉjσ + V ∗

ij c
†
iσ f̂jσ),

(1)

on a two dimensional (2D), translationally invariant
square lattice, with the chemical potential µ, and with
the usual notation, where i, j and σ denote site and spin
indices, respectively. Hamiltonian (1) comprises disper-
sive conduction (c) band and f electrons, initially in their
atomic states of eigenenergy ǫf .

Ground state properties of (1) are obtained varia-
tionally with the GWF, |ψG〉, constructed from the
uncorrelated-single Slater determinant, |ψ0〉, by project-
ing out fraction of the local double occupancies within
the f orbital by means of Gutzwiller operator: |ψG〉 =
P̂G|ψ0〉 ≡ ∏

i P̂G;i|ψ0〉. The method and the normal
state of ALM have been discussed in detail elsewhere
[26]. The operator P̂G is defined by [27] P̂†

G;iP̂G;i ≡
1+xd̂HFi , where x is a variational parameter and d̂HFi ≡
n̂HFi↑ n̂HFi↓ = (n̂fi↑ −nf0)(n̂fi↓ −nf0 ), with nf0 ≡ 〈n̂fiσ〉0, where

we use shortened notation 〈...〉G(0) ≡ 〈ψG(0)|...|ψG(0)〉
〈ψG(0)|ψG(0)〉 .

The main difficulty of the approach is in determining
the expectation values of Hamiltonian (1) with GWF,

〈Ĥ〉G = 〈P̂GĤP̂G〉0
〈P̂2

G〉0
. As the complete evaluation can-

not be executed in one step, the intersite correlations
are systematically accounted for in consecutive orders.
Formally, for any product operator, Ôi(j) acting on the
site i (and j), the procedure starts with a power series
expansion in x of its expectation value with GWF

〈Ôi(j)〉G =
〈
ÔG

i(j)

∏

l 6=i,j

P̂2
G;l

〉
0

=
∞∑

k=0

xk

k!

∑

l1,...,lk

′〈ÔG
i(j)d̂

HF
l1,...,lk

〉0,

(2)

where we have defined ÔG
i(j) ≡ P̂G;i(P̂G;j)Ôi(j)(P̂G;j)P̂G;i

and d̂HFl1,...,lk
≡ d̂HFl1

· · · d̂HFlk
. The prime summation de-

notes the following restrictions lp 6= lp′ , and lp 6= i, j for
all p, p′. Power series in x allows for a systematic incorpo-
ration of the long-range correlations among k non-local
sites (l1, ..., lk) and the local ones (i, j). The resulting ex-
pectation values with the Slater determinant |ψ0〉 can be
evaluated by applying the Wick’s theorem, this time in
real space. Namely, all resulting products of two-operator
contractions can be visualized as diagrams of lines con-
necting vertices (sites) linked by the respective averages
[13, 26]. Here we allow for both the paramagnetic and
superconducting contractions (lines) defined respectively

as

Pα,βl,l′ ≡ 〈α̂†
lσβ̂l′σ〉0 − δαfδβfδll′n0f , Sα,βl,l′ ≡ 〈α̂†

lσ β̂
†
l′σ̄〉0,

(3)
where α, β ∈ {c, f} and l, l′ are the lattice indices. For an
infinite lattice, we introduce a real space cutoff, namely
we consider only the lines satisfying relation |l − l′|2 ≡
(lx − l′x)2 + (ly − l′y)2 ≤ 10. The resulting expectation
value of the Hamiltonian then can be expressed by the
diagrammatic sums (for details see Refs. [13, 26, 28]).
In that manner, the average depends on the variational
parameter x and correlation functions (lines) (3) only.

The iterative procedure for obtaining the physical
ground state of (1) is as follows:
1. 〈Ĥ〉G is evaluated diagrammatically for selected |ψ0〉.
2. 〈Ĥ〉G is minimized with respect to x.
3. The effective single particle Hamiltonian Ĥeff for the
uncorrelated wave function |ψ0〉 is determined.
4. New trial |ψ′

0〉 is obtained from Ĥeff . The points 1-4
are repeated in a self-consistent loop until a satisfactory
convergence, i.e., the condition |ψ0〉 = |ψ′

0〉 is reached to
a good accuracy.

The effective single particle Hamiltonian Ĥeff for the
uncorrelated wave function |ψ0〉 is determined from the
condition that of its expectation value in the minimum
for the equilibrium lines coincides with 〈Ĥ〉G, namely

δ〈Ĥeff〉0(Pα,βl,l′ , S
α,β
l,l′ , n0f ) = δ〈Ĥ〉G(Pα,βl,l′ , S

α,β
l,l′ , n0f )

=
∑

l,l′

(∂〈Ĥ〉G
∂Pα,βl,l′

δPα,βl,l′ +
∂〈Ĥ〉G
∂Sα,βl,l′

δSα,βl,l′

)
+
∂〈Ĥ〉G
∂n0f

δn0f .

(4)
Explicitly, the effective single particle Hamiltonian reads,

Ĥeff =
∑

i,j,σ

(
tccij ĉ

†
iσ ĉjσ + tffij f̂

†
iσ f̂jσ + tcfij (ĉ†iσ f̂jσ + h.c.)

)

+
∑

i,j,σ

∆cf
ij (ĉ†iσ f̂

†
jσ̄ + h.c.) +

∑

i,j

∆ff
ij (f̂ †

i↑f̂
†
j↓ + h.c.),

(5)
with effective microscopic parameters determined by the
conditions

tαβij =
∂〈H〉G
∂Pα,βi,j

, ∆αβ
ij =

∂〈H〉G
∂Sα,βi,j

, tffii =
∂〈H〉G
∂n0f

. (6)

From the construction of GWF, which introduces cor-
relations within the f orbital only, there is no effective
pairing between the c-electrons, since there are no lines
Sc,ci,j in the diagrams visualizing the Wick’s contractions
in (2). By means of the Fourier transform to the momen-
tum space, the effective Hamiltonian is reformulated to
the Bogoliubov - de Gennes - Nambu form [29],

Ĥeff =
∑

k

Ψ†
k




ǫcck 0 ǫfck ∆fc
k

0 −ǫcck ∆fc
k −ǫfck

ǫfck ∆fc
k ǫffk ∆ff

k

∆fc
k −ǫfck ∆ff

k −ǫffk


 Ψk, (7)
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FIG. 2. Top: Order (k) dependence of the condensation en-
ergy ∆E for |V | = 1. The k = 3 and k = 4 plots are prac-
tically the same, so the satisfactory convergence is already
reached. Bottom: ∆E along the selected constant |V |.

where we have defined Ψ† ≡ (ĉ†k↑, ĉ−k↓, f̂
†
k↑, f̂−k↓) and

ǫαβk (∆αβ
k ) = (1/L)

∑
ij t

αβ
ij (∆αβ

ij )ei(i−j)k. By L we denote
the number of lattice sites. Hamiltonian (7) can be easily
transformed into its diagonal form by the unitary trans-
formation matrix T composed from the normalized eigen-
vectors. The respective averages of components from Ψ
and Ψ† can be expressed as 〈Ψ†

nΨm〉 =
∑

j TjnTjmΘ(Ej),
where Ej is j-th eigenvalue to the eigenvector φj =
(Tj1, Tj2, Tj3, Tj4) of Hamiltonian (7). By the inverse
Fourier transform, the formulas for the new lines read

Pα,βi,j

(
Sα,βi,j

)
=

1

L

∑

k

〈α̂†
kβ̂k〉0

(
〈α̂†

kβ̂
†
k〉0

)
ei(i−j)k. (8)

Effectively, to determine equilibrium properties of the
model the system of Eqs. (6) and (8) need to be solved
self-consistently, together with the minimization of 〈Ĥ〉G
with respect to x [11–14, 28]. We also adjust the chem-
ical potential as the total filling n is fixed. Finally, the
physical ground state energy of the system is obtained as
EG = 〈Ĥ〉G|0+nµ, where |0 denotes the equilibrium value

and n ≡ 2〈n̂fiσ+ n̂ciσ〉G is the total electron concentration.

Likewise, we define f orbital filling, nf = 2〈n̂fiσ〉G.
Our variational scheme allows for determination of

both Ĥeff and |ψ0〉. The latter, in turn, enables us for
computing the SC order parameters

∆αβ
G;ix−jx,iy−jy ≡ 〈α̂†

i β̂
†
j 〉G = 〈P̂Gα̂†

i β̂
†
j P̂G〉0. (9)

Although there is no pairing term between the c elec-
trons in the effective Hamiltonian (5), the corresponding
superconducting correlation functions are nonzero.

Results. We have selected values of the microscopic
parameters realistic for the Ce-based HFS, namely c-
electron band emerging from the nearest-neighbor hop-
ping, t = −1 (reference energy) and second nearest-
neighbor, t′ = 0.25|t|, f -electron atomic level position

ǫf = −3|t|, and f–f Coulomb repulsion, U = 10|t|.
The c–f hybridization is considered of variable and the
nearest-neighbor origin with V < 0. The energy units
are scaled to Kelvins by assuming |t| = 50meV (see e.g.
[6, 8]). We have restricted our results to the f orbital fill-
ing not exceeding unity or slightly larger (but here never
nf > 1.05) to model possible local f3+, f4+ or f2+ con-
figurations. The diagrammatic expansion, if not stated
otherwise, has been carried out up to the third order of
expansion, k = 3. The convergence issue would be elab-
orated later.

In Fig. 1 we draw the phase diagram characterized
by the value of the f -f electron dx2−y2 component of

the order parameter, ∆ff
G;1,0 on the total filling n - hy-

bridization magnitude |V | plane, with the f -state filling
nf marked. The values of the remaining d-wave contri-

butions, ∆αβ
G;ix−jx,iy−jy are less than 20% of the domi-

nant ∆ff
G;1,0. In the inset we draw the SC gap magnitude

and the condensation energy ∆E = EPM − ESC vs. U ,
where EPM and ESC are the ground state energies for
the paramagnetic (normal) and SC states, respectively.
It explicitly shows the emergence of the superconduc-
tivity as driven by the increasing electronic correlations.
The superconductivity is suppressed in three limits on
the |V |-n plane. First, SC disappears for low n and large
|V |, as the f -orbital is not filled enough for correlations
to matter; we need nf & 0.8 − 0.85 for that. Second, for
low |V | the superconductivity disappears as f electrons
are loosing their itineracy induced by the coupling to the
conduction band. Third, for large |V |, SC is suppressed
because the correlations are again too weak.

In Fig. 2, top we show the order depednence of dia-
grammatic expansion on the example of the condensation
energy along selected |V | = 1–direction (cf. also Fig. 1).
As the k = 3 and k = 4 plots are practiclly the same, the
satisfactory convergence is reached already in the third
order (k = 3).

In Figs. 2 bottom and 3 top, we plot the condensation
energy for the constant |V | and n values. The lines in
Fig. 3 are terminated for low |V |, as we could not ob-
tain there a satisfactory numerical convergence for the
self-consistent loop for the paramagnetic solution due to
the presence of extremely enhanced hybridization peaks
(cf. with Ref. [26]). The obtained condensation energy is
large but reasonable for the heavy fermion systems. Nev-
ertheless, the condensation energy can be suppresed by
introducing frustrated hybridization, namely taking both
the intersite and the onsite contributions. In the Fig. 3,
bottom we show that considered by us correlation-driven
superconductivity for low values of hybridization is of
the non-BCS origin as we gain in the kinetic energy in
SC with respect to the paramagnetic (normal) state.

For more precise reference to the experimental data, we
address the case of CeCoIn5 [6–8]. The Fermi level in this
compound is placed lower in energy that the middle point
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of the emergent hybridization gap, thus the regime of n <
2 in our model is suitable in this case. In this regime, the
condensation energy for the non-BCS superconductivity
is of the same order of magnitude as that for the CeCoIn5

critical temperature (Ts = 2.2K) and e.g., for n = 1.8
and |V | ≃ 0.65 is explicitly the same (cf. Fig. 3, top).

For a further comparison with the experimental data
for CeCoIn5, in Fig. 4 we show the effective supercon-
ducting pairing components (lines) along n = 1.8 direc-
tion. Note that our effective Hamiltonian can serve as
a direct rationalization of the phenomenological model
used in Refs. [6–8]. The dominant line is that joining the

f -f sites and of the dx2−y2 -wave symmetry, ∆ff
1,0. What

is more important, our model also predicts a multiband
superconductivity with the similar relation between the
component gap magnitudes as proposed in recent exper-
iments [6–8] (in the experiment ∼ 20%, here ∼ 10 − 15%
- cf. Fig. 4, inset).

Summary. The Anderson lattice model was solved
here by the DE-GWF approach which includes intrinsic
correlation-driven microscopic mechanism for supercon-
ductivity. Obtained superconducting state has several
properties, recently found to exhibit by CeCoIn5 [6–8]
and most probably by other Ce-based superconductors
[5, 9]: (i) The superconductivity is of non-BCS (the gain
in the kinetic energy) and multiband (f -f and f -c pair-
ing) character; (ii) The leading gap component is that for
f -f pairing and dx2−y2 -wave symmetry; (iii) The values
of condensation energy are in the reasonable range for
the description of f -electron compounds superconduct-
ing critical temperatures.

The results incorporate SC as an intrinsic property of
ALM as modeling heavy fermion compounds. This com-
pletes the full picture of ALM describing all, the most im-
portant emergent phenomena observed in heavy fermion
systems.
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FIG. 4. Effective gap components with the leading dx−y2 -
wave symmetry of f -f order parameter. The components of
relative amplitude ∆αβ

ix−jx,iy−jy
/∆ff

ix−jx,iy−jy
< 5% are not

included.

The developed framework can be extended to the de-
scription of different symmetries of the superconducting
order parameter and its spatial modulation (e.g. FFLO
state), as well as study a coexistence or competition with
magnetism.
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3.8 Additional project: Transport through the supercon-
ducting hybrid junctions

During my PhD studies I have pursued additional project [122, 123, 124] not connected
with the strongly correlated systems, however related with the part of the topic of this
Thesis, namely concerning superconductivity.

Blonder, Tinkham and Klapwijk (BTK) in their seminal work [150] have developed
approach based on the Bogoliubov - de Gennes equations for the electric transport in-
cluding Andreev reflection processes through the conventional superconductor - normal
conductor ballistic junction under assumption of the dirty contact modeled by the scat-
tering potential at the interface. This straightforward and transparent approach has
successfully explained observed experimental conductance characteristics for the case of
conventional s-wave symmetry of the superconducting order parameter[151]. The theory
was generalized also to account for the different symmetries, e.g., d-wave [152]. It turned
out to be important tool for the interpretations of the spectroscopic measurements rev-
eling the nature of superconductors itself.

Due to the symmetry of the superconducting state and the assumed constant density
of states close to the Fermi energy BTK formalism gives no thermoelectric power in
the standard case. This transport coefficient is very important parameter and many
controversies exist about its measurements in the superconductors and the structures
containing superconductors [153]. One of the attempts to obtain nonzero thermoelectric
signal was the consideration of the energy dependent superconducting gap, ∆(E) [154]
as suggested for the hole superconductivity.

3.8.1 Article B.1. Thermoelectric Effect in the Normal Conductor -
Superconductor Junction: A BTK Approach

In Article B.1 [122] we have developed the theory intimately based on the BTK approach
which give rise to the nonzero thermopower and is based on the explicit consideration of
the energy dependent density of states. It was explicitly calculated for the free electron
gas in different dimensional situations as well as for the case where Fermi level was near
the Van Hove singularity. Thermopower was found to be the strongest when the Fermi
level is placed close to the band bottom, e.g., as in the case of the heavy fermion systems.
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The thermopower of the junction between normal conductor and s-wave superconductor has been investigated.
For this purpose we have analyzed in detail a simple generalization of the Blonder�Tinkham�Klapwijk theory by
taking into account explicitly an energy dependence of the density of states near the Fermi level. Both linear
and nonlinear thermopowers have been calculated for 3D free electron gas, 3D Fermi liquid, and the case with
Van Hove singularity in the vicinity of the Fermi level. In the linear regime, for all models, the thermopower as
function of temperature has a clear maximum with its position and the value depending strongly on the junction
barrier strength. In the nonlinear regime, we have found very large values of the thermopower (up to 8kB/e) and
strongly asymmetric behavior with respect to the change of the temperature gradient sign.

PACS: 74.45.+c, 74.25.fg, 73.23.Ad

1. Introduction

Tunneling spectroscopy between normal and supercon-
ducting (NS) materials is one of the most e�ective tools to
study the nature of the superconducting state [1, 2]. De-
spite the existence of energy gap in superconductor (SC),
quantum transport is still possible for energies below the
gap value by means of re�ection of the incident electron
as a hole with the opposite charge and momentum, as
predicted by Andreev [3, 4]. Currents �owing across the
junction of an arbitrary transparency were theoretically
analyzed in the seminal paper of Blonder, Tinkham, and
Klapwijk (BTK) [5]. They have discussed a continuous
transition from the tunneling limit to the metallic regime.
The theory was shown to be successful in describing ex-
perimental data of the current�voltage characteristics in
point contacts [6�8].
There were many extensions of this theory, related to

incorporating di�erent nature of superconducting state:
d-wave symmetry of the order parameter [9], the Fulde�
Ferrell�Larkin�Ovchinnikov state [10, 11], hole supercon-
ductivity [12], two-band superconductivity [13], dimen-
sionality of the problem [14, 15], as well as di�erent type
of the non-superconducting material of the junction: fer-
romagnet [16], semiconductor [17], graphene [18]. The
theory was also successfully adapted to the molecular
junctions [19]. The main strength of the BTK approach
is its simplicity and possibility of studying exotic features
in a straightforward manner.

∗
e-mail: marcin.wysokinski@uj.edu.pl

Nonetheless, the electrical conductance does not pro-
vide the full understanding of the system. For example, it
is important to look into the thermodynamic properties
of particular materials and their electrical response to the
temperature gradient. In general, the problem of ther-
moelectric phenomenon in superconductors and in the
superconductive junctions was studied extensively both
theoretically [20�31] and experimentally [32�34] with an
astonishing precision. Namely, the temperature and the
voltage is measured to the order of mK and µV, respec-
tively. Also, in majority of those papers the thermo-
electric e�ect was analyzed using the Green function ap-
proach. Explicitly, the Eilenberger�Usadel equations [35]
were used, as they seem to be the most e�ective mod-
ern tool in the description of thermoelectric properties
of superconductive systems. However, despite the great
progress achieved in the �eld during last two decades,
the thermopower of such systems is still not fully un-
derstood [36]. In the words of the recent review [36]:
�a signi�cant advance in the theory is required before the
thermopower of mesoscopic proximity-coupled systems is
understood�.

In view of the successes of the BTK theory to describe
conductance of the system it is of interest to study the
thermopower also within this intuitive approach. Al-
though it was employed earlier in some special cases
[12, 37] in its simple form leads to zero thermopower ir-
respectively of the temperature di�erence over the junc-
tion. Here we propose a simple extension of the theory
to include thermodynamic properties of the quantum �u-
ids on both sides of the junction, particularly non-trivial
density of states naturally gives rise to the Seeback e�ect.

(758)
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Additionally, as in the case of conductance, this approach
can be further generalized to take into account speci�c
features of some exotic materials (e.g., those with non-
-standard band mass distribution, nontrivial gap symme-
try, realistic dimensionality of the system).
Usually, the e�ect of density of states (DOS) energy de-

pendence in the NS junctions current characteristics is ig-
nored. Even though, it is negligible when conductance is
studied, in the case of the thermopower it has turned out
to be crucial. Therefore this modi�cation to the BTK ap-
proach would complete the picture of the thermoelectric
e�ect in planar NS junctions. The e�ect of the DOS in
the similar manner was also considered earlier by Mazin
[38] in the context of measuring the spin polarization
of the ferromagnet in the ferromagnet�superconductor
junction, and by Kupka [15] in the context of realistic
three-dimensional geometry of NS junction.
Here we present the general framework which allows

to obtain a nonzero Seebeck e�ect within the extended
BTK approach, and applied to the simplest case of the
normal metal�s-wave superconductor junction. Namely,
we include explicitly the e�ect of the non-constant DOS
around the Fermi level and apply it to the following se-
lected situations: 3D free electron gas and 3D Fermi liq-
uid. This inclusion gives rise to the nonzero thermoelec-
tric e�ect, and results in large thermopower value across
the junction. Particular set of parameters, leading to the
large value of the thermopower, can possibly be realized
in heavy fermion systems, where a small Fermi velocity
implies a large value of dimensionless parameter mod-
eling the barrier strength. Additionally, we have also
discussed the e�ect of the logarithmic Van Hove singu-
larity (VHS) present in the vicinity of the Fermi energy
that gives possibility to study the thermopower also in
the case of negative slope of DOS.
The paper is organized as follows. In Sect. 2 we discuss

BTK theory with an explicit inclusion of energy depen-
dent DOS, as well as refer to the previous works on the
thermoelectric e�ect in NS junction. In Sect. 3 we derive
the modi�ed BTK formula for the case of 3D free elec-
tron gas and present results concerning the thermopower,
both in the linear and the nonlinear regimes. Addition-
ally we apply this approach to the Fermi liquid case. In
Sect. 4 we extend our analysis to the case of DOS with
VHS represented by a logarithmic function. Finally, in
Sect. 5, we provide a brief summary.

2. Model and Approach

2.1. Modi�ed Blonder�Tinkham�Klapwijk formalism

The BTK theory [5] describes electrical current
through the NS junction. The starting point are the
Bogoliubov�de Gennes equations [39] describing a two-

-component wave function

(
u

v

)
for s-wave superconduc-

tor with a constant superconducting gap ∆:

(
H ∆

∆∗ −H†

)(
u

v

)
= E

(
u

v

)
, (1)

where the Hamiltonian for free electron gas reads H =

−}2∇2

2m − µ(x) + V (x). The potential, utilized in the
form V (x) = Kδ(x), models the interfacial scattering.
For convenience we also introduce dimensionless barrier
strength Z = K/}vF. In BTK formalism, one considers
incident electron which is scattered by di�erent processes
at the interface with a �nite transparency: it can be re-
�ected, re�ected as a hole (Andreev re�ection � AR)
or transmitted as a quasiparticle. For the states taking
part in the tunneling processes, employing plane wave
approximation, the corresponding multicomponent wave
function is constructed. For simplicity we assume that all
of particles have the same value of the momentum equal
to the Fermi momentum. Applying the standard bound-
ary conditions, i.e., by demanding continuity of the wave
functions and their spatial derivatives at the interface,
one can derive the probabilities of all the processes. Us-
ing those probabilities, following BTK, the net current
formula is obtained in the following form [5]:

INS = 2N(0)evFA
∫ ∞

−∞

{[
1 − B(E)]fN(E − eV )

− A(E)fN(E + eV )

−
[
1 − A(E) − B(E)

]
fS(E)

}
dE, (2)

where N(0) denotes DOS at the Fermi level, vF is the
Fermi velocity, A is the area of contact, and fN, fS are
the Fermi distribution functions for the NC and SC, re-
spectively. Functions A(E) and B(E) are the tunnel-
ing probabilities of the hole (Andreev) re�ection and the
usual re�ection of the incident electron, respectively. For
simplicity, we also de�ne the transfer probability

T (E) ≡ (1 − B)fN(E − eV ) − AfN(E + eV )

− (1 − A − B)fS(E). (3)

BTK approach has been generalized to realistic
3-dimensional geometry, where T (E) depends also on
the angle of incidence, as shown in a number of papers
[14, 15]. However, the main contribution to the current is
provided for angles of incidence close to zero, e�ectively
similar to one-dimensional geometry (for justi�cation, see
Ref. [15] and references therein).
In the one-dimensional case, the product of the DOS

(∼ ∂k/∂Ek) and the charge carriers velocity (∼ ∂Ek/∂k)
is constant. In more general case, this assumption is
well justi�ed for calculating current�voltage characteris-
tics, but it is insu�cient for more subtle e�ects such as
the thermoelectricity considered here. Also, it is impor-
tant to include the e�ect of energy-dependent DOS in the
study of spin-polarization of the ferromagnet in the case
of the ferromagnet�superconductor junction [38].
In BTK approach [5], electrons contributing to the

current are only those whose velocities are directed to-
wards the junction i.e. those with vx > 0. The cur-
rent (2) through junction of area A can be rewritten in
the spirit of the Landauer�Büttiker approach to the elec-
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tronic transport as

INS = eA
∑

k,σ

vxT (Ek), (4)

with T (Ek) given by (3). In higher-dimension geome-
tries, the energy dependence of DOS does not cancel out
with that of the group velocity. In those cases, we have
to take into account explicitly the product of DOS and
velocity in the net current formula, i.e., start from the
formula

INS = 2eA
∫ ∞

0

dET (E)

∮

vx>0

dS(E)

|∇kE| vx. (5)

In this formula we treat DOS rather as a �number of
conductance channels�. This concept is based on the as-
sumption of not taking into account the fact that the
hole retracing electron path is on the opposite side of
the Fermi surface and therefore, feels di�erent DOS. We
also neglect the shift of DOS due to non-zero voltage
over the junction, since it rather weakly in�uences the
current characteristics. The resulting integral over the
equi-energy surfaces can be solved by introducing the
explicit energy dependence. This simple e�ect, in turn
modi�es the �nal BTK formula. In Sect. 3 we present our
calculations of the thermopower taking into account the
parabolic dispersion relation in the 3D free electron gas
and linear dispersion relation around the Fermi energy
for 3D Fermi liquid [40].

2.2. Thermopower de�nition

As said above, in the standard BTK approach there
is no nonzero thermopower due to the symmetry in ex-
pression (2) irrespectively of the temperature di�erence.
However, the assumptions introduced in more speci�c
models give rise to the non-zero thermopower in NS junc-
tions. The only works exploring thermoelectric proper-
ties of the NS junction via BTK formalism is that by
Hirsch [12, 37]. He explored thermoelectric phenom-
ena by including the energy dependent superconducting
gap function [12] observed in the hole-superconductivity
model, as well as by considering a more realistic rectangu-
lar barrier of �nite width [37]. The latter case was also
investigated in the case of ferromagnet�superconductor
Andreev point contacts [41]. Here, the source of the ther-
moelectric e�ect in the NS junction is the energy depen-
dence of vx and of DOS, as expressed in (5). This feature
does not alter much the conductivity, but gives rise to the
thermoelectric phenomena.
By keeping the two electrodes at di�erent temperature

or applying voltage, we obtain a non-zero current through
the junction. If both the voltage V and the temperature
di�erence δT are small, we can write that the total cur-
rent as

Ie = L11V + L12δT. (6)

The quantity that measures the thermoelectric e�ect is
the thermopower or the Seebeck coe�cient S, which is
de�ned as the voltage driving to zero the current �owing
in response to the temperature di�erence. This means
that

S ≡ −
(

V

δT

)

I=0

=
L12

L11
. (7)

3. 3D Free-electron-gas case

For 3D free electron gas, the integral in (5) can be car-
ried out analytically and is equal to
∮

vx>0

dS(E)

|∇kE| vx =
k2

}

∫ π
2

−π
2

dθ

∫ π
2

−π
2

dϕ cos2(θ) cos(ϕ)

=
2mπE

}3
. (8)

We have obtained linear energy dependence, which in
turns modi�es the BTK net-current formula in the fol-
lowing manner:

INS =
1 + Z2

eEFRN

∫ ∞

−EF

(E + EF)T (E)dE. (9)

As in the BTK papers [5], we have set the chemical po-
tential equal to zero and thus, in the �nal result have
shifted energies by the Fermi energy. Also, the current is
normalized by the resistance of the NN junction [5] (RN).
Let us note that in all numerical calculations discussed in
the next sections we have taken the Fermi energy equal
to EF = 150∆.

3.1. Linear regime

In Fig. 1 we draw schematically the NS junction. The
black rectangle represents the barrier and the gray re-
gions in it mark the regime of energies, for which the
probability A(E) is large ≈ 1. The dashed line show the
chemical potential, taken as zero of energy. The bias is
applied to the normal metal only. The black lines are
the Fermi distributions on the cold and the warm sides
of the junction. δT is the temperature di�erence across
the junction.

Fig. 1. Schematic diagram showing energetic proper-
ties of the NS junction in the limit of strong barrier,
where the NC is colder than SC. The black rectangle
represents the barrier. Heavy black lines show the Fermi
functions. Dashed line denotes (common) Fermi energy,
and thin lines on the right indicate positions of energy
gap (±∆).

In the linear regime and very small temperature dif-
ference and voltage, δT, V → 0, we expand the Fermi
functions in the Taylor series, which to the �rst order are
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fN = fT−δT/2(E − eV ) = fT (E) − eV
∂f

∂E
+

δT

2T
E

∂f

∂E
,

fS = fT+δT/2(E) = fT (E) − δT

2T
E

∂f

∂E
. (10)

Substituting those forms to Eq. (5) we obtain the explicit
formula for the thermopower

S =

∫
∂f
∂E E(E + EF)(1 − B − A)dE

kBT
∫

∂f
∂E (E + EF)(1 − B + A)dE

kB

e
. (11)

In Fig. 2 we present temperature dependence of the
thermopower in the linear regime for selected values of
the barrier strength, Z. The tendency is similar to that
obtained by Hirsch [12]. Namely, with the increase of
the barrier strength the thermopower increases. Also,
for su�ciently high barrier strengths we have obtained
a clear maximum of the thermopower as a function of
temperature. The temperature dependence remains sim-
ilar in the nonlinear regime (for larger temperature dif-
ference, δT ), with slightly changed position of the ther-
mopower maximum. What is worth mentioning the char-
acter of the thermopower temperature dependence for
larger barrier strengths qualitatively agrees with the cor-
responding thermopower dependence calculated within
the Usadel-equation framework [27].

Fig. 2. Temperature dependence of the linear ther-
mopower for selected barrier strength values, Z. The
case of 3D free electron gas is considered.

The relevant energies of the junction are schematically
presented as the diagram in Fig. 1. Probability of AR,
A(E), is equal to 1 for energies ±∆, irrespectively of
the value of the barrier strength [5]. Therefore, in the
large barrier strength limit, Z → ∞, the transport is
almost blocked for all energies except for those close to
±∆. Due to this circumstance, we obtain practically zero
thermopower for temperatures less than T = 0.05∆/kB.
In this limit, thermal excitations do not reach the upper
channel of transmission around +∆ and there are fully
occupied states on both sides of the junction for E =
−∆. Once the temperature crosses this limit, we reach
a maximum for the thermopower and subsequently the
part T−1 starts dominating for all barrier strengths. The
highest temperature shown in Fig. 2 is T = 0.2∆/kB, as
we do not take into account the temperature dependence

of the superconducting gap.

3.2. Nonlinear regime

In this section we present numerical results in the non-
linear regime. The thermopower depends on the barrier
strength Z, temperature T , and the temperature di�er-
ence δT . We have obtained asymmetric behavior of the
thermopower (Fig. 3b�d) as a function of temperature
di�erence δT , despite of the symmetric behavior of the
zero-voltage current (Fig. 3a). For the positive sign of the
temperature di�erence, we have obtained large values of
the thermopower (up to 8kB/e) in spite of a relatively
small currents.

Fig. 3. Nonlinear zero-voltage current as a function of
temperature di�erence, δT for selected values of the av-
erage temperature (T ) in the system, for the barrier
strength parameter Z = 1000 (part (a)) and nonlinear
thermopower as a function of the temperature di�er-
ence (δT ) for selected temperatures (T ) of the junc-
tion (around the temperature of the maximal linear
thermopower, cf. Fig. 2) and selected values of barrier
strength parameter Z = 10, 100, 1000 (parts (b), (c),
and (d), respectively). 3D free electron gas is consid-
ered.

The asymmetry can be understood via a simple pic-
ture (cf. Fig. 1). For any temperature di�erence when
at least one of the temperatures is high enough for ther-
mal excitations to reach the transmission channel (+∆),
a relatively large current is �owing through the junction.
Consider the temperature di�erence of a positive sign, so
the thermal smearing in SC is higher than in NC, such as
thermal excitations in the former reach the energy equal
to ∆. The voltage, applied to NC in order to have zero
net current, shifts the Fermi energy in the NC with re-
spect to the Fermi energy in the SC.
Large voltages are required to compensate for ther-

mally induced currents. Therefore, we have a relatively
high thermopower. The opposite happens for the nega-
tive sign of the temperature di�erence. In that situation
even small shift of the Fermi energy in the NC results
in the large change of the �owing current, and one gets
small thermopower.
In a similar manner, we may argue about the behavior

of the thermopower as a function of the barrier strength,
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observed clearly in the linear regime. With the increas-
ing parameter Z, the main transmission channels around
energies ±∆ are narrower. For that reason, we have to
shift the Fermi level by a larger voltage to have zero net
current over the junction.

3.3. 3D Fermi-liquid case

It was shown �rst by Landau [42] that a more accu-
rate description of electrons in metals is the theory of the
Fermi liquid taking into account interaction between par-
ticles near the Fermi energy. This theory assumes linear
dispersion relation in the vicinity of the Fermi level, i.e.

Ek − EF = }vF(k − kF), (12)

with the Fermi velocity vF = }kF/m∗, where kF is the
Fermi momentum and m∗ the enhanced e�ective mass.
Since the Fermi liquid is considered to be more realis-
tic description of electrons in metals, we have calculated
analytically the product of the DOS and velocity within
this model in three dimensions∮

vx>0

dS(E)

|∇kE| vx =
k2

}

∫ π
2

−π
2

dθ

∫ π
2

−π
2

dϕ cos2(θ) cos(ϕ)

=
(E + EF)2π

}3v2
F

. (13)

The energy dependence is explicitly quadratic and di�er-
ent from the corresponding linear dependence for 3D free
electron gas, cf. Eq. (8). The numerical results, however,
both in linear and nonlinear regime di�er only slightly
from those shown for a 3D free electron gas and we do
not present them here.

4. E�ect of the Van Hove singularity

In Sects. 3 and 4 we have presented a consistent argu-
ment for the importance of the DOS shape on the ther-
mopower in the 3D free electron gas, and in the 3D Fermi
liquid. For the sake of completeness, we have investi-
gated the thermopower within the model, in which we
include in the integrand (5) the form of DOS with Van
Hove singularity (VHS). We model the VHS by logarith-
mic function of energy with �tting parameters taken from
the two-dimensional tight-binding model [43], namely:

N(E) = b1 ln

∣∣∣∣
E

b2

∣∣∣∣, (14)

with b1 = −0.04687|t|−1, and b2 = 21.17796|t|, where t
is hopping, taken as |t| = 100∆.
This model corresponds to the assumption of constant

velocity and realistic DOS. In the linear regime, ther-
mopower can be expressed as

S =

∫
∂f
∂E E

(
ln |E−α

b2
|
)
(1 − B − A)dE

kBT
∫

∂f
∂E

(
ln |E−α

b2
|
)
(1 − B + A)dE

kB

e
, (15)

where α denotes a relative shift (chosen arbitrarily) of
the Fermi energy with respect to VHS. There were ex-
periments in which the Fermi energy was found in a very
close vicinity of the VHS [44, 45], or moved appreciably
relative to it.

Fig. 4. The dependence of the linear thermopower on
the relative shift of the Fermi energy with respect to Van
Hove singularity α for a few values of barrier strength
parameter Z. The average temperature in the system is
taken as T = 0.1∆/kB.

The results of the linear thermopower as a function
of parameter α for di�erent values of barrier strengths
for the �xed temperature T = 0.1∆/kB, are presented in
Fig. 4. The maximum of the thermopower is well pro-
nounced and �xed to the particular value of the shift of
the Fermi energy with respect to the VHS, α = ∆. There-
fore, we have studied the linear temperature dependence
of the thermopower and nonlinear e�ects, particularly
for α = ∆. The behavior of temperature dependence
of the linear thermopower (not shown) is similar as that
for 3D gas and for the Fermi liquid, but the values are
larger than in the previous cases. The interesting feature
of this model is that when the Fermi energy crosses the
VHS, thermopower changes sign. This behavior of the
thermopower is very di�erent from that found by Hirsch
who postulated universality of the thermopower sign for
the hole theory of SC [12]. This observation seems to be
very promising for the future experimental veri�cation.

5. Conclusions

In this paper we have extended the Blonder, Tinkham,
Klapwijk approach [5] to the tunneling spectroscopy be-
tween normal metal and superconducting materials of
s-wave type. Our contribution is to go beyond the ap-
proximation of the constant product of the density of
states (DOS) and the group velocity of charge carriers.
Inspired by the papers of Mazin [38] and Kupka [15] we
have introduced to the BTK current formula an explicit
energy dependence of the product of DOS and the veloc-
ity. For the case of 3D free-electron gas, the product was
found to be linear in energy, whereas within the Fermi
liquid theory, quadratic. This modi�cation virtually does
not a�ect the current�voltage characteristics or conduc-
tance of the NS junction, but it gives rise to the thermo-
electric e�ect. Previously only Hirsch [12, 37] examined
the thermopower in NS junction via BTK approach in
special cases by introducing either the energy-dependent
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superconducting gap function [12] (in the so-called model
of the hole superconductivity) or by invoking the barrier
with �nite width [37].
Both linear and nonlinear regimes of thermopower were

studied for the cases of free electron gas, the Fermi liq-
uid, and for the model with the logarithmic Van Hove
singularity. With the increase of the barrier strength the
thermopower increases. We believe that heavy fermion
systems are promising for the experimental veri�cation of
our theoretical predictions, since low values of the Fermi
velocity should result in high value of the e�ective barrier
strength.
We have found a maximum of the thermopower as

a function of average junction temperature (Fig. 2).
Behavior is qualitatively similar to that obtained via
the Usadel�Eilenberger equations [27]. In the nonlinear
regime, we have investigated additionally its dependence
on the temperature di�erence, where we have found a
spectacular asymmetry of the thermopower with respect
to δT sign inversion (Fig. 3b�d), irrespectively of the
fact that the zero-voltage current is completely symmet-
ric (Fig. 3a). This can be attributed to the asymmetry
of the system, where by applying the voltage one shifts
the Fermi energy of the normal conductor with respect
to the superconducting gap in the superconductor.
The approach can be applied also for the studies of 2D

systems. The integral in (5) leads to either
√

E or E
dependence of the velocity times DOS function for 2D
free electrons and the Landau�Fermi liquid, respectively.
Studies of the thermopower in the case of DOS with

Van Hove singularity intuitively shows that the ther-
mopower has di�erent sign on the negative and positive
slope of DOS (Fig. 4). Similar behavior of the ther-
mopower can be expected for the Kondo insulators. In
those systems one observes a sharp minimum in the DOS
at the Fermi level which is sometimes considered to be
a small semiconducting-like gap between the bands. Let
us note that BTK theory predicts extremely large val-
ues of the barrier strength parameter Z in heavy fermion
systems resulting from the small value of the Fermi ve-
locity (this is also the case for large di�erences between
the Fermi velocities on the both sides of the junction in-
terface [1]). However, this would require an extension
of the present approach to the situation with strongly
correlated electrons [46�48].
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3.8.2 Article B.2. Seebeck effect in the graphene-superconductor junc-
tion

In Article B.2 [123] we have accounted for the explicit energy dependence for the
graphene density of states and within the framework of the Dirac-Bogoliubov-de Gennes
equations [155] we have studied Seebeck effect. According to the predictions obtained
for the conventional superconductors, we have obtained that large values of the ther-
mopower are for the situation where the Fermi level is not much shifted from zero (Dirac
point) and roughly does not exceed the specular Andreev reflection regime.
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Thermopower of graphene-superconductor (GS) junction is analyzed within the extended

Blonder-Tinkham-Klapwijk formalism. Within this approach, we have also calculated the

temperature dependence of the zero-bias conductance for GS junction. Both quantities reflect

quasi-relativistic nature of massless Dirac fermions in graphene. Both the linear and the non-linear

regimes are considered. VC 2013 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4802503]

I. INTRODUCTION

Graphene is one of the most remarkable new materials.

Not only has its discovery1 violated in same sense Landau’s

theory of the thermodynamical instability of a two-

dimensional structure2 but also due to the peculiar band struc-

ture it has provided us with an invaluable opportunity to test

relativistic quantum electrodynamics in the desktop labora-

tory.3 For that reason, much effort has been put into under-

standing of the phenomena associated with this material.

Since the graphene-based devices are usually considered

as a mesoscopic systems, the Landauer approach is widely uti-

lized to study the ballistic transport in them.4–6 Even though

this approach does not account in the simplest form for all the

features of the material, it provides a good overall description

of the electric transport. This approach was extended by

Blonder, Tinkham, and Klapwijk7 (BTK) to the case of stand-

ard normal metal-superconductor (NS) junction, and in this

manner yielded a very good description of the experimental

data.8 Their method has been widely used for different spe-

cific situations9–17 and finally adapted for graphene-

superconductor (GS) hybrid systems.18–22 One of the most

peculiar properties predicted in such systems is the specular

Andreev reflection and deviations of the conductance spec-

tra18 from those predicted by BTK for normal metals.7

Landauer formalism has also been successfully adapted

for thermoelectrical transport in mesoscopic devices.23–25 In

the case of standard NS junctions, BTK formula also turned

out to be useful technique for predicting effects concerning

thermal properties of electric and heat currents.11,13,17,26

This method has also been used for the graphene-based

superconducting hybrid structures for obtaining the thermal

conductance.20,27–29 However, the thermopower has not

been studied so far. This topic is addressed in this article.

In this work, we provide systematic study of the effect

of the temperature on the charge current in the GS junction

using a generalized BTK formalism for the specific case of

graphene. We present results concerning the temperature de-

pendence of the zero-bias conductance and the Seebeck coef-

ficient in the linear regime. For the sake of completeness, we

also discuss the non-linear thermopower.

The paper is organized as follows. In Sec. II (and in

Appendix), we present briefly a generalized BTK approach

for the charge current through the GS junction. The linear

transport coefficients are discussed: in particular, the zero-

bias conductance and the thermopower. We also briefly com-

ment on the effect of non-linear corrections on the Seebeck

coefficient. Finally, we conclude in Sec. IV.

II. MODEL

We consider a ballistic limit for graphene based junction

composed of the normal region and induced by means of the

proximity effect superconducting region (cf. Fig. 1). For the

description of the unconventional quasiparticle states, we uti-

lize Dirac-Bogoliubov-de Gennes equations for the two-

dimensional (2D) sheet of graphene in the form18,30

Hj � EF1 D

D† EF1� Hj

� �
u

v

� �
¼ � u

v

� �
; (1)

where the index j can be either þ or �, which refers to the

two inequivalent valleys K and K0 in the Brillouin zone. The

single particle Hamiltonian is given by

H6 ¼ �i�hvFðrx@x 6 ry@yÞ þ U; (2)

where vF is the energy independent Fermi velocity for the

graphene, and {ri} denote respective Pauli matrices.

Because of the valley degeneracy, one can effectively do the

calculation for the one valley only. We assume that in the ge-

ometry, where the interface is determined by the y-axis, the

pair potential with the s-wave symmetry changes step-like in

the x-axis direction

Dðr; TÞ ¼ 0 x < 0;

DðTÞei/ x > 0;

�
(3)

where the temperature dependence of the gap function can

be deduced from the usual BCS theory31 and is taken in the

following form:

DðTÞ
D0

¼ tanh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1:76 �

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Tc

T
� 1

rs0
@

1
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The BCS theory of the superconductivity based on the

requirement that the coherence length is large when com-

pared to the Fermi wavelength. Under that condition, we can

assume that the additional potential U has the form

UðrÞ ¼ 0 x < 0;
�U0 x > 0;

�
(5)

with large U0 (EF þ U0 � D0) and for the simplicity we

define E0F ¼ EF þ U0. In numerical calculations, we set

E0F ¼ 1000D0.

In the spirit of the BTK scheme (by matching the wave

functions at the boundary ðx ¼ 0Þ), we obtain expressions

for the amplitudes of the Andreev hole reflection (AR)

(að�; hÞ) and the normal reflection (bð�; hÞ) of the incident

electron—see Appendix for details of the method. Note that

there is no intrinsic barrier at the GS junction, and thus the

Fermi vector mismatch is the source of the normal reflection.

The transmission probability, averaged over the angles, takes

the following form:7,14

T ð�Þ ¼
ðp=2

�p=2

dh
cos h

2
1� jbð�; hÞj2 þ Re½eihA �

cos h
jað�; hÞj2

� �
:

(6)

The BTK formalism combined with the specific trans-

mission probability derived for graphene defines charge cur-

rent through the GS interface as7,18

Ie ¼
4e

h

ð1
�1

d�Nð�ÞT ð�Þ
�

f Gð�� eVÞ � f Sð�Þ
�
; (7)

where f G and f S are the Fermi distribution functions for the

normal (G) and the superconducting (S) region of GS junc-

tion, respectively, and

Nð�Þ ¼ jEF þ �jW
p�hvF

; (8)

is the energy dependent number of transverse modes in

the graphene sheet of width W.18 However, formula (7) is

not always accurate. The additional assumption is needed,

that for each mode carrying incident electron, having

energy EF þ � and being Andreev reflected there is always

enough modes at the level EF � � for this process to

happen. However, away from perfect Andreev reflection

regime (jað�Þj2 6¼ 1), as in our case, formula (7) remains

rigorous.

The quantity describing thermoelectric properties of the

system is thermopower, or Seebeck coefficient (S) measuring

the voltage driving to zero the current flowing in response to

the temperature difference, namely

S � � V

dT

� �
Ie¼0

: (9)

III. CHARGE TRANSPORT

A. Linear regime

Expansion of the Fermi functions in the normal and

superconducting regions to the first (linear) order in both the

bias and the temperature difference, with the average tem-

perature T, i.e.,

f G � fT�dT=2ð�� eVÞ ’ fTð�Þ � eV
@f

@�
þ dT

2T
�
@f

@�
;

f S � fTþdT=2ð�Þ ’ fTð�Þ �
dT

2T
�
@f

@�
;

(10)

enables to decouple Eq. (7) in the form

Ie ¼ GV þ IT
e dT: (11)

The resulting from it the linear transport coefficients can be

thus rewritten in the following closed forms:

G ¼ � 4e2

h

ð1
�1

d�
@f

@�
Nð�ÞT ð�Þ;

IT
e ¼

4e

hT

ð1
�1

d�
@f

@�
�Nð�ÞT ð�Þ:

(12)

The temperature gradient and the bias are set as positive

with respect to x coordinate. For the temperature in the sys-

tem approaching zero, the expression for the electric con-

ductance (G) reduces to the well-known BTK zero-bias

conductance formula7

GT!0 ¼
4e2

h
Nð0ÞT ð0Þ: (13)

In Fig. 2, we have plotted the zero-bias differential con-

ductance (calculated from Eq. (12)) as a function of tempera-

ture, normalized by the ballistic conductance g0 with having

N transverse modes in a sheet of graphene of width W and

given by

g0 ¼
4e2

h

ð1
�1

d�
@f

@�
Nð�Þ: (14)

For relatively high position of the Fermi level in gra-

phene (roughly EF � 5D0), the influence of the increasing

temperature (up to the approximately T=Tc ¼ 0:5) on the

conductance is almost negligible (cf. Fig. 2). The origin

of this behavior is strictly connected with the relatively

FIG. 1. Proposed schematic, experimental setup considered in our modeling.
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slow variation of the transmission probability T ð�Þ for

the subgap energies in this temperature regime, and

thus does not differ qualitatively from the standard NS

case.7 In the low doping regime (EF � 5D0), the linear

differential conductance as a function of the temperature

vastly differs from the standard NS case and reflects

the specific electronic nature of graphene, as well as

the impact of a crossover from the retro to the specular

AR limit.

The non-trivial behavior of the Dirac fermions in gra-

phene has also its influence on the linear thermopower. From

Eqs. (9) and (11), formula for this quantity reads

S ¼ IT
e

G
¼ � 1

kBT

ð1
�1

d� �j�þ EFj
@f

@�
T ð�Þð1

�1
d� j�þ EFj

@f

@�
T ð�Þ

kB

e
: (15)

Results obtained by the numerical integration are pre-

sented in the Fig. 3. The low temperature regime differs

from the one obtained for the NS junction.11 Contrary to the

NS case, for the graphene-based structure the thermopower

does not vanish for non-zero temperatures. This is due to the

relativistic nature of charge carriers in graphene, where AR

does not vanish even for the high effective barrier (in our

case effective barrier is only due to the Fermi level mis-

match) for the subgap energies (for the normal incidence AR

happens always with certainty18). Furthermore, in the low

doping regime (EF � D0), the Seebeck coefficient for the GS

junction is around one order of magnitude larger than even

for high effective barrier value (which as a phenomeno-

logical parameter can incorporate also the Fermi velocity

mismatch8) in the NS case.11

In this regime, we observe a clear maximum in the tem-

perature dependence of the Seebeck coefficient in the super-

conducting state. The maximum roughly corresponds to the

minimum in the zero-bias conductance as a function of
FIG. 2. Normalized zero-bias conductance as a function of temperature for

various Fermi vector mismatch.

FIG. 3. Linear thermopower as a function of temperature in the system for

various Fermi vector mismatch.

FIG. 4. Nonlinear thermopower as a function of the temperature gradient set

over the junction for various Fermi energies in graphene. The net tempera-

ture in the system is marked above each plot.
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temperature (cf. Fig. 2). The source of the significant

enhancement of the thermopower in the low doping regime

(EF � D0) should be understood as an effect of being partly

in the specular AR limit, where the transmission probability

spectrum drops to zero for energy corresponding to the

Fermi level position.18 This feature affects the zero-bias con-

ductance as a function of temperature and in turns is respon-

sible for the thermopower increase in the specular AR limit.

Therefore, in this regime, the thermopower is large and

reaches values up to 1kB=e. This suggests that there is a

potential for the application of this setup for cooling of vari-

ous nanostructures.

B. Effect of the non-linearity

We have also studied numerically the effect of the non-

linearity in our system. The thermopower in the non-linear

regime can be calculated as a ratio between the bias voltage

and the temperature gradient, when no charge current is

flowing (c.f. Eq. (9)). The results in the non-linear regime

are presented in Fig. 4. We have found that the non-linearity

influences the thermopower in a not systematical manner

with changing Fermi level position and the average tempera-

ture of the system. However, the change is not as dramatic as

in the NS case11 and is almost unnoticeable in the doped re-

gime EF � 5D0.

IV. CONCLUSIONS

In this work, we have analyzed the thermoelectric

charge transport in the graphene junction consisting of the

normal and the superconducting parts. In the linear regime,

we have calculated the temperature dependence of the zero-

bias conductance and the thermopower. We have found

deviations of these quantities from the standard normal

metal-superconductor junction case that are caused by the

relativistic nature of electrons in graphene. In the specular

Andreev reflection regime, Seebeck coefficient is strongly

enhanced for specific temperatures.

We have also studied the effect of non-linearity on the

thermopower and we have found that for a high Fermi level

positions (EF � D0) it stays almost unaffected and in the low

Fermi level regime is noticeably enhanced with the increase

of the temperature gradient.
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APPENDIX: BTK FOR GRAPHENE

The wave function in the normal part of graphene (NG)

wN and in the superconducting region (SG) wS, look, respec-

tively, as follows:

wN ¼ weþ
N þ bwe�

N þ awh�
N

wS ¼ cweþ
S þ dwhþ

S ;
(A1)

where the superscripts e and h refer to electron and hole in

NG and electronlike and holelike excitation in SG, and the

superscripts þ and � to right and left moving particle,

respectively.

Spinors resulting from Eq. (1) are expressed in the simi-

lar manner as in the Ref. 19, i.e., in the form

we6
N ¼ ½1;6e6ih; 0; 0�Te6ikexcosh;

wh�
N ¼ ½0; 0; 1; e�ihA �Te�ikhxcoshA ;

weþ
S ¼ ½u; ueihe

S ; ve�i/; veiðhe
S�/Þ�Teiqexcoshe

S ;

wh�
S ¼ ½v;�ve�ihh

S ; ue�i/;�ue�iðhh
Sþ/Þ�Te�iqhxcoshh

S ;

(A2)

where for the sake of clarity we do not include phase factor

eikyy since it corresponds to conservation of momentum in ŷ

direction. The corresponding wave vectors are defined as

follows:

keðhÞ ¼ �þ ð�ÞEF

�hvF
; qeðhÞ ¼ E0F þ ð�Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 � D2

p
�hvF

; (A3)

and the coherence factors are given by

u ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 � D2

p
�

 !vuut ; v ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 � D2

p
�

 !vuut :

(A4)

The conservation of momentum at the interface and

along ŷ direction enables us to obtain mutual relations for

the specific angles, namely

kesin h ¼ khsin hA ¼ qesin he
S ¼ qhsin hh

S: (A5)

The system must also satisfy the continuity condition at

the interface, wrLð0Þ ¼ wrRð0Þ. The Hamiltonian is linear

therefore is no need in matching derivatives. The resulting

wave function amplitudes take the form

að�; hÞ ¼ 2 cos hðe�ihh
S þ eihe

SÞuv

ðe�ihA þ e�ihh
SÞðe�ih þ eihe

SÞu2 � ðe�ih � e�ihh
SÞðe�ihA � eihe

SÞv2
;

bð�; hÞ ¼ 2 cos h½ðeihe
S � e�ihAÞv2 þ ðe�ihh

S þ e�ihAÞu2�
ðe�ihA þ e�ihh

SÞðe�ih þ eihe
SÞu2 � ðe�ih � e�ihh

SÞðe�ihA � eihe
SÞv2
� 1:

(A6)
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3.8.3 Article B.3. Temperature Dependence of the Zero-Bias Conduc-
tance in the Graphene NIS Junction

In Article B.3 [124] we have investigated the effects of the nonzero temperature on the
conductance oscillations in the graphene - insulator - superconductor junction with the
change of the height of the insulating potential. We have shown the suppression of the
oscillations amplitude with the increasing temperature for different model parameters.
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1. Introduction

The discovery of the graphene [1] opened up new op-
portunities in the material science for studying and de-
signing electronic systems governed by relativistic quan-
tum electrodynamics in the desktop laboratories. Shortly
after, the �eld of quasi-relativistic physics has been en-
riched by the range of new materials where similar elec-
tronic structure to the graphene was found, such as sili-
con and germanium atoms arranged in a hexagonal lat-
tice [2�4], and topological insulators [5] (surface states).
Despite similar energy dispersion, most of those new

systems turned out to be signi�cantly di�erent from
graphene. Especially, silicene was found to be intrin-
sically superconducting [6], contrary to the graphene,
which has widened the freedom of experimental and theo-
retical studies on the superconducting, graphene-like sys-
tems.
One of the �rst concepts in this sub�eld was the junc-

tion based on the graphene, composed from normal and
superconducting (induced by means of proximity e�ect)
regions, proposed by Beenakker in his seminal work [7].
He found that due to the quasi-relativistic nature of the
charge carriers, the conductance spectra di�er signi�-
cantly from the standard case [8]. Later, also other, more
sophisticated ideas of electronic devices based on the in-
terplay of the Dirac physics with the superconductivity
were proposed [9�11].
In majority of articles concerning transport proper-

ties through the graphene-based superconducting hy-
brid structures the well-established extended Blonder�
Tinkham�Klapwijk (BTK) formalism [8] has been used.
Particularly this approach was proven to be successful
for this class of systems in calculating e.g. conductance
spectra [7, 12�14], heat conductance [9, 15�17] as well
as thermopower [18] with the density of states explicitly

*e-mail: marcin.wysokinski@uj.edu.pl

taken into account [19].
Within this approach, the oscillatory behavior of the

electric, as well as the heat conductance, as a function
of the barrier strength was found in the graphene-based
junction composed of normal and superconducting re-
gions with the high external potential at the interface
(NIS junction) [12, 13, 15]. This peculiar property of this
system is a direct manifestation of the quasi-relativistic
nature of charge carriers in the graphene.
The natural question that arises at this stage, that in

particular we address in this work, is how the oscillatory
behavior of the zero-bias conductance (ZBC) as a func-
tion of the barrier strength is a�ected by the increasing
temperature. Particularly we have investigated temper-
ature dependence of the amplitude, and the average over
one period of the oscillations for di�erent Fermi level mis-
match (FLM) between normal and superconducting part
of the junction.
The paper is organized as follows. In Sect. 2 we present

brie�y generalized BTK formalism for the calculating
current through the NIS junction in the non-zero tem-
perature. Then in Sect. 3 we discuss our results, mainly
focused on the behavior of the conductance oscillations
as a function of barrier strength with the raising temper-
ature. Finally, we conclude in Sect. 4.

2. Model

We consider graphene-based junction composed of nor-
mal and superconducting regions with the energy poten-
tial of the width d and the height V0 at the interface play-
ing the role of the �insulating� barrier. Our starting point
in the description of our system are Dirac�Bogoliubov�
de Gennes equations for the two-dimensional (2D) sheet
of graphene in the form [7, 20]:(
Hj − EF1 + U(r)1 ∆

∆† EF1− U(r)1−Hj

)
ψ = εψ, (1)

where the index j can be either + or − which refers to
the two inequivalent valleys K and K ′ in the Brillouin
zone, and the single particle Hamiltonian reads

(A-36)

125



Temperature Dependence of the Zero-Bias Conductance in the Graphene NIS Junction A-37

Hj = − i~vF(σx∂x + sgn(j)σy∂y), (2)

with vF standing for momentum independent velocity of
charge carriers in graphene, and σi} denoting respective
Pauli matrices. The potential U(r) in Eq. (1) shifts
Fermi energies in the normal, �insulating� and supercon-
ducting region and can be modeled as

U(r) = −U0θ(x) + V0θ(−x)θ(x+ d). (3)

We would treat the potential barrier at the interface of
the junction in the limit of thin barrier (d→ 0) and high
potential (V0 → ∞), at the same time keeping e�ective
dimensionless barrier strength χ constant, de�ned simi-
larly as in Refs. [12, 13, 15] as

χ =
V0d

~vF
. (4)

The potential U0 is used to tune e�ective Fermi level
mismatch between normal and superconducting regions
of the graphene sheet. In order to satisfy the mean-
�eld condition for the superconductivity we set ∆0 �
(U0 + EF). Note that FLM can be also a source of the
normal re�ection. We have assumed the pairing poten-
tial with the s-wave symmetry changing step-like at the
interface and having temperature dependence deduced
from the usual BCS theory [21],

∆(r, T ) = ∆0θ(x) tanh

(
1.76

√
Tc
T
− 1

)
. (5)

Following the BTK formalism one should identify the
relevant scattering processes and construct full wave
functions for the normal (ΨN), �insulating� (ΨI) and su-
perconducting (ΨS) regions, and force their continuity at
the interfaces [12, 13]. Incoming electron (ψe

+) from the
normal side of the graphene sheet can be backscattered
either in the normal re�ection process (ψe−) or in so-called
Andreev re�ection process as a converted by the pair po-
tential hole (ψh

−). In turn, in terms of the transmission it
can be injected into the superconducting region as a Bo-
goliubov quasiparticle (ψSe

+ , ψSh
− ). There are also bound

electron and hole states in the �insulating� region (ψIe
− ,

ψIe
+ , ψ

Ih
− , ψ

Ih
+ ). The respective full wave functions can be

written in the following form:

ΨN = ψe
+ + rψ e

− + raψ
h
−,

ΨI = aeψ
Ie
+ + ahψ

Ih
+ + beψ

Ie
− + bhψ

Ih
− ,

ΨS = teψ
Se
+ + thψ

Se
− . (6)

Under the condition of the continuity at the boundaries
of the global wave function,

ΨN|x=−d = ΨI|x=−d, ΨI|x=0 = ΨS|x=0, (7)

one can derive respective wave functions amplitudes.
Note that contrary to the standard case [8], due to the
linearity of the Dirac�Weyl equation there is no need to
match also derivatives of wave functions. The direct en-
ergy and angle of incidence dependence of the needed
amplitudes r and ra can be obtained after some straight-
forward algebra and are not shown here explicitly. For
full formula and also explicit particles and quasi-particles
wave function forms see e.g. Refs. [12, 13, 15].

The transmission probability through the NIS junction
now can be expressed as [8]:

T (ε) =

∫ π/2

−π/2
dθ

cos θ

2

×
(

1− |r(ε, θ)|2 +
Re[e iθA ]

cos θ
|ra(ε, θ)|2

)
. (8)

With the knowledge of the transmission probability in the
spirit of the Landauer formalism one can write a full for-
mula for the ballistic charge transport through the junc-
tion,

Ie(V ) =
4e

h

∫ ∞

−∞
dε N(ε)T (ε)

×
(
fN(ε− eV )− fS(ε)

)
, (9)

where functions f (i) denote Fermi�Dirac distributions
with the superscript {i = N,S} standing for the normal
and superconducting region, respectively. The formula
(9) holds for the biased junction with the voltage, V and
accounts for the density of states in the graphene sheet
of the width W ,

N(ε) =
|EF + ε|W
π~vF

. (10)

The ZBC now can be obtained in a straightforward man-
ner by linearizing Fermi functions with respect to the
small voltage (V → 0),

G =
∂I

∂V
= −4e2

h

∫ ∞

−∞
dε

∂f

∂ε
N(ε)T (ε). (11)

It is convenient to normalize above formula by the bal-
listic conductance of the same sheet of graphene without
superconducting or external potential sources, kept in the
same temperature,

g0 = −4e2

h

∫ ∞

−∞
dε

∂f

∂ε
N(ε). (12)

3. Results

In all numerical calculations we have set shifted Fermi
level in the superconducting region as E′F = EF + U0 =
100∆0.
The theoretical prediction of the oscillatory behavior

of ZBC spectra (cf. Fig. 1) as a function of the e�ective
barrier strength has been reported in the graphene NIS
junction some time ago [12]. The issue mainly investi-
gated here is how this quasi-relativistic behavior changes
with increasing temperature. Therefore, we have ana-
lyzed the e�ect of the temperature, the e�ective barrier
strength and the FLM on the normalized zero-bias con-
ductance through the graphene NIS junction (calculated
from Eq. (11)).
For E′F/EF ≥ 10 the oscillations almost completely

disappear (cf. Fig. 1), and in fact the e�ect of the barrier
strength is negligible in this regime. Therefore in this
limit NIS junction properties are similar to that of the
NS junction in which case ZBC behaves non-trivially with
the raising temperature (see Ref. [18]).
In the opposite regime, for E′F/EF ≤ 10, by changing

the barrier strength parameter, χ we can control to some
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Fig. 1. Normalized ZBC as a function of the e�ective
barrier strength, χ for selected temperatures. The plots
in parts (a), (b), (c) di�er with the FLM. The amplitude
of the oscillations diminishes with the increase of the
temperature (cf. inset in Fig. 3). Note that the average
value of ZBC can slightly increase (cf. Fig. 3). At part
(a) plots for T/Tc → 0 and T/Tc = 0.5 are mostly
overlapping.

larger extent the mutual relation between the probabil-
ity of the Andreev and the normal re�ection. However,
with the increasing temperature the range of the manipu-
lation diminishes which has a direct manifestation in the
monotonic decrease of the ZBC oscillations amplitude (cf.
inset of Fig. 3).

What is more, the upper limit of the oscillations (where
the Andreev re�ection dominates) is relatively less af-
fected by the increase of the temperature than bottom
limit approximately up to T ≈ 0.5Tc which is smooth
boundary designated by the regime where thermal exci-
tation are within the range of the superconducting gap.
The situation reverses when the superconducting gap
starts closing. This in turn gives rise to a non-monotonic
change of the average ZBC, de�ned as:

Gav =
1

π

∫ π

0

G(χ)dχ, (13)

which in the low FLM regime (E′F/EF ≤ 10) acquires
maximum around T ≈ 0.5Tc (cf. Fig. 3). In comparison,
ZBC of the graphene-based NS junction also has a non-
monotonic behavior with the raising temperature but in
the di�erent regimes (i.e. for small position of the Fermi
level in normal region of the junction) and of the di�erent
kind (cf. Ref. [18]). Also the origin of this behavior can
be seen in the evolution of the ZBC with the increase of
the temperature (cf. Fig. 2). For selected values of the
barrier strength from the �rst period (χ = π

2 ,
π
4 ) ZBC is

increasing up to a �at maximum approximately at the
T/Tc ≈ 0.5 (cf. Fig. 2b, c). In the same regime for χ = 0

Fig. 2. Normalized ZBC as a function of the tempera-
ture for selected barrier strengths, χ. The plots in parts
(a), (b), (c) di�er with the FLM. For speci�c values of
barrier strength, we obtain �at maximum (parts (b),
(c)).

Fig. 3. The main plot presents averaged ZBC over the
period of oscillations with respect to the change of the
barrier strength as a function of the temperature for se-
lected values of the FLM. In the inset we plot with the
logarithmic scale the change of the oscillations ampli-
tude (GA) also as a function of the temperature. For
relatively small FLM, the average ZBC changes non-
monotonically with the temperature and has a maxi-
mum around T/Tc ≈ 0.5, contrary to the monotonic
decrease of the amplitude of ZBC oscillations.

it drops slowly and remains almost unchanged.

4. Conclusions

In this work we have analyzed the temperature depen-
dence of the zero-bias conductance of the graphene-based
NIS ballistic junction. We have found that with the in-
creasing temperature oscillations of the zero-bias conduc-
tance as a function of the barrier strength persist with
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the monotonically decreasing amplitude. The interesting
feature of the system is a non-monotonic change, of the
average over the period of the oscillations of the zero-bias
conductance (as a function of a barrier strength) with the
increase of the temperature, with the maximum around
T/Tc ≈ 0.5 in the limit of a relatively small Fermi level
mismatch (E′F/EF . 10).
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Chapter 4

Summary and Conclusions

To conclude, we present in this Chapter a summary of our results, as well as sketch some
of the research directions set by the topics analyzed in this Thesis. Particularly, we are
here focused on (but not limit ourselves to) the heavy fermion systems (HFS), exhibiting
unconventional magnetism and superconductivity, as described by the Anderson lattice
model (ALM). Additionally, we have analyzed closed packed neutral fermions within
the three-dimensional (3D) Hubbard model on the fcc lattice in the context of modeling
properties of the canonical correlated system, normal liquid 3He. In both model cases we
have obtained our results based on the Gutzwiller wave function variational approach.
Specifically, we summarize the analyzed problems concerning strongly correlated system
in the following points:

• Within the statistically consistent Gutzwiller approximation (SGA) approach we
have analyzed 3D Hubbard model in an applied magnetic field to describe the phys-
ical properties such as the spin-direction-dependent quasiparticle effective masses,
the magnetization, and the specific heat. Additionally, we have made a quantita-
tive comparison with the experimentally determined magnetization curve for liquid
3He in the normal state [38].

• Within the same method (SGA), applied to ALM, we have provided the micro-
scopic mechanism for the presence of two distinct ferromagnetic phases on the
UGe2 phase diagram at zero temperature. Our results agrees with the experimen-
tal data concerning the magnetization, the neutron scattering, and the de Haas -
van Alphen oscillations [113].

• Nontrivial extension of the previous analysis to nonzero temperature has provided
the explanation of the emergence of all the quantum and the classical critical points
on the magnetic phase diagram of UGe2. The existing so-called tricritical wing
structure of the magnetic phase boundaries for this material’s pressure - magnetic
field - temperature phase diagram, compares with experimental data quantitatively
[114].

• We have analyzed the stability of our quantitative fit of the tricritical wings of fer-
romagnetic to paramagnetic phase boundary in UGe2 with respect to the changing
band filling and the f -electron Landé-factor value. The results suggest that our
fit to the experimental data is very sensitive to the numerical value of both the
mentioned parameters. In the case of band filling, we have drawn the conclusion
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that as ALM does not provide a good fit unless the position of all the critical
points are matched. It is thus unlikely that our good comparison with experiment
is fortuitous. In the case of f -electron Landé factor, a good fit when it is the same
as that for free electron value, which suggests that in UGe2 the multiplet structure
is washed out by the f electrons itineracy [120].

• Within the diagrammatic expansion for Gutzwiller wave function (DE-GWF) method
we have analyzed paramagnetic properties of ALM. We have obtained major phys-
ical observable of the heavy fermion systems that is the very large mass enhance-
ment (as deduced from the density of states at the Fermi energy). We have ad-
ditionally provided a non-magnetic phase diagram including disjoint the mixed-
valence, the Kondo/almost-Kondo insulating, and the Kondo-lattice (nf → 1)
regimes, distinguished by the emergence of direct f -f hopping out of originally
atomic states [118].

• The same method, DE-GWF have been used for analysis of unconventional d-wave
superconductivity in ALM driven by purely repulsive Coulomb interaction. We
have found large region of paired state being favored against paramagnetism. The
superconductivity exhibits several features in accord with the recent experimental
findings for CeCoIn5 [100, 101, 102], as e.g., its multiband character [121]. The
result is the first of its kind and should be studied farther.

In the additional project we have analyzed tunnel metal - insulator - superconductor
(NIS) junctions thermoelectric characteristics. For that reason, we have first developed
the extended Blonder - Tinkham - Klapwijk formula accounting for explicit density of
states energy dependence around the Fermi level [122]. The modified formula was used
for the analysis of the graphene-based NS junction [123]. The temperature dependence of
the conductance oscillations in the graphene-based NIS junctions have been also studied.

The results concerning heavy fermion systems obtained in this Thesis are all the
more important, since they provide a strong basis for the future research. Namely, we
have provided semi-complete microscopic interpretation of magnetic phase diagram of
UGe2 only lacking the spin-triplet superconductivity to make a full picture. The natural
question is concerned with the extension of our model for particularly inclusion of the
missing element of the predicted phase diagram: the spin-triplet superconductivity. Our
model can be extended in several possible directions, that need further investigations:

• We have predicted [114] that in the close vicinity of the superconducting dome a
Lifshitz quantum critical point may be placed. A tempting scenario behind the
pairing origin has its source in the role of quantum critical fluctuations of the Fermi
surface topology. However, a formal theory is still lacking.

• From the different perspective, as inclusion of the higher orders of expansion in
the DE-GWF technique applied to ALM favors d-wave superconductivity against
paramagnetism [121], it may happen that the equal-spin pairing coexisting with
ferromagnetism would be favored against ferromagnetic-only state particular near
the metamagnetic phase transition, what would complete our microscopic model
for the description of UGe2.

• ALM in the standard form does not account for the f -orbital degeneracy, which
can be important for the case of UGe2. Consideration of extended degenerate ALM
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with the effective Hund’s rule coupling may also lead to the onset of unconventional
spin-triplet superconductivity driven by real space pairing [156, 157, 158, 159].

It is also of particular interest to investigate further the emerging superconductivity
in ALM as treated by DE-GWF method for its interplay with either antiferro- or ferro-
magnetism, to reveal to what extend resulting phase diagram can describe the observed
phases. As our results concerning superconductivity, are very promising in the light
of the recent experiments for CeCoIn5 [100, 101, 102], it would be also interesting to
consider ALM in this specific situation by including principal features of a realistic band
structure to allow for a quantitative comparison with experiment.
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[40] J. Spa lek, P. Korbel, and W. Wójcik, Phys. Rev. B 56, 971 (1997).
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[47] M. Schiró and M. Fabrizio, Phys. Rev. Lett. 105, 076401 (2010).

[48] D. Vollhardt, Rev. Mod. Phys. 56, 99 (1984).

[49] S. A. J. Wiegers, P. E. Wolf, and L. Puech, Phys. Rev. Lett. 66, 2895 (1991).

[50] J. Spa lek, A. Datta, and J. M. Honig, Phys. Rev. Lett. 59, 728 (1987).

[51] J. Spa lek, J. Solid State Chem. 88, 70 (1990).

[52] E. Dagotto, Rev. Mod. Phys. 66, 763 (1994).

[53] A. Damascelli, Z. Hussain, and Z.-X. Shen, Rev. Mod. Phys. 75, 473 (2003).

[54] P. A. Lee, N. Nagaosa, and X.-G. Wen, Rev. Mod. Phys. 78, 17 (2006).

[55] J. Kaczmarczyk, J. Spa lek, T. Schickling, and J. Bünemann, Phys. Rev. B 88,
115127 (2013).

[56] J. Spa lek and A. M. Oleś, Physica B 86-88, 375 (1977).
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