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Chapter 1

General Introduction

The beginning of the XXI century started the new era in the experimental
physics of charm. Several major experiments have observed unexpected pat-
terns in the spectra of open and hidden charm, and these observations have
surprised almost everyone. Let us outline some of these experiments and
their spectacular results:

- In April 2003 BaBar Collaboration [1] has announced new, narrow me-
son D?

sJ(2317)+, decaying into D+
s and π0. In May this observation was

confirmed by CLEO Collaboration [2], which also noticed another narrow
state, DsJ(2460)+, decaying into D?

s and π0. Both states were confirmed by
Belle Collaboration [3], and finally, the CLEO observation was also confirmed
by BaBar [4].

- In July 2003 Belle Collaboration measured the narrow excited states
D1, D2 with foreseen quantum numbers (1+, 2+), and provided the first evi-
dence for two new, broad states D?

0 (2308 ± 17 ± 15 ± 28) and D
′
1 (2427 ±

26± 20± 17) [5]. Both of them are approximately 400 MeV above the usual
D0, D

∗ states and seem to have opposite to them parity. Recently, observa-
tion of the D∗

0 was confirmed by FOCUS Collaboration [6] and also CLEO
observed second state D

′
1 [2]. Above states were seen in decays mode with

pion, i.e. D?
0
0 → D+ π−, D?

0
+ → D0 π+ and D

′
1

0 → D?+π−.

- SELEX Collaboration has provided preliminary data for doubly charmed
baryons [7]. On top of known since 2002 state Ξ+

cc(3520) (ccd), four other
cascade (conjectured as j` = 1/2 states) are visible, in particular the pair
of opposite chirality ccu states separated by the mass gap of the order 337
MeV.
Few months after, SELEX Collaboration also announced a new, surprisingly
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CHAPTER 1. GENERAL INTRODUCTION 6

narrow state D+
sJ(2632) [8], which mainly appeared in D+

sJ → D+
s η decays.

However, till today neither of these states has been confirmed by other ex-
periments.

- H1 experiment at DESY has announced [9] a signature for charmed pen-
taquark Θ0

c (c̄udud) at mass 3099 MeV, i.e. approximately 400 MeV higher
than the expected estimates known in the literature [42, 11, 12, 43].
Till today this H1 state was however not confirmed by other experiments.

- In July 2006 BaBar Collaboration [14] observed a new member of c̄s
family decaying into D0K+ and D+K0

s , a narrow Γ = (48±7±10)MeV with
estimated mass (2865.6±1.5±5.0) MeV. In the same mass distribution they
also found a broad structure X with mass of (2688± 4± 3)MeV and width
Γ = (112 ± 7 ± 36) MeV. Information about possible quantum numbers for
both is still unavailable.

- In August 2006 Belle Collaboration [15] reported the observation of a
new DsJ meson with a spin-parity (1−) and a mass of (2715 ± 11+11

−14) MeV.
Its width was determined to be Γ = (115± 20) MeV. This charmed, strange
state needs to be confirmed.

All above states refer to the newest observation in open charm physics.
Till the end of XX century quark model claimed to explain the open charm
spectra, but the new narrow Ds states with positive parity did not match any
predicted pattern. Fortunately, from theoretical point of view, it is obvious
that heavy-light systems belong to the realm of strictly non-perturbative
physics, hence the possibility of better understanding of these states using
the concepts of non-perturbative physics.

However, equally surprising experimental results appeared soon in the
physics of hidden charm. The hidden charm mesons were considered to be
relatively well understood using the concept of charmonia in the family of
potential models, assuming that charm is heavy enough to look at mesons
as hydrogen-like spectra of the bound charmed quark and antiquark orbiting
around each other.

We list here some of the recent results in the hidden charm sector.
- In 2003 Belle Collaboration [20] discovered a new charm resonance marked
as X(3872) in B decays. This new state was quickly confirmed by other
major experiments [21]. Till today this state has been observed in five ma-
jor experiments (Belle, CLEO, BaBar, D0, CDF). Since it lies above DD̄
threshold, it has got many features in common with a so-called deuson [22],
i.e. a loosely bound state of D0D̄∗0 mesons. Other possible interpretation of
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X(3872) include a tetraquark description, i.e tightly bound charm diquark-
antidiquark state [23].

- In 2004 Belle Collaboration [24] observed another state denoted by
Y (3940) and produced in B+ → KωJ/ψ decay. According to one hypothesis
this new state may be viewed as a cc̄-gluon hybrid.

- In 2005 BaBar Collaboration [25] has studied processes in e+e− →
γπ+π−J/ψ and found a broad structure with mass near 4.26 GeV. A new
state was marked as Y (4260) with quantum numbers JPC = 1−− and soon
confirmed by CLEO [26] and Belle [27] Collaborations. Its mass is consis-
tent with a conventional charmonium state ψ(4S) or may be interpreted as
a tetraquark (csc̄s̄) [28].

- One year after, in August 2007 Belle Collaboration [16] found the new
narrow structure denoted by Z±, with an accurate mass M = (4433 ± 4 ±
2)MeV and the width about Γ = 45 MeV. The state was seen in decay via
(ψ

′
+π±). The uniqueness of this state stems from the fact that it is the first

charmonium-like meson candidate with nonzero electric charge, which ex-
cludes the minimal cc̄ content. Many interpretation have been proposed. The
Z state was viewed for example as a bound state of the diquark-antidiquark
cuc̄d̄ and interpreted as a first radial excitation of the multiplet included
tetraquarks X(3872)(cuc̄ū) and X(3876) (cdc̄d̄).

- In June 2008 Belle Collaboration [17] observed the two additional states
of similar character (charged) with the resonance parameters: (M1 = 4051
MeV, Γ1 = 82 MeV) and (M2 = 4248 MeV, Γ2 = 177 MeV). The doubly
peaked structure was seen in B̄0 → K−π+χc1 decays. However, neither of
the charged states has been observed or confirmed by BaBar experiment.

- Since 2007 Belle [18] reported the evidence of several other resonances
named Z(3930), X(3940), Y (4008), X(4160), Y (4350) (also seen be BaBar)
and Y (4660). The first state may be interpreted as a missing χc2(2P ) state,
the nature of the second is unknown, the third and fourth might be sus-
pected to be ψ(3S) and χc0(3P ) states, respectively, the nature of Y (4350)
is unknown and the last may look like ψ(5S) excitation.

In the light of these discoveries, we definitely may expect that the charm
family is still growing and new other intriguing members might appear soon.
At this point we would like to explain why the plethora of these states have
triggered such an interest among several theorists. There are several reasons
for this excitement.
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QCD is the correct, but still unsolved theory of the strong interactions.
The direct approach, based on massive lattice simulations of the spectra, is
certainly successful, but only last year the sizes of lattice and type of physical
fermions algorithms allowed to reach the physical mass of the pion, hence the
very precise simulations of heavy-light hadrons are still not available. In such
situation we have either to look at some ”corners” of the full QCD, where
certain approximations are justified and we may build a systematic expansion
in sets of parameters or we have to rely on models, very often not justified
rigourously enough but surprisingly successful at the phenomenological level.

One of the major insights how to organize the calculation is based on
identifying proper scales and associated with them exact or approximated
symmetries. We were guided by the two issues:

1. Let us start from the heavy-light mesonic system, i.e. the meson
with the minimal content of the heavy quark and the light antiquark (or its
complex conjugated partner). If we consider an infinitely heavy quark, we
know that the heavy quark spin symmetry appears (named also as an Isgur-
Wise (IW) symmetry), due to the fact that heavy spin decouples from angular
momentum of the light quark jl. The lowest partial wave of the light quark
corresponds to l = 0, so the angular momentum equals to the spin of the
light quark. Combining all light and heavy components, we get a well known
pair of states (0−, 1−), degenerated in the infinitely heavy quark limit. The
observed experimentally split between these states effect scales like 1/mQ,
where mQ is the mass of the heavy quark, and systematic expansion in this
parameter is the basics of Heavy Quark Effective Theory (HQET).

Going up in angular momentum l we find two other pairs (1+, 2+) and
(0+, 1+). The observations of BaBar, CLEO and Belle in strange sector
(2317, 2460) match the spin-parity of the last pair. It was clear that the
first puzzle was not the presence of these new states, but the value of their
masses and decay patterns. Standard estimations based on the quark poten-
tial models (QM) were placing these states approximately 150 MeV higher
then observed. Such states were therefore expected to be broad, however the
observed ones were extremely narrow (with width below 10 MeV, i.e. the
resolution of the experiments). The second challenge was the pattern of split-
ting between the opposite parity states, i.e. the mass difference between 0+

and 0− turned out to be identical to the mass difference between 1+ and 1−.
The third challenge was to understand the observed decays - both hadronic
and electromagnetic.

These were the three reasons which renewed an interests on open charmed
hadrons spectroscopy in theoretical physics. Several possible theoretical con-
structions were proposed to explain the masses and possible quantum num-
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bers. Let us briefly remind here some of those appeared in literature [30].
New charmed states were interpreted either as molecular configuration alike
Dπ atoms or DK molecules, their properties were studied in the framework
of modified quark model (QM) and via lattice simulation. There was also
another intriguing possibility, based on the concept formulated a decade [33]
before the above mentioned experiments, that the new states are the result
of the restrictions on the heavy-light systems imposed by the spontaneous
breakdown of the chiral symmetry of the light quarks. In other words, simul-
taneous constraints emerging both from infinitely heavy quark sector (IW
symmetry) and the massless light quark sector (chiral symmetry breakdown)
impose the augmentation of the Heavy Quark Effective Theory with the cru-
cial chiral component. This hypothesis seems to match well the observed
spectra [36], but its consequences are far more dramatic. If correct, it im-
plies that every hadron composed of heavy (H) and light (L) quarks may
have an opposite chirality ”doubler”. This chiral doubling is the main topic
studied in this work.

2. Let us explore another intriguing symmetry, appearing when the sys-
tem has two infinitely heavy quarks. Let us start with the doubly heavy
baryon, of the generic type HHL, where we do not speculate at this mo-
ment if heavy quarks have identical or different flavors. From the point of
view of infinitely heavy color source, the two heavy quarks sitting on top
on each other behave as an anti-triplet color source, since for SU(3) color
(3⊗3 = 6⊕ 3̄), and the sextet is excluded due to the failure to form the color
neutral (white) state with the remaining light quark in color triplet state.
This means that in the infinitely heavy limit appears an additional ”su-
persymmetry” between doubly-heavy diquark HH and heavy antiquark H̄.
This supersymmetry ( we name it Savage-Wise (SW) after their discoverers)
imposes the degeneration of the spectra between the doubly heavy baryons
HHL and heavy-light mesons H̄L. It also implies another dramatic effect,
the appearance of the tetraquarks, since according to the same reasoning the
heavy-light-light baryons HLL are expected, due to charge conjugation, to
be degenerated with the H̄H̄LL states. From this perspective it is clear now
how crucial is observation by SELEX of the double heavy baryonic states and
how important is an independent confirmation by other experiments. Three
important theoretical problems can be immediately addressed:
– is the mass of the charm quark heavy enough to see the effects of SW
symmetry?
– does the observed spectrum includes chiral doublers?
– can we learn from these data more on charm-charm interaction by extract-
ing the information from charm-anticharm interaction in observed quarkonia?
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We will try to answer these questions in this work as well.
The paper is organized as follows. In Chapter 2, we review the conse-

quences of spontaneous breakdown of the chiral symmetry for the heavy light-
systems, discussing respectively the chiral doublers for heavy-light mesons,
the chiral doublers for heavy-heavy-light baryons and, for completeness, the
chiral doublers for heavy-light-light baryons. There are many phenomenolog-
ical ways to incorporate the spontaneous breakdown of the chiral symmetry
– we decided to choose the instanton liquid picture for the QCD vacuum, due
to its phenomenological success for the low-lying hadronic sector and limited
number of the parameters. Brief recollection of assumptions of this model
concludes Chapter 2. In Chapter 3, we consider a simple toy model incorpo-
rating the physics of instantons with heavy-light system. This model serves
as a verification that the appearing scales and types of interaction are the
correct ones and justifies full strength approach to heavy-light mesons based
on extensive numerical simulations (Chapter 4). In Chapter 5, we address
the issue of doubly heavy baryons and we speculate on possible interpreta-
tion of the SELEX data. Due to the technical complications of the problem
and in order to gain some physical insight, we abandon brute force numerical
simulation for the baryons and we rather rely on careful estimation of vari-
ous scales based on semi-analytic calculations in various models. Chapter 6
includes discussion of the results and the summary. Two Appendices hide
necessary, but very technical details of some of our calculations.



Chapter 2

Chiral Symmetry in
Heavy-Light Systems

In this Chapter we remind the idea of chiral doubling, and we discuss sub-
sequently this phenomenon for mesonic and baryonic systems in light of the
accessible experimental data. Then, we summarize the main idea of the in-
stanton vacuum picture and their importance for describing the spontaneous
breakdown of chiral symmetry in Quantum Chromodynamics.

2.1 Chiral Doublers for Heavy-Light Mesons

With respect to ΛQCD, the fundamental scale of the Quantum Chromody-
namics, strong interactions involve three light flavors (q=u,d,s) and three
heavy flavors (Q=c,b,t), (see Fig.2.1). It is instructive to consider the limits
mq → 0 and mQ →∞.

ΛQCD

u d s c b t
[MeV]
Mass

5 7 150 ~250 1400 4200~ ~ ~ ~ ~ Au~

Figure 2.1: Schematic QCD mass scales.

Both limits (massless quarks and infinitely heavy mass) unravel essential
symmetries of strong interactions. The light sector (massless light quark
limit) is characterized by the spontaneous breakdown of the chiral symmetry
(SBχS). Vacuum state is respecting only vector part of the symmetry, i.e.
SUV (Nq) × SUA(Nq) → SUV (Nq) , whereas axial symmetry is broken, as a

11
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results we have massless Goldstones excitations for each broken generator.
Since on top of the spontaneous breakdown of the chiral symmetry we have
and explicit breaking due to current masses of up and down quark of order
few MeV, pion is not massless, but still is the lightest hadronic particle.
Spontaneous breakdown of the chiral symmetry is the cornerstone of the
chiral perturbation theory.
The heavy sector (infinite heavy quark mass limit) exhibits heavy quark
symmetry (known as a Isgur-Wise symmetry) [37]. In this limit, dynamics of
the heavy quark becomes independent of its spin. As a result the masses of
the pseudoscalar (0−) and vector (1−) mesonic states including heavy quark
become degenerate, since there is no difference due to the singlet or triplet
spin configuration of the system.
Heavy-light mesons are the simplest objects subjected to the simultaneous
restrictions of both above-mentioned symmetries. Constraints from both
symmetries enforce the form of the effective interaction of such mesons. An
explicit answer from theoretical point of view was found in 1992 and 1993 [33,
34]. In brief, the novel aspect of derivation was that the interaction requires
an introduction of the chiral partners (0+, 1+) (denoted in original work by
G)

G =
1 + /v

2
(γµγ5D̃

?
µ + D̃) (2.1)

for well known and the ”standard” H-multiplet (0−, 1−)

H =
1 + /v

2
(γµD?

µ + iγ5D) . (2.2)

Chiral partners (0+, 1+) are parity duplications for the standard multiplet
(0−, 1−). Using a proper expansion introduced in [33, 34] we can write ef-
fective Lagrangian density for usual heavy-light mesons (H) and their parity
partners (G). The key difference in this approach is the opposite sign of the
mass contribution in chiral copies, contrary to similar term in H. Techni-
cally, the difference for chiral masses origins from the γ5 difference in the
definition of the fields H and G. In other words, it is sensitive to the parity
content of the heavy-light field since H/v = −H and G/v = +G, where /v is the
Feynman-slashed velocity of the heavy quark. Since {γ5, γµ} = 0, the origin
of the opposite shift is indeed chiral. Physically, it corresponds to the fact
that contrary to heavy quark, light quark feels the asymmetric response of
the vacuum with respect to the axial and vector properties, when correlated
pair of quarks propagates between the sources either rotated or unrotated by
γ5. What is important, the mass splitting between both heavy mesons fields
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imply the mass relation to order m0
QN0

c

mG −mH = m(D̃?)−m(D?) = m(D̃)−m(D) = O(Σ) , (2.3)

where Σ denotes one loop heavy meson self-energy [33, 34, 36]. Such a generic
phenomenon cannot be model dependent, so one may expect the chiral dou-
blers for all the heavy-light hadrons. The effect should be more dramatic the
heavier the heavy quark is (the better heavy quark symmetry), so similar
structure is expected to appear at the level of the B mesons, involving the b
quark, approximately three times more heavy comparing to the charmed one.
We move now towards the experimental data. To simplify the comparison,
we employ visualizations in a form of cartoons (cubes or slashed pyramides)
for each flavor content. The rungs of our cubes are aligned along three
directions which represent the effect of the symmetries considered. These
three-dimensional cubes are organized as follows (see Fig.2.2):
- chiral symmetry breaking denoted by SBχS (horizontal),
- Isgur-Wise symmetry breaking 1/mQ (skew),
- total light angular momentum jl (vertical).

Figure 2.2: Cube representing schematic classification of chiral doublers (the
right wall). Labels correspond to the case of cs̄ mesons. Here, Belle signal
Ds(2715) is interpreted as an excited doubler, see text.

We focus on a cartoon for strange charmed mesons, i.e. Ds-cube. Lower
left rung represents known pseudoscalar (0−) Ds(1969) and vector (1−) D?

s(2112),
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with jl = 1/2 light angular momentum. The splitting between them (143
MeV) is an 1/mc effect and is expected to vanish in infinitely heavy charm
quark limit, i.e. both particles would have form the H multiplet. The up-
per left rung corresponds to jl = 3/2 representation, i.e. 1+ and 2+ excited
multiplet. Here, Ds1(2536) and D?

sJ(2573) are the candidates, separated by
(smaller for excited states, here only 37 MeV) 1/mc origin mass splitting.
Concluding, our left wall of the Ds-cube represents well known states, before
BaBar and Belle discoveries. The novel aspect of the chiral doublers scenario
is the appearance of the right wall. First, we expect two chiral partners for
Ds and D?

s , representing right lower rung. Recently discovered D?
sJ(2317)

and DsJ(2460) are the candidates for the (0+, 1+) scalar-axial G multiplet.
The averaged splitting for (0+, 0−) and the averaged splitting for (1+, 1−)
are (349.2± 0.8) MeV and (346.8± 1.1) MeV, respectively, i.e. almost iden-
tical, as predicted a decade ago [33, 34]. The mass difference within the G
multiplet, i.e. between the the new BaBar and CLEO states, is identical to
the splitting between the (1−, 0−) pair. Moving to upper values of the light
angular momentum (jl direction on Fig.2) we would also expect the chiral
partners for the excited jl = 3/2 multiplet, i.e. new chiral pair (1−, 2−) [38].
Alternatively, this pair could be also viewed as the jl = 3/2 excitation of the
BaBar-CLEO (0+, 1+) multiplet. The states within this new multiplet would
be separated by similar 1/mc split, like the split between Ds2 and Ds1, i.e. by
37 MeV. However, the question is how large is the chiral split for the excited
states? Is it also equal to 350 MeV alike the chiral split for the jl = 1/2
plaquette or is different? The possible answer was proposed by [38]. In this
work the chiral shift for excited states was approximately half of the value
of the shift for jl = 1/2 multiplet (175 MeV). The fact that excited states
are less sensitive to the effects of the QCD vacuum is not totally unexpected,
see e.g. [39]. Of course, the precise value of the chiral shift for the excited
doubler can be provided only by an experiment. It is tempting to speculate
that the recent signal reported by Belle [15] (2715) is a (1−) doubler of Ds1.
Therefore, the chiral shift for excited strange charmed mesons would be of
order of 179 MeV. If indeed this is the case, a natural expectation in the
chiral doubler scenario is the presence of the chiral doubler for Ds2 state
as well, i.e. one would expect new, 2− state within few MeV around 2752
MeV, possibly in D?

sη channel, to follow the pattern of the decay of other
doublers. It is important to notice that the spectacular, very narrow width
of charmed mesonic chiral doublers is a result of particular ”conspiracy” of
scales. The most natural decay pattern of the doubler to his opposite chiral-
ity lower partner by the emission of the Goldstone boson is blocked: strange
Goldstones (kaons) are too heavy comparing to the value of chiral gap, and
pions are isotriplets, so the decay would violate the isospin, since both charm
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and strange quarks are isosinglets.
Similar cartoon is expected for non-strange sector. Let us mention that,

here the natural candidates for lower (jl = 1/2) right rung of the D-cube
are the new states reported by Belle, i.e. D?

0 (2308 ± 17 ± 15 ± 28) and D
′
1

(2427±26±20±17) [5]. They can be viewed as chiral partners of well known
pair D(1865) and D?(2010) respectively. In this case the chiral shift seems to
be equal or even larger then for the strange ones which is not in contradiction
with certain models of spontaneous breakdown of the chiral symmetry [36].
The precise value of the chiral shift is still an open problem, due to the
experimental errors and systematic difference between the FOCUS [6] and
Belle [5] signals. Since D mesons are isodoublets, there are no restrictions due
to the emission of pions between the doublers, hence the width of non-strange
doublers is much broader comparing to their strange counterparts.

Similar chiral doublers are also expected for heavier members of mesons
family, i.e. B and Bs. Additionally, the chiral doubling should be more
pronounced in this case, since the 1/mQ corrections are three times smaller.
This feature implies that one of our axes (skew) is three times shorter. More
details and predictions of chiral splitting for B and Bs one can find in [36].

2.2 Chiral Doublers for Heavy-Light-Light Baryons

and Exotic States

Chiral doublers should appear also for more complicated states, including
baryons and hypothetic exotic states. To avoid the introduction of new de-
grees of freedom, in [40] we discussed the possibility of an extension of the
chiral doublers scenario for heavy-light-light baryons, including the exotic
states like heavy pentaquarks, using the concept of effective mesonic La-
grangians. In other words, we parallel the original construction of Skyrme,
who identified nucleon as a soliton of the effective Lagrangian for pions (non-
linear sigma model). Similarly, we view baryons as solitons of the effective
mesonic Lagrangian including both chiral copies (H and G) of heavy-light
mesons, a point addressed already in [33]. We are working in large Nc limit,
which justifies the soliton (Skyrmion) picture, and large heavy quark mass
limit, since we have exploited the constraints from Isgur-Wise symmetry of
the heavy quark. This approach could be viewed as a starting point for in-
cluding 1/mQ corrections from the finite mass of the heavy quark, explicit
breaking of chiral symmetry, etc., alike the presented scheme does it for the
mesons. Charmed hyperons emerge as bound states of D and D? in the pres-
ence of the SU(2) Skyrme background. First the pseudoscalar-vector heavy
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meson pair is being bound in the background of the static soliton, generating
the O(N0

c ) binding. Vibrational modes are the “fast degrees” of the freedom.
The adiabatical rotation of the bound system by quantization of collective co-
ordinates of the SU(2) Skyrmions alike proposed by Witten [44] corresponds
then to “slow degrees” of freedom. It is well known, that in this case the
rotation is not the free one. Fast degrees of freedom in Born-Oppenheimer
approximation generate the effective “gauge” potential, of a Berry phase [45]
type. In the case of degenerate pesudoscalar and vector mesons (IW limit)
the phases coming from D meson and D? meson are equal, but opposite.
Their cancelation corresponds to the realization of the Isgur-Wise symmetry
at the baryonic level, therefore degeneration of spin 1/2 and 3/2 multiplets.
In the following [40] we have chosen the same philosophy but in contrary
to the other similar works in the literature [41, 42, 43] we considered the
full heavy-light effective Lagrangian with both chiral copies [33, 34] and we
included the crucial effects of the chiral shift. Therefore, the Lagrangian
density reads

L = LSkyrme + LH + LG + LHG . (2.4)

Here, LSkyrme is the nonlinear Lagrangian density (in case of only two light
flavors - up and down) which carries a winding number identified as a baryon
number B = 1

LSkyrme =
f 2

π

4
Tr(∂µU∂µU †) +

1

32e2
Tr[U †∂µU,U †∂νU ]2 , (2.5)

where U is the SU(2) matrix, transforming as U → AUB−1 under SU(2)×
SU(2) chiral rotations and fπ = 93 MeV is the pion decay constant. The first
term in this Lagrangian is the leading nonlinear σ model Lagrangian. The
second term, which contains the dimensionless parameter e was introduced
by Skyrme to stabilize the soliton. Other parts labeled by H and G refer to
the heavy meson fields [33, 34].
In this case, we find four different scenarios:
- Soliton of the light sector with baryon number 1 binds the H-multiplet -
the resulting bound states exhibits the quantum numbers of the charmed
baryons with standard 1/2+ parity.
- Soliton of the light sector with baryon number 1 binds the G-multiplet -
the resulting bound states exhibits the quantum numbers of the charmed
baryons with opposite (1/2−) parity.
- Soliton of the light sector with baryon number 1 binds the anti-flavored
H̄-multiplet - the resulting bound states exhibits the quantum numbers of
the charmed baryon with minimal content of five quarks with standard 1/2+
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parity, i.e. charmed pentaquark.
- Soliton of the light sector with baryon number 1 binds the anti-flavored
Ḡ-multiplet - the resulting bound states exhibits the quantum numbers of
the charmed baryon with minimal content of five quarks with opposite 1/2−

parity, i.e. the chiral partner of the pentaquark.
We do not have any contribution from the interaction term LHG, since that
due to the properties of the heavy spin symmetry, one can trade γµAµ into
vµAµ. This implies, that in the rest frame static Skyrmion background decou-
ples the G and H Lagrangians. This decoupling allows immediately to write
down the generic mass formula for opposite parity partner of the isoscalar
baryon and for opposite parity partner of the isoscalar pentaquark (denoted
here by tilde)

M̃ = Msol + mD̃ − 3/2gGF ′(0) + 3/(8I1) ,

M̃5 = Msol + mD̃ − 1/2gGF ′(0) + 3/(8I1) , (2.6)

in analogy to identical formulae for the known sector for H, with D mesons
and gH axial couplings, respectively

M = Msol + mD − 3/2gHF ′(0) + 3/(8I1) ,

M5 = Msol + mD − 1/2gHF ′(0) + 3/(8I1) . (2.7)

In all above expressions , second terms mD and mD̃ denote the averaged mass
of heavy-mesons. The ordering of mass terms is as follows: the first term
corresponds to classical mass od the soliton (of order Nc), the before-last
one measures the (model-dependent via the shape of the soliton profile F (r))
binding with respect to the mass of the meson (independent on the number
of colors) and the last term measures the 1/Nc split due to the moment of
inertia I1 of the soliton. It is of primary importance that both Hamiltonians
for H and G sectors have the same functional form of lowest eigenvalue:
M5 for H and M̃5 for G. Hence both parity partners emerge as H and G
bound states in the SU(2) solitonic background. The mass difference comes
in the first approximation solely from the difference of the coupling constants
gG − gH and meson mass difference mD̃ −mD where mD̃ = (3MD̃? + MD̃)/4
is the averaged over heavy-spin mass of the (1+, 0+) mesons. Constant gG

is the axial coupling constant in the opposite parity channel, responsible
for pionic decays of the 1+ axial states into 0+ scalars. Using recent Belle
data [3], i.e. 0+ candidate D?

0 (2308 ± 17 ± 15 ± 28) and 1+ candidate D
′
1

(2427 ± 26 ± 20 ± 17), we get MD̃ = 2397 MeV, unfortunately with still
large errors. One can easily combine the formulae for four, above mentioned,
generic scenarios. Fist, we notice, that the mass splitting between the usual
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baryons of opposite parity leads to

∆B = ∆M + 3/2F ′(0)gHδg , (2.8)

where ∆M = MD̃ −MD is the mass shift between the opposite parity heavy-
light mesons and δg = 1 − gG/gH measures the difference between the axial
couplings for both copies. Similar reasoning leads to the formula for the
parity splitting between the opposite parity pentaquarks:

∆P = ∆M + 1/2F ′(0)gHδg . (2.9)

Combining both formulae we get

∆P =
∆B + 2∆M

3
. (2.10)

Let us turn now towards the available data. Using the shift of the oppo-
site parity heavy charmed mesons from very recent Belle [5] data we arrive
at ∆M = 425 MeV unfortunately with still large errors. As a result, the
mass shift between the lowest Λc states of opposite parities, Λc(1/2

+, 2285)
and Λc(1/2

−, 2593) is approximately ∆B = 310 MeV. Similarly for isotriplet
(3/8I1 → 11/8I1), taking masses Ξc(1/2

+, 2470) and Ξc(1/2
−, 2790) we have

∆B = 320 MeV. These two numbers allow us to estimate ∆P = (350 ± 60)
MeV, i.e. we get the mass of the chiral doubler of the isoscalar pentaquark
as high as (3052±60) MeV. Let us contrast these predictions to others in the
literature (see Table). We note that our intension was to demonstrate the

Table 2.1: Predicted masses of charmed pentaquark Θ0
c (ududc̄):

Model Mass [MeV] Ref.
constituent quark model (FS) 2902 [46]

diquark model 2710 [11]
diquark-triquark model 2985± 50 [12]

chiral soliton model 2704 [42, 43]
chiral doublers scenario 2700 ; 3052± 60 [40]

lattice calculation 2977 [47]

order of magnitude for parity splitting for heavy baryons and pentaquarks
(in large mQ and large Nc limits). One is therefore tempted to interpret
the recent H1 state [9] as a parity partner Θ̃c of the yet undiscovered isosin-
glet pentaquark Θc of opposite parity and M5 ≈ 2700 MeV. Similar reasoning
applies to other isospin channels, strange charmed pentaquarks and to exten-
sions for b quarks. Despite BaBar and CLEO data yield with the impressive
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accuracy the chiral mesonic shift to be equal to 350 MeV, no charmed strange
baryon data for both parities do exist by now, so one cannot make similar
estimation for strange charmed pentaquarks. We would also like to stress,
that H1 signal for pentaquark was never confirmed by other experiments.
On the positive side, we would like to stress, that any hypothetic exotic con-
figuration, even weakly bounded, observed and confirmed at the charm level
will have dramatic consequences for the beauty sector. The reason is that
color interactions are flavor blind, and the positive kinetic term comparing
bottom and charm quarks is three times more suppressed, so the probability
of forming exotic states increases with the mass of the heavy flavor.

2.3 Chiral Doublers for Doubly Heavy Baryons

Till the end of XX century the issue of doubly heavy baryons belong to fas-
cinating, but purely academic domain of theoretical physics, due to lack of
any experimental data. In 2003 SELEX Collaboration [7] reported a discov-
ery of the doubly charmed baryons belonging to the Ξcc family. All of those
five visible states and possible quantum numbers are presented on Fig.2.3.
The SELEX Collaboration has argued that the orbital angular momentum

Figure 2.3: Spectrum of doubly heavy baryons (Ξcc) that have been observed
by the SELEX Collaboration.

of the ground states is L = 0 (for both ccu and ccd) which implies positive
parity. The two of the excited states, i.e. (3520) and (3541) are consistent
with L > 0 (either negative or positive parity), however, the way of ob-
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served decays from orbital excited state Ξcc(1/2
−) (3780) through the pion

emission suggest that Ξ+
cc(3520) could have negative parity. Till today, all

these five states remain a big challenge for theoretical interpretation. There
also remains a challenge in experimental physics – the SELEX discovery was
not confirmed by other experiments. Moreover, it is surprising that the new
states were observed via weak decay products, and not by more expected,
faster electromagnetic decays. Surprisingly, there is one aspect of these data
which is very interesting for us from the point of view of the chiral doublers.
When we look at the difference between the opposite parity states (1

2

−− 1
2

+
),

we get the mass shift of the order 337 MeV. This value is very close to the
observed split between the hypothetic charmed hyperons of opposite chirality
discussed in the previous section, i.e. the split of 310 MeV for charmed Λ
isosinglets and 320 MeV for charmed Ξ. It is therefore tempting to specu-
late, that the two of the observed states represent the pair of HHL chiral
doublers. Whereas the splits of order of 20 MeV between different charged
states may be attributed to the difference between the masses of up and
down quarks, the 78 MeV split between the Ξ+

cc(3520) and Ξ+
cc(3443) is a real

challenge. Motivated by analysis of heavy-light mesons, we may ask if this
split is not related to Savage-Wise symmetry mentioned in the introduction.
One of the consequences of this symmetry is the relation [51] between the
split between the masses of doubly heavy antibaryons with corresponding
spins 3/2 and 1/2 (we denote it as ∆SW ) and the split between the masses
between heavy-light mesons with corresponding spins 1 and 0 (we denote is
as ∆IW 1:

∆SW =
3

4
∆IW . (2.11)

Since the O(1/mc) split between the D∗ and D reads 145 MeV, the predicted
split for doubly heavy baryons reads 109 MeV, assuming the Savage-Wise
symmetry holds already at the level of the charm quark. This number has to
be confronted with the SELEX split of 78 MeV – is the Savage-Wise symme-
try already an approximate symmetry at the level of the quark with the mass
of 1.45 GeV? If this is the case, one could expect similar approximate sym-
metries between heavy hyperons and tetraquarks, as depicted schematically
on Fig 2.4.

The issue if the 30% discrepancy between the SELEX data and the pre-
dicted spin split for doubly heavy baryons is a consequence of the new approx-
imate symmetry at the hadronic level or the numerical accident, is heavily

1We would like to thank Nora Brambilla and Tom Mehen for informing us prior to
publications that the corrected factor is 3/4 and not 3/2 as in original Savage-Wise paper.
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Figure 2.4: Schematic relations for doubly heavy baryons ΞQQ and
tetraquarks TQQ due to SW symmetry. Here, D and D∗ refers to the stan-
dard s = (0, 1) D-mesons, Σc and Σ∗

c are isospin-1, spin-1/2 and spin-3/2,
respectively. The doubly charmed tetraquarks are labeled by Tcc, T ∗

cc with
spin 0 and 1. Excitation in light degrees of freedom may be also analyzed.

debated. A recent discussion covers framework of NRQCD [48], the rela-
tivistic and nonrelativistic quark model [49] or extended chiral perturbation
theory [50]. Very interesting, more general speculations on the issue of the
presence of Savage-Wise symmetry and the nature of SELEX data were dis-
cussed recently in [52]. In the similar spirit, we will investigate and try to
understand properties of the doubly heavy baryons using the insights from in-
stanton model and we will confront the results with other calculations based
on potential models.

2.4 QCD Instantons and Chiral Symmetry

The fundamental mechanism responsible for the spontaneous breakdown of
the chiral symmetry is still unknown, so the phenomenon is usually described
at the level of some effective theories or models, Nambu-Iona-Lasinio model
being the most known and popular. It is however expected and to large
extend confirmed by lattice calculation, that the microscopic underlying pic-
ture is somehow related to chiral disorder, triggered by localized lumps of
gluonic field. Typical snapshots of lattice gauge configurations reveal very
often non-trivial topological content of the freezed configurations. These ob-
servations justify to some extend instanton picture of the QCD vacuum. In
this picture, these lumps of gluonic fields are represented by certain classical,
stable and topologically non-trivial configurations called instantons. These
objects since their discovery in 1975 by Belavin et al. [53] have been enjoying
significant attention in many theoretical studies. Their topological content
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is strictly related to non-Abelian character of the gluonic fields,

Q =
g2

32π

∫
d4xGa

µνG̃
a
µν , (2.12)

where

G̃a
µν =

1

2
εµναβGa

αβ , ε1234 = 1 . (2.13)

It is easy to show that instanton carrying the topological charge n, where
n is a natural number has the minimal action S = 8nπ/g2, where coupling
constant in denominator points at strictly non-perturbative origin of this
configuration. This property follows from the self-duality conditions G = G̃.
Similar arguments hold also for anti-instanton solutions except that the gauge
fields obey relation G = −G̃, carrying the same finite action as the instantons
but opposite charge Q = −n. As can be seen, the fulfillment of of the
conditions G = ±G̃ automatically leads to satisfaction of equations of motion
DµG

a
µν = DµG̃

a
µν = 0, confirming that the configuration is an exact solution

of Yang-Mills theory. Let us mention that the explicit form of the instanton
solutions depends on the gauge choice, and for general n, is known only
parametrically as a system of coupled algebraic equations. We stick therefore
to the lowest non-trivial topological configurations, since their solution is
available in the simple analytic form. In the literature one may find several
kinds of solutions corresponding to the different types of gauge, i.e. regular,
singular or axial. We restrict ourselves to the singular gauge which will be
used in all our further calculations due to its convenient behavior for large
distances. The final expression for the instanton configuration in the singular
gauge, with its center at point zI and size ρ, has the form

Aa
µ(x− zI) = UI η̄

a
µντ

aU †
I

(x− zI)νρ
2

(x− zI)2((x− zI)2 + ρ2)
. (2.14)

Here η̄a
µν is the ’t Hooft symbols (see Appendix (8.2)), and UI represents the

color orientation matrices of SU(Nc). Note that each instanton with Q = 1
is characterized by 4Nc collective coordinates.

Behavior of fermions in the presence of instanton is of particular experi-
ence. Since a single instanton leads in a presence of massless fermions to the
emergence of an effective vertex in the form of flavor determinant, instantons
naturally solve the U(1) problem [54] (the η

′
mass problem). As a con-

sequence of Atiyah-Singer theorem, Dirac equation in the background of in-
stanton (anti-instanton) possesses exact right-handed (left-handed) fermionic
zero modes. In the dilute mixture of instantons and anti-instantons the
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overlaps between these modes provides the mechanism for dressing the con-
stituent quarks, realizing the chiral disorder. To avoid unnecessary repeti-
tions, we relegate the details to one of the well-known results [55].

We would like to stress two important shortcomings coming from such
picture of the QCD vacuum. First, despite original expectations [56], in-
stantons do not explain the nature of the confinement. Till today, despite
many attempts, we still lack fundamental understanding which type of glu-
onic configurations is responsible for this phenomenon. On the other side,
lattice studies show that the restoration of the chiral symmetry and decon-
finement phase transition happens at the same critical temperature, which
strongly suggests some crucial link between two phenomena. We will see
some consequences of this failure of instantons when analyzing heavy-light
systems. Second, since Yang-Mills theory has nonlinear equations of motion,
superposition rule does not hold for the gas of instantons and anti-instanton,
which forces the practitioners to choose some Ansatz for the measure for
the ensemble of instantons and anti-instantons. Most successful is so-called
instanon-liquid model, proposed originally in 1982 by Shuryak [71] and later
investigated extensively by Diakonov and Petrov [64]. In these works, they
have shown that the form on the Ansatz stabilizes the average size of in-
stantons in the vacuum, protecting them from swelling (so-called infrared
problem). The model is basically characterized by two scales:

• the density of the well separated (distance about 1 fm) instantons is of
the order n = fm−4, which allows to treat quantum corrections as the
product of factorized ’t Hooft small oscillations,

• all instantons have the averaged size about ρ = ρ0 = 1
3
fm.

Using above parameters one can not only reproduce the phenomenological
values of the quark and gluon condensates, but also one can get a very
successful picture for several correlation functions in light-flavor sector of the
QCD, as for example shown in [72], where propagating through the instanton
vacuum quarks were probing the physical distances up to 1.5 fm. In Chapter 4
we will exploit similar strategy for the heavy-light mesonic systems. However,
before we will engage ourselves into extensive numerical simulations of the
propagations of heavy-light systems through the instanton liquid, we would
like to get some insight how the instanton may provide the seed of chiral
doubling phenomenon. To achieve this goal, we study in the next Chapter
simple, but illuminating toy-model.



Chapter 3

Toy-model for the Heavy-Light
Hadrons

3.1 Motivation and Expectations

In this work we are studying the consequences of the assumption, that exper-
imental spectra observed for opposite parity light-heavy baryons, observed
first in the case of mesons by BaBar [1], Belle [3] and CLEO [2], originate from
the chiral shift. We mentioned before that instantons play an unquestion-
able role in hadronic physics, first, explaining the UA(1) puzzle for the light
mesons, second, providing the mechanism for spontaneous breakdown of the
chiral symmetry. It is therefore tempting to see what is the effect of instan-
tons on heavy-light systems. Their intimate connection with spontaneous
breakdown of the chiral symmetry implies, that they should as well provide
the mechanism of the chiral shift separating the opposite parity heavy-light
mesons. To check if this is true we [57] propose a simple model, based on
the response of the heavy-light systems to the instantons in the case of one
light and one heavy flavor. Certainly, it is a toy model, since we know that
the single light flavor corresponds to the UA(1) anomaly, and realistic case
includes at least two light flavors. On the other side, it is tempting to see, if
already the UA(1) axial anomaly alone can provide the mechanism for sep-
arating the states of opposite parity and can generate chiral shifts. After
positive verification of the above statement we investigate if the instanton
effects can cause also the splitting between different spin states, i.e. what is
their role at the level of 1/mQ corrections. Finally, we extend our toy model
to the baryons, to check if indeed similar mechanism can works in their case
as well.

24
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3.2 One-Heavy and One-Light

Our approach to the heavy-light system using instantons based on the con-
cepts [68, 59] parallels the similar construction for light-light systems [63,
64, 65]. This is a justified reasoning, if indeed the instantons play the fun-
damental role in understanding the effects of chiral symmetry. To see how
instantons can trigger a splitting between the opposite parity heavy-light par-
ticles (in the case of one light and one heavy flavor) we exploit the instanton
induced interaction worked out in [59] using the correlation function formal-
ism and 1/Nc book-keeping arguments. In of the following Chapters (5) we
show how to obtain these kind of effective interactions in much more involved
case of doubly heavy baryons, and two realistic light flavors. Now, we recall
only the final version of the effective Lagrangian in case of the heavy-light
mesons

LqQ = −
(

∆MQ∆Mq

2nNc

) (
Q̄Qq̄q +

1

4
Q̄λaQq̄λaq

)
, (3.1)

where ∆MQ ≈ 86 MeV is the heavy quark mass shift generated by a presence
of instantons [59, 63] and n = n∗/2Nc = (fm)−4/2Nc is the instanton density
in the vacuum. This induced interaction breaks explicitly axial U(1) symme-
try, but preserves heavy-quark symmetry (or IW symmetry, i.e. invariance
under heavy spin flip). We already note that one-gluon exchange involves

LqQ = − g2

2Λ2
c

Q̄γµλ
aQq̄γµλaq , (3.2)

(with some cut-off Λc) which is clearly UA(1) preserving. To proceed further,
we rearange the heavy mesons effective Lagrangian given by eq.(3.1) using
first one of the Fierz color identities discussed in details in the Appendix. As
a next step, after unraveling the colors, we use the standard Fierz relations
for spin. Details of our notation and the explicit transformations used for
all further calculations are relegated to the Appendix A (7.1). Taking into
account all identities of color and spin, a final result can be obtain as follows

LqQ = +

(
∆MQ∆Mq

2nNc

)(
1

4

1

3
+

1

4

1

3

)

×(Q̄qq̄Q− Q̄iγ5qq̄iγ5Q

+Q̄γµqq̄γµQ + Q̄γ5γ
µqq̄γµγ5Q

+
1

2
Q̄σµνqq̄σµνQ) , (3.3)

where 1/4 is taken from Fierzing the spin, and 1/3 from Fierzing the color
in each of the two contributions in equation (3.1). Here, we want to remind
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that we have already taken into account the effect of Fermi statistics of the
quark fields in the final expression (3.3).

Before proceeding further, let us comment how one can rewrite the above
Lagrangian in terms of physical, dressed fields. To show this, let us remind
that pertinent q̄Q combinations carry a proper spin-parity assignments 0+,
0−, 1− and 1+. Therefore, keeping in mind the expressions for the standard
heavy meson multiplets H = (0−, 1−) and their parity partners G = (0+, 1+)
presented in the Introduction we may rewrite our Lagrangian in terms of
these fields, using the so-called bosonization techniques [35]. In this way, at
the expense of introducing new (bosonic) fields, we manage to convert quar-
tic quark interaction into interaction of quark-antiquark with the relevant
meson. Formal integration over quarks fields leads therefore to fermion de-
terminant, depending on background mesonic fields and heavy and light parts
of the quark propagators. Derivative expansion of such action where taking
into account projectors onto heavy and light quarks sectors have to be care-
fully implemented leads the generic effective chiral Lagrangian for heavy-light
mesons [33], incorporating the effects of chiral doublers. Instead of following
this formal path, we choose simpler arguments to see immediately the role of
the instantons. Now, looking at the our Lagrangian density (3.3) we conclude
that the instanton induced interaction is attractive in the (0−, 1−) channels
and repulsive in the (0+, 1+) channels. The attraction is equal in magnitude
to the repulsion and proportional to the light constituent mass Σ, a situation
reminiscent of [33] for two and higher flavors. We readily note, that the use
of the constituent one-gluon exchange (3.2) yields a Fierzing that differs from
(3.3) in one notable way: all terms in (3.3) carry positive weight. The result
is a repulsion in both channels of equal magnitude. The instantons split the
even/odd parity heavy-light multiplets, while one gluon exchange does not.
This is visible in the correlators at short distance already for one heavy and
one light flavor irrespective of chiral symmetry breaking.

Using our effective action given by (3.3) we estimate the contribution to
the heavy hadron spectrum and, what is more interesting, we also obtain the
contribution to the mass difference between chiral partners. One of the pos-
sible ways to do that relies on the use of the variational approach. Following
arguments from [68] the contribution may be treated as a perturbation, and
for wave functions of the unperturbed Hamiltonian one may take some sim-
ple variational Ansatz. The simplest potential mimicking confinement can
be chosen as the harmonic potential, allowing to get the results in the ana-
lytic way. This is the way how we will proceed when analyzing the instanton
effects on doubly heavy systems. Taking into account all relevant parts from
the instanton induced interactions (3.3) and using the trial wave function one
may find a following correction to the heavy-meson spectrum (in the large
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Nc)

< HqQ > ∼ −CF

(
∆MQ∆Mq

2nNc

)
|ψ(~0)|2 . (3.4)

Since we are here interested only in the order of magnitude of the effect, we
may simplify further our estimations. Instead of using the explicit form of the
wave function depending on our optimal variational parameter, we apply the
Van Royen and Weisskopf construction [60] where the meson decay constant
is related with the wave function at the origin as

|ψ(~0)|2 ≈ f 2
H MH

12
. (3.5)

This implies the value of the mass splitting between the HG-multipelt (e.g.
PS-S) to the first order in the instanton effect

∆ =
∆MQ∆Mq

3n∗
|ψ(~0)|2 ≈ Σ

3
, (3.6)

where the quark masses are shifted by ∆MQ = 86 MeV and ∆Mq = 420MeV ≡
Σ for the heavy and light quarks, respectively. In (3.6) have been used the
upper bound for the decay constant fH = 290 MeV and the mass of heavy
mesons MH = 2 GeV. Numerically, the chiral shift reads 140 MeV, a value 3
times smaller comparing to the data for the D mesons. We do not expect an
exact agreement with the data, taking into account the nature of the model
and simplifying assumptions. The models seems to lead to the right scale of
the effect (few hundreds of MeV) and shows in a transparent way the physics
of the effect.

We can now study the effect of the instantons on subleading terms in
1/mQ expansion, i.e. the spin corrections to (3.1) using the results presented
in [59]. Spin dependent part is given by

Ls
qQ = +

(
∆M s

Q∆Mq

8nNc

)
Q̄λaσµνQq̄λaσµνq , (3.7)

where ∆M s
Q is the mass shift to the heavy constituent quark mass caused by

its spin (for mc)

∆M s
Q =

16πnρ2

mQ

∫
dx

(
x

sin fx

(1 + x2)

)2

≈ 3MeV (3.8)
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with the fx = |x|π/
√

(1 + x2) followed from the one instanton configuration
in the singular gauge. Going further, a rerun of the Fierzing (3.7) procedure
yields

Ls
qQ = −

(
2∆M s

Q∆Mq

2nNc

)

×
(

Q̄qq̄Q− Q̄iγ5qq̄iγ5Q− 1

6
Q̄σµνqq̄σµνQ

)
. (3.9)

It turns out that the spin effects are attractive in the 0− and tensor channels,
and repulsive in the 0+ channel. Additionally, there is no spin-effect in the
1± channels. Analogically to (3.6) we may calculate the splitting induced
by the spin part. The expression (3.9) implies a reduction in the 0− − 1−

induced U(1) splitting by

∆s =
2∆M s

Q∆Mq

n∗
|ψ(0)|2 (3.10)

and an enhancement in the 0+ − 1+ by a similar amount. To compare our
induced shifts we look at

∆s

∆
=

6∆M s
Q

∆MQ

≈ Σ

16
. (3.11)

At this point, we conclude that our spin correction is of the order ∆s ≈ 24
MeV which is small (as expected) and consistent with the constituent quark
model estimate of 27 MeV [62]. As before, since we were interested only in
the magnitude of the effect, we state that in the case of subleading terms
the instanton physics also seems to capture the right scale of the effect. For
completeness we mention that the spin induced hyperfine splitting 0− − 0+

is two times bigger then (3.7). In the next section we will present analogical
discussion of the case of the heavy-light baryons.

3.3 One-Heavy and Two-Light

Baryons containing heavy (charm or bottom) and light quarks may be ana-
lyzed in a similar fashion using the induced interactions derived in [59].The
simplest object which is new at the baryonic level is the vertex of the type
Qqq where we have now different light flavors. The corresponding instanton
induced interaction between one-heavy and two-light quarks is given by [59]

LqqQ = −
(

∆MQ∆M2
q

2n2N2
c

)
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×(Q̄Q (det (q̄LqR) + det (q̄RqL))

+
1

4
Q̄λa Q (det (q̄Lλa qR) + det (q̄Rλa qL))) . (3.12)

Undoubtedly, the three quarks states have much more complicated structure
in comparison to the heavy-light mesons from the previous section. For
instance, in above expression we may recognize the contribution following
from the ’t Hooft vertex for two light flavors (q = u, d), i.e.

Lqq =

(
∆M2

q

nN2
c

)
[det(q̄LqR) + det(q̄RqL)] . (3.13)

It is easy to estimate the strength of the vertices appearing (3.12) using
mean-field approximation. Then this effective Lagrangian density yields a
one-body interaction of the form

L1
qQ = 〈q̄q〉 ∆MQ∆M2

q

n2N2
c

Q̄Q q̄ q , (3.14)

because only the first contribution in (3.12) gives non-vanishing vacuum con-
tribution in leading order in 1/Nc. Using the value of the vacuum condensate
〈q̄q〉 = (−240 MeV)3, one may find that the splitting (3.6) is now

∆1

∆
=

∆Mq 〈q̄q〉
n∗

. (3.15)

Collecting all the formulae together we get the approximation to the shift as

∆1 =
6

5
Σ , (3.16)

i.e. again of the order of few hundreds of MeV.

3.4 Concluding Remarks

We presented in this Chapter a simple toy model for the heavy-light hadrons
with the UA(1) breaking through the instanton effects. In particular, con-
struction of the proper effective Lagrangian densities allowed us to obtain
estimations for the mass differences between the opposite parity states in-
duced by the anomaly. We have shown that instantons already via the UA(1)
contribute to this splitting, a rather non-trivial and encouraging result. Re-
sulting mass shifts came ∆ = Σ/3 and ∆1 = (6/5)Σ in case of the heavy-light
mesons and baryons, respectively. We do not consider exact value of numer-
ical prefactors as significant comparing to experimental data – the scale of
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the effect turned out to be indeed related to spontaneous breakdown of the
chiral symmetry and numerical prefactors are ”natural”, i.e. came out not
magnified or dwarfed by huge numerical values. We may therefore conclude
that this simple exercise is qualitatively successful in confrontation with the
chiral doublers scenario [33, 34]. What is important, we remind that, if the
nature of this mechanism is generic, more chiral doublers for all the heavy-
light hadrons are expected to appear. In particular, we will repeat similar
reasoning based on instanton induced vertices for the exciting case of the dou-
bly heavy baryons trying to understand experimental signatures observed by
SELEX experiment.

Before we will shift to the doubly heavy baryons problem, let us first,
encouraged by the conclusions of the toy-model, take the full advantage of
the instanton liquid vacuum picture. In the next Chapter we will present
the results of realistic numerical simulations of the heavy-light mesons in the
instanton vacuum for physical values of the mass parameters.



Chapter 4

Heavy Mesons in the Instanton
Liquid Model

In this Chapter we focus on phenomenological studies of instanton effects for
heavy masons spectrum in a framework of the Instanton Liquid Model (ILM).
Several previous works [70, 72] have elucidated the fundamental role of the
instantons in QCD vacuum and their influence on the quark propagators
as building blocks of the pertinent correlation functions. We briefly remind
the mechanism considering the case of the light quark propagating through
the multi-instanton environment and then we describe the behavior of the
heavy quark in this medium. Following Shuryak [72] we construct two-point
correlation functions for heavy-light mesons and we present how to perform
numerical studies at the distances of the order of few femtometers. The main
part of this section contains our new results [58] for heavy-light mesons (for
both case of strange and non-strange light quarks) evaluated in ILM. We also
test the chiral doublers scenario [33] in such environment, in particular we
calculate the mass splitting for the opposite parity states.

4.1 The RILM

The evaluation of the single quark propagator in the multi-instanton back-
ground field is a very complicated task. The reason for several difficulties is
that even for the dilute set of pseudoparticles (instantons and anti-instantons)
we have 12 collective variables per one instanton (anti-instanton). These
collective variables correspond respectively to: position of the center of in-
stanton zI (4 variables), size of the instanton ρ (1 variable), orientations UI

(7 variables, since in the case of the SU(3) instanton gauge field commutes
with diagonal λ8, so relevant color space is a coset SU(3)/U(1)). According

31
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to assumptions of the model, we simplify the general instanton ensemble by:
- First, freezing the size for all instantons (and anti-instantons) to be the same
during the simulation. During our simulation the size is fixed at ρ0 = 0.35
fm. For comparison, typical value used in literature varies from 0.2 to 0.4
fm. Smaller and larger instantons are excluded by comparing the simulation
to experimental data.
- Secondly, our instantons have random positions zI and orientations UI ,
hence we use the name Random ILM (RILM). Since we are not studying
topological fluctuations, we fix the instantons and anti-instantons densities
to be equal to N/(2V4) so the total density is given by n∗ = N/V4 ≈ (fm)−4.
We remark that V4 is four dimensional Euclidean volume. Note that since the
size of the instanton is three times smaller than the length of the Euclidean
hyperbox, the ”packing fraction” of the instantons is low, of the order of 10−2.
These parameters reproduce the correct value of the quark condensate, as an
output of the simulation we get i.e. |〈qq̄〉RILM | = (271.08 MeV)3.

At this point, we should provide few technical details of our simulation.
The numerical analysis uses Stony Brook Monte Carlo code. We have chosen
128 instantons and 128 anti-instantons closed in the box of the size of 3.363×
6.72 (fm)4. The orientations are sampled from the invariant group measure.
The average propagators 〈S(x + τ, x)〉 needed to read out the correlators are
calculated by averaging over 50 configurations and over 100 randomly chosen
initial points for each configuration. This procedure is repeated for each value
of the separation distance τ from the initial point. The light current quark
masses (mu and md) are taken equal to 10 MeV and the strange mass reads
ms = 140 MeV. Below we show how this simulation leads to reasonable
description of the heavy-light correlation functions.

4.2 The Mesonic Correlators

Since the correlation functions for light flavors were one of the main tools
used in studies of structure of the QCD vacuum it is natural to follow sim-
ilar path for the case of heavy-light objects. We consider correlators for
mesons containing one infinitely heavy Q = (c, b, t) and one light quark
q = (u, d, s) [59, 72]. When looking at the dynamics in the heavy quark limit
mQ À ΛQCD, we see that the heavy source behaves as a static center, in some
hadronic analogy to the hydrogen atom. Therefore, the corresponding corre-
lation function is almost reduced to the propagator of the light quark in the
vicinity of the static color center. This feature will reflect some degeneracy
of correlation functions, i.e. the manifestation of the IW symmetry.
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We consider the correlation functions of the type

KΓ(x) = 〈0|(Q̄Γq)x(q̄Γ
†Q)0|0〉 , (4.1)

where Γ is a set of gamma matrices (1,γ5,γµ,γµγ5,σµν) and x (or τ) is the
(Euclidean) distance between the two points (τ = ix0 − iy0 ), since very
heavy quark does not move in space. As was discussed in [72] the heavy
-light correlation function at the small distance x is just a product of free
propagators (i.e. S0(x)) given by

KΓ
0 (x) = Tr

[
S0

q (x)ΓS0
Q(x)Γ

]
, (4.2)

where the free parts explicitly read

S0
q (x) = − γ0

(2π2x3)
, S0

Q(x) =
(1 + γ0)

2
δ3(x) . (4.3)

We start our analysis from the simplest case when the full heavy quark
propagator is taken at the order of (m0

Q), which implies a form SQ = S∞ +
O(1/mQ). It also means that in this case we are treating heavy source as a
standard Wilson line

S∞(x) = 〈x| 1

i∇4,I

|0〉 =
(1 + γ0)

2
δ3(~x)θ(τ)P. exp

(
ı

∫
A4,Idx4

)
.(4.4)

In [72], authors argue that the correction due to path ordered exponent is
small and can be neglected in this kind of investigation. In the next section
we will examine this assumption. Meantime, in all our simulations we have
chosen to include the effect of the path ordered exponent. Using all previous
definitions we may translate our correlation function (4.1) immediately into

K±(x) = Tr

[(
1± γ0

2

)

Q

Sq(−x)

]
, (4.5)

where for a moment we have skipped all factors from heavy quark propagators
except those with an information about parity of the state considered. The
separation x is chosen along the positive time direction. As was mentioned
before, in the large mQ limit we expect the absence of the spin splitting, so
the direction of the heavy quark is unimportant. This certainly implies that
the pseudoscalars (P) and vector (V) mesons are degenerate alike the axial
(A) and the scalar (S) ones, i.e. our correlators respect IW symmetry. These
features are reflected by our notation, where P = −1 refers to (P,V) and for
(A,S) we have P = +1. An explicit form of the light quark propagator one
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can find in [65, 72]. Following Shuryak [71, 72], we consider the correlation
function normalized to the free quark correlator K0(x) and described in the
whole region (not only at small distance) by the parametrization originating
from the QCD sum rules. The simplest choice (i.e. with the minimal number
of parameters) is the sum of the δ like resonance for the bound state and the
”continuum” starting at the energy E0

ImK± = 6nresπδ(E − Eres) + θ(E − E0)
3E2

2π
. (4.6)

Above expression can be rewritten in the language of the space-time corre-
lation function

K±(x)

K0(x)
= 2π2nresx

3e(−Eresx) +

(
1 + E0x +

1

2
E2

0x
2

)
e(−E0x) . (4.7)

The procedure now simple, this final equation has to be fitted to our results
from the RILM simulation. All information on heavy-light mesons is encoded
now in the three parameters : (nres, Eres, E0), in present investigation treated
as a free parameters. The 3-dim density of the light quarks at the origin
(nres = f 2

QMq/12) reflects the Van Royen and Weisskopf relation, other two
correspond to the position of the resonance Eres and to the perturbative
threshold energy E0, respectively. We point out that for each parity we may
have in principle a separate set of these parameters.

Now, we show our results obtained for the correlation function of the
heavy mesons (D and B) simulated by using RILM. All figures with a sample
of curves (K−/K0,K

+/K0) have been obtained for initial conditions defined
as in section (4.1) with the heavy quark masses chosen to be infinite. The
errors on Fig.4.1 are statistical. As we can see on the Figure, the curves
behave exactly opposite to each other - one is going up (those for states with
P = −1) which means that the pseudoscalar mesons are much lighter whereas
the second one (for P = +1) is going down (because the scalar mesons are
heavier). This is the first confirmation, that indeed the instanton vacuum
causes right asymmetry between the states of opposite parity. Moreover, the
straight and dashed lines correspond to the three parameters fit (4.7) with a
following values of the parameters for each parity

n−res = (1.04± 0.03) fm−3,

E−
res = (595.5± 3.3) MeV,

E−
0 = (981.6± 15.8) MeV,

n+
res = (5.56± 1.19)fm−3,
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Figure 4.1: Heavy-light correlators normalized to the free quark correlator
K±(x)/K0(x) with three parameters fit for mesons (D,B) in heavy quark
limit mQ → ∞. The data points are our results with only statistical errors
included, while the dashed curves are fits. Parameters used in fit are listed
and commented in text.

E+
res = (1244.1± 49.4)MeV,

E+
0 = (2156.7± 197.5)MeV. (4.8)

An important comment should be made here, the fitted curves given by
eq.(4.7) are quite sensitive respect to the with values of parameters. This
complication happens more often in the case of P = −1 comparing to P =
+1. As we have mentioned before, the average correlators were obtained by
averaging over 50 different configurations. We have performed the best fits
using the data points with the statistical errors only. In the case of D and
B mesons, it is visible that the errors of the K±(x)/K0(x) increase with the
distance x, which is expected, since we start feeling the finite size effects
of the box. Summarizing this part, we may say that in case of nonstrange
heavy-light mesons (D,B), the RILM has predicted the scalars much heavier
then pseudoscalars and their volume (1/nres) is about 7 times larger. One can
read out the energies of those states from the fitted values of Eres. Moreover,
we definitely may say that all values are in reasonable agreement with the
previous calculations presented by [72].

As a next step, we have expanded the analysis for the mesons containing
the strange quark - i.e. for Ds and Bs. In the same manner, using previ-
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ous definitions one may construct the figures showing the behavior of the
correlation functions for these states as function of the distance (taken from
0− 1.5 fm). In addition, using expression (4.7) one may find the best values
of parameters as follows

n−res = (0.63± 0.30) fm−3,

E−
res = (533± 49) MeV,

E−
0 = (756± 221) MeV,

n+
res = (3.39± 0.53)fm−3,

E+
res = (1096± 33)MeV,

E−
0 = (1817± 118)MeV. (4.9)

Finally, taking into account all of those masses estimated for both D(B)
and Ds(Bs) mesons we may try to answer to the question about the existence
of the chiral doublers in such an environment. In particular, we need to
calculate the splitting between the different parity states and to confront
these values with originally predicted and measured in experiments. First of
all, let us look at the mass differences: in the non-strange sector we get the
value of the split of the order a M = E+

res−E−
res ≈ (649± 53) MeV, and the

similar shift for strange mesons (Ds, Bs) in the heavy quark limit is about
E+

res − E−
res ≈ (563± 82) MeV.

In both cases, the mass splittings are overestimated comparing to pre-
dictions given by [68, 33] and exceed known experimental values (450 Mev
for non-strange and 350 MeV for strange heavy mesons). We may conclude
that our splitting between the chiral doublers calculated using RILM is rather
close to twice the constituent quark mass. An interesting issue is that the chi-
ral split for the strange hadrons is smaller comparing to non-strange, which
at first look is rather counterintuitive, but which reflects qualitatively the ex-
perimental situation. Indeed, the difference of the strange and non-strange
splits from our simulation is of order of −100 MeV, in agreement with the
data.
Let us first try to understand the effect of the mass of the light flavor.

First, we investigate how the estimated parameters (nres, Eres, E0) and
our shift are changing when the ”light” quark mass mu is varied from 10
to 200 MeV. First picture showing the behavior of the density of the light
quarks tells us that the parameters nres (for P = ±1) start from the biggest
value (about 5) and with increasing mass mu it tends to be smaller and
almost constant (particularly for negative parity states). What is interest-
ing, these values are few times bigger for positive parity states (S,A). For
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Figure 4.2: Schematic figures of the density of the light quarks at the origin
nres calculated for different quark masses mu and each parity P = ±1. For
pseudoscalar and vector mesons we have few times smaller values then for
axial and scalar ones.
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Figure 4.3: The continuum energies starting at the E0 estimated for each
parity as a function of quark mass mu.

completeness, we present also figures for the threshold energies as a func-
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tion of quark mass mu. Another interesting property is visible at the figure
showing the dependence of Ereswith respect to the mass of the light quark.
In the case of the positive parity states P = +1 (E+

res) a curve looks like
a straight line, in particular when starting from mu ≈ 60 MeV. This new
feature implies that the masses for the scalar and axials propagating through
the instanton vacuum from this value of mu are approximately constant. In
addition, these tendencies are visible more or less at all figures for the pa-
rameters fitted. The last group of Figures show the answer for existence of
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Figure 4.4: A behavior of resonances E±
res for different values of mu.

chiral doublers in RILM. We drew a figure with the mass difference (denoted
by M) between opposite parity states for light quark mass taken from 10 to
200 MeV. Looking closer into Fig.4.5 we can see that the chiral shift is slowly
decreasing with bigger mass mu. Let us suggest the explanation of this effect.
In instanton picture, the constituent mass is the sum of current mass and
constituent mass which is a dynamical function of the current one, contrary
e.g. to NJL models, when the induced mass is constant. The larger the mass
of the quark, the stronger is the suppression of the effects of spontaneous
breakdown of the chiral symmetry. It looks that already for the values of the
strange mass of order 150 MeV, this suppression is significant and implies
that both chiral shifts (i.e. for non-strange doublers versus strange doublers)
might be compatible or even inverted, alike in the data and in our simulation.

Despite the results of our simulation are in qualitative agreement with
the experimental data, there is an important quantitative difference – the
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Figure 4.5: Mass difference between P = ±1 states calculated from M =
E+

res−E−
res where mu is the light quark mass which was changed from 10−200

MeV.

experimentally measured shifts are 300 MeV smaller comparing to the re-
sults of our simulations. At this point we address the crucial question: what
is the reason of this difference and how other corrections to our model may
improve the outcome of the instanton picture. In the next section we crit-
ically examine possible modifications of the RILM and we speculate which
other properties of quarks might be responsible for the discrepancy of our
prediction comparing to the data.

4.3 Discussion of the Results

In this section we would like to to critically examine our models looking for
some possible loopholes.

First of all, to make our predictions more realistic we have to distinguish
between the charm and the bottom quarks, i.e. to consider finite mass heavy
quarks. It clearly suggests that we have to to include 1/mQ corrections in
the heavy propagator. However, in [59] the authors pointed out that those
corrections are small in the case of the chiral shift. Before proceeding farther,
let us focus for a moment on the definition of the infinitely heavy propagator
S∞. In previous part we have mentioned that in some papers authors claimed
that the influence of the path ordered exponent in the definition of the heavy
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quark field (4.4) can be neglected. To verify this, we present a figure Fig.4.6
with special combinations of the correlation functions (for each parity) which
were calculated in the presence or absence of the gauge field. This Figure
shows how the path exponent may affect the correlators. The most intriguing
conclusion is that the correlation functions for states with P = −1 are much
more sensitive to the shape of the the instanton field. The curve goes down
symmetrically when the path exponent from (4.4) is turned on. On the
other hand, the fitted parameters from expression (4.7) are almost equal for
both cases. In positive parity states we have found bigger differences for the
estimated masses, which means that when the path order exponent is turned
off the masses are smaller (about 50 MeV). But this effect has less than
10% effect on the chiral shift (649) MeV. Moreover, in all our simulations
we were carefully including the effect of the path exponent, so clearly the
details of the path ordering are not responsible for the overshooting of the
chiral shift. Now we can come back to the issue of finite mass corrections to
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Figure 4.6: A sketch of K±(x)/K0(x) when the path ordered exponent is
turn on (off). For clearness we do not show the error bars. The dashed lines
with circles correspond to include the exponent. As we see, the dashed curve
is a bit lower.

the heavy propagator. Despite we expect in general small influence of the
1/mQ corrections, some of them might be very sensitive to the size of the
instanton. We remind that in literature one may find the instanton sizes
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which vary from 0.2 to 0.4 fm. Let us briefly analyze finite size and finite
mass effects on our simulation.
Following [59], we may add the next part of the order 1/mQ in the definition
of the heavy propagator, i.e.

SQ = S∞ + S∞ÔS∞ + ... . (4.10)

Here, S∞ refers to the free part, the second term is correction of the order
ϑ(1/mQ) with the Ô operator defined as

Ô = −
~∇2

2mQ

− ~σ · ~B

2mQ

, (4.11)

reflecting two obvious lowest corrections: kinematic effect of the recoil and
chromomagnetic interaction with the spin of the heavy quark. Obviously,
this extended version of the heavy quark propagator may be also analyzed in
RILM. To do this, we iterate the inverse of our infinitely heavy propagator
S∞ in powers of a low instanton density n = n∗/2Nc [59]

S−1
∞ = S−1

∗ + ınΘ0 +
ın

ρmQ

Θ1 + ... , (4.12)

where two new contributions are given by

Θ0 =

∫
d4zITr

[
S−1
∗

(
(ıγ4∇4,I)

−1 − S∗
)]

(4.13)

and

Θ1 =

∫
d4zITr

[
S−1
∗

(
(ıγ4∇4,I)

−1 − S∗
)×O1(ıγ

4∇4,I − S∗)−1S−1
∗

]
. (4.14)

We remind the Tr stands for the trace over color indices and O1 = −~∇2/2.
Therefore, using all above components one can investigate contributions fol-
lowed from instanton induced shift in the heavy quark mass, i.e. ∆MQ =
∆M0 + ∆M1 obtained for a large times. Luckily, in the case of our model,
we can make analytic estimations of the effect. The first one is a well known
contribution calculated a couple years ago by [70]

∆M0 = 〈x−∞|Θ0|x+∞〉 =
N

V4Nc

16πρ3

∫ ∞

0

dx (x cos (fx/2))2

' 16πnρ3, (4.15)

where the one instanton configuration appeared in fx = π|x|/√1 + x2. Now
we definitely may say that, the mass shift at this order strongly depends on
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the average size of instantons, i.e. ρ = ρ0. As was mentioned at the beginning
of this Chapter, the instanton size ρ0 is usually varied from (0.2 − 0.4) fm.
According to these constraints, in our calculations we were using the value
about 0.35 fm. Hence, one can easily obtain that the first shift in the heavy
quark mass ∆M0 is about 70 MeV and seems to be a significant value. The
second one ∆M1 [59] is of the order (1/mQ) and takes the following form

∆M1 = 〈x−∞|Θ1|x+∞〉 = (4.16)

=
8πnρ2

mQ

∫ ∞

0

dx x2
(
(∂µ cos fx)

2 − (∂µ sin fx)
2 + (ρAµ)2(cos2 fx − sin2 fx)

)

From above expression, using the mass of charmed quark we get the effect
of the order ∆M1 ' 28 MeV. For completeness, we present also the values
of the heavy mass shift ∆MQ estimated for three different size of instantons
ρ0,i.e. 0.2 fm, 0.35 fm and 0.4 fm, respectively

∆MQ ' 25 MeV ,

∆MQ ' 100 MeV ,

∆MQ ' 155 MeV . (4.17)

Undoubtedly, the choice of the instanton size has a significant effect on these
values.

Nevertheless, by taking into account two calculated contributions from
the finite mass effects and modulo sensitivity of the results on the instanton
size, we conclude that the 1/mQ corrections (which are of order of 100 MeV)
are too small to explain the overshooting of the shift in the instanton liquid
picture. Moreover, our analysis leads us to the conclusion that even if we
include the next step in mQ, this will not change the estimated chiral shift as
much as we need. Obviously, there were other assumptions in our model, like
for instance the shape of the spectral function. However, we were expecting
to measure the fundamental effect of the QCD, and such effect should not
depend on the particular Ansatz and choice of the parameters.

If we look at our result from the perspective of the above discussion, we
conclude that the obtained value of the chiral shift of order 650 MeV for non-
strange doublers and 560 MeV for strange doublers might not be at all so
puzzling. Obviously, comparing these results to the current experiments, we
see that the results are overestimated. However, we have to remember about
major shortcoming of the instanton liquid picture - the model was invented
to include chiral dynamics, and the model does not take into account the
effect of the confinement. From this perspective, the major effect for heavy-
light hadrons in this model comes from anticommutation relation for the
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Dirac-contracted four-velocity of the heavy quark and γ5. Since this effect is
opposite for the scalar and pseudoscalar sources (as well for axial and vector
sources in the IW limit), chiral shifts are opposite, each of order of constituent
mass. Similar argument [34] based on analogue of the Goldberger-Treiman
(GT) relation for heavy-light systems shows that the leading order in 1/mQ

mass splitting (∆M) between the non-strange parity partners is given by
expression

∆M = gπfπ ' 2mc′ ' 600MeV , (4.18)

where gπ is the coupling constant of G → Hπ transition and is analogue of
the gNNπ in the nucleon system. Moreover, the light quark constituent mass
mc′ is given by gπfπ/2 where fπ refers to the the pion decay constant. Again,
this chiral Goldberger-Treiman analysis gives the result which is quite close
to our approximation.

We are now at the position to conjecture, that the main quantitative
effect explaining the discrepancy of our prediction to the existing data is
related to the confining forces, not included in our model. Indeed, already
looking at 1/mQ corrections, we have already seen terms directly relating
chromomagnetic field with the spin of the quark. Since confining and chiral
phenomena are interrelated, as visible at finite temperature lattice studies,
possibly, color effects may also screen considerably the chiral gap. It will be
very interesting to analyze this system from the point of view of lattice sim-
ulations with genuine chiral fermions. We also hope, that the values of chiral
shift for B-heavy-light chiral doublers will be available some day, shedding
even more light of this conjectured subtle interplay between confining and
chiral effects in case of chiral doublers.



Chapter 5

Doubly Heavy Baryons and
QCD Instantons

Double heavy baryons are perhaps the most fascinating hadrons, due to the
fact that they experience non-trivial color tube configuration, they probe
spontaneous breakdown of the chiral symmetry and simultanously are sub-
jected to restrictions from approximate Isgur-Wise and Savage-Wise symme-
tries. Unfortunately, these ”dream” hadrons for several years have escaped
the experiments. One notable exception is the mentioned already SELEX
experiment at Fermilab, but five signals observed were never confirmed by
other collaborations, and the nature of the data excludes the precise quantum
number assessment. First major problem one immediately encounters when
looking at the data is similar split between the lowest observed two pairs of
states of order 78 MeV. Since this value is only 30% lower then the value
of the spin split based on SW symmetry between corresponding total spin
states S = 3/2 and S = 1/2 related to the D∗ and D mass difference, one
is tempted to conjecture that already at the value of charm quark mass SW
symmetry is working. This implies a strong assumption, that color source
of the diquark is very small, almost pointlike. We will carefully verify this
point. We begin this chapter demonstrating, how one can deliver relevant
vertices for heavy-heavy-light systems in the presence of the instantons. The
presented calculation can be viewed as a analytic alternative to the numeri-
cal calculations of the type presented in the previous chapter. Since we start
this part from presenting the general framework for calculations the effective
vertices, hopefully this part also sheds some light on the details of the results
used in our toy-model approximation. After obtaining the effective vertices,
we simplify our results in order to get an estimate for doubly-heavy system in
the guise of the toy-model presented before. As a next step, we will challenge
the major assumption on the point-like nature of the diquark and the sepa-

44
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ration of the scales. We will make connection with popular potential models
of confinement in order to estimate the scale of possible diquark excitations.
We will also check what is the effect of non-perturbative interactions of the
instanton-type on the potential models spectra. Finally, we will address the
issue of the chiral doubling in the doubly heavy systems hadrons.

5.1 Quark Propagator and the Doubly Heavy

Baryons

As was discussed in [59] the heavy-light hadrons in a dilute gas of instantons
can be analyzed with the help of a correlation function based on systematic
expansion in the inverse powers of heavy quark mass 1/mQ using the Foldy-
Wouthuysen construction [67]. In agreement with those arguments we will
expand this picture to include the baryons with two heavy quarks. Our
construction relies of the inverse correlation function C, expressed in terms
of the propagators of the light quark field S1 and propagators for the heavy
quark field SQ. Similar arguments like in the case of heavy-light mesons
[59, 65] lead to the correlation function of the heavy-light system in the
planar approximation (Nc →∞)

C−1
qQQ = S−1

q ⊗ S−1,T
Q ⊗ S−1,T

Q

−
∑

IĪ

〈
[Sq − /A

−1
I ]−1 ⊗ [SQ − /A

−1
I,4]

−1 ⊗ [SQ − /A
−1
I,4]

−1
〉

(5.1)

with AI related to the gauge potentials for individual instantons. As we see,
the inverse of the correlator contains the light quark propagator which can
be written using expression

S−1
q = S−1

0 −
∑

I,Ī

〈[
/A
−1
I − Sq

]−1
〉

, (5.2)

where we have denoted the propagator of the massless quark as S−1
0 = ıγµ∂µ.

In the same way, we are constructing the propagator of the heavy quark.
Thus, the infinitely heavy quarks satisfy a following integral equation

S−1
Q = S−1

∗ −
∑

I,Ī

〈[
/A
−1
I,4 − SQ

]−1
〉

. (5.3)

Here, a few comments are in order. First visible difference between above
equations is coded in label 4, which means that in the case of the heavy
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quarks we are looking only along time direction. The propagator contains
only /A4 = γ4A4 and the free part is denoted by S∗ = ıγ4∂4. In both cases the
sum is running over all considered pseudoparticles (i.e. instantons and anti-
instantons) and < ... > refers to the averaging over their positions zI (zĪ)
and the SU(Nc) color orientation (denoted by UI) hiding in the instanton
field

AI(x) = UIA(x− zI , ρI)U
†
I . (5.4)

Note that this procedure restores the Lorentz and gauge symmetries of the
QCD vacuum. More details about group averaging UI will be presented in
the next section and outlined in Appendix B, section 8.4. Other interesting
examples are presented in [59, 69]. Proceeding further, due to the small in-
stanton density n∗ = N/V4 ∼ (fm)−4 we can iterate the inverse of correlation
function (5.1) in powers of density. The result of this rather complicated
procedure reads in the leading order of n

C−1
qQQ = S−1

q ⊗ S−1,T
Q ⊗ S−1,T

Q

−ınNc

∫
d4zITr ([L]I ⊗ [H]I ⊗ [H]I) (5.5)

with the light and heavy quark parts kernels are

[L]I = S−1
0

( |Φ0〉〈 Φ0|
ı
√

nΣ0

− S0

)
S−1

0 ,

[H]I = S−1
∗

(
1

ıγ4∇4,I

− S∗

)
S−1
∗ + ϑ

(
1

mQ

)
. (5.6)

Result for antiinstantons come out by replacing I → Ī. In the expres-
sion (5.6), the fermionic zero mode state Φ0 has appeared. The explicit
form in the so-called singular gauge was found by ’t Hooft [54]

Φ0 =
1

π

ρ

(x2 + ρ2)3/2

/x

|x|γ±ϕ . (5.7)

Here, ϕ refers to the color and the Dirac spinor, γ± = (1±γ5)/2 are matrices
for instantons/anti-instantons. This is the main building block of the spon-
taneous breakdown of the chiral symmetry, Planar resummation generates
a new mass from the overlap between the zero modes, responsible for the
appearance of the constituent of order ∼ (420MeV)−1. For more detailed
discussion we refer to the one of the thorough reviews [68].
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5.2 Effective Action

After this general introducion of the formalism we concentrate on the calcu-
lation of the effective cubic vertex for HHL quarks. Other types of vertices,
as HLL, HL, HH̄, L...L have been already constructed in the literarute,
the last case being the celebrated ’t Hooft determinant. In the spirit of the
’t Hooft interaction between the light effective fields q we try to construct
effective vertex for our doubly heavy baryons. To do that, let us first spec-
ify our coordinates: we chose (x, y) and (x′, y′, x”, y”) to be the coordinates
related with the one light and two heavy quarks, respectively. Thus, looking
at the inverse of the correlator (5.5) we get the effective vertex

Γace
bdf (x, y, x′, y′, x”, y”) = −ınNc

∫
d4z

∫
dUI × (Ua

i 〈x| [LI ]
i
j |y〉U †j

b (5.8)

⊗ U c
k〈x′| [HI ]

k
l |y′〉U †l

d ⊗ U e
m〈x”| [HI ]

m
n |y”〉U †n

f ),

where UI ’s refer to the SU(3) color matrices.
This effective vertex can be viewed as originating from the effective action
for the doubly heavy baryons LqQQ

Γace
bdf (x, y, x′, y′, x”, y”) =

δ6LqQQ

δq(x)aδq†b(y)δQc(x′)δQ†
d(y

′)δQe(x”)δQ†
f (y”)

.

(5.9)

Our goal is to read out the structure of this Lagrangian. Note that the
crucial combination comes out from the instanton, which is simultaneously
”seen” by both heavy quarks and the light quark. It turns out, that it is
convenient to express light and heavy propagators (5.6) in the instanton
background in momentum space. To avoid repetitions from previous works,
we introduce the light quark contribution to the action in a form

Lq '
∫

d4z

∫
dUI q†α(k1)

1

8
k1φ

′(k1) k2φ
′(k2)

(
γµγν

1 + γ5

2

)
(5.10)

×(UI [τ
−
µ τ+

ν ]UI′)αβ qβ(k2)e
i(k2−k1)z

∫
d /k1

∫
d /k2 ,

where
∫

d /ki = d4ki/(2π)4 and the ’t Hooft symbols are defined by
τ−µ τ+

ν = δµν + ıη̄a
µντ

a. For completeness, we remind also the construction of
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the heavy part. In the previous sections, we have described the heavy quark
propagator using the Wilson loop [59, 65]

〈x| 1

ı∇I,4

|x′〉 = δ3(~x− ~x′)θ(tx′ − tx)
1 + γ4

2
P. exp

(
ı

∫ t′x

tx

dx4AI,4

)
. (5.11)

It is obvious that in above expression we need to evaluate the path exponent
in the singular gauge (see Appendix A) defined by

Aa
Iµ = UI η̄

a
µντ

aU †
I

xνρ
2

x2(x2 + ρ2)
(5.12)

with a parameter ρ stands for the size of an instanton and the initial position
chosen at zI4 = 0. This issue was also discussed in [65]. After substitut-
ing (5.12) into (5.11), the heavy part reads

LQQ '
∫

d4zI

∫
dUIQ

†
α′

1 + γ4

2
(lω)

[
F1 + UI(~τ~ω)U †

I F2

]
α′β′

Qβ′ (5.13)

∫
d3ω

(2π)3

d3k

(2π)3

∫
dl

(2π)

dω

(2π)
e−ı~z~ωe−ız4(l−ω) × (heavy quark Q’) .

At this point, let us explain in more details the above formula. We have
defined a special set of coordinates: time dependent (l, ω) which refers to

(x4 − z4, |x4 − z4|) and the space dependent like (~k, ~ω, ~z). As usual, ~τ are a
standard set of Pauli matrices. Moreover, a new F is just a result followed
from integration of the path exponent, connected with F1 = cos(F/|~x −
~z|−1) = cos(F̃ ) and F2 = sin(F/|~x−~z|−1) = sin(F̃ ). Finally, we will combine
together the light and heavy sectors, i.e. (5.11) with (5.14) by integration over
instanton position (zI , zI4) and color orientations. Integrations over position
give us only the Dirac delta functions which is clearly a manifestation of
conservations of energy and momentum by our vertices. The last but non-
trivial step comes from the color structure. As was mentioned before, we
need to integrate the final Lagrangian density LqQQ over the SU(3) color
coordinates (UI-integration). This integration is equivalent to finding all
projections onto the singlets of the group

∫
dU [Ua

i U †j
b ]m = P (3⊗ 3̄)m → 1 . (5.14)

In practice this problem reduces to finding all projections of the product of m
octets onto the singlet P (⊗8) → 1. Looking into literature we may find many
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useful methods for small values of n = 1, 2, 3 [69]. For our purposes, the
effective action requires all these three solutions because we have a following
color dependent structure[

UI(τ
−
µ τ+

ν )U †
I

]
αβ

×
[
cos(F̃ ) + UI(τ

aωa)U †
I sin(F̃ )

]
α′β′

×
[
cos(F̃ ′) + UI(τ

bωb′)U †
I sin(F̃ ′)

]
α”β”

, (5.15)

where the first bracket comes from the light part and the last parts involve
an information about the heavies. The trivial term comes from m = 1 case,
providing some sort of the renormalization of the disconnected part of the
Green’s function, i.e. ∼ 2

Nc
δα
β δµν cos(F̃ ) cos(F̃ ′). It is simply a product of

Kronecker deltas with the color (αβ) and the Dirac (µν) indexes, modulo
a coefficient. Note that a contribution from one octet leads to zero. An
interesting interaction between two different sectors will appear for m = 2
and m = 3. The most complicated term binds together the three flavors and
the projection of the three octets onto the singlets is given by

Nc

8(N2
c − 4)(N2

c − 1)
dijkdabc[λ

i]αβ [λj]α
′

β′ [λ
k]α”

β ”× [λa]h1
h2

[λb]h3
h4

[λc]h4
h5

+
1

8(N2
c − 1)Nc

fijkfabc[λ
i]αβ [λj]α

′
β′ [λ

k]α”
β ”× [λa]h1

h2
[λb]h3

h4
[λc]h4

h5
,

(5.16)

where we have a combination of the color Gell-Mann matrices λa (a =
1, ..., N2−1) with normalization Trλaλb = 2δab. All these projections may be
constructed from a proper combinations of the standard structure constant
dabc (symmetric) and fabc (antisymmetric). We remind, they are defined by a
anticommutator {λaλb} = 2dabcλc + 4

3
δab and commutator [λaλb] = 2ıfabcλc,

respectively. To deal with SU(2) color one should set f ijk = εijk and just
omit terms with symmetric dabc. To summarize, we list terms appearing in
the effective Lagrangian:∫

dU(UIτ
−
µ τ+

ν U †
I ) cos(F̃ ) cos(F̃ ′) =

2

Nc
δα
β δµν cos(F̃ ) cos(F̃ ′) (5.17)

for m = 1, then first relevant term with an interaction between light and
heavy degrees (with m = 2)

∫
dU

(
UI [τ

−
µ τ+

ν ]U †
I

)
αβ

(
UI [τ

aωa]U †
I

)
α”β”

sin(F̃ ′) cos(F̃ ) (5.18)

=
2

4(N2
c − 1)

[λi]αβ [λi]α”
β” ×

[
2√
3
δµνδb8 + 2ıη̄b

µν

]
ω′b sin(F̃ ′) cos(F̃ )
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and finally from the interaction of three flavors, after lengthy calculation we
find out that only two terms survive, i.e.

1

(Nc + 2)(N2
c − 1)

δµνω
bω′b dijk[λ

i][λj][λk] sin(F̃ ) sin(F̃ ′)

+
1

Nc(N2
c − 1)

ıεabcη̄
a
µνω

bω′c fijk[λ
i][λj][λk] sin(F̃ ) sin(F̃ ′) . (5.19)

For simplicity, in above expression we have skipped an indexes (α, β...) and
reminded that for indexes {a, b, c} = {1, 2, 3} the antisymmetric structure
constant can be replaced by fabc = εabc.

In this way we have collected all essential elements needed for construct-
ing the effective actions for the doubly heavy baryons

LqQQ ' ∆Mq∆M2
Q

2n2N2
c

∫ (
q†α(k1)

1

8
k1φ

′(k1) k2φ
′(k2)(γµγν

1 + γ5

2
)qβ(k2)

)

× [...]×
(
Q†

α′(
~k, l)

1 + γ4

2
(lω) Qβ′(~k − ~ω, ω)

)
(5.20)

(
Q†

α”(
~k′, l′)

1 + γ4

2
(l′ω′) Qβ”(~k

′ − ~ω′, ω′)
)

(2π)4δ3(~k2 − ~k1 − ~ω − ~ω′) δ(k2 − k1 + ω − l + ω′ − l′)∫
d3ω

(2π)3

d3k

(2π)3

∫
dl

(2π)

dω

(2π)

∫
d3ω′

(2π)3

d3k′

(2π)3

∫
dl′

(2π)

dω′

(2π)

∫
d /k1

∫
d /k2

with the bracjet [...] contains all nontrivial information on the color structure
(see Appendix 8.4)

[...] =
2

Nc
δα
β δµν cos(F̃ ) cos(F̃ ′)

+
1

(N2
c − 1)

[λi]αβ [λi]α”
β”(ıη̄

b
µν)ω

′b sin(F̃ ′) cos(F̃ )

+
1

(N2
c − 1)

[λi]αβ [λi]α
′

β′(ıη̄
b
µν)ω

b sin(F̃ ) cos(F̃ ′)

+
2

Nc(N2
c − 1)

[λi]α”
β”[λ

i]α
′

β′δ
α
β δµνω

jω′j sin(F̃ ) sin(F̃ ′) (5.21)

+
1

(Nc + 2)(N2
c − 1)

δµνω
bω′b dijk[λ

i][λj][λk] sin(F̃ ) sin(F̃ ′)

+
1

Nc(N2
c − 1)

ıεabcη̄
a
µνω

bω′c fijk[λ
i][λj][λk] sin(F̃ ) sin(F̃ ′) .
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The above expression (5.21) derived by us has several intersting features.
It can be seen that contracting a pair of the light flavors (q†αqβ) in the ef-
fective Lagrangian for the doubly heavy baryons gives us additional factor
V
′

= (1
2
V0 < q̄q >). Moreover, in our new two-body interaction, one may

immediately recover a significant instanton-induced interaction for heavy
mesons Q̄Q

LQQ ∼ 2V
′

Nc

Q̄Q̄′
(

cos(F̃ ) cos(F̃ ′) +
ωjω′j

(N2
c − 1)

λi
1λ

i
2 sin(F̃ ) sin(F̃ ′)

)
QQ′ .

(5.22)

In the next section we will focus our attention on the possible influence of
the derived action on the spectroscopy of the doubly heavy baryons.

5.3 Spectrum of the Doubly Heavy Baryons

We would like now to analyze the features of the spectrum of the doubly
heavy baryons reported by SELEX Collaboration [7] using our instanton
model. Taking into account the complicated structure of the interaction,
we choose a simple scenario. Since we are aware that instanton model does
not provide sufficiently strong confining forces, we mimic confinement by a
harmonic potential. Then variational calculation allows us to simply param-
eterize the binding. The Hamiltonian involving instanton vertices calculated
before will be used as a perturbation, and by calculating expectation values
in the lowest instanton density approximation we will get the relevant splits.
Surprisingly, above calculations will be of the ”back of the envelope” kind,
since we will employ couple of tricks. Nevertheless, we will still be able to
identify major advantages and the weak-points of the presented approach.
In order to show the versatile nature of the instanton calculus, in the subse-
quent chapters we will confront our estimation with the results of potential
models.

Before we will turn into the calculation, let us make an important re-
mark, which will also allow us to fix the notation. Till this moment, in
our considerations we did not specify the detailed flavor setting of the dou-
bly heavy baryons. If the heavy quarks composing the diquark subsystem
(with 3̄ color) have identical flavors (Q = c, b), then it is necessary to take
into account the Pauli principle. Due to this constraint, the sum of heavy
quark spins Sd = 0 is forbidden for symmetric wave functions of the diquark
ψd with the orbital angular momentum Ld = 0, 2, ... (as usual labeled by
S, D,..). Therefore, the ground state 1S1s (ndLdnql) of the doubly heavy
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baryons ΞQQ has the total angular momentum given by JP = (1
2

+
, 3

2

+
). Sim-

ilarly, for the antisymmetric, odd functions Ψd (i.e., with the orbital angular
momentum Ld = 2n + 1 = 1, 3, ...) the total spin of diquarks Sd = 1 is for-
bidden. All these problems disappear when we consider the different flavors
inside the heavy diquark (Q′Q). For example the ground state of ΞQ′Q will

have JP = (1
2

+
; 1

2

+
, 3

2

+
). Also this case the SW ”supersymmetry” is broader

comparing to the case of identical heavy flavors. Since there is only one signal
and not confirmed signal for the ”triple scoop” baryon scb, and it will turn
out that charm is not heavy enough to believe into SW symmetry, we will
not study this case in this work.

5.3.1 Variational estimate

We use variational model developed in [59]. We explain the notation and
the main idea considering much simpler case of the mesons, then we move
towards double heavy baryons. In case of heavy-light charmed mesons, the
Hamiltonian reads

H =
~p2

q

2mq

+
~p2

Q

2mQ

+
1

2
Mω2|~rq − ~rQ|2 + H(2) . (5.23)

Here M is the reduced mass of the heavy-light system, mq = ∆Mq ∼ 420
MeV and mQ = mc+∆MQ ∼ (1350+86) MeV. The harmonic potential is re-
sponsible for the confinement. The instanton-induced interaction H(2) plays
the role of the perturbation. The simplest choice for the trial wavefunction
is a Gaussian

ψ(χ) =

(
2α

π

)3/4

e−αχ2

, (5.24)

where ~χ = 1√
2
(~rq−~rQ). Minimization of the expectation value of (5.23) with

respect to variational parameter α yields α = 1
2
Mω leads to the confining

energy reads Eα = 3
2
ω, as expected from elementary quantum mechanics.

The size r =
√

1
2α

of the ground state is a function of the reduced mass M ,

which allows to fix the parameters by the size of the heavy-light system. For
example [59], if rqQ = 0.6 fm, then the size of the the heavy-heavy system
is rQQ̄ ' 0.4 fm for charmed state and rQQ̄ ' 0.35 fm for the bottomium.
The correction comes from two-body instanton-induced interactions, which
for system Qq reads [59]

H
(2)
qQ =

(∆MQ∆Mq

2nNc

) (
1 +

1

4
λa

qλ
a
Q

)
δ3(~rq − ~rQ) . (5.25)
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The spectrum of the heavy-light system comes from formula

MqQ = 〈H(0) + H(1) + H(2)〉 , (5.26)

where first term H(0) represents the binding energy Eα and the current masses
of the quarks, the second is an instanton-induced dressing (H(1)) stands for
the induced instanton mass for the light and heavy quarks and H(2) provides
the mechanism for splitting by instanton-induced heavy-light vertices. It is
rather interesting that such a simple model leads to the results which are
in satisfactory agreement both with experiment and with several potential
models.

The extension to double heavy baryons goes as follows. The first, kine-
matic part is easy. One introduces the Jacobi coordinates, i.e. in addition to
~ξ corresponding to the difference of heavy quarks coordinates we also have

~η =
√

1
6
(~rQ+~rQ−2~rq). The trial function is the product of two Gaussians for

these coordinates, so the binding harmonic Hamiltonian separates into the
sum of two harmonic oscillators, depending on variational parameter reflect-
ing the total size of the system (dispersion of the Gaussian). The dynamical
part is less trivial. On top of Hamiltonians H(1) and H(2) we have now to take
into account Hamiltonian H(3), calculated in the previous chapter. At first,
this looks weird, since the averaging over color matrices scales like 1/Nm

c ,
where m is number of quarks entering the relevant vertex, so H(3) is 1/Nc

suppressed comparing to H(2). This is certainly true for the infinite number
of colors, but for Nc = 3 these ”sub-leading” term is crucial for understanding
the binding. Let us explain it in more detail. In case of our simple Ansatz,
the addition of one more quark into the vertex (i.e. m → (m + 1) for color
averaging), brings about in the (m + 1)-body contribution to the energy an
additional overall factor of Rq for a light quark, and RQ for a heavy quark,
in comparison the m-body interaction. These R factors [59] read explicitly

Rq,Q = −2
(∆Mq,Q

2nNc

) (
1√
πr

)3

. (5.27)

To see the role of the Rq factor, let us recall the double-heavy vertex gener-
ated by the instantons

H
(2)
QQ =

(∆MQ∆MQ

nNc

) (
1 +

3

32
λa

1 · λa
2 −

9

32
σ1 · σ2 λa

1 · λa
2

)
δ3(~r1 − ~r2)(5.28)

This interaction is expected to be overall attractive and binding. The expec-
tation value of the H(3) term compares to < H

(2)
QQ > multiplied by Rq, which

is negative. The binding in the instanton vacuum picture is therefore the
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result of subtle interplay between between two-body and three-body forces,
since e.g. for sizes of order .9 fm both terms are of similar magnitude. Since
the R-factor has an inverse cubic power of the typical size of the baryon,
the resulting spectra are extremely sensitive to the size of such object, on
top of very strong dependence of the heavy quark mass instanton-induced
shift on the average size of the instanton. For typical sizes of the instanton
ρ = 0.3 ± 0.1fm, it is impossible to fit the spin-shift of the SELEX data for
Ξcc (equal to 78 MeV) for average size of the system considerably smaller
than 0.8 fm 1. Huge variation of the predicted spectra as a function of the
size of the instanton tells us also that the unknown role of color screening
and confining forces, missing in the instanton picture, is very important for
understanding the spectra of the doubly heavy baryons.

Finally, we would like to come to the question, how, if at all, SW sym-
metry is fulfilled at the level of the charm quark. We would like to point
out, that approaching the infinite heavy quark limit, we have a natural sep-
aration of the several scales. Since infinitely heavy diquark is point-like,
excitations in the finite mass heavy quark-quark systems (orbital excitations
of the diquark) have to scale like mQ. Excitations related to light degrees of
freedom are independent of the mass of the heavy quark, so they scale like
m0

Q. Finally, spin effects scale like m−1
Q , so for sufficiently heavy mass these

scales are well separated. Similar analysis including additionally the effect
of the finite velocity of the heavy quark was presented recently in [52]. We
would like here to perform similar analysis, taking into account effects from
instantons and complementing the speculations [52] by dynamical models of
the potential type.

5.3.2 Diquarks, charmonia and double-heavy baryons

In this section we would like to use the existing data for charmonia system
to extract certain information on doubly heavy systems. Our motivation is
as follows:
First, we choose a standard potential model describing well charmnia states
(at least till the recent BaBar/Belle revolutions) as a gauging device for
our speculations. We also study the effect of instanton on these potentials.
Then, using the experimental data and popular argument, based on Casimir
scaling, that quark -quark interactions are twice weaker comparing to quark-
antiquark interaction, we calculate the scale of the typical excitations of
the diquark, ignoring the issue that such system is not at color neutral. Fi-
nally, we build a color neutral, double heavy baryon, by solving the pertinent

1We would like to thank Bartosz Fornal for independent verification of this fact.
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bound-state equation for a doubly heavy diquark and light quark. Since we
perform the above calculations for the realistic masses of charm and bottom
quark, we hope that the numerical results for the bound states will teach us
something on the interplay of the three scales discussed above.

We start from considering the doubly heavy diquark and from compu-
tation the energy levels. Our considerations are very similar to those well
known in literature, where the charmonium or bottomium states have been
examined [73]. In the similar manner, to obtain the spectrum of the heavy
diquark (QQ) we use the nonrelativistic Schrödinger equation with a proper
selection of the potential. For simplicity, in the first part of present calcu-
lations we decided to take a combination of the scalar and vector potentials
given by

V (r) = Vs(r) +
1

2
Vv(r) = (br + c) +

1

2

(
−4

3

α

r

)
, (5.29)

where for the anti-triplet quark state, we have introduced the color factor
1/2 in front of usual Coulombic potential Vv(r) corresponding to the quark-
antiquark pair. It is a consequence of a following expression VQQ = 1

2
VQQ̄.

When applying potential models, several possible choices of input param-
eters can be made. Typical range of the vector potential parameter α is
about (0.28 − 0.44), and for the value of the mass we use mc = (1.3 − 1.7)
GeV. Unfortunately, only one of these parameters seems to be well defined
in literature, i.e. the so-called string tension, b, due to model independent
information from the lattice. In our numerical calculations we combined
the values used in papers [73, 74]. For completeness, all parameters with
references are summarized in Table (5.1).

Table 5.1: Parameters of the potential model.

Parameter Value Ref.
α 0.44 [74]
mb 4700 MeV
mc 1350 MeV
mq 385 MeV [74]
b 0.18 GeV2 [73]
c 0.02 GeV [73, 76]

Therefore, following [74], our first task is to solve numerically the Schrödinger
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equation

(
2mQ − ∇2

d

mQ

+ V (r)

)
ψd = Mdψd (5.30)

and to look at the excitation spectra. Here, the masses of the doubly heavy
diquark at zeroth order is determined by Md and the nabla operator for a

spherically symmetric system has a standard form, i.e. ∇2
d = 2

r
∂
∂r

+ ∂2

∂r2 −
~L2

d

r2 .
Let us only remark that this part is evaluated without the spin-dependent
corrections. Our aim is to obtain a reasonable spectrum for a few significant
levels with the potential V (r) chosen in two different ways. On top of the
standard linear potential we modify the shape of V (r) by taking into account
the instanton contribution due to the Wilson line. It can be done by replacing
of the scalar part of our potential Vs(r) by the potential between the heavy
quarks, i.e

Vs(r) → Vinst(r)

= 2
N

V Nc

∫
d3z[1− cos

(
π|~r − ~z|√

(~r − ~z)2 + ρ2

)
cos

(
π|~z|√
|~z|2 + ρ2

)

+
(~r − ~z)

|~r − ~z|
(~z)

|~z| sin

(
π|~r − ~z|√

(~r − ~z)2 + ρ2

)
sin

(
π|~z|√
|~z|2 + ρ2

)
] . (5.31)

Certainly, this modification can be viewed only as a approximation, as we all
know [56], that this kind of potential is rather quadratic for small distances
(r → 0) then rises linearly to approach soon the constant values, there is
rather binding than confining. Moreover , it can be easily checked that
the shape of an instanton-induced potential strongly depends on the inverse
of high power of the instanton size ρ. More details about this feature, in
particular the example of curve obtained for size of instanton about 0.35
fm was studied in [70]. What is interesting, the confrontation of these two
scenarios (i.e. energies Md and Md,I) gives us an information about the role
of instantons in the diquark spectrum. The estimated energies of the doubly
heavy diquark (QQ) for the various of levels are listed in Table 5.2.

Before proceeding further, let us analyze some features of the obtained
spectra. First, we notice that the spectra for instanton potential are consid-
erably below the linear one. The reason is that instanton potential is weaker
comparing to the linear one with proper string tension, a fact reflecting lack
of confining forces in the instanton vacuum picture. Comparing the results
for charm and bottom quarks, we see that the effects are less dramatic for
bottom quarks. Again, this is not surprising, since their wave functions are
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more localized around the origin and less sensitive to larger distance behavior
of the potential. The effect weakens for highly excited states, when extended
wave functions probe considerably larger distances. An important message
comes from the size of the gap for the first diquark excitation: in case of the
charm quark, the gap is of order of 450 MeV, therefore comparable to the
chiral shift observed from BaBar and Belle data for chiral doublers. Clearly
there is no separation of scales at the level of charm quark and the appli-
cation of constraints from SW symmetry is doubtful. For the case of the
bottom quark, the result is exciting - the corresponding gap is of order of
140 MeV, and since similar chiral shift of order of 400 MeV is expected for
b as for c quark, there is some hope, that perhaps at the level of the mass
of the b quark Savage-Wise symmetry may we approximately working. If
indeed, this may have dramatic consequences for e.g. appearance of exotic
states including bottom and light quarks.

Before proceeding towards the analysis of the spin effects, let us complete
the potential model for heavy-heavy-light baryons. As a next step we have to
introduce second Schroedinger equation, this time binding a heavy diquark
to a light quark. Such equation can be solved only numerically. We have
performed this task in analogy to the discussion presented in [74]. Relevant
equation takes the following form

[
Md,I + mq +

p2

2mq

+
p2

d

2Md,I

+ V1(r)

]
ψq(r) = M

(0)
B ψq(r) (5.32)

with the potential given by

V1(r) = (br + c) +

(
−4

3

α

r

)
. (5.33)

In light of the previous discussion, we have ignored instanton effects in the
scalar potential as to weak to provide proper binding. Above equation con-
nects the light quark with the doubly heavy diquark and leads us to the
spectrum of the doubly heavy baryons like Ξcc (energies are denoted by MB).
Thus, we have completed the calculation of the binding force. In the next
section we will describe how the spin splitting should be inserted and worked
out for the quark-diquark systems.

5.3.3 Spin-dependent corrections

The diquark levels calculated in the previous chapter did not take into ac-
count the spin effects. Now, we would like to take into account the spin-spin
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Table 5.2: The spectrum of the doubly charmed diquarks (cc) without the
spin-dependent splitting.

Diquark level (ndLd) Mass Md[GeV] Mass Md,I [GeV]
1S 3.23 2.79
2S 3.79 3.08
3S 4.22 3.36
1P 3.59 2.97
1D 3.87 3.11

Table 5.3: A few relevant states of the doubly heavy diquarks (bb) without
the spin-dependent splitting.

Diquark level (ndLd) Mass Md,I [GeV]
1S 9.43
2S 9.59
3S 9.74
1P 9.53
1D 9.61

and spin-orbit interactions, causing the splitting between the levels of the
quark-diquark system. As far as we know, this issue was discussed in few
papers [74]. In accordance with those results, we specify the additional po-
tential as

VSD(r) =
1

4

(
~l · ~Sd

2m2
Q

+
2~l · ~Sq

2m2
q

)(
−dV1(r)

rdr
+

8

3

α

r3

)

+
1

3

α

mQmq

(~l · ~Sd + 2~l · ~Sq)

r3
+

4

3

α

3mQmq

(~Sd + ~Ld) · ~Sq[4πδ(r)]

−1

3

α

mQmq

1

r3

1

(4~l2 − 3)
× [6(~l · ~S)2 + 3(~l · ~S)− 2~l2~S2

−6(~l · ~Sd)
2 − 3(~l · ~Sd) + 2~l2~S2

d ] , (5.34)

where ~Ld = ~L1 + ~L2, ~Sd = ~S1 + ~S2 are the orbital momentum of the diquark
and the summed spin of the heavy quarks inside the diquark, respectively.
The interaction between the light constituent quark and the doubly heavy
diquark appeared in the total spin, i.e. ~S = ~Sq + ~Sd. Let us remind that
the first term in (5.34) refers to the relativistic corrections to the potential
V1(r), three others come from the one gluon exchange between the quarks.
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From above spin-dependent potential one may recover the first perturbative
correction to the spectrum of the doubly heavy baryons

M
(1)
B =

∫
d3rψ∗(~r)VSD(r)ψ(~r) , (5.35)

so the bound state mass to the first order can be written as

MB = M
(0)
B + M

(1)
B . (5.36)

Table 5.4: The mass spectrum of the doubly charmed baryons Ξcc.

(ndLdnql)J
P Mass [GeV] Ref.[74] Ref.[75]

(1S 1s) 1/2+ 3.667 3.478 3.620
(1S 1s) 3/2+ 3.832 3.610 3.727

(1S 1p) 1/2− 4.120 3.927 4.053
(1S 1p) 3/2− 4.229 4.039 4.101

(1S 1p) 5/2− 4.233 4.047 4.155

(1S 1p) 1/2′− 4.241 4.052 4.136
(1S 1p) 3/2′− 4.205 4.034 4.196

As usual, a general formulation for this kind of interaction, where diquark
and light quark have different masses is given by the scheme of  coupling.
It is convenient to use following relations for the given values of ~J and ~S

|J ; Jq〉 =
∑

S

(−1)(J+l+Sd+Sq)
√

(2S + 1)(2Jq + 1)

{
Sd Sq S
l J Jq

}
|J ; S〉

(5.37)

or

|J ; Jq〉 =
∑
Jd

(−1)(J+l+Sd+Sq)
√

(2Jd + 1)(2Jq + 1)

{
Sd l Jd

Sq J Jq

}
|J ; Jd〉 ,

(5.38)

where the braces stand for the Wigner 6j-symbols, commonly used in the
coupling of three angular momenta. Apart from the phase, 6j-symbols are
equal to the Racah’s W-coefficients. In the current problem, the total an-
gular momentum of the doubly heavy baryons involves ~J = ~Jq + ~Sd, where
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~Jq = ~l + ~Sq is the light quark total angular momentum and ~Jd = ~l + ~Sd.
As explained previously, for the case of identical heavy flavors, we identify
the heavy quarks by the values od ~Sd, i.e. the sum of the heavy quarks spin
Sd = 1 for even Ld, as well as for odd Sd = 0. In order to calculate the level
shifts between baryon states, appearing due to the spin-dependent terms,
one has to average expression (5.34) over the corresponding wave functions.
Moreover, the potential terms of the order 1/m2

Q and 1/mQmq lead to the
mixing of baryon states with the same values of the total angular momen-
tum J but different light quark total momentum Jq. For instance, it has to
be taken into account in case of state with the diquark in a ground state
(S-wave) and the light quark in p-wave state, i.e. denoted by (1S1p). This
is why it is convenient to use two separate bases for the |J ; Jq > states, de-
pending on which type of spin operator we would like to take the expectation
value. Despite this procedure is similar to standard procedures in atomic or
molecular spectroscopy, technically it is quite involved. Luckily, the hyper-
fine splitting for the system of the light quark-diquark is easier to compute,
using a following formula

∆HF =
2

9mQmq

α

[
J(J + 1)− Jd(Jd + 1)− 3

4

]
|ψq(0)|2 , (5.39)

where ψq(0) identifies the radial wave function at the origin. According
to this expression one may immediately calculate the masses of the ground
states (1S1s) for the doubly charmed baryons. All relevant states obtained
using our simple potential model are presented and compared to other models
predictions in Tables 5.4 and 5.5.

Table 5.5: The mass spectrum of Ξbb baryons.

(ndLdnql)J
P Mass [GeV] Ref.[74] Ref.[75]

(1S 1s) 1/2+ 10.346 10.093 10.202

(1S 1s) 3/2+ 10.401 10.113 10.237

(1S 1p) 1/2− 10.788 10.541 10.632
(1S 1p) 3/2− 10.812 10.567 10.647

(1S 1p) 5/2− 10.821 10.580 10.661

(1S 1p) 1/2′− 10.842 10.578 10.675
(1S 1p) 3/2′− 10.872 10.581 10.693

Our results are closer to calculations done in [75], but there are also
consistent with the others [74], including the (quenched) lattice prediction
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for ground state of Ξcc to be of order of 3600 MeV. The split between the 1/2
and 3/2 state comes out to be of order of 160 MeV, i.e. 30% more comparing
to other quoted studies, and twice bigger than in experiment if the observed
by SELEX lowest excitation is indeed a 3/2 state. Finally, the conjectured
chiral shift of order 400 MeV matches the results of our calculations, i.e.
450 MeV and is in reasonable agreement with the 340 MeV guess based on
the SELEX data. In the case of the predictions for double heavy Ξbb, the
split between 3/2 and 1/2 states comes out to be of order of 60 MeV, as
expected comparing to similar split of 160 MeV for charmed state, since this
split is a 1/mQ effect and mb ∼ 3mc. The opposite parity split for bottom
quarks comes again about 450 MeV. If confirmed by future experiment, it
will certainly pose the theoretical challenge to decide if the similar splits
are accidental or they reflect the chiral doubling nature of the heavy-light
systems.



Chapter 6

Summary

This work was triggered by several new experimental results in heavy-light
hadrons spectroscopy. Guided by the underlying idea of chiral doubling, we
tried to present a unified picture for all hadrons exhibiting this phenomenon,
using as a tool instanton vacuum picture. In the process of this work, we
have obtained several new results, like stronger arguments for chiral doubling
based on anomaly (Chapter 3), numerical studies of the heavy-light mesons in
the framework of Stony Brook instanton model for the light hadrons (Chap-
ter 4) and the structure of effective Lagrangian describing heavy-heavy-light
baryons in the instanton picture (Chapter 5). We have also verified and
checked several other results, like the calculation of doubly heavy baryons in
potential models and we have examined the criticism of Savage-Wise sym-
metry at the presently accessible experimental scales. Here we would like to
present our conclusions and prospects of the heavy-light hadrons according
to several ideas of interest.

• Fundamental understanding of the heavy-light hadrons

The fundamental understanding of heavy-light hadrons from first prin-
ciples remains a challenge, since the nature of the QCD vacuum pro-
viding both confinement and spontaneous breakdown of the chiral sym-
metry is still mysterious. It looks that the only hadronic system for
which confinement forces are not crucial is the pion, because its Nambu-
Goldstone nature seems to dominate the dynamics. But already its
strange cousin, kaon, is more complicated, since the mass of the s quark
is sufficiently heavy to be comparable with the fundamental constant
of the QCD, ΛQCD, obscuring natural ms/Λ expansion. For other light
hadrons, since the spontaneous breakdown of the chiral symmetry gen-
erates the dynamical constituent mass of order 350 MeV, one can easily
approach the correct values of masses of vector mesons or ∆ on the ba-
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sis of constituent models, but at the price of loosing the confinement,
like in NJL models or instanton vacuum picture. The other extreme are
purely heavy systems, when spontaneous breakdown of the chiral sym-
metry does not seem to play the crucial role. Since the spectroscopy
of HHH-system, the Holy Grail of experimentalists, is still the dream,
one has to study HH̄ systems. Recent experimental results have clearly
demonstrated, that the announcement of the success of the potential
models for charmonia was premature. This leaves us with challenging
possibility, that the effects of light degrees of freedom might still be
crucial for understanding states considered till today as nonrelativistic.
Perhaps the overlap of confining and chiral domains is most visible for
heavy-light systems, as recent data have been shown. Our results seem
to corroborate this picture, since the obtained results show that for the
charm quark we are still far from the factorized physics for heavy and
light degrees of freedom. It is visible from our instanton simulations
for heavy-light mesons, when we have obtained the value of the chiral
shift of order of 600 MeV, therefore close to twice the constituent mass
of the light quark. Indeed, each light quark dresses via propagation of
the vacuum, but since the relative sign is opposite due to the chiral
properties of the chiral doublers, naive split is twice the value of the
constituent mass. The fact that experiments show the value which is
considerably smaller confirms the fundamental role of color screening
interactions for heavy-light systems. It will be therefore exciting to see
what are the experimental results for the chiral split in the case of B
mesons. Above arguments prevented us from repeating the full scale
simulations for the baryons, including especially doubly heavy baryons,
when the flow of color forces joining the diquark with the light quark
is certainly very complicated. It remains a challenge for lattice cal-
culations to understand better the configuration of the flux tube in
such cases. On the other side, we have shown that major spin effects
can be described quite successfully at the phenomenological level using
the concept of effective Lagrangians originating from instanton picture.
This is in agreement with the old ideas of Shuryak and Rosner for light
degrees of freedom and confirms and extends the similar analysis for
heavy-light degrees of freedom started in [59]. From computational
point of view, this approach is an interesting alternative to several po-
tential models dominated by one-gluon exchange potentials, as we were
advertising in this work.

• Experimental results

The success of our approach relies heavily on experimental data, and
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it is disappointing that there are several experimental obstacles to
gain minimal set of data to verify such a unified picture of heavy-light
baryons as we have attempted. The first announcements of chiral dou-
blers for cs̄ were spectacular and they triggered worldwide a renowned
interested in heavy-quark spectroscopy. Till today there are well es-
tablished and confirmed by few experiments. Unfortunately, this is not
the case of the corresponding Bs mesons, which till today have not
yet been seen. This experimental signal is crucial for discriminating
between potential models and chiral doublers scenario. It will be also
great if high quality data for nonstrange opposite parity mesons will
come, including the exciting states.

Even more dramatic situation is in the case of the double heavy baryons.
Only 5 types of ccL configurations were observed, all by the same exper-
iment (SELEX) [7], and the quantum numbers of the observed states
were not established. Till today the SELEX data were not confirmed by
other experiments, including negative results from e+e− experiments.
In this work we have assumed that the SELEX data and their conjec-
ture on the nature of spin are the correct ones, but it will be certainly
very important to get an independent experimental confirmation. At
this point, let us mention an intriguing possibility, that the mechanism
of formation of the doubly heavy states may depend on the type of the
initial reactions, i.e. may require some particular and unknown mecha-
nism of coalescence. This may partially explain why the states visible at
hadronic collisions at Fermilab were not observed in electron-positron
colliders.

Last but not least, we would like to comment on the Z+ state observed
by Belle [16]. Since this object was observed in the decay onto excited
charmonium and the charged pion, this signal, if confirmed, is the clear
evidence of the structure beyond the constituent quark model, i.e. the
charmed tetraquark of the type cc̄ud̄. If confirmed, result is sensa-
tional, pointing at possible non-trivial involvement of the color and
chiral forces, as speculated in this work. However, taking into account
a long-standing confusion concerning the light pentaquark and the fact
that Belle result is in discrepancy with the BaBar analysis, one has to
wait until the experimentalists will reach the ultimate conclusion.

• Savage-Wise symmetry

Savage-Wise symmetry [51] relating such ingredients of heavy light
hadrons as H̄ to HH, i.e relating HHL to H̄L and HLL to H̄HLL
is an intriguing theoretical idea. One of the results of this work is the
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expectation, that the mass of the charm quark is too light to make
this symmetry working. Some of our arguments based on analysis of
the bound states have shown, that certainly the scale of the excita-
tions of light degrees of freedom overlaps strongly with the scale of the
internal excitations of the diquark, therefore falsifying the point-like
nature of the diquark assumed by Savage and Wise. Our results were
then confronted with the SELEX data, modulo the above mentioned
reservations. Similar analysis of SELEX data was performed in [52].
Our conclusion is stronger, we expect that 30% agreement with the
predicted split based on SW symmetry might be accidental. We also
do not expect that SW symmetry will manifest itself at the level of
doubly heavy ”three scoop baryons” of the type bcL, since the mass of
the charm quark is not heavy enough. On the positive side, we spec-
ulate that bbL baryons (not observed yet) may show remnants of the
SW symmetry, since the bb system is considerably smaller. This spec-
ulation opens the possibility for exotic states like tetraquark related to
”ordinary” bLL baryons.

• Exotics

We have already mentioned the significance of the Z+ signal (if con-
firmed) and the exotic consequences of the SW symmetry at the b quark
scale. Here we would like to provide an additional argument for the
possibility of heavy exotic states based on our analysis of multiquark
vertices induced by the instanton vacuum. Such vertex is fundamental
at the level of light quarks (’t Hooft determinant), therefore we may
expect that its heavy-light counterparts might be equally important
for hadronic physics. Two body interaction differs by sign comparing
to three body interactions, and for the typical sizes of heavy hadron
below 1 fm the magnitude of two terms is comparable. Similarly, four
body interaction induced by instantons has opposite sign comparing to
three-body force. This implies that for exotic configuration there is a
subtle interplay that may lead to weak binding. Let us assume that
such configuration is almost bound at the charm level. If we will replace
now the charm by bottom, potential part will stay the same, but the
positive kinetic part will be three times smaller, so overall the binding
will be considerably stronger. Therefore it is plausible that the exotic
heavy states will manifest themselves only at the level of the bottom
quark.

Summarizing, we are convinced that heavy-light systems open us a unique
insight onto the hadronic world. We also believe that better experimental
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data will strengthen the theoretical rigor of similar analysis, as it happened
historically in the case of chiral perturbation theory and usual parity Heavy
Quark Effective Theory. There is a considerable hope that experimental
breakthrough may soon happen. One intriguing possibility is the further
upgrade of the KEK machine, so Belle will start probing higher and higher
b-quark spectroscopy, hopefully so successfully as in the case of charm quark.
New signals are also expected from LHC at CERN, where the physics of
charm and bottom hadrons plays the major role and when new mechanisms
of production of heavy-light states may take place in extreme conditions. Fi-
nally, the statistics and branching ratios for existing heavy-light particles will
be upgraded by experiments at Fermilab, Stanford (BaBar), BES (Beijing)
or PANDA (GSI Darmstadt). We are impatiently waiting for these events.
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Chapter 7

Appendix A

7.1 Fierz Transformation

In this Appendix we present the details of Fierz transformation used in Chap-
ter 3 for rearranging our Lagrangian densities. Since we want to work with
color-neutral objects (”white”), we start from basic relations allowing us ma-
nipulate the flow of colors Fig.7.1. The figure depicts the relation for color

Figure 7.1: Basic relations for color indexes. The value of α follows from
used normalization of color matrices, i.e. Trλaλb = αδab.

matrices which can be explicitly decoded as

8∑
a=1

(λa)ij (λa)mn = α(δinδmj − 1

N c
δijδmn) ≡ α(f − 1

Nc

d) . (7.1)

We rewrite this relation using the basis of symmetric and antisymmetric
tensors, i.e.

S =
1

2
(d + f) ,
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A =
1

2
(d− f) , (7.2)

where we have suppressed the indices since their flow is obvious. In this basis
we have d = S + A and f = S − A. Putting above formulae all together we
get

(δinδjm − 1

Nc

δijδmn) =
1

α
λijλmn ,

1

Nc

(δijδmn − δinδjm) =
1

Nc

∑

k

εkimεknj . (7.3)

This immediately implies one of the Fierz color identities used in our calcu-
lations

8∑
a=1

(λa)ij (λa)mn =
4

3
1in1mj +

2

3

3∑

k=1

εkimεknj (7.4)

with normalization α = 2. A second identity may be found by the simple
exchange the indexes j ↔ n in the first part of eq.( 7.1)

1

2

8∑
a=1

(λa)in(λa)mj = (1)ij (1)mn +
1

3
1in1mj . (7.5)

All these relations were used to relocate our fields in color space. To endow
the states with correct quantum numbers we also have to apply a Fierz trans-
formations for the spin. Before doing this let us define first our convention.
Following [61]

S = 1⊗ 1 = Γs ⊗ Γs ,

V = γµ ⊗ γµ = Γµ
V ⊗ Γµ,V ,

T =
1

2
σµν ⊗ σµν =

1

2
Γµν

T ⊗ Γµν,T ,

A = γ5γ
µ ⊗ γµγ5 = Γµ

A ⊗ Γµ,A ,

P = γ5 ⊗ γ5 = iΓP ⊗ iΓP , (7.6)

where the set of all spin operators is expressed in term of the 16-dimensional
basis for Dirac matrices, denoted by Γβ. In the definition (7.6) we omit-
ted for simplicity the spinors ψ. Now, we can write in full glory the Fierz
transformation

(ψ̄(4)Γβ
I ψ(2)) (ψ̄(3)Γβ,Iψ(1)) = FIK (ψ̄(4)Γβ

Kψ(1))(ψ̄(3)Γβ
Kψ(2))(7.7)
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with a numerical matrix F relating the two sets of quantities with F 2 = 1.
The matrix has the following form

FIK =
1

4




1 1 1 1 1
4 −2 0 2 −4
6 0 −2 0 6
4 2 0 −2 −4
1 −1 1 −1 1




. (7.8)

Notice that in our case the relevant matrix is actually −F due to the fact that
Fermi fields anticommutate. To demonstrate how the Fierz transformation
works in practice, According to all our definitions of Fierz coefficients, we
apply it to one gluon exchange Lagrangian (3.2), with the following result

LqQ =
g2

Λ2

(
Q̄qq̄Q− 1

2
Q̄γµqq̄γ

µQ +
1

2
Q̄γµγ5qq̄γ

µγ5Q− Q̄γ5qq̄γ5Q

)
.

(7.9)



Chapter 8

Appendix B

In this Appendix we provide a few details of the calculations done in Chap-
ter 5. We start from the ”dictionary” relating several quantities in Euclidean
and Minkowski space-time. Next, we collect several useful relations for the
’t Hooft symbol. Then, we outline how the specific ”hedgehog” (in spin and
color) feature of the instanton gauge field allows to make explicit calculation
of the path-ordered exponent in the Wilson loop, leading to the derivation of
the instanton-driven potential between two infinitely heavy quarks. Finally,
we review one of tricks allowing very effective way of integration over the
string of color matrices (U integration) with respect to the Haar measure.

8.1 Conventions

The formulae for transcription from Euclidean to Minkowski space-time are
as follows:

• Gamma matrices
γE

4 = γ0, γE
i = −iγi where i = 1, 2, 3

and anticommutation relation {γmuE, γnuE} = 2δµν.

• Covariant differentiation:
DE

4 = −iD0, DE
i = −Di (i = 1, 2, 3) hence DE

µ = ∂µ − ıgAE
µ .

• Fermi fields:
ψE = ψ, ψ†E = iψ̄.

• Vector potentials:
AE

µ = −ıA0 and AE
i = −Ai with i = 1, 2, 3.

• Space-time coordinates:
xE

4 = ıx0 and spatial xE
i = xi.
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• Action:
SE = −ıS

8.2 ’t Hooft Symbols

So-called ’t Hooft symbols η are defined with the help of the 4 − vector
matrices

τ±µ = (~τ ,∓ı) (8.1)

and follow from relations

τ−µ τ+
ν = δµν + ıη̄aµντ

a,

τ+
µ τ−ν = δµν + ıηaµντ

a . (8.2)

Numerically they read ηaµν =





εaµν , for µ, ν = 1, 2, 3,
−δaν , for µ = 4
δaν , for ν = 4
0, for µ = ν = 4

Definition for η̄aµν differs from ηaµν by a change of the sign of δ. We list
several useful relations for these symbols (a, b = 1, 2, 3 and µ, ν = 1, ..., 4):

ηaµν =
1

2
εµναβηaαβ ,

ηaµν = −ηaνµ ,

ηaµνηaγλ = δµγδνλ − δµλδνγ + εµνγλ ,

ηaµνηaµν = 12 ,

ηaµνηbµν = 4δab ,

ηaµνηaµρ = 3δνρ ,

ηaµν η̄bµν = 0 ,

ηaµν η̄bµγ = ηaµγ η̄bµν . (8.3)

To pass from the above relations to those for η̄aµν it is necessary to make a
following substitution ηaµν → η̄aµν and εµναβ → −εµναβ. The power of the
’t Hooft symbols calculus stems from the fact that by construction they are
either self-dual (η’s) or anti-self-dual (η̄’s)



CHAPTER 8. APPENDIX B 73

8.3 Path Ordered Exponent and Heavy Quarks

In this part we compute the Wilson line in the instanton background and
we demonstrate a behavior of the heavy quark potential induced by the
instanton as a function of the distance, following Callan et al., Diakonov
[70] and others. The propagator for a heavy quark is given by a following
expression

SQ(x) =
1 + γ4

2
δ3(~r)θ(τ)P. exp

(
ı

∫
Aµdxµ

)
, (8.4)

where P. denotes a path-ordering along the contour. We choose an infinite
straight line along time direction (4-direction), i.e.

P. exp

(
ı

∫
Aµdxµ

)
= P. exp

(
ı

∫ +∞

−∞
Aa

4dx4

)
(8.5)

and we calculate the phase in the presence of one instanton (centered at zI

and of the size ρI) in singular gauge

Aa
µ = η̄a

µντ
a (x− z)νρ

2

(x− z)2((x− z)2 + ρ2)
. (8.6)

Using formulae for ’t Hooft symbols from the previous section with η̄a
4ν = δaν

we find a path exponent in an explicit form

P. exp

(
ı

∫ +∞

−∞
Aa

4dx4

)
|zI4=0 = cos

(
π − π|~z|√

|~z|2 + ρ2

)

+ı
~z~τ

|~z| sin
(

π − π|~z|√
|~z|2 + ρ2

)
. (8.7)

Let us remark that anti-instantons will double this contribution, i.e. Aa
4 =

Aa
±,4. To get the explicit color dependence we need to sandwich the second

term between U and U † color matrices. Now we are ready to extract the
potential from the Wilson loop. Following [65] we define the potential as

V (x)inst =
N

(2NcV )

∫
d3z Trc[1− L(~x− ~z)L†(−~z)] , (8.8)

where L are corresponding path-exponents for infinitely quark and antiquark
separated by ~x. Short calculation gives the following form

V (x)inst = 2
N

(NcV )

∫
d3z[1− cos

(
π|~x− ~z|√

(~x− ~z)2 + ρ2

)
cos

(
π|~z|√
z2 + ρ2

)

+
(~x− ~z)

|~x− ~z|
(~z)

|~z| sin

(
π|~x− ~z|√

(~x− ~z)2 + ρ2

)
sin

(
π|~z|√
z2 + ρ2

)
] . (8.9)
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8.4 U-integration

This part of the Appendix contains a complete set of relations used in the
last part of our calculation for LqQQ. To obtain the effective vertex for dou-
bly heavy baryons we need in particular to average over color matrices UI of
the instanton ”seen” by all three quarks. Instead of using popular textbook
techniques for and integration over the color space SU(Nc) we rely on the
graphical techniques [59, 69] based on constructing proper projection opera-
tors onto singlets. Averaging over the color-orientation matrices requires the
knowledge about integrals of the type

∫
dU [Ua

i U †j
b ]m (8.10)

with invariant measure
∫

dU = 1 for several natural numbers m. The trick
is based on the fact, that integrating over colored orientations chooses the
color singlets, since any non-trivial direction in color is averaged to zero when
the sum over orientations is performed. We may therefore use the following
correspondence

Ua
i U †j

b ↔ 1

Nc

δa
b δ

j
i + [λi]ab [λ

i]ji , (8.11)

where λa are eight color matrices (a = 1, ..., 8) with a standard normalization
Trλaλb = 2δab. The problem reduces therefore to the classification of all
projections of the product of m octets onto singlets. For m = 1, since
3 ⊗ 3̄ = 1 ⊕ 8, only singlet survives, since averaging over octet is zero. For
m = 2, additionally we need the projection of the product of two octets onto
singlet, i.e. 8⊗ 8 → 1. Relevant projectors are

P1 =
1

Nc

, P8 =
1

4(N2
c − 1)

. (8.12)

For m = 3 on top of the above structures we need projectors of 8⊗8⊗8 → 1.
There are two of them due to antisymmetric fabc and symmetric dabc structure
functions for Nc > 2 and they read

Pf =
1

2Nc

and Pd =
Nc

2(N2
c − 4)

. (8.13)

It is now trivial to write down few integrals

• m = 1 → ∫
dU [Ua

i U †j
b ] = 1

Nc
δa
b δ

j
i
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• m = 2 → ∫
dU [Ua

i U †j
b ]2 = [ 1

Nc
δa
b δ

j
i ]

2 + 1
4(N2

c−1)
[λi]a1

b1
[λi]a2

b2
[λi]j1i1 [λ

k]j2i2

• m = 3 → ∫
dU [Ua

i U †j
b ]3 = [ 1

Nc
δa
b δ

j
i ]

3

+ 1
4Nc(N2

c−1)
([λi]a1

b1
[λi]a2

b2
[λj]i1j1 [λ

j]i2j2δ
a3
b3

δj3
i3

+ (3 ↔ 2) + (3 ↔ 1))

+ Nc

8(N2
c−4)(N2

c−1)
dijk dabc[λ

i]a1
b1

[λj]a2
b2

[λk]a3
b3

[λa]i1j1 [λ
b]i2j2 [λ

c]i3j3
+ 1

8(N2
c−1)Nc

fijk fabc[λ
i]a1

b1
[λj]a2

b2
[λk]a3

b3
[λa]i1j1 [λ

b]i2j2 [λ
c]i3j3

This trick allows to write down the integrals in the relatively compact form,
comparing to standard results involving the sum of (m!)2 terms each being
the product of 2m Kronecker delta’s.
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