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Chapter 1

Introduction

The widely accepted model which describes physics in microscale is the Standard Model.
Recent experiments (in particular at LHC) show an astonishing agreement with the Stan-
dard Model (SM). Nevertheless, it leaves some fundamental problems unresolved. This
leads to the belief that the Standard Model is only an e�ective theory and needs to be
extended. An example of such issue is the hierarchy problem [1]. A possible solution
proposed in [2] is extending SM to a Minimal Supersymmetric Standard Model (MSSM).
Another motivation for MSSM is that it ensures that the coupling constants of strong,
electromagnetic and weak interactions meet at one point at the energy scale of grand
uni�cation [3]. Finally, the Standard Model does not provide a good candidate for dark
matter. On the other hand, certain models propose the lightest supersymmetric particle
(LSP) as a possible constituent of the cold dark matter [4]. Although there are certain
theoretical motivations for the supersymmetry to be a true symmetry of nature, no evi-
dence for it was yet found in experiment. Instead, it starts to be more constrained and
pushed away to higher energies. Nevertheless, supersymmetry remains at the center of
interest of theoretical physics. One of the supersymmetric models is the supersymmetric
Yang-Mills gauge theory [5, 6].

The supersymmetric Yang-Mills gauge theory was studied in [6]. It was found that it
can be supersymmetric only in certain dimensions, namely D = 2, 4, 6, 10. The gauge the-
ory can be used to construct supersymmetric Yang-Mills quantum mechanics (SYMQM).
By de�nition, D�dimensional SYMQM is obtained from the N = 1 supersymmetric
Yang-Mills �eld theory in D = d+ 1 dimensions by reducing the whole space to a single
point. The number of supersymmetry generators in the resulting quantum mechanics is
N = 2, 4, 8, 16 respectively for the given dimensions. In [7] the authors gave complete
solution for the case of D = 2 and SU(2) gauge group. Their result was then generalized
and vacuum wavefunctions were found for arbitrary SU(N) [8].

Dimensional reduction is not only a simpli�cation of the �eld theory, but SYMQM
has its own motivations. In [9] the purely bosonic part of SYMQM was proposed as a
regularized description of a membrane. More precisely, coordinates of a membrane are
�rst expanded in terms of an orthogonal set of functions Y a on the membrane. Then,
a cuto� to the expansion is introduced. Finally, it was shown that for each N ∈ N the
algebra of the �rst N2− 1 functions Y a is closed and isomorphic to su(N). A membrane
is represented by an N ×N matrix in the fundamental representation of SU(N). These
matrices are the bosonic degrees of freedom of the Yang-Mills theory. The parameter N
is a regulator and the continuum limit is recovered for N →∞. This correspondence can
be extended to the full SYMQM describing the dynamics of supermembranes [10, 11].
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CHAPTER 1. INTRODUCTION

It was later shown in [12] that the spectrum of SYMQM is continuous and thus the
supermembrane is unstable. This gave rise to the interpretation that a theory quantum
supermembranes is second�quantized from the very beginning [13].

In [14] an M-theory compacti�ed on a circle is considered in an in�nite momentum
frame [15]. It is argued that the dynamics of the M-theory are given by D0 branes. Those
are described precisely by the large N limit of SYMQM in D = 10. This is called the
BFSS conjecture (named after Banks, Fischler, Shenker and Susskind) and is perhaps the
most remarkable application of SYMQM. The continuous spectrum of SYMQM turned to
be a virtue and corresponds to scattering states in the M-theory. A necessary condition
for the BFSS hypothesis to be true is the existence of a normalizable massless state in
SYMQM. It would correspond to the graviton one the side of M�theory. It was shown
that such state cannot exist in dimension lower than D = 10 [16]. Other papers suggest
that there may be such state for D = 10 [17, 18]. More details can be found e.g. in a
review article [19]. The BFSS conjecture aroused a large interest in this model [20, 21, 19].
Asymptotic ground states for the SU(2) case were found in [22, 23]. The lattice methods
were applied in [24, 25]. SYMQM was also studied with a hybrid Monte Carlo approach
[26, 27, 28].

A di�erent motivation for the Yang-Mills quantum mechanics is given in [29]. It was
advocated that the dynamics of a QCD gauge �eld can be understood by analyzing the
theory in a small volume, of order 10−14cm. An approximate description is then given by
constant �elds. These are described by the dimensionally reduced theory, i.e. the purely
bosonic part of four dimensional SYMQM.

A more complete study was proposed in [30] where a small volume (or equivalently
weak coupling) expansion is considered. The zeroth order approximation is the Yang-
Mills quantum mechanics. In [30, 31, 32] this system was studied for SU(2) and SU(3)
gauge groups with a numerical Rayleigh-Ritz technique. In [33] also higher groups, up to
SU(6) were considered. Further analysis, in medium volume was performed in [34, 35].

A program to study the whole family of SYMQM with various dimensions and gauge
groups was proposed in [36]. The cut Fock space method, which will be our tool was
used in a set of papers. In [37, 38] the four dimensional model with SU(2) symmetry
group was addressed. The D = 2 case was studied and eventually a complete solution
for SU(N) gauge group was found in [39, 40, 41]. There was yet another study based on
the Schrödinger equation [42, 43, 44]. With this method the energies and eigenstates in
0-angular momentum sector of D = 4 model with SU(2) gauge group were found with
great precision.

This thesis is a continuation of the program. The primary goal is to analyze the
supersymmetric Yang-Mills quantum mechanics in four dimensions with SU(3) gauge
group. Analysis of this model is based on numerical results obtained using the cut Fock
space. The main result is the spectrum of the theory. It is calculated in channels with
de�nite number of fermions and spin. Eigenstates of the Hamiltonian with equal energies
form supermultiplets. A way to identify members of these supermultiplets is given. An
important part of this thesis is devoted to studying wavefunctions of the bound states
and scattering states. Analysis of the wavefunctions delivers important information, in
particular how the wavefunctions penetrate valleys of the potential. All results are given
for SU(2) as well as for SU(3) gauge group. Construction of wavefunctions for this class
of systems is a novelty. It was addressed before in [42, 43] but only for vanishing angular
momentum and only for SU(2). The method presented in this thesis applies to all angular
momenta and in principle to all gauge groups.
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Outline of the dissertation is following.
In Chapter 2 we provide an introduction to SYMQM with D = 4 and SU(N) gauge

group symmetry. The dimensional reduction of the quantum �eld theory is performed.
The Majorana condition is imposed so that the model is supersymmetric. Next, the
symmetries of the Hamiltonian are identi�ed. The two basic properties are conservation
of the total angular momentum and number of fermions. It is also invariant under the
particle�hole transformation. Thanks to the last symmetry, there is degeneracy between
channels with nF and n′F = 2(N2−1)−nF fermions and therefore only half of the sectors
with given number of fermions need to be analyzed. Finally, the model is supersymmetric.
The matrix notation is introduced. It is a common tool for simplifying the notation and
plays an important role in the algorithm for constructing matrices of physical observables.

In Chapter 3 the cut Fock space method is presented. The idea of this approach is
to represent the Hamiltonian as an in�nite matrix and to introduce a cuto�. Here, as
in many other cases, it is most useful to use the Fock basis. The cuto� limits the total
occupation number of bosons. The maximal number of fermions is 2(N2 − 1) because of
the Pauli exclusion principle, so there is no need to limit the number of fermions. The
basis of the gauge invariant space is generated by bricks which are traces of products
of creation operators. Thanks to conservation of number of fermions, the Hamiltonian
can be constructed in each fermionic sector separately. Matrix of the Hamiltonian could
be constructed independently also in channels with de�nite angular momentum, as in
[38]. However, this procedure would involve constructing bricks with de�nite angular
momentum which is ine�cient for the SU(3) gauge group. Instead, bricks with de�nite
3 bosonic and 2 fermionic occupation numbers (corresponding to three spatial and two
spinor indices) are used. Construction of the matrix is performed using a recursive al-
gorithm. This is the most numerically involved part of calculations. Once the matrix is
created, it is diagonalized to obtain its eigenvectors and eigenvalues.

In Chapter 4 we present a method based on group theory to obtain dimensions of all
sectors with de�nite set of quantum numbers of the cut Fock space. It was �rst introduced
in [45] to calculate dimensions of spaces with de�nite fermionic and bosonic occupation
numbers nF and nB and also with de�nite angular momentum j. It is modi�ed in order
to calculate dimensions of spaces with more occupation numbers speci�ed, i.e. n+

F , n
−
F ,

nxB, n
y
B and nzB. Dimensions of such subspaces can be also obtained numerically from

the rank of Gramm matrix for the overcomplete set of basis vectors. At the end of the
chapter a cross�check of both approaches is provided. The knowledge of dimensions of
certain subspaces is also useful for constructing matrix elements of the Hamiltonian.

In Chapter 5 results for eigenenergies of the system are given. They are obtained
in channels with de�nite number of fermions and angular momentum. An important
question is to distinguish the discrete spectrum from the continuous one. This analysis
is based on dependence of energies on the cuto�. Thanks to the particle�hole symmetry,
only sectors with nF ≤ N2 − 1 need to be examined in the theory with SU(N) gauge
group. It turns out that the spectrum in the few lowest fermionic channels is discrete,
while the continuum spectrum appears for many fermions. Because of the supersymmetry,
energies from neighboring fermionic sectors are degenerate. For this reason, for some nF
there are discrete energy levels immersed in the continuous spectrum. It was found for
the case of SU(2) and is now con�rmed also for SU(3). We present results for both,
SU(2) and SU(3) cases for comparison with each other and with earlier papers.

In Chapter 6 the supersymmetry multiplets are identi�ed and discussed. Supermul-
tiplets contain SO(3) multiplets of states with equal energies and di�erent numbers of
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CHAPTER 1. INTRODUCTION

fermions and angular momentum. Existence of supersymmetric multiplets is a direct
consequence of the fact that supercharges conserve energy. On the other hand, the super-
charge operators do not conserve bosonic (and fermionic) occupation number. Therefore,
supersymmetry is broken for �nite cuto�. In order to identify states which form multi-
plets in the continuous limit, we de�ne so called supersymmetry fractions. They measure
how supercharges map one energy states into other. Values of supersymmetry fractions
in the continuum limit are known. Therefore, they are useful to analyze the degree of
breaking of supersymmetry. Moreover, they help to identify SUSY partners.

In Chapter 7 we present a method to construct wavefunctions of energy eigenstates.
These distributions are used to directly illustrate the e�ect of nonabelian interactions.
First, given an angular momentum multiplet of states in the Fock space a single rota-
tionally invariant function is introduced. It is an analogue of square of radial part of the
wavefunction in the case of an ordinary three dimensional problem. Then, the structure
of the con�guration space in both cases, SU(2) and SU(3) is investigated. The �at valleys
of the potential and directions in which the potential grows fastest are identi�ed. They
are essential in distinguishing between behavior of bound and scattering states. Finally,
behavior of wavefunctions of several energy eigenstates along the �at valleys and steep
directions is studied.

Finally, in Chapter 8 a summary of our results is given.
Some less signi�cant and lengthy calculations are put in appendices. In Appendix A

symmetries of the SYMQM Hamiltonian are discussed. In B we prove after [31] that
there are no SU(2)�invariant bosonic vector states. Appendix C contains a proof that
the recursive algorithm for constructing matrix elements introduced in Chapter 3 is �nite.
Finally, Appendices D nad E are related to Chapter 7.
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Chapter 2

The model

The Yang Mills quantum mechanics is obtained by dimensional reduction [7] of a four
dimensional gauge theory given by the action

S =

∫
d4xL =

∫
d4x

(
−1

4
F a
µνF

µνa +
i

2
ψ̄aγµDµψ

a

)
(2.1)

The gauge group is SU(N) and a is the group index in the adjoint representation. The
strength tensor and covariant derivative are given by

F a
µν = ∂µA

a
ν − ∂νAaµ + gfabcAbµA

c
ν ,

Dµψ
a = ∂µψ

a − gfabcAcµψb,
(2.2)

where fabc are the structure constants of SU(N).
The Lagrangian contains no time derivative of the �eld Aa0. Therefore, Aa0 is not a

dynamical �eld and the Euler�Lagrange equations for Aa0 are constraints of the system:

Ga ≡ δL
δAa0
− ∂i

δL
δ(∂iAa0)

= 0. (2.3)

Ga is generator of the gauge symmetry and (2.3) is the Gauss law. As Aa0 is not dynamical,
it can have an arbitrary value. One can use the gauge freedom to eliminate it. In the
following, we work in the temporal gauge, with Aa0 = 0. In the quantized theory, the
Gauss law [29] is imposed on the states of the Hilbert space. That is, the physical Hilbert
space is composed of states annihilated by Ga.

In the dimensional reduction procedure one removes dependence of �elds on spatial
coordinates, so that Aai (t, ~x) = Aai (t). In the following we will adopt the notation of
quantum mechanics Aai → xai . The resulting dimensionally reduced Lagrangian reads

L =
1

2
(ẋai )

2 +
1

2
ψ̄aγ0∂0ψ

a − g2

4
(fabcxbix

c
j)

2 − i

2
gfabcψ̄aγkxckψ

b. (2.4)

The corresponding Hamiltonian is [7]

H = HK + g2HV + gHF ,

HK =
1

2
pai p

a
i ,

HV =
1

4
fabcfadexbix

c
jx
d
ix

e
j ,

HF =
i

2
fabcψa†Γkψ

bxck.

(2.5)
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CHAPTER 2. THE MODEL

Γk are the alpha matrices, i.e. Γk = γ0γk where γµ are Dirac matrices. HK , HV and HF

are kinetic, potential and fermionic parts of the Hamiltonian respectively. Spatial indices
i, j, k take values 1, 2, 3 and color indices a, b, . . . range from 1 to N2− 1. Therefore there
are 24 bosonic degrees of freedom in model for the SU(3) group.

Once spatial dependence of Aai is removed, the gauge group generator Ga has partic-
ularly simple form

Ga ≡ fabc(xbip
c
i −

i

2
ψb
†

α ψ
c
α). (2.6)

This is nothing but the total angular momentum in the color space.
In what follows in all explicit calculations the Weyl representation of Dirac matrices

from [46] will be used. The Dirac matrices are

γ0 =

(
0 1

1 0

)
, γk =

(
0 σk
−σk 0

)
, γ5 =

(
−1 0
0 1

)
. (2.7)

This theory is not yet supersymmetric. Indeed, in SUSY models the number of bosonic
and fermionic degrees of freedom must match. If ψ is a Dirac fermion, then there are
4(N2 − 1) fermionic d.o.f. On the other hand, the number of bosonic d.o.f. is reduced
by the Gauss law from 3(N2 − 1) to 2(N2 − 1). The supersymmetry can be achieved by
imposing Weyl or Majorana condition on the spinor ψ. In what follows we choose the
Majorana condition. Then, ψ must satisfy ψC = ψ where for the charge conjugation we
use the phase convention

ψaC = −iC(ψ̄a)T , (2.8)

C =

(
−iσ2 0

0 iσ2

)
. (2.9)

Finally, we proceed to quantizing the system. The quantization procedure gives algebra
of operators

[xai , p
b
j] = δabδij, (2.10)

{ψaα, ψ
b†
β } = δabδαβ. (2.11)

Because of the Majorana condition, components ψaα cannot be independent. Instead, ψ
can be constructed from a two�component Weyl spinor faα (α = 1, 2). By de�nition, the
Weyl spinor satis�es anticommutation relations

{faα, f
b†
β } = δabδαβ. (2.12)

The Weyl spinor can be written in a four component notation

ψaW = −eiπ/4


fa1
fa2
0
0

 . (2.13)

ψW satis�es γ5ψW = −ψW , so it is indeed a left�handed spinor. The phase in front is
chosen such that all components of spinor in the next formula (2.14) have common phase.
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2.1. SYMMETRIES

The Majorana spinor is then constructed from the Weyl spinor and its charge conjugate
[47]:

ψa = ψaW + (ψW )aC = eiπ/4


−fa1
−fa2
fa†2

−fa†1

 . (2.14)

The spinor ψa automatically satis�es the Majorana condition because charge conjugation
is an involution, i.e. for any χ there is (χC)C = χ.

2.1 Symmetries

Now we come to discussion of symmetries of the Hamiltonian. An extension of this
paragraph can be found in Appendix A. In particular, Appendix A contains proofs that
generators of the symmetries commute with the Hamiltonian.

The supercharges arising from invariance under the supersymmetry transformation
are

Qα = (Γkψ
a)αp

a
k + igfabc(Σjkψ

a)αx
b
jx
c
k, (2.15)

where Σjk = − i
4
[Γj,Γk]. They obey anticommutation relations

{Qα, Q
†
β} = 2δαβH + gΓkαβx

a
kG

a. (2.16)

In the space of physical states, i.e. when Ga vanishes, the anticommutator {Qα, Q
†
β}

is proportional to the Hamiltonian. By acting with Qα and Q†α on eigenstates of the
Hamiltonian one generates a supersymmetry multiplet. The supercharge operator Qα

commutes with the Hamiltonian, so all states in the supermultiplet have identical energy.
Structure of these multiplets is analyzed in detail in Chapter 6.

In the dimensional reduction procedure the full con�guration space is reduced to a
single point. Still, the resulting Hamiltonian exhibits an inherited rotational symmetry.
The angular momentum operators are

Ji = Li + Si = εijk

(
xajp

a
k +

1

4
ψa†Σjkψ

a

)
. (2.17)

Commutators of H and Ji vanish and thus the angular momentum is conserved.
A remarkable feature of the four�dimensional theory is conservation of the total num-

ber of fermions nF =
∑

aα f
a†
α f

a†
α . It is not true e.g. in 10 dimensions which is interesting

due to the BFSS conjecture.
Furthermore, there is a particle�hole symmetry:

fa1 → −f
a†
2 , fa†1 → −fa2 ,

fa2 → fa†1 , fa†2 → fa1 , (2.18)

xai → −xai , pai → −pai .

A natural consequence of this symmetry is that one can �nd eigenstates of the Hamil-
tonian which are even or odd under (2.18). However, conservation of nF is a stronger
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CHAPTER 2. THE MODEL

symmetry. It implies that the full Hilbert space splits into independent sectors with de�-
nite number of fermions. The particle�hole symmetry relates these sectors. For each state
with nF fermions there is a state with 2(N2−1)−nF fermions and the same energy. Con-
struction of the other state is given explicitly so all its properties can be easily inferred.
In particular, the particle�hole transformation preserves the total angular momentum.

Moreover, the Hamiltonian has a scaling property

xai → g−1/3xai ,

pai → g1/3pai ,

faα → faα,

H = HK + g2HV + gHF → g2/3(HK +HV +HK).

(2.19)

In what follows g will be set to 1. For any other �nite g the spectrum is merely scaled by
g2/3. Eigenstates are stretched by g−1/3 and all their quantum numbers do not change.

Finally, consider parity. The operators transform under parity in the following way:

pai → −pai ,
xai → −xai ,
ψaα → (ψP )aα ≡ γ0

αβψ
a
β.

(2.20)

One can check that the Hamiltonian is invariant under the transformation (2.20). How-
ever, the spinor ψP does not satisfy the Majorana condition. It follows that states gener-
ated by ψP are not invariant under the charge conjugation. Therefore, the Hilbert space
breaks the parity symmetry. A more detailed discussion of parity breaking can be found
in Appendix A.

2.2 Matrix notation

It is convenient to use the so called matrix notation. Let T a be the N2 − 1 generators of
SU(N) in the fundamental representation. They are hermitean traceless N ×N matrices
and satisfy multiplication law

T aT b =
1

2N
δab1N +

1

2
(ifabc + dabc)T c, (2.21)

where fabc and dabc are antisymmetric and symmetric SU(N) group structure constants
respectively. For N = 2 the generators are simply Pauli matrices T a = 1

2
σa, a = 1, 2, 3.

The antisymmetric structure constant is fabc = εabc and the symmetric dabc vanishes. For
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2.2. MATRIX NOTATION

N = 3 the generators are Gell�Mann matrices

T 1 =
1

2

 0 1 0
1 0 0
0 0 0

 , T 2 =
1

2

 0 −i 0
i 0 0
0 0 0

 ,

T 3 =
1

2

 1 0 0
0 −1 0
0 0 0

 , T 4 =
1

2

 0 0 1
0 0 0
1 0 0

 ,

T 5 =
1

2

 0 0 −i
0 0 0
i 0 0

 , T 6 =
1

2

 0 0 0
0 0 1
0 1 0

 ,

T 7 =
1

2

 0 0 0
0 0 −i
0 i 0

 , T 8 =
1

2
√

3

 1 0 0
0 1 0
0 0 −2

 . (2.22)

Consider an operator with an adjoint color index Aa. Then A = AaT a is a N ×N matrix
with operator�valued matrix elements. In this notation xi = xai T

a, pi = pai T
a, ψα = ψaαT

a,
etc. In the matrix notation the Hamiltonian, angular momentum and supersymmetry
generators are

HK = Tr(pipi),

HV = −
∑
i<j

Tr([xi, xj]
2),

HF =
∑
kαβ

ΓkαβTr(ψ
†
α[ψβ, x

k]),

Ji = εijk

(
2Tr(xjpk) +

1

2
(Σjk)αβTr(ψ

†
αψβ)

)
,

Qα = 2ΓkαβTr(ψβpk) +
i

4
ΣjkαβTr(ψβxjxk),

G = −i[xi, pi]−
1

2
{ψ†α, ψα}+ (1 + 3i)

N2 − 1

2N
1N .

(2.23)

The �rst �ve operators in (2.23) are color singlets and are given in terms of traces. Ga

which is a vector in the color space is represented by a matrix. The last term in G may
look strange, since G must be traceless. However, one has to remember that the two
operators [xi, pi], {ψ†α, ψα} have non�vanishing trace. The whole expression is indeed
traceless.

The matrix notation in only a way to rewrite the same operators. However, it is much
more convenient to manipulate with traces of matrix operators rather than to keep the
color indices explicit.
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Chapter 3

The Cut Fock space method

In this chapter we discuss a numerical technique, called cut Fock space method, which is
used to solve our model. It originates from the variational Tamm�Danco� method [48]
where one uses a small set of trial states to construct an approximate ground state of a
theory. Quality of the variational approach relies on how many parameters one uses to
approximate the ground state and how clever one is in choosing these parameters. The
ground state energy is always approximated from above.

The idea of this method is to �rst choose a basis in the Hilbert space and then to
introduce a cuto�. The cuto� has to be such that dimension of the cut space is �nite.
Then one constructs and diagonalizes matrix of the Hamiltonian in the cut space. The
lowest eigenvalue is an approximation to the ground state energy. It is the energy obtained
with variational technique where all basis states in the cut space are trial states. It is
usually most convenient to work in the Fock space (hence the name) with the standard
occupation number basis. The cuto� is then the maximal occupation number NB. As
the cuto� increases, energies converge to their exact values.

One of the virtues of this approach is that one can construct not only Hamiltonian,
but also other observables. Having computed eigenvectors of the Hamiltonian, one can
easily obtain expectation value of other observable in these states. Another asset is that
one has a direct access to wavefunctions of energy eigenstates. They will be studied in
following chapters.

Wavefunctions 〈x|n〉 of basis states in the con�guration space are simply Hermite func-
tions. It is known that 〈x|n〉 in practice have �nite support, i.e. they are exponentially
suppressed for |x| &

√
2n+ 1. That is, for a �nite cuto� n ≤ NB all states are localized

inside a �nite box of size L =
√

2NB + 1. Wavefunctions in the momentum space 〈p|n〉
share the same behavior and thus the momenta are also limited. One can then take a
point of view that the cut Fock space is a regularized Hilbert space. The cuto� NB plays
a role of both, IR and UV cuto�s which are approximately (2NB)−1/2 and (2NB)1/2.

The cut Fock space method was already applied with success to other simpler models.
Properties of the cut Fock space were studied for one dimensional quantum mechanics
[49]. The technique was used for computations with high precision for the double well
potential [50] and multiple wells with periodic boundary conditions [51]. Then it was also
applied to SYMQM in two dimensions [39, 40, 41] and �nally to four dimensional theory
with SU(2) gauge group [37, 38].
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CHAPTER 3. THE CUT FOCK SPACE METHOD

3.1 The cut Fock space

In order to construct the Fock space we introduce creation and annihilation operators,
which satisfy the usual commutation rules

aai =
1√
2

(xai + ipai ), aa†i =
1√
2

(xai − ipai ), (3.1)

[aai , a
b†
j ] = δabδij. (3.2)

Fermionic creation and annihilation operators fa†α and faα were already introduced in
(2.12). The Fock vacuum is de�ned as usual by

aai |0〉 = 0, faα |0〉 = 0. (3.3)

All other states are generated by acting with bosonic and fermionic creation operators
on |0〉.

Since we would like to construct a Hilbert space consisting only of gauge invariant
states, we use only speci�c combinations of creation operators. Take a set of matrix
operators A1, . . . , An where Ak = AakT

a. For each k operators Aak are in adjoint SU(N)
representation. The lower index k is not related to any symmetry and Ak can be any
operators. In the following the object

(A1 · · ·An) ≡ Tr(A1 · · ·An) = Aa11 · · ·Aann Tr(T a1 · · ·T an) (3.4)

is called a trace operator. If all operators Ak are bosonic or fermionic creation operators
then (A1 · · ·An) is called a brick. For the rest of the thesis the round bracket (·) is used
for a short notation of the trace. It was shown [52] that the space of gauge invariant states
is spanned by states obtained by repeatedly acting with bricks on the Fock vacuum. A
product of bricks is called a composite brick. A state generated by a composite brick has
a de�nite number of bosons nB and fermions nF

nB =
∑

aa†i a
a
i , nF =

∑
fa†α f

a
α. (3.5)

There are only 2(N2−1) fermionic creator operators fa†α , so the Pauli exclusion principle
implies nF ≤ 2(N2 − 1).

Because the Hamiltonian conserves the fermion number nF , it is convenient to work
with subspaces with �xed number of fermions HnF . For each nF we introduce a di�erent
cuto� NB. The cut Fock space HnF ,NB is then the space of all states which contain
precisely nF fermions and at most NB bosons.

The cut Fock space method will be used to construct matrices for several operators.
The angular momentum operators conserve nF and nB, so the cut matrices of these opera-
tors are (Ji)nF ,NB : HnF ,NB → HnF ,NB . Eigenvalues of these matrices are exact eigenvalues
of Ji. Therefore, we may us eigenvectors of (J2)nF ,NB and (J3)nF ,NB to construct Hilbert
spaces HnF ,NB ,j,m with de�nite quantum numbers j and m.

The Hamiltonian conserves nF but not nB. The matrix HnF ,NB : HnF ,NB → HnF ,NB

has eigenvalues which approximate energy levels of the Hamiltonian in the NB →∞ limit.
In principle, one can construct H directly on subspaces HnF ,NB ,j,m. This procedure would
generate smaller matrices which are easier to diagonalize. However, then one needs to
use bricks with de�nite angular momentum. The computational cost of this procedure
would exceed the gain from smaller matrices.
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Finally, matrices of Qα will be constructed. Supercharges do not conserve nF . In
Chapter 6 we introduce operators Q± which are closely related to the supercharges Qα

and play exactly the same role. Q± do not conserve nF . Instead, they decrease the number
of fermions by 1. Therefore, We generate matrices (Q±)nF ,NB ,N ′B : HnF ,NB → HnF−1,N ′B

.
In practice the two cuto�s NB and N ′B are always di�erent.

3.2 Relations between bricks for SU(3)

The full Fock space of gauge invariant states is spanned by all possible composite brick
acting on the Fock vacuum. However, these states are not linearly independent. For
optimization reasons it is necessary to have as few states as possible. Therefore, we try
to identify and remove those bricks which can be expressed in terms of other bricks. The
more complicated case of SU(3) gauge group is addressed in this subchapter.

The Cayley Hamilton theorem states that a matrix is a root of its characteristic poly-
nomial. Let M be a square traceless matrix of size 3. Then, the theorem implies that

M3 = (M)M2 +
1

2

(
(M2)− (M)2

)
M +

1

6

(
(M)3 − 3(M2)(M) + 2(M3)

)
13. (3.6)

Recall that (·) is a short notation for a trace. This theorem holds if the matrix is
operator�valued, i.e. its matrix elements are operators, as long as the matrix elements
commute. Multiply the above equation by another operator�valued matrix O and take a
trace. Then,

(M3O) = (M)(M2O) +
1

2

(
(M2)− (M)2

)
(MO)

+
1

6

(
(M)3 − 3(M2)(M) + 2(M3)

)
(O).

(3.7)

It follows that if a brick contains an expression which is repeated three times and at least
one more operator, then it can be written in terms of shorter bricks, e.g. for M = a†1a

†
2

and O = f †1a
†
1 there is

(a†1a
†
2a
†
1a
†
2a
†
1a
†
2f
†
1a
†
1) = (a†1a

†
2)(a†1a

†
2a
†
1a
†
2f
†
1a
†
1) +

1

2
(a†1a

†
2a
†
1a
†
2)(a†1a

†
2f
†
1a
†
1)

− 1

2
(a†1a

†
2)2(a†1a

†
2f
†
1a
†
1) +

1

6
(a†1a

†
2)3(f †1a

†
1)

− 1

2
(a†1a

†
2a
†
1a
†
2)(a†1a

†
2)(f †1a

†
1) +

1

3
(a†1a

†
2a
†
1a
†
2a
†
1a
†
2)(f †1a

†
1).

(3.8)

Because the trace of a single matrix operator is zero, i.e. (a†i ) = (f †α) = 0, this formula

simpli�es if M or O in (3.7) are single creation operators. For M = a†1 and O = f †1a
†
3 it

reads

(a†1a
†
1a
†
1f
†
1a
†
3) =

1

2
(a†1a

†
1)(a†1f

†
1a
†
3) +

1

3
(a†1a

†
1a
†
1)(f †1a

†
3). (3.9)

There are other relations for fermionic operators. The simplest example is vanishing
of a square of single fermionic creation operator.

(f †1f
†
1) = fa1†1 fa2†1 (T a1T a2) = −fa2†1 fa1†1 (T a2T a1) = −(f †1f

†
1), (3.10)
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CHAPTER 3. THE CUT FOCK SPACE METHOD

so (f †1f
†
1) = 0. This can be easy generalized. Let M be a operator valued matrix with

anticommuting matrix elements. Then,

(M2) = (M4) = 0, M6 = 0. (3.11)

The proof of the �rst two relations is analogous to (3.10). The last equality can be easily
shown by plugging M2 into (3.6) and using the �rst two identities from (3.11). There is
also a Cayley�Hamilton relation for matrix with anticommuting matrix elements:

M5 =
1

3
(M3)M2 +

1

3
(M5). (3.12)

It can be proven by a direct calculation. In order to use it for eliminating bricks, one has
to multiply (3.12) by an arbitrary operator O and take a trace. Then,

(M5O) =
1

3
(M3)(M2O) +

1

3
(M5)(O). (3.13)

They Cayley-Hamilton relation for Grassmann�valued matrices can be also extended to
any SU(N) group [53]. For an N ×N matrix M whose entries anticommute it reads

M2N−1 =
1

N
(M2N−1) +

1

N

N−1∑
i=1

M2i(M2N−2i−1). (3.14)

There is one more identity for SU(3) which is used in eliminating bricks, namely [54]

T {aT bT c} =
1

4
δ{abT c} +

1

3
(T {aT bT c})13. (3.15)

Curly brackets denote symmetrization without additional coe�cient 1
3!
. Formulas pre-

sented earlier (3.6) � (3.12) allow to discard some bricks because they are expressed by
shorter bricks. (3.15) is di�erent, because it relates bricks of the same length. For any six
bricks that di�er by permutations of three operators then one of them can be eliminated.

Finally, the procedure of eliminating dependent bricks is the following. For each nB
and nF generate all possible bricks with appropriate occupation numbers. Then, eliminate
as many bricks as possible using relations (3.7), (3.12), (3.11) and (3.15). All composite
bricks with fermionic and bosonic occupation numbers nF and nB form an overcomplete
basis in sector (nF , nB). This overcompleteness cannot be eliminated entirely and is taken
into account in the program for generating matrices.

There is yet another way to eliminate super�uous bricks. It involves objects introduced
below and will be presented in 3.4.

3.3 The algorithm

In this part we present the algorithm for constructing matrix elements of interesting
operators. The same algorithm is used for both cases, SYMQM with SU(2) and SU(3)
group, so it is presented in a general form for a group SU(N).

First we introduce the notion of a trace operator. Take n operators Aak, k = 1, . . . ,m,
where a is the color index. Each Aak is a fermionic of bosonic creation or annihilation
operator. Then, (A1 · · ·Am) given by the formula

(A1 · · ·Am) ≡ Aa11 · · ·Aamm (T a1 · · ·T am) (3.16)
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3.3. THE ALGORITHM

will be called a trace operator. The number m of operators inside the trace (3.16) is
called the length of the trace. In particular, identity is a trace operator of length 0, i.e.
id = 1

N
Tr(1N). A product of trace operators is called a composite trace. Length of a

composite trace is the total of all lengths of single traces in the product. All operators of
our interest, i.e. angular momentum, Hamiltonian and supercharges can be expressed by
traces of creation and annihilation operators. The angular momentum has a particularly
simple form

J1 = 2i(a†3a2)− 2i(a†2a3) + (f †1f2) + (f †2f1),

J2 = 2i(a†1a3)− 2i(a†3a1)− i(f †1f2) + i(f †2f1),

J3 = 2i(a†2a1)− 2i(a†1a2) + (f †1f1)− (f †2f2).

(3.17)

The explicit expression for Hamiltonian is much more complex and is not given here.
The cut Fock space can be decomposed into subspaces with de�nite occupation num-

bers

HnF ,NB =
⊕
n

Hn, (3.18)

where the sum runs over n = (n1
F , n

2
F , n

1
B, n

2
B, n

3
B) ≥ 0 which satisfy

∑
α n

α
F = nF and∑

i n
i
B ≤ NB.

Given a composite brick P one can associate the occupation labels n with P . Each
component of n is the total number of corresponding creation operators in P . A subspace
Hn is spanned by all composite bricks P with occupation labels n acting on the Fock
vacuum.

3.3.1 Maximally annihilating form

The maximally annihilating form is an analog of the Wick's expansion. Consider an
operator (aia

†
j). The Wick's expansion is

(aia
†
j) = aai a

b†
j (T aT b) = [ab†j a

a
i + δabij ](T aT b) = (a†jai) +

1

2
δij. (3.19)

The operator on the right is normal ordered and each term is a trace operator. However,
not always all operators in the Wick's expansion are trace operators. For example, in the
Wick expansion of (aia

†
jaka

†
l ) there is a term ab†j a

d†
l a

a
i a

c
k(T

aT bT cT d). Note that the order
of color indices is di�erent for creation/annihilation operators and SU(N) generators.
We would like to use the matrix notation introduced in Chapter 2, so the trace�operator
structure has to be preserved. The maximally annihilating form is de�ned in a way that
all operators are trace operators and it is as close to the Wick's expansion as possible.

Consider a trace operator A = (A1 · · ·Am) with m ≥ 1. With operator A we associate
annihilation rank ν = (ν1

F , ν
2
F , ν

1
B, ν

2
B, ν

3
B). It is de�ned in the following way. Let µi be the

number of operators f1 minus the number of operators f †1 in the set {Ai+1, . . . , Am} for
i = 0, . . . ,m. Then ν1

F is de�ned as the maximum of all µi's. That means that if a state
has quantum numbers n and n1

F < ν1
F , then it is annihilated by A. The other components

of ν are de�ned in analogous way. Note that di�erent operators with the same quantum
numbers can have di�erent annihilation ranks. For instance, a trace operator (a†1a1) has

annihilation rank ν = (0, 0, 1, 0, 0) while the operator (a1a
†
1) has ν = (0, 0, 0, 0, 0).
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CHAPTER 3. THE CUT FOCK SPACE METHOD

A cyclic permutation of operator A is understood as (Ai . . . AmA1 . . . Ai−1). Consider
now the set N of annihilation ranks νi of all cyclic permutations of A and annihilation
ranks ν̄i of cyclic permutations of A

† = (A†m . . . A
†
1). We say that (Ai . . . AmA1 . . . Ai−1) is

maximally annihilating rotation of A if νi or ν̄i maximizes N (in lexicographical order).
The crucial observation is that either νi or ν̄i is nonzero for the maximally annihilation
rotation. For instance, the maximally annihilating rotation of (a1a

†
1a2) is (a†1a2a1).

Let Ã be the maximally annihilating rotation of A. We now show how to transform
A into the following expression:

A = Ã+R, (3.20)

where R is a linear combination of products of trace operators. Each product of trace
operators in R has total length smaller than m. Operator A can be written in the
following way:

(A1 · · ·Am) = Aa11 · · ·Aamm (T a1 · · ·T am)

= Aa22 · · ·Aamm Aa11 (T a2 · · ·T amT a1) +R
= (A2 · · ·AmA1) +R.

(3.21)

The remainder R is

R =
∑
i

εiA
a2
2 · · ·A

ai−1

i−1 [Aa11 , A
ai
i ]±A

ai+1

i+1 · · ·Aamm (T a1 · · ·T am), (3.22)

where [·, ·]± is a commutator or anticommutator, depending on whether both, Aa11 and Aaii
are fermionic or not. Coe�cients εi are (−1)k where k is the number of j ∈ {1, . . . , i− 1}
for which [Aa11 , A

aj
j ]± is an anticommutator. Because all operators Aai are creation or

annihilation operators, each (anti)commutator [Aa11 , A
ai
i ]± is zero or ±δa1,ai . We take the

sign into account by changing εi, which now can be ±1 or 0. Now,

R =
m∑
i=2

εiδ
a1aiAa22 · · ·A

ai−1

i−1 A
ai+1

i+1 · · ·Aamm (T a1 · · ·T am). (3.23)

In order to perform sum over a1 we use the identity T aijT
a
kl = 1

2
δilδkj − 1

2N
δijδkl. This is

in fact the only place where the value of N is used. For i = 3, . . . ,m − 1 the trace in
formula (3.23) is

δa1ai(T a1 · · ·T am) =
1

2
(T a2 · · ·T ai−1)(T ai+1 · · ·T am)− 1

2N
(T a2 · · ·T ai−1T ai+1 · · ·T am).

(3.24)

For i = 2,m it is

δa1a2(T a1 · · ·T am) =
N2 − 1

2N
(T a3 · · ·T am), m > 2,

δa1an(T a1 · · ·T am) =
N2 − 1

2N
(T a2 · · ·T am−1), m > 2,

δa1a2(T a1T a2) =
N2 − 1

2
.

(3.25)

In each case R can be written in terms of products of traces. The total length of traces
in each product is equal to m− 2. Up to this point A was rotated by one position and an
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additional remainder was produced. This procedure is continued until A is turned into
its maximally annihilating rotation. Then it is applied to each trace operator in R to
turn it into its maximally annihilating rotation.

Now, take a composite trace operator B = B1 · · ·Bp where each Bj is in its maximally
annihilating rotation. We associate annihilation rank ν with B in the following way. Let
µi be the di�erence of numbers of operators f1 and f †1 in trace operators Bi+1 · · ·Bp.
Then ν1

F is maximum of all µi. Let now N be the set of all annihilation ranks νσ and ν̄σ
which correspond to permutations Bσ(1) · · ·Bσ(p) and their conjugates B†σ(p) · · ·B

†
σ(1). We

say that B is in the most annihilating permutation if its annihilation rank or annihilation
rank of its hermitean conjugate maximizes N (in lexicographical order). The maximally
annihilating form of B will be denoted by B̃.

We now commute trace operators in B in such way that it transforms into maximally
annihilating permutation. Commuting trace operators reduces to commuting creating
and annihilation operators between di�erent traces. This gives contractions of color
indices between traces. Such contractions are eliminated by the following relation:

δaibj(T a1 · · ·T am)(T b1 · · ·T bk) =
1

2
(T a1 · · ·T ai−1T bj+1 · · ·T bkT b1 · · ·T bj−1T ai+1 · · ·T am)

− 1

2N
(T a1 · · ·T ai−1T ai+1 · · ·T am)(T b1 · · ·T bj−1T bj+1 · · ·T bk).

(3.26)

Finally, commuting traces produces only more products of trace operators. Therefore, B
can be written as

B = B̃ +R, (3.27)

where R is a combination of products of trace operators. Length of each composite
trace in R is smaller than length of B. Next, we turn all trace operators in R into
their maximally annihilating rotations and all composite traces into their maximally
annihilating permutations.

Finally, take an arbitrary linear combination of products of trace operators C. Trans-
form all trace operators in C into their maximally annihilating rotations and all products
of these into their maximally annihilating permutations. The result of this procedure is
called maximally annihilating form of C. What is important, all trace operators and thus
also products of these have positive annihilation rank ν (or ν̄) in the sense that it has a
nonzero component and the �rst nonzero component is positive. The only exception is
the identity for which ν = ν̄ = 0

3.3.2 Recursion

We now present the algorithm of computing the matrix of a given operator A. Assume
that A is given by sum of composite traces: A =

∑
i αi
∏

j Oij where Oij are trace
operators and αi are constants. Assume that each Oij is given in maximally annihilating
form.

Recall that the full Hilbert space is decomposed into orthogonal subspaces (3.18) and
each subspace Hn is spanned by all composite bricks with occupation numbers n acting
on the Fock vacuum. The matrix of operator A can be written in a block form with
blocks A|n′n : Hn → Hn′ . Dimension Dn of Hn is �nite for each n. It can be determined
numerically as it will be shown below or calculated from the character method which is
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presented in Chapter 4. Clearly, each block A|n′n can be expressed as a combination of
products of block of components of A: Oij|n′′n′′′ . Therefore, we assume that A is a trace
operator itself: A = (A1 . . . Am).

Let n̂αF be the number of creation operators f †α in A minus the number of annihilation
operators fα. Let n̂iB be de�ned in analogous way. Then n̂ = (n̂1

F , n̂
2
F , n̂

1
B, n̂

2
B, n̂

3
B) is

called creation labels for A.
The block A|n′n is known a priori in several cases. If A is an identity operator then

A|n′n is an identity matrix for n = n′ and vanished otherwise. The block vanishes for
any A if n′ 6= n + n̂. It is also true when the annihilation rank ν of A is greater than
n for at least one of �ve components. Similarly, the block vanishes when annihilation
rank ν̄ of A† is greater than n′ for at least one component. From now on we assume that
none of these is true. Moreover, if ν is greater than ν̄ then we calculate A†|nn′ and write

A|n′n =
(
A†|nn′

)†
.

Let {Bi} be the set of all bricks that contain at least one creation operator correspond-

ing to the �rst not vanishing component of n (e.g. if n1
F 6= 0 it is f †1 and if n1

F = 0 6= n2
F

then it is f †2 , etc.). Next, remove all bricks for which Hni , where ni = n − n̂i, is empty.
In particular, all bricks for which at least one component of ni is negative have to be re-
moved. Hni is then spanned by composite bricks acting on Fock vacuum, each containing
at least one brick from the set {Bi}. Now, take an orthonormal basis |enij 〉 in the sector
Hni . Then, vectors |vk〉 = Bi |enij 〉 span Hn. The index k enumerates all pairs (i, j) on
the right hand side. Vectors |vk〉 may be not orthogonal and the number of them can be
larger than the dimension Dn of Hn. This will be taken into account by orthogonalization
matrix.

The block element of A is constructed in two steps. First, a block in the overcomplete
basis is built:

(Ā|n′n)lk = 〈en′l |A|vk〉 = 〈en′l |ABi|e
ni
j 〉 . (3.28)

It can be written in a block form:

Ā|n′n =

 (AB1)|n′n1

...
(ABq)|n′nq

 . (3.29)

For each block, one �nds �rst the maximally annihilating form of ABi and then constructs
(ABi)|n′ni . After the whole block Ā|n′n is constructed, we orthogonalize basis of Hn. Let
Sn be the Gramm matrix in the sector Hn:

Sn =

 (B†1B1)|n1n1 . . . (B†1Bq)|n1nq
...

. . .
...

(B†qB1)|nqn1 . . . (B†qBq)|nqnq

 . (3.30)

Matrix Sn has exactlyDn nonzero eigenvalues λl. Eigenvectors w
l
k of Sn which correspond

to nonzero eigenvalues are used to construct basis of Hn. More precisely, the orthonormal
basis is given by

|enl 〉 =
1√
λl

∑
k

wlk |vk〉 . (3.31)
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These states are indeed orthonormal:

〈enm|enl 〉 =
1√
λmλl

∑
kj

wm∗j wlk 〈vj|vk〉 =
1√
λmλl

∑
kj

wm∗j wlk(Sn)jk

=
1√
λmλl

∑
j

λlw
m∗
j wlj = δml.

(3.32)

Finally, we construct the orthogonalization matrix Rn by setting its matrix elements to
(Rn)kl = 1√

λl
wlk. Then, A|n′n is the product of the block in overcomplete basis and the

orthogonalization matrix:

(Ā|n′nRn)ij =
∑
k

(Ā|n′n)ik(Rn)kj =
∑
k

〈en′i |A|vk〉
1√
λj
wjk = 〈en′i |A|enj 〉 . (3.33)

The block A|n′n is constructed. We give now summary of the algorithm.

1. Find all bricks Bi with creation labels n̂i such that the �rst nonzero component of
n̂i is at the same position as for n and ni = n− n̂i is non negative.

2. For each brick Bi write the operator ABi in its maximally annihilating form.

3. Find all blocks (ABi)|n′ni and use them to construct Ā|n′n.

4. Write all operators B†iBj in maximally annihilating form.

5. Find all blocks (B†iBj)|ninj and construct Gramm matrix Sn.

6. Diagonalize Sn and construct the orthogonalization matrix Rn.

7. The matrix block of A is A|n′n = Ā|n′nRn.

The algorithm is recursive, so it requires a proof that it is �nite. The proof is given in
Appendix C.

3.3.3 Diagonalization

Some remarks concerning diagonalization of matrices are in place. Assume that we con-
structed matrices of the Hamiltonian H, square of total angular momentum J2 and the
third component of angular momentum J3 in a sector with nF fermions and at most NB

bosons. In order to obtain energies one can diagonalize H and then eventually act with
J2 and J3 on eigenvectors to check what are their quantum numbers. This procedure is
however ine�ective.

Recall that J2 and J3 conserve the number of bosons nB (c.f. 3.17) while H does not.
Therefore, matrices of angular momentum decompose into smaller matrices on subspaces
with �xed nB:
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J2
NB

=


J2
nB=1 0J2

nB=2

0
. . .

J2
nB=NB

 (3.34)

J3,NB =


J3,nB=1 0J3,nB=2

0
. . .

J3,nB=NB

 (3.35)

We diagonalize J2
nB

for each nB. Since these matrices are smaller, it is much faster
to diagonalize them. For each value of angular momentum j we construct a projection
matrix P nB

j . It maps the sector HnB onto a subspace HnB ,j corresponding to given j. The

projection matrix is composed of eigenvectors of J2. Then J3 on these small subspaces
are

J3,nB ,j = P †nBjJ3,nBPnBj. (3.36)

These matrices are yet smaller and can be diagonalized for each nB and j separately.
The projection matrices PnB ,j,m from HnB ,j to HnB ,j,m are given by eigenvectors of J3,nB ,j.
Then the projection matrices from HnB to HnB ,j,m are PnB ,j,m = PnB ,j,mPnB ,j. We con-
struct a transition matrix

PNB ,j,m =


PnB=1,j,m 0PnB=2,j,m

0
. . .
PnB=NB ,j,m

 . (3.37)

Finally, we construct the matrix of Hamiltonian in a channel with given (j,m): HNB ,j,m =

P†NB ,j,mHNBPNB ,j,m. It is much smaller than the initial full matrix HNB and thus diago-
nalization is faster.

3.4 Gauss elimination for bricks

It was mentioned at the end of subchapter 3.2 that there is one more way to eliminate
super�uous bricks. Here this method is presented.

Gauss elimination for bricks is based on an observation that the usual Gauss elimina-
tion which can be used to identify linearly dependent vectors, works also for bricks. If
a set of composite bricks Bi acting on the Fock vacuum gives linearly dependent states,
i.e. ∑

i

αiBi |0〉 = 0, αi 6= 0, (3.38)

then the composite bricks themselves are linearly dependent:∑
i

αiBi = 0. (3.39)
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This is not true for general operators. However, it holds for composite bricks because
they consist only of creation operators. The idea is to identify linearly dependent states
(3.38) and based on this knowledge eliminate unnecessary bricks. The procedure is the
following.

1. Choose a sector with occupation numbers n and assume that the Gauss elimination
was already performed for all n′ such that n− n′ ≥ 0.

2. Take all bricks Bi (i = 1, . . . , q) with occupation numbers n̂i such that ni = n− n̂i
is nonnegative.

3. Order bricks Bi such that ni is positive for i = 1, . . . , l and vanishes for i = l+1, . . . , q.
That means that the �rst l bricks give rise to composite bricks. The last q− l bricks
Bi acting on the Fock vacuum give a state in Hn.

4. Construct the Gramm matrix Sn. Note that matrix elements (B†iB′i)|nini′ have size
1× 1 for i, i′ > l.

5. Perform Gauss elimination for Sn. It has to be done in such way that �rst row
i = 1, . . . , l are used to eliminate elements in other columns. That is, in the �rst l
steps the pivot element is chosen from the �rst l rows. In the remaining q − l steps
the pivot elements are chosen from the last l − q rows.

6. Bricks Bi with i > l that correspond to rows which vanish can be removed. They
are linearly dependent with other composite bricks.

Using the Gauss elimination one removes all dependent bricks. Still, bases generated
in sectors Hn are overcomplete. It happens for the following reason. Consider occupation
numbers n = (0, 0, 3, 1, 0). If one constructs a block matrix element of an operator A in

this sector, then two bricks, B1 = (a†1a
†
1) and B2 = (a†1a

†
2) are taken into account. Then,

Ā|n′n =

(
(AB1)|n′n1

(AB2)|n′n2

)
. (3.40)

The occupation labels in the smaller sectors are n1 = (0, 0, 1, 1, 0), n = (0, 0, 2, 0, 0). Each
of them is one�dimensional. The single basis vector in Hn1 is B2 |0〉 and the basis vector
in Hn2 is B1 |0〉. The matrix Ā|n′n has then two columns. One corresponds to B1B2 |0〉
and the other to B2B1 |0〉. This is in fact the same vector, so the basis generated in Hn

is overcomplete. This overcompleteness cannot be removed if one would like to preserve
gains comming from the recursive nature of the algorithm.

It turned out that with this algorithm all bricks with more than six creation operators
were eliminated. That means that all simple bricks which are longer than 6 are expressed
in terms of composite bricks.

Motivated by this observation, we found a relation between generators of SU(3). First
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we assumed a general form

T a1T a2T a3T a4T a5T a6 =
1

3
(T a1T a2T a3T a4T a5T a6)13

+ Ai1i2i3i4i5i6(T
ai1T ai2T ai3T ai4T ai5 )T ai6

+Bi1i2i3i4i5i6(T
ai1T ai2T ai3T ai4 )[T ai5T ai6 ]

+ Ci1i2i3i4i5i6(T
ai1T ai2T ai3 )[T ai4T ai5T ai6 ]

+Di1i2i3i4i5i6(T
ai1T ai2T ai3 )(T ai4T ai5 )T ai6

+ Ei1i2i3i4i5i6(T
ai1T ai2 )[T ai3T ai4T ai5T ai6 ]

+ Fi1i2i3i4i5i6(T
ai1T ai2 )(T ai3T ai4 )[T ai5T ai6 ],

(3.41)

where [·] is the traceless part of a matrix, i.e. [M ] = M − 1
3
(M)13. The equation (3.41)

can be regarded as a set of equations with unknown coe�cients A, B, C, D, E, F . There
are over 260 thousand equations labeled by di�erent sets of indices (a1, a2, a3, a4, a5, a6).
Indices (i1, i2, i3, i4, i5, i6) are permutations of (1, 2, 3, 4, 5, 6). This gives 4320 free coef-
�cients. Their number can be reduced to 1134 because of symmetry of the trace under
cyclic permutations. This set of equations can be solved e.g. with Mathematica1. The
essential statement is that a solution exists. Because of certain relations between SU(3)
generators the solution is not unique. There are in fact 432 free parameters. We do not
give explicit form of the solution because it is rather complicated. Nevertheless, existence
of relation (3.41) implies that there are no bricks that are longer than 6.

Finally, we found that there are 786 bricks for the SU(3) symmetry group.

3.5 Eigenvectors in terms of composite bricks

Recall that we are interested not only in values of energies of the Hamiltonian but also
in wavefunctions of the bound states. Here we reconstruct states in the Fock space from
eigenvectors of the Hamiltonian in the matrix representation.

Once the Hamiltonian HNB ,j,m is diagonalized, its eigenvectors {cql } are known. Here,
q = (nF , j,m,E) are quantum numbers of the corresponding state and l labels elements
of the vector. We assume that {cql } are given with respect to the orthogonal basis in
HnF ,NB . That is, once the Hamiltonian was diagonalized on the subspace HnF ,NB ,j,m the
eigenvectors are transformed back to HnFNB with the transition matrix. In what follows
the quantum numbers q are omitted for simpler notation.

Sectors corresponding to occupation numbers n are sorted in lexicographical order. It
is then easy to identify which coe�cients cl correspond to which Hn. The eigenvector
{cl} can be given with two labels {cnl }. In each subspace Hn there is a basis |enl 〉. The
ket |ψ〉 corresponding to {cnl } is then

|ψ〉 =
∑
n,l

cnl |enl 〉 . (3.42)

The orthogonal basis is given in terms of the orthogonalization matrix Rn and bricks

1A Mathematica notebook for solving (3.41) is available at http://th.if.uj.edu.pl/~ambrozinski/SU3_relation.zip
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acting on basis in lower sectors. Therefore,

|ψ〉 = c0 |0〉+
∑
n>0,l

cnl |enl 〉 = c0 |0〉+
∑
n,l

cnl
∑
k

(Rn)kl |vk〉

= c0 |0〉+
∑
n,l

cnl
∑
i,p

(Rn)k(i,p)lBi |enip 〉 .
(3.43)

We continue to express |enip 〉 in terms of basis of yet lower sectors until ψ is given in terms
of composite bricks acting on the Fock vacuum

|ψ〉 =
∑
l

αl

(∏
i

Bil

)
|0〉 . (3.44)

This form of state |ψ〉 can be then used to construct the wavefunction. Wavefunctions
are discussed in Chapter 7.

3.6 Additional variational parameter

The cut Fock space method is e�ectively a variational method for �nding the lowest
energies of a system. For a given nF and NB the Hilbert space has a �nite number
of basis states |el〉. A general state is given by a combination |ψ〉 =

∑
l bl |el〉. The

lowest energy is approximated by the minimum of 〈ψ|H|ψ〉 with respect to coe�cients
{bl} with the constraint 〈ψ|ψ〉 = 1. This is precisely the lowest eigenvalue of the matrix
(〈el|H|em〉)lm. The second eigenvalue is the minimum of 〈ψ′|H|ψ′〉 with normalization
〈ψ′|ψ′〉 = 1 and orthogonality condition 〈ψ′|ψ〉 = 0, etc. With increasing NB the number
of variational parameters bl grows and thus the approximation is more accurate. We now
present a way to introduce another variational parameter to the method and show its
in�uence on the �nal result.

Basis of the Fock space are states

|n,χ〉 = |n〉B ⊗ |χ〉F =
∏
b,α

(f b†α )χ
b
α

∏
a,i

1√
(nai )!

(aa†i )n
a
i |0〉 , (3.45)

where n = (nai ) and χ = (χbα) denote bosonic and fermionic occupation numbers respec-
tively. These states are not gauge singlets. An orthogonal basis {|el〉} of the space of
gauge invariant states HNB for given nF was introduced earlier in this chapter. It can be
expressed as linear combinations of states (3.45):

|el〉 =
∑
nχ

cnχl |n,χ〉 . (3.46)

Wavefunctions of bosonic states in the con�guration representation B〈x|n〉B are given
by Hermite functions. The basis can be modi�ed by introducing a parameter ω > 0 in
the following way:

B〈x|n〉B,ω ≡ ωd/2 B〈ωx|n〉B,

|el〉ω =
∑
nχ

cnχl |n,χ〉ω =
∑
nχ

cnχl |n〉B,ω ⊗ |χ〉F ,
(3.47)
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where d = 3(N2 − 1) is dimension of the bosonic con�guration space. States |n,χ〉ω
satisfy proper orthogonality relations and therefore states |el〉ω are orthogonal.

Matrix elements of the position operator in the modi�ed basis |n,χ〉ω satisfy

B,ω〈m|x
a
i |n〉B,ω =

∫
ddx B,ω〈m|x〉x

a
i 〈x|n〉B,ω

= ω−1

∫
dd(ωx) B〈m|ωx〉ωx

a
i 〈ωx|n〉B

= ω−1
B〈m|x

a
i |n〉B.

(3.48)

A similar proof shows that B,ω〈m|pai |n〉B,ω = ω B〈m|pai |n〉B. Finally, it can be read from
(2.17), (2.6) and (2.5) that matrix elements of other operators in the orthogonal basis
|el〉 yield

ω〈el|x
a
i |em〉ω = ω−1 〈el|xai |em〉,

ω〈el|p
a
i |em〉ω = ω 〈el|pai |em〉,

ω〈el|Ji|em〉ω = 〈el|Ji|em〉,

ω〈el|G
a|em〉ω = 〈el|Ga|em〉,

ω〈el|HK |em〉ω = ω2 〈el|HK |em〉,

ω〈el|HV |em〉ω = ω−4 〈el|HV |em〉,

ω〈el|HF |em〉ω = ω−1 〈el|HF |em〉.

(3.49)

It is signi�cant that matrix elements of Ji and G
a are invariant under ω. It follows that

|el〉ω are gauge invariant because Ga |el〉 = 0. Therefore, states |el〉ω form an orthogonal
basis of the Hilbert space of gauge singlets. Moreover, given an angular momentum
multiplet |j,m〉 =

∑
l c
j,m
l |el〉, the scaled combination |j,m〉ω =

∑
l c
j,m
l |el〉ω is also an

angular momentum multiplet with the same quantum numbers (j,m).
We now recall how the energies are calculated to show how ω can be included. First,

for given nF matrices of operators HK , HV , HF , Ji are constructed in the cut space HNB .
Then, J2 and J3 are diagonalized. They are ω�independent. Next, the three matrices
(HK)NB , (HC)NB , (HF )NB are projected to the subspaces HNB ,j,m. Their dependence on
ω is given by (3.49). Therefore, ω can be taken into account be constructing

(Hω)NB ,j,m = ω2(HK)NB ,j,m + ω−4(HV )NB ,j,m + ω−1(HF )NB ,j,m, (3.50)

where all matrices on the right hand side are constructed for ω = 1. Finally, ω is chosen
such that the lowest eigenvalue of (Hω)NB ,j,m is minimized. This requires diagonalizing
(Hω)NB ,j,m multiple times. However, subspaces HNB ,j,m are reasonably small, especially
for small j, and this minimization does not consume signi�cant computer resources.

We come to discussing the e�ect of including ω. Results concerning the energies are
given in Tab. 3.1. In the sector (nF , j) = (0, 0) the smallest eigenvalue with cuto� NB

minimized with respect to ω is smaller then the the lowest eigenvalues for cuto� NB + 2
with ω = 1. That is, including the parameter ω e�ectively increases the cuto� by 2. The
e�ect is similar for (nF , j) = (2, 1). In the singlet channel for six fermions inclusion of ω
e�ectively rises NB by almost 1.

In Tab. 3.2 optimal values of ω for di�erent channels are given. It can be seen that all
values of ω are similar. They are slightly larger for nF ≥ 4. This means that the functions
are in general wider for high nF which may be a slight indication that the spectrum is
continuous in these sectors.
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NB
lowest eigenvalues in sector with quantum numbers (nF , j)

(0, 0), no ω (0, 0) with ω (2, 1), no ω (2, 1) with ω (6, 0), no ω (6, 0) with ω

0 15 12.9919 15 12.99

1 15 12.9919 17 14.41 9.06 7.83

2 13.327 12.9517 14.35 12.15 6.12 5.10

3 13.327 12.9517 13.03 11.47 4.59 3.74

4 12.8821 12.6322 12.05 11.25

5 12.8821 12.6322 11.54 11.04

6 12.7123 12.6203 11.20 10.79

7 12.7123 12.6203 10.97 10.64

8 12.6339 12.5911

9 12.6339 12.5911

10 12.6038 12.5889

Table 3.1: The lowest energies in selected sectors. In each case the energy is given with keeping ω = 1
and minimizing the energy with respect to ω.

aaaaa
j nF 0 1 2 3 4 5 6 7 8

0 1.22 1.21 1.15 1.15 1.14

1/2 1.31 1.23 1.15 1.16

1 1.25 1.22 1.15 1.15 1.15

3/2 1.27 1.22 1.15 1.15

2 1.25 1.20 1.15 1.16 1.15

Table 3.2: Optimal values of ω in each (nF , j) channel. The value depends on the cuto� and is given for
the maximal cuto� available.
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3.7 Modi�cations for SU(2)

Up to this point the cut Fock space method was discussed in reference to the SU(3)
theory. The case of SU(2) is simpler. Some changes can be done to the algorithm so that
a higher cuto� can be reached. In this part we brie�y discuss these modi�cations.

For SU(2) there is a relation similar to (3.41), but it decomposes a product of three
SU(2) generators:

T aT bT c =
1

2
(T aT b)T c − 1

2
(T aT c)T b +

1

2
(T bT c)T a +

1

2
(T aT bT c)12. (3.51)

This implies that there are no bricks longer than three. Some bricks can be eliminated
because of invariance of trace under cyclic permutations as for the SU(3) case. The
Cayley�Hamilton theorem applied to a matrix M of size 2 × 2 implies that M2 can be
expressed in terms of (M2) and (M). Therefore, there are no bricks of the form (a†ia

†
ib
†),

where b† is any creation operator. All independent bricks can be easily identi�ed and
there are 35 of them.

The relation (3.51) has further consequences. It implies that there are no single�trace
operators of length higher than three. One can calculate all commutators of single�trace
operators beforehand and then use the in the program for calculating matrix elements.
Because of this, one does not have to calculate the maximally annihilating form of an
operator during a run. Instead, one uses the commutators to write ABi = BiA+[A,Bi] (cf.
(3.29)). This is in principle possible also for SU(3). However, the formula (3.41) limits
the single�trace operators to length 6 and in practice there are too many commutators
to be calculated and memorized.

Secondly, it is relatively easy to construct operators with de�nite angular momentum
from single�trace operators. Using operators with de�nite angular momentum allows one
to construct matrix elements of the Hamiltonian directly in channels HnFNBjm. Then
one does not have to diagonalize the matrix representations of J2 and J3 but directly
the Hamiltonian H. This signi�cantly reduces the time needed for diagonalization and
allows one to reach higher cuto�s.

Both of above simpli�cations are taken into account in [38]. This allowed the authors
to reach a cuto� NB = 18 in all fermionic sectors. In this thesis SU(2) case is used only as
a guidance for analysis of SU(3) and we are interested in small NB behavior. Therefore,
we do not incorporate modi�cations discussed above.

3.8 Summary

In this chapter the cut Fock space method was presented. The bosonic and fermionic
creation and annihilation operators and the Fock vacuum state were introduced. Because
of the Gauss law, only gauge invariant states and operators are relevant. In the ma-
trix notation, creation and annihilation operators are given by operator�valued matrices.
Gauge invariant operators are traces of products of such matrices. They are called trace
operators. A special class of trace operators, namely those which consist only of creation
operators are called bricks. Composite bricks are products of bricks. The whole physical
Fock space is generated by composite bricks acting on the empty state.

In the Hilbert space we introduce a cuto� NB for the maximal number of bosonic
excitations. In this way the full space is reduced to a �nite dimensional cut Fock space.
In this subspace operators are represented by matrices. Because angular momentum and
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Hamiltonian conserve the total number of fermions, it is convenient to work with sub-
spaces with de�nite nF . It is argued that the spectrum of angular momentum operators is
exact for �nite cuto� because the angular momentum operators conserve the total num-
ber of bosons nB. The spectrum of the Hamiltonian is recovered only in the NB → ∞
limit.

All possible composite bricks acting on the empty generate an overcomplete basis. In
subchapters 3.2 and 3.4 we have shown how to reduce the number of bricks to minimum.
The three basic relations are

• invariance of trace under cyclic permutations,

• Cayley-Hamilton theorem for matrices with commuting and anticommuting matrix
elements (3.6) and (3.12),

• linear dependence of products of three SU(3) generators T a (3.15).

We argued that more bricks can be removed with Gauss elimination. We found that there
are no bricks that are longer than 6. Finally, we explained this by showing existence of
a decomposition formula for product of six generators T a (3.41).

In 3.3 we proposed an algorithm for computing matrix of an operator. The key point
is transforming an operator to its maximally annihilating form. For an operator A and a
brick B the maximally annihilating form of AB (3.29) is given by BA+R where R is the
maximally annihilating form of [A,B]. Therefore, calculating the maximally annihilating
form of AB is the same as calculating commutator of A and B and giving it in a form
convenient for further computations. Overcompleteness of basis is taken into account
by introducing orthogonalization matrices Rn. The algorithm is recursive. Proof of its
�niteness is given in Appendix C.

We presented an e�ective way to diagonalize the Hamiltonian. It is e�cient �rst to
diagonalize the matrix of angular momentum J2 and J3. This is because these operators
conserve the total number of bosons. Therefore, they can be diagonalized on smaller
subspaces which is much faster.

Finally, it was shown how to reconstruct a state in terms of composite bricks acting
on the Fock vacuum from eigenvectors of operators in matrix representation. This form
of states is used in Chapter 7 where we construct and study wavefunctions.
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Chapter 4

Number of gauge invariant states

In the previous Chapter we introduced a set of vectors |vk〉 which span a sector Hn for
given occupation numbers n. It was noted that |vk〉 form an overcomplete basis. The
proper dimension of Hn can be read out from the number of nonzero eigenvalues of the
Gramm matrix Sn. However, these eigenvalues bare some numerical errors. Therefore,
one would like to cross check if there is a clear distinction between zero and nonzero
eigenvalues and if the dimension of Hn obtained in this way is correct. Secondly, the
knowledge of dimensions of sectors a priori provides a check for completeness of the set
of bricks. To this end an analytic way of calculating the number of independent SU(3)
gauge invariant states in a given sector is presented. It is called character method because
the number of states is given by an integral of characters over the group as it is shown
below. The analysis in this chapter is based on [45] and modi�ed. Introduction to the
group theory and de�nitions of objects used in this chapter can be found e.g. in [55].

4.1 The character method

A general gauge invariant state in the Fock space can be written in the following form:

|s〉 = ta1...anb1...bmaa1†i1 · · · a
an†
in
f b1†α1
· · · f bm†αm |0〉 . (4.1)

All bosonic and fermionic creation operators are in adjoint SU(3) representation. In this
chapter the adjoint representation is denoted by R. Assume that in the combination (4.1)

there are niB bosonic creation operators aa†i for each i and nαF fermionic creation operator
f b†α for each α. The state |s〉 has occupation numbers n = (n1

B, n
2
B, n

2
B, n

1
F , n

2
F ). In order

to simplify notation we introduce

nB = (n1
B, n

2
B, n

3
B), nB = n1

B + n2
B + n3

B, (4.2)

nF = (n1
F , n

2
F ), nF = n1

F + n2
F . (4.3)

The state |s〉 is in the representation

Sym(⊗n1
BR)× Sym(⊗n2

BR)× Sym(⊗n3
BR)× Alt(⊗n1

FR)× Alt(⊗n2
FR), (4.4)

where Sym and Alt are symmetrization and antisymmetrization of the tensor product.
Let Dn be the number of independent singlet states in sector Hn. Dn is equal to the
number of trivial representations that appear in the product (4.4). From orthogonality
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properties of characters it follows [56] that Dn is given by an integral of character over
the group SU(3):

Dn =

∫
dµχ

n1
B
Sym(R)χ

n2
B
Sym(R)χ

n3
B
Sym(R)χ

n1
F
Alt(R)χ

n2
F
Alt(R), (4.5)

where µ is the Haar measure of SU(3). Characters of symmetric and antisymmetric
powers of representation R are constructed with Frobenius formula later in this chapter.
In order to make the integral (4.5) simpler, we use the generating function

G(a, b) =
∞∑

niB=0

∞∑
nαF=0

a
n1
B

1 a
n2
B

2 a
n3
B

3 (−b1)n
1
F (−b2)n

2
FDn. (4.6)

Symbols a = (a1, a2, a3) and b = (b1, b2) are introduced for shorter notation.
Let U be an element of SU(3) in the fundamental representation. U can be decomposed

as U = WΛW † where W is unitary and Λ is diagonal with det(Λ) = 1. Then Λ =
diag(z1, z2, z3) depends on two parameters because z1z2z3 = 1. We write zj = eiφj . The
character χ(R) depends on Λ and does not depend on parameters of W . Therefore, it
would be convenient to have a Haar measure µ (cf. (4.5)) integrated over parameters of
W . This measure is given by the formula (cf. [57])

dµ =
1

6

3∏
i=1

dφi
2π

δP (
3∑
i=1

φi)
∏
i<j

|zi − zj|2 , (4.7)

where φ ∈ [0, 2π] and δP (x) =
∑

k∈Z δ(x− 2πk). In this parametrization character of an
element R in adjoint representation is given by Schur function

χ(R) = χ({zj}) = det(zli+3−i
j )/ det({z3−i

j }), (4.8)

where li = 3 − i is partition of the adjoint representation of SU(3). This is exactly the
Weyl determinant formula [58]. The determinants can be calculated explicitly and the
character is

χ({zi}) = det

 1 1 1
z2

1 z2
2 z2

3

z4
1 z4

2 z4
3

 / det

 1 1 1
z1 z2 z3

z2
1 z2

2 z2
3


=
∏
i<j

(zi + zj) =
∑
i,j

zi
zj
− 1.

(4.9)

The character of Rk is given simply by

χ(Rk) = χ({zki }) =
∑
i,j

zki
zkj
− 1. (4.10)

The character of symmetric and antisymmetric powers of χ(R) is given by the Frobenius
formula [56]:

χ
(n)
Sym(R) =

∑
∑
k kik=n

n∏
k=1

1

ik!

χik(Rk)

kik
, (4.11)

χ
(n)
Alt(R) =

∑
∑
k kik=n

(−1)
∑
k ik

n∏
k=1

1

ik!

χik(Rk)

kik
. (4.12)
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Finally, we introduce auxiliary functions

FSym(a, {φi}) =
∞∑
n=0

anχ
(n)
Sym(R) (4.13)

FAlt(b, {φi}) =
∞∑
n=0

(−b)nχ(n)
Alt(R). (4.14)

Functions FSym(a, {φi}) and FAlt(b, {φi}) can be simpli�ed in the following way:

FSym(a, {φi}) =
∞∑
n=0

an
∑

∑
k kik=n

n∏
k=1

1

ik!

χik(Rk)

kik
=
∞∑
n=0

∑
∑
k kik=n

n∏
k=1

1

ik!

(
akχ(Rk)

k

)ik

=
∞∑
n=0

1

n!

(∑
k

akχ(Rk)

k

)n

= exp

(∑
ij

∑
k

1

k

akzki
zkj
−
∑
k

ak

k

)

= exp

(
−
∑
ij

ln

(
1− azi

zj

)
+ ln(1− a)

)
= (1− a)

∏
ij

(
1− azi

zj

)−1

.

(4.15)

Similarly, one can show that

FAlt(b, {φi}) = (1− b)−1
∏
ij

(
1− b zi

zj

)
. (4.16)

Then the generating function G has the form

G(a, b) =

∫
[0,2π]3

dµ
∏
j

FSym(aj, {φi})
∏
α

FAlt(bα, {φi}). (4.17)

We change the variables

φi → −
∑
j 6=i

φj, φN →
∑
j

φj. (4.18)

The jacobian is 1/3. Integration over the last variable is over [0, 6π] giving 3 identical
integrals (from the δP function). This cancels with the jacobian and δP (φ3) is replaced
by δ(φ3). The generating function is

G(a, b) =
1

6

(
(1− b1)(1− b2)

(1− a1)(1− a2)(1− a3)

)2 ∫ 2π

0

3∏
i=1

dφi
2π

δ(φ3)×

×
∏
i 6=j

(1− zi
zj

)
(1− b1

zi
zj

)(1− b2
zi
zj

)

(1− a1
zi
zj

)(1− a2
zi
zj

)(1− a3
zi
zj

)
.

(4.19)
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4.2 Calculation of the generating function

The integrals are calculated one by one:

G(a, b) =
1

6

(
(1− b1)(1− b2)

(1− a1)(1− a2)(1− a3)

)2 ∫
C
dz2G1(a, b, z2),

G1(a, b, z2) =

∫
C
dz1G2(a, b, z1, z2),

G2(a, b, z1, z2) =
1

z1z2

∏
i 6=j

(zj − zi)(zj − b1zi)(zj − b2zi)

(zj − a1zi)(zj − a2zi)(zj − a3zi)
,

(4.20)

where C is the unit circle on the complex plane. The range of indices i, j is 1, 2, 3. Re-
member that z3 = 1. The integral is done by residues. After the integrals are calculated,
the dimensions Dn of sectors Hn are read from the Taylor expansion of G(a, b) around
0. Therefore, in all calculations it is assumed that ai and bα are small.

First we perform the integral over z1 by residues. There are seven simple poles in z1

variable: z1 = 0, ak, akz2. The residues are

res0G2 =
(1− z2)2

∏
i 6=j
∏

α(zj − bαzi)
z2

∏
k ak(1− akz2)(z2 − ak)

, (4.21)

where z1 = 0, z3 = 1,

resakG2 =
(z2 − 1)(z2 − ak)(1− ak)

a2
kz2(z2 − a2

k)(1 + ak)(1− akz2)

∏
i 6=j

(zj − b1zi)(zj − b2zi)∏
n6=k(zj − anzi)

, (4.22)

where z1 = ak, z3 = 1 and

resakz2G2 =
(1− akz2)(1− ak)(1− z2)

a2
kz2(1 + ak)(z2 − ak)(1− a2

kz2)

∏
i 6=j

(zj − b1zi)(zj − b2zi)∏
n6=k(zj − anzi)

, (4.23)

with z1 = akz2, z3 = 1.
res0G2 has four simple poles, z2 = 0 and z2 = ak. There are six simple poles of

resakG2, namely z2 = 0, z2 = an for n 6= k and z2 = anak. Finally, resakz2G2 has four
simple poles z2 = 0 and z2 = an. None of these functions has poles of higher order.

Now the function G1(a, b, z2) from (4.20) is

G1(a, b, z2) =

∫
C
dz1G2(a, b, z1, z2) = res0G2 +

∑
k

(resakG2 + resakz2G2) (4.24)

Finally, G(a, b) is an integral of G1(a, b, z2). It is again calculated by residues. The form
of the integrals becomes somewhat more complicated:

res0G1 =

∏
α b

3
α∏

i a
3
i

+
2
∏

α b
2
α∏

i a
2
i

∏
j<k(ajak − 1)(aj − ak)

×
∑
i

(ai − 1)
∏

α(ai − bα)(aibα − 1)(aman − 1)(am − an)

ai(ai + 1)

where m and n are such that (i,m, n) is a cyclic permutation of (1, 2, 3).
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resakG1 =
1∑

i 6=j(ajaj − 1)

∏
α(ak − bα)(akbα − 1)

a2
k(1 + ak)

∏
i 6=k(ak − ai)

(
(ak − 1)(

∏
i 6=k ai − 1)

∏
α b

2
α

ak
∏

i 6=ka2i

+
(ak − 1)2(ak + 1)(

∏
i 6=k ai − 1)

∏
α(ak − bα)(a2

k − bα)(akbα − 1)(a2
kbα − 1)

ak(1 + ak + a2
k)
∏

i 6=k(ak − ai)(a2
k − ai)(akai − 1)(a2

kai − 1)

+
∑
i 6=k

( (ai − ak)
∏

α(ai − bα)(ai − akbα)(ak − aibα)(aibα − 1)

a2
i (ai − a2

k)(ak − a2
i )(1 + ai)(aiak − 1)(ai − am)(ai − akam)(ak − aiam)

+
(akai − 1)

∏
α(ai − bα)(aiak − bα)(akaibα − 1)(aibα − 1)

a2
i (ak − ai)(ai − am)(am − aiak)(1 + ai)(a2

i ak − 1)(aia2
k − 1)(aiakam − 1)

))
where m is assumed to be di�erent then i and k, i.e. (i, k,m) is a permutation of (1, 2, 3).

resa2kG1 =
(−1 + ak)

2
∏

α(ak − bα)2(a2
k − bα)(−1 + akbα)2(−1 + a2

kbα)

a3
k(1 + aka2

k)
∏

i 6=k(ak − ai)2(a2
k − ai)(−1 + akai)2(−1 + a2

kai)
.

resakanG1 = −2

∏
α(ak − bα)(an − bα)(akan − bα)(−1 + akbα)(−1 + anbα)(−1 + akanbα)

(ak − an)2(akan − al)(−1 + alakan)

×
∏
j=k,n

1

a2
j(1 + aj)(aj − al)(−1 + alaj)(−1 + ajakan)

,

where l 6= k, n.
Finally,

G(a, b) =
1

6

(
(1− b1)(1− b2)

(1− a1)(1− a2)(1− a3)

)2

×
(
res0G1 +

∑
k

resakG1 + resa2kG1 +
∑
k<n

resakanG1

)
.

(4.25)

The dimension of Hn can be read out from Taylor expansion of G. The explicit
expressions for residues are rather involved, so it is convenient to use a program for
symbolic manipulations, e.g. Mathematica to do the Taylor expansion. The dimension
of sectors with given nB, nF is given in Table 4.1.

4.3 Comparison with the numerical approach

In this chapter we have shown a method to calculate dimensions Dn of sectors Hn an-
alytically. A direct, numerical way to �nd Dn was presented in Chapter 3. First, one
constructs the Gramm matrix of scalar products of all vectors that span Hn. Then, Dn

is equal to the number of nonzero eigenvalues of the Gramm matrix.
For a cross check of these two approaches we present histograms of eigenvalues in

illustrative sectors in Fig. 4.1. The Dn largest eigenvalues (where numerical value of Dn

follows from the character method) are marked with red bars. Bars which correspond to
smaller eigenvalues are blue. One can see that the large and small eigenvalues are well
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nB nF
0 1 2 3 4 5 6 7 8

0 1 0 1 4 5 12 11 16 28
1 0 6 12 30 72 114 180 234 240
2 6 18 66 198 444 810 1212 1590 1776
3 11 70 292 870 2048 3926 6135 8010 8780
4 30 228 969 3192 7941 15396 24549 32520 35694
5 75 624 3042 10224 26010 52260 84669 112632 123888
6 186 1632 8328 29376 77030 157348 258150 346292 381908
7 381 4008 21366 77448 207684 431712 717150 967104 1067382
8 885 9156 51078 190500 520782 1097892 1839834 2495124 2760186
9 1785 20108 115894 441212 1225864 2617004 4423238 6024572 6672230
10 3618 42300 249780 971028 2737962 5903544 10048302 13743936 15242292

Table 4.1: Total number of states in sectors with given nF and nB .

separated. Also, the number of large eigenvalues agrees with the dimension Dn. This
holds also in all other sectors. More precisely, the 'zero' eigenvalues are always smaller
than 10−12 and the 'nonzero' are larger than 10−3.

The agreement also means that all relevant bricks are included. If that was not the
case, that there would be not enough large eigenvalues.
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(a) n = (0, 0, 3, 3, 2) (b) n = (1, 0, 3, 2, 2)

(c) n = (2, 1, 1, 1, 1)

Figure 4.1: Histograms of eigenvalues of the Gram matrices Sn in three di�erent sectors with quantum
numbers n. Red bars correspond to Dn largest eigenvalues where Dn is the dimension of Hn which
follows from the character method.
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Chapter 5

The spectrum

Spectrum of a Hamiltonian is a basic characteristic of a model. The main goal of the
cut Fock space method is to �nd eigenvalues of a given operator. Here, we apply this
algorithm to �nd energies of the supersymmetric Yang-Mills quantum mechanics. In
particular, it is interesting to identify type of the spectrum, whether it is continuous or
discrete. The nature of the spectrum can be identi�ed from behavior of energy levels
for growing cuto� [59]. If a given eigenvalue converges fast, then it corresponds to a
discrete energy in the continuum limit. A signature of a continuous spectrum are many
eigenvalues which decrease slowly (to zero if there is no mass gap) as the cuto� increases.
As it was mentioned before, the fermion number and angular momentum are conserved.
Therefore, we study the spectrum in channels with de�nite nF and j.

First we present the results for the SU(2) theory. We give a short review of other
methods and then proceed to detailed analysis of the spectrum obtained with our ap-
proach. This part serves as a check of our program and a guide to understand the results
for the more complicated model with SU(3) gauge group. Finally, we proceed to analysis
of the spectrum of SYMQM with SU(3).

5.1 SYMQM with SU(2) gauge group

5.1.1 Review of other approaches

The SU(2) model has been already extensively studied in [38]. The energies were obtained
in all fermonic sectors and all angular momenta for cuto� up to NB = 18. The method
used was analogous to our approach, but it included modi�cations discussed in 3.7. These
modi�cations incorporate computing matrix elements in channels with given angular
momentum. This is possible for SU(2) because the algebra of operators is much simpler
than in the SU(3) case. One can then rearrange all single�trace operators so that they
have de�nite angular momentum and calculate all commutators.

There exists yet another way to obtain energies in the SU(2) case [42]. However, it is
limited to channels with zero angular momentum and nF = 0, 2. In these channels it is
very e�ective and enables one to reach very large cuto� NB = 60 for nF = 2 [43]. We
give more details concerning this approach in Chapter 7.

On the other hand, the algorithm proposed in this thesis allows us to calculate energy
levels in all (nF , j) channels. On the other hand, the cuto� is much smaller. It is
NB = 8 − 11 depending on nF . Results of the computations for all nF , NB and several
angular momenta are shown in Figs 5.1 - 5.4. Values of the energies were checked against
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[38] and perfect agreement was found.

An important characteristic of a spectrum is its type � discrete or continuous. It was
argued [49] that the two types of spectra reveal a di�erent behavior for a �nite cuto�.
Energy levels which belong to the discrete spectrum converge very fast, e.g. exponentially.
On the other hand, eigenvalues of the Hamiltonian which correspond to the continuous
spectrum decrease to 0 like 1/NB. Identi�cation of the type of spectrum is the main
subject of following paragraphs.

5.1.2 Spectra in sectors with given number of fermions

We start discussing spectra for particular nF with nF = 0. We �rst comment on the
'stepwise' convergence of eigenvalues in Fig. 5.1. In the bosonic channel the parity is
conserved. The creation operator a†i has negative parity. Therefore, states with odd nB
(see eq. (3.5)) have negative parity. For a given NB, all states with nB ≤ NB are included
in the basis of the cut space. When NB changes from an odd to even value, the basis of
odd states does not grow and eigenvalues corresponding to odd states remain constant.
Similarly, energy levels of even states do not change when NB changes form an even to
odd value.

For nF = 0 (Fig. 5.1) all energies converge fast with growing cuto�. This behavior is
typical for discrete spectrum. The fact that the spectrum is discrete is contrary to what
one may naively expect. Indeed, if the three matrices Xi commute then the potential
vanishes: V ≡ −

∑
i<j Tr([Xi, Xj]

2) = 0. The region where the potential vanishes forms
a vector subspace in the con�guration space which we call �at valleys. Such situation
usually generates a continuous spectrum. On the other hand, the potential becomes
steeper in the transverse directions as one moves deeper inside the valleys. The transverse
oscillations cost more energy and thus the e�ective potential inside the �at valleys grows.
Therefore, the eigenstates of the Hamiltonian with nF = 0 are localized and the spectrum
is discrete. A simpler system with similar properties was studied in [60]. The sector with
one fermion shares the same behavior (Fig. 5.2).

The picture is di�erent with two fermions (Fig. 5.3). In the j = 0 channel the
lowest energies approach 0 and the convergence is much slower. This is a signature of
a continuous spectrum. This is because inside the �at valley the contributions form
interactions of bosonic and fermionic degrees of freedom with the potential have di�erent
sign. They cancel exactly causing the e�ective potential to vanish. The �at valleys are
open and the spectrum is continuous. The eigenenergies corresponding to the continuous
spectrum will be denoted by Ec

k where k = 0, 1, . . . is the label of the energy level. The two
lowest energies Ek correspond to the continuous spectrum, so Ec

k = Ek for k = 0, 1. The
second excited energy which belongs to the continuous spectrum goes through discrete
energy levels. It is marked with triangles in Fig. 5.3. The third energy seems to be
Ec

3 = E5.

Even with two fermions, the j = 1 channel has discrete spectrum (Fig. 5.3). In the
next sector, with angular momentum j = 2 the spectrum is again continuous. With our
data we checked that the spectrum is continuous for all even j and discrete for odd j at
least up to j = 6. For three fermions the spectrum is continuous for all j.

All these e�ects, i.e. nonvanishing e�ective potential in a �at valley, cancelation be-
tween bosons and fermions and �nally discrete spectrum inside continuous one were
already observed for simpler supersymmetric systems [60, 12, 61].
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5.1.3 Scaling relations

There are interesting scaling relations for eigenvalues corresponding to the continuous
spectrum. They originate from dispersion relations for energies. In [49] the free Hamil-
tonian in a one dimensional quantum mechanics was studied with the cut Fock space
method. For this system there is a standard dispersion relation E(p) = 1

2
p2. It was

shown that in the in�nite N limit momentum is related to the label of energy level by
p = π√

2NB
(m+ 1). It follows that the energies satisfy

Ec
m ≈

π2(m+ 1)2

4NB

m = 0, 1, . . . (5.1)

In the continuum limit the energies �ll densely the positive real axis. In [38, 43] it was
argued and checked numerically that the scaling of energies are similar for the continuous
spectrum in SYMQM. Although the relation (5.1) does not hold precisely, it was shown
that NBEm converge to nonzero constants and ratios of the energies agree, i.e. Ec

m/E
c
k ≈

(m+ 1)2/(k+ 1)2. Corresponding results based on our data are presented in Figs 5.5 and
5.6. Both scaling relations are con�rmed for the three lowest energies in the continuous
spectrum Ec

0, E
c
1 and E

c
2. For the third excited continuous energy we took Ec

3 = E5. The
scaling relations suggest that Ec

3 = E5 is smaller than the theoretical expectation. This
can be an e�ect of too small cuto� or misidenti�cation of the continuous energy.

Figure 5.1: Spectrum of the SU(2) theory in the bosonic sector. The maximal cuto� is NB = 12. There
are no states with angular momentum j = 1 (cf. Appendix B). Energies corresponding to even and odd
states are marked with red and blue color respectively.
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Figure 5.2: Spectrum of the SU(2) theory in sector with a single fermion.

Figure 5.3: Spectrum of the SU(2) theory in sector with two fermions. For j = 0 the two lowest energies
correspond to continuous spectrum. The third line from the continuous spectrum crosses two discrete
energy levels. This line is marked with triangles. Fourth energy from the continuous spectrum is probably
the �fth excited energy.
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Figure 5.4: Spectrum of the SU(2) theory in sector with nF = 3.

Figure 5.5: Scaled energies for SU(2) in channel with nF = 2, j = 0. The energies corresponding to
the continuous spectrum scaled by the cuto� NB converge to constant values. This is in agreement with
(5.1). The convergence is best for lowest energies. The cuto� is too small for NBE

c
3 to level o� or it is

misidenti�ed as an energy from the continuous spectrum.
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Figure 5.6: Ratios of the energies for SU(2) satisfy the relation Ec
m/Ec

k ≈ (m+ 1)2/(k + 1)2 (�at lines)
in the continuum limit. The higher ratio E3/E0 has not yet converged for NB = 10.

5.2 The spectrum for the SU(3) gauge group

Here our results for the SU(3) symmetry group are presented. In order to obtain the
spectrum we constructed matrices with sizes up to 36000. Computations were performed
on a supercomputer Deszno located in the Institute of Physics at Jagiellonian University.
96 cores were used in parallel with the OpenMP interface using up to 256 GB shared
memory.

The eigenenergies of the model are shown in Figs 5.7 - 5.15. All energies are obtained
in channels with de�nite total angular momentum j (cf. 3.3.3). For SU(3) there are more
degrees of freedom and therefore there are many more states for a given NB compared
to the SU(2) case. This is re�ected by a larger density of eigenvalues. Because there are
more degrees of freedom, the energies are generally larger for SU(3) than for SU(2). As
before, parity is conserved in the bosonic channel.

The general picture is similar to the case of SU(2). For zero and one fermion the
spectrum is purely discrete. Unlike in the SU(2) case, the argument from Appendix B
doesn't work and there are states with j = 1 for nF = 0.

The main di�erence from SU(2) is that in the sector with two fermions the spectrum is
still discrete. It means that there are not enough fermions to cancel with bosonic degrees
of freedom and the e�ective potential does not vanish. The �at valleys remain closed.
For the cuto� we were able to reach the continuous spectrum is best manifested for the
ground state of nF = 6 and j = 0. We checked the scaling of the energies to con�rm this
conclusion. The result is shown in Fig. 5.16. The scaled energies are given for all nF
in channels with the lowest angular momentum (i.e. j = 0 for even nF and j = 1/2 for
odd nF ). For nF = 0, 1, 2, 3, 4, 6, 8 we picked the lowest energy. For nF = 5, 7 we chose
the �rst excited energy, because those seem to be better candidates for the continuous
spectrum (cf. Figs. 5.12, 5.14). Scaled energies corresponding to the continuous spectrum
should be �at for large NB. All energies are divided by E(NB = 1) so that the overall
scale for each channel is removed. From Fig. 5.16 one can see that the scaled energies
become more �at as the number of fermions grows.

As it was mentioned in the Introduction, the Yang�Mills quantum mechanics without
fermions was considered as a zeroth order approximation to pure gauge SU(2) theory
in a small volume in [30, 31]. In [33, 32] authors give numerical results also for SU(3).
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Their results are obtained numerically by a variational technique, which is essentially the
same as our method (but restricted to nF = 0). In Table 5.1 we present comparison of
the lowest energies in several channels with given angular momentum and parity. The
results are consistent. The relative di�erence usually does not exceed 4%. Naturally, the
results di�er less in cases where both methods are more precise (i.e. for lowest energies).

sector cut Fock space Rayleigh-Ritz relative di�erence

0+
12.5889 12.5887 0.0016%
15.39 15.38 0.07%
17.24 17.23 0.06%

0− 17.75 17.8 -0.28%

1+
18.77 18 4.1%
22.4 >20

1−
16.52 17.05 -3.2%
18.5 23 -24%

2+
14.806 14.854 -3.2%
17.159 17.26 -0.59%

2− 18.37 >20
3− 16.10 16.5 -2.5%
4+ 17.3 18 -4%

Table 5.1: Comparison of lowest energies in the bosonic sector for the SU(3) case obtained by our method
and [32]. Since both approaches are variational, lower values of energies give better approximation to
energies in the continuum limit. In the 0+ sector results are perfectly consistent - eigenvalues di�er only
at the last digit which was given in [32]. In other channels our results are usually slightly more accurate.

Concluding, the spectrum of the SU(3) theory has discrete and continuous part. In
contrary to the SU(2) case, for SU(3) the spectrum is discrete for two fermions. The
continuous spectrum is moved to channels with higher nF because more fermions are
needed to have supersymmetric cancelations between fermionic and bosonic degrees of
freedom. Only then the e�ective potential in the �at valleys vanishes. Our results indicate
that this occurs for nF = 6.
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Figure 5.7: Spectrum of the SU(3) theory in the bosonic sector. The maximal cuto� is NB = 11.
Energies marked with red correspond to states with positive parity and blue to negative parity. Even
energies are marked only for even NB because they do not change when NB passes from even to odd
value. Conversely, odd energies are marked only for odd NB .

Figure 5.8: Spectrum of the SU(3) theory with a single fermion.
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Figure 5.9: Spectrum of the SU(3) theory with two fermions.

Figure 5.10: Spectrum of the SU(3) theory with nF = 3.
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Figure 5.11: Spectrum of the SU(3) theory with nF = 4.

Figure 5.12: Spectrum of the SU(3) theory with nF = 5.
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Figure 5.13: Spectrum of the SU(3) theory with nF = 6.

Figure 5.14: Spectrum of the SU(3) theory with nF = 7.
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Figure 5.15: Spectrum of the SU(3) theory with nF = 8.

Figure 5.16: Scaled energy NBE for SU(3) in sectors with nF = 3, . . . , 8. All energies are divided by E
for NB = 1. In each channel the lowest j was picked, i.e. j = 0 for even nF and j = 1/2 for odd nF . In
most sectors the lowest energy state was picked. For nF = 5, 7 the �rst excited state was chosen because
these seem to be better candidates for states in the continuum spectrum. For states corresponding to
the continuum spectrum the scaled energy should be �at.
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Chapter 6

Supersymmetry multiplets

Having computed spectrum of the model, we are now interested in its supersymmetric
properties. It is known [62] that energy eigenstates of a supersymmetric model form
supersymmery multiplets (or supermultiplets). A supermultiplet is a representation of
the supersymmetry algebra (2.16). In each supermultiplet there is a Cli�ord vacuum
|Ω〉. It can have any angular momentum j. For j > 0 it is degenerate and belongs to
a (2j + 1)�dimensional representation of rotational group. By acting with supercharges
on |Ω〉 one recovers the whole supermultiplet. Other elements of the supermultiplet also
form multiplets of angular momentum. The supermultiplet has in total 8j + 4 states.
Half of them has odd and half of them even nF . In general, these representations are
reducible. The only exception is j = 0.

A powerful method to identify supermultiplets in organized way is to use supersymme-
try fractions [38]. One can check whether two states are elements of the same multiplet
by acting with a supercharge on one of them and analyzing the overlap with the other
state. A supersymmetry fraction is essentially such an overlap.

In this chapter the parameter ω (cf. Chapter 3) is not included, i.e. here ω = 1.

6.1 Supersymmetry multiplets in the continuum limit

The four supersymmetry generators Qα introduced in (2.15) satisfy anticommutation
relations (2.16) which play a central role in supersymmetric theories. They are however
not the only operators which ful�ll the algebra (2.16). Moreover, they are somewhat
inconvenient because they do not form a spin multiplet. For this reasons we introduce
operators Qα (α = ±):

Q†+ = −eiπ/4Q4,

Q†− = eiπ/4Q3.
(6.1)

The overall phase is chosen such that the phase factors simplify when Q†± are written in
terms of traces. Q†α form a spin doublet. The magnetic quantum number of operator

Q†± is m = ±1/2, i.e. [J3,Q†±] = ±1
2
Q†±. Both Q

†
± rise the fermionic number nF by +1.

Their conjugates

Q+ = eiπ/4Q1,

Q− = eiπ/4Q2

(6.2)
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also form a spin doublet and have opposite quantum numbers. The new supersymmetry
generators ful�ll following commutation relations:

{Qα,Qβ} = {Q†α,Q
†
β} = 0,

{Qα,Q†β} = 2δαβH,

[H,Qα] = [H,Q†α] = 0.

(6.3)

Now we come to discussion of the structure of a supermultiplet. A Cli�ord vacuum
|Ω,m〉 is de�ned by

Qα |Ω,m〉 = 0 α = ±1

2
. (6.4)

Assume that it has nF fermions, angular momentum j and energy E. The magnetic
number m is kept explicit. One has to keep in mind that the Cli�ord vacuum has
nothing to do with the vacuum of the model, i.e. the state with the lowest energy. In
order to avoid confusion, it will be always called a Cli�ord vacuum or a vacuum of a
supermultiplet. If E = 0 then Q†α |Ω,m〉 vanishes and |Ω,m〉 is a supersymmetry singlet.
Indeed, ∥∥Q†α |Ω,m〉∥∥2

= 〈Ω,m|QαQ†α|Ω,m〉 = 〈Ω,m|2H −Q†αQα|Ω,m〉 = 0. (6.5)

If this is not the case, new states are created by acting with Q†α on |Ω,m〉. With the aid
of Clebsh-Gordan coe�cients, these states can be arranged in spin multiplets

|Ω−,m〉 =
1√
2E

∑
α

〈j,m− α, 1

2
, α|j − 1

2
,m〉Q†α |Ω,m− α〉 , m = −j +

1

2
, . . . , j − 1

2
,

|Ω+,m〉 =
1√
2E

∑
α

〈j,m− α, 1

2
, α|j +

1

2
,m〉Q†α |Ω,m− α〉 , m = −j − 1

2
, . . . , j +

1

2
,

|Ω0,m〉 =
1

2E
Q†−Q

†
+ |Ω,m〉 , m = −j, . . . , j.

(6.6)

If j = 0 then |Ω−,m〉 = 0. Otherwise none of these states vanishes. All of them are
normalized thanks to the relation of Clebsh-Gordan coe�cients∑

α

∣∣∣∣〈j ± 1

2
,m− α, 1

2
, α|j,m〉

∣∣∣∣2 = 1 for all j ≥ 1

2
and m = −j, . . . , j. (6.7)

Obviously, (6.7) is not valid for j = 0 when it is taken with the minus sign, because there
is spin −1

2
on the left hand side. The three new states have energy E because the su-

percharges commute with the Hamiltonian. |Ω−,m〉 , |Ω+,m〉 , |Ω0,m〉 are spin multiplets
with total angular momentum j− 1

2
, j+ 1

2
and j respectively. Together with the vacuum

|Ω,m〉 they form a supersymmetric multiplet.
Several remarks concerning supermultiplets are in place. A supersymmetry multiplet

is closed under the action of supercharges. That is, Qα or Q†α acting on an element of a
supermultiplet gives zero or combination of other elements. It follows that none of the
three states |Ω−,m〉 , |Ω+,m〉 , |Ω0,m〉 can be a vacuum state of another supermultiplet.

The full supersymmetry multiplet forms a diamond in the (nF , j) plane (cf. Fig. 6.1).
The exception is j = 0 � there is no state |Ω−,m〉, i.e. the lower node (nF + 1, j − 1

2
) in
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nF , j

nF + 1, j + 1
2

nF + 1, j − 1
2

nF + 2, j

q = j + 1

q = j q = j

q = j + 1

Figure 6.1: Structure of a supermultiplet together with supersymmetry fractions. For j = 0 the bottom
vertex and the two lower links are absent.

Fig. 6.1 is not present. In the supermultiplet there are 4j + 2 bosonic states (i.e. states
which contain an even number of fermions) and the same number of fermionic states. As
a consequence, a supersymmetry multiplet with nonzero energy does not contribute to
the Witten index.

For �nite NB there is only a �nite number of states in each (nF , j) channel. In Fig.
6.2 the total number of multiplets in each sector for the SU(3) gauge group and NB = 2
is given. Each circle is a vertex of a diamond or a triangle. These �gures are the
same as the diamond in Fig. 6.1 and they correspond to supermultiplets. The number
inside each diamond or triangle is the number of according supermultiplets for �nite NB.
These numbers are determined in such way that the total number of supermultiplets
adjacent to a vertex (nF , j) is the same as the number of angular momentum multiplets
in the sector (nF , j). This is motivated by the fact that each SO(3) multiplet belongs
to exactly one supermultiplet. However, one has to keep in mind that for a �nite NB

the supersymmetry is broken and there are actually no supermultiplets. Therefore, the
number of supermultiplets determined in this way has no strict meaning. In particular,
there is a negative number of (1, 5/2) supermultiplets for SU(2) with NB = 2 (cf. Fig.
6.3).

For j = 0 the supermultiplet is an irreducible representation of the algebra (6.3).
In this case is consists of four states. For j > 0 the representation is contains 2j + 1
irreducible representations of the supersymmetry algebra. An irreducible representation
can be constructed starting from |Ω,m〉 with a single value of m. Then the other three

states in the (small) supermultiplet are 1√
2E
Q†α |Ω,m〉 and 1

2E
Q†−Q

†
+ |Ω,m〉. Each of these

states has de�nite magnetic number, but Q†α |Ω,m〉 do not have de�nite total angular
momentum. For convenience, in this thesis we use full supermultiplets with complete
angular momentum multiplets.

6.2 Supersymmetry fractions

A useful tool to analyze the supermultiplets are supersymmetry fractions. They serve
two purposes. First is studying breaking of the supersymmetry for �nite cuto�. Second
is identifying supermultiplets. Consider two angular momentum multiplets |nF jmE〉 and
|nF + 1j′m′E ′〉. A supercharge Q†α maps |nF jmE〉 into |nF + 1j′m′E ′〉 if they are in the
same supermultiplet and m′ = m + α. A supersymmetry fraction measures the overlap.
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Figure 6.2: Structure of the angular momentum multiplets and supersymmetry multiplets for SU(3) and
NB = 2. Numbers in circles represent the number of angular momentum multiplets in a given channel.
The numbers in between are the numbers of supermultiplets (the diamonds).

Figure 6.3: Structure of the angular momentum multiplets and supersymmetry multiplets for SU(2) and
NB = 2.
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Figure 6.4: Supersymmetry fractions as a function of cuto�. NB is the cuto� in the sector nF = 1. The
cuto� for nF = 0 is higher by 2.

It is de�ned by

qnF (j′E ′|jE) =
1

4E

∑
mm′α

∣∣〈nF + 1j′m′E ′|Q†α|nF jmE〉
∣∣2 . (6.8)

Formulas (6.6) together with the anticommutation relations (6.3) give straightforward∑
mm′α

|〈Ω,m|Qα|Ω+,m
′〉|2 =

∑
mm′α

|〈Ω+,m|Qα|Ω0,m
′〉|2 = 4E(j + 1),∑

mm′α

|〈Ω,m|Qα|Ω−,m′〉|2 =
∑
mm′α

|〈Ω−,m|Qα|Ω0,m
′〉|2 = 4Ej.

(6.9)

These relations specify what are the supersymmetry fractions within a supermultiplet. If
the Cli�ord vacuum |Ω,m〉 has nF fermions, energy E and angular momentum j, then
the fractions are

qnF

(
j +

1

2
, E
∣∣∣j, E) = qnF+1

(
j, E

∣∣∣j +
1

2
, E

)
= j + 1,

qnF

(
j − 1

2
, E
∣∣∣j, E) = qnF+1

(
j, E

∣∣∣j − 1

2
, E

)
= j.

(6.10)

The supersymmetry fractions are denoted by rectangles in Fig. 6.1. The supermultiplet
is closed under the action of Q†α so other fractions must necessarily vanish.

6.3 Finite cuto� e�ects

For a �nite cuto� the supersymmetry is broken. Now we analyze restoration of the
supersymmetry for growing NB. For small cuto� the supersymmetry fractions are far
from the values given by (6.10). We say that the supersymmetry is recovered when the
supersymmetry fractions are close to their exact values. Next we address the problem of
identifying superpartners when two supermultiplets are almost degenerate.
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Consider a supersymmetry fraction qnF (j± 1
2
, Ei|j, Ek). For a large cuto� it is expected

that the fraction is zero unless corresponding states, labeled with i and k, are in the same
supermultiplet. In particular, Ei and Ek should be almost the same if the fraction is
nonzero. In contrast, for a small cuto� eigenstates of the cut Hamiltonian do not give a
good approximation to exact bound states. In this situation the supersymmetry fractions
qnF (j ± 1

2
, Ei|j, Ek) are small but nonzero for many di�erent pairs (i, k).

Analysis of supersymmetry fractions for growing cuto� provides us the information at
which value of NB supersymmetry is approximately restored. In Fig. 6.4 dependence of
supersymmetry fractions q1(1

2
, Ei|0, Ek) on the cuto� is shown for selected i and k. All

states with (nF , j) = (0, 0) are Cli�ord vacua, so the exact values of shown supersymmetry
fractions are 0 and 1. For the ground state in the bosonic sector there is only one
fraction, q1(1

2
, E0|0, E0), which is signi�cant. It approaches 1 fast and we may say that the

supersymmetry between the two corresponding states is essentially restored for NB ≈ 7.
In general higher cuto�s are required to regain supersymmetry for higher eigenstates.
This is because the lowest energy states converge �rst.

Behavior of fractions q1(1
2
, Ei|0, E1), i = 3, 4 in Fig. 6.4 is related to an approximate

degeneracy of energies with nF = 1 and NB = 9 (cf. Fig. 5.8). We address this
case on a general ground. Suppose that with the available cuto� a good approximation
of a bound state |nF jmE〉 is obtained. Denote its (exact) superpartner a in channel
(nF + 1, j′ = j ± 1

2
) by |nF + 1j′m′E〉. In general, for larger number of fermions cuto�s

are smaller and thus the approximation is worse. Therefore, a good approximation of the
state |nF + 1j′m′E〉 is given by some combination

|nF + 1j′m′E〉 ≈
∑
i

ci |nF + 1j′m′Ei〉NB , (6.11)

where |nF + 1j′m′Ei〉NB are eigenstates of the Hamiltonian for cuto� NB. The question
is which states contribute to the sum (6.11). Each energy Ei has an error ∆i which is a
�nite cuto� e�ect. States which have energies equal within the error ∆ mix for higher
NB and give a better approximation of exact eigenstates. Therefore, only these ci are
nonzero for which |Ei − E| . ∆i. If the cuto� is not very small and |nF + 1j′m′E〉 is
not a highly excited state, then the errors ∆i are small and the energies Ei have to be
almost degenerate. The supersymmetry fractions qnF (j′Ei|jE) for the cuto� NB are fully
determined by coe�cients ci. In order to calculate values of the fractions �rst assume
that |nF jmE〉 is vacuum of a supermultiplet. Then the supersymmetry fraction is

qnF (j′Ei|jE) =

1

4E

∑
mm′α

∣∣
NB
〈nF + 1j′m′Ei|Q†α|nF jmE〉

∣∣2
=

1

4E

∑
mm′α

∣∣∣NB〈nF + 1j′m′Ei|nF + 1j′m′E〉 〈nF + 1j′m′E|Q†α|nF jmE〉
∣∣∣2

=
1

4E

∑
mm′α

|ci|2
∣∣∣ 1√

2E

∑
β

〈j,m′ − β, 1

2
, β|j′m′〉 〈nF jm′ − βE|QβQ

†
α|nF jmE〉

∣∣∣2
=

1

4E

∑
mα

|ci|2
∣∣∣∣√2E 〈j,m, 1

2
, α|j′m+ α〉

∗∣∣∣∣2 .

(6.12)
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Finally, we use the following property of Clebsch-Gordan coe�cients:∑
mα

∣∣∣∣〈j,m, 1

2
, α|j′m+ α〉

∣∣∣∣2 = (2j′ + 1) (6.13)

and obtain

qnF (j′Ei|jE) =

(
j′ +

1

2

)
|ci|2 . (6.14)

If |nF jmE〉 is not a Cli�ord vacuum then it is |Ω+,m〉 or |Ω−,m〉 from (6.6). One can
show by an analogous proof that then

qnF (j′Ei|jE) =

(
j +

1

2

)
|ci|2 . (6.15)

In both cases qnF (j′Ei|jE) is the exact supersymmetry fraction multiplied by |ci|2. Con-
cluding, the supersymmetry fractions qnF (j′Ei|jE) add up to the exact value. Therefore,
if one �nds several fractions qnF (j′Ei|jE) which sum up almost to j + 1

2
or j′ + 1

2
then

the superpartner of |nF jmE〉 is given by (6.11) where ci are determined up to phases.
Consider again the supersymmetry fractions q1(1

2
, Ei|0, E1) (Fig. 6.4). For NB up to 7

the fraction q1(1
2
, E4|0, E1) grows while q1(1

2
, E3|0, E1) is close to 0. For NB = 8 the two

fractions interchange. This is because the energy of the state |1, 1
2
, E4〉 decreases faster

than the energy of |1, 1
2
, E3〉 and labels of energies are swapped at NB = 8. For NB = 9

the fractions are 0.46 and 0.47 and sum up to 0.93. Based on earlier analysis we conclude
that a good approximation to the superpartner |Ω+,m〉 (cf. ( 6.6)) of the �rst excited
state in the bosonic sector |0, 0, E1〉 is given by a combination of the third and fourth
state:

|Ω+,m〉 ≈
√

0.46eiα1 |1, 1

2
,m,E3〉

NB=9
+
√

0.47eiα2 |1, 1

2
,m,E4〉

NB=9
. (6.16)

Such situation as described above, with several supersymmetry fractions which add up
almost to an exact value is in fact very common. The main reason for this is that because
large number of degrees of freedom density of eigenstates is large. Therefore, states that
correspond to di�erent but close energies mix easily for a �nite cuto�. Obviously, these
states disentangle for a cuto� which is high enough. Nevertheless, if energies of di�erent
supermultiplets are almost degenerate, the needed cuto� is very large.

All above considerations address only the case of discrete spectrum. This is because
the continuous spectrum appears in channels with many fermions. There the density of
energy states is higher while the available cuto� is small. This makes the analysis of
supersymmetry fractions yet more demanding.

6.4 Detailed analysis of supersymmetry fractions

A general method for identifying superpartners was presented. Here more examples are
considered. In particular, full identi�cation of a supermultiplet with a Cli�ord vacuum in
sector (0, 0) is carried out. In Tables 6.1 - 6.4 supersymmetry fractions for several (nF , j)
channels are shown. A fraction qnF (j + 1

2
E ′|jE) can take values either j + 1

2
or j + 1

depending on whether corresponding states are in (nF −1, j+ 1
2
) or (nF , j) supermultiplet
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respectively. Analogously, qnF (j− 1
2
E ′|jE) = j+ 1

2
or j if the states are in (nF − 1, j− 1

2
)

of (nF , j) supermultiplet. Because the cuto� we are able to reach are not very large,
the supersymmetry fractions are in general signi�cantly smaller than their values in the
continuum limit. Still, they give valuable information on at least some supermultiplets.

In Tab. 6.1 there are shown supersymmetry fractions q1(1
2
Ei|0, Ek). All states from

the (0, 0) sector are vacua of a (0, 0, E) supermultiplet. Therefore, for all of them there
should be a supersymmetry fraction equal to 1 with some states with (nF , j) = (1, 1

2
).

The states from channel (1, 1
2
) belong to one of three supermultiplets, (0, 0, E), (0, 1, E)

or (1, 1
2
, E). Therefore, only some of them share nonzero supersymmetry fractions with

states in the (0, 0) sector.
The �rst two columns of Tab. 6.1 were already analyzed in the previous part of this

chapter. It was stated that the ground states in (0, 0) and (1, 1
2
) sectors are elements of

the same multiplet. The superpartner of the �rst excited bosonic state, |0, 0, 15.48〉 is a
combination of third and fourth excited states in the channel (1, 1

2
). The third column is

related to the singlet |0, 0, 17.47〉. There are �ve fractions which correspond to doublets
in single fermion sector that add up to 0.83. Energies of these doublets range from 17.88
to 18.85. These states will possibly mix for higher cuto� and give the superpartner of
|0, 0, 17.47〉. This is consistent with the energy dependence on the cuto� (cf. Fig. 5.8).
For E ∼ 18 all energies decrease by ∆E ∼ 1 when NB changes from 8 to 9. Therefore,
the error bars to these energies are of order 1. All �ve energies are the same within error
bars and thus the states can mix before the continuum limit is reached.

Consider fractions q2(0, Ei|12 , Ek) (Tab. 6.2). In the �rst column there are two sig-
ni�cant fractions q2(0, 13.34|1

2
, 12.72) and q2(0, 13.45|1

2
, 12.72) which add up to 0.92.

This is evidence that a combination of states |2, 0, 13.34〉 and |2, 0, 13.45〉 gives the
last state of the supermultiplet (0, 0, 12.6). In the second column the largest element
is q2(0, 15.67|1

2
, 14.48) = 0.3. If |1, 1

2
, 14.48〉 is vacuum of a supermultiplet, then the

exact value of the fraction is 0.5. If this is the case then there should be a fraction
q2(1, E|1

2
, 14.48) ≈ 1.5. Indeed, there is q2(1, 15.62|1

2
, 14.48) = 0.65× 1.5.

Finally, we study supersymmetry fractions q0(j′, E ′|1, E) with j′ = 1
2
(Tab. 6.3) and

j′ = 3
2
(Tab. 6.4). Since the bosonic state is always a vacuum of a supermultiplet, the

exact values of fractions are 1 and 2 respectively. For the bosonic ground state with j = 1
the relevant fractions are q0(1

2
, 17.5|1, 16.66) = 0.77 and q0(3

2
, 17.44|1, 16.66) = 0.76 × 2.

It is remarkable that in both (nF = 1, j′) channels the approximation of the energies
is of the same quality (E ≈ 17.5) as well as the fractions q ≈ 0.76 × qexact. For the
�rst excited bosonic state the susy fractions are rather poor: q0(1

2
, 20.75|1, 18.79) = 0.53

and q0(3
2
, 20.74|1, 18.79) + q0(3

2
, 20.82|1, 18.79) = 0.52 × 2. Again, the approximation of

energies and fractions are similar for |1, 1
2
, 20.74〉 and |1, 3

2
, 20.82〉.

Analysis of all other sectors is similar. Summary of identi�ed supermultiplets is given
in Tab. 6.5. Also values of supersymmetry fractions are given to indicate how strong is the
identi�cation. Clearly, large di�erence of energies in a supermultiplet means that states
did not yet converge and one should not expect large values of fractions. Supersymmetry
fractions given in Tab. 6.5 are normalized, i.e. divided by exact values.

6.5 Summary

In Fig. 6.5 all identi�ed supermultiplets are shown. Triangles with vertices in sectors
(nF , 0), (nF +1, 1

2
), (nF +2, 0) and all diamonds are fully identi�ed supermultiplets. They
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are marked with blue color. The triangles which have vertices at (nF , j), (nF+1, j− 1
2
) and

(nF + 1, j+ 1
2
) are marked with green color and represent diamonds with one element not

identi�ed. Green lines correspond to two states out of three in a multiplet with Cli�ord
vacuum in (nF , 0). Not identi�ed states are marked with a question mark in Tab. 6.5.
There are also many energies in between for which there were no supersymmetry fractions
much di�erent from 0. In the continuum limit all states should group in supersymmetric
multiplets. The method which was used for �nding the energies is variational, so all
energies are approximated from above. For this reason all states in Fig. 6.5 are shifted
to the lowest energy in the corresponding multiplet.

We succeeded to fully identify four supermultiplets (cf. Tab. 6.5). In general, it is
easier to identify states which 'open' the multiplet, i.e. the vacuum in the sector with
nF fermions and two states with nF + 1 fermions. The remaining state which 'closes'
the supermultiplet is signi�cantly harder to �nd. This is because with more fermions the
lowest energy state has smaller energy than in those with less fermions and the density
of eigenenergies is higher (see Figs 5.7 - 5.15). Therefore, even if the Cli�ord vacuum is
a low excited state, the state which closes the supermultiplet has nF + 2 fermions and
is highly excited. For excited states one needs a higher cuto� before the convergence is
reached. On the other hand, the available cuto� gets smaller for more fermions.
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nF = 0, j = 0

n
F
=

1,
j
=

1/
2

E 12.6 15.48 17.47 17.88 18.32 19.76
12.72 0.99 - - - - -
14.48 - - - - - -
15.52 - 0.01 - - - -
15.88 - 0.46 - - - -
15.96 - 0.47 0.01 - - -
16.46 - - - - - -
16.69 - - - - - -
16.97 - - - - - -
17.09 - - - - - -
17.5 - - - - - -
17.58 - - - - - -
17.88 - - 0.11 0.03 - -
18.26 - - - - - -
18.32 - - - - - -
18.52 - - 0.2 0.14 0.04 0.02
18.62 - - 0.42 0.03 0.05 -
18.73 - - 0.06 0.02 0.01 -
18.85 - - 0.05 0.61 0.01 -
18.96 - - - - - -
19.08 - - - - - -
19.21 - - - 0.02 0.03 0.02
19.3 - - - - - -
19.46 - - - - - -
19.66 - - 0.01 0.03 0.11 0.06
19.73 - - - - 0.52 -
19.75 - - - - - -
20.03 - - - - - -
20.11 - - - - - -
20.38 - - - - - -
20.47 - - - - - -
20.57 - - - - - -
20.74 - - - - - 0.03
20.75 - - - - - -
20.79 - - - - - -
20.92 - - - - 0.02 0.01
20.99 - - - - - -
21.16 - - - - - -
21.17 - - - - - 0.01
21.33 - - - - - -
21.34 - - - - - 0.01
21.49 - - - - - -
21.5 - - - - - 0.1
21.57 - - - - - -
21.64 - - - - - 0.3

Table 6.1: Supersymmetry fractions between sectors (nF , j) = (0, 0) and (1, 1/2).
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nF = 1, j = 1/2

n
F
=

2,
j
=

0

E 12.72 14.48 15.52 15.88
8.8 - - - -
11.57 - - - -
12.47 - - - -
13.34 0.71 - - -
13.45 0.21 - - -
14.23 - - - -
14.64 - - - -
14.82 - 0.11 - -
15.09 - - - -
15.55 - - - -
15.67 - 0.3 - -
...(4)
16.61 - - 0.09 0.02
16.83 - - 0.12 0.04
17.05 - - 0.14 0.01
...(7)
18.05 - - 0.04 0.28

Table 6.2: Supersymmetry fractions between sectors with (nF , j) = (1, 1/2) and (2, 0).

nF = 0, j = 1

n
F
=

1,
j
=

1/
2

E 16.66 18.79 19.02 19.11
...(9)
17.5 0.77 - - -
...(12)
19.46 - 0.11 - 0.14
...(4)
20.11 - - 0.02 0.14
20.38 - - - 0.4
...(3)
20.75 - 0.53 - -
20.79 - 0.1 0.04 0.04
...(6)
21.49 - - 0.4 -

Table 6.3: Supersymmetry fractions between bosonic sector with j = 1 and fermionic sector with j = 1/2.
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nF = 0, j = 1

n
F
=

1,
j
=

3/
2

E 16.66 18.79 19.02 19.11
...(12)
17.44 0.14 - - -
17.55 1.52 0.04 0.01 -
...(16)
19.38 - 0.1 - 0.24
...(6)
20.1 - - - 0.15
...(3)
20.41 - 0.02 - 0.92
20.54 - 0.04 - -
20.58 - 0.02 0.03 0.14
20.66 - - - -
20.74 - 0.73 - 0.02
20.75 - - - -
20.79 - 0.12 - -
20.82 - 0.31 - -
20.88 - - - -
20.93 - 0.11 - -
...(9)
21.47 - - 0.38 -
21.52 - - 0.8 -

Table 6.4: Supersymmetry fractions between bosonic sector with j = 1 and fermionic sector with j = 3/2.
Rows with no supersymmetry fractions greater than 0.1 are omitted. Numbers of omitted states are given
in brackets.
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energy fractions

(nF , j)

(n
F
, j
)

(n
F
+
1,
j
−

1 2
)

(n
F
+
1,
j
+

1 2
)

(n
F
+
2,
j)

q̃ n
F
(j
−

1 2
|j
)

q̃ n
F
(j

+
1 2
|j
)

q̃ n
F
+
1
(j
|j
−

1 2
)

q̃ n
F
+
1
(j
|j
+

1 2
)

(0,0) 12.6 - 12.72 13.4* - .99 - .92*
(0,0) 15.48 - 15.92* ? - .93* - ?
(0,0) 17.88 - 18.85 ? - .61 - ?
(0,0) 18.32 - 19.7* ? - .63* - ?
(0,1) 16.66 17.5 17.55 ? .77 .76 ? ?
(0,1) 18.79 20.75 20.78* ? .53 .52 ? ?
(0,1) 19.11 20.38* 20.41 ? .54* .53* ? ?
(0,2) 14.89 15.27 15.29 17.06 .9 .95 .75* .67*
(0,2) 17.41 18.47 18.49 ? .72 .79 ? ?
(0,2) 17.79 18.94 18.98* ? .66 .71* ? ?
(0,2) 18.7 20.8 20.83* ? .6 .63* ? ?
(0,3) 16.1 16.75 16.8 ? .86 .9 ? ?
(0,3) 18.77 20.9* 21.02 ? .5* .66 ? ?
(1,1/2) 14.48 15.67 15.62 ? .6 .65 ? ?
(1,1/2) 15.52 16.93* 16.72 ? .52 .75 ? ?
(1,3/2) 13.39 13.86 13.97 14.96 .83* .88* .2* .18
(1,3/2) 13.96 14.97 15.05 ? .73* .8* ? ?
(1,3/2) 14.83 15.81 16.14 ? .71* .71* ? ?
(1,5/2) 16.13 17.61 17.94 ? .49 .57* ? ?
(2,0) 8.8 - 9.84 12.74 - .83 - .58
(2,1) 10.97 13. 12.93 ? .62 .71* ? ?
(2,2) 10.43 12.68 12.72 ? .59* .59 ? ?

Table 6.5: Energies and supersymmetry fractions in identi�ed supermultiplets. Fractions are divided
by the value they should take in continuum. The closer the normalized supersymmetry fraction is to
one, the higher is the quality of identi�cation of a supermultiplet. Stars mean that the fraction is
summed over two states and energies are averaged. Question marks stand for unidenti�ed states and
corresponding supersymmetry fractions in a supermultiplet. Dashes stand for states which do not appear
in a supermultiplet.
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Figure 6.5: All identi�ed supermultiplets. The diamond and two triangles with two vertices at j = 0 are
completely identi�ed multiplets. The other triangles correspond to diamonds with one state unidenti�ed.
Lines correspond to triangle multiplets with one vertex not identi�ed.
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Chapter 7

Wavefunctions

This chapter is dedicated to wavefunctions in coordinate representation for SU(2) and
SU(3) gauge groups. The wavefunctions of supersymmetric Yang�Mills quantum mechan-
ics in two dimensions are studied in great detail. The complete solution of the model,
i.e. explicit formulae for wavefunctions and corresponding energies was given for SU(2)
gauge group [23]. Later, wavefunctions of the vacuum were found for general SU(N) [8].
For D = 4 only s�waves of SU(2) were analyzed so far [42]. In this thesis a new, more
general approach is proposed. In principle, it can be used to study wavefunctions with
arbitrary angular momentum and for any SU(N) gauge group. It is used here to analyze
the cases of SU(2) and SU(3).

We will now brie�y review the approach of [42]. It is a numerical technique to obtain
energies and eigenstates of s�waves in D = 4 for SU(2). The idea of this method applied
to the two�fermion sector is following. There is one symmetric and one antisymmetric
combination of spinors that create two fermions. Each of these two can be contracted in
three di�erent ways to give a gauge and rotationally invariant operator. These six oper-
ators acting on the Fock vacuum generate a basis |em〉. A most general gauge invariant
state with j = 0 is a combination of these basis states, where the coe�cients are functions
hm(r, u, v) of three bosonic variables:

|ψ〉 =
6∑

m=1

hm(r, u, v) |em〉 . (7.1)

The three invariants (r, u, v) are discussed later in this chapter. The Schrödinger equation
H |ψ〉 = E |ψ〉 is a system of six coupled di�erential equations for functions hm in a
three dimensional space. There exists an 'angular momentum' L related to a di�erential
operator in variables (r, u, v). Eigenstates of the angular momentum are 6�component
'spherical harmonics'. They are functions of two angle variables u and v. The spherical
harmonics can be found analytically. Finally, one can introduce a basis for the radial
part of functions with given L. There is a natural cuto� in this complete set of functions.
It is equivalent to the cuto� for the number of bosonic excitations which is used in this
paper. With this method one can reach NB = 60 [43]. A limitation of this approach
is that it addresses rotationally invariant states. In particular, it gives no information
about sectors with odd number of fermions.

Here we propose a new approach. One starts with an angular momentum multiplet
expressed in terms of composite bricks acting on the empty state. States in the Fock space
are in one to one correspondence with wavefunctions in the con�guration space. Because
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Figure 7.1: Two ways to analyze non�localized energy eigenstates. Circles are energies of the free
one�dimensional quantum mechanics. Blue line represents �xed energy limit with E∗ = 0.5. Red line
corresponds to the ground states for each NB .

of fermions, the wavefunctions are multi�component. It is shown how to construct a
rotationally invariant single�component function ρ(x). This functions is an analogue to
probability density of bosonic variables. Next, the structure of the potential is studied
in a �xed gauge and some characteristic directions in the con�guration space are chosen.
These are the �at valley (i.e. a direction in which the potential vanishes) and two steep
directions, where the potential grows fastest. Finally, sections of wavefunctions along
these directions are studied.

The main purpose of analyzing the wavefunctions is exploring the di�erence between
states corresponding to discrete and continuous spectra. In 7.3.2 we discuss the expected
behavior of bound and scattering states. We argue that the localized states are well
approximated by the cut Fock basis already for �nite cuto�. On the other hand, the
scattering states are non�localized and they can be reconstructed only when one goes to
high NB.

There are two ways to study scattering states. First is to inspect the limit of constant
energy E = E∗ = const while NB →∞. It was mentioned in Chapter 5 that the eigenen-
ergies corresponding to the continuous spectrum decrease slowly to 0 as one increases
NB. Therefore, at every few values of the cuto� there is a state with energy E ≈ E∗.
Such limit was studied in [43] for SU(2). It was observed that a periodic function is
recovered as the cuto� grows. When NB increases, new peaks are reconstructed. Period
of the function agrees with the dispersion relation for energy E∗. For SU(2) the constant
energy analysis requires increasing cuto� by about 10 at each step.

Another approach to address scattering states is to �x the energy level (e.g. the lowest
state) and raise NB one by one. Then the energy converges to zero. One does not recover
a periodic function. Instead, the probability density is smeared over an increasing range.
Explanation of this behavior is given in detail later. This type of analysis is easier from
the numerical point of view, because one does not need large cuto�.

7.1 Structure of fermionic wavefunctions

In Chapter 3 it was shown how to obtain eigenstates of the Hamiltonian. These eigenstates
are expressed in terms of creation operators acting on a Fock vacuum. In this part of the
theses we study their wavefunctions in the con�guration space.
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7.1. STRUCTURE OF FERMIONIC WAVEFUNCTIONS

Let n = (nai ) and χ = (χbα) denote bosonic and fermionic occupation numbers re-
spectively. nai take integer, nonnegative values while χbα are 0 or 1. As before, a, b =
1, . . . , N2 − 1 are color indices, i = 1, 2, 3 is the spatial index and α = ±1

2
is the Weyl

spinor index. Labels n and χ have 3(N2 − 1) and 2(N2 − 1) components respectively.
The basis of the Fock space with no restriction to gauge�singlet states is

|n,χ〉 = |n〉B ⊗ |χ〉F =
∏
b,α

(f b†α )χ
b
α

∏
a,i

1√
(nai )!

(aa†i )n
a
i |0〉 . (7.2)

These states satisfy relations

aa†i a
a
i |n,χ〉 = nai |n,χ〉 , f b†α f

b
α |n,χ〉 = χbα |n,χ〉 , (7.3)

where no sum over indices is performed. Bosonic states |n〉B, bosonic creation and

annihilation operators aa†i , a
a
i and the Fock vacuum |0〉 depend on the parameter ω

introduced in 3.6. In this chapter the index ω will remain implicit.
The coordinates in the bosonic 3(N2−1)�dimensional con�guration space are x = (xai ).

A ket |x〉B is de�ned by the relation

x̂ai |x〉B = xai |x〉B , (7.4)

where x̂ai is the position operator. Wavefunction of bosonic states |n〉B are simply wave-
functions of eigenstates of the harmonic oscillator

B〈x|n〉B =
∏
a,i

√
ω

2n
a
i (nai )!

π−1/4exp(−(ωxai )
2/2)Hnai

(ωxai ), (7.5)

where Hn(x) is the Hermite polynomial.
In order to handle the fermionic states, a representation of |χ〉F is needed. In what fol-

lows we incorporate the matrix representation of fermions [63]. In this notation fermionic
creation and annihilation operators are represented by matrices and wavefunctions are
columns. For the simplest case of one fermionic type there is a vacuum state |0〉F and a
state with one fermion |1〉F . The states and operators are represented as follows:

|0〉F =

(
0
1

)
, f † =

(
0 1
0 0

)
, (7.6)

|1〉F =

(
1
0

)
, f =

(
0 0
1 0

)
. (7.7)

Then the action of creation and annihilation operators is

f † |0〉F = |1〉F , f |1〉F = |0〉F , f |0〉F = f † |1〉F = 0. (7.8)

A wavefunction of a general state |φ〉 is a two�component function

φ(x) =

(
φ1(x)
φ0(x)

)
. (7.9)

Wavefunctions associated with the zero- and one-fermion part are given by scalar products

φχ(x) = 〈x, χ|φ〉 , χ = 0, 1. (7.10)
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This representation naturally generalizes to a larger number of fermionic types. Con-
sider again SYMQM. The label χ has 2(N2 − 1) components, each taking values 0 or
1. Therefore, χ has 22(N2−1) possible values and the wavefunction is a column of size
22(N2−1). Elements of the column are bosonic wavefunctions labeled by χ.

Consider a general state |φ〉. Its expansion in basis states is given by

|φ〉 =
∑
n,χ

c(n,χ) |n,χ〉 (7.11)

with some complex coe�cients c(n,χ). Then the χ�component of the wavefunction of
|φ〉 is the scalar product

φχ(x) ≡ 〈x,χ|φ〉 =
∑
nai

c(n,χ) B〈x|n〉B. (7.12)

The fact that a wavefunction has many components introduces a major di�culty to
analyzing them in a direct way. For SU(2) the column (φχ(x)) has 22×3 = 64 and for
SU(3) it has 22×8 = 65536 elements. Fortunately, we consider only states in sectors with

de�nite number of fermions. Then (φχ(x)) has only

(
2(N2 − 1)

nF

)
elements that are

nonzero. Still, the direct study of φχ(x) is complicated. For example, consider a multiplet

|φm〉 with angular momentum j. Then |φm〉 is represented by a (2j + 1) ×
(

2(N2−1)
nF

)
�

component complex�valued bosonic functions in a 3(N2− 1)�dimensional bosonic space.
For instance, for SU(3), j = 1 and nF = 2 these are 360 functions of 24 variables.

7.2 Probability density from fermionic wavefunctions

A wavefunction carries full information about a state. In particular, it depends on
fermionic occupation numbers and angular momentum. In order to simplify the wave-
functions, we would like to integrate out fermionic degrees of freedom and angles which
correspond to rotations in the physical space. To this end we introduce the probability
distribution ρ(x). Take an angular momentum multiplet |φm〉. Then the probability
density is de�ned as

ρ(x) =
∑
mχ

|φmχ (x)|2, (7.13)

which sums over fermionic occupation numbers and the magnetic quantum number.
Studying ρ(x) is easier since it is a single�component real function. Still, it depends
on many variables. However, there are some simpli�cations. It is shown in Appendix D
that ρ(x) is invariant under rotations. It is also gauge invariant because the original states
|φm〉 are such. Because of these symmetries ρ(x) depends only on 3(N2−1)−(N2−1)−3 =
2N2 − 5 invariants of gauge and rotation transformations.

One more step needs to be taken before ρ(x) can be considered as a probability
density integrated over rotations and gauge transformations. Suppose we are interested
in calculating the expectation value of an observable A in a state given by a wavefunction
ψ(x) and A(x) is invariant under rotations and action of gauge group. Rotations are
parameterized by 3 angles θ = (θ1, θ2, θ3). Gauge transformations depend on N2 − 1
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angles α = (α1, . . . , αN2−1). Then there are 2N2− 5 variables left. They will be denoted
by y = (y1, . . . , y2N2−5). A depends only on y. The mean value of A is

〈ψ|A|ψ〉 =

∫
dxA(x) |ψ(x)|2 =

∫
dydαdθA(α,θ,y) |ψ(α,θ,y)|2 |J(α,θ,y)|

=

∫
dyA(y) |ψ(y)|2

∫
dαdθ|J(y,α,θ)| =

∫
dyA(y) |ψ(y)|2 J(y),

(7.14)

where J is the Jacobian. The integral was reduced from 3(N2−1) to 2N2−5 dimensional.
N2 + 2 variables were integrated out, so the Jacobian J(y) is proportional to rN

2+2. In
order to take the Jacobian into account, the function ρ(x) will be multiplied by rN

2+2.

Concluding, rN
2+2ρ(x) is the probability density, summed over fermionic degrees of

freedom and integrated over angles which correspond to rotations and gauge transforma-
tions. The integration over rotational angles is performed by summing over members of
the angular momentum multiplet. In order to further simplify the analysis we will choose
some interesting directions in the con�gurations space.

7.3 Wavefunctions for SU(2) gauge group

7.3.1 Invariants

For the SU(2) gauge group a general wavefunction depends on 9 variables xai . It was
argued previously that ρ(x) de�ned in (7.13) depends on 2N2−5 = 3 gauge and rotation
invariants. For SU(2) they can be found explicitly. If x = (xai ) is treated as a 3 × 3
matrix then it transforms under rotations and SU(2) in the following way:

x→ x′ = UxV † (7.15)

where U, V are both SO(3) matrices. U corresponds to gauge transformation (in adjoint
representation) and V to rotation in the con�guration space. It is known that one can
diagonalize x with U and V [64, 65]. We de�ne y = diag(y1, y2, y3) by

x = UyV †. (7.16)

The diagonal terms yi are de�ned uniquely up to permutations and re�ection of two
of them. These symmetries give 24�fold degeneracy. We impose additional constraint
y1 ≥ y2 ≥ |y3| so that the diagonal elements are uniquely de�ned. Under this constraint
yi are proper invariants of gauge transformations and rotations. It convenient to introduce
other set of invariants [42]:

r2 = y2
1 + y2

2 + y2
3 =

∑
i,a

(xai )
2,

r3v = y1y2y3 = det(xai ),

r4u = y2
1y

2
2 + y2

2y
2
3 + y2

3y
2
1 =

∑
a,b,i<j

((xai )
2(xbj)

2 − xai xajxbixbj).

(7.17)

Note that if r vanishes, then the other two variables are undetermined. If u = 0 then
also v = 0. Moreover, two of these variables are bounded, 0 ≤ u ≤ 1/3, |v| ≤ 3−3/2. The
potential takes the form V = 1

2
r4u.
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We will be interested in two directions in the con�guration space, namely the �at
valley and the steepest direction. Potential vanishes when u = 0. Since then also v
vanishes, the �at valley is one�dimensional and can be parameterized by r. In terms of
yi the potential vanishes when two variables vanish, i.e. only y1 is nonzero.

The potential grows fastest for u = 1/3 which implies v = ±3−3/2. There are thus
two steep directions and both are one dimensional. In terms of yi the steep direction is
y1 = y2 = r/

√
3, y3 = ±r/

√
3.

Although the wavefunction ρ(x) depends on y, in practice it is given as an explicit func-
tion of x (7.16). Therefore, we calculate ρ(x) along certain directions which correspond
to values of invariants in the �at and steep directions. The directions are parameterized
as x = rx̂ where |x̂| = 1. Versor of the �at direction is denoted by x̂flat. Versors of the
two steep directions are x̂steep and x̂

′
steep.

x̂flat =

 1 0 0
0 0 0
0 0 0

 , x̂steep =
1√
3

 1 0 0
0 1 0
0 0 1

 , x̂′steep =
1√
3

 −1 0 0
0 −1 0
0 0 −1

 .

(7.18)

For x̂flat and x̂steep the invariants yi are the diagonal elements. x̂′steep corresponds to

y1 = y2 = −y3 = 1/
√

3. Note that rx̂′steep = −rx̂steep. In the following we will drop x̂′steep
and slightly abuse the notation by taking rx̂steep with positive and negative r. This way,
both steep directions are included. This is done merely for the convenience to include
both steep directions on one plot.

7.3.2 Bound and scattering states � models and expectations

Here we recall what is the characteristic behavior of states associated with discrete and
continuous spectrum in general quantum mechanical models. It will serve us as a hint
to analyze wavefunctions of SYMQM. The states which correspond to discrete spectrum
are bound states, i.e. their wavefunctions are localized. That is, the probability density
is centered at minimum of the potential and vanishes as one moves away to in�nity.
Because the basis of the Fock space consists of localized states, the bound states can be
well approximated for �nite NB.

Bound states are typical for a potential which grows to in�nity in all directions or at
least V (x) > V0 for |x| > r0 (then there may be discrete energies smaller than V0). In the
considered model the potential has �at valleys and neither condition is ful�lled. However,
although the potential has a �at valley, its width shrinks as one moves outwards. The
transverse oscillations cost more energy as one moves along the valley and an e�ective
potential is generated. The e�ective potential is unbounded from above and vanishes
only at the origin. On the other hand, because of the supersymmetry, interactions of
the potential with bosonic degrees of freedom may cancel and then the e�ective potential
vanishes. However, in the purely bosonic channel such cancelations cannot take place
simply because there are no fermions. Therefore, the e�ective potential is present for
nF = 0 and the spectrum is discrete. Surprisingly, the e�ective potential does not vanish
also for nonzero but small nF . Only in sectors rich in fermions the supersymmetric
cancelations are possible.

For nF large enough the continuous spectrum appears. The continuous spectrum is
associated with scattering states. They are not localized and non�normalizable. The
scattering states are concentrated in regions where the potential is �at. The probability
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density does not decay for |x| → ∞. A scattering state cannot be well approximated
for �nite NB because the basis of cut Fock space consists of localized functions. Instead,
such state is reconstructed step by step as the cuto� grows.

In order to better understand what is the behavior of scattering states, consider a three
dimensional, quantum mechanical, free Hamiltonian H = 1

2

∑3
i=1 p

2
i . This simple system

can be solved analytically. Its spectrum in all channels with de�nite angular momentum
is continuous and ranges from zero to in�nity. For vanishing angular momentum the
wavefunctions are just the spherical waves

〈~x|E〉 =

√
2p

π

sin(pr)

r
, (7.19)

where p =
√

2E [66].

One way to analyze scattering states is to �x E and observe how the functions approach
the spherical wave. However, as it was mentioned in the introduction to this chapter,
states with given E appear at every few NB. The cuto� that we are able to explore is
too small to perform this analysis. Instead, we analyze the ground state and thus take
the limit E → 0.

For E → 0 the wavefunction (7.19) converges to a �at function. With the cut Fock
space method one does not exactly recover a ground state of the theory, but rather an
approximation which improves for growing cuto�. Therefore, one should expect that the
ground state will be approximated by a roughly �at function. Because NB e�ectively
gives an infrared cuto� (cf. Chapter 3), the �at function is smeared over a �nite region
which grows with NB.

Figure 7.2: Wavefunctions of lowest eigenstates for free SU(2) with nF = 0 and nF = 1. As there is no
potential, the wavefunctions depend only on the radius r. The angular momentum for nF = 0 is j = 0
and j = 1/2 for nF = 1. Wavefunction with nF = 2 is exactly the same as in the sector with nF = 0. It
is obvious since the free Hamiltonian has no fermionic terms.

For comparison, consider the free Yang�Mills quantum mechanics with SU(2) symme-
try H = Tr(pipi). Because of symmetry of the Hamiltonian, the wavefunctions should
depend only on one invariant r. Therefore, instead of rN

2+2 = r6 we multiply the proba-
bility density ρ(x) by r8. The function r8ρ(x) is then the probability density integrated
over all variables apart from the radius. Wavefunctions of ground state in channels with
nF = 0, 1 for �nite cuto�s are shown in Fig. 7.2. One can see that the wavefunction
move outside as the cuto� grows. This is in agreement with what was expected.
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7.3.3 Interacting case � results

Finally, consider the interacting case. Pro�les of wavefunctions with nF = 0, 1, 2, 3 are
presented in Fig. 7.3. They correspond to the ground states, which for nF = 0, 2 and
nF = 1, 3 are in channels with j = 0 and j = 1/2 respectively.

For nF = 0 the wavefunction converges to a �xed shape. In fact, the wavefunction
moves a little deeper into the �at valley. Convergence is seen for NB ≈ 4. In the steep
direction the wavefunction initially decreases with NB and �nally converges for NB ≈ 4.
We shall also note that the values of wavefunction are of the same order inside and
outside of the valley. The wavefunction in the steep direction is the same for positive and
negative r. This is because for nF = 0 the parity is conserved. The two steep directions
are related by the parity transformation. The behavior of wavefunction in nF = 1 sector
is essentially the same. The wavefunction converges to a �xed shape although the rate
of convergence is slower. For nF > 0 the parity symmetry is broken wavefunctions are
di�erent for r > 0 and r < 0.

Channels nF = 2, 3 correspond to continuous spectrum and thus the behavior of
wavefunctions is very di�erent. In both cases, the probability density moves deeper into
the �at valleys as the cuto� grows. In turn, in the steep directions the wavefunctions get
signi�cantly smaller. That is, the probability density concentrates along the �at valleys.

As it was observed in Chapter 5, there are discrete energies immersed in the continuous
spectrum for nF = 2, 3. The two plots in Fig. 7.4 show the second excited state of
(nF , j) = (3, 1/2). We see that the wavefunction vanishes along the whole the valley.
Indeed, values of the wavefunction are of the order of numerical errors. In the steep
direction the function decreases and approaches the origin as the cuto� grows. This
behavior may be considered strange. However, this is merely a consequence of looking
only along the steep and �at directions. A combined plot gives a more complete picture.
First, we introduce another �at direction

x̂′
flat =

 0 1 0
0 0 0
0 0 0

 . (7.20)

It can be mapped into the �at direction x̂flat de�ned in (7.18) with gauge transformations
and rotations. On the other hand, it is orthogonal to x̂steep. One can see that the
probability density is concentrated around the origin with some preference of the �at
direction. This is similar to the behavior of ground state in the purely bosonic sector
(cf. Fig. 7.3). The di�erence is that the wavefunction vanishes along the bottom of the
valley.

In conclusion, lowest energy states with nF = 0, 1 fermions are localized near the
origin and thus they are bound states. Ground states in channels with nF = 2, 3 fermions
penetrate the valley and are scattering states. There are also bound states for nF = 2, 3.
These observations are in agreement with conclusions of Chapter 5 where the discrete
spectrum in nF = 0, 1 sectors and continuous spectrum for nF = 2, 3 were identi�ed.
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Figure 7.3: Plots of wavefunctions of ground states in sectors nF = 0, 1, 2, 3. The angular momentum
is j = 0 for nF = 0, 2 and j = 1/2 for nF = 1, 3. The versor is x̂ = x̂flat for the �at direction and
x̂ = x̂steep for the steep direction.
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Figure 7.4: Plots of wavefunctions of the second excited state in sector with three fermions and j = 1/2.

Figure 7.5: Second excited states for nF = 3, j = 1/2, NB = 8. The parametrization is x = tx̂′
flat +

sx̂steep. The blue surface represents the potential.

7.4 Wavefunctions for SU(3) gauge group

Now we analyze wavefunctions for the SU(3) gauge group. There are 24 bosonic degrees
of freedom xai . Equivalently, they are expressed in terms of three hermitean traceless 3×3
matrices Xi = xai T

a. The gauge transformation of Xi is Xi → UXiU
†, where U ∈ SU(3).

The potential and wavefunctions are gauge invariant. Therefore, analyzing any of them
along the orbits of gauge transformations gives no new information about dynamics of the
system. One would like to eliminate these directions. This can be achieved in two ways.
One is to �nd gauge invariants, as is was done for SU(2). However, these are di�cult to
�nd for SU(3). Another way is to �x the gauge. This procedure is straightforward and
eliminates precisely N2 − 1 = 8 degrees of freedom of Xi.

7.4.1 Fixing the gauge

The procedure of gauge �xing consists of several steps. One starts with a general U in
the fundamental representation of SU(3) and a general set of three traceless, hermitean
matrices Xi. In the �rst step U is used to diagonalize X1. This done, there is a residual
gauge transformation that leaves X1 unchanged. In following steps the gauge transforma-
tions are used to impose additional constraints on X2 and X3. The procedure continues
until no more constraints on Xi can be introduced.
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Consider �rst a generic case. The gauge transformation U can be chosen such that
X1 is diagonalized and the diagonal elements are in the increasing order. Once X1 is
diagonalized, the gauge is �xed up to transformations with U = diag(eiφ, eiψ, e−iφ−iψ).
Now the question is how this gauge freedom can be used to �x matrix elements of X2.
First, consider a general matrix M = (mij). The transformation applied to M is

UMU † =

 m11 eiφ−iψm12 e2iφ+iψm13

e−iφ+iψm21 m22 eiφ+2iψm23

e−2iφ−iψm31 e−iφ−2iψm32 m33

 . (7.21)

One can see that U can be used to set the o��diagonal matrix elements (X2)12 and
(X2)23 to be real and positive. In the generic case this additional condition �xes the
gauge completely. The conditions on matrices Xi can be translated to constraints on
coordinates xai :

x1
1 = x2

1 = x4
1 = x5

1 = x6
1 = x7

1 = x2
2 = x5

2 = 0,

x8
1 ≤
√

3

2
x3

1 ≤ 0.
(7.22)

The space of con�gurations in the �xed gauge is 16�dimensional.
There are many nongeneric cases in which the procedure presented above does not

completely �x the gauge. For example, if X1 = 0 then after the �rst step the residual
gauge group is the full SU(3). It is then used to diagonalize X2 and set (X3)12 and (X3)23

positive.
Other special case is when X1 is not zero, but the two lowest eigenvalues are equal.

Then the remaining gauge freedom after the �rst step is

U =

 U2
0
0

0 0 (detU2)∗

 , (7.23)

where U2 is a general U(2) matrix. Then it is used to diagonalize the upper�left 2 × 2
block of X2 with increasing order of eigenvalues. There still remains a gauge freedom
with U = diag(eiφ, eiψ, e−iφ−iψ). It is utilized to set the coe�cients (X2)13 and (X2)23

positive.
A third degenerate case is when all three eigenvalues ofX1 are di�erent but (X2)12 = 0.

Then after �xing (X2)23 > 0 there is still a freedom of one phase in U . It is used to set
(X2)13 to be positive.

These are not all special cases. Moreover, all of these three contain some degenerate
'subcases'. Therefore, some care has to be taken in order to completely �x the gauge.
The complete procedure is presented in Appendix E. It is chosen in such a way that the
conditions (7.22) are always ful�lled after the �nal step of gauge �xing.

One may question the necessity to completely �x the gauge rather then to restrict
the gauge �xing to (7.22). However, when the gauge is only partially �xed, some gauge
freedom still remains. This leads to 'false' �at valleys as will be shown later.

7.4.2 Flat and steep directions

After the gauge is �xed, a wavefunction depends on 16 coordinates, which are encoded
in matrices Xi. This is still too many to analyze behavior of the wavefunctions. Again,
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we consider �at and steep directions. The potential is given by

V = −
∑
i<j

Tr([Xi, Xj]
2) = −

∑
i<j

Tr([Xi, Xj]
2). (7.24)

V is nonnegative and has �at valleys. Indeed, each i[Xi, Xj] is hermitean, so −[Xi, Xj]
2

is semipositive de�nite and so is the trace. The potential vanishes only if [Xi, Xj] = 0
for all i, j. These equations together with constraints (7.22) give six di�erent solutions.
There is one six�parameter solution

Xval
i = x3

iT
3 + x8

iT
8. (7.25)

The other �ve solutions do not satisfy additional constraints which follow from �xing
the gauge. More precisely, although they satisfy (7.22), they fall into the special cases
mentioned before. The special cases impose additional constraints which are not ful�lled
by these solutions. An example of such 'false valley' is

X1 = 0,

X2 =
1

2

 x3
2 + 1√

3
x8

2 x1
2 0

x1
2 −x3

2 + 1√
3
x8

2 0

0 0 − 2√
3
x8

2

 , (7.26)

X3 =
1

2

 x3
3 + 1√

3
x8

3 x1
2x

1
3/x

3
2 0

x1
2x

1
3/x

3
2 −x3

3 + 1√
3
x8

3 0

0 0 − 2√
3
x8

3

 .

One can easily check that it satis�es (7.22) and the potential vanishes on this con�gu-
ration. However, if X1 = 0 then the gauge symmetry is used to diagonalize X2. The
matrix X2 in (7.26) is not diagonal and thus this set of matrices does not ful�ll all gauge
constraints.

The probability density ρ(x) is invariant under rotations. Therefore, we would like
to construct rotational invariants from (7.25). The two vectors ~v3 = (x3

1, x
3
2, x

3
3) and

~v8 = (x8
1, x

8
2, x

8
3) transform under rotations like ordinary vectors. There are three rotation

invariants, namely ~v2
3, ~v

2
8, ~v3 · ~v8. They can be rewritten in terms of other parameters

which will be more useful for later purposes:

r2 = ~v2
3 + ~v2

8,

tan θ = |~v8|/|~v3|,

cosφ =
~v3 · ~v8

|~v8||~v3|
.

(7.27)

This gives us the complete description of the �at valley.
Second interesting direction is the one in which the potential grows fastest. The

scaling of the potential is known, V (rX) = r4V (X). It is therefore enough to �nd such
con�guration X, normalized by the condition

∑
i Tr(X

2
i ) = 1, which maximizes V (X).

First observe that we can assume Tr(X2
i ) = 1

3
for each i. Indeed, if this assumption is

not ful�lled, there exists a rotation matrix Rij such that X ′i = RijXj where Rij satis�es
Tr(X ′i

2) = 1
3
. The potential is invariant under rotations, so V (X ′) = V (X).

Consider one component of the potential, namely V (X1, X2) = −Tr([X1, X2]2). Max-
imizing this component with Tr(X2

i ) = 1
3
and constraints from the gauge �xing gives a
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unique solution. It is

X1 =

 − 1√
6

0 0

0 0 0
0 0 1√

6

 , X2 =

 0 0 1√
6

0 0 0
1√
6

0 0

 . (7.28)

Obviously, maximum of the potential is not greater than sum of maxima of the three
components, i.e.

maxXV (X) ≤ −
∑
i<j

maxXi,XjTr([XiXj]
2). (7.29)

Suppose that there exists a matrix X3 such that Tr(X2
3 ) = 1

3
and Tr([X1, X2]2) =

Tr([X2, X3]2) = Tr([X1, X3]2) with X1, X2 given by (7.28). If it is true, then the set
(X1, X2, X3) necessarily maximizes the potential. There are two such matrices X3:

X3 =

 0 0 − i√
6

0 0 0
i√
6

0 0

 , X ′3 =

 0 0 i√
6

0 0 0
− i√

6
0 0

 . (7.30)

Concluding, there are two one�dimensional steep directions, just as for the SU(2)
gauge group. In particular, these solutions are invariant under rotations. That is, for a
given SO(3) matrix Rij the con�guration X

′
i = RijXj is gauge�equivalent to Xi. In other

words, rotations of the two steep directions are special cases of gauge transformations.
For consistency with previous paragraphs, we denote the versors of the two steep

directions by x̂steep and x̂
′
steep. As in the SU(2) case, −x̂′steep can be transformed with the

gauge transformation to x̂steep. Therefore, in all pro�les we use only one steep direction
x̂steep and let r to be positive and negative.

7.4.3 Analysis of wavefunctions

Consider �rst the noninteracting case. The Hamiltonian has only the kinetic part,
H = Tr(pipi). As in the SU(2) case the wavefunction depends only on the radius.
Therefore, the probability density has to be multiplied by r23. The pro�le of the prob-
ability distribution in the noninteracting case is shown in Fig. 7.6. One can see that
indeed the wavefunction moves outwards as the cuto� grows.

Let us now come to the interacting case. Previously it was shown that ρ(x) needs to
be multiplied by a factor rN

2+2 so that is can be considered as the probability density
integrated over the gauge group and rotations. For SU(3), rN

2+2 = r11. However,
additional factor has to be taken into account.

The �at valleys are three dimensional. They are parameterized by the radius r and two
angles θ, φ (cf. (7.27)). It turns out that ρ(x) does not depend on two angles, but only on
the radius r. Therefore, it is convenient to consider probability density integrated over
the gauge group, rotations and the two angles θ and φ. Another r2 has to be included
and �nally, ρ(x) has to be multiplied by r13.

For the steep direction the situation is reversed. Spatial Rotations are included in
gauge rotations. Thus, ρ(x) needs to be multiplied only by r9 which comes from integra-
tion over the gauge group. However, for consistency ρ(x) in the steep direction is also
multiplied by r13. Only then one can compare wavefunctions in the two directions.
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Figure 7.6: Plot of the wavefunctions of ground state in the noninteracting case for nF = 0 and j = 0.

First, consider the ground state in the purely bosonic sector (Fig. 7.7). One can see
that the probability distribution converges for NB ≈ 8. The pro�le in the steep direction
is suppressed compared to the �at direction. Moreover, it penetrates the valley deeper
than the region where the potential is nonzero. All these e�ects are similar to the case
of SU(2), yet there are some di�erences. First, the convergence is slower. Secondly, the
steep direction is suppressed stronger than for SU(2). This may be caused by higher
dimension of the con�guration space. There are more allowed directions, so the steepest
one is naturally more disfavored. For nF = 2 behavior of the probability distribution is
very similar. The convergence is even slower, but rather clear.

Next, take the �rst excited state for nF = 7. One can see that in the �at direction the
probability density grows while in the steep direction it is suppressed. This may be the
�rst step of the characteristic behavior of wavefunctions of scattering states, which was
observed for SU(2) (cf. Fig. 7.3). On the other hand, bound states for SU(3) share the
same tendencies for small cuto�s. Therefore, a �rm statement can be given only from
analysis for higher NB.

Finally, consider the other states presented in Fig 7.8 � the �rst excited state for
nF = 5 and the ground state for nF = 6. These are the candidates for the scattering
states with minimal number of fermions (see Chapter 5). The probability distribution
moves outwards as the cuto� grows. However, this e�ect is not stronger than for the
lowest eigenstate for nF = 2 and NB ≤ 5. Therefore, the asymptotic behavior of these
pro�les remains unclear.

Concluding, analysis of wavefunctions for the SU(3) gauge group is more delicate than
for SU(2). In sectors with small number of fermions, the convergence is slower that for
SU(2), but is clearly seen in our data. Moreover, suppression of the steep direction is
stronger. For �ve and six fermions the wavefunctions share some behavior of scattering
states, but it could be a small�cuto� e�ect. Finally, the �rst excited state with seven
fermions is a candidate for a scattering state. This is in agreement with scaling relations
for continuous spectrum (cf. Chapter 5).
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Figure 7.7: Plots of wavefunctions of ground states in sectors nF = 0. The angular momentum is j = 0.
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Figure 7.8: Plots of wavefunctions of ground states in sectors nF = 0. The angular momentum is j = 0.
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Chapter 8

Summary

In this thesis the cut Fock space approach was used to study the supersymmetric Yang-
Mills quantum mechanics in D = 4. Central results concern the theory with SU(3) gauge
group. However, substantial part of the analysis is redone also for SU(2), mainly for
comparison. Our studies cover the following topics:

• construction of the basis of cut Fock space,

• algorithm for constructing matrix representation of operators H, Ji and Qα in oc-
cupation number basis,

• spectrum of the model obtained numerically,

• restoration of supersymmetry in the continuum limit,

• wavefunctions of energy eigenstates.

These points will be now discussed in order.
The Fock space consists of states which are singlets of the gauge group SU(N). Basis

of the Hilbert space is generated by so called bricks (cf. [52]). A brick is a trace of product

of creation operators contracted with SU(N) generators, e.g. (a†1a
†
2) ≡ aa†1 a

b†
2 Tr(T

aT b).
The whole Hilbert space is spanned by composite bricks (i.e. products of bricks) acting
on the empty state. The set of vectors generated in this way is overcomplete. This is
because the set of all possible bricks is not independent. Eliminating dependent bricks is
nontrivial but essential for performance of the numerical algorithm. In 3.2 we addressed
this problem for SU(3). Many bricks can be eliminated with the following relations:

• invariance of the trace under cyclic permutations,

• Cayley-Hamilton theorem for matrices with commuting (3.6) and anticommuting
(3.12) matrix elements,

• symmetric combination of product of three SU(3) generators reduces to shorter
bricks.

After these relations are exploited to reduce the number of bricks, the Gauss elimination
algorithm can be applied. With this method one eliminates all dependent bricks. It was
found that all bricks consisting of more than six creation operators can be reduced to
shorter ones. This fact was explained by showing that there exists a solution to (3.41).
It follows from (3.41) that a trace of product of seven or more SU(3) generators can
be expressed by a combination of products of shorter traces. Finally, the number of
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independent bricks is �nite and 786 bricks were found. The structure of SU(2) group is
simpler and there are only 35 independent bricks.

After construction of the occupation number basis, a cuto�NB for the maximal number
of bosonic excitations is introduced. Because of the Pauli exclusion principle, the total
number of fermions nF is limited by 2(N2−1), so no cuto� for nF is needed. The resulting
cut Fock space is spanned by composite bricks which consist of at most NB bosonic and
any number of fermionic creation operators. In this �nite�dimensional space operators
are represented by matrices. In 3.3 a recursive algorithm for calculating matrix elements
of the Hamiltonian and other relevant operators is introduced. In Appendix C �niteness
of this procedure is proven. The Hamiltonian and angular momentum conserve the total
number of fermions, so their matrix elements can be generated in each sector with given
nF independently. Supersymmetry generators change the number of fermions by one, so
they are represented by matrices which act between sectors.

The program was used to construct matrix representations of angular momentum,
Hamiltonian and supersymmetry generators for certain cuto�s in (or between) sectors
with given nF . Construction of these matrices was performed with a parallel program
on a supercomputer Deszno at the Jagiellonian University. The main limitation was
the amount of available memory (256 GB). First, matrices of angular momentum were
diagonalized. Then, the Hamiltonian was diagonalized in subspaces corresponding to
given total angular momentum j and the third component m.

The Hilbert spaceH can be split into subspacesHn, n = (n1
F , n

2
F , n

1
B, n

2
B, n

3
B) with def-

inite occupation numbers of bosons and fermions for corresponding labels n. In Chapter
4 a group theoretical approach was used to calculate dimensions Dn of Hn. Our analysis
is an extension of a method discussed in [45] where sectors with total number of bosons
nB = n1

B + n2
B + n3

B and total number of fermions nF = n1
F + n2

F are considered. An
essential component of this technique is the generating function

G(a1, a2, a3, b1, b2) =
∞∑

niB=0

∞∑
nαF=0

a
n1
B

1 a
n2
B

2 a
n3
B

3 (−b1)n
1
F (−b2)n

2
FDn. (8.1)

Dn is expressed as an integral of character over the SU(N) group. The generating
function was calculated by residues and an explicit result was given in (4.25). Then,
Dn were extracted from Taylor expansion of G. The dimensions were checked against
the number of independent vectors determined numerically in the computer program and
an agreement was found (cf. Fig. 4.1). The dimensions of channels with de�nite total
occupation numbers nB and nF were given in Tab. 4.1. It is in perfect agreement with
earlier results [45]. As expected, dimensions Dn grow fast with nB.

In Chapter 5 we analyzed the spectrum for SU(2) and SU(3) cases. Dependence of
the eigenenergies on the cuto� NB is crucial for identifying type of the spectrum. Discrete
energy levels converge very fast to the exact value. On the contrary, if the continuous
spectrum is present, then all eigenvalues Em converge slowly to zero for �xed m. From
another point of view, one can recognize a continuous spectrum by a distribution of
eigenenergies that �ll densely a full interval as NB grows. The spectrum for SU(2) was
already found with a great precision in [38] and served as a check of our program. A
perfect agreement was established. The spectrum is purely discrete for nF = 0, 1 (cf.
Figs 5.1�5.2). It is continuous for two and three fermions (cf. Figs 5.3�5.4). Moreover,
there are discrete energy levels immersed in the continuous part. For the SU(3) case the
cuto�s we were able to reach were signi�cantly smaller than for SU(2), especially for large
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nF . However, a number of regularities already appear. Our results in the purely bosonic
part of the Hilbert space were compared with [32] where no fermions were considered.
Very good agreement was found (cf. Tab. 5.1). It was argued in [38, 43] that eigenenergies
corresponding to the continuous spectrum should satisfy the scaling relation (5.1):

Em ∝
(m+ 1)2

NB

, (8.2)

wherem is the label of the energy. Therefore, the scaled energy NB×Em should approach
a constant when NB →∞. This e�ect is seen clearly for SU(2) for at least the two lowest
energies in the (nF , j) = (2, 0) sector (cf. Fig. 5.5). Ratios of the lowest energies also
agree with the prediction of (5.1), i.e. Em/E0 ≈ (m + 1)2 (cf. Fig. 5.6). For SU(3)
the scaled energies grow approximately linearly with increasing NB for nF ≤ 4 and seem
to be approximately constant for nF = 5, 6, 7, 8 (Fig. 5.16). Therefore, the spectrum is
purely discrete for nF ≤ 4. It seems to be continuous for nF = 6, 7, 8. The intermediate
sector nF = 5 is disputable. Because of the particle�hole symmetry, the energy levels for
8 < nF ≤ 16 are the same as for 16−nF fermions. Therefore, supersymmetric cancelations
can happen only in the middle sectors. Only then there are enough fermionic degrees
of freedom. For a more detailed picture concerning the type of spectrum a higher cuto�
would be needed.

In Chapter 6 we studied supersymmetric structure of the model for a �nite cuto�. Fi-
nite NB breaks the supersymmetry. This is because the supercharges Qα do not conserve
the number od bosons. However, the supersymmetry is being restored as NB grows. For
exact supersymmetry massive states form supersymmetry multiplets. For a given state
one can act on it with Qα and Q†α to recover the other states in its supermultiplet. To
check how much the supersymmetry is broken for a given cuto� we used supersymmetry
fractions

qnF (j′E ′|jE) =
1

4E

∑
mm′α

∣∣〈nF + 1j′m′E ′|Q†α|nF jmE〉
∣∣2 , (8.3)

where |nF jmE〉 is a state with nF fermions, total angular momentum j, the third com-
ponent of angular momentum m and energy E. Values of supersymmetry fractions are
known when the supersymmetry is exact. qnF (j′E ′|jE) is j or j + 1

2
if the two corre-

sponding states are in the same multiplet and zero otherwise. Therefore, supersymmetry
fractions can be used to measure the SUSY breaking. We found that at least for some
low energy states the supersymmetry fractions converge to their exact values (cf. Fig.
6.4). They were used to identify supermultiplets. Four complete supermultiplets were
fully identi�ed. More supermultiplets were found with one state in the channel with high-
est nF missing. Complete list of identi�ed supermultiplets is given in Tab. 6.5 and an
overview picture is presented in Fig. 6.5. We concluded that within the available cuto�,
some supersymmetry is already restored at low energies and small number of fermions.

Finally, in Chapter 7 we studied the wavefunctions. For a given state |φ〉 the prob-
ability density |φχ(x)|2 in the con�guration space is a multi�component function. The
label χ corresponds to occupation numbers of fermions and variable x is a 3(N2 − 1)�
dimensional coordinate. As were are not interested in particular dependence on fermionic
degrees of freedom, sum over χ was performed. For an angular momentum multiplet |φm〉
a sum over elements of the multiplet eliminates dependence on rotations. The probability
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distribution

ρ(x) ≡
∑
mχ

|φmχ (x)|2 (8.4)

is a real, single�component function. ρ(x) is gauge and rotationally invariant. This is
proven in Appendix D.

We were interested in behavior of the wavefunctions inside and outside �at valleys of
the potential. To this end we identi�ed the directions in the con�gurations space in which
the potential vanishes and grows most rapidly. For SU(2) this was done with invariants
(7.17) introduced in [42]. There is one direction in the space of gauge and rotation
invariants where the potential is �at and there are two steep directions. We observed
that the low energy wave functions converge to a �xed shape as the cuto� grows. They
are a little stretched along the �at valleys, as one may expect. On the contrary, the
scattering states penetrate the �at valleys deeper for increasing NB (Fig. 7.3). They
remain localized in the steep direction.

For SU(3) structure of the potential was studied in a �xed gauge. The full procedure
of �xing the gauge is given in Appendix E. As for SU(2), there are two one�dimensional
steep directions. The �at direction is six dimensional. The �at valley can be parame-
terized by three angles which correspond to rotations and three rotation invariants. As
it was pointed out, ρ(x) does not depend on rotations. Moreover, it turned out that

in all studied cases ρ(x) depends only on the radius r = (xai x
a
i )

1/2. For small nF the
energy eigenstates correspond to discrete energy levels. Convergence of ρ(x) to a �xed
shape is observed (Fig. 7.7). The available cuto� for large nF is small and the studies of
wavefunctions in these sectors are preliminary.

To summarize, we analyzed the supersymmetric Yang-Mills quantum mechanics in
four dimensions with SU(2) and SU(3) gauge groups. The case of SU(2) was already
considered before and served mainly as a check of the program for numerical calculations.
Results for SU(3) with fermions are original. Only the purely bosonic channel was ad-
dressed in earlier papers. The studies were performed with the cut Fock space method.
On the technical side, we identi�ed independent bricks which generate basis of the Hilbert
space and developed a recursive algorithm for constructing matrices of relevant operators
in the occupation number basis. The program worked nicely. Results are consistent with
previous results for SU(2) and the purely bosonic sector for SU(3). Dimensions of Hn

calculated analytically and numerically agree.
The numerical results provide information about dynamics of zero modes of the su-

persymmetric Yang�Mills theory. In the sector with no fermions the spectrum is discrete.
Although the potential has �at valleys, the transverse oscillations give rise to an e�ective
potential. It prevents wavefunctions from propagating in these directions. The situation
is identical for small number of fermions. Only in channels rich in fermions the super-
symmetric cancelations of bosonic and fermionic degrees of freedom is possible. Then the
e�ective potential vanishes and �at valleys are open. The spectrum becomes continuous.
For SU(2) this happens already for two fermions and for SU(3) the smallest required
number of fermions is nF = 5 or 6. Because of the particle�hole symmetry, spectra for
numer of fermions large enough are again discrete.

The supersymmetry is broken for �nite cuto�NB. It is recovered forNB →∞ and then
all states are grouped in supermultiplets. A full angular momentum and supersymmetry
multiplet is labeled by (nF , j, E) where (nF , j) are the number of fermions and total
angular momentum of the Cli�ord vacuum (cf. Chapter 6). All 8j + 4 states of the
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multiplet are degenerate and have energy E. Restoration of the supersymmetric structure
takes place �rst for low energy states and is best seen for small nF . Four supermultiplets
were completely identi�ed and for eighteen more there is one state missing (due to the
�nite cuto� e�ects).

Finally, the wavefunctions were analyzed. In earlier papers [42, 43] only wavefunctions
of s�waves were studied (and thus only channels with two fermions were available). In
this thesis we developed a new method that gives access to all (nF , j) sectors. We have
shown for SU(2) that the bound states converge to a �xed shape for NB → ∞. On the
other hand, the scattering states penetrate the �at valleys of the potential deeper as the
cuto� grows. Analogous study of the SU(3) case shows similar behavior of bound states.
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Appendix A

Symmetries

In this chapter we discuss symmetries of the Hamiltonian. The Hamiltonian conserves
angular momentum, total number of fermions and supercharge. Apart from these there
is a particle�hole symmetry which relates sectors with nF and 2(N2 − 1)− nF fermions.
All this symmetries were mentioned in Chapter 2. Here they are analyzed in more detail.
In the following part we use de�nitions of operators introduced in Chapter 2. Recall
de�nition of the Hamiltonian:

H = HK + g2HV + gHF ,

HK =
1

2
pai p

a
i ,

HV =
1

4
fabcfadexbix

c
jx
d
ix

e
j ,

HF =
i

2
fabcψa†γ0γkψbxck.

(A.1)

The Majorana spinor ψ is

ψa = eiπ/4


−fa1
−fa2
fa†2

−fa†1

 . (A.2)

A.1 Number of fermions

The operator of the total number of fermions is

nF =
∑
α,a

fa†α f
a
α. (A.3)

It is more convenient to write it in terms of ψ. One can �nd that the matrix γ5 is given
by

γ5 =


−1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 1

 . (A.4)
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Then, it is easy to check that

nF = 8− 1

2
ψa†γ5ψa. (A.5)

The kinetic part and potential obviously do not change the number of fermions. One
needs to show that HF commutes with ψa†γ5ψa:

[HF , ψ
a†γ5ψa] =

i

2
fabc[ψa†γ0γkψb, ψd†γ5ψd]xck

=
i

2
fabcxck

(
ψa†γ0γkγ5ψb − ψa†γ5γ0γkψb

)
=
i

2
fabcxckψ

a† (γ0γkγ5 − γ5γ0γk
)
ψb

= 0.

(A.6)

Finally, conservation of the total number of fermions is proven.
This symmetry is in practice the most important one in calculating spectrum of

SYMQM. One can consider each sector with de�nite nF separately and the full Hilbert
space splits into 2(N2 − 1) parts. Taking a channel with de�nite nF is easier than e.g.
taking states with de�nite angular momentum.

A.2 Parity

In Chapter 2 we noted that the Hilbert space breaks the parity symmetry. It is a con-
sequence of the condition that ψ has to be a Majorana spinor. We will now show how
this happens in detail. Color indices are irrelevant for this discussion and are implicit
throughout this part.

First, take a Dirac spinor ψ. It can be parameterized in a convenient way by two
2�component spinors ζ and χ. These can be used to form left� and right�handed spinors

ψL =

(
ζ
0

)
, ψR =

(
0
χ

)
. (A.7)

Next, ζ is used to build a Majorana spinor ψM . In turn, χ is used to construct an 'anti-
Majorana' spinor ψM̄ , i.e. ψM̄ satis�es the Majorana condition with a '-' sign (ψM̄)C =
−ψM̄ . The explicit formulas are

ψM = ψL + (ψL)C =

(
ζ
ζ̄

)
, ψM̄ = ψR − (ψR)C =

(
χ̄
χ

)
, (A.8)

where ζ̄ ≡ −σ2ζ
∗. A sum of ψM and ψM̄ gives a general, Dirac spinor

ψ =
1√
2

(ψM + ψM̄) =
1√
2

(
ζ + χ̄
ζ̄ + χ

)
. (A.9)

The parity transformation interchanges the left� and right�handed spinors. Indeed,

ψ → ψP ≡
1√
2

(
ζP + χ̄P
ζ̄P + χP

)
= γ0ψ =

1√
2

(
ζ̄ + χ
ζ + χ̄

)
. (A.10)

It follows that ζP = χ and χP = ζ. One can also see that (ψM̄)C is a Majorana spinor
while (ψM)C is 'anti�Majorana'.

96



A.3. PARTICLE � HOLE SYMMETRY

We quantize the system by imposing standard anticommutation relations on ζ and χ:

{ζα, ζβ} = {ζ†α, ζ
†
β} = 0, {ζα, ζ†β} = δαβ,

{χα, χβ} = {χ†α, χ
†
β} = 0, {χα, χ†β} = δαβ. (A.11)

Then the Dirac spinor ψ satis�es

{ψα, ψβ} = {ψ†α, ψ
†
β} = 0, {ψα, ψ†β} = δαβ. (A.12)

The empty state |0〉 is de�ned by

ζα |0〉 = χα |0〉 = 0. (A.13)

The other states in the Hilbert space are generated by repeatedly acting with ζ†α and χ†α
on |0〉.

We are interested in parity�transformation of states. The parity�transformed empty
state satis�es conditions

(ζP )α |0〉P = (χP )α |0〉P = 0. (A.14)

We see that |0〉P = |0〉, i.e. |0〉 is invariant under parity. Take now a di�erent state, e.g.

|s〉 = ζ†1 |0〉. The transformed state is

|s〉P = (ζP )†1 |0〉 = (χ)†1 |0〉 . (A.15)

Recall that for the Yang�Mills quantum mechanics to be supersymmetric a condition
ψ = ψM has to be imposed. Therefore, ψ contains only ζ and not χ. The Hilbert space
consists of the empty state |0〉 and all states obtained by acting with ζ†α on it. Therefore,
|s〉 is an element of the Hilbert space, but |s〉P is not. In fact, only |0〉 survives the parity
transformation. We can see that the parity is broken on the level of the Hilbert space.

A.3 Particle � hole symmetry

The particle�hole transformation of operators is the following:

ψa → ψaph = eiπ/4


fa†2

−fa†1

fa1
fa2

 = γ0γ5ψa,

xai → −xai .

(A.16)

In the view of the discussion on parity, it is important to note that ψph is a Majorana
spinor. Now, it has to be shown that it is a symmetry of the Hamiltonian. Obviously, the
kinetic terms and potential do not change under the particle�hole transformation. Proof
for the last term is following:

HF → −
i

2
fabcψa†phγ

0γkψbphx
c
k = − i

2
fabcψa†γ5γ0γ0γkγ0γ5ψbxck

=
i

2
fabcψa†γ0γkψbxck = HF .

(A.17)
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Therefore, this is a true symmetry.
The name of this symmetry lies in the transformation of states. The transformation

of fermionic operators is

fa1 → −f
a†
2 , fa2 → fa†1 . (A.18)

Therefore, the de�nition of empty state transforms into

fa†α |0〉ph = 0, (A.19)

i.e. |0〉ph is the state with the maximal number of fermions

|0〉ph =
∏
a,α

fa†α |0〉 . (A.20)

One can readily see that a state |φ〉 with nF fermions transforms to state |φ〉ph with

2(N2 − 1) − nF fermions. It follows that the spectra in corresponding fermionic sectors
are the same and one needs to study only nF ≤ N2 − 1.

A.4 Conservation of supercharge

The proof of supercharge conservation is much simpler in the Majorana representation.
The Gamma matrices in this representation are

γ0 =

(
0 σ2

σ2 0

)
, γ1 =

(
0 −σ1

−σ1 0

)
,

γ2 =

(
1 0
0 −1

)
, γ3 =

(
0 −σ3

−σ3 0

)
. (A.21)

Note that (γ0)T = −γ0, (γi)T = γi. In Majorana representation the alpha matrices are
real, i.e. Γk = Γ∗k, where

∗ denotes complex conjugation. It follows that Σ∗jk = −Σjk.
The charge conjugation matrix is

C =

(
0 −iσ2

−iσ2 0

)
. (A.22)

The Majorana condition for spinor ψ written explicitly reads

ψaα = (ψC)aα ≡ −iCαβ(γ0)γβψ
a†
γ = ψa†α . (A.23)

Supercharges are also self�conjugate. Indeed,

Q†α = (Γ∗kψ
a†)αp

a
k − igfabc(Σ∗jkψa†)αxbjxck

= (Γkψ
a)αp

a
k − igfabc(−Σjkψ

a)αx
b
jx
c
k = Qα.

(A.24)

The Hamiltonian has a particularly simple form

H =
1

2
{Qα, Q

†
α} = QαQα, (A.25)

where no summation over α is performed. Obviously, it commutes with Qα.
Conservation of supercharge gives rise to supersymmetry multiplets. These multiplets

consist of four states in di�erent nF channels. One can combine multiplets of the super-
symmetry and angular momentum. This gives rise to 8j+4�dimensional representation of
the two algebras. It consists of 2j+ 1 states with angular momentum j and nF fermions,
angular momentum multiplets with j′ = j + 1/2 and j′ = j − 1/2 in nF + 1 channel and
a multiplet with j′ = j with nF + 2. These multiplets are studied in detail in Chapter 6.
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Appendix B

Absence of vector states in the bosonic
sector for SU(2)

It is shown that for the SU(2) gauge group there are no states with angular momentum
j = 1 and no fermions. This proof is done after [31]. For a proof by contradiction, assume
that ψi(x) is a wavefunction with j = 1. Variable xai has an adjoint color index a = 1, 2, 3
and space index i = 1, 2, 3. For convenience it will be treated as a matrix where a stands
for the row index and i for the column index. Gauge transformations and rotations are
represented by orthogonal matrices R, S ∈ SO(3) and they act on xai as left and right
multiplication respectively

xai → x′ai = RabxbjSji. (B.1)

The wavefunction is a gauge singlet and vector with respect to rotations:

ψi(x
′) ≡ ψi(RxS) = ψj(x)Sji (B.2)

The matrix x can be diagonalized with two matrices R, S ∈ SO(3) [64], i.e. x = RdS
where d is a diagonal matrix. Then

ψi(x) = ψj(d)Sji. (B.3)

Let us �x the index i. Consider a diagonal matrix D ∈ SO(3) such that Dii = −1 and
the other two diagonal elements are −1 and 1. Clearly, d and D commute. It follows that

ψi(d) = ψi(DDd) = ψi(DdD) = ψj(d)Dji = −ψi(d). (B.4)

This implies ψi(d) = 0 and it holds for each i = 1, 2, 3 and all d. From (B.3) it follows
that ψi(x) = 0 for all x. The wavefunction must vanish identically and therefore a vector
state cannot exist.
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Appendix C

Finiteness of the recursive algorithm

In 3.3 we presented a recursive algorithm for �nding matrix elements of operators in
the Fock space representation. In each step of this algorithm one needs to �nd matrix
elements of other operators (cf. formula (3.29)). It needs to be shown that such procedure
is �nite. This is done in this chapter. All symbols de�ned here are introduced in 3.3.

In a given step of the algorithm a matrix element A|n′n is calculated. Assume that the
annihilation rank ν of A is not smaller than the annihilation rank ν̄ of A†. Otherwise,
one would construct matrix element of A† and use the relation A|n′n = (A†|nn′)†.

Let L(A) be the length of the trace operator A and |n| =
∑

α n
α
F +

∑
i n

i
B be a norm

of the occupation number n. We de�ne recursion level of the block A|n′n by

R(A,n′,n) = L(A) + |n|+ |n′|. (C.1)

It will be shown that one needs only matrix elements with smaller recursion level to
construct the block A|n′n.

There is a triangle inequality for L(A), |n| an |n′|. Namely, each quantity is not greater
than the sum of the two others. In particular, |n| ≤ L(A) + |n′|. If A consisted only of
creation operators, then we would have |n′| = L(A) + |n|. However, we assumed that
ν ≥ ν̄, so A contains at least one annihilation operator. Therefore, |n′| < L(A) + |n|.

First we show that (ABi)|n′ni , which are building blocks of Ā|n′n (formula (3.29)) have
recursion levels smaller than R(A,n′,n). The operator Bi is a brick, so it is composed
only of creation operators and therefore L(Bi) + |ni| = |n|. It is easy to check that the
maximally annihilating permutation of ABi is BiA. Therefore, the maximally annihilating
form of ABi is ±BiA+R. The sign is '-' if both, A and Bi are fermionic and '+' otherwise.
The remainder R =

∑
k αk

∏
l Ckl is a combination of products of trace operators. The

length of operator R is de�ned by L(R) = maxk
∑

l L(Ckl).
R originates from commutators of operators in the product ABi. A commutator of

creation and annihilation operator is proportional to identity. Therefore, each commuta-
tion removes two operators from the product, so L(R) < L(A) +L(Bi). The block R|n′ni
is a combination of products of blocks Ckl|n′klnkl . For each k, l

R(Ckl,n
′
kl,nkl) = L(Ckl) + |n′kl|+ |nkl|

≤ L(Ckl) +

(
|n′|+

∑
i<l

L(Cki)

)
+

(
|ni|+

∑
i>l

L(Cki)

)
≤ L(R) + |n′|+ |ni| < L(A) + L(B) + |n′|+ |ni|
= L(A) + |n′|+ |n| = R(A,n,n′).

(C.2)

101



APPENDIX C. FINITENESS OF THE RECURSIVE ALGORITHM

The block (BiA)|n′n is calculated as a product of Bi|n′n′i and A|n′in where n′i = n′ − n̂i
and n̂i is the creation label of Bi. The brick Bi contains only creation operators, so
|n′i| = |n′| − |n̂i| and L(Bi) = |n̂i|. Recursion levels of these blocks are

R(Bi,n′,n′i) = L(Bi) + |n′|+ |n′i| = L(Bi) + 2|n′| − |n̂i| = 2|n′| < R(A,n′,n),

R(A,n′i,n) = L(A) + |n′i|+ |n| = L(A) + |n′|+ |n| − L(Bi) < R(A,n′,n).
(C.3)

We have shown that each element in the block matrix (3.29) has recursion level smaller
than R(A,n′,n).

It remains to calculate the recursion levels of block in the Gramm matrix. The product
of two bricks B†iBj transformed into its maximally annihilating form is BjB†i +R′. The
block B†iBj|ninj is a sum of BjB†i |ninj = Bj|ninij × B

†
i |nijnj and R′|ninj . Here, nij ≡

n− n̂i − n̂j and we know that |nij| = |n| − |n̂i| − |n̂j| = |n| − L(Bi)− L(Bj). Recursion
levels of these three blocks are following

R(Bj,ni,nij) = 2|n| − 2L(Bi) ≤ R(A,n′,n)− 2L(Bi),
R(B†i ,nij,nj) = 2|n| − 2L(Bj) ≤ R(A,n′,n)− 2L(Bj),
R(R′,ni,nj) = L(R′) + |ni|+ |nj| < L(Bi) + L(Bj) + |ni|+ |nj|

= 2|n| ≤ R(A,n′,n)− 2L(Bj).

(C.4)

We have shown that the recursion levels of all blocks that we need to construct A|n′n
are smaller than the recursion level of the block itself. It was assumed that |n| 6= 0. If |n|
is zero, then the block is calculated in the sector containing only the empty state. Since
we know that the �rst component of annihilation rank of A is positive, it annihilates
Fock vacuum and the block vanishes. The recursion level is always nonnegative and it
is zero only for identity operator in the Fock vacuum state. Therefore, one needs only a
�nite number of recursive steps to construct a given block. In order to construct A|n′n
one needs at most R(A,n′,n) steps.
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Appendix D

Construction of zero angular
momentum functions

In 7.2 we constructed the probability density ρ(x). Given an angular momentummultiplet
|φm〉 with total angular momentu j we constructed a wavefunction φmχ (x), where χ labels
occupation numbers of fermions. Then the probability distribution is given by

ρ(x) =
∑
mχ

∣∣φmχ (x)
∣∣2

=
∑
mχ

〈xχ|φm〉 〈φm|xχ〉
(D.1)

ρ(x) is gauge and rotationally invariant. Invariance under gauge transformation is ob-
vious since the wavefunction φmχ (x) is gauge invariant. Here we prove invariance under
rotations, i.e.

L2ρ(x) = 0, (D.2)

where Li = εijkx
a
jp
a
k is an orbital momentum operator.

First, we introduce some useful notation. The symbol χ has 2(N2 − 1) components
χaα. In a sector with nF fermions there are nF components of χ which have value 1
and the other elements are zeros. χ can be alternatively written as a pair (a,α) where
a = (a1, . . . , anF ), α = (α1, . . . , αnF ) are color and spinor indices for which χaiαi = 1. The

range of indices is ai = 1, . . . , 8, αi = ±1
2
. We assume that pairs (ai, αi) are ordered in

some way. Then the wavefunction of |φm〉 can be written as 〈xaα|φm〉.
Complex conjugation of the wavefunction can be transformed by using properties of

time reversal operation

〈φm|xaα〉 = T 〈xaα|φm〉T ,
|φm〉T = (−1)m |φ−m〉 ,
|xaα〉T = (−1)mα |xa−α〉 .

(D.3)

where mα =
∑

i αi. Then, the probability density ρ(x) can be expressed as

ρ(x) ≡
∑
aαm

|〈xaα|φm〉|2 =
∑
aαm

(−1)m+mα 〈xaα|φm〉 〈xa−α|φ−m〉 . (D.4)
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FUNCTIONS

The orbital angular momentum operator can be written as

L2 = L2
3 +

1

2
L−L+ +

1

2
L+L−, (D.5)

where L± = L1 ± iL2. From now on indices i, j will take values {+,−, 3}. The angular
momentum Li is a di�erential operator and it satis�es the Leibniz rule. For any two
di�erent states |ψ1〉 and |ψ2〉 there is

Li(〈x|ψ1〉 〈x|ψ2〉) = (Li 〈x|ψ1〉) 〈x|ψ2〉+ 〈x|ψ1〉 (Li 〈x|ψ2〉)
= 〈x|Li|ψ1〉 〈x|ψ2〉+ 〈x|ψ1〉 〈x|Li|ψ2〉 .

(D.6)

Relation (D.6) applied to (D.4) gives

LiLjρ(x) =
∑
aαm

(−1)m+mα

(
〈xaα|LiLj|φm〉 〈xa−α|φ−m〉+ 〈xaα|Li|φm〉 〈xa−α|Lj|φ−m〉+

〈xaα|Lj|φm〉 〈xa−α|Li|j −m〉+ 〈xaα|φm〉 〈xa−α|LiLj|φ−m〉
) (D.7)

We plug the relation between total and orbital angular momentum, Li = Ji − Si, into
(D.7) and gather terms with double Ji, double Si and mixed.

LiLjρ(x) =
∑
aαm

(−1)m+mα ((JJ )ij + (JS)ij + (SS)ij) . (D.8)

The corresponding terms are

(JJ )ij = 〈xaα|JiJj|φm〉 〈xa−α|φ−m〉+ 〈xaα|Ji|φm〉 〈xa−α|Jj|φ−m〉
+ 〈xaα|Jj|φm〉 〈xa−α|Ji|φ−m〉+ 〈xaα|φm〉 〈xa−α|JiJj|φ−m〉 ,

(D.9)

(JS)ij = −〈xaα|SiJj|φm〉 〈xa−α|φ−m〉 − 〈xaα|JiSj|φm〉 〈xa−α|φ−m〉
− 〈xaα|Si|φm〉 〈xa−α|Jj|φ−m〉 − 〈xaα|Ji|φm〉 〈xa−α|Sj|φ−m〉
− 〈xaα|Sj|φm〉 〈xa−α|Ji|φ−m〉 − 〈xaα|Jj|φm〉 〈xa−α|Si|φ−m〉
− 〈xaα|φm〉 〈xa−α|SiJj|φ−m〉 − 〈xaα|φm〉 〈xa−α|JiSj|φ−m〉 ,

(D.10)

(SS)ij = 〈xaα|SiSj|φm〉 〈xa−α|φ−m〉+ 〈xaα|Si|φm〉 〈xa−α|Sj|φ−m〉
+ 〈xaα|Sj|φm〉 〈xa−α|Si|φ−m〉+ 〈xaα|φm〉 〈xa−α|SiSj|φ−m〉 .

(D.11)

Action of spin operators on kets |xaα〉 can be easily read from (2.17)

S3 |xaα〉 =
1

2

∑
i

αi |xaα〉 , (D.12)

S+ |xaα〉 =
∑
k

δαk,−1/2 |xaαk+〉 , (D.13)

S− |xaα〉 =
∑
k

δαk,1/2 |xaα
k
−〉 . (D.14)

where

αk± = (α1, . . . , αk ±
1

2
, . . . , αnF ). (D.15)

In the following we consider (JJ )ij, (JS)ij and (SS)ij separately. Moreover, in each
case the sum over (i, j) splits into (i, j) = (3, 3) and (i, j) = (+,−), (−,+) and these
vanish independently. For clarity, further considerations are organized in paragraphs.
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Terms with double Ji.∑
m

(−1)m+mα(JJ )33 (D.16)

=
(
m2 +m(−m) +m(−m) + (−m)2

)
〈xaα|φm〉 〈xa−α|φ−m〉 = 0. (D.17)

Before we consider (JJ )ij with i, j = ±, recall that

J± |j,m〉 =
√
j(j + 1)−m(m± 1) |j,m± 1〉 . (D.18)

(JJ )−+ + (JJ )+−

=
∑
m

(−1)m
(

1

2
(j(j + 1)−m(m− 1) + j(j + 1)−m(m+ 1)) 〈xaα|φm〉 〈xa−α|φ−m〉

+ (j(j + 1)−m(m+ 1)) 〈xaα|φm+1〉 〈xa−α|φ−(m+1)〉
+ (j(j + 1)−m(m− 1)) 〈xaα|φm−1〉 〈xa−α|φ−(m−1)〉

+
1

2
(j(j + 1)−m(m+ 1) + j(j + 1)−m(m− 1)) 〈xaα|jm〉 〈xa−α|φ−m〉

)
=
∑
m

(−1)m
(

2(j(j + 1)−m2) 〈xaα|φm〉 〈xa−α|φ−m〉

+ (j(j + 1)−m(m+ 1)) 〈xaα|φm+1〉 〈xa−α|φ−(m+1)〉

+ (j(j + 1)−m(m− 1)) 〈xaα|φm−1〉 〈xa−α|φ−(m−1)〉
)

=
∑
m

(−1)m
(

2(j(j + 1)−m2) 〈xaα|φm〉 〈xa−α|φ−m〉

− (j(j + 1)− (m− 1)m) 〈xaα|φm〉 〈xa−α|φ−m〉

− (j(j + 1)− (m+ 1)m) 〈xaα|φm〉 〈xa−α|φ−m)〉
)

= 0.
(D.19)

In the third equality terms with the same m were gathered, hence additional minus sign
from (−1)m.

Mixed terms. Note that [J3, S3] = 0.

(JS)33 = −m 〈xaα|S3|φm〉 〈xa−α|φ−m〉 −m 〈xaα|S3|φm〉 〈xa−α|φ−m〉
+m 〈xaα|S3|φm〉 〈xa−α|φ−m〉 −m 〈xaα|φm〉 〈xa−α|S3|φ−m〉
+m 〈xaα|S3|φm〉 〈xa−α|φ−m〉 −m 〈xaα|φm〉 〈xa−α|S3|φ−m〉
+m 〈xaα|φm〉 〈xa−α|S3|φ−m〉+m 〈xaα|φm〉 〈xa−α|S3|φ−m〉

= 0

(D.20)

For (i, j) = (+−), (−,+) in all brackets of the form 〈xaα|JiSj|ψ〉 we would like to move
Sj to the left and use (D.12). Therefore, we need commutators of Sj with Ji. The required
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relation is

J+S− + J−S+ = S−J+ + [J+, S−] + S+J− + [J−, S+]

= S−J+ + [S+, S−] + S+J− + [S−, S+]

= S−J+ + S+J−.

(D.21)

1

2

∑
m

(−1)m((JS)−+ + (JS)+−)

=
∑
m

(−1)m
(
−
√
j(j + 1)−m(m+ 1) 〈xaα|S−|φm+1〉 〈xa−α|φ−m〉

−
√
j(j + 1)−m(m− 1) 〈xaα|S+|φm−1〉 〈xa−α|φ−m〉

−
√
j(j + 1)−m(m− 1) 〈xaα|S−|φm〉 〈xa−α|φ−(m−1)〉

−
√
j(j + 1)−m(m+ 1) 〈xaα|S+|φm〉 〈xa−α|φ−(m+1)〉

−
√
j(j + 1)−m(m+ 1) 〈xaα|φm+1〉 〈xa−α|S−|φ−m〉

−
√
j(j + 1)−m(m− 1) 〈xaα|φm−1〉 〈xa−α|S+|φ−m〉

−
√
j(j + 1)−m(m− 1) 〈xaα|φm〉 〈xa−α|S−|φ−(m−1)〉

−
√
j(j + 1)−m(m+ 1) 〈xaα|φm〉 〈xa−α|S+|φ−(m+1)〉

)
=
∑
m

(−1)m
(

+
√
j(j + 1)−m(m− 1) 〈xaα|S−|φm〉 〈xa−α|φ−(m−1)〉

+
√
j(j + 1)−m(m+ 1) 〈xaα|S+|φm〉 〈xa−α|φ−(m+1)〉

−
√
j(j + 1)−m(m− 1) 〈xaα|S−|φm〉 〈xa−α|φ−(m−1)〉

−
√
j(j + 1)−m(m+ 1) 〈xaα|S+|φm〉 〈xa−α|φ−(m+1)〉

+
√
j(j + 1)−m(m− 1) 〈xaα|φm〉 〈xa−α|S−|φ−(m−1)〉

+
√
j(j + 1)−m(m+ 1) 〈xaα|φm〉 〈xa−α|S+|φ−(m+1)〉

−
√
j(j + 1)−m(m− 1) 〈xaα|φm〉 〈xa−α|S−|φ−(m−1)〉

−
√
j(j + 1)−m(m+ 1) 〈xaα|φm〉 〈xa−α|S+|φ−(m+1)〉

)
= 0.

(D.22)

Terms with double Si. In (SS)33 each S3 acts to the left giving a constant mα or
−mα. Therefore,

(SS)33 = (m2
α −m2

α −m2
α + (−mα)2) 〈xaα|φm〉 〈xa−α|φ−m〉 = 0 (D.23)
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Finally,∑
aα

(−1)mα ((SS)+− + (SS)−+)

=
∑
aα

(−1)mα

(
+

1

2
〈xaα|S†+S

†
−|φm〉 〈xa−α|φ−m〉+

1

2
〈xaα|S†−S

†
+|φm〉 〈xa−α|φ−m〉

+
1

2
〈xaα|φm〉 〈xa−α|S†+S

†
−|φ−m〉+

1

2
〈xaα|φm〉 〈xa−α|S†−S

†
+|φ−m〉

+ 〈xaα|S†+|φm〉 〈xa−α|S
†
−|φ−m〉+ 〈xaα|S†−|φm〉 〈xa−α|S

†
+|φ−m〉

)
=
∑
aα

(−1)mα

(
+

1

2

∑
kl

〈xa(αk+)l−|φm〉 〈xa−α|φ−m〉+
1

2

∑
kl

〈xa(αk−)l+|φm〉 〈xa−α|φ−m〉

+
1

2

∑
kl

〈xaα|φm〉 〈xa− (αk−)l+|φ−m〉+
1

2

∑
kl

〈xaα|φm〉 〈xa− (αk+)l−|φ−m〉

+
∑
kl

〈xaαk+|φm〉 〈xa− (αl+)|φ−m〉+
∑
kl

〈xaαk−|φm〉 〈xa− (αl−)|φ−m〉
)

=
∑
aα

(−1)mα

(
+

1

2

∑
kl

〈xa(αk+)l−|φm〉 〈xa−α|φ−m〉+
1

2

∑
kl

〈xa(αk−)l+|φm〉 〈xa−α|φ−m〉

+
1

2

∑
kl

〈xa(αk+)l−|φm〉 〈xa−α|φ−m〉+
1

2

∑
kl

〈xa(αk−)l+|φm〉 〈xa−α|φ−m〉

−
∑
kl

〈xa(αl−)k+|φm〉 〈xa−α|φ−m〉 −
∑
kl

〈xa(αl+)k−|φm〉 〈xa−α|φ−m〉
)

= 0.

(D.24)

In the third equality the sum over a and α was reorganized so that there is an identical
bracket 〈xa−α|φ−m〉 in each term. To this end the variables were changed in the
following way. In the third term

α→ α′ = (αk+)l−. (D.25)

Then,

(α′k−)l+ = α, mα′ = mα. (D.26)

A opposite change was done in the fourth term. In the �fth term

α→ α′′ = αl−, (D.27)

and then

α′′l+ = α. (D.28)
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An opposite change was performed in the sixth component. The ket |xaα′′〉 is created by

one less operator f †+ and one more operator f †− than |xaα〉. Therefore, mα′′ = mα − 1
and (−1)mα′ = −(−1)mα , hence additional minus sign.

We proved than all terms in (D.8) vanish and therefore L2ρ(x) = 0. The proof is now
complete.
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Appendix E

Gauge �xing for SU(3)

In 7.4.1 we consider gauge �xing for a set of three bosonic variables Xi. Each Xi is a
hermitean, traceless 3 × 3 matrix. The gauge transformation is Xi → UXiU

†, where
U is an element of SU(3) in the fundamental representation. In 7.4.1 we shown how to
completely �x the gauge in the generic case. Gauge �xing can be represented by conditions
coordinates xai (cf. (7.22)). There are however certain con�gurations Xi which have to be
addressed separately. This is because in these cases there is come residual gauge freedom
left. This freedom leads e.g. to identi�cation of false �at valleys of the potential (c.f.
(7.26)). In this appendix all such cases are discussed.

The procedure of gauge �xing is algorithmic. That is, it consists several steps. At each
step there is some gauge symmetry available. It is then used to transform Xi so that they
satisfy some additional constraints. The gauge freedom at each step depends on particular
con�guration of Xi. For example, in the �rst step X1 is diagonalized. In the generic case
it is then invariant under gauge transformation only with U = diag(eiφ, eiψ, e−iφ−iψ).
However, if X1 = 0, then it is invariant under gauge transformation with general U ∈
SU(3). In Tab. E.1 we introduce notation for residual gauge symmetries which will be
used in what follows.

A U � general SU(3) matrix E U = diag(eiφ, eiφ, e−2iφ)

B U =

(
U2 0
0 (detU2)

∗

)
F U = diag(e−2iφ, eiφ, eiφ)

C U =

(
(detU2)

∗ 0
0 U2

)
G U = diag(eiφ, e−2iφ, eiφ)

D U = diag(eiφ, eiψ, e−iφ−iψ)

Table E.1: Notations for residual gauge freedom in midsteps in the procedure of gauge �xing. U2 stands
for a general, SU(2) matrix.

Recall how the gauge is �xed in the generic case. First, one diagonalizesX1 and sets the

diagonal elements in increasing order. The residual gauge freedom is D . The diagonal
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matrix X1 is invariant under transformations with such U . The gauge transformation is
then used to set two matrix elements (X2)12 and (X2)23 real and positive. This �xes the
gauge completely.

In 7.4.1 we considered three basic degenerate cases. They are summarized in Tab.
E.2 together with the residual gauge freedom and how one can use it to impose further
constraints. There are certainly many more di�erent cases. Nevertheless, there are usually
similar to one of the three basic cases.

special case residual gauge freedom action

X1 = 0 A use U to diagonalize X2 and
then treat X3 as X2 in the
generic case

after diagonalization of X1

two eigenvalues are equal, e.g.
(X1)11 = (X1)22

B diagonalize upper�left 2x2
submatrix of X2 and set
(X2)13, (X2)23 positive

after diagonalization of X1 ma-
trix element (X2)12 vanishes

D set (X2)13 and (X2)23 positive

Table E.2: The basic degenerate cases in gauge �xing procedure.

Finally, we proceed to describing the full algorithm. At each step Xi obey some
constraints. There is a residual gauge symmetry that does not violate these constraints.
The residual symmetry depends on both, constraints and particular con�gurationXi. The
gauge symmetry is then used to perform some action (such as to diagonalize a matrix) so
that Xi are subject to stricter constraints. This leaves a smaller symmetry group which
is then used in next step. Di�erent residual gauge symmetries allow for di�erent sets of
actions. In each case an action with highest priority is chosen. The list of possible actions
is

1. diagonalize Xi,

2. diagonalize a 2× 2 upper�left or lower�right submatrix of Xi,

3. set an o��diagonal matrix element to zero; (Xi)12 has priority over (Xi)23 and (Xi)23

has priority over (Xi)13,

4. set an o��diagonal matrix element positive, (Xi)12 has priority over (Xi)23 and (Xi)23

has priority over (Xi)13.

First action has highest priority and the last has lowest. Each action concerns only one
of the three matrices Xi. We say that X1 has always priority over X2 and X2 has priority
over X3. That is, if the same action is possible for X1 and X2 then it is done for X1.
By diagonalization we mean diagonalization with setting eigenvalues on the diagonal in
increasing order.

The full procedure of gauge �xing is presented in a �owchart, Figs E.1 and E.2. In-
terpretation of the �owchart is following. The pink rectangle is the �rst step. Rectangles
represent new constraints that are imposed on matrices Xi. These conditions can be
always ful�lled by performing an action on Xi which is allowed by the residual symme-
try group. Each diamond represents a question. If the condition in a diamond node is
ful�lled, then there is a degeneracy and the 'yes' arrow has to be followed. Otherwise,
one has to follow the 'no' arrow. The blue triangle in Fig. E.1 means that one should
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move to the triangle in Fig. E.2. Some arrows have additional symbols, A ,. . . , G

. These denote the residual gauge transformations at given stage. For brevity we use
X = X1, Y = X2, Z = X3. Moreover, 'diagonalize UL of M' means: 'diagonalize
2× 2 submatrix in the upper-left corner of M'. Similarly, LR stands for 'the lower-right
submatrix'.
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